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Abstract 

 
The aim of thermonuclear fusion research is to confine a hot deuterium-tritium (D-T) 
plasma long enough so that fusion reactions between hydrogen isotope ions occur, leading 
to a commercial power generation. The successful operation of fusion devices depends on 
the development of plasma facing components (PFCs) which can withstand the surface 
heat loads of up to 20 MW/m2 under quasi-stationary conditions. Copper alloys have been 
considered as a structural material for the heat sink substrate of a PFC due to their 
excellent thermal conductivity. However, insufficient high temperature strength and large 
thermal expansion set the limitations to structural applications. 
 
Fiber-reinforced metal matrix composites (FRMMCs) can be a candidate for a structural 
material for the future PFCs due to the excellent high temperature strength. Since the 
FRMMCs of the PFCs are exposed to thermal and mechanical loads, the resulting stress 
fields in mesoscopic level is highly heterogeneous and often exceed the yield limit of the 
matrix. The shakedown limit was investigated as the safety criterion of the FRMMCs 
considering the fusion-relevant thermomechanical loads.  
 
In principle, it is possible to determine the macro- and mesoscopic stress states by means 
of finite element method (FEM), in which the real FRMMC architecture is modeled by 
direct meshing. Surely, this is not a practical approach since it requires a high 
computational cost. In this case, shakedown analysis can be an appropriate tool to estimate 
structural safety. The shakedown theorems were formulated by several researchers. Further, 
these could be combined with FEM and the large-scale nonlinear optimization program 
and applied to complex system. 
 
In this work, the shakedown formulation was extended to three-dimensional models. The 
developed computational algorithm was verified by comparing with literature results. The 
shakedown limits were determined for both lamina and laminate of FRMMC composite 
system. The results showed that shakedown limits were dependent on geometrical factor 
(fiber architecture and fiber volume fraction), loading direction, thermal loading, and 
hardening effect. They were discussed based on the maximum value and the distribution of 
von Mises stress. 
 
The stress and temperature loading paths of FRMMC components were determined in the 
fusion-relevant loading. The thermomechanical loading paths obtained were compared 
with the shakedown limits. The results showed that the loading paths in the real operation 
situation were only partly covered by the area of shakedown limit. It was interpreted that 
the FRMMC layers may undergo low cycle fatigue. 





Kurzfassung 

 
Das Ziel der thermonuklearen Fusionsforschung ist es, ein heißes Deuterium-Tritium (D-
T) Plasma lange genug einzuschließen, so dass Fusionsreaktionen zwischen 
Wasserstoffisotopen stattfinden, so dass eine kommerzielle Elektrizitätserzeugung 
ermöglicht wird. Der erfolgreiche Betrieb von Fusionsanlagen hängt von der Entwicklung 
plasmabelasteter Komponenten (PFCs) ab, die einer Wärmelast von bis zu 20 MW/m² auf 
ihrer Oberfläche unter quasistationären Bedingungen standhalten können. Als 
Strukturmaterial für die Wärmesenkenträger einer PFC werden Kupferlegierungen wegen 
ihrer exzellenten thermischen Leitfähigkeit in Betracht gezogen. Ungenügende 
Hochtemperaturfestigkeit und starke Wärmeausdehnung setzen jedoch Grenzen in der 
Strukturanwendung. 
 
Faserverstärkte Metallmatrix-Kompositmaterialien (FRMMCs) können wegen ihrer 
hervorragenden Hochtemperaturfestigkeit als Strukturmaterialien für künftige PFCs in 
Frage kommen. Da die FRMMCs der PFCs mit ihrer heterogenen Mikrostruktur 
thermischen und mechanischen Lasten ausgesetzt sind, sind die resultierenden 
Spannungsfelder auf mesoskopischer Ebene stark heterogen und überschreiten oft die 
Fließgrenze der Matrix. In dieser Arbeit wurden die Einspielgrenzen als 
Sicherheitskriterien der FRMMCs unter Berücksichtigung fusionsrelevanter 
thermomechanischer Lasten untersucht. 
 
Es ist prinzipiell möglich die makroskopischen und mesoskopischen Spannungszustände 
mit der Finite-Elemente-Methode (FEM) zu ermitteln, wenn der tatsächliche FRMMC-
Aufbau durch direkte Vernetzung modelliert ist. Das ist natürlich keine praktische 
Näherung, da sie hohe Rechnerleistung erfordert. Alternativ kann eine Einspielanalyse ein 
geeignetes Werkzeug zur Abschätzung der strukturellen Sicherheit sein. Die 
Einspieltheoreme wurden von mehreren Forschern formuliert. Ferner können sie mit FEM 
und großskaligen nichtlinearen Optimierungsprogrammen kombiniert und auf komplexe 
Systeme angewandt werden. 
 
In dieser Arbeit wurde die Einspielformulierung auf dreidimensionale Modelle erweitert. 
Der entwickelte Rechenalgorithmus wurde durch den Vergleich mit Literaturergebnissen 
überprüft. Die Einspielgrenzen wurden sowohl für Einzelschichten als auch für Laminate 
von FRMMC-Kompositsystemen ermittelt. Die Ergebnisse zeigten, dass die 
Einspielgrenzen von geometrischen Faktoren (Faseraufbau und Faservolumenanteil), 
Belastungsrichtung, thermischer Last und Aufhärtungseffekten abhängen. Sie wurden 
unter Berücksichtigung der maximalen von-Mises-Spannungen und ihrer Verteilungen 
interpretiert. 
 
Spannungs- und Temperaturlastkurven der FRMMC-Komponenten wurden für 
fusionsrelevante Bedingungen bestimmt. Die gewonnenen thermomechanischen 
Lastkurven wurden mit den Einspielgrenzen verglichen. Die Lastkurven decken im realen 
Betrieb nur teilweise den Bereich der Einspielgrenzen ab. Dies lässt sich mit plastischer 
zyklischer Ermüdung der FRMMC-Schichten interpretieren. 
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1. Introduction 

In the introductory section, the motivation of the work is presented. Firstly, the structural 
components for fusion application are briefly explained. Secondly, the potential merits of 
fiber-reinforced metal matrix composites (FRMMCs) are presented as the candidate of the 
structural component for fusion application. Thirdly, the structural behavior of FRMMCs is 
discussed and the need for safety analysis of FRMMCs is proposed. Finally, previous 
literature studies about safety analysis are surveyed and the structure of this thesis is outlined. 
 

1.1. Structural components for fusion application 

1.1.1. Fusion reactor and the role of plasma facing components (PFCs) 

The main worldwide consumption of energy is currently made of fossil fuels such as oil, coal 
and gas. During the last decades, their exploitation has been rising strongly because of the 
process of industrialization and the increasing world population. The burning of these fuels 
carries out grave climatic changes due to massive CO2 emission into the atmosphere, 
furthermore, these resources are restricted, insufficient and more expensive. For these reasons, 
substitutes for fossil fuels should urgently be developed. Nuclear fusion is being investigated 
in this framework as an alternative energy concept. Although its performance presents 
difficulties from an engineering point of view, nuclear fusion has substantial advantages over 
current energy supplies, for example, a nearly inexhaustible fuel supply and a low 
environmental impact. In this respect nuclear fusion has significant potential. 
  
The aim of thermonuclear fusion research is to confine a hot deuterium-tritium (D-T) plasma 
long enough such that fusion reactions between hydrogen ions occur leading to a commercial 
power generation1. The operation of fusion power reactors will impose very demanding 
operation conditions on the plasma facing components (PFCs). The PFCs will be operated in 
an extreme environment caused by incident particles and heat flux from the fusion plasma2.  
The surface of the plasma facing material (PFM) is subjected to erosion by energetic ions and 
neutral atoms escaping from the plasma. In a next generation fusion reactor, surface heat 
loads which have to be removed by the PFCs will reach up to 20 MW/m2 under quasi-
stationary conditions. In addition, high transient heat loads during strong edge localized mode 
(ELM)3 activity of the plasma and off-normal events like disruptions can cause ablation at the 
heated surface. Tritium is absorbed by the PFMs or it can also be chemically bonded to 
redeposited material. Therefore the successful operation of fusion devices depends on the  
development of PFCs for withstanding the high heat flux loads and the particle and neutron 
fluxes from the fusion plasma [1-4].  
 
                                                            
1 Nuclear fusion is the fusing of light atomic nuclei to form heavier nuclei. Of all pairs of light atomic nuclei 
capable of fusing it is the reaction between the two heavy hydrogen isotopes, deuterium and tritium, that affords 
the greatest energy yield at the lowest temperature. One deuterium and one tritium nucleus fuse here to form a 
helium nucleus. A fast neutron is then released that carries eighty per cent of the energy gained (17.5 MeV). 
 
2 Plasma is the “fourth aggregate state of matter”, largely composed of ionized atoms or molecules and their free 
electrons. Fusion-oriented high-temperature plasma physics is concerned with ionized hydrogen. 
 
3 Edge localized mode (ELM) is an instability which occurs in short periodic bursts during the high confinement 
mode (H-mode) in divertor tokamaks. It causes transient heat and particle loss into the divertor which can be 
damaging.  
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PFC components are located in the inner vessel of the fusion device. The cut-away view of 
the inner vessel of ITER (International Thermonuclear Experimental Reactor)4  is represented 
in Figure 1.1. ITER will be the first fusion device to produce thermal energy at the level of an 
electricity-generating power station. It will provide the next major step for the advancement 
of fusion science and technology, and is the key element in the strategy to reach the following 
stage, a demonstration electrical power plant (DEMO), in a single experimental step. ITER is 
based on the tokamak concept5 - a toroidal (doughnut-shaped) magnetic configuration in 
which to create and maintain the conditions for controlled fusion reactions. The overall ITER 
plant is comprised of the tokamak, its auxiliaries, and supporting plant facilities. The 
components of ITER are the superconductive coils, the blanket, the neutron shield, and a 
toroidally structured wall with PFC components. The details of ITER are represented in 
appendix A. 
 
 

 

 

                                                            
4 The International Thermonuclear Experimental Reactor (ITER) is the next major step for the development of 
commercial fusion device. Scientists and engineers from Europe, Canada, Japan, Russia, Korea, China and USA 
are working in an unprecedented international collaboration on this reactor, which is the second world’s largest 
international co-operative research and development project after the International Space Station (ISS) (see 
appendix A).  
 
5 Tokamak is the most investigated and furthest advanced configuration for the magnetic cage of a fusion plasma. 
In a tokamak the plasma is confined by two superposed magnetic fields: firstly by a toroidal field produced by 
external coils and secondly by the field of a ring current flowing in the plasma. The field lines in the combined 
field are then helical. In addition, the tokamak requires a third, vertical field that fixes the position of the current 
in the plasma vessel and shapes the plasma edge. The plasma is normally induced by a transformer coil in the 
plasma. A tokamak therefore does not operate continuously, but in pulsed mode like the transformer. Pulse times 
of a few hours are anticipated in a future power plant. For technical reasons, however, a power plant has to 
operate in continuous mode and so methods of producing a continuous current are being investigated.  

Figure 1.1. Cut-away view of vaccum chamber of ITER reactor: 
first wall and divertor. 
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The inner vessel of ITER is composed of the plasma facing components, i.e. first wall and 
divertor. The first wall is the first element encountered by the plasma heat load. The function 
of the first wall is to absorb particles and radioactive heat fluxes from the plasma and thus 
protect the other components from the fusion plasma. Divertor components are used in order 
to achieve clean plasmas by impurity control. In a tokamak, the outer magnetic field lines are 
diverted to a location far from the plasma by means of a specially shaped magnetic field. Here 
the field lines contact the vessel wall on specially equipped divertor plates. The main function 
of the divertor system is to exhaust the major part of the alpha particle power as well as 
helium and impurities from the plasma. It must tolerate high heat flux loads and remove these 
heat loads reliably under quasi-stationary conditions.  
 
The PFC component in the divertor region is composed of plasma facing material (PFM) and 
metallic heat sink furnished with cooling tubes (Figure 1.2). Since the PFC component 
receives severe localized and cyclic heat loads during fusion operation, it requires high 
thermal conductivity, excellent thermal shock resistance, low erosion by plasma particles and 
a good connection with the heat sink material for active cooling. Tungsten has been studied as 
the armor materials for the divertor component, because in this area the key issue is the 
erosion lifetime. Tungsten has a lower erosion rate due to its low sputtering yield and its 
higher sputtering threshold energy, as compared with other PFMs, such as beryllium and 
carbon. Another advantage of tungsten is its low tritium retention. Therefore tungsten is 
expected to be the PFM in the next generation fusion device6.  
 

 

 
The heat sink materials have to exhibit a high thermal conductivity, needed for achieving an 
efficient heat transfer into the cooling system. In addition to thermal conductivity, other 
properties such as tensile strength and ductility, fracture toughness, fatigue at high 
temperature and irradiation resistance have to be taken into consideration. Copper alloys  

 

                                                            
6 The plasma compatibility of tungsten is an issue, because a small amount of tungsten in the confined plasma 
region could lead to a very large power loss form the plasma. Therefore, in some PFC areas exposed to high 
thermal fluxes during normal operation and large energy excursions during plasma instabilities, other armor 
material, e.g. CFC, is selected. 

Figure 1.2. A geometry of possible plasma facing component (PFC) in the divertor region. 
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(CuCrZr) have been considered as a structural material for the heat sink substrate due to their 
excellent thermal conductivity [5-6]. However, insufficient high temperature strength and 
large thermal expansion of copper based materials are the main limitation from a structure-
mechanical viewpoint. Even with metallurgical hardening techniques, copper alloys have not 
been able to fully meet the high temperature strength requirement for the next generation 
fusion device [7]. Therefore, the development of new class of PFCs, such as metal matrix 
composite (MMC) materials, has been an important subject of investigations.   
 
 

1.1.2. Fiber-reinforced metal matrix composites (FRMMCs) for PFC application 

Many of our modern technologies require materials with unusual combinations of properties 
that cannot be met by the conventional metal alloys, ceramics, and polymeric materials. This 
is especially the case for materials in aerospace, underwater, and transportation applications. 
In this area, material property combinations and ranges have been extended by the 
development of composite materials. Most composites have been developed to improve 
combinations of mechanical characteristics such as stiffness, toughness, and high temperature 
strength [8-12].  
 
Many composite materials are usually composed of two phases, i.e. matrix and reinforcement. 
In MMCs, the high strength, stiffness and creep resistance of ceramic reinforcements are 
combined with the toughness of a ductile metallic matrix. The major advantages and 
disadvantages are summarized in Table 1.1 [13]. Fiber-reinforced metal matrix composites 
(FRMMCs) have been developed since the 1960s. Their major advantages are high specific 
stiffness, strength, and tailorable properties. These advantageous properties of FRMMCs 
made a wide application range in many structural components in defense, aerospace, and 
leisure industries [14-15]. 
 

MMCs compared with: MMCs’ advantages MMCs Disadvantages 

Unreinforced materials 

-higher specific strength 
-higher specific stiffness 
-improved high temperature 
 creep resistance 
-improved wear resistance 

-lower toughness and ductility 
-more complicated and  
 expensive production methods 

Polymer matrix 
composites [16] 

-higher transverse strength 
-higher toughness 
-better damage tolerance 
-improved environmental  
 resistance 
-higher thermal and electrical 
 conductivity 
-higher temperature capability 

-less developed technology 
-smaller data base of properties 
-higher cost 
 

Ceramic  matrix 
composites [17] 

-higher toughness and ductility 
-ease of fabrication 
-lower cost 
-high thermal conductivity 

-inferior high temperature  
 capability 

 
 

Table 1.1. Advantages and disadvantages of MMCs compared with other materials.
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For the future PFC application, FRMMCs might be used as the interlayer of divertor 
component, as shown in Figure 1.3. SiC fiber reinforced Cu alloy (CuCrZr)) metal matrix 
composite may provide a highly creep resistant alternative for operation at higher 
temperatures. The SiC fibers of the reinforcement provide the necessary high temperature 
strength, whereas the Cu matrix mainly provides high thermal conductivity. Therefore, SiC 
fiber reinforced Cu alloy metal matrix can have a much higher ultimate strength, work-
hardening rate and creep resistance than conventional materials at high temperature. The 
elastic stiffness as well as the coefficient of thermal expansion (CTE) can be tailored to wider 
ranges, which is especially advantageous for the application to bond-joint-type plasma facing 
components to reduce the thermal mismatch stress at the bonded interface of dissimilar 
materials. Therefore the permanent dimensional change by plastic ratcheting can be 
effectively suppressed. In addition, FRMMC can be introduced locally into the mostly highly 
loaded regions of the PFCs [18-20]. 

 

 
 

1.2. Why safety analysis of FRMMCs for fusion application? 

 
1.2.1. Structural problem of FRMMCs 
 
As mentioned in the previous section, the global properties of FRMMC are often increased by 
the existence of fiber reinforcement. However, there are some limitations to use FRMMC-
based PFC in a tokamak-type fusion device, since the fusion device does not operate 
continuously, but in pulsed mode like the transformer. Therefore, FRMMC-based PFC will be 
subjected to the cyclic heat flux loading during fusion operation. This type of loading 
condition so called thermomechanical fatigue (TMF) loading has been extensively studied in 
the structural area [21-23]. Cyclic TMF loading is considered as one of the most severe 
loading conditions in FRMMC structure.   
 
The possible thermal history of PFCs during fusion operation is schematically drawn 

Figure 1.3. Plasma Facing Component with MMC layer
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including the manufacturing process, as shown in Figure 1.4. In the manufacturing state, PFM, 
FRMMC layer, and heat sink will be assembled at the high joining temperature. The 
manufacturing stage is assumed to be a stress free state during the whole procedure. The 
assembled PFC is cooled down to room temperature in order to install in the vacuum chamber 
of the fusion device. Next the PFC is subjected to repeated high heat flux loading due to the 
pulsed fusion plasma operation.  
 

 

 
 
This thermal loading history generates two kinds of stresses in the FRMMC layer in the PFC. 
Firstly, the mechanical stress is generated due to the difference the difference of the CTE 
between tungsten PFM armor tile (3.9×10-6/K at room temperature) and CuCrZr heat sink 
substrate (15.7×10-6/K at room temperature). This causes so-called mismatch stress especially 
in the region near the bond interfaces between FRMMC layer and other components. This 
mismatch thermal stress is controlled mainly by the change of temperature at the bond 
interface, provided that steep thermal gradients are not the cause of any further significant 
stress contribution. Such a mismatch stress can already be generated during the manufacturing 
process resulting in residual stresses within the components. Additional stress from the 
subsequent thermal load is superposed on this residual stress field. Under this circumstance, 
the temperature difference between the stress free state (joining temperature) and the current 
state (high heat flux loading) is the controlling parameter. Secondly, the internal thermal 
stress is generated due to the CTE mismatch between SiC fiber reinforcement (5.7×10-6/K at 
room temperature) and CuCrZr metal matrix (15.7×10-6/K at room temperature). Internal 
stresses are common in most composite materials which are inhomogeneous. Such a misfit 
stress arises from a temperature change [24-26]. 
 
The internal stress of FRMMC can be easily understood by the finite element analysis (FEA). 
Thermo-elastic FEA was carried out for SiC fiber Cu-based metal matrix composite. The 
considered geometry was the two-dimensional square unit cell. The instantaneous thermal 
loading, i.e. 100 oC of temperature increase, was considered in this case. The von Mises stress 
field7 was represented, as shown in Figure 1.5. The resulting stresses of FRMMC were 
visualized by different colors.  From FEA result, it has been noticed that the resulting von  
 
                                                            
7 Von Mises Stress is one of the most commonly used yield criteria. It is discussed in the section 6.5. For detail 
understanding, see references [25, 26]. 
 

Figure 1.4. Thermal history of PFC during fusion operation including manufacturing process. 
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Mises stress fields of the matrix were highly heterogeneous at a mesoscopic8  level and 
exceeded the yield limit of the matrix. Von Mises stress of Cu matrix at the interface between 
fiber and matrix was higher than the other area of matrix [27-28].  
 
         

 

 
Normally, the structure with instantaneous thermal loading is found to be safe, as far as 
homogeneous materials with ductile properties are concerned, even if the resulting thermal 
stresses exceed the yield stress of the material. Also fatigue is not found to occur before the 
thermal cycling is accompanied by repeated plastic deformation. However, in this work, 
FRMMC in the PFC is subjected to the cyclic heat flux loading with progressive plastic 
deformation. The density of dislocations produced during cyclic thermomechanical loading is 
often higher than during monotonic loading. Finally, the FRMMC will undergo the 
irreversible deformation and failure mechanisms. This cyclic thermal loading combined with 
mechanical loading will reduce the serviceability of FRMMC and result in its plastic collapse 
such as low cycle fatigue. Therefore, the FRMMC layer has to be investigated with the 
serviceability viewpoint to avoid the structural failure in the fusion relevant loading condition 
[29].  
 
 
1.2.2. Structural safety assessment under cyclic loading 
 
To avoid structural failure of FRMMC layer in the cyclic loading, it is very important to 
estimate safety limit of the structure using design-by-analysis (DBA). DBA is necessary to 
address the requirements for new constructions of structure while providing reasonable 
assurance of reliable operation. A significant ground rule for the DBA procedures was to 
permit the application of elastic stress analysis techniques. However, practically all of the 
criteria were developed based on consideration of elastic-plastic failure modes, i.e. plastic 
shakedown, ratcheting, shakedown, etc.  
 
If the elastic limit is chosen as the safety criterion, the structure will be in strictly safe state 
since no plastic deformation occurs. However, the load carrying potential of the structure is 
not fully surveyed. In plastic shakedown, the structure experiences reverse or alternating 
plasticity over each cycle, that is, finite positive plastic strain in the first half of the load cycle 
                                                            
8 The mesoscopic scale is the scale at which the constitutive equations for mechanics analysis are written. It will 
be discussed in the next chapter. 

Figure 1.5. Von Mises stress profile with possible thermal loading.  



1. Introduction 

 

 8 

followed by equal magnitude negative plastic strain in the second half. Structures exhibiting 
plastic shakedown will fail after a number of load cycles due to low cycle fatigue. If the 
structure undergoes net increments of plastic strain with each load cycle, the strain will 
accumulate until gross plastic deformation and eventually incremental plastic collapse of the 
structure occurs. This failure mode is known as ratcheting.  In shakedown limit, the structure 
experiences finite plastic deformations in the first few cycles, which give rise to residual 
stress in the structure such that in subsequent load cycles only elastic deformation of the 
structure occurs. Therefore, the shakedown limit might be the relevant safety criterion in this 
work since it has less stringent rules without occurring progressive plastic failure, such as low 
cycle fatigue. The details of structural behaviors are discussed in the following chapter.  
 
The main objective of this work is to describe the shakedown safety criterion of the FRMMC 
layer. The shakedown safety limits can be obtained for the cyclic thermomechanical loading. 
The shakedown limit is schematically represented in the thermal and mechanical loading 
space, as shown in Figure 1.6. Here, x-directional axis and y-directional axis indicate the 
mechanically applied stress and the thermal stress, respectively. The ellipsoidal plane with 
grey color indicates the shakedown safety limit. If the loading paths are in the shakedown 
safety limit, FRMMC is in a safe state. To the contrary, if the loading paths are outside of this 
safety limit, the FRMMC layer might be unserviceable due to progressive plastic deformation. 
Therefore, the serviceability of FRMMC can be discussed with the shakedown limits and the 
realistic loading paths of the structure.  
 
 

 

 
 
1.2.3. Overview of shakedown analysis 
 
There are several systematic methods to obtain shakedown safety limit, that is, experimental 
method, incremental FEM analysis, and direct method with the optimization tool so called 
shakedown analysis. In situ experimental investigations have been rarely performed due to 
their prohibitive cost [30]. The most classical approach for the structural safety assessment 
consists as a detailed study of its stress, strain and displacement fields, so called incremental 
analysis (step-by-step finite element analysis). Under the action of variable repeated 

Figure 1.6. Schematic shakedown safety criterion for cyclic thermomechanical loading. 
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mechanical and thermal loading the successive stages must be examined in which time-
dependent stress and strain states develop. It requires an excessive computational cost and a 
cumbersome identification process associated with each type of material. In addition, the 
existing constitutive equations also present some difficulties in the description of the 
phenomenon of incremental plastic collapse. Therefore the increment analysis is not a 
practical approach [31].  
 
Shakedown analysis is based on shakedown theory, which generalized the limit analysis 
theory to the case of cyclic loads. The shakedown theory was founded in the 1930s. The 
computational shakedown analysis has been recently implemented with the finite element 
method (FEM) and the nonlinear constrained optimization program. The FEM-based 
shakedown analysis, that is, direct method rests on the direct computations and does not need 
any information about the loading path. Therefore, if the history of loads during the lifetime 
of the considered mechanical elements is not precisely known, shakedown analysis is an 
appropriate tool to determine shakedown safety limits. 
 
The computational methods between incremental FEM analysis and shakedown analysis are 
schematically compared in Figure 1.7. In the step-by-step incremental analysis, computational 
calculation has to be performed for the whole loading path since it is path-dependent. 
Therefore, the shakedown safety limits determined by incremental analysis are dependent on 
the considered loading path. If the loading path is changed (Path 1 to Path 2), the 
computational analysis has to be carried out for the changed loading path. It means that the 
incremental analysis may be an impractical approach for the structural safety assessment. 
However shakedown analysis does not necessarily require the full information of the loading 
path. It needs only the elastic information at the corners of the considered loading space. 
Although the loading path is changed, the computational analysis is not required since it is 
path-independent. Therefore shakedown analysis is usually less laborious and more effective 
to determine shakedown safety limit from a computational standpoint. In this work, the FEM-
based shakedown analysis will be used to obtain shakedown safety limit of the FRMMCs for 
general thermomechanical loading. 
 
 

   
(a)                                                                                (b) 

 
 

Figure 1.7. Schematic of computational methods to determine shakedown safety limit: 
(a) incremental FEM analysis and (b) FEM-based shakedown analysis. 
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1.3. Literature reviews 
 
In this section, the extensive literature studies to determine shakedown safety limit are 
reviewed, that is, experimental approach, incremental FEM analysis, and FEM-based 
shakedown analysis. Since the safety assessment of composite materials is the main theme of 
this work, the literatures are investigated with a focus on the composite materials at each 
method. For the FEM-based shakedown analysis, the extensive reviews are performed from 
classical theorems to various application fields. 
 
 
 
1.3.1. Conventional methods 
 
Experimental approach 
To date, there are not many experimental results for the shakedown limits because of 
experimental difficulties. Two-bar experiments using copper at ambient temperature were 
described by Ponter et al [32], in which the thermal strains are simulated by means of 
electrical signal. The elastic shakedown limits and ratcheting limits under tension-torsion 
loadings were determined by Heitzer et al [33]. The cyclic plastic deformation tests were 
carried out to verify FEM-based shakedown analyses by Lang et al [34]. The experiment 
comprised a water-cooled internal tube, and three insulated heatable outer test bars and the 
system was subjected to alternating axial forces, superimposed with alternating temperature. 
The elastic-plastic behavior of a fibrous boron-aluminum composite was investigated by 
Dvorak et al [35]. They described well the results of an experimental investigation of initial 
and subsequent yield surfaces and of plastic strains of a MMC under many plane stress 
loading programs. The behavior of the composite when subjected to mechanical and thermal 
loading was investigated by Jansson and Leckie. Shakedown limits were determined by cyclic 
thermomechanical test and compared with the values which obtained by step-by-step 
numerical method [36-37].  
 
Incremental FEM analysis  
Many numerical analyses have been carried out using a unit cell micromechanical model to 
compute the mechanical or thermomechanical behavior of composite materials reinforced by 
continuous fibers and short discontinuous fibers. Gunawardena et al. have developed 
constitutive laws for both strongly and weakly bonded composites, with emphasis on the role 
of the interface between the fibers and the matrix and the residual stresses incurred during the 
fabrication [38]. Zahl et al. investigated the transverse behavior of metal matrix composites 
with a strongly bonded interface using a cell model, with emphasis on the influence of the 
fiber arrangement, volume fraction and loading direction on the transverse strength [39]. Du 
and McMeeking et al. [40] studied the influence of a thin, well bonded ductile interphase 
between the fibers and the matrix on both the longitudinal and transverse composite strength. 
To date, only a few researchers have examined the properties of multi-directionally reinforced 
MMCs, i.e. laminate structure. There were several attempts to focus on a cross-ply laminate 
whose numerical investigation necessitates a three-dimensional model. Biglow calculated 
thermal residual stresses in a SiC/Ti [0/90] laminate [41]. For the same material, Nicholas et 
al. analyzed the influence of a thermo-mechanical cyclic loading on the fatigue behavior of 
the composite [42]. Sherwood and Quimby used viscoplastic constitutive equations based on 
the theory of Bodner and Partom to investigate the damage growth in titanium-based metal 
matrix composite [43]. Ismar et al. focused on the thermo-mechanical behavior of aluminum 
bi-directionally reinforced with SiC fibers [44-45].  
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1.3.2. FEM-based shakedown analysis 
 
Classical shakedown theorem 
The classical field of application of shakedown theory is the assessment of mechanical 
structures of structural elements exposed to variable thermo- and/or mechanical loads. It 
addresses basically failure (non-shakedown) caused by unlimited growth of plastic dissipation 
during the loading process, leading to incremental collapse or alternating plasticity. Limit 
analysis covers the particular case of the instantaneous collapse under a monotonous loading. 
The foundations of shakedown theory have been laid by Melan [46] and Koiter [47], who 
derived sufficient criteria for shakedown and non-shakedown, respectively, for elastic-
perfectly plastic structures in the framework of geometrically linearized continuum mechanics. 
Due to the evident practical importance, their classical theorems have been extended to larger 
classes of problems and widely applied to structural analysis. Reviews and overviews of such 
studies can be found e.g. in Gokhfeld and Cherniavsky [48], König [49], Mróz et al. [50], 
Weichert and Maier [51], Staat and Heitzer [52].  
 
Material hardening effect 
Material hardening has been addressed in the pioneering work by Melan, where unlimited 
linear kinematic hardening was taken into account in the framework of continuum mechanics 
[53]. On the basis of this concept further results have been obtained by Neal [54], Ponter [55], 
Zarka and Casier [56]. For discretized structures and piecewise linear yield function, Maier 
investigated linear hardening and softening effects [57], and König and Siemaszko considered 
the effects of strain hardening in shakedown process [58]. With the help of generalized 
standard material model introduced by Halphen and Nguyen [59], Mandel [60] gives a simple 
and pertinent formulation of Melan’s theorem for hardening materials. By imposing limits to 
the evolution of the internal parameters in this model, Weichert and Gross-Weege interpreted 
it as a simplified two-surface material allowing for limited kinematic hardening and applied it 
numerically [61]. The concept of internal variables for the representation of the hardening 
material behavior was in the sequel also applied by Comi and Corigliano [62] and Polizzotto 
et al. [63]. More general nonlinear hardening has been investigated in the context of discrete 
systems by Maier [64] and using overlay model by Stein et al. [65]. Other applications of 
internal parameters representation of changes of material properties can be found in 
Corigliano et al. [66] and Pycko and Maier [67]. 
 
Geometrically nonlinear effect 
The geometrically nonlinear problem has been studied firstly by Maier, who introduced a new 
class of shakedown problems for pre-stressed discrete structures and extended Melan’s and 
Koiter’s theorems as to include so called second order geometric effects by using piecewise 
linear yield conditions [68]. Siemaszko and König showed the influence of geometrical 
effects on the stability of the deformation process for particular structures under certain 
assumptions on the deformation modes [69]. Weichert investigated the problem of 
geometrical effects in several papers within the frame-work of continuum mechanics and gave 
an extension of Melan's theorems which is practically applicable to situations where 
information about the expected deformation pattern is available [70-71]. He assumed an 
additive strains decomposition and applied it to shell-like structures undergoing moderate 
rotations at small strains [72]. The same decomposition of total strain has been used by     
Gross-Weege [73]. He gives unified formulation of Melan's theorem for structures subjected 
to a constant load, responsible for large displacements, and to small additional variable loads 
causing small additional displacement. The same concept was used by Pycko and König [74]. 
Recently, Polizzotto and Borino give an extension of Melan's and Koiter's shakedown 
theorem in the framework of large displacements [75]. They studied the asymptotic response 
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of the structure subjected to periodically variable loads in order to show the conditions under 
which there may exist a stabilized long term response. In order to overcome the restrictions of 
an additive decomposition of total strains, the multiplicative strain decomposition rule was 
used by Saczuk and Stumpf [76], Tritsch and Weichert [77] and Stumpf [78]. An extension of 
the Gross-Weege’s shakedown formulation [73] to more general nonlinear problems is 
proposed in Saczuk and Stumpf [76]. In Tritsch and Weichert a sufficient Melan-type 
statement for shakedown and a comparative study with previous works are given [77]. Stumpf 
employed the multiplicative decomposition of total strains and attempted to reformulate 
shakedown theorems stating that shakedown occurs if there exists some real self-equilibrated 
residual state, which is dependent on the loading and unloading paths [78]. More recently, 
Saczuk proposed a criterion of adaptation process, accounting for the influence of 
deformation path on the material properties based on the continuum model within the theory 
of differential inequalities [79]. 
 
Three-dimensional modeling 
The studied structures were often only two-dimensional structures, and only few researchers 
have been working on the development of methods for three-dimensional shakedown and 
limit analyses. Feng and Liu have studied shakedown of kinematic strain-hardening three-
dimensional structures [80]. Chen and Ponter have developed a method to evaluate 
shakedown limits of three-dimensional structures, which is based on linear matching method 
[81]. Khalij et al. have considered three-dimensional structures submitted to cyclic loading 
[82].  
 
Application to composite material 
Although the application of shakedown theory by means of structural mechanics is nowadays 
well established, the use of shakedown analysis to assess and to design composite materials is 
rather new. The first attempts had been undertaken in a pioneering work by Tarn et al. for the 
determination of safe loading domains of unidirectional composites under an axi-symmetric 
loading [83]. Ponter and Leckie investigated the shakedown behavior of an aluminum/ 
alumina system under fluctuating temperatures by means of the homogenization technique, 
focusing on the application of the upper bound theorem [84]. Making use of the finite-element 
analysis, Carvelli et al. applied the upper bound theorem of the shakedown theory to two-
dimensional problems [85]. Weichert et al. calculated the admissible loading domains for 
composites by using the lower bound theorem [86-87]. Maier et al. used finite element 
analysis and the kinematic approach of shakedown coupled with periodic homogenization to 
investigate two-dimensional perforated sheets [88]. Dvorak et al., who have widely reported 
on theoretical and experimental micromechanics of heterogeneous media, studied the 
shakedown of metal matrix composites [89]. Weichert and Hachemi coupled the periodic 
homogenization and shakedown theories to study the strength of periodic composites [90]. 
Schwabe has extensively studied periodic composites using two-dimensional shakedown 
analysis [91].  
 
Application to nuclear technology 
The importance of nuclear power and the necessity for ensuring continued satisfactory 
operation has been investigated for several decades. One of the primary factors that could 
affect the continued operation and development of nuclear power relates to aging of the plants 
and its potential impact on performance. Nuclear power plants are designed, built, and 
operated to standards that aim to reduce the releases of radioactive materials to levels as low 
as reasonably achievable. Nuclear power plants, however, involve complex engineering 
structures and components operating in demanding environments that potentially can 
challenge the high level of safety (i.e. safety margin) required throughout the operating life of 
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the plant. It is necessary that safety issues related to plant aging and continuing the service of 
the nuclear plants be resolved through development of sound scientific and engineering 
understanding. To secure the structural safety of nuclear component, the integrity or reliability 
investigation of the pressure boundary components is essential. An extensive piping research 
program has been conducted to demonstrate the safety and reliability of piping system of 
nuclear component. In order to evaluate the fatigue crack growth behavior in piping structure, 
the shakedown analysis is carried out [34,92-96].  
 
 
 
1.4. Scope of the thesis 
 
From the introductory discussions and literature reviews, the following contents were 
summarized. 
 
FRMMCs will be exposed to significant cyclic heat flux loading in the fusion device, and the 
resulting stress fields at mesoscopic level would be highly heterogeneous and often exceed 
the elastic limit of the matrix. The cyclic thermo-mechanical loads together with macroscopic 
local strain gradient can lead to a progressive accumulation of plastic deformation and finally 
to structural failure. Therefore, it is important to predict the safety assessment against 
structural failure. For the structural safety assessment of FRMMC, the shakedown safety limit 
was expected to be the relevant safety criterion since it had less stringent rules without 
occurring progressive plastic failure such as low cycle fatigue.  
 
Although there have been two conventional approaches to determine shakedown limit, that is, 
experimental and incremental approaches, they have some limitations. Firstly, the 
experimental approach required a very high cost and then cannot be automatically used except 
for certain validation cases. Secondly, the incremental FEM analysis calls for an excessive 
computational cost and a cumbersome parameter identification process with each type of 
material. In addition, the existing constitutive equations also present some difficulties in the 
description of the ratcheting phenomenon. Also it requires detailed knowledge of load history 
and material law, neither of which can be guaranteed to be available to the required extent in 
practice. By contrast, shakedown analysis is expected to be less laborious and more effective 
to determine shakedown safety limits from a computational standpoint. 
 
Classical shakedown theorem is very well defined and extended to consider material 
hardening effect and geometrically nonlinear effect by several authors. However, FEM-based 
shakedown analysis has been recently studied, since this approach led to a large-scale 
nonlinear constrained optimization problem. Therefore, the application study of shakedown 
analysis has not been extensively carried out for a realistic situation. The primary purpose of 
this work is to obtain safety shakedown limits for three-dimensional fiber-reinforced metal 
matrix composite material under fusion relevant cyclic thermomechanical loading condition. 
The obtained shakedown limits are compared with the realistic loading paths obtained by 
incremental analysis. For this, the following studies are mainly performed in this work. 
  

(i) FEM-based shakedown analysis tool is developed with nonlinear optimization 
program and extended to three-dimensional model. 

 
(ii) The shakedown analysis is performed for the complex three-dimensional FRMMC 

(lamina and laminate) considering thermomechanical loading.  
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(iii) For the comparison with the results of the shakedown analysis, thermomechanical 
loading path is obtained using incremental analysis in fusion-relevant loading.  

 
 
This dissertation is structured in eight chapters. At the end of the thesis, five appendices with 
more detailed information including fusion basics, computational codes, and additional 
graphical results are attached.  
 
 
 
Chapter 2. Theoretical Backgrounds 
This chapter is devoted to the description of the structural behaviors and the formulation of 
the static shakedown theorem in the framework of continuum mechanics. The adopted 
constitutive equations and general assumptions will be reviewed by considering an evolution 
of a three-dimensional elastic-plastic body. The proof of static shakedown theorem is 
represented using thermodynamic concept. Finally the shakedown theorem is extended into 
the thermal loading case. The unlimited kinematic hardening effect and the limited kinematic 
hardening effect are also considered in the shakedown theorem. 
 
Chapter 3. FEM-based Shakedown Formulation 
In this chapter, the computational formulation of shakedown theory is carried out with finite 
element discretization. Firstly, the brief introduction to FEM is represented. Next the 
computational details for FEM-based shakedown formulation are represented with the 
nonlinear large-scale mathematical optimization programming.  
 
Chapter 4. Verification Tests 
The developed computational tool of FEM-based shakedown analysis is extensively verified 
with the conventional models. The used examples are two-dimensional plate with a hole and 
Al2O3 fiber reinforced Al metal matrix composite. The results of shakedown analysis are 
compared with the previous shakedown results, analytical results, and experimental results. 
 
Chapter 5. Description of Problem 
In this chapter, the details of the problem are represented since the fusion loading history is 
not easily understood. Analysis objective, material properties, model geometry, and loading 
history are explained for FRMMC-based PFC. Finally the methodology of structural safety 
assessment is described using shakedown analysis and incremental analysis.  
 
Chapter 6. Results of Shakedown Analysis 
Three-dimensional lamina and laminate composites are investigated to obtain shakedown 
limits in the biaxial loading space with temperature change. The results of shakedown limits 
are numerically illustrated and compared with elastic limits. The influences of geometrical 
effect, fiber volume fraction, loading direction, hardening effect are extensively investigated. 
In the last section, the results are discussed with von Mises stress distribution. 
 
Chapter 7. Application of Shakedown Analysis 
Several parametric studies are performed by considering typical fusion loading condition. The 
loading paths are obtained using thermo-elasto-plastic incremental analysis. The obtained 
paths are illustrated and compared with shakedown limits in three-dimensional loading space. 
From these comparison results, the structural safety of FRMMC-based PFC component is 
discussed using the shakedown viewpoint.  
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Chapter 8. Summary 
Finally, the conclusions and contributions of this thesis are summarized. 
 
 
 
APPENDIX 
 
Appendix A. Thermonuclear Fusion 
This chapter contains some basic notions about nuclear fusion and main structural 
components, an introduction to the next major steps in fusion research, ITER, PFC, and the 
related material questions. 
 
Appendix B. CMat3D: Fortran Code for C-Matrix 
For the FEM-based shakedown formulation in chapter 3, the equilibrium [C] matrix is used as 
constraints of the formulation. This procedure is performed similar to FEM discretization. In 
this appendix, Fortran code of the formulation of the equilibrium [C] matrix for three-
dimensional model is represented. 
 
Appendix C. An Example of SIF (Standard Input File) 
In this work, the FEM-based shakedown analysis is carried out by using an advanced 
optimization code LANCELOT which is based on an augmented Lagrangian method. 
LANCELOT needs a special input format the so called standard input file (SIF). This file has 
to include all the information of shakedown analysis, that is, elastic stress, equilibrium [C] 
matrix, shakedown inequality constraints, etc. In this appendix, an example of SIF file is 
represented for the simple two-dimensional model with two elements and six nodes. 
 
Appendix D. Shakedown Limits in Cooling  
In chapter 6, the results of shakedown limits are represented for the positive thermal loading 
(heating). Since the manufacturing temperature of FRMMC is normally higher than its 
operation temperature, FRMMC undergoes negative thermal loading in the manufacturing 
process. Therefore, the results of the shakedown limits for the negative thermal loading 
(cooling) are represented. 
 
Appendix E. Shakedown Limits and Loading Paths  
Since there are some ambiguous regions in the figures of the shakedown limits with real 
loading paths, represented in three-dimensional loading spaces (chapter 7), the additional 
diagrams are represented as two-dimensional viewpoints.  
 
 
 





2. Theoretical Backgrounds 

In this chapter, several theoretical backgrounds are represented. In the first section, several 
structural behaviors subjected to variable repeated loading are investigated including 
shakedown behavior. Secondly, previous investigations about shakedown theory are reviewed. 
Finally, the shakedown analysis is extended into the complex system combined with thermal 
loading and hardening effects. 
 
 

2.1. Shakedown, one of structural behaviors 

The development of numerical methods for assessment of the long-time behavior, the 
usability and safety against failure of structures subjected to variable repeated loading is of 
great importance in mechanical and civil engineering. The behavior of the structure subjected 
to cyclic loading can be classified into elasticity, instantaneous plastic collapse, incremental 
plastic collapse, and shakedown. In the following sections, the details of structural behavior 
are investigated. 
 

2.1.1. Elasticity 

All materials are composed of atoms, which are held together by bonds resulting from the 
interaction of electromagnetic fields. Elasticity is directly related to the relative movement of 
atoms. The physical study of the properties of an atomic lattice leads to the theory of elasticity, 
but a much easier way is to write the mathematical constitutive equations directly at the 
mesoscale1 level using the property of reversibility of strain, which implies a one-to-one 
relationship, and eventually incorporate the properties of linearity and isotropy. Elastic 
deformation is not permanent, which means that when the applied load is released, the piece 
returns to its original shape. As shown in the stress-strain plot (Figure 2.1), application of the 
load corresponds to moving from the origin up and along the straight line. Upon release of the 
load, the line is traversed in the opposite direction, back to the origin. 
 
 

2.1.2. Instantaneous plasticity 

As the material is deformed sufficiently high beyond the elastic limit, the instantaneous load-
carrying capacity of the structure becomes exhausted and unconstrained plastic flow and 
damage occur. In this loading, the stress is no loner proportional to strain, and permanent, 
nonrecoverable, or instantaneous plastic deformation, as shown in Figure 2.2. 
 
From an atomic perspective, plastic deformation corresponds to the breaking of bonds with 
original atom neighbors and then reforming bonds with new neighbors as large numbers of 
atoms or molecules move relative to one another. Therefore, upon removal of the stress, they 

                                                            
1 Continuum mechanics deals with quantities defined at a mathematical point. From the physical point of view, 
these quantities represent averages on a certain volume. The “representative volume element (RVE)” must be 
small enough to avoid smoothing of high gradients but large enough to represent an average of the 
microprocesses. There are three scales concerning the phenomenon and damage. The microscale is the scale of 
the mechanisms used to consider strains and damage. The mesoscale is the scale at which the constitutive 
equations for mechanics analysis are written. The macroscale is the scale of engineering structures. 
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do not return to their original positions. 
 
There are two types of plastic flow: perfectly plastic flow and plastic flow with hardening. 
Perfectly plastic flow without hardening corresponds to the case in which the stress remains 
constant during the flow; this is exhibited by e.g. mild steel in the flat (plateau) zone. If the 
stress still increases, the hardening effect should be considered. The hardening effect on the 
shakedown theory will be discussed in the section 2.3. 
 

 

 

 

 
 

2.1.3. Incremental plasticity (ratcheting) 

If the plastic strain increments in each load cycle are of the same sign then, after a sufficient 
number of cycles, the total strains (and therefore displacements) become so large that the 
structure departs from its original form and becomes unserviceable as shown in Figure 2.3. 
This phenomenon is called “incremental plasticity” or “ratcheting.” In this case, the structure 
experiences net increments of plastic strain with each load cycle. The resulting strain will 
accumulate until gross plastic deformation and eventually incremental plastic collapse of the 
structure occurs as follows. 

Figure 2.1. Schematic stress-strain diagram showing linear elastic deformation. 

Figure 2.2. Schematic stress-strain diagram showing instantaneous plastic flow. 
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ij dt εεε

τ
&&                                              (2.1) 

 
r
ij

r
ij t εε ∆Λ= )(&&                                                          (2.2) 

 
r
ijε∆  indicates the ratcheting strain due to plastic strain accumulation during one cycle time 

period τ. Here, )(tΛ&  is monotonic function.  
 

 

 
 

2.1.4. Alternating plasticity (plastic shakedown) 

If the strain increments change sign in every cycle, they tend to cancel each other and total 
deformations remain small leading to “alternating plasticity (AP)”, as shown in Figure 2.4. In 
this case, the structure experiences reverse of alternating plasticity over each cycle; that is, 
finite positive plastic strain in the first half of the load cycle followed by equal magnitude 
negative plastic strain in the second half (such that the net plastic strain AP

ijε∆  over the cycle 
time period τ is zero), as represented in the following equation. 
 

0,0 ≠==∆ ∫ AP
ij

AP
ij

AP
ij dt εεε

τ
&&                                                     (2.3) 

 
This is sometimes called plastic shakedown, because the structure shakes down or settles to a 
steady state of non-cumulative cyclic plastic straining. Structures exhibiting plastic 
shakedown will fail after a finite number of load cycles due to low cycle fatigue. However in 
some practical cases, very local alternating plasticity is permitted in engineering design. By 
consequence a small plastic cell is surrounded by a large elastic body. This is called overall 
shakedown. For example, through a local thickness of a shell, the alternating plasticity should 
be restricted to less than 20 % of the section for safety assessment [52]. 
 

Figure 2.3. Schematic stress-strain diagram showing incremental plastic collapse (ratcheting).
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2.1.5. Shakedown 

If neither alternating plasticity nor ratcheting occur when the structure is cyclically loaded 
between the first elastic yield limit and plastic collapse load, the structure is said to exhibit 
shakedown (SD). In shakedown, the structure experiences finite plastic deformations in the 
first few cycles. After some cyclic loads, plastic flow and damage cease to develop further 
and the accumulated dissipated energy in the whole structure remains bounded such that the 
structure responds purely elastically to the applied loads, as shown in Figure 2.5. This 
phenomenon is sometimes referred to as elastic shakedown, to make it clear that after the 
initial elastic-plastic response the structure shakes down to wholly elastic behavior. 
 

 

 
 

Figure 2.4. Schematic stress-strain diagram showing alternating plasticity. 

Figure 2.5. Schematic stress-strain diagram showing shakedown.
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2.2. Review of static shakedown theorem 

Shakedown theory is based on the fundamental theorems formulated for the case of a three-
dimensional elastic-ideal (perfectly) plastic (EIP) body. The theorems enable us to determine 
the conditions for shakedown together with the conditions for the occurrence of limit states 
such as alternating plasticity or incremental plastic collapse (ratcheting), without the need to 
carry out the calculations of the development of deformation in the process of stabilization of 
a stress cycle. Before the details of computational procedures are described, it is worthwhile 
to briefly discuss some useful theory of ideal plasticity and the fundamental shakedown 
theory. 
 

2.2.1. Prerequisites from mechanics of elastic-ideal plastic solids 

The condition of equilibrium requires that jiij σσ =  which means the stress tensor is 
symmetric. The strain tensor components at small displacements have the following form, 
called compatibility condition, where u  is the displacement vector. 
 

( )Tuu )()(
2
1

∇+∇=ε                                               (2.4) 

 
In the theory of EIP solids considered here, the total strain tensor ε  is assumed to be 
composed of its elastic part eε  and its plastic part pε . The elastic part is related to the stress 
tensor by means of Hook’s law. Plastic deformation can develop when the stress components 
satisfy a yield condition. 
 
So far as the EIP model is concerned, the yield surface remains unaltered over the 
deformation process. The end of the stress vector can either lie inside the yield surface (elastic 
domain) and then the plastic strain rates are equal to zero or can touch the yield surface thus 
generating non-vanishing plastic strain rates. The situation in which the stress vector would 
‘pierce’ the yield surface to lie partly outside is impossible in the case of ideal plasticity. In 
the stress space, loading occurs when the stress point is on the yield surface and remains there. 
If the stress point moves to the inside of the yield surface, it causes unloading (Figure 2.6). 
Here, the direction of vector σ∂∂ /f  is in the direction of outer normal n to the yield surface. 
 

 

Figure 2.6. Loading and unloading for ideal plastic materials.
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The stress state corresponding to a stress point lying inside the yield surface is usually termed 
a safe stress state and denoted by )(s

ijσ , whereas the stress states corresponding to positions of 

the stress point including those on the yield surface are termed admissible stress states )(a
ijσ . 

The equation of a yield surface may be written down in the following forms. 
 

0)( )( <s
ijσF ,     0)( )( ≤a

ijσF                                                  (2.5) 
 
The yield surface is always convex. In the tree-dimensional space an arbitrary plane 
intersection of a convex surface gives a convex curve, i.e. a curve that can be intersected by a 
straight lime in two points only. The assumption of convexity, i.e. Drucker’s stability 
postulate, is of primary importance in the theory of plasticity. In the Drucker’s postulation, 
the following assumption is considered [97-98]. 
 

There exists a yield surface that separates the plastic region from the elastic region. 
The change of the stress state within or along the surface will cause only elastic 
deformation, and change of the stress state from the yield surface toward its interior 
will cause elastic unloading. Plastic loading will occur only if the increment of the 
stress is directed toward the outside of the yield surface. The relationship between the 
infinitesimal increments of the stress and the plastic strain is linear. 
 

When an EIP element under a certain stress state is subjected to a slow loading and unloading 
process 2 , Drucker’s postulate asserts that if a material is stable (Figure 2.7). Then the 
following inequality condition must be satisfied. Here ijσ  is the yield surface stress state 

generating the plastic strain p
ijε& . 

 
0][ )( >− p

ij
s

ijij εσσ &                                                      (2.6) 
 

0][ )( ≥− p
ij

a
ijij εσσ &                                                      (2.7) 

 

 

                                                            
2 In other words, a quasi-static isothermal loading process is assumed. 

Figure 2.7. Stable and unstable material behavior.
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For smooth convex yield surfaces, the above formulated postulate leads to the following 
statement. If the plastic strain rates are represented in the stress space, the plastic strain rate 
tensor is directed along the outer normal to the yield surface. This statement is the well-
known associated flow rule or normality rule in the theory of plasticity since it relates the 
plastic region at a point in the body with the location of the stress point on the yield surface.  
 
The plastic strain rate is determined by the flow rule associated with the yield condition 
within a certain common factor dλ, as follows.  
 

λ
σ
σε dd

ij

klp
ij ∂

∂
=

)F(                                                    (2.8) 

 
Since the stress state in an ideal plastic medium is bounded by an appropriate yield condition, 
the external loads supported by a body in agreement with equilibrium requirements must 
also be bounded by certain limiting condition. Application of the limit load brings about the 
plastic collapse which manifests itself by unlimited increase in deformation under steady 
load. Such a concept of plastic collapse is applied in shakedown theory. 
 
In order to formulate the fundamental theorem of the shakedown theory, the following 
principle of virtual work is employed. 

 
extWU δδ =int                                                    (2.9) 

 

∫∫∫ +=
VSV

dVufdSupdV }}{{}}{{}}{{ ** δδδεσ                  (2.10) 

 
These equations are a generalization of the equilibrium conditions and they remain valid for 
an arbitrary system of external body forces f * and surface traction p* supported by the stress 
state and for an arbitrary displacement field δu compatible with a kinematically admissible 
strain distribution δε. The work done by a self-equilibrated stress system on a kinematically 
admissible strain field is null from the equation (2.10). 
 
 

2.2.2. Static shakedown theorem 

The static approach to the analysis of shakedown condition in the presence of repeated 
loading is based on the static theorem formulated by Melan, who derived sufficient criterion 
for shakedown of EIP model (Figure 2.8). The static shakedown theorem is composed of the 
following statement. 
 
The structure will shake down to the variable repeated loading, i.e. its behavior after a number 
of initial loading cycles will become purely elastic, if there exists a time-independent 
distribution of residual stresses x)(ρ  such that its superposition with elastic stresses ),x(~ teσ  
results in a safe stress state ),x()( tsσ  at any point of the structure under any combination of 
loads inside prescribed limits. 

 
is

ijij
e
ij

s
ij C∈∧+= σρσσ ~)(                                               (2.11) 
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Fiijjijij SonnVin 00, =∧= ρρ                                       (2.12) 
 
Then, the static (Melan’s) theorem of shakedown can be expresses as follows. 
 

If there exists a safety factor 1>SDα  and a time-independent residual stress x)(ρ ,  
such that 
 

LtPVt Y
eSD ∈∀∧∈∀<+ )(x0))x(),x(),x(~( σρσαF                      (2.13) 

 
is satisfied for all load domain )(tP  in L and for all x in V, then the body will 
shake down under the given load domain L. 

 
An essential part of this statement is the assertion that, if shakedown is at all possible under a 
given repeated loading, then it will certainly take place. The shakedown will be caused by 
plastic deformations during the first cycles which are followed by a certain steady, 
independent of a further loading program, distribution of residual stresses. On the other hand, 
shakedown never takes place unless a time-independent distribution of residual stresses can 
be found such that under all the possible load combinations the sum of the residual and elastic 
stresses proves to be an admissible stress state [48]. 
 

 

 
 

Proof 

For the proof of the static shakedown theorem, a positive definite quadratic function W(t), 
i.e. elastic strain energy, is considered as follows. 
 

0)()(
2
1)( 1

)(

≥−−= −∫ dVLtW klklijklij
V

ij ρρρρ                                    (2.14) 

 
e
ijijij σσρ ~−=                                                          (2.15) 

 
In this equation, ),x( tρ  denotes the current magnitude of actual residual stress field and 

)x(ρ  indicates the time-independent residual stress field satisfying shakedown condition 

Figure 2.8. Stress-strain curve for elastic-ideal plastic (EIP) structure. 
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(2.11) at a given loading cycle. ijσ  denotes the current stresses in a considered cycle reaching 
the yield surface at an instant at which the plastic strain rates at appropriate points of the body 
cease to be equal to zero. 1−

ijklL  is the component of the inverse elasticity tensor [L].  
 
From the symmetry of the tensor 1−

ijklL , it follows that the time derivative of elastic strain 

energy )(tW&  is expressed as follows.   
 

dVdVLtW r
ijij

V
ijklijklij

V
ij ερρρρρ &&& )()()(

)(

1

)(

−=−= ∫∫ −                              (2.16) 

 
Here r

ijε&  is the elastic strain rate corresponding to the residual stress state that result form the 
plastic deformation. Since the distribution of the total residual strain rate is composed of the 
elastic component ),( txeε&  and the plastic component ),( txpε& , r

ijε&  can be expressed as 
follows. 
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From equations (2.11), (2.15), (2.18), the time derivative of elastic strain energy )(tW&  is 
restated as follows. 
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According to the definition of strain rate tensor, the first term of equation (2.19) can be 
represented denoting the displacement velocity vector by jiv , . 
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Since the distribution of the total residual strain rate is kinematically admissible, i.e. satisfying 
the continuity requirements, the principle of virtual work can be employed with Gauss 
theorem (divergence theorem) [99], as follows. 
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Now we have the condensed time derivative of elastic strain energy instead of the equation 
(2.16). 
 

0)~()(
)(

)( ≤−−= ∫
V

p
ij

s
ijij dVtW εσσ &&                                              (2.22) 

 
According to Drucker’s postulate (2.6), the integrand in (2.22) is positive only when ijσ  is the 
yield surface stress state. Hence it follows that the derivative (2.22) is negative at those 
instants of time at which, under the actual loading program, non-vanishing plastic strain rates 
are appearing at any point of the body whereas these rates vanish at other instants of time. 
Since the elastic strain energy cannot be negative, the plastic yielding under repeated loading 
cannot go on unlimitedly. Then the total deformation of the structure must be bounded 
(Figure 2.9). Termination of yielding will mean that the shakedown is about to take place. 
Therefore the statement of static shakedown theorem is proved. The details were well 
investigated in [48-49,91]. 
 
 

 
 

 
 
 

2.3. Extension of static shakedown theorem  

2.3.1. Shakedown theorem with thermal loading 

In previous considerations of the shakedown theory an idealized model of structural material 
has been employed. In the realistic system, however, the temperature dependent effects 
cannot be neglected. Material constants such as the yield stress, Young’s modulus, Poisson’s 
ratio, the coefficient of thermal expansion (CTE), etc. vary in fact with temperature. Thus the 
shakedown theorem considering the thermal loading system can be formulated as follows. 
 
 

If there exists a safety factor 1>α  and a time-independent residual stress x)(ρ ,  
such that 
 

Figure 2.9. The possible behavior of plastic energy dissipation with time. 
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LtPVt Y
eSD ∈∀∧∈∀<+ )(x0)),x(),x(),,x(~( ϑσρϑσαF                    (2.23) 

 
then the body will shakedown under the given load domain L. 

 
Here, ϑ  is the thermal loading due to the difference between actual temperature and reference 
temperature (T-Tref). The details of the proof are well investigated by Gokhfeld and 
Cherniavsky [48] or König [49]. 
 
 

2.3.2. Shakedown theorem with unlimited kinematic hardening (ULKH) model 

Most of the results in shakedown theory have been obtained for the perfect plastic model. In 
the real application of shakedown method, the influence of the hardening effect should be 
considered. The unlimited kinematic hardening (ULKH) effect is considered in shakedown 
theorem as shown in the Figure 2.10. 
 

 

 
 
The shakedown theorem with UKLM model can be formulated as follows. 
 

If there exists a safety factor 1>α , a time-independent of residual stress x)(ρ , and 
time-independent back-stress x)(π , such that 
 

LtPVxxxxtx Y
eSD ∈∀∧∈∀<−+ )(0))(),()(),(~( σπρσαF             (2.24) 

 
then the body will shakedown under the given load domain L. 

 
Here, x)(π  denotes the time-independent back stress field. The details of the proof are well 
investigated in [46]. 
 
 

2.3.3. Shakedown theorem with limited kinematic hardening (LKH) model 

When shakedown theorem for unlimited kinematic hardening model is used, the safety limit 
can be overestimated because it does not have the limited yield stress. To overcome its 

Figure 2.10. Stress-strain curve for unlimited kinematic hardening (ULKH) behavior.



2. Theoretical Backgrounds 

 

 28

disadvantage, two surface yield criteria can be employed as shown in the Figure 2.11. Here σy 
and σL indicate the initial yield stress and the limit stress, respectively. Therefore shakedown 
theorem for limited kinematic hardening (LKH) model is formulated, as follows. 
 

If there exists a safety factor 1>α , a time-independent of residual stress x)(ρ , and 
time-independent back-stress x)(π , such that 
 

0))(),()(),(( <−+ xxxtx Y
eSD σπρσαF                                 (2.25) 

 
LtPVxxxtx L

eSD ∈∀∧∈∀<+ )(0))(),(),(( σρσαF                   (2.26) 
 

then the body will shakedown under the given load domain L. 
 

 
 
 

 
 
For the EIP model ( LY σσ = ), the back-stresses π  are identical zero due to the second 
inequality. For ULKH model, it can be also deduced from the previous formulation if 

∞→Lσ . Then the second inequality is not relevant anymore and the back-stresses x)(π  are 
free variables. The details were well investigated in [61]. 
 
 

2.4. Review of kinematic shakedown theorem  

The kinematic shakedown theorem was established in 1950s by Koiter [47], who used the 
analogy between the theorems of limit analysis and those of shakedown. In this work, the 
kinematic theorem is not included but the brief introduction is represented in this section. The 
detail description and proof of the kinematic shakedown theorem can be found in [48-49]. 
  
The kinematic theorem is based on the fundamental concept of an admissible cycle of plastic 
strain rates p

ijε& . In accordance with the definition of the admissible strain rate cycle, the 
plastic strain increment represents a following kinematically admissible strain distribution 
over a certain time interval. This is derived from compatibility condition (2.28) and from the 
increments of residual displacements (2.29) that satisfy the kinematic boundary condition. 
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Figure 2.11. Stress-strain curve for limited kinematic behavior.
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Since the plastic deformation increments per cycle of period Tc are kinematically admissible, 
they generate no changes in the elastic strains and stresses. This means that the residual 
stresses at an instant of time τ = Tc assume again their initial values at τ = 0. Thus the elastic 
strain increments per cycle are equal to zero as follows. 
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Now the kinematic shakedown theorem will be formulated in the following form of two 
statements: 
 

(i) Shakedown never takes place, i.e. a body will eventually collapse as a result of 
cyclic plastic deformation, if there can be found an admissible cycle of plastic strain 
rates p

ijε&  such that the following inequality condition is satisfied under the stresses 
determined by external actions p*(x, t) and f*(x, t) that vary inside prescribed 
loading limits. 
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(ii) A body will shakedown if the following inequality holds true and the factor α > 1 

can be found during arbitrary admissible cycles of non-vanishing plastic strain rates 
p

ijε&  at stresses generated by external actions p*(x, t) and f *(x, t) which vary inside 
prescribed loading limits. 
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3. FEM-based Shakedown Formulation 
A discrete formulation of shakedown theorem for large-scale problem is presented. It is based 
on the finite element method (FEM) [100-106]. This formulation is called a direct method to 
compute the safety factor against failure, which leads to a problem of nonlinear mathematical 
programming. 
 
 

3.1. Introduction to FEM 

In this section, basic concepts for FEM analysis are explained. They will be used in FEM-
based shakedown formulation. Firstly, stress is defined as the intensity of the load per unit 
area. The component of the stress normal to the surface is called the normal stress σ and the 
stress parallel to the surface is called the shear stress τ. Although nine different stresses act at 
a point in the three-dimensional body, there are only six independent stresses by equilibrium 
of moments of the infinitesimal cube. The knowledge of deformations is specified in terms of 
strains, that is, the relative change in the size and shape of the body. The strain at a point is 
also defined in an infinitesimal cube similar to stress. Here ε and γ denote the normal strain 
and the shear strain, respectively. The components of stress and strain for three-dimensional 
structure are expressed in the following equation.   
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The vector of nodal forces and displacement vector at each element are expressed as follows, 
when NK denote the number of total nodes. 
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For a body which is linearly elastic and has small deformations, stresses and strains at a point 
are related through six simultaneous linear equations called Hook’s law. [L]  denotes a 
contracted version of elasticity tensor so-called stiffness matrix. If there are no directional 
preferences at all, the material is assumed to be isotropic and is described by the following 
tensor form (E: Elastic modulus, ν: Poisson’s ratio).  
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For the discretization of the domain into a set of finite elements, the shape function has to be 
defined on each finite element. The matrix [N] includes shape functions corresponding to the 
corner nodes of one finite element, when NKE is the number of nodes at each element and  
y(x, y, z) is the global coordinate of the system. The matrix [B] is called B matrix in FEM 
formulation. It is composed of the components of the derivative of shape functions. 
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Exact evaluation of the integrals appearing in element stiffness matrices and force vectors is 
not always possible because of the algebraic complexity. In such cases, it is necessary to seek 
numerical evaluation of these integral expressions. Numerical evaluation of integrals is called 
numerical integration or numerical quadrature. Of all quadrature formulae, Gauss-Legendre 
technique is the most commonly used. The details of the computational and mathematical 
methods are represented in [107]. The Gauss-Legendre technique requires the transformation 
of the global coordinate ),,(y zyx  to the natural coordinate ),,( ζηξξ . For the coordinate 
transformation, the following Jacobian matrix  )]([ ξjJ  is needed.  
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By taking the inverse of the relationship (3.6), the first derivatives of the shape functions with 
respect to the global coordinates are obtained as follows. 
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For the evaluation of the volume change in the transformation process, the determinant of 
Jacobian matrix )](det[ ξjJ  can be obtained, as follows. 
 

ζηξ dddJdzdydxdV j )](det[ ξ==                               (3.8) 
 
 
 

3.2. Procedure of FEM-based shakedown formulation 

This section deals with the discretization technique using finite element method and nonlinear 
optimization program in order to obtain shakedown safety limit in the considered loading 
domain. Firstly, the discretization techniques of initial loading space, fictitious elastic stresses, 
residual stress field will be explained. Finally, the FEM-based shakedown formulation 
technique will be represented using the nonlinear optimization program [108].  
 

3.2.1. Discretization of initial loading space 

A shakedown limit can be obtained in the specific loading case. However, for multi-
dimensional loadings (e.g. biaxial loading or thermomechanical loading), the macroscopic 
admissible domain, that is, a set of shakedown limits can be determined by carrying out 
several shakedown analyses. These domains are here called macroscopic admissible domains 
of loads or macroscopic strength domains and are expressed in terms of macroscopic stress Σ.  
 
To perform FEM-shakedown analysis in the specific loading domain, an initial loading 
domain has to be discretized. Next, the maximum admissible domain can be obtained from 
the initial loading space using shakedown analysis. For this searching process, the initial 
loading paths are assumed to be included in an initial loading space, that is, a convex 
polyhedron L . It can be defined as a linear combination of n-independent loads, as follows. 
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Here, Σ  is a state of macroscopic stresses (or thermal stresses), and t denotes a loading 
parameter denoting the time. jµ  are scalar multipliers with upper and lower bounds +

jµ   and 
−
jµ , respectively. jΣ  represents n  fixed and independent macroscopic stresses. The corners 

of the polyhedron (load domain L ) are numbered by the index j, such that j = 1, … , NV, 
where NV denotes the total number of loading corners. There is a simple rule between number 
of independent loadings and number of loading corners, that is, NV = 2n (n is the number of 
independent loading). For example, when two-independent loadings, i.e. 1Σ  and 2Σ , are 
considered in a loading domain L, four loading corners (P1 - P4) are obtained, as shown in 
Figure 3.1.  
 

 

 

3.2.2. Discretization of elastic stresses 

To calculate the elastic stresses eσ  in reference body, the principle of virtual work combined 
with the finite element discretization and test functions for the displacement fields are used. 
The elastic stresses eσ  are in equilibrium with body force f * and surface traction p* if the 
following equality holds for any virtual displacement euδ  and any virtual strains eδε  
satisfying the compatibility condition1. 
 

extWU δδ =int                                                    (3.10) 

                                                            
1 ( )Teee uu )()(

2
1

∇+∇=ε  

Figure 3.1. Loading domain L for two independent loadings and four obtained loading corners. 
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The virtual displacement field euδ  of each element e is approximately according to the 
following equation, when NK denotes the number of nodes at each element. 
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Here kN  and e

kuδ  denote the kth shape function matrix and the vector of virtual displacements 
of the kth node of the element e, respectively. The virtual strain field )(xeδε  is derived by 
substitution of equation (3.12) into the compatibility condition. 
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Here [B] is the compatibility matrix depending on the coordinates. The integration of equation 
(3.12) has to be carried out over all Gaussian points NG with their weighting factors wi in the 
considered element e, where the index i refers to ith Gaussian point. The corresponding 
coordinate vector shall be denoted by xi, as follows, where {F} denotes the vector of nodal 
forces and [K] denotes the stiffness matrix. 
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By summation of the contribution of all elements and by variation of the virtual node 
displacements with regard to the boundary conditions, the linear system of finite element 
equation can be obtained as follows. 
 

[ ]{ } { }FK =eu                                                      (3.15) 
 
 

3.2.3. Discretization of residual stress field 

In shakedown theorem, the residual stress field ρ  should satisfy the homogenous static self-
equilibrium and boundary conditions represented in equations (2.5) and (2.6). Therefore, the 
field of residual stress can be formulated as follows. 
 

{ }{ } 0=∫ dV
V

δερ                                                 (3.16) 

 
By introducing a vector form for the strain tensor ε , the corresponding virtual strains δε  are 
represented in each element e as follows. 
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Using the relation (3.17) and introducing the unknown residual stress vector { }iρ  at each 
Gaussian point i, the equilibrium condition (3.16), is integrated numerically by using the well-
known Gauss-Legendre technique. Denoting the weighting factor for numerical integration 
for the ith Gaussian point by wi, the numerical integration over all Gaussian points NG can be 
carried out as follows. 
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[C*] is a constant equilibrium matrix, uniquely defined by the discretized system and the 
boundary conditions and { }ρ  is the global residual stress vector of the discretized reference 
body eB  [86,108-110]. According to (3.16), the virtual work of the time-independent residual 
stress field { }ρ  must be null. Substituting (3.18) into (3.16) and performing the variation of 
node displacement with regard to the kinematic boundary condition, one obtains a system of 
linear equation. 

 

[ ]{ } { }0C
1
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i
iiC ρρ                                            (3.19) 

 
The kinematic boundary conditions are included through the fact that the rows in the matrix 
[C*] should be erased, which would be multiplied by null virtual displacement according to 
(3.18). Since the matrix [C] has more rows than columns, the system of (3.19) cannot be used 
to obtain time-independent residual stress field { }ρ  in the integration points directly. The 
Fortran code for the generation of the matrix [C] is attached in Appendix B. 
 
 

3.2.4. FEM discretization of shakedown formulation 

In view of the convexity of the yield function and due to above assumption on the load 
domain L it can be shown that 
 

Y
e xtxF σρσα ≤+ ))(),(~(                                          (3.20) 

 
is fulfilled at any time t, if 
 

Yij
e
i PF σρσα ≤+ ))(~(                                            (3.21) 

 
holds for all ],1[ NVj∈  and for all ],1[ NGi∈ , when NV and NG indicate total number of 
loading corners and total number of Gaussian points.  
 
The final form of the discretized formulation of the static shakedown theorem for the 
determination of the shakedown loading factor is given by the following conditions (3.22)-
(3.24). 
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ρ

max=SD                                                     (3.22) 

 
with the subsidiary conditions 

 
],1[],1[))(~( NVjandNGiPF Yij

e
i ∈∀∈∀≤+ σρσα             (3.23) 

 
[ ]{ } { }0=ρC                                                   (3.24)  

 
 

As mentioned, the unknown variables of the optimization problem are shakedown factor α  
and the residual stress field { }ρ . Therefore, the number of total unknown variables is 

NSKNGN ×+=1 , where NSK is the dimension of the stress vector at each Gaussian point  
(two-dimensional model: NSK = 3, three-dimensional model NSK = 6). The shakedown 
criterion (3.23) has to be fulfilled at total Gaussian points ],1[ NGi∈  and in each loading 
corner ],1[ NVj∈ , where nNV 2=  (n is the number of independent loading). The number of 
inequality constraints from the shakedown criterion (3.23) is NGNV × . The number of 
equality constraints from the [C] matrix (3.24) is NF , that is,  the degrees of freedom of 
displacements of the discretized body. Therefore, the number of total constraints is 

NFNGNV +× .  
 
For the understanding about the number of known variables and constraints, the simple two-
dimensional plane with four-node quadrilateral element (NE: 100 elements, NK: 121 nodes) is 
considered, as represented in Figure 3.2. Two-independent biaxial loading is considered (i.e. 

)(22)(4 nNV = ). The number of constrained boundary conditions (NBC) is 22.  Each element 
is composed of four Gaussian points, that is, the number of total Gaussian points (NG) is 400. 
Therefore the number of resulting unknown variables will be )(3)(40011201 NSKNG ×+= . 
The number of inequality constraints (3.23) is  )(400)(41600 NGNV ×=  and the number of 
equality constraints (3.24) is )(222)(121)(222 NBCNKNF −×= .  
 

 

 
Figure 3.2. Two-dimensional plane with finite element discretization. 
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The direct approach presented above of shakedown analysis leads to a problem of 
mathematical programming, which requires a large amount of computer memory, because the 
numbers of unknown variables and constraints are very high. Furthermore, for the 
implementation of the nonlinear yield conditions (e.g. von Mises criterion), the solution 
technique of the respective nonlinear optimization problem is required with highly iterative 
procedures. Therefore, this problem can be solved by large-scale nonlinear optimization 
program. 
 
 

3.3. Procedure of large-scale nonlinear optimization 

3.3.1. Description of large-scale nonlinear optimization problem 

The resolution of large-scale nonlinear optimization problems can be carried out by using 
advanced code LANCELOT [111]. LANCELOT, an acronym for Large And Nonlinear 
Constrained Extended Lagrangian Optimization Technique, is a package of standard Fortran 
subroutines and utilities. It has been designed for problems where the objective function is a 
smooth function of many real variables and where the value of these variables may be 
restricted by a finite set of smooth constraints. LANCELOT considers the problem of 
minimizing or maximizing an objective function of the problem. In this shakedown 
application, the minimization problem is considered since the objective function is chosen as 
the negative value of shakedown safety factor.  
 

α=)(Xf                                                  (3.25) 
 
The general equality and inequality constraint functions are represented as follows.   

 
NSKNGqNFpCXb qpqp ×=== ,...,1;,...,1)( ρ                     (3.26) 

 
NVNGNFrFXb Yr

e
rr ×+=≤+= ,...,1)()( σρασ                (3.27) 

 
There is no loss in assuming that all the general constraints are equations, as inequality 
constraints may easily be transformed to equations by addiction of extra slack or surplus 
variables. LANCELOT automatically transforms inequality constraints (3.27) into equations. 
This technique is extensively used in simplex-like methods for large-scale linear and 
nonlinear programs [112]. The objective function and generalized constraints can be 
combined into a composite function, that is, the augmented Lagrangian function Φ .  
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Here the components iλ  of the vector λ  are known as Lagrange multiplier estimates. The 
entries iis  of the diagonal matrix [S] are constraint scaling factors, and µ  indicates the 
penalty parameter. The constrained maximization problem (3.25)-(3.27) can be solved by 
finding approximate minimizers of the augmented Lagrangian function for a carefully 
constructed sequence of Lagrange multiplier estimates, constraint scaling factors and penalty 
parameters.  
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3.3.2. Optimization technique using augmented Lagrangian method 

The iteration steps for the optimization are composed of two main steps, as follows.  
(i) Minimize the augmented Lagrangian function. 
(ii) Find an approximate minimizer 

 

3.3.2.1. Minimize the augmented Lagrangian function 

The first order necessary conditions for a feasible point { }( )*** , ρα=X  to solve the problem 
(3.25)-(3.27) require that there are Lagrangian multipliers *λ , for which the projected gradient 
of the Lagrangian function at *X  and  *λ  and the general constraints (3.25)-(3.27) at *X  
vanish. Here, the Lagrangian function is expressed as the following function. 
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)()(),( λλ                                         (3.29) 

 
The projected gradient of f is replaced by the gradient of Lagrangian function, ),( λXLX∇ . 
One may then assess the convergence of the augmented Lagrangian method by the size of the 
projected gradient and constraints at )(kX  and )(kλ . The optimization will be terminated if the 
following conditions hold for some appropriate small convergence tolerances lε  and cε . 
 

l
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X
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c
kXb ε≤)( )(                                                       (3.31) 

 
Here, P(X, l, u) denotes the projection operator defined by the following equation, when l and 
u are lower bounds and upper bounds, respectively.  
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3.3.2.2. Find approximate minimizer 

The convergence of augmented Lagrangian method is guaranteed, under very weak 
assumptions, if the penalty parameter is gradually reduced to zero, almost regardless of the 
values of the Lagrange multiplier estimates. The Lagrange multiplier estimates may even 
diverge provided that )()( kk λµ  converges to zero. However, it becomes more difficult to 

minimize (3.28) when )(kµ  is small. Fortunately, a judicious choice of Lagrange multipliedr 
estimates also ensures convergence for fixed µ  provided )(kX  is close to *X . Thus )(kµ  is 
allowed to decrease until we are sure that we are in a neighborhood of  *X  from which point 

)(kµ  is left unchanged but the Lagrange multipliers adjusted to ensure ultimate convergence. 
We can gauge whether we are in such a neighborhood by monitoring the expected decrease 

)( )1( +kXb . At each iteration, we exit the iteration loop when the following condition is 
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satisfied for some tolerance )(kω .  
 

)()()()()1()1()1( ),),,,,(( kkkkk
x

kk ulsXXPX ωµλ ≤Φ∇−− +++                 (3.33) 
 
Then the function can be tested for some other tolerance )(kη , as follows. 
 

)()1( )( kkXb η≤+                                               (3.34) 
 

If (3.34) is satisfied, we leave the penalty parameter unchanged but update the Lagrange 
multiplier estimates. Otherwise, we reduce the penalty parameter while leaving the Lagrange 
multiplier estimates as they are.  
 

3.3.2.3. Application to FEM-based shakedown formulation 

It turns out that the elements of { }ρ  are not independent of each other and so a Gauss-Jordan 
elimination procedure [113] can be applied to the matrix [C] to eliminate the equality 
constraints (3.26) and to reduce the size of the problem. Then, we obtain the matrix [b] with 
the following property 
 

[ ][ ] 0=bC                                                  (3.35) 
 

By this means, an arbitrary vector X with NFNSKNGNX −×= components yields with the 
relation 
 

{ } [ ]{ }Xb=ρ                                                (3.36) 
 

a residual stress vector { }ρ , satisfying equation (3.26) for any vector { }X . The column 
vectors of [b] represent linearly independent residual stress states of the discretized body. 
Then, the following optimization problem is obtained. 
 

αα
X

SD max=                                               (3.37) 

 
],1[],,1[})]{[)(( NVjNGiXbPF Yij

e
r ∈∀∈∀≤+ σασ            (3.38) 

 
 

3.4. Summary of FEM-based shakedown formulation 

In this work, the computational program for FEM-based shakedown analysis was developed 
using a software package LANCELOT for solving large-scale nonlinear optimization 
problems. The computational algorithm is represented in Figure 3.3.  
 
The program is composed of two main parts, that is, FEM process (section 3.2) and 
optimizations process (section 3.3). In FEM process, the elastic stresses at each loading corner 
are determined using conventional FEM analysis (section 3.2.1-2). The equilibrium [C] 
matrix has to be obtained using special program for [C] matrix formulation (section 3.3.3). 
Next the shakedown formulation has to be performed (section 3.3.4).  
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Figure 3.3. Flowchart of FEM-based shakedown formulation using LANCELOT 
optimization program.   
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The obtained results from FEM process are used as unknown and known variables in 
optimization process. They may be several hundred thousands of variables including equality 
and inequality constraints. The input of the problem data will be extremely time-consuming 
and prone to error. Therefore, the simplified process of specifying variables is required. This 
can be performed with standard input file (SIF) format. The SIF / LANCELOT interface 
produces Fortran subroutines that are subsequently used by LANCELOT optimizers. These 
routines contain variables that are named within the SIF problem specification. The typical 
example of SIF file for FEM-based shakedown analysis is attached in appendix C. 
 
If the SIF file is prepared, the optimization process is performed with LANCELOT program. 
In the first step of optimization process, LANCELOT SIF decoder module reads a description 
of the problem from a SIF file. This module interprets the statements found in the file and 
produces four Fortran subroutines (ELFUNS.f, GROUPS.f, RANGES.f, SETTYP.f) and a 
data file (OUTSDIF.d). Four Fortran subroutine files are compiled at the next step of the 
process. The resulting object modules are then loaded with the LANCELOT “optimization 
object module”. This step simply uses the system-provided Fortran compiler and program 
loader. Then the LANCELOF module is executed with OUTSDIF.d and algorithmic options 
in the specification file (SPEC.spc). Finally the numerical solution to the optimization 
problem is found, that is, the maximized shakedown factor in this problem. The details of 
LANCELOT program description including SIF file format were represented in [111]. 



4. Verification Tests 

The developed computational tool for shakedown analysis is validated with previous literature 
result. The accuracy and the effectiveness of the computational algorithm of shakedown 
analysis tool are discussed. 
 

4.1. Two-dimensional plate with a hole 

Two-dimensional plate with a hole problem was chosen to verify the developed 
computational algorithm. The chosen geometry was used as one of the most conventional 
models for structural analysis including shakedown analysis [91]. In this geometry, the chosen 
ratio between diameter of the inner hole and the length of the plate (d/l) was fixed to be 0.2. 
The finite element meshes and the boundary conditions for the chosen model were 
represented in Figure 4.1. Since this model was symmetric to x-axis and y-axis, only a quarter 
plane was used to carry out FE analysis for computational efficiency. The four node 
quadrilateral elements were used in FE analysis. The plane stress was assumed since the 
chose plate was thin enough1. The number of total elements and the number of total nodes 
were 574 and 626, respectively. Young’s modulus and Poisson’s ratio were E = 210 000 MPa 
and v = 0.3, respectively. The plate was subjected to biaxial uniform loads px (x-directional 
pressure) and py (y-directional pressure).  

 

 

                                                            
1  If a thin plate is loaded by forces applied at the boundary, parallel to the plane of the plate and distributed 
uniformly over the thickness, the stress components σz, τxz,τyz are zero on both faces of the plate, and it may be 
assumed , tentatively, that they are zero also within the plate. The state of stress is then specified by σx, σy,τxy 
only, and is called plane stress [119]. 

Figure 4.1. A plate with a hole and its finite element mesh.
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For FEM-based shakedown analysis, the loading parameters have to be defined for the 
arbitrarily chosen initial loading space. With regard to the number of loading parameters, 
shakedown analysis is categorized into one-parameter case and two-parameter case, as 
follows. 
 

(i) Shakedown limit (one-parameter loading): 
1SDα  

 
( )10, **

1 11
≤≤== µµαµα ySDySDx pppp                                  (4.1) 

 
(ii) Shakedown limit (two-parameter loading): 

2SDα   
 

( )1010, 21
*

2
*
11 22

≤≤≤≤== µµµαµα andpppp ySDySDx                 (4.1) 
 
In one-parameter loading px and py vary simultaneously proportionally with the same factor of 
proportionality since there exists only one variable, µ. If the loading source of the component 
is limited as one-parameter, the one-parameter approach can be used for shakedown analysis. 
However, in two-parameter loading, px and py vary independently, since there exist two 
independent variables, µ1 and µ2. If two more independent loadings are considered in the 
structure, multi-parameter loading can be used. The number of boundary of loading space (m) 
was also dependent on the number of loading parameters (n), i.e. m = 2n. For example, two 
loading boundaries (P1, P2) are expected in one-parameter loading while four loading 
boundaries (P1-P4) are expected in two-parameter loading. 
 

                            
                                          (a)                                                                                        (b)   

 

 
One-parameter and two-parameter shakedown analyses were performed for the chosen 
geometry. The obtained shakedown limits were represented in in-plane biaxial loading space, 
as shown in Figure 4.3. For the graphical representation of the results, the values of x-
directional and y-directional pressures were normalized by the yield stress of material. In the 
Figure 4.3, shakedown limit for one-parameter loading was denoted by cross symbol with red 
solid line and shakedown limit for two-parameter loading was denoted by square symbol with 
blue solid line. For the comparison, the yield limit was shown as dark grey line in the loading 
space. As expected, shakedown limits were larger than elastic limits. One-parameter 

Figure 4.2. The initial loading space for shakedown analysis: (a) one-parameter loading 
and (b) two-parameter loading. 



4. Verification Tests 

 

 45

shakedown limits have more gain than two-parameter shakedown limits in the first and the 
third quarter loading planes, while they were same in the second and the fourth quarter 
loading planes.  
 

 

 
The present results will now be compared with other literature values for three special load 
combinations. The compared shakedown limits were for two-parameter loading. The available 
results were summarized in Table 4.1. The literature results were based on different 
approaches concerning both discretization of the problem and the numerical solution 
technique. The computational methods used in literature were remarked as follows. 
 

(i) Belytschko [114] used pure equilibrium triangular elements with second-order 
shape functions for the stresses.              

 
(ii) Nguyen Dang Hung and Palgen [115] developed quadrilateral equilibrium elements 

based on the static shakedown theorem and a so-called yield criterion of the mean.  
 

(iii) Corradi and Zavelani [116] replaced the original discretized problem by its dual 
after a linearization of the yield condition.  

 
(iv) Genna [117] used isoparametric eight node displacement elements and Melan’s 

static formulation with the von Mises yield condition. Moreover a numerical scheme 
for the direct determination of the safety factor was developed. 

 
(v) Zhang [109] used the static shakedown theorem and the von Mises yield criterion in 

combination with finite element discretization based on classical four node 
displacement elements. The solution of optimization problem has been obtained 
with the reduced basis technique. 

Figure 4.3. Shakedown limits in two-dimensional loading space. 
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(vi) Gross-Weege [110] used four node plane stress quadrilateral elements with an 

iterative solution method using a reduced basis technique.  
 

(vii) Schwabe [91] used the static shakedown theorem and the von Mises yield criterion 
in combination with finite element discretization based on classical six node 
displacement elements. The large-scale nonlinear optimization process was used for 
the computational formulation. 

 
The obtained shakedown limits (0.622 in uniaxial loading, 0.453 in biaxial loading) were 
represented in in-plane biaxial loading space and compared with other literature values (0557-
0.654 in uniaxial loading, 0.430-0.504 in biaxial loading) as shown in Table 4.1. The present 
results were generally very close to the available exact analytical values and other shakedown 
limit values. 
 
 

Shakedown results (Two-parameter) 
Authors 

px = py py = px / 2 py = 0 

Belytschko [114] 0.431 0.501 0.571 

Nguyen Dang Hung and Palgen [115] 0.431 0.514 0.557 

Corradi and Zavelani [116] 0.504 0.579 0.654 

Genna [117] 0.478 0.566 0.653 

Zhang [109] 0.453 0.539 0.624 

Gross-Weege [110] 0.446 0.524 0.614 

Schwabe [91] 0.430 0.505 0.595 

Analytical solution [110] 0.431 0.514 0.596 

Present result 0.453 0.538 0.622 

 
 

4.2. Two-dimensional model of FRMMC 

The developed computational tool is verified with composite structure. Recently, shakedown 
analysis for two-dimensional FRMMC structure has been studied by Schwabe [91]. The main 
study was focused on the periodical composite structure such as Al2O3 fiber and Al metal 
matrix. Here FRMMC was assumed to be perfect bonding between fiber reinforcement and 
matrix. The material properties of matrix and fiber were shown in Table 4.2. Since the fiber 
was assumed to be infinitely long, the plane strain assumption was possibly used for this 
geometry2. 
                                                            
2  A simplification is possible at the extreme when the dimension of the body in the z direction is very large. If a 
long cylinder body is loaded by forces that are perpendicular to the longitudinal elements and do not vary along 
the length, it may be assumed that all cross sections are in the same condition. It is simplest to suppose at first 
that the end sections are confined between fixed smooth rigid planes, so that displacement in the axial direction 

Table 4.1. Comparison of different numerical solutions for shakedown analysis. 
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Material Properties Aluminum Al2O3 fiber 

Young’s modulus, E (GPa) 70 370 

Poisson’s ratio, ν 0.3 0.3 

Yield stress, σY (MPa) 80 2000 

 
 
The heterogeneous materials with a periodic microstructure, e.g. FRMMC, were obtained by 
the periodic translation of a regular pattern, usually called RVE (Representative Volume 
Element) or unit cell. Figure 4.4 shows the transverse cross-section of the so-called square 
edge packing of fibers where the red line represents the unit cell3. The symmetry condition 
can be used for x- and y-axis for the chosen unit cell in order to reduce computational time as 
shown in Figure 4.5. The fiber volume fraction was chosen as 20 %. The four node plane 
strain quadrilateral elements were used for the FEA calculation. The number of elements and 
the number of nodes were 744 and 801, respectively. The macroscopic stresses were imposed 
to in-plane biaxial direction. Here Σx and Σy indicate the x-directional macroscopic stress and 
y-directional macroscopic stress, respectively.  
 

       

 
The shakedown analyses in in-plane loading plane (Σx, Σy) were performed as shown in 
Figure 4.6. They were normalized by the yield stress of matrix, σY. For the comparison, the 
shakedown limits of literature and analytical results were shown. The red solid line indicates  

                                                                                                                                                                                          
is prevented. Since there is no axial displacement at the ends and, by symmetry, at the midsection, it may be 
assumed that the same holds at every cross-section. Since the longitudinal displacement is zero and the 
longitudinal normal stress can be found in terms of σx and σy, the plan strain problem reduces to the 
determination of σx, σy, τxy as functions of x and y only [118]. 
 
3 Conventionally, there are three unit cell methods for periodic arrangement: square unit cell with edge packing, 
square unit cell with diagonal packing, and periodic hexagonal array. For details, see reference [119]. 

Table 4.2. Material properties of Aluminum and Al2O3 fiber (at room temperature) [91]. 

Figure 4.4. A transverse cross-section of the square packing of the fibers. 
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the present result and the blue solid line indicates the shakedown result obtained by Schwabe 
[91]. Circle and triangle indicate analytical results which were determined by Du et al. [120] 
and Ponter et al. [121], respectively. The comparison result shows the shakedown limits by 
present approach have a good correspondence with the previous studies. Therefore the 
developed computational tool for shakedown analysis can be used for determination of 
shakedown safety limits of FRMMC composite. 
 

  

                   

 

Figure 4.5. A square unit cell (from Figure 4.3) with finite element mesh 
and boundary condition. 

Figure 4.6. Shakedown limits of FRMMC in in-plane biaxial loading space. 
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4.3. Experimental result of FRMMC 

The present results are verified with experimental results. The thermomechanical fatigue 
(TMF) experiment of lamina-type FRMMC composite was performed by Leckie and Jansson 
[36]. The used materials were Al2O3 long fiber and Al metal matrix composite. Shakedown 
limits were determined by cyclic thermomechanical test and compared with the values which 
were obtained by step-by-step numerical method. The materials properties used in 
computations were represented in Table 4.3. For the experiment, the fiber consists of 99 % 
polycrystalline α-alumina (Al2O3) coated with silica that improves the strength of the fiber 
and aids the wetting by the molten metal. The fiber has a diameter of approximately 20 µm, 
and an elastic modulus of 345-380 GPa.  
 

Material Properties Aluminum Al2O3 fiber 

Young’s modulus, E (GPa) 70 345 

Poisson’s ratio, ν 0.32 0.26 

Coefficient of thermal 
expansion, ϑα  (10-6 /K) 8.6 0.26 

Yield stress, σY (MPa) 95 - 

 
In the computational analysis, the fibers were assumed to be long parallel cylinders and the 
thermomechanical loading was considered. The chosen unit cell was hexagonal array. Since 
the shakedown limits were dependent on the geometry, the two geometries were chosen in 
this study [91]. Figure 4.7 shows the transverse cross-section of the packing of fibers and two 
kinds of hexagonal unit cell with finite element mesh. The fiber volume fraction was 
determined to be 55 %. The four node plane strain quadrilateral elements were used. The 
number of elements and the number of nodes used in FEA calculation were 419 and 471 for 
geom. 1 and 470 and 514 for geom. 2.  
 

 

 

Table 4.3. Material properties used in computations [36]. 

Figure 4.7. A hexagonal unit cell with finite element mesh and boundary condition.  
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The shakedown limits for thermomechanical loading case were represented in Figure 4.8. The 
x-directional macroscopic stress and thermal loading were considered. Thermal loading (∆T) 
and macroscopic stress (Σx) were normalized by the yield stress of the Al matrix. For the 
comparison, elastic limits were denoted by blue dashed line for geom. 1 and red dashed line 
for geom. 2. Also shakedown limits obtained by the incremental analysis were shown in the 
same loading plane as grey solid line. 
 
Shakedown limits as well as elastic limits were dependent on the chosen geometry (geom. 1 
and geom. 2). This effect was because the transverse strength was sensitive to the fiber 
arrangements and loading directions, with a square arrangement of fibers loaded in the 0o 
direction being the strongest (geom. 1), a square arrangement loaded in the 45o or a hexagonal 
arrangement in the 0o being the weakest (geom. 2) [120]. From the results, the shakedown 
limits of the experimental method were higher than shakedown limits of the shakedown 
analysis. This discrepancy of shakedown limits between shakedown analysis and 
experimental method can be explained by the fact that there exists the influence of strain 
hardening in the metal matrix from cycle to cycle. Also, the difference of shakedown limits 
between incremental analysis and experimental analysis was investigated in the literature 
work [36]. However, shakedown limits obtained from the experimental investigation were in 
a fairly good agreement with those obtained by the developed tool. 

 

 
 

Figure 4.8. Shakedown limits of FRMMC in thermomechanical loading space. 



5. Description of Problem 

 
In this work, the shakedown analysis of FRMMC is performed for the structural safety 
assessment for fusion application. The application of shakedown analysis for the plasma 
facing component (PFC) was not simple due to the complexity in the loading history of the 
cyclic heat flux loading combined with the manufacturing process. Therefore, in this chapter, 
the systematic methods were represented with analysis objective, materials and computational 
methods. 
  
 

5.1. Analysis objective 

Firstly, we apply the shakedown analysis into FRMMC layers to investigate shakedown 
safety limits for the fusion application. The model for analysis is shown in Figure 5.1. The 
FEM-based shakedown analysis is performed for the unit cell of FRMMC layer. The chosen 
unit cells are lamina and laminate, as shown in Figure 5.1 (b) and (c). Secondly, the 
incremental FEM (thermo-elasto-plastic) analysis is carried out for the whole PFC        
(Figure 5.1 (a)) in order to obtain the realistic loading path. The details of analysis were 
shown in the following sections.  
 
 

 

 

Figure 5.1. The schematic view of PFC component and typical FRMMC layers: (a) FRMMC layer included PFC 
component, (b) lamina type FRMMC layer and its unit cell, and (c) laminate type FRMMC layer and 
its unit cell.  
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5.2. Material properties for analyses  

5.2.1. FRMMC for shakedown analysis 

As mentioned, shakedown analyses are performed for unit cells of FRMMC layer. In this 
work, SiC long fiber and Cu alloy (CuCrZr) are used. SiC long fibers can provide high 
temperature strength. The Cu alloy mainly provides high thermal conductivity. The material 
properties of the matrix and the fiber are represented in Table 5.1. 
 
For FEM-based shakedown analysis, the SiC long fiber was assumed to be linear elastic 
whereas the metal for the matrix was considered to be elastic-ideal (perfectly) plastic (EIP). 
The arrangements of fiber in the matrix were based on the some geometrical assumptions as 
follows. 
 

• The interface of fiber and matrix is perfectly bonded. 
• Fibers of straight cylinders are formed with circular cross-sections of the diameter. 
• All fibers possess identical geometry and they are homogeneous. 
• Fibers are infinitely long, i.e. the ratio of the diameter to length is very small. 
• Fibers are arranged in parallel and unidirectionally in one ply with a same distance 

between neighboring fiber centerlines. 
 

Since the copper alloy was hardened with deformation, the hardening effect cannot be ignored. 
In this shakedown analysis, both limited kinematic hardening (LKH) effect and unlimited 
kinematic hardening (ULKH) effect are considered. For LKH model, the hardening factor has 
to be determined by the experimental data [122]. 
 

 

Materials CuCrZr [123] SiC long fiber  

Young’s modulus, E (GPa) 128 380 

Poisson’s ratio, ν 0.34 0.17 

Coefficient of thermal 
expansion, ϑα  (10-6 /K) 15.7 5.7 

Yield stress, σY (MPa) 297 ∞ 

Hardening effect 1.2σY (LKH),  ∞ (ULKH) - 

                 
                   * LKH: limited kinematic hardening model, ULKH: unlimited kinematic hardening model. 
 
 

5.2.2. PFC related materials for incremental analysis 

The thermo-elasto-plastic analysis is performed for the whole PFC using commercial FEM 
code, ANSYS. For this, the used PFC related materials are tungsten for plasma facing 
material (PFM), FRMMC (SiC fiber and CuCrZr) for interlayer, and CuCrZr for heat sink. 
For the incremental analysis, extensive temperature-dependent thermomechanical properties 

Table 5.1. Properties of matrix and fiber at room temperature. 
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of these materials are necessary, e.g. Young’s modulus, Poisson’s ratio, coefficient of thermal 
expansion, stress-strain curve, thermal conductivity, density, heat capacity, etc. Some 
important mechanical properties (at room temperature and joining temperature) were listed in 
Table 5.2. 
 
The properties of tungsten and CuCrZr can be available from the ITER materials handbook 
[123]. Since the FRMMC for the incremental analysis is homogenized, the material properties 
for the whole FRMMC layer are necessary. However, the FRMMC (SiC fiber and CuCrZr 
matrix) is under developing stage and they are not successfully made up to now. Therefore, 
the mechanical properties of FRMMCs cannot be obtained experimentally but be obtained by 
FEM calculation. For the FEM computation, the laminate FRMMC is considered and its fiber 
volume fraction is fixed to 20 %. The laminate structure is orthotropic, and the resulting 
material properties are dependent on the directions for FRMMC. In the Table 5.2, la indicates 
in-plane (laminate) direction and tr indicates out-of-plane (transverse) direction. 
 

Tungsten [123] FRMMC (20 %) CuCrZr [123] 
Materials 

20 oC 700 oC 20 oC 700 oC 20 oC 700 oC 

Young’s modulus, E (GPa) 398  383  170 (la) 
160 (tr) 

128 (la) 
111 (tr) 128 85 

Poisson’s ratio, ν 0.28  0.29  0.29 (la) 
0.27 (tr) 

0.36 (la) 
0.38 (tr) 0.34 0.34 

Coefficient of thermal 
expansion, ϑα  (10-6 /K) 3.9  4.3  12.5 (la) 

14.0 (tr) 
16.6 (la) 
20.1 (tr) 15.7 19.3 

Yield stress, σY (MPa) 656  155  - - 297 128 

Thermal conductivity 
(W/mK) 0.17  0.12  0.28 (la) 

0.26 (tr) 
0.28 (la) 
0.26 (tr) 0.38 0.37 

 
 
 

5.3. Scope of shakedown analysis  

To perform FEM-based shakedown analysis for the composite materials, unit cell concept of 
the fiber arrangement is introduced by considering the periodicity of the fiber arrangement. In 
this work, two types of fiber arrangements are considered, i.e. lamina and laminate. For 
lamina structure, square unit cell is used, as described in Figure 5.2. A quarter part of unit cell 
is chosen for mesh generation in order to reduce the computational cost. Two different fiber 
volume fractions (20 % and 40 %) are considered to investigate the effect of fiber volume 
fraction on the shakedown limits. Although three-dimensional shakedown analysis is the main 
object in this work, two-dimensional shakedown analysis is performed for lamina structure. 
From this comparative study, the difference between two-dimension analysis and three-
dimensional analysis is investigated. The finite element meshes of each unit cell and their 
boundary conditions are represented in Figure 5.2. Here Σx, Σy, and Σz indicate x-, y-, and z-
directional macroscopic stress and ∆T indicates the thermal loading from the difference 
between current temperature and stress free temperature, respectively.  
 

Table 5.2. Properties of tungsten, FRMMC, and CuCrZr.  
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(a)                                                        (b)                                                       (c)  

 
For laminate structure, an anti-symmetric cross-ply laminate with the stacking sequence 
[0/90] is considered (left figure of Figure 5.3). The fiber arrangement and the resulting unit 
cell are represented in Figure 5.3. Two different fiber volume fractions (20 % and 40 %) are 
considered to investigate the effect of fiber volume fraction.  
 

   
                                                                                           (a)                                                    (b) 

 
 
As a whole, five unit cells are made for the analysis, that is, lamina with 20 % of volume 
fraction (2D analysis), lamina with 20 % of volume fraction (3D analysis), lamina with 40 % 
of volume fraction (3D analysis), laminate with 20 % of volume fraction (3D analysis), and 
laminate with 20 % of volume fraction (3D analysis). Number of elements, number of nodes 
and the number of variables of each unit cell are summarized in Table 5.3. From the element 
and node information, the numbers of known variables (elastic stress field, yield stress, limit 
stress) and unknown variables (shakedown safety factor, residual stress field) are determined. 
The shakedown parameters have very strong dependence with the number of elements and 
nodes.  
 
 

Figure 5.2. Finite element meshes for the lamina (square unit cell) with fiber volume fraction of         
(a) 20 % (2D analysis), (b) 20 % (3D analysis), and (c) 40 % (3D analysis).  

Figure 5.3. Finite element meshes for the laminate with fiber volume fraction of (a) 20 % and (b) 40 %.  
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 Lamina 
(2D analysis) 

Lamina 
(3D analysis) 

Laminate 
(3D analysis) 

(Fiber volume fraction) (20 %) (20 %) (40 %) (20 %) (40 %) 

Number of elements 744 402 402 525 657 

Number of nodes 801 886 884 745 905 

Number of     known 
variables 35,127 154,368 154,368 201,600 252,288 

Number of unknown 
variables 8,929 19,297 19,297 25,201 41,137 

 
 
 

5.4. Scope of incremental analysis 

5.4.1. Thermal loading history and geometry of PFCs 

The thermal loading history of PFC is investigated including manufacturing process. The 
thermal history can be separated into two main processes, i.e. manufacturing process and 
fusion operation process. During fusion operation, the cyclic high heat flux loading causes the 
thermal stresses in the PFC. In the normal operation of fusion reactor, 10,000 cycles of the 
repeated HHF loads were expected [124]. In the incremental FEM analysis, two cycles of 
fusion operation are considered with a manufacturing step. The loading history is made up of 
uniform cooling process from the joining stage, residual state, pre-heating, 1st high heat flux 
(HHF) cycle, and 2nd HHF cycle. A schematic of the thermal loading history of a PFC used in 
the incremental analysis is represented in Figure 5.4. 
 
Firstly, the thermal history during the manufacturing process is explained. The parts of PFC, 
that is, plasma facing material (PFM), FRMMC layer, and heat sink, are joined at high 
temperature. The joining process is considered as the stress free state. The assembled PFC is 
cooled down to the room temperature in order to install in the inner vessel of the fusion 
reactor. During the cooling process, the PFC component is subjected to significant residual 
stress due to the difference of the coefficient of thermal expansion between PFM, FRMMC 
layer, and heat sink. Next, the pre-heating procedure is performed and the uniform 
temperature of PFC reaches to coolant temperature before the real fusion operation. Since the 
temperature of component is changed slowly, temperature is assumed to be uniform in the 
whole PFC. In this figure, the black solid line indicates the uniform temperature evolution 
from joining process to pre-heating process. 
 
Secondly, the thermal history during the fusion operation process is investigated. As 
mentioned, the two cycles of heat flux loading are concerned with the incremental analysis. 
During the heat flux loading, PFC undergoes the cyclic thermomechanical loads due to the  

Table 5.3. Elemental information in FEM and shakedown variables. 
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different material properties between PFM and heat sink. In Figure 5.4, the red solid line 
indicates temperature evolution of the first wall, the green solid line indicates the temperature 
evolution of the interface between PFM and FRMMC layer, and the blue solid line indicated 
the temperature evolution of the interface between FRMMC layer and heat sink.  
 
 

 
 

 
 
This thermal loading history generates thermomechanical stresses in the PFC. The stress is 
generated due to the difference of CTE between tungsten PFM armor tile and CuCrZr heat 
sink substrate. This causes mismatch stress in the region near the interfaces between FRMMC 
layer and the other components. Such a mismatch stress can be generated already during the 
manufacturing process resulting in residual stresses within the components.  
 
The incremental analysis is performed using three-dimensional finite element analysis (FEA). 
The geometry and the finite element meshes are shown in Figure 5.5. Due to symmetry of the 
PFC, the half geometry is considered. A linear rectangular brick element with eight nodes is 
used for the FEA. In the model, the number of total elements and the number of total nodes 
are 1852 and 3009, respectively.   

Figure 5.4. Schematic of the temperature development in a PFC under typical fusion 
operation condition [125].  
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5.4.2. Methodology of incremental analysis 

The complete procedure of this work is represented in Figure 5.6. For shakedown analysis, 
the unit cell of FRMMC layer is used (Figure 5.6 (a)). Then the shakedown limits are 
obtained with temperature change (Figure 5.6(b)) in a two-dimensional loading space. They 
can be redrawn with additional thermal axis in a three-dimensional loading space (Figure 5.6 
(c)). In chapter 6, the details of shakedown limits are represented and discussed. 
 
PFC and the loading condition are chosen to implement in thermo-elasto-plastic FEM.  Four 
typical locations are selected to represent the loading paths of the FRMMC layer (Figure 5.6 
(d)). Firstly the thermal analysis is performed for the given loading conditions. Then the 
temperature evolutions are obtained. Using the observed thermal information, the structural 
analysis is carried out. Then the stress evolutions are obtained (Figure 5.6 (e)). Using the 
components of temperature and stresses, the thermomechanical loading paths are obtained in 
a three-dimensional loading space (Figure 5.6 (f)). 
 
Finally, the shakedown limits and the thermomechanical loading paths can be drawn in a 
three-dimensional loading space, as shown in Figure 5.6 (g). From the results of a comparison 
between the shakedown limits and the loading paths, the structural loading paths are 
investigated with several loading combinations. The results will be discussed with safety 
assessment of the PFC can be discussed. In chapter 7, the thermomechanical shakedown 
limits. 

Figure 5.5. The geometry of candidate PFC component and its finite element mesh [126]. 
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Figure 5.6. The procedure of shakedown analysis and incremental analysis: (a) model for shakedown analysis, 
(b) shakedown limits with temperature, (c) shakedown limits in three-dimensional space, (d) model 
for incremental analysis, (e) stress and temperature evolution path, (f) thermomechanical loading 
paths in three-dimensional space, and (g) shakedown limits with thermomechanical loading paths in 
three-dimensional space. 



6. Results of Shakedown Analysis 

The three-dimensional analysis of composites is performed to obtain shakedown limits in 
two-dimensional loading spaces including temperature changes. The results of shakedown 
limits will be discussed with geometrical influences, increase of fiber volume fraction, 
loading direction and hardening effect, as shown in Table 6.1.  

 

 Lamina with 2D 
analysis (6.2) 

Lamina with 3D 
analysis (6.1) 

Laminate with 3D 
analysis (6.3) 

Loading effect In-plane only In-plane (6.1.1),  
out-of-plane (6.1.2) 

In-plane (6.3.1),  
out-of-plane (6.3.2) 

Hardening effect No No LKH, ULKH (6.4) 

 
 

6.1. Shakedown analysis of FRMMC lamina 

The lamina structure is considered to obtain the shakedown limits. Three-dimensional 
shakedown analysis is carried out and the results are represented in two-dimensional loading 
spaces (Σx, Σy) and (Σx, Σz), i.e. in-plane bi-axial loading and out-of-plane bi-axial loading, 
with temperature change.  
 

6.1.1. Shakedown analysis of FRMMC lamina for in-plane loading 

In this section, shakedown limits were obtained for three-dimensional lamina geometry and 
represented in in-plane loading plane (Σx, Σy). 20 % and 40 % of fiber volume fraction were 
considered to investigate the effect of fiber volume fraction, as shown in Figures 6.1 and 6.2. 
For the comparison, elastic limits were shown as dashed lines. Here Σx and Σy indicate x-
directional macroscopic stress and y-directional macroscopic stress, respectively, and they 
were normalized by the yield stress of matrix. To consider the effect of thermal loading, four 
reference temperature differences, i.e. 0 oC, 10 oC, 50 oC, and 100 oC, were investigated. The 
results were illustrated with different colors (0 oC: red, 10 oC: green, 50 oC: bright blue, 100 
oC: blue). The following contents were observed from the graphical views of shakedown 
limits. 
 

(i) The values of shakedown limits were higher than those of the elastic limits in every 
reference temperature difference. The sizes of shakedown limits and elastic limits had 
very strong dependence on temperature increase.  

 
(ii) Both shakedown spaces and elastic spaces had longish shapes along the first and the 

third quarter planes.  
 

(iii) The margins from shakedown limits in the first quarter and the third quarter planes 
were bigger than those in the second and the fourth quarter planes.  

 

Table 6.1. Loading condition and geometry in shakedown analysis. 
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Figure 6.1. Elastic limits and shakedown limits of lamina with 20 % of fiber volume fraction in 
in-plane biaxial loading space (3D analysis): P1-P5 are loading directions and 10, 50
and 100 oC indicate the magnitude of reference temperature increase (heating). 

Figure 6.2. Elastic limits and shakedown limits of lamina with 40 % of fiber volume fraction in 
in-plane biaxial loading space (3D analysis): P1-P5 are loading directions and 10, 50, 
and 100 oC indicate the magnitude of reference temperature increase (heating). 
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(iv) The results showed the sensitivity of shakedown limits and elastic limits to prescribed 
thermal loads. They were shifted to the compression loading direction with increase 
of temperature difference.  

 
(v) The fiber volume fraction of the composite gives an influence to both shakedown 

limits and elastic limits. At small temperature change, the size of shakedown limits 
with 40 % of fiber volume fraction was bigger than that of 20 % of fiber volume 
fraction. However, at larger temperature change, the tendency was reversed. 

 
 
For detail understanding of previously observed effects, the elastic limits, the shakedown 
limits, and the margins are listed in Table 6.2. The considered loading conditions were 
uniaxial tension loading (P1), uniaxial compression loading (P2), biaxial tension loading (P3), 
biaxial compression loading (P4), and biaxial tension-compression combined loading (P5).  
 
Effect of thermal loading 
As shown in Table 6.2, in case of a 20 % of fiber volume fraction without thermal loading, 
elastic limit and shakedown limit for uniaxial tension loading (P1) were 0.885 and 0.987, 
respectively. For the uniaxial compression loading (P2), they had the same values with the 
uniaxial tension loading (P1). They had a symmetric shape for tension and compression 
loading when the thermal loading was not considered. When the thermal loading was 
considered, the symmetric tendency was not shown any more. For example, in case of 100 oC 
of thermal loading for uniaxial tension loading (P1), elastic limit and shakedown limit were 
0.336 and 0.484, respectively. For uniaxial compression loading (P2), elastic limit and 
shakedown limit were 0.389 and 0.566, respectively.  
 
Effect of loading direction 
The asymmetric effect was more clearly observed in the elastic and shakedown limits in the 
biaxial loading (P3 and P4) than those in the uniaxial loading (P1 and P2). For example, in the 
case of 100 oC of thermal loading for biaxial tension loading (P3), the elastic limit and 
shakedown limit were 0.382 and 0.651, while for biaxial compression loading (P4), the elastic 
limit and shakedown limit were 0.550 and 1.100. From this observation, shakedown limits 
and elastic limits were shifted to the biaxial compression loading plane due to an asymmetric 
effect from positive thermal loadings. Since the structural deformation state from temperature 
increase was similar with that from applied biaxial tension loading, positive thermal loading 
combined with biaxial tension loading causes decreases in the elastic limits and the 
shakedown limits. 
 
Effect of loading direction (margin) 
The magnitude of margin represents the relative gain of shakedown limits over elastic limits. 
The margins are obtained by the following equation and represented in Table 6.1. Here, α 

SD 
and α 

e indicate the shakedown limit and the elastic limit, respectively. 
 

e

eSD

α
αα −

=[%]margin                                             (6.1) 

 
The margins in the first quarter and the third quarter loading planes (P3 and P4) were larger 
than those of other loading planes (P1, P2, and P5). For example, in case of 0 oC with 20 % of 
fiber volume fraction, the obtained margins were 11.5 % in uniaxial loading (P1 and P2), 
97.9 % in biaxial loading (P3 and P4), and 8.0 % in tension-compression combined loading 
(P5). In tension-compression combined loading, the margins were significantly decreased.  



 
 

 
 P1 (Σx = P, Σy = 0) P2 (Σx = -P, Σy = 0) P3 (Σx = Σy = P) P4 (Σx = Σy = -P) P5 (Σx = -Σy = -P) Geometry 

(fiber  fraction)  αeP/σY αSDP/σY margin 
(%) αeP/σY αSDP/σY margin 

(%) αeP/σY αSDP/σY margin 
(%) αeP/σY αSDP/σY margin 

(%) αeP/σY αSDP/σY margin 
(%) 

0 oC 0.885 0.987 11.5 0.885 0.987 11.5 1.279 2.531 97.9 1.279 2.531 97.9 0.476 0.514 8.0 

10 oC 0.804 1.000 24.4 0.897 1.083 20.7 1.108 2.063 86.2 1.437 2.868 99.6 0.468 0.520 11.1 

50 oC 0.527 0.686 30.2 0.653 0.818 25.3 0.633 1.021 61.3 1.128 2.156 91.1 0.393 0.410 4.3 

3d- 
lamina 
(20 %) 

100 oC 0.336 0.484 44.0 0.389 0.566 45.5 0.382 0.651 70.4 0.550 1.100 100.0 0.292 0.329 12.7 

0 oC 0.939 1.366 45.5 0.939 1.366 45.5 1.531 2.986 95.0 1.531 2.986 95.0 0.524 0.683 30.3 

10 oC 0.706 1.448 105.1 0.649 1.292 99.1 0.678 2.188 222.7 0.579 3.880 570.1 0.406 0.685 68.7 

50 oC 0.458 0.586 27.9 0.513 0.725 41.3 0.557 0.729 30.9 0.443 1.548 249.4 0.350 0.398 13.7 

3d- 
lamina 
(40 %) 

100 oC 0.336 0.454 35.1 0.390 0.531 36.2 0.382 0.488 27.7 0.550 0.621 12.9 0.292 0.330 13.0 

 
(i) P indicates the positive applied loading. The value was fixed to 100 MPa. For example, P5 loading indicates Σx  = -100 MPa, Σy = 100 MPa. 
(ii) αe and αSD indicate elastic safety factor and shakedown safety factor. αeP/σY  and αSDP/σY  indicate normalized macroscopic stresses. 
(iii) Margin indicates the relative gain shakedown limits over elastic limits. 

 

Table 6.2. Elastic limits and shakedown limits of lamina (3D analysis) and their margins in in-plane loading (from Figures 6.1 and 6.2).  . 
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From theses results, it is expected that the margins are basically increased in the symmetric 
loading condition (P3 and P4). In the last section, the reason for these expected increases will 
be investigated considering the distribution and localization of stress field. 
 
Effect of thermal loading (margin) 
When the thermal loadings (10 oC, 50 oC, 100 oC) were investigated, the tendency of margin 
showed asymmetric effect with the loading sign, i.e. tension or compression. There was a 
difference in margins between uniaxial tension loading and uniaxial compression loading. For 
example, in case of 100 oC of thermal loading, margin for uniaxial tension loading (P1) was 
44 %, while margin for uniaxial compression loading (P2) was 45.5%. When the biaxial 
loading was considered, the asymmetry effect of margin was more clearly represented.  For 
example, in case of 100 oC of thermal loading, margin for biaxial tension loading (P3) was 
70.4 %, while margin for biaxial compression loading (P4) was 100 %. From the observation 
of margin, there might be dependence between loading state and the gain of margin.  
 
Effect of fiber volume fraction 
For the investigation of the effect of fiber volume fraction, FRMMC with different fiber 
volume fraction (40 %) was considered. The general tendency was similar to the results of 
20 % of fiber volume fraction. The asymmetry of elastic limits, shakedown limits, and their 
margins were also observed with the increase of temperature difference.  
 
The asymmetry of margins in 40 % of fiber volume fraction was significantly increased in the 
smaller thermal loading. For example, in case of 10 oC of thermal loading, margins for 20 % 
of fiber volume fraction were 86.2 % (P3) and 99.6 % (P4), while margins for 40 % of fiber 
volume fraction were 222.7 % (P3) and 570.1 % (P4). On the contrary, the tendency was 
reversed in the larger thermal loading. For example, in case of 100 oC of thermal loading, 
margins for 20 % of fiber volume fraction were 70.4 % (P3) and 100 % (P4), while margins 
for 40 % of fiber volume fraction were 27.7 % (P3) and 12.9 % (P4). The increase of margins 
is correlated with increase of the shakedown safety limits. From a shakedown viewpoint, the 
serviceability is improved with the increase of fiber volume fraction in the smaller thermal 
loading, while it is decreased with increase of fiber volume fraction in the higher thermal 
loading.  
 
 

6.1.2. Shakedown analysis of FRMMC lamina for out-of-plane loading 

The shakedown limits were represented in out-of-plane bi-axial loading plane (Σx, Σz). Here 
Σx and Σz denote x-directional macroscopic stress and z-directional (fiber-axis) macroscopic 
stress, respectively, and they were normalized by the yield stress of matrix. To consider the 
effect of thermal loading, the same thermal loading with in-plane loading (section 6.1.1) was 
investigated. Several conclusions were drawn from the Figures 6.3 and 6.4, as follows. 
 

(i) Elastic limits and shakedown limits in an out-of-loading plane had very strong 
dependence with thermal loading.  

 
(ii) Both shakedown spaces and elastic spaces had longish shape along the fiber-axis 

direction (P1 and P2 in Figures 6.3 and 6.4).  
 

(iii) The margins from shakedown limits in the axial loading (P1 and P2) were larger than 
those in the other loading.  
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Figure 6.3. Elastic limits and shakedown limits of lamina with 20 % of fiber volume fraction in 
out-of-plane biaxial loading space (3D analysis): P1-P5 are loading directions and 10
50, and 100 oC indicate the magnitude of reference temperature increase (heating). 

Figure 6.4. Elastic limits and shakedown limits of lamina with 20 % of fiber volume fraction in 
out-of-plane biaxial loading space (3D analysis): P1-P5 are loading directions and 10
50, and 100 oC indicate the magnitude of reference temperature increase (heating). 
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(iv) Both shakedown limits and elastic limits were shifted to axial (fiber-axis) tension 
loading direction (P3) with an increase of reference temperature.  

 
(v) At a smaller temperature change, the size of shakedown limits in 40 % of fiber 

volume fraction was bigger than that of 20 % of fiber volume fraction. However, at a 
larger temperature change, this tendency was reversed 

 
Elastic limits, shakedown limits, and margins for out-of-plane loading are represented in 
Table 6.3. The chosen loading conditions were uniaxial (fiber direction) tension loading (P1), 
uniaxial (fiber direction) compression loading (P2), biaxial tension loading (P3), biaxial 
compression loading (P4), and biaxial tension-compression combined loading (P5).  
 
Effect of thermal loading 
In case of 20 % of fiber volume fraction without thermal loading, the elastic limits and the 
shakedown limits for uniaxial tension loading (P1) were 1.375 and 2.72 (margin: 97.8 %), 
respectively. For uniaxial compression loading (P2), they had same values with uniaxial 
tension loading (P1). They had symmetric shape for tension and compression loading without 
thermal loading. When the thermal loading was considered, the symmetric tendency was not 
shown any more. For example, in the case of 50 oC of thermal loading for uniaxial tension 
loading (P1), elastic limit and shakedown limit were 1.033 and 1.978, respectively. For 
uniaxial compression loading (P2), elastic limit and shakedown limit were 0.678 and 1.083, 
respectively. From this observation, shakedown limits and elastic limits were shifted to the 
uniaxial tension loading plane (P1) with heating temperature increase. 
 
Comparison between in-plane loading and out-of-plane loading 
The asymmetric effect in the biaxial loading (P3 and P4) was less observed than that in the 
uniaxial loading (P1 and P2). For example, in the case of 50 oC of thermal loading for biaxial 
tension loading (P3), the elastic limit and shakedown limit were 0.678 and 1.083, respectively 
while for biaxial compression loading (P4), the elastic limit and shakedown limit were 0.550 
and 1.100, respectively. In the case of in-plane loading, the longish shape of shakedown limits 
and larger margin were observed in the biaxial loading direction (P3 and P4 in Figures 6.1 
and 6.2). However, in case of out-of-plane loading, they were clearly observed in the axial 
loading direction along the fiber arrangement (P1 and P2 in Figures 6.3 and 6.4). The von 
Mises stresses of in-plane biaxial loading (Σx, Σy) in the case of in-plane loading and axial 
loading (Σz) in the case of out-of-plane loading were represented as follows.  
 

 

Figure 6.5. Biaxial tension loading (Σx =Σy = 100 MPa) and the resulting von Mises stress (≅70 MPa in matrix): 
Dotted line and solid line indicate undeformed state and deformed state, respectively.  



 
 

 

 P1 (Σx = 0, Σz = P) P2 (Σx = 0, Σz = -P) P3 (Σx = Σz = P) P4 (Σx = Σz = -P) P5 (Σx = -Σz = -P) Geometry 
(fiber  fraction)  αelP/σY αSDP/σY margin 

(%) αelP/σY αSDP/σY
margin 

(%) αelP/σY αSDP/σY
margin 

(%) αelP/σY αSDP/σY margin 
(%) αelP/σY αSDP/σY margin 

(%) 

0 oC 1.375 2.720 97.8 1.375 2.720 97.8 0.894 1.033 15.5 0.894 1.033 28.9 0.626 0.800 35.5 

10 oC 1.499 2.991 99.5 1.206 1.975 63.8 0.894 1.025 14.7 0.852 1.098 29.8 0.664 0.900 20.5 

50 oC 1.033 1.978 91.5 0.678 1.083 59.7 0.616 0.800 29.9 0.560 0.727 39.3 0.623 0.751 34.2 

3d- 
lamina 
(20 %) 

100 oC 0.519 0.899 73.2 0.399 0.600 50.4 0.373 0.419 12.3 0.349 0.486 34.7 0.407 0.546 44.3 

0 oC 0.939 3.471 269.6 0.939 3.471 269.6 1.010 1.360 34.7 1.010 1.360 41.0 0.693 1.000 37.9 

10 oC 0.778 4.057 421.5 1.008 2.568 154.8 0.912 1.253 37.4 0.857 1.208 33.5 0.810 1.117 38.1 

50 oC 0.458 1.475 222.1 0.551 0.850 54.3 0.518 0.619 19.5 0.486 0.649 10.5 0.578 0.798 5.9 

3d- 
lamina 
(40 %) 

100 oC 0.293 0.532 81.6 0.335 0.417 24.5 0.320 0.358 11.9 0.306 0.338 28.9 0.358 0.379 35.5 

 
 

(i) P indicates the positive applied loading. The value was fixed to 100 MPa. For example, P5 loading indicates Σx  = -100 MPa, Σz = 100 MPa. 
(ii) αe and αSD indicate elastic safety factor and shakedown safety factor. αeP/σY  and αSDP/σY  indicate normalized macroscopic stresses. 
(iii) Margin indicates the relative gain shakedown limits over elastic limits using equation (6.1). 

Table 6.3. Elastic limits and shakedown limits of lamina (3D analysis) and their margins in out-of-plane loading (from Figures 6.3 and 6.4).



6. Results of Shakedown Analysis 

 

 67

 
 

 
In Figures 6.5 and 6.6, the loading state is described in the left figures. Dotted lines and solid 
lines indicate the undeformed state and the deformed state, respectively. There were only the 
in-plane components of stress (Σx, Σy) in the biaxial loading, while the axial stress component 
(Σz) remained in the axial loading. Although their stress states were totally different, their 
maximum values and distributions of von Mises stresses were similar. 
 
Effect of thermal loading (margin) 
In case of 20 % of fiber volume fraction without thermal loading, the obtained margins were 
97.8 % in uniaxial (fiber direction) loading (P1 and P2) and 15.5 % in biaxial loading (P3 and 
P4). The tendency of margin in out-of-plane loading was totally reversed with in-plane 
loading. When the thermal loading was considered, the margins had similar trends without 
thermal loading. There was less difference of margins between biaxial tension loading and 
biaxial compression loading (e.g. 29.9% in P3 and 39.3 % in P4, 50 oC) than between uniaxial 
tension loading and uniaxial compression loading to the fiber direction (e.g. 91.5 % in P1 and 
59.7% in P2, 50 oC). Marginal result showed the similar effect for loading direction as 
investigated in the previous section. 
 
Effect of fiber volume fraction 
FRMMC with different fiber volume fraction (40 %) was considered in out-of-plane loading 
to investigate the effect with the fiber volume fraction. The trend was similarly observed with 
the results of 20 % of fiber volume fraction. In the case of 40 % of fiber volume fraction, the 
asymmetric trend of elastic limits and shakedown limits was clearly represented with the 
increase of temperature difference. The general marginal effect of 40 % of fiber volume 
fraction had similar trend with that of 20 % of fiber volume fraction. However, the magnitude 
of asymmetry and marginal effect of 40 % of the fiber volume fraction was increased in 10 oC 
and 50 oC of thermal loading. For example, the margins of axial tension loading (P1) were 
dramatically increased to 421.5 % (10 oC of temperature increase) and 222.1 % (50 oC of 
temperature increase) in the case of 40 % of the fiber volume fraction, while they were 
99.5 % (10 oC of temperature increase) and 91.5 % (50 oC of temperature increase) in case of 
20 % of fiber volume fraction. To the contrary, the tendency of magnitude of margins was 
reversed in the larger thermal loading (100 oC). The effect of fiber volume fraction was 
similarly shown in case of in-plane loading and out-of-plane loading. The gains of margin 
were influenced by the fiber volume fraction.  
 

Figure 6.6 Axial tension loading (Σz = 100 MPa) and the resulting von Mises stress (≅70 MPa in matrix): 
Dotted line and solid line indicate undeformed state and deformed state, respectively. 
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6.2. Comparison between 2D analysis and 3D analysis 

Shakedown limits were obtained for two-dimensional lamina model and represented in in-
plane loading plane (Σx, Σy), as shown in Figure 6.7. 20 % of fiber volume fraction was 
considered. For the comparison, elastic limits were shown as dashed lines. Here Σx and Σy 
indicate x-directional macroscopic stress and y-directional macroscopic stress, respectively, 
and they were normalized by the yield stress of matrix. Four reference temperature 
differences were considered to investigate the effect of thermal loading. For the comparison 
between a two-dimensional shakedown analysis and a three-dimensional shakedown analysis, 
the results obtained by two approaches were simultaneously represented in a two-dimensional 
loading diagram, as shown in Figure 6.8. The solid lines indicate shakedown limits obtained 
by a three-dimensional analysis and the dashed lines indicate those obtained by a two-
dimensional analysis. From these results, several differences between the two-dimensional 
analysis and the three-dimensional analysis were observed. 
 

(i) The space of both shakedown limits and elastic limits by the three-dimensional 
analysis were smaller than that of the two-dimensional analysis for all reference 
temperature differences.  

 
(ii) Shakedown limits by the three-dimensional analysis were shifted more to the third 

quarter loading plane (biaxial compression loading direction) by temperature increase 
than those by the two-dimensional analysis. 

 
(iii) For the smaller thermal loading, the sizes of shakedown limits by the two-

dimensional analysis were larger than those of the three-dimensional analysis. 
However, at a larger thermal loading, the tendency was reversed. 

 
The elastic limits, the shakedown limits, and their margins obtained by two- and three-
dimensional analysis are compared in Table 6.4. The considered loading conditions were 
uniaxial tension loading (P1), uniaxial compression loading (P2), biaxial tension loading (P3), 
biaxial compression loading (P4), and biaxial tension-compression combined loading (P5).  
 
Effect of loading direction 
As shown in Table 6.4, in the two-dimensional shakedown analysis without thermal loading, 
the elastic limit and the shakedown limit for uniaxial loading (P1) were 0.916 and 1.635 
(margin: 78.5 %), respectively. However, in the three-dimensional shakedown analysis 
without thermal loading, they were decreased to 0.885 and 0.987 (margin: 11.5 %), 
respectively. When biaxial loading was concerned, the difference of the shakedown limits 
between the two-dimensional analysis and the three-dimensional analysis was significantly 
increased. In two-dimensional analysis without thermal loading, the elastic limit and the 
shakedown limit for biaxial loading were 2.873 and 5.711 (margin 98.8 %), respectively. In 
the three-dimensional analysis without thermal loading, they were 1.279 and 2.531 (margin 
97.9 %), respectively. For tension-compression combined loading (P5) in the two-
dimensional analysis, elastic limit and shakedown limit were 0.465 and 0.818 (margin 
75.9 %), respectively. In the three-dimensional analysis, they were also decreased to 0.476 
and 0.514 (margin 8.0 %), respectively.  
 
Effect of z-directional stress field 
From this comparison, shakedown limits and elastic limits were significantly influenced due 
to dimensional change. For a detail investigation of this difference between the two-
dimensional analysis and the three-dimensional analysis, z-directional stress (σz) fields were  
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Figure 6.7. Elastic limits and shakedown limits of lamina with 20 % of fiber volume fraction in 
in-plane biaxial loading space (2D analysis): P1-P5 are loading directions and 10, 50
and 100 oC indicate the magnitude of reference temperature increase (heating). 

Figure 6.8. Shakedown limits of lamina with 20 % of fiber volume fraction in in-plane biaxial 
loading space (2D and 3D analyses): P1-P5 are loading directions and 10, 50, and 
100 oC indicate the magnitude of reference temperature increase (heating). 
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obtained using FEM analysis, as drawn in Figure 6.9. In this case, the biaxial loading without 
thermal loading was considered as a boundary condition.   
 

                  
                                  (a)                                                                   (b)                                              

 
When a two-dimensional analysis is performed for the long fiber structure, the plane strain 
assumption is used. Then the components of z-directional stress (Σz) of fiber and matrix 
without thermal loading are calculated from the x-directional stress and y-directional stress, as 
follows.  
 

)( yxz Σ+Σ=Σ ν                                                 (6.2) 
 
In case of the biaxial tension loading using two-dimensional analysis (Figure 6.9 (a)), z-
directional stress (Σz) of the fiber and the matrix had to be positive values, since x-directional 
stress (Σx) and y-directional stress (Σy) were positive values.  
 
When a three-dimensional model is considered, the boundary plane of composite has to be 
coupled to conserve the parallel plane for the deformation. When in-plane biaxial tension 
loading is considered in a three-dimensional model, the structure will be contracted to z-
directional axis as the magnitude of Poisson’s ratio of fiber and matrix. Since Poisson’s ratios 
are different between fiber (ν = 0.17) and matrix (ν = 0.34), the magnitude of the contraction 
will also be different. The stress misfit is generated between fiber and matrix to keep the 
boundary condition of the plane. As a result, the fiber was subjected to negative axial stress 
while the matrix was subjected to positive axial stress, as represented in Figure 6.9 (b). The 
difference of the axial stress fields between a two-dimensional analysis and a three-
dimensional analysis create a difference between shakedown limits and yield limits.   
 
Effect of thermal loading 
When the thermal loading was investigated, the difference of the shakedown limits and the 
elastic limits was more clearly observed. For example, shakedown limits of biaxial 
compression loading (P4) in the two-dimensional analysis were 5.711 (0 oC), 2.289 (10 oC), 
0.72 (50 oC), and 0.372 (100 oC) while shakedown limits in the three-dimensional analysis 
were 2.531 (0 oC), 2.063 (10 oC), 1.021 (50 oC), and 0.651 (100 oC). Elastic limits and 
shakedown limits were decreased in the two-dimensional analysis with the temperature 
increase. Therefore, in the smaller thermal loading, shakedown limits in the two-dimensional 
analysis were higher than those in the three-dimensional analysis, while the tendency was 
reversed in the larger thermal loading.  

Figure 6.9. Z-directional (axial) stress fields: (a) two-dimensional analysis, (b) three-dimensional 
analysis. The considered loading is biaxial tension (Σx  = Σy = 100 MPa). 



 
 
 
 
 
 

 P1 (Σx = P, Σy = 0) P2 (Σx = -P, Σy = 0) P3 (Σx = Σy = P) P4 (Σx = Σy = -P) P5 (Σx = -Σy = P) Geometry 
(fiber  fraction)  αelP/σY αSDP/σY margin 

(%) αelP/σY αSDP/σY
margin 

(%) αelP/σY αSDP/σY
margin 

(%) αelP/σY αSDP/σY margin 
(%) αelP/σY αSDP/σY

margin 
(%) 

0 oC 0.916 1.635 78.5 0.916 1.635 78.5 2.873 5.711 98.8 2.873 5.711 98.8 0.465 0.818 75.9 

10 oC 0.816 1.633 100.1 0.833 1.530 83.7 1.145 2.289 99.9 1.155 2.309 99.9 0.437 0.756 73.0 

50 oC 0.433 0.622 43.6 0.490 0.981 100.2 0.521 0.720 38.2 0.602 1.340 122.6 0.335 0.501 49.6 

2d- 
lamina 
(20 %) 

100 oC 0.257 0.355 38.1 0.280 0.400 42.9 0.285 0.372 30.5 0.351 0.478 36.2 0.232 0.270 16.4 

0 oC 0.885 0.987 11.5 0.885 0.987 11.5 1.279 2.531 97.9 1.279 2.531 97.9 0.476 0.514 8.0 

10 oC 0.804 1.000 24.4 0.897 1.083 20.7 1.108 2.063 86.2 1.437 2.868 99.6 0.468 0.520 11.1 

50 oC 0.527 0.686 30.2 0.653 0.818 25.3 0.633 1.021 61.3 1.128 2.156 91.1 0.393 0.410 4.3 

3d- 
lamina 
(20 %) 

100 oC 0.336 0.484 44.0 0.389 0.566 45.5 0.382 0.651 70.4 0.550 1.100 100.0 0.292 0.329 12.7 

 
(i) P indicates the positive applied loading. The value was fixed to 100 MPa. For example, P5 loading indicates Σx  = -100 MPa, Σy = 100 MPa. 
(ii) αe and αSD indicate elastic safety factor and shakedown safety factor. αeP/σY  and αSDP/σY  indicate normalized macroscopic stresses. 
(iii) Margin indicates the relative gain shakedown limits over elastic limits using equation (6.1). 

Table 6.4. Elastic limits and shakedown limits of lamina (2D and 3D analyses) in in-plane loading space (from Figures 6.1 and 6.7). 
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6.3. Shakedown analysis of FRMMC laminate 

In this section, three-dimensional laminate structure is investigated to obtain elastic limits and 
shakedown limits. Shakedown analyses with a three-dimensional model are performed with 
the thermal loading. The two-dimensional loading spaces considered here are in-plane bi-axial 
loading (Σx, Σy) and out-of-plane bi-axial loading (Σx, Σz), Finally, the results of laminate 
structure were compared with those of the three-dimensional lamina structure.   
 
 

6.3.1. Shakedown analysis of FRMMC laminate for in-plane loading 

Shakedown limits were obtained for the three-dimensional laminate. 20 % and 40 % of fiber 
volume fraction were chosen to investigate the influence of fiber volume fraction, as 
represented in Figure 6.10 and 6.11. For the comparison, the elastic limits were drawn with 
shakedown limits in the same loading space. The dashed lines indicate elastic limit and the 
solid lines indicate shakedown limits. The considered loading was in-plane bi-axial loading 
(Σx, Σy). Σx and Σy indicate x-directional macroscopic stress and y-directional macroscopic 
stress, respectively. They were normalized by the yield stress of the matrix. Four reference 
temperature differences were considered to investigate the effect of thermal loading. The 
following points were drawn from these graphical results. 
 

(i) The area of the shakedown limits had a strong dependence on temperature change. 
 
(ii) The margins between the shakedown limits and the elastic limits of the laminate 

structure were narrower than those of lamina structure. 
 

(iii) Although both the shakedown spaces and the elastic spaces had longish shapes 
along the first and the third quarter loading plane, the extent of locus of laminate 
structure was less than that of lamina structure. 

 
(iv) There was no significant difference in the shape of the elastic limits and the 

shakedown limits with the increase of fiber volume fraction.  
 
 
Elastic limits, shakedown limits, and their margins are represented in Table 6.5. The chosen 
loading conditions were uniaxial (in-plane direction) tension loading (P1), uniaxial 
compression loading (P2), biaxial tension loading (P3), biaxial compression loading (P4), and 
biaxial tension-compression combined loading (P5).  
 
 
Effect of loading direction 
In the case of laminate with 20 % of fiber volume fraction without thermal loading, the elastic 
limit and the shakedown limit for uniaxial loading (P1 and P2) were 0.932 and 1.142 (margin: 
22.5 %), respectively. They had a symmetric image for tension and compression loading 
when the thermal loading was not included. For biaxial loading (P3), they were 0.948 and 
1.034 (margin 9.1 %), respectively. For tension-compression combined loading (P5), they 
were 0.634 and 0.636 (margin 0.3 %), respectively. 
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Figure 6.10. Elastic limits and shakedown limits of laminate with 20 % of fiber volume fraction 
in in-plane biaxial loading space (3D analysis): P1-P5 are loading directions and 10, 
50, and 100 oC indicate the magnitude of reference temperature increase (heating). 

Figure 6.11. Elastic limits and shakedown limits of laminate with 40 % of fiber volume fraction 
in in-plane biaxial loading space (3D analysis): P1-P5 are loading directions and 10, 
50, and 100 oC indicate the magnitude of reference temperature increase (heating). 



 
 
 
 

 P1 (Σx = P, Σy = 0) P2 (Σx = -P, Σy = 0) P3 (Σx = Σy = P) P4 (Σx = Σy = -P) P5 (Σx = -Σy = P) Geometry 
(fiber  fraction)  αelP/σY αSDP/σY margin 

(%) αelP/σY αSDP/σY margin 
(%) αelP/σY αSDP/σY margin 

(%) αelP/σY αSDP/σY
margin 

(%) αelP/σY αSDP/σY margin 
(%) 

0 oC 0.932 1.142 22.5 0.932 1.142 22.5 0.948 1.034 9.1 0.948 1.034 9.1 0.634 0.636 0.3 

10 oC 0.866 0.986 13.9 1.002 1.100 9.8 0.924 0.983 6.4 0.852 0.975 14.4 0.604 0.666 10.3 

50 oC 0.592 0.679 14.7 0.664 0.752 13.3 0.666 0.733 10.1 0.553 0.602 8.9 0.465 0.509 9.5 

3d- 
laminate 
(20 %) 

100 oC 0.404 0.444 9.9 0.405 0.455 12.3 0.434 0.476 9.7 0.361 0.389 7.8 0.348 0.379 8.9 

0 oC 0.993 1.213 22.2 0.993 1.213 22.2 0.976 1.141 16.9 0.976 1.141 16.9 0.706 0.760 7.6 

10 oC 0.849 0.979 15.3 1.021 1.200 17.5 0.944 1.087 15.1 0.862 1.001 16.1 0.640 0.703 9.8 

50 oC 0.530 0.586 10.6 0.582 0.646 11.0 0.594 0.612 3.0 0.479 0.540 12.7 0.444 0.482 8.6 

3d- 
laminate 
(40 %) 

100 oC 0.346 0.372 7.5 0.342 0.364 6.4 0.378 0.398 5.3 0.305 0.322 5.6 0.310 0.333 7.4 

 
(i) P indicates the positive applied loading. The value was fixed to 100 MPa. For example, P5 loading indicates Σx  = -100 MPa, Σy = 100 MPa. 
(ii) αe and αSD indicate elastic safety factor and shakedown safety factor. αeP/σY  and αSDP/σY  indicate normalized macroscopic stresses. 
(iii) Margin indicates the relative gain shakedown limits over elastic limits using equation (6.1). 

Table 6.5. Elastic limits and shakedown limits of laminate (3D analysis) in in-plane loading space (from Figures 6.10 and 6.11).  
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Comparison between lamina and laminate 
The magnitude of margins of laminate was compared with those of lamina. Shakedown limits 
and their margins of laminate in the biaxial loading (P3 and P4) were significantly decreased 
over those of lamina. However, the similar tendency between laminate and lamina was shown 
in the uniaxial loading (P1 and P2) and the tension-compression combined loading (P5). The 
shakedown limit and the margin in uniaxial tension loading (P1) without thermal loading 
were 0.987 and 11.5 % in lamina (Table 6.2), while they were 1.142 and 22.5 % in laminate   
(Table 6.5). In the tension-compression combined loading (P5), the shakedown limit and the 
margin were 0.514 and 8 % in lamina while they were 0.636 and 0.3 % in laminate. To the 
contrary, in the biaxial loading, the shakedown limit and the margin were 2.531 and 97.9 % in 
lamina while they were decreased to 1.034 and 9.1 % in laminate. This tendency can be 
explained by the stress localization and distribution due to the influence of the geometrical 
complexity and the loading direction. It will be discussed in the final remark of this chapter 
with the graphical view of von-Mises stress profile. 
 
Effect of thermal loading 
When the thermal loading was considered, elastic limits and shakedown limits were decreased 
with the temperature increase. For example, in biaxial tension loading (P3), shakedown limits 
were 0.983 (10 oC), 0.733 (50 oC), and 0.476 (100 oC). The asymmetry of shakedown limits 
was also observed when the thermal loading was concerned. Therefore, shakedown limits in 
biaxial compression loading (P4) were less than them in biaxial tension loading (P3). The 
resulting shakedown limits were 0.975 (10 oC), 0.602 (50 oC), and 0.389 (100 oC). The 
decreasing extent as well as the asymmetric effect in laminate was not significantly observed 
in the case of lamina.  
 
Effect of fiber volume fraction 
In 40 % of fiber volume fraction, the asymmetries of elastic and shakedown limits were also 
observed with the increase of the temperature difference. The marginal effect of 40 % of fiber 
volume fraction had similar tendencies as 20 % of fiber volume fraction. On the contrary with 
the lamina model, the shakedown limits and their margins were not significantly influenced 
by the increase of the fiber volume fraction in laminate model.  In other words, the increase of 
the fiber volume fraction in the laminate structure did not increase the serviceability of the 
structure in relation to the shakedown viewpoint. 
 
 

6.3.2. Shakedown analysis of FRMMC laminate for out-of-plane loading 

The shakedown analyses of laminate were performed in out-of-plane loading. 20 % and 40 % 
of the fiber volume fraction were chosen to explain the effect of the fiber volume fraction, as 
represented in Figure 6.12 and 6.13. For the comparison, the elastic limits were shown with 
shakedown limits in a same out-of-plane loading space. Σx (x-directional macroscopic stress) 
and Σz (z-directional macroscopic stress) were normalized by the yield stress of the matrix, 
respectively. For out-of-plane loading of laminate, several remarks were obtained and 
compared with its in-plane loading case. Also the results of laminate structure were compared 
with those of the three-dimensional lamina structure. 
 

(i) The area of shakedown limits had a strong dependency on temperature change. 
 
(ii) The margins between the shakedown limits and the elastic limits in the out-of-plane 

loading were as small as those in the in-plane loading. 
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Figure 6.12. Elastic limits and shakedown limits of laminate with 20 % of fiber volume fraction in 
out-of-plane biaxial loading space (3D analysis): P1-P5 are loading directions and 10, 50, 
and 100 oC indicate the magnitude of reference temperature increase (heating). 

Figure 6.13. Elastic limits and shakedown limits of laminate with 40 % of fiber volume fraction in 
out-of-plane biaxial loading space (3D analysis): P1-P5 are loading directions and 10, 
50, and 100 oC indicate the magnitude of reference temperature increase (heating). 
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(iii) The longish extent of shakedown limits and elastic limits along the first and the 

third quarter loading plane in the out-of-plane loading was as small as those in the 
in-plane loading. 

 
(iv) There was no significant difference in the shape of the elastic limits and the 

shakedown limits with the increase of fiber volume fraction for both in-plane and 
out-of-plane loading.  

 
 
Elastic limits, shakedown limits, and their margins are available in Table 6.6. The considered 
loading conditions in the table were uniaxial (out-of-plane direction) tension loading (P1), 
uniaxial compression loading (P2), biaxial tension loading (P3), biaxial compression loading 
(P4), and biaxial tension-compression combined loading (P5).  
 
Effect of loading direction 
In case of laminate with 20 % of fiber volume fraction without considering thermal loading, 
the elastic limit and the shakedown limit for uniaxial loading (P1) were 0.895 and 1.029 
(margin: 15 %), respectively. For biaxial loading (P3), they were 0.964 and 1.121 (margin 
16.3 %), respectively. For tension-compression combined loading (P5), they were 0.522 and 
0.567 (margin 8.6 %). Like the preceding results of laminate (in-plane loading space), 
shakedown limits and margins in the biaxial loading (P3 and P4) were significantly decreased 
over those of laminate model, while they had a similar tendency in the uniaxial loading (P1 
and P2) and the tension-compression combined loading (P5) for both lamina and laminate. 
 
Effect of thermal loading 
When the thermal loading was considered, elastic limits and shakedown limits were decreased 
with the temperature increase. For example, in biaxial tension loading (P3), shakedown limits 
were 1.073 (10 oC of thermal loading), 0.711 (50 oC), and 0.431 (100 oC). In biaxial 
compression loading (P4), the shakedown limits were 1.012 (10 oC), 0.716 (50 oC), and 0.489 
(100 oC). The asymmetry of shakedown limits was observed where thermal loading was 
concerned. However, the extent of the asymmetric effect in laminate structure was 
significantly decreased over that in lamina structure. 
 
Effect of fiber volume fraction 
In case of out-of-plane loading with 40 % of fiber volume fraction, the asymmetric trends of 
elastic and shakedown limits were similarly observed like those of the 20 % of fiber volume 
fraction. The marginal effect of 40 % of fiber volume fraction had a similar tendency as the 
20 % of fiber volume fraction. As investigated in the in-plane loading of laminate structure, 
the shakedown limits and their margins were not significantly influenced by the increase of 
fiber volume fraction in out-of-plane loading.  In the shakedown viewpoint, the serviceability 
of the structure is not strongly related with the increase of fiber volume fraction in the 
laminate structure.  
 
From the investigation of the laminate structure for the in-plane loading and out-of-plane 
loading, their elastic limits and shakedown limits had very similar tendencies. In other words, 
when the laminate structure was investigated in shakedown analysis, there were no significant 
marginal gains between elastic limits and shakedown limits in any loading combination. Since 
the laminate structure was difficult to have the distributed stress state in the matrix region, the 
shakedown limits and their margins were dissimilar with the lamina structure. 
 



 
 
 
 

 P1 (Σx = 0, Σz = P) P2 (Σx = 0, Σz = -P) P3 (Σx = Σz = P) P4 (Σx = Σz = -P) P5 (Σx = -Σz = P) Geometry 
(fiber  fraction)  αelP/σY αSDP/σY margin 

(%) αelP/σY αSDP/σY margin 
(%) αelP/σY αSDP/σY margin 

(%) αelP/σY αSDP/σY
margin 

(%) αelP/σY αSDP/σY margin 
(%) 

0 oC 0.895 1.029 15.0 0.895 1.029 15.0 0.964 1.121 16.3 0.964 1.121 16.3 0.522 0.567 8.6 

10 oC 0.803 0.908 13.1 0.949 1.026 8.1 1.006 1.073 6.7 0.899 1.012 12.6 0.526 0.555 5.5 

50 oC 0.525 0.572 9.0 0.701 0.765 9.1 0.624 0.711 13.9 0.619 0.716 15.7 0.408 0.429 5.1 

3d- 
laminate 
(20 %) 

100 oC 0.348 0.374 7.5 0.451 0.493 9.3 0.388 0.431 11.1 0.412 0.489 18.7 0.299 0.316 5.7 

0 oC 0.939 1.090 16.1 0.939 1.090 16.1 1.028 1.156 12.5 1.028 1.156 12.5 0.582 0.638 9.6 

10 oC 0.778 0.928 19.3 0.994 1.148 15.5 1.001 1.133 13.2 0.909 1.050 15.5 0.548 0.602 9.9 

50 oC 0.452 0.540 19.5 0.627 0.654 4.3 0.539 0.595 10.4 0.558 0.601 7.7 0.367 0.400 9.0 

3d- 
laminate 
(40 %) 

100 oC 0.293 0.315 7.5 0.394 0.410 4.1 0.326 0.356 9.2 0.361 0.383 6.1 0.259 0.261 0.8 

 
(i) P indicates the positive applied loading. The value was fixed to 100 MPa. For example, P5 loading indicates Σx  = -100 MPa, Σz = 100 MPa. 
(ii) αe and αSD indicate elastic safety factor and shakedown safety factor. αeP/σY  and αSDP/σY  indicate normalized macroscopic stresses. 
(iii) Margin indicates the relative gain shakedown limits over elastic limits using equation (6.1). 

Table 6.6. Elastic limits and shakedown limits of laminate (3D analysis) in out-of-plane loading space (from Figures 6.12 and 6.13). 
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6.4. Shakedown analyses with hardening effect 

Up to now, the results of the shakedown limits were obtained for the elastic-ideal plastic (EIP) 
model. In the real structural application, the influence of the hardening effect should be 
considered. In this section, the hardening effect was integrated in shakedown analysis.  To 
investigate the hardening effect, two different hardening behaviors were assumed in the 
shakedown formulation.  
 

(i) Shakedown with limited kinematic hardening (LKH) model ( YL σσ ×= 2.1 ): To 
simulate the nonlinear strain-hardening effect several subelements with different yield 
stresses can be introduced.  The weakest of these yield stresses had the initial yield 
stress, Yσ . The limit stress Lσ  in the macroscale was fixed to be the value Yσ×2.1  
(see Figure 2.11). 

 
(ii) Shakedown with unlimited kinematic hardening (ULKH) model ( +∞=Lσ ): By 

assuming the same model as in case (ii) but with an infinite limit stress, the limit case 
can be analyzed (see Figure 2.10). 

 
 
The laminate structure with 20 % of fiber volume fraction was considered. Shakedown limits 
were obtained considering hardening effect, as shown in Figures 6.14 (in-plane loading space) 
and 6.15 (out-of-plane loading space). The thermal loading was not considered. The red line 
indicates shakedown limits with EIP model, the green line indicates shakedown limits with 
LKH model, and the light blue line indicates shakedown limits with ULKH model. For the 
comparison, elastic limits were shown as blue line. Following conclusions were drawn from 
these results. 
 

(i) When the hardening behavior was employed for the matrix material of the laminate 
structure, shakedown safety limits were increased due to the presence of hardening.  

 
(ii) Shakedown limits of ULKH model increased significantly.  

 
(iii) Shakedown limits of LKH model did not significantly increase in comparison with 

those of EIP model.   
 
 
Elastic limits, shakedown limits, and their margins for in-plane loading are listed in Table 6.7. 
The loading conditions considered here were uniaxial tension loading (P1), biaxial tension 
loading (P2), and tension-compression combined loading (P3).  
 
In EIP model, shakedown limits were already discussed in the previous section. In ULKH 
model, shakedown limits in the uniaxial loading (P1) and its margin were 1.865 and 100 %, 
respectively. In the biaxial loading (P2), they were 1.896 and 100 %. In the tension-
compression combined loading (P3), they were 1.268 and 100 %. Shakedown limits of ULKH 
model were doubled in comparison with elastic limits. However, the shakedown limits of the 
ULKH model were overestimated, since LKH model was used in the matrix material [122]. 
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Figure 6.14. Elastic limits and shakedown of laminate with 20 % of fiber volume fraction in out-of-plane 
biaxial loading space (3D analysis): EIP (Elastic Ideal-Plastic) model, LKH (Limited Kinematic 
Hardening) model, and ULKH (Unlimited Kinematic Hardening) model 

Figure 6.15. Elastic limits and shakedown of laminate with 20 % of fiber volume fraction in in-plane 
biaxial loading space (3D analysis): EIP (Elastic Ideal-Plastic) model, LKH (Limited 
Kinematic Hardening) model, and ULKH (Unlimited Kinematic Hardening) model.  
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In the LKH model, the margins from the shakedown limits of EIP model were 8.7 % in 
uniaxial tension loading (P1), 17.8 % in biaxial tension loading (P2), and 15.7 % in tension-
compression combined loading (P3). Although the assumed hardening was 20 % (limit stress 
was 1.2 times higher than initial yield stress), the margins were less than 20 % in all loading 
combination. When the LKH model was used, the gains were not significantly increased even 
though the hardening degree is one of the important factors for the shakedown limits. 
 

 P1 (Σx = P, Σy = 0) P2 (Σx = Σy = P) P3 (Σx = -Σy = P) 

 αelP/σY αSDP/σY margin 
(%) αelP/σY αSDP/σY margin 

(%) αelP/σY αSDP/σY margin 
(%) 

EIP 1.142 22.5 1.034 9.1 0.636 0.3 

LKH 1.241 33.2 
(8.7)1 1.218 28.5 

(17.8) 0.736 16.1 
(15.7) 

ULKH 

0.932 

1.865 100 

0.948 

1.896 100 

0.634 

1.268 100 

 
 
When the out-of-plane loading space was considered, elastic limits, shakedown limits, and 
their margins are represented in Table 6.8. The chosen loading conditions were uniaxial 
tension loading (P1), biaxial tension loading (P2), and tension-compression combined loading 
(P3). As discussed in the case of in-plane loading, the overall tendency was similarly 
represented in this loading space. Shakedown limits of ULKH model were also twice as high 
as the elastic limits in all the loading combinations. In the LKH model, the margins were 
slightly increased in comparison with the shakedown limits with the EIP model. The 
difference of shakedown limits between the EIP model and the hardening material (ULKH 
and LKH) of the out-of-plane loading space was obtained in a similar way to that of the in-
plane loading space.  
 

 P1 (Σx = 0, Σz = P) P2 (Σx = Σz = P) P3 (Σx = -Σz = P) 

 αelP/σY αSDP/σY margin 
(%) αelP/σY αSDP/σY margin 

(%) αelP/σY αSDP/σY margin 
(%) 

EIP 1.029 15.0 1.121 16.3 0.567 8.6 

LKH 1.169 30.6 
(13.6) 1.257 30.4 

(12.1) 0.658 26.1 
(16.0) 

ULKH 

0.895 

1.790 100 

0.964 

1.928 100 

0.522 

1.044 100 

 
 
 
 
 
                                                            
1  Normally, margins are the gain of shakedown limits against elastic limits. However, in LKH material, the 
margins are also obtained by the gain from shakedown limits in EIP material. This margin is shown with 
parenthesis.  

Table 6.7. Elastic limits and shakedown limits of laminate (3D analysis) in in-plane 
loading space with considering hardening effect (from Figure 6.14).   

Table 6.8. Elastic limits and shakedown limits of laminate (3D analysis) in out-of-plane 
loading space with considering hardening effect (from Figure 6.15).   
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6.5. Remarks of shakedown results 

The three-dimensional composites of lamina and laminate were investigated to obtain 
shakedown limits. The results of the shakedown limits were discussed with geometrical 
influences, increase of fiber volume fraction, loading direction, and hardening effect. In this 
section, the following will be discussed additionally with von Mises stress field. 
 

(i) Both shakedown spaces and elastic spaces had longish shape along the first quarter 
plane and the third quarter plane.  

 
(ii) The margins from the shakedown limits along the first quarter plane and the third 

quarter plane were larger than those along the second quarter plane and the fourth 
quarter plane.  

 
(iii) The margins along the first quarter plane and the third quarter plane of the laminate 

structure were narrower than those of lamina structure. For the second quarter plane 
and the fourth quarter plane, there were no significant margins in the case of both 
lamina structure and laminate structure. 

 
 
The effect of symmetric loading can be understood in views of stress distribution. Von Mises 
stress distribution can give a clearer explanation to the effect of stress localization and to the 
shape of the shakedown limits. According to von Mises criterion, the plasticity threshold was 
linked to the elastic shear energy. The expanded expressions of the von Mises yield criterion 
were as follows 
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Equation (6.3) and (6.4) are the expression of the six-dimensional stress space and the 
expression of the three-dimensional principle stress ( 1σ , 2σ , 3σ ) space, respectively2.   
 
From the observation of shakedown and elastic limits in Figure 6.1 (in-plane loading), the 
margins of lamina in the first and the third planes were larger than those in the second and the 
fourth planes. It can be explained with von Mises stress distribution as follows. Figure 6.16 
shows von Mises stress distribution of lamina for the in-plane loading. Here, only the half 
plane (Σy > 0) was considered because of the symmetry of the yield locus at room temperature 
(without temperature change). The presented von Mises stress denotes the stress states along 
the loading directions which were rotated by 45o about the coordinate axes. Each plane 
denotes the global biaxial stress states having a specific combination of tension and 
compression for two directional loading.  
 
 

                                                            
2 It is from the assumption of plastic incompressibility and yield-independence with respect to hydrostatic stress. 
To understand the detail description of the von Mises criterion and the Tresca criterion, see the references [12, 
13]. 
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Figure 6.16 (a) indicates von Mises stress distribution for the second quarter plane (Σx = -Σy), 
and (b) indicates von Mises stress distribution for the first quarter plane (Σx = Σy). The von 
Mises stress profile was uniformly distributed in the biaxial loading plane (Figure 6.16 (b)). 
The maximum value of von Mises stress of matrix was about 70 MPa. On the other hand, in 
the tension-compression combined loading (Figure 6.16 (a)), the maximum value of von 
Mises stress of the matrix was over 180 MPa and the distribution was highly localized. From 
the comparison between Figure 6.1 and 6.16, the elastic limits, the shakedown limit and their 
margins were closely related with the maximum value of von Mises stress and its distribution 
profile. 

 

 
From the observation of the shakedown limits and the elastic limits in Figure 6.3 (out-of-
plane loading), the margins of lamina along the axial loading planes (z-directional axis) were 
larger than those in the other loading planes. It can be explained with von Mises stress 
distribution of lamina in the out-of-plane loading. Figure 6.17 shows von Mises stress 
distribution of lamina with out-of-plane loading (see Figure 6.3). Figure 6.17 (a) indicates von 
Mises stress distribution for the second quarter plane (Σx = -Σz), (b) indicates von Mises stress 
distribution for the axial direction (Σx = 0, Σz = P), and (c) indicates von Mises stress 
distribution for the first quarter plane (Σx = Σz).  
 
In the axial loading, the maximum value of von Mises stress was minimized (about 70 MPa) 
and its distribution was uniformly shown, as represented in Figure 6.17 (b). However, in other 
loading planes (Figure 6.17 (a) and (c)), the maximum values of von Mises stress were 
between 120 MPa and 160 MPa, and the distribution of stress was significantly localized. As 
shown in the previous results of in-plane loading, the margins of the shakedown limits were 
increased when the maximum value of von Mises stress profile was minimized and the stress 
profile was well distributed (Figure 6.17 (b)). The comparison between Figure 6.3 and 6.17 
shows that the elastic limits, the shakedown limit, and their margins were influenced by the 
maximum value of von Mises stress with its distribution trend. 
 
 

Figure 6.16. Von Mises stress distribution of lamina with 20 % of fiber volume fraction using three-
dimensional analysis without considering thermal loading (from Figure 6.1): (a) compression 
loading to x-directional axis and tension loading to y-directional axis, and (b) biaxial tension 
loading to x- and y-directional axes. 
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From the results of the laminate structure in Figure 6.10 (in-plane loading), the margins 
between shakedown limits and elastic limits of laminate structure were quite less than those of 
lamina structure. The longish extent of the shakedown limits of the laminate structure was 
less than that of the lamina structure. It can be also explained with von Mises stress profile of 
laminate. Figure 6.18 shows von Mises stress distribution of laminate with in-plane loading. 
Figure 6.18 (a) indicates von Mises stress distribution for the second quarter plane (Σx = -Σy), 
and (b) indicates von Mises stress distribution for the first quarter plane (Σx = Σy).  
 
In the biaxial tension loading, the maximum value of von Mises stress of matrix was also 
increased to about 110 MPa (Figure 6.18 (b)) in comparison with lamina in the same loading 
(≅ 70 MPa). The resulting von Mises stress profile was not uniformly distributed. In tension-
compression combined loading (Figure 6.18 (a)), the maximum value of von Mises stress of 
matrix was about 150 MPa and the distribution was highly localized. From the graphical 
observation, von Mises stress state of laminate was highly localized under any loading 
condition and the maximum value of the resulting von Mises stress of the matrix was also 
increased. This was due to the complex geometry of the laminate structure. Therefore it was 
explained that the margins between the shakedown limits and the elastic limits of the laminate 
structure were significantly narrower in all loading combinations (Figure 6.10). 
 
For the investigation for the out-of-plane loading of laminate structure, von Mises stress 
distribution of laminate is represented in Figure 6.19. Figure 6.19 (a) indicates von Mises 
stress distribution for the second quarter plane (Σx = -Σz), and (b) indicates von Mises stress 
distribution for the first quarter plane (Σx = Σz). The maximum value of von Mises stress of 
the matrix was about 110 MPa. In tension-compression combined loading (Figure 6.18 (a)), 
the maximum value of von Mises stress of matrix was over 180 MPa and the distribution was 
highly localized. The von-Mises stress of out-of-plane loading was highly localized and the 
value was increased, as previously mentioned in the in-plane loading.  
 

Figure 6.17 Von Mises stress distribution of lamina with 20 % of fiber volume fraction using three-
dimensional analysis without considering thermal loading (from Figure 6.3): (a) compression 
loading to x-directional axis and tension loading to z-directional axis, (b) tension loading to z-
directional axis, and (c) biaxial tension loading to x- and z-directional axes. 
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From the results in this section, the maximum value of von Mises stress and its distribution 
influenced the tendency of shakedown limits and elastic limits. If the maximum value of von 
Mises stress is decreased in certain loading conditions and the distribution is uniformly 
represented, the serviceability of the structure can be increased from an elastic viewpoint as 
well as a shakedown viewpoint.  
 

                                    

                                     
 
 

 

 

Figure 6.18. Von Mises stress distribution of laminate with 20 % of fiber volume fraction using 
three-dimensional analysis without considering thermal loading (from Figure 6.11): 
(a) compression loading to x-directional axis and tension loading to y-directional 
axis, and (b) biaxial tension loading to x- and y-directional axes. 

Figure 6.19 Von Mises stress distribution of lamina with 20 % of fiber volume fraction using 
three-dimensional analysis without considering thermal loading (from Figure 6.12): 
(a) compression loading to x-directional axis and tension loading to z-directional 
axis, and (b) biaxial tension loading to x- and z-directional axes. 
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In this work, the heating condition was considered in the results of the shakedown limits, i.e. 
the reference temperatures were positive value. The FRMMC layer is normally manufactured 
at higher temperature than its operation temperature. Therefore the shakedown limits with the 
cooling condition may give a clear insight with regard to the real conditions. Therefore, the 
shakedown limits were obtained in the cooling condition. The results of shakedown limits for 
lamina and laminate FRMMCs for cooling are attached in Appendix D. The elastic limits and 
the shakedown limits in cooling showed mirror images for the line y = -x with respect to 
heating. These results occurred because the thermal cooling induced the contraction of 
FRMMC at the same magnitude as its expansion during the heating.  
 



7. Application of Shakedown Analysis 

In this chapter, several parametric studies are performed by considering the fusion-relevant 
loading conditions in the PFC component for the comparison with the results of shakedown 
analysis. For this, shakedown limits are represented in the three-dimensional loading space. 
Finally, the loading paths obtained by incremental analysis are compared with the shakedown 
limits determined for the three-dimensional thermomechanical loading space. 
 
 

7.1. Loading parameters of PFC 

Six sets of loading parameters were chosen to investigate the effect of the loading conditions. 
The thermal history including the manufacturing procedure was schematically described in 
the chapter 5. Since the heat flux on the surface of a PFC of a future fusion reactor may reach 
up to 20 MW/m2, three different quasi-stationary heat flux conditions (10, 15, 20 MW/m2) 
were considered. The joining temperature was fixed to 700 oC. Water coolant temperatures 
were assumed to be 250 and 350 oC. The heat load duration time and cooling duration time 
were fixed at 30 seconds and 20 seconds, respectively. Therefore, six cases are represented in 
Table 7.1. 
 

Boundary condition Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Joining temperature, JT (oC) 700 700 700 700 700 700 

Heat flux, HF (MW/m2) 10  10  15  15  20  20 

Heat load duration (sec) 30 30 30 30 30 30 

Coolant temperature, CT (oC) 250 350 250 350 250 350 

Cooling duration (sec) 20 20 20 20 20 20 

 
 

7.2. Diagram of thermomechanical loading paths 

The thermomechanical loading paths were constructed for the six loading cases. To obtain 
thermomechanical loading paths, the finite element analysis (FEA) was performed. The detail 
of procedures was explained in section 5.4.2. The selected material properties used for the 
FEA were also listed in Table 5.2. The whole loading history used in the computational 
analysis consists of two main steps: (i) FEA for temperature computation and (ii) FEA for 
stress computation. Since the materials were assumed to be thermo-elasto-plastic, the thermal-
structural coupled analysis was performed using commercial finite element code ANSYS. 
 
Firstly, the thermal-structural analysis for the loading case 1 (Table 7.1) was considered in the 
different locations of FRMMCs (Figure 5.6). From the FEA analysis, temperature and stress 
evolutions in four local points of the FRMMC layer were obtained for the considered loading 
history with two cycles of high heat flux loading, as shown in Figure 7.1. The red line 
indicates temperature evolution curve, and the black line and the blue line indicate x-

Table 7.1. Loading parameters used for this analysis



7. Application of Shakedown Analysis 

 

 88

directional stress and y-directional stress, respectively. In these figures, the starting points of 
evolution paths were located at the considered manufacturing stage. FRMMCs in the PFC 
component were assembled at high joining temperature of 700 oC. The joining state was also 
assumed to be in stress-free state. Therefore, the components of temperature and stress of the 
initial point were represented as 700 oC and 0 MPa. During the cooling step (residual state in 
Figure 7.1), FRMMCs underwent a biaxial tension loading. In high heat flux loading (1st and 
2nd cycles), the temperature evolution induces the mechanical stress states. For other loading 
cases (cases 2-6), the temperature and stress evolution paths may be easily drawn in the same 
manner. 
 

  
(a)                                                                                         (b) 

      
(c)                                                                                         (d) 

 
The components of stress and temperature can be redrawn in a three-dimensional space (Σx, 
Σy, T), so called, thermomechanical loading path. The obtained thermomechanical loading 
paths for all the loading cases are represented in Figure 7.2. For example, the red line in 
Figure 7.2 (a) indicates a thermomechanical loading path for position L1. It can be drawn 
from the three evolution lines in Figure 7.1 (a). Like the preceding, thermomechanical loading 
paths for positions L2 to L4 can be obtained from Figure 7.1 (b) to (d). They are represented 
as the green line, the yellow line, and the blue line in Figure 7.2 (a). Here, the dotted line at 
each curve indicates the loading path from the manufacturing step to the first cycle and the 
solid line indicates the loading path for the second cycle. Likewise, the thermomechanical 
loading paths can be drawn for the other loading cases (cases 2-6). They are represented in 
Figure 7.2 (b)-(f). Several dominant effects were observed from theses results. 

Figure 7.1. Temperature and stress evolution diagram of case 1 in Table 7.1: (a) location L1, (b) 
location L2, (c) location L3, and (d) location L4 in Figure 5.6. Red line indicates 
temperature component and black and blue line indicate stress components, respectively. 



7. Application of Shakedown Analysis 

 

 89

 
(a)                                                                                    (b) 

 

 
(c)                                                                                   (d) 

 

 
(e)                                                                                     (f) 

 

Figure 7.2. Thermomechanical loading paths in three-dimensional loading space: (a) case 1, (b) case 2, 
(c) case 3, (d) case 4, (e) case5, and (f) case 6. L1, L2, L3, and L4 indicate typical locations of 
FRMMC layer as shown in Figure 5.6. Dotted line represents loading path of manufacturing 
process and 1st heat flux loading and solid line shows 2nd heat flux loading.   
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(i) There was a significant change of the thermomechanical stress state during the initial 
manufacturing process in all the locations (dotted lines in Figure 7.2). 

 
(ii) Since the nearest position from the cooling channel was the location L3 (yellow line), 

the range of temperature was not increased. As a result, the stress increase of L3 was 
relatively lower than other positions during cyclic heat flux loading, i.e. loading path 
of L3 (yellow line) was located in the right side of the loading paths. 

 
(iii) The width of stress y-directional stress component (Σy) between the manufacturing 

stage and the second loading cycle depends on the coolant temperature. From Figure 
6.2 (a) and (b), the width in case 2 was relatively smaller than the width in case 1. 
Since the stress state at the lower coolant temperature was apart from the stress-free 
state, the width was increased at the lower coolant temperature. 

 

7.3. Shakedown limits and loading paths 

To compare the three-dimensional loading path with the shakedown limits, some graphical 
modifications of shakedown limits are necessary. In the previous chapter, shakedown limits 
were represented in the two-dimensional loading space with temperature increases. To 
reconstruct these shakedown limits in the three-dimensional loading space, z-axis can be 
chosen as the axis for thermal loading. Then the shakedown limits were possibly redrawn in 
the three-dimensional loading space. Next, the normalized stress and thermal stress were 
converted to the realistic stresses and temperatures for the comparison with loading paths. 
Finally, the resulting loading paths were drawn simultaneously in the three-dimensional 
loading spaces. 
 
In Figure 7.3, shakedown limits and the loading paths are represented in a three-dimensional 
loading space (Σx, Σy, ∆T). The shakedown limits are denoted by the black curves. For the 
comparison, the shakedown limits considering limited kinematic hardening (LKH) model are 
represented as grey curves. Shakedown limits with unlimited kinematic hardening (ULKH) 
model are not represented, since safety limits are significantly overestimated with this 
material model. The general trend can be observed in Figure 7.3. However, there were some 
ambiguous regions to compare the shakedown limits and loading paths. The additional figures 
in two-dimensional graphical projection ((Σx, Σy), (Σx, ∆T), (Σy, ∆T)) can be used for clear 
observation. They are attached in Appendix E.  
 
In these figures, the center of shakedown limits was located in the stress free state of the 
structure. During the cooling process, from the joining temperature to room temperature, the 
PFCs undergo the severe change of the stress state (as expected in Figures 1.5). The center of 
the shakedown space was matched with the stress free state (0 MPa, 0 MPa, 700 oC) of the 
thermomechanical loading path. Several dominant facts were observed from these results. 
 

(i) The results show that the loading paths were located partly outside of the shakedown 
limits. 

 
(ii) The magnitude of the loading paths outside of the shakedown space was varied with 

the loading cases.  
 

(iii) In high heat flux loading (20 MW/m2), the loading path in the position L4 penetrates 
the space of the shakedown limits.  
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                                         (a)                                                                                             (b) 

       
(c) (d) 

      
(d) (f) 

Figure 7.3. Shakedown limits and thermomechanical loading paths in three-dimensional loading space (700 oC 
of joining temp.): (a) case 1, (b) case 2, (c) case 3, (d) case 4, (e) case 5, and (f) case 6 in Table 7.1. 
L1, L2, L3, and L4 indicate typical locations of FRMMC layer as shown in Figure 5.6. Dotted line 
represents loading path of manufacturing process and 1st heat flux loading and solid line shows 2nd 
heat flux loading.  SD (EIP) and SD (LKH) indicate shakedown limits with EIP model and with LKH 
model, respectively. 
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The data given in Table 7.2 rives a clearer view of the stress components and temperature at 
each typical loading state. The loading states considered here are the joining temperature (JT), 
room temperature (RT), 1st, 2nd heat flux (HF), and 1st, 2nd cooling temperature (CT).  
 
As the temperature was cooled down to RT, the stress was significantly increased to the 
positive biaxial loading plane. The components of x-directional and y-directional stress (Σx, 
Σy) of position L1 were (249, 263), respectively. For position L2, Σx was decreased to 83 MPa 
while Σy was increased to 316 MPa in comparison with position L1. Since position L2 was the 
upper-edge (free surface) part of FRMMC layer (see Figure 5.6), Σx was decreased due to free 
boundary conditions to x-direction. However Σy was increased due to constrained boundary 
conditions combined with high thermal loading due to the long distance from coolant channel 
in comparison with position L1. In position L3 and L4, the increase of stress was similarly 
observed. It shows that FRMMC undergoes significant applied tension loading during the first 
cooling process from manufacturing.   
 
During the cyclic heat flux loading and cooling, the stability (or instability) of loading state 
might be investigated. For example, case 1 (10 MW/m2 (HF) and 250 oC (CT)) was 
considered. The temperature of position L1 varied between 575 oC and 250 oC during the high 
heat flux loading state and the cooling state. The components of (Σx, Σy) varied between (-23, 
-221) and (110, -151) in 1st cycle and between (-26, -225) and (108, -154) in 2nd cycle. The 
components of temperature and stress in 2nd cycle were not significantly deviated from those 
in 1st cycle. For the other locations (L2-L4), the magnitude of deviation between two cycles 
showed similar tendencies with the position L1.  
 
In case 2 (10 MW/m2 (HF) and 350 oC (CT)), temperature of position L1 was altered between 
611 oC and 350 oC. The components of (Σx, Σy) undergo stress changes between (-17, -198) 
and (83, -160) in 1st cycle and between (-21, -202) and (80, -163) in 2nd cycle. The ranges of 
stress and temperature between heat flux state and cooling state were decreased in comparison 
with case 1. Since the higher coolant temperature (350 oC) was closer to the stress free state 
(700 oC), the stress mismatch was less likely. For the other locations (L2-L4), the tendencies 
of the loading path were similarly obtained as with position L1.  
 
In case 3 (15 MW/m2 (HF) and 250 oC (CT)), the temperature of position L1 differs between 
701 oC and 250 oC. The components of (Σx, Σy) varied between (-64, -261) and (32, -208) in 
1st cycle and (-105, -276) and (-5, -225) in 2nd cycle. The value of the loading path was 
significantly increased in comparison with the previous loading cases. The difference of each 
component of stresses between 1st cycle and 2nd cycle was significantly larger. This was 
observed in the whole region of FRMMC. It shows the range of the loading paths can be 
increased from cycle to cycle. The gradual stress evolution might be expected in this loading 
case. In case 4 (15 MW/m2 (HF) and 350 oC (CT)), the general tendency of the loading path 
was similarly represented in comparison with loading case 3.  However, the magnitude of 
loading path was decreased. This can be explained by the same reason as in case 2.  
 
In case 5 (20 MW/m2 (HF) and 250 oC (CT)), the temperature of position L1 differs between 
701 oC and 250 oC. The components of (Σx, Σy) varied between (-104, -319) and (-44, -239) in 
1st cycle and (-163, -338) and (-82, -253). The magnitude of deviation of stress state between 
the first cycle and the second cycle was significantly increased. In case 6 (20 MW/m2 (HF) 
and 350 oC (CT)), the loading evolution had a similar trend with loading case 5, even though 
the range of loading was decreased. 
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Table 7.2 Stress components and temperature at each loading state (700 oC of joining temp.). 

L1 L2 L3 L4 
Case Loading 

State ( Σx Σy T ) ( Σx Σy T ) ( Σx Σy T ) ( Σx Σy T ) 

JT 0 0 700 0 0 700 0 0 700 0 0 700 

RT 248.9 262.5 20 83.4 315.5 20 174.6 279.1 20 -29.0 201.7 20 

1st HF -23.1 -221.1 575.0 -10.2 -307.5 612.5 -37.1 -177.3 483.6 -11.3 -276.8 539.5

1st CT 110.0 -151.8 250.5 69.0 -135.2 250.5 48.5 -160.7 250.4 -32.5 -253.8 250.4

2nd HF -25.9 -225.1 575.0 -10.7 -306.4 612.5 -37.7 -179.8 483.6 -11.8 -277.1 539.5

1 

2nd CT 108.2 -154.4 250.5 68.6 -133.7 250.5 49.4 -161.7 250.4 -33.3 -252.7 250.4

JT 0 0 700 0 0 700 0 0 700 0 0 700 

RT 248.9 262.5 20 83.4 315.5 20 174.6 279.1 20 -29.0 201.7 20 

1st HF -17.1 -197.6 611.3 -11.8 -282.3 652.6 -26.3 -148.2 519.6 -10.0 -250.4 581.0

1st CT 83.2 -159.5 350.1 55.7 -132.9 350.1 23.5 -166.1 350.0 -31.8 -233.5 350.1

2nd HF -20.9 -202.3 611.3 -12.6 -281.7 652.6 -27.2 -151.3 519.6 -10.3 -250.8 581.0

2 

2nd CT 80.2 -163.0 350.1 55.2 -131.8 350.1 24.0 -167.7 350.0 -32.3 -232.8 350.1

JT 0 0 700 0 0 700 0 0 700 0 0 700 

RT 248.9 262.5 20 83.4 315.5 20 174.6 279.1 20 -29.0 201.7 20 

1st HF -63.9 -260.9 701.1 -8.5 -339.0 760.6 -48.8 -195.8 566.5 -3.7 -285.3 654.6

1st CT 32.3 -207.6 250.7 63.4 -109.5 250.8 21.1 -190.3 250.6 -38.5 -245.2 250.7

2nd HF -104.9 -276.3 701.1 -11.4 -336.5 760.6 -66.7 -204.6 566.5 -4.0 -282.0 654.6

3 

2nd CT -4.8 -224.5 250.7 60.8 -105.6 250.8 1.8 -199.4 250.6 -38.6 -239.6 250.7

JT 0 0 700 0 0 700 0 0 700 0 0 700 

RT 248.9 262.5 20 83.4 315.5 20 174.6 279.1 20 -29.0 201.7 20 

1st HF -60.1 -246.1 730.8 -8.9 -322.1 793.9 -38.1 -170.5 596.1 -1.9 -262.7 688.6

1st CT -10.9 -219.2 350.1 50.2 -114.4 350.1 -9.1 -199.4 350.1 -32.7 -228.2 350.1

2nd HF -112.6 -264.3 730.8 -11.9 -319.7 793.9 -61.2 -181.2 596.1 -2.1 -259.5 688.6

4 

2nd CT -54.5 -236.7 350.1 47.4 -110.1 350.1 -32.7 -209.9 350.1 -32.2 -221.1 350.1

JT 0 0 700 0 0 700 0 0 700 0 0 700 

RT 248.9 262.5 20 83.4 315.5 20 174.6 279.1 20 -29.0 201.7 20 

1st HF -103.9 -319.2 821.0 -5.4 -382.0 904.2 -49.5 -209.7 643.5 2.4 -300.6 763.4

1st CT -43.5 -238.6 250.9 57.3 -99.1 251.0 -26.1 -210.6 250.8 -38.1 -239.4 250.9

2nd HF -163.0 -338.1 821.0 -8.4 -376.6 904.2 -75.7 -219.9 643.5 2.1 -295.0 763.4

5 

2nd CT -82.4 -253.4 250.9 55.1 -94.6 251.0 -50.9 -220.5 250.8 -38.1 -232.5 250.9

JT 0 0 700 0 0 700 0 0 700 0 0 700 

RT 248.9 262.5 20.0 83.4 315.5 20.0 174.6 279.1 20.0 -29.0 201.7 20.0 

1st HF -100.3 -305.0 847.2 -5.5 -367.4 933.7 -38.8 -188.0 669.1 3.8 -286.2 793.4

1st CT -84.1 -247.3 350.2 46.3 -109.2 350.2 -52.4 -218.2 350.1 -31.7 -223.2 350.2

2nd HF -167.6 -326.1 847.2 -8.0 -362.4 933.7 -68.3 -199.4 669.1 3.4 -280.0 793.4

6 

2nd CT -124.8 -262.1 350.2 44.3 -105.2 350.2 -75.0 -227.1 350.1 -31.1 -215.1 350.2

   * JT: joining temperature (700 oC), RT: room temperature (20 oC), 1st: first cycle, 2nd: second cycle, HF: heat 
     flux loading state, CT: cooling temperature state.
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From the previous results, the loading paths and the shakedown limits were represented on the 
basis of the joining temperature (700 oC). The stress relaxation should be considered in the 
real material, temperature drop in FRMMC induces the difference of effective temperature 
between the test temperature and that at which the specimen would be free of any deviatoric 
stress. The effective temperature change occurred, because stress relieving processes can act 
to reduce its values to substantially below the actual temperature change. 
 
The effectively stress free temperature esfT∆  should be considered to reflect the stress 
relaxation effect. esfT∆  can be obtained from the values of P, Q and the experimentally 
observed difference between tensile and compressive yield stresses. Here, P is a 
dimensionless constant. Q [MPa/K] represents the difference between axial and transverse 
matrix stresses caused by cooling the composite through 1 oK [24].  
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In aluminum and SiC whisker (15 %) composite, the estimated stress free temperature was 
obtained as 350 oC [127]. In this case (CuCrZr-SiC FRMMC), esfT∆  was assumed as 400 oC 
since copper alloy has a higher melting temperature than aluminum. When 400 oC of 
effectively stress free temperature is considered, shakedown limits and the loading paths can 
be reconstructed, as represented in Figure 7.4. From the results, some facts were observed as 
follows. 
 

(i) When the results were compared with Figure 7.3, the loading paths in these figures 
were mostly inside of the modified shakedown limits considering effectively stress 
free temperature. Especially the loading path in the relatively low range of heat flux 
state (10 MW/m2) was nearly inside the shakedown space.  

 
(ii) In the relatively high heat flux loading state (15, 20 MW/m2), the loading paths 

penetrated the shakedown limits.   
 
 
Components of stress and temperature at typical loading states are represented in Table 7.3 
The chosen loading states are effectively stress free temperature (ET, 400 oC), room 
temperature (RT), 1st, 2nd heat flux (HF), and 1st, 2nd cooling temperature (CT).  
 
In the manufacturing process (ET → RT), the magnitude of each stress component was 
decreased in comparison with the previous result (JT → RT in Table 7.2). (Σx, Σy) of position 
L1 at RT from ET were (151, 134) while those were (249, 263) at RT from JT. In other 
positions (L2-L4), the general tendency was similarly observed.  
 
During cyclic heat flux loading and cooling, the magnitude of each stress component was 
significantly decreased even though the range of each temperature component was the same 
with Table 7.2. For example, in case 1 (10 MW/m2 (HF) and 250 oC (CT)), the components of 
(Σx, Σy) varies between (-56, -155) and (69, -71) in 1st cycle and between (-58, -158) and (69, -
72) in 2nd cycle. The difference of each stress component between 1st cycle and 2nd cycle was 
decreased in contrast to Table 7.2. For the other locations (L2-L4), the magnitude of deviation 
between two cycles shows similar tendency with position L1.  
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                                         (a)                                                                                             (b) 

       
(e) (d) 

      
                                         (e)                                                                                           (f) 

Figure 7.4. Shakedown limits and thermomechanical loading paths in three-dimensional loading space (400 oC 
of effectively stress free temp.): (a) case 1, (b) case 2, (c) case 3, (d) case 4, (e) case 5, and (f) case 6 
in Table 7.1. L1, L2, L3, and L4 indicate typical locations of FRMMC layer as shown in Figure 5.6. 
Dotted line represents loading path of manufacturing process and 1st heat flux loading and solid line 
shows 2nd heat flux loading.  SD (EIP) and SD (LKH) indicate shakedown limits with EIP model and 
with LKH model, respectively. 
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Table 7.3 Stress components and temperature at each loading state (400 oC of effectively stress free temp.). 

L1 L2 L3 L4 
Case Loading 

State ( Σx Σy T ) ( Σx Σy T ) ( Σx Σy T ) ( Σx Σy T ) 

ET 0 0 400 0 0 400 0 0 400 0 0 400 

RT 150.5 134.4 20.0 76.0 177.1 20.0 77.0 129.9 20.0 -25.8 68.7 20.0 

1st HF -56.0 -155.4 575.0 -22.7 -221.3 612.5 -12.0 -81.5 483.6 10.5 -145.4 539.5 

1st CT 69.4 -71.0 250.6 55.2 -5.4 250.7 34.0 -73.2 250.5 -14.7 -92.5 250.6 

2nd HF -58.4 -157.9 575.0 -23.2 -218.3 612.5 -11.9 -82.4 483.6 10.5 -143.5 539.5 

1 

2nd CT 68.5 -72.3 250.5 55.2 -3.4 250.5 34.0 -73.9 250.4 -14.6 -91.4 250.4 

ET 0 0 400 0 0 400 0 0 400 0 0 400 

RT 150.5 134.4 20.0 76.0 177.1 20.0 77.0 129.9 20.0 -25.8 68.7 20.0 

1st HF -59.0 -125.5 611.3 -24.6 -185.6 652.6 -0.1 -39.1 519.6 14.5 -107.4 581.0 

1st CT 33.3 -71.9 350.1 40.9 2.6 350.1 28.5 -65.0 350.0 -4.5 -58.0 350.1 

2nd HF -60.9 -127.7 611.3 -25.1 -183.1 652.6 0.2 -40.1 519.6 14.4 -106.3 581.0 

2 

2nd CT 32.4 -73.2 350.1 41.0 3.8 350.1 28.6 -65.7 350.0 -4.4 -57.5 350.1 

ET 0 0 400 0 0 400 0 0 400 0 0 400 

RT 150.5 134.4 20.0 76.0 177.1 20.0 77.0 129.9 20.0 -25.8 68.7 20.0 

1st HF -73.8 -197.8 701.1 -19.7 -261.9 760.6 6.0 -100.2 566.5 14.2 -175.3 654.6 

1st CT 44.5 -105.1 250.7 47.1 12.4 250.8 33.7 -95.2 250.6 -13.5 -94.9 250.7 

2nd HF -84.0 -201.4 701.1 -20.8 -259.2 760.6 2.4 -102.1 566.5 14.1 -173.5 654.6 

3 

2nd CT 34.1 -109.7 250.7 46.8 13.5 250.8 30.4 -97.0 250.6 -13.4 -93.9 250.7 

ET 0 0 400 0 0 400 0 0 400 0 0 400 

RT 150.5 134.4 20.0 76.0 177.1 20.0 77.0 129.9 20.0 -25.8 68.7 20.0 

1st HF -78.4 -178.7 730.8 -19.9 -238.8 793.9 18.1 -65.6 596.1 15.8 -144.4 688.6 

1st CT -0.8 -109.9 350.1 35.4 12.9 350.1 25.4 -90.2 350.1 -3.7 -65.6 350.1 

2nd HF -93.2 -184.3 730.8 -20.8 -237.2 793.9 12.3 -68.8 596.1 15.7 -143.8 688.6 

4 

2nd CT -15.3 -115.8 350.1 35.6 13.4 350.1 20.8 -93.0 350.1 -3.6 -65.8 350.1 

ET 0 0 400 0 0 400 0 0 400 0 0 400 

RT 150.5 134.4 20.0 76.0 177.1 20.0 77.0 129.9 20.0 -25.8 68.7 20.0 

1st HF -95.0 -248.8 821.0 -13.2 -306.5 904.2 20.3 -112.9 643.5 16.1 -211.3 763.4 

1st CT -5.6 -126.3 250.9 47.1 12.5 251.0 16.3 -104.2 250.8 -12.9 -99.3 250.9 

2nd HF -117.9 -257.2 821.0 -12.6 -305.6 904.2 13.0 -116.7 643.5 16.2 -210.3 763.4 

5 

2nd CT -23.7 -133.7 250.9 48.9 11.0 251.0 10.1 -107.5 250.8 -12.7 -100.8 250.9 

ET 0 0 400 0 0 400 0 0 400 0 0 400 

RT 150.5 134.4 20.0 76.0 177.1 20.0 77.0 129.9 20.0 -25.8 68.7 20.0 

1st HF -97.4 -231.5 847.2 -13.1 -286.3 933.7 32.9 -82.7 669.1 17.4 -188.5 793.4 

1st CT -44.3 -127.1 350.2 37.0 8.5 350.2 10.4 -99.4 350.1 -3.1 -73.0 350.2 

2nd HF -123.1 -240.8 847.2 -12.2 -286.9 933.7 24.4 -87.4 669.1 17.4 -188.0 793.4 

6 

2nd CT -62.5 -134.4 350.2 39.1 6.2 350.2 4.1 -102.6 350.1 -2.9 -74.6 350.2 

    * ET: effectively stress free temperature (400 oC), RT: room temperature (20 oC), 1st: first cycle, 2nd: second 
       cycle, HF: heat flux loading state, CT: cooling temperature state. 
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In other cases (case 2-6), the difference of each stress component between 1st cycle and 2nd 
cycle was significantly decreased in comparison with previous results (Table 7.2). The results 
were reasonable because the lower stress free temperature (400 oC of ET) was used and the 
differences of stress between loading states were decreased in comparison with Table 7.2 (700 
oC of JT). The realistic behavior might be somewhere in between two limit cases, that is, one 
based on JT and the other based on ET. 
  
 

7.4. Remarks for fusion application 

In the previous results, temperature and stress components were investigated at each loading 
step. The distance of stress components at two different loading steps might be useful to 
predict the stability of structural state under the considered loading conditions. Therefore, the 
distance of applied loading at a certain path between two neighboring loading steps, so-called 
loading scale, was obtained as follows. Here i and j denote two neighboring loading stages for 
the chosen loading paths. The obtained results for all cases are represented in Table 7.4.  
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Firstly, the results of the loading scale for JT (700 oC) were discussed. In the relatively low 
heat flux loading (case 1 and case 2), the loading scales in the manufacturing step (JT or ET 
→ RT) and the first high heat flux loading (RT → 1st HF) were higher than the other loading 
steps, since there was a significant change of thermal history. However, the loading scales in 
all the positions were nearly stabilized for two heat flux loading cycles.  
 
In case 3 and case 4, the loading scales in the position L1 and L3 were not stabilized. 
Therefore in this region the structure might have incremental plastic failure due to 
accumulation of deformation. For the accurate investigation of incremental plastic collapse, 
however, the cyclic thermo-elastic-plastic incremental analysis should be performed in 
consideration with nonlinear hardening effect for a number of cycles. In the position L2, 
loading scale was stabilized but it slightly deviates from two shakedown limits (elastic-ideal 
plastic (EIP) model and limited kinematic hardening (LKH) model), as shown in Figure 7.4. 
Therefore the position L2 might have a safety problem from a shakedown viewpoint. In the 
high heat flux loading (20 MW/m2), i.e. case 5 and case 6, the loading scales in the position 
L1 and L3 were not stabilized. In the position L2, loading scale was stabilized but it slightly 
deviates from two shakedown limits (EIP model and LKH model).  
 
Throughout all the loading cases, loading scales of position L3 were decreased with an 
increase of heat flux loading while loading scales of position L2 and L4 were increased. In 
position L1, loading scales were decreased with increase of heat flux loading between 10 and 
15 MW/m2, while they were slightly increased with an increase of heat flux loading between 
15 and 20 MW/m2. These tendencies can be explained by the relationship between the 
distance from coolant channel and heat flux loading surface. Since the position L3 was 
located in the nearest region with coolant, there was no significant stress change during cyclic 
heat flux loading. Since the positions L2 and L4 were located far from the coolant channel, 
the stress state was mainly determined by the extent of heat flux loading.     
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Table 7.4. Loading scales between two neighboring loading states. 

 
Position L1 L2 L3 L4 

Case 
Stress free temperature 700 oC 400 oC 700 oC 400 oC 700 oC 400 oC 700 oC 400 oC 

JT, ET→RT 361.7 201.8 326.3 192.7 329.2 151.0 203.8 73.4 

RT→1stHF 554.8 355.8 630.0 410.4 503.1 229.4 478.9 217.2 

1stHF→1stCT 150.0 151.2 189.6 229.5 87.2 46.7 31.3 58.6 

1stCT→2ndHF 154.4 154.5 188.8 226.9 88.2 46.8 31.2 56.9 

1 

2ndHF→2ndCT 151.6 153.1 190.1 228.8 89.0 46.7 32.5 57.8 

JT, ET →RT 361.7 201.8 326.3 192.7 329.2 151.0 203.8 73.4 

RT→1stHF 531.5 333.8 605.3 376.4 472.2 185.8 452.6 180.7 

1stHF→1stCT 107.2 106.7 163.9 199.3 52.9 38.6 27.6 52.9 

1stCT→2ndHF 112.5 109.5 163.7 197.1 52.8 37.7 27.7 51.9 

2 

2ndHF→2ndCT 108.5 108.1 164.5 198.2 53.8 38.2 28.4 52.3 

JT, ET →RT 361.7 201.8 326.3 192.7 329.2 151.0 203.8 73.4 

RT→1stHF 609.8 400.8 661.0 449.3 524.9 240.8 487.6 247.3 

1stHF→1stCT 110.0 150.3 240.5 282.3 70.1 28.1 53.1 85.0 

1stCT→2ndHF 153.4 160.6 239.0 280.0 88.9 32.1 50.5 83.3 

3 

2ndHF→2ndCT 112.7 149.5 241.9 281.0 68.7 28.5 54.7 84.2 

JT, ET →RT 361.7 201.8 326.3 192.7 329.2 151.0 203.8 73.4 

RT→1stHF 595.1 387.8 644.2 426.8 497.4 204.2 465.2 217.1 

1stHF→1stCT 56.1 103.7 216.0 257.7 40.9 25.7 46.3 81.2 

1stCT→2ndHF 111.2 118.6 214.6 256.3 55.2 25.1 43.8 80.6 

4 

2ndHF→2ndCT 64.3 103.7 217.9 256.9 40.4 25.6 48.8 80.4 

JT, ET →RT 361.7 201.8 326.3 192.7 329.2 151.0 203.8 73.4 

RT→1stHF 680.3 455.1 703.1 491.8 537.8 249.3 503.3 283.1 

1stHF→1stCT 100.6 151.7 289.7 324.6 23.4 9.6 73.4 115.7 

1stCT→2ndHF 155.5 172.5 285.1 323.7 50.4 12.9 68.6 114.8 

5 

2ndHF→2ndCT 116.9 155.3 289.0 322.5 24.8 9.6 74.3 113.2 

JT, ET →RT 361.7 201.8 326.3 192.7 329.2 151.0 203.8 73.4 

RT→1stHF 666.4 442.0 688.7 471.9 513.6 217.1 489.0 260.8 

1stHF→1stCT 60.0 117.1 263.4 299.0 33.1 28.0 72.3 117.3 

1stCT→2ndHF 114.9 138.3 259.0 299.5 24.6 18.4 66.8 116.8 

6 

2ndHF→2ndCT 77.1 122.4 262.4 297.6 28.5 25.4 73.5 115.2 

 
    * JT: joining temperature (700 oC), ET: effectively stress free temperature (400 oC), RT: room temperature  
      (20 oC), 1st: first cycle, 2nd: second cycle, HF: heat flux loading state, CT: cooling temperature state  
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The loading case 2 induced less thermal stress mismatch due to the combination of relatively 
low heat flux (10 MW/m2) and high coolant temperature (350 oC). Since the resulting loading 
scale of the loading case 2 was relatively low, FRMMC-layered PFCs might be in the safe 
state from a shakedown viewpoint. However, in other loading cases, some parts of FRMMC 
might have structural problems due to strain accumulation (incremental plastic collapse) after 
some loading cycles. 
 
Secondly, the loading scale for ET (400 oC) were investigated. In the low heat flux (case 1 
and case 2), the loading scales in the manufacturing step (JT or ET → RT) and the first high 
heat flux loading (RT→1st HF) were higher than the other loading steps, since there was a 
significant change of thermal history. Loading scales of ET in the first two steps (ET → RT 
→ 1st HF) were decreased in comparison with those of JT, while the scales of ET in the heat 
flux state (1st HF→ 2nd CT) were instead increased at the edge region of FRMMC layer (L2 
and L4). However, the loading scales of both approaches (JT and ET) were nearly stabilized 
for heat flux loading cycles. 
 
In case 3 and case 4, the loading scale in the position L1 were not stabilized like those of JT, 
while that in L3 was stabilized. The magnitude of deviation of loading scale of L1 was also 
decreased. In position L2 and L4, loading scales were increased in comparison with those of 
JT. In the high heat flux loading (case 5 and case 6), the loading scales in position L1 and L3 
were not stabilized as in the case of JT. In position L2 and L4, loading scales were 
significantly increased in comparison with those of ET like the preceding cases (case 3 and 
case 4). 
 
The results of loading scales of JT and ET showed some opposite trends with chosen region 
of FRMMC layer. Especially, the loading scales of ET (400 oC) were significantly increased 
in comparison with those of JT (700 oC) at the edge region. In heat flux state, the temperature 
of FRMMC layer (L2) was elevated to between 613 oC (10 MW/m2) and 934 oC (20 MW/m2). 
This high operation temperature induced larger loading scales of ET than those of JT due to a 
larger difference between ET and the operation temperature.  
 
In this chapter, the application of shakedown analysis was investigated to the fusion system 
from the comparative study between shakedown limits and the loading path of the fusion 
system. For this, several parametric studies with different loading conditions were performed 
by considering the fusion-relevant loading conditions in the PFCs. The loadings were mainly 
determined from the relationship between heat flux and coolant temperature. The represented 
loading paths by thermo-elasto-plastic FEM analyses were compared with the shakedown 
limits in the three-dimensional loading space and the loading scales were obtained between 
two neighboring states. From these results, the optimal design concept of PFC component can 
be suggested and is discussed for fusion application.  
 
The elastic limit could estimate the strict safety criterion of structure under cyclic loads. 
FRMMCs will be exposed to significant cyclic heat flux loading in the fusion device, and the 
resulting stress fields of the matrix at a mesoscopic level would be highly heterogeneous and 
often exceed the yield limits. The elastic limits cannot be used in this case. Therefore, the 
shakedown limits were chosen as the safety criterion in this work. It was observed that the 
shakedown limits were less stringent criterion than the elastic limits without incurring 
progressive plastic failure (low cycle fatigue).  
 
 



7. Application of Shakedown Analysis 

 

 100 

For structural safety of the PFC, the loading path of the FRMMC has to be located inside the 
shakedown limits. However, the results in this chapter show that the loading paths were partly 
outside of the shakedown limits. It was interpreted that the FRMMC layers will eventually 
fail in the matrix region or interface due to low cycle fatigue. Therefore, the failure control 
should be investigated with the shakedown analysis for structural safety assessment in the 
fusion operation. 



8. Summary 

 
Shakedown analysis tool was developed with finite element method (FEM) and nonlinear 
optimization program. It was extended to three-dimensional models. Then shakedown 
analysis was performed for the complex three-dimensional fiber-reinforced metal matrix 
composites (FRMMCs) considering thermomechanical loading. Finally, for the comparison 
with the results of the shakedown analysis, thermomechanical loading paths were obtained 
using incremental analysis in fusion-relevant loading.  
 
 
Development of shakedown algorithm 
In this study, the behaviors of the structure subjected to cyclic loading were discussed to find 
the relevant safety criterion. Shakedown theorem was formulated using Melan’s static 
approach. The proof of static shakedown theorem was given. Static shakedown theorem was 
extended to the thermal loading case and hardening models. The numerical formulation of 
shakedown theory was carried out for three-dimensional models. The details of shakedown 
formulation were described by finite element discretization with the nonlinear large-scale 
mathematical optimization program (LANCELOT). The developed computational tool for 
shakedown analysis was verified with several literature examples.  
 
Remarks on results of shakedown analysis 
FRMMCs of lamina and laminate were investigated to obtain their shakedown limits in three-
dimensional loading space. The obtained shakedown limits were significantly dependent on 
the geometrical factors (fiber volume fraction and fiber array), and the loading combinations. 
Both shakedown spaces and elastic spaces had longish shapes along the first quarter plane and 
the third quarter plane. In the lamina structure, the margins from shakedown limits in the first 
quarter plane and the third quarter plane were bigger than those in the second quarter plane 
and the fourth quarter plane. However, the margins along the first quarter plane and the third 
quarter plane of the laminate structure were significantly less than those of the lamina 
structure. For the second quarter plane and the fourth quarter plane, shakedown limits and 
their margins of lamina and laminate have similar tendencies. Shakedown limits were 
obtained with two different hardening states, i.e. unlimited kinematic hardening (ULKH) 
model and limited kinematic hardening (LKH) model. Shakedown limits of ULKH model 
increased significantly, while shakedown limits of LKH model did not significantly increase. 
 
The results of the shakedown limits and the elastic limits were investigated from von Mises 
stress distribution. Von Mises stress distribution profiles were represented to explain the 
shape of the elastic space and the shakedown space. When the von Mises stress profile was 
well distributed and its magnitude was decreased, the margins of the shakedown limits were 
increased to the same loading condition. To the contrary, the margins of the shakedown limits 
were decreased when von Mises stress profile was highly localized and its magnitude was 
greatly increased. 
  
It was observed that the shakedown limits were larger than elastic limits. This means that the 
gap between shakedown limits and elastic limits could be still viable from a shakedown 
viewpoint. Therefore, the shakedown limits could give a more economic margin for safety 
criterion as they can be practically used for the application in the highly loaded area. 
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Remarks on fusion application 
The application of shakedown analysis to the real system was made to investigate a design 
concept of plasma facing component (PFC) for fusion application. The loading paths were 
obtained using incremental analyses and illustrated with shakedown limits in three-
dimensional loading space. Several parametric studies were performed by considering the 
fusion-relevant loading conditions in the PFC component.  
 
FRMMCs will be exposed to significant cyclic heat flux loading in the fusion application, and 
the resulting stress fields of the matrix in a mesoscopic level were highly heterogeneous and 
exceeded yield limits. In this case, the elastic limits are not relevant for structural analysis. 
The shakedown limits were used as the safety criterion of FRMMC layer in relation to the 
fusion application. For structural safety of the FRMMC, the loading paths of the FRMMC 
should be located within the shakedown limits. The comparative results showed that the 
loading paths under cyclic heat flux loading were partly outside of the shakedown limits. It is 
interpreted that the FRMMC layers will eventually fail in the matrix region or interface due to 
low cycle fatigue.  
 
The failure potential of the component could be qualitatively estimated from the relative 
position of loading path in comparison with shakedown limits. In the case of the low heat flux 
loading (10 MW/m2), shakedown limits of FRMMC covered nearly all the loading paths 
except the first cooling process. With increases of the heat flux loading, the loading paths had 
deviated significantly from the shakedown limits (Figure 7.4). As the magnitude of deviation 
of loading paths from shakedown limits is increased, the possibility of structure failure might 
be extremely high. Therefore, the shakedown limits can be used for the structural safety 
assessment of FRMMCs without incurring failure for fusion-relevant loading.  
 
 
 
 



Appendix A. Thermonuclear Fusion 
 

A.1 Nuclear fusion 

Nuclear fusion is the nuclear reaction between nuclei of light elements that fuse together to 
form a heavier element releasing large amounts of energy. This process takes place 
continuously in the core of the sun where, at temperatures of 10-15 million oC, hydrogen (H) 
is converted to helium (He) providing enough energy to sustain life on Earth. 
 

 

 
Figure A.1 shows the binding energy per nucleon as a function of the Mass Number, A. It has 
a maximum around 9 MeV for nuclei closed to the iron (Fe), which is the most stable nucleus. 
For light elements, the larger A is, the stronger is the binding energy per nucleon (see Figure 
A.1), i.e. the nucleons are lighter and the nucleus more stable. Therefore, in a fusion reaction 
between light nuclei, the total mass of the resultant nuclei is slightly less than the total mass of 
the original particles; this mass difference is converted into kinetic energy of the resultant 
fusion products, as described by Einstein’s famous equation: 
 
 E = mc2 (A.1) 

where E is the released energy, which is equal to the mass difference, m, multiplied by the 
squared velocity of the light, c.  
 
There are several fusion reactions involving light isotopes, but the reaction between the nuclei 
of the two heavy isotopes of H -deuterium (D) and tritium (T)- is the most suitable one 
(Figure A.2); this reaction proceeds as following: 
 
 D + T → 4He (3.517 MeV) + n (14.069 MeV) (A.2) 

where the energies given are the kinetic energies of the reaction products: 4He and a neutron 
(n). D is a plentiful resource: it is naturally found in sea water with a density of 30 g/m3. T is a 

Figure A.1. Binding energy per nuclear particle (nucleon) in MeV as a function of the Mass Number, A [127]. 
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weak radioactive element, and it transforms spontaneously into non-radioactive He, emitting 
an electron (e-) and causing energy to be released in the form of beta radiation (β) with a half-
life of 12.43 years. This low-energy β cannot penetrate human skin, so that only consuming 
large amounts of T could be dangerous. In a fusion reactor, T can be produced from the 
reaction of lithium (Li), which will cover the central part of the reactor, with the neutrons 
released from the fusion reactions: 
 
 6Li + n → 4He + T + 4.86 MeV (A.3) 

 7Li + n → 4He + T + n –2.5 MeV (A.4) 

There are large reserves of Li in the Earth's crust. Eventually, reactions involving just D-D or 
D-He (3He) may be also used, but they are not as favorable as the D-T reaction, which has by 
far the largest cross section for relatively low temperatures [128]. 
 

 

 

The development of nuclear fusion as an energy source is one of the most complex scientific 
and technical tasks ever undertaken for non-military purposes and it will still span several 
human generations. In order to induce the fusion of nuclei of D and T it is necessary to 
surmount the Coulomb repelling force so that the attractive nuclear forces come into play. To 
achieve this, the particles must retain their energy and remain in the reacting region for a 
sufficient time. At these required temperatures (around 10 keV, that is, about 100 Mills. ºC1) 
the fuel is completely ionized; the resulting gas is an electrically neutral mixture of nuclear 
ions (positive) and electrons (negative) with very high thermal kinetic energies, called plasma. 
There are currently known three methods to confine the plasma in order to generate nuclear 
fusion: gravitational, inertial and magnetic confinement (Figure A.3). But only the two last 
methods are possible for producing nuclear fusion on Earth. 
 
Inertial fusion consists of micro-explosions of small fuel pellets by means of powerful lasers 
or particle beams. Confinement of the fuel is based on the inertia of the pellet fuel mass, 

                                                            
1 The temperature is lower than that corresponding to the energy of maximum cross-section (Figure A.2) 
because the required reactions occur in the high-energy tail of the Maxwellian distribution of heated particles. 

Figure A.2. Cross-sections of different fusion reactions as a function of 
the required energy [129]. 
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which resists the natural expansion when it is heated to thermonuclear fusion temperatures. 
Additional information about inertial fusion can be found in [130]. Magnetic fusion heats and 
confines hot plasma within closed nested magnetic surfaces in a toroidal vacuum vessel. The 
European fusion effort is concentrated on the latter and only this method will be briefly 
reviewed here. 
 

 
 

 
 

A.2 Magnetic plasma confinement 

In a fusion reactor, the magnetic plasma confinement can basically be performed with two 
different approaches: tokamak and stellarator (Figure A.4). 
 
 

       
(a) (b)             

Figure A.3. Three types of plasma confinement methods. 

Figure A.4. Schematics of the magnetic plasma confinement approaches tokamak (a) and stellarator (b). 
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Tokamak means in Russian “toroidal chamber” (toroidalnaya kamera magnitnoi katushki); the 
Russians L. Artsimovich and A. Sakharov invented it in 1952. The realization of the closed 
nested magnetic surfaces for plasma confinement is obtained by superposition of a strong 
toroidal field of the order of several Tesla with a poloidal field from an internal toroidal 
current flowing in the plasma (see Figure A.4 a) [128]. The toroidal field is produced by a set 
of external discrete coils equally spaced around the vacuum vessel; this field keeps the plasma 
away from the walls but, however, it is not enough to confine the plasma by itself. For that 
reason, a second poloidal field is necessary to cancel out the natural pressure inside the 
plasma, which tries to make it expand. Transformer coupling of the currents in toroidal ring 
coils induces the toroidal plasma current, which produces the necessary poloidal magnetic 
field component and, in addition, heats the plasma by ohmic heating. As a result of the 
superposition of both magnetic field components, nested magnetic surfaces are formed, which 
effectively confine the charged particles of the plasma. Further toroidal coils are installed for 
plasma positioning, shape control and for diverting the magnetic field lines at the plasma 
boundary away from the plasma core, in order to enable magnetic plasma limitation and to 
solve the particle and energy exhaust problem; this device is called divertor. 
 
In the stellarator configuration as shown in Figure A.4 (b), closed nested magnetic surfaces 
are entirely created by specially shaped external superconducting coils. The stellarator thus 
explicitly allows stationary plasma confinement. There is no net current flowing within the 
plasma. This implies, however, that magnetic surfaces can be established only if the plasma 
has a toroidally periodic (i.e. not axially symmetric) form. The stellarator concept became 
even more attractive after the development of optimized confinement configurations and of 
the modular coil arrangement, and particularly after the discovery of quasi-dynamic and 
quasi-helically symmetric configurations, which main attain very favorable intrinsic 
confinement properties. 
 
In view of the fact that the tokamak concept has been brought to a high level of development 
in all the major fusion programs of the world, the following information will be focused on it. 
To obtain in a tokamak a net positive energy output, i.e. to reach the so-called ignition 
condition, D-T plasma has to be heated to temperatures up to very high temperatures (at least 
12 keV, ~140 millions ºC) and a good confinement is necessary. Several criteria have been 
developed in order to quantify the required confinement in a tokamak. Generally such criteria 
arise from the balance of the energy given up by the He in heating the plasma against the 
many mechanisms of energy loss (conduction, diffusion and radiation). Normally, the plasma 
density (n), the plasma temperature (T) and the energy confinement time (τE) are used to 
quantify the result and the balance equation results in the following triple product, or criteria 
for ignition: 
 

n⋅T⋅τE  ≅ 6 × 1021 m-3 keV s                                        (A.5) 

Here, n must be sufficiently large for fusion reactions to take place at the required rate (>1020 
m-3). The fusion power generated will be reduced if impurity atoms released from the fusion 
reaction dilute the fuel; consequently, He ash must be removed. τE measures the efficiency of 
the magnetic insulation; it is the characteristic time-scale for plasma cooling when the source 
of heat is removed, and it has to be in the order of seconds. T must be high enough to prevail 
the repulsive Coulomb’s force and to produce an adequate amount of fusion reactions. 
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In Figure A.5 it is shown the fantastic progress obtained in magnetic fusion in the last 30 
years. Three generations of tokamaks with doubling of characteristic dimensions at each step 
led to a 10000 times higher value of the fusion triple product. Alternative, non-tokamak 
magnetic fusion approaches (stellarators, reversed field pinches) may offer economic and 
operational benefits. However, these approaches are more than one generation behind the 
tokamak line. 

 

 
 

A.3 International Thermonuclear Experimental Reactor (ITER) 

The International Thermonuclear Experimental Reactor (ITER) is the next major step for the 
development of fusion (Figure A.5). Scientists and engineers from Europe, Canada, Japan, 
Russia, Korea, China and USA are working in an unprecedented international collaboration 
on this reactor, which is the second world’s largest international co-operative research and 
development project after the International Space Station (ISS).  
 
With the impending construction and operation of ITER, fusion research is at the dawn of a 
new era. ITER will be the first machine based on the tokamak configuration to provide 
plasma dominated by α-particle heating, combining the plasma physics with the key reactor 
technologies of high heat flux components and long-term superconducting magnet technology 
necessary for power production. 
 
One of the main ITER goals is to demonstrate the safety and environmental potential of 
fusion power for its essential characteristics: low fuel inventory, ease of burn termination, low 
power and energy densities, large heat transfer surfaces and the fact that confinement barriers 
exist and must anyway be leak-tight for successful operation. 
 

Figure A.5. Progress on fusion. 
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A cutaway of the ITER tokamak is shown in Figure A.6. The magnet system consists of 18 
Nb3Sn toroidal field (TF) coils, a central solenoid (CS) of six modules, which can be powered 
separately, six NbTi poloidal field (PF) coils, and 18 NbTi saddle-shaped coils. ITER will be 
the first device to use Nb3Sn superconductors on a large scale. It adopts a new design of 
superconducting cables in a conduit of steel [131]. The major parameters and dimensions of 
ITER are shown in Table A.1. 
 

Total Fusion Power (MW) 500 (700) 

Plasma major radius (R,m) 6,2 
Plasma minor radius (a,m) 2,0 

Plasma current (Ip,MA) 15 
Plasma volume (m3) 837 
Plasma surface (m2) 678 

Current drive power (MW) 73 
 
ITER’s goal is to demonstrate the scientific and technical feasibility of fusion energy for 
peaceful purposes, which means to demonstrate moderate power amplification and extended 
burn of D-T plasmas, with steady-state as an ultimate goal and to perform testing of high heat 
flux and nuclear components [132]. 
 

Figure A.6. A cut-away view of the ITER tokamak

Table A.1. Main parameters and dimensions of ITER. 
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A.4 PFC and related material questions 

Structural materials of plasma facing components (PFCs) for future fusion reactors should 
withstand high heat flux (HHF) loads and energetic neutron irradiation. The ability to remove 
incident stationary heat fluxes of 10-20 MW/m2 is the prime objective for the divertor 
component whereas reduced activation and mechanical stability under irradiation and high 
operation temperatures are the important concerns for the PFCs in general. It is obvious that 
the mechanical strength at elevated temperatures is one of the crucial criteria for the structural 
materials, as the PFCs will be subjected to considerable thermal stresses [2,3]. 
 
The heat sink materials have to exhibit a high thermal conductivity, needed for achieving an 
efficient heat transfer into the cooling system. In addition to thermal conductivity, other 
properties as tensile strength and ductility, fracture toughness, fatigue at high temperature and 
irradiation resistance have to be taken into consideration. Owing to its excellent thermal 
conductivity strengthened copper is a viable candidate for heat sink applications in the 
divertor of ITER. A selected number of precipitation hardened (PH) and dispersion 
strengthened (DS) copper alloys, which possess good thermal conductivity, stable elevated 
temperature strength and adequate resistance to irradiation damage are the choice for the heat 
sink of the high heat flux components in ITER.  
 
As divertor heat sink material until now both the dispersion strengthened (DS) and the 
precipitation hardened (PH) Cu-alloys have been investigated to suppress the loss of strength 
at elevated temperatures [2,133-135]. According to the estimation in [122] based on the RCC-
MR code, the PH copper alloys could be used for the PFCs up to 350 oC under the applied 
stress intensity of 100 MPa (however, PH Cu is not code qualified yet). On the other hand, the 
large coefficient of thermal expansion (CTE) of these alloys is detrimental to the strength of a 
joint component consisting of two or three materials bonded each other. 
 
For the first wall and blanket structures of future reactors, so called reduced activation 
martensitic steels (RAMS) have been intensively developed in the last decade [3,136]. The 
service temperature of such steels like Eurofer is normally limited to 550 oC. Recently, there 
has been a research effort to develop the oxide dispersion strengthened (ODS) RAMS to 
improve the high-temperature strength [137]. It is expected that an increase of the service 
temperature by more than 100 oC can be achieved with the ODS RAMS compared to the plain 
RAMS. The higher service temperature of the first wall and blanket components will lead to 
an increased energy efficiency of a fusion power plant. 
 
Compared to these candidate materials the fiber-reinforced metal matrix composites 
(FRMMCs) could become potential candidate materials for the PFC application, since the 
combination of different properties of fiber and matrix can lead to versatile performances of 
these materials. The can possess much higher ultimate strength, work hardening rate and 
creep resistance than the conventional PH or ODS alloys in a wide temperature range. The 
global yielding is usually increased by the fiber reinforcement. But the yield stress of a 
FRMMCs can be influenced by residual stresses. The ultimate load carrying capacity of such 
composites will depend either on the onset of unconstrained plastic flow of the matrix or on 
the overall fiber fracture. The elastic stiffness as well as the CTE can be tailored to some 
extent. This feature may be advantageous for a bond joint PFC, which consists of the plasma 
facing material being bonded to the heat sink, since the thermal mismatch stresses resulting 
from this material joining can be reduced. Permanent dimensional change by plastic 
ratcheting can be effectively suppressed. In addition, the FRMMCs can be introduced locally 
into the highly loaded regions of the PFCs. 
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A three dimensional model of the divertor is shown in Figure A.7. Due to erosion of the 
vertical target in the strike point region the divertor is considered a consumable. The divertor 
must therefore be possible to be replaced and upgraded in a relatively short time frame during 
the life of thermonuclear reactors. For this reason the ITER divertor is segmented into 60 
cassettes which are introduced into the vessel through four remote maintenance posts [6]. The 
main parts of divertor is composed of cassettes bodies (CBs), inboard vertical target (IVT), 
outboard vertical target (OVT), dome, and liner.  
 

 

 
Figure A.8 shows a 600 mm medium scale vertical target prototype produced as part of the 
divertor large project. Tungsten tiles are mounted on the curved part whereas carbon is used 
on the flat region which would receive the higher heat flux. The material of heat sink was DS-
Cu. This prototype was tested in the range of 10-20 MW/m2 for more than 2000 cycles 
[5,138].  
 

 

 

Figure A.7. Picture of the divertor of three dimensional model: the PFCs attachments 
and the cooling manifolds. 

Figure A.8. CfC monoblock and W brush armored vertical target medium scale 
prototype manufactured by Plansee GmbH (EU). 



Appendix B. CMat3D: Fortran Code for C-Matrix 
 
C========================================================================== 
C     PROGRAM : CMat3D 
C========================================================================== 
 
      IMPLICIT REAL*8(A-H,O-Z) 
      DIMENSION X(2547),Y(2547),Z(2547),IJK(10000), 
     1          NDFIX(2,1500) 
      DATA LR,LL,LW,NDF,NODE,INTXY/123,124,125,3,8,8/ 
      OPEN(UNIT=LR,FILE='input-la20.dat',STATUS='OLD')      
      OPEN(UNIT=LL,FILE='CMATRIX-la20.dat',status='unknown') 
      OPEN(UNIT=LW,FILE='OUTPUT-la20.dat',status='unknown') 
C     (READ THE FINITE ELEMENT MESH) 
      NX=0 
      NELX=0 
      CALL HRMESH(NX,NELX,NODE,X,Y,Z,IJK,LR,LW) 
C     (SET THE TOTAL NUMBER OF DEGREES OF FREEDOM) 
      NEQ=NDF*NX 
      CALL RBOUN1(NDFIX,VFIXED,SPRIN1,NDF,LFIX,LR,LW) 
      CALL ASSEMC(IJK,X,Y,Z,NX,NELX,NEQ,NODE,NDF,LR,NDFIX,LFIX,LL,LW) 
      STOP 
      END 
 
C------------------------------------------------------------------- 
      SUBROUTINE HRMESH(NX,NELX,NODE,X,Y,Z,IJK,LR,LW) 
C------------------------------------------------------------------- 
 
      IMPLICIT REAL*8(A-H,O-Z) 
      DIMENSION X(1),Y(1),Z(1),IJK(1),FLAG(10),IJKD(8) 
      WRITE(LW,606) 
  606 FORMAT(//10X,'----------- MODIFICATION/ADDITION OF NODES', 
     1       ' AND ELEMENT CONNECTIVITIES -----------',//,10X, 
     2       '< COORDINATES OF NODES >',/) 
  598 FORMAT(10A8) 
      READ(LR,*) NODADD,NELADD 
  500 FORMAT(16I5)         
      DO 106 I=1,NODADD 
   READ(LR,*) N,X(N),Y(N),Z(N)    
  502    FORMAT(I5,2F10.4) 
         IF(N.GT.NX) NX=NX+1 
   WRITE(LW,600) N,X(N),Y(N),Z(N),NX 
  600    FORMAT(15X,'NODE ',I4,5X,'( ',3F12.4,' )',5X,'NEW NX = ',I5) 
  106 CONTINUE 
      WRITE(LW,604) 
  604 FORMAT(//10X,'< ELEMENT CONNECTIVITIES >',/) 
      DO 100 I=1,NELADD 
   READ(LR,*) NEL,MPE,(IJKD(J),J=1,NODE)    !!!!!!!!!! 
   DO 102 J=1,NODE 
  102    IJK(NODE*(NEL-1)+J)=IJKD(J) 
  504    FORMAT(16I5) 
         IF(NEL.GT.NELX) NELX=NELX+1 
   WRITE(LW,602) NEL,(IJKD(J),J=1,NODE) 
  602    FORMAT(15X,'NEL ',I5,5X,'<IJK>',20I5) 
  100 CONTINUE 
      RETURN 
      END 
 
C--------------------------------------------------------------------- 
      SUBROUTINE RBOUN1(NDFIX,VFIXED,SPRING,NDF,LFIX,LR,LW) 
C--------------------------------------------------------------------- 
 
      IMPLICIT REAL*8(A-H,O-Z) 
      DIMENSION FLAG(10),NDFIX(2,1),VFIXED(3,1) 
      READ(LR,500) (FLAG(I),I=1,10) 
  500 FORMAT(10A8) 
      READ(LR,*) LFIX,SPRING  
  502 FORMAT(I5,F20.5) 
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      DO 100 I=1,LFIX 
   READ(LR,*) (NDFIX(J,I),J=1,2) 
  100 CONTINUE 
      WRITE(LW,600) SPRING 
  600 FORMAT(/////10X,'-------- 1-ST BOUNDARY CONDITION --------',// 
     1       15X,'SPRING CONSTANT = ',E10.3,//10X,50('-'),/10X, 
     2       ' NODE I  KIND I         VALUE',/10X,50('-')) 
 DO 102 I=1,LFIX 
  102 WRITE(LW,602) (NDFIX(J,I),J=1,2) 
  602 FORMAT(10X,I5,' I ',I5,' I ',3E10.3) 
      WRITE(LW,604) 
  604 FORMAT(10X,50('-')) 
      RETURN 
      END 
 
C--------------------------------------------------------------------- 
      SUBROUTINE ASSEMC(IJK,X,Y,Z,NX,NELX,NEQ,NODE,NDF,LR,NDFIX, 
     1                  LFIX,LL,LW) 
C--------------------------------------------------------------------- 
 
      IMPLICIT REAL*8(A-H,O-Z) 
      DIMENSION SC(10000,5000),NDFIX(2,1),X(1),Y(1),Z(1),IJK(1),SCE(8,24,6) 
C     (CONSTUCT THE GLOBAL C MATRIX) 
      DO 100 NEL=1,NELX  
         CALL ESTIFC(NEL,SCE,IJK,X,Y,Z,NODE,NDF,LW) 
         DO 200 IAA=1,8   ! NO. OF GAUSS POINT 
      DO IA=1,NODE    ! NODE=8  
         IJKIA=IJK(NODE*(NEL-1)+IA) 
         DO I=1,NDF   ! NDF=3 
            NIAI=NDF*(IJKIA-1)+I 
              SC(NIAI,6*NEL-5)=SCE(IAA,NDF*(IA-1)+I,1) 
            SC(NIAI,6*NEL-4)=SCE(IAA,NDF*(IA-1)+I,2) 
            SC(NIAI,6*NEL-3)=SCE(IAA,NDF*(IA-1)+I,3) 
            SC(NIAI,6*NEL-2)=SCE(IAA,NDF*(IA-1)+I,4) 
            SC(NIAI,6*NEL-1)=SCE(IAA,NDF*(IA-1)+I,5) 
            SC(NIAI,6*NEL)  =SCE(IAA,NDF*(IA-1)+I,6) 
          ENDDO 
      ENDDO 
 
C     APPLY KINEMATIC BOUNDARY CONDITION 
             DO 1100 KJI=1,LFIX 
                NNODE=NDFIX(1,KJI) 
           NFIX2=NDFIX(2,KJI) 
                DO 1100 JJ=1,NDF 
              IF(NFIX2.LT.10**(NDF-JJ)) GOTO 1100 
                NC=NDF*(NNODE-1)+JJ 
              DO KEL=1,6*NELX 
                 SC(NC,KEL)=0. 
                  ENDDO 
          NFIX2=NFIX2-10**(NDF-JJ) 
 1100        CONTINUE 
 DO JJJ=1,NDF*NX    ! TOTAL NODE * NDF(3) 
    DO KKK=1,6*NELX ! TOTAL ELEM * STRESS DIM.(X-,Y-,Z-,XY-,YZ-,ZX-) 
       IF(SC(JJJ,KKK)) 1101,1102,1101 
 1101         KKKK=(6*NELX)*(IAA-1)+KKK 
      IF(JJJ.LT.10) THEN 
        IF(KKKK.LT.10) THEN 
      WRITE(LL,211) JJJ,KKKK,SC(JJJ,KKK) 
        ELSEIF(KKKK.LT.100) THEN 
      WRITE(LL,212) JJJ,KKKK,SC(JJJ,KKK) 
        ELSEIF(KKKK.LT.1000) THEN 
      WRITE(LL,213) JJJ,KKKK,SC(JJJ,KKK) 
        ELSEIF(KKKK.LT.10000) THEN 
      WRITE(LL,214) JJJ,KKKK,SC(JJJ,KKK) 
        ELSE 
      WRITE(LL,215) JJJ,KKKK,SC(JJJ,KKK) 
        ENDIF 
 GOTO 1102 
  
      ELSEIF(JJJ.LT.100) THEN 
        IF(KKKK.LT.10) THEN 
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      WRITE(LL,221) JJJ,KKKK,SC(JJJ,KKK) 
        ELSEIF(KKKK.LT.100) THEN 
      WRITE(LL,222) JJJ,KKKK,SC(JJJ,KKK) 
        ELSEIF(KKKK.LT.1000) THEN 
      WRITE(LL,223) JJJ,KKKK,SC(JJJ,KKK) 
        ELSEIF(KKKK.LT.10000) THEN 
      WRITE(LL,224) JJJ,KKKK,SC(JJJ,KKK) 
        ELSE 
      WRITE(LL,225) JJJ,KKKK,SC(JJJ,KKK) 
        ENDIF 
 GOTO 1102 
 
      ELSEIF(JJJ.LT.1000) THEN 
        IF(KKKK.LT.10) THEN 
      WRITE(LL,231) JJJ,KKKK,SC(JJJ,KKK) 
        ELSEIF(KKKK.LT.100) THEN 
      WRITE(LL,232) JJJ,KKKK,SC(JJJ,KKK) 
        ELSEIF(KKKK.LT.1000) THEN 
      WRITE(LL,233) JJJ,KKKK,SC(JJJ,KKK) 
        ELSEIF(KKKK.LT.10000) THEN 
      WRITE(LL,234) JJJ,KKKK,SC(JJJ,KKK) 
        ELSE 
      WRITE(LL,235) JJJ,KKKK,SC(JJJ,KKK) 
        ENDIF 
 GOTO 1102 
 
      ELSE 
        IF(KKKK.LT.10) THEN 
      WRITE(LL,241) JJJ,KKKK,SC(JJJ,KKK) 
        ELSEIF(KKKK.LT.100) THEN 
      WRITE(LL,242) JJJ,KKKK,SC(JJJ,KKK) 
        ELSEIF(KKKK.LT.1000) THEN 
      WRITE(LL,243) JJJ,KKKK,SC(JJJ,KKK) 
        ELSEIF(KKKK.LT.10000) THEN 
      WRITE(LL,244) JJJ,KKKK,SC(JJJ,KKK) 
        ELSE 
      WRITE(LL,245) JJJ,KKKK,SC(JJJ,KKK) 
        ENDIF 
 ENDIF 
 1102          CONTINUE 
            ENDDO 
         ENDDO 
  200 CONTINUE 
 DO IQ=1,NDF*NX 
    DO IEQ=1,6*NEL 
       SC(IQ,IEQ)=0. 
    ENDDO 
 ENDDO 
 
  100 CONTINUE 
  211 FORMAT(1X,'XE',1X,'z',I1,8X,'r',I1,8X,1X,E11.5) 
  212 FORMAT(1X,'XE',1X,'z',I1,8X,'r',I2,7X,1X,E11.5) 
  213 FORMAT(1X,'XE',1X,'z',I1,8X,'r',I3,6X,1X,E11.5) 
  214 FORMAT(1X,'XE',1X,'z',I1,8X,'r',I4,5X,1X,E11.5) 
  215 FORMAT(1X,'XE',1X,'z',I1,8X,'r',I5,4X,1X,E11.5) 
  221 FORMAT(1X,'XE',1X,'z',I2,7X,'r',I1,8X,1X,E11.5) 
  222 FORMAT(1X,'XE',1X,'z',I2,7X,'r',I2,7X,1X,E11.5) 
  223 FORMAT(1X,'XE',1X,'z',I2,7X,'r',I3,6X,1X,E11.5) 
  224 FORMAT(1X,'XE',1X,'z',I2,7X,'r',I4,5X,1X,E11.5) 
  225 FORMAT(1X,'XE',1X,'z',I2,7X,'r',I5,4X,1X,E11.5) 
  231 FORMAT(1X,'XE',1X,'z',I3,6X,'r',I1,8X,1X,E11.5) 
  232 FORMAT(1X,'XE',1X,'z',I3,6X,'r',I2,7X,1X,E11.5) 
  233 FORMAT(1X,'XE',1X,'z',I3,6X,'r',I3,6X,1X,E11.5) 
  234 FORMAT(1X,'XE',1X,'z',I3,6X,'r',I4,5X,1X,E11.5) 
  235 FORMAT(1X,'XE',1X,'z',I3,6X,'r',I5,4X,1X,E11.5) 
  241 FORMAT(1X,'XE',1X,'z',I4,5X,'r',I1,8X,1X,E11.5) 
  242 FORMAT(1X,'XE',1X,'z',I4,5X,'r',I2,7X,1X,E11.5) 
  243 FORMAT(1X,'XE',1X,'z',I4,5X,'r',I3,6X,1X,E11.5) 
  244 FORMAT(1X,'XE',1X,'z',I4,5X,'r',I4,5X,1X,E11.5) 
  245 FORMAT(1X,'XE',1X,'z',I4,5X,'r',I5,4X,1X,E11.5) 
      RETURN 
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      END 
 
C--------------------------------------------------------------------- 
      SUBROUTINE ESTIFC(NEL,SCE,IJK,X,Y,Z,NODE,NDF,LW) 
C--------------------------------------------------------------------- 
 
      IMPLICIT REAL*8(A-H,O-Z) 
C     SCE(I,J,K) : TRANSPOSE SHAPE OF [B]*WX*WY*DET 
C                  I : GAUSS POINT 
C                  J : X-,Y- DIRECTION AT EACH NODE AT ELEMENT 
C                  K : NO. OF STRESS DIRECTION (X-,Y-,XY-) 
 
 DIMENSION SCE(8,24,6),XE(8,NDF),D(3,3,3,3),SH(8),GDN(8,NDF) 
 DIMENSION X(1),Y(1),Z(1),IJK(1) 
 DIMENSION GX(8),GY(8),GZ(8) 
 
C     (SET THE INTEGRATION POINTS AND WEIGHTS) 
      DATA GX/-0.577350269189626, 0.577350269189626, 
     1         0.577350269189626,-0.577350269189626, 
     2        -0.577350269189626, 0.577350269189626, 
     3         0.577350269189626,-0.577350269189626/         
      DATA GY/-0.577350269189626,-0.577350269189626, 
     1         0.577350269189626, 0.577350269189626, 
     2        -0.577350269189626,-0.577350269189626, 
     3         0.577350269189626, 0.577350269189626/         
      DATA GZ/-0.577350269189626,-0.577350269189626, 
     1        -0.577350269189626,-0.577350269189626, 
     2         0.577350269189626, 0.577350269189626, 
     3         0.577350269189626, 0.577350269189626/   
      DATA GW/1./       
      DATA ITX,ITY,ITZ/2,2,2/ 
 
C     (COORDINATES) 
      DO 102 I=1,NODE 
    II=IJK(NODE*(NEL-1)+I) 
      WRITE(LW,*) NEL,I,II,X(II),Y(II),Z(II) 
    XE(I,1)=X(II) 
    XE(I,2)=Y(II) 
  102    XE(I,3)=Z(II) 
      NODNDF=NDF*NODE 
      DO 100 KKK=1,NODE 
    XL=GX(KKK) 
    WX=GW 
    YL=GY(KKK) 
    WY=GW 
    ZL=GZ(KKK) 
    WZ=GW 
 
            CALL GGRAD8(NEL,XL,YL,ZL,SH,DET,GDN,XE,LW) 
C     (COORDINATES OF THE INTEGRATION POINT) 
            XIT=0. 
      YIT=0. 
      ZIT=0. 
      DO 230 I=1,NODE 
         XIT=XIT+XE(I,1)*SH(I) 
               YIT=YIT+XE(I,2)*SH(I) 
  230          ZIT=ZIT+XE(I,3)*SH(I) 
      WRITE(LW,119)NEL,KKK,XIT,YIT,ZIT 
  119 FORMAT(2I5,3F11.4) 
 
C     (RESDUAL STRESS - C ELEMENT MATRIX) 
      DO 108 IA=1,NODE 
      GDN(IA,1)=GDN(IA,1)*WX*WY*WZ*DET 
      GDN(IA,2)=GDN(IA,2)*WX*WY*WZ*DET 
      GDN(IA,3)=GDN(IA,3)*WX*WY*WZ*DET 
      SCE(KKK,3*IA-2,1)=GDN(IA,1) 
      SCE(KKK,3*IA-2,2)=0. 
      SCE(KKK,3*IA-2,3)=0. 
      SCE(KKK,3*IA-2,4)=GDN(IA,2) 
      SCE(KKK,3*IA-2,5)=0. 
      SCE(KKK,3*IA-2,6)=GDN(IA,3) 
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      SCE(KKK,3*IA-1,1)=0. 
      SCE(KKK,3*IA-1,2)=GDN(IA,2) 
      SCE(KKK,3*IA-1,3)=0. 
      SCE(KKK,3*IA-1,4)=GDN(IA,1) 
      SCE(KKK,3*IA-1,5)=GDN(IA,3) 
      SCE(KKK,3*IA-1,6)=0. 
      SCE(KKK,3*IA,1)  =0. 
      SCE(KKK,3*IA,2)  =0. 
      SCE(KKK,3*IA,3)  =GDN(IA,3) 
      SCE(KKK,3*IA,4)  =0. 
      SCE(KKK,3*IA,5)  =GDN(IA,2) 
      SCE(KKK,3*IA,6)  =GDN(IA,1) 
  108 CONTINUE 
  100 CONTINUE 
      RETURN 
      END 
 
C---------------------------------------------------------------------- 
      SUBROUTINE GGRAD8(NEL,XL,YL,ZL,SH,DET,GDN,XE,LW) 
C---------------------------------------------------------------------- 
 
      IMPLICIT REAL*8(A-H,O-Z) 
      DIMENSION SH(8),GDN(8,3),DN(8,3),DJ(3,3),XE(8,3)  
C     (SET THE SHAPE FUNCTIONS FOR THE 20-NODE ELEMENT) 
      SH(1)=0.125*(1.-XL)*(1.-YL)*(1.-ZL) 
      SH(5)=0.125*(1.-XL)*(1.-YL)*(1.+ZL) 
      SH(4)=0.125*(1.-XL)*(1.+YL)*(1.-ZL) 
      SH(8)=0.125*(1.-XL)*(1.+YL)*(1.+ZL) 
      SH(2)=0.125*(1.+XL)*(1.-YL)*(1.-ZL) 
      SH(6)=0.125*(1.+XL)*(1.-YL)*(1.+ZL) 
      SH(3)=0.125*(1.+XL)*(1.+YL)*(1.-ZL) 
      SH(7)=0.125*(1.+XL)*(1.+YL)*(1.+ZL) 
 
      DN(1,1)=-0.125*(1.-YL)*(1.-ZL) 
      DN(5,1)=-0.125*(1.-YL)*(1.+ZL) 
      DN(4,1)=-0.125*(1.+YL)*(1.-ZL) 
      DN(8,1)=-0.125*(1.+YL)*(1.+ZL) 
      DN(2,1)= 0.125*(1.-YL)*(1.-ZL) 
      DN(6,1)= 0.125*(1.-YL)*(1.+ZL) 
      DN(3,1)= 0.125*(1.+YL)*(1.-ZL) 
      DN(7,1)= 0.125*(1.+YL)*(1.+ZL) 
 
      DN(1,2)=-0.125*(1.-XL)*(1.-ZL) 
      DN(5,2)=-0.125*(1.-XL)*(1.+ZL) 
      DN(4,2)= 0.125*(1.-XL)*(1.-ZL) 
      DN(8,2)= 0.125*(1.-XL)*(1.+ZL) 
      DN(2,2)=-0.125*(1.+XL)*(1.-ZL) 
      DN(6,2)=-0.125*(1.+XL)*(1.+ZL) 
      DN(3,2)= 0.125*(1.+XL)*(1.-ZL) 
      DN(7,2)= 0.125*(1.+XL)*(1.+ZL) 
 
      DN(1,3)=-0.125*(1.-XL)*(1.-YL) 
      DN(5,3)= 0.125*(1.-XL)*(1.-YL) 
      DN(4,3)=-0.125*(1.-XL)*(1.+YL) 
      DN(8,3)= 0.125*(1.-XL)*(1.+YL) 
      DN(2,3)=-0.125*(1.+XL)*(1.-YL) 
      DN(6,3)= 0.125*(1.+XL)*(1.-YL) 
      DN(3,3)=-0.125*(1.+XL)*(1.+YL) 
      DN(7,3)= 0.125*(1.+XL)*(1.+YL) 
 
C     (COMPUTE THE JACBIAN MATRIX) 
      DO 200 I=1,3 
    DO 200 J=1,3 
       DJIJ=0. 
       DO 202 IA=1,8 
  202       DJIJ=DJIJ+XE(IA,J)*DN(IA,I)        
  200          DJ(I,J)=DJIJ 
 
C     DETERMINANT OF DJ(I,J) 
      DET=DJ(1,1)*DJ(2,2)*DJ(3,3)+DJ(1,2)*DJ(2,3)*DJ(3,1) 
     1   +DJ(1,3)*DJ(2,1)*DJ(3,2)-DJ(1,1)*DJ(2,3)*DJ(3,2) 
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     2   -DJ(1,2)*DJ(2,1)*DJ(3,3)-DJ(1,3)*DJ(2,2)*DJ(3,1) 
      WRITE(125,*) 'DET',DET 
      IF(DET.LE.0.) GOTO 110 
 
C     INVERSE MATRIX OF DJ(I,J) 
      CALL INVERSE(DJ) 
C     (GLOBAL GRADIENT OF THE SHAPE FUNCTIONS) 
      DO 204 IA=1,8 
      GDN(IA,1)=DJ(1,1)*DN(IA,1)+DJ(1,2)*DN(IA,2)+DJ(1,3)*DN(IA,3) 
      GDN(IA,2)=DJ(2,1)*DN(IA,1)+DJ(2,2)*DN(IA,2)+DJ(2,3)*DN(IA,3) 
  204 GDN(IA,3)=DJ(3,1)*DN(IA,1)+DJ(3,2)*DN(IA,2)+DJ(3,3)*DN(IA,3) 
      RETURN 
  110 WRITE(LW,600) NEL,XL,YL,ZL 
  600 FORMAT(/////2X,'STOP STOP ! THE DETERMINANT BECOMES ZERO',/ 
     1       /10X,'ELEMENT  ',I4,5X,'(',3F10.4,')') 
 STOP 
 END 
 
C------------------------------------------------------------------ 
      SUBROUTINE INVERSE(DJ) 
C---------------------------------------------------------------------- 
 
      IMPLICIT REAL*8(A-H,O-Z) 
 DIMENSION DJ(3,3),Y(3,3),INDX(3) 
 DO I=1,3 
    DO J=1,3 
       Y(I,J)=0. 
    ENDDO 
    Y(I,I)=1. 
 ENDDO 
 
 CALL LUDCMP(DJ,3,3,INDX,D) 
 DO J=1,3 
    CALL LUBKSB(DJ,3,3,INDX,Y(1,J)) 
 ENDDO 
 DO I=1,3 
      DO J=1,3 
       DJ(I,J)=Y(I,J) 
    ENDDO 
 ENDDO 
      RETURN 
 END              
 
C------------------------------------------------------------------ 
      SUBROUTINE LUDCMP(A,N,NP,INDX,D) 
C---------------------------------------------------------------------- 
 
      IMPLICIT REAL*8(A-H,O-Z) 
      DIMENSION A(3,3),INDX(3),VV(3) 
      PARAMETER (NMAX=500, TINY=1.0E-20) 
 D=1. 
 DO I=1,N 
    AAMAX=0. 
    DO J=1,N 
       IF(ABS(A(I,J)).GT.AAMAX) AAMAX=ABS(A(I,J)) 
    ENDDO 
    VV(I)=1./AAMAX 
 ENDDO 
 
 DO J=1,N 
    DO I=1,J-1 
       SUM=A(I,J) 
       DO K=1,I-1 
          SUM=SUM-A(I,K)*A(K,J) 
       ENDDO 
       A(I,J)=SUM 
    ENDDO 
    AAMAX=0. 
    DO I=J,N 
       SUM=A(I,J) 
       DO K=1,J-1 
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          SUM=SUM-A(I,K)*A(K,J) 
       ENDDO 
       A(I,J)=SUM 
       DUM=VV(I)*ABS(SUM) 
       IF (DUM.GE.AAMAX) THEN 
          IMAX=I 
          AAMAX=DUM 
       ENDIF 
    ENDDO 
    IF(J.NE.IMAX) THEN 
      DO K=1,N 
         DUM=A(IMAX,K) 
         A(IMAX,K)=A(J,K) 
         A(J,K)=DUM 
      ENDDO 
      D=-D 
      VV(IMAX)=VV(J) 
    ENDIF 
    INDX(J)=IMAX 
    IF(A(J,J).EQ.0.) A(J,J)=TINY 
    IF(J.NE.N) THEN 
      DUM=1./A(J,J) 
      DO I=J+1,N 
         A(I,J)=A(I,J)*DUM 
      ENDDO 
    ENDIF 
 ENDDO 
 RETURN 
 END 
 
C------------------------------------------------------------------ 
      SUBROUTINE LUBKSB(A,N,NP,INDX,B) 
C---------------------------------------------------------------------- 
 
      IMPLICIT REAL*8(A-H,O-Z) 
      DIMENSION A(3,3),B(3),INDX(3) 
      II=0 
 DO I=1,N 
    LL=INDX(I) 
    SUM=B(LL) 
    B(LL)=B(I) 
    IF(II.NE.0) THEN 
      DO J=II,I-1 
         SUM=SUM-A(I,J)*B(J) 
      ENDDO 
    ELSEIF(SUM.NE.0) THEN 
      II=I 
    ENDIF 
    B(I)=SUM 
 ENDDO 
 DO I=N,1,-1 
    SUM=B(I) 
    DO J=I+1,N 
       SUM=SUM-A(I,J)*B(J) 
    ENDDO 
    B(I)=SUM/A(I,I) 
 ENDDO 
 RETURN 
 END 
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* model with two quadrilateral elements (six nodes) 
* two-independent loading > four loading corners (s,x,y,j) 
 
* code explanation  
* DO: Do command (same with Fotran) 
* EV: Elemental Variable 
* EP: Elemental Parameter 
* FR: Bounds section  
* IA: Integer type and + operator 
* IE: Integer type and = operator 
* IM: Integer type and × operator 
* I-: Integer type and - operator 
* OD: Termination of Do command (same with enddo in Fortran) 
* RD: Real type and / operator 
* RE: Real type and = operator 
* RM: Real type and × operator 
* R-: Real type and - operator 
* X : Code for definition of parameter  
* XE: Constraint (≤ constant) 
* XL: Bounded below by the value (Lower) 
* XN: Objective function 
* XP: Unbounded above (Plus infinity) 
* XT: an Array of group and  
* XV: an Array of group and Variable 
* ZE: an Array of group and = opertor 
* ZP: an Array of group and Paramater  
* ZV: an Array of group and Variable 
 
 
 
NAME          shake    
 
* main variables 
 
 IE NGAUSS              8          
 IM NG*3      NGAUSS    3 
 IE 1                   1 
 RE Null                0.0d0 
 
* ELASTIC STRESSES   STEP 1 (SigX=100, SigY=100) 
 
RE s1                   0.10000E+03 
 RE s2                   0.10000E+03 
 RE s3                   0.00000E+00 
 RE s7                   0.10000E+03 
 RE s8                   0.10000E+03 
 RE s9                   0.00000E+00 
 RE s13                  0.10000E+03 
 RE s14                  0.10000E+03 
 RE s15                  0.00000E+00 
 RE s19                  0.10000E+03 
 RE s20                  0.10000E+03 
 RE s21                  0.00000E+00 
 RE s4                   0.10000E+03 
 RE s5                   0.10000E+03 
 RE s6                   0.00000E+00 
 RE s10                  0.10000E+03 
 RE s11                  0.10000E+03 
 RE s12                  0.00000E+00 
 RE s16                  0.10000E+03 
 RE s17                  0.10000E+03 
 RE s18                  0.00000E+00 
 RE s22                  0.10000E+03 
 RE s23                  0.10000E+03 
 RE s24                  0.00000E+00 
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* ELASTIC STRESSES   STEP 2 (SigX=100, SigY=0) 
 
 RE x1                   0.10000E+03 
 RE x2                   0.00000E+00 
 RE x3                   0.00000E+00 
 RE x7                   0.10000E+03 
 RE x8                   0.00000E+00 
 RE x9                   0.00000E+00 
 RE x13                  0.10000E+03 
 RE x14                  0.00000E+00 
 RE x15                  0.00000E+00 
 RE x19                  0.10000E+03 
 RE x20                  0.00000E+00 
 RE x21                  0.00000E+00 
 RE x4                   0.10000E+03 
 RE x5                   0.00000E+00 
 RE x6                   0.00000E+00 
 RE x10                  0.10000E+03 
 RE x11                  0.00000E+00 
 RE x12                  0.00000E+00 
 RE x16                  0.10000E+03 
 RE x17                  0.00000E+00 
 RE x18                  0.00000E+00 
 RE x22                  0.10000E+03 
 RE x23                  0.00000E+00 
 RE x24                  0.00000E+00 
 
* ELASTIC STRESSES   STEP 3 (SigX=0, SigY=100) 
 
 RE y1                   0.00000E+00 
 RE y2                   0.10000E+03 
 RE y3                   0.00000E+00 
 RE y7                   0.00000E+00 
 RE y8                   0.10000E+03 
 RE y9                   0.00000E+00 
 RE y13                  0.00000E+00 
 RE y14                  0.10000E+03 
 RE y15                  0.00000E+00 
 RE y19                  0.00000E+00 
 RE y20                  0.10000E+03 
 RE y21                  0.00000E+00 
 RE y4                   0.00000E+00 
 RE y5                   0.10000E+03 
 RE y6                   0.00000E+00 
 RE y10                  0.00000E+00 
 RE y11                  0.10000E+03 
 RE y12                  0.00000E+00 
 RE y16                  0.00000E+00 
 RE y17                  0.10000E+03 
 RE y18                  0.00000E+00 
 RE y22                  0.00000E+00 
 RE y23                  0.10000E+03 
 RE y24                  0.00000E+00 
 
* ELASTIC STRESSES   STEP 4 (SigX=0, SigY=0) 
 
 RE j1                   0.00000E+00 
 RE j2                   0.00000E+00 
 RE j3                   0.00000E+00 
 RE j7                   0.00000E+00 
 RE j8                   0.00000E+00 
 RE j9                   0.00000E+00 
 RE j13                  0.00000E+00 
 RE j14                  0.00000E+00 
 RE j15                  0.00000E+00 
 RE j19                  0.00000E+00 
 RE j20                  0.00000E+00 
 RE j21                  0.00000E+00 
 RE j4                   0.00000E+00 
 RE j5                   0.00000E+00 
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 RE j6                   0.00000E+00 
 RE j10                  0.00000E+00 
 RE j11                  0.00000E+00 
 RE j12                  0.00000E+00 
 RE j16                  0.00000E+00 
 RE j17                  0.00000E+00 
 RE j18                  0.00000E+00 
 RE j22                  0.00000E+00 
 RE j23                  0.00000E+00 
 RE j24                  0.00000E+00 
 
* YIELD STRESS 
 
 RE SY                   280 
 R* SYQ       SY                       SY 
 RD 1/SYQ     SYQ        1.0 
 RM 3/SYQ     1/SYQ      3.0 
 RM M/SYQ     1/SYQ      -1.0 
 
VARIABLES 
 
    alpha 
 DO i         1                        NG*3 
 X  r(i) 
 OD i 
 
GROUPS 
 
* Object function: F = alpha 
 XN max       alpha     -1.0 
 
* Inequalities by yield-functions 
 
 DO i         1                        NGAUSS 
 XL a(i) 
 OD i 
 DO i         1                        NGAUSS 
 XL c(i) 
 OD i 
 DO i         1                        NGAUSS 
 XL d(i) 
 OD i 
 DO i         1                        NGAUSS 
 XL e(i) 
 OD i 
 
* CONTRAINTS BY THE C-MATRIX 
 
 XE z3        r1         0.19717E+00 
 XE z3        r3         -.52831E-01 
 XE z3        r4         -.19717E+00 
 XE z3        r6         -.19717E+00 
 XE z3        r7         0.52831E-01 
 XE z3        r9         -.52831E-01 
 XE z3        r10        -.52831E-01 
 XE z3        r12        -.19717E+00 
 XE z3        r13        0.19717E+00 
 XE z3        r15        -.19717E+00 
 XE z3        r16        -.19717E+00 
 XE z3        r18        -.52831E-01 
 XE z3        r19        0.52831E-01 
 XE z3        r21        -.19717E+00 
 XE z3        r22        -.52831E-01 
 XE z3        r24        -.52831E-01 
 XE z5        r4         0.19717E+00 
 XE z5        r6         -.52831E-01 
 XE z5        r10        0.52831E-01 
 XE z5        r12        -.52831E-01 
 XE z5        r16        0.19717E+00 
 XE z5        r18        -.19717E+00 
 XE z5        r22        0.52831E-01 
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 XE z5        r24        -.19717E+00 
 XE z8        r2         0.19717E+00 
 XE z8        r3         -.52831E-01 
 XE z8        r8         0.19717E+00 
 XE z8        r9         -.19717E+00 
 XE z8        r14        0.52831E-01 
 XE z8        r15        -.52831E-01 
 XE z8        r20        0.52831E-01 
 XE z8        r21        -.19717E+00 
 XE z9        r1         0.52831E-01 
 XE z9        r3         0.52831E-01 
 XE z9        r4         -.52831E-01 
 XE z9        r6         0.19717E+00 
 XE z9        r7         0.19717E+00 
 XE z9        r9         0.52831E-01 
 XE z9        r10        -.19717E+00 
 XE z9        r12        0.19717E+00 
 XE z9        r13        0.52831E-01 
 XE z9        r15        0.19717E+00 
 XE z9        r16        -.52831E-01 
 XE z9        r18        0.52831E-01 
 XE z9        r19        0.19717E+00 
 XE z9        r21        0.19717E+00 
 XE z9        r22        -.19717E+00 
 XE z9        r24        0.52831E-01 
 XE z10       r2         0.52831E-01 
 XE z10       r3         0.52831E-01 
 XE z10       r5         0.19717E+00 
 XE z10       r6         -.52831E-01 
 XE z10       r8         0.52831E-01 
 XE z10       r9         0.19717E+00 
 XE z10       r11        0.19717E+00 
 XE z10       r12        -.19717E+00 
 XE z10       r14        0.19717E+00 
 XE z10       r15        0.52831E-01 
 XE z10       r17        0.52831E-01 
 XE z10       r18        -.52831E-01 
 XE z10       r20        0.19717E+00 
 XE z10       r21        0.19717E+00 
 XE z10       r23        0.52831E-01 
 XE z10       r24        -.19717E+00 
 XE z11       r4         0.52831E-01 
 XE z11       r6         0.52831E-01 
 XE z11       r10        0.19717E+00 
 XE z11       r12        0.52831E-01 
 XE z11       r16        0.52831E-01 
 XE z11       r18        0.19717E+00 
 XE z11       r22        0.19717E+00 
 XE z11       r24        0.19717E+00 
 XE z12       r5         0.52831E-01 
 XE z12       r6         0.52831E-01 
 XE z12       r11        0.52831E-01 
 XE z12       r12        0.19717E+00 
 XE z12       r17        0.19717E+00 
 XE z12       r18        0.52831E-01 
 XE z12       r23        0.19717E+00 
 XE z12       r24        0.19717E+00 
 
CONSTANTS 
 
* Right hand side of the inequalities 
 DO i         1                        NGAUSS 
 X  shake     a(i)       1. 
 OD i 
 DO i         1                        NGAUSS 
 X  shake     c(i)       1. 
 OD i 
 DO i         1                        NGAUSS 
 X  shake     d(i)       1. 
 OD i 
 DO i         1                        NGAUSS 
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 X  shake     e(i)       1. 
 OD i 
 
BOUNDS 
 
* The residual stresses are free while alpha is limited with alpha > 0 
 FR shake     'DEFAULT' 
 XL shake     alpha     0.0 
 
START POINT 
 
* Initial estimation, Give elastic solution at the beginning 
 XV shake     alpha       .48342E+00 
 
ELEMENT TYPE 
 
 EV GSQ       al 
 EV GSQ       rho1 
 EV GSQ       rho2 
 EP GSQ       sig1 
 EP GSQ       sig2 
 EV HSQ       al 
 EV HSQ       rho1 
 EV HSQ       rho2 
 EP HSQ       sig1 
 EP HSQ       sig2 
 
* Non linear element containing shear stresses 
 
 EV SSQ       al 
 EV SSQ       rho 
 EP SSQ       a 
 EP SSQ       b 
 EP SSQ       tau 
 
ELEMENT USES 
 
* Define for each Gaussian-Point three nonlinear  elements 
 
 DO i         1                        NGAUSS 
 
 I- i-1       i                        1 
 IM 3[i-1]    i-1       3 
 IA pos1      3[i-1]    1 
 IA pos2      3[i-1]    2 
 IA pos3      3[i-1]    3 
 
 XT t(pos1)   HSQ 
 ZV t(pos1)   al                       alpha 
 ZV t(pos1)   rho1                     r(pos1) 
 ZV t(pos1)   rho2                     r(pos2) 
 ZP t(pos1)   sig1                     s(pos1) 
 ZP t(pos1)   sig2                     s(pos2) 
 
 XT t(pos2)   GSQ 
 ZV t(pos2)   al                       alpha 
 ZV t(pos2)   rho1                     r(pos1) 
 ZV t(pos2)   rho2                     r(pos2) 
 ZP t(pos2)   sig1                     s(pos1) 
 ZP t(pos2)   sig2                     s(pos2) 
 
 XT t(pos3)   SSQ 
 ZV t(pos3)   al                       alpha 
 ZV t(pos3)   rho                      r(pos3) 
 ZP t(pos3)   tau                      s(pos3) 
 XP t(pos3)   a          0. 
 XP t(pos3)   b          0. 
 
 XT v(pos1)   HSQ 
 ZV v(pos1)   al                       alpha 
 ZV v(pos1)   rho1                     r(pos1) 
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 ZV v(pos1)   rho2                     r(pos2) 
 ZP v(pos1)   sig1                     x(pos1) 
 ZP v(pos1)   sig2                     x(pos2) 
 
 XT v(pos2)   GSQ 
 ZV v(pos2)   al                       alpha 
 ZV v(pos2)   rho1                     r(pos1) 
 ZV v(pos2)   rho2                     r(pos2) 
 ZP v(pos2)   sig1                     x(pos1) 
 ZP v(pos2)   sig2                     x(pos2) 
 
 XT v(pos3)   SSQ 
 ZV v(pos3)   al                       alpha 
 ZV v(pos3)   rho                      r(pos3) 
 ZP v(pos3)   tau                      x(pos3) 
 XP v(pos3)   a          0.0 
 XP v(pos3)   b          0.0 
  
 XT w(pos1)   HSQ 
 ZV w(pos1)   al                       alpha 
 ZV w(pos1)   rho1                     r(pos1) 
 ZV w(pos1)   rho2                     r(pos2) 
 ZP w(pos1)   sig1                     y(pos1) 
 ZP w(pos1)   sig2                     y(pos2) 
 
 XT w(pos2)   GSQ 
 ZV w(pos2)   al                       alpha 
 ZV w(pos2)   rho1                     r(pos1) 
 ZV w(pos2)   rho2                     r(pos2) 
 ZP w(pos2)   sig1                     y(pos1) 
 ZP w(pos2)   sig2                     y(pos2) 
 
 XT w(pos3)   SSQ 
 ZV w(pos3)   al                       alpha 
 ZV w(pos3)   rho                      r(pos3) 
 ZP w(pos3)   tau                      y(pos3) 
 XP w(pos3)   a          0.0 
 XP w(pos3)   b          0.0 
 
 XT n(pos1)   HSQ 
 ZV n(pos1)   al                       alpha 
 ZV n(pos1)   rho1                     r(pos1) 
 ZV n(pos1)   rho2                     r(pos2) 
 ZP n(pos1)   sig1                     j(pos1) 
 ZP n(pos1)   sig2                     j(pos2) 
 
 XT n(pos2)   GSQ 
 ZV n(pos2)   al                       alpha 
 ZV n(pos2)   rho1                     r(pos1) 
 ZV n(pos2)   rho2                     r(pos2) 
 ZP n(pos2)   sig1                     j(pos1) 
 ZP n(pos2)   sig2                     j(pos2) 
 
 XT n(pos3)   SSQ 
 ZV n(pos3)   al                       alpha 
 ZV n(pos3)   rho                      r(pos3) 
 ZP n(pos3)   tau                      j(pos3) 
 XP n(pos3)   a          0.0 
 XP n(pos3)   b          0.0 
 
 OD i 
 
GROUP USES 
 
* Combine the nonlinear elements to inequalities 
 
 DO i         1                        NGAUSS 
 I- i-1       i                        1 
 IM 3[i-1]    i-1       3 
 IA pos1      3[i-1]    1 
 IA pos2      3[i-1]    2 
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 IA pos3      3[i-1]    3 
 
 ZE a(i)      t(pos1)                  1/SYQ 
 ZE a(i)      t(pos2)                  M/SYQ 
 ZE a(i)      t(pos3)                  3/SYQ 
 ZE c(i)      v(pos1)                  1/SYQ 
 ZE c(i)      v(pos2)                  M/SYQ 
 ZE c(i)      v(pos3)                  3/SYQ 
 ZE d(i)      w(pos1)                  1/SYQ 
 ZE d(i)      w(pos2)                  M/SYQ 
 ZE d(i)      w(pos3)                  3/SYQ 
 ZE e(i)      n(pos1)                  1/SYQ 
 ZE e(i)      n(pos2)                  M/SYQ 
 ZE e(i)      n(pos3)                  3/SYQ 
 OD i 
 
ENDATA 
 
 
ELEMENTS      shake      
 
* code definition 
* A: the name of Auxiliary parameter 
* F: nonlinear element Function  
* G: Gradient of nonlinear element 
* H: Hessian matrix of the nonlinear element 
* R: Transformation between the elemental and internal variables 
* T: new element Type 
 
 
TEMPORARIES 
 R  Term1 
 R  Term2 
 R  Term3 
 R  Term4 
 R  Term5 
 R  Term6 
 
INDIVIDUALS 
 T  SSQ 
 A  Term1               tau*al+rho 
 A  Term2               Term1+Term1 
 A  Term3               2.0d0*tau 
 A  Term4               a+b*al 
 
 F                      Term1*Term1-Term4*Term4/3.0d0 
 G  al                  Term2*tau-2.0d0/3.0d0*b*Term4 
 G  rho                 Term2 
 H  al        al        Term3*tau-2.0d0/3.0d0*b*b 
 H  al        rho       Term3 
 H  rho       rho       2.0d0 
 T  GSQ 
 A  Term1               al*sig1+rho1 
 A  Term2               al*sig2+rho2 
 
 F                      Term1*Term2 
 G  al                  sig1*Term2+sig2*Term1 
 G  rho1                Term2 
 G  rho2                Term1 
 H  al        al        2.0d0*sig1*sig2 
 H  al        rho1      sig2 
 H  al        rho2      sig1 
 H  rho1      rho1      0.0d0 
 H  rho1      rho2      1.0d0 
 H  rho2      rho2      0.0d0 
 T  HSQ 
 A  Term1               al*sig1+rho1 
 A  Term2               al*sig2+rho2 
 
 F                      Term1*Term1+Term2*Term2 
 G  al                  2.0d0*Term1*sig1+2.0d0*Term2*sig2 
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 G  rho1                2.0d0*Term1 
 G  rho2                2.0d0*Term2 
 H  al        al        2.0d0*(sig1*sig1+sig2*sig2) 
 H  al        rho1      2.0d0*sig1 
 H  al        rho2      2.0d0*sig2 
 H  rho1      rho1      2.0d0 
 H  rho1      rho2      0.0d0 
 H  rho2      rho2      2.0d0 
 
ENDATA 
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Figure D.1. Elastic limits and shakedown limits of lamina with 20 % of fiber volume fraction in in-plane biaxial 
loading space (3D analysis): -10, -50, and -100 oC indicate the temperature decrease (cooling). 

Figure D.2. Elastic limits and shakedown limits of lamina with 40 % of fiber volume fraction in in-plane biaxial 
loading space (3D analysis): 10, -50, and -100 oC indicate the temperature decrease (cooling). 
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Figure D.3. Elastic limits and shakedown limits of lamina with 20 % of fiber volume fraction in out-of-plane 
biaxial loading space (3D analysis): 10, -50, and -100 oC indicate the temperature decrease (cooling).

Figure D.4. Elastic limits and shakedown limits of lamina with 40 % of fiber volume fraction in out-of-plane 
biaxial loading space (3D analysis): 10, -50, and -100 oC indicate the temperature decrease (cooling).
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Figure D.5. Elastic limits and shakedown limits of laminate with 20 % of fiber volume fraction in in-plane 
biaxial loading space (3D analysis): 10, -50, and -100 oC indicate the temperature decrease (cooling). 

Figure D.6. Elastic limits and shakedown limits of laminate with 40 % of fiber volume fraction in in-plane 
biaxial loading space (3D analysis): 10, -50, and -100 oC indicate the temperature decrease (cooling).
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Figure D.7. Elastic limits and shakedown limits of laminate with 20 % of fiber volume fraction in out-of-plane 
biaxial loading space (3D analysis): 10, -50, and -100 oC indicate the temperature decrease (cooling).

Figure D.8. Elastic limits and shakedown limits of laminate with 40 % of fiber volume fraction in out-of-plane 
biaxial loading space (3D analysis): 10, -50, and -100 oC indicate the temperature decrease (cooling).
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                                       (a)                                                                                           (b) 

                   
                                       (c)                                                                                           (d) 

                        
                                       (e)                                                                                           (f) 

Figure E.1. Shakedown limits and thermomechanical loading paths in two-dimensional loading space 
(Σx, Σy): Additional view from Figure 7.3. 
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                                         (a)                                                                                        (b) 

        
                                         (c)                                                                                        (d) 

    
                                         (e)                                                                                        (f) 

Figure E.2. Shakedown limits and thermomechanical loading paths in two-dimensional loading space 
(Σx, ∆T): Additional view from Figure 7.3. 
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                                         (a)                                                                                        (b) 

    
                                         (c)                                                                                        (d) 

   
                                         (e)                                                                                        (f) 

Figure E.3. Shakedown limits and thermomechanical loading paths in two-dimensional loading space 
(Σy, ∆T): Additional view from Figure 7.3. 
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                                       (a)                                                                                           (b) 
 

        
                                       (c)                                                                                           (d) 
 

            
                                       (e)                                                                                           (f) 

 

Figure E.4. Shakedown limits and thermomechanical loading paths in two-dimensional loading 
space (Σx, Σy): Additional view from Figure 7.4. 
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                                         (a)                                                                                         (b) 

    
                                         (c)                                                                                        (d) 

    
                                         (e)                                                                                        (f) 
 

Figure E.5. Shakedown limits and thermomechanical loading paths in two-dimensional loading 
space (Σx, ∆T): Additional view from Figure 7.4. 
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                                         (a)                                                                                        (b) 

   
                                         (c)                                                                                        (d) 

   
                                         (e)                                                                                        (f) 
 

Figure A.6 Shakedown limits and thermomechanical loading paths in two-dimensional loading 
space (Σy, ∆T): Additional view from Figure 7.4. 
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