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Zusammenfassung

In dieser Arbeit werden Interaktionsrahmen als neuartiger Ansatz zur sozialen Inferenz

und zum Umgang mit sozialer Interaktion in Multi-Agenten-Systemen vorgestellt. Das

soziologisch inspirierte Konzept der Interaktionsrahmen kann verwendet werden, um

Kategorien von Interaktionsmustern zu repräsentieren. In Multi-Agenten-Systemen

operierende und interagierende Agenten können mit Hilfe dieser Rahmen ihre Inter-

aktionserfahrungen aufzeichnen und darauf basierend strategische Kommunikation-

sentscheidungen treffen.

Solch ,,sozial intelligente” Rahmung, die Rationalität im entscheidungstheoretischen

Sinn mit empirischen Methoden zum Erlernen von Gesetzmäßigkeiten bezüglich der

Kommunikation in einem Multi-Agenten-System kombiniert, ist besonders für offene
Agenten-Gesellschaften geeignet. In solchen Gesellschaften kann die Einhaltung einer

a priori festgelegten Semantik von Nachrichten und Kommunikations-Protokollen nicht

vorausgesetzt werden. In Ermangelung absoluter Sicherheit in Bezug auf das Verhalten

Anderer in zukünftigen Interaktionen, versucht der rahmenbasierte Ansatz, Unsicherheit

durch Anspassung an beobachtetes Verhalten zu minimieren. Dies stellt eine erhebliche

Verbesserung gegenüber der strikten Einhaltung vordefinierter Protokolle und sogenan-

nter ,,Conversation Policies” dar, die – zumindest wenn man Agenten-Autonomie ernst

nimmt – eine zu große Einschränkung darstellen kann.

Es wird zunächst die abstrakte Architektur InFFrA vorgestellt, die auf den Konzepten

von Interaktionsrahmen und Rahmung beruht und als Meta-Modell für konkretere

Agenten-Designs auf Basis dieser Konzepte verwendet werden kann.
Diese abstrakte Architektur wird durch das formale Modell einer konkreten, direkt im-

plementierbaren Instanz von InFFrA ergänzt, die den Anforderungen des Meta-Modells

genügt. Für dieses formale Modell kann auf der Grundlage des allgemeineren Konzeptes

der empirischen Semantik von Agenten-Kommunikation eine formale Semantik für rah-

menbasierte Kommunikation abgeleitet werden. Für diese formalisierte InFFrA-Variante

werden darüber hinaus Entscheidungsmechanismen definiert und Lernalgorithmen in

Anlehnung an Theorien des hierarchischen ,,Reinforcement”-Lernens entwickelt.

Eine konkrete Implementierung der formalisierten Architektur wird verwendet, um die

Leistungsfähigkeit rahmenbasierter Agenten in einem realistischen Anwendungsszenario

aus dem Bereich der agentenbasierten Webseiten-Verlinkung zu evaluieren. Die experi-

mentellen Befunde stellen die Leistungsfähigkeit des Ansatzes unter Beweis und zeigen,
dass Interaktionsrahmen ein mächtiges Werkzeug zum Umgang mit sozialer Interaktion in

offenen Systemen darstellen.

Die breite Anwendbarkeit von Interaktionsrahmen wird schließlich durch die Darstel-

lung weiterer Anwendungsmöglichkeiten aufgezeigt.
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Abstract
This thesis introduces interaction frames as a novel approach for social reasoning and in-

teraction management in multiagent systems. Interaction frames are a sociologically in-

spired concept that can be used to represent categories of interaction patterns. Agents
operating and interacting in multiagent systems can employ these frames to record their

interaction experience and to make strategic communication decisions based on this ex-

perience.

This kind of socially intelligent framing that combines decision-theoretic rationality

with empirical methods for learning the regularities of communication processes in a mul-

tiagent system is particularly well-suited for open agent societies. In these societies, the

adherence to an a priori semantics of messages and communication protocols cannot be

taken for granted. In the absence of absolute certainty about the ways others will behave

in future interactions, the frame-based approach relies on observation and adaptation of

one’s own behaviour to the observed patterns of interaction to reduce uncertainty.

This constitutes a significant improvement over the use of pre-specified communica-
tion protocols and conversation policies in a hard-wired fashion which can be too limiting,

at least if we take agent autonomy seriously.

We present an abstract social reasoning architecture called InFFrA that is based on the

concepts of interaction frames and framing and that can be used as a meta-model for con-

crete agent designs.

This abstract architecture is supplemented by the formal model of a concrete, ready-

to-implement instance of the meta-model that complies with InFFrA requirements. For

this formal model, we also establish a formal semantics based on a more general model of

empirical semantics for agent communication. Furthermore, we define decision-making

procedures for this formal version of InFFrA and develop learning algorithms that borrow

from the theory of hierarchical reinforcement learning.
An implementation of the formal social reasoning architecture is used to evaluate the

performance of frame-based agents in a realistic application scenario taken from the do-

main of agent-based Web linkage. The experimental results prove the effectiveness of our

approach and show that interaction frames can be successfully used as a powerful tool for

reasoning about interaction in open systems.

Finally, the broad applicability of frames is illustrated by a discussion of various further

applications.
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1. Introduction
The past decade has witnessed dramatic changes in the way we see computing. After in-

formation technology had been continuously evading all areas of everyday life in the 1980s

and early 1990s, the advancement of the Internet and of other digital communication tech-

nologies marked an unexampled leap towards a new era: the age of global computer com-

munications. Apart from the impact of these changes on society in general, they certainly

also bear strong implications on the way we think about computers and software. If we

compare, for example, typical software systems twenty or thirty years ago to those of today,

striking differences become obvious with respect to the requirements imposed on these
systems. In those days, it was perfectly acceptable for a system to perform the tasks as-

signed to it in a particular application domain (which is a difficult thing to achieve in its

own right). Today, we additionally expect of many systems to be available online on a per-

manent basis, to provide intuitive and robust user interfaces, to interoperate with other

applications (such as legacy systems, online databases or services), to ensure security of

internal data against malicious attacks, etc. More generally speaking, we are increasingly

interested in building systems that are able to operate in dynamic, uncertain domains and

that are able to interact with users and other systems effectively.

The agent metaphor is often considered useful for this kind of software systems. It

marks a shift from the traditional picture of systems as relatively closed and fairly deter-

ministic, controllable engineering artifacts to a perspective that views software compo-

nents as autonomous entities. Agents perceive and act upon an environment, and they

communicate and interact with other agents and humans in multiagent systems (MAS) in

pursuit of their goals. It is widely believed that the ability to implement intelligent agents

capable of operating in complex environments will contribute substantially to coping with
the requirements of software in a “connected” world.

This thesis is about interaction frames for computational agents. Interaction frames are

a novel, sociologically inspired concept which can be used to endow agents with knowl-

edge about different types of interaction situations. This knowledge can be used to guide
agents’ behaviour when interacting with others by improving their social reasoning ca-

pabilities. Apart from its intuitive appeal and its implications for furthering our under-

standing of social cognition, our approach constitutes one possible answer to the practical

problems mentioned above. It allows agents to manage their interactions effectively in dy-

namic, complex environments inhabited by other agents. Thus, it significantly contributes

to research on open systems that will become increasingly important in the future and con-

front the field of computing with new challenges.

We present an agent architecture based on interaction frames, develop a formal model

for a concrete instance of this architecture, and provide algorithms for reasoning and learn-

ing in frame-based agents. Simulation experiments in complex domains underpin the use-

fulness of our approach, and a variety of applications is discussed together with concrete

examples.
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1.1 An Illustrative Example
Before describing our approach, its main contributions and its relationship with other re-

search themes, we would like to motivate it with a simple yet illustrative example for the

class of applications mentioned above: the web linkage world.

The reader is certainly familiar with the way hyperlinks are used in World Wide Web

pages to refer to other sites. Although these links provide a simple and natural way to link

Web content, readers will agree that, most of the time, this linkage is not realised in an op-

timal way. Rather than semantically linking related content (information items, opinions
and comments on similar topics, related individuals or institutions) together, links often

exist between seemingly unrelated pages. On the other hand, those links that would be

useful when looking for relevant information are missing. A good example for this sub-

optimal linkage is the usual habit of personal homepages to provide pointers to weather

forecast sites, press and media or humour sites. Although these links may occasionally in-

form a reader about sites he had not known of, they are, in general, utterly useless for a

Web user seeking specific information.

Since searching the Web for related sites and creating respective links is a rather te-

dious business for the Web site owner (let alone keeping track of modifications to the link

targets), it would be desirable to automate this task, at least partially. Ideally, this would

contribute to the evolution of a so-called Semantic Web (Berners-Lee et al. 2001) by mak-

ing semantic relationships between sites transparent.

An agent-based approach seems suitable for such an application. Each Web site owner

would be represented by an agent, and this agent would search for appropriate sites, de-

cide whether to lay links towards these sites and monitor their evolution to revise previous
decisions, if necessary. However, as high Web traffic is considered an asset particularly by

commercial sites, it would be irrational for such agents to lay links unless it is also prof-

itable for their own site. Therefore, such a linkage agent will be interested in influencing

other Web site owners’ behaviour, and this can best be achieved through communication.

Once the need for such interaction has been recognised, it becomes obvious how this

application example fits into the class of open, dynamic multiagent systems in uncertain

domains: Firstly, a linkage agent (and with it, its designer) does not know anything about
the internal structure, the motives and reasoning capabilities of other agents. Therefore,

it cannot be designed to respond appropriately to a fixed behaviour on the side of other

agents. Secondly, the search space of all potential linkage structures, even among a limited

number of sites is gigantic, and such structures are volatile, as links may be created and

deleted arbitrarily often at virtually no cost. Furthermore, the society of agents taking part

in this quest for optimal linkage is neither fixed nor limited in size, but open to new par-

ticipants. In fact, in this particular application, it is not even possible to exclude anyone

from linkage activities except by legal intervention in very extreme cases. So, an agent can

merely try to achieve satisficing (rather than optimal) behaviour, especially because the so-

cial exchange required to achieve coordinated action incurs an additional computational

cost.

Interaction frames come into play when we think about how this complexity, that is in-

duced by the autonomy of components and by the openness of the environment, can be

dealt with. Not knowing what other agents will do, it seems reasonable to design our agent

in such a way that he observes their behaviour and tries to make sense of it, with the goal
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of adapting his own behaviour in a way that will allow for achieving optimal linkage with

others. Since the agent is interested in aspects of others’ behaviour that he can influence

by communicating with them, he will concentrate on learning something about commu-

nicative (rather than general) behaviour. Assuming that other agents might do the same, it

is also reasonable to observe regularities in one’s own behaviour, since peer behaviour may
be a reaction to it. As the computational resources of the agent will be limited, he will have

to categorise the observed behaviour to determine which differences between individual

behaviours matter and which do not. If the linkage situation necessitates completely new

behaviours, the agent will have to devise new forms of communication to achieve this.

This is precisely what agents who employ interaction frames and framing do, and what

this thesis is about:

The learning and strategic use of categories of interaction patterns by socially

intelligent agents in open systems, in which no information is available about

agents’ future behaviour other than what is known from interaction experience.

The Web linkage scenario will serve as an example throughout the remaining chapters to

illustrate different aspects of the methods presented. In fact, it also constitutes the appli-

cation scenario that has been implemented in the LIESON system to evaluate our findings

(cf. chapter 6) and is therefore much more than a hypothetical scenario: a representative

and concrete example of a new kind of socially adaptive, agent-based, real-world applica-

tions.

1.2 Main Contributions
This thesis advances the state of the art in multiagent systems research in different ways.

Before embarking, we would like to list the most important of these. Clearly, these con-

tributions also relate our work to a number of other research themes, for a discussion of

which we refer the reader to section 2.3.

Abstract social reasoning architecture

We propose a new social reasoning and learning architecture called InFFrA (the Interaction

Frames and Framing Architecture) that serves as an abstract model for building socially

intelligent agents who construct, maintain and modify interaction frames and apply them

strategically to achieve effective interaction behaviour.

InFFrA is based on sociological theories from the school of symbolic interactionism

(Blumer 1962, Strauss 1993). More specifically, the concepts of interaction frames and

framing are derived from Erving Goffman’s micro-sociological theories (Goffman 1974)

and the formation and employment of social expectations is based on George Herbert

Mead’s general theory of social action (Mead 1934) in which symbolic interactionism as
a whole is deeply rooted. This connection is not only interesting with respect to inter-

disciplinary exchange.1 Also, the fact that these theories are well-established in sociology

underpins the plausibility of using them to design computational architectures resting on

their principles, such as InFFrA .

1 Much of the research presented here has been conducted in the context of the Socionics research program
(Malsch 1998, Malsch, Müller and Schulz-Schaeffer 1998, Malsch 2001, Fischer and Florian 2003).
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The InFFrA architecture can be used as a conceptual model for developing concrete

frame-based systems. It suggests a general model of interaction frames and identifies the

central functional elements that are needed to implement intelligent framing processes.

Thus, the agent designer is provided with guidance regarding

1. the components of the design he should focus on when pursuing a frame-based ap-

proach,

2. how these components have to be combined to obtain comprehensive frame-based
social reasoning capabilities,

3. the key design decisions and critical aspects of this design process.

To the best of our knowledge, InFFrA is the first abstract social reasoning architecture that

deals with learning and applying regularities in “high-level” agent communication, mean-

ing communication in which utterances can explicitly refer to non-communicative ob-

jects, such as physical objects, actions, agents and mental states (goals, plans, intentions

etc.).

In that, it is deliberately designed to exploit the full potential of all relevant modelling

dimensions, which results in a complex framework that allows for a wide range of possi-

ble implementations. As a natural consequence of this complexity, InFFrA does not lend

itself to direct implementation but is rather suitable as a conceptual foundation for the de-

velopment of concrete architectures. Thus, while it explores the landscape of “what can

be modelled using frames and framing” it is clear that any concrete system based on it

will have to focus on a subset of these possibilities through specific design decisions. The

suitability of InFFrA for this purpose is underlined by the fact that it has been successfully

applied to the analysis and design of systems (Rovatsos, Weiß and Wolf 2002) other than
the formal model and implementation presented in this thesis (chapters 4, 5 and 6).

Beyond these practical considerations, the development of InFFrA also has some theo-
retical implications for our understanding of human social cognition, and thus for the field

of artificial intelligence (AI) in general. Furthermore, the computational operationalisation

of sociological theories may, in turn, have an impact on sociological discourse by making

distinctions precise and using (semi-)formal representations. However, a philosophical

or sociological treatise of these implications is not provided here. We refer the interested

reader to (Paetow and Rovatsos 2003) for a more principled and general discussion of some

of these aspects.

Formalisation of a concrete instance of this architecture

From the standpoint of computer science or artificial intelligence, an abstract architecture

is of little value, as long as it cannot be turned into a computational model. Only fully

formalised models can be shown to have certain properties, either through mathematical

analysis (proofs) or through empirical evaluation (simulation and case studies).

In the present thesis, such a formal model is provided through m2InFFrA2. m2InFFrA
realises the principles of InFFrA in a ready-to-implement fashion.

2 The “m2” stands for “double-Markov” and is due to the relationship between this formal model and the
two-level Markov Decision Process (MDP) view of framing it provides. See also chapter 5.
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Thereby, m2InFFrA highlights certain elements of the abstract architecture while others

are only present in the most basic form. For this reason, the fully formalised architecture

must be regarded as a particular instance of what is possible in principle when using InFFrA
as a basis for the development of concrete frame- and framing-based architectures and is

certainly not a complete formalisation of InFFrA.
m2InFFrA is characterised by the following distinctive features:

1. m2InFFrA agents are knowledge-based agents that maintain and manipulate symbolic

representations of their environment to reason about the world. As they use fairly

common inference mechanisms and logical representations, this adds to the appli-

cability of the model in different domains.

2. Communication in m2InFFrA takes place at a speech-act level. Messages are per-

ceived as publicly visible actions with performatives related to their desired out-

comes, and by being parametrised with logical content they enable agents to refer

to objects outside communication (physical objects, agents, actions, mental states,

etc.).

3. The communicative expectations recorded in m2InFFrA frames have probabilistic

semantics defined in terms of the potential consequences of certain communica-

tive actions. This enables us to use decision-theoretic principles and reinforcement

learning methods for decision-making in m2InFFrA.

4. The probabilistic semantics employ “reasoning by analogy” since frames generalise

from particular interaction experiences, and “contextualisation” since certain frames

are only relevant in certain situations. m2InFFrA realises these principles in a fashion

that resembles case-based reasoning (Kolodner 1993, Aamodt and Plaza 1994, Watson
and Marir 1994).

The advantages of such a formal model are that (i) mathematical rigour necessitates clari-

fication of concepts that are (inevitably) general and vague in the abstract architecture, (ii)

it enables us to describe concrete reasoning and learning algorithms (and, ultimately, to

implement them) and (iii) it allows connecting the frame-based approach to traditional AI

methods. As concerns this last aspect, the relationship to reinforcement learning (Sutton

and Barto 1998, Kaelbling, Littman and Moore 1996) and in particular to hierarchical rein-

forcement learning methods (Barto and Mahadevan 2003) places our work in the context
of contemporary mainstream AI research (and shows how the notions we introduce can be

grounded in established concepts).

Implementation and evaluation in a realistic application domain

As described in the opening paragraphs of this chapter, the foremost aim of our research

is to develop methods that may help to tackle the problems of complex, open application

domains. This “engineering” stance prohibits experimentation with our methods in toy

domains, although these domains are very valuable for more theoretical contributions.

To make sure we can adequately cope with the problems of frame-based architectures

that arise in practice, we have implemented a full-fledged simulation system for the afore-

mentioned web-linkage scenario. This system called LIESON (cf. section 6.1) is a distributed

testbed that simulates a multiagent system populated with communicating agents and a
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hypothetical web linkage environment in which these agents are embedded. It captures

the essential aspects of the domain and reflects the difficulties associated with achieving

fruitful coordination in it: incomplete information regarding the linkage status of sites,

volatility of links, heterogeneity in the preferences, motives and experience of different

Web site agents, to name but the most important.

Focusing on the practical side of frame-based methods bears several methodological

implications:

• Algorithms have to be applied in a computationally feasible way

In practical implementations, the bounded rationality aspect is not merely theoret-
ical – many algorithms, though correct in principle, impose time and space con-

straints that are simply too prohibitive to be used in real-world application.3 Hence,

we are forced to

1. use fairly simple logics and inference procedures, because we require that they

can be used by InFFrA agents themselves. In contrast to many logic-based ap-

proaches in AI which use logic to describe system aspects from the designer’s

viewpoint, this means that we use an “internal” rather than an “external”4 ap-

proach to logic.

2. apply heuristics where complete solution methods are intractable. For example,

we do not maintain the full state spaces for reinforcement learning algorithms
but employ abstraction heuristics to reduce them. Also, limits in frame storage

capacity of the implemented agents force us to use heuristics to decide which

frames to ignore and which to store in the long term.

• Mixture of different methods

Since we are building “full” agents with complex social reasoning (but also other)

capabilities, we must combine different methods to make the individual compo-

nents work together. For example, LIESON agents will have to perform planning and

decision-making steps that are not directly related to social reasoning. Therefore, a

local planning and goal-directed reasoning component has to be included in their

implementation (in our case, a BDI (Bratman, Israel and Pollack 1988) architecture).

Strictly speaking, this module does not make part of the architecture we have devised,

but integrating different components to yield a comprehensive application system is
a great challenge that has to be faced when building real systems.5

We believe that the advantages of realism at the level of practical applications for the accep-

tance of architectures as the one proposed here, but also of the MAS paradigm in general,

clearly outweigh the restrictions listed above.

The relationship between the LIESON system and the m2InFFrA model bears some simi-

larity to that between m2InFFrA and the abstract InFFrA framework. Again, not everything

that is possible within m2InFFrA has been experimented with, and – although the agents

3 Some would say that this is particularly true of AI methods.
4 We use the terminology of Fagin et al. (1995) here.
5 This is part of the reason why die-hard followers of any of the methods we employ (decision theory, re-

inforcement learning, case-based reasoning) will probably find that neither of these techniques has been ex-
ploited to the maximum. Where necessary, “making it work” was given priority over “being optimal”.
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implemented in LIESON are full-fledged m2InFFrA agents – we can only validate the archi-

tecture for particular kinds of interactions (namely, negotiation) and social settings. This

iterative “narrowing down” of the scope of material covered from chapter 3 to chapter 6

constitutes an essential aspect of our methodology, as it shows how starting from the most

abstract sociology-inspired concepts we can manage to produce concrete software that
solves a practical problem.

Exploration of new approaches to multiagent learning

Learning interaction frames, which is one of the main activities in frame-based so-
cial reasoning, adds a new perspective to multiagent learning (Weiß 1996, Weiß and

Sen 1996, Weiß 1997, Weiß 1998, Weiß and Dillenbourg 1999). This perspective lies in re-

garding classes of interaction as the object of learning, rather than the behaviour of (groups

of) particular agents. The underlying assumption is that, in open, large-scale MAS it does

not pay to learn something about individuals, since encounters with them will be often

only occasional. Instead, agents should be concerned with learning something about re-

curring patterns of interaction that apply in a society regardless of concrete interaction

partners.

This view has lead to the formulation of two novel properties of multiagent learning

methods that have been largely overlooked in the current research landscape:

1. Social abstraction

Models of agent behaviour must abstract from details concerning instances of certain
interaction patterns in order to cover a variety of new cases. They must generalise

over concrete agents and interaction situations to express “societal regularities” that

apply throughout an entire social context.

2. Transient social optimality

To ensure the reliability of established social procedures, they have to be enacted

at the cost of sacrificing profit that would be possible if an agent optimised his be-

haviour constantly. This transient optimality (in contrast to permanent or total opti-

mality) is necessary, because agents must fit into a certain generalised set of expecta-

tions themselves to be understandable for others. Thus, different from agent-based

learning, acting in consistence with generalised expectations in frame-based learn-
ing implies giving up the ideal of achieving optimal outcomes for oneself at every

single point in time.6

What is most interesting about these notions, is that they not only parallel views commonly

held in sociology, but that they result naturally when using interaction frames as building

blocks for learning algorithms.

A new theory of agent communication semantics

Frames involve communication, and, in a frame-based approach, communication only

obtains its meaning through its use in the context of certain interaction frames. We con-

tribute to the field of agent communication language (ACL) semantics by claiming that the

6 At least this is the case if we adopt an active learning view, in which agents have to act during “online”
learning. If learning merely consists of passive observation, utility-based rationality criteria are not jeopar-
dised by transient social optimality.
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meaning of inter-agent messages is given by the expectations associated with these mes-

sages as represented by the interaction frames agents have at their disposal.

This outlook on ACL semantics is radically constructivist as it only depends on the views

of the parties involved in communication, empirical since these expectations are formed
on the grounds of past interaction experience and consequentialist since – no further a

priori semantics assumed – all that matters to agents regarding communicated messages

are their consequences. Such an outlook on ACL semantics necessitates an evolutionary

view of semantics, since agents may alter the consequences of utterances through their

actions in the course of interaction.

Also, as we will see, our view differs largely from most work done in the area of agent

communication language (ACL) research (Labrou, Finin and Peng (1999), Kone, Shimazu

and Nakajima (2000), Dignum and Greaves (2000), and Chaib-draa and Dignum (2002)

provide recent overviews) and thus constitutes a major contribution to the field (although
it is just a “by-product”, so to speak, of our endeavour to build socially intelligent agents).

To sum up, this thesis presents an abstract social reasoning architecture, a formal

model of a specific instance of this architecture and an implementation in a realistic ap-

plication domain that serves as the basis for the empirical evaluation of our approach.

Methodologically, these steps follow the “standard procedure” commonly employed in ar-

tificial intelligence. The implications for multiagent learning and agent communication

semantics, however, stand in contrast to this “engineering intelligence” stance. They con-

stitute insights that lie beyond the original aims of this work, and point at new directions

for research towards which this thesis is only a first step.

1.3 About This Thesis
The remainder of this thesis is organised as follows:

Chapter 2 provides the background on the two fields that are most relevant to our work.

After a brief introduction to Distributed Artificial Intelligence and in particular to

open systems and issues of agent interaction and coordination, we discuss elements

of interactionist socionics, i.e. the application of interactionist social theories to mul-

tiagent systems. This chapter also contains an overview of related research themes.

Chapter 3 lays out the abstract social reasoning architecture InFFrA in full detail. The ar-

chitecture can be used as a schema for building socially intelligent agents that em-

ploy interaction frames and framing to coordinate their activities with those of other
agents.

Chapter 4 introduces m2InFFrA, the formal model of a specific instance of InFFrA with

probabilistic communication-predicting semantics. Using this formal foundation

enables us to link InFFrA to the theory of Markov Decision Processes and hierarchical

reinforcement learning.

Chapter 5 describes the learning algorithms and heuristics that are later used in the im-

plemented m2InFFrA agents. This chapter also formalises the notions of social ab-

straction and transient social optimality, which become evident in our use of hierar-

chical reinforcement learning algorithms.
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Chapter 6 presents extensive experimental results obtained with the LIESON system. The

LIESON system itself is, of course, also described in detail in this chapter. Further-

more, we report on the development of different kinds of negotiation frames for our

application scenario.

Chapter 7 discusses further application areas of interaction frames and framing that have

already been explored, and others that have a great potential and deserve our atten-

tion in the future.

Chapter 8 summarises our main results, gives an outlook on possible future work and

closes with some general conclusions.

Note

Some of the material presented herein has been published and presented elsewhere be-

fore. A first version of the InFFrA architecture was outlined in (Rovatsos 2001), and shorter

overviews appeared in overviews of InFFrA provided in (Rovatsos and Weiß 2001, Rovatsos

et al. 2002, Rovatsos, Weiß and Wolf 2003b, Rovatsos and Paetow 2004).

The empirical semantics view and our model of communication was first articulated

in (Rovatsos, Nickles and Weiß 2003a) and (Rovatsos, Nickles and Weiss 2004); elements

of it also appeared in (Nickles and Rovatsos 2004). The notions of social abstraction and
transient social optimality were coined in (Rovatsos and Paetow 2004). Our account of

the formal semantics of m2InFFrA is based on the model introduced in (Rovatsos and

Paetow 2004). The general foundations of interactionist socionics were discussed at length

in (Paetow and Rovatsos 2003).

The web linkage application scenario originates in ideas first laid down in an unpub-

lished internal memo (Rovatsos 2000). A longer and much more detailed research report

(Malsch, Paetow and Rovatsos 2002) extended these ideas and discussed the scenario from

both a sociological as well as a multiagent systems perspective. A technical description

of the LIESON system itself has been provided in the LIESON manual (Rovatsos 2002–2004)

which is available online and is being constantly updated.

Many of the learning algorithms and heuristics were worked out in cooperation with
Felix Fischer, and some experimental results have already appeared in his diploma thesis

(Fischer 2003).

As concerns other applications, the ADHOC system for opponent classification was de-

veloped by Marco Wolf (2002) in his diploma thesis. Initial experiments with ADHOC ap-

peared in (Rovatsos and Wolf 2002), and a more detailed account of the results was given

in (Rovatsos et al. 2003b). This system was also used as a case study for the usefulness of

InFFrA as a method for analysis and design in (Rovatsos et al. 2002). The relationship to the

communication systems framework was first formalised in (Nickles and Rovatsos 2004) and

(Nickles et al. 2004b), and later improved in (Nickles, Rovatsos and Weiss 2004a). The EX-

PAND framework is described in (Brauer et al. 2001), the RNS schema in (Nickles, Rovatsos

and Weiss 2002) and (Weiß, Rovatsos, Nickles and Meindl 2003).
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2. Background

This chapter provides an introduction to the two foundations of our research. We first

outline some core elements of the field of Distributed Artificial Intelligence (DAI) and Mul-

tiagent Systems (MAS) with a particular focus on (i) autonomy and open systems and (ii)

interaction, communication and coordination, since these are the research issues to which

our methods contribute.

Then, we introduce interactionist socionics, an emergent sub-discipline that grew out

of the Socionics research endeavour and that our work is based on. We give a short in-

troduction to interactionist sociology (more specifically, to the theories of G. H. Mead and

E. Goffman), review central assumptions made in multiagent systems that borrow from

these theories and discuss implications for the design of these systems that result from this
interdisciplinary view. Finally, related research themes are surveyed and their relationship

to the work presented here is described.

2.1 Distributed Artificial Intelligence
According to Weiß (1999),

DAI is the study, construction, and application of multiagent systems, that is,

systems in which several interacting intelligent agents pursue some set of goals

or perform some set of tasks.

To understand how the work presented here relates to this field, we need to define what

agents are, how they interact in multiagent systems (MAS), and which problems and re-

search questions the interaction frames and framing approach addresses in this context.

The presentation contained in this section largely draws upon the opening chapters of

(Weiß 1999).1

2.1.1 Intelligent agents
There is an ongoing debate about what (intelligent) agents are (Foner 1993, Franklin and

Graesser 1997). The minimal consensus is reflected by the often cited definition of Russell

and Norvig (2003) which states that “an agent is anything that can be viewed as perceiving

1 The literature on DAI abounds: early collections of DAI papers can be found in (Huhns 1987, Bond and
Gasser 1988b, Demazeau, Müller and Muller 1990, Demazeau, Müller and Muller 1991, Demazeau and Werner
1992). Wooldridge and Jennings (1995b), O’Hare and Jennings (1996), Huhns and Singh (1998b), and Weiß
(1999) provide more recent overviews of the current DAI research landscape. Well-known introductory articles
are those of Bond and Gasser (1988a), Gasser and Huhns (1989), Wooldridge and Jennings (1995a), Wooldridge
and Jennings (1995c), Nwana (1996), Moulin and Chaib-Draa (1996), Franklin and Graesser (1997), Huhns and
Singh (1998a), and Jennings, Sycara and Wooldridge (1998b).
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its environment through sensors and acting upon that environment through actuators”.

The central idea is that an agent persistently operates in an environment about which it

has some partial information and which it can only partially control. Clearly, by this defi-

nition too many things (e.g. thermostats, automatic burglary alarms, word processors etc.)

would qualify as agents. Using situatedness (or embodiment) in an environment and the
sensoric and effectoric capacities as the sole criteria for agenthood is obviously not suffi-

cient to express what agents are (let alone “intelligent” agents).

A much more powerful – though not less disputable – criterion is that of autonomy.

As Wooldridge (1999, p. 27) writes, autonomous agents are agents who “decide for them-

selves”, i.e. agents who “are able to act without the intervention of humans”(p. 29). Another

view suggests that an agent is autonomous “in that its behaviour at least partially depends

on its own experience” (Weiß 1999, p. 1). But how are we to judge whether these criteria are

fulfilled by a piece of software?2 A thermostat obviously acts without human intervention

(after all, it is supposed to relieve humans from the task of adjusting a heating system),

and the behaviour of a word processor obviously depends on the document the user has
created (i.e. the keyboard input the program has experienced).

Faced with this problem, most authors resort to qualitative criteria for autonomy which

are usually related to some notion of intelligence. “Intelligent” agency implies flexible, ro-

bust, efficient goal-directed behaviour in complex, uncertain, and dynamic environments.

The properties that are usually considered desirable and important for such intelligent

agents are (cf. (Wooldridge and Jennings 1995c)):

• reactivity: the ability to react to changes in the environment and to do so in a timely

fashion;

• pro-activeness: the capability of goal-directed initiative – agents are expected to take

action in order to fulfil their goals;

• social ability: agents are able to interact with other agents (and humans) to further

their goals.

Although it is certainly true that we are only willing to ascribe real autonomy to arte-

facts if they are able to exhibit some kind of non-trivial, goal-driven behaviour, a crucial

aspect of autonomy has been largely overlooked, which has to do with the observation of

autonomous systems. By this perspective, which is very important for our frame-based

methods, we would purport that

A system S is observer-autonomous with respect to an external observer O, if S
behaves differently under circumstances O considers identical for S.

This not only rules out the possibility of thermostats and burglary alarms being considered

agents, but also of more complex artefacts such as word processors; even though they en-

capsulate complex functionalities, we expect them to react identically under comparable

circumstances3.

2 The notions of agency and autonomy are also common in robotics research. However, in the remainder of
this chapter, we will only refer to software agents.

3 It is not our intention to comment on certain common word processors that actually seem to show very
autonomous behaviour.
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Note that this definition does not imply that autonomous systems are inherently non-

deterministic. It merely states their such systems show a behaviour that varies between

situations the observer considers equivalent for the system (situations that should “make

no difference” to the system, in the observer’s view). For example, if the thermostat be-

haved differently on two different days with the same temperature conditions because it
takes forecasts into account which it receives through an online Internet connection, it

would seem autonomous if we assumed that it only reacts to the current temperature mea-

surement. Thus, what matters is whether the causal coupling between the inputs and the

outputs of the system is non-trivial because the agent performs some additional internal

processing that is hidden from the observer. Hence, in a certain sense, an agent is only

autonomous to the degree that the observer is ignorant of its internal functioning.

2.1.2 Multiagent systems
Multiagent systems (MAS) are systems in which agents interact with other agents (and pos-

sibly humans) in a common environment. According to Jennings et al. (1998b), their most

prominent characteristics are that

• agents have incomplete information and are restricted in their capabilities,

• data and control are decentralised, and

• computation is asynchronous.

As with the above definition of intelligent agents, this only represents a minimal list of

mostly technical properties. In fact, MAS is a very general term for a variety of different

types of systems used in different disciplines:

1. In a “strictly AI” view concerned with achieving intelligence in computational sys-

tems, MAS are collections of intelligent agents. Two lines of research can be distin-

guished within this field:

(a) Distributed problem-solving (DPS) systems (Durfee 1999) decompose complex

tasks and distribute them among strictly cooperative agents who communicate,

plan and work together to achieve a shared goal.

(b) Multiagent societies4 allow for (potentially non-cooperative) forms of interac-

tion other than those of DPS systems. In these systems, agents are typically self-

interested and do not always share a common goal.

2. Research on multiagent-based social simulation (Sichman, Conte and Gilbert 1998,

Moss and Davidsson 2000, Sichman, Bousquet and Davidsson 2003) utilises MAS for

the computational study of social phenomena and to test hypotheses by means of
simulation that have been previously formulated from a social science perspective.

3. Agents and MAS scenarios are being used in user modelling and human-computer in-

teraction contexts where so-called socially intelligent agents 5 (Dautenhahn 2000) are

4 This is not an established term. We use the term society here, because, as in human society, such MAS are
characterised by the existence of communication rather than cooperation.

5 Note that this usage of “social intelligence” is completely different from ours in that we do not require
agents to fit into a human social context.



14 2. Background

agents who exhibit anthropomorphic and believable behaviour which allows them

to socially interact with humans.

4. Agent-oriented software engineering (AOSE) (Ciancarini and Wooldridge 2001, Lind
2001, Weiss 2001, Wooldridge, Weiss and Ciancarini 2002, Giunchiglia, Odell and

Weiss 2003) seeks to apply agent technology to the area of software engineering, that

is, to exploit the agent paradigm for the development of methods for building com-

plex, distributed software systems.

In this thesis, we will almost exclusively deal with the “multiagent society” perspective,

though we will occasionally refer to AOSE-related aspects. This means that, even though

we borrow from sociological theories, we are neither interested in simulating social phe-

nomena nor in whether our agents exhibit a behaviour that is human-like or understand-
able for humans. Our goal is to construct agents who can interact with each other effec-

tively. Also, we do not assume a strict DPS position, because, as stated at the very beginning

of the introductory chapter, we aim to contribute to research in open MAS.

2.1.3 Open systems
To highlight the aspects of MAS research that are relevant to ours, we should first clarify

what we mean when we talk about open MAS. Initially, this term was introduced by He-

witt (1986), and further discussed in Hewitt’s (1991) article on open information systems

semantics and Gasser’s (1991) response to this article. However, the properties associated

with open systems today go beyond those originally laid out by Hewitt (asynchrony, local

authority, late-arriving information, division and specialisation of labour and multiple au-
thorities, arm’s length relationships) as these are today assumed to hold in virtually any

MAS.

More recently, Davidsson (2001) has presented a taxonomy of different types of artificial

societies with more fine-grained distinctions. In his view, fixed and closed MAS are systems

in which agents are all controlled by the same designer; additionally, in fixed systems, the

set of agents in the system must be fixed at design time. Open societies allow agents with

different owners to freely enter and leave the system. Semi-open systems are able to decide

which agents may enter the society from outside, while semi-closed systems do not allow
foreign agents to enter the system, but may allow external humans, organisations or agents

to create an agent in the society (that is effectively controlled by the society “provider”).

Anarchic systems, finally, are open systems in which not even a common communication

language or a common set of roles for the participating agents has been agreed upon.

In fact, our own definition of open MAS comes quite close to that of anarchic systems.

In our example Web linkage application (section 1.1), agents roam from site to site looking

for interesting links and communicate with other agents to negotiate linkage structures

that are profitable for them and for the visitors of their own site. Thus, the MAS must be

necessarily open, and, although we will assume a common communication language with
respect to content (i.e. the ontology of concepts and logical relationships used in messages

are assumed to be common knowledge), there is no restriction on or a priori design of

communicative conventions, interaction protocols or the like.

To make this point more precise, we summarise the main characteristics of the open

MAS we deal with in the following list:
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Openness of ownership. Agents may pertain to different human users, organisations or

may be spawned by other artificial agents. Often, the owner cannot even be securely

identified.

Openness of membership. Entry into and exit from the society is unpredictable. The

agent population may be arbitrarily-sized and volatile. In general, there is no pos-

sibility to exclude agents from the society.

Openness of behaviour. Agents may exhibit arbitrary behaviour within the bounds of op-

erations allowed by the environment. In particular, one agent cannot keep any other

agent from performing an action or communicating with other agents.

Openness of conventions. Although a set of interaction protocols may be available, noth-

ing can be said about whether agents will abide by certain rules of interaction,

i.e. whether and how protocols will be used.

Openness of internal design. No assumptions can be made about the internal processing

of an agent. This implies that the goals of the agent are unknown to the degree it

wishes to conceal them, and that the agent may be untruthful, deceptive and mali-

cious.

To summarise, open MAS are systems populated by varying number of agents of poten-

tially unknown origin, with unknown motives and goals, whose behaviour is highly unpre-

dictable and, in principle, unrestrained.

This definition of open systems is dual to our definition of (observer-)autonomy (p. 12)

in that agents in such an open MAS appear to be fully autonomous for other agents. In

section 2.2.3 we will see that this duality is very important for our theoretical model of

communication.

2.1.4 Interaction and coordination
As Weiß (1999) writes, the problems of DAI research are “centered around the elementary

question of when and how to interact with whom”. Singh (1997) and Huhns (2000) even go
as far as to plead for a new programming paradigm called interaction-oriented program-

ming. With a flavour very similar to our depiction of future complex applications in open

systems at the very beginning of the introductory chapter, they claim that viewing complex

software systems as collections of loosely coupled, communicating components is useful

beyond the realm of DAI.

But what is interaction, how does it relate to coordination, and what is the role of com-

munication in all this? A famous definition of interaction and coordination (Malone and

Crowston 1994) states that

An interaction can be viewed as a formalisation of a concept of dependence

between agents, no matter on whom or how they are dependent. Coordination

is a special case of interaction in which agents are aware how they depend on
other agents and attempt to adjust their actions appropriately.

It is important to note that interaction here does not imply real action (“inter-action” so to

speak), i.e. some form of actual behaviour of an agent towards another agent that affects
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one of these agents. Likewise, coordination only denotes an adjustment of the decision-

making processes of an agent that takes inter-agent dependencies into account. In fact,

there are many situations in which coordination is achieved without (or prior to) direct ac-

tion, e.g. by following fixed norms and rules that need not be communicated, by predicting

the other’s imminent actions from past experience, etc. Note also that coordination is a
neutral concept that subsumes the special cases of cooperation, collaboration, competi-

tion and open conflict.

In this very general sense, all of MAS research is or course somehow concerned with

interaction and coordination. However, a further refinement of these notions is necessary

to focus on the research problems the present thesis deals with, which we might term com-

municative interaction and coordination.

Communicative interaction and coordination focuses on communication between ar-

tificial agents as the primary means of interaction. The central question of “when and

how to interact with whom” can now be rephrased in more specific terms by asking

(Hewitt 1991)

What should be the communication mechanisms and conventions of civilised

discourse for effective problem solving by a society of experts?

Formulating this question not only implies a shift in focus towards communication, it also

marks a shift in the level of interaction one is dealing with, namely that the micro (agent

cognition) and meso level (communicative “face-to-face” interaction, negotiation, joint

planning and group formation) of multiagent systems are given more attention than the

macro level (role and capability assignment, definition of global norms, resource distribu-

tion, distribution of profit, communication language definition, etc.).

2.1.5 Agent communication
Two research topics play a major role for this level of interaction: Agent communication

languages (ACLs) and interaction protocols. As both are directly related to our research and

will be more closely reviewed in section 2.3, we only provide some very general remarks at

this point.

ACL research (see, e.g. Labrou et al. 1999, Kone et al. 2000, Dignum and Greaves

2000, Chaib-draa and Dignum 2002) focuses on the design, formalisation, implemen-

tation and verification of appropriate communication languages for agents. Languages

such as as KQML (Finin, Labrou and Mayfield 1997, Labrou and Finin 1997) and FIPA-

ACL (FIPA 1999a) describe what messages and message types are admissible in inter-agent

communication, how their content is structured and what format, transmission protocols

and physical communication channels agents have to use when exchanging messages.

Furthermore, these languages have to be given a precise formal semantics if agents are

to make sense of them.

Interaction protocols6 (Burmeister, Haddadi and Sundermeyer 1995, Fallah-

Seghrouchni, Haddad and Mazouzi 1999, Koning, Francois and Demazeau 1998,

Kuwabara, Ishida and Osato 1995, McBurney, Parsons and Wooldridge 2002, Pitt and

Mamdani 1999b, Quintero, Ucrós and Takhashi 1995, Schillo and Fischer 2001), on

6 We only distinguish interaction protocols from ACLs here for conceptual reasons – many would consider
protocol research as an integral part of ACL research.
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the other hand, define what sequences of messages are admissible in particular agent

interactions, and how the position of certain messages within a conversation affects their

meaning.

The most famous example for such protocols is the contract-net protocol (Smith 1980,

Smith and Davis 1981). This protocol describes how a manager who is to assign a task to

a contractor after receiving bids (e.g. prices of executing the task) from different agents

exchanges messages with those agents participating in the “contract-net”.

From the open systems viewpoint that we have argued for above, a particularly inter-
esting kind of interaction protocols is that of negotiation protocols (Raiffa 1982, Sandholm

and Lesser 1995, Jennings et al. 2001, Koning et al. 1998, Panzarasa and Jennings 2001,

Tamma, Wooldridge and Dickinson 2002). This is because, in the view of open MAS we

have developed and which ascribes a very high level of autonomy to every member of the

society, we have to espouse the “uncompromisingly individualistic” view Alonso (1998) al-

ludes to, according to which “societies are defined as entities reducible to the conjunction

of the commitments each agent has agreed on through negotiation” (ibid.).

Unlike other kinds of protocols, negotiation protocols are characterised by the distinct

property that their execution is supposed to lead to coordinated action. This coordinated

action is usually the result of a mutual agreement on the actions the interacting parties will

pursue. In the above example of the contract-net, manager and contractor agree (i) that

the contractor will carry out the task, (ii) that he will inform the manager upon completion

(or, possibly, failure) of the task, and (iii) that the manager will pay the negotiated price in

return. The essence of negotiation is that if it succeeds (i.e. if an agreement is reached and

kept), the interacting parties will commit themselves to a joint course of future action.

The importance of negotiation as the sole possibility of achieving coordination among

purely autonomous agents in open systems further narrows down the scope of our

work – essentially, we are trying to build agents that can negotiate effectively. How-

ever, we take a path different from devising appropriate “infallible” protocols that are

able to ensure fruitful cooperation, as attempted by the areas of automated negotiation

(Rosenschein and Zlotkin 1994, Jennings et al. 2001) and mechanism design (Fischer, Ruß

and Vierke 1998, Sandholm and Lesser 1995, Sandholm 1999).

Much of the motivation to do so stems from our study of social theory, and of the intro-

duction of certain notions of interactionist sociology to the world of multiagent systems.

The following section discusses the foundations of this interdisciplinary approach.

2.2 Interactionist Socionics
In this section, we attempt to provide an excursive introduction to interactionist sociology

and to analyse how fundamental insights of this school of sociological thought carry over to

the field of multiagent systems. Thereby, our central aim is to explain how a principled ap-

plication of interactionist theories aids in understanding interaction in open systems and

consequently in the construction of appropriate algorithms that agents can use to manage

their interactions.

We will first describe, in brief, the emergent discipline of Socionics, which includes

addressing the question “why sociology?”, since the choice of sociology as a source for in-

terdisciplinary work in conjunction with DAI – though not exactly far-fetched – deserves

some justification and explanation.
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The subsequent introduction to symbolic interactionism focuses particularly on the

theories of George Herbert Mead and Erving Goffman, which are foundational for the

methods we develop. Finally, we will formulate a list of assumptions for multiagent sys-

tems design that we have derived from interactionism.

2.2.1 Socionics
The term Socionics7 was coined by Thomas Malsch (Malsch 1998, Malsch et al. 1998,

Malsch 2001, Fischer and Florian 2003) for a new approach to combining sociology with

DAI. After a similar initiative had been started by a group of American computer scientists
and sociologists about ten years before the conception of this term (Bendifallah et al. 1988),

the “new” attempt set out on a more prestigious, methodologically elaborate endeavour.

According to Malsch (2001), three “references” provide the rules of the game for Socionics

research:

1. The use of computer models in sociological research (“sociological reference”),

2. the development of new techniques and methods in DAI that make use of sociologi-

cal theories (“computational reference”), and

3. the social impact of hybrid societies that consist of human and artificial agents

(“praxis reference”).

These references also define the research issues that constitute the quintessence of So-

cionics: social simulation, sociologically informed MAS and hybrid MAS.

The particular lure of such a scientific collaboration lies in the combination of two al-

most diametrically opposed disciplines such as sociology and computer science. This is

because, in Malsch’s view, in addition to a “simple” interdisciplinary exchange of methods,

the two fields have the potential to challenge central assumptions the respective other dis-

cipline takes for granted.

We will explain below to which degree this is true of the research results presented here.

As to the three references mentioned above, this thesis only deals with the second: so-

ciological theories are used to improve computational methods. Thus, the alleged cross-

fertilisation between the two disciplines is only visible in one direction in our work.

Why sociology?

Artificial intelligence has traditionally sought to exploit the theories, findings, and mod-

els of a variety of other disciplines8, such as philosophy (logic, knowledge representation,

automated reasoning), economics (decision and game theory), psychology (cognitive ar-

chitectures, planning, machine learning), linguistics (natural language processing) and bi-

ology (neuroscience, genetic algorithms, ant algorithms).

However, none of these disciplines deals principally with meaningful communication

among autonomous rational agents. While some communication-like phenomena are
treated in all these fields (for instance, proof games in logic, observation of actions in game

7 Following neologisms such as, e.g., bionics.
8 Russell and Norvig (2003) discuss the relationships between AI and these areas at length in their introduc-

tory chapter.
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theory, pheromone exchange in ant algorithms), none9 of them assumes that agents with

different motivations exchange a great variety of different, complex messages.

It is this aspect that makes sociology attractive for research in open multiagent systems:

the concentration on high-level communication between individuals, and the conception

of society as the sum of these communicative processes. More specifically, sociology as-

sumes a stance characterised, inter alia, by the following aspects that make sense for a

study of interaction in open systems:

Autonomy of individuals By the Gedankenexperiment of “double contingency” (Luh-

mann 1984), any two agents confront each other in full ignorance of what the other

will do, since, in principle any agent may do anything. Moreover, “ego” cannot even

know whether “alter” knows what “ego” will do! Although social expectations, norms

and other rules of interaction may provide some guidance in predicting each other’s
actions, and even though agents may appear to strictly follow socially constructed

“rituals” they are, in principle, free to act as they wish.

Communication and cognition People engage in communication to fulfil their needs and
goals, and they have the ability to reflect on their actions and on the effects of these

actions in a social context. Thus, “real” communication is not only an exchange of

“signals” that trigger certain reactions, its usage is mediated by thought.

Meaning in retrospect As future (inter)actions cannot be fully predicted among humans,

meaning can only be ascribed to actions retrospectively, after their effects have been

observed. In other words, analysing the effects certain communicative actions have

had in the past is the only clue we have when it comes to making sense of these ac-

tions.

The combination of these assumptions is not only in concordance with the assumptions

made in section 2.1 regarding open societies of artificial agents. Moreover, it allows us

to identify a focal point of research in open MAS, namely that of communication systems,

i.e. systems of evolving communicative processes among rational agents.

As we have pointed out in (Nickles and Rovatsos 2004), this leads us to formulate a re-

fined definition of Socionics. This definition is based on the insight that the core contribu-

tion of Socionics is to draw our attention to the empirical analysis of the communicative

processes that take place in an open system under the assumption that these processes

unfold among intelligent agents capable of goal-directed action and communication:

Socionics = empirical communication analysis + rational action

Of course, there are further reasons for using sociology, such as

• the huge diversity of theoretical work in this discipline,

• the fact that humans are able to perform well in society, and that sociology has the

ability to answer how this is achieved,

9 Social psychology and linguistic pragmatics are probably those sub-areas that are most close to these as-
sumptions. However, for our purposes, they are too much interested in either humans dealing with social
relationships or in the functioning of human language.
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• the fact that sociology is capable of dealing with the complexity of human society

which is one of the most complex systems known.

However, these would speak for an application of sociology to any kind of MAS; the more
specific arguments given above are particularly important for the open systems we deal

with in this thesis.

2.2.2 Interactionist sociology
Symbolic interactionism (Blumer 1962) is one of the main schools of American sociological
thought of the 20th century. While its roots lie in American Pragmatism (Nagl 1998), a

philosophical movement that emerged in the late 19th century with Charles Sanders Peirce

(1839–1914), William James (1842–1910), and John Dewey (1859–1952) as its most well-

known representatives, George Herbert Mead’s (1863–1931) “Mind, Self and Society from

the Standpoint of Social Behaviorism” (1934) is commonly seen as the book that laid the

foundations for symbolic interactionism in sociology.

Interactionism is mainly concerned with interactions between humans as the basic

building blocks of society. Its outlook on the individual is that of an intelligent being that

is capable of meaningful communication and that takes active part in social interaction

by interpreting “symbols” employed by others and employing these symbols in interac-

tion towards others in turn. Blumer (1986) summarises the core assumptions of symbolic
interactionism:

The first premise is that human beings act towards things on the basis of mean-

ings that things have for them [. . .] The second premise is that the meaning of

such things is derived from, or arises out of, the social interaction that one has

with one’s fellows. The third premise is that these meanings are handled in, and

modified through, an interpretative process used by the person in dealing with

the things he encounters.

These assumptions are made on the grounds that the use of language distinguishes man

from animal, and endows them with the ability to reflect upon their reactions to a per-

ceived situation. Mead, who was initially heavily influenced by behaviourism (at that time,

the leading school in psychology), identified the capacity of humans to share the percep-

tion of their own actions with others (initially, by hearing their own voice) as the reason for

this ability of reflexive thought. By understanding that different communicative symbols

have different effects on the listener, man is capable of mediating the “reflex arc” between

perceived stimulus and exhibited response with reflection, i.e. of manipulating his own

reaction in accordance with his needs. This conclusion led Mead to abandon the strict be-

haviourist position in favour of a theory of social behaviourism that included a notion of

human mind and how it is constructed through social interaction.
These views make clear why the resulting theoretical positions are often also referred to

as the interpretative approach to social action, according to which (Paetow and Rovatsos

2003):

• Action is inherently creative (Joas 1997), but must also always be seen as a process of

adjustment to the requirements of the current situation.

• Apart from the physical world, social actors live in a symbolically constructed world,

a “symbolic universe” (Strauss 1993).
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• Individuals act in a meaningful way, i.e. by producing and interpreting symbols.

• Society is conceived as an inherently dynamic process, and not as a fixed structure.

• Neither individuals nor society as a whole are at the focus of attention, but interac-

tion.

One of the central questions that arises from these assumptions is: How can collective so-

cial action be explained on the grounds of the interpretative processes the participating in-
dividuals engage in? Obviously, it does not suffice for such “joint action” (Blumer 1986) to

be a mere combination of individual actions – these actions must be “aligned” with each

other to make sense as collective action:

[A] joint action cannot be resolved into a common or same type of behavior

on the part of the participants. Each [. . .] necessarily occupies a different po-

sition, acts from that position, and engages in a separate and distinctive act. It

is the fitting together of those acts and not their commonality that constitutes

joint action. [. . .] Their alignment does not occur through sheer mechanical

juggling. [. . .] [T]he participants [must] fit their acts together (Blumer (1969,

p. 70), quoted from Strauss (1993, p. 40)).

This is where Pragmatist philosophy comes into play: to achieve such alignment and to es-

tablish reasonable social procedures, interactionism assumes that the process of scientific
discovery among a “community of investigators” called social inquiry (Dewey) carries over

as a general scheme for achieving consensus in human society. This process consists of the

following steps:

1. A felt difficulty, i.e. the shared perception of a problem.

2. Suggestion of a solution.

3. Development by reasoning of the consequences (examining the usefulness of a sug-

gestion by projecting its potential effects).

4. Conclusion of belief or disbelief (that is, the suggestion is adopted or discarded).

5. (Possibly) further experiments.

What Pragmatist philosophers proposed as a generic model for establishing truth10 is

taken as a general model for the evolution of social structures and processes by interac-

tionist sociology. Actors engage in communication and in the interpretation of communi-

cation until actions fit together in a “negotiated order” (Strauss 1978a, Maines 1982) which
is only an interim state until the next negotiation phase. In a much more general inter-

pretation than that of economics (where negotiation is usually associated with bargaining

over goods and services), “negotiations” are viewed as a constant “struggle over signs” in

10 In fact, Pragmatism denies any metaphysical or universal truth. Instead, it suggests that the ”truth” of a
concept or theory is the sum of its consequences and effects in everyday life, and that, eventually, it will be
established by its own success. A pluralist and fallibilist stance is assumed, which allows for a multitude of
(even seemingly conflicting) theories to co-exist at any point in time. Their existence as “working hypotheses”
is justified, even if they will be transformed, reconsidered or rejected in the future.
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interactionism, in which each agent seeks to establish his own symbols and meanings in

ongoing communication.

Conceptually, this seems to be an intuitively appealing and reasonably simple outlook

on social discourse. In order to understand how all this maps to the cognitive processes of

interacting individuals, we have to look into theories of how social action is organised in
the human mind. Mead and Goffman provide two such theories.

Mead: Mind, Self and Society

The central concept in Mead’s theory of social action is that of the self. Having a self means

being able to interact with oneself, and the self is the central mechanism that is used in

forming and guiding the conduct of a human actors (Blumer 1966). Blumer (1962, p. 181)

summarises the concept of self as follows:

In declaring that the human being has a self, Mead has in mind chiefly that the

human being can be the object of his own actions. He can act toward himself as

he might act toward others.

The rationale behind this claim put forward by Mead is that humans use significant sym-

bols, which are, in the most general sense, actions that “stand for” other actions11. In order

to anticipate the effects of uttering such a symbol, the individual must indicate to himself

what the symbol means:

What is essential to communication is that the symbol should arouse in one’s

self what it arouses in the other individual. (Mead 1934, p. 149)

Directing symbols to oneself in an introspective fashion requires (and precipitates, accord-

ing to Mead) that one has a model of oneself, and this delivers the primary justification of

the existence of a self. The self, however is not conceived of as a fixed structure, but as an

ongoing process. In Mead’s view, it is a process resulting from an (actor-internal) interac-

tion that can be analysed in terms of a triadic constellation of three elements: “I ”, “me”

and generalised other.

The “I ” is the centre of agent motivation that spawns the impulse to perform an action.

This impulse might be ignited by the physiological needs of the individual, by an ongoing

interaction, or by a pattern of cooperative behaviour (Turner 1988) that has been activated.

The “I” acts spontaneously (without any further reflection) and does not manifest itself at

any moments in time other than those in which it induces such an action impulse.
Hence, a second component called “me” is needed to observe the behaviour of the “I”

in retrospect from a certain distance and to contemplate on experienced motivations that

led to past actions. It serves different purposes (Paetow and Rovatsos 2003):

• In its capacity of mirroring the “I” as a self-conception, it can be used to reflect upon

the “I”. The “I” constantly “converses” with the “me” to identify how the current im-

pulse can be reconciled with past conduct.

• It contains the experience of past actions of the “I”. In fact, this implies that there

are several “me”s for the different situations in which the individual has experienced

different states of the “I” in the past.

11 Under consequentialist Pragmatist assumptions, “meaning of behaviours” subsumes “meaning of ob-
jects”, as consensual conceptions of objects are only defined in terms of how these objects are acted towards.
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Fig. 2.1: Mead’s four-stage model of the social act, adapted from Turner (1988).

• It incorporates own aspirations, needs and motivations as well as social expectations,

norms, beliefs, values and conventions and is thus able to explain how these two

sides were combined to yield the actions performed in the past.

To bring in the attitudes of a social context the individual is situated in, however, a third

component is necessary: that of the generalised other. This hypothetical, abstract other

belongs to the same social group or is otherwise characterised by sharing a common
set of social expectations, and plays a central role in the construction of the self. Only

through the generalised other can social control be exerted on the individual, can actions

be censored, can their sanctioning be anticipated, and can general values influence the

individual. Thereby, role-taking (Miller 1981), i.e. predicting how another person would

(overtly) react to one’s intended actions by (covertly) examining their effects on oneself, is

of paramount importance. As figure 2.1 illustrates, “I”, “me”, and generalised other interact

in the four stages of the social act until action is produced:

1. Impulse: The initiation of an act, caused by “[a] lack of adjustment and adaptation

to one’s surroundings” (Turner 1988, p. 32). This initiation is spontaneous and not

reflected upon; it occurs out of the needs of the agent or automatic reactions that are

generated in habitualised interaction.

2. Perception: Stimuli are perceived in the form of information about the objects and

the others that are relevant to the elimination of an impulse. Perception makes the

situation accessible for cognitive processing, and it also allows the individual to ob-

serve his own behaviour.

3. Manipulation: Through both overt action and covert thought (or “imaginative re-

hearsal”, as Turner (1988, p. 33) has it), the actor attempts to manipulate the current

flow of (inter)action which is blocked by the disequilibrating impulse. This may en-

tail several cycles of adjustment with increasing cognitive complexity, if the blockage

is hard to overcome. Of course, manipulation has to take the actor’s self-perception

and other perceived stimuli into account to achieve an appropriate adjustment.
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4. Consummation: The inhibition of action is overcome by identifying an appropriate

behaviour that achieves elimination of the disequilibrium. The expected reaction no

longer differs from the actual reaction of the other(s), a coordinated joint action has

been achieved, alignment is attained. Also, the “me” self-image(s) and generalised

other(s) are enriched with information from the newly experienced act. The degree
of consummation determines retrospectively (i) the relevance of objects and others

in the act, (ii) the level of conscious thought that is still necessary, (iii) the degree

to which the actor’s self-image is affirmed or modified through the new act and, of

course, (iv) the degree to which the initial impulse has been eliminated.

In habitual or routine interaction, the stage of consummation is reached without any sub-
stantial manipulation, while conflict requires “intelligent social reconstruction” (Campbell

1981), i.e. complex manipulation processes to achieve fruitful coordination.12

Mead’s model of social action is very powerful and very useful for understanding the

principles of social cognition from the standpoint of symbolic interactionism. However,

it fails to make the relationships between actions in more complex forms of interaction

explicit, since it always remains at the action-to-action level of analysis. This gap can be

bridged by looking, for example, at Erving Goffman’s concepts of frames and framing.

Goffman: Frames and Framing

Erving Goffman (1922–1982), an American sociologist who primarily engaged in analyses

of everyday interaction situations (carried out in extensive field studies), developed the

concept of frames as a metaphor for what defines a social context. In Goffman’s (1974, p. 8)

own words,

when individuals attend to any current situation, they face the question “What

is it that’s going on here?” Whether asked explicitly, as in times of confusion or

doubt, or tacitly, during occasions of usual certitude, the question is put and

the answer to it is presumed by the way the individuals then proceed to get on

with the affairs at hand.

Thus, frames can be used as schemes of interpretation for the current interaction situation

that allow the individual to act “appropriately”, i.e. in a competent, routine fashion. They

are applied as “patterns of meaning” that reflect complex expectation structures and con-

tain representations of interaction knowledge derived from experience that feed into and

inform future interaction processes (Paetow and Rovatsos 2003).

Framing, on the other hand, is the individual or collective process of activating and ap-

plying frames. It occurs whenever the actors participating in an encounter interpret the

situation according to the available frame “arsenal”, and exploit the knowledge contained
therein to guide and assess their own behaviour and that of others. Of course misfram-

ing is a common phenomenon, and is seen as a primary source of interaction problems.

Although some divergences in the frames activated by interactants may go unnoticed13,

others may lead to an inhibition of the flow of interaction or even to open conflict.

12 See (Paetow and Rovatsos 2003) for a detailed discussion of the interplay between routine and conflict
interaction.

13 Just think of a person who is bluntly criticising another, whereupon the person criticised laughs out loud
(wrongly) thinking it was meant to be a joke.
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In his opus magnum, Goffman (1974) describes and analyses a great variety of different

kinds of frames. Among more standard kinds of interaction, he discusses such phenomena

as “stunts”, “muffings”, “daydreaming”, “contests”, “ceremonials”, “practicings”, “demon-

strations”, “role-playing” (in psychotherapy), and “experiments”, that are usually consid-

ered rather marginal or even extravagant forms of interaction. These examples, however,
serve as illustrations for the vulnerability of frames, i.e. to express how much framing can

be affected by manipulations (so-called keyings, fabrications, designs, re-groundings, etc.)

they become subject to.

The anthropological stance that is assumed by Goffman adds an additional, very dis-

tinctive flavour to his outlook on interaction. Here, in keeping with the interactionist tra-

dition, the individual is a homo significans14 whose understanding of the social world is

guided by the meanings of significant symbols. Moreover, Goffman emphasises the dra-

maturgical aspect of human behaviour (Goffman 1959, Hitzler 1992). In his opinion, peo-

ple “play” their role in “interaction rituals” strategically in order to cope with the problems

they have to confront in everyday interaction.

For our purposes, Goffman’s concepts of frames and framing are important as they sup-

plement the Meadian notions of self and social action and vice versa: Mead’s model of the
different stages of social action and how they evolve through the interaction between “I”,

“me” and generalised other provides a very concrete process model for social reasoning.

In principle, it can readily be operationalised for computational purposes step by step.

Frames, on the other hand, are the data structures, so to speak, that can be used to rep-

resent different types of interactions. They allow for a combination of individual actions

to form complex trajectories, and, unlike the restricted micro-models of individual actions

in the Meadian view, frames can be used to include context information in order to ob-

tain descriptions of complex interaction settings. Also, frames allow for generalisation over

different interaction situations; they can be used to abstract from the details of concrete

actions and reactions to extract more widely applicable patterns of interaction.

In the following section we depart from the realm of sociology and discuss the impli-
cations of using interactionist theories (and more specifically, the concepts of Mead and

Goffman just laid out) for building agents that can successfully operate in open MAS.

2.2.3 Implications for our research

Quite a number of researchers have advocated the use of symbolic interactionism in multi-

agent systems in the past. Before introducing our own list of assumptions and the research

agenda that results from them, we shall briefly review existing work in DAI that utilises in-

teractionist principles so that we can make explicit reference to them where necessary (in

particular, to distinguish our own approach from existing work).

14 We use the typology proposed by Reckwitz (2000), who distinguishes between this culture-theoretic notion
of homo significans and two other types of explanation frameworks for social action: the homo oeconomicus
model, according to which actions are chosen because they appear to be most profitable for the individual,
and the homo sociologicus, by which social behaviour is explained on the grounds of sanctioned expectations
or internalised norms.
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Interactionism and DAI

Kornfeld and Hewitt (1981) were the first ones to make use of the scientific community

metaphor in the construction of DAI systems that bears strong resemblance to the “com-
munity of investigators” idea in Pragmatism. Their system consisted of experts who inter-

acted to find the best solution to a given problem by making suggestions, criticising them,

etc.

Another early advocator of interactionism in the DAI community is Les Gasser. The

MACE system (Gasser, Braganza and Hermann 1987a, Gasser, Braganza and Hermann

1987b) included both notions of (i) “social worlds” (Strauss 1978b) operationalised as

knowledge-level agent boundaries (Carley and Gasser 1999), and (ii) explicit models of

other agents called “acquaintances” that allowed agents to model the skills, roles, and

knowledge of other agents. Gasser has also argued elsewhere that this is a crucial step

to achieve “taking the role of the other” (Gasser 1991, p. 133). A more recent advocator of

role-taking, but also of other Meadian concepts was Craig (1994), who elaborated a full-

fledged model of the self to be used in MAS. Unfortunately, to our knowledge, there exists
no account of systems that were actually built using this model.

Strübing (1998a, 1998b) investigates the potential of symbolic interactionism for MAS

research and provides an in-depth analysis. Among other issues, he ponders on the possi-

bility of “real” symbolic interaction among machines, discusses (and confirms) the suit-

ability of interactionism for open systems, the adequacy of the “negotiated order ap-

proach”, etc. Burke (1995) makes the case for a “social AI” as a new approach to general AI

problem-solving and draws largely upon interactionist theories. He conjectures that reflec-

tive interaction may be the way to solve many problems that remain unsolved in present

AI.

To our knowledge, Goffmanian theories have only been used by (Chicoisne and Pesty

1999) in MAS to date. However, as these authors only use Goffman’s “theory of faces”, their
work is not directly related to our discussion of frames and framing.

A list of assumptions

We will now present the assumptions that result from the discussions of open MAS, So-

cionics and interactionist sociology in sections 2.1.3, 2.2.1 and 2.2.2. Although many of

them may appear to follow trivially from the above considerations, the formulation of
a comprehensive list of the principles underlying our research is not only a matter of

methodological clarity; it also serves as a starting point for the research agenda pursued

in this thesis.

Assumption 2.1: Agents and their environment

Agents are situated in an uncertain, dynamically changing environment. They obtain in-

formation about the state of the environment through perception and they can manipulate

it through physical action. Perception and action provide only partial/incomplete informa-

tion about and control of the environment. Perception may be incorrect, action execution

may fail. Interaction with the environment is persistent i.e. we assume that agents will

continue to operate in their environment for a very long time in the future.

Assumption 2.2: Agent deliberation and rational action

Agents have preferences regarding different states of the environment, and they strive to
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achieve those states that are most desirable to them. To this end, they deliberate, i.e. they

take action to achieve their goals, and their decisions are rational in this sense (they are

not directly influenced by other external factors). They may have different (conflicting)

goals at a time, and they may pursue several goals in parallel. They revise the status of goal

achievement upon incoming new information.

Assumption 2.3: Causal models of the world

As the world changes and is not entirely predictable, it is useful for agents to organise their

knowledge of the world in some kind of causal model in order to achieve effective goal-

directed action. Such cause-and-effect models may be encoded in logical rules, statistical

distributions or any other appropriate representation, and they may be hard-coded offline

or learned from observation. In a dynamically changing environment, the capability to
learn such models is certainly an advantage.

Assumption 2.4: Interaction with other agents

The environment is co-inhabited by a population of other agents who may enter or leave

it at any point in time. The agents need not be designed identically, and their internal

design is opaque to other agents – all agents perceive of other agents are their overt actions.
However, agents’ actions have effects on each other’s goal attainment, agents are inter-

dependent.

Assumption 2.5: Communication

Agents may communicate with each other through a direct exchange of messages. Mes-

sages are different from other (physical) actions executed to manipulate the environment

in three ways: firstly, the autonomy of the recipient of the message stands in contrast to
the (rather mechanical) rules that govern physical environments. Agents who receive mes-

sages are free to fulfil or disappoint the expectations associated with them. Secondly, com-

munication postpones “real” physical action15: it allows for the establishment of causal

relationships between symbols and subsequent symbols or physical actions, so that sym-

bols may “stand for” other symbols or actions (and have no other significance in physical

terms). Thirdly, we can assume that agents have an infinite repertoire of different messages

at their disposal, as these can be distinguished by different symbolic content. At any point

in time, they can come up with new symbols.

Assumption 2.6: Communicative expectations

To predict system behaviour, it is not only useful to build causal models of the physical

environment, but also of other agents. Whenever such models refer to messages or publicly

perceived physical actions as causes or effects of the behaviour of other agents and the

environment, we refer to them as (communicative) expectations.

Assumption 2.7: Generalisation of expectations

To manage cognitive complexity, the cognitive representations of expectations must gen-

eralise from individual observations of interactions by grouping together similar experi-

ences in descriptions of categories of similar interactions. In particular, on the grounds

of a homogeneity assumption among all agents (which assumes that they are all rational,

15 Of course, messages are physical actions in real terms. Usually, though, the exchange of messages does not
have a strong, immediate impact on the physical environment with respect to goal achievement of the agents
involved.
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knowledgeable and capable of meaningful symbolic communication), descriptions of ex-

pectations abstract away the individual actor and replace him by a whole set of agents.

Assumption 2.8: Individualistic, strategic view of communication

From an “agent rationality” standpoint, the foremost function of communication lies in

providing such a causal model for the behaviour of other agents that an agent can use in

a similar way as rules that he discovers regarding the physical environment. Information

about patterns of interaction and knowledge about the rules that govern the communica-

tive behaviour of agents can then be used strategically by the agent to achieve his private

goals.

Assumption 2.9: Empirical, constructivist and consequentialist semantics

In accordance with interactionist theory, the meaning of symbols used in communication

is defined through their effects, i.e. we have to adopt a consequentialist outlook on commu-

nication semantics. We can distinguish between first-order effects (the immediate reaction

of others to an utterance or action) and second-order effects, i.e. the way the expectation

structures themselves are modified by the agent’s current action. Also, since meaning is

reflected by the expectations formed by an agent using information about communication
observed in the past, it is always subject to the way expectation structures are construed

by the agent. In particular, expectation structures do not only depend on his observations,

but also on his own goals and motives. This leads to an empirical and constructivist view

of meaning.

Assumption 2.10: Autonomy vs. predictability.

To perform well, agents should attempt to reduce the uncertainty associated with commu-

nicative expectations in the long run. At the same time, the agent himself seeks to max-

imise his own autonomy, he wants to be free to take any decision at any time to achieve

his own goals. As expectations are generalised, this means that the agent’s autonomy is a

threat to his own predictability for others. A dilemma arises: ideally, an agent’s peers would

react to a message in a mechanised, fully predictable way so that any contingency about

their behaviour can be ruled out.16 The essential question thus becomes “How can others

be made to respond in a predictable way while the agent himself might change his mind and

break existing expectations?”

Taken together, these assumptions enable us to formulate a research agenda for the re-

maining chapters that explains which methods we use and what their scope is:

• We restrict our analysis to the micro-level of “face-to-face” agent interactions, in

which agents respond to each other’s utterances in a timely fashion. For agents to

be able to correctly perceive and process an interactive encounter, this implies that
interactions only take place among a limited number of agents, and that they have a

fairly limited duration.

16 This is a strongly simplified view. Weick (1979), for example, argues fervently that unpredictable behaviour
of individuals largely contributes to the viability of organisations. Sociological systems theory (Luhmann 1995)
suggests that deviation of behaviour from existing expectations is the prime source of innovation in society.
We will assume that the agents under analysis in this work do not have the farsightedness to trade current
contingencies in the other’s behaviour for potential future innovation this other might provide through his
deviance.
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With respect to assumptions 2.4, 2.5, 2.6 and 2.7, this means that expectations must

be formed out of the message sequences perceived in such encounters so that they

can be strategically employed in future communication (assumption 2.8).

• The formation and generalisation of expectations (assumptions 2.6 and 2.7) is ac-

complished through a computational model of frames that represent communica-

tion patterns. Strategic construction and usage of frames (assumptions 2.8, 2.10) will

be realised by a computational operationalisation of framing.

Since Goffman does not provide an explicit process model for framing, Meads model

of impulse-perception-manipulation-consummation will be used in the framing

process to the end of balancing private goals with social expectations as represented

by existing frames (see assumptions 2.2 and 2.10). As the use of communication sym-

bols affects future semantics, meta-strategies such as “using symbols consistently”

must be used that help ensure the emergence of a suitable “grammar of interaction”
(assumption 2.9).

This links the material discussed in the previous sections to the contributions summarised

in section 1.2 and explains how interaction frames and framing fit into our overall goal

of developing novel methods for effective interaction management in open MAS. It also

completes our account of background knowledge from the areas of multiagent systems

and interactionist Socionics that was necessary to understand the work presented in the

remaining chapters. Next, we shall take a closer look at related research themes.

2.3 Related Research Themes
As the contributions listed in section 1.2 suggest, the relationships between our research

and other areas are manifold. Although we will refer to individual research results of others

that are relevant to ours where appropriate in later chapters, we would like to mention the

most prominent research themes in the following pages to set the scene for the methods

and results presented in the remainder of this thesis.

To guide this discussion, we will use the illustration in figure 2.2. It groups different

themes round a schematic view of the aspects we are concerned with. Each research theme

is cast in the context of interaction frames and framing by relating it to different parts of

the system view assumed for our study of these notions. We will now discuss these rela-
tionships in detail.

2.3.1 Agent architectures, rationality and learning
Interaction frames and framing are employed to achieve intelligent social reasoning and

learning. This implies devising an agent architecture that is endowed with these capabili-

ties. If we view frames as knowledge-level structures that contain information about past

communication processes, framing can be seen as the activity of using observed patterns

and regularities to achieve one’s goals. This view connects our work to different themes of

research in agents and agent architectures.
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Fig. 2.2: Relationship between society-level (top) and agent-level (bottom) aspects of in-

teraction frames and framing (middle) to various research themes (left and right).

Multiagent learning

The relationship to multiagent learning (Sen and Weiß 1999) is the most obvious: In our

frame-based approach, agents collect information about how they and their peers have

interacted in the past, and apply this information to achieve a better standing. As is shown

in figure 2.2, this means that social observation is organised into interaction frames , which

are then used for social action.

Among the different approaches to multiagent learning, the frame-based approach re-

sembles most work done in the area of “opponent modelling”. This area concentrates

on the study of how agents can learn their opponents’ preferences (Bui, Kieronska and

Venkatesh 1996), their strategies (Carmel and Markovitch 1996, Freund et al. 1995, Vidal

and Durfee 1997), the outcomes of joint actions, or all of these (Rovatsos and Lind 2000).

Most of the time, these models are also used to derive an optimal strategy towards the op-

ponent.

The majority of these multiagent learning approaches adopt a heavily cognition-biased

view of learning, which aims at extracting as much information from observation as pos-

sible about an individual. However, in large-scale, open MAS, in which agents have only

occasional encounters with peers they are acquainted with, learning models of individual

peer agents may not be feasible. This is because the cost of acquiring and maintaining an
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adequate model of the other normally outweighs its potential benefits if the probability of

interacting with that same agent in the future is not very high.

This problem has been one of the main motivations to develop methods that are con-

cerned with a more social view of opponent modelling. Rather than focusing on the spe-

cific properties of particular agents, frame-based learning is concerned with learning the

behaviour of agents in certain classes of interactions. It is this aspect that makes our ap-
proach distinct from other work in multiagent learning.

Balancing individual with social rationality

The fact that the learning data used by agents to extract regularities in interaction stems

from non-local processes while decision-making is a local activity raises the question of

how individual rationality can be balanced with social coherence. In fact, this is one of the

main and most profound questions of MAS research: how can globally coherent behaviour
be achieved among egotistical agents, who are only concerned with the pursuit of their

own goals?

Trying to solve this problem by devising a new agent architecture brings us to the realm

of layered agent architectures such as InteRRaP (Müller 1997, Jung and Fischer 1998) and

Touring Machines (Ferguson 1992, Ferguson 1995), These architectures combine compo-

nents for reactive behaviour and individual means-ends reasoning with components that

cater for social coordination (joint planning, interaction protocols, etc.). Architectures

specifically designed for layered learning (Stone and Veloso 1996, Stone 2000, Rovatsos and

Lind 2000) also bear some relation to the architecture proposed here, although we do not

consider learning at any level other than that of social interaction.

In the InFFrA architecture (cf. chapter 3) developed in this thesis, the existence of a

sub-social rational reasoning component is assumed that is loosely coupled to the social
reasoning layer. In the implementation of the InFFrA-based LIESON system (see section 6.1),

we have used a Belief-Desire-Intention (BDI) reasoner for this sub-social reasoning level,

but this choice is not mandatory.

The BDI model (Bratman et al. 1988, Georgeff and Lansky 1987, Rao and Georgeff 1992)

is probably the model of rational agency that is most widely accepted in the MAS commu-

nity today. It originates in the theory of human practical reasoning proposed by Michael

Bratman (1987). According to this model, agents maintain beliefs about the state of the

world and have desires regarding which world states to achieve. Once they commit them-

selves to fulfilling certain desires, they generate intentions to work towards these desires

(Cohen and Levesque 1990a). Additional constraints ensure that BDI agents only deliber-

ate in a reasonable way, for example by halting the execution of plans that have failed, by

abandoning goals that cannot be achieved anymore, and by ignoring intentions that would
lead to world states already achieved.

InFFrA extends the generic BDI model by showing how interaction patterns in the form

of interaction frames can be integrated in it. Basically, this involves employing interac-

tion frames as “social plans” in agents’ local planning activities. The need for integrat-

ing social capabilities with BDI reasoning has been long identified (originally in the works

on joint intentions by Cohen and Levesque (1991), but also in more recent contributions

(Panzarasa, Norman and Jennings 1999, Panzarasa, Jennings and Norman 2002, Dignum

and van Linder 2002, Dignum et al. 2000)). However, to our knowledge, the work of Das-

tani and colleagues (Dastani, van der Ham and Dignum 2002) is the only approach to date
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in which agents engage in interaction procedures depending on how the effects of these

procedures affect their goals.

Cognitive architectures & knowledge representation

Cognitive architectures like ACT-R (Anderson and Lebiere 1998), SOAR (Laird, Newell and

Rosenbloom 1987, Newell 1990), and PRODIGY (Carbonell, Knoblock and Minton 1989)

are concerned with “the creation and understanding of synthetic agents that support the

same capabilities as humans” (Langley and Laird 2002). Thus, they are at the core of the

AI endeavour, especially because, in contrast to other, specialised methods, they aim at

covering a broad range of these capabilities.

As mentioned in the remark regarding our “mixture of methods” (section 1.2, p. 6), our
work certainly is in this same spirit, albeit we do not claim that the notion of interaction

frames is suitable for any other general-purpose cognitive functions than those pertaining

to social cognition. Also, we are not interested in “psychological adequacy”, i.e. in simulat-

ing human cognitive functions.

For its use of case-based reasoning (Kolodner 1993, Aamodt and Plaza 1994, Watson

and Marir 1994) methods in planning, the PRODIGY (Carbonell et al. 1989) architecture is

probably the cognitive architecture that is most similar to ours. In PRODIGY, new planning

operators can be derived from observation, and they are also assessed with respect to their

usefulness. The same holds for InFFrA , except that instead of “operators” in the planning

sense, “interaction practices” are observed and employed to achieve one’s goals. However,

planning in the sense of an intelligent combination of of agents’ actions as it is common in

standard AI (cf. chapter 11 in (Russell and Norvig 2003)) is not the focus of our approach.
The reason for this is that communicative action, as it hardly depends on environmental

conditions (other than the existence of a sender-receiver situation) allows for huge degrees

of freedom, since what is “said” has little direct influence on what will be “done”. Therefore,

we are less concerned with the problem of finding good joint plans and agreeing on them17

and more with recognising the intentions of other agents given their utterances.

This also explains the use of interactionist theories which are necessary to understand

the “pragmatic” meaning of messages that enables us to instrumentalise communicative

processes. Since the relationship to sociology has been discussed in depth in section 2.2.2,

we omit further details at this point.

Finally, the use of the term “frame” requires some clarification when speaking of cog-

nitive architectures, since it has a long-lived tradition in classical AI and cognitive science.

The notion of frames proposed by Minsky (1975), which was very influential for the field

of knowledge representation, is a much stronger concept than our version of “interaction
frame”. In his understanding, a frame is “a representation of an object or category, with

attributes and relations to other objects or categories” (Russell and Norvig 2003, p. 366).

This is only true of interaction frames in a very restricted sense, namely that they do rep-

resent such objects, yet that these objects exclusively contain information about “scripts”

(Schank and Abelson 1977) of interaction processes. In other words, we do not claim that

interaction frames are a concept for general-purpose knowledge representation like Min-

sky’s frames.

17 Work on distributed and multiagent planning abounds. Durfee (1999) provides a recent overview. Other
common approaches are those of Decker (1987), Durfee, Lesser and Corkill (1992), Yokoo et al. (1992), and
Durfee and Lesser (1991).
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Decision theory and game theory

Quite naturally, the attempt to derive computational models of optimal behaviour and of

how it can be achieved in uncertain, complex domains brings us to the realm of decision-

and game-theoretic approaches, which is the last of the research themes we would like to

mention in the “social reasoning” context. Decision theory and game theory (Fudenberg

and Tirole 1991) address problems of rational decision-making in the context of available

(often imperfect) information, given (i) action options, (ii) their potential (often uncertain)

effects, and (iii) actors’ preferences regarding these effects. The success of decision and

game theory in MAS research (see (Fischer et al. 1998, Sandholm 1999) for overviews) is

mostly due to the fact that they allow for a modelling of interaction situations with great

mathematical rigour. Also, they provide simple, verifiable and very general principles of ra-

tionality and optimality along whose lines very generic models of decision-theoretic agents
can be built, for example (Russell and Wefald 1991, Russell and Subramanian 1995).

We apply methods that originate in this area to model interaction situations as mul-
tiagent games, in which agents attempt to learn optimal strategies from experience. For

this, they consider their own past actions and those of their peers, and, of course, rewards

obtained in the past. While this is the standard setting for multiagent reinforcement learn-

ing (MARL), as studied, among others, by Claus and Boutilier (1998), Boutilier (1999), Hu

and Wellman (1998), Littman (1994), Tan (1993), Crites and Barto (1996), and Weiß (1995),

we have identified a need for modifying the classical MARL model for our purposes. This

need springs from our concentration on communicative processes (rather than models of

general action in state-based domains) which induce certain special properties on the de-

cision models that have to be used to adequately capture rationality in agent architectures

based on interaction frames. Our efforts to adapt the MARL model to suit our purposes

have resulted in the aforementioned notions of social abstraction and transient social op-
timality (cf. page 7). These notions imply, in a sense, a revision of certain principles of

rationality that are widely accepted in the fields of AI and machine learning.

2.3.2 Norms & communication semantics
Apart from the topics discussed above, which are mostly related to agent-level research

problems, there is a number of themes the connection between which and our work only

becomes obvious when adopting a “bird’s eye”, global view of frame-based systems.

Two categories can be distinguished among these: the more general issue of norms

and their evolution and, with a focus on a more specific kind of norms, that of communi-
cation semantics. A separate section is devoted to interaction protocols, which can be seen

as system-wide norms at a more practical level, because they are more closely related to

interaction frames.

Norms, norm autonomy and norm evolution

The relationship between interaction frames and work on social norms in MAS (Conte and

Castelfranchi 1996, Castelfranchi 2000, Conte and Dellarocas 2001) springs from the fact

that interaction frames are used as normative knowledge to guide future social behaviour,

and that they are the result of observing recurring patterns of interaction. However, the
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term expectations (Luhmann 1995, Brauer et al. 2001, Lorentzen and Nickles 2001, Nick-

les and Rovatsos 2004) is actually more suitable than that of norms, because interaction

frames allow to capture the whole spectrum from cognitive to normative expectations.18

Among the literature on norms, we can further identify a more specific sub-theme,

which is that of norm autonomy (Verhagen 2000), i.e. the autonomous adoption and re-

jection of certain norms from the standpoint of rational agents.

Rather than investigating the global effects of norms (a path often pursued in the area of

multiagent-based social simulation (e.g. Saam and Harrer 1999, Conte and Castelfranchi

1996, Castelfranchi 2000) (see also section 2.1.2)), there is a growing literature on when,
why and how agents should adopt existing norms (Verhagen 2000, Sartor 2001, Dellarocas

and Klein 2001, Castelfranchi et al. 1999). The work presented here is along these lines –

it considers expectations about social behaviour as given (regardless whether these stem

from observation or are pre-structured) but not as unquestionable. Although agents are

not likely to modify global expectations (viz. interaction frames) in the rather restricted

scope of their decisions and actions, they may choose to deliberately break them in order

to achieve their goals, if this seems appropriate. From a norms perspective, we therefore

adopt an agent-centric view (Alonso 1998, Alonso 1999) that focuses on how agents can

take knowledge about the social context into account when devising an individual agenda

in a strategic way (rather than developing top-down models of how agents should balance

existing social norms with their own goals (Hogg and Jennings 1997)).

This “autonomy in the face of social expectations” is one of the distinctive features of

our approach. It is the result of developing methods for local reasoning about expectations

resulting from social processes. Since agents may deviate from existing expectations, there

is a chance that existing norms may change, i.e. our view implies an evolutionary outlook

on norms. This norm evolution is closely related to the evolution of the meaning of com-

munication, which brings us to the second norm-related theme, namely communication

semantics.

Communication semantics

In social theory, all norms eventually boil down to communicative norms, i.e. any social
expectation is reflected in some communicative behaviour of the members of a society.

Conversely, we might ask “what is the meaning of communication in the face of social

expectations?” Adopting this perspective, frames can be turned into knowledge about the

meaning of communicative actions (rather than social plans or interaction patterns). This

is because they capture information about and empirical evidence for the consequences of

communication, and from an agent point of view, the effects of utterances are what matters

about their semantics (cf. our assumptions in section 2.2.3).

It is very important to understand that adopting this communication view on frames

does not merely constitute a purely theoretical re-interpretation of their function. Quite

the opposite is the case: this view is of vital importance for a full understanding of inter-

action frames, because learning and applying frames means constantly (re-)constructing

the meaning of agent communication. This aspect is captured by the notion of empirical

semantics that we propose for agent communication (see section 4.1). This notion is based

18 Cognitive expectations are expectations that are adapted according to observed, whereas normative ex-
pectations are (rather) immutable.
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on constructing statistical models of meaning which are derived through an application

of principles stemming from different sociological schools of thought, all of which share a

constructivist foundation (the theories of Mead and Goffman, but also sociological systems

theory (Luhmann 1995)).

The empirical semantics approach is most easily explained as “defining the meaning of

communication through its consequences”. These consequences are the effects of utter-

ances as experienced by those participating in and observing communicative processes in

a given social context. As mentioned in section 1.2 (p. 7, this implies an evolutionary view

of semantics, since agents constantly change communicative expectations through their

actions.

Most of the existing ACLs (such as the languages KQML and FIPA already mentioned

in section 2.1.5) and hence also most frameworks for ACL semantics use speech act theory

(Austin 1962, Searle 1969) as their theoretical foundation.

Speech act theory is based on the principle of viewing messages as actions. Thereby,

it distinguishes between locution (physical utterance), illocution (desired effect) and per-

locution (achieved effect) when analysing the meaning of a message. Describing the

semantics of an ACL used in a MAS successfully mainly depends on whether the link

between illocution and perlocution can be explained, i.e. whether we can describe the

effects of utterances (those desired by the sender and those brought about by the re-

cipient of the message) solely in terms of the speech acts used. Various proposed se-

mantics suggest, however, that it is necessary to either resort to the mental states of

agents (Cohen and Perrault 1979, Sadek 1991, Cohen and Levesque 1990b, Singh 1993, Co-

hen and Levesque 1995, Kumar et al. 2002) or to publicly visible commitments (Pitt
and Mamdani 1999a, Pitt and Mamdani 1999b, Rimassa and Viroli 2002, Fornara and

Colombetti 2002, Guerin and Pitt 2001, Singh 2000) in order to capture the semantics of

speech acts, i.e. to aspects of the system that are external to the language itself.

Unfortunately, in open MAS, which are the target domain for the methods we propose,

it is not clear how specifications of mental attitudes or social commitments can be linked

to the observed interactions. As mentioned before (section 2.1.3), these systems are char-

acterised by dynamically changing populations of self-interested agents whose internal

design is not (completely) accessible from the other agents’ or their designers’ point of

view. How can we make predictions about agents’ future actions if the semantics of their
communication is defined in terms of mental states or commitments not related to the de-

sign of these agents? The only hypothesis we can form is that the effects messages have

had in the past are representative for their future effects, and this forces us to employ an

empirical approach.

In fact, our theory of ACL semantics is therefore less closely related to ACL research

than it is to the language evolution theme. From a linguistics perspective, what we attempt

to use as a semantic model for communication is an “empirical pragmatics”, even though

our motivation is not, as that of linguists’, to understand how (human) language works.

This is reminiscent of the works on robotic language evolution by Luc Steels (1998) and

his group19, in which robots were made to learn common vocabularies of objects they per-

ceive by exchanging imaginary strings when talking about them. In contrast to these works,

we are neither interested in robotic perception of objects and concept formation nor in

19 The interested reader may consult (Steels and Vogt 1997) and (Steels 2003) for excursive summaries of this
research.
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negotiating words for these. Rather, we are interested in agents who negotiate the seman-

tics of messages in the context of interaction flows to achieve fruitful coordination. As we

are only concerned in the function of messages as “markers” for different paths of inter-

actions, we also ignore issues such as syntax (but see Gmytrasiewicz 2002, Gmytrasiewicz,

Summers and Gopal 2002). Ultimately, we hope to prove that agents can develop emergent
ontologies (Maedche and Staab 2001, Behrens and Kashyap 2002) of interaction by using

the empirical semantics approach.

Interaction protocols

In the previous paragraphs, we have argued that interaction frames are abstractions of cer-

tain classes of interactions and that they should guide agents’ behaviour in a given social

context. Pragmatically speaking, this perspective seems very similar to that of interaction

protocols, which are the primary means for managing communication processes in MAS

in the traditional view (see section 2.1.5).

Interaction protocols have two primary functions: Firstly, they define admissible mes-

sage sequences (by means of state-chart diagrams, finite automata or other representa-

tions). The fact that they are common knowledge among agents renders agents capable

of understanding the meaning of a specific message in a conversation. Secondly, they de-
scribe the control flow model of (a restricted kind of) conversations, so that agents can

plan their communicative actions in a same way as they plan physical actions.

In the face of these characteristics, one is tempted to ask “Is ’interaction frame’ no more

than a different name for ’interaction protocol’?” This is not true for several reasons:

• Frames are not globally pre-defined, definite patterns of conversations. Although

there might be some a priori information about existing frames, they are cognitive

constructs, adopted and adapted according to the choices of the individual.

• Frames need not be as strict as protocols. Instead of defining precise message se-

quences, they might contain only rough constraints regarding the properties of a

class of interactions (which makes them much more similar to conversation policies).

In particular, frames may be refined while they are being executed, as new informa-

tion comes in.

• Frames contain information concerning the “environment” of the communication

process, i.e. information that not only explains which messages are being uttered.

This may be information about participating actors and their mental states and about

physical conditions that are necessary for the frame to be executed (cf. chapter 3).

• Frames can be broken. If an agent deviates from the admissible sequences a protocol

defines, we consider the protocol execution to have failed (the conversation ends, a

message is thrown, etc.). In the framing view, agents must cope with deviance on the
side of others, they must somehow react to it, and, ideally, they should incorporate

the unexpected behaviour of the other in their long-term strategies.

• Frames evolve. Unlike protocols, frames may change over time: new frames may be

constructed, obsolete ones may be deleted, the categorisation of different situations

into a set of frames may be revised, etc. This requires that the experience with certain

frames is stored with them, which clearly distinguishes them from protocols.
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That said, MAS in which agents employ protocols instrumentally according to their private

goals (see, for example, Dastani et al. 2002) and that offer a fixed set of immutable pro-

tocols might count as very simple frame-based systems in a very lenient view. But even

such systems would not count as “almost frame-based” if agents in them do not store their

experiences with the protocols and exploit this experience (and they would still lack the
important emergent character of truly frame-based MAS).

2.4 Summary
This chapter laid out the background knowledge necessary to understand our approach

and how it relates to different disciplines. We first introduced the fields of Distributed Arti-

ficial Intelligence and Socionics and then gave an overview of interactionist socionics, the

branch of Socionics that uses computational models informed by the sociological theo-

ries of symbolic interactionism. Since the theories of Mead and Goffman serve as starting

points for the social reasoning architecture we propose, these theories were given particu-

lar attention. This discussion resulted in a list of assumptions that underlies the material

presented in subsequent chapters.

To understand how our research fits into the state of the art in multiagent systems re-

search, an extensive survey of related themes was included, our primary intention being to
show analogies and differences to other work that deals with similar issues, such as social

learning, strategic communication and rational agency.

A core insight from this analysis is that interaction frames and framing are novel con-

cepts for DAI that can be valuable in the process of devising socially intelligent agents ca-

pable of successful operation in open MAS, because they rest on assumptions that are par-

ticularly well-suited for the problems associated with this kind of systems. The following

chapters will show how this can be done in practice.
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3. The InFFrA Abstract Agent
Architecture

The Interaction F rames and Framing Architecture InFFrA is an abstract agent architecture

based on the concepts of frames and framing. It provides a schema for building social
reasoning components for agents who store and organise their interaction experience in

the form of frames and employ these frames strategically in interaction situations. InFFrA
is abstract in the sense that it does not include specifications of concrete, implementable

data structures and algorithms (like, for example, the m2InFFrA model proposed in chap-

ters 4 and 5). It rather defines a generic framework based upon which concrete methods

can be developed. The architecture consists of two main elements:

1. A model of computational interaction frames that describes the information nec-

essary to adequately capture the nature of different patterns of interaction among

agents.

2. A control flow model for framing that addresses the computational processes needed

to process and apply interaction frames.

To give a feel for the kind of knowledge captured by frames, we will first present an intuitive

example. From this example we will derive desiderata for a computational operationalisa-

tion of frames and framing. After this, this operationalisation will be presented together

with examples. A final section is devoted to a critical discussion of the architecture.

3.1 An Example
To understand what frames and framing mean, a wedding may serve as a very good ex-

ample from everyday life. For this purpose, we first have to conceptualise “procedure of

getting married” as a communicative process, which, for the sake of our example, starts

with a man proposing to his female partner and is completed upon departure to honey-

moon after the wedding festivities.

Obviously, this process involves a huge amount of communication. Thus, although the
entire trajectory (Goffman 1974) of communicative actions that can be traced in this pro-

cedure could be conceived as a single frame, it makes sense to split it into different sub-

frames (especially because it probably spans a period of several months in its entirety).1

One possibility for such decomposition would be to have a frame for each interaction

phase in the wedding procedure, i.e. proposition, declaration of the intention to marry

1 In fact, the very use of the term “frames” alludes to frames on a celluloid roll that capture scenes in a film
and suggests this decomposition.
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towards other parties (family, friends, etc.), organisation of the wedding and the honey-

moon, the wedding ceremony itself, and the wedding party. Several arguments speak for

such a decomposition:

• It obviously exceeds the cognitive capacities of participating actors to project this

entire undertaking in planning their activities. Therefore, it seems natural to split it

into fairly self-contained units that can be practically used to cope with the different

situations that will occur until completion of the “task” as a whole.

• The different sub-procedures are often loosely coupled. In particular, the individuals

who participate in some of these interactions need not be aware of others (the priest

need not be aware of the precise arrangements for the party, the travel agent who as-

sists in planning the honeymoon does not know the details of the wedding ceremony,

etc.). This helps reduce the overall complexity of the whole system of interleaved in-

teractions.

• Singular interaction processes are highly context-dependent, so that it is not neces-
sary to dispose of all details of the entire procedure in a particular interaction that

belongs to a particular phase. For example, it is rather unlikely that the woman will

demand of the man to be able to present all the details about the ceremony at the

time of proposing. In fact, frames can even provide a context for other frames them-

selves in the sense that certain interactions are pre- or post-conditions of others (no

honeymoon without the formal act of getting married, (almost) no possibility of call-

ing off the wedding party once guests have been invited, etc.).

That said, it may of course be reasonable to maintain a hierarchy in which the “wedding

frame” is a rather abstract, very general description of the entire process that is connected

to several sub-frames and manages the dependencies between them. What is important in

any case is that the frame should be manageable in size (either detailed and describing a

relatively short process or more abstract for a more complex activity) so that it can be used

in resource-bounded reasoning processes, and that it makes sense as a self-contained unit

of interaction.

A second important aspect of the interaction frame view is that the frames employed

in such a complex activity are primarily concerned with the interaction that is going on

(hence the name). Steps of the procedure that are private actions of the parties involved

do not count as parts of frames, unless they are brought to the attention of communicating

actors and contribute to the correct “alignment” of the joint action. For example, it does
not matter how the cook prepares the wedding dinner, as long as it is served on time and

satisfies the expectations of the guests (even bad food will not inhibit the flow of interaction

unless someone protests openly and breaks the joyful, festive ambience).

Thirdly, although some of the interactions in this process may be characterised by phys-

ical distance and delayed reaction (e.g. mailing invitations and getting a response by tele-

phone, submitting documents at the local registry office, etc.), frames are primarily used to

manage face-to-face interaction between co-present actors, such as the proposal, the com-

munication between couple and priest at the church, etc. The idea is that frames are com-

pact information structures that can be processed on-line in a timely fashion during inter-

action encounters to achieve flexible, strategic behaviour. Their purpose is not to capture

complex plans that are constructed off-line and executed later.
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So far, we have argued for a communicative orientation of frames, but it is mislead-

ing to think that information about communicative actions suffices to describe a class of

interactions completely. This is because the perceived communicative actions may not al-

ways provide sufficient information to unambiguously determine “what is going on here?”

or some of the communication that is necessary to correctly interpret the situation may
not be available to (or deliberately hidden from) some of the participating actors. The al-

leged future husband may, for instance, be playing a (very mean) joke on his partner while

proposing. Noticing that his mates are secretly watching from behind might force her to

re-frame later on and understand that the proposition was only staged for this “audience”,

which in turn would form an integral part of the actor set participating in the “joke propo-

sition” frame. In fact, virtually all forms of untruthfulness and deception are based on

using communicative actions that do not mean what they are supposed to mean. This true

meaning can only be determined by using extra-communicative information.

The context-sensitive character of communication becomes obvious if we look at the

many other ways in which the wedding may be framed. For example, the wedding cere-

mony itself might not be a “real” ceremony, but, say,

• a staged ceremony in a theatrical play or film,

• a rehearsal that takes place prior to the actual wedding,

• an “experiment” that the priest conducts to test the acoustics of the church,

• the playful staging of a wedding by two children in an empty church,

• a “mock” simulation of a marriage between a couple who do not actually intend to

get married, but want the audience to assume they are, or

• the implicit forging of an alliance between different states the children of whose

monarchs are getting married.

The differences between these variations of the “normal” wedding ceremonial can be very

subtle in communicative terms, or they may not even exist at all. For instance, if the cer-

emony is a scene in a film, “suspension of disbelief” actually requires of the actors to give

no indication of the staged character of the situation. The spectator can only understand

its meaning by reflecting upon the fact that he is watching a film and using the background

knowledge that such films are not “real”.

A final notable property of interaction frames is that they must generalise from par-

ticular interactions. This is not only because generalisation makes them more powerful

as tools for representing interaction knowledge. Also, it is necessary to make agents re-

use a learned frame. Without this re-use, the frame would actually be useless (there is
no point in trying to behave appropriately at a nuptial ceremony if every such ceremony

is completely different). Generalising from individual interactions also helps to speed up

the learning process, as information from different instances can be combined to obtain a

more adequate picture of the respective class of interactions. For instance, an experience

of a wedding feast with many formal speeches may be added to an existing wedding feast

frame which was originally constructed after a wedding without any speeches. The result

of this combination might yield a more accurate description of wedding feast as a feast

“which may or may not involve formal speeches”.
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This example illustrates what the essential properties of frames are, and thus aids in

understanding the computational models of frames and framing we will propose below.

Next, we shall briefly discuss desiderata for these.

3.2 Desiderata
Computational models of frames and framing should fulfil the following requirements:

Communicative focus The description of a class of communication processes must be the

core element of a frame. Any additional information may be used to support the de-
scription of the interaction process, but communication is what the frame ultimately

is about.

Structuring & categorisation The different types of interactions an agent is involved in

should be categorised into different frames. A set of frames should structure the “so-

cial world” for the agent and it should ideally provide guidance for any encounter the

agent may find himself in.

Strategic application A frame must contain information about the consequences of a cer-

tain class of interactions, so that the agent can use it to make strategic decisions with

respect to his private goals. In particular, the agent should initiate interaction pro-

cesses if frames suggest that certain goals can only be achieved through joint action.

Conventional character The reason for using frames is to reduce complexity in interac-

tion and to obtain guidance about how to act. Therefore, framing should lead to

selection of an appropriate frame and to compliance with the actions it prescribes,

so that a frame can be used as a simple action convention once it has been selected.

(This does not mean that the agent should not be able to revise an earlier framing

decision, if necessary.)

Persistence Frames should be cognitively represented by agents and it should be possible

to maintain them regardless of whether they are being used or not. Unlike plans,
they are not created “on demand” and erased after the plan was carried out. Instead,

they are either the result of long-term observation, imitation or experimentation with

different forms of interaction. Frames have their own history, they relate to other

frames, and may be re-combined or modified to obtain new frames.

Plasticity As agents store frames as local representations of interaction knowledge, they

are open to manipulation by their “owner”. This means that they can be adapted

to the needs of the agent (e.g. by deleting obsolete frames, adding information to a

frame, etc.), but it also implies that the privately maintained frames can be far from

the reality of the interaction that takes place in a system.

Context dependence Application of a frame is subject to certain conditions and it brings

about certain conditions. To provide hints about the contexts under which it is rele-

vant, a frame should therefore include information about these conditions.

Abstraction To capture knowledge about an entire class of interactions, frames must ab-

stract from individual interactions. So, instead of describing concrete agents that
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participate in the frames, they should employ models of roles and relationships to

describe these, and instead of defining precise messages that are to be communi-

cated, they should employ more abstract patterns of interactions that allow for cer-

tain (varying) degrees of freedom.

To summarise, frames should be abstract knowledge structures that describe classes of

recurring, relevant interactions together with the context in which these may occur. Agents

should be able to shape them according to their needs and to employ them in their goal-

directed reasoning.

3.3 Interaction Frames in InFFrA
Interaction frames are the data structures on which the reasoning model of InFFrA oper-

ates. A frame is a structure that describes a class of interactions. At a descriptive level, it

specifies

• the roles held by the participants of the interactions,

• the courses the interaction may take,

• the context in which the frame may occur, and

• the beliefs held by the interacting parties.

Additionally, a frame includes meta-level information, which captures

• the status of the frame during execution,

• relationships between the frame and other frames,

• experiences with the frame in past interactions, and

• assumptions regarding which of the interacting parties has knowledge of the frame.

Table 3.1 summarises these attributes (or “slots”), which will now be described in more
detail.

3.3.1 Descriptive attributes
Roles and relationships

To define a set of interaction processes, it is necessary to specify which actors play a part

in them. In the example of section 3.1, certain interactions were only possible between

specific actors, and some of these actors were actually defined by the respective type of in-

teraction (e.g. groom and bride have to participate in the ceremony, and they only become

groom and bride by virtue of the ceremony, in turn).

As we have argued, these actor definitions must be as generic as possible, if we want

the frame to be applicable to a large number of situations. For this reason, they should not

describe individuals or groups but whole classes of these. This is where roles and relation-

ships come into play.
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descriptive attributes

roles & relationships define the participants in the concerned interaction

trajectories describe courses of interaction that are possible under

this frame

context situations in which the frame is relevant and states of

the world it brings about

beliefs domain knowledge that is necessary to carry out the

interaction correctly and knowledge that results from

frame execution

meta-level attributes

status instantiations of the descriptive attributes with values

for the current encounter

links a set of relationships of the frame to other frames

history experience with the frame in past interactions

extension distribution of knowledge about the frame

Tab. 3.1: Frame attributes, categorised into descriptive and meta-level types. Attribute

names are given on the left-hand side with corresponding descriptions on the

right-hand side.

Without intending to introduce a fundamentally new, full-fledged model of roles that
is adequate for MASs (see, for example, (Kendall 1998, Gutknecht and Ferber 1998, Weiß et

al. 2003)), we can use the equation

role = social expectation + social position

as an underlying theoretical model. It states that a role is given by a set of expectations

associated with anyone who is filling this role and by a social position, i.e. the relative po-

sition of the role to others in a given social (institutional, organisational) setting.

Social expectations can refer to

• behavioural expectations, i.e. descriptions of the behaviour the role may exhibit and

the capabilities it has;

• deliberative expectations, which describe the beliefs, goals and preferences the holder

of a role has, the tasks it is seeking to complete, but also the way it forms its intentions

and commitments;

• normative expectations, specifying the rights and duties, obligations and permissions

associated with a role.

The social position of a role, on the other hand, is obtained by analysing relationships to-

wards other roles. This is the reason why relationships are added to the roles slot of a frame:

Without the context of other roles, it is not possible to define what is distinct about a role.

Social relationships that specify the position of a role can be of the following kinds:

• acquaintance: one role is aware of the existence of the other (this relationship can

but need not be symmetric);
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• dependence: one role requires certain activities from other roles to achieve its goals;

• similarity: roles share certain attributes, such as expectations associated with them

or relationships towards third parties;

• aggregation: a role makes part of another role (in a group, or in a conceptual distinc-

tion between sub-roles of one actor (e.g. father and grandfather, who can be the same

person));

• representation: a role acts “on behalf” of someone else; this is particularly important

in collective roles (groups), in which the group needs certain individuals to take con-

crete action (the group delegates these actions to its representative(s));

• segmentation: relates a number of roles to each other that partition a more general

role (e.g. “faculty” and “staff” segment “university employee”);

• inheritance: a role specialises some other role by introducing additional expectations
and relationships.

Returning to the link exchange scenario of section 1.1, a specification of roles and rela-

tionships for a linkage negotiation, in which a “linkage brokering agency” mediates in the

attempt of a low-traffic commercial site to buy a link from a high-traffic commercial site

might look as shown in table 3.2.2 In this model, there is a link client role (who needs a

high traffic site to link with it so that the client can improve the traffic of his own site), a

link seller role (who has high Web traffic and can profit from selling links to others), and a
link broker role (constantly searching the Web for suitable linkage “partners”, negotiating

linkage contracts with them and earning a commission from both parties).

For this example, we use the following predicates to describe roles and relationships:

• can(R, A, C) denotes that R can perform action A if condition C holds, and

does(R, A, C) denotes that A is the typical behaviour of R whenever C holds.

• goal(R, S) is true, iff R has S as a goal (S can be an action or a state of the world).

• belief (R, B) holds, iff R thinks that B is the case.

• permission(R, X) and obligation(R, X) mean that R may/must do X.

• needs(R, S, G, A) states that R needs role S to perform action A for goal G.

• acquainted is a symmetric relation between two roles, inherits(S, T) indicates stan-

dard inheritance (in the sense that S has all the attributes of T and more), group de-

fines a collective role out of a set of existing ones.

The other predicates used in the example are domain-specific and should be fairly self-

explanatory.

According to the role and relationship specification of table 3.2, that both seller and

client agent can add a link to another site (the site of an agent A is given by the function

2 To avoid introduction of unnecessarily proprietary notation, we will use ordinary first-order predicate
logic in the examples presented in this section (with the convention of capitalising variables and assuming uni-
versal quantification whenever quantifiers are omitted. For more specific purposes, other notational means
can be used in concrete instances of InFFrA, such as RNS (Weiß et al. 2003) for roles.



46 3. The InFFrA Abstract Agent Architecture

Roles: lc – a link client, ls – a link seller, lba – a link broker agent.

Expectations for lc:

behavioural: can(lc, payTo(·, P), P < 20, 000$),
can(lc, addLink(siteOf (lc), X), site(X))

deliberative: goal(lc, increaseTraffic(lc)),
belief (lc, highTraffic(X) ∧ addLink(X, siteOf (lc))⇒ increaseTraffic(lc))

normative: contract(lc, owner(X), C)⇒ obligation(lc, pay(owner(X), price(C)))∧
permission(lc, claim(lc, owner(X), addLink(X, siteOf (lc)))

Expectations for ls:

behavioural: can(ls, addLink(siteOf (ls), X), site(X))
can(ls, sell(ls, owner(X), link(C)), site(X) ∧ contract(C))

deliberative: goal(ls, increaseTraffic(ls)), goal(ls, makeMoney(ls))
belief (ls, highTraffic(ls)),
belief (ls, sell(ls, ·, link(C)) ∧ price(C) > 10, 000$ ⇒

makeMoney(ls))
normative: sell(ls, A, link(C))⇒

permission(ls, claim(ls, A, payTo(ls, price(C)))∧
obligation(ls, addLink(siteOf (ls), siteOf (X)))

Expectations for lba:

behavioural: can(lba, spotLinkagePartners, true),
does(lba, offerServices, clientsFound)

deliberative: goal(lba, makeMoney(lba)),
belief (lba, contract(X, Y, C) ∧ proposes(lba, C)⇒

claim(C, clients(C), payTo(lba, commission(C)))
payTo(lba, P)∧ P > 10, 000$ ⇒ makeMoney(lba)

normative: contract(A, B, C)⇒ permission(lba,
claim(lba, A, payTo(lba, price(C)))∧
claim(lba, B, payTo(lba, price(C))))

Relationships:

acquaintance: acquainted(lba, ls), acquainted(lba, lc),¬acquainted(lc, ls)
similarity: shareCapability(lc, ls, addLink), shareGoal(lc, ls, increaseTraffic)
dependency: needs(A, B, addLink(siteOf (B), siteOf (A)), increaseTraffic(A)),

needs(A, ·, payTo(A, P)∧ P > 10, 000$, makeMoney(A)),
needs(lba, clients(·), makeMoney(lba))

aggregation: none
segmentation: none
inheritance: inherits(lba, brokerAgent)

Tab. 3.2: An example specification of roles and relationships. Role expectations are given

for each of the three roles while relationships are summarised for all of them.
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X = siteOf (A), and A = owner(X) holds, respectively). The client is additionally char-

acterised by having some money while the seller’s “capital” is his popularity. Both want to

increase their popularity, but the seller has the additional goal of making some profit from

the linkage deal (at least $10,000). In this link brokerage scenario, seller and buyer need

not be acquainted, since there is a broker who constantly looks for suitable linkage part-
ners and offers his services to them. If he manages to fix a contract that he has proposed,

he will get a commission (which is his business objective, after all). The terms of a con-

tract C are its price price(C), the link that will be laid due to the contract link(C), and the

commission commission(C) the broker will obtain.

Fixing a contract is associated with several normative expectations on all sides. The

buyer (client) is supposed to pay (payTo(A, P) denotes that P units of money are paid
to A), and he is allowed to request that the link be added by the seller. The seller’s per-

missions and obligations are “inverse” to those of the buyer. The broker is, of course, al-

lowed to claim his brokerage and is not committing himself to any further action. We use

claim(A, B, X) to denote the event that A claims action X from B.

As for relationships, buyer and seller share a capability and a goal in this setting. All
agents are inter-dependent in the sense that they need “traffic” and “money”, which are

resources currently owned by others. The broker needs some clients to make some money,

of course (as further above, we use “·” as a wildcard symbol). Finally, to give an example

of inheritance, the linkage broker agent might specialise a more generic brokerAgent class

defined elsewhere.

The formalisation used in this example is not prescriptive for InFFrA-based agent de-

signs, and many other specification languages are conceivable whose suitability will de-

pend on the application domain and the computational means used for implementing the

respective architecture. Strictly speaking, the specification language used is not part of the

core InFFrA architecture, and this should be kept in mind throughout the descriptions of

all frame slots, where we will use similar example formalisations. Note, however, that the

predicate logic used in these examples is in keeping with the requirement that frame rep-

resentations be computationally tractable, so that they can be used by agents themselves

(as formulated in section 1.2, p. 6).

To “detach” the abstract modelling of certain frame attributes from concrete formalisa-

tion, we will introduce simple diagrams for them. Figure 3.1 shows such a diagram for the

role and relationship model.

Trajectories

Specifying who is taking part in a class of interaction processes that is to be represented by

a frame is a prerequisite to describing what these actors will actually do in the interaction.

This is done by defining a model of the possible trajectories that are captured by the frame,

i.e. providing a description of courses of joint action relevant to the frame.

Such a trajectory model is the most essential constituent of a frame definition, since it

allows agents to predict the actions that may occur in an interaction and thus to reduce the

uncertainty about potential behaviours of interacting parties. Additionally, it specifies the

control flow of the message exchange during an unfolding interaction so that it can also be

used for monitoring communication and regulating the contributions of the agent who is

using it.
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Fig. 3.1: Role and relationship model. Shows roles as round nodes with expectations in

boxes attached to the nodes and edges between them to denote relationships

(strength of relationships is indicated by edge thickness). Roles are aggregated to

(overlapping) groups (labelled with hexagons) by means of rounded, dotted boxes.
Each role has expectations attached to it.

As with other frame attributes, InFFrA does not impose a particular formalism for tra-

jectory models. This is because different application domains require different levels of

abstraction and precision. Sometimes, simple constraints may be sufficient. In other sit-

uations, a full-fledged, detailed model of the surface structure of admissible message se-

quences may be necessary. In that, two dimensions are relevant for the description of tra-

jectories:

1. Rigidity: The prescriptions made by the “rules of conduct” contained in a trajectory

model can range from weak recommendations (e.g. default rules that may be overrid-

den) to strong, mandatory rules. For example, the wedding ceremony frame requires

that the priest declares the couple as “husband and wife” at the end of the ceremony,

but it does only give rough raiment guidelines.

2. Specificity: Trajectory models can describe precise actions or they may just provide

deontic specifications of behaviour, such as responsibilities, rights and duties. For
instance, the couple is supposed to thank the guests for the wedding presents at

some point, but there need not exist a precise habitual scheme that explains how

this should be done.

For the purposes of our examples, we will use partially ordered sequences of message pat-
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terns between the roles defined in the role and relationship slot. These patterns have the

format

performative(sender, receiver, content)

where performative is a message performative in the sense of speech act theory (Austin
1962, Searle 1969), sender and receiver are names of defined roles and content is the con-

tent pattern of the message, i.e. a logical expression which may contain variables for (sub)-

formulae and objects.3 As the relationship of InFFrA to speech act theory will be covered at

length in section 4.1, it suffices for the moment to think of the performatives as labels for

different types of messages such as requests, suggestions, queries, etc.

Figure 3.2 shows a graphical notation that can be used to depict such message pattern

sequences similar to the protocol diagrams of Agent UML (Bauer, Müller and Odell 2000,

Odell, Parunak and Bauer 2000b, Odell, Parunak and Bauer 2000a). This trajectory model

for the “linkage brokering” example of table 3.2 describes how a link broker agent (lba)

advertises the fact that it has spotted a good candidate for a linkage contract to the link

client (lc). If the client is interested, he quotes the maximal price MaxPrice he is willing to

pay, and if the potential link seller (ls) is also interested, he will announce the minimum
price MinPrice he demands for the link. Note that lba is not forced to forward MaxPrice
to ls, but that he can name any price FlexPrice during negotiations with the seller. Then,

lba fixes the final price ContrPrice for the contract. The client may now accept or reject the

contract. If he accepts, all parties have to fulfil their commitments: Seller and buyer have

to pay commissions to the broker, and the seller has to lay the physical link, whereafter the

link purchasing party has to pay the price fixed for the contract (the do performative is used

here to denote physical actions, such as money transfer or Web site modifications).

What has been omitted in the example are logical constraints for the content of mes-

sages, which could have been added to the trajectory model. One useful constraint would

be

MaxPrice ≥ ContrPrice ≥ FlexPrice ≥MinPrice,

for instance, to express that all parties will try to minimise/maximise their profit. However,

as logical conditions are covered by the “context” attribute of the frame, they are deliber-

ately left out in the trajectory description.

To increase the expressiveness of trajectory definitions, we can use iteration of trajec-

tory sub-sequences as shown in figure 3.3. The diagram shown in this figure re-defines the

middle part of the brokering example to include multiple negotiation iterations. Now, the

seller can make counter-offers to the initial offer of the broker, accept the offer or simply

quit at any point. If his offer at some point exceeds the maximum price the buyer is willing

to pay, the broker terminates the negotiation. As such loops introduce a novel temporal

element, it is now necessary to specify how variables will be bound to concrete values. To
express, for example, that FlexPrice can be set to a new value by both parties in each iter-

ation, we could either (i) use an explicit notion of time and label the variables with time-

stamps (FlexPrice(t), FlexPrice(t + 1), etc. where t is a global system variable that is always

instantiated with a global time stamp) or (ii) use a statement new(FlexPrice) to express that

the variable is set to a new value in a particular trajectory step.

Many other formalisms exist for describing such interaction trajectories, such as finite-

state machines, Petri nets, etc. Regardless of the choice of formalism, it should be ensured

3 We omit further technical details at this point, because a pattern language that is very similar to the one
used here will be formally defined in chapter 4.
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advertise(lba,lc,interestingOffer(O))

inform(lc,lba,notInterested)

request(lc,lba, negotiatePrice(MaxPrice))

inform(ls,lba,notInterested)

request(lba,lc,standby)

propose(ls,lba,contract(MinPrice))
sorry(lba,lc,sellerWithdrawal)

propose(lba,lc,contract(ContrPrice))

sorry(lba,ls,clientWithdrawal)

inform(lba,ls,contract(ContrPrice))

reject(lc,lba,contract(ContrPrice))

accept(lc,lba,contract(ContrPrice))

do(payCommission(lc,lba))

do(pay(lc,ls,ContrPrice))

do(addLink(ls,lba))

do(payCommission(ls,lba))

link client link broker link seller

advertise(lba,ls,interestedClient(FlexPrice))

Fig. 3.2: Example trajectory model. Roles are shown as vertical “swim-lanes” with grey

boxes for the internal reasoning processes of role fillers. The arrows that connect

roles are labelled with the messages they denote. Branching indicates combina-

tion of several messaging actions, diamonds denote choice.
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inform(ls,lba,notInterested)

request(lba,lc,standby)

sorry(lba,lc,sellerWithdrawal)
inform(ls,lba,interested)

counterOffer(ls,lba,contract(FlexPrice))

propose(lba,lc,contract(ContrPrice)) accept(ls,lba,contract(ContrPrice))

offer(ls,lba,contract(FlexPrice))

sorry(lba,lc,maxPriceExceeded)

sorry(lba,ls,maxPriceExceeded)

inform(ls,lba,notInterested)

sorry(lba,lc,sellerWithdrawal)

link client link broker link seller

advertise(lba,ls,interestedClient(FlexPrice))

Fig. 3.3: Trajectory example with iteration. The diagram shows only the middle part of the

trajectory between the advertise and the propose statement.

that (i) it is possible to capture the patterns of interaction that one wants to express through

a frame, and (ii) that tractable methods are available for agents to validate whether the

observed messages and actions comply with a certain frame or not, since this is one of
the basic activities that are necessary to perform effective framing, as will be explained in

section 3.4.

It is important to note that trajectories are the core element of a frame. They represent

the actual observations that will be made during the interaction and are hence the primary

means of selecting a frame in an interactive encounter. This implies that, although all other

slots may contain additional background information which can be used to determine

1. when a frame is relevant and

2. how the observed behaviour can be interpreted,

this additional knowledge will not be used for predicting actions or selecting own actions.

For these purposes, only the trajectory model matters. For example, although the be-

havioural expectations associated with the three roles in the brokering example may con-

tain descriptions of what they “usually do”, this need not be by any means connected to the

brokering conversation. These expectations can, however, be used to determine whether

a concrete agent qualifies as a broker, or to explain why a very powerful seller is willing to

lay a link for a small amount of money by suggesting that he must desperately need the

money.
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Fig. 3.4: Frame context model. Conditions C1, . . . , C10 are grouped together in transpar-

ent polygons (enactment conditions) or shaded arrows (activation conditions). A
flipped miniature version of the trajectory model is embedded between these dif-

ferent types of conditions to express that they must hold before, during or after its

execution.

Context

The context of a frame defines when the interactions described by the trajectory model can

occur by defining pre- and postconditions for its activation, and also conditions that are
necessary for the interaction to be sustained.

Two categories of such context conditions can be distinguished:

1. Enactment conditions: These are necessary for the frame to be enacted properly in a

physical sense and resemble very much operator conditions in classical AI planning.
We can further distinguish between

• pre-conditions that have to be fulfilled prior to the enactment of the frame,

• sustainment conditions that concern the constraints that need to be maintained in

intermediate steps of frame execution, and

• post-conditions that hold after frame completion.

2. Activation conditions: These spawn activation and de-activation of the frame. Al-

though they are not conditions in the physical sense, they can be used to provide

explicit rules that reflect circumstances under which the frame is relevant.

Essentially, the difference between these two kinds of conditions is that failure to prove

enactment conditions means that it is impossible to execute the steps of the frame trajec-

tories under present circumstances. Activation conditions, on the other hand, are con-

straints that the constructor of the frame imposes on its use himself, conditions under

which he would “voluntarily” choose or discard this frame. Figure 3.4 shows a graphical

notation for the context of a frame.
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A simple context model for the linkage brokering frame (from the point of view of the

buyer) could be given by logical conditions for each of the condition types listed above and

might look as follows:

1. Enactment conditions:

• pre-conditions: ¬existsLink(siteOf (ls), siteOf (lb))
• sustainment conditions: contract(lb, ls, C)⇒ money(lb, t) ≥ price(C)

• post-conditions:

contract(lb, ls, C) ⇒
(

money(lb, t′) ≤ money(lb, t)− price(C)

∧ existsLink(siteOf (ls), siteOf (lb))
)

2. Activation conditions:

• activation: interestingOffer(O)

• de-activation: contract(lb, ls, C) ∧¬addLink(siteOf (ls), siteOf (lb))

The enactment conditions in this example are fairly straightforward: The frame only makes

sense if no link exists yet, otherwise there exists no offer O (see figure 3.2) that can be

formulated by the broker. For the frame to be sustained, the buyer needs to dispose of at

least price(C) units of money if a contract C is to be fixed (money(A, t) denotes the amount

of money that A has at time t). Also, after the frame is over (at time t ′), the buyer agent will

have lost at least price(C) units of money (maybe more, if he spent money on other things

in the meantime).

It is interesting to note that different from the pre-conditions, the post-condition and

the sustainment condition need only hold in case a contract is fixed. This is because the

trajectory model allows for several paths of execution in which these conditions need not
hold, for example if no contract is fixed. This is very important for the semantics of the

frame: if an enactment condition is required, this means that none of the trajectories that

are possible under the trajectory model can be executed if this condition does not hold.

As for the activation conditions of the frame, the buyer is willing to activate the frame

if O is interesting. Note that interestingOffer(O) here means that the agent who maintains

the frame can prove this statement using his own knowledge base, which is very different

from the same statement occurring in the advertise message of the trajectory model, where

it was purported as being true by the broker agent. Sharing variables between trajectory

model and conditions enables the framing agent to parametrise logical conditions with

message contents that occur during the observed encounter.

Also note that this activation condition implies that the buyer agent will not even reply
(at least not using the messages specified in the trajectory model of this frame) if O is not

interesting, which illustrates that activation conditions have a strong impact on commu-

nicative behaviour. According to the de-activation condition, the buyer agent will cancel

execution of this frame if the seller does not lay a link after a deal has been fixed. The ratio-

nale behind this might be that the agent will appeal to a legal institution if the seller does

not comply with the agreement, or that he will simply not pay to minimise his own risk.

The semantics of such activation conditions are somewhat different from those of en-

actment conditions: if an activation (de-activation) condition becomes true, the agent will
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activate (de-activate) the frame in the sense that some (none of the) trajectory sequence(s)

defined by the trajectory model will be carried out.

Beliefs

In the spirit of interactionism, the mental states of interacting individuals are not of any

importance as long as interaction functions normally. This might lead to the assumption

that the beliefs slot of frames, which contains information about the knowledge necessary

to execute a frame correctly, is only of subordinate significance when modelling an inter-

action frame.

However, as with roles and relationships and contexts (cf. page 51), knowledge about

the epistemic properties of the interacting agents may help interpret the ongoing interac-

tion and assess the relevance of a frame. Moreover, information about agents’ beliefs can

be very valuable if the frame is not enacted smoothly, as it can help to “repair” an inter-

action that has gone awry. If an agent is aware of the knowledge his peer must have to

play his part in the interaction, he can identify epistemic reasons such as ignorance, false

assumptions or misalignment of distributed frame conceptions and try to eliminate these
problems (for example by informing the other, asking for clarification, etc.).

The possibilities for specifying beliefs are manifold, both at the level of choice of for-

malism and at the level of the content of descriptions of epistemic properties. As concerns

formalisation, such methods as epistemic logic (Fagin et al. 1995), graphical methods for

probabilistic reasoning (such as Bayesian networks) (Pearl 1988), semantic networks and

ontologies can be used, to name but a few examples. Content of belief descriptions may

refer to such general things as a shared ontology or communication language, or to very

specific knowledge such as the deliberative expectations associated with the roles in the
example of table 3.2 (if we want to require that agents know all these facts for the frame to

be enacted).

As before, we use a simple exemplary diagram (figure 3.5) to describe belief models

and leave more specific definitions to concrete instances of InFFrA. Despite its exemplary

character, it fulfils the minimal requirement for a belief model in InFFrA which is that be-

liefs must be ascribed to the roles defined in the role and relationship model of the same

frame.

Summary

Taken together, the descriptive frame attributes describe what the class of interactions rep-
resented by a frame consist of, and this is nicely captured by the frame diagram shown in

figure 3.6. A question that arises naturally is why the three non-trajectorial attributes are

not merged into a single “conditions” slot, given that the role and relationship model, the

context model and the belief model must be verified to determine whether an interaction

encounter will match the patterns represented by the trajectory model. After all, they are

all, in a sense, conditions for using or not using the frame.

Still, the following arguments can be put forward for upholding the distinction between

these three attributes:

1. Conceptual clarity: Roles and relationships define the who, contexts the when, beliefs

the why and trajectories the how of a class of interaction processes.
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Fig. 3.5: Frame belief model with a taxonomic ontology and a Bayesian network as two

examples of conceptual/causal knowledge structures necessary to implement the

frame. The interconnected (shaded) sub-areas of the network are labelled with

role identifiers from the role and relationship model to indicate the knowledge

each role has.

2. Although there is some overlapping between role, context and belief models, there

are subtle semantic differences:

• The deliberative expectations in a role model do not express who knows about

them (in extreme cases, a role filler may not even be aware of his own goals) and

serve only as information which aids in “matching” a role against a concrete agent.

Repeating these deliberative expectations in the belief model, though, requires

specifying which roles are aware of them. It expresses the fact that this knowledge
is a prerequisite for executing the frame.

• At first glance, it may seem that behavioural expectations in role descriptions might

have been included in the trajectory model instead. However, this model does not
describe what an agent who plays a role will do in the context of the current frame,

but rather what his general behavioural patterns are. For example, there may be

behavioural cross-references between behaviours of a role that occur in several

frames (e.g. refering to a link buyer in (i) the brokering frame and (ii) a civil court

trial which is held because he does not pay for the link). These can be valuable in

recognising someone as the holder of a role in different interaction encounters.

• Beliefs and roles could have been integrated with enactment conditions, but a clear

separation between conditions about the environment, the interacting parties, and

their beliefs is helpful during framing decision making. This is because the fulfil-

ment of environmental context conditions can be checked in a much stricter fash-

ion than that of roles and beliefs, where the frame holder may be more lenient. For
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Fig. 3.6: Schematic view of an interaction frame containing the four descriptive attribute

slots

example, if the link buyer has no money (context model), there is no point trying

to execute the frame, but if he does not know the seller’s goal (role and relationship

model) this need not necessarily impede the correct enactment of the frame.

That said, it may often be useful to combine roles, context and beliefs to a single class of

“conditions” for implementation purposes, i.e. to treat them all as logical constraints that
have been verified using the same inference procedure. In fact, the concrete architecture

presented in chapters 4 and 5 utilises precisely this method.

3.3.2 Meta-level attributes
While descriptive frame attributes specify the properties of a class of interactions in terms

of actors, conditions and courses the interaction may take, meta-level attributes contain

information about the frame itself. This information is useful to manage the frame in the

context of a social reasoning process based on the concept of framing (see 3.4).

InFFrA interaction frames maintain four kinds of meta-level attributes called status,

links, history and extension.

Status

The status slot is used to store information about the role of the present frame in the cur-

rently ongoing interaction.

If the frame is not relevant at all in the current encounter, the status attribute is (triv-

ially) devoid of any information or may at most contain some indication of the fact that the
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frame is not being used at the moment. Otherwise, the status attribute contains a status

field for each descriptive attribute. These status fields relate the general statements about

roles, trajectories, activation and beliefs given in the descriptive attributes section to the

specific situation the agent is in. In other words, status provides the “reverse generalisa-

tion” for a frame that maps the abstract frame to a particular, concrete interaction process.

Essentially, this means that to determine the status of a frame one has to

• map role specifications to individual agents or sets of agents and keep track of the

degree to which they “match” the respective roles;

• keep track of trajectory completion with respect to (i) which paths have been pursued

so far, (ii) which portion of them has already been observed, and (iii) what values the

variables in the trajectory model have been bound to;

• store which of the context conditions are currently satisfied and to which degree the

frame is activated;

• infer which of the beliefs described in the belief model are held by the interacting

parties.

attribute description

role status An assignment of the roles in the role and relationship model to

actual agents, groups, organisations etc. May involve tentative as-

signments or statements about uncertainty regarding “role match-

ing”. Additionally, assumptions in support of the current assign-

ment may be supplied.

trajectory status Encapsulates information about the current status of frame execu-

tion. This involves recording observed action and communication

relating it to the trajectory model. This information may be en-
riched by statements about deviance from and adherence to tra-

jectory expectations, and it can also give possible reasons for such

deviance or adherence.

context status Keeps track of beliefs about the applicability of enactment and ac-

tivation conditions. May also include statements of doubt or un-

certainty concerning the relevance of this frame with respect to the

ongoing interaction or qualitative statements about “degree of ac-

tivation” and explanations for these.

belief status Information regarding the epistemic properties of the current en-

actment of the frame. May express, for example, uncertainty

about the degree to which allegedly common knowledge is actu-

ally shared by all interactants or include assessments of the degree
to which a lack of knowledge impedes frame execution or not.

Tab. 3.3: Contents of the status attribute of a frame

As the more detailed view of status data (table 3.3) suggests, frame status can capture much

more than a simple mapping from a frame to the current situation, e.g.
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• information about the uncertainty associated with this mapping,

• reasons that speak for or against the applicability of the frame, and

• an explicit, detailed representation of how actors deviate from the expectations in-

duced by the frame.

Ultimately, the decision about which of these attributes to include and how to generate
them depends on whether and how the framing agent will make use of them. This is also

true of the other meta-level attributes, as they are all used for frame management.

It should be remarked that different status attributes are not independent from each

other: the correctness of role assignment must be constantly underpinned by observing

the actions of others and oneself; conversely, those actions must be interpreted with re-

spect to the existing expectations associated with a role to classify as compliant or deviant

actions, etc. This raises the interesting question of whether unexpected behaviour should

be assigned to one’s own faulty understanding of roles, deliberate deviance, erroneous in-

terpretation, inconsistency in frame activation among the parties, etc. In fact, the iden-

tification of these reasons is one of the most important activities in framing, as will be

discussed in section 3.4.
As an example, consider an agent who holds the link client role in the linkage brokering

frame with trajectory as in figure 3.2 and who modifies the value of ContrPrice in his re-

ply to the broker’s propose(lba, lc, contract(ContrPrice)) message. This means that, strictly

speaking, the observed message sequence does not match the trajectory model. How-

ever, a framing agent (e.g., the broker) should not overthrow this frame too easily, since

the client’s deviant behaviour may have been simply caused by ignorance, and the broker

could make an attempt for “recovery” by informing him of the constraint. Yet this would

only be reasonable if the broker has some reason to believe that the client is not aware of

the constraint. For this fact, it is important to combine the status monitoring activities for

the different frame slots.

Links

The links section contains meta-frame information that places the current frame in the

context of other frames by specifying relationships between the frame in question and
other frames. Two kinds of such inter-frame relationships can be distinguished:

1. Structural relationshipsare defined purely in terms of relationships between the at-

tributes of the respective frames, and can be verified by means of syntactic compari-

son. They include (but are not limited to):

• Inheritance: A frame F inherits a frame G if its roles and relationships, context and

beliefs extend those of G in a conjunctive manner, and if the trajectory model of F
admits a subset of the trajectories allowed by G.

• Aggregation: A frame F contains a frame G if the roles, relationships, contexts and

beliefs and admissible trajectories of F are a super-set of those of G in a disjunctive

fashion.

• Coupling: A frame F is sequentially/parallel coupled to G if their trajectories are

executed in sequence/in parallel. Special cases of such relationships are “F resem-

bles a sub-sequence/prefix/postfix of G” (in a sequential sense) or “F spawns G as



3.3. Interaction Frames in InFFrA 59

a sub-process”. The relationships between the remaining (non-trajectory) descrip-

tive attributes of the two frames are the same as in aggregation.

• Similarity: This is a whole class of relationships which denote that two frames have

certain descriptive elements in common, e.g. that they share a (number of) role(s),

a condition, some set of beliefs, a trajectory prefix, an identical number of trajec-

tory loops, etc.

More specific structural links can be conceived of, such as frames that only inherit

certain types of information from other frames, special kinds of coupling (e.g. the

trajectory of F branches into G and H after the ith step), etc.

2. Framing relationships, i.e. “meaningful” relationships between frames that are rele-

vant for the framing process of the agent who uses them. Unlike structural links, they

cannot be verified by looking at the definitions of the frames in question, but rather

stem from (frame-external) background assumptions the agent makes. Again, there

are different kinds of such relationships, from which we list the most common ones:

• Alternative: Expresses that a frame F is (not) applicable when another frame G is

applicable, because it has roughly the same context and result, e.g. two frames for

different types of auctions.

• Continuation: An encounter in which F was enacted is likely to be continued with

one that matches G. An example for this is a “first contact” frame between two

business partners that is later followed by negotiations and formal agreement de-

scribed by other frames.

• Resolution: F can be used to resolve a problem that has occurred during the execu-

tion of G. Good examples are frames for argumentation, mediation through third

parties, appeals to authorities or legal institutions, etc.

• Interleaving: This is useful to link frames that are interleaved but not directly inter-

connected in terms of trajectories, for instance negotiations with different parties

led concurrently but not directly aligned with each other because only a subset of

the negotiating partners are aware of the concurrent execution.

• Modulation: F is a modulation4 of G if it is not possible to discriminate between

them on the grounds of trajectory analysis, i.e. if one frame casts a different mean-

ing on the trajectory of the other. For example, a negotiation frame could be en-

acted simply for the purpose of determining the other’s valuations, without actu-

ally intending to make a deal.

Numerous extensions and variations are possible to the relationships sketched here. They

can be given probabilistic semantics, they can be subject to additional logical constraints,

they can be defined in terms of whole sets of frames rather than individual frames, etc.

The significance of such frame links is that they enable the agent to compare frames

structurally and semantically to reason about them at frame (rather than single action)

level – it is only through links that frames become subject to reification in reasoning. Inter

alia, this allows for devising framing rules as constraints that deal with frames as first-class

citizens. These would be included in the context of a frame to express, for example, that

one frame must have been completed before another one is started.

4 We use modulation as a super-term for the manipulations discussed at length by Goffman (1974), as men-
tioned in section 2.2.2 (see p. 25).
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History

The next frame attribute we have to discuss is history. Histories are, in fact, nothing else

but a specific kind of links between a frame and earlier versions of it that use past status
attributes as arguments.

A frame history describes a sequence of past enactments of the present frames. This

involves recording the experiences made with a frame, or, more precisely

• the status assigned to frame attributes in each encounter instance,

• the transformations to a frame that were induced by each new experience, and

• the operations on the frame through which these modifications were carried out.

So the idea is that the history of a frame is a sequence of concrete encounters in which it

has been enacted together with a record of the modifications that were induced by these

experiences.

A convenient format for storing such a history is a history matrix










F0 S0 Op0
F1 S1 Op1
F2 S2 Op2
F3 S3 Op3
...

...
...

Fm Sm Opm











with operations Opi, frame versions Fi (F0 is the initially generated frame) and status vari-

ables Si. Such a matrix has the following semantics: Out n encounters which have occurred

under different variants of frame F0, we store m (where m ≤ n because not every experi-
ence is considered equally important to be memorised). Thereby, Op i was the operation

that transformed Fi to Fi+1 after the ith encounter and the status assigned to the attributes

of Fi was Si.

An issue that remains to be discussed concerns the nature of the operations Opi that

transform frames. Although the construction and modification of frames is one of the cen-

tral topics of section 3.4, some general remarks can already be made at this point.

The most simple operation that can be conceived of after completion of an interaction

that corresponds to a frame is to extend the history slot of that frame by the status of the

frame during that interaction. This allows to reconstruct the past case and to take it into

account in future reasoning. Another fairly simple operation is to memorise the utility ob-

tained from an interaction or the goals it achieved by adding appropriate post-conditions

to the frame context. For example, adding a post-condition

utilityGain(U)

to express that the difference between total utility before and after the interaction was U
necessitates determining the numerical value of U in the status variables S i and thus to

explicitly store the private value of a frame in the form of different utility values U1, . . . , Um.

More complex operations involve transforming the frame to increase its generalisation

capabilities (if an interaction has been perceived that does not match the current frame

definition but creation of a new frame is to be avoided), merging it with another frame,

deleting certain specific attributes, etc.
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Extension

As frames are maintained and modified by individuals, it is only natural that the informa-

tion they contain falls into two categories: (i) common attributes, i.e. knowledge about the

interaction that is assumed to be common knowledge among the interacting parties and

(ii) private attributes which supplement the frame data structure with information that is
private to the agent who is applying the frame. The extension attribute captures precisely

this distinction by describing which of the frame attributes are common knowledge and

which are only known to the agent who maintains the frame.

The reason why such an additional attribute is needed despite the fact that the knowl-

edge states of agents could also be described in the beliefs slot is connected to a problem

of infinite regression. If, for example, we wanted to express that an entire frame is common

knowledge, i.e. that all interacting parties have access to all the information contained in

the attributes of this frame, we would have to reify the frame as some object of the world. If,

then, the statement about the frame being common knowledge itself is part of the beliefs

slot of that frame, this would cause a serious problem when trying to list all the things the

agents know.

Practically speaking, it suffices for the extension attribute to tag each element of the
other (descriptive and meta-level) attributes with the keyword common to distinguish

whether they are known by other agents or not. Trivially, all information that is present

in the frame is known to the agent who maintains it. In addition to this, we may want to

indicate that the view held by some agents differs from the private view of the frame main-

tainer.

In our link brokering scenario, for example, we might want to express that the link client

lc does not know

1. how the propose message of the link seller ls comes about, i.e. that the broker agent

lba advertises interest of a client, etc.

2. that ls may make a counter-offer to lba (by introducing a new price MinPrice) in the
negotiation process, i.e. the client thinks that MinPrice an arbitrary price claimed by

ls.

This can be done by adding the following extension tags (referring to the non-iterative tra-

jectory of table 3.2):

common({lba, self}, advertise(lba, ls, interestedClient(FlexPrice)), ?)
common({lba, self}, inform(ls, lba, notInterested), ?)

common({lba, self}, MinPrice ≤ FlexPrice, true)

Statements of the form common(G, B, B′) express that all roles in group G commonly know

B while those who are not in G believe that B′ is the case instead.5 To define what it means

for a fact to be commonly known among a group of agents, we use the definition of Fagin et

al. (1995), which states the following: For a group G, ϕ is common knowledge if everyone

in G knows ϕ, everyone in G knows that everyone in G knows ϕ, and so on ad infinitum.

5 Note the use of a special identifier self for the frame owner, who may not play any of the roles in the frame
(yet it can be commonly known that he has knowledge of this frame), and the use of the symbol “?” to express
that the frame owner does not know what non-members of the group believe “instead”.
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The first two items in the tag list above state that lba and self know that lc may not know

anything about the first two messages of the sub-negotiation between lba and ls (alterna-

tively, lc may believe that ls took the initiative for the whole deal, etc.) The third tag signifies

that lc has knowledge of a trivial constraint (true) in the place of the actual counter-offer

price constraint MinPrice ≤ FlexPrice in his beliefs. These tags may not only be applied to
trajectories, but also to all other attributes.

The purpose of the extension attribute lies in the fact that it is essential for the manip-

ulation of frames. This is because, if an agent wants to use a frame in a way that is different

from the common interpretation (or at least the interpretation of its current adversary), he

has to exploit the assumptions commonly held and modify his private knowledge. This

amounts to deceiving others about the true meaning of the ongoing interaction, and this

kind of deception which may play an important role in intelligent framing.

3.4 Framing in InFFrA
Framing is the process of employing frames in interaction situations. Although it is intu-

itively clear from the discussion of Goffman’s theory for human actors (section 2.2.2), many

questions arise when we attempt to develop a computational model of framing:

• How are frames selected in concrete situations? How does this process relate to the

agent’s private goals and motivations?

• How are new frames learned from observation and how are existing ones adapted to

changing patterns of interactions? How can agents “invent” new frames to introduce

new patterns of joint action?

• What are the concrete implications of frame selection for the agent’s behaviour?

When should he adhere to the expectations associated with a frame and when should

he break them?

These questions suggest that framing is a very complex activity that involves (i) tracking
the enactment of activated frames, (ii) choosing whether to retain the current frame or to

change to another frame when appropriate, (iii) modifying frame knowledge with experi-

ence and (iv) relating these three activities to one’s private goals in order to make them part

of individual rational decision-making.

In the following paragraphs, we will first present a simplified overview of the computa-

tional model of framing employed in InFFrA. Then, we will lay out this model in full detail

by describing the data structures it uses and the operations that are performed on them.

3.4.1 Overview
The top-level model of framing in InFFrA is a processing loop between perception and

action which is actually pretty similar to the general agent processing cycle proposed in

(Russell and Norvig 2003). However, it is specifically designed for agent perception, rea-

soning and action in interaction processes (as opposed to general agent operation). For

this reason, InFFrA should be rather thought of as a social reasoning architecture that has

to be combined with other, sub-social reasoning components to obtain a comprehensive

agent architecture.
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Fig. 3.7: Simplified overview of the InFFrA framing process

As can be seen from the overview of framing depicted in figure 3.7, the perceive-reason-

act loop for frame-based social reasoning consists of four major stages:

1. Interpretation and matching: The agent processes incoming percepts, extracts up-

to-date information about the interaction, and generates a description of the en-

counter, the so-called perceived frame. He matches this frame against the active

frame which is supposed to provide the information required to appropriately par-

ticipate in the encounter.

2. Assessment: The result of the matching procedure is a difference model that expresses

which parts of the perceived are in accordance with the active frame, and which as-

pects of the encounter differ from the expectations associated with the active frame.

This model is now used to assess whether the currently active frame is still appropri-

ate, and a decision is made as to whether it should be maintained (“comply”) or not

(“deviate”).

3. Adjustment: If the agent decides to deviate from the active frame, he obviously has
to activate some other frame, i.e. to re-frame. Frame adjustment means either mod-

ifying the activated frame to better suit the interaction situation or retrieving some

other frame from the frame repository. Candidate frames are trial instantiated as ac-

tive frames iteratively until the resulting difference model is sufficiently weak so that

assessment yields “comply”.

4. Enactment: Whenever the agent decides to comply with the active frame, he can use

that frame to derive prescriptive constraints for his own actions. These influence his

action decisions (that may also be determined to a certain degree by sub-social rea-

soning) so that he can (continue to) play his part in the remainder of the encounter.

At this point, it becomes clear how this four-step process is an extension of Mead’s four-

stage model of the social act discussed in section 2.2.2. Impulse, perception, manipulation
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and consummation (cf. figure 2.1, page 23) now become interpretation and matching, as-

sessment, adjustment and enactment, though not in a strict 1:1-correspondence. This is

because employing frames as “chunks” of expectations rather than individual acts as in the

Meadian model and combining this model with the agent perceive-reason-act loop neces-

sitates some modifications.
A closer look at the relationship between framing and the Meadian model reveals the

following correspondences and differences:

Impulse/Perception vs. Interpretation and Matching As in Mead’s model, a perceived

“disequilibrium” spawns a framing reasoning cycle. This can be caused by the emer-

gence of a private goal that has to be achieved, an ongoing encounter that is being

continued, etc. The InFFrA model has two advantages over the Meadian view: Firstly,

the use of frames enables us to perform all relevant perception (in the sense of Mead)
in parallel with impulse. This yields a much simpler model than generating the im-

pulse and then having to make a choice regarding which percepts to pay attention

to. In other words, the frame-based approach makes it possible to use generic frame

templates as “perception filters”, rather than having to search the space of all possible

attention foci after perceiving an impulse. Secondly, generating an explicit difference

model allows for predicting the consequences of mismatches at an early stage of the

encounter. The agent does not have to wait for the next impulse to occur – he can

plan ahead by considering the whole interaction process as a meaningful trajectory

of action.

Manipulation vs. Assessment/Adjustment The manipulation stage in Mead’s model

seeks to eliminate the impulse by finding an appropriate reaction that is in keeping

with the agent’s own self-image and with his own and others’ expectations. In terms

of framing, this translates to finding an appropriate continuation of the perceived

interaction sequence if the current active frame is no longer considered adequate.

And this is exactly what the assessment and adjustment phases of the InFFrA framing
process achieve. On the grounds of the difference model, which expresses to which

degree the perceived frame diverges from the projected active frame, known frames

are adapted or new ones created until some alternative frame is in accordance with

the perceived situation. In that, the trial instantiation process maps to the “imagina-

tive rehearsal” alluded to in Mead’s model (see page 23). The agent “mock activates”

different candidate frames internally until concordance between expected reaction

and experienced reaction is achieved.

Consummation vs. Enactment This is the aspect of the computational model of framing

that is probably most similar to the corresponding Meadian notion. At this stage,

the divergence between perceived and projected behaviour has been eliminated by

activating a new, suitable frame and leads to open action that is determined by the

trajectory of the active frame. The inhibition of interaction is now overcome, and the

activation of a new frame influences the self-image of the agent (by observing one’s

own behaviour in the next framing cycle), the image he has of others, the relevance
of other actors and objects and the degree to which the initial impulse has been elim-

inated (for example, whether the alleged goal of the interaction has been attained).

This comparison nicely illustrates how InFFrA manages to overcome the deficiencies of

the different sociological concepts used. On the one hand, it supplements the somewhat



3.4. Framing in InFFrA 65

static, data-oriented concept of interaction frames with a dynamic, process-oriented rea-

soning model that largely draws upon Mead’s model of the social act (see the remarks in

section 2.2.3, p. 29). On the other hand, InFFrA frames have the capacity of integrating

complex interaction knowledge so that the “action-to-action” level of the Meadian per-

spective can be transcended.
To see how precisely this combination is achieved, we will now discuss the data struc-

tures used in the framing process. After this, the framing stages sketched above will be

further decomposed and laid out.

3.4.2 Data structures
As mentioned above, the core data structures used in InFFrA framing are the perceived

frame (that records information about the currently ongoing interaction encounter), the

active frame (the projected view of how the unfolding interaction will turn out), the differ-

ence model (that is used to assess the current framing decision), and the frame repository
(a database of frames used in the overall social reasoning process).

Perceived frame

The perceived frame can be conceived of as a frame which, starting from virtually no infor-

mation at the beginning of an interaction, is extended in each framing cycle with incoming

observations about the interaction. It provides, above all, a descriptive model of the inter-

action “as is” and a facility to store relevant information about it so as to obtain a focused

picture of the situative context of the encounter. Additionally, it influences the situation

interpretation module by affecting the way perception is processed. For example, if the

perceived frame already states that a particular set of actors are the exclusive participants

of the current interaction, the behaviour of other agents is ignored until this interaction is

over.

In comparison to other frames, the perceived frame exhibits some special properties
that result from its special purpose:

• Initialisation: The perceived frame is initialised with a single message as the root of

its trajectory model and with two concrete agents as roles, namely the sender and

receiver of this message. No relationships, contexts or beliefs (let alone meta-level

attributes) should be inferred before the first message is uttered or perceived for the

received frame to remain unbiased and able to adjust to any type of interaction that

may occur.

• Trajectory branching: The trajectory model of a perceived frame may contain “lanes”

of interaction that are observed in parallel, but trajectory paths do not branch out as
only one sequence (per concurrent path) can be observed per encounter.6

• Descriptive mentalism: A perceived frame is supposed to capture observations rather

than assumptions of the modelling agent. Hence, the mentalistic aspects of a frame
(deliberative role expectations, beliefs, activation conditions, extension tags) should

only contain knowledge that can directly be inferred from what is uttered in commu-

nication (e.g. if an agent says “I know X” this may be included in the beliefs slot). In

6 An exceptional case are agents who use branching to express uncertainty about what has been observed.
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particular, knowledge that is in one’s own (sub-social) knowledge base should not be

used to infer mental states of others. This has the advantage that we do not assume

other agents to operate on our own private knowledge which they may not share.

• No meta level: The perceived frame has no history, no links, no status and no exten-
sion. This is because (i) it is only perceived once and not maintained any longer after

the encounter is finished, (ii) it does not stem from the repository (so it cannot have

any relationships to other frames), (iii) it is not an abstraction of several concrete

cases (it contains no abstract information for which we have to store an instantia-

tion in the form of a status attribute), and (iv) it has no extension for the reasons of

avoiding mentalistic assumptions just mentioned.

All in all, the perceived frame is a very simple frame that does not use the full modelling

power of the InFFrA frame model. In many cases, it will simply consist of a sequence of

perceived messages and a list of agent names that reflect which agents utter and observe

the messages. Still, it is important to interpret the current interaction encounter in terms
of a frame, as this allows for the application of a generic frame comparison procedure that

can also be used in other framing steps.

Active frame

While the perceived frame provides a descriptive model of the interaction, the active frame

delivers the normative model of the interaction as it should be according to the experience

(or designer knowledge) stored in this frame.

As the source of information regarding the actions that have to be taken by the agent,

the active frame is the central data structure of the framing process: No matter how the

agent has reached a decision about which frame to activate (and how many modifications,

trial instantiations etc. it has performed until that point), it will blindly “obey” the active
frame once activated, at least for the imminent action. In accordance with the Meadian

model of the social act, the active frame is extended with information about the current

experience once applied, i.e. the agent records this recent experience as a new instance of

the activated frame. Apart from that, the active frame is also used to obtain an assessment

of the current framing situation through comparison to the perceived frame.

As with the perceived frame, its purpose imposes certain constraints on the properties

of the active frame:

• Unless the framing agent is only observing an interaction he will not participate in,

the status attribute of the frame must provide sufficient information for the agent to

be able to derive the next action he should take. This means that (i) the enactment

conditions required for (at least) the imminent action must currently be satisfied so
that it is physically possible, (ii) the agent has assigned one of the roles of the frame to

himself, (iii) choices for the agent which result from branching points in the trajectory

model must be reduced to a single option.

• After an encounter is finished, the history slot of the active frame should be extended

by a new item. Even in the most simple implementation, this involves recording the

status of variables of the trajectory and role models, so that at least the concrete mes-

sage sequence of the encounter can be re-constructed. If this is not possible for rea-
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sons of limited space, some kind of simplification has to be performed, to avoid stor-

ing all instances (e.g. generalisation of individual status instances or simply ignoring

certain cases).

Henceforth, we will also assume that the active frame always stems from the frame repos-
itory, i.e. that it has already been stored there, even if it just an ad hoc modification of an

existing frame or an entirely new frame. This helps keep the reasoning cycle simple: If

all frame adaptations and constructions are performed in the adjustment phase and the

results are directly stored in the repository, there is no need to store the frame after an

encounter. Also, this implies that no provisions need to be made regarding unexpected

termination of the encounter (where no additional framing cycle may be entered because

no new messages are observed).

Difference model

Defining a representation for the difference model is one of the aspects of InFFrA that

leaves a lot of freedom to the designer. The reason for this is that the importance of dif-

ferences between perceived frame and active frame may vary between applications, and

this depends on the way framing assessment (see section 3.4.3 below) is performed.

In an organisational setting, for example, only the owners of certain roles that are for-

mally defined (e.g. project manager, line manager, CEO) can participate in certain inter-

actions (e.g. an executive board meeting). This supplies framing agents with strict criteria

as to whether the current situation matches one of these heavily role-based frames. As

a consequence, the difference model definition should emphasise the importance of role

compliance or deviance in such a setting. Quite contrarily, the subtleties of trajectory path
selection may be much more important than roles in a more informal setting such as a

personal argument between two agents.

In any case, the difference model should

• provide information concerning those aspects of the perceived frame that conform

with the expectations of the active frame and those that deviate from them,

• distinguish between differences in all descriptive slots of the two frames so that the

representation of the difference model itself is “semantically close” to that of a frame

(ideally, the whole framing procedure would only need to deal with a single kind of

data structures, i.e. frames),

• ignore meta-level attributes other than history (as the perceived frame does not dis-

pose of any such meta-level information).

Frame repository

The frame repository is an up-to-date collection of frames that the framing agent has at

his disposal. It is used to retrieve candidates for activation and to store frames that have

been activated in the past. In addition to the frames the agent has created and adapted

himself, the repository may be initialised with a set of pre-designed frames (in very simple

implementations, the repository may even be entirely hard-coded and immutable).

Apart from being organised as a database that allows for efficient update and retrieval,

the repository is characterised by the following features:



68 3. The InFFrA Abstract Agent Architecture

• It contains past active frames, where a distinction should be made as to whether these

frames were only used temporarily during an encounter and frames that were suc-

cessfully completed. Some implementations may even require that only successfully

completed frames are stored in the long run.7

• The size of the repository should be bounded to prevent overly complex or time-

consuming retrieval and update operations. As the experience of the agent con-

stantly increases with new interactions, appropriate methods need to be applied to

generalise from individual instances of identical frames to (i) avoid redundancies that

increase the computational burden of frame selection and (ii) ensure that the agent’s

social reasoning component responds in a timely fashion.

• Extensive use should be made of the structural relationships and framing relation-

ships contained in the link attributes of stored frames when accessing frames during

re-framing. The more expressive these links are, the more will the search space be

reduced in finding suitable alternative frames when the currently active is no longer

considered appropriate.

It should be remarked that since we are mainly interested in “face-to-face”, micro-level in-

teractions, the responsiveness of an InFFrA reasoner is of particular importance, because

such interactions have fairly strict temporal restrictions. Most agents that engage in a con-

versation will not wait forever for a response from other parties but simply end the en-

counter after some time. Therefore is is essential that the repository is well-organised and

suitably structured to allow for efficient frame selection (especially because additional time

is needed to trial instantiate candidate frames).

3.4.3 Functional components
As described in section 3.4.1, the InFFrA framing cycle consists of four stages: situation

interpretation and matching, assessment, adjustment and enactment. Figure 3.8 shows

a further functional decomposition of these steps that extends the process overview of

figure 3.7. It shows in more detail how the different functional modules operate on the

data structures introduced above, and how their ensemble caters for an integrated framing

functionality.

Situation interpretation

As shown in table 3.4, situation interpretation obtains percepts directly from the agent’s

environment, but also information about the agent’s private goals, valuations and prefer-

ences. The reason for this is that, as far as the InFFrA reasoning layer is concerned, these

things also form part of its environment.

Percept data does not come unfiltered, except when no interaction encounter is run-

ning; as soon as an encounter has been initiated and a perceived frame has been generated,

this perceived frame determines which aspects of perception are relevant and instructs the

situation interpretation module to ignore all other aspects.

7 Of course, during an encounter, the agent should still be allowed to “experiment” with temporary frames
whose appropriateness has not been verified by previous successful application.
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inputs processing outputs

percepts, private

beliefs, goals and

preferences,

situation focus from

perceived frame

selects relevant percepts for

perceived frame, initiates

and terminates encounters

perceived frame

generation and

update, perceived

frame forwarded to

matching module

Tab. 3.4: Situation interpretation module overview

This does not mean, though, that the perceived frame has control over the situation

interpretation module. Quite the opposite is the case: Since it is the task of this module

to generate and update the perceived frame, it can commit itself indirectly to its own fu-

ture focus of attention by identifying which aspects of the perceived situation go into the

perceived frame. That way, the computational load of processing percepts is reduced in

future framing iterations (ideally, the range of relevant percepts should decrease in each

consecutive step of an interaction).

More concretely, the situation interpretation module handles the following operations:

• If (sub-social) goals are perceived that require joint action (or at least some partici-

pation of other agents), a new perceived frame is generated, indicating that an en-

counter has started. Forwarding the perceived frame to the frame matching module
triggers operation of the other framing components.

• Likewise, a new perceived frame is created if an (unrequested) message from some

other agent is perceived that spawns a new encounter.8

• According to the underlying (descriptive) model of the current interaction situation,

the situation interpretation module identifies which messages and belief items are

relevant to the ongoing interaction and updates the perceived frame accordingly. In

particular, it appends new messages to the trajectory model of the perceived frame.

• If no further messages or actions are perceived within the maximal time-span esti-

mated for an encounter, the module terminates operation of the InFFrA layer. The

timeout value may be a global InFFrA parameter or be determined by the module it-

self during operation (e.g. according to the estimated time it will take a peer to reply

depending on the complexity of a query).

Frame matching

The frame matching module is responsible for computing the difference model that ex-

presses in which respects the perceived frame adheres to the normative expectations that
result from the active frame and where the current interaction process deviates from these

expectations.

During mock activation, the same comparison is performed for trial frames that are

only activated temporarily until one of them is chosen for “real” activation. Using the

8 Note that this does not imply that the agent will react to this message by own utterances or actions. It only
means that the social reasoning layer of the agent is activated.
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same procedure for a frame that has already been activated and for trial frames that are

experimented with not only simplifies the specification of the entire framing model. It

also reflects the view that all frames should be treated the same since they are all potential

candidates when searching for the best frame. As suggested by table 3.5, operation of the

inputs processing outputs

perceived frame,
active/trial frame,

activation from

situation

interpretation

model

if activated, compares
active/trial frame and

perceived frame; generates

or updates difference model

difference model,
information about

type (active/trial) of

matched frame

Tab. 3.5: Frame matching module overview

frame matching module is triggered by obtaining the perceived model from the situation

interpretation module. If activated, the matching module performs the following steps:

1. Inspect the currently active frame.

2. Perform the actual matching procedure to obtain a difference model.

(a) If the active frame was trial instantiated, record that it has already been checked.

(b) Else (if it was the actually activated frame, that is), this information should be

included in the difference model.

3. Forward the resulting difference model to the framing assessment module.

Information about whether the active frame is a “real” frame or just a trial frame is required
by the assessment module: If it is a truly activated frame, the frame assessment module

needs to know that a re-framing process will be initiated if it decides that the active frame

is not appropriate. Else, the assessment module should know that the trial frame need not

be considered more than once during the same trial instantiation (as it has already been

tried out) and also forward this information to the frame adjustment module.

If the matching module obtains no new perceived frame, the active frame has already

been stored in the repository before, and nothing needs to be done.

Framing assessment

Together with the frame adjustment module, the framing assessment module embodies

the core of the learning aspects of framing. In machine learning terminology (Mitchell

1997), the active frame represents the current learning hypothesis that is supposed to

“solve” the interaction problem. The perceived frame, on the other hand, is the training

sample that is being processed in a particular situation. The matching module provides

difference model information, so that the assessment module can function as a critic that

evaluates the current hypothesis and decides whether it should be retained or overthrown.

The assessment process is summarised in table 3.6: The module obtains the differ-

ence model from the matching module together with information as to whether the frame
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inputs processing outputs

difference model,

type of active frame

evaluates difference model

and determines adequacy,

validity and desirability of

current active frame

framing decision,

reasons for

decision, type of

active frame

Tab. 3.6: Framing assessment module overview

under analysis has been activated or whether just mock-activated. Then, it analyses the

difference model in three respects:

1. Frame adequacy: The active frame has to be executable in a physical sense. The en-

actment conditions that have to hold for the actions contained in the remaining tra-

jectory (for all parties) have to be either (i) already satisfied according to the agent’s
beliefs (relevant beliefs have been stored in the perceived frame and included in the

difference model if they concern enactment) or (ii) precipitated by trajectory actions

that will occur before the respective conditions are required to hold. Also, the actions

need to be executable with respect to specificity, i.e. they need to be concrete actions

and not just abstract templates or variables that cannot be executed as such.

2. Frame validity: The active frame should adequately capture the interaction perceived

so far. Most importantly, as the behaviour of participating actors is supposed to be

indicative of the type of interaction that is unfolding, the actions performed so far

should match the normative trajectory model of the active frame. Roles and relation-

ships, (de-)activation conditions and beliefs can be used to obtain additional infor-

mation about the validity of the active frame.

3. Frame desirability: Even if the active frame is executable and representative of the

perceived encounter, it may not be desirable for the agent. For example, the cost

incurred by the remaining trajectory actions may be too high, or they may not achieve

any goal that is relevant for the agent. In that case, even though frame activation is

“correct”, it is unreasonable for the agent to stick to the current frame. However, the

social cost of deviating from the current frame may be higher than the private loss,
so that the agent should comply with the frame in some situations.

Clearly, this description of the framing assessment modules leaves a lot of issues unre-

solved. This is quite deliberate as different applications may require different assessment
methods.

In particular, different variations are possible regarding the ordering and the strict-
ness of the three assessment sub-procedures, and these largely determine the framing be-

haviour of the InFFrA agent. A very cautious agent will first check for complete physical

adequacy right at the beginning of an encounter, while a more risk-seeking agent might

only be concerned with the executability of imminent actions and “hope” that conditions

that are only relevant later will somehow be brought about before they are needed. A “con-

forming” agent will be more concerned with adhering to existing practice than with satis-

fying its own needs in every situation. This might lead to laying more weight on validity

rather than desirability. Also, the combination of these aspects may be adapted flexibly
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during trial instantiation or during consecutive framing cycles, depending on how many

choices are still available. For example, a frame that is risky utility-wise may be more easily

accepted during early phases of an interaction, because it is hoped that additional infor-

mation will help to better estimate this risk. Likewise, a risky frame will be accepted when

the agent is left with less choices after repeated trial instantiation, because there is no(t
much) alternative.

In any case, the result of evaluating the difference model is a decision as to whether

the agent should comply with the active frame or deviate from it. Compliance means that

the agent may directly proceed with frame enactment, i.e. with deriving its own behaviour

from the current frame.

Deviance, on the other hand, implies a change of frame called re-framing, and spawns a

(series of) trial instantiation(s) in which frames from the repository are adapted and mock-

activated by the frame adjustment module until a suitable frame is found. For this purpose,

the assessment module should supply the adjustment module with as much information

about the reasons for the framing decision as is available. This involves indicating whether

re-framing is performed in the context of trial instantiation or whether it means dismissing
a frame that has already been used to generate agent behaviour in previous cycles, but also

providing information that will guide the search process of the adjustment stage (a simple

yes/no decision hardly gives any hints as to which other frames are suitable candidates).

For example, if the reason for deviance is a validity failure, frames with different tra-

jectories are good candidates. If, on the other hand, low desirability is the reason, this

suggests that a frame is needed which has a similar trajectory model but also provides a
higher utility for the agent.

Frame adjustment

The frame adjustment module proceeds as shown in table 3.7. It processes information

inputs processing outputs

reasons for

re-framing,

activation/trial

instantiation status

retrieves frames from the

repository, modifies existing

frames and generates new

frames; determines

candidate frames

trial frame

Tab. 3.7: Frame adjustment module overview

about the reasons for re-framing generated by the assessment module, searches the frame

repository (which serves as a hypothesis space) for suitable alternatives and outputs a trial

frame, with which the active frame is temporarily instantiated for further evaluation. If

existing frames do not provide a model for the perceived interaction that seems likely to

pass the assessment phase, the adjustment model may

• modify either the cancelled frame or a frame from the repository,

• generate a new frame (from scratch or by combining existing repository frames),



74 3. The InFFrA Abstract Agent Architecture

• output a frame that was previously activated with an indication that it has to be con-

tinued because there is no alternative, or

• truncate the dismissed frame trajectory so that the interaction will simply end after

the current step, if no other solution seems viable.

As mentioned before, the status of the trial instantiation process is quite important for the

adjustment phase. This is because infinite or extremely time-consuming trials have to be

avoided, but also because different criteria apply in different re-framing situations. As an

example, consider an interaction that is almost finished; there, it may not be advisable to

search for new frames, because the expected gain of using a better frame is rather low. Or,

if very general candidate frames have already been tried out and failed, it is very unlikely

that more specific ones will be suitable.
Again, various approaches to implementing an adjustment module are possible, and

the learning algorithms and heuristics employed for frame adjustment also bear impli-

cations on how the frame repository should be organised. If, for example, case-based

methods are used which involve little frame adaptation and heavily rely on retrieval and

combination of earlier cases, the efficiency of retrieval and the definition of operators for

combining “nearest neighbours” is very important. Quite contrarily, elaborate rule-based

methods for creating new frames by using domain-specific information and existing frame

conceptions will necessitate stronger semantic links between frames in the repository.

Finally, the importance of meta-level frame attributes should not be under-estimated

in the context of frame adjustment. History information can be exploited to re-construct

previous versions of a frame, so that wrong modifications can be undone (if, for instance,
a frame modification was attempted that did not work out), and links may directly sug-

gest alternatives by narrowing down the search space prior to further costly trial instan-

tiation. For example, explicit framing rules can be implemented that use frame links as

pre-conditions that govern re-framing behaviour (cf. the remarks on p. 59).

Frame enactment

When a frame has been activated that is judged adequate, valid and desirable by the assess-

ment module, frame enactment comes into play, i.e. deriving constraints for the framing
agent’s behaviour from the current frame (see table 3.8).

inputs processing outputs

active frame,

comply decision

from assessment

module

derives social constraints for

agent behaviour from the

frame trajectory

commitments for

behaviour

generation

Tab. 3.8: Frame enactment module overview

The process of enactment involves:

• Identifying the existence of (de-)activation conditions to start or end an encounter.

Note that “ending” an encounter here only means that no further action is taken; if,

however, further messages are perceived that suggest a continuation, the encounter
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may be carried on, and therefore it is the situation interpretation module which ac-

tually decides on encounter termination.

• Inspecting the trajectory model of the active frame that is now used as a prescriptive

model to determine the next action(s) that have to be taken from a social reason-

ing perspective. This may require choosing a specific option if the trajectory model

allows for several responses or if it contains non-ground action/message templates

that require instantiation to be executed.

It is important to understand that frame enactment does not imply that the suggested
actions will actually be performed. The module merely outputs social commitments (in

the sense of “commitments that are derived from applying conceptions of interaction pat-

terns”) to the behaviour generation module as the result of the agent’s interaction-level

reasoning process.

Behaviour generation

As shown in table 3.9, the behaviour generation module obtains social commitments at the

level of concrete actions from the frame enactment module and spawns their execution
if they can be reconciled with the decisions made by sub-social components (e.g. a BDI

reasoner). Its design may range from very simple, where it merely forwards the action

inputs processing outputs

social

commitments

reconcile frame-governed

decisions with sub-social

action decisions or goals

resulting actions (if

any)

Tab. 3.9: Behaviour generation module overview

prescribed by the InFFrA layer to the local reasoning process of the agent and leaves it up

to other reasoning layers to decide whether the action will actually be executed (or simply

overrides all sub-social decision-making) to very complex, for instance if it seeks to actively

balance social commitments with local goals through explicit reasoning.

The latter solution, however, requires that all necessary information about local goals

is forwarded from the active frame via the frame enactment module (since the behaviour

generation module is not linked to any other module). This is rather counter-intuitive, as it
would force the framing process to mix knowledge about agent preferences and goals with

(frame-based) social expectations.

Yet, it may be the case that the designer of the social reasoning component cannot

modify the sub-social reasoning components of the agent and see to the balancing of social

and individual rationality there. In this case, there is no alternative to implementing a more

complex behaviour generation process endowed with this functionality.

3.5 Discussion
As InFFrA is an abstract social reasoning architecture, it raises quite some questions all of

which are related to aspects of potential implementations that have been left unspecified.
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Since it is supposed to provide a general schema for devising such implementations, these

questions implicitly define the steps the agent architect has to take to derive a concrete

design for socially intelligent, InFFrA-based agents. We shall briefly discuss some of these

issues in the following paragraphs.

Frames and framing From the above description of InFFrA, it is clear that the framing

process must be adapted to the frames used. In that, the following principles should be

followed:

• Frames should only include information that is used during framing.

Unless frame data is used for situation interpretation, matching, assessment, adjust-
ment or enactment, it need not be captured in frames. Conversely, the design of the

framing modules should make use of all information that is made available by the

frames.

• The complexity of framing and frames should be adapted to the “social flexibility” of

agents.

If the application domain suggests strict adherence to fairly simple interaction pro-

cedures, there is no need to make things difficult by overloading the agents with un-

necessary reasoning complexity. Likewise, if the modalities of desirable social inter-
action are largely under-specified in the overall system, intelligent framing may help

develop novel, emergent forms of interaction that may lead to improved coordina-

tion.

• The design of InFFrA data structures largely determines the effectiveness of framing.

The control flow of InFFrA framing is fairly strict, and it requires that individual com-

ponents interact only with few data structures. Thus, the definition of interfaces be-

tween the components and of the information that is made available between com-

ponents plays a decisive role for the performance of the InFFrA layer.

Interaction with agent-level action Because InFFrA is not a self-contained agent archi-

tecture, the designer must specify in which ways it interacts with other agent-level pro-

cesses such as local planning and reasoning, but also with perception and action. This

involves:

• Specifying when agents should interact, in particular, when they should initiate inter-

action processes and how they should combine these processes with non-interactive

action

• Defining the “social stance” an agent assumes and what effects this is supposed to

have at a global scale. Should agents rely on established procedures and conform

with them, or should they try out new modes of interaction? How much should pri-

vate utility matter to them compared to social welfare?

• Clarifying how InFFrA can be integrated in the global agent-level control flow. When

and how is perception propagated to the social reasoning level? How are concurrent

interactions with different interaction partners managed? How is InFFrA processing

interleaved with other reasoning processes, such as planning, belief revision, delib-

eration, etc.?
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• Explaining how frame learning relates to other learning activities. If new concepts

are learned, does this enrich the modelling possibilities for frames, will the agent re-

design his frames? Does the agent seek to improve the framing process itself over

time, i.e. is it “learning to frame” by modifying his own InFFrA components? If so,

what quality measures can the agent apply to an existing framing procedure to make
learning decisions?

Control flow issues Even if InFFrA lays out a basic framing control flow, many issues

require further clarification in concrete implementations. Some of these are:

• What is an adequate size limit for the repository? When should frames be “forgot-

ten”, and how should these frames be identified? Should the repository continually

attempt to find new combinations of existing frames (when idle?) and what are the

operators that should be used for this purpose?

• At which level of abstraction should frames be stored? On the one hand, abstract

frames help keep the repository small and they reduce the number of potentially
necessary trial instantiations. On the other hand, they will become computationally

heavy if they include long histories, and will be difficult to process in the enactment

phase.

• How many trial instantiations should be allowed per framing cycle? How much in-

formation about these should be stored in the candidate frames, and how much im-

portance should be given, for example, to failed instantiations when assessing the

overall usefulness of a frame?

These questions illustrate that InFFrA leaves plenty of room for more specific decisions.

While this is a general problem with abstract computational architectures, it also shows in

how many different ways the frame-based approach can be used.

3.6 Summary
In this chapter, we showed how an abstract social reasoning architecture can be developed

that builds on the principles of interaction frames and framing. After some intuitive ex-
amples and a list of desiderata, we presented an overview of the InFFrA architecture with a

particular focus on the way it integrates Goffman’s frames with Mead’s model of social ac-

tion. Then, the elements of computational interaction frames and framing in InFFrA were

laid out one by one and in great detail.

Thereby, three distinctive properties of InFFrA became clear that deserve being empha-

sised once more:

• The fact that the different frame attributes are utilised by different functional com-

ponents of the framing process model,

• the “imaginative rehearsal” that is performed through trial instantiation during fram-

ing, and its relationship to machine learning, and

• the integration of socially intelligent behaviour with local, goal-oriented reasoning.
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The major contribution of InFFrA is that it is entirely based on interaction frames as the

building blocks for social behaviour, and that, unlike other architectures, it focuses on the

learning and application of interaction processes that are abstracted into classes of inter-

actions represented by frames.

As mentioned in the introductory chapter, InFFrA explores the whole range of possibil-
ities for modelling frames and framing activities, thus providing the “big picture” of what

we obtain when applying the respective sociological concepts to artificial agents. This im-

plies that any concrete architecture that is based on the methods just presented will have

to make specific choices regarding the aspects that are to be used in a particular instance

of InFFrA, and on how these should be formally modelled. In the following chapter, we

present one such concrete, formalised model that turns the theoretical principles of InF-
FrA into practice.
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An abstract architecture like InFFrA is useful for the conceptual design of socially intelligent

agents that employ interaction frames and framing. For purposes of devising and imple-

menting concrete computational agents that embody this functionality, however, such a

conceptual framework is not sufficient – a concrete computational model is required.

To fill this gap, we will now introduce a formal model of InFFrA called m2InFFrA. It is
a simple but powerful instance of the family of agent designs represented by InFFrA with

the distinctive feature of a probabilistic, empirical semantics. Its theoretical foundation

is a novel model of agent communication that is in accordance with the assumptions put

forward in section 2.2.3.

This chapter is structured as follows: We start by introducing the new view of commu-

nication that we propose. After that, the largest part of the chapter is devoted to the formal

definition of m2InFFrA and its discussion. We round up with a short summary.

4.1 A Theory of Communication
To understand how m2InFFrA agents use frames for strategic communication, a formal se-
mantics has to be developed that expresses the meaning that frames have for agents. Look-

ing back at the assumptions made in section 2.2.3, where we stated that social reasoning

should be based on communicative expectations and argued for the necessity of commu-

nication semantics to be empirical, constructivist and consequentialist, it is clear that a

theoretical model of communication is must be used as a foundation for frame semantics

that complies with these requirements.

To explain our view of inter-agent communication, let us step back and rethink what

its underlying principles are in the context of interaction between autonomous agents in

open multiagent systems (see section 2.1.3) if we assume an interactionist stance (cf. sec-

tion 2.2.2) and if we consider the relationship between the frame-based approach and tra-

ditional views of agent communication discussed in section 2.3.2.

4.1.1 Communication systems
Deliberative agency implies that agents maintain a model of the world and manipu-

late symbolic representations of their knowledge to make appropriate decisions so as to

achieve rational, goal-directed behaviour. According to the traditional view of agent-based

and multiagent systems, this is usually done by modelling an environment populated by

other agents.

Quite contrary to this view, we can also look at multiagent systems as communication

systems (CSs) (Nickles and Rovatsos 2004) that are mainly characterised by communicative
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environmentagent

act

perceive

(a) Single agent view: the agent interacts with

an environment that contains other agents.

communication

environment

(b) Situated multiagent view: the agent inter-

acts with other agents inside a common envi-

ronment.

perceive

act

environment

communication

(c) Open multiagent view: the agent interacts

with an environment and with other agents.

effectcontext
act

perceive

environment

communication
system

(d) Communication systems view: agents in-

teract with communication structures. The

physical environment provides the context

and is affected by physical actions.

Fig. 4.1: Different views of a multiagent system. In contrast to the traditional views (a),

(b) and (c), the CS view in (d) focuses on communication processes and regards

agents and physical environment as factors that contribute to communication.

events and the relationships between them. As shown in figure 4.1, agents contribute to

the evolution of communication structures in a system through their own communicative

actions and can inspect these structures to reason about the CS. According to this view, the

physical environment is external to the communicative process, as are the agents. Both
become part of the “environment” of the CS, which is now seen as the core component

of the MAS. Of course, agents’ cognitive states and the state of the physical environment

affect which utterances will be performed by agents and hence the evolution of the global

communicative process.

At this point, we shall not go into the details of the theory of CSs based on sociologi-

cal systems theory (Luhmann 1995) for which we have developed a formal framework in

(Nickles and Rovatsos 2004)1. What is important for our purposes is that when it comes to

1 Section 7.2 contains a more detailed discussion of the relationship between InFFrA and the communica-
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Fig. 4.2: Expectation network: Nodes represent communicative actions, edges correlations

between them (variable line width is used to indicate different degrees of correla-

tion). The shaded node sequence is used to describe the recently observed portion

of the network, e.g. an ongoing conversation.

rational reasoning and decision making, deliberative agents can use models of interaction

structures in pretty much the same way as they would use representations of the physical

world. In other words, CSs can serve as a means of constructing and strategically using

communicative expectations in the sense of our assumptions (section 2.2.3).

4.1.2 Expectation networks
For CSs to be constructed from observation and used for prediction, the communicative

processes they describe have to be represented in some way, and we have to explain how

this representation is processed by the observing entity.

To highlight the central aspects of our communication theory, it is convenient to

imagine that the communication process being modelled as an expectation network (EN)

(Lorentzen and Nickles 2001, Nickles and Lorentzen 2003), i.e. a graph in which nodes rep-

resent communicative actions and edges represent correlations between occurrences of

different such actions (possibly weighted with probabilities). Figure 4.2 shows an example

of such an EN.

If a network reflects regularities in observed interaction experience, the statistical cor-
relations between subsequent actions of interacting parties can be seen as an approxima-

tion of the causal relationships in communicative behaviour (cf. p. 27). According to the

consequentialist view of communication, we can use an existing network to “calculate”

the meaning of utterances in terms of their predicted consequences under the assump-

tion that past regularities will be repeated in the future. Informally speaking, this can be

done by tracing the current sequence of messages in the network and computing the most

probable actions that are expected to occur within a certain temporal scope starting from

the present situation. As shown in the example of figure 4.3, the further predicted events

lie ahead, the less accurate (and less relevant) will the prediction be. After the next com-

municative action has been observed, weights are updated, and the prediction starts anew

from this point. Networks of this kind are fairly generic representations of expectations, yet
they have only very limited expressiveness, since the expectation structure is reduced to a

tion systems approach.
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Fig. 4.3: Semantics and their evolution in an EN: the decreasingly dark shaded regions of

predicted future actions denote that predictions regarding “distant” events are in-

creasingly vague. The transition from the situation shown on the left to that on the
right occurs upon observation of a new action that is appended to the currently

relevant path. With this new observation, the correlation between the message

previously observed and the current message increases as compared to alterna-

tives that did not occur.

system of discrete events. Communicative actions are treated as simple “signalling” events.

However, in the absence of any prior knowledge, they can still be used for describing the

semantics of agent communication, at least in principle – after countless observations, the

resulting expectations would probably adequately reflect the meaning of communication

in a society.

4.1.3 Building expectation networks
We stated above that CSs depend both on the formalism used to describe regularities in
communication and on the ways these models of communication are processed. Even the

very simple model of ENs sketched above raises a number of issues, and in fact the answers

to these questions can be used to characterise particular CS definition:

1. Which events count as communicative actions?

2. How do we decide which communicative actions are interrelated?

3. What makes two communicative actions distinct for the CS?

4. How can degrees of expectation be derived?

5. What is the scope of prediction regarding future communication?

As graph-based (probabilistic) models can be used to describe arbitrary discrete stochastic

processes, question 1 needs to be answered to restrict the scope of observations added to

the network to what counts as “communication”. In accordance with interactionist theo-

ries (see section 2.2.2) and the assumptions made in section 2.2.3, we adopt the following

definition:
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Any action executed by an agent that can be observed by others is considered

communication if the agent can be expected (i) to know that other agents are

observing the action and (ii) to consider others’ potential reactions to this ac-

tion before executing it.

Thus, physical actions class as communication in the same way as messages in the stricter

sense if their execution can be perceived by others and if the agent who is performing them

knows they are being observed by others.2 The reason for this interpretation is that such

physical actions are relevant to the flow of interaction if they are consciously executed in

full awareness of the expectations of oneself and those of others. For simplicity, we will

employ the term “messages” for all communicative actions in the following whenever there

is no need to distinguish between physical and non-physical communicative actions.

Question 2 is essential for determining where to insert a new observation in the EN,

i.e. when to regard a message as a continuation of another message. As we are only con-

cerned with dialogues between “virtually co-present” actors, we will apply a temporal and

pseudo-spatial criterion to determine continuation events. In other words, we will as-
sume that agents meet in so-called encounters whose beginning and termination can be

safely determined, and that they take turns in uttering messages. Also, we will assume

that agents can unambiguously decide which agents are involved (actively or passively) in

the encounter, and agents will assume an encounter to terminate whenever they do not

receive any further messages within a certain amount of time after the last message.

Note, however, that this is not the only possible way to look at continuation. Often,

temporal and spatial aspects do not matter at all, and other criteria are used to detect con-

tinuation. Subsequent letters exchanged between persons across different countries or

continents are rarely not considered responses to the respective previous message, unless

a very long time lies between them – in this case, continuation is determined by sender

and recipient rather than by spatial or temporal proximity. A televised feature can be the

continuation of some other broadcast produced by a different channel by virtue of refer-

ring to the earlier broadcast, even if they are directed to different audiences and the people

involved in producing them do not even know of each other’s existence (in terms of real
persons). Here, reference, common subject and shared medium are much more relevant

than time, space and people involved.

As concerns making distinctions between different messages (question 3), this is
mainly a matter of applying a suitable generalisation mechanism in the construction of

ENs. The above examples seem to suggest that any new symbol used in communication is

inserted into the network as a new node. However, this is only the most trivial method that

can be thought of and has two major disadvantages:

1. The set of particular symbols (network nodes) becomes huge and cannot be effi-

ciently stored and re-used by agents, and

2. a manageable global system of communication symbols cannot be established be-

cause symbols are not repeated among different agents for their meaning to spread.

Therefore, it is useful to generalise over different symbols and to introduce new nodes only

for messages that “make a difference” with respect to the way in which the CS is going to be

2 Conversely, messages (in the sense of symbol exchange) have physical effects (generation of sound-waves,
placing ink on paper etc.), but these can mostly be considered irrelevant to the achievement of agents’ goals.
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used. For example, the same message uttered by different agents might not require making

that distinction because its effects are more or less the same across the entire society. Also,

messages with slightly different content may be generalised to the same EN node if no

difference can be discerned in the reactions of others to these messages.

The importance of what kinds of abstractions from individual messages are used in a
CS cannot be over-estimated, as they determine how compactly the EN that will be con-

strued over time will encode the interaction patterns of a social context (and thus provide

useful information to the agents using it). In addition to this, the generalisation strategy

determines whether the EN will be a (multi-)tree, a directed acyclic graph (in which some

messages have several predecessors) or even a general graph with cycles and/or loops; this

may have a strong impact on the algorithms that have to be devised to make predictions

based on the EN.

Question 4 refers to the problem of determining appropriate degrees of expectation

strength or “expectability” for certain continuations. In the semantic models we present

here, we will always use probability estimates derived directly from relative continuation

frequencies and update them in the “naive” way upon incoming observations. Also, we

will assume a prior uniform distribution over all possible continuations for any message.
Again, this is not the only (even if the most obvious) way of updating weights. The speed

of increasing or decreasing such a probability might depend on certain criteria, e.g. so-

cial power (if someone very powerful chooses a particular response, it will have a higher

normative impact than if this is done by less powerful individuals). Or, weights may be ini-

tialised with a specific distribution that reflects some initial assumptions the agents make

prior to any observation.

Finally, question 5 raises a very pragmatic issue: How should we use the EN to make

predictions (or, in other words, to “compute” the meaning of the currently relevant sym-

bols)? The view we adopt for our approach is that of computing a probability distribution

over all possible message sequences up to a certain length. Alternative approaches include:

• computing only very likely future sequences,

• conducting an exhaustive search (depth-wise), and

• considering only very risky or very profitable paths.

Even if a CS is used to model communicative expectation structures, these considerations

are still not sufficient to speak of a true understanding of communication semantics. For

this purpose, we have to look more closely at the meaning of symbols in the context of an

empirical model of statistical correlation.

4.1.4 Symbols and meaning
So far, we are able to model the relationship between a perceived sequence of commu-

nicative actions in an encounter and its potential consequences. But what precisely is the

meaning of the symbols used in these messages according to this view?

Symbols encode expectations

Symbols used in a message must be representative of the expectations the uttering party

associates with them. In the most general sense, they encode the state of the world that will
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be brought about after the expected consequences of the message occur. Common ways

to describe such states fall into two categories:

• Descriptions of states of the world that result from communication. These may con-

cern the physical environment or mental states of the interacting parties. For in-

stance, if agent A informs agent B of X, A hopes that this will result in B believing

X.

• Descriptions of the elements of expectation structures themselves, e.g. encodings of

action sequences, plans, etc. If A threatens B to do Y if B does X, then this effectively

means that A is sharing a part of his own expectation network with B (by informing

B of his own future conditional reaction).

With this respect, since the only reason for uttering a message for an agent would be that

these expectations cannot be fulfilled by the utterer himself, any message has the meaning

of a request. As this may seem quite restrictive at first sight, let us look at some examples of

how other types of messages can be interpreted as requests:

• Proposal: The agent making the suggestion requests acceptance or a counter-

suggestion.

• Promise: The agent who commits himself to doing something requests the other to

believe he will.

• Rejection: The agent rejecting what someone else requested is requesting that the

requester accepts the rejection and that the interaction ends with no further conse-

quences.

Effectively, what is requested in all these cases is the expected effect of uttering the symbol

as derived from the CS of the agent who is using the symbol (and hopefully shared by the

other communicating parties).

Special cases

Looking back at the CS view, some special cases of the use of such requests can be identi-

fied. Firstly, the response expected from the other might be deliberately under-specified.

This is the case with completely new symbols that are not yet in the EN and which can have

arbitrary (unknown) consequences. By employing a new symbol, an agent is effectively al-

lowing the other to “fill in the meaning” by generating any response. A similar situation

occurs if a symbol becomes highly ambiguous after having been followed by many dif-

ferent action sequences in the past. Such ambiguity may be instrumental in spawning a

creative process (a phenomenon often experienced in human society).
Secondly, symbols that have occurred before may be re-used in a different context. Un-

less every symbol is supposed to have different semantics in every context (which would

prohibit modular re-combination of existing expectation sub-graphs), re-using the expec-

tations already associated with a symbol is a reasonable strategy. However, we should not

forget that this results in a drastic modification of the expectations associated with the

symbols on the current path that were uttered prior to the re-used symbol (i.e. its ances-

tors in the EN). In the most extreme strategy of connecting the existing node for that sym-

bol with the current encounter path (prefix) upon re-use, for example, the context would



86 4. A Formal Model of InFFrA

simply have a meaning identical to that of the re-used symbol (and hence lose its own

meaning). It is therefore very important to carefully consider to which extent previous

meanings of symbols are integrated into different contexts after their re-use. Also, if the

expectations associated with a re-used symbol are modified by its actual consequences in

the new encounter, we have to consider modifying them in all other places in the EN where
the same symbol occurs.

Objects, actions, actors and expectation encodings

Choosing appropriate representations for communicative expectation structures is of

paramount importance when it comes to using them in agent reasoning. They should be

easy to derive from observation and computationally tractable so that they can be readily

used to make predictions about the future behaviour of other agents.

Since symbols encode expectations, they basically describe world states in terms of ob-

jects of the physical world, agents, and actions. In accordance with the view put forward

in speech act theory (Austin 1962, Searle 1969), where performatives are used to distinguish

between different types of messages on the grounds of speaker intention (defined in terms

of desired effect of the utterance), we argue that performatives are useful as labels of ex-

pectation graph nodes. This is because the distinction between “sender and receiver”, “in-
tention” (“desired effect”) and “content” is a very powerful one, as the ways in which agents

(jointly) act towards things in the world are fairly limited, even if these can be applied to a

huge variety of issues (objects, beliefs, etc.) to talk about in the world. From the standpoint

of generalisation, this means that it is reasonable to abstract from

• individual senders and recipients of messages (as communicative expectations

should hold across different agents), and

• message content (because the objects talked about vary much more than the possible

intended consequences of acting towards them).

At this point, a simple example is useful to illustrate why this is the case. First, consider an

expectation structure that is solely based on a statistical distribution of consequences:

If I say to Peter “Please open the window” he does so in 85% of all cases.

Note that in the most general interpretation of symbols, the entire utterance “Please open

the window” is a single distinct symbol.

Generalising over different actors, this expectation would become

If A says to B “Please open the window”, B does so in 85% of all cases.

Now, I can expect the message “Please open the window” to have comparable effects re-

gardless of its recipient. Moreover, by adapting the probability with every respective obser-

vation, I am forced to consider its global meaning (that is averaged over all agents) when

using it.

Moving from these levels of generalisation to a generalisation over content, however,

marks a real leap in expressiveness. If the stored expectation is

If A asks B to do X, B does so in 85% of all cases
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this can formalised as

request(A, B, X)
0.85
→ do(B, X)

and is reminiscent of illocution expressed through performatives in speech act theory (see

section 2.3.2). The difference between this kind of generalisation and other generalisations

is that the expected reaction itself is encoded in the utterance that precedes it.

Clearly, X can be instantiated with many more different values than B and A can ex-

hibit reactions to the request (e.g. no reaction at all, doing something else than what was

requested). What is more, the different reactions matter much more to the agents than the

objects talked about – it is the different paths of action that are pursued after the utter-

ance that make the difference, not the subject of discourse. In our formalisation of InFFrA,

we will therefore employ performatives and abstract from content and participating actors
whenever this is possible.

We do not imply by this that there is a universal set of speech act types, or that their

meaning is fixed in terms of shared normative content regarding their preconditions and
effects. They are rather considered node labels powerful enough to generate compact

expectation structures, as they naturally encode the different types of intentions agents

might have, even if these may signify different expectations in different contexts (i.e. we

expect the same performative to occur on different paths with slightly different meaning).

4.1.5 Content and context constraints
In the above example, if A asks B to open the window, B is not expected to reply with a

statement about international politics (at least not in pragmatic agent communication).

B should either react by opening the window, by expressing some reason why he cannot,

should not or must not open it, by delegating this task to someone else, etc. In any case,

the content of B’s response should somehow relate to opening the window.

This illustrates that there is something still amiss in our model of expectation struc-

tures, namely the link to the environment in terms of (i) physical objects and (ii) mental

states. For expectations to make sense to the agent using them, they need to be condi-

tioned with constraints he can process cognitively (e.g. through inference on his knowl-

edge base).

These constraints fall into two categories: (i) content constraints which refer to the ad-

missible contents of messages that can be used by the interacting parties in combination

with certain performatives and (ii) context constraints that concern the applicability of par-

ticular expectation structures in certain situations.

Content constraints

Content constraints restrict the scope of possible contents that can be used in subsequent

messages. The most common type of such constraints is that of topic or theme of a con-

versation, which, as suggested above, narrows down the set of possible (viz. reasonable)

responses by restricting them to utterances that refer to a particular set of objects, actions,

and mental states. Of course, this scope depends on the respective types of performatives

in the expectation structure. For example, a call for bids in an auction allows for a much

wider range of responses than an offer to sell something at a particular price.
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The second, very important type of content constraints is that of rationality constraints.

Basically, these concern the consistency of message content with agent rationality. Agents

require others to act in accordance with rationality constraints because they are rational

agents, i.e. through an implicit homogeneity assumption by which agents assume others

to have similar cognitive capacities like themselves. Typical examples for such constraints
include

• not claiming the opposite of what has been asserted before unless sufficient justifi-

cation can be provided,

• acting towards (and also, not acting against) a goal that has been claimed to have

been adopted (unless a goal is reached or unachievable), or

• being committed to accept all the logical consequences of statements that have pre-

viously been accepted as true.

In a sense, these constraints are nothing but assumptions regarding mental states that can-

not be observed directly but are virtually made public with certain utterances, e.g. expres-

sions of belief. While the mental state itself cannot be verified by an external observer,

subsequent observable actions are required to be in accordance with it.

It is important to understand that Rationality constraints are one of the main aspects of
communication among deliberative agents that make it radically different from “signalling

behaviour” between machines or, say, insects.

Context constraints

In all the above examples, the expected consequences were identical under any circum-

stances. Quite differently, we might use the expectation

If I say to Peter “Please open the window”, he does so in 95% of all cases if the

window is closed. If the window is already open he never tries to open it.

Now, the aggregation of different observations into a probability distribution is

parametrised with environmental (in the sense of “communication-external”) conditions

grounded in the world model of the observer and thus endowed with additional informa-

tion. Unless expectations are parametrised in this way, different symbols might have to be

used for every different physical state of the entire system, because agents react differently

to identical symbols under different conditions, depending on their local knowledge and
their private motives.

Unlike content constraints, context constraints may never become visible in commu-

nication. They are internal to agent cognition and serve as a means of distinguishing be-

tween different meanings (consequences) of the same message under different circum-

stances. Hence, they are an instrument that can be used to organise expectation structures

so that these make sense to the agent in different situations.

4.1.6 Deviance, rejection and conflict
Basing semantics on expectations implies considering that expectations may be violated

both by the agent who holds them and by his peers. Violating expectations can be regarded

as deviance with respect to the normative content of existing expectations.



4.1. A Theory of Communication 89

Trivially, any utterance modifies the status of an EN (unless it is deliberately ignored), so

every message is deviant in a way, even if this deviance only consists of reassuring the agent

about the most probable outcome. Therefore, we only speak of real deviance if agents

exhibit a communicative behaviour different from everything that could realistically have

been expected. What we mean by this is that when an agent considers different possible
outcomes of an interaction, he usually focuses on a subset of them and normally filters out

whatever seems extremely

• improbable (asking someone to open the window is rarely followed by a lightning

that injures the person so that this experience will infringe our confidence in such

requests),

• irrational (even if murder is common in some social context, it is irrational to commit

murder if the sanctions are drastic and the probability of getting caught is high),

• disproportionate in effect (you don’t expect to get beaten in the face for asking some-

one to open the window).

A measure that can be used as an indicator for these cases is whether the modifications

to the EN anticipated before an action took place were greatly exceeded by those actually

experienced (we shall return to this issue in section 5.3.4).

Rejection is a more complex form of deviance. Rather than simply reacting in an un-

expected way, it enables agents to express that they are not willing to react as expected by

their adversary. Worse still, rejection might mean that they are not even willing to provide

any further information regarding their own expectations or their willingness to adhere to

expectations. In other words, the rejecting agent is telling his peer that he might do virtu-
ally anything (rather than restrict himself to what the other expected as a reaction).

A “no”3 implies that the agent who is uttering is not interested in any further coop-

eration, at least not in the context of the present encounter. However, if an agent issued

a proposal and received a rejection, this does not have to bear any severe consequences –

the encounter may simply end without an agreement, the agent may make a new proposal,

etc. Only if he rejects the other agent’s (first) “no” the agents are in trouble: In this case, this

second “no” translates to “be prepared for any reaction on my side on whatever you do”,

thus denying the possibility of any alignment between the two agents’ actions, and this is

nothing else but open conflict.4

Given that deviance is the source of innovation in interaction but that it can also cause

conflict, one of the central issues in achieving coordination through communication be-
comes how agents can identify a potential for cooperation to keep the other from resorting

to conflict behaviour or to get him back on the track of cooperation. As described in our

remarks on conflict in interactionist theories (page 24), “intelligent social reconstruction”

is necessary in such situations to enable a joint return to cooperative patterns of interac-

tion. In section 6.3 we show how frames can be designed to achieve this kind of conflict

management and conflict resolution.

3 Note that we only consider “no” in the sense of rejection, not as a negative answer to a question (e.g. “are
you cold?”), where “no” is a perfectly expectable reply and makes a statement about the valuation of a for-
mula/variable). Also, a “no” which was expected (if the agent who it is being directed towards has a plan
regarding what to do in case of “no”) is not a “no” in that sense.

4 This is a simplified view of Luhmann’s (1995) theory of conflict as “double no”. Note also that we are using
a purely communicative notion of conflict here, which is very different from the definitions frequently used in
DAI which usually refer to goal and resource conflicts (Müller and Dieng 2000, Tessier et al. 2000).



90 4. A Formal Model of InFFrA

4.1.7 Communication and coordination
As we have argued before (assumption 2.10, p. 28), agents are generally confronted with
the dilemma of trying to maximise their own autonomy (viz. independence of others’ ex-

pectations) while at the same time they want their peers to act as predictably as possible.

Reviewing this issue in the light of our observations on communication, we are able to pro-

vide a more specific description of how agents reason about communication and how we

can model the process of inter-agent coordination on this basis.

Most generally, agents communicate when they are unable to achieve their goals on

their own. If they identify a potential for beneficial joint action, they contact the respective

agent(s); if contacted by someone else, they will participate in communication if they ex-

pect to benefit from it in some way. Whenever an interaction becomes too costly or does

not seem to lead to a positive outcome anymore, agents will abandon it.

During communication, agents use their expectation structures to determine paths of
interaction that lead to desirable outcomes. Thereby, the final outcome of a communica-

tion process should include changes to the physical environment or to the mental states

of agents, since we do not assume that agents communicate just for the sake of it (i.e. mes-

sages themselves offer no utility to agents).

In this sense, a model of expectations, for example an EN, is used like a library of “com-

munication plans” as it contains information about different paths of joint action execu-

tion, their consequences and the context within which they can be performed. In compar-

ison to normal plans, the expected behaviour of communicative partners is of course only

approximate, ambiguous, generalised and not necessarily efficient, for example if a long

argument is necessary to achieve a very simple agreement.

As described above, the utterances that agents generate are requests for jointly realis-

ing a certain state of the world, the meaning of which is derived from expectations. From a
coordination point of view, this means that interacting agents iteratively exchange differ-

ent proposals that contain descriptions of world states they want to achieve, each of them

according to their goals. In other words, agents constantly negotiate about what state of

the world to achieve, and use their expectation structures to indicate the course of joint

action that they would like the other to take. For example, by accepting someone else’s

suggestion and taking into account that the other agent knows our acceptance will result

in readiness to play our part in the execution of what is being suggested, we are agreeing

to implement the suggested joint action. By rejecting a proposal, on the other hand, our

counter-proposal may be “nothing”, i.e. we will expect the other agent to know that no joint

action is going to result from the conversation.

Unfortunately, because expectations are built from experience, things get more com-
plicated as communicative action during this negotiation process constantly modifies the

expectation structures. So selecting appropriate messages using an expectation structure

must not only take the immediate, first-order effects of the messages into account, but also

the long-term evolution of the expectation structures which we can view as second-order

effects of communication (cf. assumption 2.9, p. 28).

To summarise, the coordination process that unfolds between communicating agents

is characterised by three main features:

1. Agents with different but potentially overlapping goals negotiate over different possi-

ble interaction sequences by making communicative choices on the grounds of their

private expectation structures.
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2. The exchanged messages correspond to expectations regarding potential outcomes,

and fruitful coordination can only be achieved if actors’ expectation structures are

suitable (esp. with respect to divergent expectations) and if they make the right utter-

ances.

3. Communication alters existing expectation structures. Reasoning about the long-

term usefulness of a meaning structure (and about the degree to which this is actually

influenced by one’s current decisions) plays an important role in strategic communi-

cation.

These observations conclude our rather theoretical view of communication that is based

on the idea of consequentialist semantics and on grounding meaning in expectation struc-
tures derived from empirical observation. In the following section we will introduce a for-

mal model for InFFrA agents that is in accordance with these principles.

4.2 m2inffra
The m2InFFrA model of a frame-based architecture is a formalism for representing a com-

munication system with consequentialist semantics from the viewpoint of an agent ob-

server, with the distinctive property of employing frames to encode and manage expecta-

tion structures.

This dual view of frames – as expectation structures that define an evolving communi-

cation semantics on the one hand, and as “pragmatic scripts” that can be instrumentalised

to achieve one’s goals on the other – is the foundation of the formal definition of m2InFFrA.

Before presenting its rather intricate details, we shall provide an overview of its main char-

acteristics, especially with respect to abstract InFFrA.

4.2.1 Overview
m2InFFrA is the result of building a computational model of InFFrA that is minimal in the
sense that all features of InFFrA are present but realised in the least complex way. The

intuition behind this is that m2InFFrA can be used as a starting point for more elaborate

InFFrA agents by representing a kind of “greatest common denominator” between many

possible InFFrA-compliant designs.

With respect to the design of interaction frames, this results in the following set of fea-

tures:

• Trajectories are represented as fixed-length sequences of message and physical ac-

tion patterns in a format similar to that of speech acts that may contain variables.

They are strictly turn-taking and involve only two interacting parties. Frame validity

is determined by checking whether a prefix of the trajectory of a frame matches the

currently perceived interaction sequence.

• Roles and relationships, context, and beliefs are captured as logical statements in

lists of conditions. They are all treated equally when it comes to assessing adequacy

and validity in the sense that the agent verifies their logical satisfiability using his

knowledge base.
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• Status is expressed by means of variable substitutions which replace variables in tra-

jectories/conditions by concrete values. This allows for the representation of con-

crete instances of abstract trajectory and condition descriptions.

• Representing frame history is made possible by storing lists of conditions and sub-

stitutions as collections of past enactments of the frame. Also, the frequency of the

individual cases is counted.

• Links between frames exist implicitly by virtue of constantly updated “matching

counters” in all frames that match during an encounter. Frames maintain informa-

tion about which frame they were generated from and, additionally, semantic links

can be used in frame conditions which are treated as ordinary logical constraints.

• Extension is realised in a very simplistic fashion. Epistemic constraints can be mixed

with other logical constraints in the condition lists. If no such constraints apply, the

framing agent assumes the frames he maintains to be commonly known among the

interacting parties.

In short, m2InFFrA frames consist of (i) a simple trajectory sequence (which may include

variables and wildcards), (ii) lists of conditions and substitutions for past instances of the

frame that have been experienced, and (iii) counters for the number of encounters in
which prefixes of the trajectory matched the experienced message sequence.

All parts of the frame that have to be verified in a logical way are combined in the con-

ditions attribute, i.e. the conceptual distinction between roles and relationships, context,

beliefs, framing links, and extension made in 3.3 is abandoned here in favour of simplicity.
Note that it is still possible to model all these different attributes, but the problem is now

shifted to a general level of logical inference, the intuition being that “no matter what kind

of conditions have to be satisfied, they all have to be verified at a logical level for the frame

to be feasible”. In an expectation structure view, the logical conditions associated with a

frame trajectory reflect the context constraints and content constraints that are relevant for

the respective communication pattern.

As concerns framing, m2InFFrA is characterised by the following properties:

• It is assumed that an agent can estimate the utility of a future sequence of (ground)

messages and actions at any time. Encounters are only started if there are frames

that suggest an increase in utility, and the agent participates in interactions started

by others only as long as there are still matching frames according to which a utility

gain can be expected.

• The perceived frame consists only of the sequence of ground messages and actions

that has been observed so far in the present encounter. Unlike general InFFrA, match-

ing is performed for all frames in the repository (not just the active frame) but only

with respect to trajectories (validity). This allows for narrowing down the choices of

alternative frames during iterative framing cycles, thus reducing the complexity of

trial instantiation.

• During the assessment phase, it is checked whether there are conditions in the ac-

tive frame that can still be met (adequacy), and whether the frame offers encounter

conclusions that are profitable utility-wise (desirability).
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• In the adjustment phase, all frames that still match the perceived frame are iteratively

assessed in the same way as the active frame. If no suitable frame can be found, the

agent terminates the encounter.

• As for enactment, the agent picks that ground variant of the current active frame that

promises the highest expected utility out of the possibilities offered by the (poten-

tially non-ground) frame trajectory.

• Behaviour generation is trivial: If it is the agent’s turn, he executes the next action on
the trajectory, else he simply waits for the adversary’s action. Social InFFrA choices

override any action decisions the agent makes in his sub-social reasoning, i.e. the

agent is always “controlled” by InFFrA unless this layer does not output any action.

Note that this description does not include an account of how frames are created, main-

tained, and adjusted, or, in other words, m2InFFrA only provides a model for applying ex-

isting frames, but not for learning them. The reason for this is that the model should be
kept as simple as possible at this point, since an entire chapter (chapter 5) is dedicated to

frame learning and decision making.

It should also be remarked that m2InFFrA does not specify low-level control issues such

as control loops for receiving and dispatching messages, details of how parallel conversa-

tions are handled, criteria to discriminate between consecutive encounters, etc. These are
considered implementation details and explained in chapter 6.

4.2.2 Preliminaries and notation
In order to introduce m2InFFrA formally, some auxiliary definitions are required. The fol-

lowing paragraphs introduce formal languages for logical formulae and message patterns,

some basic definitions regarding encounters, miscellaneous auxiliary predicates and gen-

eral notational conventions.

Logical language

First of all, we need to define two formal languages: (i) a logical language that will be used

for representing knowledge base contents and frame conditions, and (ii) a language for

messages and message patterns.

L is a simple (essentially propositional) logical language that uses atomic propositions

Statement = {p, q(X, s), . . .} which may contain variables (denoted by capital letters X,
Y, etc.) that are implicitly universally quantified and range over finite domains). Atomic

propositions are combined through the usual connectives ∨, ∧,⇒ and ¬. Finally, L con-

tains the logical constants “true” and “false”, and braces () for grouping sub-expressions

together (the language is formally given by grammar G in table 4.1).

Given the set of all possible interpretations

I = {I : GroundStatement→ {true, false}}

(where GroundStatement = {ϕ ∈ Statement|ϕ is ground}) we define the relation |=⊆ I ×
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Object → table | stone | . . .
ObjectVar → O1 | O2 | . . .

Agent → agent 1 | . . . | agent n

AgentVar → A1 | A2 | . . .
PhysicalAction → move object | pay price | deliver goods | . . .
PhysicalActVar → X1 | X2 | . . .

Message → Performative(Agent, Agent, LogicalExpr)
| do(Agent, PhysicalAction)

MsgPattern → Performative(AgentTerm, AgentTerm, Content)
| do(AgentTerm,PhysicalActTerm)

MsgVar → M1 | M2 | . . .
Performative → accept | propose | reject | inform | . . .

AgentTerm → Agent | AgentVar
Content → LogicalExpr | ContentVar

ContentVar → C1 | C2 | . . .
PhysicalActTerm → PhysicalAction | PhysicalActVar

LogicalExpr → (LogicalExpr⇒ LogicalExpr) | (LogicalExpr∨ LogicalExpr)
| (LogicalExpr∧ LogicalExpr) | ¬LogicalExpr
| Statement | MsgPattern

Statement → Head | Head(TermList) | true | false

Head → it rains | loves | . . .
TermList → TermList,Term | Term

Term → Object | ObjectVar | Agent | AgentVar
| Message | MsgVar | PhysicalAction | PhysicalActionVar

SubstList → 〈SubstList′〉
SubstList′ → SubstList′ Subst | ε

Subst → [ObjectVar/Object] | [AgentVar/Agent]
| [PhysicalActVar/PhysicalAction]

| [MsgVar/Message] | [ContentVar/LogicalExpr]

Tab. 4.1: Grammar G defining the syntax ofL,M andMc (terminal symbols are shown in

typewriter font, ε denotes the empty word).

Logical formulae refer to four different kinds of things in the universe of dis-

course: (physical) objects, agents, messages, and physical actions. These (or

typed variables for them) are used to form terms which, in turn, are the argu-

ments of statements. Statements can be combined to logical formulae, with the
speciality that MsgPattern objects can be used as statements to denote the event

of a message pattern being performed (under existential quantification).

As a reified object, logical formulae are also used as message contents of type

Content. In substitutions, these contents can be replaced as a whole by variables,

as is the case for agents, messages, objects and physical actions.
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L in the usual way by induction over formulae ϕ ∈ L and interpretations I ∈ I :

I |= ϕ iff ϕ ∈ GroundStatement and I(ϕ) = true

I |= ϕ iff ∀t.I |= ϕ[v/t], v ∈







AgentVar
ObjectVar

PhysicalActVar
MsgVar







,t ∈







Agent
Object

PhysicalAction
Message







I |= ¬ϕ iff I 6|= ϕ

I |= ϕ ∨ χ iff I |= ϕ or I |= χ

where is a [v/t] is a variable substitution in the usual sense and we write ϕ[v/t] for the

formula that results from replacing all occurrences of variable v in ϕ by ground term t.

The operators∧,⇒ and ∀ can be defined as abbreviations through the other operators.

Also, we write |= ϕ if ϕ is a tautology that is satisfied by any I ∈ I . A knowledge base

KB ∈ 2L can be any set of formulae from L. For simplicity, we will often write KB |= ϕ to

express |= (∧ϕ′∈KBϕ
′ ⇒ ϕ).

Messages and message patterns

The languageM of message patterns defines the syntax of message patterns (or templates)

we will use for describing frame trajectories. For the purpose of restricting certain defini-

tions to ground (i.e., variable-free) messages, we further identify the language of concrete

messagesMc as a subset ofM.

Actually observed, concrete messages (of type Message in table 4.1) can be either phys-

ical actions of the form do(a, ac) where a is the executing agent and ac is a symbol used for

a physical action (of type PhysicalAction), or non-physical messages performative(a, b, c)
sent from a to b with content c. Thereby, the symbols used in the Agent, Object
and PhysicalAction rules contain domain-dependent symbols the existence and proper

grounding of which we take for granted.

The content of non-physical messages is given by the LogicalExpr type, where logical

expressions are essentially formulae from L composed of predicates that refer to agents

and objects in the world, with the speciality that we use MsgPattern expressions as action

predicates. This is an abbreviated notation for referring to communicative actions in the

sense that if message (or pattern) m is used as part of a logical expression in message con-

tent, then this part of the statement will be true if the action (or any action from the set

of actions represented by the pattern) is executed (of course, the semantics of this can be

augmented with a notion of time). 5

Unlike concrete messages, the message patterns used in frame trajectories are of
type MsgPattern and may also contain variables for agents (AgentVar), physical actions

(PhysicalActVar), objects (ObjectVar) and message content (ContentVar), but not for perfor-

matives. The fact that performatives cannot themselves be replaced by variables has far-

reaching consequences, because it implies that if a concrete message is matched against a

5 There is an important difference between a logical expression l ∈ L used in an agent’s internal reasoning
process and a ”logical expression” being the content of a non-physical action. The latter is not a logical expres-
sion, but an object of the universe that denotes a logical expression or – in the case of message patterns and in
the presence of variables – a set of logical expressions. Hence, a message has to be interpreted by its recipient
to derive the logical quality of the content; before that, it is just a string.
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pattern that contains variables, a match will only occur if message and pattern share the

same performative. The theoretical reasons for this restriction have been provided in sec-

tion 4.1.4 (p. 86); in practical terms, this means that a suitable organisation of expectation

structures into frames in m2InFFrA depends very much on performatives being telling with

respect to the outcomes of interactions. In other words, m2InFFrA relies much more on
predictions made on the grounds of the performatives perceived rather than the agents

involved or the message content that appears in the messages.

Based on the rules of grammar G in table 4.1 we can formally define

L = {ϕ ∈ Σ∗|LogicalExpr⇒∗G ϕ}

M = {m ∈ Σ∗|MsgPattern⇒∗G m}
Mc = {m ∈ Σ∗|Message⇒∗G m}

if Σ is the set of terminal character symbols (i.e. all those symbols that do not oc-

cur on the left hand side of a rule, including operators, brackets, commas, and

special symbols [, ], 〈, 〉 and /). For future reference, we also define V =
{ObjectVar, AgentVar, PhysicalActVar, ContentVar, MsgVar} as the set of non-terminal

symbols from which variable symbols are derived.

Encounters

m2InFFrA caters for discrete, turn-taking, two-party conversations only. Hence, we have
to assume that m2InFFrA agents have the computational means to group perceived mes-

sages together to so-called encounters which we can write as words w ∈ M∗
c . Encounter

identifiers E = {e, f , . . .} are used to explicitly refer to specific (past) encounters. Let

message(m, e, i) denote that m is the ith message in encounter e. The following statement

captures the fact that each encounter occurs exactly once and contains a number of sub-

sequent messages:

∀e ∈ E .∀m ∈Mc.∀i ∈ N.message(m, e, i)⇒
((
∀m′ ∈ Mc.message(m′, e, i)⇒ m = m′

)

∧
(
i > 1⇒ ∃m′ ∈Mc.message(m′, e, i− 1)

))

label(e) = m1m2 · · ·mi · · ·mn yields the concatenation of all messages of an encounter e
(i.e. ∀i.message(label(e)[i], e, i) holds).

For any message m ∈ M, sender(m) and receiver(m) return the sender and the set

of recipients of the message respectively (which may be variables, if m is not a concrete

message). Unless m is a physical action, which can theoretically be observed by every

agent6, receiver(m) yields a singleton set. Further, for every encounter e there are two

agent symbols (type Agent of grammar G in table 4.1) a1, a2 such that initiator(e) = a1
and responder(e) = a2 return the agent that initiated an encounter and his communica-

tion partner.

Uniqueness of senders/receivers and initiators/responders as well as strict turn-taking

are captured by the following assumptions ( where ”=” denotes term equivalence in the

6 For simplicity, we assume that observation of the effects of a physical action allows for unequivocal iden-
tification of the agent who executed the action.
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usual sense):

∀m ∈M.∀a1, a2 ∈ Agent.a1 = sender(m) ∧ a2 = sender(m) ⇒ a1 = a2

∀e ∈ E .∀a1, a2 ∈ Agent.a1 = initiator(e) ∧ a2 = initiator(e) ⇒ a1 = a2

∀e ∈ E .∀a1, a2 ∈ Agent.a1 = responder(e) ∧ a2 = responder(e) ⇒ a1 = a2

∀e ∈ E .∀m, m′ ∈Mc.∀i.(message(m, e, i)∧message(m′, e, i + 1) ⇒

sender(m) ∈ receiver(m′) ∧ sender(m′) ∈ receiver(m))

When we speak of the encounter prefix of an encounter e, we refer to the sequence

m1m2 · · ·mi where i ≤ n and label(e) = m1m2 · · ·mn. Given such a prefix, we refer to

mi+1 · · ·mn as the encounter postfix or the continuation of e after m1m2 · · ·mi.

Miscellany and notational conventions

We shall make frequent use of a predicate unify(·, ·) that is true whenever two terms (or

ordered lists of terms) can be unified. In this case, we write unifier(·, ·) for the most general

unifier returned by a standard first-order unification procedure.

Also, we use

∆(S) =
{

f : S → [0; 1]
∣
∣
∣ ∑

s∈S
f (s) = 1 ∧ ∀s ∈ S. f (s) ≥ 0

∧ ∃S′ ⊆fin S. ∑
s′∈S′

f (s′) = 1 ∧ ∀s′ ∈ S′. f (s′) > 0
}

to denote finite-support discrete probability distributions over arbitrary sets S.

As for notational conventions, we use s = 〈s1, . . . , sn〉 to distinguish ordered lists from

sets. If we write them as words without enclosing braces, we leave out commas in favour of

(sometimes omitted) concatenation/multiplication dots “·”. We write 〈〉 or ε for the empty

list/word, si or s[i] for the ith element of a list/word and s[i: j] for the sublist/substring of s
ranging from indices i to j inclusively. For substitutions (i.e. ordered lists of variable-term

or variable-variable pairs 〈[v1/t1], . . . , [vk/tk]〉), we mostly use Greek letters ϑ and χ and for

sets/lists of these the respective capital letters, e.g. Θ. We denote application of a substitu-

tion to a formula ϕ ∈ L and lists thereof by simply “concatenating” the substitution(s) to

these. For example, ϕϑ is the result of applying a substitution list ϑ ∈ SubstList to a logical

formula ϕ ∈ L.

Calligraphic capitals such as L, M, E are used for sets (as above), and we use

typewriter font for strings in actual communication. For convenience we sometimes

abuse some non-terminal symbols of grammar G in table 4.1 to denote the set of elements

that would be generated with the respective non-terminal as starting symbol.

4.2.3 Interaction frames in m2inffra
Interaction frames in m2InFFrA consist of a sequence of communicative action patterns

that describes a set of possible trajectories and of lists of variable substitutions and con-

ditions which applied in previous encounters that matched the trajectory. Additionally,

they count the number of times (i) that encounters occurred that matched prefixes of the

trajectory and (ii) that a particular substitution occurred in a past encounter.
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Definition

m2InFFrA agents maintain a frame repository F = {F1 , . . . , Fn} in which they record

knowledge about past interactions in the form of frames. These Fi are defined as follows:

Definition 4.1: A frame is a quintuple F = (T, Θ, C, h, hΘ), where

• T = 〈p1, p2, . . . , pn〉 is the frame trajectory, a sequence of message patterns p i ∈ M;

• Θ = 〈ϑ1, . . . , ϑm〉 is an ordered list of substitutions ϑ j = 〈[v1/t1], . . . , [vk/tk]〉 where

[vi/ti] ∈ Subst (as defined in table 4.1);

• C = 〈c1, . . . , cm〉 is an ordered list of logical condition sets such that c j ∈ 2L is the

condition set relevant under substitution ϑ j;

• h ∈ N|T| is a trajectory occurrence counter list that counts the occurrence of each se-

quence that matched a prefix of the trajectory T in previous encounters;

• hΘ ∈ N|Θ| is a substitution occurrence counter list counting the occurrence of each

member of the substitution list Θ in previous encounters.

�

When speaking about frames, we will use some further notation:

• We write T(F), Θ(F), C(F), h(F), hΘ(F) for functions that return the respective ele-

ments of a frame F.

• The abbreviated syntax Th(F) =
h(F)[1]
→ p1

h(F)[2]
→ p2 · · · h(F)[n]→pn is convenient to

combine T(F) and h(F) in one expression.

• Similarly, ΘhΘ
(F)[i] =

hΘ(F)[i]
−→ Θ(F)[i] is used to combine Θ(F) and hΘ(F).

In informal terms, the semantics of this frame are as follows: the agent who “owns” F has
experienced h1 = h(F)[1] encounters whose first message matched the first element p1 =
T(F)[1] of the trajectory. h2 = h(F)[2] of these h1 encounters continued with a message

that matched p2 = T(F)[2], and so on. This also implies that there was no encounter with

prefix p1 · · · pn that continued after pn (unless other frames suggest such a continuation,

of course).

How are the condition and substitution lists to be interpreted? In the simplest case, if

w = 〈m1, . . . , mn〉 was the message sequence of the jth encounter that matched T(F) (out

of a total of h(F)[n] encounters that matched the whole trajectory), ϑ j is the substitution

that unifies w with T(F) (i.e. ϑ j = unifier(w, T(F))) and c j is a set of conditions that held

during this encounter under ϑ j (i.e., KB |= c jϑ j was true at that time). If used in this way,

substitutions and conditions can be assigned to individual “cases” of frame occurrence in
a one-to-one mapping.

At the same time, Θ and C can also be used to generalise over similar encounters, in

which case hΘ(F)[i] is the number of encounters that matched T(F)Θ(F)[i] (we write Tϑ

for the trajectory that results from applying ϑ to every element of T). For example, a sub-

stitution may deliberately leave some variable in the frame trajectory unbound to allow for

a number of respective concrete values in the cases represented by it.

Either way, C, Θ, and hΘ capture the history of past encounters in which the frame was

executed as a whole. By means of h, the frame also keeps track of “prefix encounters” that
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did no longer match or ended after some initial portion of the trajectory. Condition sets

and substitution lists are not maintained for these incomplete executions of the frame.

Some important details should be noted that may not be obvious at first glance:

1. Whenever a message sequence occurs during an encounter, the h-vectors are up-

dated for each frame that contains this sequence as a prefix of its trajectory:

(v ∈M∗
c has occurred n times∧ |v| = i)⇒
∀F = (v′w, Θ, C, h, hΘ) ∈ F , w ∈ M∗.∀i ≤ |v|.(unify(v′, v)⇒ hi = n)

If we view a collection of frames as an expectation network (cf. section 4.1.2), this

means that prefixes of different frames which can be unified with k past encounters

of length n refer to the same (pre-)path by virtue of having a trajectory occurrence

counter value of k throughout their first n elements.

2. To keepF concise, we will assume that the trajectories of all frames are different, i.e.

∀F, G ∈ F .F 6= G ⇒ T(F) 6= T(G).

Note, however, that the trajectories of two frames may unify, i.e. the sets of encoun-

ters they represent may overlap.

3. Since a condition set c j may contain conditions required for and/or precipitated by

the actions of the trajectory, the agent must have action rules at his disposal (for phys-
ical actions) to discriminate between these two categories in order to be able to assess

when a frame will be applicable.

For example, if step pi+1 requires a precondition ϕ that is brought about by step p i,

the agent should know that this is the case and that ϕ does not have to be ensured by

other means.

4. Application of a substitution ϑ ∈ Θ to the trajectory need not, in general, yield

ground messages. In this case, the frame does not provide concrete values for all

trajectory variables. This can be useful for generalisation purposes, for example.

5. If C[ j]ϑ contains variables for any j, these are implicitly universally quantified. Re-

member, though, that L is still essentially a propositional language, because this
quantification only ranges over finite sets of objects.

6. A frame inherently distinguishes between initiator and responder party and as-

sumes that these take turns. However, a frame need not necessarily make a precise

statement regarding which agent will fill which of these roles in a given encounter

(i.e. agent variables need not be bound to concrete values by substitutions).

The ingredients of InFFrA frames introduced in chapter 3 are present in this model in the

following way: Roles and relationships, context and beliefs are all captured in the condition

sets of C; the trajectory is reduced to a simple sequence T of message patterns; the history

of the frame (and of previous successful completions) is stored in C, Θ, h and hΘ, and links
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between frames are implicitly maintained by cross-counting the occurrence of prefixes of

T. Before presenting the formal semantics of frames, let us briefly look at an example:

F =
〈 〈 5
→ propose(A1, A2, do(A1, X1))

3
→ accept(A2, A1, do(A1, X1))

2
→ do(A1, X1)

〉
,

〈
{self (A1), other(A2), can(A1, do(A1, X1))},

{agent(A1), agent(A2), action(X1)}
〉

,
〈 4
→ 〈[A1/agent 1], [A2/agent 2]〉,
1
→ 〈[A1/agent 3], [A2/agent 1], [X1/deliver goods]〉

〉〉

For reasons of convenience, we use the syntax 〈Th(F), C(F), ΘhΘ
(F)〉 instead of

(T, Θ, C, h, hΘ) here (as we will frequently do below). The frame summarises the follow-

ing interaction experience:

• Five encounters started with a message matching propose(A1, A2, do(A1, X1)),

three of them continued with accept(A2, A1, do(A1, X1)) and two of these were

then concluded by agent A1 performing the physical action X1.

• Two encounters have terminated after the first message or were continued with a

message that does not match accept(A2, A1, do(A1, X1)) and a further encounter

turned out differently (or ended) after the second message.

• Two substitutions applied in these five encounters (the first of which is a generalisa-

tion over four encounters that leaves X1 unspecified).

Note that while this specific example does not contain any duplicate conditions or substi-

tutions, we do not require that each of them be unique in the general case.

Substitutions

If we look at the situation that occurs as an encounter unfolds, it is clear that given the

already observed messages 〈w1, . . . , wk〉 and the frame trajectory T = 〈p1, . . . , pn〉, the

scope of all variable substitutions for the remaining messages is progressively narrowed

down, if the remaining messages/actions are to match pk+1, . . . , pn. At this point, we

should make some additional definitions that will be useful when talking about this pro-

cess.

Definition 4.2: Let F = (T, Θ, C, h, hΘ) a frame and w ∈ M∗
c . The substitution fixed by w

in F is defined as

ϑfixed(F, w) =

{

unifier(w, T[1:|w|]) if unify(w, T[1:|w|])
⊥ else

�
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In other words, the fixed substitution imposed by w on F is the most general unifier that of

the encounter prefix w with the initial part of the trajectory of F that is as long as w. With

this, ϑfixed captures which variables in T(F) have already been committed to certain values

due to matching with w.

Starting from this, we would like to define Θposs(F, KB, w) to be the set of substitutions

that are still possible if the remaining elements of T(F) are still to be executed. Some aux-

iliary definitions are necessary to establish a definition of Θposs. Firstly, let

postfix(w, v) =

{

v′ if ∃v′ ∈ M∗.w = vv′

⊥ else

return the postfix v′ of a sequence v in w if v is a prefix of v, and ⊥ else. Further, let

variables(x) = {v ≺ x
∣
∣ V ⇒∗G v, V ∈ V} be the set of variables contained in a logi-

cal expression or a message pattern where the sub-term relation ≺ ⊂L×L is defined as

follows for any two ϕ,ϕ′ ∈ L:

ϕ ≺ ϕ′ ⇔
(
∃s, s′ ∈ (V ∪ Σ)∗.¬(s = s′ = ε)∧ (LogicalExpr⇒∗G sϕs′ ⇒∗G ϕ′)

)

Also, for any set S or list L let variables(S) = ∪s∈Svariables(s) and variables(L) =
∪1≤i≤|L|variables(L[i]), respectively.

Definition 4.3: The set of possible substitutions in frame F = (T, Θ, C, h, hΘ) given an en-

counter prefix w and a knowledge base KB is defined as

Θposs(F, KB, w) =
{
ϑ ∈ SubstList

∣
∣ϑ = ϑfixed(F, w)ϑ′

∧KB |= ∀(pi = postfix(T(F)ϑ, wϑ)[i]).can(sender(pi), pi)

∧ ∃1 ≤ i ≤ |C(F)|.KB |= C[i]ϑ

∧ ∃1 ≤ j ≤ |C(F)|.variables(ϑ) ⊆ variables(T(F)) ∪ variables(C(F)[ j])
}

�

Hence, Θposs(F, KB, w) is the set of all substitution lists ϑ such that:

1. ϑ is an extension of ϑfixed (i.e. a substitutions that contains ϑfixed and – optionally –

additional variable bindings).

2. All the remaining steps pi = postfix(T(F)ϑ, wϑ)[i] of the trajectory under ϑ can be

executed by their respective sender (in the case of physical actions, the sender is the

agent who is executing them).

A special predicate can : Agent ×M → {true, false} has to be available to ver-

ify this condition. By assuming that ∀a.∀m.(m 6∈ Mc ⇒ ¬can(a, m)), we ensure

that ϑ is complete in the sense that T(F) can in fact be executed under ϑ, i.e. that

T(F) ϑ ∈ M∗
c .7

7 Although this may look like a domain-dependent restriction, it is reasonable in any domain, as it sim-
ply excludes the possibility of agent names being bound to variables in action/message terms in a way that
the agents cannot execute the respective action at all (for instance, in do(A, spendMoneyOf (B)) a substitution
〈[A/agent 1], [B/agent 1]〉makes little sense).
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3. The substitution ϑ satisfies at least one of the condition sets in the list C(F). This

means that condition sets stored in a frame constitute hard applicability constraints

for a frame so that Θposs is always empty unless at least one of these sets is satisfied

under current belief.

4. The substitution ϑ is minimal in the sense that it substitutes (at most) the variables

contained in the trajectory plus those of any condition set (clearly, as no more than

one condition set needs to apply at the same time, the variables of different condition
sets need not be mixed in the same ϑ).

Apart from ignoring useless substitutions, this also ensures that the number of all

such ϑ is bounded, while SubstList itself is infinite.

4.2.4 Retrospective semantics
As with any expectation structure used to represent empirical semantics, there are two

dimensions to the meaning of frames. Firstly, in retrospect, they provide information about
previous encounters (that may be filtered, condensed, generalised or may even include an

element of oblivion). Secondly, they are used to make predictions by virtue of a prospective

semantics. Since the retrospective case is simpler, it shall be treated first.

For this purpose, let E the set of encounters perceived so far and F a frame reposi-

tory used to capture these encounters. We assume a discrete time scale T and a function

start : E → T that determines the point in time when an encounter started. Further, let

KB(t) denote the contents of the knowledge base at time step t ∈ T . Then, the following

two invariants on E andF have to hold at any time:

1. Every encounter e ∈ E as a whole is accounted for by exactly one substitution of

exactly one frame and the corresponding condition set that held when e took place:

∀e ∈ E .∃1F ∈ F .∃1i ≤ |Θ(F)|.
(

unify(T(F)Θ(F)[i], label(e))

∧ KB(start(e)) |= C(F)[i]Θ(F)[i]unifier(T(F)Θ(F)[i], label(e))
)

(4.1)

As noted earlier, execution of trajectory actions may itself modify the contents of KB.

Therefore, according to this constraint, we actually would have to make explicit when

these changes occur, and that some preconditions only have to hold after certain ac-

tions are executed. For example, if ϕ only has to hold before T(F)[4] is executed and

is brought about by T(F)[2], it would be appropriate to formalise this as condition

set

{precondition(ϕ, T(F)[4]), postcondition(ϕ, T(F)[2])}

by using “lifting” predicates such as precondition and postcondition, so that the condi-

tion set itself already holds at the start of the encounter.

2. By virtue of h, every frame also states how often encounters have been observed

whose prefixes matched the beginning of its trajectory:

∀F ∈ F .∀1 ≤ i ≤ |T(F)|.

h(F)[i] = k⇔
∣
∣
∣

{
e ∈ E

∣
∣unify

(
label(e)[1:i], T(F)[1:i]

)}∣
∣
∣ = k (4.2)
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In a nutshell, this denotes that if the ith element of h(F) has value k, then k encoun-

ters have occurred whose i-long initial portion matched the respective prefix of the

trajectory T(F)[1:i].
The relevance of this constraint is that it can be used directly to derive a frequency for

the occurrence of message sequences that match the respective message patterns. If

we write Pr(w′|w) for the frequency with which an encounter whose prefix matched

w will be continued with a sequence that matches w′, we can use the following state-

ment (which follows directly from the constraints above):

T(F) = ww′w′′ ⇒ Pr(w′|w) =
h(F)[|ww′|]

h(F)[|w|]
(4.3)

for w, w′′ ∈ M∗ and w′ ∈M+.

Although these retrospective semantics are of rather theoretical importance, they provide

the background for a definition of prospective semantics. It is this prospective semantics

that are used to make predictions regarding future interactions.

4.2.5 Prospective semantics
Unlike retrospective semantics which only reflect the frequency of observed cases, a

prospective semantics should fulfil two requirements:

1. It should express that the probability with which an observed encounter is expected

to occur again is proportional to its frequency in the past.

2. On the grounds of past observations, it should allow for computing a probability for

message sequences that have not occurred before.

The first requirement could be achieved by simply replacing frequencies Pr by probabil-

ities P in equation 4.3. However, this would preclude any ability to generalise, since the

probability of a message sequence never experienced before would be zero.

Therefore, we introduce a real-valued similarity measure 8 σ(w, w′) on message pat-

terns (and sequences thereof) that adds a case-based reasoning (Kolodner 1993, Aamodt

and Plaza 1994, Watson and Marir 1994) flavour to frames. Given a potentially non-ground

frame trajectory T, the purpose of this similarity measure is to express to which degree a

concrete instance of T is comparable to previously experienced cases as described by Θ.

Looking back at the example of page 100, we might for example want to compare the

sequence

propose
(
agent 3, agent 2, do(agent 3, deliver goods)

)

→ accept
(
agent 2, agent 3, do(agent 3, deliver goods)

)

→ do(agent 3, deliver goods)

to the previously stored cases for trajectory

propose(A1, A2, do(A1, X1))→ accept(A2, A1, do(A1, X1))→ do(A1, X1)

8 For the moment, we will not define σ formally, as it is considered a domain-dependent part of the model
and simply assume it has been specified. An exemplary definition is provided in section 5.3.3.
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given by the substitutions

〈[A1/agent 1], [A2/agent 2]〉

〈[A1/agent 3], [A2/agent 1], [X1/deliver goods]〉

stored in the frame. The idea behind this reasoning by analogy is to represent the new

instance as a substitution

〈[A1/agent 3], [A2/agent 2], [X1/deliver goods]〉

and to assume that its probability is proportional to its relative similarity to the previous

cases.

Obviously, the similarity to each of the previous substitutions Θ[i] will have to be

weighted with its frequency hΘ[i]. Also, the computation should take into account which

aspects of the respective condition C[i] are relevant in the current knowledge state of the
agent. This yields the following formula for computing the similarity of a substitution to

an entire frame:

σ(ϑ, F) =
|Θ(F)|

∑
i=1

similarity
︷ ︸︸ ︷

σ(T(F)ϑ, T(F)Θ(F)[i])

frequency
︷ ︸︸ ︷

hΘ(F)[i]

relevance
︷ ︸︸ ︷

ci(F, ϑ, KB) (4.4)

A function ci is used to assign different weights to substitutions the respective conditions

of which do or do not hold under current knowledge base contents (“relevance” of substi-

tution ϑ in the above equation). A simple method of defining c i is

ci(F, ϑ, KB) =

{

1 if KB |= C(F)[i]Θ(F)[i]ϑ
0 otherwise,

so that σ only considers cases that took place under comparable circumstances.

Equation 4.4 can easily be turned into a probability distribution for any ϑ to occur if F
takes place:

P(ϑ|F) =

{

α ·σ(ϑ, F) if ϑ ∈ Θposs(F, KB,ε)
0 otherwise

(4.5)

for a normalisation constant α.9 Thus, if a message sequence w occurs that matches the

trajectory of F, then the probability of w = T(F)ϑ is given by the similarity of ϑ to the past

cases stored in F weighted by their frequencies hΘ. This quantity is normalised over all

other substitution lists that F could possibly be enacted given the current knowledge base.

We can now turn to the central construction for determining the probabilistic seman-

tics of communication in m2InFFrA, which is based on computing the probability of any

message sequence P(w) by reasoning about its similarity to existing frames.

9 We shall frequently make use of such constants for reasons of readability. In equation 4.5, for example

α =
1

∑χ∈Θposs(F,KB,ε)σ(χ, F)

and the denominator sum is non-zero, as long as we assign some non-zero value to σ(w, w) (which is reason-
able to assume); Θposs is finite by definition (cf. p. 101).
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Rather than knowing how probable ϑ is, we would like to know the probability of par-

ticular message sequences, ifF is to provide any concrete guidance. With equation 4.5, we

are able to postulate the core element of m2InFFrA semantics:

P(w) = ∑
F∈F ,w=T(F)ϑ

P(ϑ|F)P(F), w ∈ M∗
c (4.6)

where P(F) = h(F)[|T(F)|]
|E | is the probability with which a frame has matched any past en-

counter. What this formula suggests is that the probability of a message sequence w can

be obtained by multiplying the probability with which a substitution ϑ may occur if frame

F is executed with the prior probability of F. Thereby, ϑ is the substitution that turns T(F)
into w (if the trajectory and w match at all), and P(ϑ|F) is given by equation 4.5. Note that
this equation assigns a probability of zero to the occurrence of any message sequence that

is not covered by a frame in F .

To summarise, the semantics of a frame lie in probabilistic expectations regarding en-

counter sequences to occur. They are derived from statistical observation while assuming

that the probability of future message sequences is proportional to their similarity with

past cases.

4.2.6 Framing in m2inffra
So far, we have not explained how m2InFFrA frames fit into a definition of m2InFFrA agents.

In the subsequent paragraphs, we will state more precisely what “agent” means in the con-
text of m2InFFrA, and how these agents employ frames to compute communicative expec-

tations.

Framing agents

We have already mentioned that m2InFFrA agents operate on the grounds of a frame repos-

itory in which they locally store their interaction experience. Apart from this repository, a

framing agent is characterised by a knowledge base in which he stores his current beliefs

about the world, and a utility function that provides a numerical estimate for each con-

crete message sequence depending on currently held beliefs. The following agent defini-

tion contains these elements, and it also introduces functions that transform frame repos-

itory and knowledge base after new encounters. Furthermore, it specifies a “communica-

tion horizon” used to make predictions in a boundedly rational fashion, and a similarity

function that is used to derive probabilities for future message sequences.

Definition 4.4: An agent is a structure a = (L,M, E , u, f ,κ,σ , H) where

• L,M are formal languages used for logical expressions and message templates,

• E is the set of encounters perceived so far,

• u : M∗
c × 2L → R is the agent’s utility function estimate, where u(w, KB) is the esti-

mated utility of w being executed with initial knowledge base KB;
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• f : Φ×M∗
c → Φ transforms a frame repository F ∈ Φ to a new repository upon

experience of an encounter with label w ∈M∗
c ;10

• κ : 2L ×M∗
c → 2L transforms knowledge base contents after an encounter accord-

ingly;

• σ :M∗ ×M∗ → R is a similarity measure for message pattern sequences;

• H ∈ N is a horizon such that the probability for the occurrence of each w ∈ Mc with

|w| ≤ H is positive.

�

The functions u, f and κ will rarely be defined formally, but almost in all concrete imple-

mentations, they should fulfil the following requirements:

• The utility u(w, KB) (we sometimes write u(w) where KB is obvious from the con-

text) is largely domain-dependent and it is in fact a rather strong assumption that the

agent has an estimate for the usefulness of message sequences in every knowledge
state. Usually, it is sufficient if this utility function only returns non-zero values for

physical actions that reflect to which degree the respective action contributes to the

achievement of (sub-social) agent goals. Generally speaking, the following guidelines

should be followed:

– Message sequences which involve more useful actions should receive a higher

rating, e.g. by using (discounted) sums of the individual utilities of the elements

of a sequence,

– The fact that the state of the knowledge base is altered by execution of physi-

cal actions in a message sequence should be accounted for. For example, if a

sequence contains two actions the latter of which will not executable after the

former has been executed, the overall utility should be zero since the sequence

cannot be executed as a whole.

– A small negative utility should be assigned to (non-physical) messages to pre-

vent overtly long communication sequences (and to express that communica-

tion overhead will eventually exceed any potential profit of physical actions).

Note that u need not capture how useful communicative actions that occur on a

sequence are in social terms, as this is the very purpose of the m2InFFrA decision-
making process itself.

• The frame repositories generated by f should capture the entire history of interac-

tion, unless bounded computational resources enforce restrictions on the number of

10 Formally, a frame F with i trajectory steps is taken from the set of frames φ i where

φi = Mi
︸︷︷︸

trajectory

×
∞⋃

j=0




 (2L) j × SubstList j

︸ ︷︷ ︸

condition sets/substitutions






︸ ︷︷ ︸

past cases

×N
i ×N

j
︸ ︷︷ ︸

counters

which allows for storing an arbitrary (but equal) number j of condition sets and substitution lists. If
φ = ∪∞

i=1 φi is the set of all arbitrary-length frames, then the set Φ of possible (finite) frame repositories
is given by Φ = {F|F ⊂fin φ}.
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frames that can be stored (in which case those frames that are least commonly used

should be deleted first).

As m2InFFrA allows for varying degrees of abstraction in frames, the generalisation

strategy used to manage the repository plays a decisive role when it comes to com-

puting expectations. Basically, different strategies can range from simply storing

each different encounter in a new frame with ground trajectory (or incrementing the

occurrence counters of an existing ground frame) to total abstraction from agents

and content (so that a new frame is only created if non-compliant performative se-

quences enforce a distinction). We will return to this issue in section 5.2.3.

Most other requirements for f result directly from the definition of frames in section
4.2.3 and from the retrospective semantics they are supposed to have according to

the definitions of section 4.2.4.

• The knowledge base modifications brought about by κ are inherently domain-

dependent, but may refer (for example) to social commitments, belief revision, etc.

As a minimal requirement, this function should update the list of known

message(·, ·, ·) facts upon termination of an encounter so as to include a new en-

counter that contains precisely the message sequence just perceived.

The framing state

With the above definitions, we are now able to define the framing state of an m2InFFrA
agent as the probability distribution over future message sequences it can compute using

the frames it maintains. More precisely, the framing state provides a “snapshot” of agent

expectations while an encounter is unfolding, i.e. it returns a probability distribution over

all possible encounter continuations under the encounter prefix that is being experienced.

Definition 4.5: Let a = (L,M, E , u, f ,κ,σ , H) an agent. A framing state of agent a is a

function [a] : Φ× 2L ×M∗
c → ∆(M∗

c ) which maps every

• frame repository F ∈ Φ,

• current knowledge base KB ∈ 2L, and

• current encounter prefix sequence w ∈M∗
c

to a finite-support probability distribution P ∈ ∆(M∗
c ) over possible encounter continua-

tions. �

This definition does not yet specify how the framing state is computed. This is important

because the definition only makes minimal assumptions with respect to our outlook on

consequentialist communication semantics: the use of frames as expectation encoding

data structures, the conditioning of the framing state with knowledge base contents, and

the restriction of the scope of prediction to encounter continuations. It should be stressed
that all other elements that contribute to the computation of a concrete framing state are

heuristics that are specific to an instance of the model.

So how can definite [a] to allow for the computation of a framing state in accordance

with the semantics of m2InFFrA frames? Essentially, this question can be reduced to finding

a way to turn the declarative constraints of equations 4.1 (p. 102) and4.2 (p. 102) into an
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operational function that yields a real probability distribution. These constraints stated

that m2InFFrA agents expect instances of a trajectory to occur with the same frequency in

the future as they have occurred in the past. However, given an infinite number of choices

in the way a trajectory pattern might be instantiated, an agent has to make choices relying

on relevance rather than completeness. We will now present one possibility of defining the
framing state to derive probabilities for encounter continuations based on using

• the current knowledge base contents,

• information about substitutions already applied during the current encounter,

• remaining degrees of freedom in substituting variables, and

• similarities between these substitutions and past cases stored in frames.

Returning to equation 4.6 which stated that

P(w) = ∑
F∈F ,w=T(F)ϑ

P(ϑ|F)P(F)

we have to take several further steps to achieve a tractable definition of the framing state:

1. We have to assign zero probability to all substitutions ϑ that are not feasible anymore.

2. Rather than computing the probability of a sequence w, we need to specify how the

likelihood of a continuation w′ of an encounter prefix w can be computed.

3. Prefixes not covered by any frame should have a “don’t know” semantics that makes

every possible continuation equally probable.

4. Continuations over a certain length have to be disregarded to avoid computing a dis-

tribution with infinite support.

The first issue can be addressed by using Θposs to determine the substitutions that are still

possible. At the same time, we can replace ε by w on the right hand side of equation 4.5 so

that we obtain the quantity P(ϑ|F, w) as follows:

P(ϑ|F, w) =

{
σ(ϑ,F)

∑χ∈Θposs(F,KB,w) σ(χ,F) if ϑ ∈ Θposs(F, KB, w)

0 otherwise
(4.7)

Issue 2 is then easily resolved by turning equation 4.6 into

P′(w′|w) = ∑
F∈F ,ww′=T(F)ϑ

P(ϑ|F, w)P(F|w) (4.8)

for the probability of an encounter that started with w to be concluded with w ′. This is in

keeping with 4.6 since P(w) = P′(w|ε).
Unfortunately, though, P′ does not yield a real probability distribution, because the

sum is zero if w is not captured by any frame (as described in item 3 above), since then

P(F|w) = 0 for all F which results in ∑w′ P(w′|w) = 0. To overcome this problem, let

W(w) = {w′ ∈M∗
c |P(w′|w) > 0}
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be the set of continuations that are instances of the trajectory of some frame and are hence

assigned a non-zero probability. Further, let ε ≤ 1 be the total (minute) probability that

is to be assigned to all words not covered by any frame (item 4 in the list above). Also, let

M≤H
c = ∪i≤HM

i
c the set of concrete message sequences with a length up to H.

To turn P′ into a real probability distribution, we will uniformly distribute ε among all

continuations if the perceived encounter prefix is not covered by a frame. To ensure that

probabilities add up to one, the probabilities for the remaining “defined” continuations

will be weighted by the quantity 1/(1 +ε). This yields:

P(w′|w) =







1
1+ε

P′(w′|w) if w′ ∈W(w)
ε

|M≤H
c −W(w)|

if w′ ∈ (M≤H
c −W(w))

0 otherwise

(4.9)

Now we are able to define the a similarity-based formula for the computation of a framing

state in m2InFFrA:
[a](F , KB, w) = λw′ . P(w′|w) (4.10)

The function returned by the framing state is a finite-support probability distribution that

is only non-zero in arguments bounded in length by H. It exploits the experience stored

in the frame repository and also includes reasoning by analogy by means of the similarity

measure σ . For message sequences that are encountered for the first time, a small proba-

bility with uniform distribution is assigned to all possible continuations, since no further

information is available in that case.
Finally, it should be remarked that this framing state definition yields a probability dis-

tribution that has support over concrete message sequences only (i.e. of the languageM∗
c

generated with starting symbol Message rather than MsgPattern, cf. table 4.1 on page 94).

This is because the can(·, ·) predicate (cf. p. 101) is only true if the action can be executed

right away, and for this fact we are able to directly assess the utility of all future sequences

with non-zero probability.

4.3 Discussion
The definition of m2InFFrA agents and, in particular, the method suggested for computing
the framing state raise a number of issues which we shall briefly discuss:

• Can the continuation probability distribution be computed effectively?

Although the fact that w′ ranges overM≤H
c (which is a very large set even if the num-

ber of objects and agents talked about is limited and if H is small) seems to suggest

that the computation P(w′|w) in equation 4.9 has to be performed for very many

values, this is not the case. In fact, the number of values for which probabilities have

to be computed using equation 4.8 is bounded by the number of the ground postfix
sequences that can be derived from all frames under all possible substitutions, i.e.

|F | ·max
F∈F
|Θposs(F, KB, w)| .

The probability of all other sequences is uniformly distributed (with their probability

being a fraction of ε).
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Θposs(F, KB, w) is nothing but a formalised version of the content and context con-

straints discussed in section 4.1.5. Therefore, its size will largely depend on how an

agent applies context and content restrictions when determining the set of possible

message contents. For many application domains, it turns out that this number is

manageable, as will be shown when we devise negotiation frames for the linkage sce-
nario (section 6.3).

• In equation 4.8, the probability of a continuation is affected by the number of (match-

ing) frames. Can this be a problem?

Unfortunately, yes. Although we have precluded the possibility of frames with identi-

cal trajectories, we have not prohibited the use of frames with matching trajectories,

such that the sets of concrete encounter sequences subsumed by different frames
may overlap. Then, summing over multiple frames would increase the probability of

these continuations.

However, this case can only occur if one frame is an abstract version of the other, and

the problem is partly alleviated by the fact that the cases stored in frames with more

general trajectories will have smaller similarity values with a given potential conclu-

sion, whereas the past encounters stored in frames with more specific trajectories will
have higher similarity values with it.

• Is the computation of continuation probabilities not highly sensitive to the definition

of σ?

Yes, and defining good similarity functions is a major challenge in the development

of m2InFFrA agents. Typically, rich definitions of σ will require the use of domain

knowledge regarding the similarity of concepts agents use to reason about their en-
vironment.

For this reason, the definition of σ is not part of “core” m2InFFrA. However, we pro-

vide a simple, domain-independent similarity measure that can be used as a starting

point for more elaborate measures in section 5.3.3.

• Why does the trajectory occurrence counter h not occur in the computation of proba-

bilities?

Because, implicitly, by using equations 4.4 (p. 104) and 4.6 (p. 105), every previous en-

counter and substitution is counted. In equations 4.1 and 4.2, on the other hand, they

were used directly, because substitution lists are only stored for encounters which in-

cluded the entire trajectory. The formulation of the retrospective semantics was more

natural when including the frequencies of prefixes of the trajectory.

4.4 Summary
To turn InFFrA into a concrete computational model, it is necessary to abandon the con-

ceptual level, to come up with formal representations for the central InFFrA components

and to define their formal semantics at least for a simple instance of the abstract frame-

work. In this chapter, we have shown that to comply with interactionist assumptions and,

in particular, to endow agents with models that are able to handle the dynamic evolution
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of “meaning”, a new theory of communication is necessary. While this theory was only

described at an abstract level, it was an important prerequisite for defining m2InFFrA.

The introduction of this communication theory was followed by a detailed treatment

of m2InFFrA. This included defining languages for communication and logical reasoning,

interaction frames, framing agents and framing states for m2InFFrA agents. The result of
these definitions is a reasonably simple model for encounter-based interaction reasoning

that is based on probabilistic communication semantics and is reminiscent of case-based

reasoning methods. In this model, the probability with which a message sequence will

occur in the current interaction depends on its similarity to past cases as stored in the

agent’s frame repository.

Obviously, being able to compute probabilities for the way future interactions will turn

out paves the way for the application of different kinds of decision-making and learning

algorithms. This subject will be dealt with in the following chapter.
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5. Learning and
Decision-Making with Frames

The m2InFFrA formalisation provides a model for predicting the behaviour of agents in two-

party conversational interactions. In this chapter, we will propose learning and decision-

making procedures that exploit this model. While these procedures rest on established

decision-theoretic principles, they are additionally characterised by the properties of so-

cial abstraction and transient social optimality which are specific to the social nature of

learning and decision-making in InFFrA.

We will start by describing how the decision problem in m2InFFrA can be formalised as

a two-level Markov Decision Process. In the subsequent section, we will suggest methods

for learning in m2InFFrA. A final section deals with issues related to using the proposed al-

gorithms in an integrated reasoning architecture. The chapter ends with a short summary.

5.1 Framing as a Two-Level Markov Decision
Process

Equipped with the definition of framing states in m2InFFrA, we could easily formalise the

decision problem in m2InFFrA as a problem of adversarial expected utility maximisation:

The possible encounter continuations correspond to paths in a probabilistic game tree
labelled with utilities and successive nodes correspond to the two players’ moves. Tradi-

tional solution concepts from game theory (Fudenberg and Tirole 1991) and game-playing

(Russell and Norvig 2003, chapter 6) could then be applied to find optimal solutions for

this problem.

However, proceeding in this way would render the whole endeavour of using interac-

tion frames as appropriate encodings of expectation structures useless. If we could have

encoded the whole expectation structure as a probabilistic game tree in the first place,

why would we have gone through all the tedious business of splitting the expectations into

“bits” that make the computation of communicative expectations only more complex?

In section 2.2.2 we used Goffman’s theory as the primary justification for developing

InFFrA and m2InFFrA. It turns out that some aspects of this sociological theory translate

fairly naturally into methodological implications for the design of computational models,

i.e. there are practical arguments in favour of our approach beyond the sociological justifi-

cation. More specifically, the sociological considerations result in two main requirements

for social reasoning methods: social abstraction and transient social optimality.
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5.1.1 Social abstraction and transient social optimality
The principle of social abstraction is fairly easy to explain starting from our remarks on
generalisation in expectation structures (section 4.1) and from our outlook on interaction

frames as defined in chapter 3. There, it was clear that frames are thought to abstract from

particular situations so as to capture the central distinctions between classes of these.

But what are the reasons for abstracting from individual situations, interaction part-

ners, actions and message contents in terms of a framework for social decision-making?

After all, we want to build socially intelligent agents the performance of which will be mea-

sured in terms of their ability to make decisions that increase their long-term utility – the

use of frames cannot be an end in itself. There are three principal arguments in support of

such abstraction:

1. The argument from pre-structuration of the interaction problem

This argument states that even though the theoretical possibilities for different inter-

actions in open environments abound in theory (in principle, any agent may utter
anything at any time), there is only a certain number of relevant categories of in-

teraction that occur over and over again. These are determined by the action and

reasoning capabilities of the agents in a society, by the distribution of resources in

the environment and by the available communication channels.

In an organisational setting, for example, the different types of relevant interactions

might refer to task delegation, reporting, project discussions, advice seeking, etc.,

while advertisement of goods and services, negotiation, contracting, financial trans-

fers and customer support will be among the typical interaction types in market-like

environments.

The key issue here is not that a given domain does not offer a great variety of possible

interactions, but that for agents who reason strategically it makes sense to categorise

them according to the joint courses of action that they achieve. It is these courses of

(re)actions that are rather limited in most domains.

2. The argument from bounded rationality, by which agents have no other choice than to

generalise from particular interactions

It is not reasonable to assume that agents have arbitrarily complex reasoning capa-

bilities to store all interaction experiences and to consider all of that information to

act optimally in a new encounter. Faced with constraints regarding computational

resources, generalisation through social abstraction is a reasonable strategy because

it relies on storing those aspects of interaction that occur repeatedly. Usually, this

is much more effective than implicitly preferring certain experiences over others by

storing selected pieces of information and disregarding others.

3. The argument from volatility in large-scale open agent societies, in which encounters

with particular agents are only occasional

Even if computational resources were unlimited, it seems rather unlikely that de-

tailed information about each and every past encounter could be re-used directly.

This is because – especially in open systems – encounters with the same interaction

partners and under the same circumstances are only occasional in the best case. In

the worst, they are one-time experiences.
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Note that this does not necessarily imply that agents have to forget detail informa-

tion about particular interaction situations if it is available. In m2InFFrA, for example,

similarity considerations take previous experiences into account when comparable

situations occur. It merely means that the interaction models stored by a social rea-

soning mechanism should not focus on individual situations in the first place.

Of course, social abstraction is also backed by the social theory of Erving Goffman. The

very fact that framing is spawned by communicative symbols implies that their meaning

must be taken to have an inter-subjective dimension for the framing agents (otherwise,

each symbol could have an entirely different meaning for each different agent). Thus, as
symbols are used across different situations and interacting people, they must be indica-

tors for a whole class of individual situations. From the standpoint of cognitive processing,

it is reasonable to assume that humans are capable of performing this kind of abstraction,

otherwise they would never be able to reuse existing symbols in new situations.

The case for transient social optimality is somewhat harder to make. From the InFFrA
architecture, it is obvious that optimal social decisions strongly rely on making the right as-

sessments regarding the (i) validity, (ii) adequacy and (iii) desirability of a candidate frame

at the right time. In m2InFFrA, these components translate to (i) matching between en-

counter sequence and trajectory pattern sequence (ii) fulfilment of frame conditions with

respect to the current knowledge base, and (iii) utility of the (set of) continuation(s) sug-

gested by the frame, respectively.

As has been mentioned before (cf. assumption 2.10, p. 28, and our remarks in sec-

tion 4.1.7) there are two conflicting goals that determine the quality of a framing decision,

namely (i) predictability and (ii) optimal utility. On the one hand, an InFFrA agent wants

to be able to predict others’ imminent actions. On the other hand, the agent cannot stick

to a particular predictable pattern of interaction if this pattern is not optimal utility-wise.

In terms of the framing process outlined above, this conflict arises when adequacy, validity

and desirability measures in frame assessment yield contradictory results. More specifi-

cally, it occurs when certain continuations seem relatively certain but yield low or negative

payoff in the m2InFFrA model.1

Of course, this problem could be alleviated by weighing these components or using

appropriate thresholds, but the problem goes deeper, since the agent’s own framing choice

also affects the reactions of other parties. If we assume that other agents are at least as

socially intelligent as the agent in question, they will also record interaction experience and

apply it strategically. So if we deviate from a given established behavioural expectation (in

the form of a “safe”, well-known, stable frame) because its consequences are not desirable

in the current state of affairs for the sake of “trying something new”, it is very probable that

we will not obtain optimal results. This is because peer agents will be confused and unable

to figure out how the interaction will turn out.

As explained in section 4.1.6, deviance within the limits of defined alternatives (which
correspond to different known frames in m2InFFrA) can be acceptable if one party still un-

derstands what the other is doing. Yet, explorative or radically new behaviour can be per-

ceived as a negation of existing expectations. The agent confronted with such behaviour

1 Note that the probability of a continuation also reflects the expectations directed towards oneself, either
because of similar behaviour in the same role (initiator/responder) in the past, or because roles have been
swapped and the reasoning agent is assuming a part that has expectations associated with it because of others’
previous behaviour.
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may even interpret such behaviour as rejection, which, in turn, may lead to open conflict.

Therefore, depending on the frame knowledge of interacting parties (given that they may

have different frame conceptions), the balance between conforming to well-defined “so-

cial procedures” and diverging from them is a very subtle one.

Transient social optimality is one answer to this problem. Essentially, it is based on

occasionally neglecting promising alternatives for the sake of being “socially comprehen-

sible” for others. In the framing process, this simply means that we trade desirability for

validity and adequacy. Thus, the agent can hope to ensure predictability by sacrificing
short-term utility, because it is better to have predictable opponents who may not act as

nicely as one would wish, rather than constantly trying to make optimal moves while the

other might apply the same kind of strategic reasoning.

Goffman, in fact, stresses the strategic aspect of interaction, but the level of strategic

reasoning he alludes to is different from, say, the traditional decision-theoretic notion of

“strategy optimisation”. Instead of selecting particular actions in a utility-maximising fash-

ion in each and every decision-making step, human actors rather adopt socially estab-

lished procedures in a strategic fashion. This means that behaviour during interactions is

only rarely optimised by an individual by completely deviating from expectations. How-

ever, choosing which of the different expectation patterns to activate is a highly strategic

process in which agents should compute optimal strategies before taking action. In other

words, the procedure is determined by the social context, but its adoption is a strategic

choice the individual makes.

Social theory put aside, there is also a simple “statistical” reason for this kind of tran-

siently optimal (or, alternatively, “occasionally sub-optimal”) behaviour: If we assume that

all agents generalise over their interaction experience, then a single agent is simply not in

the position to modify their expectations within a single encounter. In other words, an in-
dividual won’t make a difference, at least not in the short term. For this reason, optimality

is often traded for predictability, especially if encounters are only occasional and volatile.2

5.1.2 The two-level MDP view of m2inffra
On the grounds of this discussion, we can now explain the relationship between m2InFFrA
and classical Markov Decision Processes (MDPs). The basic idea is illustrated in figures

5.1 and 5.2. In the normal (single-level) MDP model, as shown in figure 5.1, the dynamic

model of the world is characterised by state transitions which depend on the agent’s ac-

tions (unless we are talking about passive MDPs in which transitions are observed only

and no action has to be taken). In some or all of these states, the agent may receive numer-
ical rewards (sometimes also called payoffs). Transitions between different states may be

highly non-deterministic, but their probability distributions are stationary, i.e. they remain

constant over time.

In m2InFFrA, on the other hand, the decision problem is split into two sub-problems

through hierarchical decomposition. By using frames as representations of a set of possi-

ble interaction sequences we can break down the decision problem in two levels as sug-

gested by figure 5.2. On the “upper” framing level, the agent has to dispose of an optimal

2 This is not to say that individual actions can never have a huge impact on expectations. In close human
relationships with repeated and ongoing interactions, for example, the expectations built from experience with
a particular person can be very different from frame conceptions constructed in everyday social interaction,
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Fig. 5.1: Single-level MDP view: The agent perceives state transitions denoted by arrows

that lead from an observed state/caret to a successor state, where some states may

yield a (positive or negative) numerical reward (shown as a number in the respec-

tive caret). From the perceived sequences of states, actions and rewards, a utility

function is computed that can be used to determine the optimal action in each

state (right). Adapted from (Russell and Norvig 2003).

framing policy by which he can select the best frame in any given situation. The framing

utility function that is used to make the right framing choices should take into account

the long-term payoffs achieved by certain framing strategies. At the “lower” action level
the agent should make optimal decisions about which action to take within the bounds of

the currently active frame. Here, the utility of actions should correspond to the immediate

payoffs achieved by applying a certain strategy. Alternatives suggested by other frames can

be disregarded.

In this way, introducing interaction frames allows for coping with the vast state space of

a general interaction decision problem (in the sense of an agent design problem in which

we would have to determine a “life-long” policy that is optimal for the agent). Effectively,

the huge single-level MDP of the global communication system (that corresponds to an

unmanageable expectation network) is sub-divided into two smaller MDPs, which is also
the reason for the name of the computational model of InFFrA: the “m2” means nothing

but “double-Markov”.

Social abstraction is present in this model by virtue of reasoning by analogy – frame tra-

jectory patterns implicitly represent large sets of instances, whose probabilities are derived

using similarity measures. Transient social optimality is achieved by ignoring alternative

frames while a particular frame is active – a portion of the search space is deliberately ig-

nored for the sake of re-using established patterns of interaction.

After a brief introduction to MDPs, we shall explain how these considerations translate

to the formal models developed in m2InFFrA in the following paragraphs.

5.1.3 Markov decision processes
Formally,3 a (discrete) Markov Decision problem is given by a finite set S of states, a finite

set A of actions, a reward function R : S × A → R and a transition probability function

and may very well be seriously affected by a single action on either side.
3 This section largely follows the introduction given in (Barto and Mahadevan 2003) and we also use the

authors’ notation.
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framing

framing decisions + long−term payoffs        =        framing utility

in−frame action decisions + immediate payoffs =   action utility

Fig. 5.2: Two-level MDP view of the framing process: The process of framing mediates be-

tween the framing-level MDP and the action-level MDP by restricting the set of
applicable strategies to those sequences that are represented by the frame that is

activated.

P ∈ ∆(S× A× S). The intuition is as follows: In a sequence of stages, an agent observes
the current state s ∈ S , executes an action a ∈ A and receives an immediate payoff R(s, a).

With probability P(s′|s, a), the next state the agent finds himself in will be s′. A (stationary

and stochastic) policy is a mapping π ∈ ∆(S× A) which specifies that the agent executes

action a in state s with probability π(s, a).

In a Markov decision problem, the goal of the agent is to determine an optimal pol-

icy π∗ that maximises the long-term payoff of the agent. Following Puterman (1994), the

definition of a Markov decision process additionally includes this optimality criterion, as

“maximising long-term payoff” may have different interpretations.

A commonly used criterion is that of infinite-horizon expected utility maximisation

where the payoff of state sequences is computed as the discounted infinite sum of indi-

vidual rewards. According to this criterion, if γ < 1 is a discount factor, E[·] denotes the
expected value, and rt is the reward achieved at the t-th step by applying π , the value func-

tion Vπ corresponding to π can be defined as this discounted infinite sum, such that

Vπ (s) = E

[
∞

∑
i=0

γirt+i

∣
∣
∣π , st = s

]
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is the value of state s. An optimal policy π ∗ is a policy that maximises Vπ (which is then

called the optimal value function V∗) in each state. Action-value functions that assign a

value Qπ(s, a) to each pair (s, a) by assuming that policy π will be followed after execution

of a in s can be defined accordingly:

Qπ (s, a) = E

[
∞

∑
i=0

γirt+i

∣
∣
∣π , at = a, st = s

]

Analogously, the optimal action-value function is denoted by Q∗.
Most solution methods for MDPs are based on dynamic programming techniques

which exploit the fact that value functions satisfy the so-called Bellman equations

Vπ (s) = ∑
a∈A

π(s, a)

[

R(s, a) + γ ∑
s′∈S

P(s′|s, a)Vπ (s′)

]

(5.1)

and

V∗(s) = max
a∈A

[

R(s, a) + γ ∑
s′∈S

P(s′|s, a)V∗(s′)

]

(5.2)

(similar equations can be derived for action-value functions).

It is common practice to approximate the utility of each state by a numerical function

U : S → R which can be used as a guide to choose the optimal action in any given state.

In value iteration, for example, an approximation Uk of V∗ is computed in the kth iteration

of the algorithm, so that using

Uk+1(s) = max
a∈A

[

R(s, a) + γ ∑
s′∈S

P(s′|s, a)Uk(s)

]

(5.3)

progressively transfers information regarding the approximate utility of successor states
to their predecessors. It can be shown that starting from an arbitrary function U0, value

iteration converges to the optimal value function, i.e. the sequence {Uk}k∈N converges to

V∗.
A variant of MDPs that is important to the application of MDP theory to m2InFFrA is that

of discrete-event semi-Markov Decision Processes (SMDPs). In SMDPs, decisions can only

be made after certain integer multiples of an underlying time step, i.e. we are dealing with

temporally extended courses of action. This is modelled by introducing a random variable

τ for the waiting time that passes after a is executed in state s for the transition to the suc-

cessor state s′ to occur. Writing P(s′, τ |s, a) for the joint probability that the transition will

occur after τ time-steps, and assuming that R(s, a) now denotes the reward accumulated

during that time, the Bellman equations become

V∗(s) = max
a∈A

[

R(s, a) + ∑
s′∈S,τ∈N

γτ P(s′, τ |s, a)V∗(s′)

]

(5.4)

and

Q∗(s, a) = R(s, a) + ∑
s′∈S,τ∈N

γτ P(s′, τ |s, a) max
a′∈A

Q∗(s′, a′) . (5.5)
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As we shall shortly explain, this provides the foundation for developing hierarchical re-

inforcement learning methods (Barto and Mahadevan 2003), and we will use one such

method to develop frame-learning algorithms for m2InFFrA.

5.1.4 Choosing among frames
So how does the MDP formalism relate to the m2InFFrA model? Obviously, each frame

captures a number of policies that are applicable in certain situations. The framing state

computed after perceiving the initial portion of an encounter can be used as an approx-

imation of the transition probabilities between states, depending on the selected action.
Rewards can be derived by using the utility function of the m2InFFrA agent definition.

Therefore, selecting a particular frame means restricting oneself to a particular subset

of policies. To describe this “higher” level of the framing decision process within the MDP

formalism, we need a formal framework that is powerful enough to capture this hierarchi-

cal view.

One such framework is the options approach proposed by Precup (2000) in her PhD

thesis.4 In this framework, agents can choose between different options 〈I , π , β〉 where

I ⊆ S is the so-called initiation set, π is the policy of the option, and β : S → [0; 1] is

a stochastic termination condition. The idea is that an option is available at time t if and

only if st ∈ I . If it is chosen, then at+1 is selected according to π , and β(st+1) determines

whether execution of the option is terminated (whereupon the agent gets to chose a new
option).5 We can define Os = {o = 〈I , π , β〉|s ∈ I} as the set of options available in

state s ∈ S, and the set of all options O = ∪s∈SOs as the union of these state-specific

option sets. This allows for defining policies over options µ : S×O → [0; 1], according to

which the agent will choose an option o in some state st. Having chosen this option, he will

behave according to the local policy π of the option until o terminates at s t+k, whereupon

a new option is selected according to µ.

Letting E(o, s, t) denote the event that o was initiated at time t in state s and po(s′, τ)
the probability that o terminates in s′ after τ steps, we obtain

ro
s = E

[
τ

∑
i=0

γirt+i
∣
∣E(o, s, t)

]

for the reward accumulated during execution of o and

po
ss′ =

∞

∑
τ=1

po(s′, τ)γτ

for the probability of each state transition. With this, we can specify the state-value func-

tion of any state under a policy µ over options:

Vµ(s) = ∑
o∈O

µ(s, o)

[

ro
s + ∑

s′∈S
po

ss′V
µ(s′)

]

4 A summary of the main concepts can be found in (Sutton, Precup and Singh 1999); the approach is com-
pared to other hierarchical reinforcement learning frameworks in (Barto and Mahadevan 2003).

5 Note that options can be seen as a generalisation of “primitive” MDP actions a ∈ A, since primitive actions
can be (trivially) written as options 〈S, πa, β1〉 where πa(a) = 1 and ∀a′ 6= a.πa(a′) = 0 is the deterministic
policy that always selects a, and ∀s.β1(s) = 1, i.e. the option always terminates on any subsequent state.
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As action-value function, we obtain

Qµ(s, o) = ro
s + ∑

s′∈S
po

ss′ ∑
o′∈O

µ(s′ , o′)Qµ(s′, o′)

in which po
ss′ corresponds to γtP(s′, τ |s, a) in the SMDP Bellman equations 5.4 and 5.5.

To apply this model to m2InFFrA, we can interpret frames as options, by defining
O = {oF}F∈F and actions during execution of a frame as primitive actions. Since m2InFFrA
agents have actions m ∈ Mc at their disposal, A = Mc. For the moment, we shall not

define precisely the state set we will use (but see section 5.3.2), and shall simply use an

equivalence relation S ⊆ M∗
c × 2L that splits all possible knowledge base contents and

perceived encounter prefixes into equivalence classes s1, . . . , sn by which states are identi-

fied. We use s(w, KB) = si to identify the state that corresponds to a certain combination

of knowledge state KB and encounter prefix w. With this and equation 5.5, we can write

Q∗(s, F) = E[R(s, F)] +
∞

∑
τ=1

γτ max
F′∈F

∑
s′∈S

MF,τ
ss′ Q∗(s′, F′) (5.6)

where

• s = s(w, KB), KB and w describe knowledge base and encounter prefix when frame
F was selected,

• s′ = s(ww′ , KB′) and KB′/ww′ describe the situation at which a new framing decision

had to be made (such that τ = |w′|),

• MF,τ
ss′ is the probability that the next re-framing will take place when s ′ has been

reached after τ steps, and

• R(s, F) is the utility accumulated between s and s′; in the simplest case6, this can be

written as u(w′, KB) using definition 4.4 (p. 105).

Exploiting the fact that the knowledge base transformation function κ is deterministic and

writing δ(s, w′) for the state s(ww′,κ(KB, w′)) that results from executing w′ in KB after

prefix w, we can re-write the above equation as

Q∗(s, F) = E[R(s, F)] + ∑
w′∈M∗

c

γ|w
′ |max

F′∈F
MF

sδ(s,w′)Q
∗(δ(s, w′), F′) (5.7)

At the “framing” level of decision-making, the optimal frame F∗ can thus be selected

among all frames that maximise Q∗:

F∗(w, KB) = arg max
F∈F

Q∗(s(w, KB), F) (5.8)

6 This depends on the desired granularity of reward accumulation, and on the nature of the utility function
u. If u takes some form of discounting into account when computed for an entire sequence w ′, u(w′, KB) is
precise enough. At the other end of the granularity spectrum, we might use KBi = κ(w′[1:i], KB) (cf. p. 105) to
update knowledge base contents upon each individual step and let

u(w′, KB) = ∑
1≤i≤|w′|

γiu(w′i, KBi)
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5.1.5 Intra-frame decision-making
At the “action” level of decision-making, where agents only consider the policies offered

by a single frame, m2InFFrA semantics provide us with a similarity-based probability dis-
tribution over possible encounter continuations. To make up for disregarding all other

frames while the perceived message sequence matches the active frame (which can lead

to globally sub-optimal solutions with respect to the “core” MDP that describes the en-

tire communication process), we conduct an exhaustive search over all alternatives at this

level.

This decision process can be modelled as a tree where subsequent “moves” are taken

in turns by the reasoning agent and his adversary (rather than a table of transition proba-

bilities), because we do not generalise over different re-visited situations during execution

of the active frame. In each step, the framing agent may choose from a number of possible

substitutions (cf. definition 4.3, p. 101) that are admissible according to the trajectory of
the active frame. Then, the adversary makes a move by selecting a substitution in turn,

which may further restrict the set of substitutions available to the first agent. This process

is repeated until either the frame terminates or the agent has to re-frame. Thus, an optimal

intra-frame strategy is a strategy that maximises the expected utility of the remaining frame

steps under the probability distribution computed using the consequentialist semantics of

the frame.

Formally speaking, if, at any stage, ϑs is a candidate ”own” substitution, the expected

payoff of executing F under ϑs given the current encounter prefix w is given by

E[u(ϑs, F, w, KB)] = ∑
ϑp

P(ϑp|ϑs, F, w) u
(
postfix(T(F)ϑ, wϑ), KB

)

where P(ϑp|ϑs, F, w) is the probability with which the other agent will choose some substi-
tution ϑp depending on the agent’s own choice ϑs. Thereby, the u(·, KB) term on the right

hand side is nothing but the utility of the remaining steps postfix(T(F)ϑ, wϑ) (cf. equa-

tion. 4.2.3, p. 101) under the combined substitution ϑ = ϑfixed(F, w)ϑsϑp obtained by con-

catenating ϑfixed(F, w), ϑs and ϑp (the remarks of footnote 6 regarding utility discounting

apply accordingly).

To determine P(ϑp|ϑs, F, w), we will use the similarity-based posterior probability of a

substitution as defined in equation 4.7 (p. 108). The product rule for conditional probabil-

ities with some additional background evidence E,

P(A ∧ B|E) = P(A|B, E) · P(B|E)

allows us to write

P(ϑp ∧ ϑs|F, w) = P(ϑp|ϑs, F, w) · P(ϑs|F, w)

In the above equation, ϑp ∧ ϑs denotes the event of the peer selecting ϑp while the rea-

soning agent chooses ϑs, so that the substitution applied to F is actually ϑfixed(F, w)ϑsϑp.

Furthermore, the probability of choosing an ”own” substitution ϑs is given by the sum of

the probabilities for the occurrence of complete substitutions that ϑs is a part of, such that

P(ϑp|ϑs, F, w) =
P(ϑp ∧ ϑs|F, w)

P(ϑs|F, w)
=

P(ϑfixed(F, w)ϑsϑp|F, w)

∑ϑ P(ϑfixed(F, w)ϑsϑ|F, w))



5.1. Framing as a Two-Level Markov Decision Process 123

which nicely reflects the fact that the probability of a peer substitution is proportional to

its relative similarity to a frame (with ϑ denoting the alternative choices of the peer that we

normalise over).

Applying equation 4.7 to both numerator and denominator finally yields7

P(ϑp|ϑs, F, w) =
σ(ϑfixed(F, w)ϑsϑp, F)

∑ϑ σ(ϑfixed(F, w)ϑsϑ, F)

This provides us with a method to compute the optimal substitution

ϑ∗(F, w, KB) = arg max
ϑs∈Θposs(F,KB,w)

E[u(ϑs, F, w, KB)], (5.9)

so that the optimal next message m∗ can be determined by applying ϑ∗ to the next step of

the frame:

m∗(F, w, KB) = T(F)[|w|+ 1]ϑ∗(F, w, KB) (5.10)

Returning to the options framework, we can now describe the option 〈IF, πF , βF〉 induced

by a frame F. However, as the strategy represented by the frame depends on the entire his-

tory and the current contents of the knowledge base, we cannot apply any generalisation

into encounter states, and the state space during framing becomes S = 2L ×M∗
c at the

intra-frame level.

• The initiation set is given by those states in which the encounter prefix w matches

(an initial portion of) the trajectory of F:

IF = {(w, KB)|Θposs(F, w, KB) 6= ∅}

• The policy πF assigns probability one to the optimal next action as defined in 5.10

and probability zero to all other actions:

πF((w, KB), m) =

{

1 if m = m∗(F, w, KB)

0 else

• The termination criterion βπ is deterministic. It prescribes termination of oF in either
of the following cases:

1. The peer8 executes an action that causes a matching failure between the en-

counter prefix and the trajectory of F.

2. The set of Θposs(F, KB, w) may become empty due to changes in the knowledge

base, so that the remaining trajectory steps are not executable under any substi-
tution.

3. The utility values of the remaining steps may change so that their execution does

not seem advantageous anymore.

7 To preclude division by zero and non-zero probabilities for ϑp that are not in Θposs, we would actually
have to set this probability function to zero if ϑp 6∈ Θposs(F, KB, w) or ∃ϑ.ϑfixed(F, w)ϑsϑ ∈ Θposs(F, KB, w) ∧
ϑfixed(F, w)ϑsϑp 6∈ Θposs(F, KB, w). We omit these details for reasons of readability.

8 The reasoning m
2

InFFrA agent always “obeys” the frame during execution, for which reason a trajectory
mismatch can only occur due to deviance on the adversary’s side.
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Trivially, the criterion is also met if there are no more steps left to execute and the

trajectory is completed normally. All this taken together yields

βF(w, KB) =







1 if ¬unify(T(F)[1:|w|], w) (validity)
∨Θposs(F, KB, w) = ∅ (adequacy)

∨u(ϑ∗, F, w, KB) < b (desirability)

∨|T(F)| = |w| (completion)

0 else

(5.11)

for some desirability bound b ∈ R.

The three9 constraints of the termination criterion reflect the InFFrA notions of validity,

adequacy and desirability respectively, as discussed in section 3.4.3.

5.2 Learning to Frame
In the previous section, we have formalised strategic decision-making in m2InFFrA us-

ing a hierarchical two-layer model of MDPs. At the intra-frame level of decision-making,

the action selection mechanism can be implemented right away. For the framing level

of decision-making, however, the Bellman equation in 5.6 (or, alternatively, equation 5.7)

only provides a constraint for the true Q∗ if this function is known to the agent.

In this section, we will describe how Q∗ can be learned from experience using rein-

forcement learning methods. Also, as m2InFFrA is based on deriving frame models from

experience, we have to explain how these frames are constructed and the frame repository

is managed in the long term when new encounters are observed.

5.2.1 Learning frame transitions
To approximate the optimal framing-value function (i.e. option value for the framing MDP)

we use a variation of the update rule for Q-learning (Watkins and Dayan 1992) in SMDPs
proposed by Bradtke and Duff (1995)

Qk+1(s, F)← (1−αk)Qk(s, F) +αk

[

R̂(s, F) + γτ max
F′∈F

Qk(s′, F′)
]

(5.12)

where

R̂(s, F) =
τ−1

∑
i=0

γi R(s, F)

τ − 1
=

γτ−1

γ− 1
·

R(s, F)

τ − 1
(5.13)

is the discounted reward that has been accumulated in steps t + 1, . . . t + (τ − 1) averaged

over the τ − 1 individual steps. Averaging is a necessary approximation to the individual

payoffs received in each step, since the total reward is only sampled after the next framing

transition.

To ensure convergence of the Q-values using the above update rule, the learning rate

αk that is used to weigh the importance of the current framing value Qk(s, F) against the

9 Actually, a fourth case may occur in which Θposs is non-empty, yet the optimal substitution ϑ∗ is no more

available due to the adversary’s choice. In this case, we will assume that m
2

InFFrA agents do not revise their
framing choice but merely determine a new ϑ∗ in the next decision stage.
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quantity propagated from the experienced transition has to decay over time. A commonly

used function for such a learning rate is

αk =
1

visitsk(s, F)
, (5.14)

where visitsk(s, F) is the number of times F has been activated in state s. Parr (1998) has

shown that Q-learning using the update rule 5.12 converges to Q∗ with a probability of 1 if

every action is executed in every state infinitely often.

However, ensuring convergence requires that the agent not simply maximises Q in each

step, but that he applies a suitable exploration strategy, such as Boltzmann exploration

(Mitchell 1997) which uses a temperature function Tk that decays over time and determines

the probability P(s, F) of choosing frame F in state s as

P(s, F) =
eQk(s,F)/Tk

∑
F′∈F

eQk(s,F′)/Tk
. (5.15)

To sum up, the top-level framing process proceeds as follows. In the first iteration,

Q(s, F) is initialised to zero for each s and F, T0 is set to an initial “temperature”. After

perceiving a state s, the agent selects a frame probabilistically according to equation 5.15.
Frame execution proceeds according to the intra-frame action selection mechanism for

the currently active frame F until β(s′, F) = 1 for some s′. Using the discounted accu-

mulated reward R̂(s, F) as defined in 5.13, the Q-values are updated taking the current

learning rate αk into account, and k is incremented. After that, the running reward R(s, F)
is reset to zero and the process is repeated iteratively.

Two final remarks should be made regarding the above procedure: Firstly, as the action-

level decision-making process operates on complete knowledge-state encounter-prefix

state descriptions (w, KB), the respective framing state s(w, KB) has to be determined after

each framing state transition. Secondly, frame termination may occur because the entire

frame trajectory has been executed, and not only because of validity, adequacy or desirabil-

ity problems. In this case, a transition to a new frame marks the start of a new encounter,
and thus the Q-learning algorithm allows for learning useful strategies for consecutive en-

counters. After sufficient experience, the table may therefore also implicitly contain valu-

able information regarding meta-framing strategies.

5.2.2 Frame construction
When attempting to find a suitable frame in an ongoing encounter, it is quite probable that

none of the frames inF matches the current encounter prefix. According to the framework
presented so far, this would result in encounter termination. However, it may also be the

case that applying a combination of existing frames is more adequate than ending the cur-

rent encounter and starting a new one after further re-framing.

As an example, consider a conversation in a room where one of the participants sud-

denly stands up and leaves the room. To prevent disruption of the conversation, the other

participant(s) might follow the fugitive and continue the discussion while they are walking.

Naturally, it makes more sense to think of this unexpected continuation as an improvised

modification to the existing conversation frame rather than a new encounter, especially
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because it is probably semantically linked to the previously ongoing discussion (in terms

of subject, opinions, etc.).

This example illustrates that continuing an encounter (which has either ended or does

not match the active frame F) with the trajectories of other frames F ′1 , . . . , F′k ⊆ F is suit-

able whenever the original goal of the conversation cannot be achieved anymore by ap-
plying F, but can still be reached by executing F ′1 , . . . , F′k in the current state. What is im-

portant, is that in this process of “conversation re-planning”, a new frame F ′ is created that

combines the trajectories of F and F′1, . . . , F′k. If the resulting frame is activated, it is stored

in the long term, and the framing MDP utility function is updated according to the state

transition that occurs between the state in which F ′ was activated and that in which it ends

(or another re-framing becomes necessary). In other words, the agent “pretends” having

disposed of F′ from the beginning, and thus a new operator is introduced in the framing

space that provides an alternative for reaching the same goal and lays the foundation for

generating more complex frames out of simpler ones.

Formally, let wm be the perceived encounter prefix (where m is the last mes-

sage that caused abandonment of the active frame F, i.e. unify(w, T(F)[1:|w|]) ∧
¬unify(wm, T(F)[1:|w| + 1]). Further, let s the state in which F was selected, and s ′′ the
current state in the framing MDP (although prior to re-framing no state transition has oc-

curred, we can apply s(·, ·) to the “full history” state (wm, KB) of the intra-frame MDP to

obtain the respective equivalence class s′′ = s(wm, KB)).

Let F′1 , . . . , F′k ⊆ F a set of frames and

Ti = T(F′i )ϑ

a ground instance of the trajectory of each frame F ′i that is obtained by binding the remain-

ing variables by some substitution ϑ. We can define a new frame trajectory T ′ as the con-

catenation of the matching portion w of the encounter prefix wm and the Ti constructed

above, i.e.

T′ = w · T1 · · · Tk

and require that β(wm, KB) = 0 (which implies that the resulting trajectory matches the

current encounter prefix, that it can be executed and that it is desirable), we have achieved

finding a continuation of the current encounter that is feasible and desirable under current

conditions. We can now define

F′ = (T′, 〈〈〉〉, 〈∅〉,~0|T
′|, 〈0〉)

as a provisional frame that will become part of the repository if activated (if it is aborted be-

fore its execution has been completed, obviously only a prefix portion of it will be stored).

An exhaustive search for such F′ clearly has exponential time complexity, but a variety

of heuristics can be thought of. For example, we can define the goal achieved by executing

a trajectory T in knowledge base KB as the difference that T makes to the contents of the
knowledge base in terms of facts that were not true before and have become true after

executing T and vice versa:

goal(T, KB) = {ϕ ∈ κ(KB, T)|KB 6|= ϕ} ∪ {ϕ ∈ KB|κ(KB, T) 6|= ϕ}

Of course, this set cannot be computed effectively for the general case, but since T is a

simple sequence of physical actions and messages, it is easy to specify which precondi-

tions will not hold anymore and which postconditions will be made true by consecutive
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execution of the steps in T (note that if T is not ground things might not be that easy due

to the implicit quantification of variables).

Alternatively, we can restrict our search by considering only those frames(or ground

instances thereof) that achieve the goal of the original frame F when concatenated, e.g. by

conducting a forward-chaining search. By requiring that

goal(T(F), KB) = goal(T(F′), KB)

this would largely restrict the range of candidate frames F ′i , because rather than merely

assuring executability and desirability, we are actually looking for logical alternatives to F.

Returning to our example, following the participant that has left the room reflects that

kind of alternative if one of the goals of the conversation is to get information from him.

If letting him go and continuing the conversation without him seems desirable because

the meeting can be used to discuss other matters, the original goal is abandoned, and any

desirable continuation will be adopted – this corresponds to the exhaustive search method.

5.2.3 Frame generalisation

In principle, m2InFFrA imposes no restrictions regarding the level of abstraction at which

frames are stored in the repository. As remarked on page 110, this implies that the sets of

encounters represented by different frames may overlap, which may have a strong impact
on the continuation probabilities derived from repository information.

Therefore, the choice of generalisation strategy is a crucial issue in the design of con-

crete m2InFFrA implementations: on the one hand, storing too many similar frames may

increase the complexity of frame selection and result in disproportionately high probabil-

ities for continuations suggested by more than one frame; on the other, coercing too many

frames into a single, more abstract pattern may entail a matching behaviour that allows for

too many potential trajectory instances which have actually never been experienced, thus

blurring the semantics of the repository.

To define generalisation capabilities for m2InFFrA agents, two aspects have to be dealt

with. Firstly, we have to define how frames can be merged to obtain a more abstract frame.

In the second place, the generalisation strategies have to be discussed that determine when

frames are merged.

Frame merging

In this section, we introduce a method for merging two frames into a more general frame

that caters for the encounter instances captured by the original, more concrete frames.

Once defined, this method can be applied to whole sets of frames by consecutively adding

new frames to the result of previous merge operations.

Based on the above considerations regarding the choice of the right level of abstraction

in frame management, we attempt a middle solution by introducing the notion of most

concrete common abstraction (MCCA) Ψ(m1, m2) of two message patterns m1, m2 ∈ M,

which is defined as that pattern m ∈ M that can be transformed into both m1 and m2 by
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application of “shallowest” substitutions:

Ψ(m1, m2) = m⇔
(

∃ϑ1ϑ2.m1 = mϑ1 ∧m2 = mϑ2∧

(
∀m′ϑ′1ϑ

′
2.m1 = m′ϑ1 ∧m2 = m′ϑ2 ⇒ depth(m′) ≤ depth(m)

))

where ϑ1, ϑ2 ∈ SubstList, m′ ∈ M and the depth of a pattern is defined as the depth of

argument nesting in an expression:

depth(m) =







1 + maxi depth(mi) if m = 〈m1, . . . , mn〉

m = (m1 ∧m2) ∨m = ¬m1∨

m = (m1 ⇒ m2) ∨m = (m1 ∨m2)∨

(m = h(m1, . . . , mn)∧

h ∈ Head∪ Performative∪ {do,ε})
1 otherwise

So Ψ is defined by looking at all patterns m′ that subsume m1 and m2 and determining the

pattern m out of these m′ that is maximal in depth. In other words, the MCCA contains
as few variables as necessary to subsume m1 and m2, namely exactly in those positions in

which m1 and m2 differ. Assuming that

• the definition of Ψ is naturally extended to sequences of message patterns (using the

“m〈m1, . . . , mn〉” case in the definition above)

• Ψ can be effectively computed (as described in (Fischer 2003)) and ϑmerge(w, w′) =
unifier(w, Ψ(w, w′)) is the substitution that is necessary to generate w from Ψ(w, w ′),

• before merging two frames F and G we have first renamed their variables so that each

variable appears only in one of the two frames,

we can now proceed to the definition of the frame merge(F, G) that results from merging

two frames F and G with |T(F)| = |T(G)|:

merge(F, G) = 〈Ψ(F, G),
C(F)ϑmerge(F, G) · C(G)ϑmerge(G, F),
ϑmerge(F, G)Θ(F) · ϑmerge(G, F)Θ(G),
hMax(h(F), h(G)),

hΘ(F) · hΘ(G)〉
)

where ϑmerge(F, G)Θ(F) is the result of ”prepending” ϑmerge(F, G) to each element of

Θ(F).10

As for the trajectory occurrence counter of merge(F, G), this is determined through

defining a special operation hMax(F, G) = 〈h1, h2, . . .〉 by which

hi =

{

max (max(h(F)[i], h(G)[i]), ∑k hΘ(merge(F, G))[k]) if i = |T(F)|

max (max(h(F)[i], h(G)[i]), hi+1) if i < |T(F)|

10 In (Fischer 2003), normal substitution concatenation is replaced by substitution application whenever
redundant variables can be eliminated (e.g. the resulting frame would not contain substitutions of the form
〈. . . , [X/Y], [Y/Z], . . .〉.
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The intuition behind this definition is as follows: When merging two frames, it is impossi-

ble to determine locally (based on F and G alone, that is) how many past encounter pre-

fixes would have matched prefixes of the trajectory of merge(F, G). A precise computation

of h(merge(F, G)) would require comparison with all other frames inF . However, deriving

lower bounds for trajectory occurrence counter values is straightforward:

• For the last step of the trajectory, a lower bound is provided by the sum of the substi-

tution counters of each frame (since stored substitutions refer to successfully com-

pleted frame executions).

• For all other steps hi the subsequent value hi+1 provides a lower bound since there

exist at least hi+1 past encounters that matched up to the ith step.

Finally, for any step, if the maximum of the respective elements of the trajectory occur-

rence counters of the two argument frames provides a tighter bound than the above, it is

obviously preferred. Quite naturally, merge is undefined for any two frames that have a

different length, i.e. |T(F)| 6= |T(G)| ⇒ merge(F, G) = ⊥.

The example in table 5.1 taken from Fischer (2003) is useful to illustrate these rather

complex definitions. It shows how two frames F1 and F2 can be merged into a frame F3 that

subsumes the original frames and covers as few additional encounters as possible.

Generalisation strategies

Given the above definition of a merging procedure for frames, it remains to specify when

two (or more) frames will be generalised in the course of m2InFFrA reasoning. As frame

generalisation mechanisms are one of the main topics of (Fischer 2003), we shall restrict
ourselves to a brief summary of the methods proposed therein.

Frame generalisation strategies have to be developed for two situations:

1. Addition of newly perceived frames: If an encounter is experienced that is not cov-

ered by any repository frame, the perceived frame is added to the repository. In this

case, it is reasonable to look for possibilities of abstracting from this frame and other,

similar repository frames so as to keep the repository concise. This is particularly

important if computational resources prohibit arbitrarily-sized frame repositories.

2. Long-term repository management: Regardless of current or recent conversations,

the agent can review the contents of the frame repository from time to time to eval-

uate whether the frame knowledge could be expressed more compactly without too
great a loss of information.

Fischer (2003) uses the terms online and offline merging to refer to these cases, as the for-

mer occurs during the framing process when an encounter has just been completed, while

the latter resembles a method for long-term repository optimisation and be applied at any

point in time.

Fischer suggests generalisation heuristics based on cluster validation techniques (Jain

and Dubes 1988). Each frame is interpreted as a set of points in the encounter space which

correspond to the instances of concrete encounters it represents. On the grounds of this

interpretation, it is possible to define a compactness measure for the cluster of points (or

rather cluster of sets of points, as each stored previous case may represent a whole set of
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F1 =
〈 〈 5
→ request(A, B, inform(B, A, price(Y, X)))

2
→ inform(B, A, price(Y, Z))

〉
,

〈
{variable(X), car(Y), number(Z)},

{variable(X), car(Y), number(Z)}
〉

,
〈 1
→ 〈[A/a1], [B/a2], [Y/sedan], [Z/10000]〉,
1
→ 〈[A/a1], [B/a3], [Y/sportsCar], [Z/20000]〉

〉〉

F2 =
〈 〈 1
→ request(A, B, inform(B, A, color(Y, X)))

1
→ inform(B, A, color(Y, Z))

〉
,

〈
{variable(X), car(Y), color(Z)},

{variable(X), car(Y), color(Z)}
〉

,
〈 1
→ 〈[A/a1], [B/a3], [Y/sportsCar], [Z/red]〉

〉〉

.

F3 =
〈 〈 5
→ request(A, B, V)

3
→ inform(B, A, W)

〉
,

〈
{variable(X), car(Y), color(Z)},

{variable(X), car(Y), color(Z)},

{variable(X), car(Y), color(Z)}
〉

,
〈 1
→ 〈[A/a1], [B/a2], [V, price(Y, X)], [W, price(Y, Z)], [Y, sedan], [Z, 10000]〉,
1
→ 〈[A/a1], [B/a3], [V, price(Y, X)], [W, price(Y, Z)], [Y, sportsCar], [Z, 20000]〉,
1
→ 〈[A/a1], [B/a2], [V, color(Y, X)], [W, color(Y, Z)], [Y, sportsCar], [Z, red]〉

〉〉

.

Tab. 5.1: Merging two frames into one

instances, in turn) based on the pair-wise similarity values between the stored cases in

the frame. Also, the average distance (i.e. inverse similarity) between the trajectory of the

newly perceived frame F and the cases in a repository frame G can be used to measure

cluster isolation. Combining these two measures allows for an assessment of the validity

of a hypothetical frame (cluster) merge(F, G). If this validity is sufficiently high, F and G
are merged. As for the choice of G, that frame is chosen which would result in a maximally

valid new cluster when merged with F.

Currently, this heuristics is only used for online merging, which is always performed

when an encounter is over. Regardless of whether the encounter is an instance of a repos-

itory frame or not, we simply compare the perceived frame to all repository frames and

merge it with the best match, if the resulting cluster validity is high enough.

This simple generalisation rule is also applied because it does not require modifica-

tions to the framing Q-value table, since, at most, a frame is replaced by a new one, but no

two frames are merged into one. Note, however, that in the general case (especially in of-

fline merging) such an update of the Q-value table is necessary (again, Fischer (2003) pro-

poses methods to perform this update). Also, it has to be remarked that frame generalisa-
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tion leads to substitution sets and occurrence counters that may violate the constraints 4.1

(p. 102) and 4.2 (p. 102) that were used to define retrospective frame semantics.

5.3 Implementation
In the presentation of the learning and decision-making algorithms used in m2InFFrA so
far, we have deliberately omitted certain aspects that require a more concrete specifica-

tion to yield an implementable computational model. Partly this was done to highlight

the core aspects of the developed formalism in a fairly generic fashion, but also to avoid

too many implementation-specific details, many of which do not make up part of the pro-

posed methods in a strict sense.

The following sections cover these implementation details. First, we show how the el-

ements of m2InFFrA laid out in the previous sections can be integrated to obtain a readily

implementable procedural model of the entire framing cycle. Then, we explain the im-

plemented framing state definitions and similarity measures, as the algorithms were only

parametrised with them until now. Finally, we introduce heuristic methods for defining
concrete frame desirability criteria that are in keeping with our theory of communication

and the concept of transient social optimality.

5.3.1 The framing cycle in m2inffra
The m2InFFrA reasoning cycle is shown in figure 5.3. While referring to the framing phases

summarised in figure 3.8 (p. 69), it makes the m2InFFrA computations and their position in

the overall InFFrA framing process explicit. To obtain the full picture of social reasoning in

m2InFFrA, we will now go through these phases one by one.

Situation Interpretation and Matching In every reasoning cycle, an encounter is either

running or the InFFrA reasoner is in an idle state (see ➊ in figure 5.3).

In the former case, the processing cycle is spawned upon (a) reception of a message

from a peer the agent is currently interacting with or (b) upon utterance of a message on the

side of the reasoning agent himself. The new message m is appended to the trajectory of

the perceived frame, and the knowledge base is updated to κ(KB, m) to capture the effects

of m. If m has utility effects, u(KB, m) is added to the running reward R(s, F) of the active

frame F in state s for the accumulated reward to be available when updating the Q-table

(see equations 5.6, 5.12 and 5.13, p. 121 and 124).

In the latter case, a decision has to be made regarding whether an encounter should be

initiated or not. Although the reason for starting an encounter is usually provided by sub-

social reasoning components of the agent, it is also possible to search the repository for
frames with desirable post-conditions whose pre-conditions are currently met and simply

start one of these frames. If the agent chooses not to start an encounter, the remaining

reasoning cycle can be circumvented, and no action is executed.

As for matching (➋), m2InFFrA uses a trivial difference model based on a clear-cut cri-

terion regarding the matching status of the active frame compared to the perceived frame.

However, what needs to be done prior to the assessment phase is to update the state de-

scription of the framing MDP s(w, KB), at least if it includes information about the goal of
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the current encounter, since this goal may have changed in the meantime due to InFFrA-

external events (see also section 5.3.2).

If an encounter has just been started (➌), the agent has not selected an active frame

yet. Therefore, assessment of the active frame is skipped and the agent acts as if in a re-

framing situation (in other words, the process of selecting an initial frame at the beginning

of a conversation is identical to that of choosing a new frame during an encounter). Else,

the cycle proceeds with the assessment phase (➍).

Framing assessment Framing assessment consists of several steps that correspond to

assessing the validity, adequacy and desirability of the active frame.

First, it is checked whether the (trial) active frame trajectory prefix-matches that of the

perceived frame, i.e. if unify(T(F)[1 : |w|], w) holds (➋). If this is not the case, the agent

has to re-frame or to discard the current trial frame, if already in a re-framing procedure.

The remaining assessment procedure distinguishes between two cases: (i) trial instantia-

tion and (ii) “normal” framing (i.e. assessment of an active frame that has previously been
selected).

In case (i), it first has to be verified that the remaining steps of a trial frame trajectory

are executable given KB which amounts to Θposs(F, KB, w) 6= ∅ (see equation 4.3, p. 101)

because only then will it be considered as a candidate for activation. If the test succeeds,

the frame is included in the set of candidate frames from which the new active frame is

chosen stochastically according to P(s, F) (equation 5.15, p. 125).

During “normal” framing (case (ii)), the agent has previously selected an optimal sub-

stitution (equation 5.9) under which the active frame is being executed. In this case, fram-

ing assessment is a bit more complex as it consists of two phases: First, it is checked

whether ϑ∗(F, w, KB) ∈ Θposs(F, KB, w), i.e. if the previously optimal substitution ϑ∗ can

be maintained. If F is no longer executable under ϑ∗, the second phase (➎) is en-

tered, in which the agent iteratively searches for a substitution that is both executable

(ϑ∗(F, w, KB) ∈ Θposs(F, KB, w)) and desirable (u(ϑ∗, F, w, KB) ≥ b). These steps ensure

that action-level MDP optimisation is performed as described in equation 5.9 (p. 123). In
real terms, this means that frame desirability depends on the profitability of the best con-

ceivable variant of the active frame.

If all these constraints hold, the re-framing criterion βF(w, KB) is not met, and the

agent can directly proceed with enactment (➒) of the active frame, i.e. with execution of

m∗ (equation 5.10). Else, the agent has to re-frame. Note that, obviously, the attempt to

retain the frame also fails if Θposs(F, KB, w) = ∅, since then no ϑ∗ exists.

Frame adjustment In the event of re-framing, the Q-table has to be updated according

to update rule 5.12 (p. 124) since a state transition has occurred. Also, the accumulated

reward R(s, F) has to be reset to zero, because a new frame has been chosen (see ➐).

Trial instantiation proceeds as follows: All frames that can be applied in the (new) state

s(w, KB) are checked for validity and adequacy (i.e. steps ➋ and ➍ are repeated for all of

them), but desirability assessment is replaced by consultation of the Q-table (effectively,

this is the point at which transient social optimality makes a real difference in terms of

adaptation). This has a huge impact on the computational resources spent on framing

assessment. Instead of searching the entire space of encounters covered by each candi-

date frame for an optimal substitution ϑ∗, it is merely checked whether there exists an ex-
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ecutable substitution for each of them.11 The stochastic frame selection criterion of equa-

tion 5.15 is used to choose the next active frame among all valid and adequate candidate

frames, and before we proceed with enactment (➒), the optimal substitution ϑ∗ has to be

determined within this active frame. Again, a desirability check like that of phase ➎ is

performed prior to actually selecting the respective frame.

The adjustment procedure described so far does not cater for the case in which no can-

didate frame is found (➏). In this case, the frame construction methods suggested in sec-

tion 5.2.2 come into play. Effectively, this stage of the framing cycle is very similar to “plan-

ning” as it seeks to combine existing “operators” (that is, frames) to a message and action

sequence that achieves a useful goal. If a usable frame can be constructed, it is activated.

Since the methods for frame construction we have proposed only combine ground tra-

jectory sequences, the constructed frame contains no variables and it is not necessary to

determine an optimal substitution – the frame can be enacted “as is”. If no frame is found

at all, the whole re-framing process has failed and the agent can do nothing but terminate

the conversation in the behaviour generation phase (➓). As for long-term repository man-

agement, the offline merging process described in section 5.2.3 runs concurrently with the
main reasoning cycle and constantly optimises the repository. Also, after completion of a

frame (➒), the perceived frame is added to the repository using online merging strategies.

Frame enactment Frame enactment in m2InFFrA is straightforward. If the frame is fin-

ished (cf. condition |T(F)| = |w| in equation 5.11, p. 124), the agent simply terminates

the encounter. The same reaction is spawned if framing fails and no active frame could

be found. Of course, the agent might alternatively utter an arbitrary message in this sit-

uation, but we choose to discontinue the conversation simply because communication is

not considered to be worthwhile if no reasonable pattern of messages can be identified

that makes sense to the agent. Else, the next message is chosen according to equation 5.10

(p. 123), i.e. by applying the optimal substitution to the upcoming step in the trajectory of

the active frame.

5.3.2 Encounter states
In section 5.1.4, it was claimed that an equivalence relation S ⊆ 2L ×M∗

c can be used to

induce different equivalence classes s1, . . . , sn of knowledge base contents and perceived

encounter prefixes that serve as the elements of the state space for the framing MDP. How-

ever, we have not yet proposed a method for determining appropriate state definitions in

practice. Although we are far from disposing of a comprehensive theory of “state” in con-

versation processes (which would explain what leads an agent to prefer one frame over

another), there are practical considerations that can be helpful in developing encounter

state definitions.

Firstly, to prevent state-space explosion (a common problem in reinforcement learn-

ing), the state descriptions derived by the S function should yield a fairly small set of pos-
sible encounter states. Otherwise, the agent will need countless learning samples to con-

verge to a reasonable framing strategy.

11 In most practical situations, this is a constraint that can easily be verified. In a frame that describes an ex-
change of arguments, for example, it is met if there exist any concrete arguments that match the conversation
pattern. Obviously, this is a question that is much easier to answer than that of finding an optimal argument.
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Secondly, there should be an efficient method to infer the current state s(KB, w) from

KB and w. If, for example, the state depends on the satisfiability of logical statements that

are hard to prove, the supposed complexity reduction of introducing the framing level will

be sacrificed by adding computational complexity at the level of state determination.

Thirdly, states should be distinguished if differences between them matter to the ap-

plicability of a frame. For the Q-table to provide useful information, the entries for two

frames F and F′ should be different in a state s if one of the two frames is a good choice
while the other is not. If all frames are considered almost equally good (low Q-value vari-

ance), then obviously determining the current state does not provide much guidance. A

notion that appears to satisfy these requirements and that is in accordance with intuition

from the world of human communication is that of conversation theme (we have already

discussed the importance of theme to our theory of communication in section 4.1.5). In-

formally speaking, a very simple working definition for theme is “the sum of the agents,

objects, actions, mental states and other concepts talked about in a conversation”12. From

an expectation-based perspective, the theme is nothing but an alternative, often gener-

alised description of the consequences of an interaction. For example, when A tries to

convince B of his political views in a discussion, the theme “U.S. foreign policy” is nothing

but a generalisation of expectations regarding the possible changes of B’s belief related to
the foreign policy of the U.S. (i.e. the potential outcomes of the conversations: B adopts

A’s view, B retains his own view, etc.).

In human communication, the theme (subject, topic) of a complex conversation is of-

ten a single concept, object or action, and it seems quite plausible that the “art” of framing

lies in finding the appropriate abstraction of theme to base one’s framing decisions on. Al-

though these intuitions cannot be turned into a formal domain-independent model right

away, it is usually possible to derive state definitions for a particular domain depending

on the kinds of frames employed by thinking about the key attributes that framing success

depends on.

In the link exchange domain, for example, if we picture frames that allow agents to

negotiate over the execution of linkage actions, it seems reasonable to use an encounter

state definition that contains information about

• the linkage actions that will be executed as a consequence of the encounter that can

be compared to private agent goals (for example, if different frames are available for

requesting link addition and link deletion, it is important for the agent to determine

his current state by checking whether addition or deletion of a frame would serve his

goals), and

• the role of the agent in the actions performed (it makes a big difference for the ap-

propriateness of a frame whether the agent is the party executing the linkage actions

or the party affected by them as a link “target”).

In other words, identification of the current state should provide enough information to

align current agent goals with the rewards that can be expected from activating a frame

according to the Q-table. We will return to this issue in section 5.3.2.

12 Where “talked about” does not necessarily mean “verbally” expressed: Sometimes communication is ac-
tually about what is being concealed while talking.
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5.3.3 Similarity measure
Another issue that has not been dealt with concretely is that of defining an appropriate

similarity measure σ : M∗ ×M∗ → R as introduced in definition 4.4 (p. 105). By using

σ to define the similarity σ(ϑ, F) of a substitution ϑ to an entire frame F (equation 4.4,

p. 104), the definition of similarity largely influences the probability P(ϑ|F, w) with which

a particular substitution ϑ will occur if a frame F is executed (equation 4.5, p. 104). We

will now present a simple domain-independent definition of σ that has been proposed in
(Fischer 2003). It based on recursively comparing arguments of operators while assigning

a similarity of one to equal arguments and variable arguments, and zero similarity to all

other elements.

Formally, for any two message patterns m, m′ ∈M, σ(m, m′) is defined as follows:

σ(m, m′) =







1
arity(op(m)) ∑arity(op(m))

i=1 σ(arg(m, i), arg(m′, i)) if op(m) = op(m′)

1 if m ∈ Var∨m′ ∈ Var
0 else.

Thereby, op(m) returns the top-level logical operator symbol or function/predicate-

/performative symbol of m, arity(s) returns the integer arity of the respective operator13.
Further, arg(m, i) returns the ith argument of m and Var = AgentVar ∪ ContentVar ∪
ObjectVar∪MsgVar∪ PhysicalActVar is the set of all available variables.

By further defining

σ(w, w′) =

{
1
|w| ∑

|w|
i=1 σ(w[i], w′[i]) if |w| = |w′| > 0

0 otherwise

we can naturally extend σ to message pattern sequences w, w ′ ∈ M∗. Note that dividing

by |w| restricts the range of σ to [0 : 1], which is very useful to obtain a balanced weighting

of past substitutions in equation 4.4 (p. 104). This provides us with a simple yet (as we will

show in chapter 6) effective similarity measure that operates by pure syntactical compar-
ison of message patterns and their sub-terms. Fischer (2003) has shown that a distance

13 These auxiliary functions are defined as follows:

op(m) =







¬ if m = ¬m1

∧ if m = m1 ∧m2

∨ if m = m1 ∨m2

h if m = h(m1 , . . . , mi)

⊥ otherwise.

arity(s) =







1 if s = ¬

2 if s = ∧ or s = ∨

n if s ∈ Statement is n-ary.

0 otherwise.

arg(m, i) =







mi if (m = ¬m1 or m = m1 ∧m2 or
m = m1 ∨m2) and i ≤ arity(op(m))

mi if m = h(m1, . . . , m j) and i ≤ j
⊥ otherwise.

where m and mi are arbitrary message patterns from M, and S(M) is the set of all function/predicate/-
performative symbols inM.
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measure ρ defined as ρ(w, w′) = 1−σ(w, w′) constitutes a metric14 and uses this obser-

vation to derive the heuristics for online and offline merging mentioned in section 5.2.3.

5.3.4 Desirability heuristics
The final issue that has to be discussed to enable a concrete implementation of m2InFFrA
is a very decisive one: the definition of frame desirability criteria. While we were able

to specify frame validity and adequacy in a completely domain-independent fashion in

the re-framing criterion βF(w, KB) (equation 5.11), fulfilment of the desirability condition

u(ϑ∗, F, w, KB) < b depends on the bound b. Unfortunately, no general statement can be
made regarding the quantities (and the relationship between different utility outcomes)

of u, so it seems that b will have to be determined individually for each specific applica-

tion. However, for a wide range of applications we are able to propose a meta-heuristics

for choosing the right value for b. This heuristics is based on our previous considerations

regarding deviance, rejection and conflict (section 4.1.6) on the one hand and on commu-

nication and coordination (section 4.1.7) on the other. More specifically, it builds on the

idea of balancing the rejection and affirmation character of any utterance.

As explained before, any utterance modifies an existing expectation structure, and

agents are constantly caught in a dilemma regarding whether they should reinforce ex-

isting expectations to make communication more predictable or whether they should de-

viate from existing expectations to avoid low-utility actions. The latter option bears a risk,

because a certain communication pattern can be expected to occur again in the future.

Especially if roles are swapped, the agent might loose potential future profit because he is

establishing a new expectation by his current behaviour.

We have pointed out in (Rovatsos et al. 2003a) that entropy-based measures are a useful

means to capture the (un)certainty regarding expectation structures. Roughly speaking,

they express how predictable or chaotic the effects of a particular utterance are in a given

expectation network, both in terms of (i) contingency regarding potential outcomes (ex-

pectation entropy) and (ii) their utility range (utility deviation).

Message repository trees

To define these measures, we first need to transform m2InFFrA repositories into mes-

sage pattern trees annotated with utilities. For the sake of simplicity, we shall only

look at the performative sequences contained in repository frames, i.e. neglect message

senders/receivers and content, the rationale being that such a repository tree should pro-

vide a very general view of the meaning of performatives.

The construction of such a tree T (F ) = (V, E) is fairly straightforward. Its nodes

v ∈ V represent performatives in trajectories and are labelled by virtue of a function

label : V → Performative ∪ {do, .,⊥} (referring to the grammar of table 4.1, p. 94).

Edges signify transitions between subsequent messages and are labelled with probabili-

ties prob : E → [0 : 1]. For every trajectory of a frameF ∈ F , there exists an edge from

the root node labelled with . to a node labelled with the performative T(F)[1]. For every

1 ≤ i ≤ T(F)[|T(F)|]− 1, if T(F)[i:i + 1] = 〈p(. . .), q(. . .)〉 and p, q ∈ Performative∪{do}

14 Actually, this observation is true of an entire family of distance measures of which this ρ is the most basic
one.
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Fig. 5.4: Example frame repository tree. Edges are labelled with transition probabilities

derived from observation. Leaf nodes are labelled with numerical utility lists U in

shaded boxes. The label . is used to identify the root node of the tree (“encounter
start”).

then T (F ) contains an edge (vp, vq) with label(vp) = p and label(vq) = q. For each

p(. . .) = T(F)[|T(F)|], the tree contains an edge (vp, vF
f ) with label(vp) = p to a leaf node

label(vF
f ) = ⊥ that indicates encounter termination. Leaf nodes labelled with label(v) = ⊥

are additionally tagged with a list of n(v) ∈ N encounter utility values U(v) ∈ Rn which

are derived from the total utility received after each of the n(v) encounters that lead to v.15

As the example in figure 5.4 shows, if frames are consecutively added to such a tree

starting with a tree that only consists of a root node labelled with ., this definition of T (F )
enables us to build a tree in which

• nodes labelled with performative/do identifiers represent message performatives

such that the ith step of a trajectory appears in the tree at depth i,

• edges represent transitions between subsequent messages labelled with transition

probabilities, and the out-edges of a node branch whenever encounter prefixes can

be continued with different performatives,

• leaf nodes labelled with the special symbol ⊥ are used to denote encounter termi-
nation at the end of each path and are associated with a list U of numerical utilities

that were experienced in the past whenever an encounter matched the performative

sequence leading to the leaf node.

Entropy measures

Now we are ready to define entropy-based measures on such trees. Let P(w) be the proba-

bility of a performative sequence w ∈ (Performative∪{do})∗ that can be easily determined

15 These definitions lead to a simplified version of the graph formalism suggested for communication sys-
tems in (Nickles and Rovatsos 2004).
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by multiplying the probabilities along the corresponding path path(w) in T (F ). For a pre-

fix label sequence w, we can define

EU[w] =

{
1

n(v) ∑n(v)
i=1 U(v)[i] if v = last(path(w))is a leaf node

∑w′∈C(w) P(w′|w) · EU[ww′] else

as the average utility to be obtained after prefix w. In this equation, w ′ ∈
C(w) ranges over all performative postfix sequences covered by T (F ) (i.e. C(w) =
{w′ | path(ww′) exists and last(path(ww′)) is a leaf node}).

With this, the expectation entropy EE and the utility deviation UD measures for an en-

counter prefix performative sequence w that has just been perceived can be computed as

follows:

EEF (w) = ∑
w′∈C(w)

−P(w′|w) log2 P(w′|w) (5.16)

UDF (w) =
1

|C(w)|

√

∑
w′∈C(w)

(EU[ww′]− EU[w])2
(5.17)

The two measures can be combined to yield a total entropy E(w):

EF (w) = EEF (w) ·UDF (w)

How can we interpret these measures? The expectation entropy assesses the information-

theoretic value of having performed/perceived a certain sequence w of performatives. By

computing the information value of all potential continuations, EE expresses the entropy

that is induced by w in terms of potential continuations of this encounter prefix: The lower

EE, the higher the value of w with respect to its ability to reduce the uncertainty of upcom-

ing messages/actions. Thus, by comparing expectation entropies for different performa-
tives in the process of selecting which message to utter, the agent can compare their values

or regard the system of all possible messages as an “encoding” for future reactions.

Utility deviation, on the other hand, is defined as the standard deviation between the

utilities of all possible continuations of the encounter given w. This allows for assessing the

importance of the potential consequences of w. The power of this measure lies in being

closely related to the expected utility of the encounter, while at the same time providing a

measure for the risk associated with the performative sequence perceived so far.

By combining these two measures into E , the agent can trade off the reduction of un-

certainty against sustainment of autonomy depending on his willingness to conform with

existing expectations or to deviate in order to pursue goals that contradict the expectations

held towards him.
It has to be emphasised that while the tree view of the repository is based on (roughly)

the same prediction mechanisms as the semantics of m2InFFrA frames described in sec-

tion 4 it constitutes a rather crude simplification. Instead of predicting the probability

of each actual continuation (i.e. a message/action sequence), it only makes very rough

predictions regarding the occurrence of performatives within these continuations. Also,

it does not take the dependence of continuation probabilities and utilities into account

(which could be done by comparing substitutions and weighing the relevance of frame

conditions.
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Short name Path label

“success”: request→ propose→ accept-proposal→ do→ do→ ⊥
“A cheats”: request→ propose→ accept-proposal→ do→ ⊥
“B cheats”: request→ propose→ accept-proposal→ ⊥
“rejection” : request→ propose→ accept-proposal→ ⊥

Tab. 5.2: Some interesting paths on the frame repository tree of figure 5.4.

Example

To illustrate the meaning of entropy measures, let us look at the example of figure 5.4 taken

from (Rovatsos et al. 2003a). The tree shown in this figure summarises experiences with

seven different performative sequences that have occurred so far in a total of one hundred

encounters (with utility values different from those displayed in figure 5.4). The upper part
of the tree represents a series of “request-accept-confirm-do” encounters, in which the

“responder” agent executes a physical action (in 90% of all cases) that has been requested

by the “initiator” agent after additional confirmation from the initiator. In the middle part,

the responder may make a counter-proposal that obliges the initiator to also execute some

physical action (hence the “do-do” sequence at the end of one path), while the initiator has

the choice to accept or reject this counter-proposal. The lower part of the tree is concerned

with direct rejection of the requested action, which is the most common type of encounter

in this example.

In our discussion of this example, we shall concentrate on the “successful” path in the

middle section of the tree, in which both agents (marked as A and B in the tables and

plots below) execute the actions they have agreed to perform. Table 5.2 introduces names

for some paths the entropy effects of which on the “success” path we shall analyse. This

means that we are going to assess the different effects of executing one of these paths on

the entropy values along the “success” path. of Apart from this successful path which indi-

cates that both agents have “done their duty”, the table lists paths for cases in which

• “A cheats” (by not doing his16 part of the deal);

• “B cheats” likewise by not executing the first do action, and

• “rejection”, in which the initiator does not accept the responder’s counter-proposal.

The analysis will be performed using the entropy change ∆E of w induced by execution of
w′. It is defined as

∆EF (w, w′) = EF ′(w)− EF (w) (5.18)

whereF ′ is the frame repository obtained from adding the new experience w to F (remem-

bering, however, that the entropies are actually defined on the respective repository trees).

Figure 5.5 shows the values of ∆EF (w, w′) for continuations of all prefixes of the “suc-

cess” path where w′ ranges over all different paths in table 5.2. A first thing to note is the

shape of the entropy curve which is typical of meaningful trajectories. As illustrated by the

16 Note that due to argument omission in node labels, it is necessary to determine which party is executing
which action by tracking the turn-taking procedure. In the above example, the first do action is performed by
the responder, while the second one is executed (or not) by the initiator.
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Fig. 5.5: Entropy effects of different trajectories on the “success” path and “perfect” en-

tropy curve (boxed)

boxed “perfect” entropy curve, reasonable trajectories should start with an “autonomy”

part with high entropy which gives agents several choices, and then continue with a “com-

mitment” part in which entropy decreases rapidly to make sure there is little uncertainty

about the consequences of the interaction further on. This is also necessary to make sure

that communication pays off as the encounter is progressing and communication cost is

increasing.

Secondly, cheating has a negative impact on entropies in the sense that the entropy

values of “propose” and “accept proposal” exhibit a disproportionate growth. This is shown

in detail in figure 5.6, which depicts the changes to node entropies before and after the

respective interaction sequence. Furthermore, the effects of “A cheats” are much worse

than those of “B cheats”, which conforms with our intuition that the closer utterances are

to the final outcome of the encounter, the more critical will the expectations about them

be. In the present example this happens because in the case of “A cheats” B has already

invested in the interaction by performing some physical action in order to get something

in return.

Thirdly, as before, the “rejection” dialogue and the “success” dialogue are accept-

able in the sense of decreasing entropies of propose and accept-proposal (note that the

small entropy increase of request is due to the 0.1/0.23 probabilities of cheating after

accept-proposal and do(B, X)). The fact that “success” is even better than “rejection”

suggests that, in a situation like this, there is considerable incentive to compromise, if the

agent is willing to sacrifice current payoff for low future entropies.



142 5. Learning and Decision-Making with Frames

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

request(A,B,X) propose(B,A,Y) accept-proposal(A,B,Y) do(B,X) do(A,Y)

E
nt

ro
py

 c
ha

ng
e

Message

success
B cheats
A cheats
rejection

conflict curve

Fig. 5.6: Entropy changes to the “success” path and resulting conflict curve

Conflict potential

Looking at the plots in figure 5.6, a parallel becomes evident between trajectory entropies

and reasoning about the long-term effects of a particular behaviour on the uncertainty

associated with a frame repository.
Let F ′ be the result of adding a new encounter w′ to the current repository F . The

entropy change ∆EF (w, w′) (equation 5.18) provides a measure of the expectation-affirma-

tive or expectation-negating character of an utterance. In other words, it expresses to which

degree the agents are saying “yes” or “no” to an existing expectation (see section 4.1.6).

The conflict potential of an encounter can be derived by comparing the expected en-

tropy change to the entropy change that actually occurred due to the perceived trajectory.

Analysing the difference between these two entropy changes reveals the degree to which

the agents exceeded the expected change to expectation structures. We can define the

conflict potential exerted on encounter w by the occurred encounter w ′′ if the expected

encounter was w′ as

CPF (w′′, w′, w) =
∫ w[|w|]

w[1]
∆EF (w, w′′)− ∆EF (w, w′)dwi

This is the area under the so-called conflict curve in figure 5.6 that computes as

∆E(“success”, “A cheats”)− ∆E(“success”, “success”)

This curve shows how the difference between expected and actual entropy change grows

larger and larger, until the encounter is terminated unsuccessfully. This increases the prob-
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ability that the participating agents will stop trusting the expectation structures, and that

this will inhibit the normal flow of interaction, especially if CP is large for several paths.

A noteworthy property of this view of conflict is that in cases where entirely new per-

formatives are tried out, the conflict potential is zero. This is because the expected entropy

change (which is very large, because the agents know nothing about the consequences

of the new performative) is identical to that actually experienced. So what matters about
conflict is not whether the expectations associated with a message are clear, but rather

whether the effect of uttering them comes close to our expectations about that effect on

the expectation structures – a property we might call second-order expectability.

Defining a desirability criterion

On the grounds of these considerations, we can now define a very simple desirability cri-

terion, i.e. a concrete quantity for b in the inequality u(ϑ∗, F, w, KB) < b. In principle,

requiring that u(ϑ∗, F, w, KB) > 0 is sufficient to ensure that the agent’s utility will increase

after executing the remainder of F under ϑ∗ with encounter prefix w.

To add a tendency towards the reduction of conflict potential, we relax this constraint to
allow certain trajectories to be considered desirable even if their utility effects are negative

but they also contribute to the evolution of stable interaction patterns. For this, we simply

define b as follows:

b = −∆EF (ε, postfix(T(F), w)) (5.19)

This means that an agent will adhere to the frame not only if the expected utility is greater

than zero, but also if this expected utility plus the decrease in total repository tree entropy

(cf. the use of ε and the negative sign) is positive. In other words, the agent is willing to

sacrifice some immediate utility for the sake of decreasing the overall entropy of his repos-

itory.

5.4 Summary
The purpose of this chapter was to extend the formal model of InFFrA laid out in chapter 4

by ready-to-implement learning and decision-making algorithms.

Starting from the principles of social abstraction and transient social optimality, which

we proposed as necessary ingredients of social reasoning and learning algorithms, we used

results from the area of hierarchical reinforcement learning to model framing as a two-level

Markov Decision Problem. Precup’s (2000) “options” framework was subsequently com-

bined with m2InFFrA semantics to develop a framing mechanism which ensures that the
learning heuristics used by m2InFFrA agents comply with the decision-theoretic founda-

tions of reinforcement learning.

As concerns frame management, sections 5.2.2 and 5.2.3 proposed heuristics for frame

construction and frame generalisation that add a planning/clustering flavour to m2InFFrA,

respectively. Although there exist many more operations that can be defined on frames,

we believe that the goal-based combination of frames in the context of frame construction

and the generalisation of frames that is facilitated by frame merging operations are not

only functionally the most important operations. They also seem very adequate in the face

of the conceptual principles for InFFrA described in chapter 3.



144 5. Learning and Decision-Making with Frames

All this was put together in section 5.3 to obtain an implementable framing procedure,

while also covering “everything amiss” in the general model. These remaining elements

proposed to supplement the learning and decision-making methods (similarity measure,

encounter state definitions, and desirability heuristics) were deliberately considered part

of the implementation, as we cannot claim that they carry over to all application domains.
In the following chapter, we will show how intelligent social reasoning agents built us-

ing these heuristics and the overall m2InFFrA framework perform in a complex application

domain.



6. Experimental Results

The algorithms and heuristics used for m2InFFrA in the previous chapter are sufficiently

concrete to allow for an implementation of the principles of InFFrA in a real system. Based

on this concretion, this chapter summarises the results of the extensive experimental vali-

dation of our methods in a multiagent system inhabited by m2InFFrA agents. The applica-

tion scenario for this system is chosen from the domain of Web linkage management that

has already been briefly touched upon in section 1.1.

First, we provide a description of the Link Exchange SimulatiON system LIESON which

is the implemented system used for empirical validation together with a discussion of the

application domain and of the evaluation methodology pursued.

The subsequent presentation of experimental results per se consists of two sections

that summarise our findings in basic and more advanced experiments, respectively. The
basic experiments are concerned with analysing the effectiveness of our methods in fairly

simple “proof-of-concept” scenarios and to explain how and why m2InFFrA works in prin-

ciple. The section on advanced experiments deals with tests in which complex negotiation

frames were used and the resulting communication processes were much more intricate.

These experiments prove that m2InFFrA can be successfully used at different levels of com-

plexity, and they highlight the close interplay between InFFrA-based social reasoning and

local agent rationality.

6.1 The LIESON System
Prior to reporting on the experiments conducted with LIESON, we provide a description of

the system and discuss the methodology employed in empirical validation.

6.1.1 Linkage liaisons
The LIESON

1 system is a MAS in which agents who represent the owners of individual Web

sites try to increase the dissemination of their owners’ opinions.

These “opinions” include (i) the views expressed in the contents of the owner’s site and

(ii) the owner’s preferences regarding other Web sites he knows of. To further the spreading

of this opinion on the Web, each owner of a site tries to increase the popularity of his own

site and that of other sites that contain similar (or favourable) views. Certainly, this popu-

larity is affected by the traffic the respective sites attract among Web users. This traffic, in

turn, depends inter alia on the link structures in the Web since users follow existing links

when surfing the Web.

1 Pronounce as “liaison”.
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Considering the vast amount of existing sites and the changes their contents constantly

undergo, it is only natural to infer that it is almost impossible (or at least very tedious and

time-consuming) to optimise the links to and from one’s site as a human Web site owner.

It is precisely for this reason that the idea of agent-based Web linkage management seems

very appealing: Rather than having to explore new sites as these appear, to constantly track
the contents of known sites and to discuss the possibility of linkage between those sites and

one’s own site with their owners, it would be very convenient to delegate as many of these

tasks as possible to an intelligent agent. Such an agent would constantly explore the Web

and gather knowledge regarding existing sites and the hyperlinks between them. Using

information about the preferences of his “owner”, the agent would then either lay/delete

outgoing links to other sites self-responsibly or enter linkage negotiations with agents who

represent other sites.

In technical terms, such functionality could be realised through an interoperable

(e.g. FIPA-compliant (FIPA 1999b)) agent platform on which agents representing different

users meet and discuss the possibilities of mutual linkage. The LIESON system is a prototyp-

ical implementation of this functionality, while clearly focusing on the “strategic commu-

nication” aspect, which is its most important ingredient as far as our work is concerned.
The Web linkage domain has several characteristics that suggest the application of

InFFrA-based social reasoning techniques:

1. Self-motivation of agents: Different agents have different motives, and, in general,

they need not care about others’ welfare.

2. Openness: Arbitrary numbers of agents can enter the scene, they may have been

designed by different people, and they are free to change their own hyperlinks as

they wish.

3. Dynamics: Links can be modified at any time by Web site owners without prior no-

tice, new sites appear and others disappear, etc.

4. Latent structures: The linkage structures are a visible sign for underlying relation-

ships between different contents. These relationships are rarely made explicit in the

contents of the sites.

5. Culture: The success of communication strategies depends on existing rules of con-
duct, “netiquette”, etc.

In systems with these properties, it seems appropriate to learn how to employ and shape

communication patterns strategically, and this is essentially what frame-based social rea-
soning is aimed at.

It should be noted that while LIESON focuses on the link-based management of relation-

ships between Web sites and their owners (so-called “linkage liaisons” (Malsch et al. 2002)),

such an application scenario is representative of a much wider class of applications con-

cerned with communication-based relationship management. Other application scenarios

in this category are:

• Commercial banner trade: This is very similar to opinion-based linkage manage-

ment, the only differences being that advertisement banners are exchanged for

money, and that agent success solely depends on the popularity of one’s own site

(customer traffic).
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• “Social” citation management: Citations in the scientific literature increase one’s rep-

utation and popularity in pretty much the same way as links do in the case of Web

sites.

• Decentralised management of ad-hoc communication networks: If agents can au-

tonomously choose how to route messages, the quality of service offered when com-

municating with an agent representing a mobile device depends on his “popularity”

and the willingness of others to forward messages to and from him.

6.1.2 System components and agent design
LIESON is a testbed for InFFrA experiments that simulates the evolution of a hypothetical

portion of the World Wide Web. The system incorporates:

1. A representation of a number of Web sites and of the link network that results from

hyperlink connections between these sites. Based on a model of assumed Web user2

behaviour, every possible link configuration leads to a particular distribution of user

traffic among these sites.

2. A set of agents that correspond to these sites in a one-to-one fashion. These agents

reason and communicate with each other to improve their linkage situation in ac-

cordance with the “opinion dissemination” goal described above. They are endowed

with the capacity of changing the outgoing links of their owners’ Web site and have

information about their owners’ preferences regarding other sites. Also, they can ex-

change textual messages with each other which do not affect the link environment.

3. A so-called system manager which is a centralised, omniscient entity that maintains

the link network, computes agent utilities and mediates between agents and link en-
vironment by executing changes to the network and conveying world state informa-

tion to the agents.

The linkage network

The ensemble of Web sites represented by InFFrA agents forms a directed graph whose

nodes correspond to Web sites and the edges are hyperlinks pointing from one site to an-

other, the so-called linkage network. While we abstract away from the actual content of

sites (and coerce all pages/URLs that belong to the same stakeholder into one abstract ”site

node”), we allow for weighting links with numerical weights. These weights are thought to

express the attitude of the referring site towards the site referred to by the link as publicly

expressed on the Web page. In the real world, this weight can be adjusted by employing

special visual means or a textual comment. Examples include the use of different banner

sizes with links to distinguish between less important and more important advertisement

clients, labelling links with captions such as “the best site on subject X”, “my girlfriend’s
homepage”, etc.

2 When we speak of agents, we will henceforth refer to agents that represent Web sites (or their own-
ers/stakeholders, respectively). Web users, on the other hand, are normal human individuals who surf the
Net, automated Web crawlers, or search engines. Neither of these latter kinds is simulated by agents in the
LIESON system.
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In our model of Web user behaviour, we will assume that the probability with which a

person/agent surfing the Web follows a link depends on this numerical public rating value

attached to the link as a weight. The higher the rating value, the greater the likelihood that

a link will be followed.

It is important to understand that the public ratings that are visible to all other agents

and users as link weights need not coincide with the real opinion held by the source site
regarding the target site (the private rating ). In fact, it is only for this reason that strategic

linkage behaviour is even possible, because agents are able to negotiate over linkage ac-

tions and use their “linkage power” to persuade others to take action beneficial for them-

selves. If, for example, A has a low private rating for B but B’s site attracts a lot of traffic, A
might display a high public rating for B to get B to lay a link towards A in turn (which would

increase A’s popularity). However, as the long-term goal of agents is opinion dissemina-

tion and not a simple maximisation of traffic on one’s own site, the amount of ”strategic

pretence” cannot grow arbitrarily – after all, popularity is pointless if you cannot make

your point!

Agent knowledge, action capabilities and user interaction

Apart from their m2InFFrA functionality, LIESON agents are characterised by the following

properties:

• They start out with no knowledge whatsoever about other sites or existing links. They

can query the system to obtain a reference to a random site at any time by sending
an explore() message to the system manager. Once they know that an agent X ex-

ists, they may query what the outgoing links of X are by sending an update(X) mes-

sage to the manager. On receipt of such a message, the manager will send a list of

existsLink(X, Y, R) facts to the sender, one for each link from X to Y with public

rating value R.

Note that this way of obtaining link information implies that agents almost always

have incomplete knowledge of the linkage network. This is the case because they are

not automatically notified of linkage actions but have to actively request an informa-

tion update themselves.

• Apart from explore- and update-actions, agents can execute three kinds of physical

linkage actions:

1. addLink(X, Y, R): If no link between X and Y exists, X can lay a link to Y with

rating value R. This link will continue to exist until a deleteLink(X, Y) action is

performed.

2. deleteLink(X, Y): If a link between X and Y exists, an execution of this action by

X will cause deletion of this link.

3. modifyRating(X, Y, S): If a link between X and Y exists with rating R, this action

will modify its rating value to S. For the action to be executed, it is mandatory

that R 6= S.

Agents’ knowledge bases contain rules regarding their action capabilities that allow

them to infer from the existsLink facts obtained from the manager which actions they
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may execute. For example, the following rule is used for modifyRating:

existsLink(X, Y, R) ∧ number(S) ∧ R 6= S⇒ can(X, modifyRating(X, Y, S))

So, since agent X knows that his name is X, he can infer that he is able to modify the

respective link. Note the use of the number predicate that is only true for admissible

rating values, and the implicit universal quantification of variables. Logical negation

is realised thrrough “negation as failure”.3

Furthermore, add- and delete-lists of facts (in the sense of traditional AI planning sys-
tems (Russell and Norvig 2003)) are used to revise beliefs after the execution of phys-

ical actions. In the above example, the fact existsLink(X, Y, R) would be retracted

from the knowledge base, and existsLink(X, Y, S) would be added to it subsequently.

Naturally, update- and explore-actions have belief revision effects that are quite dif-

ferent from those of physical linkage actions, because the replies obtained from the

system manager cannot be predicted before executing the action.

• The agents interact with their human ”proprietor” to obtain rating information. Ev-

ery time an agent encounters a new site, he asks his human owner for an assessment

of the contents of that site. This assessment is given as a numerical value taken from

a fixed range of possible values.4 In the actual simulation system, however, interac-

tion with the user is implicit, as we are not concerned with agent-human interaction

but only with agent-agent interaction. Practically speaking, this means that private

ratings can be generated randomly or be retrieved from data files.

It should be remarked that no agent ever knows anything about the private ratings of

another agent; he only ”sees” the displayed public rating values (link weights).

With this, the overall simulation process proceeds as follows: Agents enter the system with

no knowledge and gradually obtain more and more information about the linkage network.

At the same time, the network itself is evolving as agents are adding, deleting and modify-

ing links in pursuit of higher utility while taking their owners’ preferences into account.

Next, we describe the method by which these utilities are computed in more detail.

Utility computation

In our application scenario, the utility an agent obtains during a simulation (which we also

refer to as his score below) depends on three things:

1. the popularity of the agent’s own site,

2. the popularity of other known sites weighted by the opinion the agent(’s owner) has

of them,

3. the degree to which the ratings towards third-party sites expressed on peer sites are

similar to those of the agent.

3 This means that¬ϕ is true if proving ϕ fails. If ϕ involves (implicitly universally quantified) variables,
negation implies that the formula is wrong for all variable substitutions.

4 In a more advanced system, the agent might, for instance, derive the numerical rating from a more detailed
list of attribute values the human user can assign to some Web site to express his opinion of it.
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In the following, we are first going to explain how this agent score is computed. After this,

we will present our method of determining the popularity of a site that is necessary for

combining the above score constituents and which builds on a model of predicting the

“traffic” on a Web site.

For this purpose, let G = 〈A, E〉 the linkage network, i.e. a graph whose set of vertices
is the set of agents, and let E ⊆ A × A the set of links, where r(a i, a j) ∈ [−r:r] ⊂ Z

is an integer-valued public rating attached to link (a i, a j) that ranges between −r and r
(and r > 0). In contrast to the displayed rating r(ai, a j) of a link (ai, a j), the private rating

maintained by agent ai for agent a j is given by ri(a j). Also, let p(ai) ∈ [0:1] the popularity

of agent ai(’s site). We define the score of agent ai as

score(ai) = α · ri(ai) · p(ai) + β · ∑
a j∈A, j 6=i

p(a j) · ri(a j) ·
1

∆(ai, a j)
(6.1)

where

∆(ai, a j) = max
{

1, ∑
(a j,ak)∈E

|ri(ak)− r(a j, ak)|
}

(6.2)

is the cumulative difference between all link ratings of outgoing links of a j with target ak
and the private ratings of ai toward these a j (but at least 1 to avoid division by zero in

equation 6.1).

We should take a minute to explain this definition. Firstly, the two parts weighted by
α and β denote the quantities contributed to the overall score by the popularity of the

agent’s own site and known peers’ sites, respectively. The two weights enable us to vary

the importance of these two factors in the design of a particular utility function. As for the

first part, this simply computes as the agent’s own popularity p(a i) weighted with the max-

imally possible rating ri(ai) = r (trivially, the agent has the best possible attitude towards

his own site).

Now let us look at the second part of the right hand side, which is somewhat more com-

plicated. As with the agent’s own site, this quantity takes the popularities p(a j) of peer sites

and the corresponding ratings ri(a j) into account. I.e., the more a peer’s site is favoured,

the more does the popularity of that site contribute to the agent’s score. Apart from this,

another quantity plays a decisive role in assessing the importance of other agents’ success:
∆(ai, a j). This distance measure computes as the sum of differences between the ratings

of links pointing from a peer a j to a third-party site ak. That is, ∆ measures how different

the opinion expressed on a j’s site (in terms of out-link ratings) differs from that held by a i.
5

If ri(a j) < 0, this implies that the larger ∆, the smaller p(a j) · ri(a j) · (1/∆(ai, a j)), so that

the negative utility impact of a disliked peer being popular decreases with increasing ∆.
This reflects a need for clear “separation” of different opinions; if the contents of a site are

considered unfavourable, this site should ideally express an opinion towards third-party

sites that is very distinct from that of the agent for which the score is being computed. This

is consistent with our intuition of opinions expressed on Web sites: In a consistent system

of different views, it would be most desirable for X if Y did not share the views expressed

5 Note that the difference is computed on the grounds of one’s own private rating towards ak. This is based
on the idea that even if one is forced to express a certain opinion that is different from his private rating in
public, he will still be more satisfied if others express his actual opinion openly. For example, a dissident who
succumbs to oppression and agrees to refrain from further protest will always be happy to see others express
similar views in public.
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Fig. 6.1: Sigmoidal link transition probability curve for v = 7

by Z if X does not endorse Y’s views but is a proponent of Z’s opinion. After all, it is in the

best interest of each agent if Web users are able to distinguish between different views (or

“camps”) when looking at different Web pages.

Finally, the question remains of how to compute popularities p(a i). Here, we suggest

the following (purely hypothetical) model of Web user behaviour: We assume that a user

starts browsing the Web at an arbitrary site ai with uniform distribution, i.e. |A|−1. Once

at ai, we expect the user to follow a link to another site a j with probability P(ai, a j). This

probability is computed as a sigmoidal function of the rating value of the link (a i, a j) as

defined by

P(ai, a j) =
1

1 + e−vr(ai,a j)/r
. (6.3)

Thereby, the factor v calibrates the probability values to reasonable quantities and division

by r ensures that the range of probabilities is the same regardless of r. In other words,

different choices of r results in a more fine-grained resolution of different link transition

probabilities, while maximal and minimal probability remain identical. Figure 6.1 shows

this probability curve, which has the nice property that link ratings around zero make a

big difference as to whether a user is likely to follow the link, whereas there is a tendency

towards “saturation” for more extreme rating values which seems intuitively appealing.

If the inverse value of P(ai, a j) is used as an edge weight, we can extend P(ai, a j) to pairs

(ai, a j) that are not directly connected by edges. This can be done by defining p(a i, a j)
as the product of all probabilities along the shortest (viz maximally probable) path that
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connects ai and a j. Formally,

p(ai, a j) =







1 if ai = a j

P(ai, a j) if (ai, a j) ∈ E
max(ai,ak)∈Ep(ai, ak) · p(ak, a j) else

(6.4)

can be used to derive a general probability for a user to visit a j after ai.

With this, the total probability of a site ai being visited by some user (and which we take

to be the popularity of the agent) is

p(ai) = ∑
a j∈A

1
|A|
· p(a j, ai) (6.5)

Because computing shortest paths can be computationally expensive, we also provide an

alternative, much simpler way of computing site popularities which does not involve com-

puting all-pairs shortest paths. Instead, it only considers the immediate predecessors of a i
when computing his popularity:

p̂(ai) = ∑
{a j|(a j,ai)∈E}∪{ai}

1
|A|
· p(a j, ai) (6.6)

This simplified popularity computation method can be applied just like that of equa-

tion 6.5 in total agent score computation.

Either way, the interesting thing about this computation of agent popularities and

scores is that by laying links to other agents, the agent is effectively decreasing his own

probability of being visited. This is quite realistic, because any reference to another site is

likely to distract a Web user’s attention from one’s own site. It is quite interesting to note

that this is also true of negatively rated links, so that there is no way at all to “harm” some-

one directly in terms of user traffic if linkage is the only means available.

With this respect, the question arises how an agent will link his pages to those of others

in a beneficial way although they only distract those visiting his site? This is essentially the

dilemma agents are faced with in the “linkage game” from a decision-theoretic perspective.
We will return to this issue in section 6.2 when we discuss possible score distributions for

specific private rating configurations that we used in our experiments.

Finally, we have to explain how popularities and scores are utilised in LIESON:

• From the system manager perspective, equations 6.1 and 6.5 are used to measure

the performance of agents during simulations, given a global and omniscient view of

the linkage network. Thus, agents’ scores are regarded as the primary performance

indicator, and they constitute the basic unit of performance analysis since they are

the quantity to be maximised from an individual agent perspective.

Note that under realistic circumstances, a system manager would not be able to as-

sess total agent score because he does not have any knowledge of agents’ private

ratings. For simulation purposes, however, it is useful to permit access to this pri-

vate agent knowledge to evaluate agent performance objectively (i.e. given the actual

linkage network, and not the partial view agents have of it).
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• From an agent perspective, local linkage network models are maintained by each

agent. We assume that agents have a possibility to estimate their own hypothetical

score for any given link configuration. By modifying their local (partial and usually

incorrect) graph and re-computing their score, they can assess the utility of a linkage

action, and it is on the grounds of these utility predictions that they make their de-
cisions. To maintain a “boundedly rational” attitude in agent design, we only allow

them to use the simpler method of popularity computation (equation 6.6). This will

give them a hint for the usefulness of an action while not providing perfect informa-

tion about the effects of that action.

Despite our efforts to devise this utility computation methods in a realistic way, it has to

be remarked that it remains a heuristic approximation that is not based on empirical data

regarding user behaviour. Also, it does not take fluctuations in Web user behaviour into

account. For the sake of reducing computational complexity we refrain from simulating

Web users themselves by agents, which would be necessary to model more complex Web
“surfing” behaviour.

It should be remembered, however, that the above function fulfils our basic require-

ment, namely that there has to exist a potential for strategic linkage. Ultimately, we are

not interested in whether the computed popularity values resemble real Web traffic mea-

surements, but whether the behaviour of these popularity distributions causes agents to

engage in strategic communication.

Local BDI reasoning

As mentioned in earlier chapters, InFFrA is not a complete agent architecture per se – it

only provides a framework for the social reasoning capacities of an agent.

Therefore, it has to be supplemented with a local rational reasoning component. In the
case of LIESON, we have chosen to use a BDI (Rao and Georgeff 1992, Georgeff and Rao 1995)

architecture according to which agents generate a number of possible goals and use a goal

queue to pick the most appropriate goal in every reasoning cycle.

To keep things simple, we let LIESON agents only generate goals that would be fulfilled by

execution of just one action. Thus, there is no real planning process as each plan consists of

just one primitive linkage action (addLink, deleteLink or modifyRating). As a consequence,

the goal queue is equivalent to an action queue.

What the agent does in each reasoning cycle can basically be summarised as follows:

First, the set of all link modification actions that can be performed is computed given the

agent’s current state of beliefs (the agent maintains a knowledge base that contains his

beliefs and is constantly updated with incoming information). Then, a fixed number of

actions is randomly selected from the set of all linkage actions, both from the actions the
agent can execute himself and from those other agents might perform. The agent mock-

executes these actions hypothetically on his local (incomplete and/or incorrect) model of

the linkage network. Score computation on the resulting network allows for estimating the

utilities of these projected actions.

After this, all of these envisaged actions that would decrease the agent’s score are

deleted. The remaining actions are enqueued into the so-called action queue Q. Q is al-

ways ordered decreasingly in predicted future score, so that its topmost element can be

selected for execution after each step (and dequeued subsequently), since it is expected to
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maximise the agent’s score compared to all other considered alternatives. However, since

the topmost element may stem from previous reasoning steps, its executability is tested

once more right before execution to ensure that actions which cannot be executed cur-

rently are ignored.6

Also, actions whose effects have already been achieved and actions that will not in-
crease the current score anymore (because it might already be higher than the one they

suggest) are discarded.7 Finally, it should be mentioned that the length of Q is bounded

by parameter l, so that the least promising elements are eventually deleted – actions for-

merly enqueued and never executed are eventually “forgotten”. Table 6.1 summarises the

steps of BDI decision making in LIESON. It also describes the very simple communication

process incorporated in the BDI component of LIESON agents that is only activated when

the m2InFFrA component is not used. This “naive” kind of communication is quite useful

when it comes to assessing the contribution of m2InFFrA to agent performance (see the

experiments in section 6.2.2). For this reason we should take a minute to describe it.

Naive communication basically consists of agent ai sending a

request(ai, a j, A)

message to agent a j whenever an envisaged future action A cannot be executed by the

agent himself that is generated in the above reasoning cycle. Receipt of this message causes

a j to add it to his private message queue R.

For each agent to consider the requests of others, an additional step (step 4 in table 6.1)

has to be added to the decision-making procedure, in which a certain number of requests
is processed. The way in which they are treated is identical to that of the actions randomly

generated and projected by the agent himself: they are mock-executed, their alleged utility

is calculated, and they are enqueued into Q as if the agent had “thought of them” himself.

Clearly, this kind of communication behaviour is highly benevolent, as agents treat oth-

ers’ desires as if they were their own. This is not to say that agents are willing to sacrifice

their own welfare for the sake of others, but they will try to satisfy every request as far as

their own utility constraints and computational resources allow them to.

In an entirely cooperative society, this simple mode of communication would be a rea-

sonable solution, as it allows agents to exchange information regarding profitable link con-

figurations. This would result in a distributed search for a globally optimal linkage network.
However, since agents receive no feedback as to whether the requests they issue are pro-

cessed by their peers, it is not a viable solution for agent societies in which selfish agents

might not bother about others’ requests. Thus, “naive” agents might end up requesting ac-

tions from others instead of executing slightly less profitable alternatives themselves. Even

if they eventually choose to execute link modifications themselves, they would (in the best

case) lose time and waste resources on costly but fruitless communication. In the worst

case, they might even never consider other actions, because linkage actions of others are

always more profitable (this is true, for example, of link additions from others towards one’s

own site). This effect will be further pondered on in section 6.2.2.

6 However, its utility under current linkage conditions is not re-assessed. This may cause the agent to exe-
cute actions that have been enqueued earlier and that would not have been considered profitable under the
linkage network model the agent has at present.

7 This process of deleting obsolete and redundant actions is repeated until a non-obsolete, non-redundant
action is found; if no such action exists, the agent remains inactive.
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1. Generate a number na of own actions to consider for execution in the next step.

2. For each of no known peers, generate a number noa of action that the respective peer

can currently execute.

3. Assess the hypothetical value for all generated actions (by computing score(a i) for

oneself as if the action had already been executed and comparing this quantity to

one’s current score).

4. Process nreq requests obtained from others that have been stored in the requests

queue R.

5. Filter all actions that do not increase the current score, all actions whose effects have

already been achieved, and all those which are already contained in Q from the union

of these three sets.

6. Repeatedly select the topmost action from Q and dequeue it until all of the following

conditions hold or the queue is empty:

(a) The effects of the action have not yet been achieved.

(b) The action is currently executable.

(c) The action will presumably increase the agent’s score.

7. If no action could be found and Q is empty, do nothing; else, execute the selected

action or send a request to the agent who is able to execute it.

8. Update the knowledge base with information about the effects of the executed action.

9. If |Q| > l, delete the bottom |Q| − l elements of Q until it has reached its maximally

admissible length l.

Tab. 6.1: The BDI reasoning cycle in LIESON, parametrised with constants na, no, noa, nreq
and l.

Exploration and exploitation

The BDI reasoning process describes active utility-oriented decision making at the sub-

social level. To obtain and update information about other peers and existing hyperlinks it

is also necessary to perform explore- and update-actions occasionally.

Therefore, agents choose to “exploit” with a fixed probability pe in each round, in which
case they deliberate in the way described above. With probability 1 − pe, they choose to

explore the link environment. This means that, with a fixed probability pu they send an

update(X) message to the system manager to update their knowledge regarding the out-

going links of agent X’s site (where X is a randomly chosen peer they already know). With

probability 1− pu, they send an explore() message to the system manager to obtain in-

formation about other existing peers they might not be acquainted with (note, though, that

there is no way to avoid that they obtain information about agents they may have heard of

already).
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Social InFFrA layer

When m2InFFrA is put into operation, encounters start with the same kind of request as

above, i.e. the initial message is generated by the BDI layer. In contrast to “pure BDI” mode,

however, this is followed by the m2InFFrA reasoning process taking over as described in

section 5.3.1. Issuing or receiving such a request spawns an encounter start, whereupon

• agents choose their next message or action according to m2InFFrA until the encounter

is terminated;

• they terminate an encounter if a certain fixed amount of time has expired while wait-
ing for a response from their peer;

• they send a “busy”-message to any third party that attempts to start an encounter

with them while another encounter is still running (i.e. every agent engages only in

one conversation at a time);

• BDI actions from the queue (apart from requests) are only executed during the en-

counter if the agent is waiting for a reply;

• agents refrain from exploration (explore- and update-actions) until the encounter is

over.8

This means that during an encounter the InFFrA layer has priority over the BDI layer, unless

it makes no suggestion because the agent is waiting for a reply.

Naturally, as communication takes place asynchronously, encounters may fail unwit-

tingly if wait states expire due to overly long reasoning on the peer’s side. Since the reasons
for these “broken” encounters are unknown for the agent who is experiencing them, the

perceived encounter sequences are stored in the repository just like any “normal” frame.

Also, quite obviously, conversations may span an extended period of time, during which

the link network may change. This adds to the complexity of the application, as agents

may be forced to cancel the execution of actions they had committed themselves to during

a conversation because these actions do not appear desirable anymore.

Finally, it should be made clear that there is no facility to store social commitments that

result from previous interactions. Hence, if agents discover that an action executed earlier

has caused a link configuration that does not seem advantageous any longer, they may

undo the effects of this action at any time (this effect is discussed in section 6.2.2, p. 182).

6.1.3 Implementation
LIESON is a full-fledged simulation system that embodies the above functionality and all the

algorithms and data structures described in chapters 4 and 5. The system is entirely Java-

based, platform-independent, distributed and enriched with full graphical user interface
(GUI) support for inspection and manipulation of many system components. It is charac-

terised by a variety of features which are discussed in detail (Rovatsos 2002–2004). Here,

we only list the most important ones:

8 This is not the case in the advanced experiments, where update actions can be used as a result of the
check(·) predicate, cf. section 6.3.3 (p. 200).
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BDI action queue 

agent window

agent list

agent scores

InFFrA message logs and repository

link network and simulation controls

Fig. 6.2: Screenshot of the LIESON system
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• LIESON can be used to perform arbitrary-length simulations in single-threaded, multi-

threaded and (by utilising the JADE (2002) agent platform) multi-host modes. While

single-thread mode synchronises agent communication and action execution for

ease of analysis, multi-threading allows for genuinely asynchronous agent operation

and communication. Multi-host mode offers the additional possibility of spreading
arbitrarily-sized groups of agents across different hosts which communicate with the

system manager that runs on a single agent platform (and host). This enables us to

run simulations with larger agent societies, and also to add new agents to the system

over time.

The system manager maintains the global linkage network, manages agent addresses

that are necessary for networked message transport and computes objective popu-

larities (and scores, if in possession of private rating information for all agents, cf. our

remarks on p. 152).

• Various GUI components visualise

– the linkage network (as a graph whose nodes are randomly positioned but can

be interactively moved by the user), agent popularities and scores,

– BDI data (current subjective score, knowledge base contents, executed actions

and obtained messages, the action queue) for each agent; also, all internal BDI

parameters mentioned in the sections above (all of them can be modified, and

interactively when using the GUI)

– m2InFFrA logs for each agent which allow for tracing communication processes

and observing the contents of the frame repository.

The GUI also allows for interactively starting, suspending and continuing a simula-

tion run. A “simulation scripting” facility allows for recording the link modification

actions that occurred during a simulation to a file, so that they can be promptly “re-

played” after an experiment to visualise the evolution of the linkage network without

having to waste time on intra-agent reasoning.

All the information provided in GUI components can also be written to the standard

output which is convenient to conduct data analysis when running simulation ex-

periments offline without GUI support. Also, by virtue of JADE functionality, GUI

components can be hidden and re-visualised when running batch simulations of-

fline.

• Agents in LIESON employ a Prolog-like logical reasoning engine that allows for the in-

sertion of arbitrary rules in the form of Horn clauses in agents’ core knowledge bases.
This engine is used to conduct logical inference needed for both BDI and m2InFFrA
purposes. The system provides facilities for reading private rating information from

files, generating random private ratings, and for recording agent scores to files for

analysis. Also, agents can write various statistical information to data files, such as

the contents of their Q-value tables, their re-framing frequency over time, etc. Finally,

frame repositories and Q-tables can be stored persistently allowing for experiments

with agents that have prior interaction knowledge.

Figure 6.2 shows a screenshot of the LIESON system to give an impression of the GUI compo-

nents that are available. All in all, LIESON is a very flexible and complex simulation testbed
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for InFFrA experiments that provides a rich functionality and simulates a complex appli-

cation problem. In the following section, we will elaborate on how it has been used to

evaluate the proposed social reasoning methods.

6.1.4 Evaluation methodology
The methodology we apply in validating m2InFFrA agents in LIESON is based on the follow-

ing principles:

Two levels of communication complexity With the primary goal of developing an ar-

chitecture for learning and strategically using interaction patterns in mind (see chapter 1,
p. 1), we have to provide evidence that our agents are capable of handling and combining

such pre-specified patterns to further their goals. Since this should be the case regard-

less of the level of elaboration of a given communicative context, we conduct two series of

experiments.

First, in our basic experiments, we endow agents with knowledge about fairly simple

proposal-based frames. Effectively, what such frames achieve is that they enable agents to
(i) exchange information about their private preferences by requesting actions from others

and (ii) to agree on joint actions in case the individual contributions to such a joint action

are not mutually beneficial but the combined action is. These experiments, which prove

that using m2InFFrA has a concrete positive utility impact for communicating agents in

complex domains, serve as a proof-of-concept application of our methods. They show that

m2InFFrA works as a strategic communication-learning algorithm.

The second series of experiments – which we refer to as advanced experiments – is

conducted using more complex negotiation frames. More precisely, we apply elements of

the theory of interest-based negotiation (Rahwan, Sonenberg and Dignum 2003) to develop

negotiation frames which involve argumentation about (i) beliefs held of the environment

and (ii) the interacting parties’ internal goal structures. The rationale behind this series

of experiments is twofold: On the one hand, we want to examine whether agents are able

to adapt to a more complex pre-specified communication regime that is characterised not

only by the visible communication signals that are used but also by logical constraints that

reflect reasoning about social and mental states. This is particularly important as agents

in applications such as LIESON might be thrown into a pre-existing, complex social context

with which they should be able to cope. On the other hand, developing negotiation frames
serves as a case study for the application of InFFrA to a particular communication prob-

lem. This means that these advanced experiments implicitly also describe the process of

applying the general architecture to a specific communication scenario in practice.

Comparison between different types of agents For InFFrA to make sense as a social

reasoning architecture, we have to justify that adding an m2InFFrA module to an intelligent

agent will improve his performance in real terms and offer an advantage over other agent

designs.

Of course, it is impossible to make definitive statements regarding the superiority of

InFFrA over other architectures, especially because it has only been implemented in one

domain, and also for the lack of comparable “communication reasoning and learning” ar-
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chitectures. However, we can gain a deeper understanding of the advantages and limita-

tions of InFFrA if we compare it to certain simple types of agents, such as:

1. randomly acting agents whose (poor) performance reflects the complexity of the link-

age domain and puts the performance of m2InFFrA agents into perspective,

2. non-communicating BDI agents who improve their linkage status solely using their

own action capabilities and are susceptible to local utility minima since they are un-

able to compromise, and

3. non-empirical, communicating BDI agents who direct requests to others but do not

learn when these requests are honoured and when they are ignored (as described on

page 154).

This comparison is useful to understand which role is precisely played by communication

in the context of rational agent reasoning, especially with respect to our theory of empirical
communication semantics (cf. section 4.1). It explains how the communicative expecta-

tions derived from observation capture previously unknown social interaction structures.

Apart from these comparisons to non-m2InFFrA agents, we also examine the role cer-

tain m2InFFrA elements play in the overall reasoning mechanism. To this end, we compare

slight variations of the m2InFFrA design presented so far, which result in different sub-types

of m2InFFrA agents by virtue of the following distinctions:

• Desirability tests: The effects of including a desirability test during (i) action selection

(as described in section 5.3.1), (ii) frame selection, (iii) at both levels or (iv) at neither

level are compared.

• Desirability criterion: Agents who apply a strict desirability criterion (that requires

an action to increase the current score to be considered desirable) are compared to

agents with the more lenient, entropy-based criterion introduced in section 5.3.4.

• Frame selection strategies: We compare the performance of agents who use Q-value

optimisation to select frames as described in chapter 5 to non-learning agents.

Using the results of simulation experiments with these variations, we can justify the design

decisions that have lead to our specification of the m2InFFrA model, as they highlight the

contribution of its core components to the overall performance of the system.

Fixed agent preferences, environment parameters and performance measures In

validating the proposed methods, it is not our aim to fine-tune all parameter settings so

as to achieve optimal performance for arbitrary population sizes, prior agent popularities

(i.e. private rating distributions), existing communicative conventions, etc., let alone for
application domains other than Web linkage. We have rather chosen a domain that is suf-

ficiently complex to ensure that we cannot control the effects of each parameter with the

rationale that if agents are able to exhibit satisficing behaviour even for potentially sub-

optimal settings, this reassures our belief that further fine-tuning will – in the worst case –

not produce results that are any worse than the ones we obtained.

Therefore, unless explicitly stated (whenever different configurations were chosen to

analyse the effects of particular changes to the simulation environment), we will adhere to

fixed parameter settings as concerns:



6.2. Basic Experiments 161

• Internal agent reasoning parameters:

– importance of own popularity vs. popularity of peers with similar opinions (pa-
rameters α and β in equation 6.1, p. 150)

– BDI: exploration probabilities (i.e. probabilities of update and explore ac-
tions), BDI queue size, number of projected own and others’ future link mod-

ifications

– InFFrA: learning rate, exploration policy and discount factors in Q-learning, sim-

ilarity measure (sections 5.15 and 5.3.3)

• Global parameters:

– population size

– global rating profile, i.e. private ratings held by each agent towards other agents

As for performance measures, our primary unit of analysis is the running utility/score of

agents as measured by the (supposedly omniscient) system manager. Thereby, we look at

the average performance of all agents, but also at the standard deviation between agents’

scores that provides a measure for the divergence between individual scores. Also, we ex-

amine the best and worst scores obtained by agents in a simulation taking into account

that the a priori popularity of agents (as reflected by the private ratings other agents hold

of them) determines the utility that they can achieve in theory.

In the analysis of more complex negotiation frames, we shall also take a more qualita-

tive look at particular conversations. While this does not necessarily directly explain their

utility performance, it is very helpful in understanding how m2InFFrA works.

6.2 Basic Experiments
In the first series of experiments, a group of ten agents with a very specific set of private

ratings exchanges requests and counter-proposals for linkage actions. Despite the sim-

ple structure of the frames used in these simulations, our m2InFFrA agents clearly out-

perform (non-communicating as well as communicating) BDI agents, thus proving that

adding communication learning capabilities can substantially improve agent performance

in open multiagent systems. Prior to presenting the results of these simulations, we explain
the system configuration for these experiments in detail.

6.2.1 Experimental Setup
Basic BDI and utility computation parameters

Throughout all experiments (including the advanced experiments described in section 6.3)

we adhere to fixed parameter settings for the BDI reasoning components and utility com-

putation, as shown in table 6.2. This means that agents explore the link environment

(rather than engage in link manipulation or communication actions) with 20% probability

in each reasoning cycle, and base their decisions on BDI- or InFFrA-based decision making

with a probability of 80%. If they decide to explore, then there is a 10% probability that they

look for new sites, else they update their information regarding the outlinks of a site they
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Parameter Value

exploration probability 1− pe 0.2

probability of update(X) in exploration mode pu 0.9

probability of explore() in exploration mode 1− pu 0.1

range of possible link rating values r 3

importance of popularity of own site α 1.0

importance of popularity of other site β 1.0

number of own projected actions na 10

number of peers for which actions are projected no 4

number of projected actions per peer noa 2

number of peer requests processed in each iteration nreq 5

maximal length of BDI queue l 10

Tab. 6.2: Basic BDI parameter and utility computation settings. The symbols used refer to

those introduced in the respective sections on utility computation (p. 149) and

local BDI reasoning (p. 153)

already know (chosen randomly from their acquaintances). Quite deliberately, we have

chosen not to decrease the exploration rate over time since – despite the fact that we are

using constant population sizes – it is unrealistic to assume that in an open MAS, the entire

linkage network (or even the set of existing sites) will ever be exhaustively explored.

When basing their decisions on the BDI reasoning component (i.e. (i) in the case of

non-InFFrA agents, (ii) if the InFFrA component makes no suggestion because it awaits a
reply in an ongoing conversation, or (iii) if the agent has no reason to start an encounter),

agents generate ten own actions at random and project the utility these might yield if ex-

ecuted. The same is done for two actions of four peer agents (or less, if the agent is aware

of fewer peers), where both the peers and their actions are chosen randomly. So, on the

whole, each agent predicts the utility of eighteen actions in each simulation round (rea-

soning cycle). Additionally, in the case of “non-empirical, communicating BDI agents”

(cf. pp. 154 and 175), at most five requests from the requests queue are processed in each

round (less, if the queue is shorter). This results in projecting another five (requested) ac-

tions utility-wise, so that twenty-three utility values are compared to those of actions con-

tained in the goal queue Q altogether, and the queue is rearranged so that it contains at

most ten goals (which correspond to link manipulation actions).

As regards utility, agents have seven link rating values to choose from for each link,

i.e. all integers from -3 to 3. When computing their total score, they weight the contribu-

tions of their own popularity and that of other agents (in relation to how much the agent
likes those other agents and taking into account how much the opinions they express in

terms of links to third parties differ from his own) equally. Looking back at equation 6.1,

this means that the total effect of others’ popularities on the overall score effect of an agent

is effectively much stronger than that induced by changes to one’s own popularity.

InFFrA setup details

Although we have devoted several sections to the details of how to implement m2InFFrA in

practice in chapter 5 (especially in section 5.3), we still need to specify (i) concrete settings
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for the numerical parameters used in frame learning and (ii) more structural aspects of the

m2InFFrA design used in our experiments (the utility function used to assess message and

action sequences, the initial frame repository, and encounter state definitions).

Frame learning parameters As concerns (i), the parameter values used in the Q-

learning based frame-learning procedure (cf. section 5.2) are shown in table 6.3. The only

two aspects that require some clarification here are the cooling policy which determines

how the temperature Tk used for Boltzmann exploration (equation 5.15, p. 125) decreases

over time and the values Q0(s, F) with which the Q-table is initialised. The decay of Tk uses
a “cooling rate”θ slightly less than 1 as is common practice in the Q-learning and simulated

annealing literature (see (Mitchell 1997)) and (Russell and Norvig 2003), respectively), and

initialising the Q-table with zero values results in taking Q1 to be the (cumulative, dis-

counted) reward R̂(s, F) experienced during the first encounter in which F was selected in

state s (this follows directly from equations 5.12 and 5.13 on p. 124). Again, this is common

practice in Q-learning, and it reflects the fact that in the absence of any further knowledge,

the first experience with a (framing) choice is used as an initial approximation of the utility

of that option.

Parameter Value

initial Q-value Q0(s, F) 0

initial exploration temperature T0 1

cooling rate θ 0.95

cooling policy Tk = θkT0
discount factor γ 0.95

Tab. 6.3: InFFrA learning parameter settings. Notation as introduced in section 5.2.

Message sequence utility The aspects listed under (ii) require a somewhat more ex-

tensive treatment. First of all, although section 6.1.2 motivates and describes the com-

putation of agent popularities and scores at length depending on the configuration of the

current linkage network, this does not say anything about the utility assigned by agents to
a certain sequence of messages and physical actions u(w, KB) introduced in definition 4.4

(p. 105). Recalling that this utility is used as an estimate for the desirability of frames and

concrete, ground trajectories it is clear that the way u is computed has a decisive impact

on the behaviour of the system.

In our experiments we choose to compute the utility of a sequence w = w1 · · ·wn ∈
M∗

c as the sum of the utilities of all wi where

• the utility of a physical do-action is the difference between the agent’s total score after
(hypothetical) execution of the link addition/deletion/modification and his current

score (not obtained through environment feedback but predicted solely using one’s

own subjective knowledge of the linkage network), and

• the (negative) utility of any other non-physical message is a small quantity that cor-

responds to the cost incurred by uttering a message.
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This entails that if w contains k messages and |w| − k physical actions, the total cost of

messages in w is k times a small negative quantity (that is almost negligible compared to

the utility effects of physical actions). The remaining |w| − k physical actions are executed

iteratively in the order in which they occur in w, and the final score resulting from these

linkage modifications diminished by the cost of the communicative messages involved is
then used to compute the utility u(w, KB) of w by comparing the agent’s total score after

execution of w to that prior to the execution of the sequence. This ensures that useless

communication without any physical consequences does will not go on forever.

To add an element of “bounded rationality” to the estimation of utilities, agents use

the “simple popularity” computation of equation 6.6 (p. 152) which only considers incom-

ing edges in computing the popularity of a site (rather than all shortest paths from other

sites). In this way, we can ensure that agents have only incomplete information about util-

ity values, while we use the more complex variant of popularity computation (based on

equation 6.5, p. 152) to evaluate agent performance from an external point of view (see

p. 152).

Frame repository initialisation Next, we have to discuss which set of initial repository

frames is actually used in these basic experiments. The three proposal-based frames we

use are shown in table 6.4.

F1 =
〈 〈 0
→ request(A, B, X)

0
→ accept(B, A, X)

0
→ confirm(A, B, X)

0
→ do(B, X)

〉
,

〈
can(B, X)@3, effects(X)@4}

〉

〈 0
→ 〈〉

〉〉

F2 =
〈 〈 0
→ request(A, B, X)

0
→ propose(B, A, Y)

0
→ accept(A, B, Y)

0
→ do(B, Y)

〉
,

〈
{can(B, Y)@3, effects(Y)@4}

〉

〈 0
→ 〈〉

〉〉

F3 =
〈 〈 0
→ request(A, B, X)

0
→ propose-also(B, A, Y)

0
→ accept(A, B, Y)

0
→ do(B, X)

0
→ do(A, Y)

〉
,

〈
{can(B, X)@3, effects(X)@4, can(A, Y)@4, effects(Y)@5}

〉

〈 0
→ 〈〉

〉〉

Tab. 6.4: Basic proposal-based frames

The first frame F1 represents conversations in which the second agent B agrees to per-

form the requested action X and executes it after A has confirmed the original request. In

F2, B can (counter-)propose an alternative Y that he prefers over X and execute that action

instead of X. This enables B to suggest that he can do something for A, even if this is not

necessarily what A requested originally (but might still find useful). F3 finally, is the most

powerful of all three frames, as it involves actions by both agents. According to this frame,
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B may suggest an action for A to be executed in addition to the action X that B agrees to

perform himself, i.e. the two agents effectively agree on a joint action. With this, F3 repre-

sents the simplest form of joint planning. At the same time, F3 is the riskiest of the three

frames because it involves physical actions before it is completed. This is because agent A
may refrain from executing Y after B has executed the action X that A originally requested
(a situation similar to that discussed in section 5.3.4, esp. figure 5.4).

As explained in the description of the InFFrA layer in LIESON (p. 156), each conversation

starts with a request-message spawned by the BDI layer, and therefore each frame has

to start with a request message as well. Also, to avoid defining one frame for each “un-

successful” execution of each frame agents send a final reject(·, ·, C)-message (where C
is the content of the previous message) whenever they cannot find a suitable frame. This

means that we do not need to add frames to the repository for “broken” sequences such as

〈request→ accept → confirm〉

〈request→ accept〉

〈request→ propose → accept〉

〈request→ propose-also→ accept → do〉

...

and is also in accordance with the view of rejection laid out in section 4.1.6. If no (valid,

adequate and desirable) frame can be found in the repository (or constructed by compos-

ing repository frames), the agent has no clear expectations about what is going to happen

next. For this reason, he utters a reject message to indicate that he cannot comply with

any expectation on the other’s side. In our basic experiments, such rejection simply ends

an encounter (agents are not allowed to reply to a reject message).

This means that in the first series of experiments, agents are not able do deal with rejec-

tion and communication is simply blocked by it. We shall see in the section on advanced

experiments below how frames can be constructed in a way such that agents can use them

to deal with rejection and conflict explicitly.

Frame conditions The conditions of all three frames contain the can-predicate intro-

duced in chapter 4 (equation 4.3, p. 101) for physical actions9 and the dynamic predicate

effects(X) that adds the effects of action X to the knowledge base. Also, conditions in LIESON

frames include a notion of time denoted by labelling a predicate P with a time-stamp i,
i.e. writing P@i. The semantics of statement P@i is “P has to be true before the ith step of

the trajectory can be executed” where for the first step of the trajectory i = 0. If such i is
omitted, P has to hold throughout execution of the trajectory.

In more operational terms, the agent proceeds as follows when determining

Θposs(F, KB, w) (p. 101). For each condition set C j = C(F)[ j]Θ(F)[ j] that results from ap-

plying the respective frame substitution, he performs the following steps:

• Let Θ j = {ϑ|ϑ = ϑfixed(F, w)ϑ′, C jϑ and T(F)ϑ ground}

• Let C j = {d0, . . . , dl , c0@0, . . . ck0 @0, , . . . ck|w|−2+1@(|w| − 1), . . . , ck|w|−1
@(|w| − 1)}

9 For messages, fulfilment of this constraint is trivial, as any agent can utter any of the trajectory messages
as long as it is his turn.
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• Iterate over i for the remaining steps of the trajectory T(F)[|w|+ 1] . . . T(F)[|T(F)|]:

– Prove time-independent facts d0, . . . , dl

– Prove facts cki−1+1@i, . . . , cki @i relevant for next step i
– Restrict Θ j to the substitutions returned from these proofs

What this procedure does is to prove all conditions for the remaining time-steps

T(F)[|w|+ 1] to T(F)[|T(F)|] (if w is the running encounter prefix) to determine the sub-

stitutions that are still possible under a certain condition/substitution pair.

Thereby, time-independent facts (those without @) are proven in each time-step i while

all P@i are proven only at time-step i. The set Θ j is iteratively restricted to those substi-

tutions that are compliant with the conditions of step i until we are left with those sub-
stitutions for which the entire trajectory postfix can be executed under the jth condition

set. When the procedure has been repeated for all j ≤ |C(F)|, we obtain Θposs = ∪ jΘ j
as the union of all substitution sets that are admissible according to a single condi-

tion/substitution pair.

While this condition proof procedure may seem fairly simple, it involves certain intri-

cacies:

• Since we are using dynamic predicates such as effects(·), the proof procedure must

iteratively modify the knowledge base after each step i to prove the remaining

facts. In F3, for example, if X = addLink(a1, a2, 0), then one of the effects of X is

existsLink(a1, a2, 0). When using can(A, Y)@4 to generate admissible substitutions

for Y, we have to consider that existsLink(a1, a2, 0) is already in the knowledge base,

so that Y cannot be bound to addLink(a1, a2, ·).

• As in the case of effects, frame conditions often contain conditions precipitated

(rather than presupposed) by certain trajectory steps that have to be performed for

those facts to become true. However, these conditions have to already hold at the

time of anticipating the trajectory steps that will effect them. In our implementation,
we have solved this problem by “mock-modifying” the knowledge base when deter-

mining Θposs for a frame (prior to its actual execution). To this end, we use two dy-

namic predicates add(P) and remove(P) to add or remove fact P from the knowledge

base. These become true after they have performed the insertion/removal action,

and all other dynamic predicates like effects(X) are defined using them.

• It must be ensured that when actually enacting a frame, all conditions P@(i + 1) in

the currently applied condition set (which is any of the condition sets C[i] for which

KB |= C[i]ϑ is true under the selected substitution ϑ) are “proven” to ensure that the

effects of trajectory steps modify the knowledge base according to frame conditions

(to cater for the different kinds of context conditions introduced in section 3.3.1). In

particular, this is true of the ultimate step of a frame, since the conditions relevant

after that step have not been proven in the procedure described above. In frame

F2, for example, effects(Y) should only become true after the entire frame has been

completed.

Table 6.5 provides formal definitions for the logical rules that LIESON agents need to dispose

of to use the proposal-based frames defined above. They define agent, can, and effects in
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∀x.self (x)⇒ agent(x)

∀x.other(x)⇒ agent(x)

∀x, y, s.agent(x) ∧ agent(y) ∧ x 6= y ∧ number(s) ∧ ¬∃r.existsLink(x, y, r)
⇒ can(x, addLink(x, y, s))

∀x, y, s.agent(x) ∧ agent(y) ∧ x 6= y ∧ number(s) ∧ ∃r(r 6= s ∧ existsLink(x, y, r))
⇒ can(x, modifyRating(x, y, s))

∃r.existsLink(x, y, r) ⇒ can(x, deleteLink(x, y))

Tab. 6.5: Logical rules for proposal-based frames.

terms of the primitive facts that occur in agents’ knowledge bases (number(x) to express

that s is a valid numerical rating value, self (x) to inform the agent that his name is x and

other(x) to denote that x is the name of some known peer).

Substitutions, condition construction and merging As for occurrence counters and
substitutions these are initially empty and will only be filled with values during enact-

ment/update of the respective frames. We should take a minute to explain how this is

actually done. Suppose, for example, that the agent experiences the conversation

request(a0, a1, addLink(a1, a2, 0))→ accept(a1, a0, addLink(a1, a2, 0))

→ confirm(a0, a1, addLink(a1, a2, 0))→ do(a1, addLink(a1, a2, 0))

while using F1 as active frame. Apart from the fact that the respective counters are incre-
mented after this and the substitution

ϑnew = 〈[A/a0], [B/a1], [X/addLink(a1, a2, 0))]〉

is added to Θ(F1), two issues remain unresolved:

1. How should we extend the condition set C(F1) by a new cnew for ϑnew?

• Obviously, for σ(ϑ, F) (cf. equation 4.4, p. 104) to be computed in a reasonable

way, the substitutions stored in a frame should only be considered in situations

in which at least the physical actions that they involve would be executable.

Therefore, we have to add can and effects statements to cnew for all physical

actions that occurred in the newly experienced encounter.

For instance, ϑnew should only be relevant for computing the probability of some

other substitution if can(a1, addLink(a1, a2, 0)) holds, and if the effects are made

true after executing that action by proving effects(addLink(a1, a2, 0)).

• Apart from this minimal “condition construction” it is interesting to think about

what other aspects of the current encounter should be additionally stored

in cnew. These additional constraints would determine which past cases are
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relevant for similarity calculations under different knowledge base states.

In particular, the interplay between selecting appropriate knowledge base

elements for inclusion in cnew and defining appropriate encounter state ab-

stractions (section 5.3.2) is very subtle: While encounter states determine the

applicability of a frame F as a whole by virtue of the current distribution of Q

values over states and frames, frame conditions determine which of the previ-
ous cases of F is relevant in the current situation (and with this, the probability

distribution over Θposs).

However, to avoid complicating things further, and since we cannot provide any

general guidelines on how to proceed in combining useful condition construc-

tion strategies with encounter state abstraction strategies appropriately we re-

frain from applying such advanced strategies here.

2. The reader may have noticed a subtlety regarding the pre-defined condition sets of

F1, F2 and F3, namely that these correspond to empty substitutions.

With respect to the definition of σ(ϑ, F), this means that they do not play a role in

similarity computation, which is quite reasonable as they do not represent past cases

that should be taken into account when computing substitution probabilities. Look-

ing at the definition of Θposs, though, which requires for all ϑ ∈ Θposs(F, KB, w) that

at least one of the condition sets of C(F) is fulfilled under ϑ and the current contents

of KB, this has further implications. It implies that, once a new ϑnew/cnew is stored in

the frame, none of the original “frame condition sets” of the frame (those with empty

substitutions) need be true anymore, if cnew (or any of these “case condition sets”)

holds and ϑ extends ϑnew. Thus, with time passing, the initial frame conditions will

become less and less relevant, which can be a problem.

To avoid such effects for the moment (which might obscure the results of our exper-

iments), we additionally require that any possible substitution fulfils at least one of

the (empty-substitution) “frame condition sets”

ϑ ∈ Θposs(F, KB, w)⇒ ∃i ≤ |C(F)|.(KB |= C(F)[i]ϑ ∧ hΘ[i] = 0)

and ensure that any frame contains at least one such condition.

Encounter state abstraction In section 5.3.2, we explained that using the theme of a

conversation to describe the state of a conversation is a useful heuristic to derive state

abstractions that yield a manageable state space in the presence of a multitude of possible

message contents and performative sequences.

In the context of linkage negotiations, we pointed out that appropriate definitions of

the theme of a conversation should include (i) information about the linkage actions re-

sulting from or occurring during a conversation, especially with respect to whether these

are “positive” or “negative” link modifications and (ii) information about the role the agent
has in such a conversation. To turn these intuitions into a concrete definition of encounter

states, we use sets of generalised statements of the form

[true|false]:[↑|↓]([I|R], [I|R|T], [+| − |?])
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to represent the physical actions talked about in an encounter. In such an abstract en-

counter state,

• true/false denotes whether the reasoning agent initiated the current conversation or

not;

• ↑ and ↓ stand for a positive/negative link modification (where addition or a modi-

fication that will increase its rating value is considered a positive link modification,

while link deletion or a rating modification that diminishes the link rating counts as

a negative modification);

• I/R for the initiator/responder of the encounter, T for a third party (that might be

referred to in an action talked about when an agent requests/offers modification of a

link towards an agent who does not take part in the actual conversation);

• +/−/? indicates whether the (reasoning) agent likes/dislikes/doesn’t know the tar-
get site of the link modification, i.e. it denotes whether the private rating value to-

wards the site that is the target of the respective link modification is rated with a non-

negative (+), negative (−) value or has not been visited yet by the reasoning agent

(?).

For example, if a1 and a2 talk about do(a1, deleteLink(a1, a3)) in an encounter initiated by

a1 (while the learning agent a2 is the responder and likes a3’s site, i.e. r2(a3) ≥ 0) this is

abstracted to

{false: ↓ (I, T, +)}

If, in the same conversation, a2 suggests to modify his own link toward a1 (whom he does

not like) from a rating value of 1 to 3, the state (viz subject) of the encounter becomes

{false:↓(I, T, +), false:↑(R, I,−)}

so that talking about several actions simply results in extending the set by another abstract

action description. Note that using sets rather than lists also implies that two states are

equal if the same types of actions are talked about in a different order, and that iden-

tical elements are collapsed into one, so that, for example, if modifyRating(a1, a3, 2) and
modifyRating(a1, a3, 3) are the (only) two actions talked about in a conversation with rat-

ings and roles as above, the resulting encounter state would simply be {false:↑(I, T, +)}.

By applying this state abstraction, we reduce the maximal number of possible en-

counter states to10 2 · (2 · 4 · 3)2 = 1152 while retaining enough information that is rel-

evant for frame learning (as we will show below).

Agent ratings and utility benchmarks

Preference-wise, the agent population of ten is split into two groups, each comprising five

agents: even-numbered agents a0, a2, . . . , a8 versus odd-numbered agents a1, a3, . . . , a9.

Table 6.6 shows the precise distribution of private rating values for all agents in this sce-

nario, but instead of describing the process by which they were designed, we shall simply

10 At most two actions are talked about in a single encounter according to the frames defined for our basic
experiments. Also, the agent is either initiator or responder in all actions in a description, and no agent can
request an action from himself.
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rs(t) a0 a1 a2 a3 a4 a5 a6 a7 a8 a9
a0 3 0 1 -1 1 -1 2 -2 3 -3

a1 -3 3 -2 1 -1 1 -1 2 0 3

a2 3 0 3 -1 2 -2 2 -2 3 -3

a3 -3 0 -2 3 -2 2 -1 2 0 3

a4 3 0 1 -1 3 -1 2 -2 3 -3

a5 -3 0 -2 1 -1 3 -1 2 0 3

a6 3 0 1 -1 1 -1 3 -2 3 -3

a7 -3 0 -2 1 -2 1 -1 3 0 3
a8 3 0 1 -1 2 -2 2 -2 3 -3

a9 -3 0 -2 1 -1 2 -1 2 0 3

Tab. 6.6: Private agent ratings in a ten-player population. For row s (source) and column t
(target), each table entry denotes the opinion rs(t) agent s has of agent t.

discuss the most interesting aspects of this rating profile that are relevant to the experi-

ments presented here:

• The general idea is that every “even” agent dislikes every “odd” agent and vice versa,

while agents like those peers who belong to their own group. Thereby, “to like some-

one” means that the private rating value towards that agent is larger than zero, while

“dislike” is expressed by rating values less than or equal to zero.

• a0 and a9 are the representatives of the two groups that are rated most extremely:

they are highly popular among in-group peers, but extremely unpopular among out-

group agents. These tendencies are also visible with decreasing strength in a7, a2 and

a8, while all agents are totally indifferent towards a1 (except himself). The remaining
agents a3, a4, a5 and a6 are “middle-of-the-road” agents who receive mediocre ratings

from both their friends and their enemies.

• Each agent has the highest possible opinion of his own site (indicated by the “3” val-
ues along the diagonal of table 6.6 printed in bold face).

What is interesting about this distribution is not only the heterogeneity it induces on the
agent population (which is a consequence of variations in agent preferences – no two

agents have identical private ratings towards all other agents), but the behaviour of the

function score(ai) used to compute the score of agent ai (and to assess agent performance)

under this rating profile.

Of course, it is almost impossible to derive optimal values for this function given the

vast amount of possible linkage network configurations (with link ratings ranging from -

3 to 3, each link can come in seven different kinds, and there are 90 possible edges in a

directed graph with ten nodes).

However, some interesting benchmarks can be derived by looking at special link con-

figurations, such as:

• The empty linkagent network G0 that contains no edges at all,

• fully connected linkage networks Gmax and Gmin in which any two agents ai and a j
are connected by a link with rating r(ai, a j) = 3 or r(ai, a j) = −3, respectively,
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score a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 µ σ

G0 0.43 0.43 0.40 0.46 0.39 0.45 0.41 0.50 0.44 0.47 0.438 0.031

Gmax 0.42 0.42 0.39 0.45 0.38 0.44 0.39 0.50 0.42 0.47 0.428 0.036

Gmin 0.41 0.41 0.38 0.45 0.37 0.44 0.39 0.50 0.42 0.47 0.424 0.039

Grat 0.75 0.58 0.59 0.65 0.65 0.76 0.72 0.72 0.74 0.80 0.696 0.071

Grat,≥0 0.83 0.58 0.61 0.67 0.72 0.78 0.74 0.75 0.83 0.83 0.743 0.086

Tab. 6.7: Score benchmarks for simple experiments. The first ten columns (from left to

right) show score(ai) values for each agent ai under the respective linkage net-

work; the two rightmost columns show the mean µ and standard deviation σ for

the respective row.

• the fully connected rating-based linkage network Grat in which there exists a link be-

tween ai and a j with rating r(ai, a j) = ri(a j) for any two agents ai and a j, and

• the non-negative rating-based linkage network Grat,≥0 in which all links (ai, a j) for

which ri(a j) < 0 are omitted from Grat.

Score results for all ten agents under these link graph structures are shown in table 6.7. The

score distributions contained therein have very interesting properties which illustrate the

complexity of the linkage optimisation problem. First of all, it is remarkable that G0, Gmax
and Gmin yield almost identical score results for any given agent. This means that laying

maximal or minimal links blindly or not engaging in linkage activity at all will not help

improve agent performance at all.

Secondly, and much more importantly, Grat and Grat,≥0 yield much higher payoffs for

all agents than the other configurations. In some cases, these can be almost twice as high

as those in G0 (the empty linkage network that agents start out with). This suggests a del-

icate balance in the global distribution of utility: If all agents lay exactly those links that
express their true opinion of others (or, in the case of Grat,≥0, at least reveal which peers

they like while concealing the truth about those they do not like), they are able to achieve

an individually and globally much more desirable situation than if the image is blurred by

too high or too low link ratings (average score is 0.743/0.696 versus 0.438/0.428/0.424).

So, there is actually an incentive for agents to reveal their true opinions of other mem-

bers in the society, at least at first glance. However, for two reasons, things are not that sim-

ple. The first reason is that there is also an incentive to maximise the ratings towards one-

self ceteris paribus. This is because, in most situations, an immediate increase in one’s own

score is experienced whenever a link is laid towards oneself. And this may of course con-

flict with the overall constraint of being as veracious as possible. The second reason is that,

as the score values show, it is much better for (all) agents to hide information about which
agents they do not like, as both average and individual scores are higher under Grat,≥0 than

under Grat. That is, the “politically correct” strategy of only expressing positive opinions

publicly dominates the “honest” strategy. This additionally complicates the learning and

optimisation problem from an individual agent perspective, because LIESON agents are not

endowed with explicit knowledge about these benchmarks, and they must learn how to be-

have optimally without any guidance other than their experience. The task is additionally

aggrevated by the fact that agens are using the simplified score function which will only

give them imprecise hints regarding the usefulness of certain actions.
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Fig. 6.3: Performance of randomly acting agents (single simulation run)

To sum up, the utility function together with the rating profile used in our experiments
provide an interesting point of departure for analysing the behaviour of LIESON agents. In

the following, we are going to use the average scores obtained with Grat,≥0 and Grat as

benchmarks in the sense that we expect agent performance in the system to lie in or near

the range of these benchmark values.

6.2.2 Results
Results with non-InFFrA agents

Randomly acting agents As a first experiment, we test the performance of randomly

acting agents, i.e. agents that neither dispose of a BDI reasoning component, nor of

m2InFFrA capabilities. These agents simply explore the environment with update- and

explore-probabilities as shown in table 6.2, calculate their action options in each round

and pick one of these actions randomly. No communication between agents takes place
in this experiment. Figure 6.3 shows the average performance of these randomly acting

agents. As in all subsequent performance plots, agent utility (i.e. their total score) as com-

puted by the omniscient system manager is shown for a certain number of reasoning cy-

cles, where one reasoning cycle is completed when all agents have performed their next

action. If they choose to do nothing, they still have to notify the system manager that they

have completed another iteration in their decision-making routine.

In all plots to follow, we include the average agent score that results from the bench-

mark configurations Grat (0.696, labelled “lower benchmark”) and Grat,≥0 (0.743, labelled

“upper benchmark”) (see table 6.7). The plot in figure 6.3 shows the results of a single sim-

ulation run. It is useful to look at such single runs when we want to avoid equilibrating

the variation in utility from round to round, as this happens when averaging over multiple
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Fig. 6.4: Multi-run average performance of non-communicating BDI agents

runs. In most of the reported experiments below we will also show utility results that are

averaged over 50 runs each.

As can be seen from this plot, agent performance is way below the benchmark values,

and this is true of the average (calculated as the mean of all individual agents’ scores), min-

imal and maximal agent scores (computed by comparing all agents’ scores in each round).

This illustrates that random action is of virtually no use in the LIESON scenario, thereby rul-
ing out that coincidental link network configurations may contribute to the performance

of BDI and m2InFFrA agents described below. It should also be remarked that even by con-

tinuing the simulation for 100000 rounds, not a single link configuration occurs that is even

close to the benchmarks. In other words, it is impossible to achieve high scores by sheer

coincidence.

Non-communicating BDI agents Next, we look at BDI agents who do not communicate

with each other. These agents simply seek to optimise their own utility by performing local

actions, and they do not have any means to influence what others do.

As the plot in figure 6.4 shows, these agents fare quite well in that they achieve linkage

configurations somewhere between the “honest” and “politcally correct” average payoff.

However, the impression one gets at looking at this multi-run average performance plot

might be misleading.

Such a multi-run average compares 50 simulation runs and shows

• the average utility among all agents,

• the average maximal utility obtained by an agent, and

• the average minimal utility obtained by an agent,
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Fig. 6.5: Single-run performance of non-communicating BDI agents

in each round, averaged over 50 runs.11

What this averaging entails (which is normally very useful to ensure the reliability of

simulation results), is that utility variations that take place at different points in time in

different runs are averaged out. So a multi-run average curve will always look smoother

than than a typical single-run average, which we will therefore also look at in many of the
simulation result we discuss. The data used for such a plot is simply picked from one of the

50 runs, and it shows more realistically what happens in a single simulation.

For the case of non-communicating BDI agents, one such single-run plot is shown in
figure 6.5. It shows that, in fact, the average agent utility still falls significantly below the

benchmark values, and that this occurs quite often. Looking more closely into the simula-

tion data, we can see that there are two cases in which agent utility suddenly drops:

1. Whenever the utility of the best-performing agent increases slightly above the long-

term value (which is around 0.848), both the average worst agent’s scores drop. This

means that the “strongest” agents attempt to further improve their scores at the ex-

pense of others, whereupon these other agents react and things get back to normal.

2. When all three values suddenly decrease. This marks an obvious “mistake” of one

agent that affects the entire society (it is very improbable that more than one agent
performs a flawed action at a time). Agents are prone to make such mistakes from

time to time, either (i) because actions become their top priority that were enqueued

11 Note that this does not imply that these are the “best” or “worst” agents of each run, but that the max-
imal/minimal value is computed by comparing all agents’ scores in each round. What we do to derive the
maximum and minimum curves is to compute these values by comparing all agents’ scores in a single run,
and then to take the mean over 50 different such maximum/minimum curves. This means that the curves
show the average performance of the “best” and “worst” agent among all agents across 50 runs.
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under different circumstances and are now sub-optimal or (ii) because of the impre-

cision of the local utility-estimating function agents use (see section 6.1.2).

At the bottom line, this means that agent behaviour (and with it, agent performance) never

truly converges, even if variations seem small in the multi-run average. The good news is

that agents are capable of recovering from their mistakes and achieving a fairly balanced

social distribution of utility. As a final point of analysis we should look at each agent’s

individual performance. For this purpose, figure 6.6 shows the performance of each agent

across the 50 runs in what we will call a multi-run individual average set of plots. Each of

these plots shows the best, average and worst performance of the same agent across the

50 runs of a simulation with identical parameter settings. The benchmark values for each
agent (shown as straight lines that are the plots of constant functions) are taken to be the

scores each agent would obtain under Grat and Grat,≥0, respectively (shown in the last two

rows of table 6.7).

As can be seen from these plots, agents a0, a5 and a6 do not attain a utility level that
lies between the two benchmarks (on the average). On the whole, agents a1, a2, a3 and a7
exhibit the best performance (especially given with respect to their “potential” as indicated

by the benchmark values). Agents a4, a8 and a9 have a rather mediocre performance, espe-

cially in the worst case. No agent manages to stay within the bounds of the two benchmark

values in the worst case. We shall compare these results to the performance of m2InFFrA
agents further below.

Non-empirical communicating BDI agents Despite the fact that the experiments

above are useful to assess the complexity of the LIESON system, they are not really com-

parable to m2InFFrA simulations for the fact that these experiments are devoid of any form

of communication.

To evaluate the performance of m2InFFrA in coping with stategic communication (which

is the very purpose of the architecture) we have to compare them with other types of com-

municating agents. Therefore, the third type of non-InFFrA agents whose performance we

are going to analyse is that of non-empirical communicating BDI agents or “naive” commu-

nicating BDI agents. These agents employ the simple kind of communication described in

section 6.1.2 (p. 154). This means that they send requests for an action to each other when-

ever the other’s action appears profitable. In turn, when an agent receives such a request,

he evaluates the utility gain the requested action would offer to him (as if he had thought

of the action himself) and enqueues it in his BDI queue accordingly.

In a way, this is a very reasonable communication strategy, because agents are “fair” in

the sense that they consider each action requested by someone as if it were their own. At

the same time, agents will not execute any action that does not increase their score, so the

strategy also safeguards against self-harming actions.

The reason it is called “naive” lies deeper. The problem with such communication is

that agents do not take the consequences of their requests into account. They are neither

notified about whether the requested action will be executed or not, nor do they check

whether the action was executed after a while. Thus, there is no way of telling whether the

request was successful. As we will see, this has a dramatic impact on performance.

What happens in societies of naive communicating agents is shown for a single simu-

lation run in figure 6.7: After an initial phase in which agent performance increases fairly

quickly, it suddenly freezes and there is no further improvement. In fact, looking at the
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Fig. 6.6: Multi-run average performance of individual agents: Each plot shows average,
maximal, and minimal performance of a particular agent for the case of non-

communicating BDI agents, with curves and benchmarks as before
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Fig. 6.7: Single-run average performance of non-empirical, communicating BDI agents

actions that are performed after this point, we can notice that link modification activity

ceases completely, i.e. agents will not execute any further physical link additions, deletions
or modifications after this point. Instead, they only issue requests to others, explore the

environment according to the preset exploration probabilities or do nothing. The reason

for this is the fact that agents prioritise actions in their BDI reasoning process according to

the projected utility gain of these actions. As has been remarked in section 6.1.2 (p. 152),

it follows from our definition of the utility function that adding or strengthening outgoing

links is less profitable12 than obtaining ingoing ones. Therefore, when agents estimate the

utility of their own or others’ possible future actions, it is only natural that there will always

be some action another agent might perform which is more desirable than the actions the

agent might perform himself. Intuitively speaking, this means nothing but that there will

always be things someone else can do for oneself which are deemed more useful than what

one can do for others.

During simulations with these naively communicating agents, it is only a question of

time until all agents discover this fact and their BDI queue is replete with others’ actions.

After this, agents will stop executing others’ requests or performing own link modifica-

tion actions as both these types of actions are never rated more highly than the items that
are already in the queue. At the same time, they will relentlessly issue requests towards

other agents. This kind of behaviour results in completely halting link modification activ-

ity, and utility performance freezes at whichever level it happened to be in at the instant

in which agents discover the superiority of others’ actions over their own. This can also be

12 This is not entirely true in the general case, as (i) there may be feedback loops that cause a link laid to
someone else to increase one’s own popularity via third party sites or (ii) agents may weigh the importance of
others’ popularity higher than their own. From an agent perspective, though, both these aspects are irrelevant;
using the simple utility computation method, they only take in-edges from direct predecessors in the linkage
network into account rather than general paths.
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Fig. 6.8: Message/action type statistics for naively communicating BDI agents: cumulative

number of linkage modification actions versus cumulative number of requests.

The number of link-modifying actions converges to a very low value (43) after

about 230 rounds while requests continue to be spawned (“do nothing” messages
are not shown).

verified by looking at the different types of messages exchanged among agents over time.
Figure 6.8 shows the total number of messages in the system for two different kinds of

messages: physical link modifications (addLink, deleteLink and modifyRating) vs. requests

for such actions.

As the multi-run average plot (figure 6.9) suggests, the overall performance of non-

empirical communicating BDI agents is very poor. They do not prove capable of dealing

with each other’s autonomy when communicating, since they assume that each request

they issue will be honoured by the other party. And they are unable to reason about their

experience with previous communication to better estimate the likelihood of successful

interactions. In comparison to non-communicating BDI agents, we can see that commu-

nication does not always improve the capabilities of a multiagent system. Quite the con-

trary is the case – communication can even severely limit them if used in a naive way in

systems that allow for complete agent autonomy! In the following section, we are going to
describe how m2InFFrA agents overcome this problem.

Results with m2inffra agents

The analysis of m2InFFrA agents falls into two parts:

1. A general evaluation of individual and global performance with particular attention

to different desirability test strategies as these prove to have an enormous impact on

performance and also help to understand how and why the approach works.

2. A critical investigation of the contribution of frame learning to the overall perfor-

mance of the system which will elucidate the effects of adaptive frame selection.
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Fig. 6.9: Multi-run average performance of non-empirical, communicating BDI agents

Apart from using an m2InFFrA component inside each agent, the experiments to follow

are exactly identical to those reported above, i.e. we use the same rating profiles, internal
parameters and evaluation procedure.

The first thing we want to do in our evaluation is to look at the overall behaviour of

m2InFFrA agents to see if our algorithms ensure effective interaction management and

learning in general terms. After verifying that the basic desired functionality (applying the

frames of table 6.4 (p. 164) properly, proving their conditions, selecting optimal frames and

substitutions, long-term merging of frames) is in place, it was discovered that the central

parameter that affects system performance is the employed desirability test strategy.

What we mean by this is the strategy with which an agent determines whether a se-

lected frame and/or individual action is desirable. In m2InFFrA, specifying this strategy

amounts to deciding

1. whether to check for (i) action-level desirability during application of a frame after

an optimal substitution has been selected (step ➎ in figure 5.3, p. 132), (ii) to verify

frame-level desirability upon Q-based frame choice (transition from step ➏ to step

➒ in the same figure), (iii) none of these (i.e. to simply always pick the best frame and

substitution regardless whether they are desirable at all) or (iv) both.

2. which desirability criterion to apply. Here, we distinguish between the strict criterion

according to which an encounter postfix is only considered desirable if it is expected
to increase the agent’s total current score, and the lenient, entropy-based criterion

which we defined in section 5.3.4. For the latter, we can also distinguish between

different “entropy corridors” by weighting the right hand side of equation 5.19 (p. 143)

with different constant factors, i.e. using the equation

b = −λ · ∆EF (ε, postfix(T(F), w)) (6.7)
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for some λ ∈ R (where, previously, λ = 1 held throughout).

Given that the desirability test strategy determines whether an active frame will be com-

plied with or whether the candidate frame that is optimal according to Q-value maximisa-

tion will be activated at all, it is clear that the choice of this strategy bears strong implica-

tions on agent behaviour.

Figure 6.10 shows a comparison of the four strategies described above for the lenient

desirability criterion (λ = 1). From top to bottom, the plots are arranged in order of in-

creasing “strictness”, i.e. no desirability test (NDT), action-level test (ALT), frame-level test

(FLT), and desirability test at both levels (A&FLT). In each row, a multi-run average per-
formance plot is depicted in the left column and a single-run average performance plot is

shown on the right hand side.

The first thing to observe here is that a clear distinction can be made between the per-

formance of NDT and ALT agents (top two rows in figure 6.10) on the one hand and that

of the other two types of agents shown in the diagram on the other. While the latter con-

verge pretty soon to a stable performance level, performance of agents who use the former

strategies keeps changing, even if a long-term improvement is visible in the multi-run av-

erage. In fact, do-actions and BDI-level link modifications cease almost completely (and

with them, score change) after a while if agents perform a desirability test at any level.

Also, the total number of do-actions ranges between 10 and 20 for FLT and A&FLT (for a

total of about 2000 requests13) while about 300-400 requests lead to some kind of physical
do-action in the case of NDT or ADT.

NDT agents To begin with, we evaluate the performance of NDT agents who neither per-

form a desirability test at the action- nor at the frame-level. This kind of m2InFFrA agent se-

lects that frame/substitution which is optimal according to the Q-table and the similarity-

based in-frame action predictions, the effect of the lacking desirability test being that he

will never deviate from an existing frame or refuse to activate a frame for desirability rea-

sons. Deviance can only occur for adequacy or validity reasons (i.e. if an unexpected peer

message is perceived, the remaining actions cannot be executed of frame conditions do not

hold). So if asked to do something which they can do, these agents will attempt to respond

in an optimal way, but they are forced to either accept the request or make a counter-

proposal. Clearly, it can by no means be ensured that a profitable alternative is available
even in the case of counter-proposals (let alone in the case of accepting the request as is).

Therefore, these “naive” agents cannot avoid encounters which decrease their score, a

fact for which the single-run average provides evidence. However, for those states in which

they can make a choice between different frames, agents should be able to learn which

frame has been more profitable in the long run. If a certain choice was better in the past it

should be chosen more frequently in the future, since the long-term rewards are stored in

the Q-table. In particular, making a counter-proposal should mostly be better than accept-

ing the request as issued, as it enables the agent to suggest a more profitable action he can

perform instead (F2 in table 6.4) or even to try to get the other to do something profitable

in return (F3).

In theory, it could be argued that they are also occasionally “lucky” because others will
do what they want. However, it would be very disappointing if this is the reason for the

13 Actually, the total number of requests issued in the whole simulation is around 3000, but about one third
of them is directed towards agents who are already busy conversing with someone else.
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Fig. 6.10: Comparison between different desirability test strategies using the entropy-

based desirability criterion. From top to bottom: NDT, ADT, FLT, and A&FLT

agents
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communicative link modification BDI “undo” action

(00:12) do(a0, addLink(a0, a5, 0)) (00:30)do(a0, deleteLink(a0, a5))
(00:23) do(a0, addLink(a0, a3,−3)) (00:31) modifyRating(a0, a3,−1)
(00:58) do(a0, addLink(a0, a5, 1)) (01:11) deleteLink(a0, a5)
(01:44) do(a0, addLink(a0, a8,−1)) (02:26) modifyRating(a0, a8, 3)
(01:48) do(a0, addLink(a0, a9, 1)) (02:25) modifyRating(a0, a9,−3)
(02:56) do(a0, addLink(a0, a2, 2)) (05:27) deleteLink(a0, a2)
(04:31) do(a0, addLink(a0, a1, 0)) (05:39) do(a0, modifyRating(a0, a1, 3))
(04:52) do(a0, modifyRating(a0, a8, 0)) (05:13) modifyRating(a0, a8, 1)
(05:07) do(a0, addLink(a0, a7, 0)) (05:18) modifyRating(a0, a7,−2)
(05:46) do(a0, modifyRating(a0, a4, 0)) (06:07) deleteLink(a0, a4)
(05:54) do(a0, modifyRating(a0, a6,−3)) (06:03) modifyRating(a0, a6, 3)
(06:12) do(a0, addLink(a0, a9, 0)) (06:15) deleteLink(a0, a9)
(06:18) do(a0, modifyRating(a0, a3,−3)) (06:19) modifyRating(a0, a3,−1)
(07:22) do(a0, addLink(a0, a9, 3)) (07:37) modifyRating(a0, a9,−3)
(07:34) do(a0, modifyRating(a0, a7, 1)) (07:35) deleteLink(a0, a7)
(07:50) do(a0, addLink(a0, a3, 0)) (07:58) modifyRating(a0, a3,−1)
(08:14) do(a0, deleteLink(a0, a3)) (10:38) do(a0, addLink(a0, a3, 0))
(08:19) do(a0, modifyRating(a0, a2, 2)) (08:27) deleteLink(a0, a2)
(08:38) do(a0, addLink(a0, a5, 1)) (08:48) modifyRating(a0, a5,−1)
(11:06) do(a0, modifyRating(a0, a2, 2)) (11:09) modifyRating(a0, a2, 1)
(11:36) do(a0, modifyRating(a0, a1, 2)) (11:38) modifyRating(a0, a1, 0)
(11:40) do(a0, addLink(a0, a7,−3)) (14:15) deleteLink(a0, a7)
(11:48) do(a0, modifyRating(a0, a4, 0)) (12:11) deleteLink(a0, a4)
(11:53) do(a0, deleteLink(a0, a5)) (12:43) do(a0, addLink(a0, a5, 2))
(13:04) do(a0, addLink(a0, a1,−1)) (13:17) deleteLink(a0, a1)
(14:06) do(a0, addLink(a0, a1, 0)) (18:44) deleteLink(a0, a1)
(14:46) do(a0, addLink(a0, a7, 0)) (15:00) deleteLink(a0, a7)
...

...

Tab. 6.8: The “undo” effect of BDI-level optimisation. The left column shows the link mod-

ification action that occurred in a conversation (do-performative), and the first

subsequent action that modified the same link can be seen on the right column.

Simulation round numbers are shown in minute:second format.

long-term performance improvement. If other agents in the system are not so naive with

respect to desirability, they could definitely exploit the naive desirability agents! With this
respect, one thing we can show is that recovering from local utility minima is not due to

this kind of “luck”, but to the undo effect of the BDI layer. Table 6.8 illustrates this effect: It

shows (an excerpt of) the list of all executed physical actions of the single simulation run in

the figure above, while juxtaposing each do-action (that is the result of some social agree-

ment) with the first subsequent action that modified the same link. From the short number

of rounds that lies between the communicative link modification and subsequent modifi-

cations to the same link and from the fact that most of these subsequent modifications are

the result of BDI-level decision-making (as they are not enclosed within a do-performative)

we can see that the BDI-level optimisation is trying to make up for the utility loss incurred

by the m2InFFrA layer.

But the fact that the BDI layer tries recover from m2InFFrA-caused utility losses does

not tell us anything about the effects of learning. Fortunately, we can show that agents
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do learn that certain frames are more desirable than others. Figure 6.11 compares the cu-
mulative amount of accept, propose and propose-also messages exchanged among all

agents in the previous simulation run, which unambiguously stand for activation of F1, F2
and F3, respectively. It can be seen from this figure that the frequency (i.e. the gradient of

the cumulative curve) with which F3 is selected increases while F1 is decreasing with F2 re-

maining fairly stable. This supports our intuition that F3 and F2 are more desirable in the

long-term if agents have to use one of the three frames.

The figure also reveals a more subtle effect of learning, which can be seen from the

cumulative number of deliberate reject-messages also shown in this plot. These deliberate

rejections occur when agents pick a frame that results in a reject-action due to Q-value

exploitation, and not because they cannot execute the requested action.

How is it possible that agents deliberately refuse to perform an action, if they are forced

to pick a repository frame regardless of whether it is currently desirable for them or not?

The reason is that once agents reject a requested action because they are not capable

of performing the requested link modification (or perceive such a refusal), this “broken”
frame is stored in the repository (see also section 6.1.2, p. 156). Then, this broken frame be-

comes an ordinary option that is considered in every subsequent framing decision. Even-

tually, such broken frames will attain a reasonably high Q-value by averaging over all expe-

riences in which they were more useful than F1, F2 or F3, and with sufficient generalisation

through merging over time, they may become the preferable choice in many encounter

states. What is obvious from figure 6.11 is that the frequency of these deliberate rejections

is increasing, thus adding a second element of adaptiveness to the behaviour of m2InFFrA
agents: Apart from learning that making counter-proposals is useful, these agents are also
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capable of learning that deliberately rejecting an undesirable request is advantageous in

many situations. Taken together, both these capacities enable agents to improve their av-

erage performance in the long term, even if they still make occasional mistakes.

At the same time, we should not forget that despite the fact that this performance is

quite good, the exploitability of these agents is inacceptable from a decision-theoretic per-
spective. Also, the overall performance levels reached lie around the lower benchmark,

which certainly leaves room for further improvement.

ADT agents Quite surprisingly, the plots under the NDT agent performance graphs in

figure 6.10 suggest that agents who perform an action-level desirability test (only) are not

capable of doing any better than the naive NDT agents. To understand this observation,

let us describe this desirability test strategy once more: What ADT agents do is to activate a

frame according to the Q-table without testing for desirability. After this, they will initiate

a re-framing procedure if the desirability of the remaining actions is too low, and this is

checked for in every InFFrA iteration.

Although it may seem that by this process they would avoid performing undesirable

actions, what actually happens is that, in fact, most selected frames fail this action-level

desirability test, thus forcing the agent to select an alternative frame. However, the new
frame itself is selected without any assessment of profitability, so that they will continue the

encounter with any frame that is considered appropriate according to the long-term utility

estimate stored in the Q-table. This process continues in subsequent framing iterations

and this results in the fact that ADT agents will actually never stop an encounter unless

the same conditions occur that would force an NDT agent to give up. In a typical run,

although there are only 24 framing cycles in which the optimal continuation is considered

desirable while it is considered undesirable in 284 framing cycles (across all agents), agents

still perform a total of 302 do-actions14 which is very similar to the 330 do-actions of a

comparable NDT simulation with a total of about 2000 requests.

That said, ADT agents do perform slightly better than NDT agents as can be seen from

the above plots, which is probably due to the fact that at least they are able to spawn a
re-framing procedure at the action selection level if even the best continuation seems un-

profitable while NDT agents do not have this option and must rely on Q-value based opti-

misation.

FLT and A&FLT agents The plots shown in the bottom two rows of figure 6.10 depict a

behaviour that is fundamentally different from that of NDT and ADT agents just described.

Firstly, as mentioned above, the number of physical actions that result from social

agreements decreases dramatically. Especially after a certain performance level has been

reached, further actions occur only very rarely. Obviously, the reason for this is that agents

never select a frame whose trajectory postfix is not desirable under the optimal substitu-

tion. So, as their score increases, there are fewer and fewer proposals that they can accept

or make a counter-proposal for that is expected to improve their utility standing.
Secondly, and much more importantly, (A&)FLT agents converge to a much higher

global performance level, which lies clearly above the lower utility benchmark. Especially

with respect to non-empirical communicating BDI agents and NDT/ADT agents, this is a

significant advantage of introducing a frame-level desirability test.

14 This number is higher than 284, but remember that F3 involves two do-actions per encounter.
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A comparison between FLT and A&FLT also reveals that an additional action-level de-

sirability test (that is very time-consuming, anyway) actually does not add to the global

performance in combination with frame-level Q-learning. From this we can conclude that

omitting the action-level desirability test (step ➎ in figure 5.3, p. 132) from the framing

process altogether is a reasonable choice.

Applying different desirability criteria Using the FLT strategy, agents are not forced to

execute undesirable actions, and they need not wait for long-term reinforcement learn-

ing adaptation to improve their standing. This can be seen as a safe strategy, especially

if agents are not going to interact very often in the future or if actions cannot be undone.

On the other hand, this is a situation in which agents can opt out of any agreement at any

point in time, so that learning leads to global “maximin” behaviour in the sense that agents

seek to avoid “worst-case” damage but fail to identify further potentials for cooperation.
The fact that the average score of these agents over time is not any higher than that of

non-communicating agents as shown in 6.4 supports this claim.15 Note, however, that

m2InFFrA agents clearly outperform non-empirical, communicating BDI agents, cf. fig-

ure 6.9 (p. 179).

Sometimes, as shown in the single-run example of the FLT strategy in figure 6.10, the av-

erage utility can even significantly exceed the upper benchmark value. Apparently, though,

this highly cooperative behaviour is not maintained in the long run, which ultimately

means that agents fail to recognise a cooperative pattern of behaviour that they have al-

ready observed.

An analysis of the application of different desirability criteria is useful to identify the

reasons for this problem. Figure 6.12 shows results for FLT agents that apply four different
desirability criteria determined by different choices of the parameter λ in equation 6.7.

From top to bottom, we experiment with

1. a very lenient desirability criterion where λ = 2, according to which the total entropy

reduction is considered twice as important as in the experiments so far,

2. the lenient desirability criterion λ = 1 that has been used throughout the above

experiments with m2InFFrA agents,

3. a decreasingly lenient criterion which uses discounting to progressively reduce an

initial value of λ = 2 to λ = 0 in the limit (more specifically, in simulation round i,
λ = 0.99i · 2), and

4. a strict criterion by which λ = 0 and agents will not trade off entropy reduction

against immediate utility gain at all.

As can be seen from the plots in figure 6.12, it turns out that the choice of which criterion

to apply bears strong implications on global system behaviour: λ = 0 is clearly inferior

to all other criteria, as it precludes the establishment of communication patterns which

might ensure an average payoff that lies significantly above the lower benchmark value.

15 The performance of these m
2
InFFrA agents is actually better if we compare m

2
InFFrA results to the single-

run example of figure 6.5 given that FLT agents don’t make the occasional “mistakes” observed there. However,
this is only due to the fact that we have imposed no restrictions on the number of suffixes that result from Θposs,
while the BDI layer can only store ten actions in its queue and predict the utility of 23 actions per round. For
this reason, we cannot claim that m

2
InFFrA is superior in this respect.
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Fig. 6.12: Comparison between different desirability criteria. From top to bottom: very

lenient (λ = 2), lenient (λ = 1), decreasingly lenient (λ = 0.99 i · 2) and strict

(λ = 0) criterion
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Fig. 6.13: Comparison between multi-run standard deviation for different desirability cri-

teria: very lenient (λ = 2, top left), lenient (λ = 1, top right), decreasingly lenient

(λ = 0.99i · 2, bottom left), and strict (λ = 0, bottom right) criterion

At the same time, this criterion fosters exploitation, as the difference between best and

worst agents is much higher than is the case with more lenient criteria. The single-run

performance in the bottom row of figure 6.12, in which the difference between maximum

and minimum agent scores reaches almost 0.4 provides a striking example for this phe-

nomenon.

Agents who apply the other three (lenient) criteria perform almost equally well so that,

at first glance, it is not obvious where the difference between them lies. To make this differ-

ence visible, we need to look at the standard deviation of maximum, minimum and average

utility between different runs in each multi-run simulation. For this, multi-run standard

deviation plots are shown for each of the four desirability criteria in figure 6.13. These plots
depict the standard deviation of the performance of the best, average, and worst agent

across the 50 individual simulations conducted with each desirability criterion. Hence,

they allow for an assessment of the variance in maximum, mean, and minimum utility

achieved in each of these experiments. In other words, we can use such measurements to

evaluate how certain the attainment of particular scores is. The relationships between the

different quantities of standard deviations are summarised in the following table, where +,

© and − stand for comparatively large, moderately high and small values of the standard

deviation, respectively:
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Measure λ = 2 λ = 1 λ = 2 . . . 0 λ = 0
σ(minimum) © − © +
σ(average) − © © +

σ(maximum) − + − +

The strict criterion obviously does not provide any reliable guarantees, as the standard de-

viation is high both with respect to worst-case (σ(minimum)), average-case (σ(average)),

and best-case (σ(maximum)) performance. This means that neither the best nor the worst

or the average agent can rely on a stable performance across different simulation runs.

To ensure a safe best-case performance, it seems advisable to start out with a toler-

ant desirability criterion, as the values for λ = 2 and the “progressively strict” criterion

λ = 2 . . . 0 illustrate. This seems natural, as cooperative communication patterns require

an initial cooperative stance to be established. However, λ = 2 . . . 0 evolves into a more

strict desirability criterion over time, and this results in a mediocre level of stability regard-
ing worst-case and average-case performance, as we cannot be entirely sure that those

cooperative high-utility patterns will have been established soon enough before the agent

becomes more risk-averse. λ = 1, on the other hand, is only moderately successful in en-

suring a decent average payoff, and even less so with respect to maximum payoff, which

seems to suggest that λ = 2 is the optimal choice. Yet, the fact that the standard deviation

of worst-case performance is higher as compared to λ = 1 when using this very lenient

desirability criterion reveals that agents run a risk of being overly cooperative and hence

potentially exploitable if λ > 1.

All this taken together provides us with a comprehensive picture of the role desirability

criteria play in the balance between avoiding exploitability and fostering cooperation. In
any case, what this analysis also shows is that our entropy-based desirability heuristics

(section 5.3.4) provide a valuable instrument to fine-tune the social attitude of agents.

Returning to our original observation of the inability of m2InFFrA agents to maintain

global utility levels above the upper utility benchmark, we have to state that even the most

lenient criterion is not capable to bring about an evolution of cooperation, i.e. we cannot

claim that m2InFFrA ensures perfect social coherence. Obviously, this is the price for en-

suring strategic, non-exploitable action at the level of the individual. And this effect is not

surprising, as achieving such individually rational behaviour is the primary objective of

developing an architecture like m2InFFrA.

The contribution of learning As a final point of analysis in this series of experiments, we

should address the contribution of frame-level Q-learning to the overall performance of

m2InFFrA agents. For this purpose, figure 6.14 shows multi-run averages and single-run ex-

amples of simulations in which frames are chosen randomly from all matching, executable

frames in the repository instead of using Q-values to determine the most suitable frame.
The figure summarises the results of experiments with the same configurations as those

of figure 6.10 (p. 181), i.e. the NDT, ADT, FLT and A&FLT strategies (in the same order as

before). The performance plots confirm our previous observations regarding the learning

capabilities of m2InFFrA agents which lie in learning the usefulness of counter-proposals

and rejection are valid regardless of desirability test strategy. As depicted in these plots,

omitting the frame-learning functionality leads to performance deterioration in all cases.

This is a central result that justifies our efforts to add frame-learning capabilities to the

m2InFFrA decision-making model.
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Fig. 6.14: Comparison between different desirability test strategies, no Q-learning. From

top to bottom: NDT, ADT, FLT, and A&FLT agents
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Of course, the learning capacities observed in the LIESON scenario are different from

standard machine learning, in the sense that they are only thought to support the long-

term optimisation of interaction strategies that are also influenced by the constantly

changing environment and the changing needs of agents. Therefore, we cannot expect

convergence to optimal behaviour. But our experiments show that what we can expect is
satisficing learning behaviour and meaningful combination with other, non-InFFrA rea-

soning components in an integrated architecture. Obviously, the more reasoning is con-

ducted regarding optimal action selection under current circumstances, the less important

will considerations regarding the long-term usefulness of frames be. This can also be seen

from the (smaller) effect learning has on overall system performance when desirability-

ensuring methods are applied: In the case of FLT and A&FLT, the “added value” of learning

is much smaller than in NDT and ADT (where it is essential to achieve any long-term im-

provement at all).

Finally, what should not be forgotten is that even if learning does not affect perfor-

mance decisively in some cases, it does take a lot of weight off agents’ “shoulders”. This is

because frame selection allows for ignoring a large portion of the search space of expecta-

tion structures by only considering one frame at a time. Considering this restriction, even

identical performance would constitute success. We have shown that m2InFFrA agents do

better than this.

6.3 Advanced Experiments
While the results of the previous section are quite impressive and illustrate that the archi-
tecture works in practice, they also lack complexity with certain respects:

• The frames used so far contain only the most simple conceivable context informa-

tion, as their conditions only require that the physical actions involved in a frame are

executable. This does not really prove that our reinforcement learning techniques

can be combined with context-sensitive conditioning of communication patterns.

• In the experiments above, agents can simply opt out of any conversation at any point

in time. This represents only the most voluntaristic mode of social exchange, in

which all that agents can learn is making suggestions that are profitable for the other.

In contrast to this, many social contexts are characterised by strict rules of social con-

duct that require more complex reasoning in order to use the underlying norms to

one’s own advantage.

To transcend this simple level of negotiation, in which agents basically only exchange

simple proposals regarding the actions that should be performed next, we will deal with

interest-based negotiation frames in the second series of simulation experiments.

These advanced experiments involve frames in which agents discuss their goals, point

at problems, etc. In the following sections, we first provide a brief introduction to interest-

based negotiation, and then report on the experiments conducted within that framework.

In that, more space will be devoted to describing the process of designing appropriate

negotiation frames than to the experiments conducted with these, the purpose being to

provide an extensive case study of the application of m2InFFrA to a given communication

scenario.
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6.3.1 Interest-based negotiation
Interest-based negotiation (IBN) is a special form of argumentation-based negotiation

(ABN) (Rahwan et al. 2004). In contrast to proposal-based negotiation methods (such

as the contract-net protocol (Smith and Davis 1981), auctions, voting and bargaining

(Sandholm 1999), and game-theoretic negotiation models (Raiffa 1982, Rosenschein and

Zlotkin 1994)), in which proposals (for the execution of joint actions, the purchase of

goods, etc.) are exchanged and an agreement is reached if the proposal is accepted by
the negotiating parties, ABN is about exchanging arguments to convince each other (of the

truthfulness of some fact or theory, of the usefulness of some action, etc.).

The crucial difference between these two types of negotiation is that while only the pro-

posal itself is the issue of negotiation in proposal-based negotiation, ABN allows agents to

exchange information beyond the proposal. These pieces of additional information ex-

changed, called arguments, can be used by the agent (i) to justify its negotiation stance or
(ii) to influence the other agent’s negotiation stance (Jennings et al. 1998a).

IBN is a specific ABN framework proposed by Rahwan et al. (2003) that focuses on ex-

changing arguments regarding the goal structures and preferences of the negotiating par-

ties. Essentially, it is based on the idea that agents challenge each other’s proposals or

claims to obtain information about the underlying reasons for them (i.e. beliefs, goals,

etc.). Using information that is derived from the justifications put forward by the other

in reply to the challenge, they can then attempt to attack those reasons. This can be done
by pointing at problems, misconceptions and inconsistencies, but also by suggesting al-

ternative actions or goals. Either way, the objective of these attacks is to change the other’s

opinion, so that a mutually beneficial agreement can be reached.

What distinguishes IBN from other ABN approaches is that argumentation is not so

much about “proving” the other wrong – rather, the purpose of argumentation is to under-

stand the other’s internal (mental) state and to alter it to one’s own benefit.

Naturally, it is beyond the scope of this thesis to develop a comprehensive frame-based

implementation of the theory of IBN, which is very complex in its entirety. Instead, we will

present a a simplified view of IBN that is elaborate enough to be turned into interesting

InFFrA frames. Apart from employing these “IBN frames” to conduct further simulation

experiments, the development of these frames will also serve as a case study on how to

build InFFrA agents for a given theory of interaction.

6.3.2 A simple model of IBN
Dialogue model

As mentioned, the basic idea in IBN is to challenge the other’s statements so as to attack

the justifications he provides for them and thus to persuade him into changing his mind.

Figure 6.15 shows the main control loop for IBN dialogues. It consists of two parts:

• Exchange of proposals: This part of the dialogue model concerns the exchange of pro-

posals, agreements and rejections. It may also encompass execution and monitoring
of courses of action agreed upon.

To keep things simple, we assume that all dialogues begin with a proposal. This is fol-

lowed by potential subsequent proposal-rejection loops, in which agents iteratively



192 6. Experimental Results

proposal

execution

concession attack

justificationchallenge

agreement

rejection

argumentation

Fig. 6.15: Basic control flow of interest-based negotiation dialogues

make suggestions and counter-suggestions as long as one party does not accept the

proposal. Eventually, an agreement is reached or the negotiation is simply termi-

nated by one of the parties at any stage. If the topic of the conversation is not purely

“theoretical” (i.e. a discussion about a fact or theory), but also involves an element of

action, agreement is followed by execution of these actions. Since action execution

may involve a complex flow of control for monitoring purposes (as, for instance, in

the execution of joint plans), it may be necessary to interleave the process of execu-

tion with additional propose-agree loops to align actions properly, to re-plan in case

of unexpected problems, etc. Also, action or plan execution may be followed by new
proposals after its completion, but this is a case we shall ignore for simplicity (it can

be simulated by starting a new dialogue).

• Argumentation: This is the part of the communication model in which agents inter-

rupt the proposal exchange process to gather information about each other’s mental
state.

If completed, the structure of the entire cycle of each argumentation loop is

challenge-justification-attack-concession. After a proposal has been made or re-

jected, the other party may ask for some kind of justification by challenging the pro-

posal or the rejection. After this justification is provided, it can be attacked, where-

upon the attacked party will concede if the attack is successful.

Of course, either negotiation party may find it appropriate to reject or make a new

proposal at any point during this cycle, e.g. if an attack is unsuccessful, if no jus-

tification or attack can be found, if the information gathered from a justification is

enough to make a new proposal without the necessity of attacking the justification, if

the agent simply refuses to concede, etc. This is suggested by the arrows leading back

to “propose” and “reject” from the dashed “argumentation” box in figure 6.15.
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Essentially, the argumentation part of such negotiations is nothing else but an exchange

of “mental proposals” (or, alternatively, “mental requests” – cf. section 4.1) in the form of

arguments, with the difference that conceding to an argument is different from normal,

proposal-related agreement as it refers to some previous(ly rejected) proposal but aims at

transforming one’s stance towards the original proposal.

Having sketched the process of IBN argumentation, we need to define what kind of
information is to be gathered from challenges, how justifications can be generated and

attacked, and in which situations attacks lead to concessions. In other words, we have to

specify the arguments used in our model of IBN.

Goal graphs

Above, we remarked that IBN focuses on reasoning about each other’s internal motives (be-

liefs, goals, etc.) in order to influence it. Goal graphs, as suggested in (Rahwan et al. 2003),
enable this kind of reasoning. They do so by facilitating the representation of goal hierar-

chies, preferences and justifications for goals. As before, we will only discuss those aspects

of the theory that are relevant to the development of IBN frames rather than introduce a

full-fledged formalism.

Informally speaking, a goal graph depicts the relationships between facts, actions, and

goals. It is based on the idea of representing goals and facts as nodes and connecting nodes

v and v′ by a directed link (v, v′) if v contributes to the achievement of v′. Edges or sets of

edges that end in the same goal are labelled with the identifier of an action to indicate that

an action is necessary for a goal to be actually achieved if certain other goals are satisfied

or certain facts hold. Thus, the ingoing edges of a goal node can be partitioned into sub-

sets, and such a partition E = E1 ] . . . ] Ek in a way “defines” the goal, as the sets of

goals/facts that are the source nodes of each Ei have to be achieved in conjunction for the
target of E to be achieved. Ei and E j indicate disjunctive alternatives of achieving that goal

(for i 6= j). Some of these “definitions” may require an action, others not. Goals which do

not contribute to any other goals are called supergoals. For simplicity, we do not consider

cycles in these graphs.

As a simple example, consider the goal of “getting to Rome”. Obviously, depending on

where one currently is located, getting to Rome may require using different means of trans-

portation, making in-between stops, waiting for connections, etc. One definition of “get-

ting to Rome” could be “being in Rome” which does not require any further conditions to

be met or actions to be taken, because nothing needs to be done if someone is already

in Rome. A second definition may be “getting to Milan and getting from Milan to Rome”,

where “getting to Milan” is a sub-goal which may, in turn, be defined in its own goal sub-
graph. If getting to Milan has already been achieved, then there might be further nodes

labelled with the goals “no railroad workers’ strike”, “connection found” and “have at least

60 euro” which are grouped together and labelled with the action identifier “take train” to

the node labelled “getting from Milan to Rome”.

Note that if the definitions of certain goals involve actions, the goal graph description

of goals to be achieved is very similar to conditional planning (Russell and Norvig 2003).

For the linkage scenario, we can build such a goal graph using information about the

utility function, where the (single) supergoal of each agent is to increase one’s own score.

Looking back at equation 6.1 (p. 150), there are different ways to improve one’s score:
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• by increasing one’s popularity directly through the links laid to one’s site,

• by increasing the popularity of a positively rated peer (“friend”),

• by decreasing the popularity of a negatively rated peer (“enemy”),

• by decreasing the rating distance between a friend and oneself with respect to third

parties, and

• by increasing the rating distance between an enemy and oneself with respect to third

parties.

Obviously, depending on the beliefs of the agent (his private rating preferences, existing

links, etc.), there may be many different ways of achieving each of these sub-goals. Fig-

ure 6.16 shows a possible goal graph for LIESON. Essentially, this goal graph describes how

the different sub-goals listed above (called +ownPopularity, -friendPopularity, -enemy-

Popularity, -ratingDiffFriend, +ratingDiffEnemy in the graph) that lead to a score increase

can be attained. For example, the rating difference in relation to a friend (A) can be re-

duced if a link from A to B is deleted and |rating(D, B)− X| > 0/|rating(D, A)− X| > 0
holds where

• D is the reasoning agent

• rating(D, B) and rating(D, A) are the private ratings of D for the respective sites,

• X is the public rating of an existing link from A to B

In other words, the LIESON goal graph represents a simplified view of the knowledge we

have of the score computation function, which is, of course, much more coarse-grained

than the actual score computation function of equation 6.1.

Negotiation moves

Goal graphs are a means of modelling the other’s internal state so as to understand his
motives and goals and to “massage” him into accepting one’s proposals or claims. Using

them as an underlying model of reasoning about each other, we can derive the kinds of

moves that are possible during an IBN dialogue.

In the “challenge” phase of a negotiation dialogue, the reasoning agent tries to find out

why (say) his adversary rejected a proposal. Having only partial knowledge of the other’s

goals, he may ask for the reasons for the other agent’s rejection to better understand the

other’s behaviour (and to find a suitable counter-argument). Such reasons may be that

• the other agent thinks that the requested proposal cannot be carried out, or that

• the proposal threatens the achievement of one of the other agent’s goals.

By providing such a justification, the peer enables the challenging agent to refine his view

of the other’s goal graph. If a proposal cannot be implemented, then one of the precondi-

tions (sub-goals) of the proposal must be false according to the peer’s belief. If a proposal

is a threat to some goal, then it obviously does not contribute to its achievement.

If it is not a rejection that is challenged but the proposal itself, the justification consists

of naming the goal the proposal contributes to. The type of justification used, its content
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Fig. 6.16: LIESON goal graph: Each goal (in bold face) is defined in terms of sets of subgoals

or world facts that are connected to the goal they achieve through edges con-
nected with an arc (sub-goal conjunction). If the in-edges of a goal are not con-

nected with each other, they denote alternative ways of achieving the same goal

(sub-goal disjunction). If an action is necessary for some (sets of) facts or sub-

goals to achieve a goal, then the respective edge(s) are labelled with that action.

Capital letters are used for variables with “·” as a wildcard symbol for argument

values.
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and the previous knowledge the challenging peer had of the other’s goal graph may deter-

mine the kind of attack he will use:

• If the other justified his rejection with a potential threat for one of his goals, this can
be attacked by proposing an alternative goal.

• If the justification of a rejection lay in claiming the impossibility of implementing
the proposal, the other agent may point out to his peer that his knowledge is either

obsolete or erroneous.

• If a proposal was justified by a goal, there are several possible attacks:

– We can argue that the proposal threatens some other goal at the same time.

– We can argue that the goal put forward cannot be achieved anyway.

– We can suggest adoption of an alternative goal.

Although there certainly exist more possible kinds of attacks (e.g. appealing to previous

commitments, appealing to higher authorities or norms, arguing about the risk involved

in trying to achieve a goal, etc.) the above are the most straightforward and generic that
can be conceived of.

The type of attack determines whether the other will concede or challenge the attack,

thus perpetuating the process of argument exchange. Certainly, this description leaves out

the details of

• how to evaluate proposals and arguments,

• how to specify which arguments defeat which other arguments,

• how to determine the best possible attack, and

• how to decide on making concessions

which are very important aspects of concrete IBN systems. However, we will show that a

generic social reasoning architecture like InFFrA actually enables us to proceed with the

implementation of a simple variant of IBN without worrying too much about these issues.

The following section shows how this can be done by virtue of “shifting” the semantics of
argumentation from the mental (agent) to the social (communication) level.

6.3.3 IBN frames
In constructing frames for IBN among InFFrA-based agents, we adopt a different position

from the heavily mentalist approach of “generating arguments to model the other’s goal
graph and identify optimal proposals/attacks/justifications”. Quite differently, we will as-

sume that the general structure of goal graphs (up to instances of fact nodes that depend

on each agent’s private knowledge base, that is) is common knowledge in the sense of a

shared communicative convention. In other words, it does not matter whether agents ac-

tually have the goal graph shown in figure 6.16, but the frames that we provide will force

agents to behave “as if” they were acting under the premise that their actions must be in

keeping with this goal structure. So when agents communicate, they will be forced to cre-

ate justifications and attacks in accordance with it.
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This means that we regard IBN not so much as an improved method of coordination for

the LIESON system, but rather as a complex communication regime that governs the social

context within which agents interact. In particular, our agent design so far is quite contra-

dictory to the goal graph with respect to goal generation and prioritisation. Recalling that

agents apply the score-predicting function of equation 6.1 (in a boundedly rational fashion
using the simple popularity computation method of equation 6.6, p. 152) to project pos-

sible link manipulation actions they or their peers might perform and prioritise these in

their BDI queue, it is clearly the case that the goal graph plays only a very indirect role in

goal generation. More specifically, agents do not consider the importance of all alterna-

tive ways of achieving +score equally important, as actions that yield a numerically higher

potential score are preferred in a greedy fashion. Also, they disregard the fact that some ac-

tions previously enqueued might actually not increase their score under the current global

link network because they threaten an intermediate goal in the goal graph.

The basic assumptions underlying our definition of IBN frames are:

• All agents share the same goal graph. When talking about relationships between dif-

ferent goals or facts and goals, each agent may argue about the other’s goals by refer-

ring to the goal graph. Thereby, if certain relationships depend on the satisfiability

of certain facts (e.g. existence of certain links), agents reason about goals under the

assumption that their own current local knowledge base is correct.

• As far as argumentation is concerned, the existing links are assumed to express the

agent’s true opinion of some other site, i.e. when reasoning and arguing about some-

one’s goals, agents may assume that existsLink(ai, a j, R) ⇒ rating(ai, a j) = R, where

rating(ai, a j) = R :⇔ ri(a j) = R. So it is assumed that ri(a j) = r(ai, a j) in the nota-

tion of section 6.1.2. This implies that agents are honestly revealing their preferences

by the links they lay.16

• The communicative conventions require that an agent is able to appeal to a goal he

is pursuing if he issues a request, and that he is able to name a threat if he rejects

an action requested from him. This means that no requests or refusals can be uttered

unless there is a justification for them according to the goal graph. It also implies that

attacks directed at a justification must attack a goal if the attack is generated by the

responder in the conversation (and the goal was referred to by the initiator to justify

his request), and they must attack a threat if the attacking party is the initiator of the

conversation (who is attacking a justification put forward by the responder for his
rejection). The only exception to this rule is when the responder points to a problem

with the executability of the action requested from him, i.e. when his beliefs make

the action appear impossible.

• An attack may either appeal (i) to an alternative goal, (ii) to an alternative means of

achieving the same goal, (iii) to a threat for some goal that is induced by the requested
action, or (iv) simply point out that the problem put forward by the other agent does

16 Keep in mind, though, that agents do not consider others’ preferences when they request link modification
actions but argue using goal graph structure. For example, if changing a rating from -2 to 3 appears to serve
the other’s goal, the agent who requests this action does not care whether this would force the other agent to
“lie” if his true rating of that site was actually 2. This puts additional pressure on each agent, as he may be
forced to change his ratings due to an encounter with one peer, thereby changing his argumentation position
for future conversations.
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Predicate Description

possproblem(P, X) if P is the case, action X cannot be executed

problem(P, X) X cannot be executed due to fact P (which currently holds)

goal(A, G) G is a goal of agent A
contrib(G, G′) goal G contributes to the achievement of goal G ′

achieves0(X, G) action X achieves goal G under current circumstances

achieves(X, G) achieves0(X, G) ∨ (∃G′.achieves0(X, G′)∧ contrib(G′, G))

Tab. 6.9: Auxiliary predicates for IBN frames: possproblem and problem refer to theoreti-
cal/actual problems with executing an action; the contrib predicate is equivalent

to an edge in the goal graph not labelled with an action, achieves0 stands for an

edge that requires an action (edges from facts to goals are implicit since we are

only concerned with achievement under current circumstances); achieves is true

for all super-goals of goals directly achieved

not exist. If the attacking agent finds such a point of attack, the other agent has to

concede, and, if he was the one from whom an action was requested, he must accept

the original proposal. The same holds true if the justification used by the attacked
agent or the problem put forward by him are wrong (or he can’t identify a suitable

one).

• Finally, only the goals and actions of one agent are discussed during a single con-

versation. This is always the agent who was challenged, i.e. either the initiator who

requested an action or the responder that rejected a proposal.

It should be noted that these requirements are deliberately chosen for our construction of

IBN frames, and that different assumptions might be made in other implementations. For

example, agents could be allowed to threaten others with certain punishing actions if they

fail to comply with what they desire, appeal to habitual practice in a given social context,

etc.

The IBN frames we actually initialise agents’ repositories with are shown in tables 6.10

(normal execution of request and dealing with execution problems), 6.11 (attacks to as-
serted threats), and 6.12 (attacks to asserted goals). Table 6.9 (p. 198) describes those auxil-

iary predicates used for the specification of these frames that were not defined in table 6.5

(p. 167).

In table 6.10, we include a frame FN of normal execution of a request. Note that in

the IBN experiments this is the only non-argumentative frame, i.e. there is no possibil-

ity of making counter-proposals, so unless an agent wants to reject immediately (and de-

viate strongly from everyone’s expectations, he has to argue to avoid fulfilling and un-
desirable request. The next frame, FAP (Attack-Problem) depicts the successful attack

of a problem: The requestee suggests that P is a problem that hinders execution of X
(e.g. P = ¬∃R.existsLink(B, C, R) and X = deleteLink(B, C)) but has to concede and ex-

ecute X if ¬P is the case and is asserted by the requesting party. The condition sets of

this frame are particularly interesting, as they may involve a “change of mind”. If the rea-

soning agent is the one who is requesting the action (self (A)), he can use this frame if

possproblem(P, X), i.e. if P is a potential problem for X (but need not hold currently). If the

reasoning agent is the requestee (self (B)), P additionally needs to hold before it is claimed
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FN =
〈 〈 0
→ request(A, B, X)

0
→ do(B, X)

〉
,

〈
{can(B, X)@1, effects(X)@2}

〉
,

〈 0
→ 〈〉

〉〉

FAP =
〈 〈 0
→ request(A, B, X)

0
→ reject(B, A, X)

0
→ ask-reason(A, B, reject(X))

0
→ inform-problem(B, A, P)

0
→ attack-problem(A, B,¬P)

0
→ concede(B, A,¬P)

0
→ request(A, B, X)

0
→ do(B, X)

〉
,

〈
{self (A), possproblem(P, X), check(P)@4, can(B, X)@7, effects(X)@8},

{self (B), problem(P, X)@1, check(P)@5, can(B, X)@7, effects(X)@8}
〉

,
〈 0
→ 〈〉, 0

→ 〈〉
〉〉

FCP =
〈 〈 0
→ request(A, B, X)

0
→ reject(B, A, X)

0
→ ask-reason(A, B, reject(X))

0
→ inform-problem(B, A, P)

0
→ concede(A, B, P)

〉
,

〈
{self (A), problem(P, X)@4}, {self (B), problem(P, X)}

〉
,

〈 0
→ 〈〉, 0

→ 〈〉
〉〉

FR
CC =

〈 〈 0
→ request(A, B, X)

0
→ reject(B, A, X)

0
→ ask-reason(A, B, reject(X))

0
→ concede(B, A, no-reason())

0
→ request(A, B, X)

0
→ do(B, X)

〉
,

〈
{can(B, X)@5, effects(X)@6}

〉
,

〈 0
→ 〈〉

〉〉

F I
CC =

〈 〈 0
→ request(A, B, X)

0
→ ask-reason(B, A, X)

0
→ concede(A, B, no-reason())

〉
,

〈
{}

〉
,

〈 0
→ 〈〉

〉〉

Tab. 6.10: IBN frames for the LIESON scenario: Normal execution of a request, pointing out

a problem that hinders execution of the requested action, conceding to an as-

serted problem and admitting a lack of justification
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to be a problem for X for the frame to be used (@1). The check(P) predicates force agents to

actually interrupt the encounter and check (by observation of the environment) whether

P is the case, and concession is mandatory if B actually can perform the action in the end.

The semantics of check(P)@i are that it is true for both P and ¬P if time-step i has

not been reached yet, i.e. the outcome of proving P is not determined yet. Thus, before

time-step 4, it doesn’t matter whether P is the case or not for A – he can plan to attack

by asserting ¬P anyway (also, as P is not yet bound to a value, it would make no sense

to prove it at this point in time anyway). When time-step i is reached, an update-action

has to be spawned to check whether P is the case. After this, only P or ¬P can be true.
In FAP this means that once inform-problem(B, A, P) is uttered, A steps back from the

conversation to check whether P holds. If he discovers P to be true, the can-predicate will

become false, and he cannot attack P. Conversely, B must check whether P holds after

receiving attack-problem(A, B,¬P) to make sure he was right about P.

Thus, the difference for the two parties is that B must concede if he thought it is a prob-

lem (otherwise he must not even use it as a justification), whereas A will accept the other’s

justification (temporarily) even if P is only a potential (but non-existent) problem (this is

necessary because A might be initially unable to prove problem(P, X) if he thinks there is

no problem regarding X). This nicely illustrates how the condition-proving mechanism

must be aligned with frame design to result in appropriate framing. If P is a real prob-

lem A must concede if he can prove problem(P, X), and this is captured by the third frame

FCP (Concede-Problem). Frames FR
CC (Concede-Challenge-Responder) and F I

CC (Concede-

Challenge-Initiator), finally, can be used to concede that one has no suitable reason to pro-

vide for his rejection or proposal. FR
CC amounts to having to execute the original proposal,

while F I
CC leads to encounter termination without any action consequences.

The second category of IBN frames (table 6.11) deals with attacks to claimed threats,

i.e. to situations in which agent B refuses to execute X and justifies this with a threat to a

goal T that X does not achieve. Note that the interpretation of “threat” used here is a very

broad one, as it considers every action a threat for a goal that does not achieve the goal

immediately. A much stricter interpretation of the concept would be to only call X a threat

for T if, for example, after execution of X there is no way of achieving T. FATG (Attack-

Threat-Goal) describes an attack to a threat by appealing to an alternative goal which X
achieves instead and FATM (Attack-Threat-Means) specifies how a threat can be attacked

by pointing at an alternative action for achieving T (assuming that T is important to B
since he mentioned it). FCT (Concession-Threat), finally, has to be used if the attacking
party has to concede to the asserted threat, and no physical action is taken. The frames

contained in table 6.12 are quite orthogonal to those of the previous category, as they cater

for attacks to goals asserted by the requesting party A. In FAGM (Attack-Goal-Means), B
finds an alternative action Y that would achieve the goal G put forward by A, and AGT
(Attack-Goal-Threat) points at X being a threat to some other pursued goal. Finally, FCG
(Concession-Goal) marks the situation in which B has to give in because no threat or alter-

native action could be identified as a suitable attack. As opposed to the the second cate-

gory, concession entails that the requestee must fulfil the original request in these frames,

while attack using a threat implies that A must give up his original demand, which is in

accordance with the fact that the attacking and justifying parties have been swapped.

To summarise, we have managed to develop m2InFFrA frames for the IBN framework in

such a way that agents can argue about each other’s goals and beliefs. These frames require
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FATG =
〈 〈 0
→ request(A, B, X)

0
→ reject(B, A, X)

0
→ ask-reason(A, B, reject(X))

0
→ inform-threat(B, A, T)

0
→ attack-threat(A, B, alternative-goal(G))

0
→ concede(B, A, G)

0
→ request(A, B, X)

0
→ do(B, X)

〉
,

〈
{can(B, X), goal(B, T),¬achieves(X, T), goal(B, G), achieves(X, G), G 6= T

can(B, X)@7, effects(X)@8}
〉

,
〈 0
→ 〈〉

〉〉

FATM =
〈 〈 0
→ request(A, B, X)

0
→ reject(B, A, X)

0
→ ask-reason(A, B, reject(X))

0
→ inform-threat(B, A, T)

0
→ attack-threat(A, B, alternative-action(Y))

0
→ concede(B, A, Y)

0
→ request(A, B, Y)

0
→ do(B, Y)

〉
,

〈
{can(B, X), goal(B, T),¬achieves(X, T), achieves(Y, T), Y 6= X

can(B, Y)@7, effects(Y)@8}
〉

,
〈 0
→ 〈〉

〉〉

FCT =
〈 〈 0
→ request(A, B, X)

0
→ reject(B, A, X)

0
→ ask-reason(A, B, reject(X))

0
→ inform-threat(B, A, T)

0
→ concede(A, B, reject(X))

〉
,

〈
{can(B, X), goal(B, T),¬achieves(X, T)}

〉
,
〈 0
→ 〈〉

〉〉

Tab. 6.11: IBN frames for the LIESON scenario: Rejection is only justified if a threat can be

appealed to; the threat can be attacked by suggesting an alternative goal or an

action that does not threaten the goal. If no attack can be found, the argumen-

tation initiator has to concede.

agents to be able to give reasons for suggesting or rejecting an action. Furthermore, agents

must accept any alternative action that leads to achievement of the same goal and any

alternative goal that can be achieved instead if these are used in attacks by the respective

other party. There is no prioritisation among goals, and arguments only refer to the goal

graph of that agent whose stance is being challenged.

6.3.4 Results
We have conducted extensive simulation experiments with m2InFFrA agents who employ

IBN frames using the same configuration of the agent society and identical parameter set-

tings as in section 6.2.2. While the purpose of this was to ensure maximal comparability

between the results of the two series of experiments, we choose to make the IBN scenario

even more difficult for agents by forcing them to use the naive desirability test strategy
NDT (cf. the discussion in section 6.2.2, p. 179). This means that we prohibit agents to

simply opt out of conversations or to cancel agreements just because they do not seem

profitable to them.

Why is this reasonable? IBN frames provide methods for dealing with rejection ex-

plicitly, as the different frames represent methods of conflict resolution which can be used
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FAGM =
〈 〈 0
→ request(A, B, X)

0
→ ask-reason(B, A, request(X))

0
→

inform-goal(A, B, G)
0
→ attack-goal(B, A, alternative-action(Y))

0
→ concede(A, B, Y)

0
→ do(B, Y)

〉
,

〈
{can(B, X), goal(A, G), achieves(X, G), achieves(Y, G),

X 6= Y, can(B, Y)@5, effects(Y)@6}
〉

,
〈 0
→ 〈〉

〉〉

FAGT =
〈 〈 0
→ request(A, B, X)

0
→ ask-reason(B, A, request(X))

0
→ inform-goal(A, B, G)

0
→ attack-goal(B, A, threat(X, T))

0
→ concede(B, A, threat(X, T))

〉
,

〈
{can(B, X), goal(A, G), achieves(X, G), goal(A, T),¬achieves(Y, T)}

〉
,

〈 0
→ 〈〉

〉〉

FCG =
〈 〈 0
→ request(A, B, X)

0
→ ask-reason(B, A, request(X))

0
→ inform-goal(A, B, G)

0
→ concede(B, A, goal(G))

0
→ request(A, B, X)

0
→ do(B, X)

〉
,

〈
{goal(A, G), achieves(X, G), can(B, X)@5, effects(X)@6}

〉
,

〈 0
→ 〈〉

〉〉

Tab. 6.12: IBN frames for the LIESON scenario: A request must be justified by a goal; this
justification can be attacked by suggesting an alternative that achieves the same

goal or pointing out a threat. If no attack can be found, the argumentation ini-

tiator (responder in the conversation) has to concede and the initial request is

honoured.

whenever a goal or belief conflict occurs among agents (see section 4.1.6). By defining ap-

propriate reactions to rejection, IBN frames allow agents to distinguish whether a rejection

is due to framing failure (in which agents still utter a default reject message and terminate

the encounter) or whether it is deliberate. In the latter case, the rejecting party has to justify

its position by referring to goals and beliefs while adhering to the communicative “rules of

the game”. As our intention is to analyse how well agents can cope with these rules, it does

not make sense to allow them to break frames, unless there is real framing failure. Note that
by using Q-based frame selection and substitution optimisation, agents will still attempt to

find the best possible solution that is in accordance with the communicative regime, so the

naive desirability strategy does not imply that agents will accept any proposal or argument.

Practically speaking, this amounts to a different meaning of “reject” than before: If this

performative occurs as the second message in a conversation right after a request, it is a

“normal” utterance that may be followed by challenge, attack, etc. Else, it marks a real mis-

understanding. Since agents are only allowed to depart from the defined frames for validity
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Fig. 6.17: Single-run average performance of IBN agents

or adequacy (and not for desirability) reasons in this scenario, we can infer that the reason

for any “broken” frame must be that one of the agents is unable to match the perceived

frame with one of the IBN frames or to prove the conditions of any matching frame. This

can occur, for example, if agent A suggests attack-threat(A, B, alternative-goal(G)) in

FATG (p. 201) when he believes that X has threatened some other goal T of B but B cannot
prove achieves(X, G) with his knowledge base. In this case he would have to reject and quit

the encounter.

Performance results

With these preliminary considerations in mind, let us now turn to the performance anal-

ysis of “IBN agents”. Figure 6.17 shows a typical single-run average for these agents. Al-

though the IBN scenario requires much more intricate reasoning and agents are only able
to achieve the desired actions if they either manage to win an argument or are lucky

enough not to be challenged by their interaction partner, agent performance is impressive,

as it reaches almost the same level as with simple proposal-based agents. In fact, com-

pared to the NDT case in our basic experiments (cf. 6.10), agents do significantly better.

The reason for this is that by reasoning over the other’s goals, the alternatives that agents

suggest are desirable for the other quite often (even if the other does not have the right to

reject for desirability reasons, he might consider a challenge or attack rather than accept a

(counter-)proposal). In other words, argumentation-based negotiation creates a tendency

towards mutually beneficial counter-proposals, because the counter-proposals have to take

the goals of the agent whose initial proposal (or rejection) is challenged into account.

Furthermore, interest-based negotiation seems to have an equilibratory effect. As can

be seen from the standard deviation curve in figure 6.18, the variance between the per-
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Fig. 6.18: Multi-run average performance of IBN agents

formance of different agents is similarly low as in the non-communicating BDI case. This

seemingly contradicts the observation that the distance between best and worst agents

is equally high in the IBN single-run example of 6.17 and in the single-run plots for sim-

ple proposal-based agents (plots on the right hand side columns of figures 6.10 and 6.14).

A closer analysis of each individual agent’s performance in all 50 runs (figure 6.19) sheds

some light on this matter. As depicted there, IBN enables every agent to win an argument

now and then regardless of his “power” in terms of popularity. This is true even of the

“weakest” agents a0, a5 and a6 whose score suddenly increases way above its average level
every now and then. Of course, all agents often also lose arguments so that they are forced

to execute undesirable actions. Although we do not intend to draw any philosophical con-

clusions from this observation, it does suggest that adhering to a strict regime of rational

communication rules may help reduce the chasm between most and least powerful agents.

Example conversation

To give a feel for the kind of conversations that can be observed in such IBN simulations,

tracing an example negotiation is useful. In this example, a initiates a conversation by

asking b to add a link to a’s site with rating 3, i.e. the first message is

request(a, b, do(b, addLink(b, a, 3))).

Note that, as in all above m2InFFrA simulations, this request is spawned because

addLink(b, a, 3) appears at the top of a’s BDI queue, i.e. no framing activity has been started

yet by a. Upon receipt of this message, b picks FCT
17 (p. 201) because this frame has a higher

17 In practice, FCT has changed over time (like all other repository frames) and differs significantly from the
original repository frame in terms of previous stored cases and/or frame merging. We refer to the original
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agents, with curves and benchmarks as before



206 6. Experimental Results

Q-value than FN in the current state {false: ↑ (R, I,−)} (assuming that b does not like a,

see also the explanation of LIESON encounter states in section 6.2.1, p. 168). This is reason-

able, because a has experienced a decrease in utility when employing FN and laying a link

or strengthening an existing link to an “enemy”. Hoping that a will concede after hearing

that addLink(b, a, 3) is a threat for b’s goal +score, b replies with

reject(b, a, do(b, addLink(b, a, 3)))

and it is important to remember that activation of FCT requires b to prove

goal(b, +score(b)) ∧ ¬achieves(addLink(b, a, 3), +score(b)) prior to rejecting, which illus-

trates that in our argumentation scenario rejection is only permitted if one has a good
reason for it. Unfortunately, b’s reply does not allow a to activate FN which would have

been the best choice in state {true: ↑ (R, I,−)}, but he can resort to FR
CC (p. 199) and hope

that b will not find a suitable justification for his rejection. So, the next message is

ask-reason(a, b, reject(do(b, addLink(b, a, 3))))

but – sadly for b – a has an argument up his sleeve, and justifies his stance by sending an

inform-threat(b, a, +score(b))

message according to FCT . This forces a to re-frame once more, and although attack-

ing with the proposal of some alternative goal or action (FATG/FATM, p. 199) would

yield the highest utility according to the Q-table, a finds himself unable to prove

achieves(do(b, addLink(b, a, 3), G) and achieves(Y, +score(b)) so that both attack frames fail

for lack of condition satisfiability. Therefore, a has to activate FCT , and the encounter ends

after giving in with

concede(a, b, reject(do(b, addLink(b, a, 3))))

whereupon the original request is never fulfilled.

This shows how a sensible flow of communication can be ensured by specifying con-

tent constraints (cf. section 4.1.5) on the applicability of different frames under differ-

ent circumstances. Of course, these constraints cannot avoid misunderstandings that

result in “broken” frames if participants’ knowledge base contents are incompatible.

In the above conversation, for instance, if a had (additionally) not been able to prove

¬achieves(do(b, addLink(b, a, 3)), +score(b)) after he received the inform-problem mes-

sage, he would not have understood the argument put forward by b. In the absence of
any matching, executable frame the only thing he could do in this case would be to send a

reject message and cancel the dialogue.

Outlook: Frame construction

The negotiation frames presented above utilise a wide range of different justifications and

attacks, but they do not allow for exchanging a series of subsequent arguments in a single

conversation. To sketch the process of modularising the frames we have used so far and

combining them appropriately to enable iterated arguments, we shall give an outlook on

how this can be achieved.

repository frames here only for ease of presentation.



6.3. Advanced Experiments 207

Ideally, we would like to have one challenge-justification-attack-concession cycle

frame for each particular justification-attack type listed in tables 6.10, 6.11 and 6.12. These

frames could then be added to perceived encounter prefixes in such a way that they enable

agents to continue a discussion to exchange different arguments (and hopefully reach an

agreement). Obviously, introducing one such frame for each of the five justification-attack
combinations is a tedious business and also suggests that we are overlooking possibilities

for generalisation.

In fact, the eleven frames we have used so far can be reduced to a much more concise

set of six frames by introducing predicates and rules that capture all the relationships be-

tween justifications and possible attacks at knowledge-base (rather than frame condition)

level:

goal(A, G) ∧ achieves(X, G)⇒justification(means(X, G), do(A, X))

goal(A, G) ∧ ¬achieves(X, G)⇒justification(threat(X, G),¬do(A, X))

problem(P, X)⇒justification(problem(P, X),¬do(A, X))

¬P⇒attack(¬P, problem(P, X))

goal(A, T) ∧ ¬achieves(X, T)⇒attack(threat(X, T), means(X, G))

achieves(Y, G) ∧ X 6= Y ⇒attack(alt-means(Y), means(X, G))

goal(A, G) ∧ goal(A, T) ∧ achieves(X, G)⇒attack(alt-goal(G), threat(X, T))

Essentially, these rules express the same constraints on goals, means, and problems as the

frame conditions in the set of IBN frames previously introduced yet in a way that allows for

generalising over different justification-attack combinations.

Based on the justification and attack predicates, we can define the core element of con-

trolling the argumentation process which is a logically reified notion of agent intention. By

adding the rules

∀A∀X.intends(A, X)⇔ ∃J. (justification(J, X) ∧¬∃C. attack(C, J))
∀A∀X.intends(A, X)⇔ ¬intends(A,¬X)

to each agent’s knowledge base we make explicit that an agent is supposed to intend (from

a social perspective) an action X iff there exists a justification J for X that cannot be at-

tacked. Also, for any action X, the agent must either intend X or ¬X, i.e. object to perform

X. In other words, unless an “invulnerable” justification can be provided for not doing X,

the agent must accept to do X and vice versa. It has to be emphasised that this constitutes

a “social” notion of what one should be willing to do and has nothing to do with what the
agent actually wants to do from a subjective perspective.

What we also need to track the current issue that is being discussed (and which po-

tentially changes during consecutive argumentation cycles) is a predicate topic(D) which

denotes that D is the point at issue. In our scenario, D is always an action, but in the gen-

eral case it might also be a statement about the physical world or a mental state that is

being argued about. The following rules govern the changes to this topic that occur after a
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certain justification has been provided:

new-topic(D, alt-means(Y), Y)

new-topic(D, alt-goal(H), D)

new-topic(D, threat(X, H),¬D)

new-topic(D, problem(P, X), D)

The role of this change of topic in iterated argument exchange will become clear in the

examples below. The same holds true of the predicate defied(J, D) which is used to denote

that justification J for issue D has been defied before by the other party.

With this, we are ready to define the set of frames that can be used for iterative IBN.

They are shown in table 6.13. The frames FRD and FRR stand for execution and rejection

of the requested action X. According to FRD, B has to accept unless it has previously been

shown (through an exchange of arguments) that intends(B,¬X) is the case. After the re-

quest, topic(B, do(X)) is added to the repository (to make sure the topic is stored in case

an unexpected reject follows) which is removed is do(B, X) is observed. FRR indicates that

rejection is certain if intends(B,¬do(B, X)) has been proven from A’s perspective. B, on

the other hand, can activate this frame unless he has been proven to intend do(B, X).

The three actual justification-attack-concede frames require the existence of a topic(D)
fact in the knowledge base and stand for successful justification (FAJC), successful attack

(FAJAC), and successful challenge (FAC), respectively. Using the justification and attack pred-

icates, they control the generation of new justifications and attacks. Once a justification

has been defeated by some attack, a defied-fact is stored in the knowledge base, so that this

justification cannot be used again. Concession implies that the topic (and all defied-facts

associated with it) is deleted, and may entail the addition of intends-facts depending on
whether the conditions for this rule are met. More specifically,

• if an attack is successful, the challenged party has to concede that it intends the op-

posite of what it argued for;

• if a justification cannot be attacked, the attacking party has to give in because there

exists at least one unvulnerable attack;

• if a challenge is successful no justification could be found and the attacking party

wins.

Thereby, the new-topic predicate is used to “shift the topic” of discussion. For example, if

Y is an alternative action for a goal that was named as a reason for not wanting to exe-

cute some action and FAJAC is performed, then the new topic will become Y so that the

requesting agent can demand this action from the peer in the next iteration.

The purpose of the last frame FRA, finally, is to enable swapping roles so as to be able

to challenge the original request (rather than a rejection). This happens by requesting a

discussion which the other has to accept (as no other frame matches and the frame condi-

tions hold trivially). Returning to the example conversation we analysed above, this could
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FRD =
〈 〈 0
→ request(A, B, do(B, X))

0
→ do(B, X)

〉
,

〈
{¬intends(A,¬do(B, X)),¬intends(B,¬do(B, X)), add(topic(do(B, X)))@1,

remove(topic(do(B, X)))@2, can(B, X)@1, effects(X)@2}
〉

,
〈 0
→ 〈〉

〉〉

FRR =
〈 〈 0
→ request(A, B, do(B, X))

0
→ reject(B, A, do(B, X))

〉
,

〈
{self (A), intends(B,¬do(B, X)), add(topic(¬do(B, X)))@2},

{self (B),¬intends(B, do(B, X)), add(topic(¬do(B, X)))@2}
〉

,
〈 0
→ 〈〉, 0

→ 〈〉
〉〉

FAJC =
〈 〈 0
→ ask-reason(A, B, D)

0
→ justify(B, A, J) 0

→ concede(A, B, D)
〉

,
〈
{self (A), topic(D), justification(J, D),¬∃V1.attack(V1, J),

add(intends(B, D))@3, add(intends(A, D))@3,
remove(defied(·, D))@3, remove(topic(D))@3},
{self (B), justification(J, D), add(intends(B, D))@3, add(intends(A, D))@3,

remove(defied(·, D))@3, remove(topic(D))@3}
〉

,
〈 0
→ 〈〉, 0

→ 〈〉
〉〉

FAJAC =
〈 〈 0
→ ask-reason(A, B, D)

0
→ justify(B, A, J) 0

→ attack(A, B, C)

0
→ concede(A, B, C)

〉
,

〈
{topic(D), justification(J, D),¬defied(J, D)@1, attack(C, J),

add(defied(J, D))@4, new-topic(D, C, E), remove(topic(D))@4,

add(topic(E))@4}
〉

,
〈 0
→ 〈〉, 0

→ 〈〉
〉〉

FAC =
〈 〈 0
→ ask-reason(A, B, D)

0
→ concede(B, A,¬D)

〉
,

〈
{self (A), topic(D), add(intends(B,¬D))@2, remove(topic(D))@2,

remove(defied(·, D))@2},
{self (B), topic(D),¬∃V2.justification(V2, D), add(intends(B,¬D))@2,

remove(topic(D))@2, remove(defied(·, D))@2}
〉

,
〈 0
→ 〈〉, 0

→ 〈〉
〉〉

FRA =
〈 〈 0
→ request(A, B, do(B, X))

0
→ req-discuss(B, A, do(B, X))

0
→ acc-discuss(A, B, do(B, X))

〉
,

〈
{add(topic(do(B, X)))@3}

〉
,
〈 0
→ 〈〉, 0

→ 〈〉
〉〉

Tab. 6.13: Frame set for iterative interest-based negotiation with m2InFFrA.
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be re-enacted by the sequence

request(a, b, do(b, addLink(b, a, 3)))→ reject(b, a, do(b, addLink(b, a, 3)))

→ ask-reason(a, b,¬do(b, addLink(b, a, 3)))

→ justify(b, a, threat(do(b, addLink(b, a, 3)), +score(b)))
→ concede(a, b, threat(do(b, addLink(b, a, 3)), +score(b)))

using the iterative IBN frames just introduced. But the difference is now, that although a
would know that intends(b,¬do(b, addLink(b, a, 3)) is the case and is not allowed to acti-

vate FRD for this reason again, he can request a different action in the same encounter (by

using the procedure for trajectory concatenation described in section 5.2.2), e.g. by saying

request(a, b, do(b, deleteLink(b, a))).

Let us assume b wants to challenge this request, and after swapping roles by performing

the sequence

request(a, b, do(b, deleteLink(b, a)))
req-discuss(b, a, do(b, deleteLink(b, a)))
acc-discuss(a, b, do(b, deleteLink(b, a)))

b is able to place his challenge

ask-reason(b, a, do(b, deleteLink(b, a))),

which is responded to by

justify(a, b, +score(a))

on the side of a. If the next move is

attack(b, a, alt-means(do(b, modifyRating(b, a, 3)))

then a might not be able to find a suitable justification J that has not been defied yet, and

has to concede with

concede(a, b, alt-means(do(b, modifyRating(b, a, 3))).

At the same time, the topic has changed to modifyRating(b, a, 3) by applying the respective

new-topic rule, i.e. the agents are talking about a different action now. Finally, if a desires to

do so, he can start a new encounter sequence with

request(a, b, do(b, modifyRating(b, a, 3))),

and he can be sure that b will perform the action as he has implicitly admitted that

intends(b, do(b, modifyRating(b, a, 3)) holds.

Although we have not compared iterative IBN frames to the previous “one-shot” IBN

frame in real experiments, these examples give a vivid illustration of the levels of elabora-

tion that can be achieved by combining different m2InFFrA frames. A comparison between

the one-shot and the iterative IBN frames reveals an interesting property: In the one-shot

frames, we had to explicitly list a number of different trajectories for the different types of
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arguments which is fairly awkward, but results in fairly simple frame condition sets. More

particularly, the one shot frames allowed to discern what kind of justification or attack was

intended by observing the performatives uttered by the other party. In contrast to this,

the relationships between attacks and justifications were “hidden” in complex logical rules

that cannot be directly observed in communication in the case of iterative IBN frames.

Generally speaking (i.e. not only with respect to the m2InFFrA architecture), this can

have a big impact on agents’ ability to deal with mis-framing, as iterative IBN frames dis-

close no more information about the intended justification or attack than is necessary for

the control flow of the interaction. At the same time, of course, they enable much more

complex forms of negotiation.

Thus, it seems that the more modular and general frames we construct, the more ho-

mogeneity assumptions have to be made regarding the internal reasoning mechanisms of
interacting agents. This means that a trade-off has to be achieved between generalised,

elegant frame representations on the one hand and verbalising internal agent level details

at the level of message surface structure on the other.

6.4 Summary
This chapter proved the adequacy of our approach by means of a thorough empirical vali-

dation of m2InFFrA. First, we introduced the LIESON system, a complex software simulator

that provides a suitable testbed for evaluating the interaction management and learning

architecture we devised. LIESON is characterised by all the properties of a realistic appli-
cation domain that matter for our purposes: complete agent autonomy, openness of the

environment, incomplete knowledge, volatility of environment conditions, and the neces-

sity for strategic interaction to achieve a mutually beneficial situation.

Subsequently, we discussed the experimental setup, i.e. internal parameters, utility

benchmarks, frame condition handling and other practical issues that arise during the im-

plementation of a concrete, m2InFFrA-based software system.

This was followed by an extensive report on so-called basic experiments conducted
with simple, proposal-based frames. The central conclusion that can be drawn from these

experiments is that agents are able to learn to the strategic use a set of given frames (and

also of generalised versions of these that result from frame merging as well as “broken”

frames which are generated after framing failures). Furthermore, an analysis of the ef-

fects of different desirability strategies showed that, depending on the requirements of the

particular application, we can trade off the importance of safeguarding agents against ex-

ploitation versus a socially cooperative attitude.

This setup was adopted for the advanced experiments without any further modifica-

tion. A substantial portion of the discussion of this second series of experiments was de-
voted to introducing interest-based negotiation, a framework that allows agents to reason

and argue about their goals and beliefs during negotiation. The application of m2InFFrA
to IBN demonstrates how frames can be developed from scratch to suit a given regime

of communicative rules and conventions. The effectiveness of our approach was most

strikingly illustrated by experiments in which m2InFFrA agents manage to cope even with

this very complex social setting. Also, these advanced experiments prove that employing

the proposed social reasoning architecture in different scenarios requires only high-level

(i.e. frame specification level) modifications to the architecture.
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Quite naturally, we have not been able to evaluate system performance for just about

any possible configuration, and many issues were not touched upon that would have been

interesting to analyse: changing agent populations and scalability issues, different levels of

communication cost, and prior frame knowledge, to name but the most obvious. However,

since this is the first account of a formalised and implemented frame-based reasoning ar-
chitecture, we believe that the results we have discussed are highly reassuring as concerns

the potential for future improvements to the architecture.

Most importantly, this is the case because we have managed to integrate knowledge-

level reasoning about communication with experience-based communication learning,

thereby bridging the gap between agent cognition and the evolution of social interaction

and communication processes.

Departing from the pure “interaction reasoning and learning” view of this (and the pre-

vious two) chapters, the following chapter shows how InFFrA can be applied to other kinds

of applications.
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Because of their generic character, interaction frames and InFFrA can be used as a foun-

dation for many concrete methods and systems that lie beyond the scope of the m2InFFrA-

LIESON combination that our analysis so far was based on.
As examples of areas to which the framework has been or might be applied, we discuss

opponent classification in games, integration with supra-individual communication system

approaches, and formal autonomy specification methods.

After this, we list a number of more general ideas for miscellaneous possible applica-

tions of frame-based approaches to elucidate the potential of our approach from a more

global perspective.

7.1 Opponent Classification
Opponent modelling is one of the core areas of multiagent learning. In large-scale MAS

in which interactions among particular agents are only occasional, the ability to model

some other agent so as to be able to develop an optimal interaction strategy towards him

is severely confined by the fact that only very little information is available about each and

every particular peer.

Obviously, using a classification approach to categorise other agents and build models

of opponent classes rather than individual adversaries is one possible solution to this prob-
lem. In (Rovatsos and Wolf 2002), we proposed the ADHOC heuristic (ADaptive Heuristic

for Opponent Classification) as an InFFrA-based method that aims at providing a classi-

fication mechanism independent of the concrete method applied to modelling opponent

behaviour itself.

7.1.1 AdHoc
The target application domain of ADHOC is that of iterated multiagent games. We assume

that agents move around on a toroidal grid, and whenever two agents meet in the same

caret, they play a fixed number of l Prisoner’s Dilemma (PD) (Luce and Raiffa 1957) games

(the payoff matrix of the one-shot game is shown in table 7.1). If more than two agents
meet, the pairs of agents that are going to play against each other are randomly deter-

mined. Neither of the two agents knows what strategy his opponent is pursuing, and only

perceives the actions performed by both parties and the payoff he receives after each game

himself. The goal of the game is, of course, to maximise one’s own long-term cumulative

payoff.

ADHOC assumes that an opponent modelling method OM is available which can be

used to learn an adequate model of an opponent in the long run by observing the be-

haviour of that opponent. In our implementation, for example, we use the US− L∗ algo-
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a j C D

ai
C (3,3) (0,5)

D (5,0) (1,1)

Tab. 7.1: Prisoners’ Dilemma payoff matrix. Matrix entries (u i, u j) contain the payoff val-

ues for agents ai and a j for a given combination of row/column action choices,
respectively.

C D

D

C

DC

Fig. 7.1: DFA for the TIT-FOR-TAT strategy in the Prisoner’s Dilemma game. Edge labels

represent “own” action choices and state labels the other’s reactions to these ac-

tions.

rithm proposed by Carmel and Markovitch (1998). This algorithm models every opponent

as a deterministic finite automaton (DFA) that is consistent with a number of observed ac-

tion sequences. Basically, this is achieved by introducing additional (hypothetical, as they

are not observed themselves) internal states of the peer’s decision model whenever the ac-

tion sequences generated by the peer indicate a choice point at some step (i.e. if sequences

differ after this step). Figure 7.1 shows a sample DFA that would be constructed by US− L∗
if the other was behaving according to the famous TIT-FOR-TAT strategy.

What ADHOC does is to build and maintain a (variably-sized, bounded) set of opponent

classes

C = {ci = 〈Ai, Qi, Si〉|i = 1, . . . k}

where each class consists of

1. a DFA Ai that models the behaviour of opponents in ci,

2. a Q-table Qi to learn optimal strategies against Ai (the state space of the Q-table is

the state space of Ai, and its entries are updated using the rewards obtained after

each of the l rounds),

3. a set of samples (recent fixed-length sequences of game moves of both players) S i
with which Ai is trained (these are collected whenever the modelling agent plays

against class ci).

Further, a similarity measure σ : Agents× C → [0; 1] between adversaries and classes is

maintained, as well as a (crisp) membership function m : Agents→ C that describes which

opponent pertains to which class.

After a sequence e of games has been played with opponent a during an “encounter”,

the modelling agent updates the sample set Si for ci = m(a) and adapts Ai if it fails to

predict e correctly (m(a) is initially undefined for all a). Also, the values in Q i are updated

with payoffs received during e, so that an optimal strategy is learned over time.
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The classification procedure relies on the definition of a function BestClass(a, e, C , k, ρ)
which retrieves the most appropriate class for opponent a given the current encounter e.

The function attempts to find a class in C that matches e with at least similarity ρ. If no

such class can be found, a new class is created, unless |C| = k, i.e. the upper bound on the

number of admissible opponent classes has been reached. If |C| = k, the constraint on ρ is
dropped and the most similar class is returned as the best candidate for classification of a.

Roughly speaking, the top-level classification procedure (which is called after an encounter

e is finished) is based on the following principles:

• First, all σ(a, c)-values are updated for the current opponent a and each class c ∈ C.

Similarities are always computed as the ratio between encounters with a correctly

predicted by c and the total number of encounters with a.

• If a is an agent encountered for the first time, he is classified to any c that correctly

predicts the current encounter e (this is achieved by applying ρ = 1 in the BestClass
function).

• If a is a known agent, nothing needs to be done unless the opponent model (class)

m(a) has been modified because of e, which only happens if m(a) did not correctly

predict e.

• If e caused modifications to m(a), the σ-values for all agents not in m(a) are reset to

0 since nothing can be said about their similarity with m(a) if the model for m(a) has

just changed; also, empty classes are erased from C.

• If σ(a, m(a)) falls below similarity threshold δ, or if m(a) has been stable for a long

time, this means that m(a) changed since a was classified to it and/or that m(a) is

a very useful class since it correctly classified many opponents. Therefore, a is re-

classified to the maximally similar class, which has to be at least as similar as some

threshold ρ1 (using BestClass).

• Even if similarity is larger than δ we still re-classify a unless m(a) is a highly stable

model, but only to highly similar, highly stable classes (using a threshold ρ2 � ρ1
when calling BestClass), so that similar (or identical) classes are merged in the long

run.

As concerns action choice during encounters, the Q-table belonging to m(a) is used (with

additional Boltzmann exploration) if a has been classified before. If a is encountered for

the first time, the most similar class is determined after each move using σ-values, and the

action suggested by the respective Q-table is played.

ADHOC has proved quite effective in simulation experiments: When playing against n
fixed strategies, it converges to n classes that can play optimally against arbitrary numbers

of adversaries as long as these play one of the n strategies. If all agents use ADHOC, on the

other hand, no stable global behaviour emerges, agents make random action choices. Only

if additional assumptions are made (e.g. if agents play TIT FOR TAT for a while themselves

whenever the other exhibits random behaviour) can cooperation be established (we refer

the interested reader to a detailed account of these results in (Rovatsos and Wolf 2002)).
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7.1.2 InFFrA-based analysis
The development of ADHOC was guided by the general idea of abstracting from individual

opponents in favour of looking at different types of opponents relying on the intuition that

human social reasoning also uses stereotypes, especially if little information is available

regarding a particular person one is interacting with.

Since ADHOC is a method to record, organise and exploit regularities in interaction

processes in a socially intelligent way, we can analyse and characterise it in terms of InFFrA
terminology. For this purpose, we look at different elements of InFFrA and identify the

corresponding ingredients of ADHOC one by one.

Interaction Frames

The opponent classes in ADHOC can be conceptualised as interaction frames with a tra-

jectory model (the automaton, a causal model of reaction to one’s own actions) defined

in terms of two roles whose relationship is one of mutual interdependence: One role is

always fixed – the modelling agent itself; the other role is described by keeping track of

all opponents who match it (this is done by the m-function). The context model is largely

trivial: Activation and de-activation conditions are simply “being in the same caret with
an opponent” and “having finished l IPD games”, pre- and sustainment conditions are

empty. Post-conditions are represented by means of the Q-table which captures reward

expectations. As for beliefs, these are implicit to the architecture: Both agents know their

action choices (capabilities), both know the game has a fixed length, both know that the

other’s choices matter. Links exist implicitly between all frames since they are all exclusive

alternatives to each other: they share role sets, belief models and context (apart from post-

conditions) and are tailored for the same kind of interaction (since there is only one type of

interaction). So what makes one frame different from the other are DFAs, Q-value tables,

and Si-/σ-data stores.

The history of a frame is stored through the entries of the Q-table and the samples in

Si-sets that reflect past experiences with that frame. As for status, a role assignment takes

place whenever encountering an agent by using Ai to predict its behaviour, and trajectory

status is updated by state changes in the DFA during play. Tracking context status is trivial
except for the Q-update, but the update of the σ-function as well as re-setting their val-

ues in case of DFA modification track framing experience across frames, and they actually

manipulate all frames’ private attributes simultaneously. More particularly, the difference

model that is represented by σ-values is constantly computed for all frames with respect

to the current interaction situation (cf. below).

Framing

As concerns framing, InFFrA cannot only be used to model the processing steps of ADHOC

sketched above, but also to identify weaknesses and advantages of the heuristic and this

underlines the usefulness of InFFrA for improving existing systems.

To achieve this, we need to distinguish between (i) the case in which the current oppo-

nent a has been encountered before and (ii) the case in which we are confronted with an

unknown adversary.
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Case (i): The matching process occurs at the start of every encounter; m(a) is chosen

(blindly) as the most appropriate frame from the repository and is activated. This choice

is then never altered during the encounter and this is a first disadvantage of the system,

because no frame assessment and adjustment occurs during encounters, thus limiting the

adaptability of the modelling agents severely within the current interaction.
In situation interpretation, the current sequence of moves (the perceived frame) is

recorded, stored in Sm(a) and the entries in the Q-table are updated according to recent

payoffs. Frame matching consists of updating similarity values for all frames with respect

to a. Compared to the InFFrA intuition, this is a much more complex matching activity,

since it compares the difference model with all classes, so that the lack of framing assess-

ment is partly made up for by adding complexity at the frame matching stage.

As mentioned, frame assessment and re-framing occur only after the encounter: Frame

validity is assessed according to whether the current sequence of opponent moves is un-

derstood by the DFA in m(a) or not. Here, we observe a second drawback of the prototype:

Adequacy and desirability assessment is clearly under-developed, since neither consis-

tency of Q-values nor the expected usefulness (e.g. expected future payoff with that class)

of frames is taken into account. For example, the classification heuristic would not be able
to cope with types of opponents whose actions have different utility outcomes for the mod-

elling agent. If, e.g., own payoff matrix entries differed across opponents, those opponents

would still end up being classified identically if they perform identical actions. Also, since

the agent has no choices regarding partner selection, it does not make sense to weigh the

desirability of entire Q-tables against each other.

As a consequence, the framing decision itself has only effects on future encounters with

the same agent. It depends on the simple criterion of whether the DFA of c has just been

modified or not. If so, the frame adjustment module comes into play: It potentially re-

classifies a, creates a new class for it and resets similarity values for non-members of c. At

the same time, it seeks to retain highly stable classes and to merge similar classes in the

long run. This is undoubtedly the most elaborate component in the opponent classifica-
tion MAS, and it nicely illustrates the possibilities of a long-term organisation of interac-

tion experience, especially because, in a boundedly rational manner, it tries to distinguish

between frames only where necessary. Trial instantiation, on the other hand, is very sim-

ple: It can be trivially reduced to using the maximally (and highly) similar candidate frame

as the new value for m(a), because similarities between a and all classes are constantly

tracked.

Frame enactment is performed by tracking opponents’ actions in the current DFA and

by selecting the next move according to the Q-table. Then, since there are no other rea-

soning levels to compete with, behaviour generation is straightforward. In this enactment

stage, a third shortcoming can be identified that probably explains the lack of structure

in interaction among ADHOC agents described above. It lies in the fact that the frames
impose no restrictions on the action selection mode of the modelling agent himself – in

fact, the trajectory represented by the DFA prescribes only the actions of the opponent,

and the modelling agent is merely optimising its behaviour towards that opponent. There-

fore, since no agent feels it should comply with some more specific pattern of behaviour,

no recurring efficient interaction patterns can emerge unless the ADHOC agent is playing

against fixed-strategy opponents.

Case (ii): In the case of unknown opponents, frame assessment and re-framing is im-

plemented as in the previous case. The differences lie in matching and in making framing
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decisions, which occurs after each round of the encounter (and not only after the entire

encounter). After each round, the modelling agent activates the most similar class with

respect to the current sequence of moves and uses this class for enactment decisions (ac-

cording to the respective Q-table).

Again, this illustrates the implementation of the bounded rationality principle: The

framing effort is in this case much greater (and adheres much more to InFFrA require-

ments), given that interactions with unknown agents are much riskier than those with

known adversaries. This suggests that an extension of the opponent classification heuristic

that also allows for re-framing during encounters in case (i) might increase agent perfor-

mance, yet at a greater computational cost.

This evaluation provides evidence for the practical use of InFFrA as a conceptual frame-

work that supports the analysis of existing MAS by decomposing social reasoning algo-
rithms into different functional components. Starting from the functionality of these com-

ponents, we can identify advantages and shortcomings of the analysed systems and sug-

gest improvements.

Of course, our framework is not applicable to just about any social reasoning archi-

tecture. ADHOC is an approach which, like InFFrA, focuses on managing different types

of interaction patterns and on how to exploit these in a strategic way. Also, like InFFrA,

it strongly relies on social abstraction and transient social optimality (section 5.1.1) itself.

Our analysis shows that InFFrA provides the appropriate modelling tools for this kind of

social reasoning methods.

7.2 Integration with Communication Systems
In section 4.1, we already discussed communication systems (CSs) informally and ex-

plained how they can be seen as a foundation for the empirical semantics of m2InFFrA de-

veloped in 4. As has been mentioned there, we have developed a full-fledged formal model

of CSs elsewhere (Nickles and Rovatsos 2004, Nickles et al. 2004b, Nickles et al. 2004a) that

is based on defining how a knowledge-based entity that observes communication in a MAS

can use an expectation network (EN) to model the empirical semantics of communication

and its evolution in that MAS.

In the formal model suggested in (Nickles and Rovatsos 2004) and then further adapted

in (Nickles et al. 2004a), ENs are modelled as probabilistic trees that capture continua-

tion probabilities between subsequent message patterns by labelling edges with transi-

tion probabilities, while edges or sets of edges can additionally be conditioned with log-

ical constraints and/or variable substitutions. Apart from so-called cognitive edges that

are derived from observation and are thought to represent the actual communicative be-

haviour of agents, ENs may also contain normative edges which may not directly relate to

observation but express an additional “normative force” that influences certain continua-

tion probabilities without empirical evidence. This may be useful when the CS has certain
expectations that have not been fulfilled yet and it is reasonable to make some a priori

assumptions regarding the effects of certain messages. For example, it may be realistic to

assume that an agent who has been mislead by some other agent is unlikely to communi-

cate with that agent again.

Figure 7.2 gives an example of an EN in the CS framework with paths for different kinds

of conversations, partially conditioned by certain logical conditions and/or variable sub-
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can(B,X)

reject(B,A,X)
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Fig. 7.2: An expectation network. Nodes are labelled with message templates and the spe-

cial symbols “.”, “⊥” and “?” that indicate conversation initiation, termination

and “don’t know” semantics, respectively. Nodes are connected by (solid) cogni-

tive edges labelled with numerical probabilities in italic font, or (dashed) norma-

tive edges with round circles containing a numerical “force” value in bold face.

Substitution lists/conditions belonging to edges appear in rounded/edged boxes

near the edge. If neighbouring edges share a condition this is indicated by a drawn
angle between these edges.

stitutions (whose semantics is that the paths are only relevant if the respective conditions

are fulfilled at present and/or if the variables have the respective values).

Normative (dashed) edges are labelled with a numerical “force” that determines

whether and to which degree they increase or decrease the probability of their target node

when a conversation is observed that has lead to their source node. Note that an EN aug-

mented by normative edges need not be a tree, as these edges may point to ancestor nodes

of certain messages (in the example above, the “start” node of a conversation that leads to
the same path would become less likely after the utterance that lead the agent to realise he

is being betrayed and this node is obviously a descendant of the “start” node). Also, norma-

tive edges may have an impact across different paths on the tree, if, e.g., one conversation

makes another one more likely (the betrayed agent can be expected to file a complaint

against the fraudulent one to a third party, for instance).

Special labels are used to denote encounter initiation, encounter termination and

“don’t know” semantics. Messages have these “don’t know” semantics if they (and their

consequences) have never been observed before, or if there is such high variation in their

potential consequences that no clear semantics can be discerned.

The complete CS formalism, which we will not go into here for lack of space, provides
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a framework for defining all aspects that are relevant to processing such ENs:

• It allows the designer to specify how the EN is updated upon observation of a new

message. This involves:

– Initialising the EN at the start of the observation process, where it need not nec-

essarily be empty, but may contain prior expectations of the observer.

– Identifying whether the new message is a continuation of an existing path (and,

if so, how to determine that path) or whether it marks the start of a new en-

counter.

– Defining update rules for edge weights. These weights might simply measure

frequencies of certain observations, but there might also be some bias towards

certain expectations, e.g. if certain continuations are ignored as “misunder-

standings” or particularly highlighted as “desirable” courses of interaction.

• It can be used to project expectations about future communication using the current

EN, and to weigh the importance of normative edges appropriately, depending on

how the information the EN provides will be used in the actual system.

• It enables the designer to define rules of long-term EN management, which may in-

volve (for example) pruning paths that occur very rarely, coercing existing paths into

more abstract ones whenever appropriate, splitting overly long paths when a certain

modularity of “parts of a dialogue” is discernible, etc.

• It provides means of incorporating the world knowledge of the observer into the pro-

cess of updating and using the EN.

What is important to understand is that CS can be used to construct active observers of

communication which evolve their own model of communicative expectations over time

and in doing so take their own beliefs and goals into account. This means that the observer

does not necessarily maintain a one-to-one picture of the correlations between commu-
nicative actions in a system, but that he may derive a biased, incomplete or even “wrong”

view of the ongoing communication if this suits his own purposes.

Using the CS approach we can endow one ore more system components with knowl-

edge about the regularities that govern communication in a MAS, which can then be used
for different purposes:

• A CS can be used to develop a social system mirror (Lorentzen and Nickles 2001) that
records these regularities and provides agents with information about social struc-

tures by virtue of “reflecting” what has been observed globally to the individual agent.

Each agent can use this information to guide his own communication behaviour.

• At an agent-oriented software engineering level, such mirrors can be utilised as a

CASE tool by human software designers to manage the evolving behaviour of open

systems, as has been suggested in (Brauer et al. 2001). The EXPAND (EXPectation-

oriented ANalysis and Design) method proposed there is based on using a CS view

of a MAS to monitor how agents communicate while the system is in operation. This

is claimed to be an adequate method for systems in which the internal design of the

agents cannot be assumed to be known by the designer of the MAS (different agents
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may represent different stakeholders, they may have been designed by one person

but changed their behaviour due to adaptiveness, etc.) With the information derived

from the respective CS, the designer can take appropriate measures without restrict-

ing agent autonomy if the MAS exhibits undesirable behaviour. For example, it can

manipulate the EN reflected back to the agents, so that they take different communi-
cation norms into account when making communicative decisions.

• Expanding upon the mirror concept, mirror-holons were proposed in (Nickles and

Weiss 2004) to act as middle-agents that may even restrict other agents’ autonomy

and reduce them to normal distributed procedures whenever appropriate. The idea

here is that once an efficient and stable global pattern of behaviour has emerged and

has been identified by the mirror, the whole MAS can switch to a “normal distributed

system with centralised control” mode, and the mirror (which now embodies, in a

sense, all agents’ local functionalities and can therefore be regarded as a holon) can

simply “execute” this pattern. When the environment changes and decentralised

control makes sense again, agents may re-gain their autonomy, and this process can

be iterated as necessary.

A variety of other applications have been sketched in (Nickles and Rovatsos 2004), (Nickles

et al. 2004b), and (Nickles and Weiß 2003). What is common to most of them is that even if

observation takes place at a supra-individual level, the knowledge that is derived for them

should eventually be used by agents. So, the question arises of how to get EN knowledge of

a CS into agents’ “heads”? – our frame-based approach is an answer to this question.

As we have shown in (Nickles and Rovatsos 2004), it is not possible to convert any given

EN into a frame repository with identical continuation-predicting semantics, while the

converse mapping can be easily achieved (by simply turning each frame trajectory into

a path, labelling edges with appropriate conditions and substitutions and deriving edge

weights from trajectory and substitution counters). This is also what we would expect

as CSs constitute a framework that is much more general than that of interaction frames.
However, we can approximate a given EN (or a sub-portion of it, since the global system of

communication regularities will neither be manageable nor interesting for a single agent)

by a set of m2InFFrA frames such that the continuation probabilities derived from the re-

spective frame repository correspond to those that the original EN would have predicted.

This paves the way for employing m2InFFrA in the CS applications listed above, and it

supports the claim that InFFrA has the capacity of mediating between global social knowl-

edge (potentially gathered using a much more global perspective than that of a single

agent) on the one hand and its cognitive processing on the other.

7.3 Integration with RNS
When describing a social context, InFFrA mostly relies on defining this context in terms of

the surface structure of communication patterns, i.e. it is primarily trajectory-centred.

The roles, norms & sanctions (RNS) framework (Nickles et al. 2002, Weiß et al. 2003)

takes an alternative approach by providing a formal schema for specifying actors in a MAS

in terms of the roles these agents may fill and what activities are associated with these roles.

In that, the central aim of RNS is to enable a precise and fine-grained specification of com-

putational autonomy by defining each activity in terms of norms and sanctions associated
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with it. In other words, RNS is a formalism for the role-based definition of behavioural

expectations.

In RNS, the social frame of a MAS is defined in terms of a role space that is a collection

of roles. Each role, in turn, is defined through a set of activities, and specifying such an

activity requires defining the norms and sanctions that the activity is subject to. To be a bit
more specific, each activity is associated with a set of norm-sanction pairs (so-called status

statements) which define its status range. The syntax for these statements is

<status type>: NORM<norm type> <condition> + SANC<sanction type> <sanction>

where

• status type can be used to indicate whether the validity of the respective norm-

sanction pair DEPends on someone who will request the activity or holds

INDependently of any request,

• norm type explains whether the statement expresses a Permission, Obligation or

Interdiction to perform the activity and condition describes under which conditions

the statement becomes relevant, and

• sanction type describes whether the sanction sanction exerted on someone failing

to comply with the norm is a REward or a PUnishment (i.e. a positive or negative

sanction).

Informally speaking, such a status statement has the following semantics: If it is attached

to activity A and activity A makes part of role R, then any agent who fills role R has to

adhere to the norm specified in this statement. If the sanction is of type RE, the agent will
be rewarded by the “sanction” specified in the statement for fulfilling the norm. If it is of

type PU, he will have to face the specified punishment for not adhering to the norm.

RNS supports four different kinds of activities:

1. Basic activities concerned with resource and event handling in the environment,

2. request activities, i.e. requests for execution of activities by others,

3. sanctioning activities that result in punishing or rewarding other agents, and

4. change activities which change the norms and sanctions associated with certain ac-

tivities.

This makes RNS a highly expressive tool for specifying what agents are obliged, permitted

and prohibited to do in terms of executing actions in the environment, requesting things

from others, reacting to norm fulfilment and violation, and even altering the normative
frame of a MAS.

Instead of going into the details of all four types, table 7.2 provides two examples for

a basic activity and a request activity. In the first activity specification, three statements

specify who is entitled to deliver a material at a certain quantity (this activity might make

part of, say, a “producer” role). The first status statement says that without being asked

for it, any producer is permitted to deliver, and no sanction or reward is associated with

not delivering something at one’s own initiative (keyword NO). The second and third state-

ments depend on whether the producer is asked by someone else to deliver. The second
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ACT deliver ( material,quantity )

{ STATUS RANGE

<IND> : NORM<P> <NO> + SANC<NO> <NO>
<DEP EACH> : NORM<O> <quantity ≤ 100> + SANC<PU> <withdraw role>
<DEP AssemblyMg> : NORM <I> <material = steel> + SANC<PU> <pay fine>

}

ACT REQUEST ( EACH ; USsupplier ; NOT deliver ( material, quantity ) )
{ STATUS RANGE

<IND> : NORM<P> < (material = steel) AND (rating(material) = poor)> +
SANC<NO> <NO>

NORMATIVE IMPACT

NORM<I> <material = steel>
}

Tab. 7.2: Examples of activity definitions in the RNS schema

statement expresses that if any (keyword EACH) agent requests a delivery, the producer is

obliged to deliver if the quantity is less than 100. Otherwise, the producer role will be with-

drawn from the agent. The third norm-sanction pair is even more specific: If an assembly

manager agent (role AssemblyMg) requests the delivery of steel, the producer must not

deliver otherwise he will have to pay a fine.1

More complex still, the request activity specification in the lower part of the table de-

fines rules for any (keyword EACH) agent filling the USsupplier role under which he may ask

the producer NOT to deliver. In addition to their status range, such request actions also have

a normative impact 2 which describes the norms induced by a request. In our example, the
request not to deliver would result in an interdiction to deliver steel. The status range of

the activity contains an independent statement according to which the request may be is-

sued if the material is steel and is of poor quality. No sanctions apply if such a request is

not issued.

How does all this relate to InFFrA? As mentioned before, the central modelling primitive

of RNS are roles, i.e. it is an actor-centric approach, while InFFrA is more process-oriented

as models of frames are built around patterns of communication. Although these two ap-

proaches seem quite orthogonal, there are two reasons why it makes sense to integrate

them:

1. Both aspects (the specification of agents and that of interaction mechanisms) play a
crucial role in the practical process of engineering agent-based systems. It is quite

impossible to design a MAS without thinking about the (types of) agents involved

and the languages and protocols they will use to interact and communicate.

2. Both RNS and InFFrA pin down their typification of social knowledge on behavioural

expectations, whether these be activities attached to roles (in the case of RNS) or

frame trajectories (in the case of InFFrA).

1 Note that in a complete RNS specification, we would have to define roles and activities for these sanctions
elsewhere.

2 Similarly, sanctioning activities have a sanctioning impact (i.e. the execution of some concrete sanctioning
action), and change activities have a status impact that effects a change in the status range of some activity (by
deleting, adding or replacing norms/sanctions).
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To sketch what this process of integration might look like, let us assume a role space de-

fined in RNS describes the desired behaviour of agents who fill certain roles. Typically, such

a specification is part of the (early) analysis and design phase of MAS development, as it

describes what agents should be allowed and disallowed to do, but not how this is going to

be achieved.
More specifically, once the rules are available that define the autonomy status of each

role, we need some mechanism to confer them on agent cognition in a way such that they

can be reasoned about. Note that this does not mean that agents should be made to blindly

execute the norms associated with activities. In fact, it is one of the strengths of RNS that

it specifies the consequences of not adhering to normative rules rather than excluding this

possibility a priori and that, in this sense, it constitutes an autonomy-respecting approach.

This is where InFFrA comes in: If we are able to generate interaction frames from an

existing RNS specification, we can use InFFrA to strategically reason about the normative

context in a social system. This is because InFFrA agents are able to take this social context

into account, without necessarily abiding by existing normative rules. If normative knowl-

edge is available in the form of a set of pre-specified frames, agents can autonomously

decide when to use these frames based on their own goals and on the social consequences
that can be expected from certain actions.

So the question is: How can we construct frames that correspond to a given RNS role

space? Essentially, we have to look at the actual communicative processes that result from

the norms and sanctions specified for each activity and associate them with the respective

roles. For this, we can proceed as follows:

1. The communication language must be augmented by symbols for those physical ac-

tions that need to be referred to in communication because they appear in norm
and sanction specifications. These actions should be used as content values of do-

messages (or messages marked as “physical actions” in some other way).3 This must

be done for

(a) basic activities, as these constitute the primitives of environment-manipulating

actions and

(b) all punishing and rewarding actions that appear in the SANC parts of status state-

ments.

2. Statements of the form role(X, R) must be introduced for all roles in the role space

and all agents in the system, and the logical language used by agents must be ex-

tended to reason about these. Likewise, it must be ensured that all conditions occur-
ring in the NORM parts of all status statements can be handled properly.

3. In RNS, the basic communicative actions are requests and sanctions, so frames have

to be devised for each request-action and request-sanction pair. This can be achieved

by performing the following procedure:

(a) For each SANC part of a status statement of type IND related to a basic activity A,

a frame is created with the trajectory

〈do(X, A)→ do(Y, S)〉

3 Apart from these actions that occur in the RNS specification there may be, of course, other physical actions
that manipulate the environment. However, as these are not subject to normative expectations, they need not
be used in the language in which we express frame trajectories.
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where S is the sanction and X, Y are variables for the respective agents.

(b) For each SANC part of a status statement of type DEP related to a basic activity A,

a frame is created with the trajectory

• 〈request(Y, A)→ reject(X, A)→ do(Y, S)〉 if the norm type is O

• 〈request(Y,¬A)→ do(X, A)→ do(Y, S)〉 if the norm type is I, and

• 〈request(Y, A)→ do(X, A)→ do(Y, S)〉 if the norm type is P

with S, X, and Y as before.

(c) The roles & relationships slot of each of these frames must contain conditions

which describe that X fills role R if R is the role to the status range of which the

original status statement pertains. Constraints on agents Y and their roles must

be derived from the corresponding request (ACT REQUEST-marked) definitions

in RNS.4

(d) The conditions attached to the NORM part of each statement must be included

in the context slot (or beliefs slot, if they concern epistemic states) of the corre-

sponding frame.

We should take a minute to illustrate the frame construction procedure using the RNS

specification of table 7.2 as an example. If we employ m2InFFrA notation, converting the

activity specification to frames would result in the set of frames shown in table 7.3. F1
and F2 correspond to the first DEPendent status statement which obliges the producer (we

assume that the activity specifications of “deliver” pertain to the definition of a Producer
role) to deliver if the quantity is less than 100. To express norm-compliant and deviant be-

haviour, we obviously need two frames. Note also the use of a sanction(X, Y, S) symbol to

express that a sanction is executed. As we do not have any further information about who

will execute the sanction, we assume that Y can perform it himself.

Frame F3 refers to the status statement that prohibits delivery of steel to any

AssemblyMg agent. This time, for the sake of the example, we shall assume that Z is a third

party (here: a Supervisor agent) that has to implement the sanction.5 This frame nicely

illustrates the indeterminacy of agent behaviour in open systems, as it does contain the

sanction but not a possibility to preclude the undesired behaviour.

The last frame F4 captures the request activity of table 7.2. If a USsupplier agent requests

the producer X not to deliver steel of poor quality and X still does so, Y may sanction by

filing a formal complaint. It is noteworthy that the RNS request activity specification does

not mention this sanction but only the normative impact that follows from the request

activity (i.e. the interdiction to deliver). Therefore, we have included a sanction in F4 that

would correspond to the following RNS sanctioning activity specification:

4 Note that RNS allows for a multi-perspective specification of status range for a single activity. As in the
example of table 7.2, the norms associated with the requesting party can be specified independently from
those of the requestee. If the specification of the request activity (or of a sanctioning activity) is omitted, then
obviously no role constraints apply to the agents who can issue the request or perform the sanction.

5 This implies we have to give up the strict turn-taking principles of m
2

InFFrA which would necessitate minor
modifications to the algorithms we have presented in previous chapters (all “other” parties can actually be
regarded as a single conversation party, so this will not make a big difference). Another alternative would be
to split the frame into two parts such that the sanctioning dialogue happens outside the context of the initial
(deviant) action.
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F1 =
〈 〈 0
→ request(Y, X, deliver(M, Q))

0
→ do(X, deliver(M, Q))

〉
,

〈
{role(X, Producer), Q ≤ 100}

〉
,
〈 0
→ 〈〉

〉〉

F2 =
〈 〈 0
→ request(Y, X, deliver(M, Q))

0
→ reject(X, Y, deliver(M, Q))

0
→ do(Y, sanction(Y, X, withdraw role))

〉
,

〈
{role(X, Producer), Q ≤ 100}

〉
,
〈 0
→ 〈〉

〉〉

F3 =
〈 〈 0
→ request(Y, X, deliver(M, Q))

0
→ do(X, deliver(M, Q))

0
→ do(Z, sanction(Z, X, pay fine))

〉
,

〈
{role(X, Producer), role(Y, AssemblyMg), role(Z, Supervisor), M = steel}

〉
,

〈 0
→ 〈〉

〉〉

F4 =
〈 〈 0
→ request(Y, X,¬deliver(M, Q))

0
→ do(X, deliver(M, Q))

0
→ do(Y, sanction(Y, X, formal complaint))

〉
,

〈
{role(X, Producer), role(Y, USsupplier), M = steel, rating(M) = poor}

〉
,

〈 0
→ 〈〉

〉〉

Tab. 7.3: Frames derived from the RNS specification in table 7.2

ACT SANCTION ( EACH ; EACH ; NOT deliver ; NORM<I> <material=steel> )

{ STATUS RANGE

<IND> : NORM<P> <NO> + SANC <NO>
SANCTIONING IMPACT

SANC<PU> <formal complaint>
}

It states that EACH agent who fills EACH (i.e. any) role may punish someone who violates

an interdiction to deliver steel by filing a formal complaint. This example also shows how

constructing interaction frames can aid the process of filling the gaps that may exist in an

RNS specification.

While these examples illustrate how the static specifications of normative rules in RNS
can be turned into specifications of communication processes by using InFFrA, this trans-

formation is of course by no means complete or devoid of problem issues:

• One problem is how to deal with change activities. These are different from basic,

request and sanctioning activities in the sense that they do not involve overt ac-

tion. Therefore, the question arises how these changes of normative activities can

be brought into the realm of communication. It turns out that this is actually a very

important question, because if one agent is entitled to alter the normative context of

a system, other agents can only successfully adapt to these changes if they have been

made explicit in communication.
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In general terms, this can be achieved by either (i) introducing generic frames for the

public announcement of changes in the status range of activities (which can be used

at the time of these changes) or (ii) by informing others about the current expecta-

tions associated with an activity during a conversation. We will return to these issues

in section 8.2.

• Another issue is how to handle the combination of O and IND in the status specifica-
tion of an activity. If the norm type is O it hardly makes sense to think of IND state-

ments because this would force the agent to execute the action all the time (therefore

IND usually only appears in statements with norm types I and P). However, a specifi-

cation of what to do in this case would be necessary if we were to provide a complete

procedure for transforming RNS schemata into frames.

• So far, InFFrA and m2InFFrA frames were assumed to describe the structure of com-

munication processes within the temporal scope of a single conversation. In contrast

to this, RNS norms are supposed to be valid for an extended period of time. If, for ex-

ample, one agent is supposed to refrain from doing something that was forbidden to

him by someone else, then the sanction should follow if he ever performs the prohib-

ited action again, even after the current conversation.

This necessitates a different form of conversation management from that imple-

mented in m2InFFrA such that agents can monitor actions performed with the con-

text of requests and sanctions in the long term and not de-activate that frame in the

meantime. What this entails is that the agent must be able to activate several frames

at a time (one for each norm-inducing conversation that has not been completed by

a sanction yet).

• As mentioned in footnote 4, RNS allows for the specification of norms and sanctions

from several different perspectives that concern a single activity. For example, a norm
that DEPends on someone’s request for a basic activity should be included both in the

definition of that basic activity as in the specification of the request activity.

With this respect, we should emphasise that InFFrA can by no means ensure that

all norms are defined precisely enough or that no conflicts between different norms

will occur (although it may occasionally aid this process, as in the example of F4). In

other words, if the original RNS specification is flawed, the resulting frames might be
unreasonable or not usable for the agents.

Still, we believe that both RNS and InFFrA can profit from combining the two approaches,

and that together, they provide very powerful tools both for the deontic specification of

a social context as for its realisation in terms of communicative conventions. Most im-

portantly, InFFrA enables us to transform the semantics of expectations defined in an RNS

specification into socio-cognitive patterns rather than to merely support the derivation of

syntactical aspects interaction mechanisms (messages, protocols) that are needed to im-
plement what has been previously defined in RNS.

7.4 InFFrA in different application scenarios
The previous sections have described three approaches that can be analysed, extended or

combined with InFFrA so as to obtain more powerful methods for social modelling and rea-
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soning. Next, we are going to look into practical application scenarios that are well-suited

for InFFrA as such to give a feeling for the wide range of possibilities to use the framework

in practice.

7.4.1 Markets and organisations
The experiments we have conducted so far dealt exclusively with negotiation among
loosely coupled agents where occasional interaction is the rule. Also, the negotiations were

conducted in a fairly voluntaristic vein in the sense that social commitment was very frag-

ile as agents may opt in and out of the agreements they make by violating their previous

commitments after communicating, and because there is no need to compromise one’s

private goals for the sake of social coherence.

Two very important “arenas” of social interaction in which these assumptions do not

hold and which play a very important role in human society and in a variety of artificial

multiagent systems are markets and organisations.

Markets enable complex forms of interaction by means of economic exchange. By us-

ing money as a universal medium of exchanging utility, agents are no more restricted to

merely performing those actions that are either profitable for themselves (and such op-
tions are rare in many applications as most physical actions involve some effort) or to ac-

tions for which direct reciprocal exchange (“I will do X for you if you do Y for me”) that

is mutually beneficial is available. This is because economic exchange enables agents to

trade monetary value for their own efforts or loss of resources since they can use money

to achieve other goals when entering other interactions in the future. Quite naturally,

market-based systems and the game-theoretic and decision-theoretic principles that are

used to model them constitute one of the major areas of research in distributed AI (see,

e.g. (Sandholm 1999)). Most of these approaches seek to devise interaction mechanisms

that fulfil certain optimality criteria and are safe against fraudulent behaviour in the sense

that such behaviour would be either irrational or eventually uncovered. Quite surprisingly,

the issue of how to learn the regularities of agent behaviour in markets (i.e. the market cul-
ture) has received comparatively little attention in the literature. Although there exist a few

approaches (such as, for example, the work of Tesauro and Bredin (2002) in which agents

learn optimal bidding strategies in auctions using reinforcement learning), there is still a

lot of work to be done in this area.

InFFrA would be very suitable for this purpose, and there are several reasons for this:

• As we have shown in the m2InFFrA model, it is possible to incorporate utility-based

considerations that are backed by decision-theoretic principles in the framing pro-

cess. In this way, we can combine rational reasoning with empirical reasoning about
the regularities that govern the behaviour of actors in a market.

• The generalisation mechanisms used in m2InFFrA enable agents to make “as many

distinctions as necessary” in the long run. Most market-based scenarios allow for dif-

ferent degrees of volatility of interactions (ranging from such occasional interactions

with the same set of interaction partners as in auctions to recurring negotiations with

long-lived business partners). With this respect, it would be possible for frame-based

agents to learn very general regularities for interactions that occur only occasionally

while being specific about those types of interactions whose instances resemble each

other very much.
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• Frames enable agents to combine the economic transaction itself with knowledge

about the whole communicative setting. They can correlate the observed be-

havioural patterns with attributes of the situation other than “who payed which price

and what they got for it” or “who made which bid at which stage of the auction”. This

can be very important in complex markets, because at the bottom line, any economic
transaction takes place within a wider societal context.

Interestingly, the shortcoming of overlooking the importance of actual behaviour and ex-

perience with interaction that can be observed in the area of market-based systems is

paralleled by a similar phenomenon in the field of computational organisation theory

(Carley and Gasser 1999). There, researchers are mostly concerned with the structural as-

pects of organisations (relationships, organisational rules, etc.) and only to a lesser ex-
tent with the evolution of interaction processes among members of an organisation (and

their organisation-external interaction partners). More specifically, once the organisa-

tional structure has been designed, the problem of how agents can deal with it remains

largely unresolved.

Organisations are probably one of the most complex social entities in human soci-

ety that a single individual can handle.6 In our view, interaction frames provide an ideal

method to facilitate this process for artificial agents and artificial organisations. First of all,

the framework laid out in chapter 3 and the complex examples given there demonstrate

that abstract InFFrA provides a variety of modelling tools that cover all relevant aspects

to model complex organisational processes. Secondly, InFFrA constitutes the missing link

between organisational structure and its cognitive processing. The designer can model

the organisation, define the respective communicative processes, and then endow InF-
FrA agents with knowledge about these processes so that they can properly interact with
the organisation. Thirdly, the idea of accepting existing social procedures but employing

them strategically to further one’s goals (rather than constantly modifying them) is prob-

ably more adequate for organisational settings than for any other level of sociality. This

is because organisations typically constitute that level of social exchange at which a set of

rules has to be accepted and complied with (and one usually commits to doing so when

signing the work contract) but must be used in whichever way is most useful for the ratio-

nally reasoning stakeholder who, after all, is pursuing his own agenda apart from that of

the organisation.

Finally, organisations possess the richest collection of complex forms of interaction

(workflow & business processes, different kinds of meetings, organised teamwork, nego-

tiation and contracting, delegation and reporting procedures, lobbying, informal discus-

sions, instruction and training, cooperative problem solving and knowledge management

to mention but a few). So, without doubt, they constitute one of the most challenging fields
of application for designing interaction frames and framing mechanisms.

7.4.2 Human-computer interaction
Until now, our analysis has been restricted to communication and interaction among ar-
tificial agents. Alternatively, it is possible to use InFFrA to provide agents with knowledge

6 In fact, it is often the case that even the complexity of the portion of an organisation that is relevant to a
particular person either belonging to or interacting with the organisation exceeds the cognitive capacities of
that person.
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regarding communicative conventions that exist in human societies so as to facilitate nat-

ural and socially appropriate communication between artificial agents (digital assistants,

user interface agents, etc.) and human users.

The advantage of using a frame-based approach for this kind of application is twofold:

1. The surface structure of dialogues which encapsulates the social rules of interaction

among humans can be turned into frames without agents actually having to “under-

stand” human culture. It suffices if the context conditions and agents’ internal goals

and beliefs link the use of these conventions to core agent activities in an appropriate

way.

For the human user, this might also add to the “lifelike” qualities of the agent, since

it suffices for an agent to merely reproduce existing social practice in order to appear

socially competent.

2. By its modular design, InFFrA enables the designer to exchange different sets of

frames at will without having to modify any other part of the agent’s functionality

(if the purpose of the agent is otherwise the same, that is).

This can be very valuable if the agent is to be integrated in a new social context (for

example when being used with adults instead of children).

The central challenge for adapting our framework to fit human-computer communication

lies, of course, in augmenting the simple speech-act based communication language we

have used by elements of natural language.

Even the most general ideas about how this can be achieved lie certainly beyond the

scope of this thesis. All we can say at this point is that we would profit from the modularity

of InFFrA if we were to include elements of natural language in interaction frames, as this

process would only affect the surface structure of communication and bear only very little

effects on the remaining parts of InFFrA frames.

7.4.3 Semantic Web technologies
The final application area that we would like to mention (and for which we are only going

to give the most general of ideas) is the Semantic Web (SW) (Berners-Lee et al. 2001) and

SW-related technologies and, more particularly, the prospect of interaction-oriented meta-

data.

From a conventional point of view, the World Wide Web is a huge collection of digitally

stored information that can be globally accessed – so-called content – mostly presented in

the form of text, images and videos or animations. The basic goal of the SW endeavour is

to make this huge amount of content more accessible, manageable and easily searchable

by providing machine-readable meta-data, i.e. data that provides information about the
content while being suitable for computer processing.

Currently, the cornerstones of SW technologies that are expected to contribute to this

goal are: ontologies (that provide the shared vocabulary in which content is described),

protocols (for accessing data and services in open system) and reasoning mechanisms

(which allow computational agents to process the information they find on Web sites or

obtain from other agents).

Seen from a different angle, however, the “semantics” of the Web is not given by the

content that is provided on Web sites and related Internet services but lies in the use that is
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made of this content by those who access it. In other words, what matters is the interaction

between human users and owners of Web sites, service providers, artificial agents crawling

the Web, etc.

And this is where interaction frames come in: They can be used to model observed

interaction processes, and the knowledge about these interaction processes can then be
presented in a machine-readable format. For example, an observer agent who uses InFFrA
could record the interactions that take place between clients accessing a service on a Web

site and the service provider. The resulting interaction patterns can be made available

as a frame repository on that site so that any agent can inspect them to understand the

prevalent interaction practice and communicative conventions.

Such applications would strongly support the evolution of a Semantic Web, as they

would aid in capturing the meaning of interaction processes. With the advent of such tech-

nologies as Web services, application service provision, enterprise application integration

and enterprise application cooperation, the importance of interaction in Web-based tech-

nologies is constantly increasing, and the ability to model these interaction processes has

the potential to significantly contribute to a transparent and well-structured interaction

Web.

7.5 Summary
This completes our account of actual and potential future applications of our method. The

broad spectrum of different applications we have covered, ranging from very concrete ones

that have already been implemented to more abstract ideas for envisioned uses of our ap-

proach demonstrates its wide applicability and underlines the importance of the research

conducted on the subject.

The next, final chapter presents a summary of the entire thesis, an outlook on future

work and some concluding remarks of a more general nature. Especially section on fu-

ture work nicely contrasts the list of applications we have presented in this chapter, as it

discusses the most important improvements that could be made to our methods, thereby
ensuring that a critical view is not omitted altogether.
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8. Conclusion
To round up, we are first going to provide a summary of our presentation so far and then

to review our main results and contributions in this chapter. Then, an outlook on possible

directions for future research on the subject will be given. The chapter is concluded with
some more general closing remarks.

8.1 Thesis Summary
In chapter 1 (p. 3) it was claimed that the subject of this thesis is

The learning and strategic use of categories of interaction patterns by socially

intelligent agents in open systems, in which no information is available about

agents’ future behaviour other than what is known from interaction experience.

To contribute to this subject, we set out to develop an abstract social reasoning architec-

ture for dealing with these categories of interaction patterns. We defined a formal model

for a particular instance of this architecture together with suitable learning and decision-

making algorithms, and evaluated it using an implementation that was validated in a com-

plex application scenario.

In doing so, we also touched upon a variety of other topics, such as the sociological

foundations of our approach, the theory of communication systems and empirical seman-
tics, hierarchical reinforcement learning methods, the Web linkage domain, different ap-

proaches to negotiation, etc. In the light of the variety of issues dealt with, we should take

a minute to look at the methodological implications of what was called the iterative “nar-

rowing down” (p. 7) of the scope of this thesis from chapter to chapter.

Essentially, our main aim was to explore the different dimensions of computational in-

teraction frames and their potential to be used to improve agents’ strategic communication

capabilities in open MAS. Obviously, this involves looking at

• the foundations of communication and its semantics,

• issues related to learning communication patterns, and

• the link between social context and its cognitive processing

to gain a full understanding of research issues that arise when trying to build adequate

architectures and algorithms for dealing with communication.

At the bottom line, what ties all these different aspects together is the quest for meth-

ods that enable agents to deal with the means of communication provided in a multiagent

society. In a very pragmatic sense, we could say that if the inter-agent communication layer

is specified – as is common in the area of agent-based and multiagent systems – in terms
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of an agent communication language and a set of interaction protocols defined using this

language, the methods we have developed enable agents to reason about and to strategi-

cally use this communication layer to their own benefit. Practically speaking, the agent

designer who uses InFFrA/m2InFFrA is required to perform the following tasks:

• To break down the protocols into meaningful communication and action sequences

represented in a generalised fashion through the use of message patterns and to turn

these sequences into frame trajectories.

• To build frame condition sets by combining the semantic rules (usually given in the

form of pre- and postconditions) of speech acts that occur along a trajectory and to

endow agents with rules for logical inference that will render them capable of reason-

ing about these conditions.

• To adapt the concrete InFFrA reasoning mechanism of agents appropriately to the

constructed frames so that a goal-oriented (viz utility-maximising) use of the existing

means of communication can be ensured.

It is by looking at our approach from this perspective that it reveals its true strengths. If the
agent designer performs the above steps, what he gets “for free” by using InFFrA/m2InFFrA
is:

1. That agents will be capable of storing their interaction experience inside frames and

to learn the long-term utility of each frame. This means that they can use the exist-

ing protocols optimally considering the actual behaviour of other agents (and them-
selves) towards the pre-specified protocols and ACL semantics.

2. That they will integrate (their own and others’) deviations from the pre-specified nor-

mative rules of communication in their experience whenever they realise that frame

trajectories or frame conditions have been violated. Moreover, they will be able to

learn whether deviant behaviour itself is profitable in certain situations.

3. Agents will flexibly generalise over similar interaction experiences, thus managing

their frame repositories under computationally scarce resources. Also, by virtue of

“reasoning by similarity”, they will be able to estimate the probability of achieving a

communication goal even when faced with unknown situations.

4. Whenever possible, they will seek to re-combine existing trajectories and potentially

discover new ways of coordination in this way or at least build meaningful “com-

pound” frames if it makes sense to join previously separated message sequences to-

gether.

All this taken together nicely illustrates that the capabilities of frame-based agents clearly

exceed those of agents built to simply apply existing interaction protocols and ACL seman-

tics under the assumption that these will be adhered to by everyone in the system. And

this underlines the importance of our approach for communication in open systems.

To illustrate the process of focusing on the aspects that have lead to this core func-

tionality throughout our presentation in the previous chapters we depict it graphically in

figure 8.1. The figure explains which elements of each chapter played an important role in
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Chapter 3 Chapter 4 Chapter 6Chapter 5

sociological frames

meta−frame links

empirical semantics

expectation networks

social abstraction

Web linkage domain

negotiation approaches

message sequences

conditions & substitutions

similarity measure

prospective semantics

trajectory models

context models

frame history

processing cycle

frame transformation

trial instantiation

social conventions

goal graphs frame construction
roles and relatiohships

belief models

difference models

frame extension

retrospective semantics

communication systems

logical inference

frame merging

transient social optimality

MDP theory

in−frame optimisation

Q−learning with frames

frame−based options LIESON implementation

performance evaluation

negotiation frames

hierarchical RL

Fig. 8.1: Thematic structure of thesis chapters: The main contributions of each chapter
are grouped together in the shaded box in the middle of the figure. Foundational

aspects or concepts used to a lesser degree in subsequent chapters are arranged

around the core issue area.

the respective next step of concretion and thus constitute the core of our work that resulted

in the improved social reasoning functionality.

That said, it is a natural consequence of the pursued methodology that not all the pos-

sibilities for building frame-based systems which result from the theories and concepts we

talked about have been exploited to the limit. The differences between what would have

been possible in theory and what was actually realised are most obvious in two cases:

1. The pragmatic character of the formal model used to define m2InFFrA in compari-

son to the vast range of possibilities for specifying frames and framing procedures

introduced in the abstract InFFrA architecture.

2. The focus on specific negotiation scenarios in the implementation of m2InFFrA
within LIESON as compared to the many different existing coordination mechanisms

and protocols that the implemented system could have been tested with.

As concerns 1., the process of designing a concrete architecture based on the abstract

framework was primarily guided by the idea of designing m2InFFrA as a minimal model

of InFFrA that still realises the most important features of the framework. It uses trajectory
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models that describe message pattern sequences T(F) in a content-rich agent communi-

cation language M, propositional frame conditions C(F) that can be used to represent

roles and relationships, contexts, and beliefs. Frame history is represented by past sub-

stitutions stored in Θ(F), substitution counters hΘ(F), and by the Q-values that store a

long-term average of the rewards obtained using a frame. Frame status is captured by the
current substitution ϑfixed (p. 100). Links between frames exist by virtue of the framing Q-

table. This table implicitly describes a preference ordering between different frames in

different states. Also, links are realised through trajectory occurrence counters h(F) that

track frame matching across frames. Extension is not modelled explicitly, all agents are as-

sumed to share the same set of frames. The history of frame modification is not explicitly

stored inside a frame.

Regarding the InFFrA inference cycle, matching and interpretation takes place in the

form of matching repository frame prefixes with the perceived frame trajectory. The dif-

ference model consists of a statement about whether the perceived frame matches a prefix

of some repository frame or not. Framing assessment is based on validity and adequacy

checking (prefix matching, computation of Θposs, proving context conditions), and on de-

termining the desirability of the optimal substitution ϑ∗ (p. 123). Frame selection and re-
framing is realised through probabilistic Q-choice with P(s, F) (p. 125), and frame adjust-

ment through frame merging/frame construction (sections 5.2.3/5.2.2). Determining the

optimal action m∗ (p. 123) within a frame constitutes the frame enactment and behaviour

generation strategy of m2InFFrA.

The way these processing steps are realised is heavily influenced by the principles of

empirical communication semantics laid out in section 4.1: desirability heuristics depends

on entropy measurements of the frame repository (or an expectation network-like inter-

pretation of it), re-use of existing expectations is applied by concatenating frame trajec-

tories in frame construction in a goal-directed way. Most importantly, the probabilistic

(prospective) frame semantics that are based on computing the likelihood of continuation

probabilities P(w′|w) (p. 109) capture the very essence of empirical semantics.
It is important to understand that m2InFFrA represents an example of InFFrA that is

computationally tractable and allows for applying decision-making and learning methods,

and thus to transcend the level of merely specifying abstract interaction frames and fram-

ing procedures. And this is of course only possible by controlling some of the complexity

of InFFrA.

As for 2., our choice to apply m2InFFrA to negotiation was guided by several considera-

tions. First of all, negotiation is one of the most general, interesting and complex forms of

interaction. Additionally, as a coordination mechanism, it is particularly suitable for open

systems, because it focuses on how to reach agreement in the presence of a conflict of inter-

est. In other words, to look at negotiation means to investigate the “worst case” of interac-

tion, in which self-interested agents with divergent motives, preferences and goals have to
either (i) opt for a compromise that will usually incur some cost to ensure the other’s will-

ingness to cooperate or (ii) resort to communicative conflict. Therefore, we have reason to

believe that our results carry over to more cooperative settings with ease.

Also, negotiation (and, in particular, argumentation-based and interest-based negotia-

tion) requires a close interplay between local reasoning about mental attitudes on the one

hand, and social reasoning about communicative conventions and the adequacy of differ-

ent negotiation strategies on the other. Thus, although some InFFrA aspects (such as roles

and relationships) did not play a crucial role in our experimental validation, the combi-



8.2. Future Work 237

nation of complex frame conditions with a variety of different negotiation moves provides

more than sufficient complexity to illustrate the effectiveness of our approach.

To sum up, the concrete formal models and implementation we provided constitute a

typical and simple but powerful instance of the abstract InFFrA framework. What is more,

they illustrate its practical value in complex application scenarios. In the following para-

graphs, we are going to discuss how they might be further improved considering the pos-

sibilities that the abstract framework and the theoretical foundations of our work offer.

8.2 Future Work
Despite our extensive treatment of computational interaction frames, of abstract and con-

crete architectures devised for dealing with them, and of a number of related issues, a va-
riety of open problems remain to be investigated in the future.

In order to describe the most important and interesting of these issues at a concrete

level, we are going to take a very practical view. This view consists of analysing the most

important elements of what would have been possible by exploiting the full complexity of

InFFrA and was not realised in the systems actually developed using the abstract architec-

ture.1

8.2.1 Complex trajectory models
The most obvious shortcoming of our formal model of InFFrA is that it only allows for lin-

ear message pattern sequences as trajectory models. Although this does not render the

capturing of complex interaction protocols impossible in principle, breaking down these

protocols into the set of message sequences that they allow may result in a prohibitively

large number of m2InFFrA frames and does not appear an elegant solution.

Part of this problem can be alleviated by modularising frames such that their trajec-

tories capture those parts of protocols that occur repeatedly (e.g. bidding rounds in auc-

tions). These “protocol bits” can be linked with each other through appropriate frame con-

ditions (such that certain paths can only occur when others have been completed) but this

obviously violates central assumptions about the atomic character of frame execution. In

particular, the probabilistic semantics of m2InFFrA does not allow for projecting message
sequences beyond completion of the current frame, and thus consequences of the conver-

sation that would occur after (repeated) application of subsequent frames cannot be taken

into consideration in the decision-making phase.

Yet the only adequate solution would be to extend the semantics of m2InFFrA in such

a way that they can deal with more complex trajectory models (e.g. finite-state machines
or Petri nets). This would involve major modifications to the empirical semantics model

since we have not developed a model for cyclic expectation networks yet. The obvious area

that we would have to look into for models of such stateful stochastic processes is that of

dynamic Bayesian networks (Nicholson and Brady 1994).

1 Note that we deliberately restrict this discussion to future work on improving the formal framework and
concrete algorithms proposed in previous chapters. An outlook on future applications has been given in chap-
ter 7.
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8.2.2 Condition construction and condition mining
An issue that is maybe less obvious is that of condition generation in new cases that are

stored in existing frames. In the implementation described in chapter 6, we used a fairly

simple mechanism to construct conditions for new cases. There, as described in sec-

tion 6.2.1 (p. 167) we distinguished between “frame conditions” and “case conditions”.

The former represent general conditions that have to hold during each enactment of the

frame, while the latter are inserted when a repository frame is extended by a new case and

are thought to represent the circumstances of that specific instance. These case condi-
tions need not hold in future enactments, but their validity is checked when computing

the (similarity-based) likelihood of possible substitutions in the future.

The way in which these case conditions are constructed after a new encounter is rather

simplistic: we generate pre- and postconditions (using the can and effects predicates) for

each physical action that occurred along the perceived trajectory and include them in the

condition set that corresponds to the new substitution. This ensures that the constraints

which need to hold for future re-enactments of a previous case are respected, and that the

consequences of physical actions are taken into account when estimating the utility of a

ground trajectory.

The fact that all non-physical actions are ignored in this process of case condition con-

struction has several implications:

• All frames that do not contain physical actions have empty case condition sets. In

particular, if no frame conditions were supplied for these frames (which is always the

case if the frames in question are not frames that the repository was initialised with

at the beginning), all condition sets of the frames will be empty. So, in fact, no real

contextualisation takes place (these frames can be used anytime and anywhere).

• This entails that, as no conditions have to be proven for the remaining actions on the

trajectory suffix while using such a frame, any content can be inserted into remain-
ing performatives. This is always the case if the running substitution leaves certain

degrees of freedom with respect to content variables that occur in messages still to

be uttered during the conversation.

As an example, consider a variant of F2 in table 6.4 (p. 164) in which a reject occurs

instead of do so that the frame has no physical effects. If stored and used in later

framing cycles, this frame will allow B to use any content in propose(B, A, Y), as Y
is no more restricted to the set of physical actions that can currently be executed.

This not only means that the set of possible substitutions Θposs becomes huge (or

even infinite, as in the languageMwe use2) but also that the resulting conversations

can be nonsensical.

All this insinuates that we should think about more complex ways of generating case con-

ditions for new cases of existing frames and for completely new frames.

With this respect, one approach that we find particularly appealing is that of condition

mining, i.e. determining which conditions are relevant from one’s current beliefs using in-

ductive learning methods.

2 In practice, instead of generating all possible content symbols, agents simply use a single variable that
stands for “arbitrary content” as the choice of content makes no difference utility-wise.
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Roughly speaking, this approach is based on the following idea: at any point in time

at which an encounter is completed, this marks a “success” case for either (i) an existing

repository frame that was applied during the encounter or (ii) a completely new, previously

unexpected message sequence. In case (ii), the new case can also be seen as a “failure” case

for the repository frame that was originally intended (or frames, in the case of additional
re-framing procedures during the encounter). For any such positive or negative sample,

the agent disposes of a set of beliefs (in the form of knowledge base facts) that held while

the respective encounter took place. This enables us to look for commonalities between

the different situations in which a frame succeeded or failed, and with this we are able

to learn decision rules by “mining” through the different knowledge base instances while

using heuristic rules to prune all information that is completely irrelevant to the current

encounter.

Eventually, the result of such inductive learning of conditions under which a frame is

likely to work out and conditions under which it will probably fail would be that we can

correlate those aspects of a general set of world beliefs to frame enactment that are relevant

for it. Additionally, the distinctions that can be made using the results of this “condition

learning” with respect to the applicability of frames under changing circumstances might
be used to define powerful encounter state abstractions (see section 5.3.2) in a bottom-up

fashion.

8.2.3 Frame modification operators
In previous chapters, we described two operations that transform entire frames:

1. concatenation of frame trajectories that enables agents to generate new frames on

the fly and to utilise them in a planning sense described in section 5.2.2, and

2. frame merging and generalisation (section 5.2.3) which is useful to ensure the man-

ageability of frame repositories and to evolve useful abstractions of concrete encoun-

ters.

Both these methods demonstrate how existing frames can be combined to yield new ones.

Quite naturally, many other useful operations on frames can be thought of, as has been

suggested in section 3.3.2 on frame history (p. 60).

Without going into details, we list some of the operators that might be defined to obtain

more complex methods of automated frame construction and which appear most interest-

ing:

• Frame splitting : If different parts of a single frame are identified that would make

sense to be executed independently, it should be possible to split one frame into sev-

eral sub-frames. This would be particularly useful if used in combination with the

“join” method we have proposed for frame concatenation, as it would allow for a

modular re-combination of all meaningful constituents of existing frames.

• Frame consolidation: After many enactments, the frames that evolve during m2InFFrA
simulations may contain a large number of very similar substitutions and conditions.

To prevent the generation of almost trivial (but huge) collections of frame attributes

for particular instances, a large number of past cases could be coerced into a smaller

list by omitting details that do not seem to affect the applicability of the frame both

in terms of conditions as in terms of substitutions.
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• Frame pruning : Since frames are often supposed to contain a normative picture of

what certain types of interaction should be like, it seems desirable to see to their in-

ternal consistency. For this purpose, it might be useful or even necessary to prune

exceptional cases under which a frame occurred (but which do not really fit into the

semantic category of interaction processes that the frame is thought to represent)
from that frame.

This is by no means an exhaustive list of useful frame modification operators, and eventu-

ally it will depend on the respective application which of them will be reasonable to imple-

ment.

8.2.4 Evolution of language and frame dissemination
A central characteristic of the formal model and implementation of InFFrA that has been

developed in this thesis is that it (only) enables agents to apply and re-combine existing in-

teraction patterns, but that it does not provide methods to generate completely new forms

of interaction.

Actually, the question of how to conceive of new methods of communication boils
down to asking how new communicative symbols can emerge in a society. This is because,

for existing symbols, it suffices to modify existing frames to construct new communicative

patterns. Considering that the capacity of humans to invent and spread new symbols in

communication is of crucial importance to the evolution of communication and language

in a dynamically evolving society (we have already touched upon this issue in sections 2.3.2

(p. 35) and 4.1.4 (p. 85)), it seems reasonable to ask how this process might be realised in

frame-based systems and whether it would be useful for such systems.

From a pragmatic perspective, what we would have to do to enable the introduction of

new symbols would be:

• To specify when new symbols are needed.

If we follow common-sense intuition and consider the theory of communication put

forward in chapter 4.1, new symbols are necessary whenever an agent is not able to

express his expectations using existing symbols. From a frame-based point of view,

this can happen whenever

– an agent wants to deviate from an existing pattern but would like to establish

the deviant pattern as a possible procedure that can be re-used3 in the future;

– an agent has constructed a new frame that should be re-used in the future and

would like to dispose of a distinct symbol to indicate use of that frame;

– an agent wants to indicate to his adversary that expectations regarding the con-

tinuation of the current conversation are invalid and that a new communication

path will be followed.

That is, a new symbol is necessary whenever no symbols are available which capture

the meaning (which has been defined as a set of mutual expectations in our frame-

work) of the current situation and the agent wants to convey this meaning to others

he is interacting with.

3 If it is only a one-time rejection, there is no need for capturing the associated expectations or generating a
symbolic “encoding” for them.
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• How to convey the meaning of these symbols.

A “chicken-and-egg” relationship of mutual dependence between symbols and ex-

pectations creates major problems when trying to introduce a new symbol in a so-

cial system. On the one hand, whoever invents the new symbol would like others to

understand its meaning, i.e. to be aware of the expectations associated with it. On
the other, the new symbol is being introduced precisely for the reason that no other

known symbol captures the expectation the agent wants to express.

Although there is no solution to the general problem, there are ways to convey the

meaning of new symbols, at least if an appropriate set of commonly accepted sym-

bols already exists for which agents have shared expectations:

– Deictic demonstration is a method by which agents explain what they mean by

enacting the desired consequences themselves. This is very common among

humans, for example when pointing at an object and saying the word that stands
for it to explain something to someone who does not speak the same language.

However, it is quite complex to apply this method to expectations regarding ac-

tions, as this may necessitate imitation of what the other party is supposed to do

upon hearing the new utterance.

In frame-based agents, this would would require defining specific interaction

frames within which such demonstrations can take place in an organised fash-

ion.

– Reasoning by analogy can be used if the expectations associated with a new sym-

bol only differ in some details from existing ones, and the agent can use a symbol

that bears some similarity to other existing symbols. This gives other parties the

opportunity to behave as before, while the agent who created the new symbol

can provide feedback on those parts of the expectation he has for the new sym-

bol that are not fulfilled by others’ reactions.

Of course, this is a very fragile process in which misunderstandings can occur in

many situations. Moreover, it requires a mutually accepted frame-based appa-

ratus for making corrections whenever the other agent is not behaving accord-

ing to the intended meaning of the new symbol.

– Talking about expectations themselves, finally, is the most generic and most pow-

erful method of conveying meaning. Although this requires frames for exchang-

ing information about expectations themselves (e.g. by including representa-

tions of expectation networks in message contents), it renders an agent capable

of making the expectations he has explicit. We will return to this issue of meta-

frame communication in section 8.2.5

• How to support the establishment of their meaning.

Even if other agents get to understand what is meant by a new type of message this

does by no means guarantee that usage of it will spread. Some agents who hear the

newly uttered symbol for the first time may find it useful and use it again when talking
to other interaction partners, others may not need it and never use it again.

Although it is quite reasonable to think of this process as “survival of the fittest sym-

bols”, it may be necessary to endow agents with a bias to use new symbols until they
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can properly assess their usefulness. This is because, initially, agents’ opinions re-

garding the new symbol will be based on a singular experience that may not be rep-

resentative for the average long-term usefulness of a symbol. Thus, there is a need

for appropriate symbol exploration strategies if new symbols are not to fall into unde-

served oblivion all too soon.

Despite the fact that many problems can arise in this process, letting new symbols emerge

(and with them, totally new forms of interaction and coordination) would enable an agent

society to develop the language that is best for solving its interaction problems. Apart from

the fact that this might take some weight off designers’ shoulders since they would not

have to think of all necessary language constructs and frames a priori, it would also result

in communication self-design according to the needs of a MAS so that, eventually, all nec-
essary means of communication can be derived on the grounds of basic agent rationality.

8.2.5 Meta-frame communication
In the previous section it was claimed that being able to talk about one’s expectations can

aid the process of introducing new symbols to an existing communication system. Meta-

frame communication in which frames themselves become the subject of conversation can

also be used for many other purposes. In fact, it is a very powerful means of coordination

that would strongly add to the social abilities of InFFrA agents.

Let us briefly explain what we mean by meta-frame communication by giving a few

scenarios in which it would solve coordination problems:

• During frame-based communication, it is often the case that the flow of commu-

nication is blocked because either (or both) agents do not dispose of appropriate

frames to understand what is going on. This happens when the other party has done

something previously unexpected. In this case, it would be very reasonable to step

back from the first-order framing process and to ask the other what his expectation

was when he uttered the unexpected message. This would introduce a second-order

framing procedure whose outcomes are not ordinary action consequences, but mod-

ifications to the first-order frame(s) applied before.

• Upon examination of his own frame repository, an agent may find that it would make

sense to perform some modifications to it. For example, a frame might be redundant

because it is never used, a set of frames should be re-combined in a different fashion

to produce more effective coordination mechanisms, or some joint action combina-

tions occur so frequently that short and simple frames should be available to spawn

these joint actions right away.

In all of these cases, the agent might decide to modify his repository, but it is rather

doubtful that others will have performed the same modifications (silently) and, with

this, it is quite probable that new framing problems will occur. Being able to inform

others of frame adjustments or to negotiate such adjustments can obviously help to

solve this problem.

Clearly, devising mechanisms for meta-frame communication necessitates the design of

meta-frames that allow for exchanging information about frame conceptions between dif-

ferent agents, for negotiating new frames, etc. Also, it requires changing the utility model,
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as agents should pursue goals during communication about frames that are beyond the

goals the agent has in the physical environment.

Although we have not worked out the details of how to extend m2InFFrA in this direc-

tion, this certainly constitutes one of the most exciting and promising future research di-

rections that could be followed. It is our opinion that meta-communication is a mecha-
nism that has been largely overlooked especially for conflict resolutions purposes, where

it enables agents to make their expectations explicit in cases in which these expectations

differ a lot among interacting parties.

8.3 Closing Remarks
The suggested improvements to the methods we have proposed in this thesis illustrate

what the possible directions of future research on the subject of computational interaction

frames and frame-based social reasoning architectures are. Taken together with our results

of chapter 6 and the applications of InFFrA described in chapter 7 this yields an impressive

picture of the potential of our approach for interaction management in open multiagent

systems.

Yet this constitutes only a small step in the endeavour of building agent-based systems

capable of successful operation in open environments. The challenges posed by highly
complex, dynamic and open applications in areas such as the Semantic Web, context-

aware computing, knowledge management, etc. are manifold. Developing methods that

aid in managing agent interactions is only one of them – albeit a very important one, in

our view.

In this thesis, we have explored a new concept for reasoning about interaction at the

micro level, i.e. at the level of “face-to-face” conversations between single agents with a

particular focus on the interplay between these micro-social interactions and their cogni-

tive processing by agents who participate in them. Using socio-theoretical foundations,

we developed a semi-formal notion of the concept of “interaction frames” which was later

formalised, implemented, and empirically validated. The essence of our efforts is that in-

teraction frames and framing-based architectures can be successfully employed to model,
analyse and manage agent-to-agent interactions in a wide range of complex applications.

What remains to be investigated in the future is how this approach can be combined

with the macro-level of social processes in order to gain a full understanding of how to

build multiagent systems in such a way that they can survive (and thrive) in open environ-

ments.
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Ciancarini, P. and Wooldridge, M. J. (2001). Agent-Oriented Software Engineering. First In-

ternational Workshop, AOSE-2000, Limerick, Ireland, June 10, 2000, Lecture Notes in
Computer Science, vol. 1957, Springer-Verlag, Berlin et al.

Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learning in cooperative

multiagent systems, Proceedings of the 15th National Conference on Artificial Intelli-

gence (AAAI-98), pp. 764–752.

Cohen, P. R. and Levesque, H. J. (1990a). Intention is choice with commitment, Artificial
Intelligence 42: 213–261.

Cohen, P. R. and Levesque, H. J. (1990b). Performatives in a Rationally Based Speech Act

Theory, Proceedings of the 28th Annual Meeting of the Association for Computational

Linguistics, pp. 79–88.

Cohen, P. R. and Levesque, H. J. (1991). Teamwork, Noûs 35: 487–512.
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