
Model-Based Development
of Security-Critical Systems

Guido Oliver Wimmel

Institut für Informatik

der Technischen Universität München

Model-Based Development

of Security-Critical Systems

Guido Oliver Wimmel

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Peter Paul Spies

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Dr. h.c. Manfred Broy

2. Univ.-Prof. David Basin, Ph.D.
Eidgenössische Technische Hochschule
Zürich/Schweiz

Die Dissertation wurde am 24.02.2005 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 13.06.2005 angenommen.

Abstract

The subject of this thesis is the systematic development of secure systems. Security
is a complex non-functional requirement affecting all parts of a system at all levels of
detail and depending crucially on the assumptions about the system environment.
Almost daily, new vulnerabilities are found, often exposing the concerned systems
to attacks that result in severe damage.

In this thesis, we describe approaches for the integrated application of model-
based development techniques with the aim to improve the security of the developed
systems. Of central importance is the integration of security-related aspects into
design models and the definition of security-specific development activities based
on the extended models. For this purpose, we use a specification language with a
formally defined semantics, to eliminate the potential of flaws because of ambiguities
in the specifications. An important feature of our work is the provision of tool
support, to reduce the necessary effort and experience required from the developer.

As part of our methodology, we present an approach to automatically generate
a threat scenario from a model based on the included security-related information,
and show how to use threat scenarios to formally verify security requirements by
model checking.

Testing is necessary to gain confidence in the security of an implementation, but
is not sufficiently integrated into current specification and verification methods for
security-critical systems. We describe an approach for security testing based on the
extended models. The described approach addresses both the problem of the gen-
eration of test sequences likely to discover potential vulnerabilities and the problem
of the concretisation of the abstract representations of messages and in particular
of cryptography that are employed in current approaches for the specification and
verification of security-critical systems to make verification feasible.

We also address top-down oriented development of security-critical systems, where
security aspects are first specified in the form of abstract assumptions, which are
later realised by applying appropriate security mechanisms. In particular, we elab-
orate on security mechanisms whose insertion preserves the validity of the security
requirements fulfilled with respect to the abstract assumptions. We apply these
concepts to the modular specification and analysis of layered security protocols.

The practical applicability of the presented approaches is demonstrated in several
case studies from the domain of electronic business and cryptographic protocols.

i

ii

Acknowledgements

First of all, I thank Prof. Manfred Broy for giving me the opportunity to conduct
research in his group and for his encouragement and support of this work. I also
thank Prof. David Basin for his interest and for kindly agreeing to act as a second
referee.

I thank Dr. Jan Jürjens for the continuing collaboration on a wide variety of topics
related to security engineering and for loads of valuable discussions and suggestions.

Thanks also go to the colleagues who I had the pleasure of working with in
various research projects during the last few years, Dr. Oscar Slotosch, Alexander
Wißpeintner, Dr. Jan Jürjens, Gerhard Popp, Johannes Grünbauer, and Martin
Deubler. Particularly, I thank Dr. Oscar Slotosch for his continuous support and
further development of the AutoFocus/Quest tool. I am also grateful to Prof.
Ruth Breu and Volkmar Lotz for discussions and feedback on early stages of this
work. Further thanks go to Axel Heider for developing an implementation of the
CEPS purse card.

I thank Dr. Heiko Lötzbeyer and Dr. Alexander Pretschner for introducing me
to the topic of model-based test sequence generation.

Many thanks to Dr. Jan Jürjens, Thomas Kuhn, Johannes Grünbauer, Martin
Leucker, and Andrew Dang, who took the time to proof-read parts of the thesis
and provided valuable criticism on its presentation.

Finally, I am very grateful to my family for their continuing support and moti-
vation, to my friends, and especially to Wu Ji for her enduring love and patience.

iii

iv

Contents

1. Introduction 1

1.1. Motivation and Problem Statement 1

1.2. Aims and Approach . 3

1.3. Main Contributions . 5

1.4. Comparison with Related Work . 8

1.5. Structure of the Thesis . 11

2. Background: Security and Model-Based Development 15

2.1. Security . 15

2.2. Model-Based Development . 17

3. Model-Based Development Methodology for Security-Critical Systems 21

3.1. Security-Specific Artifacts and Activities in a Model-Based Develop-
ment Process . 21

3.2. Analysis and Design . 22

3.3. Implementation and Testing . 24

3.4. Related Work . 25

3.5. Summary . 25

4. Modelling Security-Critical Systems 27

4.1. A Specification Language for Distributed Systems 27

4.1.1. Notation . 28

4.1.2. Modelling Formalism . 29

4.1.3. The Functional Language QuestF 30

4.1.4. Structural and Behavioural Views 36

4.1.5. Semantics of AutoFocus/Quest Models 43

4.1.6. Model Transformations in AutoFocus/Quest 47

4.2. Security Extensions . 50

4.2.1. Model Extension Mechanism 50

4.2.2. Global Security Requirements 52

4.2.3. Threats . 57

4.2.4. Assumptions . 58

v

Contents

4.2.5. Security Mechanisms . 59

4.2.6. Cryptography and Secrets . 62

4.3. Case Study I: A Bank Application 71

4.4. Case Study II: The Common Electronic Purse Specifications 79

4.4.1. CEPS Load Transaction . 79

4.4.2. CEPS Purchase Transaction 84

4.5. Related Work . 85

4.6. Summary and Discussion . 86

5. Threat Scenario Generation and Verification 89

5.1. Threat Scenarios . 90

5.2. Generic Threat Scenario . 91

5.2.1. Structural View . 91

5.2.2. Semantics of the Behavioural View 94

5.3. Security Verification Using Model Checking 100

5.3.1. Model Checking in AutoFocus/Quest 101

5.3.2. Specialised Intruder Model for Model Checking 102

5.3.3. Justification of the Specialised Intruder Model 107

5.3.4. Optimisations . 115

5.4. Case Studies . 116

5.4.1. The Bank Application . 116

5.4.2. Further Case Studies . 118

5.5. Related Work . 124

5.6. Summary and Discussion . 126

6. Model-Based Security Testing 129

6.1. Security Testing . 129

6.2. Model-Based Testing . 131

6.3. Generation of Test Sequences for Security-Critical Systems 135

6.3.1. Derivation of Test Case Specifications from Security Require-
ments . 139

6.3.2. Inserting Faults . 143

6.4. Concretisation . 148

6.5. Case Study: CEPS Load Transaction 157

6.5.1. Generation of Test Sequences 157

6.5.2. Concretisation . 160

6.5.3. Test Execution and Evaluation 163

6.6. Related Work . 167

6.7. Summary and Discussion . 168

vi

Contents

7. Security Mechanisms: Layered Protocols 171
7.1. Application of Security Mechanisms 171
7.2. Insertion of Protocol Layer . 173
7.3. Security Patterns . 180

7.3.1. Security-Preserving Transformations 181
7.3.2. Security Patterns for Layered Protocols 184
7.3.3. Proof Support Using SAT Solving 187
7.3.4. Further Patterns for Encryption/Signature 192

7.4. Case Study: The Bank Application 195
7.4.1. The Bank Application Revisited 195
7.4.2. SSL Layer (Server Authentication) 196
7.4.3. Insertion of SSL Layer . 199
7.4.4. Layered Verification . 199

7.5. Related Work . 202
7.6. Summary and Discussion . 204

8. Conclusion 207
8.1. Summary and Discussion . 207
8.2. Future Work . 210

Bibliography 213

A. Frequently Used Notation 225
A.1. Sets . 225
A.2. Tuples . 225
A.3. Functions . 225
A.4. Sequences . 226
A.5. Logic . 226
A.6. Modelling Formalism . 226

Index 227

vii

Contents

viii

List of Figures

1.1. Overview: Security-Specific Development Activities Addressed in
this Work . 5

3.1. Security-Specific Artifacts and Activities in a Model-Based Develop-
ment Process . 22

4.1. Process: Modelling Security-Critical Systems 28

4.2. Meta Meta Model: Specification of Meta Model Functions 30

4.3. Example Meta Model . 31

4.4. AutoFocus/Quest Meta Model: Abstract Syntax of Language QuestF 31

4.5. Example of QuestF Data Type Definition 35

4.6. AutoFocus/Quest Meta Model: Structural and Behavioural Views 37

4.7. AutoFocus/Quest Meta Model: SSD View 38

4.8. Example AutoFocus/Quest System Structure Diagram 38

4.9. AutoFocus/Quest Meta Model: STD View 39

4.10. Example AutoFocus/Quest State Transition Diagram 41

4.11. AutoFocus/Quest Meta Model: EET View 42

4.12. Example AutoFocus/Quest Extended Event Trace 42

4.13. Model Transformation Example . 48

4.14. ODL Description for AddChannel Transformation 49

4.15. Model Extension Mechanism . 51

4.16. Annotated AutoFocus/Quest System Structure Diagram 52

4.17. System Structure Diagram with protocol Annotation 60

4.18. System Structure Diagram for Protocol Component SSLServerAuth . 61

4.19. DTD for Cryptographic Messages . 65

4.20. Bank Application: System Structure Diagram 72

4.21. Bank Application: Extended Event Trace 74

4.22. Bank Application: Data Type Definition 75

4.23. Bank Application: State Transition Diagrams 76

4.24. Bank Application: Security-Enriched Model (SSD) 78

4.25. CEPS Load Transaction: Security-Enriched Model (SSD) 80

4.26. CEPS Load Transaction: Security-Enriched Model (STD Card) . . . 81

ix

List of Figures

4.27. CEPS Purchase Transaction: Security-Enriched Model (SSD) 85

5.1. Threat Scenario Generation . 90
5.2. Threat Scenarios: Structural View 92
5.3. Threat Scenarios: Transformation of Channel 94
5.4. Behavioural Specification of Generic Intruder Component 96
5.5. Replaceable/Public Components . 97
5.6. Security Verification Process . 101
5.7. Security Verification Using SMV . 102
5.8. Decomposition of Intruder Component 103
5.9. STD Schema for Medium Component 104
5.10. STD Schema for FakeStore Component 105
5.11. Deriving an Attack with Delay N . 114
5.12. Bank Application: Threat Scenario (SSD) 117

6.1. Security Test Sequence Generation Based on Threat Scenario 138
6.2. Test Case Specifications for Security Requirements 139
6.3. Security Test Sequence Generation by Inserting Faults 144
6.4. Main Test Driver Algorithm . 151
6.5. Algorithm gen sequence . 152
6.6. Algorithm verify sequence . 153
6.7. Test Execution Based on Concretisation Mapping 157
6.8. EET for Test Case Specification Φ′

SR.NONREP FAILED TRANS 159
6.9. EET Computed by Inserting Faults 161
6.10. CEPS Load Transaction: Part of Data Type Definition 162

7.1. Mechanism Application . 172
7.2. Model Transformation for Insertion of Protocol Layer 174
7.3. Shared Key Encryption Layer . 179
7.4. Application of Shared Key Encryption Layer 180
7.5. Threat Scenarios for Application of Shared Key Encryption Layer . 185
7.6. Shared Key Encryption Layer: Threat Scenario MT for Original

Model M (restricted) . 191
7.7. Bank Application: Security-Enriched Model (SSD, modified) 195
7.8. SSL Layer (Server Authentication) 197
7.9. Bank Application / SSL Layer: Combined Model (EET) 200

x

List of Tables

4.1. Security-Related Tag Definitions . 53

5.1. Security Verification: Experimental Results 120

6.1. Mutation Function for QuestF Terms 146
6.2. Concretisation of Abstract CEPS Messages 163
6.3. Results of Testing CEPS Load Application 165

7.1. Encryption/Signature Patterns for Abstract Channels 193

xi

List of Tables

xii

1. Introduction

1.1. Motivation and Problem Statement

Security has become an extremely important issue in software development. The
continuing trend towards distributed and mobile systems pervading everyday life
and communicating through increasingly interconnected networks considerably rais-
es security risks by opening up many new possibilities for attacks. Recently, the
first computer worm has been discovered affecting mobile phones and spreading
via the Bluetooth interface [NRT04]. Standardised architectures and connections
to open communication networks are to be introduced into automotive systems,
where successful attacks may even have life-threatening consequences [Rud03]. The
financial damage is already considerable: the current CSI/FBI computer crime and
security survey [GLLR04] reports an average loss of $526,000 per respondent in
2003.

Developing secure systems is a difficult task. Security is a complex non-functional
requirement affecting all parts of a system at all levels of detail. To secure a sys-
tem, merely adding mechanisms such as cryptography in some places is not suffi-
cient. Whether a system is secure depends crucially on the complex interplay of
its components and on the assumptions about its environment. A single weakness
can compromise the security of the entire system. Vulnerabilities are often subtle
and hard to detect, as demonstrated by the design flaw in the Needham-Schroeder
authentication protocol detected 17 years after the publication of the protocol spec-
ification [Low96], or by an implementation flaw allowing local root access, present
in the OpenSSH application in various versions between June 2000 and March 2002
[Ope02], just to give two examples. In both cases, the fix merely consists of changing
a few characters in the protocol specification, respectively in the C code.

Important measures applied in the development to achieve secure systems are:

Threat modelling and risk analysis The aim of threat modelling and risk analysis
is the identification of threats, i.e. possible adversary actions to break a sys-
tem’s security, and the assessment of the risk the threats pose. Risk depends
on the likelihood of occurrence of a threat and on the damage caused.

Elaboration of security requirements A set of global security requirements is elab-
orated forming a global security policy the system must conform to, in pres-

1

1. Introduction

ence of the threats that were not ruled out in the risk analysis because the
risk was perceived to be small enough to be acceptable.

Application of security mechanisms Security mechanisms applied to ensure that
the security requirements are fulfilled include access control functionality,
cryptographic protocols, or secure logging.

Formal methods Formal methods provide the possibility to model security require-
ments and security-related functionality in a mathematically precise way, and
to carry out rigorous correctness proofs.

Security testing The purpose of security testing is to gain confidence that an imple-
mentation fulfils the stated security requirements and that the security-related
functionality has been implemented correctly.

The Common Criteria [Com99], an international set of criteria for security eval-
uation, demand the use and the documentation of the use of such measures. The
effort to be spent on the measures and their documentation depends on a selected
evaluation assurance level (EAL).

Because security is an integral part of a computer system, security aspects should
be taken into consideration throughout the whole development process, rather than
regarded as an add-on during the later stages. A“penetrate and patch”strategy, i.e.
designing a system with initially little attention to security aspects and later provid-
ing patches when vulnerabilities are discovered, has severe disadvantages [VM01].
For instance, only known vulnerabilities can be fixed, and patches are often not
applied or even lead to new problems. Moreover, for certain kinds of systems,
distributing and applying patches is inherently difficult or impossible — software
stored on the read only memory of a smart card is an example.

Deficits of Current Approaches

Despite the necessity for an integrated consideration of security in software de-
velopment, current development methodologies lack adequate support for security-
specific development activities and products. Besides, even though applying formal
methods considerably increases the assurance that a system fulfils its stated secu-
rity requirements, formal methods are rarely used in practice because their applica-
tion requires expert knowledge and is costly and time-consuming. There is a need
for concrete guidelines for the application of formal models within a development
process for security-critical systems and a need for formal modelling concepts for
security-related aspects that are understandable for non-experts and can be applied
with low additional effort, preferably integrated into a general-purpose specification
language used in overall system development. In this context, automation and tool

2

1.2. Aims and Approach

support are also an important requirement, to reduce the development time and to
minimise the possibility of errors. Whereas tool support for single activities (most
importantly, verification of security protocols) is available, integrated tool support
for the diverse activities to be carried out within the development of security-critical
systems, such as security verification, application of security mechanisms, and test-
ing, is still an open area of research.

Security-critical systems should be constructed in a top-down oriented way, as
suggested by the Common Criteria. A decision at a lower level of abstraction, such
as the choice of a cryptographic protocol or an encryption algorithm, generally
affects the security of the whole system and thus should be postponed until the
security requirements have been broken down into sufficient detail such that it
can be justified. Automated and sound techniques for the introduction of security
mechanisms into a model based on abstract requirements would be desirable.

Confidence in the security of the implementation of a system can be gained by
extensive testing. Testing for vulnerabilities is usually restricted to penetration
testing, where a so-called“tiger team”of experts manually tries to break the system,
or to the use of tools searching for known vulnerabilities. These approaches are
not satisfactory, as they are not systematic and depend largely on the skill of the
employed tiger team or on the knowledge encoded into the tool, which does not
include application-specific vulnerabilities.

1.2. Aims and Approach

Aims

In this thesis, we argue that through the application of model-based development
techniques in the development of security-critical systems one can improve the se-
curity of the developed systems and address the above described problems, while
keeping the additional effort bearable. The central concept of model-based de-
velopment are integrated models for the products (e.g., system specifications) and
activities of the development process. Our aim is to provide an integrated modelling
approach supporting the consideration of security aspects of distributed systems,
and to examine how particular security-specific development activities can be car-
ried out based on an integrated model with security-related information. We focus
on design activities, in particular generation of threat scenarios describing a system
under attack, security verification, testing, and application of security mechanisms,
and on communication-related aspects. An important goal is to provide tool sup-
port within a general-purpose CASE tool, in order to reduce the necessary effort and
experience for the security-related activities and to increase the level of confidence
in the results. The applicability of the developed approach should be demonstrated
at the example of various case studies of practical relevance.

3

1. Introduction

Methodology and Tool Support

For this purpose, in this work we describe security-related artifacts and activi-
ties within a model-based development methodology for the design, verification,
and testing of security-critical systems. In the centre of this methodology is a
security-enriched model, where security requirements, threats, assumptions, and
mechanisms to be applied have been included in the form of annotations, as a re-
sult of a security analysis. We explain our concepts based on AutoFocus/Quest
[HMR+98], a general-purpose model-based development tool and specification lan-
guage for the development of distributed and embedded systems. The use of a
general-purpose specification language (as opposed to security-specific languages
and methods, for instance for security policies or cryptographic protocols) makes it
possible to treat security aspects and security-related functionality as an integrated
part of the overall system to be developed and to build on existing tool support
and experience on the part of the developers. In AutoFocus/Quest, a system
is modelled as a network of communicating components, which are connected via
channels and whose behaviour is specified by extended finite state machines. The
main advantages of AutoFocus/Quest are its simplicity, its clear semantics, and
its extensive connections to other tools, e.g. for formal verification using model
checking, for model-based test sequence generation, or for code generation. Note
that although we selected a particular specification language and tool for demon-
stration purposes, the general concepts described in this thesis do not depend on this
choice. The main prerequisites of our approach are an executable, component-based
description technique with an explicitly defined metamodel and a formal semantics,
and the availability of verification support, for example by model checking.

AutoFocus/Quest includes a functional language to define and manipulate data
stored by and passed between components, which we extended such that crypto-
graphic expressions can be modelled, for example encryptions or hash computations.

Security-Specific Development Activities

In model-based development, security-specific development activities can be given in
the form of model transformations. Figure 1.1 depicts an overview over the security-
specific development activities addressed in this thesis. Of central importance in
our approach is a transformation of a security-enriched model to a threat scenario
by adding an intruder with appropriate capabilities. Both security verification
and testing are performed based on the threat scenario, such that the malicious
environment the system runs in is accounted for. Security verification and test
sequence generation can be regarded as model transformations as well, adding truth
values of security requirements (and possibly counterexamples) or test sequences to
a model.

4

1.3. Main Contributions

Figure 1.1.: Overview: Security-Specific Development Activities Addressed in this
Work

Finally, we consider the application of security mechanisms, by transforming the
security-enriched model. In particular, we address transformations that preserve
the validity of the security requirements (“security patterns”), such that the security
verification need not be repeated. An interesting class of security mechanisms are
layered protocols, which are examined in more detail.

1.3. Main Contributions

We summarise the main contributions of this work.

Extended Description Techniques for Model-Based Development of
Security-Critical Systems

We describe concepts for the extension of a model-based specification language for
distributed systems with security-related aspects, demonstrated at the example of
AutoFocus/Quest. The extension allows modelling of security-related aspects at
different abstraction levels. In particular, we deal with the specification of secu-
rity requirements, threats, assumptions, and security mechanisms, and with the use
of cryptographic operations and cryptographic data such as keys or random chal-
lenges. The extension we provide allows the inclusion of all necessary information
for the considered security-specific development activities. It is proven that the
developed integration of cryptographic operations and cryptographic data into the
used general functional language is sound, in the sense that the assumed abstract
properties of the cryptographic operations are correctly reflected. This prevents the
possibility to specify unrealistic behaviour. For example, we show that encryption
cannot be broken on the abstract level of the functional language.

5

1. Introduction

Threat Scenario Generation

We present an approach for the automated, tool-supported generation of a threat
scenario from a security-enriched model, dependent on the annotated threats and
assumptions. For this purpose, we provide a generic specification of the intruder
behaviour on the semantical level (as a discrete system, i.e. a state transition graph),
to abstract from idiosyncrasies of the specification language, and in addition give a
concrete specification of the intruder behaviour in AutoFocus/Quest, specialised
for model checking.

This two-step approach requires the justification that the generated specialised
intruder model is sound and complete with respect to the generic specification.
By soundness of the specialised intruder model, we mean that whenever an attack
is found using the specialised intruder model, there is a corresponding attack with
respect to the generic intruder model. Conversely, we say that a specialised intruder
model is complete if all attacks are found using the specialised intruder model, i.e.
whenever there is an attack with respect to the generic intruder model, there is a
corresponding attack with respect to the specialised intruder model. We explain
concepts to carry out corresponding proofs. In particular, we address the fact that
the semantics of AutoFocus/Quest is based on synchronous composition of state
machines driven by a global clock and that an intruder necessarily introduces delay
into the communication. For this reason, completeness can only be achieved for
specific classes of systems and properties, where the delay is not relevant. We give
such a class, and describe the soundness and completeness proofs.

As the generated threat scenario is given in the same specification language as
the original security-enriched model, all features of the used modelling tool can
be applied to the threat scenario, such as simulation, verification, or test case
generation. Besides, the threat scenario can be easily manually edited to analyse
more complex threats than those specified by the security-enriched model.

Security Verification

We show how to verify security requirements based on the generated threat sce-
nario, using the connection of the model checker SMV to the AutoFocus/Quest
CASE tool. We demonstrate security verification at several examples, including an
example where the threat scenario was manually edited, and provide performance
figures for orientation. While verification using model checking could be successfully
applied in the given examples, our focus on the integration of security verification
into general model-based development with the help of existing verification support,
rather than on efficiency considerations.

6

1.3. Main Contributions

Security Testing

We adapt methods from classical model-based testing to the domain of security-
critical systems.

The derivation of test sequences from a model of a security-critical system for
the purpose of detecting possible vulnerabilities is difficult, because security re-
quirements are in general universal properties (as opposed to properties requiring
the existence of a certain behaviour). Universal properties cannot be used directly
for the derivation of test sequences, because they are fulfilled by all traces, whereas
for testing it is necessary to select a limited number of traces as test sequences. We
give strategies to derive test sequences for security testing from a threat scenario
by modifying the security requirements or the model.

To be able to execute the tests given by the generated test sequences, the ab-
stract data in the test sequences must be concretised. We give an approach for
the concretisation of abstract test data that is based on a test driver performing
tests of an implementation with the help of an additional concretisation mapping.
Our approach supports the use of cryptography, in particular the verification of
results of cryptographic operations. For example, if the necessary key to verify an
encrypted message is not available to the test driver, the verification is delayed.
In addition, our approach deals with data which was modelled symbolically in the
abstract model or was left out to reduce the model’s complexity.

Mechanism Application

We show how the application of security mechanisms fits into a top-down oriented
model-based process. The general idea is the replacement of abstract assumptions
(e.g. confidentiality of a channel) by security mechanisms (e.g. encryption). A
commonly used security mechanism is securing the communication between com-
ponents by the application of a cryptographic protocol. We give a corresponding
model transformation for the insertion of such layered protocols into communication
channels.

Security Patterns

We define the concept of security patterns, as security mechanisms whose applica-
tion preserves the validity of the security requirements in the transformed model.
We show how to prove that a given security mechanism described by a model trans-
formation is a security pattern. Moreover, we show how such proofs can be partly
automated within the AutoFocus/Quest tool, using SAT solving.

This way, the verification task can be modularised into the verification of a model
including abstract assumptions and the verification of security mechanisms to be
applied to realise the assumptions. The verification of the security mechanisms

7

1. Introduction

only needs to be carried out once, and the complex transformed model where the
security mechanism has been introduced need not be verified.

Verification of Layered Protocols

We apply the concept of security patterns to the introduction of layered protocols.
We describe a number of patterns for modelling common uses of encryption and/or
signature and state which abstract assumptions they realise. In a case study, we
describe the modular verification of a layered security-critical transaction protocol
where communication is tunnelled over a previously established SSL connection.

Tool Support

Tool support for all described development activities has been integrated into the
AutoFocus/Quest tool set. In particular, we designed and implemented tool
support for threat scenario generation, test sequence generation, test execution
using a test driver, application of security mechanisms, and verification of security
patterns.

Evaluation Using Case Studies

The presented approaches are evaluated in several case studies. The two main case
studies dealt with in this thesis are an application for managing electronic order
forms over the Internet (a real-life example taken from a joint research project in
cooperation with a major German bank, see [HSG+03, GHJW03, Grü03]) and the
Common Electronic Purse Specifications (CEPS) [CEP01], describing the function-
ality of a globally interoperable electronic purse scheme based on stored-value smart
cards.

1.4. Comparison with Related Work

To our knowledge, to date no approach exists for the integrated, formally-based
consideration of modelling, security verification, security mechanism application,
and security testing within the development of security-critical systems. In the
following, we give a short overview over the current state of research in this area
and compare it to the results achieved in this thesis. A more detailed account
of work related to the topics addressed in this thesis is given at the end of the
respective chapters.

8

1.4. Comparison with Related Work

Development Processes for Security-Critical Systems

Current process models like the Rational Unified Process [JBR99] or Catalysis
[DW99] treat security requirements as non-functional requirements among oth-
ers and do not provide support for security-specific development activities. In
[VWW02] (joint work with M. Vetterling and A. Wißpeintner), we show how to
integrate security-specific development activities into a waterfall process to fulfil
the requirements stated by the Common Criteria. A top-down oriented approach
for the development of security-critical systems is presented in [Eck01]. Integrated
modelling, tool support, automation and security testing are not addressed. While
not considered in its predecessor, security-relevant activities as described in [Eck01]
have also been included into the recently published revision of the German V-
Modell [MIE+05], but only at a coarse level of detail. [Pop05] describes a develop-
ment process for security-critical systems using description techniques of the UML
and additional models, to ensure access control properties. In contrast to our ap-
proach, [Pop05] is focused on early development phases, in particular on security
requirements engineering. Tool support and automation are not part of that work.
[Lot97] describes security-specific development activities in the design phase, based
on models specified in the formal method Focus, but does not deal with explicit
modelling of threats and assumptions and with testing issues.

Security Modelling and Verification

There are many approaches for modelling and verification of security-critical sys-
tems, especially focused on the verification of security protocols. For an overview,
consider [GSG99, RSG+00]. Usually dedicated specification techniques are em-
ployed, for example the languages CAPSL [Mil05], CASPER [Low98] or HLPSL
[BMV03] for the specification of security protocols. In contrast, we deal with gen-
eral security-critical systems, in which cryptographic functionality and security pro-
tocols can be utilised. Therefore, we use a general-purpose specification language to
facilitate the integration of security verification into general systems development.
In addition, in our approach the threat scenario that includes the intruder actions
and that is the basis for security verification is a model in the same general-purpose
specification language. This facilitates the consideration of complex threats by
manually editing the threat scenario. In other approaches, general formal methods
are used for security modelling and verification, such as the process algebra CSP
[Low96], the guarded command language Murphi [Shm98], or the Focus method
[Lot00]. By the description techniques used in our approach, we aim to improve the
practical applicability of security modelling and verification and its accessibility to
non-experts in formal methods. Besides, the mentioned approaches do not support
the automatic generation of a threat scenario. Cryptographic messages are repre-

9

1. Introduction

sented by standard constructs in the respective language (such as records). Unlike
in our approach, it is left to the designer to ensure that these are manipulated in a
sound way, for instance to extract a value from a record representing an encryption
only if the respective party owns the correct key.

The SCR method and its tool support have been applied to security-critical
systems development in [KAH99]. Treatment of cryptography, security-specific de-
velopment activities and test case specifications are not addressed. [Jür02, Jür04]
describes an extension UMLsec of the UML to include threats and security require-
ments into UML models, and defines a semantics for the relevant part of the UML
and the security extensions. The concept of modelling security-critical systems is
similar to our approach. The main difference is that threat scenarios are not rep-
resented as explicit UML models. Model checking support has recently become
available for UMLsec [JS04], but currently only works for small systems. The au-
thor contributed to the work on UMLsec and a UML-based development process
for security-critical systems in several areas [PJWB03, BBH+03, JPW03, JLW05].
[LBD02, BDL03] describe an extension of the UML to specify (role based) access
control requirements and how they can be transformed to access control mechanisms
on the deployment platform.

Model-Based Security Testing

There has been extensive research into model-based testing; [Pet00] contains an
annotated bibliography to a wide range of work. To the best of our knowledge, our
work on model-based security testing (starting with [JW01c, JW01a, WJ02], joint
papers with J. Jürjens) is the first published work using formally generated test
sequences for security-critical systems based on the security requirements and for-
mally treating the concretisation of symbolically modelled cryptographic operations
and data. [CB03] describes a model-based approach for security functional testing
based on models in the specification language SCR using general coverage criteria.
The AVA approach [VM01] is designed to allow the assessment of the susceptibility
of code against introduced perturbations of the data state, with the help of statis-
tical testing. Testing criteria for the systematic generation of test sequences based
on security requirements, treatment of cryptography, and concretisation of test se-
quences are not considered in these approaches. The PROTOS approach [Kak01]
is aimed at testing low-level vulnerabilities such as buffer overflows, by introducing
errors into a protocol specification. Again, testing criteria based on the security
requirements and treatment of cryptography are not addressed.

The necessary concretisation of test sequences derived from a model to be able
to execute the test on the implementation is often neglected in model-based testing
approaches. Usually, application-specific scripts are employed for this purpose.
In [DBG01], test concretisation is achieved by the definition of a mapping from

10

1.5. Structure of the Thesis

variable assignments (as parts of a test sequence) to macros that are translated to
concrete command sequences to be sent to and received from the implementation.
We provide a generic concept for the explicit specification of the concretisation and
a test driver that can deal with abstractly specified cryptographic messages.

Application of Security Mechanisms – Layered Protocols

General (informal) work on security patterns includes [YB97, FP01, Sch03]. Here,
security patterns are regarded as well-understood solutions to security problems.
Stepwise concretisation of secure communication channels is described in [Eck98].
Abstract properties of more complex mechanisms such as the use of the SSL pro-
tocol are only informally addressed. [Rud01] describes a top-down oriented design
method for cryptographic protocols, which makes use of channels with abstract
security properties. Unlike in our approach, the abstract channels map directly
to cryptographic primitives. [AFG02] describes how to abstractly model secure
channels in a formal calculus (join calculus) and gives a security-preserving trans-
lation of such models to a version of the calculus supporting cryptography. [Jür01]
addresses secrecy-preserving refinement using a formal model and applies it to a
secure channel implemented by a handshake protocol (TLS). [Jür04] contains an
example where UMLsec is used for the modelling and analysis of an abstract chan-
nel preserving secrecy and of its realisation by encryption. In addition to this, we
also deal with the integration of such security-preserving transformations into gen-
eral systems development and with automation and tool support to verify that a
transformation is security-preserving and to apply such a transformation.

[Bro04, HB05] describe a general formal model for layered architectures based on
the Focus method.

1.5. Structure of the Thesis

We outline the structure of the remaining part of this thesis.

• Chapter 2 presents background information on security and the main con-
cepts of model-based development.

• In Chapter 3, we outline our model-based development methodology for
security-critical systems and describe its artifacts and security-specific de-
velopment activities. The methodology is divided into the analysis/design
phases, including as activities security analysis, threat scenario generation, se-
curity verification, and mechanism application, and the implementation/test-
ing phases with coding resp. code generation, and security test sequence gen-
eration.

11

1. Introduction

• Chapter 4 is devoted to concepts for modelling security-critical systems.
We introduce the AutoFocus/Quest specification language for distributed
systems. The abstract syntax of AutoFocus/Quest is given in the form of
a meta model, and its semantics as a mapping of AutoFocus/Quest models
to discrete systems (state transition graphs). We show how to extend such
models such that security-specific aspects are supported and introduce the
concept of a security-enriched model derived from an initial model of a system
by incorporating security-specific aspects as a result of a security analysis. We
demonstrate the described concepts at the example of two case studies.

• In Chapter 5, we show how to automatically generate a threat scenario from
a security-enriched model, representing the behaviour of a system in presence
of an intruder. We provide both a generic specification of the intruder be-
haviour in the form of a discrete system and a specialised intruder model in
AutoFocus/Quest consisting of communicating finite state machines, suit-
able for verification of security requirements using model checking. We show
that the specialised intruder model for model checking is sound (i.e., does
not allow more attacks than the generic intruder model), and give a class of
systems and properties for which it is complete (i.e., all attacks are found).
The generated threat scenario can be edited to analyse more complex threats
than can be specified in the security-enriched model. We demonstrate threat
scenario generation and verification at the example of a number of case stud-
ies.

• Chapter 6 is concerned with model-based security testing. We introduce
the basic concepts of model-based testing, especially the automated genera-
tion of test sequences from test case specifications, and present strategies for
the specification of test cases for vulnerability testing, based on a threat sce-
nario generated from a security-enriched model. We describe an approach for
testing an implemented system with test sequences generated from a threat
scenario, using a test driver that performs translations between the abstract
test data and the concrete data sent to and received from the implementation.
In particular, we elaborate on the treatment of symbolically modelled data
and cryptographic primitives, and of message parts that were omitted to make
verification feasible. We apply and evaluate our approach at the example of
a case study.

• In Chapter 7, we deal with the application of security mechanisms to a
security-enriched model, as part of a top-down oriented development method-
ology. We focus on security mechanisms realising abstract assumptions on
channels and give a model transformation for the insertion of a protocol layer
providing a security service. We present proof concepts to verify that a model

12

1.5. Structure of the Thesis

transformation preserves the validity of stated security requirements, and
show how to partly automate such proofs with the help of SAT solving. We de-
scribe a number of patterns for modelling common uses of encryption and/or
signature and state which abstract assumptions they realise. A comprehensive
case study concerned with modular verification of a layered security-critical
transaction protocol demonstrates the applicability of the described concepts.

• In Chapter 8, we conclude with a summary and discussion and give an
outlook on future work.

• Appendix A contains an overview over frequently used notation.

13

1. Introduction

14

2. Background: Security and
Model-Based Development

This chapter presents some background information on the topics addressed in this
thesis. In Section 2.1, we explain basic concepts of security. In Section 2.2, we
provide a short overview over model-based development.

2.1. Security

According to the information assurance glossary of the American Committee on
National Security Systems (CNSS), information systems security is the

Protection of information systems against unauthorised access to or
modification of information, whether in storage, processing or tran-
sit, and against the denial of service to unauthorised users, includ-
ing those measures necessary to detect, document, and counter such
threats. [oNSSC03]

Although to date there is no commonly agreed upon definition of security in infor-
mation systems (see e.g. [GGK+04, Poh04, Die04] for recent work in the German-
speaking community on terminology of security and safety), the above definition
highlights the basic characteristics relevant for the work presented in this thesis:

• Security is defined with respect to typical global security requirements, also
referred to as protection goals, security services, or security objectives, such
as the protection of certain pieces of information against unauthorised access.

• Security must be provided in presence of a malicious environment from which
attempts can be performed to access or manipulate a system in an unau-
thorised way. In formal treatments, the malicious environment is usually
modelled in the form of an intruder (also referred to as adversary, attacker or
eavesdropper). In contrast to the common treatment in the domain of fault
tolerance, the intruder is assumed to be “intelligent”, i.e. the intruder can
perform complex computations with the data received. For a security veri-
fication, the capabilities of the intruder must be stated (e.g. which parts of

15

2. Background: Security and Model-Based Development

the system the intruder can access). It must be justified that the security re-
quirements are fulfilled for any possible behaviour of the intruder conforming
to the assumptions.

• Properties that are required to hold for any possible behaviour of a system
together with its environment are universal properties. Therefore, security
requirements are universal properties.

• Global security requirements can refer to the intruder, e.g. by stating that the
intruder should not be able to obtain certain confidential data.

• Typical security mechanisms are available to enforce global security require-
ments by detecting, documenting and countering threats. Examples for secu-
rity mechanisms are cryptography or secure logging.

In the following, we describe the most common global security requirements (after
[oNSSC03, Eck01]).

Confidentiality Confidentiality is the assurance that information is not disclosed
to unauthorised entities.

Integrity Integrity is the protection against unauthorised modification or destruc-
tion of information.

Availability Availability means timely, reliable access to data and information ser-
vices for authorised users.

Authenticity Authenticity is the validity and credibility of a transmission, message,
or originator. Authentication is a mechanism to establish authenticity, e.g.
the verification that a message supposedly sent by a particular subject was
indeed sent by that subject.

Non-Repudiation Non-repudiation is the assurance that a subject is provided with
proof that certain actions have been performed by other subjects, such that
the performance of these actions cannot later be denied.

Fair Exchange Fair exchange is a requirement often stated for electronic commerce
transactions, specifying that no party should be able to gain any advantage
over the other party, even if the protocol stops for any reason. For example,
if a buyer has made a payment, he must in return receive either the goods
from the seller or a refund.

Initially, security requirements are non-functional requirements, i.e. quality at-
tributes similar to performance, reliability or usability. In the course of system

16

2.2. Model-Based Development

development, the security requirements are concretised to functional requirements
specifying particular security mechanisms, such as the use of a cryptographic pro-
tocol.

In this thesis, we refer to information systems security simply as “security”. For
space reasons, a detailed introduction into security and security mechanisms has
to be omitted. In particular, we assume familiarity with the basic concepts of
cryptography. General literature on security with comprehensive treatments of
security concepts and mechanisms includes [Bis03, VM01, Eck01, And01, Sch96].

2.2. Model-Based Development

The basic idea of model-based development techniques is to centre the develop-
ment effort around building models of different aspects of a system, starting from
early stages of development. Models provide abstract means for the specification of
system aspects such as structure, communication, behaviour or data. The main ad-
vantages of model-based development are platform and language independence, the
possibility to offer domain-specific modelling techniques (e.g. for enterprise systems
or real-time systems) and a restricted degree of freedom in comparison to pro-
gramming languages, which reduces the possibilities to introduce errors. Besides,
building models at early stages of development contributes to identifying problems
at times when they are still comparatively inexpensive to solve. A well-known
example of a modelling language available in this context is the UML [OMG03],
with the Rational Unified Process (RUP) [Kru00] as a process defined on top of its
description techniques.

For the purpose of this work, we use a more specific notion of model-based de-
velopment, along the lines of [SPHP02]. In [SPHP02], model-based development
is defined as a “paradigm for system development that besides the use of domain-
specific languages includes explicit and operational descriptions of the relevant en-
tities that occur during development in terms of both product and process”. The
emphasis is on the fact that the models should be explicit and operational, and that
explicit and operational models of both product and process are to be provided.
Expliticitness means that models are represented in the form of mathematical enti-
ties and relations (respectively as data structures in a tool) based on meta models;
operationality makes it possible to simulate models or to generate test cases.

In [SPHP02], models are classified according to a methodical point of view and
according to a meta model architecture. From the methodical point of view, the
following levels are differentiated:

Process level The entities and relations on the process level describe activities of
the development process and their relations. The activities and their relations
are defined on top of the elements of the conceptual model.

17

2. Background: Security and Model-Based Development

Conceptual level The entities and relations on the conceptual level describe the
elements used to construct development products. Examples for conceptual
model elements are components, communication channels or automata. They
are visualised by using (possibly graphical) description techniques.

System level The system level (also referred to as semantical level) provides the
means to describe the semantics of models at the conceptual level, in the form
of a mathematical theory (e.g. predicate logic formulas defined over execution
sequences). The semantics is then given by a mapping of model instances at
the conceptual level to model instances at the system level.

A three-layer meta model architecture is defined as follows:

Model level Entities and relations on the model level correspond to models of a
concrete product or development process. On the conceptual level, this could
be a component Webserver.

Meta model level On the meta model level, the abstract syntax of models on the
model level is defined, e.g. that a model consists among others of a number
of components. Models on the model level are instances of models on the
meta model level. Besides, on the meta model level views can be defined for
particular subsets of a model, e.g. a structural view or a behavioural view.
The representation of such models, e.g. within a CASE tool, is given by the
concrete syntax. For instance, components can be depicted as rectangles.

Meta meta model level Finally, on the meta meta model level, means of descrip-
tion for models on the meta model level are defined. Models on the meta
meta model level are in general domain-independent.

Here we keep to the terminology of the OMG meta model architecture: the above
layers correspond to the MOF layers M1, M2 and M3 respectively. In [SPHP02],
the corresponding levels are referred to as “instance level”, “domain level” and“meta
level”.

In such a model-based development approach, development activities can be de-
fined as transformations of instances of the conceptual model. An example is the
introduction of a new component into a model of a component architecture. The
development can be guided by consistency conditions. For instance, for a model
of a component architecture to be executable (which is necessary e.g. to perform
simulation runs), the behaviour of all components must have been specified.

The mapping of model instances at the conceptual level to semantical models at
the system level enables the use of formal methods to reason about properties of a
modelled system in a mathematically precise way. As motivated in the introduction,

18

2.2. Model-Based Development

the use of formal methods is particularly desirable when dealing with security-
critical systems because of the subtlety of potential flaws leading to violations of
the security requirements.

Finally, tool support is of high significance in the context of model-based devel-
opment, since appropriate tools can offer automation for a large number of model-
based development activities.

19

2. Background: Security and Model-Based Development

20

3. Model-Based Development
Methodology for Security-Critical
Systems

In this chapter, we describe security-related artifacts and activities within a model-
based development methodology for the development of security-critical systems.
We focus on design and testing.

This chapter acts as an overview of the security-specific artifacts and activities
addressed in more detail in the following chapters and explains their relationships.

3.1. Security-Specific Artifacts and Activities in a

Model-Based Development Process

As described in Chapter 2, model-based development relies on explicit and opera-
tional descriptions of development artifacts and process activities. Activities can be
specified as model transformations, where development artifacts are manipulated to
produce new or modified development artifacts. If appropriate tool support is avail-
able, the development activities can be fully or partially automated. Model-based
development allows an incremental and top-down oriented development strategy,
where one starts with an abstract version of a system with limited functionality
and adds detail or new functionality in a stepwise manner. Such a methodology
provides the basis of our work.

Figure 3.1 depicts security-specific artifacts and activities to be included in a
model-based development process to support the development of security-critical
systems. Both artifacts and activities relevant in the analysis and design and ar-
tifacts relevant in the implementation and testing are considered. In Figure 3.1
it is indicated which of the activities can be carried out automatically (based on
additional information included in the model), using the methodology and tool sup-
port developed in this thesis, and for which activities automation support can be
provided as part of further work. The numbers annotated to the artifacts and ac-
tivities refer to the chapters in this work where the respective artifact or activity is
addressed in more detail. Numbers in brackets indicate that the corresponding arti-
fact or activity is only briefly described. In the following explanations, the artifacts
and activities appearing in Figure 3.1 are highlighted using boldface.

21

3. Model-Based Development Methodology for Security-Critical Systems

Figure 3.1.: Security-Specific Artifacts and Activities in a Model-Based Develop-
ment Process

3.2. Analysis and Design

Initial Model The starting point of the methodology is an initial model, describing
a coarse system architecture without security-related aspects. To be able to conduct
a security analysis, at least enough information must be present to deal with assets
and global threats, i.e. at an abstract level, subjects and objects in the system must
be identifiable.

Security Analysis During a security analysis, a set of global security requirements
is elaborated to form a global security policy the system must conform to. Threats
are identified and a risk analysis is performed to assess threats with respect to their
likelihood and potential damage. Assumptions are stated that can be taken for
granted when determining if the security requirements are fulfilled.

22

3.2. Analysis and Design

Security-Enriched Model The results of the security analysis, i.e. the global se-
curity requirements, the relevant threats, and the assumptions, are integrated into
the initial model. This leads to a security-enriched model that forms the basis for
the security-specific development activities.

Threat Scenario Generation From a security-enriched model, a threat scenario
can be generated. A threat scenario is a modification of a model by which an
intruder is added who can perform attacks on the system. The capabilities of the
intruder depend on the threats and assumptions included in the security-enriched
model.

Security Verification Security verification is the verification that the global secu-
rity requirements are fulfilled with respect to the threat scenario. If the result of
the security verification is that a particular security requirement is violated, there
is a corresponding attack on the system. Otherwise, the system is secure given the
assumptions included in the model.

Revision of Security Requirements / Threats / Assumptions If a security re-
quirement is violated, then the security-enriched model needs to be adjusted. One
reason for the violation of a security requirement is that it was stronger than in-
tended or incorrectly formalised. In this case, the security requirement must be
revised. To ensure that a security requirement is fulfilled, one can also weaken or
omit specified threats, or strengthen or add assumptions. Threats should only be
weakened or omitted if indeed the attacks that are no longer considered are not re-
garded as relevant. On the other hand, newly added or strengthened assumptions
can later be enforced by introducing appropriate security mechanisms.

A revision of the security requirements, threats and assumptions must also be
carried out if new functionality was added to the security-enriched model as a part
of an iterative development.

Mechanism Application Mechanism application is the introduction of security-
related functionality into the security-enriched model to ensure that the security
requirements are fulfilled and to realise abstract assumptions. An example is the
introduction of encryption to realise the assumption that the data transferred via a
channel is kept confidential. In general, the security verification must be repeated
after the application of a security mechanism, because additional vulnerabilities
have been introduced. For the application of particular security mechanisms we
refer to as “security patterns”, it can be ensured that the validity of the security
requirements is preserved.

23

3. Model-Based Development Methodology for Security-Critical Systems

Initial models, security analysis and security-enriched models are addressed in
Chapter 4. Threat scenario generation, security verification and revision of secu-
rity requirements, threats and assumptions are described in Chapter 5. Finally,
mechanism application is dealt with in Chapter 7.

3.3. Implementation and Testing

We refer to a security-enriched model whose threat scenario fulfils the global se-
curity requirements as “verified secure”. If a model is verified secure, then the
implementation and testing activities can be carried out.

Coding / Code Generation The security-enriched model can act as a specification
based on which the implementation is to be developed. If the used specification
language supports code generation, it is also possible to automatically generate the
implementation or parts thereof. In this case, the code generator must interpret the
security-specific information in the model. In particular, abstract representations of
cryptographic operations and cryptographic data in the model must be translated
to concrete cryptographic operations (e.g. encryption using a particular encryption
algorithm) and concrete cryptographic data (e.g. a key of a fixed length).

Coding and code generation aspects are not addressed in this thesis and left as
further work.

Security Test Sequence Generation If reliable code generation is not available or
the generated code is not suitable for the environment it is to be deployed in (with
respect to programming language, size, performance, completeness, interfaces to
other parts of the system, etc.), security testing is indispensable to gain confidence
in the security of the implementation.

For security testing, the threat scenario can be fully utilised to derive security
test sequences. Here, security test sequences are sequences of inputs and outputs
to a component under test, derived from an attack trace, i.e. an execution trace of
the threat scenario.

As exhaustive testing, i.e. testing using all possible sequences of input data, is
not feasible, test sequence generation requires the definition of appropriate testing
criteria to specify which test sequences should be generated. In security testing,
the aim is to discover implementation flaws that lead to the violation of a security
requirement.

Test As in the case of code generation, to execute tests given by generated test
sequences, abstract test data must be concretised. For this purpose, we require a
concretisation mapping to specify how abstract input and output data in the

24

3.4. Related Work

test sequences generated from the threat scenario is to be translated to concrete
inputs to be sent to and outputs expected from the implementation. Based on the
test sequences and the concretisation mapping, the actual test can be carried out
automatically by an appropriate test driver.

The generation of security test sequences, the specification of a concretisation
mapping and an algorithm for a test driver are described in Chapter 6.

3.4. Related Work

[Lot97] describes security-specific development activities in the design phase related
to those given in this chapter, based on models specified in the formal method
Focus. Explicit modelling of threats and assumptions is not addressed.

[VWW02] shows how to integrate security-specific development activities into a
waterfall process to fulfil the requirements stated by the Common Criteria. A top-
down oriented approach for the development of security-critical systems is presented
in [Eck01]. Security-relevant activities and documents have also been included
in the recently published revision of the German V-Modell [MIE+05], but only
at a coarse level of detail: specifically, there is an activity “hazard and security
analysis” consisting of the identification of possible hazards and threats (here, both
security and safety are addressed), risk analysis, and elaboration of appropriate
countermeasures. [BBHP04, Pop05] describe a development process for security-
critical systems using description techniques of the UML and additional models, e.g.
to specify access control policies. A “micro-process” for security analysis is given,
consisting of security requirements elicitation, threat modelling and risk analysis,
measures design, and correctness check, and this process is repeated at the different
levels of detail (business modelling, system requirements elicitation, application
architecture). The approach is focused on early development phases, whereas we
concentrate on design models and on automation and tool support.

3.5. Summary

We gave a brief overview over security-related development artifacts and activities
within a model-based methodology for the development of security-critical systems,
considering both analysis/design and implementation/testing aspects.

In the following chapters, we turn our focus to specific parts of this methodology.

25

3. Model-Based Development Methodology for Security-Critical Systems

26

4. Modelling Security-Critical Systems

In this chapter, we present the modelling concepts for security-critical systems that
form the foundation of the development activities described in the forthcoming
chapters.

According to the model-based development methodology described in Chapter 3,
one begins with an initial model described in a specification language appropri-
ate for the application domain. Based on the initial model, a security analysis is
performed and the information from the security analysis is incorporated into the
model, resulting in a security-enriched model. Thus, security analysis can be seen
as a model transformation (which, however, cannot be performed automatically).
The security-enriched model is the starting point for security-specific development
activities such as threat scenario generation, mechanism application or revision of
threats and security requirements. The corresponding part of the methodology is
depicted in Figure 4.1.

This chapter is structured as follows. In Section 4.1, we present the syntax and
semantics of AutoFocus/Quest, a specification language for distributed/embed-
ded systems, which we are going to use as an example language throughout this
work to explain our concepts, and describe ways to specify model transformations.
Section 4.2 is dedicated to the security extensions used in the security-enriched
model to integrate security aspects. We describe the two main case studies, a
bank application and the Common Electronic Purse Specifications in Section 4.3
and Section 4.4. We end with references to related work in Section 4.5 and give a
summary in Section 4.6.

4.1. A Specification Language for Distributed Systems

Specification languages play a central role in model-based development: they are
used to describe aspects such as structure, behaviour or data of the system under
consideration (and possibly of its environment). In this section, we introduce the
AutoFocus/Quest specification language, which forms the basis of our model-
based approach to the development of security-critical systems.

AutoFocus/Quest [HMR+98] is a general-purpose model-based specification
language and tool for distributed, reactive systems. It is mainly aimed at the speci-
fication and analysis of embedded software, but if used appropriately, its modelling
concepts are suitable for systems consisting of networks of components in general.

27

4. Modelling Security-Critical Systems

Figure 4.1.: Process: Modelling Security-Critical Systems

The formal basis of AutoFocus/Quest are communicating automata, a fairly
general formalism which is also part of many other specification languages in its
application domain, such as UML-RT or SDL. For the data aspects, AutoFocus/
Quest includes a simple functional language named QuestF. Although we had to
choose a particular specification language for the presentation of our work, our
approach can be fairly easily transferred to other specification languages based on
related concepts.

We chose AutoFocus/Quest because of its appropriateness for the considered
application domain (distributed systems, in part with embedded components), its
conceptual simplicity, and its extensive tool connections. Based on an integrated
meta model, the AutoFocus/Quest tool support features simulation, verification,
test sequence generation, code generation and an interface for plugins to realise
model transformations.

Note that although it turned out that AutoFocus/Quest is well-suited for sup-
porting security-related model aspects and development activities, this was only
a minor criterion: the main aim was to utilise a specification language and tool
adequate to the application domain and to take advantage of its existing features.

4.1.1. Notation

For formal definitions and formal reasoning, we use standard mathematical notation
as far as possible. We write ∅ for the empty set, P(A) for the set of subsets of the
set A and {x : P (x)} for the set of all x such that the predicate P (x) is fulfilled.
The symbols N and Z stand for the set of natural numbers (including zero) and the
set of integers, respectively.

By f : A1 → A2, we specify that f is a function with the functionality A1 → A2.
dom f denotes the domain of f (here, A1), and rng f := {f(x) : x ∈ dom f} denotes

28

4.1. A Specification Language for Distributed Systems

its range. We write {v1 7→ x1, . . . , vn 7→ xn} for the function f with dom f =
{v1, . . . , vn} and f(vj) = xj. We write f |A for the restriction of f to the domain A.

We often work with sequences. We write A∗ for the set of finite sequences over
a set A, A+ for the set of non-empty finite sequences over A, and A∞ for the
set of infinite sequences over A. Aω is defined as Aω := A∗ ∪ A∞. We write
[x0, x1, . . . , xn] for the sequence consisting of x0 followed by x1, . . . , xn. σ1 ◦ σ2

denotes the concatenation of the sequences σ1 and σ2, σ(i) denotes the ith element
of σ and σi denotes the suffix of σ starting with the ith element. Here, the index
of the first element is i = 0. If σ is a sequence of functions, we write σ|A for the
pointwise application of |A to the elements of σ.

For a list of frequently used notation, see Appendix A.

4.1.2. Modelling Formalism

In the following sections, we describe the conceptual meta model representing the
abstract syntax of AutoFocus/Quest models. We specify the conceptual meta
model of AutoFocus/Quest in the form of a pair (MEntities,MFunctions) consisting
of a set MEntities of names of (meta model) entity sets and a set MFunctions of names
of (meta model) functions with fixed signatures. 1

As a language to specify the entity sets and functions (i.e., as a meta meta model),
we use simplified UML class diagrams. Simplified UML class diagrams also serve as
a meta meta model within the model driven architecture of the OMG. The entity set
names in MEntities are given by the class names in the diagram. Association ends
and attributes specify function names whose signatures depend on the respective
multiplicities, as shown in Figure 4.2. We allow function names to appear more than
once if they have the same range: if a diagram defines two functions f : e1 → e3

and f : e2 → e3, the resulting function specification is f : (e1 ∪ e2) → e3. The
default multiplicity of attributes is 1. In addition, an entity can only be part of
one composition, where compositions are denoted by associations with the symbol

. Finally, a generalisation relationship (denoted by the symbol) is
interpreted as a subset relationship between the entity set corresponding to the
subclass and the entity set corresponding to the superclass. Apart from this, all
entity sets must be pairwise disjoint.

As an example, the class diagram in Figure 4.3 (a part of the AutoFocus/Quest
meta model) specifies two entity set names Component and Channel, and three
functions subComponents : Component → P(Component), channels : Component →
P(Channel) and typeof : Channel → Type (the entity Type is specified elsewhere in
the diagram).

1For simplicity, we use functions instead of general relations and express general relations by a
pair of functions if necessary.

29

4. Modelling Security-Critical Systems

PSfrag replacements

e1 e2f
mult

e1

e2
f [mult] : e2

mult signature of f

1 f : e1 → e2

0..1 f : e1 → e2 (partial)
∗ f : e1 → P(e2)
1..∗ f : e1 → P(e2) \ ∅
∗{ordered} f : e1 → e2

∗

1.. ∗ {ordered} f : e1 → e2
+

Figure 4.2.: Meta Meta Model: Specification of Meta Model Functions

A model M conforming to a meta model (MEntities,MFunctions) is an inter-
pretation of the entity set names and function names. M maps entity set names
e ∈ MEntities to entity sets eM and function identifiers f ∈ MFunctions to func-
tions fM. In the above example, we obtain a set ComponentM of components, a
set ChannelM of channels, and three functions subComponentsM, channelsM and
typeofM that yield the sets of subcomponents and channels of a component and
the type of a channel. If it is clear from context that we refer to a fixed modelM,
for notational convenience we may leave out the superscriptM and use the entity
set names and function identifiers and their interpretations interchangeably.

Consistency conditions are formulated as (first-order) predicates over models
M. For example, ∀c ∈ ComponentM : c /∈ subComponentsM(c) is a consistency
condition that specifies that a component must not be its own subcomponent.
The compositions used in a meta model also state a consistency condition: for
all compositions f , f ′ (f = f ′ is possible) and all x ∈ dom fM, there must not
exist x′ ∈ dom f ′M, x 6= x′ such that fM(x) ∩ f ′M(x′) 6= ∅ (where sequences and
single values are interpreted as sets). In addition, if fM(x) is a sequence, it must
not contain duplicate elements. As the subComponents function was represented in
Figure 4.3 by a composition, this implies that a c ∈ ComponentM must only be in
the set subComponentsM(c′) for one c′ ∈ ComponentM (i.e., a component cannot
be the subcomponent of more than one component).

Lastly, model transformations are relations between models, specified as pred-
icates over two modelsM (the source model, i.e. the model to be transformed) and
M′ (the target model, i.e. the result of the transformation). For example, as part of
a transformation, the predicate ComponentM

′

= ComponentM ∪ {c} specifies that
a component c is added to the set of components.

4.1.3. The Functional Language QuestF

AutoFocus/Quest includes a language to define and manipulate data stored by
and passed between components, called QuestF. QuestF is a functional language
similar to a subset of Gofer [Jon93].

30

4.1. A Specification Language for Distributed Systems

Component

*channels

*subComponents

Channel

typeof: Type

Figure 4.3.: Example Meta Model

DTD
*

dataDefs

1..* {ordered}constructors

* {ordered}

selectorsConstructor Selector

Term

Appl

* {ordered}

arguments

*

funDefs

1

defType

DataDef FunDef

* {ordered}arguments

1rhs1

defFun

1

typeof

1

head

1..* {ordered}

fct

Type

name: String

Fun

name: String

Var

name: String

Figure 4.4.: AutoFocus/Quest Meta Model: Abstract Syntax of Language QuestF

A simplified version of the part of the AutoFocus/Quest meta model describing
the abstract syntax of QuestF is shown in Figure 4.4. In this thesis, we restrict
ourselves to the description of the syntax and semantics of the features relevant for
our purposes: hierarchical data types, terms and function definitions.

Data Type Definitions (DTDs)

In QuestF, hierarchical (algebraic) data types are defined by data type definitions. A
data type definition d ∈ DataDef defines a type defType(d) ∈ Type by a non-empty
sequence of constructors constructors(d) ∈ Constructor+. For each constructor c ∈

31

4. Modelling Security-Critical Systems

Constructor there is a (possibly empty) sequence selectors(c) of selectors to extract
the arguments of a constructor application.

Constructors and selectors are elements of a set Fun of functions. Functions f ∈
Fun have functionalities fct(f) ∈ Type+, denoted as (type1, . . . , typen) → typen+1,
where type1, . . . , typen are the argument types and typen+1 is the result type.2

For fct(f) = (type1, . . . , typen)→ typen+1, we also write f : (type1, . . . , typen) →
typen+1.

Let datadefk ∈ DataDef (for k ∈ {1, . . . , |DataDef|}) be the data type defini-
tion defining the type typek = defType(datadefk), with constructors(datadefk) =
[Ck

1 , . . . ,C
k
m] and selectors(Ck

i) = [selki1, . . . , sel
k
ink

i

]. For datadefk to be consistent,

the functionalities of the constructors must be Ck
i : (typek

i1, . . . , typek
ink

i

) → typek,

where typek
ij are the argument types of the constructor Ck

i . The arities nk
i of the

constructors can also be 0. Besides, the selectors must have the functionalities
selkij : (typek) → typek

ij . For each type t ∈ Type, there must be only one data type
definition d ∈ DataDef with defType(d) = t.

In the concrete syntax, the data type definition datadefk is written as follows:

data typek = Ck
1(sel

k
11 : typek

11, . . . , sel
k
1nk

1

: typek
1nk

1

)

|
. . .
|
Ck

m(selkm1 : typek
m1, . . . , sel

k
mnk

m
: typek

mnk
m

);

Here, types, constructors and selectors are represented by their names, given by
the meta model function name : (Type∪Fun∪Var)→ String, where String is a set of
names (represented as strings). Names for the selectors selkij can be omitted in the
concrete syntax. If a selector name is omitted, AutoFocus/Quest automatically
generates a default one when parsing the data type definition.

Intuitively, a data element of type typek can have as a value a constructor appli-
cation Ck

i (x1, . . . , xnk
i
), and the selector selkij can be used to extract xj from such a

value.
We assume that one of the data types typek is Bool, defined as follows:

data Bool = True | False;

Terms and Evaluation

Figure 4.4 also specifies the abstract syntax of terms in QuestF. A term is either
a variable v ∈ Var, in the concrete syntax represented by its name, or a function

2Note that here we make no distinction to the usual mathematical notation for functionalities
already used previously on the meta model level.

32

4.1. A Specification Language for Distributed Systems

application a ∈ Appl (i.e., Term = Var∪Appl). A function application has a function
f = head(a) ∈ Fun as its head and a sequence arguments(a) ∈ Term∗ of terms as its
arguments and is denoted as f(t1, . . . , tn).

By the function typeof : Term → Type, types are assigned to terms. Type cor-
rectness is defined as follows:

Definition 4.1.1. A term t is type correct if t ∈ Var or t = f(t1, . . . , tn) where
the terms t1, . . . , tn are type correct and fct(f) = (typeof(t1), . . . , typeof(tn)) →
typeof(t).

Definition 4.1.2. (subterm, free variables, substitution) We often work with the
property of a term t being a subterm of a term t′, denoted by t E t′; with its set of
free variables freeVar(t); and with the application of a substitution [v1/t1, . . . , vn/tn]
to t resulting in the term t[v1/t1, . . . , vn/tn] where the variables v1, . . . , vn have been
replaced simultaneously by the terms t1, . . . , tn. These notations are interpreted in
the usual way. Substitutions are treated as sequences of pairs of terms and variables
and thus can be concatenated using the operator ◦.

A term is evaluated by reducing it to normal form, which only consists of appli-
cations of constructor functions. 3

Definition 4.1.3. A term t is in normal form if it is type correct and ∀s E t :
∃c ∈ Constructor, n ≥ 0, t1, . . . , tn ∈ Term : s = c(t1, . . . , tn). Note that it is
possible that n = 0, in which case we have a constructor c without arguments. By
Value := {t ∈ Term : t in normal form} ∪ {⊥} we denote the set of terms in normal
form, including a symbol ⊥ for the empty/error value, and by Value(typek) := {t ∈
Value : typeof(t) = typek} ∪ {⊥} we denote the values of type typek. Value(typek)
is the carrier set of the type typek.

Let β : Var → Value be a valuation of variables, and I be an interpretation
of the function symbols f ∈ Fun, with I(f) : Value(type1) × . . . × Value(typen) →
Value(typen+1) if fct(f) = (type1, . . . , typen) → typen+1. The evaluation evalβ :
Term→ Value of terms is defined as follows:

evalβ(v) = β(v) for v ∈ Var
evalβ(f(t1, . . . , tn)) = I(f)(evalβ(t1), . . . , evalβ(tn))

Predefined Functions

We assume that for a given DTD, the following functions are predefined:

3In terms of algebraic data types, this corresponds to an initial algebra semantics.

33

4. Modelling Security-Critical Systems

• the standard boolean functions && : (Bool,Bool) → Bool, || : (Bool,Bool) →
Bool, => : (Bool,Bool)→ Bool and not : (Bool)→ Bool with the usual strict
interpretations for boolean and, or, implication and not;

• an equality function ==k: (typek, typek)→ Bool for each type typek, with
I(==k)(x1, x2) = True if x1 = x2 and I(==k)(x1, x2) = False otherwise, but
always I(==k)(x1, x2) =⊥ if x1 =⊥ or x2 =⊥ (strictness); and

• an immediate-if function ifk : (Bool, typek, typek)→ typek for each type typek,
with

I(ifk)(True, x2, x3) = x2, I(ifk)(False, x2, x3) = x3 and I(ifk)(⊥, x2, x3) =⊥.

The constructors and selectors specified in the data type definitions have the
following interpretations:

• I(Ck
i)(x1, . . . , xnk

i
) = Ck

i (x1, . . . , xnk
i
) if xi 6=⊥ for all i : 1 ≤ i ≤ nk

i , and

I(Ck
i)(x1, . . . , xnk

i
) =⊥ otherwise; and

• I(selkij)(x) = xj if x = Ck
i (x1, . . . , xj , . . . , xnk

i
), and I(selkij)(x) =⊥ otherwise.

Finally, for each constructor Ck
i there is a discriminator is Ck

i ∈ Fun with func-
tionality is Ck

i : (typek) → Bool and I(is Ck
i)(C

k
i (x1, . . . , xnk

i
)) = True, I(is Ck

i)

(⊥) =⊥ and I(is Ck
i)(x) = False otherwise.

For better readability, in the concrete syntax we write &&, ||, => and ==k in
infix form, and ifk(t1, t2, t3) as“ifk t1 then t2 else t3 fi”. In addition, as QuestF terms
can be statically type checked, we write t1 == t2 as an abbreviation for t1 ==k t2
(where typeof(t1) = typeof(t2) = typek). The latter gives us a simple kind of
polymorphy (which is in general not supported in QuestF) without cluttering up
syntax and semantics too much. In the same way, we write if as an abbreviation
for ifk.

Function Definitions

QuestF supports user-defined functions. A function definition fd ∈ FunDef defines
a function defFun(fd) ∈ Fun. It has a sequence of arguments arguments(fd) ∈ Var∗

and a right hand side rhs(fd) ∈ Term.4 The concrete syntax of a function definition
with defFun(fd) = f , arguments(fd) = [v1, . . . , vn] and rhs(fd) = tf is

fun f(v1, . . . , vn) = tf ;

4Actual QuestF function definitions allow the use of multiple alternatives and pattern matching,
which we leave out here for simplification.

34

4.1. A Specification Language for Distributed Systems

data TAgent = A | B;
data TMessage = EmptyTMessage

| Request(getInitiator : TAgent)
| Reply(getResponder : TAgent);

Figure 4.5.: Example of QuestF Data Type Definition

For each function definition, freeVar(rhs(fd)) must be the set {v1, . . . , vn} of the
arguments.

Let {v1 7→ x1, . . . , vn 7→ xn} denote a valuation β with β(vi) = xi for 1 ≤ i ≤ n.
The (call by value) semantics of a function definition is then given by

I(f)(x1, . . . , xn) = eval{v1 7→x1,...,vn 7→xn}(tf)

Each function f ∈ Fun must be either a predefined function or it must be defined
via a function definition. The entity set DTD integrates data type and function
definitions and corresponds to a textual specification document. We allow only one
such specification to be present, which globally defines the data types and functions
used in a model. That is, |DTD| = 1.

Example 4.1.4. Figure 4.5 shows the definition of a simple data type TMessage
for messages, based on a data type TAgent for agent names. A possible value of
type TMessage would be Request(A). evalβ(is Request(Request(A))) yields True and
the result of evalβ(getInitiator(Request(A))) is A.

Integer Type

The language QuestF also includes an integer type Int. If needed in a model, we
assume we have an additional type definition

data Int = Zero |Succ(pred : Int);

for (positive) integers, and corresponding function definitions such as

fun + (x, y) = if is Zero(x) then y else Succ(+(pred(x), y)) fi;

We write “0” as an abbreviation for Zero, “1” as an abbreviation for Succ(Zero),
etc. Note that integers will not play a central role in our models of security-critical
systems. In particular, we represent security-critical data such as cryptographic
keys or random challenges symbolically rather than by integer values.

35

4. Modelling Security-Critical Systems

4.1.4. Structural and Behavioural Views

Based on the underlying functional language, we can specify the structure and
behaviour of the system under consideration.

Like the abstract syntax for data type and function definitions, the abstract
syntax to specify structural and behavioural aspects of a system is part of the
AutoFocus/Quest meta model. We refer to such parts as views on a model. Each
view has its own concrete syntax. The fact that these views are tightly coupled
through the meta model facilitates ensuring their mutual consistency and defining
operations on the model such as transformations or the export to external tools for
verification or test case generation.

Figure 4.6 shows a simplified version of the part of the AutoFocus/Quest meta
model relevant for the structural and behavioural views. In the following, we
describe the views and their concrete syntax in more detail.

System Structure Diagrams (SSDs)

The system structure diagram (SSD) view specifies the interfaces and the archi-
tecture of a system. An SSD is similar to a data flow diagram and consists of
named components with input and output ports for receiving and sending messages.
Figure 4.7 shows the part of the AutoFocus/Quest meta model relevant for the
SSD view. A component c ∈ Component is either atomic (subComponents(c) = ∅),
or it consists of a number of subcomponents and of directed channels connect-
ing the ports of the subcomponents to each other or to the ports of c (i.e., to
the environment of c). A port can be the destination port destP(ch) of at most
one channel ch, such that the received message is unambiguously defined. Be-
sides, to simplify the formulation of model transformations on channels, we also
require that a port can be the source port sourceP(ch) of at most one channel ch.
If necessary, multicast (which can be specified in the original AutoFocus/Quest
by connecting more than one channel to the same source port) can be explicitly
modelled by introducing an additional component receiving a message and sending
multiple copies. Ports and channels are typed, with the consistency condition that
∀ch ∈ Channel : typeof(ch) = typeof(sourceP(ch)) = typeof(destP(ch)). We allow
ports to be used as variables in terms. Therefore, the set Port is included in the set
Var.

Example 4.1.5. Figure 4.8 shows a simple AutoFocus/Quest SSD as it is de-
picted in the concrete syntax used by the AutoFocus/Quest SSD editor. It con-
sists of two subcomponents A and B that have an output and input port each,
named A.Req and A.Rep, respectively B.Rep and B.Req, which are connected via
two channels.

36

4.1. A Specification Language for Distributed Systems

*channels

Port

typeof: Type
*

inPorts

1sourceP 1 destP

Transition

pre: Term

Tick

*subComponents

0..1automaton

1

initState

*states

1source 1 target

*

inp

*

outp

*

actions

1

port

1 port

Message

value: Term

*messages

Term

*properties

*

outPorts

*

transitions

Input

expr: Term

Output

expr: Term

Action

var: Var

expr: Term

EET

* {ordered}ticks

1

channel
Channel

typeof: Type

LocVar

initValue : Term

Automaton

*locVars

Var

Component

name: String

State

name: String

Figure 4.6.: AutoFocus/Quest Meta Model: Structural and Behavioural Views

37

4. Modelling Security-Critical Systems

*channels

Port

typeof: Type

*

inPorts

1sourceP 1 destP

*subComponents

*

outPorts

Channel

typeof: Type

Component

name: String

Figure 4.7.: AutoFocus/Quest Meta Model: SSD View

input port

component

output port
type channel

A B

TMessage

TMessage

A.Req B.Req

A.Rep B.Rep

Figure 4.8.: Example AutoFocus/Quest System Structure Diagram

38

4.1. A Specification Language for Distributed Systems

Port

typeof: Type
Transition

pre: Term

1

initState

*states

1source 1 target

*

inp

*

outp

*

actions

1

port

1

port

*

transitions

Input

expr: Term

Output

expr: Term

Action

var: Var
expr: Term

LocVar

initValue : Term

Automaton

*locVars

Var

State

name: String

Figure 4.9.: AutoFocus/Quest Meta Model: STD View

State Transition Diagrams

The behaviour of components can be specified in AutoFocus/Quest by the State
Transition Diagram (STD) view. STDs define extended finite state machines, which
have a data state as well as a control state. In AutoFocus/Quest, STDs can also
be hierarchical (i.e., states can have substates). However, we will not make use of
this feature.

Figure 4.9 shows the part of the AutoFocus/Quest meta model relevant for
the STD view. An STD aut ∈ Automaton (where Automaton is the entity set for
STDs), consists of a set states(aut) ⊆ State of named control states, one of which
is the initial state initState(aut), of a set locVars(aut) ⊆ LocVar of local variables
(together forming the data state), and of a set transitions(aut) of transitions. Local
variables v ∈ LocVar are variables (i.e., LocVar ⊆ Var) for which an initial value
initValue(v) is specified. STDs can be assigned to components via the function
automaton : Component → Automaton. Local variables cannot be shared between

39

4. Modelling Security-Critical Systems

components (expressed by the composition association in the diagram).
Each transition tr ∈ transitions(aut) has the following attributes:

• source and target state source(tr), target(tr) ∈ State;

• a boolean expression pre(tr) ∈ Term, the precondition (guard) for firing tr ;

• inp(tr) ∈ P(Input), a set of input expressions, where each input expression
i ∈ Input consists of a port port(i) and a term expr(i) consisting only of
variables and constructors: a pattern that must match the value read on
port(i);

• outp(tr) ∈ P(Output), a set of output expressions, where each output expres-
sion o ∈ Output consists of a port port(o) and a term expr(o) whose value is
output to port(o) when tr is fired; and

• actions(tr) ∈ Action, a set of actions, where each action a ∈ Action consists of
a variable var(a) and a term expr(a) whose value is assigned to var(a) when
tr is fired.

Only local variables and the free variables in the input expressions may appear
as free variables in the precondition and in the terms of the output expressions and
actions. For convenience of notation, we sometimes write input expressions i and
output expressions o as pairs (port(i), expr(i)) and (port(o), expr(o)), and actions a
as pairs (var(a), expr(a)). Likewise, we write transitions tr ∈ Transition as 6-tuples
tr = (source(tr), pre(tr), inp(tr), outp(tr), actions(tr), target(tr)).

Example 4.1.6. Figure 4.10 shows a simple AutoFocus/Quest STD that could
specify the behaviour of the component B depicted in Figure 4.8. In the concrete
syntax of STDs, states are depicted by ellipses and the initial state is marked with a
black dot. The transitions are annotated with“pre(tr) : inp(tr) :outp(tr) :actions(tr)”,
where inp(tr) is denoted as “p1?t1; p2?t2; . . .”, outp(tr) as “p1!t1; p2!t2; . . .”, and
actions(tr) as “v1 = t1; v2 = t2; . . .” with pi ∈ Port, vi ∈ Var, ti ∈ Term. Local
variables with their types and initial values are shown in an additional box, in the
form “v : typeof(v) = initValue(v)”. A component B with the behaviour specified
in Figure 4.10 would accept a request message of the form Request(x), store it in
the local variable stored req (which is of type TMessage and has the initial value
EmptyTMessage) and return a reply message Reply(B).

Extended Event Traces

Extended Event Traces (EETs) in AutoFocus/Quest represent system runs, sim-
ilarly to message sequence charts [ITU96]. AutoFocus/Quest EETs include con-
cepts for hierarchy and repetition. For our purposes (depicting test sequences and

40

4.1. A Specification Language for Distributed Systems

Init

Finished

Local variables:

EmptyTMessage
stored_req: TMessage =

is_Request(x):
inB?x:
outB!Reply(B):
stored_req=x

Figure 4.10.: Example AutoFocus/Quest State Transition Diagram

attack scenarios), it suffices to view an EET as a sequence of messages exchanged
between the components via their channels.

The meta model part relevant for the definition of EETs is shown in Figure 4.11.
An EET e ∈ EET is a sequence ticks(e) of ticks. Each tick consists of a set of
messages m ∈ Message, which are valuations of channels.

For convenience of notation, we also denote an EET directly as a sequence of
channel valuations β1, β2, . . . with βi : Channel→ Value.

Example 4.1.7. Figure 4.12 shows an EET for the system in Figure 4.8, where
component A sends a Request(A) message to B and B sends the corresponding reply.
Here, the arrows denote the messages and the ticks are separated by dashed lines.

Properties

Finally, one can assign a set of properties properties(c) ∈ P(Term) to a component
c, which can be used for verification and test sequence generation.

In AutoFocus/Quest, properties are formulated in temporal logic (see e.g.
[Eme90] for a general introduction). AutoFocus/Quest allows to specify both
Computation Tree Logic (CTL) and Linear-Time Temporal Logic (LTL) properties.
In this thesis, we will only make use of LTL properties, respectively of predicates
on traces (which LTL properties can be translated to). Properties assigned to com-
ponents are specified in AutoFocus/Quest with the help of a separate property
editor.

For simplicity reasons, there is no additional entity for temporal logic properties
in AutoFocus/Quest. Instead, special terms are used:

Definition 4.1.8. For the formulation of temporal logic properties we require that
the set Fun includes a set of LTL operators LTLOp = {X , U ,F ,G }. The operators

41

4. Modelling Security-Critical Systems

Tick

Message

value: Term

*messages

EET

* {ordered}ticks

1channel

Channel

typeof: Type

Figure 4.11.: AutoFocus/Quest Meta Model: EET View

Figure 4.12.: Example AutoFocus/Quest Extended Event Trace

42

4.1. A Specification Language for Distributed Systems

X ,F and G have the functionalities (Bool) → Bool, and the operator U has the
functionality (Bool,Bool) → Bool. A term t ∈ Term is an LTL term if it contains
an LTL operator.

If t ∈ Term is an LTL term, we require that for all its subterms f(t1, . . . , tn) E t
that are LTL terms, either f is an LTL operator, or ∃n ≥ 1 : fct(f) = Booln (i.e.,
LTL terms can only be connected by boolean functions).

LTL terms cannot be interpreted via evalβ. The only way LTL terms may appear
in a model is via the association properties(c). In particular, the transition attributes
of State Transition Diagrams and the messages in Extended Event Traces must
not contain LTL terms. In any case, we require that for all pr ∈ properties(c),
typeof(pr) = Bool. Besides, as free variables in pr only ports, local variables or
the special variable stateaut referring to the control state of the automaton aut can
occur. The usage of stateaut is explained below.

The temporal operators have the following meanings:

• pr 1 U pr 2 (“pr1 until pr 2”): pr2 holds in some state in an execution sequence,
and until that state, pr 1 holds,

• X pr (“nexttime pr”): pr holds in the immediate successor state,

• F pr (“future pr”): pr holds in some state, and

• G pr (“globally pr”): pr holds in all states.

Example 4.1.9. A possible property of the system specified in part by the SSD in
Figure 4.8 is

F (A.Req == Request(A))

stating that in all executions, the component A will eventually issue a request
Request(A) via port A.Req.

4.1.5. Semantics of AutoFocus/Quest Models

In this section, we give an operational semantics for AutoFocus/Quest models.
Our semantics is based on synchronous composition using a global clock and

message buffers that hold a message for exactly one time tick:

• At each execution step, a transition is fired in each of the automata in the
model at the same time, depending on the values of the local variables and of
the input ports of the component the automaton is assigned to.

• The values written to the output ports are available to the connected compo-
nents at the following execution step.

43

4. Modelling Security-Critical Systems

This execution model was chosen in the project Quest for the integration of
AutoFocus/Quest with various simulation and verification tools for the following
reasons:

• It is the natural way of describing hardware oriented embedded systems, the
main application area of AutoFocus/Quest.

• The state space has a fixed size (when using finite data types), which facilitates
the use of automated verification techniques such as model checking.

The used execution model is also general enough for the specification of arbitrary
networks of communicating components: for example, if necessary, buffer compo-
nents can be introduced to allow communication with arbitrary delay. Synchronous
composition is commonly used in the analysis of cryptographic protocols as well
[Pfi98] and therefore provides a good basis for the treatment of security-critical
systems.

In particular, our definition of the semantics of an AutoFocus/Quest model
is based on the translation to state transition graphs (which we will call discrete
systems in this work) presented in [WLPS00], which was derived from [HSE97,
PS99]. It is formulated in terms of the abstract syntax presented in the previous
sections.

Definition 4.1.10. A discrete system D = (V, I, T) consists of:

• V , a set of state variables;

• I(β), an initial condition, given as a predicate on valuations β of V , that
characterises the initial states; and

• T (β, β′), a transition relation, given as a predicate on a pair β, β ′ of valuations
of V .

A computation of D is an infinite sequence σ = [β0, β1, β2, . . .] of valuations
satisfying ΨD(σ), where

Ψ(V,I,T)(σ) = I(β0) ∧ ∀i ≥ 0 : T (βi, βi+1)

Semantics of Atomic Components

The semantics of an atomic component c ∈ ComponentM in a model M can only
be defined if it has an associated automaton aut = automatonM(c). To be able to
represent the control state as a valuation of a variable as well, we assume that for
each automaton aut there is an implicit data type declaration

44

4.1. A Specification Language for Distributed Systems

data statesaut = s1 | . . . | sn ;

with {s1, . . . , sn} = statesM(aut), and a variable stateaut ∈ VarM with that type.
The semantics of c is then given as a discrete system JcKM = (VM;c, IM;c, TM;c)
with

VM;c = inPortsM(c) ∪ outPortsM(c) ∪ locVarsM(aut) ∪ {stateaut}
IM;c(β) = β(stateaut) = initStateM(aut) ∧

∧

x∈locVarsM(aut) β(x) = initValueM(x) ∧
∧

x∈outPortsM(c) β(x) =⊥

TM;c(β, β′) =
∨

tr∈transitionsM(aut) TM;c;tr(β, β′) ∨ TM;c;idle(β, β′)

Thus, the (global) state of c is a valuation of its ports and of the local variables
and the control state of aut . Initially, aut is in its initial control state, the local
variables have their initial values and the output ports are empty. Empty ports
are represented by ⊥. The transition relation is a disjunction of transition rela-
tions TM;c;tr for the transitions of aut and an “idle” transition, as explained in the
following.

For the definition of TM;c;tr, we first consider the input patterns. We define a
pattern matching condition pmCond(p, t), which is a set of terms that evaluates to
True if a term p matches the pattern t, and a substitution pmSubst(p, t) that maps
each free variable in t to a term yielding the value of this variable in the matching:

pmCond(p, t) = ∅, if t ∈ Var

pmCond(p,Ck
i (t1, . . . , tnk

i
)) = {is Ck

i (p)} ∪
⋃

1≤j≤nk
i
pmCond(selkij(p), tj)

pmSubst(p, t) = [t/p], if t ∈ Var

pmSubst(p,Ck
i (t1, . . . , tnk

i
)) = pmSubst(selki1(p), t1) ◦ . . . ◦ pmSubst(selk

ink
i

(p), tnk
i
)

For example, for the pattern t = Request(x) with the above definition we have
pmCond(p, t) = {is Request(p)} and pmSubst(p, t) = [x/getInitiator(p)]. Thus,
the term Request(A) matches the pattern t and x is substituted by A (the re-
sult of getInitiator(Request(A))) in the matching. For a transition tr , we define
pmCond(tr) =

⋃

(p,t)∈inpM(tr) pmCond(p, t) as the union of the pattern matching
conditions for its input patterns, and likewise pmSubst(tr) as the concatenation of
the corresponding substitutions.

TM;c;tr is then given by:

45

4. Modelling Security-Critical Systems

TM;c;tr(β, β′) =
β(stateaut) = sourceM(tr) ∧ (1)
β′(stateaut) = targetM(tr) ∧
∀(p, t) ∈ inpM(tr)

β(p) 6=⊥ ∧ ∀t ∈ pmCond(tr) : evalβ(t) = True ∧ (2)
evalβ(preM(tr)(pmSubst(tr))) = True ∧ (3)

∀(p, t) ∈ outpM(tr) : β′(p) = evalβ(t(pmSubst(tr))) ∧ (4)

∀(v, t) ∈ actionsM(tr) : β′(v) = evalβ(t(pmSubst(tr))) ∧

∀p ∈ outPortsM(c) \ {p : (p, t) ∈ outpM(tr)} : β′(p) =⊥ ∧ (5)

∀v ∈ locVarsM(aut) \ {v : (v, t) ∈ actionsM(tr)} : β′(v) = β(v) (6)

The above definition specifies that when a transition fires, the current control
state must be the source state and upon firing, it must change to the destination
state (1). For the input patterns, values must be available and the pattern matching
conditions must evaluate to True (2), as must the precondition (where pattern
variables are substituted by their actual values) (3). The output ports and local
variables are set accordingly, again taking into account the pattern substitutions
(4). Finally, the ports not mentioned in the output expressions are cleared (5) and
the local variables not mentioned in the output expressions remain unchanged (6).

Finally, when no transition can be fired, the system can take an “idle” step, in
which all output ports are cleared and all local variables are left unchanged. The
idle step is given by

TM;c;idle(β, β′) = ¬∃β′′ :
∨

tr∈transitionsM(aut) Tc,tr (β, β′′) ∧

β′(stateaut) = β(stateaut) ∧
∧

p∈outPortsM(c) β′(p) =⊥ ∧
∧

v∈locVarsM(aut) β′(v) = β(v)

Semantics of Composed Components

If the component c ∈ ComponentM has subcomponents, then we define its semantics
in terms of the semantics of its subcomponents. Therefore, each subcomponent of c
must either be composed of subcomponents as well, or if it is atomic, it must have
an associated automaton. We ignore automata possibly associated to composed
components.

The (global) state of a component consists of the states of its subcomponents and
of the values on its channels and ports. The subcomponents execute in lock-step: at
each execution step, a transition is fired in each of the subcomponents at the same
time. Thus, the transition relation is the conjunction of the transition relations of
the subcomponents. Communication takes place via the channels. For this reason,

46

4.1. A Specification Language for Distributed Systems

the values of source and destination port of the channels are equated for the initial
state and for the successor state in the transition relation.

Thus, the semantics of a composed component c is JcKM = (VM;c, IM;c, TM;c),
where

VM;c =
⋃

c′∈subComponentsM(c) VM;c′ ∪

inPortsM(c) ∪ outPortsM(c) ∪ channelsM(c)
IM;c(β) =

∧

c′∈subComponentsM(c) IM;c′ ∧
∧

ch∈channelsM(c)(β(sourcePM(ch)) = β(destPM(ch)) = β(ch))

TM;c(β, β′) =
∧

c′∈subComponentsM(c) TM;c′ ∧
∧

ch∈channelsM(c)(β
′(sourcePM(ch)) = β′(destPM(ch)) = β′(ch))

Semantics of Properties

We define the semantics of a property pr as a predicate JprK(σ) on sequences σ =
[β0, β1, β2, . . .] of valuations:

JprK(σ) = evalσ(0)(pr), if pr is not an LTL term

Jf(pr1, . . . , prn)K(σ) = I(f)(Jpr 1K(σ), . . . , JprnK(σ))
JX prK(σ) = JprK(σ1)
Jpr1 U pr2K(σ) = ∃j : Jpr 2K(σ

j) ∧ ∀i : 0 ≤ i < j : Jpr 1K(σ
i)

JF prK(σ) = JTrue U prK(σ)
JG prK(σ) = Jnot(F not(pr))K(σ)

With σ(i), we denote the i-th step in the sequence (i.e., βi), and with σj , we
denote the suffix of σ starting from the index j (i.e., [βj , βj+1, . . .]). We say that a
property pr is fulfilled with respect to a discrete system D if it is fulfilled for all its
computations, i.e. ∀σ : ΨD(σ)⇒ JprK(σ).

4.1.6. Model Transformations in AutoFocus/Quest

As explained in Section 4.1.2, we define model transformations as predicates relating
two modelsM andM′. Model transformations for AutoFocus/Quest models refer
to the entities and functions defined in the AutoFocus/Quest meta model.

Figure 4.13 gives an example: here, a new channel from the component c1 to the
component c2 is added.

Such a transformation AddChannel(c1, c2)(M,M′) can be specified as follows:

• outPortsM
′

(c1) = outPortsM(c1) ∪ {p}, where p /∈ PortM is a new port

• inPortsM
′

(c2) = inPortsM(c2) ∪ {p
′}, where p′ /∈ PortM, p′ 6= p is a new port

47

4. Modelling Security-Critical Systems

TMessage

TMessage

PSfrag replacements
c1 c2

(a) Source Model M

TMessage

TMessage

TMessage

PSfrag replacements
c1 c2

(b) Target Model M′

Figure 4.13.: Model Transformation Example

• PortM
′

= PortM ∪ {p, p′}

• ChannelM
′

= ChannelM ∪ {ch}, where ch /∈ ChannelM

• sourcePM′

(ch) = p, destPM′

(ch) = p′, typeofM
′

(ch) = TMessage

We assume that all entity sets and functions not mentioned stay unchanged (e.g.
ComponentM

′

= ComponentM), and for the arguments not mentioned, the functions
keep their values (e.g. ∀c 6= c1 : outPortsM

′

(c) = outPortsM(c)).

Defining Model Transformations in the AutoFocus/Quest Tool

According to a classification given in [SK03], architectural approaches for defining
model transformations in a tool can be divided into three categories: direct model
manipulation, intermediate representation, and transformation language support.
The AutoFocus/Quest tool framework supports all three approaches:

Direct Model Transformation: the tool offers access to its internal model repre-
sentation, which can be manipulated using a general-purpose programming
language. In AutoFocus/Quest, the internal representation of a model is
given by a graph of Java objects that are instances of meta model classes.
The meta model classes are generated from a textual description of the meta
model and offer APIs for their manipulation. AutoFocus/Quest includes
a plugin mechanism that makes it possible to make model transformations
programmed in Java available to the user via new menu items.

48

4.1. A Specification Language for Distributed Systems

AddChannel(c1, c2) :=
new p : Port.

new p′ : Port.
new ch : Channel.

result p ∈ outPorts(c1) ∧
result p′ ∈ inPorts(c2) ∧
result sourceP(ch) = p ∧
result destP(ch) = p′ ∧
result typeof(ch) = TMessage

Figure 4.14.: ODL Description for AddChannel Transformation

Intermediate Representation: the tool offers export to and import from a model
representation in a standard form, which can be transformed by an external
tool. AutoFocus/Quest offers both an interface to representations in XML
(which can be transformed using existing XML tools such as XSLT) and to a
proprietary representation called QML (Quest Markup Language).

Transformation Language Support: the tool offers a language for explicitly ex-
pressing transformations. For this purpose, the language ODL (Operation
Definition Language) was integrated into AutoFocus/Quest [Sch01]. ODL
is an extension of first order predicate logic by additional operators to intro-
duce new model elements and to specify the result of a transformation (called
new and result). In ODL, the above transformation for adding a channel be-
tween two components would be described as shown in Figure 4.14 (slightly
adjusted to our formalism). Other approaches that fall into this category in-
clude visual transformation languages e.g. based on graph grammars, which
are however not supported by AutoFocus/Quest.

All these approaches have their advantages and drawbacks, which we cannot
address here for space reasons — [SK03] gives a general overview.

To avoid having to require knowledge from the reader of syntax and semantics of a
specific transformation language, for describing model transformations in this thesis
we stick to the general specification described above by logic predicates between
the entities and relations of source and target model, where a precise description is
necessary.

Prototypical implementations of the transformations that appear in this thesis
have been implemented in Java. However, any of the other approaches could have
been used as well.

49

4. Modelling Security-Critical Systems

4.2. Security Extensions

In this section, we describe how AutoFocus/Quest is extended to support the
modelling of security-critical systems. For this purpose, we define means to integrate
security aspects into a model, based on a generic model extension mechanism. In
particular, we consider global security requirements that form the security policy
of a system, threats against the system and assumptions restricting the impact of
the threats, and security mechanisms responsible for enforcing the security policy
by countering the threats and realising the assumptions. Besides, we extend the
QuestF language with cryptographic data types and operations and with means to
specify “secret” data items not guessable by an intruder.

As communicating systems are the primary application area of AutoFocus/
Quest, the main focus is on communication security aspects. An application of
AutoFocus/Quest to access control is presented in [DGJW04] (joint work with
M. Deubler, J. Grünbauer, and J. Jürjens), which could be formulated in the original
AutoFocus/Quest syntax without making use of extensions.

We refer to a model with integrated security aspects as security-enriched model.
The additional information contained in the security-enriched model is obtained by
a security analysis. For our purposes, we assume that this information is already
available at a sufficiently detailed level. For more information on approaches to
perform security analyses, the reader is referred to [Eck01].

4.2.1. Model Extension Mechanism

To be able to include threats, assumptions and security mechanisms in the models,
we define an extension mechanism that allows us to add arbitrary annotations to the
model elements. The extension mechanism is a simplified variant of the extension
mechanisms of the UML [OMG03], which are based on stereotypes to define new
kinds of model elements based on existing ones, tag definitions, i.e. definitions of
additional meta attributes of model elements, and constraints that must be obeyed
by the model elements which they are attached to. Tag definitions and constraints
are usually part of a stereotype.

As for our purposes we do not need to define new kinds of model elements,
but rather add annotations to existing model elements, we resort to a slightly
simpler concept: we omit the stereotypes and just include tag definitions and the
corresponding tags in our meta model.

We will give constraints on our use of the tags, but we define these constraints
globally. A consistent annotated model must fulfil all defined constraints.

The extension mechanism is depicted in Figure 4.15 as an extension of the Auto-

Focus/Quest meta model shown in Figure 4.4 and Figure 4.6. All model enti-
ties are subsumed under an entity ModelElement. An arbitrary number of tags

50

4.2. Security Extensions

Component Channel Name String. . .

ModelElement

TagDef

dataType[0..1]: Type

refType[0..1]: Name

baseElement[*]: Name

*

tags

0..1refValue

1

tagDef
Tag

dataValue[0..1]: Value

Figure 4.15.: Model Extension Mechanism

tags(m) ∈ P(Tag) can be attached to any model element m ∈ ModelElement. Each
tag t is related to its tag definition td = tagDef(t), which defines a number of base
elements baseElement(td) ⊆ Name and either a data type dataType(td) ∈ Type or a
reference type refType(td) ∈ Name. Here, Name is the set of names of the original
entity sets, i.e. Name = {’Component’, ’Channel’, . . .}. Correspondingly, the tag t
itself either has a data value dataValue(t) or a reference value refValue(t) which can
refer to another model element.

The following global constraints must hold if the extension mechanism is used:

• A tag definition must either define a data type or a reference type, but not
both.

• A tag t must respect its tag definition: it must either contain a data value of
the corresponding type if the tag definition defines a data type, or a reference
value to a corresponding model element if the tag definition defines a reference
type. Moreover, a tag can only be attached to a model element belonging to
one of the entity sets given in baseElement(tagDef(t)).

For convenience of notation, we also write tags t as pairs (tagDef(t), dataValue(t))
or (tagDef(t), refValue(t)). If dataType(tagDef(t)) = Bool, we just write tagDef(t)
instead of (tagDef(t),True).

Example 4.2.1. Figure 4.16 shows an annotated version of the system structure
diagram in Figure 4.8. In the concrete syntax of the editor, tags (td, v) are denoted
by {td = v}. Again, True can be omitted. In Figure 4.8, both channels between
A and B have a public tag (with the data value True). As we will see later, this
specifies that the channels are subject to attacks.

51

4. Modelling Security-Critical Systems

A B

TMessage
{public}

TMessage
{public}

Figure 4.16.: Annotated AutoFocus/Quest System Structure Diagram

Security-Related Annotations

The main characteristic of security-critical systems is that the global security re-
quirements must be fulfilled in the presence of threats. Threats can be restricted by
assumptions, which are taken for granted when a security verification is performed.
To fulfil its security requirements and assumptions, a system must include security
mechanisms, which can be realised using cryptography.

In the following sections, we show how global security requirements, threats,
assumptions, mechanisms and cryptography can be added to a system specification,
using the presented model extension mechanism. We do this by defining security
annotations that are attached to the model elements.

At this point, with the exception of the cryptography-related annotations these
annotations should be regarded as comments. They form the basis for threat
scenario generation and verification, security testing, and mechanism application,
which will be described in Chapters 5, 6 and 7.

The security annotations defined in this thesis are given by a set SecTagDef ⊆
TagDef of tag definitions, as specified in Table 4.1. The role of the annotation
(requirement, threat, assumption, security mechanism) is also given in this table.

4.2.2. Global Security Requirements

The global security requirements reflect the global security policy of a system and
are the result of a first threat/risk analysis [Eck01]. Commonly occurring global
security requirements and their general characteristics were described in Section 2.1.
Obtaining and refining security requirements is a very important issue, but out of
scope of this work — we assume that as a result of such a requirements engineering
process we already have security requirements detailed enough such that they can
be expressed in terms of the (formal) model of the system. Note that the validity of
the security requirements depends on the specified threats and assumptions. The
security requirements must therefore be verified with respect to the threat scenario,
which includes the intruder behaviour (see Chapter 5).

52

4.2. Security Extensions

Table 4.1.: Security-Related Tag Definitions

t ∈ SecTagDef dataType(t) refType(t) baseElement(t) Role
SecRequirement Bool — {Term} Requirement
critical Bool — {Component, Threat

Channel,
Transition,
State}

public Bool — {Component, Threat
Channel}

replace Bool — {Component} Threat
node Bool — {Component} Assumption
secret Bool — {Channel} Assumption
auth Bool — {Channel} Assumption
avail Bool — {Channel} Assumption
integrity Bool — {Channel} Assumption
noreplay Bool — {Channel} Assumption
protocol — Component {Channel} Mechanism
protoChannel String — {Channel, Port} Mechanism
protoInst String — {Channel} Mechanism
Encr Bool — {Constructor} Cryptography
Sign Bool — {Constructor} Cryptography
Hash Bool — {Constructor} Cryptography
Mac Bool — {Constructor} Cryptography
Key Bool — {Type} Cryptography

Global Security Requirements in AutoFocus/Quest

To specify security requirements in AutoFocus/Quest models, we use the tem-
poral logic properties that can be attached to components c via properties(c) (see
Section 4.1.4). As described in Section 4.1.5, to be fulfilled with respect to a sys-
tem, a temporal logic property must be fulfilled for all its computations. This
corresponds to the universal nature of security requirements. We annotate security
requirements pr ∈ Term with a boolean tag SecRequirement ∈ tags(pr).

Property Patterns

The correct formal specification of security requirements in temporal logic is of-
ten difficult, as is interpreting such specifications. To alleviate this problem, we
take advantage of the fact that in formal specifications of common security require-
ments, such as confidentiality or authentication, often similar patterns occur, e.g.
the requirement that something should never happen.

[DAC99] defines patterns for frequently used temporal logic expressions. Based
on this work, we introduce the following patterns for temporal logic expressions that

53

4. Modelling Security-Critical Systems

occur in the security requirements we consider, as abbreviations of more complex
formulas in temporal logic:

• never(pr) (where pr ∈ PropTerm) specifies that pr is not fulfilled at any step
in an execution sequence. It is an abbreviation for not(F pr).

• precedes(pr 1, pr 2) specifies that if pr 2 is fulfilled in some step of an execution
sequence, pr 1 is fulfilled in the same or an earlier step. It is an abbreviation
for (not(pr 2) U pr 1) || G not(pr 2).

• leadsto(pr 1, pr 2) specifies that if pr 1 is fulfilled in some step of an execution
sequence, pr 2 is fulfilled in the same or some later step. It is an abbreviation
for G (pr 1 => F pr2).

Referring to Intruder Knowledge

In the specification of security requirements, it is often necessary to refer to the
intruder knowledge (for instance, the intruder must not learn a certain value). For
this purpose, we define a special function learnedIntruderk : (typek)→ Bool for each
type typek. learnedIntruderk(t) evaluates to True at a particular point in execution
if the value of t is contained in the intruder knowledge. As usual, we abbreviate
learnedIntruderk to learnedIntruder if the required type can be statically determined.
The learnedIntruderk functions must only appear in security requirements. Their
interpretation depends on the threat scenario (see Chapter 5).

Patterns for Common Global Security Requirements

In the following, we show how instances of the common security requirements listed
in Section 2.1 can be formalised with the help of the above described property
patterns and give examples with respect to the simple system depicted in Figure 4.8
on page 38.

• Confidentiality requirements can be specified by patterns of the form never(
learnedIntruder(x)), where x ∈ Value. This means that the intruder should not
be able to learn x in any possible computation.

For instance, in the example system, never(learnedIntruder(Reply(B))) specifies
that the intruder will never learn the message Reply(B).

• Authenticity can be specified by patterns of the form precedes(pr 1, pr 2),
where pr 1 and pr 2 do not contain LTL operators, pr 1 refers to the local
variables and ports of a component c1, and pr 2 refers to the local variables
and ports of another component c2. In other words, if c2 has reached a state

54

4.2. Security Extensions

characterised by pr 2, c2 can validly assume that c1 has reached a state charac-
terised by pr 1 (for instance, c1 has indeed sent a particular message). This is
similar to Lowe’s definitions of authentication with respect to authentication
protocols [Low97], which state that an authentication specification is guaran-
teed to an initiator if, whenever the initiator completed a run of the protocol,
apparently with a certain responder, then the responder has previously been
running the protocol and the runs of the initiator and the responder corre-
spond to each other in a way dependent on the kind of authentication specifi-
cation. In our case, c2 plays the role of the initiator, to whom authentication
is guaranteed, and c1 plays the role of the responder. [Low97] defines various
kinds of authentication specifications with different strengths, which can be
reflected by pr 1 and pr2 (excluding agreement, which cannot be formalised
by a precedes pattern as it requires a one-to-one relationship between the two
runs).

As an example, precedes(A.Req == Request(A),B.Rep == Reply(B)) specifies
that B only sends a reply message towards A if A (and not another party
or the intruder) has sent a request message towards B. This corresponds to
the simplest kind of authentication defined in [Low97], aliveness: there is no
guarantee that A indeed intended to communicate with B, or that the request
and reply messages correspond to each other. These aspects are not considered
in the simple example. To allow for the specification of stronger requirements,
the necessary information must be included in the model. For instance, in
local variables or messages it can be explicitly stated who a particular party
intended to communicate with. Examples for more complex requirements are
given within the case studies (see Sections 4.3, 4.4, and 5.4).

• Integrity can be specified in an analogous way to authentication: here, we
interpret pr 2 as a certain effect and pr 1 as the legal action that causes this
effect. Thus, precedes(pr 1, pr 2) states that the effect pr 2 can only be caused
by the action pr 1 and not by unauthorised manipulation by the intruder.

For example, precedes(A.Req == Request(A),B.Req == Request(A)) specifies
that if B receives the request message Request(A), this message must actually
have been sent by A (which is not true if the intruder can modify the message
during the transmission). In a similar way, manipulation of data stored within
a component can be addressed, e.g. by specifying that certain data can only
be changed as the result of particular legal write actions.

• Non-repudiation can also be formulated using the precedes pattern: here,
pr 2 acts as proof for c2 that c1 must have been in a state characterised by
pr 1. In this context, one often also considers threats where c2 tries to obtain
the proof by manipulation. This can be modelled by allowing c2 to cooperate

55

4. Modelling Security-Critical Systems

with the intruder, e.g. by supplying the intruder with the secrets that c2 has
access to.

• Availability can be specified by patterns of the form leadsto(pr 1, pr 2), where
pr1 and pr 2 are again terms that refer to the ports and local variables of
components c1 and c2 and do not contain LTL operators. pr 1 and pr 2 are
interpreted as a legal action and its intended effect. leadsto(pr 1, pr 2) states
that the effect is always caused when the action is performed and in particular
cannot be prevented by the intruder.

For instance, leadsto(A.Req == Request(A),B.Rep == Reply(B)) specifies
that if A sends a request, B will eventually reply.

• Fair Exchange can be specified by patterns of the form leadsto(pr 1, pr 2) or
precedes(pr 1, pr 2), depending on the point of view and the temporal relation-
ship of the states characterised by pr 1 and pr 2. Again, pr 1 is a term without
LTL operators referring to the local variables and ports of c1 and pr2 is a
term without LTL operators referring to the local variables and ports of c2.

From the point of view of c1, leadsto(pr 1, pr 2) specifies that whenever c1 is in a
state characterised by pr 1, eventually c2 reaches a state characterised by pr 2,
which ensures that c2 does not gain an advantage over c1. Conversely, from
the point of view of c2, precedes(pr 1, pr 2) specifies that whenever c2 reaches
a state characterised by pr 2, then c1 must have reached a state characterised
by pr1 such that c1 does not gain an advantage over c2.

An example would be a transaction where money is transferred between two
electronic purses. Firstly, when money is withdrawn from the sending purse,
it must always be credited to the receiving purse. Secondly, when money is
credited to the receiving purse, it must always have been withdrawn from
the sending purse. If withdrawal and credit of money are specified by pr 1

and pr 2, these properties are given as leadsto(pr 1, pr 2) and precedes(pr 1, pr 2)
respectively.

Note that the above description is intended as a guideline, not as a complete
list of formalisations of security requirements. Variations or more complex versions
of the described properties may occur. The exact security requirements closely
depend on the system under consideration and must be the result of a careful
requirements engineering process. Besides, we focus on security requirements that
can be formalised as trace properties. The treatment of security requirements that
cannot be formalised as trace properties, such as non-interference, would require an
extension of the specification formalism. [RSG+00] describes the formalisation of
security requirements in more detail (in the context of security protocols modelled
using the formal method CSP).

56

4.2. Security Extensions

4.2.3. Threats

Critical System Parts

The critical annotation specifies the security-critical parts of a system, i.e. the parts
that are assumed to be relevant for the system’s security (because security-critical
information is processed or transmitted). We use the critical annotation as an
indication given by the designer that (formal or informal) security verification and
testing should focus on the annotated parts of the model.

In the SSD view, the critical annotation can be attached to components and
channels. In the STD view, it can be attached to states and transitions. For the
purpose of security analysis and testing, the system can be sliced to comprise only
the critical system parts.

The use of the critical annotation involves the following consistency conditions:

• If a channel or a component carries any other security annotations, it is as-
sumed to be critical and must also be annotated with the critical annotation.

• If a state or a transition is annotated with critical, the component associated
with the corresponding automaton must be annotated with critical as well,
because security-critical information is processed in this component.

• A component that has a subcomponent annotated with critical must also be
annotated with critical.

• Security requirements must only refer to ports of components annotated with
critical or to local variables or states of automata associated with components
annotated with critical.

In the following, we will mainly concentrate on the security-critical parts of a
system. Therefore, we will omit the critical tag if it is clear that it should be present
(i.e. because already other security annotations are attached to the corresponding
model element).

Public Components and Channels

The public annotation describes the access possibilities of an intruder to components
and channels of a system:

• If a channel ch is annotated with public, then ch is a channel whose messages
can be accessed and manipulated by the intruder. Otherwise, ch behaves like
an ordinary channel in AutoFocus/Quest (i.e., it is a dedicated connection
between two ports, which cannot be influenced).

57

4. Modelling Security-Critical Systems

• If a component c is annotated with public, it can be replaced by an intruder
having access to all secrets contained in c (e.g., because the intruder can access
and manipulate the program).

We do not mark states or transitions with public, assuming that an intruder can
either manipulate the complete behaviour of a component or not manipulate it at
all.

Replaceable Components

In addition to full access to components and channels, it is also possible that the
intruder acts in place of a component c and communicates with the rest of the
system, without having access to the secrets of c. As an example, an intruder could
try to act in place of a honest client component in an Internet-based system, or
could construct a fake smart card communicating with a card reader instead of the
real one.

The possibility of such an attack is modelled by annotating the component c with
replace. This attack is less powerful than annotating all channels connected to c
with public, because in the replace case, the intruder cannot obtain the outputs of
a honest c-component.

4.2.4. Assumptions

Assumptions can be attached to the model elements to restrict the capabilities of
the intruder. For the security analysis, it is then sufficient to consider the restricted
capabilities.

As our main focus is communication aspects of distributed systems, we concen-
trate on assumptions on channels.

Encapsulated Components

An encapsulated component is a component whose internals cannot be accessed or
manipulated by an intruder, such as for example a smart card. We model this by
the annotation node on components.

The annotation of a component c with node implies the following consistency
condition:

• The channels and subcomponents of c must not be annotated with public or
replace. Besides, all subcomponents of c must be annotated with node as well.

58

4.2. Security Extensions

Secret Channels

Data sent on a channel annotated with secret is assumed to be only readable by
the component connected to the channel via its destination port. In particular, it
cannot be read by the intruder.

Authentic Channels

Data received via a channel annotated with auth must have been sent by the com-
ponent connected to the channel via its source port. In particular, the intruder
cannot write own data on the channel (but he can insert replays of data that has
already been sent).

Integrity-Preserving Channels

Data received via a channel annotated with integrity must have been sent before
by a honest component (which does not necessarily have to be connected to the
channel). This is a generalisation of the auth annotation.

Channels Ensuring Availability

If a channel is annotated with avail, it can be assumed that a message sent out via
the channel will eventually be delivered to the component connected to the channel
via its destination port.

Replay-Protected Channels

If a channel is annotated with noreplay, it is assumed to be protected from replays.
This indicates that the intruder cannot repeat a message already sent on the chan-
nel, unless the intruder can generate the message himself. The noreplay annotation
is only meaningful in combination with secret. On a channel annotated with secret
but not with noreplay, the intruder cannot read the transferred data, but he can
repeat it. This is for example the case if the transferred data is encrypted on the
lower level.

4.2.5. Security Mechanisms

Security mechanisms are functions of a system that are introduced to ensure that
the security requirements are fulfilled by countering the threats and realising the
assumptions. Examples for security mechanisms are encryption or electronic signa-
tures, access control components, the use of cryptographic protocols or the use of
hardware such as smart cards.

59

4. Modelling Security-Critical Systems

BA

{protocol=SSLServerAuth}
{protoChannel=ServerToClient}

{protocol=SSLServerAuth}
{protoChannel=ClientToServer}

Figure 4.17.: System Structure Diagram with protocol Annotation

Following our focus on communication aspects, we introduce annotations for
security mechanisms on channels.

Layered Protocols

Security mechanisms on channels can often be represented in the form of layered
protocols: the communication between two components is “tunnelled”, which means
that the messages are transferred by a lower-level protocol. Basic security mecha-
nisms such as the encryption of messages sent over a channel can be modelled in
this way, but also more complex ones such as the tunnelling of the messages over a
previously established SSL connection.

We specify the use of a layered protocol by the protocol annotation, which contains
the name of a component c as its value. If (protocol, c) ∈ tags(ch) for a channel ch,
the messages sent via ch are assumed to be tunnelled using the protocol realised
by the component c. We refer to such channels as tunnelled channels.

Example 4.2.2. Figure 4.17 shows two components A and B communicating via
the SSL protocol with server authentication, realised by the SSLServerAuth compo-
nent.

The component c that specifies the tunnelling protocol is an ordinary Auto-

Focus/Quest component with special annotations. Such a protocol component
contains pairs of input and output ports, which we call protocol channels. A message
that is sent to the source port of a protocol channel is processed by the protocol
and then delivered to the destination port of the protocol channel. The protocol
channels are identified by annotating the corresponding input and output ports
with (protoChannel, n), where n ∈ String is a name identifying a particular protocol
channel.

If a protocol component has more than one protocol channel, in addition to the
protocol annotation it must be specified on the tunnelled channel which of them
is to be used. This is done by adding the annotation (protoChannel, n) to the
corresponding channel on the upper layer.

Finally, it is possible that more than one instance of the same tunnelling protocol
is to be used between two components. If the protocol has more than one protocol

60

4.2. Security Extensions

SSL
Client

SSLServerAuth

SSLClientToServer: TSSLMessage

Server
SSL{public}

SSLServerToClient: TSSLMessage
{public}

{protoChannel= {protoChannel=
ServerToClient}ClientToServer}

{protoChannel=
ClientToServer}

{protoChannel=
ServerToClient}

protocol channel

Figure 4.18.: System Structure Diagram for Protocol Component SSLServerAuth

channel, the mapping of the channels to the protocol instances must be specified
using the annotation (protoInstance, n). Channels with the same (protoInstance, n)
tag are assumed to use the same protocol instance.

Example 4.2.3. Figure 4.18 shows the system structure diagram for the pro-
tocol component SSLServerAuth with two protocol channels ClientToServer and
ServerToClient. The protoChannel annotations in Figure 4.17 specify how the chan-
nels between the two components A and B are mapped to the protocol channels. If
a second instance of the SSLServerAuth protocol should be used between A and B,
another pair of channels with the same tags must be added and both pairs must
be distinguished by different protoInstance tags, e.g. (protoInstance, ’Connection1’)
and (protoInstance, ’Connection2’). In addition to the structure, the behaviour of
SSLClient and SSLServer must be specified. A complete model of the protocol com-
ponent SSLServerAuth is described in Section 7.4.2.

The use of the annotations protocol, protoChannel and protoInstance involves the
following constraints:

• The annotations protoChannel and protoInstance can only be used on a channel
if the annotation protocol is present.

• If (protoChannel, n) ∈ tags(ch) and (protocol, c) ∈ tags(ch) for a channel
ch , then the component c must have an input port pi and an output port
po with (protoChannel, n) ∈ tags(pi) and (protoChannel, n) ∈ tags(po) and
typeof(ch) = typeof(pi) = typeof(po).

61

4. Modelling Security-Critical Systems

• There must not be two channels between the same components with the same
protoInstance and protoChannel tag.

• In a protocol component, the annotation (protoChannel, n) must be attached
to exactly one input and one output port.

4.2.6. Cryptography and Secrets

Cryptography and secrets are central mechanisms used in security-critical systems
for the protection against attacks. As cryptography and secrets affect the data
part of a system specification, we integrate their treatment into the functional
language underlying our system model. For this purpose, we modify the predefined
functions of particular hierarchical data types in order to reflect the properties of
the respective cryptographic operations.

We specify cryptography within data type definitions by annotating certain con-
structors with special tags. Based on the annotations, we interpret a constructor
application as a cryptographic operation if the constructor is annotated with a cor-
responding tag. In this work, we use the tag definitions Encr, Sign, Hash and Mac
to model encryptions, signatures, hash computations or computations of message
authentication codes.

For convenience, we write Ctd for the set of constructors annotated with td (for
td ∈ {Encr,Sign,Hash,Mac}). The sets CEncr, CSign, CHash and CMac must be dis-
joint. In the concrete syntax, we assume that a constructor with a name con-
taining Encr belongs to CEncr, and constructors with names containing Sign, Hash
or Mac belong to CSign, CHash or CMac respectively.

In the following, we first describe the meaning of the different annotations and
then justify that the desired properties of the respective cryptographic operations
are correctly reflected.

Encryptions

If Ck
i ∈ CEncr, the term Ck

i (t1, t2, . . . , tnk
i
) (where nk

i > 1) is supposed to represent

the encryption of (t2, . . . , tnk
i
) using t1 as a key.

As usual in formal treatments of security-critical systems, we assume that cryp-
tography is perfect. This means that it is impossible to extract the encryption key
from an encrypted message and to decrypt the message without the correct decryp-
tion key. Modern cryptosystems can fulfil these assumptions with a high probability
if they are used in the appropriate way and key lengths are chosen large enough
to prevent guessing. We also assume that cryptograms can be compared (i.e., it
can be verified whether a message has the same content and was encrypted with
the same key as another message), and that successful decryption can be detected.

62

4.2. Security Extensions

If other properties of cryptosystems need to be taken into account, the definitions
given in this section must be modified or extended.

We incorporate these assumptions by adding the decryption key as another pa-
rameter to the selectors selkij for j > 1 and to the discriminator is Ck

i . Intuitively,

selkij(s, t) means “decrypt t using s as a key and extract the j-th argument if possi-

ble”, and is Ck
i (s, t) means “check if t is an encrypted term of the form Ck

i (. . .) that
can be decrypted with s”. Besides, the selector selki1 is omitted (so the key cannot
be extracted from an encrypted message).

Signatures

If Ck
i ∈ CSign, the term Ck

i (t1, t2, . . . , tnk
i
) (where nk

i > 1) is supposed to represent

a signature with appendix of (t2, . . . , tnk
i
) using t1 as a key, i.e. t2, . . . , tnk

i
in clear

together with an encrypted hash of t2, . . . , tnk
i

using t1 as a key.

We assume that it is impossible to extract the key from a signature, but that it
can be verified if a signature was created with a particular key k using the inverse
key. The data t2, . . . , tnk

i
can be extracted from the signature (as it was transmitted

in clear). Signatures cannot be forged, i.e. it is only possible to create a signature
with knowledge of the corresponding signature key (here, t1).

We incorporate these properties by adding the decryption key as another pa-
rameter to the discriminator is Ck

i as in the encryption case (here, for signature
verification) and by omitting the selector selki1. The selectors selkij for j > 1 are
defined as usual, for extraction of the data from the signature.

Hashes

If Ck
i ∈ CHash, the term Ck

i (t1, . . . , tnk
i
) is supposed to represent a cryptographic

hash of (t1, . . . , tnk
i
).

Cryptographic hashes must be one-way functions (i.e., it must be practically
impossible to re-compute the hashed values from a hash). We assume perfect hash
functions, and thus omit all selector and discriminator functions for Ck

i . Besides, it
must be practically impossible to find a message M ′ with the same hash as a given
message M (second preimage resistance), or a pair of messages (M,M ′) with the
same hash (collision resistance). Hash functions that fulfil both properties are called
“strong hash functions”, hash functions that are only second preimage resistant are
called “weak hash functions”.

Message Authentication Codes

If Ck
i ∈ CMac, the term Ck

i (t1, t2, . . . , tnk
i
) is supposed to represent a message au-

thentication code (MAC) of (t2, . . . , tnk
i
) using t1 as a key.

63

4. Modelling Security-Critical Systems

We assume that it is only possible to create a MAC with knowledge of the key and
the data to be authenticated and that it is impossible to retrieve the key or the data
from a MAC. Thus, from the abstract viewpoint of the cryptographic extension to
QuestF, message authentication codes have the same properties as hashes. In fact,
one of the most secure MAC algorithms according to [FS03], the HMAC algorithm,
is based on this principle — i.e., computing a hash of data concatenated with the
key (HMAC uses double hashing to prevent more subtle attacks on the algorithmic
level).

Predefined Functions for Cryptographic Terms

We assume that for each type typek used as a encryption or signature key (i.e., as the
first argument of a constructor c ∈ CEncr ∪ CSign), a function invk : (typek)→ typek

has been defined mapping a key to its inverse. For any x ∈ Value(typek), I(invk)(x) =
x must hold if x is assumed to be a symmetric key, and I(invk)(I(invk)(x)) = x must
hold if x is assumed to be an asymmetric key. As with ==k and ifk, we abbreviate
invk(t) by inv(t) (where typeof(t) = typek).

The predefined selector and discriminator functions given in Section 4.1.3 change
as follows:

• The interpretation of the selector function selki1 is not defined for Ck
i ∈ CEncr ∪

CSign, and the interpretations of the selector functions selkij are not defined for

Ck
i ∈ CHash ∪ CMac.

• The selector functions selkij for j > 1,Ck
i ∈ CEncr have the functionalities

fct(selkij) = (typek
i1, typek) → typek

ij , with I(selkij)(x,Ck
i (x1, . . . , xnk

i
)) = xj if

evalβ(x1 == inv(x)) = True and ⊥ otherwise. The selector functions selkij for

j > 1,Ck
i ∈ CSign are defined as in Section 4.1.3.

• The discriminator functions is Ck
i for Ck

i ∈ CEncr ∪CSign have the functionali-
ties fct(is Ck

i) = (typek
i1, typek) Bool, with I(is Ck

i)(x,Ck
i (x1, . . . , xnk

i
)) = True

if evalβ(x1 == inv(x)) = True, I(is Ck
i)(⊥) =⊥ and I(is Ck

i)(x) = False other-
wise. For Ck

i ∈ CHash ∪ CMac, no discriminator function is Ck
i is defined.

Example

Example 4.2.4. Figure 4.19 shows data type definitions for a message type to
transmit encrypted signed data. Here, terms PK(x) and SK(x) of type TKey should
represent the public and secret key of the agent x, respectively. We assume that inv
is defined such that its interpretation is I(inv)(PK(x)) = SK(x) and I(inv)(x) = x
otherwise.

Assume that t is a term of type TMessage. Then,

64

4.2. Security Extensions

data TAgent = A | B | I ;
data TKey = PK(TAgent) | SK(TAgent) | Data ;

data TSig = Sign (TKey , ge tS igData : TKey) ;

data TMessage = EncrS ig (TKey , g e tS i g : TSig) ;

Figure 4.19.: DTD for Cryptographic Messages

• getSig(SK(B), t) can be used to extract the signature s from a term t of type
TMessage, where t must be of the form t = EncrSig(PK(B), s) — here, t is
interpreted as an encryption of s with the public key PK(B);

• is Sign(PK(A), s) can be used to check if the signature s of type TSig has been
signed with the secret key SK(A); and

• getSigData(s) is the signed data. In our example, the signed data is a value
of type TKey.

Pattern Matching

Pattern matching can also be used for cryptographic data types, with only slight
changes in the definitions of the pattern matching condition pmCond and the sub-
stitution pmSubst as given in Section 4.1.5

Assume Ck
i (t1, t2, . . . , tnk

i
) is a pattern with Ck

i ∈ CEncr ∪ CSign. In this case,

we require t1 not to contain variables (otherwise, the key could be extracted via
matching) and use t1 as the decryption/signature verification key in the matching
condition. If the tj for j > 1 contain variables, the appropriate selectors (with the
key as a parameter in case of encryptions) must be used in the substitution.

If Ck
i (t1, . . . , tnk

i
) is a pattern with Ck

i ∈ CHash∪CMac, none of the tj must contain
variables. For the matching condition, the equality operator can be used.

Thus, the definitions of pmCond and pmSubst change as follows:

65

4. Modelling Security-Critical Systems

pmCond(p,Ck
i (t1, . . . , tnk

i
)) = {is Ck

i (t1, p)} ∪
⋃

2≤j≤nk
i
pmCond(selkij(t1, p), tj), for Ck

i ∈ CEncr

pmCond(p,Ck
i (t1, . . . , tnk

i
)) = {is Ck

i (t1, p)} ∪
⋃

2≤j≤nk
i
pmCond(selkij(p), tj), for Ck

i ∈ CSign

pmCond(p,Ck
i (t1, . . . , tnk

i
)) = (p == Ck

i (t1, . . . , tnk
i
)), for Ck

i ∈ CHash ∪ CMac

pmSubst(p,Ck
i (t1, . . . , tnk

i
)) = pmSubst(selki2(t1, p), t1) ◦ . . . ◦

pmSubst(selk
ink

i

(t1, p), tnk
i
), for Ck

i ∈ CEncr

Example 4.2.5. If t = EncrSig(SK(B), x) is a pattern of the type TMessage
defined in Figure 4.19, then we have pmCond(p, t) = {is EncrSig(SK(B), p)} and
pmSubst(p, t) = [x/getSig(SK(B), p)]. The term p = EncrSig(PK(B),Sign(SK(A),
Data)) matches t, and x is substituted by Sign(SK(A),Data) in the matching.

Translation to Standard AutoFocus/Quest Models

To be able to use the existing simulation, verification and test sequence generation
functionality of the tool, we provided a translation from models using the cryp-
tographic extensions of the functional language QuestF to models using only the
standard features of QuestF.

The basic idea of this translation is to add function definitions for the selectors
and discriminators whose functionality and semantics has been changed and to
replace the actual selectors and discriminators by the newly defined functions.

For example, the following function definition would be generated for a discrim-
inator belonging to a constructor in CEncr:

fun is Ck
i (k, t) = is Ck

i (t) && (selki1(t) == inv(k));

In the translation, all occurrences of is Ck
i in the model are replaced by is Ck

i .
Besides, pattern matching is eliminated by adding pmCond to the precondition of
a transition and applying the substitution pmSubst to the precondition, the output
patterns and the actions.

With this translation, in the following we can work with the extended functional
language without the necessity to make any further changes to the tool.

Secrets and Intruder Knowledge

When modelling security-critical systems, often some data is assumed to be guess-
able by the intruder (for example, agent names), whereas other data is not (for
example, keys or secure random numbers). We need to reflect this in our model to
be able to determine which data the intruder can generate.

66

4.2. Security Extensions

For this purpose, we annotate types whose values are assumed to be non-guessable
with Key. The only way an intruder can produce a value of such a type is if it is
part of his initial knowledge, or if he learned it by analysing messages he received.
We write TKey for the set of types annotated with Key. In the concrete syntax,
a type with a name containing Key is assumed to belong to TKey. To allow the
intruder to generate messages with empty/illegal values in place of value of a non-
guessable type, we require that a type typek ∈ TKey has a constructor Emptyk, i.e.
Emptyk ∈ constructors(d) for the data type definition d with defType(d) = typek.
Keys are always modelled symbolically and not as integer values, i.e. Int /∈ TKey.
The mapping of symbolically modelled keys to concrete byte sequences is described
in Section 6.4.

We model the initial intruder knowledge by a set of functions knowsIntruderk :
(typek) → Bool for each typek ∈ TKey. The intruder is assumed to initially know
a key x ∈ Value(typek) if I(knowsIntruderk)(x) = True. As usual, we abbreviate
knowsIntruderk(t) by knowsIntruder(t) for typeof(t) = typek.

Derivable Values

Definition 4.2.6. Let H ⊆ Value be a set of values. We define a set derivable(H),
the set of values that can be generated by an intruder with the knowledge of H, as
follows:

derivable(H) = {evalβ(t) : t ∈ Term ∧ nosecrets(t) ∧ ∀v ∈ freeVar(t) : β(v) ∈ H}

The terms t must not contain selectors, constructors or discriminators of the
types in TKey, with the exception of the Emptyk constructors. This is specified by
nosecrets(t):

nosecrets(t) = ∀t′ : t′ E t ∧ t′ ∈ Appl ∧ typeof(t′) ∈ TKey ∧
∃d ∈ DataDef : defType(d) = typeof(t′)⇒

∀c ∈ constructors(d) \ {Emptyk} :
head(t′) 6= c ∧ head(t′) 6= is c ∧
∀s ∈ selectors(c) : head(t′) 6= s

Thus, derivable(H) is the set of values obtained by evaluating any possible terms
that refer to the elements of H, but that do not contain functions belonging to
non-guessable types.

Example 4.2.7. Consider again the data type definitions depicted in Section 4.19.
Assume that the initial intruder knowledge is H = {SK(I)}∪{PK(x) : x ∈ {A,B,C}}.
Then,

derivable(H) = H ∪ {⊥,A,B,C} ∪ S ∪M , where
S = {Sign(x, y) : x, y ∈ H} and M = {EncrSig(x, y) : x ∈ H ∧ y ∈ S}.

67

4. Modelling Security-Critical Systems

Formal Justification

We formally justify that our integration of cryptography into the QuestF language is
sound, in the sense that it fulfils the desired abstract properties stated above. This
prevents the possibility that a specification contains unrealistic behaviour which
cannot be implemented. We focus on abstract terms representing encryptions. In
particular, we show that an argument cannot be extracted from an encryption
without knowledge of the key.

Definition 4.2.8. Let t ∈ Term ∪ {⊥}, s ∈ Term and x ∈ Value. We define a
predicate encapsulated(t, s, x) stating that x appears in t only as a subterm of s and
that for all subterms t′ of t with head(t′) = head(x) which are outside of s it must
be the case that t′ ∈ Value:

encapsulated(⊥, s, x) = True
encapsulated(v, s, x) = True, for v ∈ Var
encapsulated(s, s, x) = True
encapsulated(f(t1, . . . , tn) 6= s, s, x) = (head(x) = f ⇒ f(t1, . . . , tn) ∈ Value) ∧

f(t1, . . . , tn) 6= x ∧
encapsulated(t1, s, x) ∧ . . .∧
encapsulated(tn, s, x)

In the following, we interpret x as a value we want to extract from an encryption
s using the term t. encapsulated(t, s, x) ensures that x cannot be produced without
accessing its occurrence in s. In particular, by the condition on the subterms t ′

with head(t′) = head(x), it is ruled out that x is produced outside of s by applying
the constructor of x to appropriately computed arguments: t′ must be already in
normal form and is not further evaluated.

Lemma 4.2.9. If x 6= s and encapsulated(t, s, x), then t 6= x.

Lemma 4.2.10. If encapsulated(f(t1, . . . , tn), s, x) and f(t1, . . . , tn) 6= s, then we
have encapsulated(ti, s, x) for all i ∈ {1, . . . , n}.

Proof Lemmas 4.2.9 and 4.2.10 follow directly from the definition of encapsulated.

Theorem 4.2.11. Let s = Ck
i (x1, x2, . . . , xnk

i
) ∈ Value be an encryption, i.e. Ck

i ∈

CEncr, t a term, β a valuation, j ≥ 2 and x−1
1 be an abbreviation for the inverse

key evalβ(invk(x1)). Suppose that encapsulated(t, s, x−1
1) and encapsulated(t, s, xj),

and likewise encapsulated(β(v), s, x−1
1) and encapsulated(β(v), s, xj) for all v ∈ Var

and encapsulated(tf , s, x−1
1) and encapsulated(tf , s, xj) for all right hand sides of

function definitions for functions f . Then evalβ(t) 6= xj.

68

4.2. Security Extensions

This means that it is impossible to extract xj from an encryption s without the
correct decryption key x−1

1 using any term t, provided that xj does not appear outside
of the encryption.

In addition, if we assume instead encapsulated(t, s, x1) and encapsulated(β(v), s,
x1) for all v ∈ freeVar(t) and encapsulated(tf , s, x1) for all right hand sides of
function definitions for functions f , then evalβ(t) 6= x1. I.e., it is impossible to
extract the encryption key x1 from an encrypted message s.

Proof To prove the first part of the above statement, we prove the stronger conse-
quence that encapsulated(evalβ(t), s, x−1

1) and encapsulated(evalβ(t), s, xj) hold, by
structural induction on t. evalβ(t) 6= xj follows by Lemma 4.2.9.

Suppose t is a variable. Then, evalβ(t) = β(t), and encapsulated(evalβ(t), s, x−1
1)

and encapsulated(evalβ(t), s, xj) because of the assumption on β.

Suppose t = s. Then, evalβ(t) = s, as s ∈ Value, and thus we can conclude that
encapsulated(evalβ(t), s, x−1

1) and encapsulated(evalβ(t), s, xj) hold, because of the
definition of encapsulated.

Suppose head(t) ∈ {==,&&, ||,=>, not, is Ck′

i′ }. Then, evalβ(t) is either True,
False or ⊥. encapsulated(evalβ(t), s, x−1

1) and encapsulated(evalβ(t), s, xj) are true
in all those cases.

Suppose t = if t1 then t2 else t3 fi. If evalβ(t1) =⊥, evalβ(t) =⊥. Otherwise, with-
out loss of generality, we assume that evalβ(t1) = True. By Lemma 4.2.10, we have
encapsulated(t2, s, x

−1
1) and encapsulated(t2, s, xj). Thus, by the induction hypoth-

esis encapsulated(evalβ(t2), s, x
−1
1) and encapsulated(evalβ(t2), s, xj) hold, and thus

encapsulated(evalβ(t), s, x−1
1) and encapsulated(evalβ(t), s, xj), because evalβ(t) =

evalβ(t2).

Suppose t = Ck′

i′ (t1, . . . , tnk′

i′
) 6= s. As t 6= s, by Lemma 4.2.10 and the induction

hypothesis we have encapsulated(evalβ(tl), s, x
−1
1) and encapsulated(evalβ(tl), s, xj)

for l ∈ {1, . . . , nk′

i′ }. If head(xj) 6= Ck′

i′ , then encapsulated(evalβ(t), s, xj) must hold,
because of the definitions of Ck′

i′ and encapsulated. Otherwise, it must be the case
that t ∈ Value (because encapsulated(t, s, xj)). Thus, evalβ(t) = t and therefore
encapsulated(evalβ(t), s, xj). In the same way, encapsulated(evalβ(t), s, x−1

1) can be
derived.

Suppose t = selk
′

i′j′(t1) with Ck′

i′ /∈ CEncr (i.e., selk
′

i′j′ is an “ordinary” selector
that does not belong to a cryptographic constructor). Again we can conclude that
encapsulated(evalβ(t1), s, x

−1
1) and encapsulated(evalβ(t1), s, xj). If we require that

evalβ(t) should not be ⊥, evalβ(t1) must be of the form Ck′

i′ (y1, . . . , ynk
i
). Besides, as

Ck′

i′ /∈ CEncr, evalβ(t1) 6= s. Thus, encapsulated(yl, s, x
−1
1) and encapsulated(yl, s, xj)

(by Lemma 4.2.10). As evalβ(t) = yj, we conclude that encapsulated(evalβ(t), s, x−1
1)

and encapsulated(evalβ(t), s, xj).

Suppose t = selk
′

i′j′(t1, t2) with Ck′

i′ ∈ CEncr. If we require that evalβ(t) should not

69

4. Modelling Security-Critical Systems

be ⊥, evalβ(t2) must be of the form Ck′

i′ (y1, . . . , ynk
i
) and evalβ(y1 == inv(t1)) = True

(cf. definition of cryptographic selectors). If evalβ(t2) 6= s we can continue as in the
above case for Ck′

i′ /∈ CEncr. On the other hand, we can conclude that evalβ(t1) 6= x−1
1

(by the induction hypothesis). Because of the properties of inv, it follows that
evalβ(x1 == inv(t1)) == False, and thus, if evalβ(t2) = s, evalβ(y1 == inv(t1)) ==
False (because y1 = x1) and evalβ(t) =⊥.

Finally, suppose that t = f(t1, . . . , tn), with f being a user-defined function. From
the assumption, we have encapsulated(evalβ(tl), s, x

−1
1) and encapsulated(evalβ(tl), s,

xj). Let β′ be the valuation [v1 ← evalβ(t1), . . . , vn ← evalβ(tn)]. β′ and tf (the
right hand side of the function definition for f) fulfil the assumptions in The-
orem 4.2.11 and evalβ(t) = evalβ′(tf). Thus, encapsulated(evalβ(t), s, x−1

1) and
encapsulated(evalβ(t), s, xj).

As we required that each function symbol must be either predefined or defined via
a function definition, there are no other cases. The second part of Theorem 4.2.11
can be proved in a similar way.

The other properties of encryption mentioned above are fairly straightforward.
Cryptograms can be compared via the == operator, and successful decryption can
be detected via the discriminator function is Ci

k that evaluates to True if applied to
an encrypted term with the correct key.

Note that the assumption on xj is not fulfilled if typeof(xj) = Int, because the
constructors Zero and Succ appear in the function definitions for functions on inte-
gers. This reflects the fact that in the model, in contrast to symbolically represented
data, integers can always be “guessed”.

Theorem 4.2.12. Let H ⊆ Value be a set of values, s = Ck
i (x1, x2, . . . , xnk

i
) ∈ H be

an encryption, i.e. Ck
i ∈ CEncr, j ≥ 2 and x−1

1 be an abbreviation for the inverse key
evalβ(invk(x1)) . Suppose that typeof(x1) ∈ TKey, typeof(xj) ∈ TKey, x1 6= Emptyk,
xj 6= Emptyk, and encapsulated(tf , s, x−1

1) and encapsulated(tf , s, xj) for all right
hand sides of function definitions for functions f . Also suppose that there is no
x ∈ H \ {s} with x−1

1 E x or xj E x. Then, xj /∈ derivable(H).
I.e., from a set H containing an encryption, one cannot derive an argument of

the encryption, provided that the argument or the key are not guessable and cannot
be derived from other values in H or from function definitions.

Proof From the assumptions in Theorem 4.2.12, we conclude encapsulated(t, s,
x−1

1) and encapsulated(t, s, xj) for the terms t appearing in the definition of derivable,
because constructors of types in TKey cannot occur in t. Besides, encapsulated(β(v),
s, x−1

1) and encapsulated(β(v), s, xj) hold for all v ∈ Var: either because β(v) = s
or because x−1

1 and xj do not occur in H \ {s}. Therefore, Theorem 4.2.11 can
be applied, and thus evalβ(t) 6= xj . Therefore, xj /∈ derivable(H) because of the
definition of derivable.

70

4.3. Case Study I: A Bank Application

Theorem 4.2.13. Let s = Ck
i (x1, x2, . . . , xnk

i
) ∈ Value be a signature, i.e. Ck

i ∈

CSign, t a term, β a valuation such that encapsulated(t, s, x1) and encapsulated(β(v),
s, x1) for all v ∈ Var and encapsulated(tf , s, x1) for all right hand sides of function
definitions for functions f . Then evalβ(t) 6= x1 (it is impossible to extract the
signature key from a signature).

Theorem 4.2.14. Let s = Ck
i (x1, x2, . . . , xnk

i
) ∈ Value be a hash or MAC, i.e. Ck

i ∈

CHash∪CMac, t a term, β a valuation and j ∈ {1, . . . , nk
i } such that encapsulated(t, s,

xj) and encapsulated(β(v), s, xj) for all v ∈ Var and encapsulated(tf , s, xj) for all
right hand sides of function definitions for functions f . Then evalβ(t) 6= xj (it is
impossible to extract the data from a hash, respectively the data and the key from a
MAC).

The proofs of Theorem 4.2.13 and Theorem 4.2.14 are similar to the proof of
Theorem 4.2.11. Besides, analogous theorems as Theorem 4.2.12 can be formulated
to provide a connection to the definition of derivable. The fact that a signature can
only be verified using the discriminator is Ck

i together with the correct inverse key
follows directly from the defined semantics of is Ck

i . The only way to create a new
term of the form Ck

i (t1, . . . , tnk
i
) with Ck

i ∈ CSign (a signature) is by application of the

constructor Ck
i , as selectors can only extract existing arguments from a constructor

term. In the application of Ck
i , the key t1 must be provided as the first argument.

Therefore it is not possible to create a signature without knowledge of the key.
Finally, Ck

i (t1, . . . , tnk
i
) == Ck

i (t
′
1, . . . , t

′
nk

i

) generally only evaluates to True if ∀i :

evalβ(ti) = evalβ(t′i). Thus, in the particular case that Ck
i ∈ CHash ∪ CMac, there are

no two different pairs (t1, . . . , tnk
i
), (t′1, . . . , t

′
nk

i

) of messages with the same hash (or

MAC, in which case t1 is interpreted as the key).

4.3. Case Study I: A Bank Application

AutoFocus/Quest was used in a number of case studies to model, verify and test
security-critical systems. In this section, we present an AutoFocus/Quest model
of a part of an application for managing electronic order forms, developed during
a research project in cooperation with a major German bank. This case study will
serve as a running example for verification using threat scenario generation and for
the treatment of layered protocols. It was published in [GHJW03, Grü03]. The
version presented in this thesis was adapted to make use of the AutoFocus/Quest
extensions for cryptographic data types, threat specification, protocol layering, and
the application of automatic threat scenario generation.

Initial Model The basic structure of the system is shown in Figure 4.20, as an
AutoFocus/Quest SSD. The system can be divided into three parts: the client’s

71

4. Modelling Security-Critical Systems

Client

A

Webserver

A

Backend

A

StoB:TMessage

BtoS:TMessage

StoC:TMessage

CtoS:TMessage

Figure 4.20.: Bank Application: System Structure Diagram

computer with a Web browser and a smart card to securely generate electronic
signatures (component Client in the model), the Web server / application server
authenticating and handling the client’s requests (component Webserver), and a
back-end system with data bases where the actual forms and customer data are
stored (component Backend).

Obtaining and signing electronic order forms is carried out as follows. The client
connects to the Web server using her browser. After she has been authenticated
successfully, she can request an order form (e.g. for an interest report), which is sent
to her pre-filled with her data from the back-end system. The client digitally signs
the document using her smart card and sends it back to the server. After verification
of the signature, the server sends an acknowledgement and the connection is closed.

The EET in Figure 4.21 shows the messages exchanged during such a trans-
action, in terms of the abstract AutoFocus/Quest model. To keep verifica-
tion feasible, data such as keys, identification numbers and messages containing
these elements was modelled symbolically using hierarchical data types, as intro-
duced in Section 4.2.6. The corresponding data type definitions are depicted in
Figure 4.22. For testing purposes, the abstract messages (data type TMessage)
must be mapped to implementation-level messages. We will present an approach
for this in Section 6.4. Finally, the STDs specifying the behaviour of the compo-
nents are shown in Figure 4.23.

In the function definitions, as the name of a function invk we take the name
of the type typek prefixed with “inv”. For convenience of notation, we make use
of alternatives and pattern matching. Such function definitions can be translated
to function definitions without alternatives and pattern matching, as described in

72

4.3. Case Study I: A Bank Application

Section 4.1.3, with the help of chains of applications of if . . . then . . . else . . . fi.
For example, the definition of invTAKey in Figure 4.22 can also be written as

fun invTAKey (x) = i f i s PK (x) then SK(PKSel1 (x)) e l s e
i f i s SK (x) then PK(SKSel1 (x)) e l s e

x
f i

f i ;

Here, PKSel1 and SKSel1 are the default names automatically generated for the
selectors of PK and SK.

Likewise, we write Emptyk as the name of typek prefixed with “Empty”. For
instance, EmptyTAKey stands for an empty/illegal value for an asymmetric key.

Flow of a Transaction In the model, the Client component begins the transaction
by sending a ClientHello message to the Webserver component. On reception of
the message, the Webserver chooses a nonce NonceS, stores it in its local variable
localNonceServer, and sends a message NonceID(NonceS) to the client. The client
sends back a message Data(Sign(SK(C),NonceS),SignCert(SK(CA),C,GIDC,PK(C)))
containing the received nonce signed with her public key SK(C) and her certificate,
signed by the certification authority CA. The certificate contains the client’s identity
C, a global identification number GIDC which references her data on the backend
system and her public key. The Webserver checks the certificate and the signature
of the nonce. If the checks have been successful, the client is authenticated (transi-
tion from state NonceSent to state ClientAuthenticated in the corresponding STD).
Note that here we use the cryptographic versions of the discriminators for signa-
ture verification, e.g. is Sign(PK(CA), cert) for verifying the certificate cert using the
certification authority’s public key PK(CA).

The Webserver then stores the global ID and sends it together with an empty form
to the Backend (message DataFormGID(EmptyTForm,GIDC)). Here, the global ID is
stored as well and the form is filled with the client’s data CDataBC. The filled form is
then sent back via the Webserver to the client (message DataForm(Form(CDataBC))).
The Client signs the form with the private key SK(C)(message SignCData(SK(C),
CDataBC),SignCert(SK(CA),C,GIDC,PK(C)))). This message is forwarded by the
Webserver to the Backend. The Backend checks the signature of the received data
object and the certificate. The received global ID and the signed data object are
compared with the ones stored. On success, an order is generated, an acknowledge-
ment is sent to the client (message Form(AcknowledgementC)), and the transaction
is finished.

Note that for simplicity, the model consists of just one honest client, specifies only
one execution of a transaction and does not include error handling. The model can
be easily extended to reflect more complex scenarios.

73

4. Modelling Security-Critical Systems

Client Webserver Backend

CtoS.ClientH
ello

StoC.NonceI
D(NonceS)

CtoS.Data(Sign(SK(C), NonceS), SignCert(SK(CA), C, GIDC, PK(C)))

StoB.DataFormGID(EmptyTForm, GIDC)

BtoS.DataForm(Form(CDataBC))

StoC.DataForm(Form(CDataBC))

CtoS.DataFormCDataC(SignCData(SK(C), CDataBC), SignCert(SK(CA), C, GID
C, PK(C)))

StoB.DataFormCDataC(SignCData(SK(C), CDataBC), SignCert(SK(CA), C, GID
C, PK(C)))

BtoS.DataForm(Form(AcknowledgementC))

StoC.DataForm(Form(AcknowledgementC))

Figure 4.21.: Bank Application: Extended Event Trace

74

4.3. Case Study I: A Bank Application

/∗ type d e f i n i t i o n f o r asymmetr i c key :
C l i e n t , Se r v e r , CA, Adve r s a r y ∗/

data TAgent = C | S | A | CA;
data TAKey = PK(TAgent) | SK(TAgent) | EmptyTAKey ;
fun invTAKey (PK(x)) = SK(x)

| invTAKey (SK(x)) = PK(x)
| invTAKey (x) = x ;

/∗ message type ∗/
data TMessage = EmptyTMessage

| C l i e n t H e l l o
| NonceID (TNumberKey)
| Data (TSign , TSignCert)
| DataForm (TForm)
| DataFormGID(TForm , TNumberKey)
| DataFormCDataC(TSignCData , TSignCert) ;

/∗ s i g n ed nonce / c e r t i f i c a t e ∗/
data TSign = Sign (TAKey , getNonce : TNumberKey) ;
data TSignCert = S ignCe r t (TAKey , getName : TAgent ,

getGID : TNumberKey ,
getPK : TAKey) ;

/∗ form wi th c l i e n t data ∗/
data TForm = EmptyTForm | Form(TCDataKey) ;

/∗ s i g n ed c l i e n t data / c l i e n t data ∗/
data TSignCData = SignCData (TAKey , getCData : TCDataKey) ;
data TCDataKey = CDataBC | CDataBA | AcknowledgementC |

AcknowledgementA | EmptyTCDataKey ;

/∗ s e c r e t data (nonces / g l o b a l IDs) ∗/
data TNumberKey = EmptyTNumberKey | GIDC | GIDA | NonceS | NonceA ;

/∗ backend : r e t r i e v e c l i e n t data from GID /
de t e rm ine acknowledgement ∗/

fun r e t r i e v eCDa t a (GID) = CDataBC
| r e t r i e v eCDa t a (GIDA) = CDataBA
| r e t r i e v eCDa t a (n) = EmptyTCDataKey ;

fun se rve rAcknowledgement (GIDC) = AcknowledgementC
| se rve rAcknowledgement (GIDA) = AcknowledgementA
| se rve rAcknowledgement (n : TNumber) = EmptyTCDataKey ;

Figure 4.22.: Bank Application: Data Type Definition

75

4. Modelling Security-Critical Systems

Local variables:

EmptyTCDataKey
TCDataKey localAcknowledgement =

AwaitNonce

AwaitForm

FormSigned

ReceivedAck

Init

CtoS!Data(Sign(SK(C),nonce),SignCert(SK(CA),C,GIDC,PK(C)))

CtoS!DataFormCDataC(SignCData(SK(C),cdatab),SignCert(SK(CA),
 C,GIDC,PK(C)))

(ackn == AcknowledgementC)

localAcknowledgement = ackn

::CtoS!ClientHello:

(a) STD Client

TNumberKey localGIDServer =
EmptyTNumberKey

Init

FormSent

AckSent

BtoS!DataForm(Form(retrieveCData(gid)))
localGIDServer = gid

(((is_SignCert(PK(CA),cert) && is_SignCData(getPK(cert),sig)
) && (getGID(cert) == localGIDServer)) && (getCData(sig)
 == retrieveCData(localGIDServer)))

BtoS!DataForm(Form(serverAcknowledgement(localGIDServer)))

Local variables:

(b) STD Backend

Local variables:

TNumberKey localNonceServer =
EmptyTNumberKey

TNumberKey localGIDServer =
EmptyTNumberKeyInit

NonceSent

ClientAuthenticated

AwaitClientSig

AwaitAckBackend

ReceivedAck

StoC!NonceID(NonceS)
localNonceServer = NonceS

((is_SignCert(PK(CA),cert) && is_Sign(getPK(cert),sig)) && (
 localNonceServer == getNonce(sig)))

StoB!DataFormGID(EmptyTForm,getGID(cert))
localGIDServer = getGID(cert)

StoB!DataFormCDataC(sig,cert)

(c) STD Webserver

Figure 4.23.: Bank Application: State Transition Diagrams

76

4.3. Case Study I: A Bank Application

Security Requirements The two main security requirements taken from an infor-
mal security analysis of a system are:

• Client data confidentiality The personal data in the forms must be kept
confidential:

SR.CONF CLDATA ≡ never(learnedIntruder(CDataBC))

This property states that the client’s data CDataBC must be kept confidential.
There are similar security requirements for other pieces of data involved in
the transaction, such as the global ID GIDC.

• Authenticated orders Orders cannot be submitted in the name of others:

SR.AUTH ORDERS ≡
precedes(StateClient == AwaitForm,

(StateWebserver == ClientAuthenticated)&&
(Webserver.localGID == GIDC))

This property states that the Webserver can only reach the ClientAuthenticated
state at which the global ID GIDC will be sent to the backend (and therefore
allow an order in the name of C to be submitted) if the honest component
Client has issued a request.

Threats and Assumptions The transaction protocol relies on the connection be-
tween Client and Webserver being confidential, integrity protected and authenticated
on the server side. The connection between Webserver and Backend is assumed to
be secure. We also assume that the internals of the components cannot be accessed
or manipulated by the intruder and therefore annotate them with node. Thus, the
remaining threat is the replacement of the Client by an adversary, specified by the
annotation replace. Figure 4.24 shows the corresponding security-enriched model.
To analyse instead the security of the system assuming an unprotected connec-
tion between Client and Webserver, one would have to annotate the two respective
channels with public and omit the replace annotation. To additionally consider an
unprotected connection between Webserver and Backend, public annotations would
have to be placed at the channels between these components as well.

In practice, confidentiality, integrity protection, and authentication of the server
are achieved by sending the messages between Client and Webserver over a previously
established SSL connection. We will deal with the relationship between our abstract
threat specification and the use of a lower level protocol to achieve the implied
assumptions in Section 7.4.

77

4. Modelling Security-Critical Systems

Client

A

Webserver

A

Backend

A

StoB:TMessage

BtoS:TMessage

StoC:TMessage

CtoS:TMessage

{replace}
{node} {node}

{node}

Figure 4.24.: Bank Application: Security-Enriched Model (SSD)

Functionality that is not relevant for the security of the transaction is not included
in the model. Therefore, all states and transitions of the STDs Client, Webserver
and Backend are assumed to be annotated with critical.

Finally, we have specified that customer data, nonces, global IDs, and asymmetric
keys are secret data not guessable by the intruder, by using names for the corre-
sponding data types which contain“Key”, i.e. TAKey, TCDataKey and TNumberKey.
The intruder is assumed to initially know all public keys and his own secret key, his
own certificate, his own global ID and a nonce NonceA that is different from the
nonce of the honest Client component. This is specified by appropriate definitions
of the functions knowsIntruderk, as follows:

fun knowsIntruderTAKey (PK(x)) = True
| knowsIntruderTAKey (SK(A)) = True
| knowsIntruderTAKey (x) = Fa l s e ;

fun knowsIntruderTNumberKey (GIDA) = True
| knowsIntruderTNumberKey (NonceA) = True
| knowsIntruderTNumberKey (x) = Fa l s e ;

fun knows In t rude rTS ignCe r t (
S i gnCe r t (SK(CA) ,A, GIDA ,PK(A))) = True

| knows In t rude rTS ignCe r t (x) = Fa l s e ;

Here, as with invk, we use the name of typek prefixed with “knowsIntruder” as the
name of a function knowsIntruderk.

78

4.4. Case Study II: The Common Electronic Purse Specifications

Simulation, Verification and Test Case Generation The security-enriched model
of the bank application can be simulated and its functional correctness can be
checked using the built-in verification features of AutoFocus/Quest. In this stage,
the security annotations are treated like comments. The EET in Figure 4.21 origi-
nated as the result of a simulation run.

For security verification and test case generation, the model must be transformed
into a threat scenario. We will explain this in further detail in Section 5.4.1.

4.4. Case Study II: The Common Electronic Purse
Specifications

The Common Electronic Purse Specifications (CEPS) [CEP01] define requirements
for a globally interoperable electronic purse scheme providing accountability and
auditability. CEPS is supported by organisations (including Visa International)
representing 90 percent of the world’s electronic purse cards and is likely to become
an accepted standard [AJSW00] .

The CEPS electronic purse scheme is based on smart cards, on which account
balances are stored in different currencies, corresponding to electronic value the
cardholder can use for payments. The smart cards take part in transactions that
are protected by cryptographic means, most importantly to ensure that the account
balances can only be updated in a consistent way.

In the following, we consider the two main parts of CEPS: the load transaction
and the purchase transaction. In addition, CEPS defines an unload transaction (to
remove electronic value from a CEP card), a currency exchange transaction, and a
cancel last purchase transaction.

4.4.1. CEPS Load Transaction

The (unlinked, cash-based) load transaction allows the cardholder to load electronic
value onto a card in exchange for cash at a load device belonging to a load acquirer.
The participants involved in the transaction protocol are the customer’s card, the
load device and the card issuer. The load device contains a Load Security Applica-
tion Module (LSAM) that is used to store and process transaction data. During
the transaction, the account balance in the card is incremented and the amount is
sent to the issuer for later financial settlement. In addition, each participant writes
information about the transaction to secure log files. We concentrate on vulnera-
bilities arising from possible failures during one protocol execution. Therefore, to
increase readability and ease verification and test case generation, protocol details
that aim to prevent replay attacks (such as transaction date and time, transaction
numbers and identifiers) were abstracted away. Besides, we omitted mechanisms for

79

4. Modelling Security-Critical Systems

LSAM

A

Card

A

Issuer

A

cLog:TMessage

lLog:TMessage

iLog:TMessage

LtoC:TMessage

CtoL:TMessage

LtoI:TMessage

ItoL:TMessage

initLSAM:Int

{node}

{node}

{node}

{public}

{public}

{public}
{public} {integrity}

{integrity}

Figure 4.25.: CEPS Load Transaction: Security-Enriched Model (SSD)

integrity protection of messages between the issuer and the load device and instead
included integrity as an assumption on the connection.

Figure 4.25 shows the SSD of a security-enriched AutoFocus/Quest model of
the CEPS load transaction, consisting of three components Card, LSAM and Issuer.
The public tags indicate the channels that can be attacked (all channels between
the components, but not the channels used to write log information). The channels
between LSAM and Issuer are additionally assumed to be integrity protected. The
components themselves are assumed to be protected from manipulation, denoted by
the security tag node: in the implementation, the card and the security module must
ensure tamper resistance, and the issuer system must be adequately protected from
external attacks. The messages in CEPS are protected by message authentication
codes based on secret keys and by random nonces. We assume the attacker initially
knows his own secret keys and random nonces, but not those of Card, Issuer and
LSAM.

The CEPS load protocol works roughly as follows: first, the user inserts her card
into the load device and requests to load a particular amount m onto the card by
inserting cash. The LSAM is initialised with this amount: in the model, m is sent
to the LSAM on channel initLSAM. The LSAM then retrieves the current balance
from the card (message InquireCardInfo) and sends to it an initialisation message
Init(m). The card’s response RespC to the LSAM contains a message authentica-
tion code MacS1, which is forwarded to the issuer together with data securing the

80

4.4. Case Study II: The Common Electronic Purse Specifications

Local variables:
Int tr_bal = 0
Int st_m = 0
TMacS1 st_s1 = EmptyTMacS1
TMacS2 st_s2 = EmptyTMacS2
TKey st_rl = EmptyTKey

Start

Init

LoadAtt

LoadFail

LoadSucc

NextLoad InvalidMacS2

(s2 == MacS2(KCI,(tr_bal + st_m),st_s1,HashTrData(rl)))

st_s2 = s2; st_rl = rl

CtoL!RespC((tr_bal + st_m),MacS3(KCI,(tr_bal + st_m),st_m,
 CC_OK),EmptyTKey,CC_OK); cLog!CLog(st_m,(tr_bal + st_m),
 st_rl,CC_OK)
tr_bal = (tr_bal + st_m)

s2==EmptyTMacS2

CtoL!RespC(tr_bal,MacS3(KCI,tr_bal,st_m,CC_OK),EmptyTKey,
 CC_OK); cLog!CLog(st_m,tr_bal,st_rl,CC_OK)

CtoL!RespI(MacS1(KCI,tr_bal,m),HashTrData(R_CEP))
st_m = m; st_s1 = MacS1(KCI,tr_bal,m)

not(s2 == MacS2(KCI,(tr_bal + st_m),st_s1,HashTrData(rl)))
 && not(s2 == EmptyTMacS2)

st_s2 = s2; st_rl = rl

not(st_rl == EmptyTKey)
CtoL!RespC(tr_bal,MacS3(KCI,tr_bal,st_m,CC_FAIL),R_CEP,
 CC_FAIL); cLog!CLog(st_m,tr_bal,st_rl,CC_FAIL)

(st_rl == EmptyTKey)
CtoL!RespC(tr_bal,MacS3(KCI,tr_bal,st_m,CC_FAIL),EmptyTKey,
 CC_FAIL); cLog!CLog(st_m,tr_bal,EmptyTKey,CC_FAIL)

{critical}

{critical}

{critical}

{critical}

{critical}

{critical}

{critical}

{critical}

{critical}

{critical}

{critical}

{critical}

Figure 4.26.: CEPS Load Transaction: Security-Enriched Model (STD Card)

issuer’s decisions. On successful verification of this data, the issuer sends a MAC
MacS2 to the LSAM, indicating his decision to allow the load transaction. The
LSAM forwards MacS2 to the card (Credit message), which verifies it, adjusts the
balance and replies with a MAC MacS3. MacS3 is forwarded to the issuer informing
him about the result of the transaction. At the end of a transaction, all parties
write entries to their log files and stop in a state LoadSucc if the transaction was
successfully completed or in a state LoadFail if an error was detected.

Figure 4.26 shows the behavioural specification of the Card component together
with security annotations indicating critical states and transitions. In the Start
state, the Card component is ready to answer InquireCardInfo and Init messages.
If a Credit message is received, it reports an error (Err OutOfSequence) and stops
its execution in state NextLoad. As a reply RespI to an Init message, the card
sends the MAC MacS1 together with a hash HashTrData(R CEP) of transaction
data including a random number R CEP shared between the card and the issuer.

81

4. Modelling Security-Critical Systems

The MAC MacS1 and the transaction amount are stored in local variables and the
card changes its state to Init. In the Init state, the reception of a second Init message
causes the card to stop its execution in state NextLoad (as the model describes the
processing of just a single transaction). If a correct MAC MacS2 is received as part
of the Credit message also containing a random value rl from the LSAM, the card
adjusts its balance, replies with a corresponding MAC MacS3 (message RespC) and
writes a log entry with condition code CC OK (transitions Init–LoadAtt–LoadSucc).
If an empty MAC EmptyTMacS2 is received, no updates are performed and again
success is reported (this is used to end a transaction if the load acquirer cannot
obtain a MacS2 from the issuer; transition Init–LoadSucc). If the S2 MAC does
not verify correctly, the card reports an error (condition code CC FAIL; transitions
Init–InvalidMacS2–LoadFail). Besides, it outputs R CEP if it received the random
value rl from the LSAM in the Credit message . The purpose of outputting R CEP
is to provide the LSAM with proof of a valid error from the card if the LSAM
authorised the load by releasing rl.

The focus of the model is on the security-related behaviour. Thus, most of the
states and transitions correspond to receiving, verifying or creating cryptographic
messages or writing secure logs. On the other hand, the part of the STD where the
InquireCardInfo message is processed is not regarded as security-critical. It is just
provided for information purposes and not protected from manipulation (a possible
manipulation during a load transaction would be dealt with in the following steps).
The transition from state Init to state NextLoad corresponding to the reception of
a second Init message is not considered security-critical as well, as it belongs to
a second load transaction which is out of the scope of the model. If the model
were more concrete, the proportion of security-critical states and transitions would
be smaller. However, in general it is a good idea to structure a system in a way
that security-critical functionality is concentrated in few components, so a high
proportion of security-critical transactions and states in an STD is an indication
of an adequate model. The other components should then contain fewer security-
critical states and transitions and therefore require less verification and testing
effort.

The main security objective of CEPS is resistance to fraud between the partic-
ipating parties. We give three examples for security requirements and formalise
them with respect to our model.

Firstly, we require that the random value R CEP received by the LSAM from the
card is indeed a proof of a failed transaction. I.e., if the LSAM received a load ap-
proval from the issuer (StateLSAM == LoadApproved) and receives in the RespC mes-
sage from the card a value for R CEP (retrieved using the selector getRespCR CEP)
whose hash is the same as the hash the LSAM received previously (stored in a local
variable st hc), then the card must have reported an error to its log (condition code
getCLCC(cLog) not equal to CC OK).

82

4.4. Case Study II: The Common Electronic Purse Specifications

This corresponds to the following security requirement as an LTL formula, using
the property pattern precedes (non-repudiation of failed transaction at card):

SR.NONREP FAILED TRANS ≡
precedes(is Msg(cLog)&& not(getCLCC(cLog) == CC OK),

StateLSAM == LoadApproved &&
is Msg(LSAM.CtoL)&& is RespC(LSAM.CtoL)&&
not(getRespCR CEP(LSAM.CtoL) == EmptyTKey)&&
HashTrData(getRespCR CEP(LSAM.CtoL)) == LSAM.st hc)

Secondly, we require that if the card experiences an error, indeed a correct value
for R CEP which matches the hash received by the LSAM is sent to the load
acquirer. However, this is only necessary if the LSAM received a load approval
(StateLSAM == LoadApproved) and a secret rl was included in the Credit message
that when released by the LSAM indicates the commitment to perform the load.
In this case, rl has been stored in the local variable Card.st rl of the card. Thus, the
corresponding security requirement is: (fair exchange from the load acquirer’s
point of view)

SR.FAIREXC LACQ ≡
leadsto(StateLSAM == LoadApproved &&

not(Card.st rl == EmptyTKey)&&
is Msg(cLog)&& not(getCLCC(cLog) == CC OK),
is Msg(Card.CtoL)&& is RespC(Card.CtoL)&&
not(getRespCR CEP(Card.CtoL) == EmptyTKey)&&
HashTrData(getRespCR CEP(Card.CtoL)) == LSAM.st hc)

Thirdly, we require that when a transaction was successfully completed from the
point of view of the card with an amount m > 0 (reflected by a corresponding log
entry and a non-empty MacS2 stored in st s2), the issuer must have authorised the
loading of the card with m. Thus, the cardholder can use the log entry together
with the stored MacS2 to prove the authorisation.

I.e., for all m > 0, the following LTL formula must hold (non-repudiation of
load authorisation):

SR.NONREP LOAD AUTH ≡
precedes(StateIssuer == Load && Issuer.tr m == m,

is Msg(Card.cLog) && getCLM(Card.cLog) == m &&
getCLCC(Card.cLog) == CC OK &&
not(Card.st s2 == EmptyTMacS2))

83

4. Modelling Security-Critical Systems

Here, Load is the control state of the issuer that is reached when the transaction
was authorised, and the local variable Issuer.tr m stores the corresponding amount.

The results of the verification of the above security requirements with respect
to the threat scenario resulting from the security-enriched model are described
Section 5.4.2. Besides, the CEPS Load transaction served as the main case study
for model-based test sequence generation and concretisation. For more detail, see
Section 6.5.

4.4.2. CEPS Purchase Transaction

The purchase transaction allows the cardholder to use the electronic value on a
card to pay for goods. The participants involved in the transaction protocol are
the customer’s card and the merchant’s point-of-sale (POS) device. The purchase
transaction is an off-line protocol, as the issuer is not involved. The POS device
contains a Purchase Security Application Module (PSAM) that is used to store
and process transaction data and that is assumed to be tamper resistant. During
the transaction, the account balance in the card is decremented and the balance
in the PSAM is incremented by the corresponding amount. The card issuer later
receives transaction logs.

Figure 4.27 shows the SSD of a security-enriched model of the CEPS purchase
transaction. Here, tamper resistance of the card and the PSAM is indicated by
the node tags. This scenario will serve us as an example for the consideration of
complex threats that can be analysed by manually editing the generated threat
scenario – see Section 5.4.2 for more detail. In the security-enriched model, it is
only specified that the card and the PSAM can be replaced by an intruder.

In a similar way as in the load transaction, during the purchase transaction
protected transaction messages are exchanged between the PSAM and the card
to authenticate each other and authorise withdrawal and credit of the amount to
be transferred. However, in the purchase transaction, public key cryptography is
used, as there are no shared secrets between the card and the PSAM. As a security
requirement, we considered correct authentication between the PSAM and the card
in presence of an intruder.

More detail on modelling the CEPS Purchase transaction in AutoFocus/Quest
can be found in [JW01b]. The generation and customisation of the threat scenario
and the results of the security analysis are described in Section 5.4.2 (based on a
model adapted from [JW01b] to make use of the modelling concepts described in
this thesis).

84

4.5. Related Work

PSAM

A

Card

A CtoI:TExp

MtoI:TExp

{node} {node}
{replace}{replace}

Figure 4.27.: CEPS Purchase Transaction: Security-Enriched Model (SSD)

4.5. Related Work

AutoFocus and Model Transformations

Descriptions of the AutoFocus/Quest tool and its meta model in the form of UML
diagrams can also be found in [Sch01, Löt03, Bra03]. [Löt03] describes the seman-
tics of a simplified version of AutoFocus/Quest in the form of composed state
machines. A formal semantics for the QuestF language based on its abstract syn-
tax is not given in these works and the semantics of LTL properties with respect to
AutoFocus/Quest models is not considered. The semantics of AutoFocus/Quest
models described in Section 4.1.5 is based on [WLPS00], which was derived from
[HSE97, PS99]. [Bra03] describes an object-oriented transformation language called
BOTL, which is also applied to the transformation of AutoFocus/Quest models.
[SPHP02] contains simple examples for model transformations such as “pulling up”
a subcomponent out of the component it is contained in. [BHS99] gives a general
overview over AutoFocus/Quest and the concepts behind the tool.

Extended Description Techniques for Security Aspects

An early stage of the work on security extensions for the AutoFocus/Quest de-
scription techniques presented in Section 4.2 is reported in [WW01]. [Jür04], de-
veloped in parallel to this work, describes the UMLsec profile, an extension to the
UML allowing to integrate threats and assumptions into UML models. The UMLsec
approach differs from the approach described in Section 4.2 in that threats on two
layers are considered (the deployment level is represented by deployment diagrams
with stereotypes such as «internet» or «wire» and the logical level is represented
by static structure diagrams with stereotypes such as «secrecy» or «integrity»),
connected by consistency conditions. In AutoFocus/Quest, the same description
technique (SSDs) is used for both purposes. Besides, security requirements are
modelled as tags belonging to fixed stereotypes (e.g. a tag {secrecy = X} belong-
ing to a stereotype «data security») rather than general LTL properties with
patterns. The use of general LTL properties with patterns allows more flexibility

85

4. Modelling Security-Critical Systems

in specifying security requirements, while at the same time aiding the designer in
their correct formalisation. The replace threat is not included in UMLsec. In this
work, we chose AutoFocus/Quest as a basis because of its conceptual simplic-
ity, its clear semantics, its adequacy for the considered application domain and its
extensive tool connections. The examination of translations between the two mod-
elling approaches (in particular, from UMLsec to AutoFocus for threat scenario
generation, verification, mechanism application and testing) is subject of future
work.

[LBD02, BDL03] describe an extension of the UML to specify (role based) access
control requirements and how they can be transformed to access control mechanisms
on the deployment platform. [PJWB03, Pop05] deal with a methodology for use
case based development of security-critical systems and shows how to extend use
cases with the specification of security aspects. [FH97] presents general extensions
of use cases for the elaboration of non-functional requirements, including security.

An example for the inclusion of cryptographic mechanisms into a formal specifica-
tion language is the Spi calculus [AG99], an extension of the Pi calculus. In [GL97],
encryption and signatures are represented in a specification language for abstract
data types (ACT ONE), without extending the language itself. The authors remark
that care must be taken to avoid the specification of unrealistic behaviour (such as
extracting data from an encrypted message without knowledge of the key) by not
obeying the implicit rules for the use of the abstract data types for encryptions or
signatures. Our extension concept prevents this problem. The soundness of sym-
bolic models of cryptography with respect to complexity-theoretic or probabilistic
models is examined in [AJ01, PSW00].

4.6. Summary and Discussion

We introduced AutoFocus/Quest, a generic formal specification language
based on communicating state machines with tool support for simulation, verifica-
tion, test case generation and code generation. We described the syntax of Auto-

Focus/Quest and its underlying functional language QuestF in the form of an
integrated meta model consisting of entity sets and functions specified by UML
class diagrams. Based on this meta model, we gave an operational semantics of
AutoFocus/Quest and described a formalism for model transformations. The
choice of AutoFocus/Quest was motivated by its appropriateness for the consid-
ered application domain (systems where transactions are processed, in particular
in electronic business) and by its conceptual simplicity and clear semantics.

To be able to include additional information into a model, the used model-based
specification language must be extensible. We presented a simple, generic exten-
sion mechanism for the AutoFocus/Quest specification language that provides

86

4.6. Summary and Discussion

the possibility to add annotations to model elements. The more complex extension
mechanism provided by the UML proved not to be necessary for our purposes, as we
did not need to define new model elements. An important feature of our extension
is that data type definitions in the underlying functional language can be extended
as well, because the definition of the abstract syntax of the functional language is
part of the meta model.

We showed how to explicitly integrate security aspects relevant at differ-
ent stages of the development into a model-based specification language, such that
security-related activities can be defined that take into account the additional infor-
mation in a security-enriched model. In particular, we gave security extensions
for AutoFocus/Quest that allow

• to specify global security requirements in the form of property patterns
in temporal logic,

• to specify threats and assumptions on components and channels,

• to specify security mechanisms, both on an abstract level by specifying for
instance that particular channels are protected by given lower-level security
protocols, and on a more concrete level by the integration of cryptographic
operations and secret data elements into the functional language QuestF.

The extensions cover all information necessary for the security-related activities
described in this thesis. Our approach is distinguished in particular by the use
of property patterns for common security requirements, the provision of security
annotations on transitions and states of state machines to be able to guide security
testing, the features for the model-based specification of layered security protocols,
and the sound treatment of cryptography within a general-purpose functional lan-
guage by the specification of additional attributes for user-defined data types. The
usual cryptographic interpretation of data types in models using a generic specifica-
tion language is error-prone, because it is possible to specify unrealistic behaviour,
such as the extraction of data from an encrypted message without knowledge of
the key. We formally justified that our extension avoids this problem. Besides, our
extension also allows specifications using pattern matching on cryptographic terms.

The resulting security-enriched models are rather intuitive, and it proved to
be fairly straightforward to add security-related information to existing Auto-

Focus/Quest models. Often, we already detected errors simply because of the
need to precisely specify the system and the security-related aspects, before any
verification was performed at all. Besides, our approach makes it possible to take
full advantage of existing (non-security specific) tool support. This strengthens our
assumption that the development of security-critical systems can be aided by the
described model-based concepts with low additional effort.

87

4. Modelling Security-Critical Systems

The presented security extensions are aimed at basic security aspects relevant for
transaction-processing communicating systems, providing guidelines to a developer
performing a security analysis. We do not claim to give a complete set of extensions
for every possible security aspect (which would be infeasible). If additional or more
complex classes of security requirements, threats, assumptions or mechanisms occur
within the development of a system, new annotations can be defined in an analogous
way to the ones given. For certain security aspects, it also suggests itself to extend
the meta model, for instance by roles and permissions to specify access control
properties. In our approach, more complex threats and assumptions can also be
dealt with by modifying the generated threat scenario (see Chapter 5).

We demonstrated the application of the security extensions at the example of
two case studies, a bank application and the Common Electronic Purse Specifi-
cations. The security extensions described in this chapter proved to be appropriate
for the treatment of the considered systems. Further case studies are described in
Section 5.4.

88

5. Threat Scenario Generation and
Verification

As pointed out in Section 2.1, security must be provided in presence of a mali-
cious environment from which attempts can be performed to access or manipulate
a system in an unauthorised way. Therefore, models of security-critical systems
must be verified and their implementations must be tested relative to the malicious
environment. We refer to a model of a system in a malicious environment as a
threat scenario. In this chapter, we show how to generate threat scenarios from
security-enriched models and how to make use of threat scenarios as a basis for the
verification of security requirements.

This chapter is structured as follows. In Section 5.1, we describe in more detail
the concepts of threat scenarios and threat scenario generation and their role in
our model-based design process for security-critical systems. In Section 5.2, we
show how a generic threat scenario can be derived from a security-enriched Auto-

Focus/Quest model, by introducing an intruder. To keep it general, we specify
the behaviour of the generic intruder on the semantical level, as a discrete system.
In Section 5.3, we give an example for a concrete behavioural specification of a
threat scenario as a system of AutoFocus/Quest state machines (STDs), tailored
for model checking. The resulting threat scenario generated in this way is again an
AutoFocus/Quest model, thus it can be verified for security violations using the
connection to the symbolic model checker SMV available in AutoFocus/Quest.
To enable model checking, the capabilities of the intruder in this specialised intruder
model have to be restricted. We show that the specialised intruder model is sound
(i.e., does not allow more attacks than the generic intruder model), and give a
class of systems and properties for which it is complete (i.e., all violations of the
properties with respect to the generic intruder model are found using the specialised
intruder model). We show optimisations of the intruder model that enable more
efficient model checking. The generated threat scenario can be manually edited to
analyse more complex threats than can be specified in the security-enriched model.

In Section 5.4, we demonstrate threat scenario generation and verification at the
example of a number of case studies, including the bank application case study
presented in Section 4.3. We give references to related work in Section 5.5 and
summarise the presented results in Section 5.6.

89

5. Threat Scenario Generation and Verification

Figure 5.1.: Threat Scenario Generation

5.1. Threat Scenarios

The result of a security analysis is the identification of security requirements, critical
entities in a system, threats which these entities are exposed to, and assumptions
that can be taken for granted. Security verification and testing must be carried out
under consideration of this security-specific information: the aim of security verifi-
cation and testing is to show that the security requirements hold for a system under
attack, i.e. when the identified threats are realised (under the given assumptions).
In our model-based approach, the security-specific information is available as part
of the security-enriched model.

A threat scenario makes the threats explicit. In the context of a threat-scenario
based development approach using the formal language Focus, Lotz defines the
notion of a threat scenario as follows [Lot97]:

A threat scenario is a modification of the system specification that de-
scribes a situation in which the system is attacked by an adversary,
according to the result of threat identification and risk analysis.

In our model-based approach, threat scenarios are generated from security-en-
riched models based on the additional information available: in other words, threat
scenario generation is a model transformation which, applied on a security-enriched
model, results in a threat scenario (see Figure 5.1). The threat scenario is an addi-
tional model that is used specifically for security verification and testing. For this
purpose, one can then take advantage of available verification and test generation
support of the used specification language.

If tool supported, threat scenario generation can proceed automatically. The
generated threat scenario can be manually edited to analyse custom threats not
directly supported by the annotations in the security-enriched model.

90

5.2. Generic Threat Scenario

5.2. Generic Threat Scenario

In the following, we explain the derivation of a threat scenario from a security-
enriched model, at the example of AutoFocus/Quest. Both structural and be-
havioural aspects have to be considered: the structural view of the threat scenario
describes where an intruder can interfere with the system, and the behavioural view
describes how he can do so. We first specify the behavioural view on the semantical
level, as a generic intruder model.

5.2.1. Structural View

The structure of the threat scenario is determined by the annotations that specify
general threats, listed under the “threat” role in Table 4.1 on p. 53: channels anno-
tated with public can be accessed and manipulated by the intruder, and components
annotated with public or replace can be replaced by the intruder.

In the following, for simplicity we assume that the security-enriched model has a
non-hierarchical structure, i.e. it consists of one top-level component with a number
of subcomponents that are not further decomposed. The threat scenario genera-
tion that was implemented into AutoFocus/Quest can be applied to hierarchical
models as well and preserves their hierarchical structure.

We model the interference of the intruder by adding a new component Intruder
to the model and changing the connection structure depending on the specified
threats.

Threats on Channels Channels annotated with public are split into two parts lead-
ing to and originating from the intruder (see Figure 5.2(a)).

Threats on Components If a component c is annotated with public or replace, it
can be replaced by an intruder. This means that for the threat scenario,
we have to consider two cases: either c communicates with the components
connected to it, or the intruder communicates with them in place of c. To be
able to analyse both cases at the same time, we insert the Intruder component
into all channels leading to c or originating from c (see Figure 5.2(b)). The
behaviour of the Intruder component must then be restricted in such a way
that it either forwards all communication from/to c without eavesdropping or
manipulation, or cuts off c completely. This is hinted by the dashed lines in
the figure (which have no semantics but are just there to clarify the idea).

If there is more than one channel or component that can be attacked, we connect
them to the same Intruder component. This reflects the most general attack: the
system is accessed and manipulated at several different points at the same time in

91

5. Threat Scenario Generation and Verification

BA
{public}

BIntruderA

(a) Threat Scenario for public Channel

BA

A B

{replace}
{public} or

Intruder

(b) Threat Scenario for public or replace Component

Figure 5.2.: Threat Scenarios: Structural View

92

5.2. Generic Threat Scenario

a coordinated way. The amount of coordination can later be weakened by tailoring
the behavioural specification of the Intruder component.

In the following, we give a formal description of the model transformation result-
ing in the structural view of the generic threat scenario. Let M be the security-
enriched model with top-level component Main and M′ the corresponding threat
scenario. We define the set PublicChannel(M) of channels of M annotated with
public and the set ReplaceChannel(M) of channels ofM that are connected to com-
ponents annotated with public or replace as follows:

PublicChannel(M) = {ch ∈ channelsM(Main) : public ∈ tagsM(ch)}
ReplaceChannel(M) = {ch ∈ channelsM(Main) : ∃c ∈ ComponentM :

(destPM(ch) ∈ inPortsM(c) ∨
sourcePM(ch) ∈ outPortsM(c)) ∧

(public ∈ tagsM(c) ∨ replace ∈ tagsM(c))}

Let Intruder be a new component (Intruder /∈ ComponentM), which is added to
the model of the system:

ComponentM
′

= ComponentM ∪ {Intruder}

For each channel ch affected by the transformation, we define an additional chan-
nel ch Intr and two intruder ports pIntr

ch ;in and pIntr
ch;out:

IntrChannel(M) = {ch Intr : ch ∈ PublicChannel(M) ∪ ReplaceChannel(M)}
IntrInPort(M) = {pIntr

ch ;in : ch ∈ PublicChannel(M) ∪ ReplaceChannel(M)}

IntrOutPort(M) = {pIntr
ch ;out : ch ∈ PublicChannel(M) ∪ ReplaceChannel(M)}

The additional channels and ports must not appear inM, i.e. IntrChannel(M) ∩
ChannelM = ∅ and (IntrInPort(M)∪ IntrOutPort(M))∩PortM = ∅. They are added
to M as follows:

ChannelM
′

= ChannelM ∪ IntrChannel(M)

channelsM
′

(Main) = channelsM(Main) ∪ IntrChannel(M)

PortM
′

= PortM ∪ IntrInPort(M) ∪ IntrOutPort(M)

inPortsM
′

(Intruder) = IntrInPort(M)

outPortsM
′

(Intruder) = IntrOutPort(M)

Finally, the channels in M that are annotated with public or connected to com-
ponents annotated with public or replace are re-routed through the Intruder com-
ponent and given the correct types. For each channel ch ∈ PublicChannel(M) ∪

93

5. Threat Scenario Generation and Verification

Intruder

PSfrag replacements

pIntr
ch ;in pIntr

ch ;out

c1 c2
chIntr ch

Figure 5.3.: Threat Scenarios: Transformation of Channel

ReplaceChannel(M), we have:

sourcePM′

(ch Intr) = sourcePM(ch)

destPM′

(ch Intr) = pIntr
ch ;in

sourcePM′

(ch) = pIntr
ch ;out

typeofM
′

(ch Intr) = typeofM
′

(pIntr
ch ;in) = typeofM

′

(pIntr
ch ;out) = typeofM(ch)

Figure 5.3 depicts the result of this transformation for two components c1 and c2

that were previously connected via a channel ch .

5.2.2. Semantics of the Behavioural View

The behavioural view describes how the intruder can interfere with the system. The
intruder’s capabilities are dependent on

• the threat annotations that lead to the insertion of the Intruder component
(i.e., public channels or public/replace components, as described above);

• the annotated assumptions such as secret, which weaken the intruder’s capa-
bilities to access and manipulate the communication;

• the use of cryptography and secrets and the assumptions about the properties
of the cryptographic mechanisms; and

• the initial knowledge of the intruder.

We specify the behaviour of the intruder on the semantical level, in the form of
a discrete system. This makes it more general and independent of idiosyncrasies
of AutoFocus/Quest state transition diagrams (most importantly, the fact that
transitions have to be deterministic and take one time tick to execute, and missing
support for sets). Besides, the generic intruder model is more suitable for proof
purposes. A behavioural specification of a specialised intruder as a network of

94

5.2. Generic Threat Scenario

AutoFocus/Quest STDs, tailored for model checking using the tool connection of
AutoFocus/Quest to SMV, is described in Section 5.3.2.

Let IK(M) be the intruder’s initial knowledge, given as follows:

IK(M) = {x ∈
⋃

typek∈TKey
Value(typek) : I(knowsIntruderk)(x) = True} ∪

⋃

c∈subComponentsM(Main):public∈tagsM(c) keys(M, c)

Thus, without further analysis of the messages transmitted, part of the keys as
specified by knowsIntruderk plus the keys keys(M, c) that appear in the specification
of the components annotated with public are available to the intruder. Note that
for types not in TKey, arbitrary values can be generated via derivable.

The set keys(M, c) of keys that appear in the specification of the component c is
defined by:

keys(M, c) = {x : x ∈
⋃

typek∈TKey
Value(typek) ∧ ∃t ∈ terms(M, c) : x E t}

Here, terms(M, c) is the set of terms appearing in the specification of the au-
tomaton automatonM(c) as precondition, input or output expression or action of a
transition.

Using these definitions, the behaviour of the generic Intruder component is given
by the discrete system JIntruderKG

M′ = (V G
M′;Intruder, I

G
M′;Intruder, T

G
M′;Intruder) whose

specification is shown in Figure 5.4. The superscript G stands for “generic”.
The state of the Intruder component consists of the state of its input and output

ports, of the intruder knowledge KIntr with β(KIntr) ∈ P(Value) and of message
stores Mp ∈ P(Value) for messages received via the input ports p ∈ IntrInPort(M).
Initially, the Mp are empty and the intruder knowledge contains at most the values
derivable from IK(M).

At each execution step, the messages received via the ports p ∈ IntrInPort(M)
can be added to the corresponding message histories (line (1) in the definition of
TG
M′;Intruder(β, β′)). The new intruder knowledge is given by the values that can

be derived from the current intruder knowledge, the messages received and the
initial knowledge (2). To keep the specification general, we also allow that received
messages are not remembered or that previously received messages or messages in
the intruder knowledge are forgotten (hence we use the “⊆” relation rather than
equality). The initial intruder knowledge is treated as knowledge available to the
intruder at any time during the execution (rather than only at the beginning, as
in the usual attacker formalisations), which is also more general and facilitates the
consideration of specialised intruder specifications with limited storage capacity
later on. The output of the intruder is either empty, a value in his knowledge, or a
replay chosen from one of the message stores (3). Note that the messages output

95

5. Threat Scenario Generation and Verification

V G
M′;Intruder = IntrInPort(M) ∪ IntrOutPort(M)∪

{KIntr} ∪ {Mp : p ∈ IntrInPort(M)} ∪ V G
M′;Intruder;replace

IG
M′;Intruder(β) = β(KIntr) ⊆ derivable(IK(M)) ∧

∀p ∈ IntrInPort(M) : β(Mp) = ∅

TG
M′;Intruder(β, β′) = ∀p ∈ IntrInPort(M) : β ′(Mp) ⊆ β(Mp) ∪ {β(p)} ∧ (1)

β′(KIntr) ⊆ derivable
(

β(KIntr)∪ (2)
⋃

p∈IntrInPort(M){β(p)} ∪ IK(M)
)

∧

∀p ∈ IntrOutPort(M) : β(p) ∈ Value(typeofM(p)) ∧ (3)
β(p) ∈ {⊥} ∪ β ′(KIntr) ∪

⋃

p∈IntrInPort(M) β′(Mp) ∧

TG
M′;Intruder;replace(β, β′) ∧ TG

M′;Intruder;secret(β, β′) ∧

TG
M′;Intruder;auth(β, β′) ∧ TG

M′;Intruder;integrity(β, β′) ∧

TG
M′;Intruder;noreplay(β, β′) ∧ TG

M′;Intruder;avail(β, β′)

Figure 5.4.: Behavioural Specification of Generic Intruder Component

must be of the correct type. Moreover, the intruder outputs his values immediately
(β(p) is used rather than β ′(p)). This makes the intruder transparent to the other
components and allows him to react faster than them by waiting until near the end
of the clock cycle and only then sending his messages. Such a behaviour is called
“rushing attackers” in [Pfi98].

The additional variables and conjuncts appearing in the specification, such as
TG
M′;Intruder;replace, specify the restrictions of the intruder’s behaviour due to the

consideration of the annotated threats and assumptions. They are described in the
following.

Threat: Replaceable/Public Components

As explained in Section 5.2.1, for a component c annotated with public or replace
there are two cases to be considered in the threat scenario: either c was replaced and
the messages originally sent to and received by c are instead sent to and received
by the intruder; or c was not replaced so the communication from/to c must remain
unchanged.

We specify this by an additional set of boolean variables replacec indicating if c
has been replaced by the intruder in the current execution scenario. We do not
fix an initial value, i.e. the value of replacec is nondeterministically decided at the
beginning of the execution.

96

5.2. Generic Threat Scenario

Intruder

PSfrag replacements

pIntr
ch;in pIntr

ch;out

c1 c2
chIntr ch

(a) c1 replaced

Intruder

PSfrag replacements

pIntr
ch;in

pIntr
ch;out

c1 c2
chIntr ch

(b) c2 replaced

Intruder

PSfrag replacements

pIntr
ch;in

pIntr
ch;out

c1 c2
chIntr ch

(c) neither c1 nor c2 replaced

Figure 5.5.: Replaceable/Public Components

V G
M′;Intruder;replace = {replacec : c ∈ subComponentsM(Main)∧

(replace ∈ tagsM(c) ∨ public ∈ tagsM(c))}

To see how the intruder behaviour is affected, consider Figure 5.5. If a component
is replaced, it is cut off from the system and the intruder communicates with the con-
nected components in its place. I.e., if c1 is replaced, no messages can be read from
port pIntr

ch;in but the intruder can send messages to the connected component c2 via

port pIntr
ch ;out (Figure 5.5(a)). Conversely, if c2 is replaced, the intruder cannot send

messages to c2 via pIntr
ch;out, but receive messages from c1 via pIntr

ch ;in (Figure 5.5(b)). If
both c1 and c2 are not replaced, the messages must be forwarded unchanged, except
if the channel ch was annotated with public (Figure 5.5(c)). For now, we assume
that the set of components that have been replaced does not change during an exe-
cution. However, T G

M′;Intruder;replace can be easily adjusted to include this possibility.
Such a scenario is examined in Section 5.4.2 (CEPS Purchase Transaction).

For a formal definition, for each channel ch ∈ ReplaceChannel(M) we define two

97

5. Threat Scenario Generation and Verification

predicates replaceSourceComp(M, ch) and replaceDestComp(M, ch) indicating if ch
originates at or leads to a component that is currently replaced:

replaceSourceComp(M, ch) =

∃c ∈ Component : sourcePM(ch) ∈ outPortsM(c) ∧
(replace ∈ tags(c) ∨ public ∈ tags(c)) ∧ replacec

replaceDestComp(M, ch) =

∃c ∈ Component : destPM(ch) ∈ inPortsM(c) ∧
(replace ∈ tags(c) ∨ public ∈ tags(c)) ∧ replacec

Using these predicates, the transition relation is restricted by the additional con-
junct T G

M′;Intruder;replace(β, β′) as follows:

TG
M′;Intruder;replace(β, β′) =

∀ch ∈ ReplaceChannel(M) :
replaceSourceComp(M, ch)⇒

β′(MpIntr
ch;in

) = β(MpIntr
ch;in

) ∧

β′(KIntr) ⊆ derivable
(

β(KIntr)∪
⋃

p∈IntrInPort(M)\pIntr
ch;in
{β(p)} ∪ IK(M)

)

∧

replaceDestComp(M, ch)⇒
β(pIntr

ch ;out) =⊥ ∧

(¬replaceSourceComp(M, ch) ∧ ¬replaceDestComp(M, ch) ∧
public /∈ tags(ch))⇒

β′(MpIntr
ch;in

) = β(MpIntr
ch;in

) ∧

β′(KIntr) ⊆ derivable
(

β(KIntr)∪
⋃

p∈IntrInPort(M)\pIntr
ch;in
{β(p)} ∪ IK(M)

)

∧

β(pIntr
ch ;out) = β(pIntr

ch ;in) ∧

∀c ∈ subComponentsM(Main) : (replace ∈ tagsM(c) ∨ public ∈ tagsM(c))⇒
β′(replacec) = β(replacec)

Assumption: Secret Channels

Channels annotated with secret cannot be eavesdropped by the intruder:

TG
M′;Intruder;secret(β, β′) =

∀pIntr
ch;in ∈ IntrInPort(M) : secret ∈ tagsM(sourcePM(ch))⇒

β′(KIntr) ⊆ derivable
(

β(KIntr) ∪
⋃

p∈IntrInPort(M)\pIntr
ch;in
{β(p)} ∪ IK(M)

)

98

5.2. Generic Threat Scenario

Assumption: Authentic Channels

Only replays of the values from the same channel or the empty value can be inserted
into channels annotated with auth:

TG
M′;Intruder;auth(β, β′) =

∀pIntr
ch;out ∈ IntrOutPort(M) : auth ∈ tagsM(sourcePM(ch))⇒

β(pIntr
ch ;out) ∈ {⊥} ∪ β′(MpIntr

ch;in
)

Assumption: Integrity-Preserving Channels

Only replays or the empty value can be inserted into channels annotated with
integrity:

TG
M′;Intruder;integrity(β, β′) =

∀pIntr
ch;out ∈ IntrOutPort(M) : auth ∈ tagsM(sourcePM(ch))⇒

β(pIntr
ch ;out) ∈ {⊥} ∪

⋃

p∈IntrInPort(M) Mp

Assumption: Replay-Protected Channels

Replays of earlier messages are not possible for channels annotated with noreplay:

TG
M′;Intruder;noreplay(β, β′) =

∀pIntr
ch;out ∈ IntrOutPort : noreplay ∈ tagsM(sourcePM(ch))⇒

β(pIntr
ch ;out) ∈ {β(pIntr

ch ;in)} ∪ {⊥} ∪ β ′(KIntr)

Assumption: Channels Ensuring Availability

If a channel is annotated with avail, the messages are forwarded unchanged and
without delay. 1

TG
M′;Intruder;avail(β, β′) =

∀pIntr
ch;out ∈ IntrOutPort(M) : auth ∈ tagsM(sourcePM(ch))⇒

β(pIntr
ch ;out) = β(pIntr

ch ;in)

1This is a very strong notion of availability. Weaker notions (e.g. allowing a delay) would more
easily be formulated as trace properties than as part of the transition relation and require the
specification of a“fair” intruder who does not block messages completely. As most cryptographic
protocols do not ensure availability, we do not consider availability in more detail in this thesis.

99

5. Threat Scenario Generation and Verification

Interpretation of Properties Referring to Intruder Knowledge

Finally, we show how properties referring to the intruder knowledge using the special
functions learnedIntruderk are interpreted with respect to the generic threat scenario:
The evaluation of learnedIntruderk is defined by

evalGβ (learnedIntruderk(t)) = evalGβ (t) ∈ β(KIntr)

In the other cases, evalGβ is defined in the same way as evalβ (see Section 4.1.3).

By JprKG, we denote the semantics of a property pr where evalGβ is used for the
evaluation of terms that are not LTL properties.

5.3. Security Verification Using Model Checking

The threat scenario derived from the security-enriched model forms the basis of
security verification (see Figure 5.6):

Definition 5.3.1. A security-enriched model is verified secure if the stated global
security requirements are fulfilled in the corresponding threat scenario M ′ (here,
Main is the top-level component ofM′):

∀pr ∈ propertiesM
′

(Main) : SecRequirement ∈ tagsM
′

(pr)⇒
∀σ : ΨJMainK

M′
(σ)⇒ JprK(σ)

If the model is verified secure, one can continue with implementation and testing
activities (for testing, see Chapter 6). Besides, if there are assumptions in the model
that are not fulfilled by the environment or by measures out of scope of the model,
appropriate security mechanisms must be applied at later stages of the development
(see Chapter 7).

On the other hand, if a security requirement is violated, the security-enriched
model must be adjusted. This can be achieved by the following measures:

(1) revision of the violated security requirement (because it was stronger than
intended or incorrectly formalised),

(2) weakening threats or strengthening assumptions (for instance by removing
the public annotations or introducing secret or auth annotations), or

(3) adjusting or introducing security mechanisms.

Note that there is often a choice between (2) or (3): for example, data can be kept
confidential by either ensuring that it is only transmitted via channels annotated
with secret, or by encrypting it with an appropriate key. In the former case, it

100

5.3. Security Verification Using Model Checking

Figure 5.6.: Security Verification Process

must again be ensured that the weakening of the threats or the strengthening of
the assumptions is justified — if necessary, by introducing security mechanisms
in a second step. Adjusting threats and assumptions first to fulfil the security
requirements leads to a more abstract model that can be more easily verified. In
Chapter 7, this approach is described in more detail at the example of layered
protocols.

In the remaining part of this section, we will address security verification using
model checking.

5.3.1. Model Checking in AutoFocus/Quest

AutoFocus/Quest offers an interface to the model checker SMV [McM93] (in-
cluding the NuSMV [CCG+02] and Cadence SMV[McM99] versions), based on the
semantics described in Section 4.1.5. The translation of AutoFocus/Quest mod-
els to the input language of SMV is described in more detail in [Wim00]. The
basic idea of the translation is to utilise the feature of the SMV input language
to directly specify a system by its state variables (“VAR” declaration) and by pred-
icates that characterise the initial states and the transition relation (“INIT” and
“TRANS” declarations). The VAR, INIT and TRANS declarations correspond to the
components V, I, T of the discrete system model D = (V, I, T) used as a semantics
in Section 4.1.5. However, the SMV input language does not support hierarchic
data types, which are therefore mapped appropriately to integer range types.

Security verification using the model checking interface of AutoFocus/Quest is
carried out as follows (see Figure 5.7): The threat scenario is translated to a model
in the SMV input language and the security requirements are translated to SMV
specifications (“SPEC” declarations). The SMV model checker is then run on this
input. If the model checker can finish the verification within a given time bound, for
each requirement it is reported if it is true or false in the model. For a requirement
that is false, a counterexample is given, which is a trace that demonstrates how
the requirement can be violated (in case of security verification, this corresponds to

101

5. Threat Scenario Generation and Verification

Figure 5.7.: Security Verification Using SMV

a possible attack). The counterexamples are re-translated to AutoFocus/Quest
EETs.

If the model checker does not finish given the available time and memory re-
sources, a partial verification can be carried out using bounded model checking
[BCC+03]. Here, the verification is restricted to a search for counterexamples of
a chosen maximum length l. As the execution time of bounded model checking
depends exponentially on l, one starts with small values for l and increases it until
again the given time or memory limits are exceeded. Support for bounded model
checking has been built into the model checkers Cadence SMV and NuSMV.

Note that SMV is a classical finite-state symbolic model checker. This implies
that an AutoFocus/Quest model can only be translated to SMV if it does not
contain recursive data types or functions. Models with infinite entity sets (for
example an infinite number of components, local variables or transitions) are not
supported by the AutoFocus/Quest tool set.

5.3.2. Specialised Intruder Model for Model Checking

In the following, we describe the generation of a specification of the Intruder compo-
nent in the AutoFocus/Quest specification language, as a network of STDs. The
generated intruder model is specialised for security verification using model check-

102

5.3. Security Verification Using Model Checking

store fake

Medium

FakeStore

Intruder

FakeStore.fake

Medium.fake

...

... ...

random inputs

PSfrag replacements

pIntr
ch;in pIntr

ch;outpMedium
ch;in pMedium

ch;out

Figure 5.8.: Decomposition of Intruder Component

ing via the SMV connection of AutoFocus/Quest. The semantics of the Intruder
component is an adequate restriction of the generic intruder model presented in
Section 5.2.2, as will be justified in Section 5.3.3. We refer to this intruder model
as “specialised intruder model” and to the threat scenario using this intruder model
as “specialised threat scenario”.

We apply a pattern similar to the one described in [Lot97]: we split the Intruder
component into two subcomponents Medium and FakeStore. The Medium compo-
nent models the intruder’s influence on the communication, whereas the FakeStore
component models his knowledge and his abilities to manipulate cryptographic
messages.

Figure 5.8 illustrates this substructure: the intruder’s input and output ports
pIntr
ch ;in and pIntr

ch ;out are connected with the Medium component via the ports pMedium
ch;in

and pMedium
ch ;out for reading and writing on the attacked channels. The Medium com-

ponent is connected to the FakeStore component via two channels store and fake
connecting the ports Medium.store and FakeStore.store, respectively Medium.fake
and FakeStore.fake. Via the store channel, the FakeStore component receives eaves-
dropped messages, and via the fake channel, it passes generated messages to the
Medium component that can be inserted into the communication. We require that
all attacked channels (and therefore all ports pIntr

ch;in and pIntr
ch ;out) have the same type

TMessage. 2

The corresponding model transformation (decomposing the Intruder component
into the two subcomponents, adding the corresponding ports and channels and

2This can easily be overcome by defining a more complex intruder model, e.g. with more than
one store and fake channel.

103

5. Threat Scenario Generation and Verification

Init

Local variables:

Main

InterceptAndStore

Fake Forward ForwardAndStore

ForwardAndIgnore

ReplayDrop

randomly set

PSfrag replacements

pIntr
in;ch1

pIntr
out;ch1

pIntr
in;ch2

pIntr
out;ch2

Mp;i : TMessage =
EmptyTMessage;

replacec : Bool = False;

replacec

Figure 5.9.: STD Schema for Medium Component

generating state transition diagrams for Medium and FakeStore) can be formally
described in a similar way to the structural transformation given in Section 5.2.1,
which we omit here for space reasons. The transformation has been implemented
into the AutoFocus/Quest tool in the form of a Java program.

In the following, we give a short explanation of the state transition diagrams
generated for the Medium and FakeStore components.

The Medium Component in AutoFocus/Quest

Figure 5.9 shows the schema for the AutoFocus/Quest STD for the Medium com-
ponent. The data state of the Medium component must be finite, so the message
stores Mp in the generic intruder model are represented by a number of local vari-
ables Mp;i. Their initial value is EmptyTMessage, which must be one of the construc-
tors of TMessage and stands for an empty/illegal message. Besides, the Medium
component contains the replacec variables indicating if a component c is currently
replaced by the intruder (see Section 5.2.2). At the beginning of a system run, one
of the transitions from state Init to state Main is chosen to initialise the replacec

variables with random values. Then, the Medium component repeatedly executes
transitions corresponding to actions the intruder can perform on an attacked chan-
nel (i.e., a channel ch ∈ PublicChannel(M) ∪ ReplaceChannel(M)). There are the
following kinds of transitions for each attacked channel ch:

• InterceptAndStore: read a message from pMedium
ch;in , forward it to FakeStore and

store it in one of the MpMedium
ch;in

;i variables.

104

5.3. Security Verification Using Model Checking

Main

Local variables:

StoreMessage

Synth

Guess

Analz

FakeMessage

PSfrag replacements

storetypek;i : typek = Emptyk

Figure 5.10.: STD Schema for FakeStore Component

• Fake: write a message generated by FakeStore to pMedium
ch;out .

• Forward: read a message from pMedium
ch ;in , forward it unchanged and store it in

one of the MpMedium
ch;in

;i variables.

• ForwardAndStore: combination of Forward and InterceptAndStore.

• ForwardAndIgnore: same as Forward, but do not store the message in one of
the MpMedium

ch;in
;i variables.

• Replay: replay a message received from an attacked channel (and stored in
one of the Mp;i variables) to a pMedium

ch;out port.

• Drop: read a message from pMedium
ch ;in , store it in one of the Mp;i variables, and

drop it.

Depending on the threat scenario specification, some of these transitions are
omitted or augmented with preconditions that control if they can be executed. For
example, for a public channel, all above actions are possible, whereas for a channel
annotated with secret, the InterceptAndStore and ForwardAndStore transitions must
be omitted. Preconditions containing the replacec variables are added for channels
ch ∈ ReplaceChannel(M), because the possible intruder actions depend on which
component is currently replaced.

The FakeStore Component in AutoFocus/Quest

Figure 5.10 shows the schema for the AutoFocus/Quest STD for the FakeStore
component. The FakeStore component corresponds to the function derivable (see

105

5. Threat Scenario Generation and Verification

Section 4.2.6): it accepts messages on the FakeStore.store port and outputs messages
on the fake port that can be derived from the received messages using operations
such as encryption, decryption, concatenation or splitting.

For each type typek of terms that can be subterms of a term of type TMessage
(including TMessage itself), FakeStore has a number of variables storetypek;i. The

storetypek;i variables are initially assigned to Emptyk, standing for an empty/illegal
value. The STD for FakeStore has only one control state Main and the following
kinds of transitions:

• StoreMessage: read a message from the store port and write it to the local
store.

• FakeMessage: write a message from the local store to the fake port (to be
forwarded to the attacked system by the Medium component).

• Analz transitions: extract a part of a stored message and write the part to the
local store. To extract parts of encrypted messages, check if the corresponding
key is in the local store as well.

• Synth transitions: combine messages from the local store and write the result
to the local store.

• Guess transitions: nondeterministically determine a value x in the initial
knowledge of the intruder (i.e., for which evalβ(knowsIntruder(x)) = True)
and write it to the local store.

At each execution step, the action to be performed is nondeterministically cho-
sen. The only way to specify nondeterministic behaviour in AutoFocus/Quest is
via multiple transitions that are executable at the same time — the result of the
execution of a transition must be deterministic. Therefore, to simplify the model,
the STD for the FakeStore component also depends on external random inputs (see
Figure 5.8). For example, in a guess transition, the value x is read from the envi-
ronment, which is not further constrained (i.e., the security requirements must hold
for any possible sequence of random inputs).

Interpretation of Properties Referring to Intruder Knowledge

Finally, we show how properties referring to the intruder knowledge using the spe-
cial functions learnedIntruderk are interpreted with respect to the specialised threat
scenario: within the definition of the semantics of properties in Section 4.1.5, the
evaluation of learnedIntruderk is defined by

evalβ(learnedIntruderk(t)) = ∃i : evalβ(storetypek ;i == t) = True ∨
evalβ(store == t) = True

106

5.3. Security Verification Using Model Checking

This definition states that t is in the intruder knowledge if the value of t is stored
in one of the variables storetypek;i or currently sent to the FakeStore component via
the FakeStore.store port.

5.3.3. Justification of the Specialised Intruder Model

Specialised intruder models are designed for a specific purpose. To serve this pur-
pose, they can be limited with respect to the generic threat scenario. For example,
the model checking specific threat scenario described in Section 5.3.2 must be finite
state and of a complexity that allows model checking with reasonable execution
times and space requirements. In addition, idiosyncrasies of the specification lan-
guage have to be taken into account, such as the fact that transitions in Auto-

Focus/Quest STDs are always deterministic and that their execution takes up one
time tick.

A specialised intruder model must be justified with respect to the generic threat
scenario, such as the one described in Section 5.2 for AutoFocus/Quest. Desirable
properties are soundness and completeness: we say that a specialised intruder model
is sound if it does not allow more attacks than the generic intruder model, and that
it is complete, if whenever the generic intruder can perform a certain attack, the
specialised intruder can do so as well. If the latter is not the case, there will
be security violations (with respect to the generic intruder model) that can not
be found using the specialised intruder model. If a specialised threat scenario
is not complete for all possible security-enriched models, one should state under
which conditions it is complete. Note that even the generic threat scenario must
necessarily be incomplete in some way (with respect to the actual attacks that
can be performed on the system), as it is an abstraction and only corresponds to
part of the whole system, given certain assumptions (e.g. only a certain number of
parallel executions of a specified transaction protocol). However, even incomplete
specialised intruder models are still beneficial to find attacks. One just has to keep
in mind that a successful security verification does not indicate their absence.

In this section, we formally justify the model-checking specific threat scenario
with respect to the generic threat scenario. We show that it is sound and give
conditions under which it is complete.

Soundness

Soundness of the specialised intruder model ensures that if an attack is found using
the specialised threat scenario (for example by performing model checking), there
is also an attack with respect to the generic threat scenario.

For a formal definition, let us denote by JMainKG
M′ = (V G

M′;Main, I
G
M′;Main, TG

M′;Main)

the semantics of the generic threat scenario, where JIntruderKG
M′ = (V G

M′;Intruder,

107

5. Threat Scenario Generation and Verification

IG
M′;Intruder, T

G
M′;Intruder) is used as the semantics of the Intruder component. Let us

denote by JMainKM′ = (VM′;Main, IM′;Main, TM′;Main) the semantics of the specialised
threat scenario, where JIntruderKM′ = (VM′;Intruder, IM′;Intruder, TM′;Intruder) is used as
the semantics of the Intruder component. Besides, let ΨG := ΨJMainKG

M′
characterise

the set of computations in the generic threat scenario and ΨS := ΨJMainK
M′

the set
of computations in the specialised threat scenario. A specialised intruder model is
sound if for all security properties pr , if there is a trace σ in ΨS that violates pr ,
there is also a trace σ′ in ΨG that violates pr .

Definition 5.3.2. A specialised intruder model is sound with respect to a threat
scenario M′, if

∀pr ∈ propertiesM
′

(Main) : SecRequirement ∈ tagsM
′

(pr)⇒
∃σ : ΨS(σ) ∧ ¬JprK(σ)⇒

∃σ′ : ΨG(σ′) ∧ ¬JprKG(σ′)

Theorem 5.3.3. The specialised intruder model described in Section 5.3.2 is sound.

Proof Sketch To prove Theorem 5.3.3, it is sufficient to show that the specialised
intruder is a refinement of the generic intruder in the following sense:

Theorem 5.3.4. Let σS = [βS
0 , βS

1 , . . .] be a computation of the specialised intruder,
i.e.
ΨJIntruderK

M′
(σS) is true. Then there is a computation σG = [βG

0 , βG
1 , . . .] of the

generic intruder (i.e., ΨJIntruderKG
M′

(σG) is true) where for all j ≥ 0 :

(1) ∀pIntr
ch;in ∈ IntrInPort(M) : βG

j (pIntr
ch ;in) = βS

j (pIntr
ch;in)

(2) ∀pIntr
ch;out ∈ IntrOutPort(M) : βG

j (pIntr
ch ;out) = βS

j (pIntr
ch ;out)

(3) βG
j (KIntr) =

⋃

i,typek βS
j (storetypek;i) ∪ βS

j (store)

This means that the corresponding computation σG has the same input/output
behaviour and intruder knowledge as σS at each execution step.

We proved Theorem 5.3.4 by induction over j and case distinctions over the
different kinds of transitions in the automata assigned to FakeStore and Medium
components of the specialised intruder. We omit the proof, because it depends
on specification details of the generated automata and is not necessary for further
understanding of the thesis.

With the help of Theorem 5.3.4, we can now prove Theorem 5.3.3. Assume there
is a trace σ with ΨS(σ)∧¬JprK(σ). Let σS := σ|V

M′;Intruder
be the projection of σ with

108

5.3. Security Verification Using Model Checking

respect to the state variables of the specialised intruder. Then, ΨJIntruderK
M′

(σS) is

true. By Theorem 5.3.4, there is a trace σG for which ΨJIntruderKG
M′

(σG) is true, and

σG and σS have equal input/output behaviour. The generic and the specialised
threat scenario only differ with respect to the intruder behaviour. Thus, if we
replace in σ the valuations of the variables VM′;Intruder of the specialised intruder in
σS by the valuations of the variables V G

M′;Intruder of the generic intruder in σG, we

obtain a trace σ′ with σ′|V G
M′;Main

\V G
M′;Intruder

= σ|V
M′;Main\VM′;Intruder

for which ΨG(σ′)

is true. This trace also fulfils ¬JprKG(σ′): For state variables not belonging to the
intruder, σ and σ′ have the same values at each execution step. The only way to
refer to state variables of the intruder is via the learnedIntruderk functions. However,
JlearnedIntruderk(t)K(σj) states that the value of t is the same as the value of one
of the variables storetypek;i or of the store port, and JlearnedIntruderk(t)KG((σ′)j)
states that the value of t is contained in KIntr. Because of (3) in Theorem 5.3.4,
JlearnedIntruderk(t)K(σj) and JlearnedIntruderk(t)KG((σ′)j) are equivalent.

Completeness

Completeness is the counterpart of soundness: a specialised intruder model is com-
plete if each security requirement that can be violated in the generic threat scenario
can also be violated in the threat scenario generated using the specialised intruder
model. We use the same notation as defined above in the soundness case.

Definition 5.3.5. A specialised intruder model is complete with respect to a threat
scenario M′, if

∀pr ∈ propertiesM
′

(Main) : SecRequirement ∈ tagsM
′

(pr)⇒
∃σ : ΨG(σ) ∧ ¬JprKG(σ)⇒

∃σ′ : ΨS(σ′) ∧ ¬JprK(σ′)

The specialised intruder model described in Section 5.3.2 is not complete for all
possible threat scenarios and security requirements. It is tailored for an efficient
security analysis of systems based on a request/reply architecture, using the model
checking feature of AutoFocus/Quest. In particular, the intruder can only inter-
cept or forge one message at a time (by the corresponding transitions of the Medium
component) and requires a number of execution steps to process messages, thus in-
troducing delay into the communication. For example, a message is intercepted
by the Medium component and sent to the FakeStore component (InterceptAndStore
transition), there it is stored (StoreMessage transition), analysed (Analz/Synth tran-
sitions), a fake message derived from the intruder knowledge is sent to the Medium
component (FakeMessage transition) and then sent on to another component (Fake

109

5. Threat Scenario Generation and Verification

transition). The generic intruder can perform all these actions immediately, within
the same time tick. Besides, as model checking is used for the analysis, the intruder
can only store finitely many messages with a finite number of possible values. The
specialised intruder model for model checking is complete under the following con-
ditions:

(1) No recursive data types and functions are used.

(2) The Medium component has enough Mp;i variables to store all possible differ-
ent messages that can be received at port p, and the FakeStore component has
enough storetypek;i variables to store all values that can occur in the intruder’s
knowledge.

(3) The threat scenario has a request/reply architecture from the point of view
of the intruder.

(4) The security properties are instances of the “Patterns for Common Global
Security Requirements” described in Section 4.2.2.

Request/reply architectures are characterised as follows.

Definition 5.3.6. Let U ⊆ subComponentsM
′

(Main) be a set of components of the
threat scenario such that Intruder /∈ U . Let JUK = (VU , IU , TU) be the semantics of
U . JUK is derived from the semantics of the components in U in the same way as
the semantics of a composed component is derived from the semantics of its sub-
components (see Section 4.1.5), but only the channels connected to the components
in U are considered.

An idle step of U is a pair (β, β ′) of valuations of VU with TU (β, β′) such that
∀v ∈ VU : v ∈ LocVarM

′

⇒ (β′(v) = β(v)) (the local variables and control states
keep their values) and ∀v ∈ VU : v ∈ outPortsM

′

(Main) ⇒ β ′(v) =⊥ (the output
ports are cleared).

A waiting state of U is a valuation β of VU such that if there are no inputs from
the intruder, for all valuations β ′ of VU with TU (β, β′), (β, β′) is an idle step.

Assume U is in a waiting state and receives a message from the intruder via one
of its input ports. We call U a request/reply subsystem, if in this case

• U always returns to a waiting state in a finite number of execution steps,

• before returning to a waiting state, U sends at most one message back to the
intruder, and

• the behaviour of U is independent of further messages received from the in-
truder during these execution steps.

110

5.3. Security Verification Using Model Checking

We call such an interaction a request/reply interaction. A threat scenario has a
request/reply architecture from the point of view of the intruder if it can be parti-
tioned into the Intruder component and a number of request/reply subsystems. In
addition, we require that initially, all but one of the subsystems are in a waiting
state. One of the subsystems may send a message to the intruder independently of
messages received from it, before entering a waiting state as well.

Request/reply architectures are typical for models of transaction protocols. The
threat scenarios of all systems we considered have a request/reply architecture,
including the bank application described in Section 4.3. Besides, if the transferred
messages have a fixed maximum length and a bounded number of possible values
per data element (as in our examples), using non-recursive data types and functions
is sufficient. In this case, one can also determine an upper bound for the number
of variables needed by the intruder, given by the number of different values of
the respective type. The number of variables in the store of the intruder can be
reduced to speed up verification by model checking, at the cost of having to justify
that the reduced number of variables is still sufficient. As security verification is
only one of the activities dealt with in our methodology, the closer examination
of such justifications is out of scope of this thesis, as well as the examination of
the possible use of infinite-state model checking techniques to enlarge the class of
systems for which completeness of the security verification can be guaranteed.

Theorem 5.3.7. The specialised intruder model described in Section 5.3.2 is com-
plete under the conditions (1)–(4) given above.

Proof Sketch To prove Theorem 5.3.7, we first show that the generic intruder is
a refinement of the specialised intruder, but only for particular computations we
call attacks with delay N .

Definition 5.3.8. A computation σ of the intruder component is an attack with
delay N , if

• at state σ(0), no messages are sent or received by the intruder (i.e., the input
and output ports are empty) and σ1 is an attack with delay N , or

• there are n, n′ ≥ N such that at state σ(0), no messages are sent and exactly
one message is received by the intruder, at states σ(i) with 1 ≤ i < n no
messages are sent or received, at states σ(i) with n ≤ i < n′, no message is
received and at most one message is sent, and σn′

is again an attack with
delay N .

This means that after receiving a message, the intruder does not receive more
messages or send out messages for at least N clock ticks, which gives him time to

111

5. Threat Scenario Generation and Verification

store and analyse the received message, and that the intruder only either sends or
receives at most one message at a time.

Theorem 5.3.9. Assume the threat scenario fulfils the conditions (1) and (2) given
above for Theorem 5.3.7. Let σG = [βG

0 , βG
1 , . . .] be a computation of the generic

intruder. If σG is an attack with delay N (for a certain value of N dependent on
the specialised intruder model), then there is a computation σS = [βS

0 , βS
1 , . . .] of the

specialised intruder, where for all j ≥ 0 :

(1) ∀pIntr
ch;in ∈ IntrInPort(M) : βS

j (pIntr
ch ;in) = βG

j (pIntr
ch;in)

(2) ∀pIntr
ch;out ∈ IntrOutPort(M) : βS

j (pIntr
ch ;out) = βG

j (pIntr
ch ;out)

(3) derivable(
⋃

i,typek βS
j (storetypek;i) ∪ βS

j (store) ∪ IK(M)) ⊇ βG
j (KIntr)

This means that the corresponding computation σS has the same input/output
behaviour as σG at each execution step and the knowledge of the specialised intruder
is at least large enough to derive the values in the knowledge of the generic intruder,
possibly with the help of values in the initial intruder knowledge.

In addition, given x ∈ Value with x ∈ βG
j (KIntr) for some j, σS can be chosen

such that there is a j ′ such that x ∈
⋃

i,typek βS
j′(storetypek;i) ∪ βS

j′(store). Thus, if

the generic intruder knows x at some step in σG, so does the specialised intruder at
some (possibly later) step in σS.

We proved Theorem 5.3.9 by induction over j under consideration of the fact that
σG is an attack with delay N , by giving for each step of σG corresponding transitions
of the Medium and FakeStore components of the specialised intruder. In particu-
lar, during the delay between receiving messages and sending messages, enough
Analz and Synth transitions can be executed such that the FakeStore component
can generate any messages that can be derived from the previous knowledge and
the messages received. We omit the full proof, because it depends on specification
details of the generated automata.

To prove Theorem 5.3.7, we derive from a computation of the generic threat
scenario a computation where the intruder behaviour is an attack with delay N .

Theorem 5.3.10. Let σ with ΨG(σ) be a computation of the generic threat sce-
nario, which has a request/reply architecture. Let U1, . . . ,UnU

be the request/reply
subsystems of the generic threat scenario with semantics JUiK = (VUi

, IUi
, TUi

). Then
there is a computation σ̂ with ΨG(σ̂) of the generic threat scenario such that σ̂|V G

Intr

is an attack with delay N , and for all Ui, σ|VUi
can be derived from σ̂|VUi

only by
removing idle steps.

In addition, if pr is an instance of one of the patterns for common security
requirements described in Section 4.2.2 and ¬JprKG(σ) is true (i.e., σ violates pr),

112

5.3. Security Verification Using Model Checking

then there is a computation σ̂ fulfilling the above properties such that ¬JprKG(σ̂) is
true as well.

Theorem 5.3.10 can be proved by showing how to derive σ̂ from σ. The basic idea
of the proof is illustrated in Figure 5.11. Figure 5.11(a) shows an example for an
original computation σ. σ|V G

M′;Intruder
is not an attack with delay N (for any N): for

example, at the beginning the intruder sends out two messages at the same time,
only one step after having received a message from U1. The request/reply interac-
tions of U1 and U2 are marked with ➀, ➁, ➂: they consist of a message reception,
some computation and the sending of a message. Other messages received from the
intruder during such an interaction are ignored. We can observe that interactions
➀ and ➁ are only dependent on the intruder having received the initial message
from U1. Interaction ➂ is additionally dependent on the intruder having received
the reply messages from interactions ➀ and ➁. Thus, by moving the request/re-
ply interactions under consideration of their dependencies by introducing delays at
waiting states, a computation σ̂ can be derived which is depicted in Figure 5.11(b),
where only a single interaction is processed at a time and in between, the request/re-
ply subsystems perform idle steps. If enough idle steps are performed between the
interactions, σ|V G

M′;Intruder
is an attack with delay N for any fixed N .

In addition, the violation of security requirements conforming to patterns of
the form described in Section 4.2.2 can be preserved. For properties of the form
never(knowsIntruder(x)) this is the case because if the intruder knows x at some step
in σ, he also knows x at some (possibly later) step in σ̂, because just delays are intro-
duced. Violation of properties of the form precedes(pr 1, pr 2) and leadsto(pr 1, pr 2)
can be preserved because the order of the request/reply interactions can be chosen
accordingly (for instance, choosing the order ➀–➁–➂ in the above example, if a
precedes property is violated because some state in ➀ occurs without some other
state having occurred in ➁).

Now, let us consider again Definition 5.3.5: by applying Theorem 5.3.10 to a
computation σ with ΨG(σ) ∧ ¬JprKG(σ), we obtain a computation σ̂ with ΨG(σ̂) ∧
¬JprK(σ̂), such that σG := σ̂|V G

M′;Intruder
is an attack with delay N . According to

Theorem 5.3.9, for σG there is a computation σS for which ΨJIntruderK
M′

(σS) is true,

and σG and σS have equal input/output behaviour. Thus, as in the proof for
Theorem 5.3.3, we can replace in σ̂ the valuations of the variables V G

M′;Intruder of
the generic intruder by the valuations of the variables VM′;Intruder of the specialised
intruder in σS and obtain a trace σ′ for which ΨS(σ′) is true. pr is also violated in
σ′: for the precedes and leadsto patterns, this is true because they do not refer to the
state of the intruder. A security requirement of the form never(learnsIntruder(x))
is violated in σ̂ if x is in the intruder knowledge at some step in the computation.
In this case, by Theorem 5.3.9 (last paragraph), we can conclude that it is also

113

5. Threat Scenario Generation and Verification

Intruder

PSfrag replacements
➀ ➁

➂

U1 U2

(a) Original Computation σ

Intruder

...

...

...

PSfrag replacements

➀

➁

➂

U1 U2

≥ N steps

≥ N steps

≥ N steps

(b) Delayed Computation σ̂

Figure 5.11.: Deriving an Attack with Delay N

114

5.3. Security Verification Using Model Checking

violated in σ′.

5.3.4. Optimisations

The implementation of the threat scenario generation for AutoFocus/Quest mod-
els includes a number of optimisations of the specialised intruder model described
in Section 5.3.2 to improve model checking performance, described as follows.

Immediate Ports. In the Intruder component, immediate ports are used to send
messages from Medium to FakeStore or to the connected components in the
threat scenario. Immediate ports are a recent feature of AutoFocus/Quest
making it possible to send messages without the usual delay of one clock tick.
This reduces the overall delay introduced by the intruder into the communi-
cation and thus the length of runs of transactions in presence of the intruder
— which considerably speeds up the model checking process. Note that even
with immediate ports it is not possible to reduce the delay introduced by the
intruder to zero in the described specialised intruder model, as for the anal-
ysis and synthesis of messages, in general a sequence of several transitions
must be fired in the FakeStore components. Besides, no circular dependencies
may be introduced by immediate ports in AutoFocus/Quest, such as two
components sending messages to each other via immediate ports.

Combination of Synth/Analz Transitions. The specialised intruder model requires
a number of variables storetypek;i for every type typek of subterms of the type
TMessage. In the implementation, several Analz/Synth transitions can be
combined into one, which makes it possible to omit variables for intermediate
results. As an example, consider the message m = Data(Sign(SK(C),NonceS),
SignCert(. . .)) sent from Client to Webserver during a transaction of the bank
application (see the EET in Figure 4.21 on page 74). Instead of extracting the
nonce NonceS by executing two Analz transitions (first, extract Sign(SK(C),
NonceS) from m and store it into a variable of type TSign, and then extract
NonceS and store it into a variable of type TNumberKey), the intermediate
variable of type TSign is omitted and NonceS is extracted via a combined
Analz/Analz transition in one step. A Synth transition generating a value of
type TMessage from values of type TSign and TSignCert directly extracts the
value of type TSign from m, stored in a variable of type TMessage (combined
Synth/Analz transition).

Combining Synth/Analz transitions reduces the number of variables of the
intruder at the cost of increasing the number (as all combinations have to
be taken into account) and complexity of the transitions. Because of this
tradeoff, the combination feature must be applied with care and requires

115

5. Threat Scenario Generation and Verification

experimentation by the user to find an appropriate balance with respect to
model checking performance.

Omitting Unnecessary Variables and Transitions. Depending on the threat sce-
nario, some of the transitions and variables in the schema for the specialised
intruder model are omitted, which reduces the complexity of the model. For
example, if the intruder has no replay capabilities, the Mp;i variables of the
Medium component are left out, or if the intruder can always intercept a mes-
sage from a particular port (InterceptAndStore transition), the corresponding
Drop transition is not generated.

Rotating the Stores. For the Medium component, instead of generating a transi-
tion InterceptAndStore, Forward, ForwardAndStore, Replay, and Drop for each
Mp;i variable (for i ∈ {1, . . . , nMp

}, where nMp
is the number of variables

available to store messages from p), just one transition is generated storing
the message in Mp;1, and between these transitions, the store can be rotated
by the execution of additional “RotateStore” transitions (i.e., Mp;i is copied to
Mp;i+1 for i ∈ {1, . . . , nMp

− 1} and Mp;nMp
is copied to Mp;1). An analogous

optimisation is used for the storetypek;i variables of the FakeStore component.

5.4. Case Studies

In the following, we describe some applications of threat scenario generation and
verification using AutoFocus/Quest.

5.4.1. The Bank Application

Figure 5.12 shows the SSD of the threat scenario generated for the security-enriched
model of the bank application described in Section 4.3. Here, we used immediate
ports as an optimisation (see Section 5.3.4), indicated by the diamond shapes. The
FakeStore component of the intruder has 1 variable for values of type TMessage,
1 variable for values of type TSignCert, 2 variables for values of type TAKey, 1
variable for values of type TNumberKey and 1 variable for values of type TCDataKey.
The generated threat scenario consists of 5 atomic components with altogether 22
channels, 11 local variables and 50 transitions.

Verification of Security Requirements

The input file generated for the model checker SMV from this threat scenario
defines a state space of 295 bits. The result of checking the security require-
ments stated in Section 4.3, SR.CONF CLDATA (client data confidentiality) and
SR.AUTH ORDERS (authenticated orders), is that both properties are true in the

116

5.4. Case Studies

Client

A

Webserver

A

Backend

A

Intruder

D

StoB:TMessage

BtoS:TMessage

CtoS_Intr:TMessage CtoS:TMessage

StoC_Intr:TMessa
ge

StoC:TMessage

randTAgent_0:TAgent

randTAKeyStorePos_0:TAKeyStorePos

randTSignCert_0:TSignCert

randTAKey_0:TAKey

randTNumberKey_0:TNumberKey

Figure 5.12.: Bank Application: Threat Scenario (SSD)

threat scenario. The required computation time is less than one hour on the used
hardware (see Table 5.1 for detailed figures; in the table, the names of the security
requirements are abbreviated to CONF and AUTH).

Variation of Threat Scenario: Public Channels

The specification of threats in a security-enriched model from which a threat sce-
nario is automatically generated makes it possible to easily analyse variations of the
threat scenario. As an example, consider again the SSD of the security-enriched
model of the bank application, depicted in Figure 4.24 on page 78. To analyse
the security of the system assuming an unprotected connection between Client and
Webserver, we omit the replace annotation and annotate the channels between Client
and Webserver with public. Then we again generate a threat scenario and verify the
security requirements.

In this case, the input file generated for the model checker SMV defines a state
space of 292 bits. The result is that the requirement SR.AUTH ORDERS is still
fulfilled (intuitively, because the intruder cannot forge the client’s signature used
for authentication), but the requirement SR.CONF CLDATA is violated (because
the customer data sent from the Webserver component to the Client component is
not encrypted). For the latter requirement, a counterexample trace is generated
showing an interaction in which the intruder can obtain the customer data. The
required computation times are approximately 1h (SR.CONF CLDATA) and 2.5h
(SR.AUTH ORDERS), respectively.

117

5. Threat Scenario Generation and Verification

Completeness

The intruder models in the above described threat scenarios for the bank application
both fulfil the completeness requirements stated in Section 5.3.3. In particular, the
threat scenarios have a request/reply architecture from the point of view of the
intruder: except for the initial message to the intruder (directed to the Web server,
transition :: CtoS!ClientHello :), the Client component has only transitions of the
form . . . : StoC? . . . : CtoS! . . . : . . ., i.e. waiting for a message from the intruder
(expected to come from the Web server) and then immediately sending a reply.
The Webserver component has a similar behaviour, but can also perform some
interaction with the Backend component before sending a reply to the intruder
(directed to the Client component). In addition, by a (manual) examination of the
transferred messages, we justified that the number of variables in the FakeStore
component of the intruder is sufficient to store all values needed by the intruder
at the same time. Besides, both security requirements SR.CONF CLDATA and
SR.AUTH ORDERS are instances of the patterns for common security requirements
described in Section 4.2.2.

Therefore, by Theorem 5.3.7, these requirements, which have been verified by
the model checker to be true in the specialised threat scenario, are also fulfilled
with respect to the generic threat scenario if the threat is considered that the Client
component can be replaced by the intruder. The requirement SR. AUTH ORDERS
is also fulfilled with respect to the generic threat scenario in the variation of the
threat scenario considering public channels between Client and Webserver.

5.4.2. Further Case Studies

Beside the bank application, threat scenario generation and verification were ap-
plied in a number of other case studies, including the Common Electronic Purse
Specifications described in Section 4.4. Table 5.1 shows information about the case
studies and the resources used by model checking the threat scenario. For each
examined threat scenario variation, Table 5.1 shows the number of atomic compo-
nents (#C), the total number of transitions in the state transition diagrams (#Tr),
the size of the global state space in bits (#bits), and the number of reachable states
(#states).

In addition, for each considered security requirement (req.) the number of BDD
nodes (#knodes, in multiples of 1000) allocated by the model checker (only for
non-bounded model checking), the used computation time (t[s], in seconds) and
the result of the verification are listed. The performance figures were measured on
a computer with a 1.7 GHz Intel Pentium M processor and 512 MB RAM, under the
operating system Linux. We used the Cadence version of SMV, which performed
considerably better than NuSMV and the original CMU SMV on our examples.

118

5.4. Case Studies

For non-bounded model checking, Cadence SMV was run with BDD variable order
sifting turned on (option ’-sift’) to prevent it from running out of memory too
quickly when calculating the BDD for the transition relation. For bounded model
checking, the SAT solver Chaff [MMZ+01] was used.

CEPS Load Transaction (CEPSLoad)

The CEPS load transaction described in Section 4.4.1 demonstrates the use of
bounded model checking for security verification. Here, the state space was too
large (495 bits, corresponding to approximately 10149 potentially reachable states)
to allow verification using symbolic model checking with SMV within a time limit
of 3h.

Using bounded model checking within the same time limit, it could be shown that
no counterexample exists for the two non-repudiation requirements SR.NONREP
FAILED TRANS and SR.NONREP LOAD AUTH stated in Section 4.4.1 with lengths
up to l = 25 and l = 23, respectively. For the fair exchange requirement, the reached
bound was l = 51. Actual execution times are shown in Table 5.1.

While the integrity of the load request sent by the LSAM to the issuer is indeed
provided in the CEP specifications (by a message authentication code), this is not
the case for the load authorisation sent back to the LSAM. However, to achieve
non-repudiation of a failed transaction at the card, the LSAM must rely on the
verification of the hash of the random number R CEP (as the LSAM and the card
do not own shared keys). If the integrity assumption for the connection from the
issuer to the LSAM is omitted, non-repudiation of a failed transaction at the card
cannot be ensured, which is detected by bounded model checking. This indicates
a weakness of CEPS pointed out in [Jür04], where it is suggested to include a
signature of the hash of R CEP in the load authorisation message.

Besides, the fair exchange requirement is fulfilled because it refers to the output
of the message containing the random number R CEP by the card (rather than to
its reception by the LSAM) and because internal errors within the card were not
considered. In the specified threat scenario, it cannot be guaranteed that the LSAM
indeed receives this message. In this case, according to the CEP specifications the
transition is marked“suspicious”and later settlement between the load acquirer and
the issuer is necessary. If the property is changed to require the actual reception
of the message containing R CEP, it is correctly determined by bounded model
checking that the property is false and an appropriate counterexample is given.

It is possible to show that when a certain bound l is reached (which depends on
the system), verification using bounded model checking is complete, i.e. no coun-
terexamples exist with length greater than l (see [BCC+03] for more detail). We
omit such an analysis, as the main aim of the CEPSLoad case study was its use for
security test sequence generation (see Section 6.5).

119

5. Threat Scenario Generation and Verification

Table 5.1.: Security Verification: Experimental Results

Model Variation of Threat Scenario Verification

Threat Complexity

Scenario #C #Tr #bits req. #knodes t[s] res.
#states

BankApp replace comp. 5 50 295 CONF 1892 2918 T
1.26e+13 AUTH 1740 2831 T

BankApp public ch. 5 48 292 CONF 2387 3825 F
4.07e+13 AUTH 6124 9408 T

CEPSLoad public ch. 5 70 495 NONREP
≤1.02e+149 FAILED TRANS – 7394 T

LOAD AUTH – 10540 T
FAIREXC
LACQ – 5966 T

CEPSPurch replacePSAM 4 29 114 AUTH 189 14 T
→ replaceCard 7.85e+5

CEPSPurch replacePSAM 4 29 114 AUTH 279 28 F
→ replaceCard, 6.27e+6
key leakage

CEPSPurch public ch. 4 24 109 AUTH 427 18 F
5.82e+5

NSPK public ch. 4 69 173 AUTH 153 65 F
(original) 2.22e+10

NSPK public ch. 4 69 187 AUTH 245 137 T
(corrected) 2.74e+10

TLS variant public ch. 4 33 163 CONF 2488 502 F
(original) 4.83e+9

TLS variant public ch. 4 35 195 CONF 13393 1983 T
(corrected) 9.91e+10

PalME secret/integr. 3 15 101 FAIREXC
1.47e+7 NO GAIN 109 38 T

NO LOSS 283 16 F

PalME secret/integr., 3 15 101 FAIREXC
msg. no. 5 1.09e+7 NO GAIN 127 11 T
not attacked NO LOSS 386 36 T

SSLServer- public ch. 4 47 180 CONF 1228 450 T
Auth 1.97e+12 AUTH SRV 2491 1349 T

AUTH CLI 3392 1297 F

120

5.4. Case Studies

CEPS Purchase Transaction (CEPSPurch)

The CEPS purchase case study described in Section 4.4.2 provides a good example
for the consideration of complex threats by manually editing the generated threat
scenario. We first considered a threat scenario where the intruder makes a POS
device publicly available which only communicates with the card (to receive trans-
action information) and returns the card with an error message without actually
having completed a transaction. Then the intruder uses the obtained information to
attack a merchant’s POS device by buying goods with transaction messages signed
by the earlier attacked card. If the attack succeeds, the attacker terminal or card
do not show up in the audit trail, so the attacker cannot be made responsible. For
security verification, in the security-enriched model we annotated both the Card and
PSAM components with replace, and automatically generated a threat scenario. By
deleting in the Medium component of the intruder all transitions from state Init to
state Main but the transition “:::replacePSAM = True; replaceCard = False”, it is en-
sured that initially, the PSAM is replaced by the intruder. By adding a transition
“:::replaceCard = True; replacePSAM = False” from state Main to itself, we specified
that at any time the intruder can move to a state where the Card is replaced by the
intruder (i.e., the intruder uses the information obtained in interaction with a card
to attack a POS device). In this threat scenario, the authentication requirement is
fulfilled (see Table 5.1, variation “replacePSAM → replaceCard”).

In addition, we examined the effect of key leakage: if the intruder gets to know the
secret keys of the card and the PSAM (in the model reflected by a modification of
the knowsIntruder function), he can authenticate himself to the PSAM. The model
checker correctly indicates this as violation of the security requirement and outputs
a corresponding counterexample (variant “replacePSAM → replaceCard, key leakage”
in Table 5.1). In the same way, it can be determined that both secret keys have to
leak to make an unauthorised authentication possible.

Finally, we considered a threat scenario in which the intruder can communicate
both with the card and the PSAM at the same time (for example, if CEPS is used
over the Internet, or if he in some way manages to set up a synchronised communi-
cation link between an attacked card and an attacked PSAM). For an analysis, the
channels between the PSAM and the card are annotated with public (variant“public
ch.” in Table 5.1). In this case, the authentication requirement can be violated by
a straightforward man-in-the-middle attack, in which the intruder acts as a relay
between the card and the PSAM. Note that this vulnerability crucially depends on
the assumed threat scenario. However, the CEPS consortium also intends to offer
transactions over the Internet. The chairman of the CEPS security working group
has been informed and acknowledged the weakness.

An earlier version of our analysis of the CEPS purchase transaction using Auto-

Focus/Quest, without the application of automatic threat scenario generation

121

5. Threat Scenario Generation and Verification

based on annotations, was published in [JW01b] (co-authored by J. Jürjens). [Jür04]
contains a manual analysis of the CEPS purchase transaction using UMLsec.

Needham-Schroeder Public Key Protocol (NSPK)

We reproduced Lowe’s well-known analysis of the Needham-Schroeder public key
(NSPK) protocol [Low96] using AutoFocus/Quest threat scenario generation and
verification. The SSD of the security-enriched model of NSPK consists of two
components Initiator and Responder connected via public channels. On reception of
an external InitI(x) message via a channel Init, the initiator runs the NSPK protocol
with x as the assumed responder. x ∈ Values(TAgent) = {A,B, I,EmptyTAgent}
stands for an agent name, where the agent names A and B are assigned to the
initiator and the responder, and the agent name I is assigned to the intruder.

Initiator and Responder report the successful completion of the protocol by sending
Session(x, y) messages to the environment via channels SessionI and SessionR, where
x and y are the agent names between which a session is supposed to have been
established.

The (client) authentication requirement considered by Lowe is that the responder
B must only believe a session has been established with an initiator A if the initiator
indeed requested such a session. In the model, this is formally stated as

SR.AUTH ≡ precedes(Init!InitI(B),SessionR!Session(A,B))

As shown by Lowe, the specified authentication requirement is false in the original
version of the Needham-Schroeder public key protocol. Threat scenario generation
and verification using AutoFocus/Quest detects this violation and produces the
correct counterexample (see Table 5.1, model “NSPK (original)”).

Lowe also presents a correction of the protocol. If the correction is incorporated
into the AutoFocus/Quest model, the authentication requirement is reported by
the model checker to be true in the corresponding threat scenario (see Table 5.1,
model “NSPK (corrected)”).

Variant of TLS

TLS (Transport Layer Security) [DA99] is a protocol widely used in Internet appli-
cations to establish secure connections. In [Jür01], a variant of TLS proposed by
[APS99] was analysed for confidentiality of the transmitted messages using formal
methods (specifically, the formal method Focus). A flaw was discovered by manual
analysis and a fix was proposed and proven correct.

We translated the formal model presented in [Jür01] to a security-enriched Auto-

Focus/Quest model and carried out the same analysis, supported by automatic

122

5.4. Case Studies

threat scenario generation and verification. Data on the models and results are
reported in Table 5.1.

In [Jür04], the TLS protocol is (manually) analysed using UMLsec.

PalME Purse-To-Purse Transaction

PalME (secure Palm-based Money Exchange) was a student project supervised
by a team of research assistants (including the author) at Technische Universität
München aimed at the application of a new development methodology based on
the Common Criteria for security evaluation to the development of a secure elec-
tronic purse application on Palm pilot handhelds. The PalME application features
direct transfer of electronic money between electronic purses (purse-to-purse trans-
actions) via an infrared connection. For the security-critical part of the PalME
purse-to-purse transaction protocol, a formal specification in AutoFocus/Quest
was produced and used for the verification of security requirements, which would
have been demanded for an evaluation at the highest assurance level of the CC,
EAL 7.

The PalME protocol model assumes confidential and integrity-protected commu-
nication between the electronic purses (but no replay protection). In the original
version of the protocol model, the behaviour of the intruder in the threat scenario
was specified manually under consideration of these assumptions. In a version we
adapted to the threat modelling concepts described in Section 4.2, the channels be-
tween the two purses are marked with secret and integrity. Shared-key encryption
was applied in the implementation to fulfil the stated assumptions.

In addition to the intruder, the threat scenario consists of components for the
payer and the payee. During the course of a transaction, the payer and the payee
write their states to their logs, which are assumed to be secure and are modelled by
channels LogPayer and LogPayee. The main security requirement was fair exchange,
i.e. if electronic value is credited to the payee’s purse, it must be debited from the
payer’s purse (no gain of electronic value), and vice versa (no loss of electronic
value). Formally, these properties are stated as

SR.FAIREXC NO GAIN ≡ precedes(is Debit(LogPayer), is Credit(LogPayee))

and

SR.FAIREXC NO LOSS ≡ leadsto(is Debit(LogPayer), is Credit(LogPayee))

respectively.
The result of the analysis (see Table 5.1) was that gain of electronic money is

indeed prevented (the payer’s card is always debited before the payee’s card is

123

5. Threat Scenario Generation and Verification

credited). Loss of electronic money could not be prevented in the general threat
scenario, as the intruder can block messages at any time. However, loss of money is
only possible in one particular scenario (the intruder intercepts a certain message of
the transaction). If this capability of the intruder is ruled out by slightly modifying
the threat scenario (see variant “msg. no. 5 not attacked” in Table 5.1), the second
security requirement is fulfilled as well. The mentioned situation can be detected
from the log entries and thus the money can be refunded by the card issuer.

For more information about the PalME case study, the formal analysis and the
applied development process, see [Pal01, VWW02].

SSL Protocol with Server Authentication (SSLServerAuth)

As part of a case study for the modelling and verification of layered protocols, we
built a simplified model of the SSL protocol [FKK96] with server authentication.
The model and a security analysis of it are described in more detail in Section 7.4.2.
Performance figures are included in Table 5.1.

5.5. Related Work

Threat Scenarios

[Lot97] describes a threat scenario based approach to the development of security-
critical systems in terms of the formal language Focus, making an explicit distinc-
tion between a system design and derived threat scenarios formulated in the same
language. Patterns for the construction of typical threat scenarios are given, whose
(manual) application is left to the developer.

The general concept of using threat scenarios (there called trust models) for
the analysis of security-critical systems is also outlined in [Pfi98], in the formal
framework of communicating automata.

In the UMLsec approach [Jür04], the security extensions of UML define the ca-
pabilities of an intruder specified in the form of an abstract state machine com-
municating with other abstract state machines that form the semantical model of
the UML specification of a system. A threat scenario, in the sense of a model of a
system under attack in UML itself, is not available.

Security Protocol Verification

Research has produced a large number of approaches for the verification of security
protocols based on formal models. The foundation of these works was laid by
a paper of Dolev and Yao on a generic abstract intruder model for public-key
protocols [DY83]. Overviews over approaches to security protocol verification can

124

5.5. Related Work

be found in [GSG99] or [RSG+00]. [GSG99] classifies these approaches into the
following three categories:

Inference-Construction Methods use modal logics to model knowledge and belief
and their evolution during a protocol run. The most famous example is the
BAN logic (named after their creators Burrows, Abadi and Needham). Pos-
sible logic statements in BAN include “P sees X” (i.e. P has received X), “P
said X”, “P believes X” (P has good reason to believe X is true), “X is fresh”,
and “K is a good key for communication between P and Q”. Inferences allow
the deduction of new statements — for example, if P receives X encrypted
under the key K, and he also believes that K is a good key for communication
with Q, then P believes Q said X. The necessary idealisation of messages as
logic statements is problematic because of the unclear semantics and the peril
of misinterpretation of the results. Furthermore,the BAN logic is restricted
to the analysis of authentication protocols. There are various successors of
the BAN logic, such as GNY, AT, SvO, and AUTLOG.

Attack-Construction Methods model the behaviour of the agents together with
an attacker. The possible behaviours of the model are then searched for vi-
olations of security requirements using model checking. Examples are FDM
and Ina Jo, NRL Analyzer, Murphi, CSP, CCS, LOTOS, Astral, and Inter-
rogator. In general, in these approaches the intruder model is built manually
in the specification language used for the analysis. Protocol specification
languages such as CASPER [Low98] or CAPSL [Mil05] allow to abstractly
model a protocol and translate the model to low-level specifications, for in-
stance in CSP or a functional programming language. CASPER and CAPSL
are restricted to the specification of authentication protocols with a fixed
interaction schema. An example for a security verification tool based on a
high-level protocol specification language (called HLPSL) similar to CAPSL
is the AVISS tool [AVB+02].

Proof-Construction Methods are based on a similar concept as attack-construction
methods but use theorem proving to show if the security requirements are ful-
filled. Examples are the inductive approach by Paulson, Strand Spaces, the
Spi calculus, or a protocol security theory by Snekkenes using Higher Or-
der Logic (HOL). Interacting state machines [OL02] is a proof construction
method based on the theorem prover Isabelle that uses AutoFocus/Quest
as a graphical representation (but a different semantical model). Proof-
construction methods cannot be fully automated and thus their utilisation
requires expert knowledge and is fairly time consuming.

Our application of AutoFocus/Quest to the verification of security protocols
belongs to the category of attack-construction methods. The use of Synth/Analz

125

5. Threat Scenario Generation and Verification

transitions in the FakeStore component was inspired by [Pau98].

Completeness

Examples for work on the justification of the completeness of finite threat scenarios
with respect to more general threats (related to our justification of the specialised
intruder model given in Section 5.3.3) are [Low99, Sto02]. These approaches fo-
cus on the justification that the security analysis of a bounded number of parallel
protocol executions (in [Low99], one honest agent per role performing one run) is
sufficient to guarantee the security of a protocol in the general case. In contrast,
we focus on the analysis of single protocol runs, but the results from these works
could be adapted to our examples. However the conditions for the justifications are
comparatively restrictive. The author is not aware of work justifying the complete-
ness of intruder models in synchronous, globally clocked systems where the intruder
takes a possibly observable number of time ticks for his actions. [GHJW03] gives an
informal justification of the completeness of a manually constructed intruder model
for the bank application analysed in Section 5.4.1.

5.6. Summary and Discussion

A threat scenario is a model of a system under attack. We explained the role
of threat scenarios in model-based development of security-critical systems and
showed how threat scenarios can be automatically generated by applying a model
transformation to security-enriched models. We refer to this model transformation
as threat scenario generation.

We presented a respective transformation for the security-enriched AutoFocus/
Quest models introduced in Chapter 4. The generated threat scenario has a struc-
tural aspect (describing where the intruder can interfere with the system) and a
behavioural one (describing how he can do so). An outstanding feature of our ap-
proach is that we both deal with a generic intruder model on the semantical
level and specialised intruder models on the conceptual level. The generic in-
truder model allows a concise, generic specification of the intruder behaviour, which
is independent of idiosyncrasies of the used specification language on the concep-
tual level (in our case, AutoFocus/Quest) and well suited for proof purposes. On
the other hand, the result of the application of threat scenario generation includes
a specialised intruder model given in the same specification language as the origi-
nal security-enriched model. Therefore, all available features of the used tool can
be applied, such as simulation, verification, or test case generation. Besides, the
generated intruder model can be easily manually edited to analyse complex threats.

We gave a formal specification of a generic intruder model for security-enriched
models in AutoFocus/Quest, in the form of a discrete system. All threats and

126

5.6. Summary and Discussion

assumptions defined in Chapter 4 were considered. Besides, we showed how to
generate a specialised intruder model in AutoFocus/Quest consisting of commu-
nicating state machines that is tailored to the automated verification of security
requirements using the translation of AutoFocus/Quest models to the input
language of the model checker SMV.

The specification of the intruder model at both the semantical and the conceptual
level requires soundness and completeness justifications. We proved the soundness
of the specialised intruder model, in the sense that the specialised intruder model
does not allow more attacks than the generic one. On the other hand, a spe-
cialised intruder model has the completeness property if whenever the generic
intruder can perform a certain attack, the specialised intruder can do so as well.
Because of the requirements involved by the use of the model checking feature of
AutoFocus/Quest (and by the use of finite-state model checking in general), the
specialised intruder model is not complete for all possible threat scenarios and se-
curity requirements. In particular, the specialised intruder requires a number of
execution steps to process messages, thus introducing delay into the communica-
tion. The specialised intruder model is complete under a number of conditions —
most importantly that the threat scenario is finite-state and has a request/reply ar-
chitecture. We formally stated these conditions and sketched the proof. Note that
there is a trade-off between the reached level of completeness and the complexity
of the specialised intruder model.

The models we examined are restricted to one transaction between the involved
parties (and the intruder). To verify the security requirements with respect to a
several transactions running in parallel, the respective parts of the model would
have to be copied. One could also adapt approaches such [Low99, Sto02] to justify
that the consideration of a small number of transactions is sufficient to guarantee
the security requirements with respect to arbitrarily many transitions running in
parallel.

In general, specialised tools for the verification of security protocols achieve better
performance than the described approach for security verification by model checking
a generated threat scenario using the SMV connection of AutoFocus/Quest. This
is due to the overhead introduced by the use of the general-purpose specification
language AutoFocus/Quest for the specification of the considered system and
the intruder. Increasing the efficiency and scope of verification approaches for
security-critical systems is not the focus of this work, but rather the integration of
security verification into model-based development, the consideration of a variety of
possible threats and assumptions, and the use of threat scenarios for test sequence
generation. The efficiency of security verification using our model-based approach
can be improved both by optimising the generated threat scenario and by optimising
the SMV connection or possibly by implementing connections to alternative model
checkers. We described and implemented several optimisations of the generated

127

5. Threat Scenario Generation and Verification

threat scenario. The model checking connection is independent of security-specific
issues. Currently, connections of AutoFocus/Quest to the model checkers Spin
and SAL (which also supports infinite-state model checking) are developed.

The threat scenario generation transformation has been implemented together
with the additional optimisations as a plugin for the AutoFocus/Quest tool. We
demonstrated the successful application of security verification using threat sce-
nario generation at the example of a number of case studies including the bank
application presented in Section 4.3.

128

6. Model-Based Security Testing

In this chapter, we show how a threat scenario generated from a security-enriched
model of a system can be used to gain confidence in the security of its implementa-
tion. For this purpose, we adapt methods from classical specification-based testing
to the domain of security-critical systems. In particular, we give strategies for the
selection of test sequences likely to detect possible vulnerabilities and present an
approach for the translation of abstract test sequences derived from threat scenarios
to concrete test sequences that can be applied to an existing implementation.

This chapter is structured as follows. First, we give an introduction to security
testing in Section 6.1. In Section 6.2, we explain the basic concepts of model-
based test sequence generation and its integration into the AutoFocus/Quest
tool set. Section 6.3 is devoted to the description of criteria for the generation of
test sequences for security-critical systems. An approach for the concretisation of
abstract test sequences is presented in Section 6.4. We demonstrate our ideas in
Section 6.5 at the example of the load transaction in the Common Electronic Purse
Specifications. References to related work are given in Section 6.6, and Section 6.7
contains a summary and discussion of the presented results.

Part of the presented work has been published in [JW01a, WJ02].

6.1. Security Testing

Testing is the process of exercising an implementation to verify that it satisfies the
specified requirements and to detect faults (after [IE92]). Testing is indispensable
even if a formal specification is available, to gain confidence that the implementation
conforms to its specification with respect to the aspects of the system reflected in
the specification. A mathematical proof of this conformance statement can usually
not be given, because it would require a formal semantics of the implementation
language and of the environment the implementation runs in (including the oper-
ating system and even the hardware).1 For this reason, also code generated from
a specification should in general be distrusted and therefore still be tested, even if
code generation is at all possible because the used modelling tool offers this feature
and the generated code is suitable for the environment (with respect to program-

1A first attempt to achieve such conformance statements for an industrial-size application example
is currently performed within the Verisoft project [Ver04].

129

6. Model-Based Security Testing

ming language, size, performance, completeness, interfaces to other parts of the
system, etc.). Finally, testing is necessary to check that no defects were introduced
at lower levels of abstraction, which are not covered by the specification.

Security testing means testing an implementation with the aim to show that it
fulfils the stated security requirements and that the security-related functionality is
implemented correctly. Security testing methodologies must address the following
particularities:

Consideration of attacks Security testing must be carried out under consideration
of attacks, i.e. with respect to a malicious system environment.

Emphasis on completeness Completeness of the tests is particularly important,
because untested parts of a system are likely to contain security-critical bugs
or even malicious functionality [McG99]. It must be assumed that even ob-
scure vulnerabilities triggered by input data unlikely to occur in normal op-
eration will eventually be found and exploits will be published. However,
exhaustive testing of all possible combinations of input data is not feasible,
because of the extremely large number of tests required for this purpose.

Relevance of vulnerabilities on lower abstraction levels Faults on lower levels of
abstraction can often be exploited to achieve violations of security require-
ments relevant at higher levels of abstraction. An example are buffer overflow
related faults, which are highly dependent on the environment the implemen-
tation is executed in. As lower levels are usually abstracted from in formal
specifications, it is especially necessary to consider them during security test-
ing.

Processing of cryptographic data by test infrastructure If cryptography is used
in the system to be implemented, the test infrastructure must support the
generation and verification of data resulting from the application of crypto-
graphic operations.

Support of testing of security requirements Security requirements are universal
properties, i.e. should hold for all possible runs of the implementation. Thus
per se they cannot be used to select particular runs to test. Besides, secu-
rity requirements can refer to the intruder (e.g. confidentiality requirements).
A security testing methodology must support testing with respect to such
requirements.

Security testing techniques can be roughly classified into two categories, security
functional testing and vulnerability testing (cf. [CB03]).

130

6.2. Model-Based Testing

Security Functional Testing The aim of security functional testing is to test if the
security functions (such as access control mechanisms or key generation algorithms)
conform to their specifications.

The usual strategy to test conformance is to fix a set of tests and to argue
that they are sufficient to demonstrate that the system operates according to the
specification with the help of coverage criteria. Examples for coverage criteria
are that all paths of the flowgraph of the program are traversed (path testing) or
that at least one input value is chosen from each member of a fixed partition of
the corresponding data type (domain testing). [Bei90] contains a comprehensive
overview over such coverage criteria.

Vulnerability Testing The aim of vulnerability testing is to identify faults in the
design or implementation of a system that can lead to the violation of security
requirements. The common approach to vulnerability testing is to use knowledge
of typical vulnerabilities of security-critical systems as a basis for selecting tests.

In penetration testing (or red teaming), a team of experts manually tries to break
a system. Penetration testing is labour-intensive and therefore expensive. Besides,
it is hard to assess the quality of a penetration test, which depends largely on the
skill of the employed penetration testing team and on the time available.

A more systematic way of vulnerability testing is the use of vulnerability scanners,
i.e. automated tools that expose a system to a large number of possible attacks.
Vulnerability scanning is fast and cost-effective, as it is automatic and even freeware
vulnerability scanners are available. However, vulnerability scanning must rely on
the knowledge encoded into the tool, which mostly consists of surface vulnerabilities
on low levels of abstraction and does not take into account application-specific secu-
rity requirements. Moreover, vulnerability scanners tend to produce a considerable
amount of false positives which have to be interpreted by a security expert.

Vulnerability testing can be aided by testing manuals, such as the Open Source
Security Testing Manual (OSSTM) [Her03].

6.2. Model-Based Testing

The central idea of model-based testing (also called specification-based testing)
is to determine tests based on an explicit model of the required behaviour of a
system (rather than an implicit one in the human tester’s head), which makes the
testing process more systematic and introduces potential for automation. There has
been extensive research into model-based testing, including [DF93, PS97, HNS97,
OXL99, DBG01]; [Pet00] contains an annotated bibliography to a wide range of
work.

131

6. Model-Based Security Testing

In the following, we give a short introduction into the main concepts of model-
based testing and their formalisation for AutoFocus/Quest models. For more
detail, the reader is referred to [Wim00, WLPS00, PLP01, Pre03].

Test Sequences A test sequence is a sequence of inputs and expected outputs. In
model-based testing, a test sequence consists of inputs and outputs of an execution
trace of a model, stating that the implementation should exhibit a corresponding
input-output behaviour. For the actual testing, the abstract values of the inputs
and outputs given in terms of the data types of the model must be concretised by
a test driver. Often, additional conditions are required before a test sequence can
be applied, such as a preamble having been sent to put the implementation into a
particular state. For simplicity, in our treatment we view these conditions as fixed
and put the responsibility of ensuring them on the test driver.

In AutoFocus/Quest, a test sequence can be represented by an Extended Event
Trace (EET) that only refers to channels connected to a particular component,
the component under test (CUT). Here, the component under test represents the
component in the model that corresponds to the part of the system we want to
test — for instance the Card component in the models of the CEPS transactions
(see Section 4.4) if the CEPS smart card should be tested. On the semantical level,
a test sequence is represented by a finite sequence of valuations of the channels
connected to the CUT.

Test Case Specifications A test case specification is a requirement that must be
satisfied by a test sequence, for example that a certain message is output, a certain
control state of a state machine in the model is reached, or a certain transition is
fired.

Formally, we define a test case specification as a predicate Φ(σ) over sequences σ
of valuations of the state variables of a model. On the syntactical level, in Auto-

Focus/Quest a test case specification can be stated as an LTL property pr with
Φ = JprK.

Testing Criteria and Coverage A testing criterion is a rule that leads to a set
of test case specifications. We distinguish between structural testing criteria and
functional testing criteria. Structural testing criteria are based on the code, or,
in the context of model-based testing, on the structure of the model (for example,
one test case specification for each transition in the component under test, stating
that this transition should be executed). Functional testing criteria are based on
the requirements.

The extent to which a testing criterion is satisfied by a set of test sequences
is referred to as coverage. Coverage can be measured e.g. by the percentage of

132

6.2. Model-Based Testing

satisfiable test case specifications for which test sequences are computed and applied
to the implementation.

Test Sequence Generation Test sequence generation is the determination of test
sequences from a model and a number of test case specifications.

Formally, test sequence generation takes as input the semantics of a model (which
can be expressed by the predicate Ψ(σ), see Section 4.1.5) and test case specifica-
tions Φi(σ) and determines finite sequences σ of valuations fulfilling Ψ(σ) ∧ Φi(σ),
i.e. traces that are computations of the model and fulfil the test case specification.
Here, the definition of Ψ(σ) is extended from infinite to finite sequences by unrolling
the transition relation only up to the length of σ. Besides, we define the predicate
Φi(σ) to be fulfilled for a finite sequence σ if Φi(σ

′) is fulfilled for all infinite se-
quences σ′ that have σ as prefix. Thus, when the system continues to run after a
behaviour corresponding to σ has been observed and σ fulfils a certain test case
specification, it is guaranteed that the test case specification stays fulfilled. This
reflects the fact that because test sequences are finite, one can only test a system
for the violation of safety properties (as opposed to liveness properties, see [AS85]).
The generated test sequences are the projections of the sequences σ to the channels
connected to the component under test.

In AutoFocus/Quest, test sequences can be generated by means of SAT solving
or Prolog-based constraint solving. The basic idea of the SAT solving method is
to translate Ψ(σ) ∧ Φi(σ) for sequences σ of a length less than or equal to a fixed
bound l to a formula in propositional logic and to use a SAT solver such as Chaff
[MMZ+01] to calculate the test sequences. This approach is described in more
detail in [WLPS00]. It is closely related to bounded model checking [BCC+03] (but
allows some optimisations depending on the test case specifications). Support for
bounded model checking has recently been added to Cadence SMV and NuSMV.
Therefore, also the translation of AutoFocus/Quest models to the SMV input
language described in Section 5.3.1 can be applied for test sequence generation,
by using the negations of the Φi(σ) as specifications and having Cadence SMV or
NuSMV compute counterexamples.

For test sequence generation via Prolog-based constraint solving, the transition
relation need not be unrolled to the predicate Ψ. Instead, test sequences are de-
termined based on the characterisations I(β) and T (β, β ′) of the initial states and
the transition relation by using the depth-first search procedure built into Prolog.
Advantages of the constraint-based test sequence determination are the support of
recursive data types and floating point numbers and optimisations such as guided
search for test sequences or the storage of previously visited states using constraints.
However, it is less tightly integrated into AutoFocus/Quest and does not support
test case specifications using general LTL formulas. The constraint-based test gen-

133

6. Model-Based Security Testing

eration for AutoFocus/Quest is described in more detail in [PLP01, Pre03].

Test Drivers and Concretisation A test driver is a piece of software that tests
an implementation based on a number of test sequences by sending test inputs,
receiving test outputs and deciding if the behaviour of the implementation conforms
to the test sequence. The test driver is also responsible for the mapping between
abstract messages represented in terms of the model and concrete messages sent to
and received from the implementation (concretisation) and for correctly initialising
the implementation before executing a test. The result of the application of a test
sequence is a test verdict , which can be Pass, Fail, or Inconclusive. Inconclusive is
used when neither a Pass nor a Fail can be given.

AutoFocus/Quest supports the development of test drivers by offering a Java-
based interface to access the models (including EETs representing test sequences)
and a text-based file format to store test sequences.

Nondeterminism If the model contains nondeterministic behaviour, applying the
test sequences separately is not sufficient, because for a sequence of test inputs
there can be more than one sequence of expected outputs. An early treatment of
this problem can be found in [LPvB94], in the context of conformance testing of
communicating (non-extended) finite state machines. The basic idea is to apply a
sequence of test inputs multiple times and to repeatedly execute the implementation
with these test inputs until all possible output sequences are obtained. As the
nondeterministic behaviour of the implementation cannot be controlled, the number
of executions necessary for this purpose must be fixed by an assumption (complete
testing assumption).

[Wim00, Pre03] are aimed at test sequence generation from deterministic Auto-

Focus/Quest models, but also contain first ideas towards the consideration of non-
determinism.

In this work, we focus on the generation and application of deterministic test
sequences, i.e. test sequences whose expected outputs are the only possible reaction
to their inputs [Wim00]. However, we allow nondeterminism on the implementation
level. This kind of nondeterminism is an important part of security mechanisms.
Examples are the random selection of keys or nonces in security protocols, which
we represented as abstract entities in the security-enriched model. Besides, we
allow nondeterminism with respect to message parts left out in the model (such as
transaction numbers). Implementation-level nondeterminism is handled by the test
driver.

134

6.3. Generation of Test Sequences for Security-Critical Systems

6.3. Generation of Test Sequences for Security-Critical

Systems

To complement conventional security testing techniques, we take advantage of a
security-enriched model created during development. We assume that the security-
enriched model is verified secure (i.e. the threat scenario fulfils the security require-
ments), which can be ensured by the techniques described in Chapter 5.

In principle, general model-based testing criteria can immediately be applied for
the generation of test sequences for security tests from the security-enriched model.
In the following, we explain how the particularities of security testing listed in
Section 6.1 can be addressed by using the additional security-specific information.

Consideration of Attacks

To deal with the consideration of attacks, we explained in Chapter 5 how a threat
scenario can be generated from a security-enriched model based on the included
security-specific information. Thus, for security testing, it suggests itself to use
the threat scenario as the model to compute test sequences from. In this case,
the other components in the threat scenario and especially the intruder act as the
environment for the component under test. As possible input data, exactly the
messages are considered that can indeed be sent to the component under test due
to the assumptions reflected in the security-enriched model. For example, test
sequences with fake messages using keys the intruder is not assumed to possess are
not generated.

Emphasis on Completeness

The required degree of completeness of the security tests must be realised by the
choice of structural and/or functional testing criteria. The strongest testing crite-
rion is exhaustive testing, i.e. generating test sequences for all possible input values
to the component under test at each execution step. Exhaustive testing is the most
desirable testing criterion for security testing, but is only feasible for very abstract
models and short interactions (e.g. only one or two execution steps) because of
the large number of test sequences to be generated and applied. Otherwise, one
must resort to weaker testing criteria, with the aim to achieve the highest possible
confidence in the security of the implementation given the available resources.

Various structural testing criteria are described e.g. in [Nta88, Bei90, OXL99].
[Löt03] gives structural testing criteria for models consisting of communicating ex-
tended finite state machines, in the context of AutoFocus/Quest. Structural
testing criteria can be categorised into control flow oriented, data flow oriented and
communication oriented testing criteria.

135

6. Model-Based Security Testing

For state-based systems, control-flow oriented testing criteria refer to the control
states and transitions of the state machines. An example is transition coverage,
stating that for each transition in a particular state machine, there is at least one
test sequence that forces this transition to be fired. Transition coverage can be
extended to sequences of transitions (e.g., transition pair coverage), or additional
requirements on the preconditions of the transitions can be added such that selected
combinations of truth values of their subterms are exercised (different flavours of
condition coverage). Data flow oriented testing criteria refer to the definitions and
uses of variables (in the sense of assignments and references). An example is all-
defs, requiring that for each definition of each variable v, at least one definition-free
trace leading to a use of v is tested. Finally, communication oriented testing criteria
refer to message sending and receiving activities. For example, for an appropriate
partition of the set of messages that can be transferred on a channel, one can
require that for each equivalence class in the partition, there is a test sequence such
that a value from this equivalence class is sent on the channel (channel coverage
in [Löt03]). Communication coverage requires that for each channel, all pairs of
sending and receiving actions on this channel are tested.

For security testing, the focus of the testing activities is the security-critical
behaviour. This makes it possible to restrict the general coverage criteria described
above to the security-critical parts of the model. In the security-enriched Auto-

Focus/Quest models, the critical annotation was introduced for this purpose: for
example, transition coverage can be restricted to those transitions annotated with
critical. Due to the involved reduction in the number of test sequences, stronger
testing criteria can be applied. To the same end, using the threat scenario for test
sequence generation restricts the possible inputs that can appear at the interface
of the component under test, as described above under “Consideration of Attacks”.

Structural testing criteria do not take into account the security requirements. As
generating test sequences to identify possible violations of the security requirements
is the aim of vulnerability testing, for vulnerability testing corresponding security-
specific functional testing criteria must be defined.

Note that due to the infeasibility of exhaustive testing, in general it is impossible
to test an implementation for vulnerabilities introduced through intentional subver-
sion (cf. [Irv00]). For example, suppose that a 128-bit number is received as part of
a message to the implementation and a malicious programmer introduced hidden
code that performs an action violating a security requirement if the number has a
special value he chose. To detect this, basically all 2128 possibilities would have to
be tested. As pointed out in [Irv00], more subtle subversions are even unlikely to
be detected if the code is available to the testers. Intentional subversion must be
prevented by a secure development process (e.g. using code reviews and protecting
the integrity of the code), but is out of scope of the model-based security testing
approach described in this chapter.

136

6.3. Generation of Test Sequences for Security-Critical Systems

Relevance of Vulnerabilities on Lower Abstraction Levels

The approach for the concretisation of test sequences that we will describe in
Section 6.4 allows testing implementations with respect to models in which part
of the data was omitted or modelled symbolically to make verification feasible. Be-
sides, it ensures that the parts of messages that were abstracted in the model have
consistent values. Corresponding faults are automatically detected during the test.

To specifically test an implementation for security-critical faults arising on lower
levels of abstraction (such as sending anomalous message parts, which is for example
exploited in buffer overflow attacks), modifications of the model are necessary. A
way to address this problem is to extend the data type definitions for messages such
that anomalous message parts can be represented in an abstract way and mapping
these to concrete anomalous message parts (such as overly long bit sequences or bit
sequences containing illegal values) within the test driver. Then, test sequences with
messages containing such anomalous message parts are generated using appropriate
testing criteria and it is checked if they cause the implementation to crash (in which
case a possible security hazard was detected). Such an approach (PROTOS) is
described in [Kak01] and is supported by our framework. However, in the following
we focus on security-critical faults on the level of the model or of the concretisation
of its abstract messages.

The above described strategies should be complemented by classical penetration
testing to account for application-independent vulnerabilities, e.g. in the operating
system or in the configuration of the platform the implementation is installed on.

Processing of Cryptographic Data by Test Infrastructure

In our approach, the extensions to the syntax and semantics of data types and
functions of a model (see Section 4.2.6) make it possible to compute test sequences
with inputs and outputs that include the application of cryptographic operations.
Also, the testing criteria can refer to applications of cryptographic operations and
to their arguments, e.g. to compute a test sequence where a particular encrypted
value is sent. The generation and verification of concrete cryptographic data cor-
responding to a particular symbolic representation in the model is handled by the
test driver.

Support of Testing of Universal Security Requirements

A security requirement that is given as a universal property cannot be directly used
as a test case specification: if a trace violating a universal property is found by the
test sequence generator, the model violates this property and must be corrected.
On the other hand, if the property is satisfied by all traces, it cannot be used to
select relevant ones.

137

6. Model-Based Security Testing

Figure 6.1.: Security Test Sequence Generation Based on Threat Scenario

We present appropriate security-specific functional testing criteria that address
this problem in Section 6.3.1 and Section 6.3.2. The fact that security requirements
can refer to the intruder is accounted for by using the threat scenario as a basis for
test sequence generation.

Process

Figure 6.1 summarises the general process for model-based generation of security
test sequences. One input to the test sequence generation is the semantical repre-
sentation of the (specialised) threat scenario. The other input are security-specific
test case specifications, obtained from the threat scenario by the application of test-
ing criteria. For test sequence generation using SAT solving, these are given by the
predicates Ψ and Φi respectively.

Security-specific adaptations of structural testing criteria by taking into account
the critical annotations in the security-enriched model and the threat scenario were
discussed above, under “Emphasis on Completeness”. In the following, we focus on
vulnerability testing and describe two functional testing criteria for the determina-
tion of test sequences likely to detect the violation of security requirements.

138

6.3. Generation of Test Sequences for Security-Critical Systems

sequences
generated test

PSfrag replacements
Ψ

Φpr

Φ′
pr

Figure 6.2.: Test Case Specifications for Security Requirements

6.3.1. Derivation of Test Case Specifications from Security
Requirements

In this section, we show how a test case specification can be derived from a security
requirement by modifying its negation in order to search for traces that represent
valid computations of the model but also share relevant properties with traces that
violate the security requirement. The underlying assumption is that a test sequence
corresponding to a similar behaviour as in cases when a security requirement is
violated is likely to detect a violation of the original security requirement in the
implementation.

The basic idea of this approach is illustrated in Figure 6.2. LetM be the threat
scenario (i.e., the security-enriched model after application of the threat scenario
generation transformation described in Chapter 5) with top-level component Main,
and Ψ = ΨJMainKM the characterisation of its set of computations. Let Φpr be the
trace predicate corresponding to the negation of a security requirement pr :

Φpr = ¬JprK, with pr ∈ propertiesM(Main) ∧ SecRequirement ∈ tagsM(pr)

Because we assume the model is verified secure, Φpr has no traces in common
with the model (characterised by Ψ). To be able to generate test sequences, we
derive appropriate test case specifications Φ′

pr from Φpr such that there are both
traces in Φ′

pr that are possible in the model and traces that violate the security
requirement. A special case is weakening the violation of a security requirement
(i.e., the set of traces fulfilling Φpr is included in the set of traces fulfilling Φ′

pr).

In the following, we explain how in this manner test case specifications can be
derived for the common security requirements listed in Section 4.2.2.

Confidentiality Requirements We specified confidentiality by security require-
ments of the form pr = never(learnedIntruder(x)), where x ∈ Value. By the se-
mantics of properties, we have

139

6. Model-Based Security Testing

Φpr (σ) = ¬JprK = ∃i ≥ 0 : JlearnedIntruder(x)K(σi)

I.e., if pr is violated for a trace σ, then x is contained in the intruder knowledge
at some execution step i. Assume typeof(x) = typek. We weaken Φpr (σ) by stating
that the intruder knowledge should contain an arbitrary message of the same type
typek, which is not previously known by the intruder:

Φ′
pr (σ) = ∃i ≥ 0 : ∃x′ ∈ Value(typek) :

JlearnedIntruder(x′)K(σi) ∧ ¬JknowsIntruder(x′)K(σi)

Φ′
pr (σ) specifies traces where a value similar to x (because it is of the same type)

is learned by the intruder, and we use test sequences generated from this specifi-
cation to check that the intruder does not obtain x instead. If x is a constructor
application x = Ck

i (x1, . . . , xnk
i
) for nk

i > 0, a stronger similarity can be specified

by additionally requiring that x′ must also be a constructor application with the
same constructor Ck

i , by adding the conjunct Jis Ck
i (x

′)K(σi) to Φ′
pr (σ). One can

proceed by stating that all but one of the arguments of Ck
i in x and x′ must be

equal, and recursively continue this approach if the arguments of Ck
i are themselves

constructor applications.

Example 6.3.1. As an example, consider the security requirement SR.CONF
CLDATA (client data confidentiality) of the bank application case study described
in Section 4.3, which is given by pr = never(learnedIntruder(CDataBC)). Weakening
its negation results in a test case specification where it is required that the intruder
learns a not previously known message of type TCDataKey. A test sequence fulfill-
ing this specification is for example a trace in which the intruder learns CDataBA,
i.e. his own customer data. During this trace, the intruder authenticates himself
to the system using his identity. It can now be verified that indeed the intruder’s
customer data is transferred, and not the original customer’s data, caused by a
possible fault in the implementation.

Authenticity / Integrity / Non-Repudiation / Fair Exchange Requirements Of-
ten, authenticity, integrity, non-repudiation and fair exchange requirements can be
specified using property patterns of the form pr = precedes(pr 1, pr 2). The traces
that violate pr are given by

Φpr (σ) = ¬JprK = ∃i ≥ 0 : Jpr 2K(σ
i) ∧ ∀j : 0 ≤ j ≤ i⇒ ¬Jpr 1K(σ

j)

I.e., pr 2 is fulfilled at some step, but until this step, pr 1 is not fulfilled. The test
case specification Φpr (σ) can be modified in two ways: (1) by deriving a test case
specification Φ′

pr (σ) requiring that pr 2 is satisfied at some step (to check if pr 1 is
fulfilled in an earlier step in the implementation), and (2) by deriving a test case

140

6.3. Generation of Test Sequences for Security-Critical Systems

specification Φ
′′(l)
pr (σ) requiring that pr 1 is never fulfilled up to step l, where l is

the length of the test sequence (to check if pr 2 is not fulfilled at some step in the
implementation). Formally,

Φ′
pr (σ) = ∃i ≥ 0 : Jpr 2K(σ

i)

and

Φ′′(l)
pr (σ) = ∀j : 0 ≤ j ≤ l⇒ ¬Jpr 1K(σ

j)

Φ′(σ) is a weakening of Φ(σ), while Φ′′(l)(σ) is not.

Example 6.3.2. As an example, consider the security requirement SR.AUTH
ORDERS (authenticated orders) of the bank application case study, which is given
by the property pr = precedes(StateClient == AwaitForm, (StateWebserver == Client
Authenticated) && (Webserver.localGID == GIDC)). In this case, the derived test
case specification Φ′

pr (σ) states that at some step in the execution, (StateWebserver ==
ClientAuthenticated) && (Webserver.localGID == GIDC) is fulfilled, which corre-
sponds to a specification of all legal ways of the client to be authenticated by the
Web server. Thus by applying an appropriate selection of test sequences fulfilling
this test case specification to the implementation, we aim at detecting faults in
the treatment of legal authentication attempts. The derived test case specification

Φ
′′(l)
pr (σ) states that at no step of the execution, StateClient == AwaitForm is fulfilled.

This corresponds to cases where the client does not request authentication. With
the corresponding test sequences, we aim at detecting faults in the treatment of
illegal authentication attempts (in which the client is not involved).

Availability / Fair Exchange Requirements As pointed out in Section 4.2.2, avail-
ability and fair exchange requirements can often be specified with properties of the
form pr = leadsto(pr 1, pr 2). The property pr is violated if

Φpr (σ) = ¬JprK = ∃i ≥ 0 : Jpr 1K(σ
i) ∧ ∀j ≥ i : ¬Jpr 2K(σ

j)

holds, i.e. pr 1 is fulfilled in some step, and in the following steps pr 2 is not
fulfilled. Note that as pr is a liveness property, its violation cannot be detected by

a finite test sequence. However, we can derive a test case specification Φ
(l)
pr such

that pr is violated up to execution step l, where l is the length of the test sequences:

Φ(l)
pr (σ) = ∃i ≥ 0 : Jpr 1K(σ

i) ∧ ∀j : i ≤ j ≤ l⇒ ¬Jpr 2K(σ
j)

I.e., pr 1 is fulfilled at some step i, but pr 2 is not fulfilled until step l. It can then
be checked that after applying a test sequence fulfilling this test case specification,
the implementation is in a state where pr 2 can still be fulfilled (by a postamble,

141

6. Model-Based Security Testing

i.e. appropriate additional test inputs). Besides, in a similar way as described for
properties of the form precedes(pr 1, pr 2), Φpr can be modified by deriving test case
specifications referring just to pr 1 and pr 2 respectively. Here, Φ′

pr (σ) states that
pr 1 is fulfilled at some step (to test if pr 2 is fulfilled in one of the following steps

or if the implementation is in a state where pr 2 can still be fulfilled) and Φ
′′(l)
pr (σ)

states that pr 2 is never fulfilled up to step l (to test that pr 1 was not fulfilled earlier
or the implementation is in a state where pr 2 can still be fulfilled). Formally,

Φ′
pr (σ) = ∃i ≥ 0 : Jpr 1K(σ

i)

and

Φ′′(l)
pr (σ) = ∀j : 0 ≤ j ≤ l⇒ ¬Jpr 2K(σ

j)

Φ
(l)
pr (σ) and Φ′

pr (σ) are weakenings of Φpr (σ), while Φ′′
pr (σ) is not.

Example 6.3.3. As an example, consider the security requirement SR.FAIREXC
NO LOSS of the PalME system (see Section 5.4.2) stating that if electronic value is
debited from the payer’s purse, it must later be credited to the payee’s purse. This
requirement is given by the formula pr = leadsto(is Debit(LogPayer), is Credit(Log

Payee)). Here, Φ
(l)
pr (σ) specifies test sequences where electronic value is debited from

the payer’s purse, but not credited until step l. After application of corresponding
test sequences, it can be checked if the payee’s purse is in a state where it is
still possible that the electronic money is indeed credited. Φ′

pr (σ) specifies that
electronic money is debited from the payer’s purse (to verify if the money is credited
to the payee’s purse in the later steps or the implementation is in a state where this

is still possible), and Φ
′′(l)
pr (σ) specifies test sequences where no electronic value is

credited to the payee’s purse (to check if because of faults in the implementation,
it is possible that electronic value is debited from the payer’s purse anyway and
the implementation is in a state such that the electronic value will not be credited
anymore).

Altogether, the testing criterion given by the derivation of test case specifica-
tions for a component c under test from the security requirements leads to a
set TSM

c;securityreq of test case specifications, which consists of the modified ver-

sions of the negations Φpr of the security requirements pr ∈ propertiesM(Main) :
SecRequirement ∈ tagsM(pr).

Test sequences fulfilling the derived test case specifications can be selected at
random or by combining the test case specifications with structural testing criteria
such as channel coverage. Besides, the derived test case specifications can be
refined manually by the tester using his knowledge about relevant behaviours of
the application.

142

6.3. Generation of Test Sequences for Security-Critical Systems

An example for a test sequence generated using a derived test case specification
is given in Section 6.5.

6.3.2. Inserting Faults

In this section, we describe how to generate test sequences for vulnerability testing
by introducing faults into the specification and determining if and how the intro-
duced faults can lead to violations of the security requirements. Test sequence
generation by inserting faults provides the test engineer both with possible faults
that lead to violations of the security requirements and with test sequences to test
the implementation for these faults.

We extend the process depicted in Figure 6.1 as follows for generating security
test sequences (see Figure 6.3). From the threat scenario, we generate mutants by
applying model transformations that insert faults into the behavioural specification
of the component under test. Instead of the semantical representation Ψ(σ) of
the original system, semantical representations Ψ′(σ) of the mutants of the threat
scenario are used to generate test sequences. As test case specifications, we take
the predicates Φpr (σ) corresponding to the negated security requirements. If a test
sequence σ fulfilling Ψ′(σ) ∧ Φpr (σ) is found by the test sequence generation, this
indicates that the inserted fault introduced a vulnerability with respect to pr , and
the trace σ shows how it can be exploited. The input data to the component under
test of all traces σ determined this way gives us tests for this component covering
possible vulnerabilities with respect to the security requirements and the threat
scenario. To determine the expected output when the system behaves correctly, we
use the original specification of the component under test as an oracle.

Note that inserting faults can be seen as the counterpart of the test strat-
egy described in Section 6.3.1. The difference to the test strategy described in
Section 6.3.1 is that to obtain test sequences with respect to the negations of the
security requirements even though Ψ(σ) ∧ Φpr (σ) has no solution, we modify Ψ
rather than Φpr .

Generating Mutants

In mutation testing (see e.g. [MLS78, Off95, ABM98]), faults are introduced into
a program, leading to a set of mutants. The mutants are used to evaluate the
quality of a test suite, which can be measured by the proportion of mutants that
are distinguished from the original program by the test suite. The distinguished
mutants are said to be killed by the test suite. Conversely, we use mutants to
determine test sequences rather than to evaluate test suites.

We generate mutants by selecting a transition tr ∈ transitionsM(aut) annotated
with critical, where aut = automatonM(c) is the automaton associated to the com-

143

6. Model-Based Security Testing

Figure 6.3.: Security Test Sequence Generation by Inserting Faults

144

6.3. Generation of Test Sequences for Security-Critical Systems

ponent c under test, and applying a mutation function ε : Term → P(Term) either
to the precondition preM(tr) or to one of the input patterns, output expressions
or postconditions. Mutations can be formulated as model transformations. For in-
stance, a model transformation Mutatepre(tr , t ′) for the mutation of the precondition
of tr by replacing it with a new term t′ ∈ ε(preM(tr)) is specified by

preM
′

(tr) = t′

As usual, all other entity sets and functions not mentioned stay unchanged in
M′.

The crucial question is which mutants to generate in order to obtain a suitable
test suite (with respect to its potential to detect security violations). In [Woo93],
the following general principles for the definition of mutations are listed:

• Mutation categories should model potential faults.

• Only simple, first order mutants (i.e., mutants where a single local change
was made to the original program) should be generated.

• Only syntactically correct mutants should be generated.

• The user should have control over the selection of which mutation categories
to apply at any one time.

Moreover, when generating mutants from abstract security models, the use of
cryptographic operations and keys must be taken into account in order to on the
one hand not generate mutants that are not assumed to be possible, e.g. mutants
using secrets the respective party does not possess, and to on the other hand give the
test engineer the possibility to select mutation categories with respect to the model
that are relevant for vulnerability testing, such as wrongly implemented verification
of cryptographic signatures.

A mutation function ε for terms in the security-extended version of the functional
language QuestF is depicted in Table 6.1. The rows in the table correspond
to particular kinds of mutations. We use the terminology from [BOY00], where
mutations for specifications in the input language of the model checker SMV are
described (but not defined formally as in Table 6.1). Here, ST stands for Stuck-
At (replacement of a boolean expression with True and False, respectively), EN
for Expression Negation (replacement of a boolean expression by its negation),
OR for Operand Replacement (replacement of an operand by another syntactically
legal operand), and LR for Logical Operator Replacement (replacement of a logical
operator with another logical operator). In addition to the mutations described in
[BOY00], Table 6.1 includes mutations to replace functions (such as constructor or
selector functions) by other functions with the same functionality (denoted FR) and

145

6. Model-Based Security Testing

Table 6.1.: Mutation Function for QuestF Terms

t ∈ Term ε(t) denot. interpretation

t1 == t2 {True, False} ∪ ST== faulty equality check,
{not(t1 == t2)} ∪ EN== e.g. for an identity of
{t1 == t′2 : t′2 ∈ ε(t2)} ∪ OR== a party or correctness
{t′1 == t2 : t′1 ∈ ε(t1)} of a signature

t1&&t2 {True, False} ∪ ST&& fault in condition
{not(t1&&t2)} ∪ EN&& term (conjunction)
{t1||t2} ∪ {t1 => t2} ∪ LR&&

{t1&&t′2 : t′2 ∈ ε(t2)} ∪ OR&&

{t′1&&t2 : t′1 ∈ ε(t1)}
(similarly for other pre-
defined boolean functions)

is Ck
i (t1) with {True, False} ∪ STSignD faulty/missing

Ck
i ∈ CSign {not(is Ck

i (t1))} ∪ ENSignD signature check
{is Ck

i (t′1) : t′1 ∈ ε(t1)} ∪ ORSignD

is Ck
i (t1) with {True, False} ∪ STEncrD faulty/missing

Ck
i ∈ CEncr {not(is Ck

i (t1))} ∪ ENEncrD encryption check
{is Ck

i (t′1) : t′1 ∈ ε(t1)} ∪ OREncrD

is Ck
i (t1) with {True, False} ∪ STMsgD faulty/missing

Ck
i /∈ CSign ∪ CEncr {not(is Ck

i (t1))} ∪ ENMsgD type check
{is Ck

i (t′1) : t′1 ∈ ε(t1)} ∪ ORMsgD

Ck
i (t1, . . . , tnk

i

) with {Ck
i′(t1, . . . , tnk

i

) : FREncrC faulty encryption

Ck
i ∈ CEncr fct(Ck

i′) = fct(Ck
i) ∧

Ck
i′ ∈ CEncr} ∪

{Ck
i (t1, . . . , t

′
j , . . . , tnk

i

) : OREncrC

1 ≤ j ≤ nk
i ∧ t′j ∈ ε(tj)}

(similarly with signature/
hash/MAC)

Ck
i (t1, . . . , tnk

i

) with {Ck
i′(t1, . . . , tnk

i

) : FRMsgC corrupted message

Ck
i /∈ CEncr ∪ CSign∪ fct(Ck

i′) = fct(Ck
i) ∧

CHash ∪ CMac ∧ Ck
i′ /∈ CEncr ∪ CSign ∪ CHash

typeof(t) /∈ TKey CMac} ∪
{Ck

i (t1, . . . , t
′
j , . . . , tnk

i

) : ORMsgC

1 ≤ j ≤ nk
i ∧ t′j ∈ ε(tj)}

Ck
i (t1, . . . , tnk

i

) with (keys(c)∩ KR key confusion

typeof(t) ∈ TKey ∧ Value(typeof(t))) \ t
t ∈ Value

selkij(t1, t2) with {selkij′ (t1, t2) : FREncrS faulty decryption

Ck
i ∈ CEncr fct(selkij′) = fct(selkij)} ∪

{selkij(t
′
1, t2) : t′1 ∈ ε(t1)} OREncrS

{selkij(t1, t
′
2) : t′2 ∈ ε(t2)} ∪

selkij(t1) with {selkij′ (t1) : FRMsgS faulty message

Ck
i /∈ CEncr fct(selkij′) = fct(selkij)} ∪ ORMsgS extraction

{selkij(t
′
1) : t′1 ∈ ε(t1)}

146

6.3. Generation of Test Sequences for Security-Critical Systems

a mutation denoted KR to replace a secret (e.g. a key or a nonce) by another secret
which is known by the component under test and which has the same type. We
restrict ourselves to specifications where the main part of the behaviour is specified
in the state transition diagrams, thus mutations for user-defined functions are not
included (but could be easily added). According to the definition of the mutation
function, only syntactically correct first-order mutants are generated.

Besides, mutations for different kinds of terms that are of interest for generating
security tests because they correspond to faults that are likely to lead to vulnera-
bilities are distinguished in Table 6.1. I.e., instead of general mutations for function
applications, we have a number of mutations for the ’==’ operator (corresponding
to faulty equality checks, for instance for identities or for the correctness of signa-
tures), denoted as ST==, EN==, and OR==, a number of mutations for signature
checks is Ck

i (t1) with Ck
i ∈ CSign, denoted as STSignD, ENSignD, ORSignD

2; plus mu-
tations for encryptions, hash computations, etc. This makes it possible for the test
engineer to determine an actual mutation function ε′ to be applied by selecting a
part of the mutations shown in the table depending on the testing requirements, the
kind of system to be tested, and the available time and computing power — thus
giving the user fine-grained control over the selection of which mutation categories
to be used.

Let Mutants(M, c, ε′) be the set of mutants of the model M resulting from the
application of the mutation function ε′ to the terms on the critical transitions of the
automaton of the component c. If only preconditions are mutated, then

Mutants(M, c, ε′) := {M′ : ∃tr , t′ : Mutatepre(tr , t′)(M,M′) ∧
tr ∈ CriticalTrans(M, c) ∧ t′ ∈ ε′(pre(tr))}

where

CriticalTrans(M, c) = {tr ∈ transitionsM(automatonM(c)) : critical ∈ tagsM(tr)}

In the same way, the set Mutants(M, c, ε′) can be extended with mutants derived
through mutations of input patterns, postconditions and output expressions, by
defining corresponding model transformations Mutatein, Mutateout and Mutatepost.

Test Sequence Generation

As described above, to generate test sequences using the fault insertion criterion
with the mutation function ε′, we use the behavioural specifications of the mutated
threat scenarios:

2Here, the D in SignD stands for discriminator; likewise we use C in the subscript for constructor
mutations and S for selector mutations.

147

6. Model-Based Security Testing

Ψ′ ∈ {ΨJMainK
M′

:M′ ∈ Mutants(M, c, ε′)}

The test case specifications are simply the negated security requirements:

TSM
c;ins fault = {Φpr : pr ∈ propertiesM(Main) : SecRequirement ∈ tagsM(pr)}

Now we determine solutions σ to Ψ′(σ) ∧ Φpr (σ) using SAT solving. As the
sequences σ are calculated with respect to mutated specifications, it remains to
determine the correct expected output data.

For this purpose, from the sequences σ we derive test sequences σ ′ with

ΨJcK
M

(σ′) ∧ (σ′|inPorts(c) = σ|inPorts(c))

I.e., σ′ is a valid behaviour of c with the same sequence of messages appearing at
the input ports. The sequences σ′ can be generated via the simulation feature of
AutoFocus/Quest, a model checker or constraint solver is not needed.

An example for a test sequence generated via fault insertion is given in Section 6.5.

6.4. Concretisation

To be able to actually test an implementation, the abstract test sequences derived
from the threat scenario must be translated to concrete test data. We assume
the implementation accepts and outputs bit sequences, which is general enough to
represent e.g. TCP/IP network messages or messages sent to or received from smart
cards.

In many cases, concretisation can be achieved using straightforward mappings
between abstract and concrete test data (as described e.g. in [DBG01]), and exe-
cuting the test using a test driver that passes the inputs to the component under
test and verifies if the outputs are as expected. However, testing security-critical
systems involves additional complications, mainly because of non-determinism, for
example arising from randomly generated keys and nonces, and because of the use
of cryptographic primitives:

• In formal specifications of security-critical systems, such as the AutoFocus/
Quest specifications described in Chapter 4, data and cryptographic primi-
tives are usually modelled symbolically. For instance, in the bank application
case study described in Section 4.3, SignCert(SK(CA),C,GIDC,PK(C)) stands
for a cryptographic signature of the client’s identification number GIDC and
other data with the secret key SK(CA) of the certification authority. The
reason for this representation is to keep verification feasible and to make the

148

6.4. Concretisation

formal specifications easier to understand. The test driver must map the
symbols corresponding e.g. to nonces or session keys to sequences of bits in
a consistent way. Conversely, sequences of bits created and output by the
component under test must be stored by the test driver and used in place of
the symbols in the test data in the remainder of the execution. Besides, the
test driver is responsible for applying the actual encryption, signature or hash
algorithms.

• Sometimes, values (such as transaction numbers or time stamps) are ab-
stracted away in formal specifications to simplify verification (and because
they are seen to be independent from a security requirement at hand). These
have to be re-included in the concrete test data in a consistent way.

• If encryption is used, the test driver must know the corresponding keys and
encryption algorithms to be able to compute the encrypted input data and
verify the encrypted output data.

• Hash values or message authentication codes contained in the output data
cannot be verified unless the complete data necessary to compute the hash
or message authentication code is available to the test driver. Likewise, en-
crypted output data cannot be verified unless the encryption key is available
to the test driver.

Concretisation Mappings

In the following, we show how to address these issues and give formalisations in the
AutoFocus/Quest framework. We fix a set TransV of transaction variables that
are used to represent transaction data to be stored by the test driver, such as random
nonces, time stamps or transaction identifiers. We define a concretisation of abstract
messages by mapping each constructor Ck

i with typek /∈ TKey ∪ {Int} to a sequence
concrete(Ck

i) = [d1, d2, . . . , dn
Ck

i

] of concretisation elements dj ∈ Z∪TransV∪Term.

dj can be

• an integer value,

• a transaction variable, or

• a QuestF expression, in which the abstract message m = Ck
i (. . .) to which the

concretisation is applied can be referenced by “this”.

An integer value corresponds to a constant sequence of bits to be appended to the
concrete test data. The transaction variables transv ∈ TransV are associated with a
set values(transv) ⊆ Z of possible values. A transaction variable in a concretisation

149

6. Model-Based Security Testing

is kept consistent with its actual value in the concrete test data. QuestF expressions
are evaluated and the result is again concretised. This way, parts of an abstract mes-
sage can be referred to in its concretisation. For instance, the global identification
number GIDC in the above mentioned message SignCert(SK(CA), C,GIDC,PK(C))
is referred to by getGID(this).

To compute the concretisation of a symbolically represented cryptographic mes-
sage, the test driver must be able to access its arguments. As an example, consider
the data type definition

data TAgent = A | B | I ;
data THashMsg = HashMsg (getAg1 : TAgent , getAg2 : TAgent) ;

The concretisation of a message m = HashMsg(A,B) depends on the concreti-
sation of A and B (and on other data that was possibly abstracted away and is
included in concrete(HashMsg)). However, in the cryptographic interpretation for
THashMsg, no selectors are defined to extract A and B from m.

Therefore, for the evaluation of the QuestF expressions in the concretisations
concrete(m), we treat the data type definition of the model as an ordinary QuestF
data type definition without special consideration of cryptographic data types as
described in Section 4.2.6. A and B can then be extracted in the usual way, using
getAg1(m) and getAg2(m).

Note that this is no contradiction to the properties of the cryptographic oper-
ators: the test driver does not extract A and B from the actual (concrete) hash
corresponding to m but rather uses A and B from m to compute this hash. The al-
gorithm for the test driver given below takes into account that no concrete hash can
be computed when concrete values for the arguments are not available. The same
argument applies for encryptions (i.e., the test driver can access the arguments of
an encrypted abstract message using ordinary selectors).

Keys k ∈
⋃

typek∈TKey
Value(typek) are mapped directly to a single transaction

variable concrete(k) = [d1] with d1 ∈ TransV.

In addition, each data element has to be assigned a field length, and for construc-
tors corresponding to encryption, signature, or hash computation, the algorithms
to be used must be fixed. We omit this here for simplification. The actual concreti-
sation, i.e. the mappings concrete and values, must be provided by the developer.
See Section 6.5 for examples.

Test Driver Algorithm

An algorithm do test for the test driver is given in Figure 6.4, taking as input
a test sequence σ; in addition, a component under test c, and the concretisation
defined via the mappings concrete and values must be provided. It keeps a store
store for the values of the transaction variables, which is prefilled with values of

150

6.4. Concretisation

VAR store : P(TransV× Z), conditions : P(Value× Z);

algorithm do test(σ : (Channel→ Value)∗): {Pass, Fail, Inconclusive}
store ← {(transv , y) : transv ∈ TransV ∧ y ∈ values(transv) ∧ |values(transv)| = 1}

5: conditions ← ∅
for each step βi in test sequence σ = β1, . . . , β|σ| do

for each (ch , m) ∈ βi do
if destP(ch) ∈ inPorts(c) then

send gen sequence(m) to c via destP(ch)
10: else if sourceP(ch) ∈ outPorts(c) then

wait for output s on sourceP(ch) (return Fail on timeout)
if verify sequence(m, s) = False then return Fail

else
return Inconclusive {illegal test sequence}

15:

{verify delayed conditions}
conditions ′ ← conditions
for each (m, s) ∈ conditions ′ do

conditions ← conditions \ (m, s)
20: if verify sequence(m, s) = False then return Fail

if conditions = ∅ then
return Pass

else
25: return Inconclusive

Figure 6.4.: Main Test Driver Algorithm

transaction variables transv that are already fixed (i.e., |values(transv)| = 1). Be-
sides, conditions contains the comparisons between abstract values and concrete bit
sequences that have been delayed because necessary data has not been available.

The algorithm do test uses the algorithms gen sequence (Figure 6.5) and
verify sequence (Figure 6.6) to generate concrete test data from abstract input
messages in σ to the component c under test, respectively to compare abstract out-
put messages in σ to output data received. In verify sequence, first(s) denotes
the prefix of a bit sequence s corresponding to the current concretisation element
dj (depending on the field length of dj , which we omitted for simplification) and
rest(s) denotes the remaining part of s.

The idea of the algorithms gen sequence and verify sequence is as follows.
Integer messages m ∈ Value(Int) and constant bit sequences dj ∈ Z in concrete(Ck

i)
are passed directly to the implementation or are compared to the received data. If
a transaction variable dj ∈ transv appears in concrete(m) in gen sequence, either
a new concrete value is chosen for transv as its concretisation and added to the

151

6. Model-Based Security Testing

algorithm gen sequence(m : Value): Z
∗

{compute concrete data from abstract message m}
if ∃s′ : (m, s′) ∈ conditions then

return s′

5: s← ε
if typeof(m) = Int then

append concrete bit sequence corresponding to m to s
else

if m /∈
⋃

typek∈TKey
Value(typek) then

10: Ck
i ← head(m)

[d1, . . . , dn
Ck

i

]← concrete(Ck
i) ; nconcr ← nCk

i

else
Ck

i ←⊥
[d1]← concrete(m) ; nconcr ← 1

15:

for j ∈ {1, . . . , nconcr} do
if dj ∈ Z then

append dj to s
else if dj ∈ TransV then

20: if ∃y : (dj , y) ∈ store then
append y to s

else
if ∃(m′, s′) ∈ conditions : m E m′ then

terminate do test with result Inconclusive
25: else

choose y ∈ values(dj)
append y to s
store ← store ∪ (dj , y)

else if dj ∈ Term then
30: append gen sequence(eval[this←m](dj)) to s

if Ck
i ∈ CEncr then
concr key ← gen sequence(eval(selki1(m))
s← encryption of s with concr key

35: else if Ck
i ∈ CSign then

concr key ← gen sequence(eval(selki1(m))
append signature of s with key concr key to s

else if Ck
i ∈ CHash then

s← hash of s
40: else if Ck

i ∈ CMac then
concr key ← gen sequence(eval(selki1(m))
s← MAC of s with concr key

return s

Figure 6.5.: Algorithm gen sequence

152

6.4. Concretisation

algorithm verify sequence(m : Value, s : Z
∗): {True, False}

{verify concrete data s w.r.t. abstract message m}
if typeof(m) = Int then

compare concrete bit sequence corresponding to m to s; return result
5: if m /∈

⋃

typek∈TKey
Value(typek) then

Ck
i ← head(m)

[d1, . . . , dn
Ck

i

]← concrete(Ck
i) ; nconcr ← nCk

i

else
Ck

i ←⊥ ; [d1]← concrete(m) ; nconcr ← 1
10:

if Ck
i ∈ CEncr ∪ CSign then

k ← eval(inv(selki1(m)))
[d′1]← concrete(k)
if ∃concr key : (d′1, concr key) ∈ store then

15: if Ck
i ∈ CEncr then
s← decryption of s with concr key

if Ck
i ∈ CSign then
check signature at end of s using concr key ; remove signature from s
if signature check failed then return False

20: else
conditions ← conditions ∪ (m, s) ; return True

if Ck
i ∈ CHash ∪ CMac then
if gen sequence(m) can be computed without changing store then

concr msg ← gen sequence(m)
25: return (concr msg = s)

else {concrete data for m not completely available}
conditions ← conditions ∪ (m, s) ; return True

for j ∈ {1, . . . , nconcr} do
30: if dj ∈ Z then

if first(s) 6= dj then return False
s← rest(s)

else if dj ∈ TransV then
if ∃y : (dj , y) ∈ store then

35: if first(s) 6= y then return False
s← rest(s)

else
if first(s) /∈ values(dj) then return False
store ← store ∪ (dj , first(s))

40: s← rest(s)
else if dj ∈ Term then

if ¬ verify sequence(eval[this←m](dj), first(s)) then return False
s← rest(s)

45: return True

Figure 6.6.: Algorithm verify sequence

153

6. Model-Based Security Testing

store, or an already chosen value from the store is taken. When data is received
corresponding to transv , it is either compared to the value already chosen, or it is
checked if the received value is within the specified range and if so, it is added to
the store. QuestF expressions dj ∈ Term are evaluated (after replacing this by the
current message m) and the result is again concretised, respectively compared to
the concrete received message.

Encryptions, signatures, hash or MAC computations are carried out in gen

sequence after the concretisation depending on the cryptographic interpretation
of the constructor Ck

i . In verify sequence, it is possible that the concrete bit
sequence for a key or part of the data for which a hash or MAC is to be computed
is not yet available to the test driver. In this case, instead the message and the
corresponding bit sequence are added to conditions to be verified at later steps if
the corresponding data becomes available. Otherwise, decryption or verification of
signatures, MAC or hash values is performed within verify sequence.

If gen sequence is applied to a term contained in conditions , the concrete
bit sequence received before from the implementation is returned as concretisation.
Thus, the test driver acts in a similar way to an intruder, who can build his messages
from parts of messages received, even without being able to completely“understand”
them (because they are e.g. hashes or encryptions with an unknown key). The
concrete bit sequences for proper subterms of a term contained in conditions can
only be computed if their concretisation do not contain transaction variables for
which no values have yet been chosen: the test driver cannot choose own values of
the transaction variables because of the constraint in conditions , but would have
to guess the actual ones – which is impossible if the used encryption and hash
algorithms are indeed secure. In this case, an Inconclusive result is reported for the
test sequence.

The processing of messages by the test driver is repeated for every step βi of the
test sequence σ and every sending and receiving action in βi affecting the component
c under test. After the processing of each message, the test driver tries to verify
the delayed conditions. If this is possible (because a necessary secret has been
received), the delayed condition is removed and potentially additional transaction
data is extracted from the corresponding message.

As a test verdict, the test driver reports Fail if any verification of the received
data failed. Pass is only reported if no delayed conditions remained in conditions .
Otherwise, the test verdict is Inconclusive.

Generation and Verification of Asymmetric Keys

If asymmetric keys are used in a model, the test driver algorithm described above
only works if the concrete values of both the private and the public key are pre-
viously available to the test driver, or if only one of them is necessary to compute

154

6.4. Concretisation

and verify the test data. The reason for this is that the dependency between the
private and the public key is not considered.

As an example, look at the EET of the bank application depicted in Figure 4.21
on page 74. This EET can be seen both as a test sequence for the Client component
and for the Webserver component. Assume in the concretisation mappings we fixed
concrete values for the keys SK(CA) and PK(CA) of the certification authority, but
not for the client keys PK(C) and SK(C). If Client is the component under test, on
reception of the message Data(Sign(SK(C),NonceS), SignCert(CA),C,GIDC,PK(C))
the test driver gets the concrete value for PK(C), which can be used to verify the
signature. The concrete value for SK(C) is not needed to generate and verify the
following messages. On the other hand, if Webserver is the component under test,
the test driver must generate the Data(. . .) message and send its concretisation
to the implementation. In this case, concrete values for PK(C) and SK(C) must
not be generated independently. Another example where this dependency becomes
important is testing a key generator which provides the user with a public/private
key pair. If the dependency is not considered, the test driver cannot check if the
public and private key belong together.

We show how this issue can be addressed by way of extending the algorithms
gen sequence and verify sequence. In the algorithm gen sequence, concrete
values for a key pair must be generated if the concrete value of one of the keys is
not available. This is achieved by replacing lines 26-28 in Figure 6.5 by

if m ∈
⋃

typek∈TKey
Value(typek) ∧ eval(inv(m) == m) 6= True then

{ m corresponds to an asymmetric key }
generate public/private key pair y, y−1

[d′1]← concrete(eval(inv(m)))
if d1 represents public key then

store ← store ∪ (d1, y); store ← store ∪ (d′1, y
−1)

else
if ∃y′ : (d′1, y

′) ∈ store then
terminate do test with result Inconclusive

else
store ← store ∪ (d1, y

−1); store ← store ∪ (d′1, y)
else
{ original code from lines 26-28 }
. . .

Note that the concretisation for a key only consists of one concretisation element
d1. Besides, note the special case when m is a private key and the corresponding
public key is already contained in the store. In this case, an appropriate concrete
value for m cannot be generated (otherwise, the cryptosystem would be insecure,

155

6. Model-Based Security Testing

as it must not be possible to derive the private key from the public key), and the
result Inconclusive is reported. The other case does not occur: if m is a public key
and a concrete value for the belonging private key is available, then a concrete value
for m is available as well.

In the algorithm verify sequence, after line 39, the following statements have
to be added:

if dj represents private key then
compute value y−1 for corresponding public key
[d′1]← concrete(eval(inv(m)))
if ∃y′ : (d′1, y

′) ∈ store then
if y′ 6= y−1 then return False

else
store ← store ∪ (d′1, y

−1)

Here, if a concrete value for a private key is received, we compute the correspond-
ing public key, and add it to the store or check if the existing value in the store is
correct.

With these extensions, treatment of asymmetric keys used in a model is fully
supported by the test driver.

Remarks

Figure 6.7 summarises the described approach for executing security tests based on
a concretisation mapping. Note that with the exception of the dependency between
private and public keys addressed above, the presented test driver algorithm relies
on the assumption that the values of concretisation elements are independent of
each other and are concatenated in the concretisation. Examples where this is not
the case are length fields preceding a bit sequence of variable length, checksums,
cases where the same information is represented by two different formats (e.g. in
the CEP specifications, there are two ways to represent a currency, which must
be kept consistent in successive messages), or non-atomic keys constructed from
other data elements via exclusive or (XOR) operations. Whereas the computation
of values for length fields can be performed in a limited way by QuestF expressions,
general treatment of dependencies and connections of the data elements other than
by concatenation requires an extension of the described approach. For instance,
a plugin interface to the test driver can be developed such that the execution of
scripting code can be triggered if a certain data element is encountered.

Also, note that if more than one transaction is to be tested using a single test
sequence, the store and conditions must be reset between the transactions. Besides,
in some cases a fixed preamble to the test sequence may have to be generated by
the test driver.

156

6.5. Case Study: CEPS Load Transaction

Figure 6.7.: Test Execution Based on Concretisation Mapping

6.5. Case Study: CEPS Load Transaction

In the following, we demonstrate security testing at the example of the CEPS load
transaction introduced in Section 4.4.1. The component under test is a CEPS purse
card application.

6.5.1. Generation of Test Sequences

Derivation of Test Case Specifications from Security Requirements

From the security requirements of the CEPS load transaction, we derived 7 test
case specifications using the guidelines described in Section 6.3.1: two test case

specifications Φ′
pr and Φ

′′(l)
pr for pr = SR.NONREP FAILED TRANS; three test case

specifications Φ
(l)
pr , Φ′

pr and Φ
′′(l)
pr for pr = SR.FAIREXC LACQ; and two test case

specifications Φ′
pr and Φ

′′(l)
pr for pr = SR.NONREP LOAD AUTH. There is no test

sequence that fulfils the test case specification Φ
(l)
pr for pr = SR.FAIREXC LACQ,

stating that at some execution step, a load approval is received by the LSAM, rl is
included in the Credit message and the card reports an error, but no valid R CEP
is sent by the card until step l. This is because in the model, the card always
sends R CEP at the same time as it reports the error to the log. The other six
test case specifications can be fulfilled. As the length of the test sequences, we
chose l = 18. l = 18 is sufficient such that test sequences are computed for the
six satisfiable test case specifications and the required computation time is still
acceptable. Computing the test sequences took approximately 30s on average on
the hardware described in Section 5.4.2.

To avoid the computation of trivial test sequences for Φ
′′(l)
pr (for both the non-

repudiation requirements and the fair exchange requirement), we added the con-
junct ∃i ≥ 0 : σ(i)(Card.cLog) 6=⊥ to these test case specifications. This way, test
sequences consisting of a complete transaction carried out by the card and finished
by writing a log entry are computed. Otherwise executions where no input at all
is sent to the card would fulfil the specifications Φ′′

pr , as they state that certain

157

6. Model-Based Security Testing

outputs must not be produced by the card.

As an example, we take the security requirement pr = SR.NONREP FAILED
TRANS. Remember that this requirement stated that if the Load Security Appli-
cation Module LSAM received a load approval from the issuer and gets a message
from the card containing a random number R CEP that validates correctly, then
the card must have reported an error to its log. Thus, Φ′

pr specifies test sequences
where a load approval and a correctly validating R CEP was received by the LSAM

(to check if indeed an error was reported by the card), and Φ
′′(l)
pr specifies test se-

quences where no error is reported by the card (to check that the LSAM does not
receive a correctly validating R CEP anyway).

Figure 6.8 shows an AutoFocus/Quest EET computed from the test case spec-
ification Φ′

pr . Note that the intruder has the control of the communication between
the card, the LSAM and the issuer on the channels annotated with public in the
security-enriched model. First, the card and the LSAM are initialised for the trans-
action amount 2 (messages 1 and 2). The intruder then stores the card’s reply con-
taining the hash of R CEP (message 3) and generates a reply to the InquireCardInfo
message sent by the LSAM (messages 4 and 5). After that, the intruder sends a
Credit message with an incorrect MAC MacS2 to the card (message 7) and replies
to the initialisation message from the LSAM (intended to be sent to the card) with
the stored reply from the card (messages 6 and 8). The card now reports an error
and includes R CEP in its response to the Credit message (messages 9 and 10). In
the following steps, the intruder forwards the load request from the LSAM to the
issuer and the load approval back to the LSAM (messages 11,12,13,14). Finally,
the LSAM (now in a state where a load approval has been received) sends a Credit
message and receives from the intruder the stored reply reporting an error and
including the R CEP (messages 15,16). The remaining messages generated by the
intruder are spurious messages that are ignored by the receiving components.

Inserting Faults

For simplicity, we demonstrate test sequence generation by inserting faults into the
specification of the Card component by using only a small subset of the mutations
listed in Table 6.1: we replace checks for equality by True and by False in boolean
terms in the preconditions, and we replace keys appearing as arguments of the
messages in the output expressions by other keys used by the card. Thus, ε′ consists
of the following mutations:

• ST==, and ORf for f ∈ {&&, ||, not,=>} (so that ST== can be applied to
the operands of a boolean function); and

• KR, and ORMsgC (so that KR can be applied to the arguments of a message).

158

6.5. Case Study: CEPS Load Transaction

LSAM Card Issuer Intruder

1: Init(2)

2: 2

3: RespI(MacS1(KCI,0,2),Ha
shTrData(R_CEP))

4: InquireCardInfo

RespI(MacS1(KCI,0,2),HashTrData(R_CEP))

RespI(MacS1(KCI,0,2),HashTrData(R_CEP))

5: CardInfo(0)

6: Init(2)

7: Credit(MacS2(EmptyTKey,3,EmptyTMacS1,EmptyTHashTrData),RA)

8: RespI(MacS1(KCI,0,2),HashTrData(R_CEP))

9: RespC(0,MacS3(KCI,0,2,C
C_FAIL),R_CEP,CC_FAIL)

10: CLog(2,0,RA,CC_FAIL)

11: Load(0,2,MacS1(KCI,0,2),HashTrData(R_L
SAM),HashTrData(R2_LSAM),HashTrData(R_CEP))

12: Load(0,2,MacS1(KCI,0,2),HashTrData(R_LSAM),HashTrData(R2_LSAM),HashTrData(R_CEP))

13: RespL(MacS2(KCI,2,MacS1(KCI,0,2),HashTrData(R_LSAM)),CC_OK)

14: RespL(MacS2(KCI,2,MacS1(KCI,0,2),Hash
TrData(R_LSAM)),CC_OK)

15: Credit(MacS2(KCI,2,MacS1(KCI,0,2),Hash
TrData(R_LSAM)),R_LSAM)

16: RespC(0,MacS3(KCI,0,2,CC_FAIL),R_CEP,
CC_FAIL)

Figure 6.8.: EET for Test Case Specification Φ′
SR.NONREP FAILED TRANS

159

6. Model-Based Security Testing

With the above mutations, there are 20 mutants of the threat scenario. 6 of these
allow executions violating one of the security requirements. As the length of the
test sequences, we chose l = 18. Increasing l did not increase the number of coun-
terexamples further. The required computation time was on average about 400s per
mutant and security requirement. The reason why computing test sequences from
mutants takes longer than by derivation of test case specifications from security re-
quirements is in the cases where a security requirement is not violated by a mutant.
Here, the bounded model checker cannot terminate early because a counterexample
has been found.

As an example, consider the transition from state Init to state LoadSucc in the
STD of the Card component (see Figure 4.26 on page 81). Replacing EmptyTKey
by R CEP in the message RespC sent to the LSAM makes possible an execution
where the security requirement SR.NONREP FAILED TRANS (which we also dealt
with in the previous section by deriving test case specifications from it) is violated.

Figure 6.9 shows the computed EET (spurious messages generated by the Intruder
component but ignored by the receiving components are omitted in this figure). In
messages 1 and 2, the intruder initialises the card for the transaction amount 1 and
intercepts the card’s reply. After that, he sends a Credit message with an empty S2
MAC EmptyTMacS2 to the card (message 3). Thus, the transition from state Init
to state LoadSucc is taken. The card writes the condition code CC OK to its log
(message 4), but erroneously outputs R CEP in the reply (message 5) because of
the mutation. In the following, the LSAM is initialised with the same transaction
amount 1 and the intruder performs an interaction with the LSAM answering the
InquireCardInfo message correctly and sending the intercepted reply from the card
as a reply to the initialisation message sent by the LSAM (messages 6-10). The
load request issued by the LSAM and the load approval are then forwarded by
the intruder between the LSAM and the issuer (messages 11-14). Finally, the
LSAM sends a Credit message (message 15), to which the intruder replies with the
intercepted reply from the card containing R CEP (message 16). In the end, the
LSAM is in a state where a load approval was received and a correctly validating
R CEP, but no error was reported by the card. This is a violation of the security
requirement SR.NONREP FAILED TRANS.

In the test sequence for the card derived from this trace, the expected output,
which is determined by the original (i.e., unmutated) specification of the card,
contains EmptyTKey instead of R CEP in the card’s reply in message 5.

6.5.2. Concretisation

We show how test sequences for the Card component consisting of abstract QuestF
messages are concretised for the purpose of testing an actual CEPS card application
at the example of the messages 1 and 3 of the EET in Figure 6.8 (the Init message

160

6.5. Case Study: CEPS Load Transaction

LSAM Card Issuer Intruder

1: Init(1)

2: RespI(MacS1(KCI,0,1),Ha
shTrData(R_CEP))

3: Credit(EmptyTMacS2,Em
ptyTKey)

5: RespC(0,MacS3(KCI,0,1,C
C_OK),R_CEP,CC_OK)

4: CLog(1,0,EmptyTKey,CC_OK)

6: 1

7: InquireCardInfo

8: CardInfo(0)

9: Init(1)

10: RespI(MacS1(KCI,0,1),HashTrData(R_CEP))

11: Load(0,1,MacS1(KCI,0,1),HashTrData(R_L
SAM),HashTrData(R2_LSAM),HashTrData(R_CEP))

12: Load(0,1,MacS1(KCI,0,1),HashTrData(R_LSAM),HashTrData(R2_LSAM),HashTrData(R_CEP))

14: RespL(MacS2(KCI,1,MacS1(KCI,0,1),Hash
TrData(R_LSAM)),CC_OK)

13: RespL(MacS2(KCI,1,MacS1(KCI,0,1),HashTrData(R_LSAM)),CC_OK)

16: RespC(0,MacS3(KCI,0,1,CC_OK),R_CEP,C
C_OK)

15: Credit(MacS2(KCI,1,MacS1(KCI,0,1),Hash
TrData(R_LSAM)),R_LSAM)

Figure 6.9.: EET Computed by Inserting Faults

161

6. Model-Based Security Testing

data TMessage = . . .
| I n i t (getIM : I n t)
| Resp I (getRIS1 : TMacS1 , getRIHC : THashTrData)
| . . . ;

data TMacS1 = EmptyTMacS1
| MacS1(getS1Key : TKey , getS1Ba l : I n t ,

getS1M : I n t) ;

data THashTrData = EmptyTHashTrData
| HashTrData (getHashTrKey : TKey) ;

data TKey = EmptyTKey | KCI | R CEP | . . . ;

Figure 6.10.: CEPS Load Transaction: Part of Data Type Definition

to the card and the corresponding response RespI). The relevant part of the data
type definition is depicted in Figure 6.10.

Table 6.2 shows a part of the definition of the concretisation of the abstract
QuestF messages. The sequences concrete(Ck

i) of concretisation elements and the
sets values(transv) of possible values of the transaction variables were chosen such
that the test driver generates and expects data conforming to the CEP specifica-
tions.

In the example, the message Init(2) to the card is translated e.g. to the bit se-
quence

0x 90 50 00 00 17 16 0503160901 0CCC0E 1234FFFF 123456780FFF 00000002 00

Here, “0x” indicates that the bit sequence is given in hexadecimal notation. The
constructor of the message is Init, so the test driver looks up the definition of
concrete(Init) (see Table 6.2). The first six bytes are constants, for the transaction
variable DTHRLDA a correctly encoded date/time value 0x0503160901 is chosen,
etc. The underlined part corresponds to the transaction amount 2, retrieved via
getIM(Init(2)).

As the reply RespI(MacS1(KCI, 0, 2),HashTrData(R CEP)), the test driver expects

0x 21 123123FF 1122334455FF 050404 NTCEP S1 h 0a DDCEP 9000

NTCEP, the transaction identifier assigned by the card, and DDCEP (discretionary
data) are read from the reply and added to the store for later use. The MAC S1
can be verified after DDCEP was read, because then all data that is part of S1 and

162

6.5. Case Study: CEPS Load Transaction

Table 6.2.: Concretisation of Abstract CEPS Messages

Constructor Ck
i concrete(Ck

i)
Init [0x90, 0x50, 0x00, 0x00, 0x17, 0x16, DTHRLDA, CURRLDA, IDLACQ,

IDLDA, getIM(this), 0x00]
RespI [0x21, IDISS, IDCEP, DEXPCEP, NTCEP, getRIS1(this), getRIHC(this),

0x0A, DDCEP, 0x9000]
MacS1 [0x0C, NTCEP, IDISS, IDCEP, getS1Bal(this), BALMAXCEP,

getS1M(this), CURRLDA, DTHRLDA, DEXPCEP, DDCEP, IDLACQ, IDLDA]
HashTrData [IDLACQ, IDLDA, IDISS, IDCEP, NTCEP, getHashTrKey(this)]
R CEP [RCEP]
.

transv values(transv)
DTHRLDA {x ∈ Z : x is correctly encoded date/time value}
IDLACQ {0x 1234FF FF}
NTCEP {x ∈ Z : x is 32 bit integer} (transaction identifier from card)
KCI {0x 2A0C 40 . . . BC} (192 bit key between card and issuer)
RCEP {x ∈ Z : x is 128 bit integer} (random number from card)
.

the key KCI are known to the test driver. The hash h cannot be verified because the
value of R CEP is not available. Thus, h is added to the constraints in conditions
and will be checked at a later execution step. The other transaction variables such
as IDISS were assumed to have a fixed value (only one element in values(transv))
that is checked by the test driver.

In the model of the Card component, it is assumed that the card’s balance is
initially zero. Thus, before each test sequence is applied, the test driver must send
a preamble such that the balance stored on the card to be tested is reset. We do
that by reading the balance and sending a command sequence to withdraw the
respective amount. Besides, to obtain the log entry (message 10 in Figure 6.8), an
additional request message must be sent to the card, which for simplification has
been omitted in the model and included in the test driver.

6.5.3. Test Execution and Evaluation

Using an implementation of the test driver described in Section 6.4, we conducted
tests of the unlinked load functionality of a CEPS purse card application with test
sequences computed from the AutoFocus/Quest model. The tested CEPS purse
card application was developed in JavaCard and deployed on a JavaCard-based
smart card. It is described in more detail in [Hei03].

As a first step, we computed test sequences from the threat scenario using general
testing criteria (see the remarks under“Emphasis on Completeness” in Section 6.3).
In particular, we covered all critical transitions of the Card component with test se-

163

6. Model-Based Security Testing

quences and generated a test sequence for each alternative in the data type definition
of the type TMessage (e.g. Init, Credit and InquireCardInfo) and each critical control
state of the automaton of the Card component such that a message belonging to the
respective alternative is received by the Card component while the automaton is in
the respective control state (an extension of channel coverage). Conducting these
tests led to the discovery of a number of inconsistencies between the model and
the implementation. For instance, it was specified in the model that the card can
process an InquireCardInfo message between the processing of the Init and Credit
messages, whereas in the implementation, the transaction state is reset when an
InquireCardInfo message is received. The CEP specifications do not fix a particular
behaviour in this case. This and similar inconsistencies were eliminated by either
changing the model or the implementation. In the described case, the implementa-
tion was changed by removing the code where the transaction state was reset. After
the changes were carried out, the test driver reported a pass verdict for all applied
test sequences. Cryptographic expressions were generated and validated correctly.

In addition, we performed vulnerability tests using the 12 test sequences whose
generation was described in Section 6.5.1 (6 test sequences generated by derivation
of test case specifications from security requirements and 6 test sequences generated
by inserting faults). For this purpose, we planted faults into the CEPS purse card
application by modifying the code and monitored the capability of the test sequences
to detect these faults. We chose three kinds of faults:

• general condition validation faults: omission of a conditional statement cor-
responding to validation of a condition that should in normal executions not
be fulfilled (e.g. not setting the condition code to “fail” if the received S2
MAC was incorrect), respectively replacing conditions or parts of conditions
that should in normal executions be fulfilled with true (e.g. always crediting
the transaction amount rather than only if the condition code is “ok”). 9
such modifications are possible in the Java method in the CEPS purse card
application where the Credit message is processed.

• manually selected faults which make executions possible that violate the se-
curity requirements within one transaction and which concern aspects of the
implementation that were not omitted in the model (e.g. writing “fail” to the
log even though the transaction completed successfully). We selected 9 such
faults, 3 for each security requirement.

• faults concerning aspects of the implementation that were abstracted in the
model and dealt with by the test driver: for all 24 occurrences of transaction
variables in the concretisations of Init, RespI, MacS1 and HashTrData (see
Table 6.2; terms built with the latter two constructors can appear as subterms

164

6.5. Case Study: CEPS Load Transaction

Table 6.3.: Results of Testing CEPS Load Application

#faults #faults detected total # failed tests
planted

t.c. spec. fault t.c.spec. fault
derivation insertion derivation insertion
(6 t.s.) (6 t.s.) (6 t.s.) (6 t.s.)

condition 9 4 4 8 out of 54 9 out of 54
validation
violations of 9 9 9 22 out of 54 27 out of 54
security
requirements
corruption of 24 24 24 122 out of 144 134 out of 144
abstracted
transaction data

of terms built with RespI), we changed the implementation such that a wrong
value for the corresponding data element is received or sent.

For each of the 42 faults, a modified version of the implementation was built
and the 12 test sequences were applied. Table 6.3 shows the results. It lists the
number of faults detected by the test sequences generated by derivation of test
case specifications from security requirements and by inserting faults, respectively.
Moreover, the total number of tests leading to a “fail” result (i.e., detecting the
fault) is given for both cases.

4 out of the 9 condition validation faults were detected. All of the 4 detected faults
introduced vulnerabilities with respect to the security requirements (e.g., allowing
to credit the card without a valid S2 MAC). Of the remaining 5 planted faults,
three are generally not detectable, because they do not affect the behaviour of the
implementation (one concerns the repetition of a condition check done before, for
robustness reasons; the other two concern erroneously trying to read a non-existing
data element of the Init message which is not used later on). The fourth fault
involves checking the APDU for correct length. It is not detected because we do
not consider faults at the APDU level . The last fault could actually be detected
by an appropriate test sequence: here, contrary to the specification, the R CEP is
output by the card even though no R LSAM was provided by the LSAM. However,
this fault does not correspond to a violation of the security requirements, which only
state that on failure of a transaction, R CEP must be output if R LSAM was received
but not that it must not be output if R LSAM was not received. Approximately
the same number of tests lead to the detection of faults for both derivation of test
case specifications from security requirements and fault insertion.

All 9 planted faults leading to violations of the security requirements were de-

165

6. Model-Based Security Testing

tected. Thus, the generated test sequences cover well the security-critical function-
ality of the implementation. It must be noted though that not all faults leading to
the violation of a security requirement pr were detected by test sequences generated
from test case specifications derived from pr , respectively by test sequences gen-
erated by inserting faults into the model leading to a violation of pr . Sometimes,
test sequences generated with respect to the other (related) security requirements
detected these faults. To improve the fault detection with respect to a single secu-
rity requirement, a larger number of test sequences must be generated per test case
specification (we generated only one) using an additional coverage criterion such as
channel coverage; or a more comprehensive mutation function must be used in the
case of inserting faults. More tests lead to the detection of faults for fault insertion
than for derivation of test case specifications from security requirements. This is
because in testing using fault insertion, also information about possible faults (i.e.,
the mutation function) is used for test sequence generation, thus the fault detec-
tion capability of the test sequences is better if the mutation function was selected
appropriately. However, computing the test sequences takes considerably longer.

Finally, all 24 planted faults concerning the corruption of abstracted transaction
data were detected. Usually, such a result cannot be achieved, because the test
driver can only verify the consistency of the transaction data with values specificed
in the concretisation, generated, or received previously. However, in the RespI mes-
sage of the CEPS load protocol, all transaction data sent and received is contained
again in the S1 MAC. Therefore, the test driver can detect a single corruption by
verifying S1. Corruptions of the transaction data in the hash contained in the RespI
message are also detected, but only in test sequences that cause the card to output
R CEP. Otherwise, the hash cannot be verified. The total number of failed tests is
comparatively high because all generated test sequences contain an Init-RespI inter-
action. There are more failed tests in the fault insertion case because more of the
respective test sequences cause the card to output R CEP.

The CEPS load application case study demonstrates that specification-based se-
curity testing based on a security-enriched model can indeed be successfully applied
for the generation and execution of application-specific vulnerability tests. An im-
portant advantage is that small additional effort is needed if a verified security-
enriched model is already available. Further empirical evaluation of the given
strategies for the generation of vulnerability tests, necessary for a more rigorous
assessment of their effectiveness, is subject of ongoing work. As a part of this eval-
uation, our approach will be applied for test sequence generation for security-critical
service-based systems in the project Mewadis [Mew04].

166

6.6. Related Work

6.6. Related Work

Model-Based Generation of Test Sequences

General references to research into model-based test sequence generation have been
given in Section 6.2. In [Pre03] (p. 76ff), a description is given of possibilities to
derive test case specifications from universal properties for the purpose of safety
testing. This is related to our approach for the derivation of test case specifications
from security requirements (see Section 6.3.1), whereas we start from the negations
of the requirements, focus on patterns for common security requirements and for-
mally state the respective derived test case specifications. In [ABM98], an approach
for the generation of test sequences using model checking is presented where muta-
tions are introduced into a model and the model checker is used to generate traces
that distinguish these mutations from the original model. [ADX01] describes gen-
eration of test sequences for safety properties (invariants) using mutation analysis.
The general mutation operators used both in [ABM98] and [ADX01] are described
in [BOY00].

Security Testing

In [CB03], a model-based approach for security functional testing is described based
on models in the specification language SCR. Test case specifications are determined
by a generic coverage criterion (domain convergence path, a kind of condition cov-
erage). The approach is focused on access control. The use of cryptography in
input and output data is not considered. The AVA approach [VM01] is designed to
allow the assessment of the susceptibility of code against perturbations of the data
state. For each of a defined set of perturbations, the implementation is tested if a
violation of security requirements becomes possible. If this is the case, a potential
vulnerability has been detected. Likewise, [DM00] suggests perturbations of the
environment (e.g. file attributes). No specific testing criteria are used ([VM01] em-
ploys statistical testing), cryptography is not considered and a formal specification
is not assumed to be given. In the PROTOS approach [Kak01] already mentioned
in Section 6.3, security-critical protocols are specified in the form of grammars.
Mutations of the grammars are carried out such that illegal message parts are sent
and it is monitored if this causes the implementation to crash by covering the exe-
cutions of the protocol involving the illegal message parts. Therefore, the PROTOS
approach is particularly suitable for testing of implementation-level vulnerabilities
such as buffer overflow.

In [JW01c] (joint paper with J. Jürjens), we describe a model-based approach for
firewall testing.

167

6. Model-Based Security Testing

Concretisation

Usually, the concretisation of abstract test sequences gained through model-based
test sequence generation is performed by an application-specific test driver, often
implemented in a scripting language. In [PPS+03] (where an application of the
testing method from [Pre03, Löt03] is described), Python is used for this purpose.
Issues arising because of the use of cryptography in the model are also addressed
in this paper, by verifying concrete cryptographic data or abstracting from the
concrete content of a message if sufficient information for its verification is not
available. In contrast, our approach described in Section 6.4 and [WJ02] aims at
providing a generic concretisation mapping, and supporting consistency checks for
abstracted transaction data and delayed verification of cryptographic messages.
In the model-based testing approach presented in [DBG01], test concretisation is
achieved by the definition of a mapping from variable assignments (as parts of a
test sequence) to macros that are translated to concrete command sequences to
be sent to and received from the implementation. Security-specific issues are not
addressed. In the PROTOS approach [Kak01], for test concretisation grammar
symbols are mapped by rules to scripting commands that are executed by the test
driver. The examples given do not involve the use of cryptography.

6.7. Summary and Discussion

We explained how a threat scenario generated from a security-enriched model can
be used for the purpose of security testing to gain confidence in the security of
an implementation. To this end, we adapted methods from model-based testing
to the domain of security-critical systems. Both security functional testing and
vulnerability testing are supported.

We presented concepts for the generation of test sequences for security-
critical systems from the threat scenario. Which test sequences are to be gener-
ated is determined by test case specifications resulting from testing criteria. For
security functional testing, classical structural and functional coverage criteria can
be applied. The annotations in the security-enriched model make it possible to focus
on critical parts. For vulnerability testing, we gave two testing criteria where the se-
curity requirements are taken into account and which should lead to test sequences
likely to detect possible vulnerabilities of the implementation. By derivation of
test case specifications from security requirements, we obtain test sequences
that fulfil properties that can contribute to the violation of security requirements.
By inserting faults into a model, we obtain test sequences leading to the violation
of security requirements, which we use to test if the implementation reacts correctly
in these cases. Fault insertion corresponds to a model transformation depending on
a mutation function which specifies how the terms in a model can be modified.

168

6.7. Summary and Discussion

We gave a mutation function for terms in the functional language QuestF taking
into account the security-specific extensions described in Section 4.2.6.

The messages in the generated test sequences are terms in QuestF. To execute
a test, these abstract messages must be concretised. We explained how this can
be achieved by way of a concretisation mapping and a test driver using a
generated test sequence and a concretisation mapping as its input for performing
a test of the implementation. Our approach supports the use of cryptography,
in particular the verification of the results of cryptographic operations, which is
delayed if the necessary information is not available. In addition, the test driver
deals with data which was modelled symbolically in the abstract model or which
was left out to reduce the model’s complexity.

For an evaluation, functionality for the generation of test sequences based on
bounded model checking and a test driver have been implemented as plugins for
the AutoFocus/Quest tool. We demonstrated model-based security testing
at the example of a CEPS purse card application and evaluated its capability of
detecting faults planted into the implementation. Our approach worked well both
in detecting faults in the security-critical behaviour reflected in the model and in
the handling of symbolically modelled or omitted transaction data.

According to the current state of research, there seem to be no general criteria
for the assessment of the quality of test suites [Pre03], with the exception of con-
formance tests under severely restrictive assumptions about the underlying system
model (see e.g. [Ura92, LY96]; here the underlying system model are (non-extended)
finite state machines, where the size of the state space of the implementation must
be known and relatively small). The main benefit of the testing criteria to derive
test sequences described in this chapter is that test sequences can be generated from
the security-enriched model under consideration of the security requirements with
low additional effort needed on part of the test engineer. In particular, a model
of the environment to control the test generation need not be manually built, but
is generated automatically together with appropriate test case specifications. On
the other hand, the test engineer is free to refine the test case specifications or to
generate additional test sequences using structural testing criteria. Empirical eval-
uation of the presented method with the help of additional case studies is subject
of further work.

Note that our model-based testing approach does not aim at replacing conven-
tional vulnerability testing techniques completely. Rather, we reduce the necessary
effort by automating the test of application-specific vulnerabilities reflected on the
level of the available security-enriched model and its concretisation.

169

6. Model-Based Security Testing

170

7. Security Mechanisms: Layered
Protocols

In top-down oriented development of security-critical systems, one begins with an
abstract specification of the security-relevant aspects, which is concretised in a
stepwise fashion by selecting appropriate security mechanisms. In this chapter, we
show how such an approach can be supported by model-based development tech-
niques. Based on abstract assumptions annotated to model elements to restrict the
intruder’s capabilities, the appropriate security mechanisms are applied by introduc-
ing them via model transformations. In particular, we give model transformations
that preserve security and thus make it unnecessary to repeat the verification of
the security requirements. We focus on security mechanisms realising assumptions
on communication channels by the introduction of additional protocol layers.

This chapter is structured as follows. In Section 7.1, we describe the general
concepts of the application of security mechanisms as a part of our model-based
approach to the development of security-critical systems. A model transformation
for the insertion of layered protocols into communication channels is presented in
Section 7.2. Section 7.3 is devoted to model transformations preserving security.
We show what conditions must be ensured such that the security requirements are
still fulfilled after such a transformation, and show how these conditions can be
proven, both manually and partly automated using SAT solving. Moreover, we
give examples for security patterns representing common uses of encryption and/or
signatures.

In Section 7.4, we demonstrate our stepwise approach at the example of the
bank application case study, where the communication between client and server
is tunnelled through an SSL connection. References to related work are given in
Section 7.5, and we conclude in Section 7.6 with a summary and discussion.

Early stages of the presented work have been published in [JPW02, GHJW03].

7.1. Application of Security Mechanisms

Stepwise, top-down oriented development of security-critical systems eases reason-
ing about their security: one can start with a set of global security requirements
and an abstract specification and modularise the justification that the security re-
quirements are fulfilled in the low-level design by tracing them through the different

171

7. Security Mechanisms: Layered Protocols

Figure 7.1.: Mechanism Application

abstraction levels. The decisions on the use of concrete security mechanisms such
as particular authentication protocols or access control methods, or even on key
sizes or cryptographic algorithms, should be left open in the first stages of design
to allow for maximum flexibility and to be able to reason about the security of the
mechanisms and cryptographic algorithms separately. A top-down oriented process
especially accounts for the fact that security in general affects the whole system at
all levels of abstraction.

In our approach, abstract specifications of security-relevant aspects of a system
are integrated into a model in the form of assumptions restricting the intruder’s
capabilities (see Section 4.2.4). For example, we state that a communication chan-
nel cannot be eavesdropped (by the annotation secret) or a component cannot be
accessed (by the annotation node), but we do not fix how these assumptions are
enforced. In later development stages, it must be decided if

• the assumptions are fulfilled by the environment or by measures out of scope
of the model (for example, the communication channel is implemented by a
dedicated communication link or the component is placed on a smart card),
if

• the corresponding threats can be tolerated (for example, because their reali-
sation requires excessive effort), or if

• an appropriate security mechanism must be applied.

In the context of model-based development, the application of a security mech-
anism can be seen as a model transformation by which abstract assumptions are
eliminated by a mechanism countering the corresponding threats. The model trans-
formation can be carried out manually, or automatically based on additional anno-
tations specifying the security mechanism to be applied (see Section 7.2).

In general, after the application of a security mechanism, the security verifica-
tion must be repeated, because additional vulnerabilities could have been intro-
duced. For this purpose, a new threat scenario must be derived from the trans-

172

7.2. Insertion of Protocol Layer

formed security-enriched model and the security requirements must be verified (see
Chapter 5).

Under certain conditions, model transformations for the application of security
mechanisms can be defined that preserve the validity of the security requirements.
We call these transformations “security patterns”, described in further detail in
Section 7.3.

Security mechanisms are applied until no more assumptions are left that are not
either fulfilled by the environment or by measures out of scope of the model, except
if they correspond to risks that can be tolerated. The final design acts as a basis
for coding or code generation. Figure 7.1 summarises the described process.

Note that here we are mainly concerned with the application of mechanisms
to models that are verified secure. Models that violate a security requirement
can be corrected by directly applying security mechanisms (such as the insertion
of a protocol layer described in Section 7.2) as well, but also by the revision of
security requirements or by weakening threats or strengthening assumptions (see
Section 5.3). In this case, the security verification must always be repeated.

Testing at Different Abstraction Levels

The different stages of the design can also be utilised for testing of an implementa-
tion at different levels of abstraction. For example, one can first test the interaction
of two components via a channel annotated with secret without testing the mecha-
nism that enforces the confidentiality of the transferred data (for this purpose, the
test driver must have access to the messages before they are processed according to
the mechanism). If no errors are found, tests also considering the applied mechanism
can be performed, by using the transformed model for test sequence generation, for
example with the help of test sequences on the level of the encrypted link. Besides,
if a separate specification is available, the security mechanism can also be tested
separately (in our example, the general establishment of and communication on the
encrypted link).

7.2. Insertion of Protocol Layer

In this section, we describe a model transformation to insert an additional protocol
layer into a model over which the communication via selected channels is tunnelled
and show at an example how this transformation can be used to realise abstract
security assumptions on a channel.

For this purpose, in Section 4.2.5 we presented annotations to specify lower-level
protocol layers and their use in a model. Figure 7.2 shows how the model trans-
formation is performed based on the annotations. The annotations {protocol = c}
on the channels connecting the components c1 and c2 in the original model (see

173

7. Security Mechanisms: Layered Protocols

PSfrag replacements

c1
c2

p1

p2

p3

p4{protocol = c}

{protocol = c}
{protoChannel = pc1}

{protoChannel = pc2}

(a) Original ModelPSfrag replacements

c′1 c′2

ch1 ch2 ch3 ch4

{protoChannel = pc1}

{protoChannel = pc1} {protoChannel = pc2}{protoChannel = pc2}

Component c

(b) Protocol Component with Protocol Layer to be Inserted

PSfrag replacements

c1 c2

(c′1)
tunnel
c

(c′2)
tunnel
c

p1 p2 p3 p4

(ch1)
tunnel
c (ch2)

tunnel
c

(ch3)
tunnel
c (ch4)

tunnel
c

(c) Result of Transformation

Figure 7.2.: Model Transformation for Insertion of Protocol Layer

174

7.2. Insertion of Protocol Layer

Figure 7.2(a)) indicate that the messages sent via these channels are to be tunneled
using the protocol realised by the protocol component c. The protocol component
c is depicted in Figure 7.2(b). The protoChannel annotations on the pairs of input
and output ports of the component c indicate protocol channels and are referred to
by corresponding annotations on the channels of the original model. In the trans-
formed model, a message originally sent via a channel with a {protoChannel =n}
annotation is sent to the source port of the corresponding protocol channel, pro-
cessed by the protocol and then (possibly) delivered to the receiving component via
the destination port of the protocol channel. Figure 7.2(c) shows the result of the
transformation. The (c′i)

tunnel
c and (ch i)

tunnel
c denote copies of the components and

channels in c.
In the following, we give a formal definition of the structural part of the trans-

formation “insertion of protocol layer”. Let M be the original model and Main
be its top level component. For simplicity, we assume that a library of protocol
components is already part of the model and that the protocol components have
a non-hierarchical structure. Also, we assume that the Main component contains
only channels with the annotation {protocol = c} for the insertion of one instance
of the tunnelling protocol specified via the protocol component c and that each
channel annotated with {protocol = c} is also annotated with {protoChannel =n}
for some n. The insertion of multiple instance of a protocol and the omission of the
protoChannel annotation will be addressed later.

In the transformation, the subcomponents of c and their ports, as well as the
ports of c not annotated with protoChannel, are copied into Main:

ComponentM
′

= ComponentM ∪ {c′tunnel
c : c′ ∈ subComponentsM(c)}

subComponentsM
′

(Main) = subComponentsM(Main) ∪

{c′tunnel
c : c′ ∈ subComponentsM(c)}

PortM
′

= PortM ∪
{ptunnel

c : p ∈
⋃

c′∈subComponentsM(c) inPortsM(c′) ∪

outPortsM(c′)} ∪
{ptunnel

c : p ∈ inPortsM(c) ∪ outPortsM(c) ∧
¬∃n : (protoChannel, n) ∈ tagsM(p)}

∀c′ ∈ subComponentsM(c) :

inPortsM
′

(c′tunnel
c) = {ptunnel

c : p ∈ inPortsM(c′)}

outPortsM
′

(c′tunnel
c) = {ptunnel

c : p ∈ outPortsM(c′)}

Here, the copies of the subcomponents c′ of c and of the ports p of the subcom-
ponents c′ or of c itself that are created by the insertion of the protocol layer c
are denoted with c′tunnel

c and ptunnel
c respectively. The ports of c annotated with

protoChannel are not copied, because the channels connected to them are instead

175

7. Security Mechanisms: Layered Protocols

connected to the ports of the channels to be tunnelled. Let TunnelledChannels(M, c)
be the set of channels of Main to be tunnelled via the layered protocol specified by
c:

TunnelledChannels(M, c) = {ch ∈ channelsM(Main) : (protocol, c) ∈ tagsM(ch)}

Then, the set of channels of the transformed model is the set of channels of
the original model with the tunnelled channels removed and copies ch tunnel

c of the
channels of c added:

ChannelM
′

= ChannelM \ TunneledChannels(M, c) ∪

{ch tunnel
c : ch ∈ channelsM(c)}

It remains to show how the added channels are to be connected. If the source
or destination port of a channel ch in the protocol component c is annotated with
protoChannel, its copy ch tunnel

c is connected to the source or destination port of the
tunnelled channel with the same annotation. Otherwise, ch tunnel

c is connected to
the copy of its original source or destination port. Formally:

∀ch ∈ channelsM(c) :

sourcePM′

(chtunnel
c) =























sourcePM(ch ′), if
∃ch ′ ∈ TunneledChannels(M, c) : ∃n :

(protoChannel, n) ∈ tagsM(ch ′) ∧
(protoChannel, n) ∈ tagsM(sourcePM(ch))

ptunnel
c , otherwise, for p = sourcePM(ch)

destPM′

(ch tunnel
c) =























destP(ch ′), if
∃ch ′ ∈ TunneledChannels(M, c) : ∃n :

(protoChannel, n) ∈ tagsM(ch ′) ∧
(protoChannel, n) ∈ tagsM(destPM(ch))

ptunnel
c , otherwise, for p = destPM(ch)

In the example in Figure 7.2, the ports p1 and p3 become the source and des-
tination ports of the channels (ch1)

tunnel
c and (ch3)

tunnel
c , and the ports p2 and p4

become the destination and source ports of the channels (ch 2)
tunnel
c and (ch4)

tunnel
c .

This concludes the formal definition of the structural part of the transformation
“insertion of protocol layer”. Besides, the automata assigned to the subcomponents
of the protocol layer must be copied together with their states, transitions and local
variables. Ports appearing in the input and output patterns must be replaced by
their copies, but no other changes need to be made. A hierarchical substructure of
the components of the protocol layer would merely require that the substructure of

176

7.2. Insertion of Protocol Layer

the respective components is copied into the transformed model as well. A plugin
for AutoFocus/Quest also supporting hierarchy was implemented to carry out the
described transformation automatically.

Omitted protoChannel Annotations and Insertion of Multiple Protocol Instances

If the protoChannel annotations are omitted, appropriate annotations can be in-
serted automatically before the transformation. As pointed out in Section 4.2.5,
this is only possible if there is only one protocol channel (i.e. one pair of input and
output ports) in the protocol component c and only one tunnelled channel in the
original model. In this case, the tunnelled channel and the ports of the protocol
channel are both annotated with the same (arbitrary) protoChannel annotation.

If multiple instances of a protocol layer are to be inserted, a sequence of transfor-
mations as described above is performed. As the set TunnelledChannels(M, c), the
subset of the channels annotated with (protocol, c) with the same (protoInstance, n)
tag is taken. For each instance n, new copies of the components, ports and channels
of the protocol component c must be created.

Type-Independent Protocol Channels

Often, the behaviour of a protocol layer is independent of the actual type of mes-
sages to be transferred via a protocol channel, because the received messages are
only forwarded, possibly embedded into larger messages. This makes it possible to
insert a protocol layer into a model regardless of the types of messages on the chan-
nels to be tunnelled, but requires a careful adaptation of the transformed model.

In a protocol component c, we call a protocol channel of type typek type-indepen-
dent if no constructors, selectors or discriminators of type typek appear in the
terms on the transitions of the automata of the subcomponents of c. In addition, if
a subcomponent of c has a local variable whose values can contain (sub-)terms of
type typek, it must be ensured that a value is written to the variable before it is first
read (so that its initial value does not affect the subcomponent’s behaviour). The
latter condition can in general only be verified dynamically. To be able to verify it
statically, one can for instance require additionally that there is a boolean variable
indicating if the variable of type typek has already been written to and that there
are preconditions that only allow read access if the boolean variable evaluates to
true.

In the transformation, the type of the type-independent protocol channel can be
replaced by the type of the tunnelled channel throughout the copied parts of the
protocol component c. If there are data type definitions of types typek′

depending
on typek, they must also be copied, typek must be replaced by the type of the
tunnelled channel and typek′

must be replaced by the copy. If necessary, this must

177

7. Security Mechanisms: Layered Protocols

be repeated recursively until no more replacements are to be performed.

If there is more than one type-independent protocol channel, it must be ensured
that the replacement is carried out consistently. I.e., if two type-independent pro-
tocol channels have the same type, the types of the tunnelled channels that replace
the types of the protocol channels must also be the same.

For simplicity, in the following we only consider protocol layers where the protocol
channels already are of the same type as the channels to be tunnelled through them,
such that the above described replacements do not need to be performed.

Example: Shared Key Encryption Layer

As a simple example of the application of protocol layers in security-critical sys-
tems, Figure 7.3 shows the specification of a shared key encryption layer transmit-
ting messages over an unreliable channel. The protocol component SharedKeyEncr
(see Figure 7.3(a)) has two subcomponents Encr and Decr, whose behaviour is spec-
ified by the STDs in Figure 7.3(b) and Figure 7.3(c) respectively. The data type
definitions and function definitions are given in Figure 7.3(d).

The Encr component receives messages of type TMessage from the source port of
the protocol channel encrTunnel, encrypts them with the key KED shared between
Encr and Decr, and transmits them as encrypted messages of type TEncrMsg to
the component Decr via the channel transf, which is annotated with public (i.e.,
the intruder has full access to this channel). Decr attempts to decrypt the received
messages, and if this succeeds forwards them to the destination port of the protocol
channel encrTunnel. We assume the key KED is not known to the intruder, as
specified by the function declaration of knowsIntruderTKey.

Figure 7.4 shows how this protocol layer can be used to realise a channel requiring
confidential and authentic communication. In Figure 7.4(a), a simple model is
depicted with a channel AtoB between two components A and B. The annotations
secret and auth on the channel state that data sent via this channel is only readable
by component B, and if component B receives data via this channel, it is assured
that the data has indeed been sent by component A.

If in the implemented system, there can only be an unreliable channel between
A and B, the described assumptions can be realised by the shared key encryption
layer. In Figure 7.4(b), appropriate annotations have been assigned to the channel
for the insertion of the shared key encryption layer by the above described model
transformation.

Figure 7.4(c) shows the result of the transformation, where the shared key en-
cryption layer has been inserted (for simplicity, we use the original channel names
instead of the copies). Note that here the assumptions secret and auth are not
present anymore — the intruder has full access to the channel transmitting the
messages between Encr and Decr. However, the intruder must not have access to

178

7.2. Insertion of Protocol Layer

Encr Decr

inEncr: TMessage outDecr: TMessage

transf: TEncrMsg
{public}

{protoChannel=encrTunnel} {protoChannel=encrTunnel}

SharedKeyEncr

(a) Shared Key Encryption Layer (SSD)

Initial

(b) Shared Key Encryption Layer
(STD Encr)

Initial

(c) Shared Key Encryption Layer (STD Decr)

data TMessage = EmptyTMessage | MsgA | MsgB;
data TKey = KA | KED | EmptyTKey;
data TEncrMsg = EncrMsg(TKey,getData:TMessage) | EmptyTEncrMsg;
fun invTKey(x:TKey) = x;
fun knowsIntruderTKey(x) = not(x==KED);

(d) Shared Key Encryption Layer (DTD)

Figure 7.3.: Shared Key Encryption Layer

179

7. Security Mechanisms: Layered Protocols

A B
{public} {secret} {auth}

AtoB

(a) Original Model (with Assumptions)

A B{protocol=SharedKeyEncr}
{protoChannel=encrTunnel}

AtoB

(b) Annotations for Insertion of Protocol Layer

Encr Decr

inEncr: TMessage outDecr: TMessage

transf: TEncrMsg
{public}

A B

(c) Result of Transformation

Figure 7.4.: Application of Shared Key Encryption Layer

the channels between A and Encr, and between Decr and B respectively; otherwise,
the intruder could intercept and manipulate the messages directly on these chan-
nels. This is reflected by the fact that there are no public annotations on these
channels. Also note that the protoChannel annotation could have been omitted as
there is only one way of inserting the protocol layer into the channel between A and
B.

7.3. Security Patterns

The shared key encryption layer described in the previous section is an example
for a security pattern: under specific conditions, a channel annotated with public,
secret and auth can be replaced by the shared key encryption layer without it being

180

7.3. Security Patterns

necessary to repeat the verification of the security requirements.
In general, we understand by a security pattern a description of a way of trans-

forming a model such that the validity of the security requirements is preserved.
We call the transformation itself a security-preserving transformation. By the ap-
plication of a security pattern, the reasoning about the security of the resulting
system is modularised into the reasoning about the security of the original system
and the reasoning about the security of the pattern (which needs to be performed
only once). This leads to a reduction of the verification effort.

In the following, we describe security-preserving transformations and conditions
for proving the preservation of security requirements in more detail, show how such
proofs can be supported by bounded model checking, and give small examples for
security patterns and how they are applied.

7.3.1. Security-Preserving Transformations

Definition 7.3.1. A security-preserving transformation of a model M with top-
level component Main is a transformation such that the set of security requirements
does not change and the security requirements that are fulfilled in the threat sce-
nario ofM are also fulfilled in the threat scenario of the transformed model M ′.

LetMT andM′T be the threat scenarios ofM andM′, resulting from the threat
scenario generation transformation described in Chapter 5. We need to show that
for each attack on the system given by the Main component in M′T there is an
attack on the corresponding system inMT.

This condition is fulfilled if the behaviour of Main in M′T is a refinement of
the behaviour of Main in MT with respect to the common state variables. In
general, it is desirable to have a refinement instead of mere preservation of the
security requirements, because in this case, all other universal trace properties of
the original model are preserved as well. In fact, in most cases the transformed
model should actually exhibit the same behaviour as before (possibly with some
delay introduced), such that no functionality is lost. Our examples for security
patterns have this property, but corresponding proof strategies are out of scope of
this work. Similar techniques as used in Section 5.3.3 for the completeness proof of
the specialised intruder model can be applied for the consideration of delays (i.e.,
systems with a request/reply architecture and attacks with delay).

Additional Intruder Knowledge

The intruder knowledge must be treated in a special way in the refinement. We al-
low the intruder knowledge in the threat scenario of the original model to be larger
than the intruder knowledge in the threat scenario of the transformed model, to ac-
count for possible delays introduced by the security mechanisms. In this case,

181

7. Security Mechanisms: Layered Protocols

the security requirements are still preserved, provided that properties referring
to the intruder knowledge only occur as confidentiality requirements of the form
never(learnedIntruder(x)) (more generally, learnedIntruder(x) must occur under an
odd number of negations). However, often the intruder gains additional knowledge
when a security mechanism has been applied, such that there is no trace in the
threat scenario of the original model with the same or larger intruder knowledge as
in threat scenario of the transformed model. For example, from eavesdropping the
public channel in the shared key encryption layer, the intruder learns the encrypted
messages. This is not dangerous in itself, but we need to show that the additional
knowledge cannot be exploited.

We allow additional knowledge if

• the additional knowledge does not change the values the intruder can send
to the other connected components (for instance, because their types do not
match the types on the components’ interfaces), such that the intruder cannot
interfere with the other components, and if

• none of the values in the additional knowledge are mentioned in the security
requirements.

If this is not the case, one must add the additional knowledge to the knowledge of
the intruder in the threat scenario of the original model and then carry out another
verification of the threat scenario of the original model to show that no security
requirements are violated. Because the additional knowledge has been included
in the threat scenario of the original model, we can now find for each trace in
the threat scenario of the transformed model a trace in the threat scenario of the
original model with the same or larger intruder knowledge.

Formalisation

Let JMainKG
MT = (V G

MT;Main
, IG

MT;Main
, TG

MT;Main
) be the semantics of the Main com-

ponent in MT, where the behaviour of the Intruder component is given by the
generic intruder behaviour described in Section 5.2.2 . ΨJMainKG

MT
is the predicate

characterising its set of computations. Besides, we use the same notation for the
variables, initial states and transition relation in the semantics of the Intruder com-
ponent in MT and in the semantics of the Main component and of the Intruder
component inM′T. For instance, the set of state variables of the (generic) Intruder
component in M′T is denoted as V G

M′T;Intruder
. We define a refinement relation

RefineRelG(σ, σ′,AddKIntr) between traces σ′ of the Main component in M′T and
traces σ of the Main component inMT as follows:

182

7.3. Security Patterns

RefineRelG(σ, σ′,AddKIntr) =
∀i :
∀v ∈ (V G

MT;Main
∩ V G

M′T;Main
) \ (V G

MT;Intruder
∪ V G

M′T;Intruder
) :

σ(i)(v) = σ′(i)(v) ∧
σ(i)(KIntr) ∪ AddKIntr ⊇ σ′(i)(KIntr)

I.e., RefineRelG(σ, σ′,AddKIntr) holds if σ and σ′ have the same values of the
common state variables except the variables of the intruder, and the intruder has
at most some additional knowledge AddKIntr in σ′.

Theorem 7.3.2. The transformation of M to M′ is a security-preserving trans-
formation if {pr ∈ propertiesM(Main) : SecRequirement ∈ tagsM(pr)} = {pr ∈
propertiesM

′

(Main) : SecRequirement ∈ tagsM
′

(pr)} and for all computations σ′ of
the Main component of M′T, there is a computation σ of the Main component of
MT with RefineRelG(σ, σ′,AddKIntr), and security requirements referring to the in-
truder knowledge are of the form never(learnedIntruder(x)), where x is not contained
in the additional knowledge AddKIntr of the intruder in the original model:

∃AddKIntr :

∀σ′ : ΨJMainKG

M′T
(σ′)⇒ ∃σ : ΨJMainKG

MT
(σ) ∧ RefineRelG(σ, σ′,AddKIntr) ∧

∀pr ∈ propertiesM(Main) : (SecRequirement ∈ tagsM(pr) ∧
∃x : learnedIntruder(x) E pr) ⇒

∃x : pr = never(learnedIntruder(x)) ∧ x /∈ AddKIntr

Proof Let pr be a security requirement. If σ ′ is a computation violating pr in the
system given by the Main component inM′T, by the above definition one can derive
a computation σ violating pr in the threat scenario of the system given by the Main
component inMT. This is because pr must refer to the common state variables or
to the intruder knowledge (otherwise, pr cannot be evaluated in both the original
and the transformed model). The common state variables have the same values,
because RefineRelG(σ, σ′,AddKIntr) holds. Besides, if a property of the form pr =
never(learnedIntruder(x)) is violated in σ ′, x is contained in the intruder knowledge
σ′(i)(KIntr) inM′T at some execution step i. As RefineRelG(σ, σ′,AddKIntr) holds and
we required that x is not contained in AddKIntr, x must be contained in the intruder
knowledge σ(i)(KIntr), and thus pr is also violated inMT. Therefore, according to
Definition 7.3.1, the transformation of M to M′ is security-preserving.

183

7. Security Mechanisms: Layered Protocols

7.3.2. Security Patterns for Layered Protocols

To show that the application of a layered protocol such as of the shared key en-
cryption layer shown in Figure 7.4 is a security pattern, one must show that the
corresponding model transformation is security-preserving. However, in general this
is dependent on the possible sequences of messages that are sent over the tunnelled
channels (in the example, from component A to component B) and on the possible
interference with other attacked parts of the model.

To be able to show that a particular layered protocol is always applicable, we
assume the most general components to be connected to the tunneled channels
and prove that the corresponding model transformation is a security-preserving
transformation for any sequence of messages transferred on each of the channels.

Besides, to account for the other attacked parts of the model, we assume there
is a set of additional public channels where arbitrary sequences of messages are
transferred for each type of messages for which we assume there can be channels
in the original model that can be attacked. Additional assumptions on the public
channels, such as secret, auth, integrity or noreplace, only restrict the actions the
intruder can perform on (i.e., the data he can read from or write to) such a channel.
Thus, if the transformation is security-preserving without such assumptions, it is
also security-preserving when the assumptions are present and thus the additional
assumptions need not be considered.

Example: Shared Key Encryption Layer

Using the above described concepts, we can show that the insertion of the shared
key encryption layer into a channel annotated with public, secret and auth is a
security pattern, provided that

• the secret key KED is not derivable from the initial intruder knowledge and
from the messages the intruder receives via other attacked channels,

• the security requirements that refer to the intruder knowledge are of the form
never(learnedIntruder(x)),

• the security requirements do not refer to the encrypted terms, i.e. do not
contain subterms of the form learnedIntruder(Encr(KED, x)), and

• the type TEncrMsg is not used in the original model.

Proof Sketch Figure 7.5(a) shows the threat scenario MT of the original model
depicted in Figure 7.4(a), including a number of ports for the intruder to read from
and write to additional public channels of type TMessage, denoted with pIntr

chpub;in
and

184

7.3. Security Patterns

IntruderA B
(public/secret/auth)

... ...
PSfrag replacements

pIntr
AtoB;in pIntr

AtoB;out

pIntr
chpub;in

pIntr
chpub;out

(a) Threat Scenario MT of Original Model M

A B

Intruder
(public) DecrEncr

InEncr OutDecr... ...
PSfrag replacements

pIntr
transf;in pIntr

transf;out

pIntr
chpub;in

pIntr
chpub;out

(b) Threat Scenario M′T of Transformed Model M′

Figure 7.5.: Threat Scenarios for Application of Shared Key Encryption Layer

pIntr
chpub;out. We denote the set of additional public channels ch pub by AddPubChannels.

Figure 7.5(b) shows the threat scenarioM′T of the transformed model depicted in
Figure 7.4(c), with the same ports for the additional channels. Component A can
send and component B can receive any sequence of messages of type TMessage.

Let σ′ be a computation of Main in M′T. From the semantics of the Intruder
component in the generic threat scenario described in Section 5.2.2 and from the
semantics of the Encr and Decr components, we can conclude that for any i ≥ 0:

σ′(i)(MpIntr
transf;in

) ⊆ {EncrMsg(KED, x) : x ∈
⋃

0≤j≤i−2{σ
′(j)(InEncr)} ∧ x 6=⊥}

σ′(i)(KIntr) ⊆
derivable({EncrMsg(KED, x) : x ∈

⋃

0≤j≤i−2{σ
′(j)(InEncr)} ∧ x 6=⊥} ∪

⋃

0≤j≤i−1,chpub∈AddPubChannels{σ
′(j)(pIntr

chpub;in
)} ∪ IK(M))

I.e., the message store MpIntr
transf;in

for the messages received via pIntr
transf;in contains the

185

7. Security Mechanisms: Layered Protocols

encryptions of the messages that the Encr component received via the channel InEncr
until execution step i−2 (because the Encr and Intruder components introduces one
time tick delay each). Besides, the intruder knowledge KIntr consists of the values
that can be derived from these encrypted messages, the messages received from
the other attacked channels (with one time tick delay) and the initial intruder
knowledge.

As according to the assumptions KED cannot be derived from the messages re-
ceived from the other attacked channels and the initial intruder knowledge, and
because TEncrMsg does not appear in the original model M, no additional mes-
sages can be derived from the encrypted messages EncrMsg(KED, x), and thus

σ′(i)(KIntr) ⊆ {EncrMsg(KED, x) : x ∈
⋃

0≤j≤i−2{σ
′(j)(InEncr)} ∧ x 6=⊥} ∪

derivable(
⋃

0≤j≤i−1,chpub∈AddPubChannels{σ
′(j)(pIntr

chpub;in
)} ∪ IK(M))

σ′(i)(pIntr
transf ;out) ∈ {⊥} ∪

{EncrMsg(KED, x) : x ∈
⋃

0≤j≤i−1{σ
′(j)(InEncr)} ∧ x 6=⊥} ∪

derivable(
⋃

0≤j≤i,chpub∈AddPubChannels{σ
′(j)(pIntr

chpub;in
)} ∪ IK(M))

I.e., the intruder knowledge KIntr can be separated into the encrypted messages
EncrMsg(KED, x) and the values that can be derived from the messages from the
other attacked channels and the initial intruder knowledge. From these values,
the output of the intruder on port pIntr

transf;out is chosen. Outputs are performed
immediately (see Section 5.2.2), thus the delay of one time tick introduced by the
intruder for storing the messages is compensated for by taking the values of MpIntr

transf;in

and KIntr in the following execution step.
The Decr component only accepts messages of the form EncrMsg(KED, x) and

forwards the decrypted part x. As no messages of the form EncrMsg(KED, x) can
be derived from the messages from the other attacked channels and the initial
intruder knowledge, we have

σ′(i)(OutDecr) ∈ {⊥} ∪
⋃

0≤j≤i−2{σ
′(j)(InEncr)}

I.e., on the channel OutDecr exactly any of the messages can appear that have
been sent to the channel InEncr until up to two time ticks earlier. Finally, as the
additional channels are of type TMessage, the messages EncrMsg(KED, x) cannot
be sent to these channels. Thus,

σ′(i)(pIntr
chpub;out) ∈ {⊥} ∪ derivable(

⋃

0≤j≤i,chpub∈AddPubChannels{σ
′(j)(pIntr

chpub;in
)} ∪

IK(M))

I.e., any values derivable from the messages received from the additional channels
and the initial knowledge can be sent to the additional channels, but not the values
received via the tunneled channel InEncr.

186

7.3. Security Patterns

This is the same behaviour as can be derived from the semantics of the threat sce-
nario of the original model with the abstract channel annotated with public, secret
and auth depicted in Figure 7.5(a): the intruder cannot add the values sent to him
from component A to his knowledge and cannot insert own values into the messages
sent to component B. The only possibility are replays. The only difference is that
the intruder in the original model can additionally replay the values received during
the last two time ticks, because there is no delay as was introduced by the com-
ponents Encr and Decr. Besides, the intruder in the transformed model has as ad-
ditional knowledge at most AddKIntr = {EncrMsg(KED, x) : x ∈ Value(TMessage)}.
We assumed that these values do not appear in the security requirements.

Therefore, we can derive from σ′ a trace σ of the Main component of MT with
the same values of the common state variables except the variables of the intruder,
and only the additional knowledge AddKIntr. For this reason, the condition given
in Theorem 7.3.2 is fulfilled and thus the introduction of the shared key encryption
layer is a security pattern.

7.3.3. Proof Support Using SAT Solving

The proof that a given model transformation is a security-preserving transformation
can be partly automated with the help of SAT solving. For this purpose, we use SAT
solving in a similar way as for test sequence generation (see Section 6.2) to compute
a trace of the threat scenario of the transformed model that has no corresponding
trace in the threat scenario of the original model. If no such trace can be computed,
we conclude that the transformation is indeed security-preserving.

First, we choose a suitable set of values for the additional intruder knowledge
AddKIntr, such that none of the values in AddKIntr appear in the security require-
ments.

Using the terminology from Section 7.3.1, traces σ and σ ′, where σ′ is a trace in
the transformed threat scenario and σ is a trace which corresponds to σ ′ via the
refinement relation but is no trace of the original threat scenario, fulfil the following
predicate:

ΨJMainK
M′T

(σ′) ∧ RefineRel(σ, σ′,AddKIntr) ∧ ¬ΨJMainK
MT

(σ)

Here, the threat scenarios are the specialised ones (see Section 5.3), to be able to
apply SAT solving. I.e., JMainKM′T and JMainKMT are used as the semantics of the
threat scenario of the transformed and original model rather than JMainKG

M′T
and

JMainKG
MT . The refinement relation RefineRel(σ, σ ′,AddKIntr) is the adaptation of

RefineRelG(σ, σ′,AddKIntr) to the state variables of the specialised intruder model.

With the help of SAT solving, we try to compute traces σ, σ ′ fulfilling the above
predicate for a fixed bound l on their length. If this is not possible, the transfor-

187

7. Security Mechanisms: Layered Protocols

mation ofM to M′ is security-preserving for traces with length less than or equal
to l, as we will show below. However, the converse is not true. If there is more
than one trace σ that fulfils RefineRel(σ, σ ′,AddKIntr) for given σ′ and AddKIntr, the
SAT procedure can determine such a σ that is not a trace of the original threat
scenario even though there is another such σ that is. In this case, σ and σ ′ do not
demonstrate that the transformation ofM to M′ is not security-preserving.

This problem can occur because there can be local variables of the intruder in
the original model that have no correspondence in the transformed model (such as
the replacec variables), or because the intruder in the original model has been mod-
ified, for example by introducing delays (see below). For this reason, we strengthen
RefineRel(σ, σ′,AddKIntr) to a refinement relation RefineRel′(σ, σ′,AddKIntr) that im-
plies RefineRel(σ, σ′,AddKIntr) and fixes all state variables in σ for given σ ′ and
AddKIntr. Besides, for any σ′, there must always be a σ such that RefineRel′(σ, σ′,
AddKIntr) is fulfilled. The strengthened RefineRel′(σ, σ′,AddKIntr) must be deter-
mined manually such that the “right” σ is fixed for a given σ ′ and thus the SAT
solver does not produce spurious solutions. If there is no solution, we have a
security-preserving transformation, because

¬
(

∃σ′ : ∃σ : ΨJMainK
M′T

(σ′) ∧ RefineRel′(σ, σ′,AddKIntr) ∧ ¬ΨJMainK
MT

(σ)
)

⇒
∀σ′ : ∀σ : ¬ΨJMainK

M′T
(σ′) ∨ ¬RefineRel′(σ, σ′,AddKIntr) ∨ΨJMainK

MT
(σ)

⇒
∀σ′ : ΨJMainK

M′T
(σ′)⇒ ∀σ : RefineRel′(σ, σ′,AddKIntr)⇒ ΨJMainK

MT
(σ)

⇒(∗)

∀σ′ : ΨJMainK
M′T

(σ′)⇒ ∃σ : RefineRel′(σ, σ′,AddKIntr) ∧ΨJMainK
MT

(σ)

⇒(∗∗)

∀σ′ : ΨJMainK
M′T

(σ′)⇒ ∃σ : ΨJMainK
MT

(σ) ∧ RefineRel(σ, σ′,AddKIntr)

The last line corresponds to the condition for security-preserving transformations
given in Theorem 7.3.2 using the generic threat scenarios and refinement relation.
The implication marked (*) is fulfilled because as assumed above, for any σ ′ there is
a σ such that RefineRel′(σ, σ′,AddKIntr) is fulfilled, and RefineRel′(σ, σ′,AddKIntr)⇒
ΨJMainK

MT
(σ) is fulfilled for all σ. The implication marked (**) is fulfilled because

RefineRel′ implies RefineRel.

Propagation to Generic Threat Scenario

If the specialised intruder models are sound and complete with respect to the threat
scenarios MT andM′T (see Section 5.3.3) and l was chosen sufficiently large such
that no attacks are missed, the result from SAT solving can be propagated to the

188

7.3. Security Patterns

generic threat scenario. This is because for each trace σ ′G violating a security re-
quirement pr in the generic threat scenario of the transformed model, there is a
trace σ′ in the specialised threat scenario of the transformed model such that pr
is violated (because of completeness of the specialised intruder model with respect
to the threat scenario of the transformed model). Due to the result from SAT
solving and Theorem 7.3.2 (adapted to the specialised versions of the intruder and
the refinement relation), there is a trace σ of the specialised threat scenario of the
original model where pr is violated. Therefore, there is a trace σG of the generic
threat scenario of the original model where pr is violated (because of soundness
of the specialised intruder model with respect to the threat scenario of the origi-
nal model), and thus the transformation is security-preserving with respect to the
generic threat scenario as well.

Restriction of Intruder Behaviour

In some cases, finding an appropriate refinement relation can be made easier by first
showing that the transformation is security-preserving with respect to a restricted
version of the intruder in the original model. For instance, if the security pattern
introduces delays into the communication on a channel, a restricted version of the
intruder in the original model can be specified that introduces the same delays.
If the transformation is security-preserving with respect to a restricted version of
the intruder in the original model, it is also security-preserving with respect to the
non-restricted version of the intruder in the original model. We will demonstrate
this strategy below, at the example of the shared key encryption layer.

Summary

Altogether, to prove that a transformation is security-preserving, the following steps
are to be taken:

• Choose the additional intruder knowledge in the transformed model AddKIntr

appropriately.

• Possibly restrict the intruder’s behaviour in the original model.

• Define a strengthened refinement relation RefineRel′(σ, σ′,AddKIntr) that fixes
all state variables in σ for given σ′.

• Use SAT solving to compute solutions with length up to bound l for

ΨJMainK
M′T

(σ′) ∧ RefineRel′(σ, σ′,AddKIntr) ∧ ¬ΨJMainK
MT

(σ)

189

7. Security Mechanisms: Layered Protocols

• If there are no solutions, the transformation ofM toM′ is security-preserving
for traces with length less than or equal to l. Otherwise, σ ′ is a trace in the
transformed model which has no corresponding trace (via the refinement rela-
tion) in the original model. Either the additional knowledge, the strengthened
refinement relation or the transformation itself need to be modified and the
given steps need to be repeated. Note that this way, errors in the additional
conjuncts of the strengthened refinement relation are detected, and thus the
validity of the proof does not depend on their correctness. A good strategy
to find errors is to gradually decrease l to find the shortest trace for which
a counterexample is produced, and to carefully examine the last step of this
counterexample, which must be the cause for the error.

Example: Shared Key Encryption Layer

In the following, we apply the above described method to the insertion of the shared
key encryption layer.

We choose the same additional intruder knowledge AddKIntr as in the manual
proof in Section 7.3.2:

AddKIntr = {EncrMsg(KED, x) : x ∈ Value(TMessage)}

Besides, we restrict the intruder’s behaviour in the threat scenario of the original
model such that a value sent by component A is only available to the intruder after
an additional delay of one time tick, and likewise component B can only receive a
value from the intruder after an additional delay of one time tick. This makes it
easier to specify a correspondence between the state variables of the intruder in the
original model and the intruder in the transformed model, where the same delay
is introduced by the Encr and Decr components. Figure 7.6 shows the restricted
threat scenario of the original model. Here, the components D1 and D2 accept
messages on their input ports and forward them with one time tick delay. For the
threat scenario of the transformed model, see Figure 7.5(b) on page 185.

For simplicity, we do not consider additional public channels, because the gener-
ation of the specialised intruder model currently requires that all attacked channels
have the same type (see Section 5.3.2). However, the treatment of additional pub-
lic channels would not introduce additional complexity, but merely require that the
correspondence of the values on the ports of these channels in the original model
and in the transformed model is stated in the refinement relation.

We now explain the conjuncts in the strengthened refinement relation RefineRel ′(σ,
σ′,AddKIntr). For all i ≤ l (where l is the maximum trace length), the values sent
by component A, respectively received from component B, must be the same in the
threat scenario of the original model as in the threat scenario of the transformed
model:

190

7.3. Security Patterns

A B

Intruder

InD1 OutD2

D2D1 (public/secret/auth)

restricted Intruder

PSfrag replacements
pIntr
AtoB;in pIntr

AtoB;out

Figure 7.6.: Shared Key Encryption Layer: Threat ScenarioMT for Original Model
M (restricted)

σ(i)(InD1) = σ′(i)(InEncr)
σ(i)(OutD2) = σ′(i)(OutDecr)

The knowledge of the intruder in the threat scenario of the original model must be
the same as the knowledge of the intruder in the threat scenario of the transformed
model, with the exception of the messages in AddKIntr:

σ(i)(storeTMessage;1) = σ′(i)(storeTMessage;1)
σ(i)(storeTKey;1) = σ′(i)(storeTKey;1)

σ(i)(storeTEncrMsg;1) =

{

EmptyTEncrMsg, if σ′(i)(storeTEncrMsg;1) ∈ AddKIntr

σ′(i)(storeTEncrMsg;1), otherwise

In the example, the specialised intruder in the threat scenarios for both the orig-
inal and the transformed models can store one message for each type in the vari-
ables storeTMessage;1, storeTKey;1 and storeTEncrMsg;1 (see Section 5.3.2). Messages in
AddKIntr (which are of type TEncrMsg) do not need to be contained in the knowledge
of the intruder of the threat scenario of the original model and thus are mapped to
EmptyTEncrMsg.

The conjunction of the above terms forms the refinement relation RefineRel(σ, σ ′,
AddKIntr). As mentioned above, to be able to use SAT solving to verify if we have a
security-preserving transformation, all state variables in the trace σ of the original
model must be fixed. For this purpose, we strengthen RefineRel(σ, σ ′,AddKIntr) to
RefineRel′(σ, σ′,AddKIntr) by adding the following conjuncts:

191

7. Security Mechanisms: Layered Protocols

σ(i)(pIntr
AtoB;in) =

{

⊥ , if σ′(i)(pIntr
transf ;in) =⊥

getData(KED, σ′(i)(pIntr
transf ;in)), otherwise

σ(i)(pIntr
AtoB;out) =

{

⊥ , if σ′(i)(pIntr
transf ;out) =⊥

getData(KED, σ′(i)(pIntr
transf ;out)), otherwise

σ(i)(MpIntr
AtoB;in

;1) = getData(KED, σ′(i)(storeTEncrMsg;1))

I.e., if a message encrypted with KED is sent by the Encr component respectively
received by the Decr component in the threat scenario of the transformed model,
in the corresponding trace in the threat scenario of the original model the clear-
text is sent respectively received by the delay components D1 and D2. Besides,
the capability of the intruder in the threat scenario of the transformed model to
replay a message of type TEncrMsg encrypted with KED (stored in storeTEncrMsg;1)
corresponds to the capability of the intruder in the threat scenario of the original
model to replay the cleartext (stored in MpIntr

AtoB;in
;1). Messages not encrypted with

KED are blocked by the Decr component in the threat scenario of the transformed
model and thus in the corresponding trace in the threat scenario of the original
model, no message is sent.

Finally, we used SAT solving to find solutions for

ΨJMainK
M′T

(σ′) ∧ RefineRel′(σ, σ′,AddKIntr) ∧ ¬ΨJMainK
MT

(σ)

with the help of an extension of the translation of AutoFocus/Quest models
to formulas in propositional logic described in [WLPS00]. As no solutions can
be found, we conclude that the introduction of the shared key encryption layer is
indeed a security-preserving transformation. In case of this (admittedly simple)
example, performance is not an issue — even for the bound l = 50 the SAT solver
Chaff terminates in less than 3s on the used system.

7.3.4. Further Patterns for Encryption/Signature

In this section, we give further examples for modelling common uses of encryption
and/or signature of transferred messages as layered protocols and state the abstract
assumptions on the tunnelled channels these layered protocols can be inserted into.
These are examples for security patterns a designer applying a model-based develop-
ment methodology can be provided with as part of a library from which appropriate
security patterns can be selected during the development. A more complex security
pattern is described in Section 7.4.

A summary of the security patterns described in this and the previous sections
is shown in Table 7.1. In addition to the name of the security pattern, the abstract

192

7.3. Security Patterns

Table 7.1.: Encryption/Signature Patterns for Abstract Channels

Security Pattern Realised Further Conditions
Assumptions

Shared Key Encryption secret, auth, confidentiality of shared key in M
integrity

Public Key Encryption secret confidentiality of secret key inM
Message Authentication Code auth, integrity confidentiality of MAC key inM
Public Key Signature auth, integrity confidentiality of secret key inM
Public Key Signature + secret, auth confidentiality of secret encryption /

Encryption integrity signature keys in M

assumptions on a channel it can be applied to are given, as well as further condi-
tions that need to be ensured such that the corresponding model transformation is
security-preserving. Besides, as in case of the shared key encryption layer described
in the previous sections, we require that the encrypted or signed messages trans-
ferred by the protocol layer are not derivable from the initial intruder knowledge
and the messages the intruder receives via the other attacked channels (i.e., the
encrypted or signed messages are confidential in the original model M), and that
the type of these messages is not used in the original model.

All patterns have a similar architecture as the shared key encryption layer (see
Figure 7.3): the messages to be sent via the tunnelled channel are received from
the sender via a channel not accessible by the intruder, encrypted and/or signed
and transferred via a public channel the intruder has full access to. The messages
received from the public channel are decrypted and/or their signature is verified
and then are possibly forwarded to the receiver via a channel not accessible by the
intruder.

Using the concepts described in Section 7.3.2, we proved that the application of
each of the patterns is a security-preserving transformation provided that the given
conditions are fulfilled. For space reasons, we confine ourselves in the following to
giving a brief informal description and justification for each security pattern.

Shared Key Encryption This pattern was described in detail in the previous sec-
tions.

Public Key Encryption In the public key encryption layer, the messages are en-
crypted with a public key, transferred via the public channel and then de-
crypted with the corresponding secret key. If the secret key is confidential
in the original model, the messages transferred on the public channel cannot
be decrypted by the intruder, i.e. the transferred data stays confidential (cor-
responding to the assumption secret on the tunnelled channel in the original
model). Authenticity or integrity is not provided by the public key encryp-

193

7. Security Mechanisms: Layered Protocols

tion layer, because the intruder can encrypt own messages with the public
key, which he may possess. Availability is not provided either, as the intruder
on the public channel can intercept the transferred messages. If availability
should be provided on the level of the abstract channel, the public channel
over which the messages are transferred by the protocol layer must provide
availability as well and the notion of availability used on the level of the ab-
stract channel must allow for the delays introduced by the protocol layer.
The same observations with regard to availability apply to the other patterns
described in this section. Therefore, we omit this aspect in the following.

Message Authentication Code Here, the messages are transferred in clear, to-
gether with a message authentication code depending on a shared key. On
reception, the message authentication code is verified. The message authen-
tication code acts as a kind of signature ensuring that if the shared key is
confidential in the original model, the intruder can only insert replays into
the public channel. This corresponds to the assumption auth on the tun-
nelled channel. Integrity (assumption integrity) is provided as well, because
in our definition it is implied by authenticity. Confidentiality of the messages
themselves is not provided.

Public Key Signature If the messages transferred via the public channel include the
cleartext and a signature based on a secret key, the layered protocol realises
the assumptions auth and integrity as well, presumed that the secret key is
confidential in the original model. The main difference to the use of a message
authentication code is that it is ensured that the receiving component cannot
generate signed messages on its own, and therefore that if a signed message is
received, its cleartext must indeed have been passed to the tunnelled channel
by the sender, even if the receiver has been compromised (non-repudiation).
Such a scenario can be examined by additionally giving the intruder access to
the secrets of the receiving component in the layered protocol. In this case,
the public key signature still realises the assumptions auth and integrity on
the tunnelled channel, but the message authentication code does not. Again,
confidentiality is not provided.

Public Key Signature + Encryption This pattern is a combination of public key
encryption and public key signature, i.e. the messages transferred are signed
based on a secret key and then encrypted with a public key (using two different
key pairs). Because the intruder can neither decrypt the messages on the
public channel nor insert messages other than replays, both the assumptions
auth and integrity and the assumption secret on the tunnelled channel are
realised. As in the public key signature pattern, non-repudiation is provided
as well.

194

7.4. Case Study: The Bank Application

Client

A

Webserver

A

Backend

A

StoB:TMessage

BtoS:TMessage

StoC:TMessage

CtoS:TMessage

{replace}
{node} {node}

{node}

{public} {secret} {auth}

{public} {secret} {auth}

Figure 7.7.: Bank Application: Security-Enriched Model (SSD, modified)

7.4. Case Study: The Bank Application

In the following, we demonstrate the techniques described in this chapter at the ex-
ample of a more comprehensive case study than the shared key encryption layer: we
describe modelling and verification of the bank application presented in Section 4.3
together with an SSL protocol layer over which the communication between the
client and the Web server is tunnelled.

7.4.1. The Bank Application Revisited

Reconsider the abstract model of the bank application described in Section 4.3
for requesting and managing electronic order forms, structured into a component
Client representing the client’s computer and Web browser, a component Webserver,
representing the Web server and application server, and a component Backend for
the back-end system and its data bases.

As specified in the abstract security-enriched model (cf. Figure 7.7, a slightly
modified version of Figure 4.24 on page 78 for reasons given below), we assumed
that the connection between Client and Webserver is confidential, integrity protected
and authenticated on the server side, reflected by the assumption replace annotated
to the Client component indicating that the only possible threat is an intruder
masquerading as a legitimate client. We verified the threat scenario of the abstract
security-enriched model using threat scenario generation and model checking and
showed that the stated security requirements are fulfilled (see Section 5.4.1).

However, in the implemented system the client and the Web server communicate
over the Internet. As ordinary TCP/IP connections do not ensure the required

195

7. Security Mechanisms: Layered Protocols

assumptions, an appropriate secure connection must be established first. In the
bank application, the communication between the client and the Web server is
tunnelled over an SSL connection with server authentication.

In the forthcoming sections, we describe a model of an SSL protocol layer to
be inserted into the channel between the Client and Webserver components and
show that this transformation preserves the bank application’s security. Unlike the
actual SSL protocol, the modelled SSL protocol does not prevent replays, because it
is designed to transfer an unbounded number of messages but the number of possible
values for sequence numbers necessary to prevent replays would have to be finite to
allow model checking. Therefore, to achieve a security-preserving transformation,
we also allow replays in the original security-enriched model. This is achieved by
annotating the channels between Client and Webserver with public, secret and auth.
I.e., if a legitimate client communicates with the Web server, the intruder can
access these channels, but only to insert replays, not to insert own messages or to
add transferred messages to his knowledge. As the model of the bank application
describes a single transaction, the security requirements are still fulfilled with this
modification. We verified this fact using model checking.

7.4.2. SSL Layer (Server Authentication)

Figure 7.8 shows the AutoFocus/Quest model of the SSL layer with server authen-
tication. For simplicity, we focus on the essential parts of the SSL handshake and
record (i.e. transmission) protocols (see [FKK96]). Error handling, time stamps,
session identifiers, negotiation of a cipher suite and compression algorithm, deriva-
tion of the session key from a pre-master key and the transmission of a server
certificate have been omitted. Some of these aspects are treated in the Auto-

Focus/Quest model of the SSL protocol described in [Grü03]. Besides, sequence
numbers have been left out to allow the transfer of an unbounded number of mes-
sages and still keep the data types in the model finite such that it can be verified
by model checking or translated to propositional logic. As pointed out above, this
enables the possibility of replays, which we therefore also assumed possible in the
channels between client and Web server in the threat scenario of the model of the
bank application.

Model

The SSL layer consists of a client side (component SSLClient) and a server side
(component SSLServer), connected by a pair of public channels, which can be ac-
cessed and manipulated by the intruder. The client side and the server side accept
messages of type TMessagKey from the client, respectively from the server, to be
transmitted to the other end of the connection. The SSL protocol messages ex-

196

7.4. Case Study: The Bank Application

{protoChannel=
ClientToServer}

{protoChannel=
ServerToClient}

SSL
Client

SSLServerAuth

SSLClientToServer: TSSLMessage

Server
SSL

ServerToClient}
{protoChannel=

ClientToServer}
{protoChannel=

{public}
SSLServerToClient: TSSLMessage

{public}

CliRecv: TMessagKeyCliSend: TMessagKey
SrvRecv: TMessagKey SrvSend: TMessagKey

(a) SSL Layer (SSD)

Local variables:

TMessagKey q =

EmptyTMessagKey
Init

SentClientHello

Connection

SSLClientToServer!ClientHello(RC,EncrSSLSessK(PK(S),KC))
q = x

(h == HashSSLData(rs,RC,KC))

SSLClientToServer!ClientFin(HashSSLData(RC,rs,KC),EncrMsgC(
 KC,q))

(b) SSL Layer (STD Client)

Local variables:

TSSLNumberKey store_rc =

EmptyTSSLNumberKey

EmptyTSSLNumberKey

TSSLNumberKey store_kc =

is_EncrMsgC(store_kc,e)

SrvSend!getDataEncrMsgC(store_kc,e)

SSLServerToClient!SSLRecord(EncrMsgS(store_kc,x))

Init

GotClientHello

Connection

SSLServerToClient!ServerHelloFin(RS,HashSSLData(RS,rc,kc))
store_rc = rc; store_kc = kc

((h == HashSSLData(store_rc,RS,kc)) && is_EncrMsgC(store_kc,
 e))

SrvSend!getDataEncrMsgC(store_kc,e)

(c) SSL Layer (STD Server)

data TSSLAgent = SSL C | SSL S | SSL A;
data TSSLAKey = PK SSL(TSSLAgent) | SK SSL(TSSLAgent) | EmptyTSSLAKey;
data TSSLNumberKey = EmptyTSSLNumberKey | RC | RS | RA | KC | KA;
data TMessagKey = EmptyTMessagKey | MsgA | MsgB | MsgC;

data TSSLMessage = EmptyTSSLMessage
| ClientHello(TSSLNumberKey, TEncrSSLSessK)
| ServerHelloFin(TSSLNumberKey, THashSSLData)
| ClientFin(THashSSLData,TSSLRecord)
| SSLRecord(TSSLRecord);

data TEncrSSLSessK = EncrSSLSessK(TSSLAKey,TSSLNumberKey);
data THashSSLData = HashSSLData(TSSLNumberKey,TSSLNumberKey,TSSLNumberKey);
data TSSLRecord = EncrMsgC(TSSLNumberKey,getDataEncrMsgC: TMessagKey)

| EncrMsgS(TSSLNumberKey,getDataEncrMsgS: TMessagKey);

(d) SSL Layer (DTD)

Figure 7.8.: SSL Layer (Server Authentication)

197

7. Security Mechanisms: Layered Protocols

changed between the client and the server side have the type TSSLMessage.

At the beginning of the execution, the client side of the SSL layer waits for
the reception of a message from the client to be transmitted to the server. The
received message is stored in a local variable q and the SSL handshake is initi-
ated by sending a message ClientHello(RC, EncrSSLSessK(PK SSL(SSL S),KC) to-
wards the server side of the SSL layer via a public channel. Here, RC represents
a nonce, and EncrSSLSessK(PK SSL(SSL S),KC) is the client’s session key KC en-
crypted with the server’s public key PK SSL(SSL S). The server side waits for such
a ClientHello message. If the encrypted part can be decrypted with the server’s
secret key SK SSL(SSL S), the client’s key and the nonce are stored and a random
nonce RS is sent towards the client side together with a hash of RS and the client’s
nonce and key (message ServerHelloFin). On reception of this message and success-
ful verification of the hash, the client side sends a message ClientFin, which includes
a hash of both nonces and the session key (in another order to prevent replays). In
addition, in this message also the first data record is transferred: EncrMsgC(KC, q),
i.e. the message stored in q encrypted with the session key KC. When the server
side receives this message with a correct hash and the data record can be decrypted
with the received session key, the cleartext is forwarded to the server. After this, the
SSL handshake is finished and both the client and server side are in the Connection
state. In the following, messages are received from the client, transmitted by the
client side of the SSL protocol to the server side encrypted with the session key
(SSLRecord messages), decrypted by the server side and forwarded to the server if
the decryption succeeds. In the same way, messages are transmitted from the server
to the client. Note that different constructors EncrMsgC and EncrMsgS are used for
the encrypted messages generated by the client side and by the server side, such
that it is possible to distinguish by which side an encrypted message was generated.
Even without sequence numbers, this prevents the intruder from reflecting a mes-
sage to the sender. In the actual SSL protocol, two different keys derived from the
same session key are used for this purpose.

Security Analysis

We assume that the intruder knows all public keys PK SSL(x), his own secret key
SK SSL(SSL A), an empty/illegal asymmetric key EmptyTSSLAKey, a nonce RA, a
session key KA and an empty/illegal symmetric key or nonce EmptyTSSLNumberKey.
In addition, the intruder can generate an empty/illegal message EmptyTMessagKey.
Other data is only available to the intruder if it can be derived from messages ob-
tained from attacked channels. In particular, the messages MsgA, MsgB, and MsgC
of type TMessagKey that can be transmitted between the client and the server are
not guessable, because TMessagKey ∈ TKey. The intruder knowledge is specified by
appropriate function specifications for knowsIntruderk functions, which we left out

198

7.4. Case Study: The Bank Application

in Figure 7.8.

The model of the SSL protocol layer was analysed using the method for threat
scenario generation and verification by model checking described in Chapter 5. We
verified that the key KC can never be obtained by the intruder (confidentiality of
KC) and that a message MsgA, MsgB or MsgC can only be received by the client if
it was sent before by the server (server authentication). Client authentication is not
provided, which is demonstrated by an appropriate counterexample. Performance
figures are given in Table 5.1 on page 120.

However, this is not sufficient to show that the insertion of the SSL protocol layer
into the model of the bank application indeed preserves the security requirements.
For example, we did not show that the client will not receive any messages at all
once the server has accepted a message from the intruder.

7.4.3. Insertion of SSL Layer

The SSL layer is inserted into the model of the bank application by annotat-
ing the channels StoC and CtoS with (protocol,SSLServerAuth) and by annotating
the channel CtoS with (protoChannel,ClientToServer) and the channel StoC with
(protoChannel,ServerToClient). The application of the transformation described in
Section 7.2 results in a combined model where the messages exchanged between
the components Client and Webserver are tunnelled over the SSL layer. For this
purpose, the message type TMessagKey must be replaced by the type TMessage
used by the bank application for messages to be transferred between Client and
Webserver.

The resulting model can be used for simulation, verification, code generation and
classical test sequence generation purposes. Figure 7.9 shows the beginning of an
EET of a simulation run of the combined model, corresponding to the EET in
Figure 4.21 on page 74.

On the other hand, the threat scenario generated from the combined model is
too complex to allow model checking or generation of vulnerability tests using the
available model checker / SAT solver interfaces.

7.4.4. Layered Verification

To show that the model of the bank application after the insertion of the SSL
layer preserves the security requirements, we proved that the insertion of the SSL
layer into general systems with the same assumptions concerning the tunnelled
channels (annotations public, secret and auth) and the components connected to
them (annotation replace on the component connected to the client side) is a security
pattern. For this purpose, we used the techniques described in Section 7.3, in
particular the SAT solving approach described in Section 7.3.3.

199

7. Security Mechanisms: Layered Protocols

Client SSLClient SSLServer Webserver Backend

CliSend.ClientHello

SSLClientToServer.ClientHello(RC, EncrSSLSessK(PK_SSL(SSL_S), KC))

SSLServerToClient.ServerHelloFin(RS, HashSSLData(RS, RC, KC))

SSLClientToServer.ClientFin(HashSSLData(RC, RS, KC), EncrMsgC(KC, ClientHello))

SrvRecv.ClientHello

SrvSend.NonceID(Nonce)

SSLServerToClient.SSLRecord(EncrMsgS(KC, NonceID(Nonce)))

CliRecv.NonceID(Nonce)

Figure 7.9.: Bank Application / SSL Layer: Combined Model (EET)

Additional Knowledge

The additional knowledge the intruder can gain from eavesdropping on the channels
between SSLClient and SSLServer consists at most of the values of the additional
types introduced by the SSL layer:

AddKIntr = Value(TSSLMessage) ∪ Value(TEncrSSLSessK) ∪
Value(THashSSLData) ∪ Value(TSSLRecord) ∪
Value(TSSLNumberKey) ∪ Value(TSSLAKey) ∪ Value(TSSLAgent)

We assume that the values in AddKIntr are not used in the model the SSL layer
is to be inserted into. In this case, the additional knowledge does not change the
values the intruder can send to components connected via other attacked channels
in the original model, and the truth values of the security requirements are not
influenced. For the model of the bank application, this assumption is fulfilled.

Restricted Intruder

We restricted the intruder’s behaviour in the threat scenario of the original model
in a similar way as in case of the shared key encryption layer (see Section 7.3.3), by

200

7.4. Case Study: The Bank Application

adding two components D1 and D2 that cause delays corresponding to the delays
caused by SSLClient and SSLServer.

In particular, D1 can store a message and release it later (to simulate the be-
haviour of SSLClient, which stores the first message and sends its encryption only
after a successful handshake). The only additional functionality of D1 and D2 is to
forward messages with one tick delay or to block them.

Besides, the intruder in the threat scenario of the original model can wait for
some time performing no interactions, before the replacec variable is assigned in-
dicating whether or not the component connected to the client side is replaced by
the intruder. This corresponds to the time needed by the SSL layer to perform the
first stages of the SSL handshake, where it is still not determined if a connection is
established with the legitimate client or with an intruder. In the intruder model, an
unconditional self-loop in the Init state was added to the Medium component (see
Figure 5.9 on page 104) for this purpose.

Refinement Relation

The strengthened refinement relation RefineRel′(σ, σ′,AddKIntr) we used is analogous
to the strengthened refinement relation specified for the shared key encryption layer
in Section 7.3.3.

We focus on the aspects which are special for the relation between the threat
scenario of the SSL layer and the threat scenario of the original model with its
replace annotation on the component connected to the client side. In particular, we
need to define the correspondence between the replacec variable in the intruder in
the threat scenario of the original model and the state variables of the SSL layer,
and we need to state which messages can be replayed by the intruder and which
messages belong to the intruder knowledge in the threat scenario of the original
model.

The variable replacec is assigned the value True if SSLServer.store kc 6= KC and
SSLServer is not in the control state Init, and False otherwise. If SSLServer is in the
control state Init, the intruder in the threat scenario of the original model waits and
performs no interaction. The reason for this choice is that in the SSL layer, the
commitment if the server establishes a connection with the legitimate client or with
the intruder is exactly made when the SSLServer accepts the session key, stores it
to store kc and changes to the GotClientHello state.

The message stores Mp for replays of messages sent from the client to the server
are assigned the cleartext x of messages EncrMsgC(KC, x), if the intruder knowl-
edge in the threat scenario of the SSL layer contains such messages. The message
stores for replays of messages sent from server to client are fixed analogously with
the cleartext of messages EncrMsgS(KC, x). This reflects the fact that the replay
capability of the intruder in the threat scenario of the original model is only rele-

201

7. Security Mechanisms: Layered Protocols

vant if the SSL connection has been established between the legitimate client and
the server (i.e., replacec = False and thus the intruder in the threat scenario of the
original model cannot insert messages other than replays corresponding to replays
of messages encrypted with KC on the SSL layer).

The knowledge of the intruder in the threat scenario of the original model only
consists of values of type TMessagKey. The other possible values in the knowledge
of the intruder in the threat scenario of the SSL layer belong to AddKIntr. The
variables storing the knowledge of values of type TMessagKey in the intruder in
the threat scenario of the original model are assigned to the corresponding values
of the variables in the intruder in the threat scenario of the SSL layer. This also
affects variables in the intruder in the threat scenario of the SSL layer whose values
contain subterms of type TMessagKey that can potentially be extracted (because
the necessary keys are known or can be generated).

Proof via SAT Solving

By SAT solving, we showed that the insertion of the SSL layer into a pair of channels
annotated with public, secret and auth, and where the component connected to the
client side is annotated with replace, is indeed a security pattern.

For a bound l = 20, the SAT solver Chaff takes 6210s on the used system to
establish that there are no solutions to the corresponding propositional formula.
l = 20 is sufficiently large to cover all relevant interactions between the components
of the SSL layer and the intruder. All counterexamples we obtained because of
initial errors in the refinement relation had length l = 15 or smaller.

Together with the fact that the stated security requirements were verified in the
threat scenario of the original model of the bank application using model checking
(see Section 5.4.1), therefore the transformed model of the bank application after
the insertion of the SSL layer fulfils the stated security requirements as well.

7.5. Related Work

Application of Security Mechanisms in Top-Down Oriented Development

A top-down oriented approach for the development of security-critical systems by
stepwise concretisation is presented in [Eck98]. As an example, the concretisation
of a communication channel is described. In the context of models in the for-
mal method Focus, [Lot97] gives security-specific development activities, including
(security) mechanism embedment, here to be applied if the verification of global
security requirements fails, rather than as a concretisation of abstract assumptions.
[Rud01] describes a top-down oriented design method for cryptographic protocols,
where abstract representations of protocols are derived from a formal specification of

202

7.5. Related Work

the security service a protocol should provide, using synthesis rules. Cryptographic
primitives are first modelled in terms of abstract secure channels. [VWW02] shows
how to integrate security-specific development activities into a waterfall process to
fulfil the requirements stated by the Common Criteria.

Layered Protocols

[Bro04, HB05] describes a general formal model for layered architectures based
on the Focus method. Focus also features several notions of refinement (see
[BS01]). The property that the insertion of a protocol layer is a security-preserving
transformation is related to the notion of interface refinement, i.e. a refinement
relationship between an abstract specification (in our case, the intruder behaviour
in the threat scenario of the original model) and a concrete specification together
with representation specifications translating between the abstract and concrete
levels (in our case, the intruder behaviour in the threat scenario of the transformed
model together with the components realising the protocol).

The Cadence SMV model checker [McM99] supports refinement verification by
specification of a refinement relationship. Refinement between state variables of
the different layers is verified separately for each state variable. Bounded model
checking is not supported.

EAP-TTLS [FBW02] is an example for a layered security protocol, proposed in
the Internet Engineering Task Force (IETF). Here, a (client) authentication protocol
(EAP, extensible authentication protocol) is tunnelled over a previously established
TLS channel providing confidentiality and server authentication. [ANN03] describes
a man-in-the-middle attack on such protocols, arising if the client authentication
protocol can also be used in an untunnelled form. In our approach, we can allow
or rule out such attacks by appropriate annotations in the security-enriched model
of the protocol components.

Security Patterns

General work on security patterns includes [YB97, FP01, Sch03]. Following the
design patterns movement [GHJV95], in the context of that work security patterns
are regarded as well-understood solutions to recurring information security prob-
lems, described in a structured way. In contrast, we focus on formally defined
transformations preserving the security requirements.

[Jür01] addresses secrecy-preserving refinement using a formal model and ap-
plies it to a secure channel implemented by a handshake protocol (TLS). [Jür04]
contains an example where UMLsec is used for the modelling and analysis of an
abstract channel preserving secrecy and of its realisation by encryption. [AFG02]
describes how to abstractly model secure channels in the join calculus and gives a

203

7. Security Mechanisms: Layered Protocols

security-preserving translation of such models to the sjoin calculus, which includes
cryptographic primitives, by mapping communication on abstract secure channels
to encrypted communication. The respective proofs are carried out manually.

The approach presented in [HL01] goes in the opposite direction, by giving sim-
plifying transformations for security protocols (e.g. removing encryptions or fields)
such that if no attacks are found in the simplified protocol, then there are no attacks
in the original version.

7.6. Summary and Discussion

We presented a model-based approach for the application of security mech-
anisms within a model of a security-critical system, as part of a top-down ori-
ented development process. Here, the purpose of security mechanisms is to
counter threats ruled out in earlier stages by corresponding assumptions. The cen-
tral part of our approach are model transformations for the introduction of
security mechanisms into a model, based on the abstract assumptions annotated
to the model elements.

We gave a model transformation for the insertion of layered protocols
into communication channels, and demonstrated it at the example of a shared-key
encryption layer realising the abstract assumptions confidentiality and authenticity.
The model transformation was implemented as a plugin to the AutoFocus/Quest
tool set.

In general, the verification of security requirements must be repeated after the
application of a security mechanism. We introduced the concept of security pat-
terns, describing transformations of a model for the application of a security mech-
anism such that security requirements that are fulfilled in the original model are
also fulfilled in the transformed model. For this purpose, we formally defined a
condition for security-preserving transformations, which is related to refine-
ment with special treatment of the intruder models in the original and transformed
model. Thus, the security verification can be modularised into the verification of
a model including abstract assumptions and the verification if the application of
security mechanisms to realise the assumptions is security-preserving, which leads
to a reduction of the verification effort.

We explained how to show that the insertion of a particular layered protocol at
an appropriate place in a model is a security pattern and exemplarily carried out
such a proof for the shared-key encryption layer.

To facilitate the verification if a given model transformation is security-
preserving and to make it less error prone, we described an automated approach
based on SAT solving. For this purpose, the designer must state the relationship
between the state variables of the abstract and concrete intruder models. Again,

204

7.6. Summary and Discussion

we applied the approach to the example of the shared-key encryption layer and in
particular showed how to account for delays introduced by the components handling
the protocol. The automated verification support has been integrated into the
AutoFocus/Quest tool set.

We gave examples for further security patterns representing common uses
of encryption and/or signature as layered protocols and stated the abstract as-
sumptions they realise. Developing and evaluating a larger collection of security
patterns is subject of future work. Note that it may not always be possible or de-
sirable to elaborate appropriate abstract assumptions corresponding to a particular
security mechanism such that a security-preserving transformation can be defined.
In particular, we required that the security mechanism is independent of the rest of
the system, in the sense that the additional protocol messages that can be eaves-
dropped do not affect the communication between the other components. Besides,
there are application-specific security mechanisms, such as the payment protocols
described in this work, that provide very specific security services for which it may
be difficult to give appropriate abstract characterisations. In addition, even if ap-
propriate abstract characterisations are found, it is questionable if they can be
re-used in the development of other systems.

Finally, we demonstrated the practical applicability of the presented concepts at
a more complex example, taken from a real-life case study: we describe the layered
verification of the bank application model introduced in Chapter 4, where a
pair of channels in a system with appropriate assumptions is replaced by an SSL
connection preserving the security requirements.

205

7. Security Mechanisms: Layered Protocols

206

8. Conclusion

This chapter concludes the thesis. We summarise and discuss the main results and
give an outlook on future work.

8.1. Summary and Discussion

In this thesis, we presented concepts for an application of model-based development
techniques to the development of security-critical systems. Thereby we aimed to
address the lack of integration of security in current development methodologies, in
particular the lack of the support of integrated security testing and application of
security mechanisms based on formally defined models. An important concern was
the need to improve the accessibility of formally-based specification, verification,
and testing techniques for security-critical systems to non-expert developers in the
area of security, to lower the threshold for the use of such techniques in an industrial
context.

The main results of this work are:

• concepts for an integrated, model-based methodology for the development
of security-critical systems, based on design models enriched with security-
related information;

• model-based approaches for security verification, security testing and appli-
cation of security mechanisms;

• the provision of tool support within a general-purpose CASE tool offering
easy-to-understand graphical description techniques; and

• the demonstration of the practical applicability of the presented concepts in
several case studies.

As an example specification language and tool, we used AutoFocus/Quest,
which provides general description techniques to model distributed systems as net-
works of communicating components specified via finite state machines.

207

8. Conclusion

Modelling Security-related information to be integrated into design models in-
cludes global security requirements, threats, assumptions, and security mechanisms.
We explained how to define and manipulate such security-enriched models at the ex-
ample of AutoFocus/Quest. Within the extended description techniques, the use
of cryptographic operations and data is supported by special constructs added to
the underlying functional language. A formally defined semantics ensures that the
models precisely specify the required behaviour and can thus be used for verification
and testing and as well as a part of the documentation for achieving certification
at high assurance levels (level 5 or higher in the Common Criteria for security
evaluation). We focused on the specification of communication-related threats, as-
sumptions and mechanisms. Other aspects, such as access control rules, or more
detailed information can be integrated in a similar manner, if necessary by addi-
tional description techniques. However, we explicitly did not define a completely
new specification language for security-related behaviour (as done e.g. in protocol
specification languages), to be able to take advantage of existing experience of the
developers, of the use of a domain-specific language and of existing tool support.

Verification We explained how security verification can be performed based on
threat scenarios that can be automatically generated from security-enriched mod-
els. A threat scenario represents the behaviour of a system under attack. It is
given by a model in the same specification language as the original security-enriched
model, such that available verification support can be used for verifying security
requirements and the threat scenario can be easily adapted to analyse customised
threats. A disadvantage of this approach is that idiosyncrasies of the specification
language must be dealt with when generating a model of the intruder behaviour
(in the case of AutoFocus/Quest, e.g. introduced communication delays and the
fact that transitions in state machines are deterministic). We addressed this prob-
lem by additionally defining a generic intruder model on the semantical level and
justifying the soundness and completeness of the intruder model in the generated
threat scenario with respect to the generic intruder model.

Testing Even if a verified model is available, testing is necessary to gain confidence
in the security of an implementation, in particular if reliable code generation is not
supported by the used tool or the generated code is not suitable for deployment. We
presented a first approach for integrated model-based security testing. Two main
activities for model-based security testing were addressed: the generation of test
sequences from a threat scenario with the aim to discover possible vulnerabilities,
and the concretisation of test sequences given in terms of the model, where usually
an abstract notion of messages and cryptography is employed to make verification
feasible. The concretisation is performed by a test driver translating the abstract

208

8.1. Summary and Discussion

messages in the test sequences to bit sequences to be passed to and expected from
the implementation. For test sequence generation, we presented two testing criteria
for the selection of appropriate test sequences. We evaluated our testing approach
based on a case study. The results were promising, nevertheless the actual given
testing criteria should be primarily regarded as a demonstration of the underlying
concepts (manipulation of the security properties respectively of the model for the
purpose of security test sequence generation). Extension and adaption of the testing
criteria for particular systems is not a problem.

Mechanisms Security-critical systems are often developed in a top-down oriented
manner, by first specifying security aspects abstractly and subsequently including
appropriate mechanisms. We explained the utilisation of such a development strat-
egy within a model-based development approach for security-critical systems, by
formulating the application of a security mechanism as a model-based development
activity given by a model transformation. We presented proof concepts to show that
a given model transformation preserves the stated security requirements, and pro-
vided automation support for such proofs based on SAT solving. Thereby, modular
verification is made possible, i.e. splitting the verification task into the verification
of the original model containing abstract assumptions and the verification of se-
curity mechanisms realising these assumptions. We defined the notion of security
patterns as generic descriptions of such security-preserving transformations.

Methodology and Evaluation We put the above described development activi-
ties into the general context of a model-based development methodology for the
development of security-critical systems.

The presented approaches were successfully applied in a number of case studies
from the domain of electronic business and cryptographic protocols. According to
feedback from industrial project partners (in particular [HSG+03]), this work pro-
vides a solid basis for the more widespread use of model-based and formally-defined
methodologies in the development of security-critical systems. We demonstrated
that all necessary design, verification, and testing activities could be carried out
within a model-based development methodology, could be automated to a large
extent, and rigorous completeness and soundness justifications could be applied.

Therefore, we are convinced that by the support of verification, testing and step-
wise development within a general formally-based CASE tool the quality of devel-
oped security-critical systems is considerably improved.

209

8. Conclusion

8.2. Future Work

Currently, follow-up work and further evaluation of the approaches described in this
thesis is carried out within the project Mewadis in cooperation with the German car
manufacturer BMW. The Mewadis project [Mew04] is concerned with techniques for
the analysis, modelling, and validation of reliable, adaptive, context-aware services,
and with process models for their development. The results are prototypically
implemented in the domain of automotive systems. Because of the high criticality of
systems in the automotive domain, security is an important issue. In the following,
we give an outlook on possible future work on the topics described in this thesis.

When, during the development of a system, additional classes of security re-
quirements, threats, and assumptions are encountered, it is useful to extend the
respective means of specification (property patterns or tag definitions) within the
security-enriched models. For instance, for the analysis of availability requirements,
a “fair” intruder may be specified who cannot block the communication indefinitely.
Of particular interest are access control requirements, which we only marginally con-
sidered because of our focus on communication-related aspects. First work on the
specification and verification of access control requirements using the tool Auto-

Focus/Quest is described in [DGJW04], within the context of service-based models
considered in the Mewadis project.

It would also be interesting to adapt the presented approaches to other speci-
fication languages, such as the UML (and particularly, the UMLsec approach) or
the UML-RT, respectively the parts of the UML2.0 derived from the UML-RT
(structured classes with ports and connectors). Structured classes in the UML2.0
are conceptually close to AutoFocus/Quest system structure diagrams. The con-
cepts underlying the approaches described in this thesis do not depend on the choice
of AutoFocus/Quest, but the given concrete realisations and formalisations would
have to be adapted for this purpose.

For security verification, the use of other model checking tools beside SMV or
bounded model checking via SAT solving can be evaluated, to decrease the necessary
time and memory resources, respectively to enlarge the class of models that can be
verified. Towards this end, currently tool connections of AutoFocus/Quest to the
model checkers Spin [Hol97], and SAL [dMOR+04] are developed. SAL also provides
features for the verification of infinite-state systems based on constraint solving
techniques. Besides, the translation of particular AutoFocus/Quest models to the
input language of efficient special-purpose protocol model checkers such as Athena
[SBP01] may be considered.

The empirical results on the quality of generated security test sequences with
respect to their potential to find faults were promising (see Chapter 6). Further case
studies must be carried out to substantiate these results and if necessary to refine the
developed testing criteria. Besides, it would be interesting to integrate the PROTOS

210

8.2. Future Work

approach [Kak01], mainly targeted on the detection of low-level vulnerabilities such
as buffer overflows, into our work.

To support top-down oriented development of security-critical systems, a larger
collection of security patterns may be developed. For instance, in [DGJW04], we
describe a security pattern for the synchronisation of authentication information to
ensure the validity of the stated access control requirements.

Security-enriched models can be used as a basis for code generation. For this
purpose, similar concretisations of abstract data must be performed as in case of
security testing, i.e. the mapping of symbolical representations of cryptographic
operations and data to actual calls to a framework providing cryptography within
the used programming language. The code generator must be adapted to the re-
quirements of the platform the system is to be deployed on. For instance, the Java
dialect JavaCard, in which applications can be written for the deployment on smart
cards containing a Java virtual machine, only supports a subset of the features of
the Java programming language, for which a code generator is available as part of
the AutoFocus/Quest tool set.

If the generated code cannot be used directly to deliver the required functional-
ity (for example, in the event whereby some aspects were abstracted away in the
model), a promising approach would be to employ it as a wrapper for the purpose
of intrusion detection. I.e., the generated code is executed together with the manu-
ally written code, and the generated code serves to detect violations of the security
requirements. If a violation is detected, it can be reported and the current trans-
action can be aborted if necessary. Another possibility is the automatic generation
of security-related deployment information along the lines of [BDL03], for example
an access control policy for Enterprise Java Beans (EJB) or a set of permissions in
the Java-based service framework OSGi considered in the Mewadis project.

Finally, earlier development phases such as security requirements engineering
should be integrated into our methodology, possibly with the help of a recently
developed extension of AutoFocus/Quest supporting requirements specification
and requirements tracing. [DGP+04] describes a combined approach, where in
the early phases UML models are used (in particular, activity diagrams, use case
diagrams and sequence diagrams), within the context of service-based development.
The use cases are extended with the result of a first security analysis. From these
models, AutoFocus/Quest specifications of services are derived for verification,
code generation and testing.

211

8. Conclusion

212

Bibliography

[ABM98] P. E. Ammann, P. E. Black, and W. Majurski. Using Model Checking to
Generate Tests from Specifications. In Proc. 2nd International Conference on
Formal Engineering Methods (ICFEM), 1998.

[ADX01] P. Ammann, W. Ding, and D. Xu. Using a Model Checker to Test Safety
Properties. In Proc. 7th International Conference on Engineering of Complex
Computer Systems (ICECCS), 2001.

[AFG02] M. Abadi, C. Fournet, and G. Gonthier. Secure Implementation of Channel
Abstractions. Information and Computation, 174(1):37–83, 2002.

[AG99] M. Abadi and A. D. Gordon. A Calculus for Cryptographic Protocols: The
Spi Calculus. Information and Computation, 148(1):1–70, 1999.

[AJ01] M. Abadi and J. Jürjens. Formal Eavesdropping and its Computational In-
terpretation. In Proc. 4th International Symposium on Theoretical Aspects of
Computer Software (TACS), 2001.

[AJSW00] N. Asokan, P. Janson, M. Steiner, and M. Waidner. The State of the Art in
Electronic Payment Systems. In M. Zellkowitz, editor, Advances in Comput-
ers, volume 53. Academic Press, 2000.

[And01] R. Anderson. Security Engineering: A Guide to Building Dependable Dis-
tributed Systems. Wiley Computer Publishing, 2001.

[ANN03] N. Asokan, V. Niemi, and K. Nyberg. Man-in-the-Middle in Tunneled Au-
thentication Protocols. In Proc. International Workshop on Security Protocols
(SPW), 2003.

[APS99] V. Apostolopoulos, V. Peris, and D. Saha. Transport Layer Security: How
Much Does It Really cost? In Proc. Conference on Computer Communications
(IEEE INFOCOM), 1999.

[AS85] B. Alpern and F. Schneider. Defining Liveness. Information Processing Let-
ters, 21(4):181–185, 1985.

[AVB+02] A. Armando, V. Vigneron, D. Basin, et al. The AVISS Security Protocol
Analysis Tool. In Proc. 14th International Conference on Computer Aided
Verification (CAV), 2002.

213

Bibliography

[BBH+03] R. Breu, K. Burger, M. Hafner, J. Jürjens, G. Popp, G. Wimmel, and V. Lotz.
Key Issues of a Formally Based Process Model for Security Engieering. In Proc.
16th International Conference on Software & Systems Engineering and their
Applications (ICSSEA), 2003.

[BBHP04] R. Breu, K. Burger, M. Hafner, and G. Popp. Towards a Systematic Devel-
opment of Secure Systems. In Proc. 2nd International Workshop on Security
in Information Systems (WOSIS), 2004.

[BCC+03] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded Model
Checking. In M. Zellkowitz, editor, Advances in Computers, volume 58. Aca-
demic Press, 2003.

[BDL03] D. Basin, J. Doser, and T. Lodderstedt. Model Driven Security for Process-
Oriented Systems. In Proc. 8th ACM Symposium on Access Control Models
and Technologies (SACMAT), 2003.

[Bei90] B. Beizer. Software Testing Techniques. International Thomson Computer
Press, 2nd edition, 1990.

[BHS99] M. Broy, F. Huber, and B. Schätz. AutoFocus – Ein Werkzeugprototyp zur
Entwicklung eingebetteter Systeme. Informatik Forschung und Entwicklung,
14(3), 1999. (in German).

[Bis03] M. Bishop. Computer Security — Art and Science. Pearson Education, 2003.

[BMV03] D. Basin, S. Mödersheim, and L. Viganò. An On-the-Fly Model Checker for
Security Protocol Analysis. In Proc. 8th European Symposium on Research in
Computer Security (ESORICS), 2003.

[BOY00] P. E. Black, V. Okun, and Y. Yesha. Mutation Operators for Specifications.
In Proc. 15th International Conference on Automated Software Engineering
(ASE), 2000.

[Bra03] P. Braun. Metamodellbasierte Kopplung von Werkzeugen in der Software-
entwicklung. Dissertation, Technische Universität München, Nov 2003. (in
German).

[Bro04] M. Broy. Services, Components, Interfaces and Layered Architectures — Spec-
ification, Composition, and Refinement. In Lecture Notes of Marktoberdorf
Summer School, 2004.

[BS01] M. Broy and K. Stølen. Specification and Development of Interactive Systems.
Springer, 2001.

[CB03] R. Chandramouli and M. Blackburn. Model-based Automated Security Func-
tional Testing. In Proc. 7th Workshop on Distributed Objects and Components
Security (DOCSEC), 2003. Presentation slides.

214

Bibliography

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic
Model Checking. In Proc. 14th International Conference on Computer-Aided
Verification (CAV), 2002.

[CEP01] CEPSCO. Common Electronic Purse Specifications, 2001. Business Require-
ments Version 7.0, Functional Requirements Version 6.3, Technical Specifica-
tion Version 2.3, available from http://www.cepsco.com.

[Com99] Common Criteria for Information Technology Security Evaluation Version
2.1. Technical report, 1999. URL: http://www.commoncriteria.org/docs/
index.html.

[DA99] T. Dierks and C. Allen. The TLS Protocol Version 1.0, Jan 1999. Internet
Draft RFC 2246.

[DAC99] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in Property Specifications for
Finite-State Verification. In Proc. 21st International Conference on Software
Engineering (ICSE), 1999.

[DBG01] J. Dushina, M. Benjamin, and D. Geist. Semi-Formal Test Generation with
Genevieve. In Proc. 38th Design Automation Conference (DAC), 2001.

[DF93] J. Dick and A. Faivre. Automating the Generation and Sequencing of Test
Cases from Model-Based Specifications. In FME ’93: Industrial-Strength For-
mal Methods, pages 268–284, 1993.

[DGJW04] M. Deubler, J. Grünbauer, J. Jürjens, and G. Wimmel. Sound Development
of Secure Service-based Systems. In Proc. 1st International Conference on
Service Oriented Computing (ICSOC), 2004.

[DGP+04] M. Deubler, J. Grünbauer, G. Popp, G. Wimmel, and C. Salzmann. Towards
a Model-Based and Incremental Development Process for Service-Based Sys-
tems. In Proc. IASTED International Conference on Software Engineering
(IASTED SE), 2004.

[Die04] R. Dierstein. Sicherheit in der Informatikstechnik–der Begriff IT-Sicherheit.
Informatik Spektrum, 27(4):343–353, 2004. (in German).

[DM00] W. Du and A. Mathur. Testing for Software Vulnerability Using Environment
Perturbation. In Proc. International Conference on Dependable Systems and
Networks (DSN), Workshop on Dependability Despite Malicious Faults, 2000.

[dMOR+04] L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea, and A. Ti-
wari. SAL 2. In Rajeev Alur and Doron Peled, editors, Computer-Aided
Verification, CAV 2004, volume 3114 of LNCS, pages 496–500. Springer, 2004.

[DW99] D. F. D’Souza and A. C. Wills. Components and Frameworks with UML, The
Catalysis Approach. Addison-Wesley, 1999.

215

Bibliography

[DY83] D. Dolev and A. C. Yao. On the Security of Public Key Protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[Eck98] C. Eckert. Sichere, verteilte Systeme – Konzepte, Modelle und Systemar-
chitekturen, 1998. Professorial thesis, Technische Universität München (in
German).

[Eck01] C. Eckert. IT-Sicherheit, Konzepte – Verfahren – Protokolle. Oldenbourg
Wissenschaftsverlag, 2001. (in German).

[Eme90] E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science. Elsevier, 1990.

[FBW02] P. Funk and S. Blake-Wilson. EAP Tunneled TLS Authentication Protocol
(EAP-TTLS), 2002. IETF pppext working group draft draft-ieft-pppext-eap-
ttls-01.txt.

[FH97] E. B. Fernandez and J. C. Hawkins. Extending Use Cases and Interaction
Diagrams to Develop System Architecture Requirements. Technical Report
TR-CSE-97-47, Department of Computer Science and Engineering, Florida
Atlantic University, Boca Raton, Florida, 1997.

[FKK96] A. Freier, P. Karlton, and P. Kocher. The SSL Protocol Version 3.0, 1996.
URL: http://home.netscape.com/eng/ssl3/index.html.

[FP01] E.B. Fernandez and R.Y. Pan. A Pattern Language for Security Models. In
Proc. 8th Conference on Pattern Languages of Programs (PloP), 2001.

[FS03] N. Ferguson and B. Schneier. Practical Cryptography. John Wiley & Sons,
2003.

[GGK+04] R. Grimm, K.E. Großpietsch, H. Keller, I. Münch, K. Rannenberg, and
F. Saglietti. Technische Sicherheit und Informationssicherheit — Unterschiede
und Gemeinsamkeiten. Terminologie Workshop des Fachbereichs Sicherheit
der Gesellschaft für Informatik e.V., http://www-sec.uni-regensburg.de/
begriffeWSMai2004/, 2004. (in German).

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Software. Addison-Wesley, 1995.

[GHJW03] J. Grünbauer, H. Hollmann, J. Jürjens, and G. Wimmel. Modelling and Ver-
ification of Layered Security Protocols: A Bank Application. In Proc. 22nd
International Conference of Computer Safety, Reliability and Security (SAFE-
COMP), 2003.

[GL97] F. Germeau and G. Leduc. Model-based Design and Verification of Security
Protocols using LOTOS. In Proc. DIMACS Workshop on Design and Formal
Verification of Security Protocols, 1997.

216

Bibliography

[GLLR04] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and R. Richardson. 2004 CSI/FBI
Computer Crime and Security. Technical report, Computer Security Institute,
2004.

[Grü03] J. Grünbauer. Modellbasierte Sicherheitsanalyse einer Bankapplikation.
Diplomarbeit, Technische Universität München, 2003. (in German).

[GSG99] S. Gritzalis, D. Spinellis, and P. Georgiadis. Security Protocols over Open Net-
works and Distributed Systems: Formal Methods for their Analysis, Design,
and Verification. Computer Communications, 22(8):695–707, 1999.

[HB05] D. Herzberg and M. Broy. Modelling Layered Distributed Communication
Systems. Formal Aspects of Computing, 2005. Online First Issue, DOI
10.1007/s00165-004-0051-8.

[Hei03] A. Heider. Implementierung des CEPS Bezahlsystems auf einer Java Card,
2003. Individual Project (Systementwicklungsprojekt, in German).

[Her03] P. Herzog. Open Source Security Testing Methodology Manual (OSSTMM)
2.1. Technical report, Institute for Security and Open Methodologies
(ISECOM), 2003.

[HL01] M. L. Hui and G. Lowe. Fault-Preserving Simplifying Transformations for
Security Protocols. Journal of Computer Security, 9(1,2):3–46, 2001.

[HMR+98] F. Huber, S. Molterer, A. Rausch, B. Schätz, M. Sihling, and O. Slotosch.
Tool supported Specification and Simulation of Distributed Systems. In Proc.
International Symposium on Software Engineering for Parallel and Distributed
Systems (PPSE), 1998.

[HNS97] S. Helke, T. Neustupny, and T. Santen. Automating Test Case Generation
from Z Specifications with Isabelle. In J. Bowen, M. Hinchey, and D. Till,
editors, Proc. ZUM ’97: The Z Formal Specification Notation, volume 1212 of
LNCS. Springer, 1997.

[Hol97] G. J. Holzmann. The Model Checker SPIN. Software Engineering, 23(5):279–
295, 1997.

[HSE97] F. Huber, B. Schätz, and G. Einert. Consistent Graphical Specification of
Distributed Systems. In Proc. 4th International Symposium of Formal Methods
Europe (FME), 1997.

[HSG+03] H. Hollmann, K. Schmidt, J. Grünbauer, J. Jürjens, and G. Wimmel. Un-
tersuchung zur Einbindung von Sicherheitsinfrastrukturen in Applikationsar-
chitekturen und Kommunikationsprotokollen. Technical report, Technische
Universität München, 2003. Internal project report (in German).

[IE92] RTCA Inc. and EUROCAE. DO178B / ED-12B: Software Considerations in
Airborne Systems and Equipment Certification, 1992.

217

Bibliography

[Irv00] C. Irvine. Security: Where Testing Fails. ITEA Journal, June 2000.

[ITU96] ITU. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-
TS, Geneva, 1996.

[JBR99] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development
Process. Addison-Wesley, 1999.

[JLW05] J. Jürjens, M. Lehrhuber, and G. Wimmel. Model-Based Design and Analy-
sis of Permission-Based Security. In Proc. 10th International Conference on
Complex Computer Systems (ICECCS), 2005. To appear.

[Jon93] M. P. Jones. Release notes for Gofer 2.28. February 1993. Included as part
of the standard Gofer distribution.

[JPW02] J. Jürjens, G. Popp, and G. Wimmel. Towards Using Security Patterns in
Model-based System Development. In Proc. 7th European Conference on Pat-
tern Languages of Programs (EuroPLoP), 2002. Security Focus Group.

[JPW03] J. Jürjens, G. Popp, and G. Wimmel. Use Case Oriented Development of
Security-Critical Systems. Information Security Bulletin, 8(2):55–60, March
2003.

[JS04] J. Jürjens and P. Shabalin. Automated Verification of UMLsec Models for
Security Requirements. In Proc. 7th International Conference on the Unified
Modeling Language (UML), 2004.

[Jür01] J. Jürjens. Secrecy-preserving Refinement. In Proc. 10th International Sym-
posium of Formal Methods Europe (FME), 2001.

[Jür02] J. Jürjens. Principles of Secure Systems Design. PhD thesis, Oxford University
Computing Laboratory, Trinity Term 2002.

[Jür04] J. Jürjens. Secure Systems Design with UML. Springer, 2004.

[JW01a] J. Jürjens and G. Wimmel. Formally Testing Fail-Safety of Electronic Purse
Protocols. In Proc. 16th International Conference on Automated Software
Engineering (ASE). IEEE Computer Society, 2001.

[JW01b] J. Jürjens and G. Wimmel. Security Modelling for Electronic Commerce: the
Common Electronic Purse Specifications. In Proc. 1st IFIP Conference on
E-Commerce, E-Business, and E-Government (I3E). Kluwer, 2001.

[JW01c] J. Jürjens and G. Wimmel. Specification-based Testing of Firewalls. In Proc.
Andrei Ershov 4th International Conference ”Perspectives of System Infor-
matics” (PSI), LNCS. Springer, 2001.

[KAH99] J. Kirby, M. Archer, and C. Heitmeyer. SCR: A Practical Approach to Build-
ing a High Assurance COMSEC System. In Proc. Annual Computer Security
Applications Conference (ACSAC), 1999.

218

Bibliography

[Kak01] R. Kaksonen. A Functional Method for Assessing Protocol Implementation
Security. VTT Publications, 2001.

[Kru00] P. Kruchten. The Rational Unified Process – an Introduction. Addison-Wesley
Longman, 2000.

[LBD02] T. Lodderstedt, D. Basin, and J. Doser. SecureUML: a UML-based Modeling
Language for Model-Driven Security. In Proc. 5th International Conference
on the Unified Modeling Language, 2002.

[Lot97] V. Lotz. Threat Scenarios as a Means to Formally Develop Secure Systems.
Technical Report TUM-I9709, Technische Universität München, 1997.

[Lot00] V. Lotz. Formally Defining Security Properties with Relations on Streams.
In Steve Schneider and Peter Ryan, editors, Electronic Notes in Theoretical
Computer Science, volume 32. Elsevier Science Publishers, 2000.

[Löt03] H. Lötzbeyer. Modellbasierte Testfallermittlung für eingebettete Systeme
in sicherheitskritischen Anwendungen. Dissertation, Technische Universität
München, Jun 2003. (in German).

[Low96] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol
using FDR. In Margaria and Steffen, editors, Proc. 2nd International Work-
shop on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1055 of LNCS, pages 147–166. Springer, 1996.

[Low97] G. Lowe. A Hierarchy of Authentication Specifications. In Proc. 10th Com-
puter Security Foundations Workshop (CSFW), 1997.

[Low98] G. Lowe. Casper: A Compiler for the Analysis of Security Protocols. Journal
of Computer Security, 6(1,2):53–84, 1998.

[Low99] G. Lowe. Towards a Completeness Result for Model Checking of Security
Protocols. Journal of Computer Security, 7(2,3):89–146, 1999.

[LPvB94] G. Luo, A. Petrenko, and G. v. Bochmann. Test Selection based on Com-
municating Nondeterministic Finite State Machines using a Generalized Wp-
Method. IEEE Transactions on Software Engineering, 20(2):149–162, 1994.

[LY96] D. Lee and M. Yannakakis. Principles and Methods of Testing Finite State
Machines - A Survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

[McG99] G. McGraw. Software Assurance for Security. IEEE Computer, 32(4):103–105,
1999.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Boston, 1993.

[McM99] K.L. McMillan. Getting Started with SMV: User’s Manual. Technical report,
Cadence Berkeley Laboratories, Berkeley, CA, 1999.

219

Bibliography

[Mew04] Mewadis Team. Mewadis Project Website, 2004. URL: http://www4.

informatik.tu-muenchen.de/~mewadis/.

[MIE+05] Technische Universität München, IABG, EADS, Siemens AG, Technische Uni-
versität Kaiserslautern, and 4soft. V-Modell XT, 2005. URL: http://www.
v-modell-xt.de/.

[Mil05] J. Millen. CAPSL – Common Authentication Protocol Specification Language,
2005. URL: http://www.csl.sri.com/users/millen/capsl/.

[MLS78] R.A. De Millo, R. J. Lipton, and F. G. Sayward. Hints on Test Data Selection:
Help for the Practicing Programmer. IEEE Computer, 11(4):34–41, April
1978.

[MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-
neering an Efficient SAT Solver. In Proc. 38th Design Automation Conference
(DAC), 2001.

[NRT04] J. Niemela, S. Rautiainen, and K. Tocheva. F-Secure Computer Virus In-
formation Pages: Cabir. http://www.f-secure.com/v-descs/cabir.shtml,
2004.

[Nta88] S. Ntafos. A Comparison of Some Structural Testing Strategies. IEEE Trans-
actions on Software Engineering, 14(6):868–874, 1988.

[Off95] J. Offutt. Practical Mutation Testing. In Proc. 12th International Conference
on Testing Computer Software, 1995.

[OL02] D. Oheimb and V. Lotz. Formal Security Analysis with Interacting State Ma-
chines. In Proc. 7th European Symposium on Research in Computer Security
(ESORICS), 2002.

[OMG03] OMG. OMG Unified Modeling Language Specification Version 1.5, 2003.
Available at http://www.omg.org/uml/.

[oNSSC03] Committee on National Security Systems (CNSS). National Information As-
surance (IA) Glossary (CNSS Instruction 4009), 2003.

[Ope02] OpenSSH Team. OpenSSH Security Advisory (adv.channelalloc). http://

www.openbsd.org/advisories/ssh_channelalloc.txt, 2002.

[OXL99] J. Offutt, Y. Xiong, and S. Liu. Criteria for Generating Specification-Based
Tests. In Proc. 1st IEEE Conference on Engineering of Complex Computer
Systems (ICECCS), 1999.

[Pal01] PalME Team. PalME Project Website, 2001. URL: http://www4.

informatik.tu-muenchen.de/~palme/.

[Pau98] L. C. Paulson. The Inductive Approach to Verifying Cryptographic Protocols.
Journal of Computer Security, 6(1,2):85–128, 1998.

220

Bibliography

[Pet00] A. Petrenko. Fault Model-Driven Test Derivation from Finite State Mod-
els: Annotated Bibliography. In Proc. of the Summer School MOVEP2000,
Modelling and Verification of Parallel Processes, 2000.

[Pfi98] B. Pfitzmann. Higher Cryptographic Protocols, 1998. Lecture Notes, Univer-
sität des Saarlandes.

[PJWB03] G. Popp, J. Jürjens, G. Wimmel, and R. Breu. Security-Critical System
Development with Extended Use Cases. In Proc. 10th Asia-Pacific Software
Engineering Conference (APSEC), 2003.

[PLP01] A. Pretschner, H. Lötzbeyer, and J. Philipps. Model Based Testing in Evolu-
tionary Software Development. In Proc. 11th IEEE International Workshop
on Rapid System Prototyping (RSP), 2001.

[Poh04] H. Pohl. Taxonomie und Modellbildung in der Informationssicherheit. Daten-
schutz und Datensicherheit, 28(11):678–685, 2004. (in German).

[Pop05] G. Popp. Methode zur Integration von Sicherheitsanforderungen in die
Entwicklung zugriffssicherer Systeme. Dissertation, Technische Universität
München, 2005. (in German; to appear).

[PPS+03] J. Philipps, A. Pretschner, O. Slotosch, E. Aiglstorfer, S. Kriebel, and
K. Scholl. Model-Based Test Case Generation for Smart Cards. In Proc. 8th
International Workshop on Formal Methods for Industrial Critical Systems
(FMICS), 2003.

[Pre03] A. Pretschner. Zum modellbasierten funktionalen Test reaktiver Systeme. Dis-
sertation, Technische Universität München, Aug 2003. (in German).

[PS97] J. Peleska and M. Siegel. Test Automation of Safety-Critical Reactive Systems.
South African Computer Jounal, 19:53–77, 1997.

[PS99] J. Philipps and O. Slotosch. The Quest for Correct Systems: Model Checking
of Diagrams and Datatypes. In Proc. 6th Asia Pacific Software Engineering
Conference (APSEC), 1999.

[PSW00] B. Pfitzmann, M. Schunter, and M. Waidner. Cryptographic Security of Re-
active Systems. Electronic Notes in Theoretical Computer Science (ENTCS),
32, 2000.

[RSG+00] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. Modelling and
Analysis of Security Protocols. Addison-Wesley, 2000.

[Rud01] C. Rudolph. A Model for Secure Protocols and its Application to System-
atic Design of Cryptographic Protocols. PhD thesis, Queensland University of
Technology, Dec 2001.

[Rud03] M. Rudorfer. IT-Trends im Fahrzeug. In Workshop Embedded IT-Security in
Cars (ESCAR), 2003. (in German).

221

Bibliography

[SBP01] D. Song, S. Berezin, and A. Perrig. Athena, a Novel Approach to Efficient Au-
tomatic Security Protocol Analysis. Journal of Computer Security, 9(1,2):47–
74, 2001.

[Sch96] B. Schneier. Applied Cryptography. Wiley, 1996.

[Sch01] B. Schätz. The ODL Operation Definition Language and the AutoFo-
cus/Quest Application Framework AQuA. Technical Report TUM-I0111,
Technische Universität München, 2001.

[Sch03] M. Schumacher. Security Engineering with Patterns. Springer, 2003.

[Shm98] V. Shmatikov. Efficient Finite-State Analysis for Large Security Protocols. In
Proc. 11th IEEE Computer Security Foundations Workshop (CSFW), 1998.

[SK03] S. Sendall and W. Kozaczynski. Model Transformation – the Heart and Soul of
Model-Driven Software Development. IEEE Software, Special Issue on Model
Driven Software Development, 5(20):42–45, 2003.

[SPHP02] B. Schätz, A. Pretschner, F. Huber, and J. Philipps. Model-Based Develop-
ment. Technical Report TUM-I0204, Technische Universität München, 2002.

[Sto02] S. Stoller. A Bound on Attacks on Authentication Protocols. In Proc. 2nd
IFIP International Conference on Theoretical Computer Science (TCS), 2002.

[Ura92] H. Ural. Formal Methods for Test Sequence Generation. Computer Commu-
nications, 15(5):311–325, 1992.

[Ver04] Verisoft Project Consortium. Verisoft Project Website, 2004. URL: http:
//www.verisoft.de/index_en.html.

[VM01] J. Viega and G. McGraw. Building Secure Software: How to Avoid Security
Problems the Right Way. Addison-Wesley, 2001.

[VWW02] M. Vetterling, G. Wimmel, and A. Wißpeintner. Secure Systems Development
Based on the Common Criteria. In Proc. 10th International Symposium on
the Foundations of Software Engineering (FSE-10), 2002.

[Wim00] G. Wimmel. Specification Based Determination of Test Sequences in Embed-
ded Systems. Diplomarbeit, Technische Universität München, 2000.

[WJ02] G. Wimmel and J. Jürjens. Specification-Based Test Generation for Security-
Critical Systems Using Mutations. In Proc. 4th International Conference on
Formal Engineering Methods (ICFEM), 2002.

[WLPS00] G. Wimmel, H. Lötzbeyer, A. Pretschner, and O. Slotosch. Specification
Based Test Sequence Generation with Propositional Logic. Journal on Soft-
ware Testing Verification and Reliability, 10(4):229–248, 2000.

[Woo93] M. Woodward. Errors in Algebraic Specifications and an Experimental Mu-
tation Testing Tool. Software Engineering Journal, 8(4):211–224, July 1993.

222

Bibliography

[WW01] G. Wimmel and A. Wißpeintner. Extended Description Techniques for Se-
curity Engineering. In Trusted Information, the New Decade Challege. Proc.
16th International Conference on Information Security (IFIP/Sec), 2001.

[YB97] J. Yoder and J. Barcalow. Architectural Patterns for Enabling Application
Security. In Proc. 4th Conference on Pattern Languages of Programs (PloP),
1997.

223

Bibliography

224

A. Frequently Used Notation

A.1. Sets

∅ empty set
A1 ∪A2 union of A1 and A2

A1 ∩A2 intersection of A1 and A2

A1 \A2 subtraction of A2 from A1

A1 ⊆ A2 A1 is a subset of A2

x ∈ A x is an element of A
|A| cardinality of A
{x1, x2, . . . , xn} set consisting of x1, x2, . . . , xn

{x : P (x)} set of all x such that P (x)
{f(x) : P (x)} set of all f(x) such that P (x)
P(A) set of all subsets of A
N set of natural numbers (including 0)
Z set of integers

A.2. Tuples

A1 ×A2 × . . . An cross product of A1, A2, . . . , An

(x1, x2, . . . , xn) tuple consisting of x1, x2, . . . , xn

A.3. Functions

f : A1 → A2 function of type A1 → A2

f(x) f applied to x
dom f domain of f
rng f range of f
{v1 7→ x1, . . . , vn 7→ xn} function yielding xj when applied to vj

f |A restriction of f to domain A
⊥ undefined

225

A. Frequently Used Notation

A.4. Sequences

A∗ finite sequences over A
A+ non-empty finite sequences over A
A∞ infinite sequences over A
Aω A∗ ∪A∞

[x0, x1, . . . , xn] sequence consisting of x0, x1, . . . , xn

σ1 ◦ σ2 concatenation of sequences σ1 and σ2

σ(i) ith element of sequence σ (i ≥ 0)
σi suffix of σ starting with ith element
σ|A pointwise application of |A to elements of the function sequence σ

A.5. Logic

False inconsistency
True validity
Q1 ∧Q2 Q1 and Q2

Q1 ∨Q2 Q1 or Q2

¬Q Q negated
Q1 ⇒ Q2 Q1 implies Q2

∃x : Q there is an x such that Q
∀x : Q Q holds for all x
∃x ∈ A : Q there is an x ∈ A such that Q
∀x ∈ A : Q Q holds for all x ∈ A

A.6. Modelling Formalism

eM entity set name e interpreted with respect to model M
fM function identifier f interpreted with respect to model M
JcKM semantics of component c in model M (as discrete system)
VM;c, IM;c TM;c state variables, initial condition, and transition relation of JcKM
JprK semantics of property pr (as trace predicate)
JcKG

M semantics of component c in model M (generic intruder)
V G
M;c, IG

M;c TG
M;c state variables, initial condition, and transition relation of JcKG

M

JprKG semantics of property pr (generic intruder)
ΨD characteristic predicate of computations of discrete system D
t E t′ term t is a subterm of term t′

[v1/t1, . . . , vn/tn] simultaneous substitution of variables vj by terms tj
ts application of substitution s to term t
freeVar(t) set of free variables of term t
evalβ(t) evaluation of term t with respect to variable valuation β

226

Index

CEncr, 62

CHash, 62

CMac, 62

CSign, 62

Emptyk, 67

Encr, 62

Hash, 62

Mac, 62

RefineRel, 182

SecRequirement, 53

Sign, 62

TKey, 67

Value, 33

auth, 59, 99

avail, 59, 99

concrete, 149

critical, 57

derivable, 67

encapsulated, 68

eval, 33

integrity, 59, 99

invk, 64

keys, 95

knowsIntruderk, 67

leadsto, 54

learnedIntruderk, 54, 100, 106

never, 54

node, 58

noreplay, 59, 99

pmCond, 45

pmSubst, 45

precedes, 54
protoChannel, 60
protoInstance, 61
protocol, 60

public, 57, 91, 96
replace, 58, 91, 96
secret, 59, 98

values, 149
do test, 150
gen sequence, 151

verify sequence, 151

annotation
security-related, 52

assumption, 58
atomic component, 36

attack with delay N , 111
authenticity, 16, 54
AutoFocus/Quest, 27

availability, 16, 56

Cadence SMV, 101
CEPS, 79
channel, 36

authentic, 59, 99
critical, 57
ensuring availability, 59, 99

integrity-preserving, 59, 99
protocol channel, 60, 175
public, 57
replay-protected, 59, 99

secret, 59, 98

227

Index

tunnelled, 60, 176

code generation, 24, 211
Common Criteria for Security Evalu-

ation, 2, 123
Common Electronic Purse Specifica-

tions, 79
component, 36

atomic, 36

critical, 57
encapsulated, 58
public, 57, 96
replaceable, 58, 96

component under test, 132

conceptual level, 18
concretisation, 134
concretisation mapping, 149
confidentiality, 16, 54

constructor, 31
control state, 39

critical, 57
coverage, 132
coverage criteria, 131

CUT, 132

Data Type Definitions, 31
deterministic test sequence, 134

discrete system, 44
discriminator, 34
DTD, 31

EET, 40

encryption, 62
Extended Event Trace, 40

fair exchange, 16, 56
functional testing criterion, 132

generic intruder model, 91, 94
generic threat scenario, 91
global security requirement, 15, 52

hash, 63

initial knowledge, 95
initial model, 22
insertion of protocol layer, 173
integrity, 16, 55
intruder knowledge, 66
intruder model, 91, 94

completeness, 109
generic, 91, 94
soundness, 108
specialised, 103

layered protocol, 60, 173
linear-time temporal logic, 41
load security application module, 79
LSAM, 79
LTL, 41

mechanism application, 23, 171
message authentication code, 63
meta meta model, 18, 29
meta model, 18, 29
model checking, 101
model transformation, 18, 47
model-based development, 17
model-based testing, 131
mutant, 143
mutation function, 145
mutation testing, 143

non-repudiation, 16, 55
normal form, 33
NuSMV, 101

PalME, 123
penetration testing, 131
port, 36
preamble, 132
property, 41
property pattern, 53
protocol channel, 60, 175

type-independent, 177
protocol component, 60

228

Index

PSAM, 84
purchase security application module,

84

QuestF, 30

refinement relation, 182
request/reply architecture, 111
request/reply interaction, 111
request/reply subsystem, 110
revision of security requirements, threats

and assumptions, 23, 100

security, 15
security analysis, 22
security annotation, 52
security functional testing, 131
security mechanism, 16, 59
security pattern, 181
security test sequence, 24, 138
security test sequence generation, 24,

138
security testing, 130
security verification, 23, 100
security-enriched model, 23, 50
security-preserving transformation, 181
selector, 32
semantical level, 18
signature, 63
SMV, 101
specialised intruder model, 103
specialised threat scenario, 103
SSD, 36
SSL, 124, 196
State Transition Diagram, 39
STD, 39
structural testing criterion, 132
system level, 18
System Structure Diagram, 36

tag, 50
tag definition, 50

test case specification, 132
test driver, 134
test sequence, 132
test sequence generation, 133
test verdict, 134
testing, 129
testing criterion, 132

functional, 132
structural, 132

threat, 57
threat scenario, 23, 90

generic, 91
specialised, 103

threat scenario generation, 23, 90
transition, 39

critical, 57
tunnelled channel, 60, 176
type correctness, 33
type-independent protocol channel, 177

verified secure, 100
view, 36
vulnerability scanner, 131
vulnerability testing, 131

229

