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Abstract

Load balancing is about distributing work load (jobs, tasks, processes, etc.)

among a set of processing facilities (processors, workstations, servers, etc.),

such that, usually, this load is more or less evenly distributed.

In this work we introduce and investigate the performance of three ran-

domised load balancing algorithms for dynamic settings, that is, we are

interested mostly in the long term behaviour of the algorithms, and here

especially in deriving an upper bound on the maximum load of any server

at any point of time.

We assume two fundamentally different load generation schemes. First,

we analyse the algorithms given a stochastical scheme, i.e., the generation

and consumption of load obeys some probabilistic distribution. Second, we

introduce an adversarial scheme, where we assume that the generation and

consumption of load is controlled by an adversary, who deliberately tries to

produce a load distribution as uneven as possible. Two of our algorithms

are for the stochastical generation scheme, and the third one is for the

adversarial scheme.

After rigorously analysing the performance of the algorithms, we present

some simulation results that indicate that under certain conditions our

algorithms very are well-behaved in practice, too. Since the algorithms are

somewhat theoretical in nature, we also briefly discuss how to modify them

and tune certain parameters in order to make them even more applicable

for practical problems.
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CHAPTER 1

Introduction

During the last couple of years, parallel computers have been used to per-

form certain computations where execution on a standard one-processor

machine would have been much too time consuming, both in the academic

research world and in commercial companies. One can, for instance, think

of production scheduling needed to be done by companies, weather fore-

cast, simulations in physics, and so on. One critical issue with parallel

computers is load balancing.

In general, load balancing is the process of distributing load units (tasks,

jobs) among a set of processing facilities (processors in a massive parallel

system, or workstations in a workstation cluster, for instance) in order to

achieve certain objectives. These objectives can (and do) vary heavily from

application to application, and from system to system.

One can, for instance, think of a university’s workstation pool, where some

workstations are completely idle (no one is sitting in front of them), some

have a small work load (students in front of them are just reading their

email or things like that), and some have a high work load (students start

certain processing time intensive simulations, run TEX on their thesis, and

enjoy a game of Doom now and then). Additionally, on top of all this,

the staff utilises the machines to perform their own computations. Clearly,

an even distribution of work load among the machines would be a highly

desirable objective. This could be achieved if newly generated tasks would

not necessarily be executed on the machines where they are generated on,

but under certain circumstances on some other, less utilised machine – the

1
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very idea of load balancing. Obviously, there are a couple of things to take

care of, like how to actually find a less loaded machine, to ensure that one

doesn’t pay with too large a network communication overhead due to the

transfer of tasks, and many many more.

In practice, one would choose the load balancing algorithm depending on

what kind of application needs to be run, on what kind of system this ap-

plication runs, and on what parameters are subject to optimisation. This

directly leads to the following small classification of load balancing ap-

proaches.

SECTION 1.1

Classification of Load Balancing Approaches

In this section we give a very brief overview on some distinctive properties

of different load balancing approaches and problems, respectively. This

overview is by no means to be meant even remotely complete, it just covers

what is necessary and important to classify the algorithms presented here.

For a more complete classification, see for instance [SG97].

Communication restrictions. Some load balancing algorithms are re-

stricted to neighbour-to-neighbour communication, where the neighbour

structure is given by the topology of the network, whereas others allow

communication between any set of servers (of course, in case of a connected

network, general communication always can be “simulated” by appropriate

routing strategies). Furthermore, some approaches allow a server to com-

municate with a bounded number of other servers at a time step, whereas

others do not place such a restriction.

Global and local approaches. In global algorithms there is some cen-

tralised instance that decides when and/or where to transfer load. This

instance has a view over the complete system. On the other hand, in local

algorithms a processor/machine makes its own decisions. This distinction

must not be confused with how much information actually is needed to

make these decisions. Local load balancing algorithms can very well also
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employ full knowledge of the current distribution of the load. A server

could decide to gather this knowledge one way or the other, and then make

its decision based on this knowledge.

Static and dynamic problems. The major difference between static

and dynamic load balancing problems is that in the case of static problems

one has a fixed set of tasks that have to be executed, whereas in the dynamic

case new tasks are generated and executed as time passes. An example for

the static case is the calculation of the roots of some polynomial. This

problem can be split into some (more or less) independent sub-problems

which then can be executed on different machines. Most important is

that after solving the sub-problems one has solved the overall problem and

there are no new problems coming up (unless a new polynomial has to

be processed, that is). An example for the dynamic case is the already

mentioned workstation pool. Students come and go as time passes and one

cannot simply say “hey, it’s 12 pm, so that’s it” — students just keep on

coming and going and issuing tasks to be serviced.

Preselected location of tasks. In some cases tasks come with some

initial placement, and it is not strictly necessary to move them to some

other machine prior to their service. Note that it may well be sensible (in

order to to achieve one or another objective, say, an even distribution of

the working load) — but it is not necessary at all. In other cases tasks

do not have any initial placement. In this case, one can think of a com-

putation server consisting of several server machines, and a couple of user

terminals connected to this server cluster via one or more gateways. Now,

if a task is issued on a user terminal, it arrives at one of the gateways and

from there it is moved to one of the server machines, where it actually is

executed. For example, in a WWW based database queries arrive at the

web server which, in turn, forwards them to machines which are evaluating

them. This approach is fundamentally different from, say, a simple work-

station cluster as described above, where tasks are generated on specific

workstations (which is their preselected location) and, if nothing happens

which causes a transport to some other machine, they are executed on the

machines where they have been generated on.
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What to optimise? As mentioned before, there are quite some parame-

ters that can be subject to optimisation by load balancing approaches. Fre-

quently they are given due to certain resource bottlenecks. If, for instance,

processing time is crucial, then minimising the number of idle servers or an

even distribution of the work load are the things to have in mind. If (phys-

ical) memory is expensive, then minimisation of queue lengths is highly

desirable.

Dependent and independent tasks. Some applications spawn tasks

in a way (or can only be split into tasks such that) these tasks are dependent

— be it that they need to exchange information or that there is some

precedence structure among them, that is task X can run if and only if task

Y has already finished because it needs Y’s result first. Obviously, a load

balancing algorithm has to take possible dependencies into account. If it

would not do so and distribute tasks regardless of these dependencies, the

communication overhead could become enormously, even up to the case

where computation on a single-processor machine would not have been

much slower than what has been achieved on the multi-processor machine.

Randomised and deterministic algorithms. Of course, the separa-

tion into these two classes is important not only for load balancing algo-

rithms. Generally, one would like to devise deterministic algorithms unless

they prove to be highly inefficient. Generally, randomisation comes into

play when the problem is irregular, or to handle known worst case instances

of certain problems.

Load generation. Basically, this describes how new tasks are gener-

ated. This is meaningful only for dynamic problems, since in static ones

no new tasks are generated at all as time passes. There are quite some

imaginable load generation schemes: strictly deterministic (the generation

distribution is not only predictable but fixed and known), stochastical (the

load generation obeys some stochastical distribution), or even adversarial

(some adversary tries to fool the algorithm into making wrong decisions

and being being sub-optimal).
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Load servicing. Closely related to load generation is load servicing.

More precisely, load servicing describes how long certain tasks need to

be serviced. Again, the classification from above still is valid; the service

time can be distributed deterministically (each task has a service time of,

say, constant one), or distributed stochastically, or be controlled by some

adversary.

In Section 1.2 we describe how our approaches fit into this classification

and introduce our model in detail. But at first, we give an overview on

some selected known results in the area of load balancing.

SECTION 1.2

Our Model of Computation

Before we come to introduce the results presented in this work, we first

describe our model of computation, following the classification of Section

1.1.

We assume a system of n synchronously working servers, where any two

servers are able to communicate, that is, the network connecting the servers

can be seen as an undirected connected graph G = (V, E). A node v ∈ V

represents a server, and an edge e ∈ E represents a communication link

connecting two servers. We do make no further assumptions regarding the

topology of the network (of the graph) other than that it is connected.

We make, however, the restriction that at any time step a server may

communicate with at most a constant number of other servers. In order to

focus on the load balancing mechanisms we do not directly take into account

costs for routing of messages or transfer of tasks, respectively. Clearly, if

two servers not directly connected want to communicate, the messages

have to be routed between them somehow. We do not specify how this

is done. We make, however, one assumption. Since most reasonable and

realisable networks have a diameter of O (polylog(n)), and consequently

routing of a message can take as long (communication among two servers),

we allow for O (polylog(n)) steps of internal computation for any step of

communication. This seems to be a quite reasonable assumption.

In our model, time consists of consecutive discrete steps. In such a step,
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besides the normal load generation and service, servers are able to perform

additional work which is needed entirely for the load balancing. One can

think of some sort of background processes. This additional balancing

work consists of communication (under the restrictions as described above),

and local computation, which may be needed to make certain decisions

necessary for the balancing algorithm (as, for instance, to decide if, how

many, and where to pass away tasks).

The reader should keep in mind that if in the network in question commu-

nication via routing takes long (even if only in the worst case), then this

has certain influences on our timing model. Clearly, if we allow a server to

work on a task for, say, 1 second during a step, and routing takes up to,

say, 5 seconds, then this would imply undesirable idle time while a server

waits for the communication to finish. Therefore, we would like to allow

the servers to work on tasks at least as long as all the overhead balancing

work takes in the worst case. Only then we have an efficient balancing

algorithm.

Our algorithms are local in nature, that is, there is no global instance mak-

ing certain decisions. All servers decide on their own what to do, although

they do not do this without any information regarding the overall load sit-

uation in the system. As we will see later, servers can query (few) other

servers for information regarding their load, and then, based on this infor-

mation, estimate the overall system load. In turn, based on this estimation,

they decide whether they ought to give away some of their tasks, or are

able to accept additional tasks from other servers.

The load balancing problems we are interested in are dynamic, that is,

new tasks are generated and old ones are serviced as time passes. We are

interested in the long term behaviour of our algorithms, which means that

we show that no matter when we observe the system, the critical parameters

(which are given below) are “okay” (this is formalised in Section 1.6 below).

In our model the tasks come with a preselected location, due to the fact

that they are generated on the servers themselves. Together with the fact

that the servers are the (only) ones that also actually service the tasks, this

implies that there is no principal necessity to move tasks around – but if

there were no load balancing, depending on the load generation scheme,

this could lead to highly undesirable load distributions within the system.
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As mentioned before, there are several interesting measures that are used to

evaluate the performance of load balancing strategies. We are interested in

minimising the maximum load of any server (under the load of a server we

generally understand the number of tasks in its queue). This can but does

not necessarily imply maximisation of the throughput, or minimisation of

overall idle time, for instance. Anyway, in this work we do not consider

other measures besides the one stated above, except that we are (of course)

interested in keeping the overhead due to balancing work as small as pos-

sible — what good is a balancing strategy that paralyses the machines?

Especially if we transfer tasks due to balancing actions, we do not “spread

them wildly” but transfer them in batches and do so only if it is necessary

(our algorithms are threshold based, that is, servers transfer tasks if and

only if their load exceeds some certain bound). This is the major difference

to approaches modelled with balls into bins games (or any approach where

tasks come without initial placement), where any newly generated task has

to be transferred in any case.

We assume the tasks to be independent. More precisely, in general we do

not care about whether they are dependent or not. Our algorithm does

its best to keep tasks generated on one server together as long as possible,

though. This proves helpful if there are in fact dependencies such that, for

instance, tasks need to communicate either while running or if some task

needs results of some other task after this one has finished its service. But,

as stated before, we do not explicitly take care of that.

All our algorithms are randomised. This basically involves the assignment

of balancing partners and the selection of servers to query their load in

order to obtain an estimation of the system load. Our so-called adversarial

generation model is truly adversarial in that it would force any determin-

istic load balancing algorithm conforming with our model of computation

to produce unacceptable results as far as our parameters are concerned, as

we will see later.
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SECTION 1.3

Previous Work

1.3.1 Balls Into Bins Approaches

Load balancing problems are frequently modelled by so-called “balls into

bins games”. These can be either static or dynamic games. Furthermore,

one distinguishes sequential and parallel games. In the case of sequential

games, the balls (the analogue to tasks) one after the other select d ≥ 1

bins each (the analogue to machines) at random and then are placed into

one of them. In the parallel case, the placement of the balls into the bins

happens simultaneously. Usually, the subject of the game is to minimise

the maximum load (number of balls) in any bin. Note that balls into

bins games are typical members of the “tasks come without a preselected

location” class. The reader not familiar with this kind of process might

wonder why the balls are not placed using a simple round-robin approach:

the first ball into the first bin, the second ball into the second bin, and so

on, for this would result in the best possible distribution of balls in bins.

But the usual assumptions are that the balls allocate themselves without

any coordinating instance, they are indistinguishable, that is, the i-th ball

simply doesn’t know that it is the i-th ball, and they do not communicate

among each other (note that they may very well communicate with the

bins they chose at random; more details are given below). Clearly, under

these assumptions the round-robin approach does not work.

Why do we present known results concerning balls into bins games, where

our approach looks fundamentally different? The answer simply is that the

balls into bins games can be considered to be the most simple (randomised)

algorithmic approach imaginable and we would like to compare some pa-

rameters to the ones of our approach. Clearly, one could implement an

algorithm similar to ours using a balls into bins game: play a parallel balls

into bins game with all the balls generated during one step (or one phase),

and then another one for the next step (phase), and so on.

Basically, there are three methods to analyse such games nowadays. There

is the method of layered induction (see [ABKU94]), the witness tree ar-

gument (see [MSS95]), and the asymptotic differential equation method
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(see [VDK96, Mit96b]). We won’t go into detail here, but present a few

important results known so far.

It is folklore and quite easily proven that in the case where m = n balls

are thrown randomly (and sequentially) into n bins with d = 1 (that is,

a ball tosses just one die), there will be one bin getting Θ(
���

n/
��� ���

n)

balls with a probability of 1−o(1). For some time this was the best known

method of allocation subject to the restrictions as described above.

Karp, Luby, and Meyer auf der Heide ([KLM92]) were the first to present

a process using several possible locations (read: d > 1) in order to lower

the maximum load in the context of simulating parallel random access ma-

chines (PRAMs) on distributed memory machines (DMMs). Utilising two

randomly chosen hash functions, they obtain a parallel allocation process

that guarantees a maximum load of O (
��� ���

n) when distributing n mem-

ory accesses among n memory modules (equivalent to allocating n balls into

n bins). Note that by simply increasing the number of random choices by

one an exponential drop in the maximum load could be achieved.

Azar, Broder, Karlin, and Upfal ([ABKU94]) examine a similar proto-

col in a sequential setting. Each of n balls is allowed to choose d ≥ 2

bins and is placed into the bin with the lowest load among the chosen

bins. They show that w.h.p. the maximum load decreases exponentially

to Θ(
��� ���

n/
���

d). Furthermore, they provide results for the dynamic

version of their sequential process.

According to the approach of choosing several locations for each ball, much

work has been done in analysing balls into bins games in many differ-

ent ways. For sequential games see [Mit96a], [Mit97] [CS97], [Czu98],

[RS98], [CFM+98]. For parallel games see [ACMR95], [Ste96a], [ABS98],

and [BMS97]. In the last work, the authors present the first analysis of a

parallel balls into bins game for weighted balls, that is, the balls no longer

all have the same weight but can have different weights (corresponding to,

for instance, varying running times of tasks).

Very recently, there have been two more interesting works on sequential

allocation. In [Vöc00], Vöcking decreases the maximum load even further;

he shows a bound of O (
��� ���

n/d) using a non-uniform way to select the

locations of the n balls which creates an asymmetric assignment of balls to

bins. In [BCSV00], Berenbrink, Czumaj, Steger, and Vöcking investigate
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the case where m À n. They show a bound for the maximum load of any

bin of m/n +
��� ���

n + O (1), thus the excess compared to the average

load is not dependent on m, the number of balls.

In [Mit96b, Mit96c], Mitzenmacher analysed a dynamic allocation strategy

using a differential equations method. Tasks arrive as a Poisson stream at

a set of n servers. Each task chooses d = 2 servers at random and joins the

least loaded among them. He shows that for any interval of fixed length T

the expected waiting time of any task is O (1) (for n → ∞), and that the

maximum queue length is
��� ���

n/
���

d + O (1), with high probability.

In [Mit97], he extends his results to varying load generation and service

distributions.

Independently, in [VDK96], Vvedenskaya, Dobrushin, and Karpelevich use

a similar method to analyse similar systems. This work was extended in

[VS97] by Vvedenskaya and Suhov.

In [BCFV99], Berenbrink, Czumaj, Friedetzky, and Vvedenskaya analyse

the behaviour of a dynamic parallel allocation process by reducing it to a

sequential one, which then is analysed my means of differential equations.

The equivalence (or similarity) of the parallel and the sequential process

have been shown by simulations only, however.

1.3.2 Other Approaches

Now we present some results obtained in the area of “pure load balancing”

which do not employ typical balls into bins strategies.

In [KZ88], Karp and Zhang present a randomised approach to parallelise

sequential branch-and-bound algorithms. They show that the execution

time of the algorithm expectedly does not exceed an inherent lower bound

by more than a constant.

In [RSU91], Rudolph, Slivkin-Allalouf, and Upfal present a rather simple

strategy that equalises the load of two processors in one step. They as-

sume a load generation model where at each time step the load variance

of any processor due to local generation and service is bounded by some

constant. The algorithm works such that each time a server accesses its

queue, it decides to initiate a balancing action with a probability inversely

proportional to the size of the queue. It then randomly selects some other
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processor and these two then equalise their load. The authors show that

the expected load of any processor at any point of time is within a constant

factor of the average load.

In [LM93], Lüling and Monien use a similar load generation model. A

processor initiates a load balancing action if its load has doubled since its

last balancing action. To balance load, such a processor chooses a constant

number of other processors at random, whereupon they all equalise their

load among each other. Lüling et al. show that the expected load difference

of any two processors is bounded by a constant factor. Later, Lüling shows

in [Lül96] places a bound on the variance on the distribution of the load of

the servers.

In [Lau95], Lauer presents a load balancing algorithm assuming the average

load av of the system is known. He shows that, with a probability that de-

pends on av, no processor has load exceeding O(av). Note that he obtains

a high probability result only for the case av = Ω(
���

n). Additionally, he

presents techniques to estimate the average load of the system and extends

his results to this case.

In [BL94], Blumofe and Leiserson present a scheduling approach for so-

called strict multi-threaded computations, where a computation consists of

a set of threads, and each thread can be seen as a sequential ordering of

tasks. The authors present an algorithm and show that the expected time

to execute such a computation can be bounded by O (T1/P + T∞), where

T1 is the minimum sequential execution time, and T∞ is the minimum

execution time given an infinite number of processors.

Another field of massive interest in its own right is that of local iterative

load balancing, where servers may exchange load with their direct neigh-

bours in the network only. In [Cyb89] and [Boi90], Cybenko and Boil-

lat, respectively, investigate the so-called diffusion based load balancing,

a static approach, where at a step a server may exchange load with all

of its neighbours. This is iterated until the load is completely balanced.

Unfortunately, this leads to a rather slow convergence.

Ghosh, Muthukrishnan, and Schultz ([GMS96]) improve upon the known

results by introducing the concept of over-relaxation, where the amount of

load sent over a link not only depends on the current load difference but

also on the history of the load transfer over this link so far.
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In [GLM+99], Ghosh, Leighton, Maggs, and Muthukrishnan present an al-

gorithm where at each step a server sends one task to each of its neighbours

having at least a certain number fewer tasks. They analyse the algorithm

in terms of the time needed to decrease the maximum load difference to an

arbitrary value, depending on the size, degree, and edge expansion of the

network. In [MR98], Muthukrishnan and Rajaraman extend the results to

the case of an adversarial dynamic load generation.

1.3.3 Practical Work

Several algorithms and complete tools for dynamic load balancing have

been developed and properly examined with the help of experimental stud-

ies, for example see [HS97], [WHV95], [DHB97], and [MD96]. For an

overview consult [SS97].

SECTION 1.4

General Survey of our Algorithms

In this section we present an overview over the basic structures of our

algorithms. We assume that time consists of discrete steps. We further

introduce the notion of phases, where a phase is nothing but T consecu-

tive steps (T will depend on the generation model and the algorithm in

question). A phase, in turn, is divided into four sub-phases as follows.

Load estimation. In this sub-phase the servers compute an estimation

of the complete system load. This is done by querying relatively few other

servers for their load and then just calculating the average. Note that this

sub-phase only applies to the adversarial model and the algorithm devised

there. There is no necessity for a server to estimate the system in the

stochastical models.

Classification. In this sub-phase the servers classify themselves as light

or heavy (or neutral, if nothing else applies). Depending on which gener-

ation model we assume, this classification is based either on their current

load alone, or on the system load estimation obtained during the previous
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load estimation sub-phase. Servers having classified themselves as heavy

are supposed to benefit from passing away some of their tasks, whereas

light servers are supposed to be able to accept some additional tasks.

Assignment. Here, the heavy servers basically try to find light ones

such that any light server is assigned to at most one heavy server, and every

heavy server gets assigned exactly one light server. The approach involves

some tree-like search mechanism in that a heavy server asks a constant

number of other servers whether they are able to accept additional tasks

(in other words, whether they are light). This we call a request. If there

is no light server among the asked ones, in a next step they in turn ask a

certain constant number of other servers each in order to “assist” the heavy

server in its search for a balancing partner, that is, they also issue requests.

This is repeated until every heavy server has been exclusively assigned a

light one (with high probability).

Transfer. In this sub-phase we just transfer tasks according to the as-

signment found above. The number of tasks transferred can be fixed or

depend on the heavy server’s load, depending on the generation model.

SECTION 1.5

Load Generation and Service Models

We introduce two basic load generation/service schemes and devise load

balancing algorithms for both of them. The two schemes are very different

in nature in that in the first one the generation and service of tasks obeys

some stochastical distribution, whereas in the second one we assume an

adversarial model (probably the term “almost arbitrary” is somewhat closer

to the true nature, since the word “adversary” seems to have some special

reserved meaning throughout the computer science literature — anyway).

1.5.1 The Stochastical Model

One of our main generation models is stochastical in nature in that on a

server new tasks are generated and already present ones are serviced based
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on random distributions. Common to all our stochastical models is that,

in a plain non-balancing system, they yield an expected total system load

of Θ(n) at any arbitrary but fixed point of time. Note that this property

implies the stability of the system.

Our main stochastical model allows a server to generate and service one task

per step with a certain probability each. In order to meet stability criteria,

we have to allow for consumption of a task with at least a slightly larger

probability than for generation. Otherwise, as is well known in queueing

theory, the number of tasks could not be bounded. We now introduce our

first generation model, StochBernoulli(p, ε).

StochBernoulli(p, ε)

At every time step each server generates one task with a probability

of p and consumes one task with a probability of p(1 + ε) (provided

there is at least one task) for an arbitrary constant ε > 0 such that

p(1 + ε) ≤ 1

Note that given the StochBernoulli(p, ε) generation model the service

time of a task may very well be longer than just one step, if the server in

question throws more than one “don’t consume” dice in a row. We model

a single server as a FIFO (first in first out) queue with attached service

station, so whenever the server keeps at least one task, we have that one

task is in service in any case. The coin tosses for “service” just determine

the service time of the task currently in the service station. Now whenever

a “service” coin is flipped with a positive result, the task currently serviced

leaves the service station at the end of the step and a new one (if any)

immediately moves from the queue into the service station.

We can derive some generation schemes related to StochBernoulli(p, ε),

and the analysis of the algorithms has to be modified only slightly in order

to achieve (almost) the same results. For instance, for the following two

generation models we can show results similar to the one for generation

model StochBernoulli(p, ε). The basic difference between them and

model StochBernoulli(p, ε) is that now

1. we no longer have that the running time of a task might be longer

than just one step, but that now the service time of any task is one
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(due to the fact that servers deterministically service a task as long

as at least one is present), and

2. two or more (up to some constant number) tasks might be generated

during a single step.

Here now follows the description of the variants of our basic generation

model StochBernoulli(p, ε).

StochGeometric(∆)

Let ∆ ≥ 1 be an integer constant. Then, in each time step, every

server is allowed to generate up to ∆ tasks, obeying the following

distribution. For i ∈ {1, . . . , ∆} a server generates i tasks with a

probability of (1/2)i+1, that is, with a probability of 1/4 it generates

one task, with a probability of 1/8 two tasks, and so on. With the

remaining probability (> 1/2), no task is generated. Furthermore,

each server deterministically services one task if at least one is present.

StochBinomial(∆, p)

Let ∆ ≥ 1 be an integer constant, let p = p(∆) such that ∆ · p < 1.

For 0 ≤ i ≤ ∆, in each time step a server generates i tasks with a

probability pi of

pi =

(

∆

i

)

· pi · (1 − p)∆−i,

as long as ∆ · p < 1 (∆ · p is the expected number of tasks generated

per step and server). Each server deterministically services one task

per step, if at least one is present.

As mentioned before, StochGeometric(∆) and StochBinomial(∆, p)

both imply constant service time but more than one task can be generated

per time step.

1.5.2 The Adversarial Model

In this section we turn our attention from stochastical load generation

models to an adversarial one. The basic idea here is that we assume some

“adversary” who is allowed to change the load of any server by up to some
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constant ∆ into any direction, that is, everything from +∆ to −∆ is al-

lowed. Note that this does not exclude, for instance, the generation of

100 · ∆ tasks and the servicing of 99 · ∆ tasks, respectively. We just need

to place a bound on the relative difference between the numbers of tasks

generated and serviced. Insignificant for the analysis, we as well may allow

the adversary to change a server’s load by at most ∆ ·T during any interval

consisting of T = (
��� ���

n)2 steps.

These models allow for highly “asymmetric” load generation and servicing

schemes. Assuming stochastical schemes we always could make use of the

fact that even in a non-balancing system the load distribution among the

servers tends to be more or less well-behaved (although, as we will see

later, even there without balancing actions the outcome is not precisely

desirable). But now the adversary might well decide to have just one server

generate tasks during each time step and never consume any, and the rest

do nothing but service tasks as long as they have any. This could be

used to model the well-known farmer–worker approach or variants thereof.

Clearly, assuming such a generation scheme, no task would ever be serviced

in a non-balancing system, which would have the obvious influences on the

evolution of

� the system load, which would tend to infinity over time,

� as well as the ratio of maximum load to average load, which would

tend to n over time (see Section 6.6 for details).

Therefore, it is obvious that in such a case a load balancing algorithm is

needed which distributes the tasks generated on the “farmer” server among

the “worker” servers.

As mentioned before, we introduce two different kinds of adversarial gen-

eration schemes (but this distinction does not make any difference as far

as the analysis of the algorithm is concerned, as we will see later). The

latter scheme is included here in order to just be somewhat closer to how

adversaries are usually defined in the literature, whereas the former one, a

step-based one, is closer to how we have defined our stochastical generation

schemes.
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AdvStep(∆)

Let ∆ ≥ 1 be an integer constant. At each time step each server can

change its load due to load generation and servicing by up to ∆ tasks.

AdvInterval(∆)

Let ∆ ≥ 1 be an integer constant. During any interval of T =

(
��� ���

n)2 consecutive steps, a server is allowed to change its load

due to load generation and servicing by up to ∆ · T tasks.

SECTION 1.6

New Results

In this section we introduce the results presented in this thesis, as usual

split into stochastical and adversarial generation schemes, respectively.

1.6.1 The Stochastical Model

In this section we present new results concerning our stochastical load gen-

eration schemes. Our main model here is StochBernoulli(p, ε), but we

present results for StochGeometric(∆) and StochBinomial(∆, p) as

well. The theorems presented correspond to our two different balancing

algorithms for the stochastical generation, namely AlgStochMultiColl

and AlgStochSingleColl; see Chapters 3 and 4, respectively. For defi-

nitions of the generation schemes, refer to Section 1.5.

Algorithm AlgStochMultiColl

This section deals with our first algorithm for the stochastical generation

model, algorithm AlgStochMultiColl. The following Theorems 1.1,

1.2, and 1.3 are due to Berenbrink, Friedetzky, and Mayr [BFM98].
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Theorem 1.1 (Maximum Load I)

Let α ≥ 1 be an arbitrary constant, let 0 < p < 1 and ε > 0 such that

p(1 + ε) ≤ 1. Assume a load generation probability of p and a load

servicing probability of p(1 + ε).

Given load generation model StochBernoulli(p, ε), algorithm Alg-

StochMultiColl ensures that with a probability of at least 1−1/nα the

maximum load of any server is bounded by (
��� ���

n)2 at any arbitrary

but fixed point of time.

The next theorem states the corresponding results for the load generation

schemes StochBinomial(∆, p) and StochGeometric(∆).

Theorem 1.2 (Maximum Load II)

Let α ≥ 1 and ∆ ≥ 1 be arbitrary constants, let p ∈ (0, 1) such that

∆ · p < 1.

Given generation model StochGeometric(∆) or StochBinomial(∆, p),

algorithm AlgStochMultiColl ensures that with a probability of at

least 1−1/nα the maximum load of any server is bounded by ∆·(��� ���
n)2

at any arbitrary but fixed point of time.

We additionally show that given balancing algorithm AlgStochMulti-

Coll, the expected number of balancing requests as introduced in Sec-

tion 1.4 (and expanded on in Section 3.1) for any processor trying to find

a balancing partner is constant for all three generation models Stoch-

Bernoulli(p, ε), StochGeometric(∆), and StochBinomial(∆, p).

Such a request involves communication to at most some constant number

of other servers, thus the communication due to the establishment of an

assignment from a heavy to a light processor (one which needs to give

away tasks and one which is able to accept additional tasks, respectively)

expectedly also is constant.

Theorem 1.3 (Balancing Requests I)

Let α ≥ 1 be an arbitrary constant.

Given either the StochBernoulli(p, ε), the StochGeometric(∆),

or the StochBinomial(∆, p) generation model, algorithm AlgStoch-

MultiColl ensures that the expected number of balancing requests

needed to find a balancing partner is constant for each heavy server.
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Algorithm AlgStochSingleColl

The second algorithm for the stochastical generation model, AlgStoch-

SingleColl, works somewhat different from algorithm AlgStochMulti-

Coll. Although technically more complicated, it allows us to decrease the

length of any phase from Θ((
��� ���

n)2) to Θ(
��� ���

n), which, in turn, also

reduces the bound on the maximum load of any server by the same factor.

The following Theorems 1.4 and 1.5 are due to Berenbrink, Friedetzky, and

Steger [BFS99].

Theorem 1.4 (Maximum Load III)

Let α ≥ 1 be an arbitrary constant, let 0 < p < 1 and ε > 0 such that

p(1 + ε) ≤ 1. Assume a load generation probability of p and a load

servicing probability of p(1 + ε).

Given load generation model StochBernoulli(p, ε), algorithm Alg-

StochSingleColl ensures that with a probability of at least 1 − 1/nα

the maximum load of any server is bounded by O (
��� ���

n) at any arbi-

trary but fixed point of time, where the constant depends on α, p, and

ε.

Again, we can show similar results for the stochastical generation models

StochGeometric(∆) and StochBinomial(∆, p).

Theorem 1.5 (Maximum Load IV)

Let α ≥ 1 and ∆ ≥ 1 be arbitrary constants, let p ∈ (0, 1) such that

∆ · p < 1.

Given generation model StochGeometric(∆) or StochBinomial(∆, p),

algorithm AlgStochSingleColl ensures that with a probability of at

least 1−1/nα the maximum load of any server is bounded by O (
��� ���

n)

at any arbitrary but fixed point of time, where the constant depends on

α and ∆ (and p in the case of StochBinomial(∆, p)).

Finally, we briefly state some recovery property of the systems we inves-

tigate. This recovery property is inherent to the load generation models,

and consequently influences of the algorithms can be neglected entirely,

which implies that the statement is valid for both of our algorithms Alg-

StochMultiColl and AlgStochSingleColl dealing with the stochas-

tical load generation. What we mean with recovery is that if the system is



20 Chapter 1. Introduction

in some arbitrary state at some point of time (arbitrary here means that the

O (n) bound on the system load we require for the analysis does not hold),

then the system will “automatically” tend to some typical state, where said

bound will be valid again.

Comparison to Balls into Bins Games

To our best knowledge, Theorem 1.4 is the first result that provides the

same asymptotical bounds holding with high probability for dynamic load

balancing algorithms as have been known for dynamic balls into bins games

of a certain class. Of course one cannot compare apples and oranges, so

the balls into bins games we compare our algorithm to have to somehow

correspond to our load generation and consumption behaviour, respectively,

in that

� in our approach, there there O (n) tasks generated per step, and Ω(n)

tasks serviced; resulting in an upper bound on the maximum load of

any server of O (
��� ���

n), whereas

� for balls into bins games, O (n) balls are thrown into n bins with

d = 2 choices for each ball per step, and also Ω(n) balls are deleted;

resulting in a maximum load of O (
��� ���

n) (see[ABS98]).

Previous results either provided only expected bounds (or analysed the

variance of certain parameters, at best), or needed the system load to be

sufficiently large, where in our case a system load of O (n) is sufficient.

We can additionally compare some other parameters of our algorithms to

parallel dynamic balls into bins approaches. There, every ball inevitably

upon generation (more precisely, after some communication) is thrown into

some randomly chosen bin. This implies Ω(n) communication messages for

the n balls generated per step, and Ω(1) messages per ball.

Our algorithms are threshold based and transfer tasks in “packets”, which

reduces the communication complexity significantly. Our algorithm Alg-

StochMultiColl requires O (n/
���

n) messages in order to “allocate” the

O
(

n(
��� ���

n)2
)

tasks generated in a phase of length Θ((
��� ���

n)2). This

implies also O (n) tasks generated per step but just O (1/
���

n) messages

per task on average, yielding an improvement of a factor of Ω(
���

n).
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1.6.2 The Adversarial Model

So far, when assuming a stochastical generation model, we could exploit an

implicit upper bound of O (n) on the system load both in the non-balancing

system as well as in the balancing one, w.h.p. (see Lemmas 3.1, 3.3, and 3.4,

respectively, for details). Of course, this no longer holds for the adversarial

load generation (AdvStep(∆) and AdvInterval(∆), respectively), since

here the system load can grow to infinity as time passes (recall that in

each time step, a server may increase its load by up to some constant

∆). Therefore, in order to enable the algorithm to make sensible decisions

concerning the classification of the servers as heavy, light, or neutral, we

need to employ the load estimation sub-phase as briefly described in Section

1.4.

In order to be able to present the new results for the adversarial model, we

need to introduce some definitions. We divide time into subsequent phases

of length T = Θ((
��� ���

n)2). Let τ be the first time step of some fixed

phase, and let Mτ be the system load at this time step τ. Let λ > 0 be

some constant. The system is said to be λ-balanced for this phase if there

is no processor with load exceeding λ·(Mτ/n+12∆(
��� ���

n)2) at time step

τ. Since the net load gain of any processor during one phase is bounded by

∆T , then if the system is λ-balanced, the load of the processors is at most

a constant factor from the average at every step of the phase.

Again, the balancing algorithm AlgAdv for the adversarial generation

model follows the algorithm sketch from Section 1.4. The following The-

orems 1.6 and 1.7 which present results concerning the performance of

algorithm AlgAdv are due to Berenbrink, Friedetzky, and Steger [BFS99].

Theorem 1.6 (Maximum Load V)

Let ∆ ≥ 1, α ≥ 1, β ≥ 1, and ` > 0 constants, such that α = β + `. Let

λ = 20 · (8α + 16)2α+5.

If the system is λ-balanced for the i-th phase, then, given either generation

model AdvStep(∆) or AdvInterval(∆), with a probability of at least

1− 1/nα, algorithm AlgAdv ensures that it is λ-balanced for the (i+ 1)-

th phase, and that with a probability of at least 1 − 1/nβ it remains

λ-balanced for the next n` phases.
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Again, we can bound the expected number of balancing requests issued per

heavy processor. This is stated in Theorem 1.7.

Theorem 1.7 (Balancing Requests II)

Let ∆ ≥ 1 be an arbitrary constant.

Given either the AdvStep(∆) or AdvInterval(∆) generation model, al-

gorithm AlgAdv ensures that the expected number of balancing requests

needed to find a balancing partner is constant for each heavy server.
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The Collision Protocol

The collision protocol (also often called “collision game”) is the basic build-

ing block of all of our algorithms. It has its roots in the context of shared

memory simulations, but it is applicable in a wide range of problems. Its

basic idea is to distribute a number of randomly chosen access requests such

that in the end there is an almost even distribution of the requests among

their destinations. It can, for instance, not only be utilised to distribute

accesses to copies of shared memory cells which are stored in the modules

of a distributed memory machine (DMM) among these modules, but also

for allocating balls into bins (in this case the balls are the accesses, and the

bins are the memory modules).

The basic idea of the collision game is rather simple and elegant. We

now briefly describe it in a more or less abstract context (but still close

to how we are going to make use of it). Consider a system of n sources

and n destinations, where each source requests to access a certain number

b of destinations, but no destination wants to be accessed by more than

c sources. In the context of shared memory simulations, the sources are

the processors of the DMM, and the destinations are the memory modules;

whereas in the context of balls into bins games the sources are the balls

and the destinations are the bins.

The (a, b, c)-collision game now distributes the requests of the sources

among the destinations such that the aforementioned restrictions are ful-

filled. Ever source randomly chooses a > b destinations and sends so-called

queries to each of them (the set of queries sent from one source we call

23
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request). Now, the protocol proceeds in rounds as described in Figure 2.1.

Obviously, if the protocol terminates, no destination accepts more than c

queries (but note that the protocol does not necessarily terminate).

In our algorithms we use the collision protocol in two slightly different

settings, depending on c, the collision parameter. In one setting we have to

restrict c to one, which clearly means that we cannot allow all the sources

to issue requests – even in the case b = 1 we would then have to construct

a permutation among sources and destinations (if b > 1 in this case, an

assignment would be impossible at all). Therefore, we slightly modify the

protocol, resulting in the (n, ε, a, b, c)-collision protocol. The only real

differences are that we now have n destinations and εn requests, for some

ε ≤ 1, and that we terminate the protocol after a fixed number of rounds.

This modified protocol can be found in Figure 2.2. Note that this protocol

terminates in any case, but it can happen that not all the requests get

fulfilled.

Note that as long as a, b, and c are constant parameters, each source

communicates with at most a constant number of destinations in any round.

Therefore, if we now identify both sources and destinations with the servers

we are actually concerned with, the servers communicate with at most a

constant number of other servers, thus fulfilling the restriction we have

placed in Section 1.2.

We now provide two theorems connecting the parameters ε, a, b, and c to

the number of rounds, r.

Lemma 2.1 (Collision Protocol for c > 1)

Let α ≥ 1 an arbitrary constant, let a ≥ 2, b = a − 1, ε = 1, and

c ≥ ���{8ea2, 4(α + 2)}.

With a probability of at least 1−1/nα, the (n, ε, a, b, c)-collision protocol

terminates with a valid assignment of queries after r ≥
��	 ��	

n��	
c

+ 1 rounds.

Lemma 2.2 (Collision Protocol for c = 1)

Let α ≥ 1 an arbitrary constant, let c = 1, b ≥ 2, a = b + 2α + 2, and

ε ≤ 2(2a)−(2α+3).

With a probability of at least 1−1/nα, the (n, ε, a, b, c)-collision protocol

terminates with a valid assignment of queries after r ≥
��	 ��	

n��	
2α+2

+2 rounds.
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The proofs for both theorems can be found in [Ber00], similar proofs in, e.g.,

[MSS95] or [Ste96b]. Actually, in [MSS95] the authors present an analysis

of an even more general version of the collision protocol; they obtain a

probability bound of 1 − 1/nβ for some β < 1, which unfortunately is too

weak for our purposes.

Now, we just briefly outline the structure of the proofs. Basically, they are

build around a so-called witness tree argument. Suppose that there is at

least one unfulfilled request left after the termination of the protocol (after

r rounds). This implies that less than b of its a queries have been accepted

during the r rounds of the protocol, which, in turn, implies that there is

at least one destination (with one of the queries in question directed to it)

with at least c queries belonging to other requests directed to it in round r,

thus being unable to accept them (recall that queries are accepted if there

are at most c of them). Now we can ask the question why these queries are

still active at all before round r. That is because the requests they belong to

have not been fulfilled so far, meaning that for each of them during round

r − 1 at least one query was directed to a destination unable to accept.

This argument can be continued until we come to round 0 (to the very first

issuing of queries). This way we construct a witness tree where the nodes

are destinations unable to accept and the edges are at queries issued to

these destinations. The tree has depth r and a degree of at least c + 1.

Strongly simplifying the matter, the technically involved proof now basi-

cally shows that the occurrence of such a witness tree is highly unlikely,

implying that it is unlikely that there is a still non-fulfilled request after r

rounds of the protocol. As mentioned before, see [Ber00] for details.
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� Each source (“each request”) randomly chooses a > b pair-

wise distinct destinations and sends queries to them (which

are called active).

� While there are active queries:

– Each destination with at most c queries directed to it

accepts them. It then leaves the game and never again

accepts any further query.

– Each source which so far (accumulatively) has at least

b of its a queries accepted also leaves the game and

cancels all remaining queries.

– The remaining queries are re-sent without making new

random choices.

Figure 2.1: The (a, b, c)-collision protocol
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� For each of the εn access requests randomly choose a >

b pairwise distinct destinations and send queries to them

(which are called active).

� For r rounds do:

– Each destination with at most c queries directed to it

accepts them. It then leaves the game and never again

accepts any further query.

– Each request which so far (accumulatively) has at least

b of its a queries fulfilled also leaves the game and can-

cels all remaining queries.

– The remaining access queries are re-sent without mak-

ing new random choices.

Figure 2.2: The (n, ε, a, b, c)-collision protocol





CHAPTER 3

The Balancing Algorithm

AlgStochMultiColl

In this chapter we discuss our first balancing algorithm for the stochastical

load generation model, algorithm AlgStochMultiColl. As is stated in

Theorem 1.1 on page 18, it obtains a maximum load of (
��� ���

n)2 for

generation model StochBernoulli(p, ε), w.h.p. Following the algorithm

sketch from Section 1.4, time is divided into subsequent phases. Here, a

phase consists of T = 1/10 · (��� ���
n)2 steps. Every phase is split into the

four sub-phases load estimation, classification, assignment, and transfer.

We have mentioned before that the load estimation sub-phase is not always

needed. Actually, this is the case for all of our algorithms for stochastical

load generation schemes, since here we can place a bound of O (n) on the

total system load, w.h.p. Therefore, instead of doing the classification as

heavy, neutral, or light with respect to some estimation of the system load,

servers can do so based on some fixed value that does not change over time.

The intuitive reason is that if the system load does not change too much

over time, there is no need to reflect such a change in the decision as far as

classification is concerned.

29
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SECTION 3.1

The Algorithm

In this section we introduce our algorithm AlgStochMultiColl. Each

phase has a length of T = 1/10 · (
��� ���

n)2. Note that there is no load

estimation sub-phase. A single phase now looks as follows.

Classification. Servers having a load of at most T at the beginning of

the phase are classified as light, and servers with a load of at least 8T at

the beginning of the phase are classified as heavy. The remaining servers

are classified as neutral. Note that the thresholds are not with respect to

some “floating” value but fixed and only dependent on T .

Assignment. The main goal of the assignment sub-phase is to assign

one light server to every heavy one, where any light server may be assigned

to at most one heavy server. The assignment sub-phase proceeds in t =��� ���
n/

���
b rounds. Let our description start with the very first round.

We say that every server classified as heavy initiates a balancing action (or

initiates the search for a balancing partner). We now play an (n, ε, a, b, c =

1)-collision game, where only heavy servers issue requests. The idea is to

for some heavy server P to try to find a light balancing partner among the

b servers that have accepted a query that belongs to P’s request (recall that

a request consists of a queries from which b will be accepted if the protocol

is successful). Note that since c = 1, we will have to place a strict bound

on the number of concurrent requests, and that also due to c = 1, if a light

server has accepted a query then this is the only query it has accepted, and

therefore it will not have to decide which heavy server to “contact”.

Now that the collision game is played, every heavy server P has b dis-

tinguished servers which have accepted a query belonging to its request.

Assume that together with the query the identifier of P was communi-

cated, so servers having accepted a query know which heavy server (that

has initiated a balancing action) it belongs to. Now every light server hav-

ing accepted a query sends an offer message to the corresponding heavy

server (recall that due to c = 1 there can be at most one).
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Now every heavy server having received such an offer message arbitrarily

selects one of them. For this purpose we again assume the 1-collision rule,

that is, independent of the number of messages actually arriving, one of

them can be evaluated fast. Now every heavy server having received an offer

message sends back an acknowledgement message to the selected light

server. From now on those two are defined to be balancing partner, and

during the next rounds of this sub-phase these light servers are considered

to be non-available.

Of course it can happen that there are heavy servers which have not found a

light partner during this first round of this sub-phase. Instead of playing the

same game again, we now let the servers which have accepted a query but

have not been light issue requests for another collision game. The intuition

behind this is that we spread the search for every so far not successful

heavy server from round to round, thus building some kind of query tree.

A heavy server P initially issues a request. If none of the servers having

accepted is light, each of them issues a request on behalf of P during a next

collision game. At this point of time there are not b but now b2 servers

among a light one can be searched for. If again there is no light server

among those, each of those b2 servers issues a request on behalf of P during

a next collision game, and so on.

There are just some technical details to take care of. Each time a light

server accepts a query, the mechanism as described above comes into play:

it sends an offer message to the heavy server on whose behalf the query

was sent. This then arbitrarily selects one of the light servers having sent

such a message and in turn answers with an acknowledgement message.

It can now happen that a light server was selected to be balancing partner,

and in some later round again accepts a query. This is why assigned light

servers are considered to be non-available. Although light, they must not

be assigned to some heavy server more than once. So as far as finding a

partner is concerned, they are not seen as light any longer.

There is one further thing we can do to reduce the communication signifi-

cantly. As the protocol is defined so far, each time a server having accepted

a query and not having received an acknowledgement message in turn is-

sues another request for the next collision game. Obviously, this is not

necessary if the heavy server on whose behalf the query has been sent in
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fact has found a balancing partner.

The most efficient solution now is to send a stop searching message to

all the servers which have accepted a query which was sent on its behalf.

This can be done as follows. As soon as a collision game is finished, each

heavy server P having initiated a balancing action waits for offer messages.

If no such messages arrives, it sends continue searching messages “down”

to the servers which have accepted its queries during the very first round.

These in turn forward the message to the servers having accepted queries

on behalf of P during the second round, and so on. This way, after at most��� ���
n/

���
b hops the message arrives at the servers which are about

to participate in the next collision game. Similarly, if the heavy server

P has found a partner, it sends down not continue searching but stop

searching messages. As we will see, playing a single collision game takes

time
��� ���

n/
���

b + 2, so passing the messages does not take longer. A

drawback of this solution is that every server has to store the identifiers

of the servers which have accepted queries issued by itself. Although due

to the c = 1 collision rule a server occurs at most once on each level of

the trees (actually, it occurs at most once on each level of the complete

forest consisting of all the query trees), but it may well occur on each

single level of a certain tree. So, to be able to pass down a message from

the root of its tree (the server having initiated the balancing action which

led to the development of the tree), it would need to store O (
��� ���

n)

identifiers, resulting in a memory requirement of O (
���

n · ��� ���
n) bits

(
���

n bits for each identifier). The same is true if it occurs on each level

of the complete forest, no matter in which tree, as long as all the trees

involved have to be developed down to the full depth.

For a very small example, refer to Figure 3.1. Here, servers Pi and Pj

are classified as heavy and try to find balancing partners. During the

first round, Pj is sent offer messages from the light servers Pk and Pm,

and Pk is selected to be the balancing partner, whereupon Pk is sent an

acknowledgement message. No new requests are issued on behalf of Pj

afterward. Pi has not been so lucky and has so far not found a partner,

so the search has to go into the second round. Here, a request on behalf

of Pi arrives at (light) Pk, but Pk has been selected to become balancing

partner already, so the search still has to go on, until in round three Pi

finally selects Pl to become its balancing partner.
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heavy

neutral

light

offer message

iP

round 1

round 2

j

Pk

Pl

Pm

Pk

P

acknowledgement message

Figure 3.1: Basic idea of AlgStochMultiColl

Transfer. In this sub-phase heavy servers transfer 4T tasks each to their

light balancing partners. Tasks to be transferred are both taken from and

appended to the tails of the FIFO queues of the servers in question.

SECTION 3.2

The Analysis

In this section we analyse the performance of algorithm AlgStochMulti-

Coll given load generation model StochBernoulli(p, ε). The analysis

is split into parts as follows.

1. In Section 3.2.1, we analyse the non-balancing system under genera-

tion model StochBernoulli(p, ε). Here, no balancing actions at all

are performed. We will provide an O (n) bound on the total system

load at any point of time in this system (holding with high probabil-

ity).
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2. In Section 3.2.2, we show that this bound also holds for our balanc-

ing system, that is, when algorithm AlgStochMultiColl actually

runs. We need this bound on the system load for the remaining parts

of the analysis – furthermore, a load balancing algorithm wouldn’t be

worth its money if it increased the system load (significantly).

3. Next, in Section 3.2.3, we analyse a single phase of our algorithm.

We provide an upper bound on the number of heavy servers as well

as a lower bound on the number of light servers. We show that

the collision games actually resolve all the requests, and that the

assignment from light servers to heavy ones succeeds. All this holds

with high probability.

4. In Section 3.2.4, we then prove the main theorem of this part, namely

Theorem 1.1 on page 18. This is done basically by concluding that

if a server is beyond our bound on its load of (
��� ���

n)2 then that

its first approach of finding a balancing partner must have failed. We

then place tight bounds on the probability that such an event could

have actually happened.

5. Finally, we consider a few minor aspects. In Section 3.2.5, we show

that algorithm AlgStochMultiColl performs equally well for gen-

eration schemes StochGeometric(∆) and StochBinomial(∆, p)

as it has been shown to do for StochBernoulli(p, ε). Furthermore,

in Section 3.2.6, we show that all those generation schemes are “self-

repairing” in the sense that even if the system is in some arbitrary

state at some point of time it will recover itself and tend to approach

a typical state, where we again can conclude the O (n) bound on the

system load – even without (or despite, as skeptics might object. . . )

the interaction of balancing algorithm AlgStochMultiColl.

3.2.1 The Non-Balancing System

In this section we assume a plain non-balancing system with underlying

load generation scheme StochBernoulli(p, ε). We first place bounds

on the load of a single server, and then from that conclude statements

concerning the complete system load. We always assume that the system

starts empty at time step 0.
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Lemma 3.1 (Load of a Single Server)

Let α ≥ 1 and p ∈ (0, 1) be arbitrary constants, let ε > 0 such that

p(1 + ε) ≤ 1. Let µ = ε+(1−p−εp))

1−p−εp
> 1.

Given load generation model StochBernoulli(p, ε), with a probability

of at most (1/µ)k, a server will have a load of at least k at any arbitrary

but fixed point of time in a non-balancing system.

Proof. First, we observe that during a step, a server may either increase

its load by one (one task generated and none serviced), decrease its load by

one (no task generated and one task serviced – presuming that there was

at least one), or have its load unaltered (either both generated and serviced

a task, or neither generated nor serviced). Let p(+) denote the probability

for a net increase, p(−) denote the probability for a net decrease, and p(=)

denote the probability for an unchanging load.

As a server generates as task with a probability of p and services a task (if

any) with a probability of p(1 + ε), we obtain

p(+) = p · (1 − (p(1 + ε)))

p(−) = p(1 + ε) · (1 − p)

p(=) = 1 − p(+) − p(−)

We just have to take special care of the situation of a server having zero

tasks. Clearly, it can either increase its load by one (with probability

p(+) as defined above), or does not change its load. There is no negative

load, so a decrease by one is impossible. Consequently, we have to modify

the probability for an unchanging load from p(=) = 1 − p(+) − p(−) to

p
(=)
0 = 1 − p(+) in this case.

Obviously, the evolution of the load of a single server follows a simple one-

dimensional birth-death process. To analyse the load situation of a server,

we therefore construct a discrete-parameter Markov chain, where state k

corresponds to the situation of the server having a load of exactly k (at

the beginning of a certain time step). The chain’s transition probability
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matrix M = (p)ij, i, j ≥ 0, looks as follows.

pij =






p(+) if j = i + 1 (net increase from i to i + 1)

p(−) if i > 0 and j = i − 1 (net decrease from i to i − 1)

p(=) if j = i > 0 (no change)

p
(=)
0 if j = i = 0 (no change)

0 otherwise

Here, pij denotes the probability for the chain to reach state j directly from

state i (or, in our scenario, for a server to reach load j at the end of a step

when having had load i at the beginning of this step). Note the different

probabilities for transitions 0 → 0 and i → i for i > 0, respectively. This

is due to the reasoning from above (no transition to the left from state 0).

A graphical representation of the chain can be found in Figure 3.2.

p
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p
(+)

p
(+)

p
(+)

p
(+)

p
(-)

p
(-)

p
(-)

p
(-)

p
(-)

p
(=)

p
(=)

p
(=)

p
(=)

0
p

(=)

0 1 2 3 4
.....

Figure 3.2: The Markov Chain for a single server

It is well known that such a chain has a unique stationary distribution

~v = (v0, v1, . . .) with vi as the probability for the chain being in state i in

the steady state, corresponding to the server having a load of i (see, for

instance, [Tri92]). With

p(+)

p(−)
=

p · (1 − (p(1 + ε)))

(p(1 + ε)) · (1 − p)
=

(1 − p − εp)

ε + (1 − p − εp)

vi now can be expressed as

vi =

(

1 −
p(+)

p(−)

) (

p(+)

p(−)

)i

=

(

1 −
(1 − p − εp)

ε + (1 − p − εp)

) (

(1 − p − εp)

ε + (1 − p − εp)

)i

=

(

1 −
1

µ

) (

1

µ

)i
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with µ > 1 as defined in the lemma. Now let Ak denote the event that in

the steady state the chain is in some state i with i ≥ k (corresponding to

a server having a load of at least k). Clearly,

prob (Ak) ≤
∞∑

i=k

vi =

∞∑

i=k

(

1 −
1

µ

) (

1

µ

)i

=

(

1

µ

)k

.

This finishes the proof of the lemma. 2

Now we can prove the main statement of this section, namely that we can

place a bound on the complete system load. First, we need to introduce a

well-known tail estimate, known as Chernov-Hoeffding-Bounds.

Lemma 3.2 (Chernov-Hoeffding)

Let n > 0, let X1, . . . , Xn be independent random variables with domain

[0, z] for some arbitrary z > 0. Let µ := E
[

1
n

∑n

i=1 Xi

]

be the mean

expected value of X1, . . . , Xn. Then, for all u ≥ 1,

prob





n∑

i=1

Xi ≥ µ · n · u


 ≤
(

eu−1

uu

)
nµ
z

Proofs of Lemma 3.2 can be found in [DM90] or [Hof87], among others.

Most notable is that, unlike standard Chernov bounds, here the random

variables may have a domain of [0, z] for some arbitrary value z > 0 instead

of having to be restricted to {0, 1} Bernoulli random variables. This is

exactly what we need, since if we want to bound the complete system load,

we have to express the load of a single server by a random variable.

Unfortunately, we cannot start right away, because the load of a server can

become arbitrarily large, and Lemma 3.2 requires a fixed bound on the

domain of any random variable. Therefore, we need an intermediate step

of placing a high-probability bound on the maximum load of any server,

which, in our case, is easily done.

Lemma 3.3 (System Load)

Under the conditions of Lemma 3.1, and given load generation model

StochBernoulli(p, ε), with a probability of at least 1 − 1/nα+1, the

complete system load (the sum of the load of all servers) is O (n) at any

arbitrary but fixed point of time in the non-balancing system.
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Proof. First note that we have a non-balancing system, so there are

no interactions whatsoever between the single servers. Consequently, the

random variables describing the load of the servers are completely indepen-

dent.

Fix an arbitrary time step. Let Xi, 1 ≤ i ≤ n, denote the load of server i

at the beginning of this time step. Let X =
∑n

i=1 Xi denote the complete

system load at the beginning of this time step. Clearly, for any 1 ≤ i ≤ n,

we have

E[Xi] =

∞∑

j=0

j · prob (Xi = j)

≤
∞∑

j=0

prob (Xi ≥ j)

≤
∞∑

j=0

(

1 −
1

µ

)

·
(

1

µ

)j

=
1/µ

(1 − 1/µ)

=
1

µ − 1

Furthermore, by the above and by linearity of expectation, we have

E[X] =

n∑

i=1

E[Xi] ≤
n

µ − 1
.

Since µ is a constant, we can conclude that the expected complete system

load is O (n). Now there is no inherent upper bound on the values of the

random variables Xi (the load of a single server can become arbitrarily

large). In order to apply the Chernov-Hoeffding bounds from Lemma 3.2,

we need to artificially cut down the domain of the Xi. For this purpose, let

Yi = �
�
{

α + 2���
µ

· ��� n, Xi

}

for 1 ≤ i ≤ n, that is, Yi is very much the same as Xi, just that we do not

allow it to grow past Θ(
���

n). Furthermore, let

Y =

n∑

i=1

Yi.
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By Lemma 3.1, the probability that the i-th server has a load of at least
α+2��	

µ
· ��� n is at most

(

1

µ

) α+2�
�
µ
·
��	

n

≤ 1

nα+2
.

Consequently, X = Y with a probability of at least 1 − 1/nα+1. According

to Lemma 3.2, for constants µ and α, we have

prob

(

Y ≥ 4 · n

µ − 1

)

≤
(

e3

44

) n
µ−1

·

�
�
µ

(α+2)·
�
�

n

≤ 1

nα+1
.

Since we start with an empty system, this estimation holds for every arbi-

trary but fixed point of time. 2

In this section, we have shown that we can place a bound on the complete

system load in a non-balancing system (but note that with a probability of

1 − o(1) there will be a server with a load of Ω(
���

n/
��� ���

n)).

3.2.2 From Non-Balancing to Balancing Systems

In this section we show that the complete system load in a balancing system

also can be bounded, as we have done in the previous section for a plain

non-balancing system.

Lemma 3.4 (System load in balancing system)

Let α ≥ 1 and `s be arbitrary constants. Fix an arbitrary time step.

With a probability of at least 1 − 1/nα+1, if the system load in the

non/balancing system is at most `sn, then this is true for the balancing

one also.

Proof. We will define two systems A and B, where A is a variant of our

non-balancing system, and B is a variant of our balancing system. The

only difference between the standard non-balancing system and A (and

between the standard balancing system and B) is that we rearrange the

order in which tasks are serviced by a single server. Obviously, this has no

influence whatsoever on the load of any server or on the complete system

load. Further, assuming generation model StochBernoulli(p, ε), we may
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decide to preempt a running task. But since we do this only if there is some

other task ready to be serviced, and given model StochBernoulli(p, ε),

a server decides step by step whether or not a task’s service is finished, this

also has no influence (a preempted task has the same chance to finish when

it is scheduled back into the service station as as when it would never have

left).

A last important assumption is that we assume identified servers in A and

B, that is, at any time step, the i-th server in A makes exactly the same

random decisions as the i-th server in B.

A server P in system A has two queues, P
(1)
A and P

(2)
A , and a server P in

system B has three queues, P
(1)
B , P

(2)
B , and P

(3)
B . In both systems, the first

two queues always hold self-generated tasks (and whenever a new tasks

is generated, it lands in the first queue), whereas in system B, the third

queue P
(3)
B of any server P holds tasks that P has received due to balancing

transfers. In both systems, tasks from the first queue are preferred over

tasks of the second queue for servicing (and in system B, tasks of the third

queue have lowest priority). This implies that whenever a task coming from

a second or third queue is in service, and a new task is generated, then the

running task is preempted and the new one starts it service.

Each time a server P of system B decides to transfer 4T tasks (recall the

sketch of the algorithm) to some other server Q due to a balancing action,

the following happens.

System B. Tasks to be transferred come from the third queue, P
(3)
B . If

there are not 4T tasks in this queue, P fills up with tasks first from P
(2)
B , and

if there still are not 4T tasks altogether, from P
(1)
B . Tasks always are inserted

into Q
(3)
B according to their priority, i.e., first tasks from P

(1)
B , then P

(2)
B , and

finally P
(3)
B , and always at the end of the queue. Now, both servers P and

Q move all of their first-queue tasks to the front of their second queues

(this decouples load balancing from normal generation/consumption, since

now the firsts queues are empty, and whenever a new task is generated, it

automatically has preference over all existing tasks).

System A. Of course, in system A there are no load balancing actions

at all. But since we assume that servers in systems A and B are identified,
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whenever some server P in system B decides to move tasks to some other

server Q, then the “doubles” of P and Q in A move all their tasks from

their first queues to their second queues (just like in system B, just without

actual load balancing).

By definition of the systems A and B, the complete system load of our

original non-balancing system is just the same as the one of A, and the

system load of our original balancing system is just the same as the one of

B.

Now fix some task t in system B, which is moved from P to Q due to a load

balancing action. Let k denote the number of tasks of P with precedence

over t, and let k ′ denote the number of tasks of P which have precedence,

and which are also moved over to Q. Both values, k and k ′, are taken right

before the load transfer, that is, at the end of a phase. Obviously, P’s load

was at least 8T at the beginning of the phase, and P can have serviced up

to T tasks during the current phase. Finally, P transfers 4T tasks to Q,

which leaves it with at least 8T − T − 4T = 3T tasks after the transfer,

hence k − k ′ ≥ 3T . Since Q has received tasks, its load at the beginning

of the phase was at most T , and it can have generated up to another T

tasks during the phase, leaving it with at most 2T tasks directly before the

transfer.

Now we distinguish which queue of P task T came from. First, consider

the case t ∈ P
(1)
B . We compare the number of tasks with precedence over t

on P in system A with the number of tasks with precedence over t on Q in

system B (after the transfer, not that there is no transfer in system A, so t

remains on P in this system). All tasks of P and Q in system A are moved

to their second queues, P
(2)
A and Q

(2)
A . In system B, t is moved from P

(1)
B to

Q
(3)
B , and everything from P

(1)
B is moved to P

(2)
B , and everything from Q

(1)
B

to Q
(2)
B .

Now server Q of system B has had at most 2T tasks before the transfer,

all of which have precedence over T when it arrives there. Since there are

k ′ tasks with precedence over t that also are transferred, there are at most

2T + k ′ tasks on Q after the transfer with precedence over t in system B.

In system A, at the same time there are at least 3T + k ′ tasks with prece-

dence over t (on server P in queue P
(2)
A , since t never left P in system A).

The other two cases, t ∈ P
(2)
B and t ∈ P

(3)
B , can be handled analogously. We
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can conclude, that if some tasks is moved, on its “new” server there are no

more tasks with precedence over it than would have been on its “old” server

without balancing. This implies that any task’s waiting time is not larger

in the balancing system, and, hence, the system load also is not larger. 2

3.2.3 A Single Phase

In this section, we focus on a single phase of algorithm AlgStochMulti-

Coll. We first place bounds on the numbers of heavy and light servers

respectively (Lemma 3.6). Then, we show that the collision games are able

to determine a valid assignment from light servers to heavy ones (Lemma

3.9 on page 47).

Estimating the Numbers of Heavy and Light Servers

Lemma 3.6 places bounds on the numbers of heavy and light servers, respec-

tively. First, we introduce a variant of the well-known Chernov Bounds. A

proof can be found, among others, in [HR89].

Lemma 3.5 (Chernov bounds I)

Let n ∈ IN and let p1, p2, . . . , pn ∈ IR with 0 < pi ≤ 1 for i = 1, . . . , n.

Set p = p1 + p2 + · · · + pn.

Let X1, X2, . . . , Xn be independent Bernoulli {0, 1} random variables with

prob (Xi = 1) = pi for i = 1, . . . , n and X = X1 + X2 + · · · + Xn. Then we

have E [X] = p and

prob (X ≥ (1 + ε) · p) ≤
{ (

eε

(1+ε)1+ε

)p
ε ≥ 0

e
−ε2

·p
3 0 ≤ ε ≤ 1.

Now we are ready to formulate the main lemma of this section.
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Lemma 3.6 (Heavy and light servers)

Consider an arbitrary but fixed phase. Let α ≥ 1 and µ > 1 be constants

as in Lemma 3.1. Let `sn be an upper bound on the total system load

with `s = Θ(1) (cf. Lemma 3.4).

With a probability of at least 1 − 1/nα+1, there are

1. at most 3/(2
���2 n) servers classifying themselves as heavy, and

2. at least n · (1 − (`s/T)) servers classifying themselves as light.

Proof. We transform the problem of bounding the number of heavy servers

in the balancing system to the problem of estimating the number of servers

in the non-balancing system having a certain (other) load.

Recall that a server classifies itself as heavy if its load exceeds the heavy

threshold of 8T at the beginning of the phase, where T is the length of

the phase. What can have happened to this server that forced it to do

this classification in the current phase (which we will refer to as phase

Πh from now on)? Suppose that this server has been light during some

previous phase Π`, implying that its load was at most T . Further suppose

that it has been selected to be balancing partner for some other (heavy)

server during this previous phase, and that it has been assigned another 4T

tasks due to a balancing action. Finally, during this previous phase it can

have generated up to another T tasks on its own, leaving it with at most

T + 4T + T tasks at the end of this previous phase. Now for this server to

become heavy, it must have raised its load on its own by another 2T tasks

somewhere between phase Π` and phase Πh (note that during this interval

of time, it may well have been selected to be balancing partner more than

once, but that this happens only if its load was less that T at the beginning

of the corresponding phases, so the argument still is valid).

Now the probability for a server to increase its load on its own by at least

2T tasks in our balancing system clearly can be upper bounded by the

probability for a server to have a load of at least 2T in the plain non-

balancing system. Lemma 3.1 provides probability bounds for this event:

with a probability of at most (1/µ)k, a server has a load of at least k, where

the constant µ > 1 is defined as in Lemma 3.1.

Plugging in our values and defining Xi, 1 ≤ i ≤ n, to be the load of the
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i-th server in the non-balancing system, we obtain

prob (Xi ≥ 2T) ≤
(

1

µ

)2T

≤ 1���2 n
.

with T = 1/10(
��� ���

n)2. Now define another set of random variables Yi,

1 ≤ i ≤ n, where

Yi =

{
1 if Xi ≥ 2T

0 otherwise

Clearly, prob (Yi = 1) = prob (Xi ≥ 2T) ≤ 1/
���2 n. Now define Y =

∑
Yi

to be the number of servers in our non-balancing system with a load of

at least 2T . We have E[Y] ≤ n/
���2 n, and a simple application of the

Chernov bound from Lemma 3.5 yields

prob

(

Y ≥ 3

2
· n���2 n

)

≤ e
− n

12
�
�2 n ≤ 1

nα

which proves the first statement of Lemma 3.6.

A pigeonhole argument provides the bound on the number of light servers.

We assume a complete system load of at most `sn for some constant `s

(holding with a probability of at least 1−1/nα+1). Clearly, there can be no

more that `sn/T servers with a load of at least T . Hence there are at least

n − `sn/T = n(1 − `s/T) servers with a load of at most T , which proves the

second statement of Lemma 3.6.

2

The Assignment Sub-Phase

Now we are ready to tackle the main part of analyzing a single phase of al-

gorithm AlgStochMultiColl. The proof is structured as follows. First,

we will show that all the collision games we play to construct the query

trees are indeed successful (Lemma 3.7). Then we show that the length of

a phase (T = 1/10(
��� ���

n)2 steps) actually suffices to play these collision

games and to perform the additional computation which is required by the

algorithm (Lemma 3.8). Finally, we show that given the query trees, we can
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successfully find an assignment from light servers to heavy ones (Lemma

3.9 on page 47).

We start by showing that the collision games succeed in building the query

trees.

Lemma 3.7 (Collision games)

Let α ≥ 1, let a = 4(α + 3), b = a/2, and let ε ≤ 1
2(2a)a−b+1 .

With a probability of at least 1 − 1/nα+1, each of the t =
��	 ��	

n��	
b

(n, ε, a, b, 1)-collision games successfully terminates after r =
��	 ��	

n��	
(b)

+ 2

rounds of its For-loop (cf. Figure 2.2 on page 27).

Proof. Lemma 2.2 shows that an (n, ε, a, b, 1)-collision game with a prob-

ability of at least 1−1/nα+2 resolves up to εn requests in at most r rounds,

if

1. a − b = 2(α + 2) + 2 = 2(α + 3), and

2. ε ≤ 1
2(2a)a−b+1 , and

3. r ≥
��	 ��	

n��	
(a−b)

+ 2.

We now show that all these points are indeed fulfilled.

1. Fulfilled due to our choice of the parameters a = 4(α+3) and b = a/2

as stated in the lemma.

2. We need to show that in no round of the assignment sub-phase we

have more than εn simultaneous requests. For 1 ≤ i ≤ t, the num-

ber of requests issued in the i-the round of the assignment sub-phase

is equal to the number of nodes of the i-th level of the query trees

(summarised over all the trees). Consequently, the number of simul-

taneous requests is maximised in the last round (the collision game

determining the structure between the bottom level of the trees and

the one above).

Recall that we develop the trees down to depth t =
��� ���

n/
���

b

(by playing as many collision games), and that each internal node has
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b “successors”. Therefore, the bottom level of each tree consists of at

most of b
��	 ��	

n/
��	

b =
���

n nodes.

By Lemma 3.6 we know that there w.h.p. are at most 3n

2
��	2 n

heavy

servers each of which a query tree has to be developed for. Hence, in

no round of the assignment sub-phase we have more than

3n

2
���2 n

· ��� n =
3n

2
���

n

requests to be handled simultaneously. This value can be upper

bounded by εn for any constant ε > 0, which implies that the second

requirement is fulfilled.

3. We play each collision game for

��� ���
n���

a − b
+ 2 =

��� ���
n���

b
+ 2

rounds (a = 2b). Hence, the third requirement is also fulfilled.

Each single collision game succeeds with a probability of at least 1−1/nα+2.

Hence, with a probability of at least 1−1/nα+1, all of our
��� ���

(n)/
���

(b)

collision games succeed, which proves the lemma. 2

Now we show that our phase length of T = 1/10(
��� ���

n)2 steps is sufficient

to successfully play the
��� ���

(n)/
���

(b) collision games and to perform

the additional computation which is required by algorithm AlgStoch-

MultiColl.

Lemma 3.8 (Phase Length)

Under the conditions of Lemma 3.7, a phase length of T = 1/10(
��� ���

n)2

steps is sufficient to perform all the computations made by algorithm Alg-

StochMultiColl during one phase.

Proof. We play t =
��� ���

n/
���

b collision games, each with r =��� ���
n/

���
(b) + 2 rounds (by definition of our communication model,

each round of a collision game takes just one step). We have to addition-

ally charge each collision game with two more steps: one for sending offer
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messages, and one for receiving messages whether or not to continue the

protocol (whether or not the server initiating the search already has found

a partner). Therefore,

��� ���
n���

b
·
( ��� ���

n���
b

+ 4

)

≤ 1

10
(
��� ���

n)2 for
���

b ≥ 7
2
.

steps are sufficient for the assignment sub-phase. 2

Now we are ready to state the main lemma of this section.

Lemma 3.9 (Assignment)

Under the conditions of Lemma 3.7, with a probability of at least 1 −

1/nα+1, every heavy server get assigned a light server of the phase, whereas

each light server is assigned to at most one heavy server.

Proof. The statement that each light server is assigned to at most one

heavy server directly follows from the formulation of algorithm AlgStoch-

MultiColl(refer to Section 3.1), since when a light server is designated to

become balancing partner its state changes to non-available for the rest of

the current phase.

Recall that we develop our query trees down to depth
��� ���

n/
���

b, and

that all the b
��	 ��	

n/
��	

b =
���

n nodes on the bottom level of any query tree

are pairwise distinct (more, the nodes on the bottom level of the complete

query forest are pairwise distinct). We now can proceed and estimate the

probability for a successful assignment. To do this, as far as light servers

are concerned, we

1. neglect all the nodes of query trees not belonging to the bottom levels,

we

2. consider the fact that a single collision game draws a random permu-

tation (a level of the query forest constitutes a random permutation

of all nodes) instead of providing truly independent random choices,

and we
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3. furthermore assume the situation at the end of the assignment sub-

phase, where a maximum number of light servers already has been

assigned to heavy ones, and which are, therefore, no longer available

for other heavy servers still searching. Clearly, the number of heavy

servers serves as an upper bound on the number of light servers al-

ready assigned to heavy ones.

There are at most 3an/2
���

n queries issued concurrently during any round

of the collision games. If we reduce the number of light servers by this

amount, then effects due to the non-independent choices of the collision

games are eliminated. Further, recall that we lower bounded the number

of light servers by n(1 − `s/T) for some constant `s, and that we upper

bounded the number of heavy servers by 3n/(2
���2 n). Hence, at the end

of the assignment-sub-phase there are at least

n

(

1 −
`s

T

)

−
3an

2
���

n

3n

2
���2 n

available light servers remaining. Since T = 1/10(
��� ���

n)2 and therefore���2 n = Ω(T) and also
���

n = Ω(T), we can conclude that the number of

still available light servers can be lower bounded by

n

(

1 −
2`s

T

)

= n

(

1 −
20`s

(
��� ���

n)2

)

As mentioned above, the bottom level of any query tree consists of
���

n

pairwise distinct nodes. Therefore, we can place an upper bound on the

probability for the event that there is no still available light servers to be

found there by
(

20`s��� ���2 n

)

��	
n

≤
(

1

n

)α+2

for any constant α > 0. Hence, with a probability of at least 1 − 1/nα+1,

each heavy server finds a light one. 2

Remark. Assume some server has not classified itself as heavy at the

beginning of phase i, implying that its load was at most 8T − 1 (recall that

8T is our heavy threshold). Now this server can increase its load by at
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most another T tasks during this phase, resulting in a load of 9T − 1 at

the beginning of the next phase. Clearly, this forces this server to declare

itself as heavy now. During this next phase, the server can again increase

its load by T tasks, leaving it with 10T − 1 tasks at the end of this phase.

Now if a light balancing partner is found successfully, 4T tasks are sent to

this partner, resulting in a load of 6T − 1 afterwards.

Furthermore, a server classifies itself as light if its load does not exceed T .

It can increase its load by another T tasks during a phase, and can have its

load increased by 4T tasks due to a load transfer. Therefore, its load is at

most 6T at the end of the phase.

Finally, a neutral server has a load of at most 8T at the beginning of the

phase, and can have generated another T tasks, leaving it with at most 9T

tasks.

Summing up, we see that no server exceeds the maximum allowed load of

10T = (
��� ���

n)2.

3.2.4 Proving the Main Theorem

So far we have focused on a single phase of balancing algorithm AlgStoch-

MultiColl. Now we are ready to actually bound the probability for the

event of a server exceeding the maximum allowed load of (
��� ���

n)2 at

an arbitrary fixed point of time. The basic idea here is that if such an

event actually takes place, then there must have been a phase in which

this server’s attempt at a balancing action has failed (it has classified itself

as heavy but has not found a balancing partner). First we need to again

estimate the complete system load, but now for a phase from which we

assume that there actually is a server classifying itself as heavy.

Lemma 3.10 (System load in balancing system II)

Given the conditions of Lemma 3.4 on page 39, suppose that at the begin-

ning of phase Π some server P classifies itself as heavy and has not done

so the phase before. Then, with a probability of at least 1 − 1/nα+1, the

system load still can be bounded by `sn (with `s being some constant).
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Proof. Let

� A be the event that there are more than `sn tasks in the system at

the first time step of phase Π, and

� B be the event that P classifies itself as heavy.

Clearly,

prob (A|B) =
prob (A ∩ B)

prob (B)
≤ prob (A)

prob (B)
.

Closely following Lemma 3.3, we can show that prob (A) ≤ 1/nα+2 for any

constant α and `s as given in Lemma 3.4.

Now that we have an upper bound on prob (A), we derive a lower bound

on prob (A). For this, consider the following, modified system.

1. The phase length now is 8T = 8/10(
��� ���

n)2 instead of T .

2. The load generation and servicing distribution is identical to the orig-

inal system, as well as the classification sub-phase.

3. After the classification sub-phase,

� each non-heavy server deletes all tasks it currently keeps and

changes classification to light if it has not been before, and

� each heavy server deletes all but the 4T tasks it is going to trans-

fer to a balancing partner.

Obviously, there are fewer load transfers in this system than in the original

one. Now we lower bound the probability for a fixed server of this, modified

system to become heavy. To become heavy (from previously non-heavy),

a server must have increased its load from zero to 8T during the last phase

(every server deletes all its tasks at the beginning of a phase – except for

tasks to be transferred, which are deleted at the first step of the next phase).

According to Lemma 3.1 on page 35, the probability for this event is

(

p(+)
)8T

= (p · (1 − (p(1 + ε))))
4/5(

��	 ��	
n)2 ≥ 1

n
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for any constants 0 < p < 1 and ε > 0 such that p(1 + ε) < 1. Since now

the probability for a server to become heavy is only larger in the original

system, we can conclude that prob (B) ≥ 1/n, and, consequently,

prob (A|B) ≤ prob (A)

prob (B)
≤ n

nα+2
=

1

nα+1

2

As a consequence of this lemma, we can conclude that even under the

assumption of a server changing its classification to heavy at the beginning

of some phase, we know that all the lemmas which rely on an O (n) bound

on the system load still are valid.

We are ready to prove Theorem 1.1 (on page 18) now. We upper bound the

probability for the existence of a server P exceeding the maximum allowed

load of (
��� ���

n)2 at some arbitrary time step τ. Let Π(τ) be the phase

step τ belongs to. Clearly, there must be some previous phase Π ′ in which

server P changed its classification from non-heavy to heavy, and during the

consecutive phases Π ′, . . . , Π(τ) server P always was heavy, meaning that

P either did not find a balancing partner at all, or that it did find one but

was not able to transfer sufficiently many tasks in order to drop below the

heavy threshold at the beginning of the next phase.

Let z denote the phase number of phase Π(τ). Clearly, Π ′ = Π(τ) − i for

some 1 ≤ i < z. Now we define three events:

� Ei is the event that the classification of P changed the last time from

not heavy to heavy in the first step of phase Π(τ) − i, 1 ≤ i < z (this

means Π ′ = Π(τ) − i).

� F is the event that P has still a load larger than (
��� ���

n)2 in step t

(belonging to phase Π(τ)).

� U is the event that the first balancing attempt of P in phase Π ′ has

been unsuccessful.
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We now have

prob
(

P has a load larger than (
��� ���

n)2 in step t
)

≤
z−1∑

i=1

prob (F ∧ Ei)

≤
z−1∑

i=1

prob (Ei) · prob (F | Ei)

The condition that the first balancing attempt was unsuccessful is nec-

essary for our situation of P being overloaded in step t. It follows that

prob (F | Ei) ≤ prob (U), and

prob
(

P has a load larger than (
��� ���

n)2 in step t
)

≤
z−1∑

i=1

prob (Ei) · prob (U)

= prob (U) ·
z−1∑

i=1

prob (Ei) = prob (U)

We know that the first balancing attempt of a fixed heavy server P succeeds

with a probability of at least 1−1/nα+1, even if we know that in this phase

P changes its classification to heavy. Hence,

prob (U) ≤ 1

nα+1
.

It directly follows that we can upper bound the probability for any server

exceeding the maximum allowed load of (
��� ���

n)2 by 1/nα, and Theorem

1.1 follows.

3.2.5 Other Generation Models

This section is about Theorem 1.2, stating a ∆ ·(��� ���
n)2 upper bound on

the load of any server at any arbitrary but fixed point of time for balancing

algorithm AlgStochMultiColl, given the StochGeometric(∆) and

the StochBinomial(∆, p) generation model, respectively.

The fact that the bound is slightly worse than the one from Theorem 1.1

for generation model StochBernoulli(p, ε) is due to the situation that
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now a server may generate up to ∆ tasks per step. Hence, during a phase

of length T it can generate up to ∆T tasks, and ∆T is an inherent lower

bound on what can be shown to be the maximum load of any server.

In order to be able to apply algorithm AlgStochMultiColl to gener-

ation models StochGeometric(∆) and StochBinomial(∆, p), we need

to slightly modify the algorithm (this has to be done to account for the

influence of ∆, as described above). We have to scale our thresholds by

a factor of ∆ (actually, if we had parameterised the algorithm with ∆, no

change at all would have been necessary, but might have complicated the

discussion in the previous sections):

1. A server classifies itself as heavy, if its load exceeds 8∆T at the be-

ginning of a phase (was 8T in the original algorithm).

2. A server classifies itself as light, if its load is less than ∆T at the

beginning of a phase (was T in the original algorithm).

3. During a balancing action, 4∆T tasks are transferred from heavy

servers to light ones (was 4T in the original algorithm).

The next lemma shows that we can establish bounds on the load of single

servers as we have done for generation model StochBernoulli(p, ε) in

Lemma 3.1 on page 35.

Lemma 3.11 (Load of a single server II)

Let ∆ ≥ 1 be an arbitrary integer constant, and let p ∈ (0, 1) such that

∆p < 1.

Given the StochGeometric(∆) or the StochBinomial(∆, p) genera-

tion model, there is a constant µ > 1, such that with a probability of at

most (1/µ)k, a server will have a load of at least k at any arbitrary but

fixed point of time in a non-balancing system.

Proof. To prove this lemma, we rely on some mechanisms of Queueing

Theory, Although mostly concerned with continuous time problems, these

mechanisms and approaches are applicable to our inherent discrete time

problem.
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When observing a bulk-arrival system with individual service, it is a well-

known concept in Queueing Theory to treat the bulks as “super customers”

(with expected service time equal to the sum of the expected service times

of the single customers belonging to the bulk) and therefore to obtain a

simple birth-death-process, see, for instance, [Coh82, Kle96].

If we model our single servers in a non-balancing system as standard queues,

we have an interarrival time of bulks of constant one per queue, and a

service time for single customers of also constant one (obviously, in our

case a bulk is the set of tasks generated by a server in one time step). If

we now combine these tasks to form a “super task”, then we have to set

its expected service time to the expected bulk size (which depends on the

generation model) times the expected service time of the single customers

(which in our case is constant one).

There is a nice way to prove an exponential decrease in the waiting time

distribution of customers in a GI/G/1 queue (see [Kin64]). Since our model

with super tasks fits into this model, we are going to apply this mechanism.

Assume the tasks being generated by a server at the same time step to

belong to a super task. Now

1. let sn denote the service time of the n-th super task,

2. let tn denote the time between the arrivals of the n-th and the (n+1)-

th super task, and

3. let un = sn − tn.

In [Kin62] it is shown that if E[un] < 0 then the waiting time distribution

converges. In [Kin64] is is shown that if the expectation of the moment

generating function Φ for un exists for some real θ > 0, that is,

E[Φ(θ)] = E[eθun ] =
∑

x: prob(un=x)>0

eθx · prob (un = x) < ∞,

then Φ(θ) ≤ 1 and furthermore, with w denoting the waiting time in

equilibrium,

prob (wn ≥ z) ≤ prob (w ≥ z) ≤ e−ϑz



3.2 The Analysis 55

for ϑ = ���{θ > 0| Φ(θ) ≤ 1} if the queue initially is empty.

Generation models StochGeometric(∆) and StochBinomial(∆, p) al-

low for at most a constant number of tasks to be generated per time step.

In both cases the expected number of tasks generated per server and time

step is less than one, and the interarrival time of super tasks as well as the

service time of single tasks is constant one. Hence, our super tasks have

service time s distributed in [0, ∆] with E[s] < 1. As un = sn − tn and

t1 = t2 = · · · = 1, we have

∑

x: prob(un=x)>0

eθx · prob (un = x)

=
∑

x: prob(sn−tn=x)>0

eθx · prob (sn − tn = x)

=
∑

x: prob(sn−1=x)>0

eθx · prob (sn − 1 = x)

=
∑

x: prob(sn=x+1)>0

eθx · prob (sn = x + 1)

=

∆−1∑

x=−1

eθx · prob (sn = x + 1)

=

∆∑

x=0

eθ(x−1) · prob (sn = x)

≤ eθ(∆−1)·
∆∑

x=0

prob (sn = x)

= eθ(∆−1).

Since ∆ is a constant, eθ(∆−1) < ∞ for all θ > 0. Now by [Kin64], there

exists θ such that Φ(θ) ≤ 1, and

prob (w ≥ z) ≤ e−ϑz

for ϑ = ���{θ > 0; Φ(θ) ≤ 1}. Finally, for constant ν = eϑ > 1 we have for

w,

prob (w ≥ z) ≤
(

1

e

)ϑz

=

(

1

ν

)z

.
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Since there is a one-to-one correspondence of waiting time and queue length

in our model (all tasks have a service time of constant one), and a super

task consists of at most ∆ regular tasks, we can easily find a µ = µ(ν, ∆) > 1

such that for the queue length `, prob (` ≥ z) ≤ 1/µz, and the lemma is

proven. 2

Now that we know that we can again estimate the load of a single server in

a non-balancing system, we can apply the same lemmas as we have done

in the previous sections of this chapter:

1. Bound the complete system load both in the non-balancing system

and the balancing one.

2. Place bounds on the numbers of heavy and light servers, respectively.

3. Show that the that the collision games succeed.

4. Finally, show that the we actually find an assignment from light to

heavy servers, and show that the phase length is sufficient.

3.2.6 Recovery Properties

Of course, if our system is run long enough, then it will approach any (de-

generated) state, i.e., a state in which the system load cannot be bounded

by O (n). Fortunately, it has the inherent property of “automatical recov-

ery” back to some typical state, where the bound on the system load again

is valid.

We can restrict ourselves on showing this property for a non-balancing

system, since the main essence of Lemma 3.4 is that the consumption rate in

a balancing system is not smaller than in a non-balancing system. Another

hint on this is that in worst-case scenarios, our balancing algorithm just

does nothing; be it that the collision games do not succeed, or that no valid

assignment from light servers to heavy ones can be determined.

Now consider a non-balancing system in some arbitrary state, let ` denote

the maximum load of any server. Obviously, in any interval of length r`,
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a server expectedly generates r`p tasks, and expectedly services r`p(1 + ε)

tasks. Now for r ≥ 1/(εp), we have that

` + r`p ≤ r`p(1 + ε),

implying, that given an interval large enough (depending on `, p, and ε),

the servers not only expectedly service all the tasks they have generated

during this interval, but also those present at the beginning of the interval.





CHAPTER 4

The Balancing Algorithm

AlgStochSingleColl

In this chapter we introduce and analyse the second load balancing algo-

rithm, AlgStochSingleColl, for the stochastical load generation scheme.

Where algorithm AlgStochMultiColl of the previous Chapter 3 needs

a phase length of Θ((
��� ���

n)2), implying an inherent lower bound of

Θ((
��� ���

n)2) on the maximum load of any server, for algorithm Alg-

StochSingleColl now a phase length of Θ(
��� ���

n) suffices. We will

show that the maximum load of any server can be upper bounded by

Θ(
��� ���

n), which is an asymptotic decrease of a factor
��� ���

n.

Algorithm AlgStochSingleColl again follows the sketch from Section

1.4. Compared to algorithm AlgStochMultiColl, the assignment sub-

phase has changed significantly; actually, it has been completely redesigned.

The main difference is that, where algorithm AlgStochMultiColl played

O (
��� ���

n) collision games, one after the other, algorithm AlgStoch-

SingleColl now plays just one such game during the assignment sub-

phase (that’s where the names come from).

In the remainder of this chapter, we first introduce balancing algorithm

AlgStochSingleColl in Section 4.1, and then analyse its performance

in Section 4.2.

59
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SECTION 4.1

The Algorithm

Time is divided into consecutive phases of length T = `
��� ���

n for some

constant ` to be specified later. Since we again assume a stochastical load

generation model (StochBernoulli(p, ε) throughout most of the chapter,

where a server generates a task with a probability of p per step, and services

a task with a probability of p(1+ε)), there is no need for the load estimation

sub-phase, because we again can exploit the inherent O (n) upper bound on

the complete system load. A phase of algorithm AlgStochSingleColl

now looks as follows.

Classification. Servers having a load of at most T at the beginning of

the phase are classified as light, and servers with a load of at least 8T at

the beginning of the phase are classified as heavy. The remaining servers

are classified as neutral. Note that the thresholds are not with respect to

some “floating” value but fixed and only dependent on T .

Assignment. Again, we want to find an assignment from light servers

to heavy ones. In algorithm AlgStochMultiColl, we established the

so-called query trees, and every heavy server sought for a light balancing

partner in its own tree (which, as we have seen, might overlap with other

servers trees). Now we do not play
��� ���

n collision games in order to

establish this “search structure” but just one. This sub-phase is split in

two main parts.

First, we play a collision game where all the servers issue requests. Imagine

the accepting of queries as throwing directed edges into a graph which

initially has had no edges at all. Thus, when a server issues a request

consisting of a queries, of which b are accepted, this means that there are

b directed edges from this server to the servers having accepted the queries.

Obviously, playing a c = 1 collision game is out of question; one has to find

parameters that allow to show that the collision game actually is able to

resolve the requests, w.h.p. (as we will see, a = 2α + 5, b = a − 1, and

c = 8ea2 are just fine). To summarise: the collision game builds a directed

graph (with the servers as nodes) where each node has an out-degree of
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b and an in-degree of at most c, w.h.p. The servers having accepted the

queries of another server P are called P’s successors, and P is the predecessor

of these servers. Note that we identify servers and nodes in this context;

we will switch notations quite frequently, and use whatever seems more

appropriate.

This graph G then is used to find the assignment. Again, the heavy servers

make use of tree-like structures embedded in G – just not explicitly con-

structed level by level. For any server P, let TP ⊂ G consist of P itself as

“root” and all the nodes reachable by directed paths of a length of at most

t = Θ(
��� ���

n) (will be specified later). Note that again several TP can

overlap, or that some node can occur more than once in one TP.

Pc

Pa

TP

TP

TP

P
first level of
second level of
not in 

b

P

P

Figure 4.1: An example TP (b = 3, c = 4, depth = 2).

Figure 4.1 shows a typical outcome of a collision game which has been

played with parameters b = 3 and c = 4. Node P in the centre (black) has

three successors Pa, Pb, and Pc (dark grey), which themselves each have

three successors (light grey). Dashed lines represent choices of the collision

game (accepted queries), and solid lines indicate affiliation to our 3-level

TP. Note that some nodes are successor to more than one node, for instance

Pa and Pb share a common successor (which then shows up twice on level

two of the TP), and node Pb has P itself as successor, which then occurs on

level zero and two.
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Now every heavy server P tries to find a balancing partner in its TP. This

works as follows.

1. Every heavy server sends search messages to its b successors. Such

a message initially consists of nothing but the heavy server’s ID. Now

for t−1 rounds, each server having received such a search message (or

more than one of them – recall that the in-degree of any node may be

as large as c = 8ea2) in the previous round, combines them if neces-

sary, and forwards them to its own successors. It additionally stores

the IDs of the corresponding servers in a list of its own. Note that

our communication model allows for a constant number of messages

to be sent/received per step.

2. After these t rounds, each light server sorts its list and compacts it

by deleting dupes (now in each such list every server occurs at most

once). Recall that we do not assume any explicit communication net-

work underlying the servers. Since most reasonable networks have a

diameter of O (polylog(n)) (and, hence, routing of messages takes as

long), we allow for O (polylog(n)) computational steps per commu-

nication step.

3. Now every light server randomly selects one ID of its compacted list

(uniformly distributed). It then sends an offer message to the corre-

sponding server. In turn, a heavy server having received one or more

offer messages, selects an arbitrary one of them and answers with an

acknowledgement message to this server, which is now designated as

its balancing partner. Note again that our communication model al-

lows for this, since at most a constant number of messages have to be

evaluated per server, regardless of how many arrive simultaneously.

Transfer. Each heavy server transfers 4T of its tasks to its balancing

partner.
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SECTION 4.2

The Analysis

In this section we analyse the performance of algorithm AlgStochSingle-

Coll given load generation model StochBernoulli(p, ε). The analysis

is split into the same parts as the one for algorithm AlgStochMultiColl

in Section 3.2.

1. First we again need to derive an upper bound on the complete system

load. Since the system itself is just the same as before, there is no

need to modify the analysis. Hence, assuming load generation scheme

StochBernoulli(p, ε), Lemma 3.1 on page 35, Lemma 3.3 on page

37, and Lemma 3.4 on page 39 are still valid, implying that

(a) with a probability of at most 1/µk, a server will have a load of at

least k at any arbitrary but fixed time step in the non-balancing

system, where µ > 1 is some constant depending on p and ε,

and

(b) with a probability of at least 1 − 1/nα+1, the complete system

load can be bounded by O (n), both in the non-balancing system

and in the balancing one (note that the proof of Lemma 3.4 does

in no way depend on the length of a phase, and that everything

else remains unchanged, as far as the proof is concerned).

2. Next, in Section 4.2.1, we analyse a single phase of our algorithm. We

provide an upper bound on the number of heavy servers as well as a

lower bound on the number of light servers. We show that the collision

game actually resolves all the requests, and that the assignment from

light servers to heavy ones succeeds (with high probability).

3. In Section 4.2.2, we prove the main theorem of this part, namely

Theorem 1.4 on page 19. This is done similar to the proof of Theorem

1.1 for algorithm AlgStochMultiColl.

4. Finally, in Section 4.2.3, we again consider the two other stochastical

load generation models, namely StochBinomial(∆, p) and Stoch-

Geometric(∆).
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Note that the recovery property we have stated in Section 3.2.6 also still is

valid, since it depends on the load generation only and not on the actual

algorithm.

4.2.1 A Single Phase

The structure of this section closely follows the one of Section 3.2.3, where

we analysed a single phase of algorithm AlgStochMultiColl. Since

there is no need to estimate the complete system load again (Lemma 3.4

still is valid), we can start right away with providing bounds both on the

number of heavy servers as well as on the number of light servers (Lemma

4.1). Then, we show in Lemma 4.5 that we indeed find a valid assignment

from light to heavy servers within out assignment sub-phase (w.h.p.).

Estimating the Numbers of Heavy and Light Servers

The following lemma provides bounds on the numbers of heavy and light

servers, respectively.

Lemma 4.1 (Heavy and light servers)

Consider an arbitrary but fixed phase of length T = `
��� ���

n for some

constant `. Let α ≥ 1 and µ > 1 be constants as in Lemma 3.1.

For a fixed server, the probability for it to be heavy is at most 1/µ2`
��	 ��	

n,

and there are at least 3
4
n light servers.

Proof. The proof follows the outline of the proof of Lemma 3.6, where we

have done almost the same for algorithm AlgStochMultiColl. We now

just have to take care of the different phase length.

Recall that a server is heavy if its load is at least 8T at the beginning of

this phase. This means that it somehow must have raised its load on its

own by at least 2T (light with at most T tasks at the beginning of some

phase, plus another T self generated tasks during this previous phase, plus

4T tasks due to a load transfer leaves it with at most 6T tasks — 2T tasks

are “missing” in order to become heavy).

Now the probability for a server to have a load of 8T in our balancing

system can be upper bounded by the probability for it to have a load of at
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least 2T in a non-balancing system. Following Lemma 3.1, we can upper

bound this probability by

(

1

µ

)2T

=

(

1

µ

)2 ·̀
��	 ��	

n

with µ =
ε+(1−p−εp)

1−p−εp
> 1.

It remains to lower bound the number of light servers. According to Lemma

3.4 (which clearly still is valid, as there are absolutely no references to the

length of a phase in its proof), we can bound the compete system load

by `sn for some constant `s. Obviously, there cannot be more than `sn/T

servers with a load of at least T (since then the system load would have to

be larger). Hence, there are at least

n −
`sn

T
= n ·

(

1 −
`s

T

)

= n ·
(

1 −
`s

`
��� ���

n

)

≥ n ·
(

1 −
1

4

)

=
3

4
n

servers with a load of at most T (the light ones), which finishes the proof

of the lemma. 2

The Assignment Sub-Phase

Now we are ready to do the main part of analysing a single phase of algo-

rithm AlgStochSingleColl. The proof is structured as follows. First,

we will show that the collision game we play to construct the access struc-

ture (containing all the TP’s) is indeed successful (Lemma 4.2). Next, in

Lemma 4.3, we provide a result concerning a key property of this access

structure. Then, we show that given the TP’s, we can successfully find an

assignment from light servers to heavy ones (Lemma 4.5). Finally, we show

that the length of a phase (T = `
��� ���

n steps for some constant `) actu-

ally suffices to play this game and to perform the additional computation

which is required by the algorithm (Lemma 4.6).

Recall that we play one collision game with parameters a = 2α + 5, b =

a − 1, and c = 8ea2. Proving that the collision game actually succeeds is a

straightforward application of Lemma 2.1.
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Lemma 4.2 (Collision game)

Let α ≥ 1 be an arbitrary constant, let a = 2α + 5, b = a − 1, c = 8ea2,

and ε = 1.

With a probability of 1 − 1/nα+1, the (n, ε, a, b, c)-collision protocol is

able to resolve the n requests within
��	 ��	

n��	
c

+ 1 rounds of the For-loop.

Proof. Just plug the parameters into Lemma 2.1. 2

Now we are going to explore some structural properties of our access graph

and the TP’s. A heavy server tries to find a balancing partner in its TP. For

this reason, we would like a TP to contain as many pairwise distinct nodes

as possible. Recall that a node may occur more than once in a TP – even

worse, if it occurs twice, the complete subtrees rooted in it are identical!

Fix some TP. Let s`(TP) denote the logical size of TP, that is, counting all

the occurrences of the nodes, no matter if they occur once, twice, or more

often (that is, assuming a regular b-ary tree). Since we have an out-degree

of b and the TP’s have a depth of t,

s`(TP) =
bt+1 − 1

b − 1
≤ 2bt.

Now let sp(TP) denote the physical size of TP. Here, we want to count just

one occurrence of any node of TP, i.e., we are interested in the size of the

maximum cardinality subset of pairwise distinct nodes. Figure 4.1 on page

61 shows an example of a TP with b = 3 and three levels. The logical size

clearly is 1 + 3 + 9 = 13, but due to some nodes occurring more than once

(consider, for instance, the common successor of Pa and Pb), the physical

size reduces to 11 (all the non-white nodes). The following lemma provides

a lower bound on the physical size of any TP.

Lemma 4.3 (Physical size)

Consider TP’s with out-degree b = 2α+4 of depth t = t ′
��� ���

n for some

constant t ′.

With a probability of at least 1 − 1/nα+1,

sp(TP) ≥ b − 2

b
· s`(TP) ≥ 3

4
· s`(TP)

for every TP.
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Proof. Fix an arbitrary TP. In order to find the desired bound, we apply

a deletion process to TP. This process traverses all the nodes of TP in

breadth-first-search (BFS) order, and it deletes nodes which correspond to

servers that already have occurred earlier during the traversal. In more

detail, the process for some node v looks as follows.

Deletion process for node v.

If the server which is represented by v has not occurred earlier dur-

ing the BFS traversal of TP, then do nothing. Otherwise, delete the

complete subtree rooted in v (including v), and mark the edge from

v to its predecessor as cut-off edge. Of course, there is no real edge

from v to its father, because v is no longer there. Just imagine this

edge as “virtual”.

Note that we never actually do this in the algorithm; it’s just a theoretical

means of finding a lower bound on sp(TP). Anyway, repeat this until either

there are no more nodes there to be visited, or there are at least ` = b/2+1

cut-off edges. In this case we apply a final deletion step in which we delete

all nodes that have not yet been visited.

Each TP consists of the root P and b subtrees of height t − 1 each. Since

the (a, b, c) collision game chooses a different targets for any request (see

Figure 2.2), the children of any node v represent pairwise distinct servers,

and there is at most one child of v representing the same server as v itself

does. Hence, in the worst case, one cut-off edge deletes one of the direct

subtrees of the root P, and the remaining ones cut the tree the level below

(cutting a subtree rooted in a successor of a successor of P).

Since there are at most b/2 cut-off edges at all if we do not have to face

the final deletion step, then in the worst case we have to delete one subtree

of height t− 1 and b/2− 1 subtrees of height t− 2 each. A straightforward

calculation reveals that, for b ≥ 8, we have at least

bt+1 − 1

b − 1
−

bt − 1

b − 1
−

(

b

2
− 1

)

· bt−1 − 1

b − 1

≥ b − 2

b
· bt+1 − 1

b − 1
≥ 3

4
· bt+1 − 1

b − 1
=

3

4
· s`(TP)

nodes left. It now remains to bound the probability that a final deletion

step occurs for some fixed TP. Let {e1 = (u1, v1), . . . , ek = (uk, vk)} denote
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the set of cut-off edges, and let ri denote the request that has been issued

by the server represented by node ui, 1 ≤ i ≤ k. Hence, to each request ri

belongs a query that is directed to a server which is represented by a node

that already has been visited during the BFS traversal before. Recall that

the logical size of TP is

bt+1 − 1

b − 1
≤ 2bt

≤ 2bt′
��	 ��	

n

= 2bt′
��	

(b)
��	 ��	

(n)/
��	

(b)

= 2 · 2t′
��	

(b)
��	 ��	

(n)

= 2 · (��� n)t′
��	

b

Now we are ready to compute the sought probability.

1. There are at most (2 · (��� n)t′
��	

b)b/2+1 ways to choose the b/2 + 1

cut-off edges whose existence lead to a final deletion step.

2. For each cut-off edge ei we can choose one of the 2 ·(��� n)t′
��	

b nodes

that represent the same server and have been visited before during

the BFS traversal.

3. The probability that one of the a queries belonging to request ri is

directed to wi is no more than a/n.

Therefore, the probability for a final deletion step is at most

(2 · (��� n)t′
��	

b)b/2+1 · (2 · (��� n)t′
��	

b)b/2+1 · (a/n)b/2+1

=

(

4 · (��� n)2t′
��	

b · a
n

)b/2+1

≤
(

1

n

)α+2

for b ≥ 2(α+2). Hence, with a probability of at least 1−1/nα+1, sp(TP) ≥
3/4 · s`(TP) for every TP. This finishes the proof of the lemma. 2

Before we can proceed and bound the probability for a success of the assign-

ment sub-phase we need to introduce another Chernov-like tail estimate.
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Lemma 4.4 (Chernov bounds II)

Let n ∈ IN and let p1, . . . , pn ∈ IR with 0 < pi ≤ 1 for i = 1, . . . , n. Let

p =
∑

pi. Let X1, . . . , Xn be independent Bernoulli random variables with

prob (Xi = 1) = pi for i = 1, . . . , n, and let X =
∑

Xi. Then, E [X] = p,

and

prob (X ≤ (1 − ε) · p) ≤ e−ε2p/2.

for 0 ≤ ε ≤ 1

A proof can be found in [HR89]. We now can state the following lemma.

Lemma 4.5 (Assignment)

Let α ≥ 1 be an arbitrary constant, let a = 2α + 5, b = a − 1, c = 8ea2,

and let k = 8(α + 2)2. Let µ > 1 be defined as in Lemma 3.1. Let

t = (2
��� ���

(n) +
���

(k)) /
���

b be the depth of the TP’s. Suppose a

phase has a length of length of T = ` · ��� ���
n with ` ≥ 1��	

µ
·
(

3
2

+
��	

c��	
b

)

.

With a probability of at least 1−1/nα+1, every heavy server gets assigned

a light server at the end of the assignment sub-phase, and every light

server is assigned to at most one heavy server.

Proof. First, note that here the formula describing the depth of the TP’s is

a little bit more complicated than in the formulation of Lemma 4.3. What

we have here is the “true depth”, whereas in Lemma 4.3 a simplification

was sufficient.

The second statement clearly follows directly from the formulation of algo-

rithm AlgStochSingleColl.

A fixed TP has logical size of

bt+1 − 1

b − 1
≥ bt

= b(2
��	 ��	

(n)+
��	

(k))/
��	

b

= 22
��	 ��	

(n)+
��	

(k)

= 22
��	 ��	

n · 2
��	

k

= (
���

n)2 · k
= (

���
n)2 · 8(α + 2)2



70 Chapter 4. The Balancing Algorithm AlgStochSingleColl

By Lemma 4.3 from above, with a probability of at least 1 − 1/nα+1, the

physical size is at least half this value, hence

sp(TP) ≥ (
���

n)2 · 4(α + 2)2.

By Lemma 4.1, at least 3/4 · n servers are light. Due to the fact that the

collision game restricts the in-degree of any node to at most c, its choices

are not independent. However, similar to the proof of Lemma 3.9, by

reducing the number of light servers by the size of a TP, we can overcome

this problem. Since |TP| = O (polylog(n)) < n/4, we can conclude that the

probability for a fixed server determined by the collision game is light, is

at least 3/4 − 1/4 = 1/2.

Let XP denote the expected number of light servers in TP. By the above,

E[XP] ≥ 1/2 · sp(TP) ≥ (
���

n)2 · 2(α + 2)2.

Application of the Chernov tail estimate from Lemma 4.4 and straightfor-

ward calculation yields

prob
(

XP ≤ (α + 2)2 · (��� n)2
)

≤
(

1

n

)α+2

.

for any constant α > 1. Hence, with a probability of at least 1 − 1/nα+1,

every TP contains at least (α + 2)2 · (��� n)2 pairwise distinct light servers.

Now we bound the number of heavy servers P that contain some fixed

light server P ′ in their TP (these are the servers that P ′ receives a search

message from, and that P ′ might send an offer message to). We say that

P ′ is reachable by these servers.

As any node of our access graph has an in-degree of at most c, we can upper

bound the number of servers which can reach P ′ by (ct+1−1)/(c−1) ≤ 2ct

(recall that any TP has a depth of t). By Lemma 4.1, the probability for

a randomly chosen server to be heavy is at most 1/µ2`
��	 ��	

n. With YP as

the expected number of heavy servers that can reach some light server P,

we obtain E[YP] ≤ 2ct · 1/µ2`
��	 ��	

n.

We now want to choose ` such that

2ct

(

1

µ

)2`
��	 ��	

n

≤ ���
n.
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with t = (2
��� ���

n +
���

k)/
���

b. Taking logarithms and solving for `

yields

2ct

(

1

µ

)2`
��	 ��	

n

≤ ���
n

⇐⇒ 1 + t
���

c − 2`
��� ���

n · ��� µ ≤ ��� ���
n

⇐⇒ ` ≥ 1 + t
���

c −
��� ���

n

2
��� ���

n
���

µ

If we now replace t with its value, this yields

` ≥ 1 + t
���

c −
��� ���

n

2
��� ���

n
���

µ

=
1 + 2

��	 ��	
n+

��	
k��	

b
· ��� c −

��� ���
n

2
��� ���

n
���

µ

=

���
b + (2

��� ���
n +

���
k) · ��� c −

���
b · ��� ���

n

2
��� ���

n
���

µ
���

b

=
1

2
��� ���

n
���

µ
+

���
c���

µ
���

b
+

���
k

���
c

2
��� ���

n
���

µ
���

b
−

1

2
���

µ

=
1���

µ
·
(

1

2
��� ���

n
+

���
c���
b

+

���
k

���
c

2
��� ���

n
���

b
−

1

2

)

.

Since obviously the terms

1

2
��� ���

n
and

���
k

���
c

2
��� ���

n
���

b

tend to 0 for growing n, we can safely replace them with 1 each, and

` ≥ 1���
µ
·
(

2 +

���
c���
b

−
1

2

)

is a sufficient condition for

E[YP] ≤ 2ct

(

1

µ

)2`
��	 ��	

n

≤ ���
n.

Now we can apply Chernov bounds (Lemma 3.5) to obtain

prob (YP ≥ (α + 2)
���

n) ≤ 1

nα+2
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Hence, with a probability of at least 1−1/nα+1, each light server is reachable

by at most (α + 2)
���

n heavy servers.

Recall that in algorithm AlgStochSingleColl, light servers randomly

select one of the heavy servers they have the ID of in their list, and then

send an offer message to these selected servers. With high probability, for

any light server P, there are at most (α + 2)
���

n heavy servers which can

reach P. Hence, the probability that a heavy server is chosen by a light one

is at least one is at least 1/((α + 2)
���

n).

Now fix a heavy server P. We know that w.h.p. TP contains at least (α +

2)2 · (��� n)2 pairwise distinct light servers. Hence, the probability that P

is selected by none of these light servers is at most

(

1 −
1

(α + 2)
���

n

)(α+2)2(
��	

n)2

=





(

1 −
1

(α + 2)
���

n

)(α+2)
��	

n




(α+2)
��	

n

≤
(

1

e

)(α+2)
��	

n

≤
(

1

n

)α+2

It follows that with a probability of at least 1 − 1/nα+1, every heavy server

is selected by at least one light server. 2

In the previous lemma we have derived a lower bound on the length of a

phase of T = `
��� ���

n with ` ≥ 1��	
µ
·
(

3
2

+
��	

c��	
b

)

(this length was necessary

to ensure that the assignment works). It remains to show that this bound

also is sufficient as fast as the time is concerned that is needed to play the

collision game, the basic building block of the assignment sub-phase, and

to pass the messages up and down the TP’s.

Lemma 4.6 (Phase length II)

Under the conditions of Lemma 4.5, a phase length of T = `
��� ���

n steps

is sufficient to perform all the computations made by algorithm Alg-

StochSingleColl during one phase, and to ensure that the assignment

sub-phase is successful.
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Proof. Clearly playing the collision game is one of the most time consum-

ing part of any phase. By Lemma 4.2, this takes
��� ���

(n)/
���

(c)+1 steps

(recall that, due to our communication model, we can run a round of the

collision game during a step).

As far as the messages are concerned, a TP has a depth of t = (2
��� ���

n +���
k)/

���
b, and clearly sending the search messages takes t steps.

Not considering a few (constant) additional steps (classification, transfer,

handling of offer/acknowledgement messages, and the like), we see that we

need to have a phase length of at least

��� ���
n���

c
+

2
��� ���

n +
���

k���
b

≤
��� ���

n

10
+

2
��� ���

n +
���

k

2

=

��� ���
n

10
+

��� ���
n +

���
k

2
≤ 2

��� ���
n

since b = 2α+4 ≥ 6 ⇒
���

b ≥ 2, c = 8ea2 = 8e(2α+5)2 ≥ 1024 ⇒
���

c ≥
10, and k = 8(α+2)2 is constant. Hence, a phase length of at least 2

��� ���
n

is sufficient for performing a phase of algorithm AlgStochSingleColl.

Lemma 4.5 places another bound on the minimum length of a phase,

namely `
��� ���

n ≥ 1��	
µ

(

3
2

+
��	

c��	
b

) ��� ���
n ≥ 2

��� ���
n. Therefore, a

phase length of `
��� ���

n satisfies both conditions. 2

Remark. Again we can spend a few words on what happens if the first

balancing attempt of a server (right after having classified itself as heavy

and the phase before not) is successful.

The load of a non-heavy server is at most 8T −1. It then can have increased

by at most T during a phase, leaving it with at most 9T − 1 tasks (the

classification now switches to heavy). Again, T tasks can be generated,

resulting in at most 10T −1. The transfer reduces by 4T , and the final load

is at most 6T − 1 (note: again not heavy). Similarly, light servers (at most

T tasks) can not become heavy due to balancing transfers.
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4.2.2 Proving the Main Theorem

This section is quite similar to Section 3.2.4, in which we have shown the

validity of the main theorem for algorithm AlgStochMultiColl. Again,

we bound the probability for the event that at any arbitrary but fixed time

step there is a server exceeding the maximum allowed load of 10T .

The first thing we have to do is to again bound the complete system load

at the beginning of some phase of which we already know that there is a

server changing its classification from formerly non-heavy to heavy.

Lemma 4.7 (System load in balancing system III)

Given the conditions of Lemma 3.4 on page 39, suppose that at the begin-

ning of phase Π some server P classifies itself as heavy and has not done

so the phase before. Then, with a probability of at least 1 − 1/nα+1, the

system load still can be bounded by `sn (with `s being some constant).

Proof. The proof of this lemma is almost entirely identical to the one

for Lemma 3.10, just that we have to cope with different phase lengths.

Recall that we have defined two events, namely A the event of the system

load being at least `sn, and B the event that server P initiates a balanc-

ing action and has not done so the phase before. Clearly, prob (A|B) ≤
prob (A) /prob (B). We can show prob (A) ≤ 1/nα+2 and with the same rea-

soning as in the proof of Lemma 3.10 we can conclude that prob (B) ≥ 1/n,

resulting in prob (A|B) ≤ 1/nα+1. 2

Now we are ready to finish the proof of Theorem 1.4. We know that we

can bound the system load (in a non-balancing system as well as in a

balancing one – even if we know that there is a heavy server), we know

that the collision game succeeds, that a proper assignment from light to

heavy servers will be found, and that the phase has a sufficient length.

The remainder of the proof again is similar to the one of Theorem 1.1. We

upper bound the probability that a server exceeds the maximum allowed

load of 10T at some arbitrary but fixed time step t by the probability that

its first attempt at a balancing action (with it being heavy from the time

of this first attempt until time step t) failed. According to the observations
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from above, we can bound this probability by 1/nα+1, and, hence, the

probability for any server exceeding this value is at most 1/nα. This finishes

the proof of Theorem 1.4.

4.2.3 Other Generation Models

As we have done for algorithm AlgStochMultiColl in Section 3.2.5, we

now investigate the behaviour of algorithm AlgStochSingleColl for the

two other stochastical load generation model, StochGeometric(∆) and

StochBinomial(∆, p). We obtain the same result: the maximum load

increases by just the constant factor of ∆ which specifies how many tasks

a server may generate per step (recall that in either case, the expected

number of tasks generated is less than one).

We again have to slightly modify the algorithm in that we have to adjust

the heavy and light thresholds as well as the number of tasks transferred

during a balancing action. All three values have to be multiplied with

∆. (Note that if we had parameterised the algorithm accordingly, then no

change at all would be necessary.)

The main difference to the “standard” analysis assuming generation scheme

StochBernoulli(p, ε) is that we have to carefully estimate the queue

lengths of single servers under generation models StochGeometric(∆)

and StochBinomial(∆, p). Once this is done (with Lemma 3.11, using

techniques from Queueing Theory), then the whole machinery which has

been used to prove Theorem 1.4 on page 19 (for StochBernoulli(p, ε))

can again be used to now prove Theorem 1.5 on page 19 (for Stoch-

Geometric(∆) and StochBinomial(∆, p)), without the need for any fur-

ther change: the bound on the load of any single server in a non-balancing

system implies a bound on the complete system load, which, in turn, allows

us to prove that the collision game succeeds, and that an assignment from

light to heavy servers is possible (and indeed found). We can conclude

that we again can upper bound the probability for a server to exceed the

maximum allowed load of now 10∆T at any arbitrary but fixed time step

t by the probability of a failure of its first balancing attempt (the first in

a continuous row ending at time step t – now). This finishes the proof of

Theorem 1.5.





CHAPTER 5

The Balancing Algorithm

AlgAdv

With this chapter we leave the stochastical load generation schemes we have

investigated throughout the previous two chapters and turn our attention

over to our adversarial schemes. Recall that now there is no longer some

probabilistic distribution determining the generation and consumption of

tasks, but an adversary is allowed to change the load of any server by at

most some constant ∆ per step (or, equivalently, to change its load by at

most ∆T in an interval of T = (
��� ���

n)2 steps).

This chapter is structured like the previous ones: we first introduce the bal-

ancing algorithm AlgAdv in Section 5.1, and then analyse its performance

in Section 5.2.

SECTION 5.1

The Algorithm

As usual, the algorithm follows the sketch from Section 1.4 on page 12. We

divide time into phases of length T = 2(
��� ���

n)2. The fact that now an

adversary is allowed to specify when and where tasks are generated and

serviced, respectively, has two main consequences:

1. We cannot place an upper bound on the complete system load as has

been possible for the stochastical schemes (the adversary could decide

to just generate tasks and never service them).

77
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2. It no longer makes sense to try and bound the maximum load of any

server. Hence, our analysis concentrates on bounding the difference

between the maximum load of any server and the average system load.

Obviously, classifying servers as heavy or light without regarding the the

average system load, also no longer makes sense. Hence, we now need to

provide the servers with some information before having them classifying

themselves. This is what the load estimation sub-phase is for. We let the

servers just estimate the average system load instead of computing the real

value because this would be much too time consuming. In the following,

we present algorithm AlgAdv in more detail.

Load estimation. Recall the access graph we made use of for algorithm

AlgStochSingleColl of Chapter 4, and the sub-graphs TP the heavy

servers tried to find a light balancing parter in. For the load estimation

sub-phase we will exploit the very same structure. We play an (a, b, c)-

collision game with parameters a = 2α+5, b = a−1, and c = 8ea2, where

every server issues a request. This results in a random directed graph on n

nodes, where each node has an out-degree of b (edges to servers that have

accepted one of the queries belonging to its request) and an in-degree of at

most c. For a server/node P (we again identify servers and corresponding

nodes in this graph), again let TP be defined as the subgraph consisting of

P as root and of all the nodes reachable by directed paths of a length of at

most t = (2
��� ���

(n) +
���

(k))/
���

(b), with k = 8(α + 2)2, and α > 1 the

exponent of the polynomial probability bound.

Now instead of searching for a balancing partner in TP, every server P

computes the average load of all the servers in its TP. Although a TP’s size

is just polylog(n), we will see that this serves as a usable estimation for the

complete system load. Every server maintains a list of tuples (i, `i + 6∆T),

where i denotes the identifier of some server, and `i denotes this servers

load at the first time step of the current phase. We will use two different

notations: if we refer to a server as P, its load will be denoted as `P, and

if we refer to it by its ID i, 1 ≤ i ≤ n, then its load will be denoted as

`i. It is just most important that `P or `i always refers to the load of the

corresponding server at the first time step of the current phase. We will

refer of the term `i+6∆T as the i-th servers normalised load. Initially, for



5.1 The Algorithm 79

each server Pi, 1 ≤ i ≤ n, this list consists of just (i, `i + 6∆T), that is, its

own identifier and its own normalised load.

The load estimation now works as follows.

1. First, each server sends its list consisting of one tuple up to its pre-

decessors in the access graph, if there are any predecessors (there are

at most c of them).

2. Then, for t − 1 rounds, each server merges the lists it has received

from its successors to obtain a sorted list (sorted by the identifiers),

and deletes any dupes. This results in a sorted list in which any

servers tuple occurs at most once. It then sends this list up to all its

predecessors in the access graph.

3. Obviously, after these t rounds, a server P has gathered the load

information (based on the very first time step of the current phase)

from all the servers in its TP, because it has received information

from all the servers which are reachable from P, according to the

definition of reachability of Chapter 4. Additionally, each member of

TP contributes exactly one entry to the list.

Now, each server P computes the normalised average load �̀P of its

Tp by summing up the normalised load values contained in the tuples

and by dividing this value by the size of the list (the number of items).

Recall that our model allows for complex operations as merging two lists,

since its timing model is communication step based. We assume a diameter

of the underlying network of polylog(n), and hence allow for polylog(n)

steps of computation per step of communication.

Classification. Servers P having a load `P of at most 3 �̀P at the beginning

of the phase are classified as light, and servers with a load of at least (6/ε)·�̀P

at the beginning of the phase are classified as heavy. The remaining servers

are classified as neutral. ε is the parameter of the (n, ε, a, b, 1) collision

games we are going to play during the assignment phase (right now it

suffices to know that ε ∈ (0, 1) is a constant).

Note that this classification takes place after Θ(
��� ���

n) steps, and that

the decisions are based on the load situation of the first time step of he

current phase.
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Assignment. Unfortunately, for determining an assignment from light

servers to heavy ones, we cannot make use of the approach of the previous

chapter, where a heavy server P tried to find a balancing partner in its TP.

This is due to the fact that now we cannot bound the number of heavy

servers as nicely as we could for algorithm AlgStochSingleColl — as

we will see, now we can show that there is at most a constant fraction of all

servers heavy, whereas for AlgStochSingleColl, this was n/polylog(n).

Using this approach, this constant fraction is by far too much if we want

to make sure that all the heavy servers find a partner. Fortunately, we can

switch back to the approach of algorithm AlgStochSingleColl, where

we develop a “query tree” for each heavy server by playing Θ(
��� ���

n)

collision games with collision parameter c = 1, one after the other.

Now we play t =
��	 ��	

n��	
b

+ α + 1 (n, ε, a, b, 1) collision games with a =

4(α + 2), b = 2α + 4, and ε = ·(2a)−(a−b+1) (we may not allow for more

than εn simultaneous requests per collision game). The assignment sub-

phase now works as follows.

1. As in AlgStochMultiColl, in the first collision game only heavy

servers issue requests. If one or more of the b servers having ac-

cepted a query belonging to a request is light, then they send offer

messages to the heavy server that has issued the request.Note that,

due to c = 1, a server accepts at most one query, and, consequently,

sends at most one offer message. Every heavy server having received

an offer message arbitrarily selects one of them and sends back an

acknowledgement message. The corresponding server now is desig-

nated as balancing partner, and changes its state to non-available.

Furthermore, each heavy server sends either a stop searching mes-

sage to its successors if it actually has found a partner already, or it

sends a continue searching message otherwise.

2. Now each server having accepted a query during the previous, first

collision game itself issues a request in a new (n, ε, a, b, 1) collision

game if and only if it has received a continue searching message the

step before — its predecessor, a heavy server, has not yet found a

partner. The ID of the predecessor is passed along with the queries.

Note that we have to stop the search for a balancing partner as soon

as possible, because, unlike in AlgStochMultiColl, we now have
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that a constant fraction of all servers could be heavy, and developing

all query trees down to maximum depth of t would be impossible

(this will become clear in the analysis).

Each light server now having accepted a query of this second colli-

sion game, and that still is available (not yet selected to be balancing

partner), sends an offer message to the heavy server whose ID was

passed along with the query, and this server, in turn, arbitrarily se-

lects one of them and returns an acknowledgement message (which

leads to a change in state to non-available). It also sends a continue

searching message or a stop searching message to its direct successors

(depending on whether it has or has not found a partner now), and

this message is passed down to the successors of the successors (which

have accepted a query in this second collision game).

This procedure continues for t−2 rounds, where the ID passed along

with the query always is the one of the heavy server that has issued a

request in the very first collision game, of course (the “owner” of this

query tree).

It should be noted, that although all servers on a level of a query tree (and

even on a level of the complete query forest) are pairwise distinct, a server

may well occur on more than one level of a tree (meaning that it’s only a

tree if we do not identify the two nodes corresponding to the same server).

This reduces the “real” number of servers in a query tree, but if this tree

is developed to depth t, then the bottom level contains sufficiently many

pairwise distinct servers, as we will see in the analysis.

Further note that since a server P can occur on up to O (
��� ���

n) levels of

the query forest (just not more than once on the same level), this results

in a memory requirement of O (
���

(n)
��� ���

(n)) bits, since P has to store

the identifiers of the b servers (
���

n bits each) that have accepted a query

of P’s request in order to be able to forward the stop/continue searching

messages properly.

Transfer. Heavy servers P transfer 3/ε· �̀P tasks to their designated light

balancing partners.

Note that for the same reason that we could not make the heavy and light
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thresholds independent of the current load situation, we now have to take

it into account for the number of tasks to be transferred. Further, note that

both the thresholds and the number of transferred tasks vary from server

to server (due to the differing estimations of the average load).

SECTION 5.2

The Analysis

In this section we analyse the performance of algorithm AlgAdv. We

assume load generation model AdvInterval(∆) for this purpose, but all

statements are true for model AdvStep(∆) as well. This section is struc-

tured as follows.

1. In Section 5.2.1 we analyse the load estimation sub-phase. We show

that the collision game succeeds in resolving the requests, and we

place bounds on the deviation of the estimation of the average load

from the true average load for any server.

2. In Section 5.2.2, we analyse the assignment sub-phase. First, we place

bounds on the numbers of heavy and light servers. Then, we show

that the collision games succeed, and that indeed a valid assignment

from light to heavy servers determined.

3. In Section 5.2.3 we show that if the system is in a balanced state at

the beginning of one phase, then it w.h.p. remains so not only for the

next phase, but for the next poly(n) phases.

4. Finally, we examine two minor aspects of algorithm AlgAdv. In

Section 5.2.4 we analyse its expected communication overhead, and

in Section 5.2.5 we propose some modifications which make it resistant

to worst-vase scenarios.

Before we can jump into the analysis, we have to make a few definitions. Fix

some phase Π (of length r(
��� ���

n)2 for some constant r to be specified

later), and let τ be the first time step of phase Π. Let Mτ denote the

complete system load at time step τ, let

mτ =
Mτ

n
+ 6∆T
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denote the normalised average load. Let

M ′

τ =

n∑

i=1

(`i + 6∆T) = n · (6∆T) +

n∑

i=1

`i = n · (6∆T) + Mτ.

We then have

M ′
τ

n
=

n · (6∆T) + Mτ

n
= 6∆T +

Mτ

n
= mτ

We call the system λ-balanced for a given phase Π and some constant λ ≥ 1,

if at the first time step τ of Π, no server has a load exceeding

Uλ = λ ·
(

Mτ

n
+ 12∆(

��� ���
n)2

)

.

Since T = 2(
��� ���

n)2, we have 12∆(
��� ���

n)2 = 6∆T , and, by definition

of mτ,

Uλ = λ ·
(

Mτ

n
+ 6∆T

)

= λmτ.

5.2.1 The Load Estimation Phase

In this section we analyse the load estimation sub-phase of algorithm Alg-

Adv. The analysis is structured as follows.

1. In Observation 5.1 we show that the collision game succeeds in resolv-

ing the n requests, and thus establishes our access graph, in which

the servers calculate their estimation of the average load.

2. Lemma 5.3 then shows that these estimations are indeed quite use-

ful,that is, the estimations are within a constant factor of the true

average load.

Observation 5.1 (Collision game)

We play the (a, b, c) collision game with the same parameters as in the

assignment sub-phase of algorithm AlgStochSingleColl, namely a =

2α + 5, b = a − 1, and c = 8ea2. Hence, by Lemma 4.2, which is just a

straightforward application of Lemma 2.1, with a probability of at least

1−1/nα+1, the collision game will be successful in resolving the n requests.
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Before we can continue and show that the estimations of the average load

are good, we need to introduce another tail estimate, known as Azuma’s

Martingale Tail Estimate. Its nice property is that the random variables

in question do not have to be independent (unlike in standard Chernov

bounds).

Lemma 5.2 (Azuma’s Martingale Tail Estimate)

Let X0, X1, X2, . . . be a Martingale sequence such that for every k > 0 and

c independent of k,

|Xk − Xk−1| ≤ c.

Then, for all t ≥ 0 and any λ ≥ 0,

prob
(

|Xt − X0| ≥ λc
√

t
)

≤ 2 ���(−λ2/2).

We now place bounds on the quality of the load estimations �̀P.

Lemma 5.3 (Load estimation)

Fix some phase Π, and let τ be the first time step of Π. Under the

assumption that the system is λ-balanced for phase Π, with a probability

of at least 1 − 1/nα,
2

3
· mτ ≤ �̀P ≤ 4

3
· mτ

for any server P, and for any constant α > 1.

Proof. Fix some server P. Its TP has a depth of

t =
2
��� ���

(n) +
���

(k)���
b

with k = 8(α + 2)2. (This is the α from Theorem 1.6, but does not really

matter here, any positive constant will do). A TP with out-degree b has

a logical size (counting each and every occurrence of nodes representing

servers) of (bt+1 − 1)/(b − 1). Let R denote the set of servers occurring in

the TP (without multiple occurrence), let D denote |R|, the physical size.

By Lemma 4.3 on page 66,
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D ≥ 3

4
· bt+1 − 1

b − 1
≥ 3

4
· bt

=
3

4
· b

2
�
� �
�

(n)+
�
�

(k)�
�
b

=
3

4
· 22

��	 ��	
(n)+

��	
(k)

=
3

4
· (��� n)2 · k

≥ (
���

n)2.

Now let X denote the random variable counting the sum of the normalised

loads of all the servers in R; each server in R occurs just once, and the load

is taken at the beginning of the current phase. Now for 0 ≤ i ≤ D, define

random variables Xi such that Xi is the expected value of X when the load

of the first i members of R is known, and the load of the remaining D− i is

not. The sequence of Xi forms a Doob martingale sequence, and we have

X0 = E[X], and XD = X.

We now want to apply Azuma’s martingale tail estimate on this sequence.

In order to do so, we need to upper bound |Xi − Xi−1| for i > 0 by some

value independent of i. Let Yi be the normalised load of the i-th member

of R (recall that the normalised load is defined as the load plus 6∆T). Let

Si = M ′

τ −

i∑

j=1

Yj =

n∑

j=1

(`j + 6∆T) −

i∑

j=1

Yj,

that is, Si is the complete normalised load of all servers except for the first

i members of R.

Since now by assumption we know the normalised load of the first i mem-

bers of R, and the expected complete normalised load of the remaining D−i

members of R is just D − i times the average over all servers except these

i ones, namely
Si

n − i
· (D − i),

we can conclude that

Xi =
Si

n − i
· (D − i) +

i∑

j=1

Yj.



86 Chapter 5. The Balancing Algorithm AlgAdv

By assumption the system is λ-balanced for this phase. This implies that

at the first step of this phase, the load of any server is at most λmτ. Hence,

for any i ∈ {1, . . . , D} there is a j ∈ {1, . . . , n} such that

Yi = `j + 6∆T ≤ λmτ + 6∆T = λ

(

Mτ

n
+ 6∆T

)

+ 6∆T

≤ 2λ

(

Mτ

n
+ 6∆T

)

= 2λmτ,

since λ ≥ 1. Further, since obviously Si ≤ Si−1, we obtain

Xi − Xi−1

=





Si

n − i
· (D − i) +

i∑

j=1

Yj



 −





Si−1

n − i + 1
· (D − i + 1) +

i−1∑

j=1

Yj





=
Si

n − i
· (D − i) −

Si−1

n − i + 1
· (D − i + 1) + Yi

≤ Si−1

n − i
· (D − i) −

Si−1

n − i + 1
· (D − i + 1) + 2λmτ

= Si−1 ·
(

D − i

n − i
−

D − i + 1

n − i + 1

)

+ 2λmτ

Since Si−1 ≥ 0 and D−i
n−i

< D−i+1
n−i+1

for 0 ≤ i ≤ D < n, we can conclude

Xi − Xi−1 ≤ 2λmτ.

We are now ready to apply Lemma 5.2, and we obtain

prob

(

|XD − X0| ≥
1

3

M ′
τ

n
· D

)

≤ 2 ���


−
1

2
·
(

(M ′
τ/n) ·

√
D

3 · 2λmτ

)2




≤ 2 · ���


−
D

72λ2
·
(

M ′
τ/n

mτ

)2




≤ 2 · ���
(

−
D

72λ2

) [

M ′
τ

n
= mτ by definition

]

≤ 2 · ���
(

−
(
���

n)2

72λ2

)

≤ 1

nα+1
.
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for any constant α > 1. So, we know that w.h.p.,

|XD − X0| ≤
1

3
mτD,

Since X = XD = `PD and X0 = E[X] ≤ mτD, it follows that for a fixed

server, with a probability of at least 1 − 1/nα+1,

2

3
mτD ≤ X = �̀PD ≤ 4

3
mτD,

and, consequently, with a probability of at least 1 − 1/nα,

2

3
mτ ≤ �̀P ≤ 4

3
mτ,

for any server P. This finishes the proof of the lemma. 2

5.2.2 The Assignment Sub-Phase

In this section we analyse the assignment sub-phase of algorithm AlgAdv.

It is structured as follows.

1. Lemma 5.4 places bounds on the numbers of heavy and light servers,

respectively.

2. In Lemma 5.5 we show that the collision games played during the

assignment sub-phase are able to resolve all the requests, that is, to

develop the query trees.

3. In Lemma 5.6 we show that the assignment from light servers to heavy

ones indeed succeeds.

4. Lemma 5.7 finally shows that a phase length of T = 2(
��� ���

n)2

suffices to do all the work (including the load estimation).

We first bound the numbers of heavy and light servers, respectively.
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Lemma 5.4 (Heavy and light servers)

Let α ≥ 1 and λ > 1 be an arbitrary constant. Let 0 < ε = 1
2(2a)a−b+1 < 1

denote the parameter of the collision games played during the assignment

sub-phase (the maximum number of simultaneous requests is εn). Assume

the system to be λ-balanced for the current phase.

With a probability of at least 1−1/nα, there are at most εn
4

heavy servers,

and there are at least n
2

light servers.

Furthermore, with a probability of at least 3/8, a fixed node represents a

light server.

Proof. We prove the two statements by simple pigeonhole arguments.

Consider a heavy server P, that is, a server with a load `P of at least

(6/ε) · �̀P. Now by Lemma 5.3, �̀P ≥ (2/3)mτ, and hence

`P ≥ 6

ε
· �̀P ≥ 6

ε
· 2

3
mτ =

4

ε
mτ

Consequently, there can be at most

n
4
ε
mτ

=
εn

4mτ

≤ εn

4

servers being heavy. On the other hand, a light server P has a load `P of at

most 3�̀P. This implies (again by Lemma 5.3) that any non-light server Q

has a load of at least

`Q ≥ 3�̀Q ≥ 3 · 2

3
mτ = 2mτ.

Hence, there are at most
n

2mτ

≤ n

2

non-light servers, and the first two statements of the lemma follow directly.

For the third statement, note that the choices of the collision game are not

truly independent since a c = 1 collision game determines an assignment

such that any server accepts at most one query (this would not be the case

for a random function). Hence, if we assume the worst-case that (a) some

node is on the bottom level of its query tree, and (b) that all other nodes on

the bottom level of the same query tree also represent light servers (pairwise

distinct), then by reducing the probability by bt/n (bt is the number of

nodes on this level), we have eliminated these dependencies completely.
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Additionally, when assuming a node on the bottom level, the number of

available light servers decreases since there can be light servers already

assigned (and, therefore, non-available when occurring again on the bot-

tom level) on some other level above. Since there are at most εn/4 heavy

servers, the number of still available light servers on the bottom level can

decrease by at most this number, and the corresponding probability de-

creases by at most ε/4.

All in all, since there are at least n/2 light servers, the remaining probability

for a fixed server to be light is

1

2
−

ε

4
−

bt

n
=

1

2
−

ε

4
−

bα+1 · ��� n

n
≥ 3

8
.

This finishes the proof of the lemma. 2

Next we can proceed and show that all the t =
��	 ��	

n��	
b

+ α + 1 collision

games are able to resolve their requests.

Lemma 5.5 (Collision games)

Let α ≥ 1 be an arbitrary constant. Let a = 4(α + 2), b = a/2, and let

ε = 1
2(2a)a−b+1 .

With a probability of at least 1 − 1/nα, each of the t =
��	 ��	

n��	
b

+ α + 1

collision games succeeds in resolving the requests within
��	 ��	

n��	
b

+2 rounds

per game.

Proof. We need to place a bound on the number of simultaneous requests

issued per collision game of at most εn. We prove this lemma by an

induction argument.

Due to the bound on the number of heavy servers from Lemma 5.4, we know

that w.h.p., there are at most εn/4 requests issued in the first collision

game.

Now fix some round of the assignment sub-phase, and assume that r ≤ εn

requests are issued in this round.

If r ≤ εn/b, then in the next round, at most b · (εn/b) = εn requests are

issued, since each requests involves b successful queries, which themselves

can issue a request each in the next round.
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On the other hand, if (εn)/b < r ≤ εn, then define r random variables

X1, . . . , Xr, such that Xi = 1 if none of the b queries belonging to the i-th

request was accepted by a light and still available server, and let Xi = 0

otherwise. Let X =
∑

Xi. By Lemma 5.4, prob (Xi = 1) ≤ (5/8)b for

1 ≤ i ≤ r. Hence, since α ≥ 1 and b = a/2 = 2(α + 2) ≥ 6,

E[X] ≤ εn ·
(

5

8

)b

≤ εn

2b
.

Now we can apply Chernov bounds to estimate the deviation ox X from its

expected value and obtain

prob
(

X ≥ εn

b

)

≤ 1

nα+1
.

Consequently, with a probability of at least 1 − 1/nα, we have at most

εn simultaneous requests in any of the collision game, which proves the

lemma; just plug the parameters a, b, c = 1, and ε into Lemma 2.2. 2

In the next lemma we show that the assignment sub-phase indeed deter-

mines a valid assignment from light to heavy servers.

Lemma 5.6 (Assignment)

Let α ≥ 1 be an arbitrary constant. Assume the system to be λ-balanced

for the current phase.

With a probability of at least 1 − 1/nα, each heavy server gets assigned a

light one during the assignment sub-phase. Furthermore, each light server

is assigned to at most one heavy server.

Proof. By Lemma 5.5, we know that with a probability of at least 1−1/nα,

the

t =

��� ���
n���

b
+ α + 1

collision game succeed in developing the query trees of depth t. Since each

node has an out-degree of b, the bottom level of each tree consists of

bt = b
��	 ��	

n/
��	

b+α+1 = bα+1 · ��� n



5.2 The Analysis 91

nodes representing pairwise distinct servers (recall that c = 1). By Lemma

5.4, with a probability of at least 3/8, each of these nodes represents a light

and still-available server. Hence, we can bound the probability of the event

that for a fixed server the bottom level of its query tree consists of either

non-light or light but non-available servers by

(

5

8

)bt

=

(

5

8

)bα+1 ·
��	

n

=

(

1

n

)

��	
(8/5)·bα+1

≤
(

1

n

)α+1

.

Consequently, with a probability of at least 1 − 1/nα, each heavy server

finds at least one light and still available server on the bottom level of its

query tree.

The second statement of the lemma directly follows from the definition of

the algorithm (each light server accepts at most once to become balancing

partner). 2

Finally, we show that the phase length of 2(
��� ���

n)2 indeed is sufficient to

play all the collision games of both the load estimation sub-phase and the

assignment sub-phase of algorithm AlgAdv (note that the classification

sub-phase and the transfer sub-phase take just one step).

Lemma 5.7 (Phase length)

T = 2(
��� ���

n)2 steps are sufficient for one phase of algorithm AlgAdv.

Proof. During the load estimation sub-phase we play one (n, ε, a, b, c)

collision game with parameters a = 2α+5, b = a−1, c = 8ea2, and ε = 1.

By Lemma 2.1, ��� ���
n���

b
+ 1

rounds are sufficient to resolve all the request, w.h.p. The TP’s have a depth

of

t =
2
��� ���

(n) +
���

(8(α + 2)2)���
(b)

≤ 2
��� ���

n,

hence gathering the load information from a TP takes as many steps. Sum-

marising, 3
��� ���

n steps are sufficient for the load estimation sub-phase.
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During the assignment sub-phase we play

��� ���
n���

b
+ α + 1

collision games with parameters a = 4(α + 2), b = a/2, and c = 1, each of

which (by Lemma 2.2) w.h.p. needs

��� ���
n���

b
+ 2

rounds. Additionally, passing of messages up and down the query trees

takes at most ��� ���
n���

b
+ α + 1

steps per round of the assignment sub-phase. Altogether, the assignment

sub-phase needs a running time of

( ��� ���
n���

b
+ α + 1

)

·
( ��� ���

n���
b

+ 2 +

��� ���
n���

b
+ α + 1

)

≤ (
��� ���

n)2

steps. Hence, the complete phase needs at most

3
��� ���

n + (
��� ���

n)2 ≤ 2(
��� ���

n)2

steps, which finishes the proof of the lemma. 2

5.2.3 From Phase To Phase

In this section we show that if the system is λ-balanced for some phase,

then with high probability, it also will be λ-balanced for the next phase,

and, moreover, for the next polynomial number of phases.

Lemma 5.8 (Phase to phase)

Let α ≥ 1 be an arbitrary constant, let λ = 20 · (8α + 16)2α+5.

If the system is λ-balanced for some phase, then with a probability of at

least 1 − 1/nα, it remains λ-balanced for the next phase.
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Proof. Fix some phase Πi and assume the system to be λ-balanced for

this phase, meaning that no server has a load exceeding

λmτi
= λ

(

Mτi

n
+ 6∆T

)

with Mτi
being the complete system load at the first time step τi of phase

Πi. Assuming that each heavy server has found a balancing partner (Lemma

5.6), we now have to show that the load of any server is at most λmτi+1
at

the first step τi+1 of the next phase Πi+1.

We first investigate how the load of light, heavy, and neutral servers can

change during a phase of T = 2(
��� ���

n)2 steps, find a common upper

bound on the load of any server at the end of the phase, and then show

that this value is at most λmτi+1
.

Heavy servers. First consider a server P that has classified itself as

heavy in phase Πi. By definition of λ-balancedness, its load is at most

λmτi
at the beginning of phase Πi. By Lemma 5.6, it finds a light balancing

partner and transfers

3

ε
· �̀P ≥ 3

ε
· 2

3
mτi

=
2

ε
mτi

tasks to it. Since P can have increased its load by at most ∆T tasks during

phase Πi, this leaves it with at most

λmτi
−

2

ε
mτi

+ ∆T =

(

λ −
2

ε

)

mτi
+ ∆T

tasks at the end of the phase. Since λ = 20(8α + 16)2α+5, a = 4(α + 2) =

4α+8, b = a/2, a−b+1 = a−a/2+1 = 2α+5, and ε = 1/(2(2a)a−b+1),

we can conclude that

λ = 20(8α + 16)2α+5 = 20(2a)a−b+1 = 10/ε,

and, hence, that P ends this phase with at most

(

λ −
2

ε

)

mτi
+ ∆T =

(

10

ε
−

2

ε

)

mτi
+ ∆T =

8

ε
mτi

+ ∆T

tasks.
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Light servers. A light server P can have a load of at most

`P ≤ 3 · �̀P ≤ 3 · 4

3
mτi

= 4mτi

tasks at the first time step τi of phase Πi. Some heavy server Q can transfer

at most
3

ε
· �̀Q ≤ 3

ε
· 4

3
mτi

=
4

ε
mτi

tasks during a balancing action at the end of the phase to P, and P can

increase its load by at most ∆T during the phase. This leaves P with at

most

4mτi
+

4

ε
mτi

+ ∆T =

(

4 +
4

ε

)

mτi
+ ∆T ≤ 5

ε
mτi

+ ∆T

tasks at the end of phase Πi (note that 4 < 1/ε).

Neutral servers. A neutral server P has a load `P of at most

`P ≤ 6

ε
· �̀P ≤ 6

ε
· 4

3
mτi

=
8

ε
mτi

at time step τi. Since it also can have raised its load by at most ∆T , this

leaves P with at most
8

ε
mτi

+ ∆T

tasks at the end of phase Πi.

Summing up. Now we have placed a bound of at most (8/ε)mτi
+ ∆T

on the load of any server at the end of phase Πi. We now have to show that

the system is λ-balanced for phase Πi+1, i.e., that 8
ε
mτi

+ ∆T ≤ λmτi+1
.

Since obviously mτi+1
≥ mτi

− ∆T , it suffices to show that 8
ε
mτi

+ ∆T ≤
λ(mτi

− ∆T). Using λ = 10/ε from above,

8
ε
mτi

+ ∆T ≤ λ(mτi
− ∆T) = 10

ε
(mτi

− ∆T) = 10
ε
mτi

− 10
ε
∆T

⇔
(

1 + 10
ε

)

∆T ≤ 2
ε
mτi

⇔ mτi
≥ ε

2

(

1 + 10
ε

)

∆T =
(

ε
2

+ 5
)

∆T

This last inequality is fulfilled since

mτi
=

Mτi

n
+ 6∆T ≥ 6∆T

and ε < 1. This finishes the proof of the lemma. 2
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We are now ready to prove Theorem 1.6. Assume that the system is λ-

balanced for some phase Πi. We want to show that for any constant k ≥ 1,

with a probability of at least 1 − 1/nβ for some arbitrary constant β ≥ 1,

the system remains λ-balanced for at least nk phases, that is, for phases

Πi+1, . . . , Πi+nk . So we need to show that the probability that there exists

a j ∈ {i + 1, . . . , i + nk} such that the system was λ-balanced in phases

Πi, . . . , Πj−1 but is not λ-balanced in phase Πj can be upper bounded ap-

propriately.

We know from Lemma 5.8, that if the system is λ-balanced for some phase,

then it remains so for the next phase with a probability of at least 1−1/nα

for some arbitrary constant α ≥ 1.

Hence, the probability that there is some phase Πi+1, . . . , Πi+nk where the

system arrives in a non-λ-balanced phase from a λ-balanced phase, can

upper bounded by

nk ·
(

1

n

)α

= nk−α.

If we now want to bound the overall failure probability by 1/nβ,

nk−α ≤ n−β ⇔ k − α ≤ −β ⇔ α ≥ k + β

has to hold. Since all the lemmas of this chapter allow for an arbitrary α,

letting α = k + β suffices to finish the proof of Theorem 1.6.

5.2.4 Expected Behaviour

In this section we prove Theorem 1.7, stating that the expected number of

requests issued by any server during a phase is constant.

Recall that for any heavy server P, the development of its query tree is

completely stopped as soon as a light partner has been found for P. Now

call the query tree of a heavy server i-active, if its tree has a depth of at

least i — this means that at least all the nodes on levels 1 to i − 1 of its

query tree represent either non-light or light but non-available servers. By

Lemma 5.4, the probability that the server represented by some fixed node

is light and still available, is at least 3/8. Hence,
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prob (query tree is i-active) ≤
(

5

8

)bi−1

.

Now developing the i-th level of the query tree causes bi−1 requests to be

issued. Let the random variable X denote the number of requests issued

to develop the query tree of some heavy server. Since a query tree has a

depth of at most
��	 ��	

n��	
b

+ α + 1, we have that

E[X] ≤

�
� �
�
n�
�

b
+α+1∑

i=1

bi−1 · prob (i-active) ≤
��	 ��	

n∑

i=1

bi−1 ·
(

5

8

)bi−1

= O (1) .

This finished the proof of Theorem 1.7.

5.2.5 Worst Case Recovery

So far, we have shown that if the algorithm is λ-balanced for some phase,

then with high probability, it will remain so for any polynomial number of

phases. But of course, if we run the algorithm for a sufficiently long time,

there can and will arise situations where the algorithm will no longer be

able to distribute the load according to the bounds we have presented in

this chapter.

A way to overcome this problem is to run a special recovery phase every

now and then (every polynomial number of standard phases). In such

a recovery phase, the system can be brought back into a typical state,

that is, a state in which the condition of λ-balancedness will hold again,

and therefore the standard algorithm will be able to keep on working for

another polynomial number of phases. The important thing is that this

must be possible from any arbitrary state, i.e., under the assumption of an

arbitrary load distribution among the servers, and an arbitrary complete

system load (even one server having a load of ���(���(���(��� n))) or any

other large number).

We are now going to describe a possible implementation of such a recovery

phase. It is split into two sub-phases. The first sub-phase will reduce

the maximum load of any server to the allowed bound of λ(M/n + 6∆T)

plus O(
���3 n). In a second sub-phase, this remaining overload then also is
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eliminated and we again have a well-behaved system, where no server has

a load of more than some constant times the average. In the following, we

are going to describe the two recovery sub-phases in some more detail.

The First Recovery Sub-Phase.

First we “freeze” the servers’ load, that is, tasks generated during this

first recovery sub-phase will at first not be considered (we will handle this

additional load during the second recovery sub-phase; right now it suffices

to imagine that these new tasks are put into some special queue).

This first sub-phase consists of α
���

n blocks of β
���

n rounds each, for

positive constants α and β. A round works as follows.

1. Play a constant number of (n, ε, a, b, c = 1) collision game with ap-

propriate parameters, one after the other. In each game, a constant

fraction of all servers issues request, such that afterwards, every server

has issued one request (just deterministically divide the servers into

groups of appropriate size). Since c = 1, after each such game, every

server has accepted at most one query.

2. Fix one of these collision games. Every server P having issued a

request during this game now inspects the load of its b successors. If

there is one with at most half its own load, then these two equalise

their load. (If there are more than one, P picks an arbitrary one of

them.) If Q is this other server, and if `P and `Q ≤ `P/2 denote the

load of P and Q, respectively, then after this round, both have a load

of at most
`P + `Q

2
≤ `P + `P/2

2
=

3

4
`P

after the equalisation, i.e., the load of P was reduced by a factor of

3/4, and the load of Q does not exceed P’s load.

Let M denote the complete system load at the first time step of the recov-

ery phase, and let L denote the maximum load of any server at the first

time step of the recovery phase. The next lemma shows the following. The

maximum load of any server is decreased by a factor of 3/4 after the per-

formance of a block as described above, as long as the maximum load of
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any server is at least 4M/n. Note that for a suitably chosen constant α,

we then have after the complete first recovery sub-phase,

L ·
(

3

4

)α
��	

n

≤ M ·
(

3

4

)α
��	

n

≤ 4
M

n
≤ (8/ε)

M

n
.

Lemma 5.9 (First recovery sub-phase)

Let 1 ≤ i ≤ α
���

n for some constant α, let L(i−1) ≥ 4M/n denote the

maximum load of any server at the beginning of the i-th of α
���

n blocks.

After the i-th block of the above protocol, we will have L(i) ≤ L · (3/4)i,

w.h.p.

Proof. For every round in the i-th block, we call a server P heavy, if for

its load `P,

L(i) < `P ≤ L(i−1).

For every round in the i-th block, we call a server light, if its load is small

enough so that the server can serve as a balancing partner for one of the

heavy server of block i, i.e., the load of a light server is at most half the

load of the least loaded heavy server.

The load of a heavy server is at least 4M/n. Hence, for a light server Q

that can balance with any heavy server we have

`Q ≤ 2M/n.

This applies for any round and at the beginning of any collision game of the

i-th block. By a simple pigeonhole argument, at least half of all the servers

fall into this category in every round and also at the beginning of every

collision game. The servers neither heavy nor light are called neutral.

The proof of the lemma will be done by induction. At the beginning we

have, due to our definition, L(0) ≤ L · (3/4)0. Now fix 1 < i < α
���

n and

assume that L(i−1) ≤ L · (3/4)i−1.

Of course, during the performance of one block, the classification of any

fixed server can change from round to round. For example, at the beginning

of a block, server P can be heavy. It can be successful in finding balancing

partners such that it becomes light during the block. At the end of the
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block, it can be used as a balancing partner of another heavy server that

has not yet found a balancing partner. In the following, we show that the

load of a heavy server w.h.p. drops below the L(i) bound during the block,

and that the load of a heavy and light server can not become larger than

L(i) due to balancing actions.

Heavy servers. To show that no heavy server has a load larger than L(i)

after the i-th block, we show that w.h.p. every heavy server finds a light

one during the block.

A block consists of β
���

n rounds of the protocol presented above. With

a probability of at most (1/2)b, none of the b successors of P determined

by the collision game during one round, is light, i. e. has a load of at most

twice the average. Moreover, with a probability of at most

(

1

2

)b·β
��	

n

=

(

1

n

)b·β

,

during all the β
���

n rounds of this block, P is not successful in finding at

least one server with a load of at most twice the average. We can conclude

that with high probability, during a block consisting of β
���

n rounds, every

heavy server with a load of at least four times the average finds at least

one server with a load of at most twice the average among its b successors

of the corresponding round. Hence, w.h.p. the load of every heavy server

is decreased by a factor of 3/4 at the end of the block.

Neutral servers. Neutral servers can not be used as balancing partners

for heavy ones. Of course, balancing actions between light servers and

neutral ones, or between two neutral servers, can not increase their load

such that it is larger than L(i). Note that the load of a neutral server is at

most L(i).

Light servers. Similar to the neutral servers, the load of a light server

that is not used as a balancing partner for a heavy one is smaller than

L(i) at the end of the i-th block. Since the load of a light server and the

load of a heavy server (that uses the light one as balancing partner) will

be equalised during a load transfer, there can only be a light server with
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a load larger than L(i) at the end of the i-th block if there also is a heavy

one with such a load. As this does not happen, w.h.p., the load of every

light server is smaller than L(i) at the end of the i-th block. Recall that

we do not consider tasks generated during this first recovery sub-phase, so

newly generated or serviced tasks have no influence on the classification.

Note that the load of a light server is at most L(i−1)/2 ≤ L(i).

2

The Second Recovery Sub-Phase.

So far, we haven’t considered the load which is generated during the first

recovery sub-phase. Its running time is O(
���2(n) · ��� ���

n); O ���2 n

blocks, each with a constant number of constant number of collision games

with running time O(
��� ���

n). Since a server can generate up to ∆ tasks

per step, this means that now the maximum load of any server can be

bounded by

8

ε

M

n
+ O(

���3 n)

≤ 8

ε

(

M

n
+ 6∆T

)

+ O
(���3 n

)

=
8

ε

(

M

n
+ 6∆T

)

+ L,

where M is the current complete system load, taken at the first time step of

the second recovery sub-phase. Hence, it remains to eliminate the additive

term of L = O(
���3 n) to obtain a λ-balanced system.

This second recovery sub-phase consists of α
��� ���

n blocks for some con-

stant α. Each block is similar to a phase of the standard algorithm. First

comes a load estimation, where the servers have to play an (a, b, c) colli-

sion game (each server issues a query). This creates a random graph with

out-degree b and in-degree at most c. Each server calculates the load of its

TP, which now has to have Θ(
���8 n) nodes. This means that the TP’s have

to be a little deeper, but just by some constant factor (more on this later).

Similar to a standard phase, we try to find balancing partners for the heavy

servers. Let �̀P denote the estimated average load of server P. Servers P
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with a load of at least (4.5/ε)�̀P are classified as heavy (ε is the constant

of the collision game from Lemma 5.5, and just the value which has been

used to classify during the standard algorithm). We build query trees using

collision games with c = 1, but now we do not have a fixed classification for

light servers, but proceed a little bit different. Assume that along with the

queries, the load of the heavy server is passed, on whose behalf the query

tree is developed. Then each server with a load of at most half the one of

the heavy server “on the fly” classifies itself as being a suitable balancing

partner and sends an offer message. Like in the first recovery sub-phase, a

server P that has found a balancing partner Q, equalises its load with Q.

Again, after the equalisation, the load of P was reduced by a factor of at

least 3/4, and the load of Q does not exceed P’s load.

Similar to Lemma 5.9, we want to show that the overhead L decreases by a

factor of at least 3/4 during every block. This implies that after α
��� ���

n

blocks, the overhead is “eaten up”, for a suitable chosen constant α.

Let mi = Mi/n + 6∆T , where Mi denotes the complete system load at

the beginning of the i-th block of the second recovery sub-phase. At first

we bound the quality of the load estimation. This can be done similar to

Lemma 5.3. We now have a larger bound on the load of any server to start

with (the additional term of O(
���3 n) compared to the load difference of

Lemma 5.3), and this is why we now need larger trees TP. But it can easily

be shown that again for every server P we have for its load estimation �̀P,

2

3
· mi ≤ �̀P

4

3
· mi,

with high probability.

Lemma 5.10 (Second recovery sub-phase)

Let Mi be the complete system load at the beginning of the i-th block,

0 < i ≤ α
���

n. Let L(i) = (3/4)iL, and let mi = Mi/n + 6∆T . Let

(8/ε)mi + L(i−1) denote the maximum load of any server at the beginning

of i-th block, i ≥ 1.

After the i-th block of the above protocol w.h.p. we will have a maximum

load of at most

8

ε
mi+1 + L(i) ≤ 8

ε
mi+1 + L ·

(

3

4

)i

.
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Proof. We call a a server relevant in the i-th block if its load is larger

than (6/ε)mi. A server P with a load of at least (4.5/ε)�̀P classifies itself

as heavy. For the load of a non-heavy server Q it has to hold

4.5

ε
· �̀Q ≤ 4.5

ε
· 4

3
mi =

6

ε
mi,

Hence, every relevant server P will classify itself as heavy, w.h.p. Hence, it

will try to find another server Q in order to equalise its load with Q.

Again, we call a server light in the i-th block, if its load is small enough so

that the server can serve as a balancing partner for a heavy server of phase

i (half the load of the lightest heavy server). A server P that is classified

as heavy has a load of at least

4.5

ε
· �̀P ≥ 4.5

ε
· 2

3
mi =

3

ε
mi.

Hence, all servers with a load of at most (1.5/ε)mi can play the role of

balancing partners for them (at least 3/4 of all servers). The remaining

servers are called neutral. Note that the load of both the neutral and the

light servers is at most 6/εmi

Again, the proof of the lemma will be done by induction. At the beginning,

we have that the maximum load of any server is bounded by

8

ε
m1 + L(0) =

8

ε
m1 + L · (3/4)0 =

8

ε
m1 + L.

Now fix 1 < i < α
��� ���

n, and assume that at the beginning of the i-th

block, the maximum load is bounded by

8

ε
mi + L(i−1) =

8

ε
mi + L · (3/4)i−1.

In the following, we show that w.h.p., the load of a heavy server drops

below the (8/ε)mi+1 + L(i) bound by the end of the block, and that nei-

ther for heavy nor for light servers their load can not become larger than

(8/ε)mi+1 + L(i) due to balancing actions.

Relevant servers. At first we will show that w.h.p. each relevant server

will find a server that is suitable to equalise its load with. Each relevant

server has a real load of at least

4.5

ε
�̀P ≥ 4.5

ε
· 2

3
mi =

3

ε
mi.
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Hence, there are at most (ε/3)n heavy servers. All servers with a load

of at most (1.5/ε)mi can play the role of balancing partners any relevant

one. This means that at least 3/4 of all the servers are suitable as partner.

Similar to Lemma 5.4, we can show that the probability is at least 3/8 that

a fixed node of the query tree is light. Similar to Lemmas 5.5 and 5.6,

we can show that w.h.p. each of the collision games needed to construct

the query trees succeed in resolving the requests, and that w.h.p. every

relevant server gets assigned a suitable server in order to balance the load.

Since only the load estimation has a slightly larger running time (9
��� ���

n

instead if 3
��� ���

n) the whole running time of a block can still be upper

bounded by T = 2(
��� ���

n)2.

Due to the induction hypothesis, a relevant server P has a load of at most

(8/ε)mi + L(i−1) at the beginning of the block. After balancing the load

with a suitable server, they both have a load of at most
(

8
ε
mi + L(i−1)

)

+ 1
2

(

8
ε
mi + L(i−1)

)

2
≤ 6

ε
mi +

3

4
L(i−1) =

6

ε
mi + L(i).

During block i, P can generate up to ∆ new tasks per step, and the other

server can consume up to ∆ tasks per step. Similar to Lemma 5.8, we

can now show that this load is at most (8/ε)mi+1 + L(i), compared to the

average load at the beginning of block i + 1.

Neutral servers. Neutral servers can not be used as balancing partners

for heavy ones. Due to the definition of relevant and light, a neutral server

has a load of at most

4.5

ε
�̀P ≤ 4.5

ε
· 4

3
mi =

6

ε
mi.

Again we can show that this load is at most (8/ε)mi+1 ≤ (8/ε)mi+1 + L(i),

compared to the load at the beginning of block i + 1.

Light servers. Similar to the neutral servers, a light server that is not

used as balancing partner has a load of at most (8/ε)mi+1 + L(i) after the

i-th block.

The fact that also the load of light servers being used as balancing partners

is at most (8/ε)mi+1 + L(i), follows from the bound for relevant servers, as
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these servers do not have a larger bound than the relevant servers being

their balancing partner. 2



CHAPTER 6

Simulations

In this section we present the results of some simulations we performed

based on the algorithms introduced in the previous sections. Note that

in the remainder of this section all logarithms are base 2, and that when

taking the logarithm of some number we always take the ceiling of said

logarithm in order to obtain integer numbers (so, when calculating
��� ���

n

we actually calculate d���2(d
���

2 ne)e.

SECTION 6.1

Technical Difficulties

First, we would like to point out some (well known) technical problems

inherent to the type of simulations we have performed.

Size of integers. Assume that the output of a simulation can be ex-

pressed as a function f(n), where n is the input size (like the number of

servers in our case). Now it is not easy to decide whether f(n) is constant

or if f(n) grows with n, if the size of the integers which are used within the

simulation is limited. If the machine which the simulation runs on has, say,

32-bit integers then the maximum representable integer number is 232 − 1.

If now the simulator solely makes use of standard integer based arithmetics

then the double-log of this maximum integer is
��� ���

(232 − 1) < 5. Ob-

viously, in such a case one cannot easily decide whether f(n) is constant,

105
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double-logarithmic in n, or even logarithmic (since the logarithm of this

number is less than 32). Unfortunately, even a 64-bit architecture doesn’t

make things much easier.

An obvious way to overcome this problem is to rely to some way of us-

ing larger (or even “arbitrarily” large) integers and base the corresponding

parts of the simulation on them instead on the standard integers. Although

this seems to be an elegant way out of the trouble, it doesn’t come without

a price, for this can dramatically increase the running time of the simula-

tions. In general, the larger the maximum range of integers, the larger the

running time will be.

Closely related and specific to the algorithms presented in this work is

the problem of fixing certain numerical values. Consider, for instance, the

phase length of the first algorithm presented for the stochastical generation

model. Here, we have phase lengths of T = (
��� ���

n)2/10. In order to

obtain phases of “reasonable” length, say, T ≥ 10, we would have to have

(
��� ���

n)2

10
≥ 10

(
��� ���

n)2 ≥ 100
��� ���

n ≥ 10
���

n ≥ 210 = 1024

n ≥ 21024,

which, for reasons of integer range as well as memory consumption and

simulation running time, obviously is way out of the question. Even for

just T ≥ 3 we would have to have n ≥ 232. For these reasons we need to

find some sort of trade-off between practicability and closeness to the “true

algorithm” which we hope to actually have found. Anyway, even if it now

seems that the algorithms are as far from reality as possible, it turns out

that after some “constant tweaking” (to obtain reasonable parameters like

phase length, light/heavy thresholds and so on), they behave very nicely

in simulation. Still it is not easy to apply them to real life problems on

real existing parallel machines since there is a demand for a large number

of servers (see above) and this demand is not easily fulfilled. See Section 7

for more on this subject.
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Random Number Generation. All of our algorithms are randomised

and the stochastical load generation model implies that the generation of

tasks obeys some probability distribution. Therefore, during our simula-

tions we need to access some source of randomness. Clearly, the quality of

the random number generator can have significant influence on the quality

of the results, especially if there is need for many random numbers, as is

the case for our simulations.

We implemented the simulator in ANSI C, so there is always the choice of

using the random number generator included in the standard C library.

Although this one might be useful and sufficient for occasionally throwing

a die or two, the standard seems not to be sufficient for our needs as it

states that the random numbers have to come out of a range of 0 to at

least 215 − 1 = 32767. Although most modern implementations allow for

a much wider range, or even for the choice among at least two generators

(one for a relatively small range and one for the complete integer range,

which nowadays usually is 32 bit), there is nothing said about the statistical

quality (like period length). Therefore, we made use of an external library

which provides a wealth of both different high-quality random number gen-

erators as well as functions to put certain probabilistic distributions on top

of them. For more details, see [BDG+99]. We chose to use the MT19937

generator by Matsumoto and Nishimura (see [MN98]) which is a variant

of the twisted generalised feedback shift-register algorithm, and is known

as the Mersenne Twister generator. It has a Mersenne prime period of

219937 − 1 and is equi-distributed in 623 dimensions. It still is reasonably

fast.

SECTION 6.2

Basic Simulation Rules

Each time we performed a simulation of one of the balancing algorithms,

we made use of the following basic parameters. We set n = 50, 000 (the

number of servers), and simulated the system for at least 2, 000, 000 time

steps. For each set of parameters (varying probabilities in the case of the

stochastical load generation model, or varying generation schemes in the

case of the adversarial one), we always performed 10 runs in a row and
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then calculated the average of the crucial resulting parameters (mostly the

maximum load of any server). These average values then found their way

into the plots shown below.

SECTION 6.3

The Collision Protocol

In this section we drop a few brief words about the performance of the

collision game. In all the settings we make use of the collision game it can

be shown that all the requests are resolved within O (
��� ���

n) rounds of

the protocol, with high probability. Furthermore, it can be shown that

expectedly the protocol finishes within just a constant number of rounds.

We performed a couple of simulations within various settings (various pa-

rameter sets (n, ε, a, b, c) – always according to how they are set within the

algorithms), and all of them showed that the analysis really is a worst-case

analysis, since in not a single case the protocol needed more than four

rounds to resolve the requests just perfectly. We omit figures here, since

there is not much to learn from them.

SECTION 6.4

The Balancing Algorithm

AlgStochMultiColl

Throughout this and the next section, we present some simulation results

concerning the stochastical load generation model. Recall that in this

model, at each time step each server generates a task with a probabil-

ity of p and services a task (if there is any) with a probability of p(1 + ε),

where ε > 0 is some constant. In the following two sections, we provide

the simulation results for both of our algorithms for the stochastical load

generation model in more detail.

This section refers to the algorithm AlgStochMultiColl presented in

Section 3. The length of a phase here is T = (
��� ���

n)2/10. With

n = 50, 000 we therefore have T ≈ 2. Obviously, this is not very reason-

able, since alone during the assignment sub-phase we play
��� ���

n/
���

b
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collision games, each with a running time of
��� ���

n/
���

b + 2, where

b = 2(α + 3) and α is the constant giving the probability bound. So, with

α = 1 we have b = 8 and
��� ���

n/logb ≈ 2, and we would have to play

2 collision games, each with running time 4 — which certainly does not

fit well into a phase of length 2. Note that this is not a problem of the

algorithm itself or its analysis; the problem is that the analysis holds for

“n large enough”, where this large enough n is not reasonably obtainable

within the simulation.

This problem can be overcome if we just expand the single phases of our

simulation such that all the necessary actions can be performed. Note

that this approach leads to an upper bound on the performance of the

true algorithm since during longer phases in the worst case servers can

generate more tasks (and this worst case is what the analysis is based on).

Further note that we do not change any other parameters like heavy/light

thresholds or the number of tasks to be transferred in case of a balancing

action. Since, by analysis, we have to play 2 collision games each of running

time 4, we decided to “expand” the phases from 2 to 10 steps.

As mentioned before, we have run the simulation with n = 50, 000 servers

for 2, 000, 000 time steps (200, 000 phases each of length 10). We have

a heavy threshold of 8T = 16, a light threshold of T = 2, and during a

balancing action we transfer 4T = 8 tasks. We present three plots with

different task generation probability, p ∈ {0.2, 0.5, 0.8}. In each case we

set ε = 0.01 (recall that task generation probability p implies service

probability p(1 + ε)). Each plot depicts the maximum load of any server

over the running time (measured in phases), for the balancing system (the

sim1-bal-x.out curve) as well as for a non-balancing system, with no bal-

ancing actions at all (the sim1-nobal-x.out curve), where x denotes the

task generation probability. See Figures 6.1, 6.2, and 6.3 for the outcomes.

As can be seen, for all three generation probabilities, the curves for the bal-

ancing system are close to the x-axis whereas in the non-balancing system

the curve is much higher. It is worth noting that the larger p becomes,

the lower the maximum load is in the non-balancing system. This is can

be explained by looking at what already is stated in the analysis, namely

that vi, the probability for a single server to have load i, can be expressed

as (1 − 1/µ) · (1/µ)i, where µ = ε+(1−p(1+ε)

1−p(1+ε)
. Figure 6.4 shows the curves

for vi, 0 ≤ i ≤ 100, for p ∈ {0.2, 0.5, 0.8} and ε = 0.01. As can be seen, for
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i ≥ 37, the curve for p = 0.8 is below the two other ones for 0.2 and 0.5,

implying that for p = 0.8 the probability for a server to have “many” tasks

is less than in the other two cases.

Additionally, one can calculate the expected load of a server in the non-

balancing system. For p = 0.2 we have 79.8, for p = 0.5 we have 49.5, and

for p = 0.8 we have 19.2.

Anyway, the plots clearly show that in the balancing system the maximum

load is much lower than in the non-balancing one.

We furthermore performed “highly heuristic” simulations in order to see

how the algorithm reacts on changing certain parameters. Recall that

during the assignment sub-phase we play some number of (a, b, 1) colli-

sion games, where a and b depend on α, the value giving the probability

bound. In the original setting we played two collision games running for

four rounds each, with parameters a = 16 and b = 8. Since a and b have

a strong influence on the communication overhead of the algorithm (recall

that a measures the number of queries issued for any request), it is quite

interesting to see how the algorithm behaves if we scale those parameters

down. We have run simulations where we played two collision games run-

ning for three rounds each, and we chose a = 3 and b = 2, and still the

algorithm was able to bound the maximum load of any server. See Fig-

ures 6.5, 6.6, and 6.7 for the outcomes of the simulation with generation

probabilities 0.2, 0.5, and 0.8, respectively.

As can be seen, although the analysis requires certain parameters, in the

simulation the algorithm still works under relaxed conditions.

SECTION 6.5

The Balancing Algorithm

AlgStochSingleColl

In this section we focus on our second algorithm AlgStochSingleColl

(see Section 4 for details) for the stochastical load generation model. The

load generation is just as described above, just that the algorithm has

phases of length T = O (
��� ���

n) and reduces the maximum load of any

server also to O (
��� ���

n) (which, due to constants in the O calculus,
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unfortunately does not show up here in the simulations).

For n = 50, 000 we have a phase length of T = 3
��� ���

n = 12, so there is

no need to “stretch” the phases artificially (as we had to do before). Figures

6.8, 6.9, and 6.10 show how the algorithm performs for varying generation

probabilities (again, p ∈ {0.2, 0.5, 0.8}) and fixed ε = 0.01. Again, there are

two curves in each plot, one for the non-balancing system and one for the

balancing one.

Note that we now have a heavy threshold of 8T = 96, which explains why

the curve for the balancing system is higher than it has been for our first

algorithm. But this second algorithm has a quite notable property in that

it behaves very nicely as far as scaling of constants is concerned (here we

exclude the phase length but only mean the two thresholds (heavy/light)

and the number of tasks to be transferred). The original algorithm uses

values of 8T = 96 for the heavy threshold, T = 12 for the light threshold,

and 4T = 48 as the number of to-be-transferred tasks (the numerical values

refer to our choice of n = 50, 000). The algorithm still is able obtain a

stable system if we scale these constants by a factor of 1/8, that is, with a

heavy threshold of T = 12, a light threshold of T/8 ≈ 1, and T/2 = 6 tasks

to be transferred during each balancing action. For the outcomes of the

simulation, refer to Figures 6.11, 6.12, and 6.13.

Furthermore, we tried to do the same as we did for the first algorithm,

namely reducing the communication complexity by means of reducing the

crucial parameters of the collision games. Recall that in this second algo-

rithm, we no longer play one (a, b, 1) collision game after the other, but

play just one single collision game where all servers take part, and use the

result as sort of an access graph where heavy servers try to find light ones

within a certain distance from themselves. Within the original setting, we

had a = 7, b = 6, and c ≈ 1000, and said distance was five. We now tried

to reduce these values such that the algorithm still is able to bound the

maximum load of any server “reasonably”, which turned out to work for

values a = 4, b = 3, c = 8, and a search depth of 4. See Figures 6.14, 6.15,

and 6.16 for the outcomes of the simulations for generation probabilities

0.2, 0.5, and 0.8, respectively. Note that this plot refers to the modified

algorithm where we additionally down-scaled the light/heavy thresholds

and the number of tasks to be transferred during balancing actions.
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SECTION 6.6

The Balancing Algorithm AlgAdv

In this section we present some simulation results for the adversarial gen-

eration model. Recall that in the basic version of this model we allow a

server to change its load due to task generation and consumption by up

to ∆ tasks, where ∆ ≥ 1 is some constant. Before we come to the actual

simulations, let us point out two major problems concerning this algorithm.

First, there is again the problem of unreasonable numerical values. Al-

though constants in the analysis, they can no longer be seen as constants

regarding the simulation. For instance, consider the heavy threshold of

(6/ε) · �̀P, where �̀P is the system load estimation of server P, ε = 1/(2 ·
(2a)a−b+1), a = 4(α + 2), b = 2(α + 2), and α ≥ 1. Since α ≥ 1 we have

a ≥ 12, and, therefore, 6/ε ≥ 6 · 2 · (2 · 12)7 > 235 — clearly unreason-

able. We will see that the algorithm itself does not require such enormous

constants in simulations. Actually, it is rather well-behaved as far as such

things are concerned.

Second, there is a problem somehow related to the one from above. Assume

a scenario in which a 1/c fraction of the servers generate ∆ tasks in each

step and do not service any, whereas the remaining servers just service

up to ∆ tasks in each step (this models the well-known and often used

“farmer” approach). Now assume that the system ran for t steps, and no

load balancing at all took place (that is, the n/c generating servers just

generate and never distribute their tasks anywhere such that no task was

serviced so far). Clearly, at this point of time, the maximum load of any

server is t ·∆, whereas the average system load is ((n/c) · t ·∆)/n = t ·∆/c.

This yields a maximum/average load ratio of c. Thus, if c is a constant, we

always have a constant factor between the maximum load of any server and

the average load, even without load balancing. Recall that throughout the

simulations we use n = 50, 000 servers with
���

n ≈ 16. So, if we thought of,

say, 100
���

n servers generating tasks, this would imply that even without

load balancing we would not obtain a factor worse that 31 between the

maximum load and the average load; if we would let every fourth server

generate, this would result in a factor of 4.

Clearly, given these two problems, it neither makes sense to apply the
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original thresholds of the analysis, nor to direct the interest to the factor

between maximum load and average load only. Therefore, we scale down

constants as well as investigate the behaviour of the algorithm with respect

to another measure, namely the stability of the system. We investigate

the development of the system load as time passes. If the total injection

(the sum of all generated tasks) is less than the total service capacity, then

one would expect from a “good” balancing algorithm that the system load

remains bounded (does not grow to infinity over time), what clearly is not

the case for a non-balancing system with this generation scheme. There,

the system load would increase proportionally to the number of generating

servers.

Recall that for the algorithm AlgAdv for the adversarial generation we

divide time into phases of length T = 2(
��� ���

n)2. With n = 50, 000 we

then have T ≈ 32, which is sufficient to play all the collision games we need

to play for this algorithm (during the load estimation and the assignment

sub-phase, respectively). We changed the classification thresholds to 2T for

the light threshold and 8T for the heavy threshold (recall the ≈ 235 in the

original analysis), and during balancing actions we transferred 4T tasks.

We did not change the (a, b, c) parameters of the collision games, however.

We presented the algorithm with two different numbers of generating pro-

cessors; n/10 and n/100, respectively, and in each case we simulated with

∆ = 1 and ∆ = 10. We have four figures 6.17 to 6.20, one for every number

of generating servers in combination with every ∆. Each figure contains

two curves (total system load over time), where one curve is for the bal-

ancing system and the other one for the non-balancing one. Note that the

y-axis has a logarithmic scale (the curves for the non-balancing systems

are linearly increasing).

For some conclusions concerning the simulations and a few further words

comparing the simulations to the algorithm as presented in the analytical

part the this work, refer to Section 7.
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Figure 6.17: Adversarial generation, algorithm AlgAdv, n/100 generators,

∆ = 1 (logarithmic scale on y-axis)
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Figure 6.18: Adversarial generation, algorithm AlgAdv, n/100 generators,

∆ = 10 (logarithmic scale on y-axis)
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Figure 6.19: Adversarial generation, algorithm AlgAdv, n/10 generators,

∆ = 1 (logarithmic scale on y-axis)
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Figure 6.20: Adversarial generation, algorithm AlgAdv, n/10 generators,

∆ = 10 (logarithmic scale on y-axis)





CHAPTER 7

Conclusions and Outlook

We have presented three load balancing algorithms, two for the stochastical

generation model, and one for the adversarial one. The algorithms are quite

simple in concept, but still might seem to be rather... theoretical. Since

the collision game is the basic building block of all of them, one shouldn’t

even think of actually implementing them if it is not absolutely sure that

the collision game can be implemented very efficiently. As we have seen in

the simulations, the algorithms are quite robust as far as hand tuning of

almost all parameters is concerned, the thresholds as well as the parameters

for the collision games themselves.

Still, the algorithms have another merit in their own right. Compared to

the method of distributing tasks using a balls into bins approach, we clearly

save on communication. This is mainly due to the fact that we transfer

tasks only if a certain load threshold is exceeded, while in balls into bins

games each and every task is thrown away upon generation. Compared

to other approaches, we could show the first high probability bound on

the maximum load and the difference between the maximum load and the

average system load, respectively (other algorithms needed the system load

to be sufficiently large in order to obtain similar bounds).
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