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Abstract

The thalamus is the major gate to the cortex for almost all sensory sig-
nals, for input from various subcortical sources such as the cerebellum and
the mammillary bodies, and for reentrant cortical information. Thalamic
nuclei do not merely relay information to the cortex but perform some op-
eration on it while being modulated by various transmitter systems and in
continuous interplay with their cortical target areas. Indeed, cortical feed-
back to the thalamus is the anatomically dominant input to relay cells even
in those thalamic nuclei that are directly driven by sensory systems. While
it is well-established that the receptive fields of cortical neurons are strongly
influenced by convergent thalamic inputs of different types, the modulation
effected by cortical feedback in thalamic response has been difficult to inter-
pret. Experiments and theoretical considerations have pointed to a variety
of operations of the visual cortex on the visual thalamus, the lateral genic-
ulate nucleus (LGN), such as control of binocular disparity for stereopsis
(Schmielau & Singer, 1977), attention-related gating of relay cells (Sherman
& Koch, 1986), gain control of relay cells (Koch, 1987), synchronizing firing
of neighboring relay cells (Sillito et al., 1994; Singer, 1994), increasing visual
information in relay cells’ output (McClurkin et al., 1994), and switching
relay cells from a detection to an analyzing mode (Godwin et al., 1996; Sher-
man, 1996; Sherman & Guillery, 1996). Nonetheless, the evidence for any
particular function is still sparse and rather indirect to date.

Clearly, detailed concepts of the interdependency of thalamic and corti-
cal operation could greatly advance our knowledge about complex sensory,
and ultimately cognitive, processing. Here we present a novel view on the
corticothalamic puzzle by proposing that control of velocity tuning of visual
cortical neurons may be an eminent function of corticogeniculate processing.

The hypothesis is advanced by studying a model of the primary visual
pathway in extensive computer simulations. At the heart of the model is a
biophysical account of the electrical membrane properties of thalamic relay
neurons (Huguenard & McCormick, 1992; McCormick & Huguenard, 1992)
that includes 12 ionic conductances. Among the different effects that cor-
ticogeniculate feedback may have on relay cells, we focus on the modulation
of their relay mode (between tonic and burst mode) by control of their rest-
ing membrane potential. Employing two distinct temporal-response types
of geniculate relay neurons (lagged and nonlagged), we find that shifts in
membrane potential affect the temporal response properties of relay cells in
a way that alters the tuning of cortical cells for speed.
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Given the loop of information from the LGN to cortical layer 4, via a
variable number of synapses to layer 6, and back to the LGN, the question
arises, what are likely implications of adaptive speed tuning for visual infor-
mation processing? Based on some fairly general considerations concerning
the nature of motion information, we devise a simple model of the cortico-
geniculate loop that utilizes adaptive speed tuning for the fundamental task
of segmentation of objects in motion. A detailed mathematical analysis of
the model’s behavior is presented. Treating visual stimulation as a stochastic
process that drives the adaptation dynamics, we prove the model’s object-
segmentation capabilities and reveal some non-intended properties, such as
oscillatory responses, that are consequences of its basic design. Several as-
pects of the dynamics in the loop are discussed in relation to experimental
data.

v



Contents

1 The Thalamus 3
1.1 A Hierarchy of Thalamocortical Processing . . . . . . . . . .. )
1.2 Thalamic Relay Modes . . . . . . .. ... ... .. ... ... 12
1.3 Functional Implications . . . . . . . . . ... ... ... .... 15

2 Dynamic Cortical Velocity Tuning 19
2.1 Geniculate Input to Cortical Simple Cells . . . . . . . . .. .. 20

2.1.1 Spatiotemporal Receptive Fields and Velocity Tuning . 20
2.1.2 Lagged and Nonlagged Relay Neurons . . . .. .. .. 22
2.2 A Model of the Primary Visual Pathway . . . . ... ... .. 29
2.2.1 Neuron and Network Models . . . . . . ... ... ... 31
2.2.2 Lagged and Nonlagged Responses . . . . . . . ... .. 34
2.2.3 Spatial Layout of Receptive Fields. . . . . . ... ... 35
2.2.4  Geniculate-Perigeniculate Loops . . . . . . ... .. .. 36
2.25 Retinal Input . . . ... ..o Lo 36
2.2.6 Cortical Feedback . . . . . . .. ... ... .. ..... 38
2.2.7 Data Analysis . . . . . ... ... 40
2.2.8 Numerics . . . . . ..o 42
23 Results. . . . . . 43
2.3.1 Lagged and Nonlagged Relay Neurons . . . .. .. .. 43
2.3.2 Total Geniculate Input to the Cortex . . . . . . . . .. 47
2.4 Discussion . . . . . ..o o7
2.4.1 Relation to Cortical Velocity Tuning . . . . . . .. .. 57
24.2 Roleof Relay Modes . . . . .. ... ... ... .... 29
2.4.3 Role of the Perigeniculate Nucleus . . . . . . . . .. .. 60
2.4.4  Variability of Geniculate Response Strength . . . . . . 60
2.4.5 Other Types of Corticogeniculate Feedback . . . . . . . 61

3 Object Segmentation by Adaptive Velocity Tuning 62

3.1  On Monkeys, Leopards, and other Objects in Motion . . . . . 62

3.2 Data Reduction and Object Segmentation by Motion Processing 64

1



CONTENTS

g O aQ W »

5|

)

3.3 A Model of the Corticogeniculate Loop . . . . . .. ... ...
3.3.1 Dynamic Velocity Tuning . . . . . . .. ... ... ..
3.3.2  Control of Velocity Tuning . . . . . . .. .. ... ...
3.3.3 Complete System Dynamics . . . . . ... ... . ...
3.3.4 Analytical Treatment . . . . . . . ... ... ... ...
3.3.5 Computer Simulations . . . . . ... ... ... ....

3.4 Analysisand Results . . . . .. ... ... ... .. .. ....
3.4.1 Integral Equations for the Moments of Response Time

Differences . . . . . . . ...
3.4.2 Markov Formulation of the Dynamics of Response Time

Differences . . . . . . . . ...
3.4.3 Mean Adaptation Dynamics . . . . . .. ... .. ...
3.4.4 Variance of Adaptation Dynamics . . . . . . . ... ..
3.4.5 Stationary States and Diffusion-Sustained Oscillations .

87
92

3.4.6 Correlation of Adaptation Dynamics Between Cell Classes 99

3.4.7 Crossing of Response Time Differences: Disruption of

Adaptation . . . ... 103
3.4.8 Corticogeniculate Delays . . . . . . ... ... ... .. 110
3.5 Discussion . . . . . .. ... 117
3.5.1 Spatiotemporal Patterns of Cortical Activity . . . . . . 119
3.5.2  Figure-Ground Segregation . . . . . . . . ... ... .. 120
3.5.3 Fixational Eye Movements . . . . . . .. ... ... .. 124
3.5.4 Encoding Stimulus Speed . . . . .. ... 126
3.5.5 Unaddressed Issues and Possible Model Extensions 128
Biophysical Neuron Models 131
The Spike-Response Model of a Neuron 137
Model of Thalamic Relay Neurons 139
Stimulus Parameters for Poissonian Stimulus Events 144
Proof of Two Assertions on Crossing of Mean Response Time
Differences 146
Computer Simulations of Corticogeniculate Feedback 150
Computer Simulations of the Corticogeniculate Loop 152
List of Abbreviations 155



Chapter 1

The Thalamus

The dorsal thalamus, which forms the main mass of the diencephalon in
most mammals, is the principal source of subcortical input to the cerebral
cortex, and all that the cortex can do necessarily depends on this input. By
way of the dorsal thalamus the cortex is informed of all sensory input, with
the olfactory system as the only exception, and of activity in subcortical
brain structures such as the cerebellum, the mammillary bodies, and the
globus pallidus; see Jones (1985) for a summary. It is thus most evident that
uncovering the relay functions of the dorsal thalamus is crucial for a deeper
understanding of all sensory and cognitive processing.

In contrast to the prominent position of the thalamus in the central ner-
vous system and the complexity of thalamic circuitry, the common, simplis-
tic, understanding of the dorsal thalamus had been for a long time that of
a faithful relay of all incoming signals to the cortex, without much process-
ing or elaboration. It was concluded from early and more recent studies of
the lateral geniculate nucleus, the part of the thalamus that relays visual
information from the retina to the cortex, that the spatial characteristics
of receptive fields are essentially unchanged at the retinogeniculate synapse.
Those of geniculate relay cells are very similar to those of the retinal gan-
glion cells that provide their input (Glees & Clark, 1941; Hubel & Wiesel,
1961; Hoffmann et al., 1972). This disappointing finding was summarized
by Zeki (1993): “the ...minutely studied lateral geniculate nucleus has told
us very little that is of interest about vision as a process, beyond the vague
statement that it may act as a ‘sharpener’ of the visual image, a surprisingly
banal function for so large and complex a structure.”

In the last decades, a rich thalamocortical network of two-way connec-
tions has been revealed and modulation of thalamic activity by inputs from
the cortex, the brainstem, and the basal forebrain utilizing various trans-
mitter systems has been identified. Furthermore, the intrinsic dynamics of
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thalamic relay cells and interneurons has been understood in terms of various
transmembrane currents; see McCormick (1992), Guillery (1995), and Sher-
man & Guillery (1996) for reviews. The general pattern of thalamic activity
has been shown to be related to states of arousal, wakefulness, and sleep
(Livingstone & Hubel, 1981; McCarley et al., 1983; Steriade & McCarley,
1990; Steriade, 1992; Steriade et al., 1993; Steriade & Contreras, 1995). Fi-
nally, the involvement of thalamic circuits in the production of epilepsy has
been suggested (Steriade & Llinds, 1988; McCormick & Feeser, 1990; Hugue-
nard & McCormick, 1992; Steriade, 1992; Steriade et al., 1993; Huguenard &
Prince, 1994; Steriade & Contreras, 1995). Despite a wealth of information
on transmitters and synaptic circuits, however, it has not yet been possible to
convincingly define a function, or a set of functions, for thalamocortical relay,
let alone for the complex thalamocortical interplay, in the normal, awake, be-
having animal. Nonetheless, in view of the complexity of the thalamocortical
network one is compelled to believe that the thalamus not merely delivers
information to the cortex but that cortical processing is somehow entangled
with thalamic processing. Accordingly, it seems that cortical function cannot
be properly understood without a clear concept of thalamic operation.

In section 1.1, we briefly outline the thalamocortical network in order
to provide the more general context in which the geniculocortical system is
embedded that we are going to study in this work. A summary of results
on temporal response properties of thalamic relay cells that will be relevant
in this study is given in section 1.2. We conclude this chapter in section 1.3
with some speculation on the function of the thalamocortical system from
the literature. We also briefly outline the ideas pursued in the present work
in relation to earlier functional considerations.

Most details on thalamic neurons and thalamocortical circuits that we
review below and on which our modeling will be based refer to the cat’s
lateral geniculate nucleus, as this is the best-studied thalamic nucleus, and
because vision is the sensory modality that will occupy us in the following
chapters. It is often not known to what extent details observed for one specific
nucleus generalize to other nuclei and species. In some cases it is evident
that there are in fact internuclei and -species differences in thalamocortical
circuitry. The basic outline and structural principles, however, are thought to
be the same in different parts of the thalamocortical system and for different
mammals.



1.1. A HIERARCHY OF THALAMOCORTICAL PROCESSING

1.1 A Hierarchy of Thalamocortical
Processing

Facts about the thalamocortical system compiled in this section are collected
from several reviews (Sherman & Koch, 1990; Guillery, 1995; Sherman, 1996;
Sherman & Guillery, 1996). The reader is referred to these excellent reviews
and to the extensive literature cited therein for more detailed information.
Facts that specifically relate to the visual system and that are only briefly
touched upon in this section are further elaborated in the next chapter.

Not all of what is outlined here is firmly established, and we will be
accordingly careful with claims where appropriate. Generally, when empha-
sizing a certain structure or organizational principle in a biological system,
especially the brain, one always has to be aware of the deviations that are
gracefully neglected for the sake of highlighting that particular aspect of the
system. This neglect is certainly permissible, if the highlighted aspect has
the potential to explain the system’s behavior and shed light on its function.
After all, there is no understanding without the interpretation of empirical
data as manifestations of underlying structures.

Throughout this work, when speaking of the ‘thalamus’ we really refer to
the dorsal thalamus, i.e., the part of the thalamus that is the main relay of
information to the cortex.

Although each part of the thalamus receives various kinds of afferents,
there is always one kind of glutamatergic! input, coming from one particu-
lar source, that is believed to be the main driving input to the respective
thalamic cells. These afferents are called the primary afferents of a part of
thalamus. The various thalamic parts, or nucles, inherit their basic function
as a relay station for a particular type of information from their primary
afferents. Examples are the lateral geniculate nucleus with its retinal affer-
ents, the medial geniculate nucleus with its inferior collicular afferents, or the
ventrolateral nucleus with its cerebellar afferents. Accordingly, these nuclei
relay information on vision, hearing, and body motion. The retina, the infe-
rior colliculus, and the cerebellum are all subcortical structures, meaning that
they are not part of the cerebral cortex. Thalamic nuclei that relay informa-
tion mainly from one subcortical source to the cortex are classically called
specific nuclei. We will study the primary visual pathway with the lateral
geniculate nucleus (LGN) as its thalamic relay station in the next chapter.
The anatomy of the primary visual pathway up to the primary visual cortex,
also called V1 or area 17, is shown in Figure 1.1. For an overview of thalamic

!Glutamate is a very common synaptic transmitter in the central nervous system. Its
effect is a depolarization and, hence, excitation of the postsynaptic cell.
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nuclei see Figure 1.2.

Primary thalamic afferents can be defined on the basis of morphology
and fine structure of their axons and synaptic terminals, of the spatial pat-
tern of termination on relay cells, and of their intrathalamic synaptic re-
lations. In particular, their terminals are relatively large and contact rela-
tively large dendritic stems of relay cells that tend to be close to the cell
body. Moreover, retinogeniculate synapses frequently form triadic synaptic
arrangements with geniculate interneurons, commonly in complex terminal
structures called glomeruli; see the next chapter.

It turns out that different thalamic nuclei project to different cortical tar-
get areas. One nucleus, however, may project to several cortical areas. For
instance, the lateral geniculate nucleus of the cat projects to areas 17, 18,
and 19, although only the geniculate C-layers project to area 19. Of course,
all these areas, by virtue of their geniculate input as well as intracortical
connections, are functionally visual areas. To a first, crude, approximation,
the thalamus relays a system of separate primary pathways from subcorti-
cal sources to the cortex. A graphical overview of connections between the
thalamus and the cortex is given in Figure 1.2.

There are thalamic nuclei that apparently do not receive significant in-
put from subcortical sources of a type comparable to the one provided by
primary afferents. Such nuclei are classically called non-specific nuclei or
association nuclei. There is now evidence that they receive their primary
afferents from layer 5 of some cortical area. Such thalamic nuclei thus may
relay information from one cortical area to another. Examples are the an-
terior thalamic nucleus, the medial thalamic nucleus, and the pulvinar; cf.
Figure 1.2. A hierarchy of thalamic nuclei can be defined along the primary
pathway of information, from a subcortical source passing through a thala-
mic relay nucleus to some cortical area, and then, by way of further thalamic
nuclei, to different cortical areas. The nuclei that relay signals before they
first hit the cortex have been termed first-order nuclei, those that seem to
primarily pass information between cortical areas higher-order nuclei. The
hypothesis of primary afferents of cortical origin, and thus of the hierarchy
of thalamic nuclei, is due to Guillery (1995). A schematic summary of the
synaptic relations in the thalamocortical system is given in Figure 1.3.

Besides the pathway that ascends along the hierarchy, there also exist
descending projections. These originate from layer 6 of cortical areas and
terminate in the thalamus; see Figures 1.2 and 1.3. Like in the ascending
pathway, synaptic terminals of descending fibers are glutamatergic. In con-
trast to the primary thalamic afferents, however, the corticothalamic input
from layer 6 is thought to mainly subserve a role in modulating, rather than
evoking, thalamic responses.
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Figure 1.1: Ventral view of the human retinogeniculocortical projection which
forms the primary visual pathway. It originates from the retinas (1) and
passes through the optic nerve (2) to the optic chiasm (3). In the optic
chiasm fibers from the left hemi-retinas of both eyes (representing the right
visual hemi-field) combine and proceed through the optic tract (4) to the
left lateral geniculate nucleus (9), and vice versa for fibers from the right
hemi-retinas (not shown). From the lateral geniculate nucleus relay cells
project via the optic radiation (11) to the primary visual cortex (21). There
are alternative routes from the retinas to the cortex that are not regarded
as part of the primary visual pathway (not shown). Figure adapted from
Nieuwenhuys et al. (1988).
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1.1. A HIERARCHY OF THALAMOCORTICAL PROCESSING

Figure 1.2: Diagrammatic horizontal section of the thalamocortical system
(top) and lateral view of the cerebral cortex (bottom) in humans. In the top
view, the left hemisphere depicts the corticothalamic, the right hemisphere
the thalamocortical projections. Shadings and numbers in the bottom view
correspond to the thalamic nuclei and their respective cortical target areas as
labeled in the top view. The thalamic nuclei are: anterior thalamic nucleus
(4), medial thalamic nucleus (5), ventroanterior nucleus (6), ventrolateral nu-
cleus (7), ventroposterior nucleus (8,9), lateral posterior nucleus (10), centro-
median nucleus (11), parafascicular nucleus (12), pulvinar (13,14,15), lateral
geniculate nucleus (16), medial geniculate nucleus (17), thalamic reticular
nucleus (18). Figure adapted from Nieuwenhuys et al. (1988).

One thalamic nucleus may receive layer 6 input from several cortical areas.
As an example, the corticogeniculate projections in the cat arise in layer 6 of
areas 17, 18, and 19. Area 19 only projects back to the geniculate C-layers
from where it receives input. At present, it looks as if a thalamic nucleus
receives cortical layer 6 input mainly from areas where it sends its primary
projection to. This kind of cortical input thus implements feedback to a
thalamic nucleus. The loop of the primary geniculocortical pathway and the
corticogeniculate feedback will concern us throughout this work.

As for morphology and fine structure, the cortical layer 6 feedback is
distinct from primary input to the thalamus, including cortical layer 5 input.
In particular, their terminals are small and contact relay cells on slender,
distal parts of their dendrites. They are rarely involved in synaptic triads or
glomerular structures (see the next chapter) but also contact the dendritic
shafts of intrathalamic interneurons. It is interesting to note that, in the
LGN of the cat, corticogeniculate feedback makes the majority of synapses
on relay cells, probably 40-50 %, outnumbering even the retinal synaptic
terminals.

Although both primary afferents and cortical layer 6 feedback utilize glu-
tamate as the transmitter at their terminals, there seems to be a difference
on the receptor side. While retinal terminals and corticogeniculate feedback
appear to activate the same types of AMPA /kainate and NMDA receptors?,
cortical terminals additionally activate metabotropic glutamate receptors.
Metabotropic receptors initiate an intracellular second messenger cascade
that, besides other effects, regulates ion channels and, hence, leads to changes

2Receptors are commonly classified and labeled by their selective agonists. Three
prominent agonists that are selective for different types of glutamate receptors are AMPA
(for a-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid), kainate, and NMDA (for N-
methyl-D-aspartate).
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Figure 1.3: Schematic summary of connections within the thalamocortical
system. The primary stream of information (bold arrows) is believed to
run from sensory systems or some other subcortical region through a first-
order relay nucleus to layer 4 of some cortical area, and from layer 5 of
cortical areas through higher-order relay nuclei to layer 4 of further cortical
areas. This primary pathway determines the gross response properties and
functional specialization of thalamic and cortical cells. Reverse projections
originate from layer 6 of cortical areas and terminate in those thalamic nuclei
from which the areas receive projections. These feedback connections are
regarded as mainly modulating thalamic responses to the primary input.
Moreover, thalamocortical projections and corticothalamic projections from
layer 6 send collaterals to the thalamic reticular nucleus. All these fibers form
glutamatergic terminals (arrow heads). Additionally, there are GABAergic
connections (bar heads) from sections of the reticular nucleus back to those
thalamic nuclei from which the sections receive input.
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in membrane potential; see the next chapter. In contrast, ionotropic recep-
tors, such as AMPA /kainate and NMDA receptors, incorporate ion channels
that are directly affected by receptor binding.

The three types of receptors at the corticogeniculate synapse implement
three different timescales of postsynaptic effects. The fastest postsynaptic
potentials are mediated by AMPA /kainate receptors and last tens of mil-
liseconds. An intermediate timescale of postsynaptic action, hundreds of
milliseconds, is provided by the NMDA receptors. The longest potentials
can last for seconds and are initiated by metabotropic glutamate receptors.
It remains to be elucidated which of the receptors are activated under differ-
ent physiological conditions.

Another important difference between cortical layer 6 and primary affer-
ents, including cortical layer 5 input, is that the former regularly send axon
collaterals to the thalamic reticular nucleus, a sheet of GABAergic® neurons
that is part of the ventral thalamus and lies adjacent to the dorsal thalamus;
see Figures 1.2 and 1.3. In contrast, primary afferents apparently do not
contact the reticular nucleus. Thalamocortical axons also produce collater-
als to the reticular nucleus which, in turn, projects back to the respective
thalamic nuclei. There are, therefore, distinct parts of the reticular nucleus
that implement feedback inhibition to different thalamic nuclei; see Figures
1.2 and 1.3. It appears that a single section of the reticular nucleus may
be involved in loops with several thalamic nuclei, and, conversely, that a
single thalamic nucleus may be reciprocally connected with several parts of
the reticular nucleus. This opens up the possibility for complex interactions
between different thalamic nuclei via the reticular nucleus.

The sections of the reticular nucleus that reciprocally connect to the dif-
ferent thalamic nuclei are further structured. Different subsections may form
two-way connections with different thalamic layers. In particular, the part
of the reticular nucleus that is involved in the loop with the A-laminae of the
cat LGN is called the perigeniculate nucleus (PGN). Through the A-laminae
pass the X- and Y-streams from the retina to the cortex. They belong to the
best-studied, and perhaps functionally prominent, part of the visual thala-
mus and will be considered in the next chapter.

All the projections that have been discussed in this section apparently
share — to varying degrees — a common principle of organization, the principle
of topographic mapping. This means that neighboring neurons that send
axons along one of the projections contact neurons in the target area that

3GABA (for y-aminobutyric acid) is a very common synaptic transmitter in the central
nervous system. Its effect is usually a hyperpolarization and, hence, inhibition of the
postsynaptic cell.

11
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are likewise close to each other. In other words, these projections do not
spread out very much, and maps that exist in the source area will persist
in the target area. Thus, there are thalamic, reticular, and cortical maps
in the system. There are indications, however, that projections between
higher-order nuclei of the thalamus and the reticular nucleus may not be
topographic. Furthermore, as retinal topography seems to be gradually lost
in higher visual cortical areas, one may expect the thalamic primary targets
of these areas to lack retinal topography as well.

1.2 Thalamic Relay Modes: The Temporal
Character of the Relay

Since it today seems evident that not much spatial processing occurs at the
retinogeniculate synapse, it is natural to direct attention to the temporal
characteristics of the geniculate transform. A useful characterization of the
temporal transformation performed by a cell, and one that will be used in
this work, is its temporal transfer function. 1t fully characterizes linear trans-
formations but can be defined for rather general transforms. Let IN(¢) and
OUT(t) be the time-dependent input and output rates of a neuron, respec-
tively. Let us, more precisely, assume their Fourier series to be

IN(t) = Fo+ i Fy sin(2nk ft + ¢x) , (1.1)
k=1

OUT(t) = Gp+ i G SiIl(Q?Tk‘ft + @bk) , (1.2)
k=1

with Fy # 0, i.e., f is the fundamental frequency of the input signal. Such
periodic input and output rates may be obtained in response to sinusoidal
sensory stimuli, e.g., a spot of varying brightness flashed on the retina with
frequency f. The rates IN(¢) and OUT(¢) are calculated as spike counts
in time bins which should be significantly shorter than the period 1/f. The
spike counts are usually averaged over several cycles of stimulus presentation.
The amplitude-transfer function is defined as the ratio

_Gl

— 1.
alf) = 3 (13)
the phase-transfer function as the difference
p(f) = d1— 1, (1.4)

12
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such that negative phase transfer means phase lead over the input. While am-
plitude and phase transfer are usually given as functions of the fundamental
input frequency f, this provides a full description of the rate transformation
only in the linear case. In general, G;/F; and ¢; — v, also depend on all
the Fourier coefficients F} and all the phases ¢ of the input signal, and a
knowledge of higher harmonics in the output signal is required for complete
information.

Thalamocortical relay neurons possess a characteristic blend of voltage-
gated ion channels (Jahnsen & Llinds, 1984a; Jahnsen & Llinds, 1984b;
Huguenard & McCormick, 1992; McCormick & Huguenard, 1992; Zhan et al.,
1999) that jointly determine the timing and pattern of action potentials in
response to a sensory stimulus; see the next chapter and appendix C. De-
pending on the initial membrane polarization, the geniculate relay neuron’s
response to a visual stimulus is in a range between a tonic and a burst mode
(Sherman, 1996; Sherman & Guillery, 1996). The generation of burst spikes
depends prominently on the low-threshold Ca? current, or T-current (‘T for
‘transient’); see appendix A, especially Figure A.3, and appendix C, equa-
tions (C.29) through (C.33). At hyperpolarization below roughly —70 mV,
the low-threshold Ca?* current gets slowly de-inactivated. As the membrane
repolarizes above roughly —70 mV, the current activates, followed by a rapid
transition from the de-inactivated to the inactivated state, thereby producing
a Ca*" spike with an amplitude that depends on how long and how strongly
the cell has been hyperpolarized previously. After sufficient hyperpolariza-
tion the Ca?* spike will thus reach the threshold for Na* spiking and give
rise to a burst of one to ten action potentials riding its crest (Jahnsen &
Llinds, 1984a; Jahnsen & Llinds, 1984b; Huguenard & McCormick, 1992;
McCormick & Huguenard, 1992; Zhan et al., 1999). All other action po-
tentials, i.e., those that are not promoted by a Ca?* spike and, hence, do
not group into bursts, are called tonic spikes. Figure 1.4 shows intracellular
voltage recordings of burst and tonic action potentials and of the Ca?* spike.

Although the issue is still controversial, there is some evidence that a
maxture of burst and tonic spikes may be involved in the transmission of
visual signals in lightly anesthetized or awake animals (Guido et al., 1992;
Guido et al., 1995; Guido & Weyand, 1995; Mukherjee & Kaplan, 1995;
Sherman, 1996; Sherman & Guillery, 1996; Reinagel et al., 1999). At resting
membrane potentials below —70 mV, bursting constitutes a very early part
of a relay cell’s response, producing a phase lead of up to a quarter cycle
relative to its primary input (Lu et al., 1992; Guido et al., 1992; Mukherjee
& Kaplan, 1995). At more depolarized membrane potentials, a relay cell’s
response is dominated by tonic spikes and is in phase with the primary input
(Lu et al., 1992; Guido et al., 1992; Mukherjee & Kaplan, 1995). Figure
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Figure 1.4: Dependence of thalamic
firing mode upon membrane poten-
tial. At three different initial lev-
els of membrane polarization, a step
current of 0.3 nA is delivered; see
bottom. (A) At —55 mV the low-
threshold Ca?* current is inactivated.
The cell responds with tonic spiking.

(B) At —60 mV the low-threshold
AL ssmy — L//L//Lg, Ca’T current is still inactivated. The

current pulse does not suffice to pro-
B: s0my ‘——/—’M\ duce any spike (Ohmic response).
. (C) At =70 mV the low-threshold
4J§ Ca?T current is de-inactivated. It
- is activated by the depolarization
caused by the current pulse. A Ca?*
spike is produced with a burst of two
C:.7omy action potentials (Na® spikes) rid-
— 0-3nA ing its crest. Figure adopted from
Sherman (1996). See appendix A,
especially Figure A.3, and appendix
C, equations (C.29) through (C.33),
on the dynamics of the low-threshold

Ca?" current.

1.5 shows typical examples of tonic and burst responses of a geniculate relay
cell. Figure 1.6 presents plots of temporal transfer functions in the burst and
tonic relay modes.

There is another type of geniculate relay neuron, called lagged neuron,
that is strongly delayed in response time and phase (Mastronarde, 1987a;
Humphrey & Weller, 1988a; Saul & Humphrey, 1990; Mastronarde et al.,
1991). It has been speculated that in lagged cells, because of strong feed-
forward inhibition they are assumed to receive, burst spikes are responsi-
ble for high-activity transients seen at the cessation of their retinal input
(Mastronarde, 1987a; Mastronarde, 1987b) and contribute substantially to
delayed response peaks (Mastronarde, 1987b). The issue of lagged and non-
lagged neurons will be covered in some detail in the next chapter.

Besides timing there are other characteristic differences in the responses
of relay cells in burst and tonic mode. In particular, in the burst mode spon-
taneous activity is significantly lower than in the tonic mode. Furthermore,
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Figure 1.5: Average firing histograms of spontaneous activity (top row) and
of responses to successive cycles of a drifting sinusoidal grating (giving rise
to a 4 Hz modulation; bottom row) from a geniculate relay cell. (A) At
a resting membrane potential of —65 mV the neuron is in the tonic relay
mode. The spontaneous activity is high and the response profile faithfully
reflects the sinusoidal input. (B) At a resting membrane potential of —75
mV the neuron is in the burst mode. The spontaneous discharge is low and
the response starts and finishes early in the stimulus cycle. The temporal
transformation performed by the bursting relay cell is more nonlinear. The
resting membrane potential is controlled by current injection in this experi-
ment. Figure adopted from Sherman (1996).

the temporal transform performed by a cell in burst mode is more nonlinear
than in tonic mode; cf. Figure 1.5.

1.3 Functional Implications

The last decades have produced a wealth of data on anatomy, physiology,
and pharmacology of thalamocortical circuits. Of these we can review only
a very limited portion in this chapter. It has proven hard to fuse the var-
ious fragments into a unified and coherent picture, and what the thalamus
might actually be doing has remained somewhat mysterious. Indeed, current
ideas tend to be either much more vague or more difficult to justify than
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Figure 1.6: Temporal transfer functions of a geniculate relay cell as measured
in an experiment at three successive times (0 hours, 1 hour, and 1.5 hours
in the columns from left to right). A sinusoidal visual stimulus is applied
for various frequencies f. The stimulus signal is first transformed by the
retina to the geniculate input signal IN(¢), and subsequently by the relay
cell to OUT(¢); cf. equations (1.1) and (1.2). From IN(¢) and OUT(¢) the
transfer of amplitude [top row; cf. equation (1.3)] and phase [bottom row;
cf. equation (1.4)] can be determined. In the experiment, the relay neuron
switched from a tonic (left column) to a more bursty (center column),
and back to a tonic (right column) relay mode, as indicated by the different
burst fractions (proportion of burst spikes). Note the transition from a low-
pass to a band-pass (top row), and from an in-phase response to a phase
transfer with a strong slope (bottom row) as the cell switches from tonic
to burst mode. Modulation of the relay mode is thought to be mediated
by brainstem input or feedback from cortical layer 6. Figure adapted from
Mukherjee & Kaplan (1995).
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1.3. FUNCTIONAL IMPLICATIONS

considerations on, e.g., function of visual cortical areas. Nonetheless, some
hypotheses have been formulated that point into interesting directions.

The fundamental role of the thalamus as a gate for all kinds of subcortical
information to the cortex has long been recognized. Perhaps the most gen-
eral, as yet little appreciated, conclusion that may be drawn from the layout
of the thalamocortical network as outlined here is that it also implements a
major pathway for corticocortical communication (Guillery, 1995; Sherman
& Guillery, 1996). This pathway would work in parallel to the one estab-
lished by intracortical connections. The important question then is, what
may be the difference between the two ways of corticocortical communica-
tion. It has been suggested that connections between cortical areas via the
thalamus might assist the propagation of activity over long cortical distances
by providing a ‘high-security’ link (Miller, 1996). Quite obviously, this is a
topic that deserves much more attention in future research.

Confusing results have been obtained regarding the action of corticothala-
mic feedback originating from layer 6. Some studies have suggested a facilita-
tion, others a suppression of geniculate relay cell firing (Kalil & Chase, 1970;
Richard et al., 1975; Baker & Malpeli, 1977; Schmielau & Singer, 1977; Geis-
ert et al., 1981; McClurkin & Marrocco, 1984; McClurkin et al., 1994). Today
the pathway is often regarded as exerting a modulatory influence on thalamic
response properties (Sherman & Guillery, 1996; Crick & Koch, 1998). The
metabotropic glutamate receptors used in this pathway have been seen to
locally switch relay cells between the burst and tonic modes of relay (Mc-
Cormick & von Krosigk, 1992; Godwin et al., 1996; Sherman, 1996; Sherman
& Guillery, 1996; von Krosigk et al., 1999). Indeed, geniculate relay cells in
vivo are dynamic and differ individually in their degree of bursting (Lu et al.,
1992; Guido et al., 1992; Mukherjee & Kaplan, 1995); cf. Figure 1.6. It has
therefore been hypothesized that, by corticothalamic feedback, information
on visual stimuli may be increased in the relay-cell output (McClurkin et al.,
1994) and that relay cells are switched from a detection to an analyzing
mode once novel and interesting stimuli are detected (Godwin et al., 1996;
Sherman, 1996; Sherman & Guillery, 1996). The burst mode with its low
spontaneous activity and, hence, high signal to noise ratio would be better
suited for detection, while the tonic mode with its more linear transformation
would provide for the fidelity of signal transmission that is required for anal-
ysis; cf. Figure 1.5; see, however, Mukherjee & Kaplan (1998). Furthermore,
it has been proposed that corticogeniculate feedback modulates the spatial
layout of receptive fields of cortical simple cells by exploiting the geniculate
burst-tonic transition (Worgdtter et al., 1998).

Some other proposals have been made concerning the function of cor-
ticogeniculate feedback, such as control of binocular disparity for stereopsis
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(Schmielau & Singer, 1977), attention-related gating of relay cells (Sherman
& Koch, 1986), gain control of relay cells (Koch, 1987), and synchronizing
the firing of neighboring relay cells (Sillito et al., 1994; Singer, 1994) that
represent related parts of a stimulus.

It is characteristic of the corticogeniculate feedback pathway that it in-
volves glutamatergic and GABAergic synapses with various types of receptors
that converge onto single relay cells. Signals on this pathway may even pass
multiple GABAergic synapses within the reticular nucleus before reaching
the LGN, so that, besides excitation and inhibition of different ‘lavors’, dis-
inhibition is another possible effect. One of the troubles with predicting the
effects of corticogeniculate feedback is thus that they are likely to depend
significantly on details of synapses made by individual axons running from
the cortex to the LGN, from the cortex to the reticular nucleus, from the
reticular nucleus to the LGN, and on details of connectivity within the retic-
ular nucleus. These details are, however, not known yet. In this situation
modelers must take care of the robustness of predictions or otherwise be
aware of the speculative nature of their conclusions. Moreover, significant
variability may exist in corticothalamic synaptic relationships that supports
a corresponding multiplicity of functions. As a consequence, suggestions on
the function of cortical feedback have always to be viewed as non-exclusive.

In this work we will pursue the idea that a prominent function of corti-
cothalamic feedback is the modulation of relay modes, as has been suggested
by other authors; see above. Unlike the other authors, however, we will focus
on the response timing aspects of relay modes. In particular, in chapter 2 we
explicate the causal link between the wvariable response timing of geniculate
relay cells and variable tuning of visual cortical cells for velocity of moving
features, thus identifying control of velocity tuning as a likely mode of cor-
ticogeniculate operation. The conclusions drawn in this context rely on the
involvement of different relay modes in normal visual function, a question
that in principle may presently be accessible to experiment. Importantly, we
do not need to assume any particular detailed structure of cortical feedback
connections. In chapter 3 we push the novel hypothesis on adaptive velocity
tuning one step further. Based on some fairly general considerations concern-
ing the necessities of visual information processing, we present and analyze
a model of the corticogeniculate loop that implements the control of cortical
velocity tuning. In its analysis we explore the model’s ability of object seg-
mentation by statistical motion analysis in the visual field. Although we try
to keep the loop model as simple and generic as possible, the particular struc-
ture of the loop that we investigate has to be of a speculative nature. More
general than the network structure, however, is the computational principle
that it implements.
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Chapter 2

Dynamic Cortical Velocity
Tuning: A Role for
Corticogeniculate Feedback

Most excitatory inputs to cortical cells, even to those in the thalamic recip-
ient layers, originate from the cells’ cortical neighborhood. In layer 4 of the
cat’s area 17, the proportion of excitatory synapses on spiny stellate cells
that derive from geniculate relay neurons is estimated to be only 6 percent.
There are direct indications, however, that the synapses formed with thala-
mic afferents are especially efficient in driving cortical cells to fire (Stratford
et al., 1996; Alonso et al., 1996). Conversely, the bulk of local intracorti-
cal connections seem to mediate subthreshold modulations of the membrane
potential and affect stimulus preferences only mildly (Toth et al., 1997).

Another line of research has accumulated evidence for the direct influence
of geniculate input on cortical receptive field (RF) properties, both in the spa-
tial and temporal dimension (Saul & Humphrey, 1992a; Saul & Humphrey,
1992b; Reid & Alonso, 1995; Ferster et al., 1996; Jagadeesh et al., 1997,
Murthy et al., 1998; Hirsch et al., 1998). Suggested intracortical effects, on
the other hand, include sharpening of tuning properties by suppressive inter-
actions (Hammond & Pomfrett, 1990; Reid et al., 1991; Hirsch et al., 1998;
Crook et al., 1998; Murthy & Humphrey, 1999), amplification of geniculate
inputs by recurrent excitation (Douglas et al., 1995; Suarez et al., 1995), and
normalization of responses by local interactions (Toth et al., 1997).

The above evidence may be condensed to saying that the thalamic input
defines the gross RF properties of cells in the cortical recipient layers, while
local cortical circuits refine and modulate their responses by amplification
or inhibition. Visual neurons far away from the geniculate input stage may
have response properties that heavily depend on the cortical network. Even
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CHAPTER 2. DYNAMIC CORTICAL VELOCITY TUNING

in those neurons, however, variations in the geniculate input should show
up in according response variations, unless the variation in the input does
not reflect anything behaviorally relevant. It is thus worthwhile to study
the geniculate input to the primary visual cortex, and, in particular, its
variability, in order to learn more about cortical information processing.

The model to be developed and analyzed in this chapter addresses the
geniculate contribution to spatiotemporal RF's of the visual cortex. We will
be especially concerned with the question of how cortical velocity tuning
may change under the influence of cortical feedback on geniculate relay cells
(GRCs). In particular, we elaborate the novel hypothesis that the visual
cortex controls via feedback to the lateral geniculate nucleus the temporal
response properties of relay cells in a way that alters the tuning of cortical
cells for speed.

2.1 Geniculate Input to Cortical Simple Cells

2.1.1 Spatiotemporal Receptive Fields
and Velocity Tuning

Velocity selectivity or velocity tuning, taken here to mean preference for a
certain speed and direction of motion of visual features, requires convergence
of pathways with different spatial information and different temporal char-
acteristics, such as delays, onto single neurons; see Figure 2.1. For higher
mammals this is believed to occur in the primary visual cortex (Movshon,
1975; Orban et al., 1981a; Orban et al., 1981b). Since the early days of
Hassenstein & Reichardt (1956), motion detectors in different species have
been modeled along these lines, on various levels of refinement and with dif-
ferent neural implementations in mind; see Nakayama (1985) for a review of
the classic approaches. Modern models of velocity-selective responses at the
earliest cortical processing stage can be roughly divided in those which em-
ploy a purely feedforward architecture, i.e., geniculate and possibly cortical
input that converges onto cortical cells (Tolhurst & Heeger, 1997; Emerson,
1997; Emerson & Huang, 1997; Wimbauer et al., 1997a; Wimbauer et al.,
1997b; Murthy et al., 1998), and those which make use of recurrent intracor-
tical circuits (Douglas et al., 1995; Suarez et al., 1995; Maex & Orban, 1996;
Mineiro & Zipser, 1998). As explained above, we will adopt the view that the
geniculate input characteristics are important in determining basic cortical
RF properties, including spatiotemporal tuning, at least in the geniculate
recipient layer 4B.

One concise description of neuronal responses to stimuli that vary in
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Figure 2.1: Basic structure of common models of low-level velocity selectivity;
cf. Nakayama (1985). The graphs in the boxes show possible integral kernels
to realize spatial and temporal filtering. A spatiotemporal signal is first
spatially transformed by two different operations, e.g., as shown, by two local
bandpass filters which have a phase difference of a quarter cycle. The two
transformed signals are further subject to different temporal transformations,
e.g., filters with different delays or, as shown, a response-phase difference of
a quarter cycle. The two paths of processing are combined by summation
or multiplication. The combined signal may be subject to a threshold or
other nonlinear transformation to yield a velocity-selective response. Several
variations of this basic structure have been investigated to fit responses of
different cell types. The different transformations may be implemented by
feedforward mechanisms or by recurrent circuits. Convergence may occur
at the geniculocortical or at corticocortical synapses. Nonlinearities may be
generated at the single-cell or network level.

time and space is given by the spatiotemporal RF'; see Figure 2.2. The spa-
tiotemporal RF is usually determined from reverse correlation experiments
(DeAngelis et al., 1993; DeAngelis et al., 1995), a technique where discrete
spatiotemporal white-noise stimuli are presented and the cell’s output spikes
are correlated to the dark and light pixels of the stimulus that occurred prior
to a spike. In this way, data can be accumulated on how likely an output
spike is produced given a dark or light local stimulus at a certain time and
place in visual space. This description is especially transparent for simple
cells which respond rather linearly in the space-time domain (McLean &
Palmer, 1989; McLean et al., 1994; Reid et al., 1991; Albrecht & Geisler,
1991; DeAngelis et al., 1993; DeAngelis et al., 1995; Jagadeesh et al., 1993;
Jagadeesh et al., 1997; Murthy et al., 1998). In that case the spatiotemporal
RF determined by reverse correlation is the first-order rate response kernel

21



CHAPTER 2. DYNAMIC CORTICAL VELOCITY TUNING

of the cell, and it is all one needs to know to predict the cell’s response rate
to all kinds of stimuli. The best predictions of responses to moving stimuli
from the spatiotemporal RF are obtained for simple cells in the geniculate
recipient layer 4B (Murthy et al., 1998). For complex cells, on the other
hand, higher order correlations between stimuli and output spikes must be
taken into account to estimate the response to a moving stimulus.

Receptive fields of simple cells that are tuned for direction and speed have
a special spatiotemporal structure. Response latency decreases gradually
across their RFs in the preferred direction of motion; see Figure 2.2 E and F.
Such RFs are spatiotemporally inseparable, that is, they cannot be described
mathematically as a product of a spatial and a temporal function.

To avoid confusion, we point out that the term ‘speed tuning’ is sometimes
used in a more restricted sense. Simple cells exhibit tuning for spatial and
temporal frequencies® that results in preference for speeds of moving gratings
depending on their spatial frequency. Here we will be concerned with the
more natural case of stimuli having a low-pass frequency content (Field,
1994), specifically, those composed of local features such as thin bars.

2.1.2 Lagged and Nonlagged Relay Neurons

In the retina of the cat two classes of ganglion cell, the X-cells and the Y-cells,
are distinguishable on the basis of their spatial RF properties. Since X- and
Y-ganglion cells mainly project to different LGN relay cells, the X- and Y-
streams remain separated in the LGN. Relay cells thus inherit RF properties
of the X- or Y-type and are classified accordingly. In particular, cells of the
X-type have smaller RFs and prefer higher spatial frequencies than cells of
the Y-type. Moreover, X-cells perform a rather linear spatial summation of
a stimulus, while Y-cells exhibit strong nonlinearities (Hubel & Wiesel, 1961;
Hoffmann et al., 1972; Hochstein & Shapley, 1976b; Hochstein & Shapley,
1976a; Cleland et al., 1979). There are also some temporal response differ-
ences correlated with the X/Y-classification. In particular, Y-cells tend to
respond more transiently, or more ‘phasic’, and to stimuli moving at higher
speeds than X-cells (Cleland, 1983; Cleland et al., 1983; Cleland & Harding,
1983).

In the A-laminae of cat LGN two subclasses of relay cell have been iden-
tified within the X- and Y-classes that dramatically differ in their temporal
response properties (Mastronarde, 1987a; Humphrey & Weller, 1988a; Saul
& Humphrey, 1990; Mastronarde et al., 1991). Those that are more delayed
in response time and phase have been termed lagged, the others nonlagged

las is evident from the Fourier transform of their spatiotemporal RF
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Figure 2.2: Spatiotemporal receptive field (RF) profiles for relay neurons of
cat lateral geniculate nucleus (LGN) and simple cells of cat area 17. In each
panel, the horizontal axis represents space (z), for the simple cells measured
along a direction orthogonal to their preferred orientation, and the vertical
axis represents latency (t), measured from stimulus onset. Solid contours
delimit regions that are excited by bright stimuli, dashed contours indicate
regions that are excited by dark stimuli. (A) Nonlagged on-center cell from
the LGN. (B) Lagged on-center cell from the LGN.

23



CHAPTER 2. DYNAMIC CORTICAL VELOCITY TUNING

Figure 2.2: (C) Simple cell with space-time separable RF. At ¢t ~ 100 ms
the two main regions simultaneously reverse their bright-dark polarity. (D)
Another simple cell with approximately space-time separable RF. (E) Simple
cell with space-time inseparable RF. The arrangement of the two subregions,
i.e., the spatial phase of the RF, changes gradually with time. Put differently,
the latency of the excitatory responses to bright and dark stimuli increases
gradually across space. The tilt of the response regions in z-t-space is related
to the preferred direction and speed of a stimulus. (F) Another simple cell
with space-time inseparable RF. One possible interpretation of such RF data
is that they arise from a summation of nonlagged and lagged geniculate
inputs (A, B) at the cortical level. Figure adapted from DeAngelis et al.
(1995).

cells. There are also very few so-called partially lagged neurons which on
some response measures fall in between the lagged and nonlagged classes. In
lagged neurons, the on-response to a flash of light is preceded by a dip in the
firing rate lasting for 5 to 220 ms and there is typically a transient of high
firing rate just after the offset of a prolonged light stimulus (Mastronarde,
1987a; Humphrey & Weller, 1988a); see Figure 2.3. For a moving light bar,
the time lag of the on-response peak is about 100 ms after the bar has passed
the RF center (Mastronarde, 1987a); see Figure 2.4. In contrast to lagged
cells, the nonlagged cells’ responses resemble their retinal input and show
no transient at stimulus offset (Mastronarde, 1987a; Humphrey & Weller,
1988a); see Figures 2.3 and 2.4. See also Figure 2.2 A and B for a reverse
correlation study of lagged and nonlagged spatiotemporal RFs.

In the temporal-frequency domain it is found that lagged and nonlagged
neurons markedly differ in their response phase. Since their response phases
turn out to be approximately linear functions of stimulus frequency, although
with a slightly convex shape as shown in Figure 2.5, the phase-transfer func-
tions [cf. equation (1.4)] are well characterized by their slope and their offset
at 0 Hz. It is trivial to check that the slope of the phase-frequency relation-
ship is related to the latency of the response. In fact, for any function f with
Fourier transform f we have

f(t — A) x /OO dw f(w) e W= = /Oo dw f(w) A et (2.1)

Hence, p(f) = 2w fA is the phase-transfer function of the operator that
delays a signal by the time A. For that reason, the slope of the phase-
transfer function devided by 27 is called phase latency. The offset at 0 Hz is
referred to as intrinsic or absolute phase.
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Figure 2.3: Averaged responses of lagged and nonlagged geniculate on-center
X-cells (B, F) and their respective main excitatory retinal input (A, E) to a
flashing central spot. The spot was on for 1 s and off for 1 s, as indicated by
the traces below A and E. (A, B) Response of a nonlagged cell (Xy) and of
the retinal ganglion cell (X-RGC) providing its main excitatory input. (C,
D) Expanded parts of the responses in A and B at flash onset and flash
offset; here thin lines show the RGC response, thick lines indicate the Xy-
response. (E-H) Response of a lagged cell (X) and of its main excitatory
retinal input (X-RGC). The bin width is 10 ms for the histograms of the
entire responses and 3 ms for the expansions. The number of sweeps was
57 for the Xy-cell and 72 for the Xy-cell. Figure adapted from Mastronarde
(1987a).

It turns out that lagged cells have a phase latency that is roughly 100 ms
larger than, and an absolute phase that lags about a quarter cycle behind
that of nonlagged cells (Saul & Humphrey, 1990); see Figure 2.5. Moreover,
for the amplitude transfer [cf. equation (1.3)] it is found that lagged cells
prefer lower temporal frequencies than nonlagged cells, although there is
substantial overlap (Saul & Humphrey, 1990).

Unlike the X- and Y-streams of processing, which originate in the retina,
the lagged and nonlagged types differentiate in the LGN. Physiological (Mas-
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Figure 2.4: Averaged responses of nonlagged (A, Xy, thick line) and lagged
(B, X, thick line) geniculate on-center X-cells and their respective main
excitatory retinal input (A and B, X-RGC, thin lines) to a moving light bar.
Upper and lower histograms show responses to opposite directions of motion.
Double arrowheads indicate the position of the central point of the receptive
fields, circles indicate the approximate size of the receptive-field centers. The
width of the bar was 0.5 degrees and is drawn to scale in the figure. The bar
was swept at 5 deg/s and 100 times for the Xy-cell, 102 times for the Xp-cell
in each direction. The bin width is 10 ms. Figure adapted from Mastronarde
(1987a).

tronarde, 1987b), pharmacological (Heggelund & Hartveit, 1990), and struc-
tural (Humphrey & Weller, 1988b) evidence suggests that rapid feedforward
inhibition via intrageniculate interneurons plays a decisive role in shaping
the lagged cells’ response. According to this view, when a retinal input spike
train arrives, feedforward inhibition initially prevents relay cells from firing.
After some delay, inhibition declines or excitation builds up giving way to
repolarization of the relay cell’s membrane potential. At this point there is
a low-threshold Ca?* spike triggered by the mechanism described in section
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Figure 2.5: Response phase of lagged (X/Yp), nonlagged (X/Yx), and par-
tially lagged (Xpr) cells as functions of stimulus’ temporal frequency. Positive
response phases indicate phase lag relative to the stimulus phase. Response
phases increase approximately linearly with frequency. Left: 4 typical cells.
Right: Summary for a sample of cells. Lines are drawn with average slope
[phase latency; Xp: 133 £ 4 ms (33); Xn: 63 £ 2 ms (77); Yr: 130 £ 14 ms
(4); Yn: 59 £+ 2 ms (30)] and offset at 0 Hz [absolute phase; Xp,: 0.096 £ 0.15
cycles (33); Xn: —0.116 £ 0.007 cycles (76); Yr: —0.004 £ 0.023 cycles (4);
Yn: —0.180 £ 0.010 cycles (27)] for each cell class [values given as mean +
standard error (sample size)]. Lagged and nonlagged cells are distinct, but X-
and Y-cells of the same type have similar response phases. Partially lagged
cells have response phases in between lagged and nonlagged cells; these cells
are very rare. The phase difference between lagged and nonlagged cells is ~
0.25 cycles at low frequencies and expands to = 0.5 cycles at 4 Hz. Figure
adapted from Saul & Humphrey (1990).

1.2. The result of this series of events would be a delayed firing that starts
with burst spikes. Burst spikes may also be seen in the high-activity tran-
sients just after the offset of a prolonged stimulus (Mastronarde, 1987b). We
will explore the proposed mechanism of generating lagged responses in more
detail below.

Some authors have additionally related differences in receptor types to
the lagged-nonlagged dichotomy, suggesting that lagged responses rely more
on NMDA receptors than nonlagged responses (Heggelund & Hartveit, 1990;
Hartveit & Heggelund, 1990). This difference, however, could not be con-
firmed by Kwon et al. (1991).

Feedforward inhibition is common in X-cells, where it is anatomically
concentrated in dendritic appendages called glomeruli (Sherman & Koch,
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X-relay
cell

Geniculate
interneuron

Retinal
afferent

Figure 2.6: Reconstruction of a glomerular zone in the A-laminae of the cat’s
LGN and triadic synaptic circuit. Left: The stem dendrites of an interneuron
and an X-relay cell are labeled “d”. They both emit fine processes that are
entangled with each other. The interneuron’s dendrite and its process are
marked by stippling, the relay cell’s dendrite and its eight processes are blank.
Arrows indicate dendrodendritic synapses from the interneuron to the relay
cell. The scale bar represents 1.0 um. Right: The synaptic triad that is
realized in the glomerulus. A retinal afferent synapses on the dendrites of
the relay cell and of the inhibitory geniculate interneuron, which in turn
contacts the same relay cell dendrite. All three types of synapses coexist in
close proximity in the glomerulus. Adapted from Hamos et al. (1985).

1990; Sherman & Guillery, 1996). In glomeruli, a retinal afferent synapses on
the dendrites of a relay cell and of an inhibitory geniculate interneuron, which
in turn contacts the same relay cell dendrite; see Figure 2.6. This synaptic
circuit is known as synaptic triad. Its compact realization in glomeruli is
possible because the synapse from the interneuron to the relay cell is located
on the dendrite of the interneuron in the immediate vicinity of the contact
from the retinal afferent. The synapse thus directly connects the dendrite of
the interneuron to the dendrite of the relay cell and is accordingly called a
dendrodendritic synapse. A single interneuron can in this way function as a
collection of independent, very localized, feedforward inhibitors without any
use of a central spike-generating mechanism at the cell’s soma (Cox et al.,
1998). In contrast to X-cells, glomeruli are rare on Y-cells.

Consistent with a dominant role of feedforward inhibition in the genera-
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tion of lagged responses, lagged X-cells comprise about 40 % of all X-relay
cells (Mastronarde, 1987a; Humphrey & Weller, 1988b), while lagged Y-cells
are rather rare, accounting for roughly 5 % of all Y-cells in the A-laminae of
the LGN (Saul & Humphrey, 1990; Mastronarde et al., 1991).

Layer 4B in cortical area 17 of the cat is the target of both lagged and non-
lagged geniculate X-cells (Saul & Humphrey, 1992a; Jagadeesh et al., 1997
Murthy et al., 1998). The first-order spatiotemporal RFs of its direction-
selective simple cells can routinely be interpreted as being composed of sub-
regions that receive geniculate inputs alternating between lagged and non-
lagged X-type (Saul & Humphrey, 1992a; Saul & Humphrey, 1992b; DeAn-
gelis et al., 1995; Jagadeesh et al., 1997; Murthy et al., 1998); see Figures 2.2
and 2.7. This situation seems to be a natural extension to the spatiotemporal
domain of the widely-accepted result that convergent and segregated genic-
ulate on- and off-inputs outline the spatial structure of the simple cells” RF's
(Reid & Alonso, 1995; Alonso et al., 1996; Ferster et al., 1996; Hirsch et al.,
1998), giving rise to basic tuning for spatial frequency and orientation. In
the spatiotemporal extension of this scenario, the gradual response latency
reduction (cf. Figure 2.2) and phase advance (cf. Figure 2.7) of successive
off-lagged, off-nonlagged, on-lagged, and on-nonlagged responses across the
RF creates a response maximum for a certain direction and speed of motion
of a properly oriented bar. This mechanism is just another implementation
of the basic structure of velocity-tuned systems sketched in Figure 2.1.

As pointed out in the previous subsection, the link between the first-order
spatiotemporal RF' structure and responses to moving stimuli is particularly
tight in the geniculate recipient layer 4B (Murthy et al., 1998). Lagged and
nonlagged inputs that converge, either directly or via other cortical neurons,
on simple cells are thus likely to shape the earliest level of cortical veloc-
ity selectivity (Saul & Humphrey, 1990; Saul & Humphrey, 1992a; Saul &
Humphrey, 1992b; Ferster et al., 1996; Jagadeesh et al., 1997; Wimbauer
et al., 1997a; Wimbauer et al., 1997b; Murthy et al., 1998). The study to
follow of variable tuning of simple cells for speed is based on this assumption.

2.2 A Model of the Primary Visual Pathway

Our goal was to investigate the visual pathway from the retinal ganglion cells
(RGCs) through the LGN up to cortical layer 4B as the stage where neu-
ronal signals converge to form the first and most primitive representation of
visual motion; cf. Figure 1.1 for a view of the human primary visual pathway.
Importantly, the model has to allow for inclusion of effects of cortical feed-
back, originating from cortical layer 6, on geniculate processing. No attempt
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Figure 2.7: First harmonic amplitudes and phases of responses at differ-
ent positions across the receptive field and for different stimulus frequen-
cies. Means and standard errors are shown. For many of the phase values,
standard errors are too small to be visible in the graphs. Top: Space-
time separable receptive field. The response phase is rather constant across
space, except for a jump of a half-cycle. This pattern is consistent with non-
lagged geniculate inputs of the on- and off-types. Such a receptive field is
not direction-selective; cf. Figure 2.2 C and D. Bottom: Space-time insep-
arable receptive field. There is a gradual increase in response phase across
space, especially at low temporal frequencies. This pattern is consistent with
a succession of geniculate inputs of the types off-nonlagged, off-lagged, on-
nonlagged, and on-lagged; cf. Figure 2.5. Such a receptive field produces the
strongest response for motion in the direction of decreasing response phase;
cf. Figure 2.2 E and F. Adapted from Saul & Humphrey (1992a).
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Figure 2.8: Network model of the pri-
mary visual pathway. Open/filled cir-
cles and arrow /bar heads indicate ex-

Layer 4 citatory/inhibitory neurons and their
respective synapses. A retinal gan-

glion cell (RGC) sends its axon to the

Layer 6 ‘ “ lateral geniculate nucleus (LGN) and

synapses excitatorily on a relay cell
(open circle) and on an intragenicu-
late interneuron (filled circle), which
in turn inhibits the same relay cell.
This synaptic circuit is called ‘synap-
tic triad’; cf. Figure 2.6. There is an
inhibitory feedback loop via the peri-
geniculate nucleus (PGN). The re-
lay cells’” output converges in cortical
layer 4. The influence of cortical feed-
RGC ‘ back, originating from cortical layer 6,
has been modeled as a variation of the
relay cells’ resting membrane poten-
tial by control of a K* leak current.

PGN

was made, however, to build into the model any of the intracortical process-
ing. Doing so would necessarily have entailed many additional assumptions,
many of them quite arguable, on the nature of intracortical circuits and neu-
ron types, while obscuring the robust effect that we are going to demonstrate.
The model is thus as follows.

2.2.1 Neuron and Network Models

As shown in Figure 2.8, retinal input reaches a GRC directly as excitation,
and indirectly via an intrageniculate interneuron as inhibition, thus estab-
lishing the typical triadic synaptic circuit found in the glomeruli of X-GRCs
(Sherman & Koch, 1990; Sherman & Guillery, 1996); cf. Figure 2.6. The tem-
poral difference between the two afferent pathways equals the delay of the
inhibitory synapse and has been taken to be 1.0 ms (Mastronarde, 1987b).
We have included feedback inhibition via the PGN (Lo & Sherman, 1994;
Sherman & Guillery, 1996) in the model; see Figure 2.8. Axonal plus synaptic
delays are 2.0 ms in both directions, i.e., from GRCs to PGN neurons and
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back.

For the GRCs we have employed the 12-channel model of Huguenard
& McCormick (1992) and McCormick & Huguenard (1992) of the cat relay
neuron. The neuron model includes a transient and a persistent Na™ current,
several voltage-gated K+ currents, a voltage- and Ca?"-gated K* current, a
low- and a high-threshold Ca?* current, a hyperpolarization-activated mixed
cation current, and Na®™ and K™ leak conductances. The model has been
adapted to 37 degrees Celsius. In appendix A we introduce the concepts of
biophysical neuron models. In appendix C we list all the ionic currents along
with their mathematical description that have been implemented in the GRC
model.

Intrageniculate interneurons and PGN cells, like GRCs, possess a complex
blend of ionic currents. They are, however, thought to be active mainly in a
tonic spiking mode during the awake state (Contreras et al., 1993; Pape et al.,
1994). For an efficient usage of computational resources and time we have
therefore modeled these neurons by the spike-response model (Gerstner & van
Hemmen, 1992; Gerstner & van Hemmen, 1994), which gives a reasonable
approximation to tonic spiking (Kistler et al., 1997). A definition of the spike-
response model is given in appendix B. Using the notation introduced there,
the parameters we have chosen for intrageniculate interneurons and PGN
cells are given in Table 2.1. The values lie within general physiological ranges.
The main difference between modeled intrageniculate and PGN cells is that
the former represent in fact isolated dendritic compartments (Cox et al.,
1998) (cf. subsection 2.1.2) that receive input by a single retinal afferent (see
subsection 2.2.5 below), while the latter represent neurons that are driven by
100 thalamic inputs each (see subsection 2.2.4 below). The amplitude Wy,
of responses to single input spikes has been adjusted accordingly.

There is evidence for transmission across dendrodendritic synapses be-
tween intrageniculate interneurons and GRCs without spikes (Cox et al.,
1998). This question, however, is irrelevant for the present model. For a
relay neuron, all that matters is the fact that an excitatory retinal input is
mostly followed by an inhibitory input (Bloomfield & Sherman, 1988).

It is known that both NMDA and non-NMDA receptors contribute to
retinogeniculate excitation to varying degrees, ranging from almost pure non-
NMDA to almost pure NMDA-mediated responses in individual GRCs of
both lagged and nonlagged varieties (Kwon et al., 1991). At least in lagged
cells, however, early responses and, hence, responses to the transient stim-
uli that will be considered here, seem to depend to a lesser degree on the
NMDA receptor type than late responses (Kwon et al., 1991). Since the es-
sential characteristics of lagged and nonlagged responses apparently do not
depend on the special properties of NMDA receptors — an assumption con-

32



2.2. A MODEL OF THE PRIMARY VISUAL PATHWAY

Intrageniculate interneurons
7 Wexc | Wref Texc Tref iTref

1.0 1.5 | 1.5 | 3.0 ms | 10.0 ms | 2.0 ms

PGN neurons
6 Wexc Wref Texc Tref Tref
depending on scenario | 0.1 | 1.0 | 3.0 ms | 10.0 ms | 2.0 ms

Table 2.1: Spike-response model parameters for intrageniculate interneurons
and neurons of the perigeniculate nucleus (PGN). See appendix B for an
explanation of the parameters. For PGN neurons the threshold # has been
varied for different scenarios of PGN-feedback inhibition and is given with
the results for the respective scenario in subsection 2.3.2. When comparing
Wexe for intrageniculate and PGN neurons, it is important to note that the
former represent in fact isolated dendritic compartments (Cox et al., 1998)
that receive input by a single retinal afferent (see Figure 2.6 and subsection
2.2.5), while the latter represent neurons that are driven by 100 thalamic
inputs each (see subsection 2.2.4).

firmed by our results (see subsection 2.3.1) — we have chosen the postsynaptic
conductances in GRCs to be entirely of the non-NMDA type.

The time course of postsynaptic conductance change in GRCs following
reception of an input spike at time ¢;, has been modeled by an alpha function,

t—tin t— tin
gsyn(t) = Gsynmax — eXp(l — - ) @(t — tin) , (22)
where © is the Heaviside function, i.e.,
1 fort¢ >0,

0 elsewhere. (2:3)

o(t) == {

A plot of ggyy is given in Figure 2.9. More generally, if input spikes arrive at
times t;, we assume a superposition
X t—t;

gsyn(t> = gsynmaxz
=1

t—1;
T

exp(l _ ) Ot—t),  (24)

which for the purpose of computer simulation is best described by the linear,
second-order differential equation

dgsyn 1 e
= ——(@syn+ —h, 2.
dt Tgy +T (2.5)
dh 1 s
e = ——h, synmax 5t_t2 . 2
= Bt G 200 1) (26)

=1

33



CHAPTER 2. DYNAMIC CORTICAL VELOCITY TUNING

Jeyn1 Figure 2.9: Time course
of postsynaptic conductance

0.8 change in modeled geniculate
06 relay cells following reception

of a single input spike at time
0.4 zero (alpha function). Multi-
ple input spikes produce a su-

0.2
perposition of such responses;

3 7] 5 3 T5 see equation (2.4). The pa-

t/t rameter 7 is the rise time of

the alpha function.

Here § denotes the Dirac-delta function. Its effect is to step up the auxiliary
variable A by gsynmax at the times ¢;. The synaptic current is

]syn = gsyn(t) (‘/;yn - V) ) (27)

where V' is the relay cell’s membrane potential and Vi, is the reversal po-
tential for the synaptic current. In the model, there is an excitatory and
an inhibitory synaptic current for relay cells; cf. Figure 2.8. For excitation,
the rise time 7 has been chosen to be 0.4 ms (Mukherjee & Kaplan, 1995),
for inhibition it is 0.8 ms. The latter value was estimated from the relative
durations of S potentials recorded at excitatory and inhibitory geniculate
synapses (Mastronarde, 1987b) and was found to reproduce the rise times
of inhibitory postsynaptic potentials recorded in relay cells following stim-
ulation of the optic chiasm (Bloomfield & Sherman, 1988). The reversal
potential Vg, is for excitation 0 mV, for inhibition —85.8 mV (Bal et al,,
1995). The effects of different values for the peak conductance gsynmax Of a
unary postsynaptic event will be investigated in subsection 2.3.1.

2.2.2 Lagged and Nonlagged Responses

It is important to verify that typical lagged and nonlagged responses can be
reproduced within the framework of our model. As will be described in detail
in subsection 2.3.1, we have found typical lagged responses for strong feed-
forward inhibition with weak feedforward excitation, in agreement with Mas-
tronarde (1987b), Humphrey & Weller (1988b), and Heggelund & Hartveit
(1990). On the other hand, typical nonlagged responses are produced by weak
feedforward inhibition with strong feedforward excitation. We have therefore
implemented lagged and nonlagged relay cells in the model by varying the rel-
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Figure 2.10: Arrangement in visual
space of the receptive field (RF) cen-
ters of the 100 lagged and 100 non-
lagged relay cells comprised in the
model of the lateral geniculate nu-
cleus. These relay cells are envisaged
to project onto the same cortical sim-
ple cell and create an on- or off-region
of the simple cell’s RF. In the simula-
tions, the diameter of a single lagged
or nonlagged RF center is 0.5 degrees.
Results for rescaled versions of this
geometry can be derived straightfor-
wardly from the simulations; see sub-
Lagged Nonlagged section 2.4.1. The bar and arrow on

the left indicate preferred orientation

and direction of motion, respectively.

ative strengths of feedforward excitation and feedforward inhibition exerted
on a relay cell in the synaptic triad; cf. Figures 2.6 and 2.8.

2.2.3 Spatial Layout of Receptive Fields

The model system comprises 100 lagged and 100 nonlagged relay neurons.
Their RF centers are 0.5 degrees in diameter (Cleland et al., 1979) and
are spatially arranged in a lagged and a nonlagged cluster subtending 0.7
degrees each and displaced by 0.45 degrees; see Figure 2.10. More precisely,
the central points of the RFs of lagged and nonlagged cells are uniformly
distributed within two separate intervals of 0.2 degrees each along a certain
axis, which will be the axis of bar motion during stimulation; cf. subsection
2.2.5. The RFs’ offsets in the direction orthogonal to this axis, i.e., in the
direction that defines the preferred orientation of the bulk RF, are irrelevant
as long as the stimulus bar is long enough to pass through all RFs of the
relay cells in one sweep. In fact, the bar used in the simulations is much
longer than typical RFs of simple cells; see subsection 2.2.5.

The layout of geniculate inputs shown in Figure 2.10 matches the basic
structure of a single on- or off-region in an RF of a directional simple cell
in cortical layer 4B onto which the GRCs are envisaged to project (Saul
& Humphrey, 1992a; Saul & Humphrey, 1992b; DeAngelis et al., 1995; Ja-

35



CHAPTER 2. DYNAMIC CORTICAL VELOCITY TUNING

gadeesh et al., 1997; Murthy et al., 1998); cf. Figure 2.8. To complete the
geniculate input to an RF of this type, this lagged-nonlagged unit would have
to be repeated with alternating on-off-polarity and a spatial offset that would
determine the simple cell’s preference for some spatial frequency; cf. Figures
2.2 and 2.7. Since we are not concerned here with effects of spatial frequency
(see remark at the end of subsection 2.1.1), omission of the other on/off-
regions does not affect our conclusions. Results for rescaled RF geometries
can be derived straightforwardly from the simulations; see subsection 2.4.1.

The number of 200 geniculate cells contributing to a simple cell’s RF
has been estimated roughly from Ahmed et al. (1994). Ouly its order of
magnitude matters.

2.2.4 Geniculate-Perigeniculate Loops

Connections between PGN neurons and GRCs are all to all within, and
separate for the lagged and nonlagged populations. This synaptic separation
of the lagged and the nonlagged pathways was implemented solely to allow
for independent simulation of the two. Although an inhibitory coupling of
lagged and nonlagged cells could in reality cause some anti-correlation of their
firing, there is no evidence for anti-correlation of GRCs. Any such effects thus
seem negligible. In any case, they would not affect our conclusions.

Effectively, the LGN-PGN interaction can be simulated by a lagged and
a nonlagged loop that each includes only one PGN neuron of the spike-
response-model type, representing an arbitrary number of real PGN neu-
rons; cf. appendix B. The peak synaptic conductance for the inhibitory
synapse of the two effective PGN neurons on their geniculate targets are
gsynmax = 0.054S, a value in between what we have assumed for the feed-
forward inhibition received by lagged and nonlagged neurons; see results in
subsection 2.3.1.

2.2.5 Retinal Input

The input to GRCs and intrageniculate interneurons has been modeled as a
set of Poisson spike trains with time-varying firing rates. For investigation of
the temporal transfer characteristics of lagged and nonlagged neurons, these
rates varied sinusoidally between 0 and 100 spikes/s (amplitude 50 spikes/s,
DC component 50 spikes/s) at a range of temporal frequencies. Before any
responses to sinusoidal stimuli have been collected, the stimuli were presented
for 1 second, that is, depending on the frequency, between 1 and 11 cycles.
We have recorded the response for the following 100 seconds of stimulus
presentation.
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Figure 2.11: Time-dependent rate re-
sponse to a moving bar of a retinal
ganglion cell; cf. equation (2.8). This
firing rate has been used in the sim-
ulations to generate input spikes to
geniculate relay cells by an inhomo-
geneous Poisson process. The peak
rate 7, and the width of the response
peak have been adjusted for different
bar speeds to fit the data of Cleland &
Harding (1983). The background rate
ro is taken to be 38 spikes/s (Mas-
tronarde, 1987b).

For studying the responses to moving bars, rates have been fitted to
recordings from retinal ganglion cells in response to moving, thin (0.1 de-
grees), long (10 degrees) bars (Cleland & Harding, 1983). The fit for a single
retinal ganglion cell is of the form

r(t) = , (2.8)

(ry +70) exp [— (%ﬂ —

where 7, is the peak rate, ry is the background rate, and w is a width pa-
rameter; see Figure 2.11. For the different speeds of bar motion used in the
simulations, r, and w have been chosen to fit the data of Cleland & Harding
(1983) while ry = 38 spikes/s (Mastronarde, 1987b). Each pair of interneu-
ron and GRC in a synaptic triad receive input from one retinal ganglion
cell (Mastronarde, 1987b). Different interneuron-GRC pairs received retinal
input from statistically independent sources; cf. Figure 2.8.

We have studied bar responses of single lagged and nonlagged neurons
as well as of the entire population of 100 lagged and 100 nonlagged neurons
in the geniculate model. Accordingly, bars were moved across single RF's of
relay cells or the whole bulk RF in the preferred and anti-preferred directions;
see Figure 2.10. Bar motion always started 3w [cf. equation (2.8)] before it
hit the first RF center, and stopped 3 w after it had passed the last RF center.
There was a 1 second interval of stimulation with the background activity
(38 spikes/s) between bar sweeps.
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2.2.6 Cortical Feedback

Cortical feedback to the A-laminae of the LGN, arising mainly from layer 6
of area 17 (Sherman, 1996; Sherman & Guillery, 1996), can locally modulate
the response mode (cf. section 1.2) of relay cells by shifting their membrane
potentials on a time scale that is long as compared to retinal inputs. This
may occur directly through the action of metabotropic glutamate and NMDA
receptors (McCormick & von Krosigk, 1992; Godwin et al., 1996; Sherman,
1996; Sherman & Guillery, 1996; von Krosigk et al., 1999) and indirectly
via the PGN or geniculate interneurons by activation of GABAg receptors
of relay cells (Crunelli & Leresche, 1991; Sherman & Guillery, 1996; von
Krosigk et al., 1999).

Metabotropic glutamate receptors effect a closing of K* leak channels and
a membrane depolarization, while GABAg receptors effect an opening of K+
leak channels and a membrane hyperpolarization. Accordingly, we have in-
corporated the influence of cortical feedback to the thalamus by varying the
K™ leak conductance ggeax 0f GRCs [cf. equation (C.45) in appendix CJ; see
Figure 2.8. The resulting stationary membrane potential in the absence of
any retinal input will be called resting membrane potential in this chapter.
All GRCs, lagged and nonlagged, have been assigned the same resting mem-
brane potential; here we assume a uniform action of cortical feedback on the
scale of single RFs in area 17. By varying the resting membrane potential
we investigate a strictly modulatory role of corticogeniculate feedback, as
opposed to the retinal inputs that drive relay cells to fire; cf. Sherman &
Guillery (1996), Crick & Koch (1998), and section 1.1.

For every single stimulus presentation (cf. subsection 2.2.5) we have kept
the KT leak conductance constant. This is justified by the slow action,
compared to typical passage times of local stimulus features through RFs,
of the metabotropic receptors, ranging from hundreds of milliseconds for
GABAG to seconds for metabotropic glutamate receptors (von Krosigk et al.,
1999). Nonetheless, it is clear that dynamics in the corticogeniculate pathway
may produce effects for slow-moving stimuli that we here cannot account for.

The PGN, and more generally the thalamic reticular nucleus, imple-
ments both an indirect corticothalamic feedback pathway and a disynaptic
inhibitory feedback loop to relay cells (Lo & Sherman, 1994; Sherman, 1996;
Sherman & Guillery, 1996). This double role suggests possible interactions
between the two functions; see Figure 2.12. Depending on whether or not
individual PGN neurons engage in both types of circuitry and on the connec-
tions between different PGN neurons, the strength of the disynaptic feedback
inhibition exerted by PGN neurons on GRCs may be modulated by cortical
feedback. The efficiency of the LGN-PGN loop may thus covary with the
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From cortex Figure 2.12: Possible interaction between
the corticogeniculate pathway and the in-
hibitory feedback loop from the perigenic-
ulate nucleus (PGN) back to the lateral
geniculate nucleus (LGN). Same conven-
tions as in Figure 2.8. At a higher level
of cortical input, PGN neurons become
more active or more excitable. More ac-
tive PGN neurons shift LGN relay neu-
rons to a more hyperpolarized level, while
more excitable PGN neurons in the feed-
back loop increase the loop’s efficiency.

PGN

LGN

GRCs’ resting membrane potential.

Since cortical feedback to the thalamus and reticular nucleus is exclu-
sively excitatory, stronger feedback makes PGN neurons more active or more
excitable. More active PGN neurons hyperpolarize LGN relay cells, estab-
lishing an indirect inhibitory pathway from the cortex to the LGN. At the
same time, more excitable PGN neurons that are part of a LGN-PGN-LGN
synaptic loop give rise to more efficient feedback inhibition of GRCs; cf.
Figure 2.12. One may speculate, therefore, that a lower GRC membrane
potential correlates with a more efficient PGN-feedback inhibition.

The conclusion on the sign of correlation between GRC membrane po-
tential and efficiency of PGN-feedback inhibition remains valid even if intra-
PGN inhibition is taken into account, as long as cortical input and intra-PGN
connections are assumed nondiscriminatory between neurons that do and
neurons that do not involve in LGN-PGN loops. We, therefore, concentrate
on investigating the effects of such a correlation.

In the model, different levels of PGN excitability are realized by adjust-
ing the firing threshold of PGN neurons. Lower thresholds simulate more
excitable neurons and, hence, implement more efficient feedback inhibition;
cf. appendix B.

Due to the immense simulation times involved it has been impossible
to systematically scan a certain parameter region of LGN-PGN interaction.
Rather, we had to focus on a few interesting scenarios. The following sce-
narios of LGN-PGN interaction will be compared: no PGN feedback, three
scenarios of PGN feedback increasing with GRC hyperpolarization, and con-
stant PGN feedback. Our primary concern will be to evaluate the different
scenarios for their potential to generate input to cortical neurons that is
directionally biased and tuned for speed, with a significant range of speed
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preferences realized by cortical control.

2.2.7 Data Analysis

We collected spike times with 0.1 ms resolution. Spikes of single relay neurons
in response to moving bars were counted in bins of 5 ms, a timescale relevant
to postsynaptic integration, for variable synaptic excitatory and inhibitory
input strengths. The bin counts have been averaged over 100 bar sweeps at
each velocity and synaptic setting.

Spikes of single lagged and nonlagged neurons in response to sinusoidal
stimulation with variable frequency f were counted in a time window of 5 ms
shifted by steps of 1 ms. The spike counts were averaged over all cycles of the
stimulus presented within 100 seconds of stimulation. For the resulting spike-
count functions (of time within one period of input oscillation) we determined
the amplitude G;(f) and the phase 1 (f) of their first Fourier component;
cf. equations (1.1) and (1.2). With the amplitude F} (= 50 spikes/s; see
subsection 2.2.5) and the phase ¢; of the sinusoidal input rate, we have
calculated the amplitude-transfer function a(f) = G(f)/F; and the phase-
transfer function p(f) = ¢1 —11(f), i.e., negative phase transfer means phase
lead over the input; cf. equations (1.3) and (1.4).

For the investigation of velocity tuning, spikes of all 100 lagged /nonlagged
relay cells were pooled. For each velocity v of bar motion tested, we calculated
the total lagged /nonlagged response rates rj(v,t)/ry(v,t) as spike counts in
5 ms windows shifted by steps of 1 ms, i.e., t = 1,2,... ms. The velocity
tuning of the pooled lagged /nonlagged peak rate per neuron is

Ry(v) = ﬁ tg[lt?,ii} re(v,t), ¢=1Lnl, (2.9)
where the times t; and t; are chosen such that all of the response to a bar
sweep lies in the interval [t;, t¢].

We are primarily interested in the total geniculate input to a cortical
simple cell onto which the GRCs are envisaged to project. To this end, we
shifted lagged spikes by 2 ms to later times in order to account for the fact
that the lagged cells’ conduction times to cortex are slightly longer than those
of the nonlagged cells (Mastronarde, 1987a; Humphrey & Weller, 1988a).
Furthermore, although lagged responses in the LGN tend to be weaker than
nonlagged responses (Mastronarde, 1987a; Humphrey & Weller, 1988a; Saul
& Humphrey, 1990), they appear to be about equally effective in driving
cortical simple cells (Saul & Humphrey, 1992a). The reason for this may lie
in more efficient or numerous synapses of lagged cells than of nonlagged cells
on cortical simple cells. In any case, it is beyond the scope of this work.
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For the present study, we simply introduce a relative weight p; > 1 of the
lagged spikes with respect to the nonlagged spikes. Using this weight we have
calculated the velocity tuning of the effective geniculate input to a cortical

cell,
1

R(v) = 00 2%, [or(v,t —2ms) + 1y (v, t)] . (2.10)
The peak input rate R(v) per lagged-nonlagged pair is correlated with simple-
cell activity because postsynaptic potentials are summed almost linearly in
simple cells (Jagadeesh et al., 1993; Kontsevich, 1995; Jagadeesh et al., 1997).

Means and standard errors have been estimated from a sample of 30 bar
sweeps at each bar velocity. We have interpolated the sample-mean tuning
curves (R(v)) with second-order polynomials to determine the preferred ve-
locities as the mazima of the interpolated functions (R(v)). One quantity of
particular interest is the range of preferred velocities that can be realized by
cortical control, that is, by varying the GRCs’ resting membrane potential.

The relative weight p; in equation (2.10) is determined for different sce-
narios of PGN-feedback inhibition so as to mazimize the range of preferred
velocities at fixed p;. In this way we obtain a measure of the influence of the
different PGN scenarios on the lagged-nonlagged activity balance. A value
of p; that is close to one means that lagged and nonlagged responses arrive
at the cortex in a near-optimal balance, while a value much larger than one
implies that cortical synapses have to compensate a lot of nonlagged domi-
nance for optimal control over speed tuning. Moreover, the maximal range of
preferred velocities that can be achieved with a certain PGN scenario quanti-
fies the fitness of that PGN scenario for the hypothetical function of dynamic
velocity tuning.

The geniculate input rate R(v) to a cortical neuron depends on (i) the
magnitude of the pooled lagged and nonlagged response peaks, Rj(v) and
Rui(v), respectively, and (ii) their relative timing. To differentiate between
these two factors we have determined the times t;(v) and t,(v) of the maxima
of the lagged and nonlagged response rates, respectively,

= =1nl 2.11

te(v) = arg trer[ltii] ro(v,t), ¢=1nl, (2.11)

and calculated the peak-time differences t,(v) — t;(v) as a function of the
bar velocity v.

The times of the lagged /nonlagged response maxima relative to the time
when the stimulus bar passes the center of the lagged /nonlagged RF clusters?

2Retinogeniculate transmission delays are set to zero in the model. Such delays would
merely result in a temporal shift of the input spikes to the LGN and, hence, of all subse-
quent dynamics.
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(cf. Figure 2.10) are denoted by T)(v)/Tu(v).

2.2.8 Numerics

The model is described by a high-dimensional system of nonlinear, coupled,
stochastic differential equations; cf. appendices A, B, and C. In fact, there are
23 equations per thalamic relay neuron, and 3 equations per spike-response
neuron. The lagged and nonlagged pathways may be solved independently,
resulting in two systems of far more than 2000 coupled equations each. The
stochastic drive of the system is delivered by the Poissonian spike trains
that model the retinal input applied to the excitatory synapses of the relay
cells, expressed as a sum of delta functions in equation (2.6), and to the
intrathalamic interneurons; cf. Figure 2.8 and subsection 2.2.5. Of course,
there is no way of treating this system analytically.

In the computer simulations spikes were detected and transmitted be-
tween neurons with a temporal resolution of 0.1 ms. As is explained in ap-
pendix B, the spike-response neurons produce a spike when their membrane
potential rises above a certain threshold; cf. Table 2.1. In the GRC model, on
the other hand, spikes arise from the differential equations. For the detection
of spikes, however, a threshold criterion for the GRCs’ membrane potential
has to be defined. We have set this threshold at —30 mV. At this voltage the
Na*t channel is already activated and the Na® current invariably produces a
spike?; cf. Figure A.2 in appendix A and equation (C.1) in appendix C.

For numerical integration of the GRCs’ dynamics we used an adaptive
fifth-order Runge-Kutta algorithm?. The maximal time step was 0.02 ms
and was scaled down to satisfy upper bounds on the estimated error per time
step. Increasing or decreasing those bounds by a factor of 10 had negligible
effects on the time course of the membrane potential of a GRC, and no effect
on spike timing within the temporal resolution of 0.1 ms we used for detection
and transmission. The dynamics of spike-response neurons has been solved
by exact integrals.

Each simulation started with a 3 second period without any stimulus
to allow the GRCs’ dynamics to converge on its stationary (resting) state.
Simulations were mostly run on an IBM SP2 parallel computer to simulate
all the bar sweeps needed for a good statistics in parallel.

3 Alternatively, a threshold criterion may be defined for the activation gate of Ixa.
4Note that, because of discontinuities in the system of differential equations (cf. ap-
pendix C), more sophisticated and faster methods of integration are not safely applicable.
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2.3 Results

We first address the response properties of single relay neurons in the model,
and then turn to the total geniculate input to a cortical neuron.

2.3.1 Lagged and Nonlagged Relay Neurons

We have checked whether both lagged- and nonlagged-type responses could
be reproduced within our model by simply varying the synaptic strengths of
feedforward excitation and feedforward inhibition of relay neurons; see Fig-
ure 2.8. Varying the peak postsynaptic conductances gsynmax [cf. equation
(2.4)] for excitation and inhibition and stimulating with a bar moving at 4
deg/s we found a lagged-nonlagged transition that is analogous to a first-
order phase transition in response timing; see Figure 2.13 for an example
at a resting membrane potential of —65 mV. At strong excitation and weak
inhibition there is a response peak with zero delay relative to the input peak.
As the excitation is reduced and the inhibition increased, this nonlagged peak
shrinks while a lagged peak develops. The latter invariably has a delay of
roughly 100 ms relative to the input peak, a value consistent with experi-
mental data (Mastronarde, 1987a); cf. Figure 2.4. At strong inhibition and
weak excitation the lagged peak is the dominant part of the response.

We have also checked the dependence of relay-cell responses upon their
resting membrane potential. The peak postsynaptic conductances gsynmax for
the lagged cell have now been fixed at 0.0125 uS for excitation and at 0.25
1S for inhibition; for the nonlagged cell they have been fixed at 0.05 uS for
excitation and at 0.0125 pS for inhibition; cf. Figure 2.13. In Figure 2.14
we show the bar response (4 deg/s) and the temporal transfer of amplitude
and phase of a lagged and a nonlagged neuron for the resting membrane
potentials —72 mV and —61 mV. Again, the response data agree well with
experiments (Mastronarde, 1987a; Saul & Humphrey, 1990; Lu et al., 1992;
Guido et al., 1992; Mukherjee & Kaplan, 1995). They are to be compared
to the experimental data shown in Figures 1.6, 2.4, and 2.5. Also compare
the nonlagged bar responses to the grating responses shown in Figure 1.5.
Note that Figure 2.5 does not show the phase-transfer functions of lagged
and nonlagged neurons, but rather the phases of their output rates, i.e., not
with the phases of their retinal inputs subtracted. However, since lagged
and nonlagged neurons receive the same type of retinal input, the phase
difference between lagged and nonlagged outputs shown in Figure 2.5 should
be comparable to the difference in their phase-transfer functions displayed
in the right column of Figure 2.14. In particular, the lagged cell’s response
shows a phase lag relative to the input that increases with frequency; the
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Figure 2.13: Dependence of moving-bar response of single modeled relay neu-
rons upon the strengths of feedforward excitation and feedforward inhibition.
In each plot the horizontal axis spans 750 ms; the vertical axis indicates the
time of the retinal input peak and spans 100 spikes/s. Across the whole ar-
ray of plots the peak postsynaptic conductances gsynmax (equation 2.4) vary
for excitation horizontally from 0 to 0.05 uS, and for inhibition vertically
from 0 to 0.25 uS. The regions of lagged- and nonlagged-type responses in
this parameter space are at low excitation with high inhibition and at high
excitation with low inhibition, respectively. The resting membrane potential
is —65 mV. Responses are averaged over 100 bar sweeps.
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Figure 2.14: Dependence of moving-bar response and temporal transfer
function of single modeled relay neurons upon their resting membrane po-
tential. Typical nonlagged responses (top row, gsynmax = 0.05uS for ex-
citation and 0.0125 uS for inhibition) and lagged responses (bottom row,
Gsynmax = 0.0125uS for excitation and 0.25 S for inhibition; cf. Figure 2.13)
have been reproduced at the two resting membrane potentials —72 mV (solid
lines) and —61 mV (dashed lines). For the bar responses (leftmost column;
averaged over 100 bar sweeps) the time of the retinal input peak has been
set to zero. As the membrane is hyperpolarized, the nonlagged bar-response
peak shifts to earlier times. Conversely, the lagged bar response shifts to
later times. The changes in bar-response timing are also reflected in cor-
responding changes in the phase-transfer functions (rightmost column; note
the different scales on the “cycles” axes for nonlagged and lagged cells).

nonlagged cell goes through a transition from a low-pass and in-phase relay
mode to a band-pass and phase-lead (at frequencies < 8 Hz) relay mode
as the membrane hyperpolarizes. The former corresponds to the tonic, the
latter to the burst relay mode. Note that the slope of the phase-transfer
function of lagged cells, that is, their phase latency (cf. subsection 2.1.2), is
roughly twice the slope of the nonlagged phase transfer in the burst mode.

Remarkably, as the resting membrane potential is varied, the timing of
the bar response shifts in opposite directions for lagged and nonlagged cells;
cf. Figure 2.14 left column. Increasing hyperpolarization shifts the lagged
response peak to later times, while the nonlagged response peak moves to
earlier times. In view of what we have reported on relay modes and lagged
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Figure 2.15: Transient and low-
threshold Ca?' current It (cf. ap-
pendix C) associated with the bar
stimulus scenarios shown in Figure
2.14 leftmost column (averaged over
100 bar sweeps). High It indicates
burst spikes mediated by underlying
Ca?" spikes; cf. section 1.2. For the
nonlagged neuron at a resting mem-
brane potential of —61 mV It is al-
ways small and does not contribute to
the response. In the remaining cases
the timing of the response shown in
the leftmost column of Figure 2.14
can be seen to be largely determined
by [T-

Nonlagged
2 &

—-200 0 200 ms

~200 0 200 ms

I+ bar response

—— 2mV e -61 mV

cells in section 1.2 and subsection 2.1.2, respectively, it seems likely that the
low-threshold Ca?* current It [cf. Figure A.3 in appendix A and equations
(C.29) through (C.33) in appendix C] is in part responsible for the GRCs’
response timing. In Figure 2.15 we show simulated traces of It for the
moving-bar scenarios. For nonlagged neurons, the current is insignificant
at —61 mV, but exhibits a pronounced peak at the start of the response
to the bar at —72 mV. The peak of It confirms the nature of the early
response component seen in Figure 2.14 top left column as Ca?*-mediated
burst spikes (cf. section 1.2), in agreement with Lu et al. (1992), Guido et al.
(1992), and Mukherjee & Kaplan (1995). For lagged neurons, on the other
hand, we see that the timing of the It peak faithfully reflects the timing of
the response peak at both resting membrane potentials. In fact, the profile
of the It traces resembles the one of the spike rates, indicating that the
Ca?" current promotes firing throughout the transient responses simulated
here. This result is consistent with a hypothesis by Mastronarde (1987b).
We discuss the significance of burst spikes for the timing effect in subsection
2.4.2.

The reason for the opposite shifts of lagged and nonlagged response tim-
ing, then, lies in the interaction of the low-threshold Ca?* current I+ with the
different levels of inhibition received by lagged and nonlagged neurons. With
only weak feedforward inhibition, nonlagged neurons respond to retinal input
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with immediate depolarization, eventually reaching the activation threshold
for the Ca?* current. If the Ca?* current is in the de-inactivated state, it will
boost depolarization and give rise to an early burst component of the visual
response. The lower the resting membrane potential, the more de-inactivated
and, hence, stronger the Ca?* current will be, and the stronger the early burst
relative to the late tonic response component. Lagged neurons, on the other
hand, receive strong feedforward inhibition and, hence, initially respond to
retinal input with hyperpolarization. Repolarization occurs when inhibition
gets weaker. This may result either from cessation of retinal input or from
adaptation, i.e., ‘fatigue’; of the inhibitory input to GRCs; cf. Figure 2.8.
With the Ca?* current It being de-inactivated by the excursion of the mem-
brane potential to low values, lagged spiking starts with burst spikes as soon
as the voltage reaches the Ca?"-activation threshold. This will take longer,
if the resting membrane potential is lower, leading to the shift in response
timing with membrane polarization observed here.

Adaptation of inhibition is implemented in the present model by the
refractoriness of the spike-response neurons that represent the inhibitory in-
terneurons; see appendix B. The refractory potential saturates, however, on
a timescale much shorter than the delay of the lagged response of roughly
100 ms; cf. Table 2.1 and Figure 2.14. Its role in generating a response delay
for lagged neurons in our model can thus be only very limited.

It is important to note that the lagged on-response is different from a
nonlagged off-response. A nonlagged off-response produces a phase lag of half
a cycle relative to the nonlagged on-response at all frequencies. The right
column of Figure 2.14 shows that this is not true for the simulated lagged
response. Rather, the phase-transfer function has a significantly higher slope,
i.e., a higher phase latency (cf. subsection 2.1.2), for the lagged response
than for the nonlagged response at both resting membrane potentials. In the
next subsection we will moreover show that lagged cells produce a delay of
moving-bar responses that does not vanish at high speeds. This fixed delay
component must be largely determined by the internal neuronal dynamics of
the ion currents, notably of I, that follows hyperpolarization.

For the remaining simulations of this chapter we have always set the peak
postsynaptic conductances for lagged and nonlagged neurons to the values
used for the data shown in Figures 2.14 and 2.15.

2.3.2 Total Geniculate Input to the Cortex

Lagged and nonlagged responses have to be combined so as to yield a velocity-
selective input to a cortical neuron; cf. Figure 2.1. We are here interested
in the potential of convergent lagged and nonlagged responses to produce
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direction selectivity and speed tuning that varies with the GRCs” membrane
polarization under cortical control.

As explained in subsection 2.2.1, we compare different scenarios of LGN-
PGN interaction. The efficiency of the inhibitory PGN-feedback loop is var-
ied by adjusting the firing threshold of PGN neurons. We here express firing
thresholds in PGN neurons in units of the amplitudes of unary excitatory
postsynaptic potentials weyc, i.e., the synaptic potentials initiated in PGN
cells by a single geniculate input spike; cf. appendix B. When interpreting
these threshold values, one has to take into account that each PGN neuron
receives input from 100 geniculate relay neurons.

For brevity, the scenarios are denoted by the sequence of pairs of PGN-
threshold values (6}, 6,,) for the lagged and nonlagged feedback loop, respec-
tively, at the GRC resting membrane potentials —76 mV, —72 mV, —66.5
mV, and —61 mV. No PGN feedback is labeled by a threshold value of oc.
Note, however, that a finite value of ~ 100 has virtually the same effect as
no PGN;, since it requires all 100 presynaptic GRCs to fire at average once
within a time window shorter than 10 ms (with a rise time of postsynaptic
potentials of 3 ms; see Table 2.1) in order to produce an output spike in PGN
neurons. This event his highly unlikely, given the typical response rates of
relay cells (cf. Figure 2.14 left column) and the fact that the 100 GRCs of
lagged and nonlagged types reach their peak rate at slightly different times;
cf. Figure 2.10.

PGN Thresholds (0o, 00), (00, 00), (00, 00), (00, 00)

For different values of the resting membrane potential, Figure 2.16 shows
at the top the times T, and T, of the peak of the lagged and nonlagged
population responses to a moving bar. With the exception of the highest
speed tested, the lagged population responds between roughly 50 and 200
ms after the bar has passed the center of the cluster. At the highest speed
(2% ~ 22.6 deg/s) and resting membrane potentials of —72 mV and —76
mV the lagged response is so weak that a peak is hardly discernible; see the
center of Figure 2.16 first column.

The response time T, is dependent on the bar speed and on the cells’
resting membrane potential. The dependence on bar speed can easily be un-
derstood as being the result of the bar traversing the lagged RFs at different
speed in different time plus a constant delay. The presence of a fixed delay
component is in agreement with Mastronarde (1987a). The dependence on
the resting membrane potential is the same effect as the one already seen in
Figure 2.14 for the single-neuron response. The lagged population response
shifts to later times as the membrane is hyperpolarized.
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Figure 2.16: Numerical simulation of geniculate moving-bar response and in-
put to cortex for the scenario without perigeniculate (PGN) feedback. At the
top of the figure the peak response times of the lagged population (T)) and
of the nonlagged population (T,;) are plotted as functions of the bar velocity
for the resting membrane potentials indicated. The time of maximal retinal
input to the center of the lagged and nonlagged populations, respectively,
has been set to zero.

49



CHAPTER 2. DYNAMIC CORTICAL VELOCITY TUNING

Figure 2.16: The array of plots in the center of the figure shows in the
columns from left to right the peak response rate of the lagged population
(Ry), of the nonlagged population (Ry;), their peak-time difference (tn — t)
for the preferred direction, and the peak of the total geniculate input (R) to
a cortical cell for the preferred (solid lines) and nonpreferred (dotted lines)
direction of motion. At the bottom of the figure we present second-order
polynomial fits to the normalized means of the total geniculate input rates
R. As the membrane is hyperpolarized, the total geniculate input to a cortical
cell and, hence, that cortical cell prefer progressively lower speeds. In this
scenario, the dynamic range of the preferred speeds is 1.17 octaves at a
lagged weight of py = 5.5. The horizontal axes show the logarithm (base 2)
of speed in all graphs. The bars in the graphs are standard errors. Means
and standard errors are estimated from 30 bar sweeps.

The nonlagged population response time T,; depends as well on speed
and membrane potential. With the exception of the lowest speed tested
(2°% =~ 1.4 deg/s), where response peaks are lowest and hardly discernible
at —72 mV (see the center of Figure 2.16 second column), the nonlagged
population responds before or when the bar passes the center of the cluster.
The population response peak is earlier at more hyperpolarized membrane
potentials, as already seen in Figure 2.14 for the single-neuron response.
Unlike for the lagged neurons, however, the difference between input and
output peak timing vanishes at high speeds, i.e., there is no constant offset
in peak timing for nonlagged cells, regardless of their membrane potential.

It is worth noting that in a population of nonlagged neurons that receive
retinal input at slightly different times, like the 100 nonlagged neurons with
spatially scattered RFs in the present simulation (cf. Figure 2.10), the varying
relative strengths of early burst and late tonic response components leads to
a more or less gradual time shift of the population response maximum with
membrane polarization (cf. Figures 2.16 through 2.20 top right), despite the
fact that the timing of burst and tonic response components in every single
neuron is rather invariable.

At the center of Figure 2.16 we show for the four geniculate resting mem-
brane potentials tested in the columns from left to right the velocity tuning
of the lagged population (R)), of the nonlagged population (Ry;), the peak-
time differences (t, —t;) of their responses for the preferred direction, and the
tuning of the total geniculate input (R) to a cortical cell for the preferred and
nonpreferred direction of motion. As in vivo, the lagged cells prefer lower
velocities and have lower peak firing rates than the nonlagged cells (Mas-
tronarde, 1987a; Humphrey & Weller, 1988a; Saul & Humphrey, 1990). The
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key observation, however, is that the maximum of the total geniculate input
rate to a cortical neuron shifts to lower velocities as the membrane potential
hyperpolarizes; see the center of Figure 2.16 right column.

At the bottom of Figure 2.16 we show second-order polynomial fits to the
normalized means of total geniculate input rates for the same values of the
resting membrane potential. The dynamic range of the speeds preferred by
the geniculate input to a cortical neuron, and hence by that cortical neuron,
is 1.17 octaves at a lagged weight of p = 5.5; cf. subsection 2.2.7 for any
details concerning the data analysis.

Perhaps with the exception of the case —76 mV, the total geniculate
input rate R assumes its maximum at a velocity of bar motion where the peak
discharges of the lagged and nonlagged neurons coincide, i.e., where t,; —t; ~
0. The shift of the maximum with hyperpolarization to lower velocities is
produced by a corresponding shift of the peak-time differences t,; — t; and of
the lagged tuning R;, while the maximum of the nonlagged tuning R remains
essentially unchanged. The shift of the peak-time differences, in turn, is a
reflection of the opposite shifts in bar-response timing of the lagged and
nonlagged populations shown at the top of Figure 2.16. At the lowest and
highest bar speed tested the response timing is often not very reliable; cf.
2.16 top. We therefore have generally discarded the values of the peak-time
differences at the lowest and highest speed.

Not surprisingly, the total geniculate input rate R is higher for the di-
rection of bar motion where t,; — t; assumes lower values. In other words,
the direction preferred is the one where the lagged cells receive their retinal
input before the nonlagged cells; cf. Figure 2.10 and the center of Figure
2.16 rightmost column. The rather high value of the lagged weight p; = 5.5,
however, results in a dominance of the lagged contribution to the total genic-
ulate input at high membrane potentials. Dominance of either component
attenuates the effect of the relative timing of both components on the total
geniculate input rate R and, hence, the directional bias of geniculate input
to the cortex. The input to a cortical neuron is thus less sensitive to the di-
rection of motion at more depolarized geniculate levels, if one considers the
ratios of response rates in both directions; cf. Figure 2.16 rightmost column.

As explained in subsection 2.2.7; p; is determined so as to maximize the
range of preferred speeds that are realized by variations in geniculate resting
membrane potential. The high value of p; results from the dramatic drop in
response amplitude of lagged cells with hyperpolarization; cf. center of Figure
2.16 first column. To obtain a broad range of tuning the nonlagged dominance
at low membrane potentials has to be compensated, e.g., by a high value of p;.
In the following we explore a potential role of PGN feedback in moderating
lagged-nonlagged differences in response amplitude. In particular, in the
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constant-PGN-feedback scenario we set the firing threshold lower for the
PGN neurons feeding back onto nonlagged cells than for those feeding back
onto lagged cells. Feedback inhibition will thus be ineffective for lagged cells
at low membrane potentials, and more efficient for nonlagged than for lagged
cells at all membrane potentials.

PGN Thresholds (40, 10), (40, 10), (40, 10), (40, 10)

We found that for these threshold settings for the PGN neurons no PGN
spikes are produced in the lagged loop at resting membrane potentials of
—76 mV and —72 mV. The corresponding data from the previous scenario
have therefore been re-used for the present scenario®.

Figure 2.17 summarizes the results in the same way the previous scenario
was illustrated. While the response timing of lagged and nonlagged popula-
tions is essentially the same as without the PGN, the response amplitudes
of the nonlagged population is strongly reduced at —76 mV and —72 mV.
With the PGN feedback, the dynamic range of the speeds preferred by the
total geniculate input to the cortex is 1.31 octaves at a lagged weight of
p1 = 2.7. Lagged and nonlagged responses are thus more balanced and allow
for a larger range of velocity tuning than without PGN feedback. Moreover,
because of the smaller lagged weight, the cortical input discriminates better
between the preferred and the nonpreferred direction of motion.

At high resting membrane potentials the presence of PGN-feedback in-
hibition as applied here does not have a very strong effect on lagged and
nonlagged response rates; cf. Figures 2.16 and 2.17 first and second columns.
This suggests for the following studies, where feedback inhibition will be
weaker for higher membrane potentials (cf. subsection 2.2.1), to re-use for
—66.5 mV and —61 mV the data collected without any PGN and vary the
strength of feedback at —76 mV, looking for a balancing effect of the PGN
on lagged and nonlagged activity.

PGN Thresholds (10, 10), (40,40), (00, 00), (00, 00)

Figure 2.18 summarizes the results in the same way the previous scenarios
were illustrated. While the response timing of lagged and nonlagged popula-
tions is essentially the same as without the PGN, the response amplitudes of
both lagged and nonlagged populations are reduced at —76 mV, but much
more so for the nonlagged population. With the PGN feedback of the present

5To check consistency with the present scenario, we fed the lagged spikes from the
previous scenario into a PGN neuron of this scenario. We found that no PGN spikes were
produced.
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Figure 2.17: Numerical simulation of geniculate moving-bar response and
input to cortex. In this scenario, perigeniculate (PGN) thresholds are 40 and
10 amplitudes of unary postsynaptic potentials for the lagged and nonlagged
loop, respectively, at all resting membrane potentials. Same arrangement
and conventions as in Figure 2.16. In this scenario, the dynamic range of the
speeds preferred by the total geniculate input to the cortex is 1.31 octaves
at a lagged weight of p = 2.7.
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scenario, the dynamic range of the speeds preferred by the total geniculate
input to the cortex is 1.16 octaves at a lagged weight of py = 7.3. The dy-
namic range of tuning is thus similar to the scenario without PGN feedback.
This dynamic range, however, is reached here at an even higher value of p
than without the PGN. This may seem surprising at first sight, given that
we successfully reduced the dominance of the nonlagged over the lagged peak
response at —76 mV from a factor of roughly 5 without the PGN to slightly
above 3 in the present scenario; cf. center of Figures 2.16 and 2.18 first and
second columns. The reason for the still higher value of p; lies in the fact
that lagged and nonlagged populations do not assume their response maxima
at the same speed. PGN-feedback inhibition thus has its strongest reductive
effect on the firing rate at different speeds for lagged and nonlagged cells. It
turns out that the present scenario of PGN feedback does moderate lagged-
nonlagged activity differences, but yields a less balanced input to cortical
cells as far as dynamic velocity tuning is concerned. Because of the high
value of p;, the directional bias is only weak in the total geniculate input to
cortex; cf. center of Figure 2.18 rightmost column.

PGN Thresholds (20,20), (40,40), (0o, 00), (00, 00)

Figure 2.19 summarizes the results in the same way the previous scenarios
were illustrated. Again, the response timing of lagged and nonlagged popu-
lations is essentially the same as without the PGN. Not surprisingly, lagged
and nonlagged responses at —76 mV are higher than in the previous sce-
nario. The dynamic range of the speeds preferred by the total geniculate
input to the cortex is 0.81 octaves at a lagged weight of p; = 18.0. The
excessively large value of pj means that the total geniculate input (R) to the
cortex consists of almost only the lagged component; cf. the leftmost and the
rightmost columns of the center of Figure 2.19. Accordingly, the range of dy-
namic tuning is nearly the one of the lagged population alone, and virtually
no direction selectivity is produced for the input to cortex. In the present
scenario, the lagged and nonlagged populations together do not achieve a
significantly larger tuning range for speed than the lagged cells alone.

PGN Thresholds (30, 30), (40,40), (co0, 00), (00, 00)

Figure 2.20 summarizes the results in the same way the previous scenarios
were illustrated. Again, the response timing of lagged and nonlagged popu-
lations is essentially the same as without the PGN. Not surprisingly, lagged
and nonlagged responses at —76 mV are even higher than in the previous
scenario. The dynamic range of the speeds preferred by the total geniculate
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Figure 2.18: Numerical simulation of geniculate moving-bar response and in-
put to cortex. In this scenario, perigeniculate (PGN) thresholds are 10 and
40 amplitudes of unary postsynaptic potentials at resting membrane poten-
tials of =76 mV and —72 mV, respectively, and there is no PGN feedback at
—66.5 mV and —61 mV for both lagged and nonlagged populations. Same
arrangement and conventions as in Figure 2.16. In this scenario, the dynamic
range of the speeds preferred by the total geniculate input to the cortex is
1.16 octaves at a lagged weight of p, = 7.3.
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PGN thresholds (20, 20), (40, 40), (00, 00), (00, 00)
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Figure 2.19: Numerical simulation of geniculate moving-bar response and in-
put to cortex. In this scenario, perigeniculate (PGN) thresholds are 20 and
40 amplitudes of unary postsynaptic potentials at resting membrane poten-
tials of =76 mV and —72 mV, respectively, and there is no PGN feedback at
—66.5 mV and —61 mV for both lagged and nonlagged populations. Same
arrangement and conventions as in Figure 2.16. In this scenario, the dynamic
range of the speeds preferred by the total geniculate input to the cortex is
0.81 octaves at a lagged weight of p; = 18.0.
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Figure 2.19: The lagged responses contribute almost all of the activity to R.
The dynamic range of preferred speeds is maximized by the lagged responses
virtually alone. Directional selectivity of input to the cortex is essentially
lost in this way.

input to the cortex is 1.18 octaves at a lagged weight of p; = 4.5. Lagged and
nonlagged responses are thus slightly more balanced than without the PGN
and speed tuning varies over a slightly larger range. Moreover, at higher rest-
ing membrane potentials there is slightly more directional bias of the input
rate R to a cortical neuron.

2.4 Discussion

The main point made by our modeling is that one should expect a modulatory
influence of cortical feedback on the spatiotemporal RF structure of simple
cells. More precisely, we observe a shift in the time to the bar-response peak
that is opposite for lagged and nonlagged cells; cf. left column of Figure 2.14
and top graphs in Figures 2.16, 2.17, 2.18, 2.19, 2.20. Assuming (i) an RF
layout as usually found for direction-selective simple cells in area 17, and (ii)
an influence of convergent geniculate lagged and nonlagged inputs on this RF
structure, it follows that the observed shifts in response timing and shifts in
lagged tuning for speed affect cortical speed tuning. Shifts in preferred speed
of the geniculate input to a cortical neuron of more than one octave are easily
produced in simulations. To the best of our knowledge, nobody has looked
for such an effect yet.

2.4.1 Relation to Cortical Velocity Tuning

We have investigated the geniculate input to simple cells, which clearly can-
not be compared with their output directly. Because of intracortical process-
ing we cannot expect to reproduce tuning widths and direction selectivity
indices of cortical neurons. Rather, the tuning width of geniculate input is
likely to be larger and its directional selectivity weaker than of a cortical neu-
ron’s output; cf. the beginning of this chapter. Indeed, superficial inspection
of the rightmost column in the center of Figures 2.16, 2.17, 2.18, 2.19, 2.20
reveals that the directional bias of R tends to be rather weak compared to
what is observed for directional cells in areas 17 and 18 of the cat (Orban
et al., 1981a). On the other hand, the tuning width of R is relatively narrow
(Orban et al., 1981b), instead of wide. This theoretical result may be rec-
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Figure 2.20: Numerical simulation of geniculate moving-bar response and in-
put to cortex. In this scenario, perigeniculate (PGN) thresholds are 30 and
40 amplitudes of unary postsynaptic potentials at resting membrane poten-
tials of =76 mV and —72 mV, respectively, and there is no PGN feedback at
—66.5 mV and —61 mV for both lagged and nonlagged populations. Same
arrangement and conventions as in Figure 2.16. In this scenario, the dynamic
range of the speeds preferred by the total geniculate input to the cortex is

1.18 octaves at a lagged weight of p; = 4.5.
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2.4. DISCUSSION

onciled with experiment in the following ways. First, we have simulated the
ideal case of equal resting membrane potential, and hence lagged and non-
lagged response timing, for all of the GRCs. Scattered values of membrane
potentials will produce less sharply tuned profiles for R. Second, if it is true
that velocity tuning is not a static but a dynamic property of cortical cells,
as is proposed in this work, measured — effective — tuning widths should be
larger than the width of the tuning under static conditions as simulated here;
see the next chapter.

Quantitative comparison of the tuning of R with cortical velocity tuning
is, for the above reasons, problematic. Nonetheless, it is interesting to note
that, much like velocity tuning in areas 17 and 18 (Orban et al., 1981b),
the dynamic range of the modeled geniculate input, i.e., the difference be-
tween the highest and the lowest response values on each tuning curve R(v),
decreases and the tuning width, measured in octaves at the rate half way
between the maximum and the minimum of R(v), increases with decreasing
optimal velocity in all scenarios®; see rightmost column in the center of Fig-
ures 2.16, 2.17, 2.18, 2.19, 2.20. Moreover, the range of preferred velocities
lies within the range observed for velocity-tuned cells (Orban et al., 1981b).

Because the speed preferred by retinal ganglion cells scales linearly with
their RF size (Cleland & Harding, 1983), rescaled versions of the RF geom-
etry shown in Figure 2.10 produce accordingly shifted tuning curves (on a
logarithmic speed scale). In particular, we retrieve the positive correlation
between RF size and preferred speed found in areas 17 and 18 (Orban et al.,
1981b) from the geniculate input.

2.4.2 Role of Relay Modes

The results presented here depend upon the special biophysical properties
of thalamic relay cells that were reviewed in section 1.2. In particular, we
have found different relay modes to give rise to changes in the temporal
transformation performed by relay cells that support shifts in tuning for speed
at the cortical level. Analogously, it has been proposed that corticogeniculate
feedback modulates the spatial layout of simple-cell RFs by exploiting the
thalamic burst-tonic transition of relay modes (Worgotter et al., 1998).

The effects of lagged and nonlagged response timing in the present model
are dependent on the low-threshold Ca?* current and ensuing burst spikes.
The significance of our results for visual processing in the awake, behaving
animal, then, is subject to the occurrence of burst spikes under such condi-
tions. As mentioned in section 1.2, this issue is still under much debate. For

5The correlation with tuning width was significant only in area 18 (Orban et al., 1981b).
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nonlagged cells burst spikes will have a role in normal vision only, if their
membrane potential gets enough hyperpolarized. For lagged cells it cannot
presently be settled, if their (transient) responses are indeed supported by
the low-threshold Ca?* current as was seen in the simulations. If this will
turn out to be wrong, the effect of cortical input on lagged response timing
could be different from what we have observed. In this regard it would be
interesting to study the effect of additional NMDA channels at the synapses
of retinal afferents on GRCs; cf. Heggelund & Hartveit (1990) and Hartveit &
Heggelund (1990). Nonetheless, the data on response timing of the modeled
lagged cells suggest that some essential aspect of the true lagged mechanism
has been captured in the model.

2.4.3 Role of the Perigeniculate Nucleus

We have seen that feedback inhibition by the LGN-PGN-LGN loop may in-
crease the range of speed tuning that is realized under cortical control. It may
also bring the levels of lagged and nonlagged activity that arrive at genicu-
locortical synapses closer to the balance that is needed for a maximal range
of tuning. The type of feedback loop most adequate for this function would
be more efficient for the nonlagged cells than for the lagged cells. Higher
efficiency could either result from higher excitability of the involved PGN
neurons, or from stronger or more numerous synapses between nonlagged
cells and PGN neurons. At present there are no data available to check such
an implication.

2.4.4 Variability of Geniculate Response Strength

Responses of X-relay cells to moving bars and textures are on average reduced
after ablation of the visual cortex in cats (Gulyas et al., 1990). This is
consistent with what we observe in our simulations of relay cells, assuming a
depolarizing net effect of cortical feedback on relay neurons (Funke & Eysel,
1992; Worgotter et al., 1998) and a lagged proportion of 40 % amongst
X-relay cells (Mastronarde, 1987a; Humphrey & Weller, 1988b). In fact,
the response rates of lagged neurons decrease drastically with progressive
hyperpolarization; cf. center of Figures 2.16, 2.17, 2.18, 2.19, 2.20 leftmost
column.

The question arises of how the visual cortex would deal with the resulting
differences in the maximal geniculate input activity (cf. center of Figures
2.16, 2.17, 2.18, 2.19, 2.20 rightmost column) in a way that preserves the
speed tuning of the afferent signal for a wide range of geniculate membrane
polarizations. In principle this is straightforward since it is area 17 itself that
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modulates the membrane potential of relay cells. By a similar mechanism
it could likewise adjust the responsiveness of layer 4B neurons to geniculate
input. An appropriate modulatory signal could most easily be derived from
the same layer 6 neurons that project to the LGN, or from their neighbors
that share the same information on the actual corticothalamic feedback. In
this context it is very interesting that layer 6 neurons that project to the
LGN indeed send axon collaterals specifically to layer 4 (Katz, 1987).

2.4.5 Other Types of Corticogeniculate Feedback

In the model we have considered only one type of cortical input to the LGN,
namely, the input mediated by metabotropic receptors that slowly control a
K™ leak conductance on GRCs. As reviewed in chapter 1, there are other cor-
tical inputs, mediated by ionotropic receptors, that act on the much shorter
timescale of the retinal inputs. While such cortical feedback certainly influ-
ences the detailed temporal pattern of geniculate spiking [see, e.g., Sillito et
al. (1994)], it seems unlikely that they affect the gross timing of a transient
response peak on a timescale of several 10 ms. An interesting exception is
perhaps NMDA receptor-mediated feedback, with time constants in-between
those of metabotropic and (ionotropic) AMPA /kainate or GABA 5 responses.
In future work it would be, therefore, interesting to include NMDA channels
at corticothalamic synapses in the model.

We have presented arguments for the existence of a particular dynamic
gating mechanism for thalamocortical information transfer, namely, for the
transfer of information on visual motion. New experiments are required
to check the implications directly. If the proposed mechanism turns out
to be effective in awake, behaving animals, it will have important, as yet
unrecognized, consequences for motion processing. In the next chapter we
address the key question of how this gating can be controlled so as to perform
biologically plausible computations.
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Chapter 3

Object Segmentation by
Adaptive Velocity Tuning: A
Hypothesis on the Function of
the Corticogeniculate Loop

In the previous chapter we have provided support for the adaptivity of corti-
cal speed tuning under the control of corticogeniculate feedback. The ques-
tion then arises, given the loop of information from the lateral geniculate
nucleus (LGN) to cortical layer 4, via a variable number of synapses to layer
6, and back to the LGN (Katz, 1987; Sherman & Guillery, 1996), what are
likely implications for visual information processing? Based on some fairly
general considerations concerning the nature of motion information, we de-
vise a simple model of the corticogeniculate loop that utilizes adaptive speed
tuning for the fundamental task of segmentation of objects in motion. A de-
tailed mathematical analysis of the model’s behavior is presented. Treating
visual stimulation as a stochastic process that drives the adaptation dynam-
ics, we proof the model’s object-segmentation capabilities and reveal some
non-intended properties that are consequences of its basic design. Several
aspects of the dynamics in the loop are discussed in relation to experimental
data.

3.1 On Monkeys, Leopards,
and other Objects in Motion

Imagine yourself being a monkey sitting in the high grass of the savanna,
enjoying to get deloused by some fellow monkey, and perhaps dreaming of a
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banana. As you are watching the scene you turn your head and move your
eyes, causing the image of grass and trees to shift over the retina in one
direction or the other. Furthermore, the grass is moved by the wind, such
that there is an ongoing jumble of motion even during fixation. However,
you are not confused by all this. You are perceiving the world as stable
and peaceful. There is nothing to attract your attention and to disturb your
relaxation. Unluckily, some hundred meters away there is a leopard lurking
in the high grass, greedy of some monkey meat. Since it is in camouflage you
cannot see it against the yellow grass. Suddenly the leopard starts moving.
It is not possible from your position to view it as a whole. There is no
continuous surface, no closed contour. All you can now see are scattered bits
and pieces moving behind the grass. What has really changed on your retina
is the statistics of local motion signals. There is suddenly some component
in the global density of local velocity measures which derives from scattered
leopard features moving into the leopard direction at the leopard speed. Now,
if evolution was any good for you, your attention is drawn to that truly
significant statistical feature. Your visual system assumes all the bits and
pieces sharing the same velocity to belong together. At a glance you are able
to tell from their spatial distribution the size and approximate shape of that
thing they belong to — and decide to escape.

There is a rich and classical psychophysical literature on the power of
motion as a cue for grouping distributed features into the percept of a sin-
gle entity, e.g., by Gestalt psychologists (Wertheimer, 1923; Koftka, 1935;
Wertheimer, 1958), but see also Julesz (1971) and Johansson (1973). In-
deed, objects that are merged with their background suddenly pop out, and
sparsely distributed features which seem completely meaningless in their spa-
tial arrangement miraculously make sense once they move. This effect works
for simple coherent translational motion, i.e., with all the features sharing
a common velocity, as well as for complex relative motion of features that
arises from motion of objects in depth or even motion of different body parts
of a walking animal. So there is good reason for confidence for the monkey’s
life above.

The model to be presented and analyzed in this chapter makes a sugges-
tion as to the biological mechanisms involved in the solution to the monkey’s
computational problem outlined above. While motion is quite a universal
cue for object segmentation, applicable to simple and complex situations,
we here restrict ourselves to the discussion of a rather simple case: coher-
ent translatory movement of spatially distributed features. This restriction
allows for a clear exposition of the mechanism we propose. At the same
time, it avoids speculation on the biological implementation of more com-
plex segmentation tasks that probably involve many different areas of the
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visual cortex. Nonetheless, the principle of scene segmentation by adaptive
tuning that is put forth in this chapter lends itself to multiple generalizations
within and beyond the domain of motion processing.

3.2 Data Reduction and Object
Segmentation by Motion Processing

It is often assumed that motion processing, analogous to other visual sub-
modalities, at some low level is performed by a set of speed-tuned neurons (for
various locations and directions of motion) with speed tuning curves densely
sampling the entire velocity space of interest; see Figure 3.1 top. A system
like this can represent the motion of all the local features in the visual field
simultaneously and with high fidelity. However, this cannot be the ultimate
goal of sensory processing. Instead, the input has to be reduced so as to only
reflect the behaviorally relevant aspects of the stimulus, commonly referred
to as objects. Thus some mechanism of selection and segmentation of the
input data would still be needed to operate on the output of an abundance
of velocity-tuned neurons.

For a brain (and an artificial vision system) it is certainly desirable to
perform a computational task with a minimal amount of hardware. In par-
ticular, processing related to data reduction is combined most elegantly with
a reduction of the hardware that would be needed for an unreduced repre-
sentation since this minimizes the amount of idle components, i.e., neurons.
It is thus favorable to have only a few velocity-tuned neurons with velocity
preferences coarsely distributed in velocity space but being smartly adap-
tive. When being presented a moving stimulus their speed tuning curves
shift so as to cluster around some relevant speed, the speed of an object; see
Figure 3.1 bottom. In this way the representation of something relevant is
enhanced while that of other, irrelevant features moving at different speeds
is suppressed. An analogous scheme of adaptation might, of course, be useful
to other submodalities like orientation, texture or color. Here we will confine
ourself to motion processing.

The question arises: What is the basis for a system early in the visual
pathway to estimate which velocity is important to behavior, which moving
features are, and which are not object-related? Let us consider a stimulus
like the one shown at the top of Figure 3.2. It consists of a group of scattered
local features such as dots or bars, some of which move from left to right,
others from right to left at various speeds. Amongst them is a subset that
move at a common speed from left to right. It is a reasonable hypothesis for

64



3.2. DATA REDUCTION AND OBJECT SEGMENTATION BY MOTION
PROCESSING

Figure 3.1: The rationale of adaptive speed
tuning. The tuning curves schematically
represent the peak response rate of a cor-
tical neuron as a function of the speed of a
local feature passing its receptive field. The
corresponding neuron ensemble has to be
non-adaptive system replicated for multiple retinal locations and
directions of motion. To be prepared to en-
code any possible object motion with high
fidelity, a non-adaptive system needs a lot
of neurons with speed tuning curves densely
sampling some adequate range of speeds
non-adapted state (top frame). In contrast, a system of neu-
rons with speed tuning that adapt to the

actual stimulus does the same job with only
a few neurons (bottom frame), provided
its “target speed” is the speed of the object

speed| in the stimulus. At the same time such a
adapted state system performs reduction of the input data
by neglecting irrelevant features moving at

different speeds and segmentation of the ob-
. _ ject against a background. Data reduction
and object segmentation still remain to be

target speed| done with the output of the non-adaptive
speed system.

activity

activity

activity

a visual system to make that all those features that share the same velocity
belong to the same entity and, hence, form an object. The bottom of Figure
3.2 shows the density of velocities in that kind of stimulus. It consists of
two components. One, arising from incoherent motion, is symmetrical with
respect to the two directions of motion; the other, representing the velocity
of the coherently moving subset of features, constitutes an asymmetric peak.
In order to exploit motion information for object segmentation the visual
system has to detect and tune in to the asymmetric component of the ve-
locity density. In this way coherently moving features acquire an enhanced
representation while incoherent motion is suppressed.

In the motion system noise originates from neuronal activity and from
ocular microtremor (Eizenman et al., 1985; Spauschus et al., 1999; Bolger
et al., 1999). It is interesting to note that motion noise, by contributing
directionally unbiased (false) motion signals, is part of the symmetric com-
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Figure 3.2: Selection of an object by coherence of motion. A collection of
local features (depicted as dots, top left) is moving from left to right and
from right to left at various speeds (depicted as arrows). A subset of them is
moving at a common speed from left to right. The velocity density (bottom)
of this type of stimulus consists of two components: one symmetrical with
respect to the two directions of motion and one asymmetrical. The former
derives from the incoherent, the latter from the coherent motion and is the
statistical signature of a moving object. After adaptation of cortical velocity
tuning to the asymmetric component, coherently moving features are promi-
nent in cortical representation, whereas other features are suppressed (top
right).

ponent of the velocity density. Noise reduction is thus a direct consequence of
the proposed principle of object segmentation. We shall take a closer look at
motion induced by ocular microtremor in subsection 3.5.3 of the discussion.

Evidently, detection of the statistical signature of an object in the motion
domain requires sampling of local velocity measurements from an extended
visual field, spanning several receptive fields (RFs) of cells in the primary
visual cortex. Local motion information is thus to be spread either by lateral
intracortical interactions, or by divergence in the corticogeniculate feedback
pathway.

The stimulus scenario of Figure 3.2 is effectively one-dimensional as there
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are only parallel and anti-parallel velocity vectors. It generalizes, however,
trivially to the two-dimensional situation, where object features give rise to
an anisotropic peak in the bivariate velocity density. The stimulus scenario
is, then, general enough to include as special cases an object moving across an
incoherently moving or stationary background, an object moving in isolation
without any background, and translation of a stationary scene as induced by
head or eye movement.

Yet one might argue that the stimulus condition depicted in Figure 3.2
is somewhat too restricted since natural scenes do not merely consist of ob-
jects moving across incoherent or stationary backgrounds. In fact, several
objects moving around often partially occlude each other, or self-movement
induces motion of both an object and a background. Cats and primates,
however, have a sophisticated repertoire of eye movements to track objects
in motion® (Krauzlis, 1994). These eye movements bring the image of one
out of several moving components to rest on the retina. A stationary ob-
ject is analyzed by neurons preferring stationary features, mostly in the area
centralis, while an overlapping object in motion may be segmented in the
manner just described. Under free-viewing conditions a scene rich in moving
objects could be sequentially analyzed. A plausible schedule for this analysis
is that a moving object is first segmented in retinal motion and then tracked,
since without prior segmentation the target of tracking would be unclear.
Moreover, the statistical analysis described may be carried out in different
populations of neurons in several regions and on several spatial scales of the
visual field.

3.3 A Model of the Corticogeniculate Loop

Since many details of corticothalamic circuits are not known yet and since we
aim at a thorough analytical treatment of the closed-loop system for general
stimulus statistics we have kept the modeling at this point at a more abstract
level than in the previous chapter. Moreover, the underlying principles are
best exposed by a simple model.

The membrane potential of geniculate relay cells (GRCs) is assumed to
be modulated by feedback from cortical layer 6. The postsynaptic potential
evoked in GRCs by a burst of layer 6 action potentials fired around time ¢;
is

PSP(t —t;, —d;) = — % eXp<1 - 7> Ot —ti—d), (3.1)
T T

lalthough cats cannot track very small targets
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CHAPTER 3. OBJECT SEGMENTATION BY ADAPTIVE VELOCITY TUNING

that is, an alpha function. © is the Heaviside function [cf. equation (2.3)]
and d; > 0 describes a corticothalamic delay. We are interested here specif-
ically in the slow, modulatory effect of cortical input, mediated by NMDA
and metabotropic glutamate receptors in the case of depolarization, and by
GABAg receptors for hyperpolarization. The rise time 7 for combinations
of NMDA and metabotropic glutamate receptor responses and for GABAg
receptor responses may be several 100 ms (von Krosigk et al., 1999), but is
kept as a free parameter in the model, i.e., we do not specify a numerical
value for 7 throughout the analysis. The corticothalamic delays d; are at
least one order of magnitude smaller than 7. In particular, for layer 6 pro-
jection neurons that are visually responsive and thus relevant to our model,
they are mostly below 10 ms (Tsumoto et al., 1978; Tsumoto & Suda, 1980).

As pointed out above, cortical feedback signals that carry information
on local velocity measurements need to be sampled from an extended visual
field, spanning several RFs of cells in the primary visual cortex. Let us label
all events of cortical responses to local features within the entire population
of layer 6 neurons that feed back onto GRCs by an index ¢ according to their
temporal order, i.e., t; < ty < .... Let furthermore N(¢) be the number of
such events until time ¢. The slow dynamics of a GRC’s membrane potential
under cortical control then is

N()
V() = > APSP(t—t;—d)+ Vo, (3.2)

=1

where A; is the amplitude of the ith event of cortical feedback that depends
on the firing rate of a layer 6 neuron at time ¢;. In this formulation the size
of the layer 6 population in the adaptive system, and hence of the visual field
from which motion information is integrated, is represented by the number
of response events per time: the rate of events increases with the area from
which motion is sampled. Lateral spread of information on local motion may
be implemented either by intracortical connections, or by divergence in the
corticogeniculate feedback pathway. The right side of Figure 3.3 illustrates
the global connectivity of the model system.

Superimposed on the slow, cortically controlled dynamics (3.2) of the
GRCs’ membrane potential is the relatively fast dynamics triggered by retinal
input. The latter has been modeled in the previous chapter. In the present
model it will not enter explicitly. Here we only care for cortical control and for
the cortical effect of retinal input that has been investigated in the previous
chapter, that is, dynamic velocity tuning.
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Figure 3.3: Model of corticogeniculate loop. Open/filled circles and ar-
row/bar heads indicate excitatory/inhibitory neurons and their respective
synapses. The thick circles symbolize all geniculate relay cells (GRCs), lagged
and nonlagged, which project to a particular cortical layer 4 cell (cf. Figure
2.10), as indicated by the long upward arrows. On the left we show a local
piece of circuit (Local circuit). The cells depicted here in layer 4 have co-
inciding receptive fields, the same preferred direction but different preferred
speed of motion, as indicated by the arrows of different length (a longer arrow
means a higher preferred speed). The temporal responses of these cells to a
moving feature have different rate amplitudes (top; amplitudes R~, R, R~).
Cortical feedback to the lateral geniculate nucleus (LGN), originating from
layer 6, modulates the membrane potential of GRCs. Direct feedback depo-
larizes, indirect feedback via the perigeniculate nucleus (PGN) or geniculate
interneurons hyperpolarizes the membrane of relay cells. The net effect is a
slow postsynaptic potential of amplitude A in GRCs (bottom). Simulation
of the local circuit shows that A is well-described by equation (3.10). The
dashed parts of the local circuit indicate the analogous connections that feed
back to GRCs which provide input to the other local layer 4 neurons. At the
right of the figure we sketch the global, or long-range, connectivity of the sys-
tem (Global circuit). The local circuit, shown here only for one speed-tuned
layer 4 neuron, is replicated for different retinal positions and two opposite
directions of motion (arrows). Local circuits with identical speed tuning in
layer 4 are globally interconnected by divergence in the feedback pathway.
Excitatory and inhibitory inputs to the GRCs are interchanged for feedback
from cortical neurons with opposite direction preferences, as indicated once
for each type of feedback connection by the solid arrows.
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CHAPTER 3. OBJECT SEGMENTATION BY ADAPTIVE VELOCITY TUNING

Figure 3.3: Because of the long-range connections, each GRC receives mod-
ulatory input from cortical cells jointly representing an extended visual field,
with antagonism between the two direction populations. Note that, rather
than by divergence in the corticogeniculate projection, the same function
could alternatively be implemented by lateral intracortical connections.

3.3.1 Dynamic Velocity Tuning

Cortical response rates in layer 4 to moving visual features such as bars are
assumed to follow some kind of velocity-tuning function. In the previous
chapter we have demonstrated that the velocity that produces the maximal
convergent input from lagged and nonlagged geniculate relay cells is, not
surprisingly, close to the velocity that yields coincident lagged and nonlagged
response peaks, corresponding to tn(v) — ti(v) = 0; cf. third column of the
central array of plots in Figures 2.16, 2.17, 2.18, and 2.20. In this spirit we
define a layer 4 cell’s response rate to a feature passing its RF with velocity
v in the cell’s preferred direction as

R = f[[tm(v) = ti(v)[] , (3-3)

where f is some positive, monotonically decreasing function. We choose f to
take values between zero and one. For analytical treatment there will be
some further restriction on f, to be formulated in subsection 3.3.4. Moreover,
we assume layer 4 cells not to respond to features moving into their null
direction. Note that we do not model the time course of the cortical response.
Stimulation and response are rather treated as one instantaneous event. This
approximation is acceptable as long as single cortical response periods are
brief compared to the time scale of change of cortical tuning properties, that
is, GRC membrane potentials.

By looking at the third column of the central array of plots in Figures 2.16,
2.17, 2.18, and 2.20, we see that the simulation data are roughly consistent
with

[t — t1] (v, V) = s(v) —c(V), (3.4)

where s and ¢ are monotonically decreasing functions of the stimulus velocity
v and the relay cells” membrane potential V', respectively. This approxima-
tion seems to be better at higher membrane potentials. Velocity tuning is
thus given by

R = flls(v) —c(V)]] . (3.5)

Note that this family of functions is rather general in that it fits a large set
of velocity-tuning characteristics.
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To obtain a physical interpretation of s(v) and c¢(V'), we note that the
naive understanding of the velocity-dependence of t,(v) — t)(v) is that it
arises from the visual feature crossing the lagged-nonlagged compound RF
(see Figure 2.10) in a time proportional to 1/v. Rewriting equation (3.4) as

(V) = t1— (tm —8) , (3.6)

it is evident that if s is the time it takes the visual feature to travel from
the lagged RF's to the nonlagged RF's, c is the difference in response times
intrinsic to the lagged and nonlagged populations. Appealing to this inter-
pretation, we will write

sii=s(v;), RID(t):=c[V(t)], R;:=f{[|s; —RTD()|] , (3.7)

and refer to s; as the stimulus passage time and to RTD(t) as the (dynamic)
response time difference (RTD) between the lagged and nonlagged popula-
tions. As above, the index i enumerates the stimulus/response events in
temporal order. The response of a layer 4 neuron is thus maximal, if the
stimulus passage time equals the lagged-nonlagged RTD.

We will use the simplest approximation for the dependence of the response
time difference on the membrane potential,

RTD(t) = —xV(t) + RTDy , (3.8)

that is, a linear function of V' with slope —y < 0 and offset RTDy,.

3.3.2 Control of Velocity Tuning

In order to close the corticogeniculate loop, and the system of equations, we
need a transformation of the layer 4 responses R; to the feedback signals of
layer 6 cells, which in turn determine the amplitudes of postsynaptic poten-
tials A; in GRCs. To this end, we have analyzed a simple implementation of
cortical control. The rationale is that each cortical response R; to a stimulus
s; triggers a postsynaptic potential of amplitude A; through feedback, either
directly (depolarization, A; > 0), or via the PGN or geniculate interneurons
(hyperpolarization, A; < 0), such that the response time difference RTD(%)
is pulled closer to the stimulus passage time s;,

(3.9)
To understand the last inequality, note that RTD(t) + xyA;PSP(t — t; — d;) is
the RTD as it would be without the feedback signal initiated by s;.
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For the computation of the feedback signal a layer 4 cell’s response activity
serves as a measure of the amount of mismatch between RTD(¢;) and s;:
low activity indicates large mismatch, high activity signals a good match;
cf. equation (3.5). The sign of mismatch is computed by comparing the
outputs of layer 4 cells preferring the same direction but different speeds,
corresponding to different values of Vj in equation (3.2). A simple network
of spike-response neurons, shown on the left of Figure 3.3, approximates these
principles and provides the corresponding feedback signals to the LGN. More
precisely, computer simulations of this network that are summarized in Figure
3.4 (see appendix F for details on the computer simulations) show that the
amplitudes A; are well described by

Ai = vA(R;)o(RY — RY) (3.10)

where A is some positive, monotonically decreasing function, ¢ is a sigmoidal
function running between —1 and +1 with ¢(0) = 0, and R;", Ry are response
rates of layer 4 cells tuned to higher and lower speeds than the cell producing
the response R;. The factor v > 0 describes the overall strength of cortical
feedback to the LGN. To implement feedback control as outlined above,
we require that A(1) = 0, since R; = 1 has been chosen as the maximum
response; cf. last subsection. Moreover, we realistically have to assume some
finite maximum value A(0) < oo, since corticothalamic neurons are not able
to produce feedback amplitudes beyond some maximum. Equation (3.10)
is the relation we used between layer 4 responses and amplitudes of GRC
potentials. Note that it is the result of a simple transformation of the layer 4
activity to the feedback signals of layer 6 cells; cf. Figure 3.3 left. Although
a LGN-layer-4-layer-6-LGN loop of synaptic connections is indeed supported
by anatomical data (Katz, 1987; Sherman & Guillery, 1996), our aim was
primarily to investigate a network as simple as possible that can do the
necessary computation.

3.3.3 Complete System Dynamics

For the above control mechanism to work, sets of cortical layer 4 neurons
are required that have overlapping RFs and differ in speed tuning. It is not
necessary, but conceptually most straightforward, to assume the same set
of n classes of neurons, defined by the initial values VO(C) [cf. equation (3.2)]
of their membrane potentials V(©), ¢ = 1,2,...,n, to represent each retinal
location. Accordingly, we have n dynamic variables V() (¢) and RTD (¢),

and n series of cortical layer 4 responses Rgc) and of thalamic PSP ampli-

tudes Al(»c). There is, of course, only one series of stimulus passage times s;
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Figure 3.4: Simulation of the amplitudes of corticothalamic postsynaptic
potentials as produced by the local network shown in Figure 3.3 left. For
each layer 4 neuron depicted in Figure 3.3 left we implemented 10 neurons
in the simulations. The average amplitudes A (100 sweeps) are plotted in
arbitrary units as function of layer 4 response amplitudes R~ and R< for
values of R = 10,30,50,70 Hz. Layer 4 activity was generated as a set of
Poisson spike trains with triangular time course of the rates, as sketched at
the top of Figure 3.3 left. The amplitude A is well-described by equation
(3.10). See appendix F for details on the computer simulations.

for the whole system. The different classes of neurons are coupled by the
network computing the cortical feedback signal (cf. Figure 3.3 left), which is
mathematically embodied by equation (3.10).

We want to restrict our attention to cortical neurons that prefer one out
of two opposite directions of motion. For each class ¢ of cortical neurons
there are two variants selective for the two opposite directions, to be labeled
by the superscripts (¢,+) and (¢, —). The interaction between the “4” and
the “—” population is taken to be such that features moving in opposite di-
rections elicit PSP amplitudes A; of opposite signs in each GRC. This kind
of antagonism ensures that the average adaptation to incoherent, direction-
ally unbiased motion is zero (see section 3.4) and, hence, is vital to object
segmentation. Measuring stimulus passage times s; as positive in the “+”
and negative in the “—” direction, and numbering neuron classes such that

[RTD®)(0)| < |[RTDEH)(0)| for ¢ > ¢, (3.11)

the system dynamics is described by the equations

N(t)
VEeR () = £ (sens) AV PSP(t— 1, — d) + V) . (3.12)

i=1

Rzgc) _ f[’Si_RTD(ngnSi)(ti)” 7 (3.13)
RTDCH () = = [—xVH(t) + RTDy |, (3.14)
AP = yAR)o(RTY - RETY). (3.15)
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In the last equation one may define ¢y = ¢; and ¢, 11 = ¢, to deal with the
lowest and highest values of the class index. The stimulus passage times
s; and the times t; of the cortical responses are stochastic variables and
depend on the statistics of the stimulus. Adaptation of velocity tuning and
the dynamics of cortical responses are thus described as a stochastic process
driven by the stimulus. Figure 3.3 attempts to give a picture of the complete
system of the corticothalamic loop.

Strictly speaking, the above dynamics adapts stimulus-passage-time tun-
ing rather than velocity tuning. To achieve the desired result, viz., adaptation
to a particular object velocity, RF sizes have to be taken into account. Either
only layer 4 cells with roughly the same RF size contribute to, and partici-
pate in, each adaptation process, or the RTD and hence the PSP amplitudes
A; are scaled to compensate for variations in RF size across visual space.
For a brain to develop such systems some sort of activity-driven learning is
probably required. Learning to see may thus mean to transfer the coherence
of objects into synaptic circuits.

3.3.4 Analytical Treatment

The precise shapes of the functions f, A, and ¢ are unimportant, as long
as the combination A o f can be approximated reasonably well by a linear
function within a relevant range of values. A full analytical treatment is
possible for the limiting cases

Aff(L- DI =1-1, o(-) = sgn(-). (3.16)

With these idealizations and as long as the speed preferences of neurons
retain their order, i.e.,

[RTDEH) (1) < [RTDCH(1)|  for ¢ >, t >0, (3.17)
equation (3.15) simplifies so as to give
A = 5 (sgns;) [RTDE#0 (¢) — 5, (3.18)

The dynamics of the different classes ¢ decouple and the class superscript ¢
can be dropped. Combining equations (3.12), (3.13), (3.14), and (3.18), and
dropping the class superscript ¢ we get

N(t)
RTDE) () = xv Y [s; — RTDE)(t,)| PSP(t—t;—d;) £ (—xVp + RTDy) .

i=1

=RTDH)(0)
(3.19)
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If, on the other hand, condition (3.17) is violated, i.e., if speed preferences
cross in the course of adaptation, the system will produce PSP amplitudes
A of the wrong sign [cf. equation (3.15)] and adaptation will be disrupted.
Stimulus conditions under which crossing is likely to occur are derived in
subsection 3.4.7. Note, however, that, because of the finite slope of the
sigmoidal ¢ at zero, PSP amplitudes AZ(»C) get small, if the RTDs of classes
¢ —1 and ¢+ 1 come close to each other; cf. equation (3.15). This fact
endows the true system dynamics with a certain robustness to disruption of
adaptation by crossing of RTDs.

3.3.5 Computer Simulations

Computer simulations were run using

A[f<|-\>]:{"’if"'<p’ o() — tamh(g ), (3:20)

P elsewhere,

with positive parameters p and q. See appendix G for details.

3.4 Analysis and Results

In this section we derive analytic results on the dynamics of the above model.
We moreover illustrate the results by computer simulations wherever appro-
priate.

In the first subsection we derive integral equations for the moments of the
RTDs, which arguably is the ‘obvious’ approach to the problem. The solution
that can be obtained in this way, however, has a drawback in that it does
not tell what individual trajectories look like. In the second subsection we
therefore cast the dynamic equations in the form of a Markov chain. Making
use of the Markov property in the remaining subsections we gain insight not
only in the statistics of RT'D dynamics, but also in the temporal pattern of
individual trajectories. Another significant advantage of the Markov formu-
lation is that it allows us to give far-reaching results without specifying the
stochastic process that underlies the stimulus presented to the system.

3.4.1 Integral Equations for the Moments of Response
Time Differences

We start by reformulating equation (3.19). Absorbing x > 0 into v > 0 and
introducing the notation

A = RTD™W(0), (3.21)
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z(t) = RTDM(t) — A, (3.22)

we can write

RIDH(t) = z(t) £ A (3.23)
and formulate the dynamics (3.19) as

N(t)

A = Fla(t), s (3.25)
with
F(z,s) := v[s — (sgns) A — ] . (3.26)

We can now derive integral equations for the moments of x and, hence, of
RTD®) as a function of time.

Let f1(¢) and fy(¢,¢') be the one- and two-point distribution functions,
respectively, of the point process that describes the times of cortical responses
to stimulus features. We use the notation

e(s) = [ _dsv(s)els) , (3:27)
(ele®)) = [ dope)gla(e)] (329)

where v(s) is the density of stimulus passage times, p;(x) the density of x at
time ¢, and g is some function on the reals for which the integrals are defined.
The temporal evolution of the first moment of = is governed by the integral
equation

(w(t)) = /0 T AL (A), (PSP(t — 1) | (3.29)

with
(A), = /_°o dAp(Alt) A | (3.30)
(PSP(1)) = /0 ~ ddw(d) PSP(t — d) (3.31)

where w(d) denotes the density of corticothalamic delays and p(A[t) the
conditional probability of having an amplitude A of a corticothalamic PSP,
given that there is cortical input to the thalamus at time ¢. This conditional
probability can be written as

p(Alt) = [ O:o dz pe() [ O:O ds v(s) 6[A — F(z,5)] ; (3.32)
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cf. equation (3.25). Here ¢ is the Dirac delta function. Substituting equations
(3.26), (3.30), and (3.32) into (3.29), we get

(@) = [~ dURE) (5) —pA = (@(t) (PSP(—1)) ,  (333)

where we have introduced the difference p between the statistical weights of
motion in the two opposite directions,

poi= /OOO dsv(s) — /_OOO dsv(s) . (3.34)

Analogously, the dynamics of the second moments of x is governed by

(x(t) (i) = /Ooodt’fl(t’) (4%) (PSP(t—t)PSP(i—1))  (335)

n /0 Car /0 T (¢ (A)y (A)y (PSP(t— 1) (PSP — ")) .

Here we have assumed that stimulus passage times and corticothalamic delays
are sampled from their respective densities independently at each event of
cortical response. This assumption is justified for the chronological sequence
of all stimulus/response events in an extended retinal region. Spatiotemporal
correlations that may be present in the stimulus do not show up since passage-
time samples are mixed in the sequence irrespective of retinal location.

In an analogous manner integral equations can be formulated for higher-
order moments of x. Since F is a linear function of z, it is possible to
successively solve for the moments up to any order, starting with the first
order, equation (3.33). The integral equations may be solved by Laplace
transform.

In the next subsection we will develop an alternative formulation of the
system dynamics that is based on a Markov chain. The advantage over the
present formulation is that, by exploiting the Markov property of the dy-
namics, we gain insight not only in the dynamics of the moments, but also in
the behavior of individual realizations of x(t). Moreover, while in the present
formulation of the problem it is necessary to specify the distribution func-
tions fi(t), f2(¢,t'), etc. in order to proceed, we will see that it is possible to
derive far-reaching results within the Markov formulation without specifying
the stochastic process underlying the stimulus.
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3.4.2 Markov Formulation of the Dynamics of Response
Time Differences

As in the last subsection, we start by reformulating equation (3.19). We
absorb x > 0 into v > 0 and introduce the notation

A := RTD™M(0), (3.36)
z; = RTDM(t;) — A, (3.37)
T o=t — 1t (3.38)
such that we have
RTD®)(t;) = z; £ A . (3.39)

As noted above, the corticothalamic delays d; are more than one order of
magnitude smaller than the rise time 7 of corticothalamic PSPs (Tsumoto
et al., 1978; Tsumoto & Suda, 1980; von Krosigk et al., 1999). We hence
neglect for the moment corticothalamic delays, i.e., we set d; = 0 for all 2.
In subsection 3.4.8 we consider first-order corrections due to the delays and
proof structural stability of the dynamics without the delays as analyzed
here.
Neglecting the delays we get from equation (3.19)

r; = e’y Z (sgns;) A — ;] (Z T ) exp (—— Z rzu)

=i

Jj— Jj—1
= €7 % Z (sgns;) A — z;] (Z m) exp (—l > ’I“Zu)

e T
+ 77 [Sj—l — (SgHSj_l) A — Ij—l] rj—1€ i1/

— e’y Z (sgns;) A — ;] (Z ) exp (—l Ji rzu)

=i

ey Jj—2 1 Jj—1
+ — > [si— (sgns;)) A — ;] rj_1 exp - > 1
i=1 =1

e T
+ 77 [Sj—l — (SgHSj_l) A — Ij—l] rj—1€ i1/

- xj—le_rj_l/T + yj_lerj_le—rj—l/ﬂ' (3.40)
e o
+ 77 [sj—1 — (sgnsj_1) A — xj_4] Tj_le_’"ﬂ—l/ 7

with
7j—1

1422
= 7 [si — (sgns;) A — z;] exp (— Zm) . (3.41)

=1 il=i
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We can now reformulate the dynamics (3.19) of the RTDs at the discrete
times ¢; as an iteration of a combination of two stochastic maps R(r) and

S(s),

<$j> = R(rj-1) 0 S(sj-1) (xj1> , o=y =0, (3.42)

Yj Yi—1

S () (e o) 0
R(r) : (“") _ <(‘”+ey£)er/7> , (3.44)

Y ye—T/T

The interstimulus times r; and the stimulus passage times s; are stochas-
tic variables, drawn independently from densities u(r) on R4 and v(s) on
R, respectively. These densities are determined by the stimulus. Note that
although there may well be correlations between the interstimulus and pas-
sage times as sampled by one individual cortical neuron, they do not show
up when sampling the sequence of all stimulus events in an extended retinal
region irrespective of location. Similarly, r; and s; are independent of r;; and
sj (j # '), respectively.

We point out that nothing is lost in calculating the RTDs at the discrete
times ¢; only [cf. equation (3.39)], since these are the times when any of
the layer 4 cells respond. At all other times the state of adaptation, i.e.,
the RTD, of these neurons is irrelevant for any kind of processing. The
times ¢; of responses are also stimulus-driven stochastic variables and may
be incorporated by extending the system (3.42) with the equation

tj = tj—l + rj—1 . (345)

This equation may be solved independently of (3.42). In particular,

() =)= /0 T dru(r)r . (3.46)

We decompose the passage time density v into the two parts corresponding
to the two opposite directions of motion,

v(s) = pavi(s) + p-v_(s) (3.47)
with
00 v(s) O(£s)
pai= [ dsvis)Ofks) , vals) =1 e for pie >0, 5 43
—c0 0 for py = 0.
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We will deal with mean values of the types

) = [ dsv(sels) (3.9
() = [ dsva()s(s) (3:50)
B() = [ arui)s) (351)

with g being some function on the reals for which the integrals are defined.
The dynamics (3.42) is a Markov chain. The transition probability cor-
responding to S(s) is

ps(e,yley) = i [ dsvils) (e — o) oly o/ = (s —a' = A)

+ /_o:o dsv_(s)do(x —2")doly—y —v(s— 2"+ A)] , (3.52)

the one corresponding to R(r) is

pr(z,ylz',y) 2/0 dru(r)d

T — (x' - ey'f) er/T} 5(3/ - y’e’r/T) :
T
(3.53)

We want to know how the moments of z and y change under the action of
R(r)oS(s). Let p(z,y) be a joint probability density for x and y. Then are

(x™y™) = /_O:O da’ /_O:o dy' p(a’,y")2™y™ , n,m € IN, (3.54)
the moments. For the action of S(s) we get
(x"y™) g (3.55)
= [ Caaf dg[ ar [ aypstegley)py) 2y
= p+ /_O;dx’/_o:ody’/_o:ods p(@,y) vi(s)a™ [y + (s — 2’ = A)"

+u—/ dw’/ dy’/ dsp(’,y) v-(s)z™ [y + (s — 2"+ A)"

- h+i§k:m (h, Z’Lj’ k) (—1)iytiti A <Sh> <x”+zyk>

jeven

+ h+i§k=m <h7;’nj7 k;) (—1)i+1'yh+i+jAj <H+ <3h>+ — <sh>_> <xn+zyk> :
jodd
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with polynomial coefficients (h,i,j, k,m € IN)

m m!
(h,@',j,k) Wt jig 0 e =m (3.56)

The action of R(r) yields

(@"y" ) (3.57)
= [ g [ ayvw(e gl )o@ y) 75"
_ /oo dl’//oo dy//ood’/‘ p(I/,y/> ll(?“) (I/ —i—ey/r) e—nr/Ty/me—mT/T
—oo —0o0 0 T

" (n er\*
_ ~ —(n4+m)r/T n—k, m+k
S o,

Let ps(x, y) be the joint probability density of x and y at time ¢. In combining
equations (3.55) and (3.57) we can write down iteration equations for the
moments,

(z"y™), = /_Oo da’ /_Oo dy' pe, (2, y") 2™y™ . (3.58)

The iterations can be solved successively for all n and m, starting with the
first moments. We shall solve for the first two moments, i.e., for (z"y™);
withn+m=1and n+m = 2.

Note that the ensemble averages (3.58) are not taken at constant time ¢,
but rather at a constant number j of stimulus/response events, irrespective
of the time ;.

All analysis of the system that follows below is based on the Markov
formulation of the dynamics developed in this subsection. The power of this
approach will become apparent as we derive results on the moments of x
and y for general stimulus statistics, and in particular in subsection 3.4.5
where we make assertions on the temporal pattern of individual trajectories
of RTDs.

3.4.3 Mean Adaptation Dynamics

Let us choose the direction of positive passage times as the one of object
motion. Introducing the statistical weight pu := puy —pu_ € [0, 1] of the object
in the stimulus we decompose the passage time density according to

v(8) = pvo(s) + (1 = p)va(s) , (3.59)
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with v, being the object and v, the background component; cf. Figure 3.2.
We use the notation

(B0 = [ dsvon(s)(s) (3.60)

Since vy, is symmetric, (s), = 0 and (s) = 1 (s),.

Let us assume for convenience that (s), # A, i.e., that the neurons are
initially not optimally adapted to the object speed. All results to be derived,
however, will be valid without this restriction. Transforming from the means
of x and y introduced in subsection 3.4.2 [cf. definition (3.58)] to new dynamic
variables

(y) j

ARy S A r e S0
we can write the mean RTD [cf. equation (3.39)] as
(RTDH(t;)) = (x), £ A = (1 F o) (£A) + a; (s), - (3.62)

We call a; the mean degree of adaptation to the object speed. For o =
0 there is no adaptation at all, for a; = 1 neurons selective for the “4”
direction, that is, the direction of object motion, have their mean preference
at the object speed. The iteration dynamics of the mean values obtained
from equations (3.55) and (3.57) in terms of «; and f; is

a;\ [ ag—~b by ai_q b,
()= (or ) (@) en(®), e

=:M,

with the stimulus parameters

Mo éi/}/} }6(0,1). (3.64)

bl = Te

From equation (3.63) it follows that there is no dependence of «; upon A,
the initial RTD. Thus all neurons have the same mean degree of adaptation,
irrespective of their initial tuning.

The dynamics of «;, 3; depend on the eigenvalues of M, and thus on the
stimulus parameters a, b;. The eigenvalues are

b ]
)\1/2 =a; — % + 5 ’)/Qb% — 4’}/CL1b1 . (365)

For convergence of the dynamics we require that

M| <1 = b < (@ +1)2. (3.66)

82



3.4. ANALYSIS AND RESULTS

ybr 4

L An
Jvy

al

Figure 3.5: Parameter space for the stimulus statistics determining the dy-
namics of mean response time differences (RTDs). The dynamics converges
for (a; + 1)* > 4b;. For vb; < 4ay, the two eigenvalues given by equation
(3.65) are complex conjugate. For (a; + 1)? > vb; > 4ay, they are real and
negative. The corresponding type of mean dynamics is depicted for both of
these regimes. In subsection 3.4.4 we show that only the case vb; < 4a; is
associated with finite variances of the RTDs.

Figure 3.5 shows the parameter regions of convergence and divergence. In
this parameter space the vicinity of the point a; = 1, by = 0 is occupied by
stimuli that are fast or dense on the retina, as in both cases the interstimulus
times r are short. Very sparse and slow stimuli, on the other hand, occupy
the region around the point a; = 0, b; = 0.

By inspection of Figure 3.5 it is clear that there are three ways to ensure
convergence to a finite mean degree of adaptation: (i) by making the overall
strength of feedback to the LGN ~ sufficiently small, (ii) by making the rise
time 7 of the corticothalamic PSPs sufficiently large, or (iii) by sufficiently
extending the retinal region from which the local velocity measures are sam-
pled. In subsection 3.4.7 we will show, however, that if > 1/2, approaching
the point a; = 1, by = 0 is likely to result in crossing of the RTDs, i.e.,
violation of condition (3.17) with subsequent disruption of the adaptation
process.

From equation (3.63) it is easy to calculate the asymptotic values

_ fyby
a = Qe Tt - (3.67)
1 —
§ = f = Lallzwla (3.68)

")/bl + (1 — (11)2
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for the regime of convergence. The relevant quantity is the asymptotic mean
degree of adaptation a € [0, 1]. By inspection of equation (3.62), it follows
that the preferences of the neurons encoding motion in the direction of the
object at average converge to the vicinity of the object’s speed, conforming
to our computational goal of object segmentation. Neurons encoding the
opposite direction of motion, on the other hand, at average diverge from the
object’s speed — and from each other. This fact implies that in the “—”
direction there is no speed for moving features to elicit a strong response in
all neurons representing the features’ location. The ensemble activity in the
“—” population of neurons is thus lower than in the “+” population.

A contour plot of a as a function of a; and by is shown in the left graph
of Figure 3.6. Assuming the times ¢, of cortical stimulation by local features
to be compatible with a Poisson process, we show in appendix D that the
stimulus parameters a;, b; lie on a parabola, plotted in the left graph of
Figure 3.6 for different feedback strengths . For Poisson statistics of the
times t;, the asymptotic mean degree of adaptation o behaves as shown
in the right graph of the figure. Not surprisingly, adaptation gets stronger
with increasing aq, that is, for denser or faster stimuli, and with increasing
feedback strength . Moreover, « is proportional to u, the statistical weight
of the object component in the stimulus. Hence, the larger or faster the
object, the stronger the average attraction of speed preferences to the object’s
speed.

For by < 4a; the eigenvalues Ay, are complex conjugate. In the next
subsection we will show that only then the variance of the RTDs converges.
As depicted in Figure 3.5, in this regime the mean RTDs converge in a
damped oscillation. In fact, if G is the matrix that diagonalizes My, i.e.,
GM,G™! is diagonal, and

K= (1 1.) , (3.69)

the matrix K G is real and we have

i i—1ge—1 ( cos(jo) —sin(jo) : -
M = alGK ( o) sl ) KG, with ¢:=arg(\) .
(3.70)

The iteration dynamics (3.63) is solved by
Q; ! g
= — M , 3.71
()= () - () 57
that is, a spiral motion around the center (a,3). Its angular period is,
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Figure 3.6: The asymptotic mean degree of adaptation « in units of the
object weight p is shown as a contour plot on the left. Dashed lines delimit
the regions of different mean dynamics defined in Figure 3.5. Assuming
Poisson statistics for cortical response times to stimulus features, the stimulus
parameters a;, b; lie on the parabolas plotted in the left graph for v =
0.2,0.7,...,3.7. In the right graph we show a/u for Poisson statistics and
the same values of v as those on the left. The curves are interrupted where
(a1 + 1) < by such that the mean dynamics is divergent.

measured in the number of stimulus/response events,

2m
P = , 3.72
arg(A1) 372)
and averages in real time to
(T)=P(r) . (3.73)

Thus (T) is the mean period of the mean RTD. It also is, however, the mean
period of the covariance function

oty n) = (5 0) (s~ @) T
- /o:o dx/o:o dy/o; da’ /O:O dy' pe(a, yl', y') p, (2, )

X (x — (a:>j+k) (x’ — <x>J) :

where

pi(z,ylz',y) = [ dw”[ dy” pr(z,ylz”,y") ps(@”, y" |2’ y) , (3.75)
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pr(z,yla'y) = /_ dx”/_ dy” p1(z, ylz", y") pe—1 (2", 9" |2, y) , (3.76)
for k > 1,

by the following argument. Denoting the affine-linear map

<<5‘>J’—1> — <<x>a‘> , (3.77)
<y>j—1 <y>j

defined in equation (3.63), by L = (L, L,), and its k-fold iteration by L*F =
(L, Ly), we can write [cf. equation (3.74)]

[ de [ dypiaalalsy) (v = @),00) = L) = (@) - (378)

Evidently, this expression, taken as a discrete function of k, performs a
damped oscillation with period P; cf. equation (3.72). Substituting back into
the covariance function (3.74), we see that it has the same period. In par-
ticular, the asymptotic covariance function lim;_ .. cov(x;, z,4x) alternates
between phases of correlation and anti-correlation with period P. In sub-
section 3.4.5 we will show that under certain conditions these oscillations of
the RTDs never die out for individual realizations of the adaptation process.
The damping of the mean oscillation is then due to a loss of phase coherence
with time.

For a Poisson process generating the stimulus/response times ¢;, the mean

oscillation period is given by
T
<—> _ (3.79)

T

27 <§> / arctan {\/e%gi[ﬁ;g%ﬂﬂ] for (2 — ev) <§> +2>0,

27 <£> / {7r + arctan [\/e7<r/7>[(4—e7)<r/7)+4]] } elsewhere;

(2—ey)(r/7)+2

see appendix D. In Figure 3.7 we show plots of (T'/7) for different « both
as function of (r/7) and a;. For (r/7) > 4/(ey — 4) or, equivalently, a; <
1 —4/(ey), the stimulus enters the regime where Ay, are real and negative,
and the mean period ends up on the curve

R R

plotted with the dashed lines in Figure 3.7. For (r/7) — 0 or, equivalently,
a; — 1, i.e., at high stimulus density or speed, (1'/7) approaches zero. In

particular, (T") can be much shorter than the rise time 7 of a corticothalamic
PSP.
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Figure 3.7: Mean oscillation period (") of response time differences (RTDs)
in units of the rise time 7 of corticothalamic postsynaptic potentials as a
function of the stimulus parameters a; (left) and (r/7) (right). For the curves
we assume Poisson statistics for cortical response events to stimulus features
and v = 0.2,0.7,...,3.7; cf. Figure 3.6. The mean oscillation period lies on
the dashed curves for a; < 1 —4/(ey) or, equivalently, (r/7) > 4/(ey — 4).

It should be noted that while in the real corticothalamic system the pe-
riod of an oscillation of geniculate membrane potentials may well be shorter
than the rise time of a single corticothalamic PSP (due to superposition of
many depolarizing and hyperpolarizing PSPs), the frequency would in fact
be limited by the time it takes a cortical neuron to respond to a feature pass-
ing its receptive field. There is no representation of this fact in the present
model and the limit (7') — 0 should thus not be taken too serious. Moreover,
too fast rates of change of GRC membrane potentials are not consistent with
the approximation of instantaneous stimulus/response events we have made;
cf. subsection 3.3.1.

3.4.4 Variance of Adaptation Dynamics

To estimate whether the trajectories of the RTDs stay bounded when their
mean values converge we have to check whether their variances converge
to finite values as well. We will analyze the dynamic map for the second
moments of  and y defined in subsection 3.4.2. From equations (3.55) and
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(3.57) we get

<ZL‘2>]- ag — ’sz +2’7202 bg — 2’)/02 Co <1’2>j_1 Uj_1
(flfy>j = —yaz + Hby  ag — by %b2 <'Z'y>j71 | v )
<y2>]’ Vas —2vaz  a <y2>j—1 Wj—1
=:M>
(3.81)
with
as = (e /7
by 1= (Zel=2/7) € (0,1), (3.82)
Cy = < 5)2822r/7'>
and
uj = (272u02A + by (8) — Yubs A — 2v%¢cy (s)) (),
+ (2ye2 (s) — 2yucA) (y)
+ 72 A% + ey <32> — 27%co A (Js]) (3.83)
vj = (YubaA +qas (s) — ypaz — 7%b (s)) (2),
+ (b2 (s) — wbaAH )
1
+ 72b2A2 + 72b2< > VoA (|s]) (3.84)
w; = (27 pasA — 2y2ay { ) (z);
+ (2yaz (s) — 2ypax) (y);

+9%a2A% + 2az (57) — 29202 (Js) . (3.85)

The (z); and (y); converge to the values given in the previous subsection,
and (u;,v;,w;) will become constant. To check convergence of the second
moments it is therefore enough to consider the eigenvalues of M,. These are
the roots of the characteristic polynomial

V3 — <3a2 — 2vby + 7202> v+ (3@3 — Y2agcy — 2yashy + %7%3) v— ag =0,

(3.86)
and are rather lengthy expressions which need not be spelled out here. De-
pending on the stimulus parameters as, by, and co, there are one real and
two complex conjugate eigenvalues, or three real eigenvalues. Let v; be the
eigenvalue that is always real, and v5/3 the other two that may or may not
be complex conjugate. Stimulus parameters as, b, ¢ that yield convergent
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second moments of the RTDs are precisely those that obey the constraints

1| =: fi(ag,vb2,7%c2) < 1, max (|to], s]) = f2(az, vb2,vc) < 1,
(3.87)
with continuous functions f; and f; that do not depend on 7; cf. equation
(3.86). The two surfaces defined by

f1<a2,’)/b2,’}/202) = ].7 fg((lg,’)/bg,’}/202) =1 (388)

are shown in Figure 3.8. Since convergence is obviously ensured for v = 0,
which yields z; = y; = 0 [cf. equation (3.42)], the parameter region that
results in convergence of the second moments is the space in between the two
surfaces that includes the axis (as,vbs, v2c2) = (a9,0,0), as € (0,1). In the
region beyond the intersection of the surfaces (see the bottom of Figure 3.8),
i.e., for roughly v2c, > 9, there are no combinations of parameters that yield
convergent second moments.

For Poisson statistics of the times ¢; the stimulus parameters aq, by, cs lie
on the curves plotted in Figure 3.9 for different values of v; see appendix D.
The curves run from (as,ybe,¥?co) = (0,0,0), the limiting point for sparse
and slow stimuli ({r) = 00), to (ag, b, vc2) = (1,0,0), the limit of dense
and fast stimuli ((r) = 0). For 7 small enough, the curves lie completely
within the region of convergence. For larger ~, they are in the region of
divergence except near the point (as, b, ¥2c2) = (0,0,0). For (r/7) < 1,
which is the usual regime?, the eigenvalues vy/3 are complex conjugate and

we have
D). ow
el = 1=+ (Do () o

By inspection of equations (3.89) and (3.90) we find that for the second
moments to converge it is necessary and sufficient that the feedback strength
obeys the upper bound v < 4/e. In fact, Figure 3.9 shows that at least

2A conservative estimate of (r/7) may be obtained as follows. The diameter of RFs in
the primary visual cortex is of order 1 degree; cf. section 2.1. Let us assume an arrangement
of RFs that covers the visual field in a maximally sparse manner, that is, with a center-to-
center distance of the same order. The extension of the coupled adaptive system should
be about one order larger, i.e., 10 degrees in diameter. A single feature like a bar, in order
to be processed by velocity-tuned neurons, should move at a minimum speed of, say, 1
degree/s; cf. chapter 2. It will then cross an RF center every second. Now, a stimulus as
sparse as one feature per square degree will cross an RF center every 1/100 s = 10 ms.
This is already one order of magnitude smaller than the order of 7, which is 100 ms.
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Figure 3.8: Surfaces of modulus one of the eigenvalues of Ms; see equation
(3.81). These surfaces constrain values of the parameters ay, vby, y?co that
result in convergence of the second moments of the RTDs. vy is the real
eigenvalue, 15,3 are complex conjugate in some parts of the parameter space,
and real-valued in others. At the top of the figure the two surfaces defined
respectively by || = 1 and max(|vy], |v5]) = 1 are shown. The bottom dis-
plays three different combined views of the two constraining surfaces. The
parameter region of convergence of the second RTD moments is the space in
between the two surfaces that includes the as-axis. In the region beyond the
intersection of the surfaces, i.e., for roughly v2c, > 9, there are no combina-
tions of parameters that yield convergent second moments.

for v < 1.2 the second moments converge not only for small (r/7), but for
all 0 < (r/7) < oo, corresponding to the entire curves running between
(az,vba, ¥2c2) = (0,0,0) and (az,ybe, ¥2c2) = (1,0,0) in parameter space; cf.
Figure 3.9.

As shown in appendix D, the condition v < 4/e is for Poisson statistics
of the times ¢; equivalent to 4a; > b for all a; € (0,1). In the following we
will assume this condition to hold. Our system is thus always in the regime
of damped oscillations of the mean RTDs; cf. Figure 3.5.

After some lengthy but straightforward algebra we find for the asymptotic
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Figure 3.9: Three different
views of the two constrain-
ing surfaces from Figure 3.8
combined with the parame-
ter values for Poissonian stim-
ulus/response times (thick
curves). The Poissonian stim-
ulus parameters are replicated
for v = 0.2,0.7,...,3.7. The
parameter region of conver-
gence of the second RTD mo-
ments is the space in between
the two surfaces. Conver-
gence is thus ensured for all
Poissonian stimuli, if v < 1.2.

variance of x, and hence of the RTDs,

var(z) = (2?) = (2)* = [((|s]) — A)? +var(|s])] pr— 12 ((s), — A)?p2 , (3.91)

with

72 (522 + 2¢9 — 26L202) (3.92)
o= 21 —a)® + 47y (1 — az) by + 120> — 292 (1 +as) ey =
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72512

[(1 — CL1)2 + ’)/bl}Q

P2 = (3.93)

2")/2 {al (1 — (Il) <b22 + 202 — 2(1262) + bl (bg — (Ing — 2’}/02):|
[(1 —a)’ + 751] {2(1 —az)” + 4y (1 — az) by + 722" — 292 (1 + a) Cz} .

While the mean (z); is proportional to (s), — A [cf. equation (3.62)], the
variance var(z) contains a term that is proportional to ((s), — A)?, one
that is proportional to ({|s|) — A)?, and a third one that is proportional to
var(|s|). For Poisson statistics of the times ¢; the coefficients p; /o simplify to
(see appendix D)

(e7)?
P dey — (ey)2 +4(r/7) > 0, (3:94)
o (e7)* (e +2(r/7)) -0 (3.95)

(dey — (e9)2 + 4 (r/7)) (e7 + {r/7))"

It follows that the asymptotic variance of the RTDs (i) is larger for neurons
with initial response time difference A closer to the object’s passage time (s),,
(ii) is smaller for neurons with A closer to (|s|), (iii) increases with increasing
var(|s|), that is, with increasing diversity of speeds in the stimulus, and (iv)
decreases with increasing object weight p, so strong objects not only give rise
to strong mean adaptation [cf. equation (3.67)], but also to small fluctuations.

3.4.5 Stationary States
and Diffusion-Sustained Oscillations

We have shown in the two previous subsections that there is a region of
stimulus parameters where the means and variances of the RTDs converge to
finite values. Averages do not tell us, however, what individual trajectories
of RTD®) (t;) look like. In this subsection we want to address this issue.
Let us start by looking at the time course of adaptation for three different
stimuli in Figure 3.10. For details on the computer simulations see appendix
G. Roughly, a system of four classes of cortical neurons with adaptation dy-
namics RTD“®)(t) (¢ = 1,2,3,4) is adapted to stimuli with different object
weights . The graphs show the dynamics of the four response time differ-
ences RTD“H)(#) (¢ = 1,2,3,4) of neurons encoding motion in the object’s
direction. The background consists of features moving parallel and opposite
to the object with speeds drawn randomly from a speed density spanning
speeds lower and higher than the object’s speed. The top graph shows the
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case 4t = 1, i.e., no background in the stimulus, the middle graph an ex-
ample for p = 4/5, and the bottom graph for p = 1/3, that is, twice as
many features in the background as in the object component of the stimulus.
Evidently, only in the no-background case is there convergence of the RTDs
to a stationary state. As background is added to the stimulus, ongoing os-
cillations develop. These oscillations are more pronounced with a stronger
background. We now derive the occurrence of sustained oscillations and their
dependence upon the background component.

Let us first deal with the short-time behavior of individual trajectories
(xj,y;). We ask what they look like for the first few j. The variances

)2\ a2 o e [o2\ A2
var;(x) = <ac >j (x); , wvar(y) := <y >j (V)] (3.96)
are zero initially. They increase to finite values no faster than the fastest
converging linear combination of second moments, i.e., like e 7/¢ with

=1 /ln ( mln ;] ) . (3.97)

We have to compare ¢ with the period P of the oscillation of the mean values
({(x);, (y);) in order to see whether this oscillation shows up in individual
realizations (x;,y;). From equations (3.72), (3.89), and (3.90) we get

P (8+ey)m /r\/? r

¢ B 2(ey)1/? <7‘> 0 <<T>> ‘ (3.98)
Thus, for (r/7) small enough P/{ < 1 and the oscillation of the means (z);,
(y); is fast as compared to the growth time of the fluctuations var;(z), var;(y)
about the means. Individual realizations (x;,y;) are then well described
by their means for several periods of the oscillation. Put differently, an
oscillation then shows up in individual realizations (x;,y;), at least for the
first few j. The transition from an oscillation-driven to a fluctuation-driven
dynamics of the RTDs with increasing interstimulus times (r/7) is illustrated
in Figure 3.11.

It remains to establish the long-time behavior of trajectories (z;,y;). In-
troducing @) W)
N B G _ Y9 =Y
ST A P, A 399

we can rewrite equation (3.71) as
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Figure 3.10: Computer simulations of the adaptation dynamics for the re-
sponse time differences RTD“®)(t) of 4 classes of neurons (¢ = 1,2, 3,4). The
time scale is set by 7, the rise time of corticothalamic postsynaptic poten-
tials; cf. equation (3.1). The stimulus is a coherently moving object without
a background (p = 1, (r/7) = 0.075, top), with a moderate background
(u=4/5, (r/Ty = 0.015, middle), and with a strong background (u = 1/3,
(r/7) = 0.005, bottom). Only the 4 trajectories RTD“")(¢), i.e., represen-
tative of the neurons selective for the direction of object motion, are shown.
The passage time of object features is indicated by the straight horizontal
line in each graph. The adaptation dynamics converges to a stationary state
close to the object’s passage time without a background, and is increasingly
oscillatory with increasing background strength. Other parameters: s, = 17,
(|s])p = 18.2, vary(]s|) = 19.12, v = 0.2. See appendix G for details on the
computer simulations.
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Figure 3.11: Transition from an oscillation-driven to a fluctuation-driven
dynamics of response time differences (RTDs) with decreasing stimulus den-
sity or speed. The time scale is set by 7, the rise time of corticothala-
mic postsynaptic potentials; cf. equation (3.1). The plots show z(t) =
RTD™) (t) — RTD™)(0) for a single class of neuron. The stimulus consists
of object and background with an object passage time (s), = RTD(+)(0),
such that there is no drift of the shown RTDs, that is, (x)., = 0; cf. equa-
tion (3.62). As the mean interstimulus time (r/7) is increased from the top
to the bottom graph, the RTD dynamics develops from an orderly oscilla-
tion into a pattern resembling a random walk. Top: (r/7) = 0.001; middle:
(r/T) = 0.01; bottom: (r/7) = 0.1. Note the different time scales in the
graphs. Other parameters: u = 1/3, s, = 15, (|s|) = 17.1, var(|s|) = 15.62,
v = 0.2. See appendix G for details on the computer simulations.

where the powers of M; are given by equation (3.70). The dynamics (3.100)
of the means spirals into the origin of £-n space. Without damping of the
oscillations the trajectories would lie on orbits defined by q(§,n) = const.,
with the quadratic form

t dyaig? 2
a(é,m) = (&), (KG)'KG(En)) = —5 ~ hadn+dar”; (3101)
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see Figure 3.12. To estimate the true degree of damping of individual tra-
jectories (&;,7;) we calculate the ratio (q/qg) of the initial and asymptotic
values

Qo =q(a, ), (@) =(D - (3.102)

From equation (3.81) we obtain the three second moments (z%)., (TY)oo,
(y*)oo which are needed for the calculation of {q). After some lengthy but
straightforward algebra we find

<qg> _ <<|s\22—(<§>> jxgusw . (3.103)

where the coefficients are for Poisson statistics of ¢; (see appendix D)

- 2 (ey + (r/7))?
B ey Ny 0, (3.104)
_ o 2e9(ey +2(r/7))

P27 dey—(en)? 4 (r/7)

Using the decomposition (3.59) and respecting that (s), = 0, (|s])o = (s),

we obtain
q
2N 3.106
<q0> (3.106)

i ((8)y = A)° 4 (L= p) ({[s]), = A)* + pvar,(s) + (1 — p) Vaurb(|s|)ﬁ1 7
12 (), — A)° ’

where var,(|s|) == (s*)op — (|s])2 ;. For = 1 and an object in perfectly
coherent motion, i.e., var,(s) = 0, we have

(@)

Hence there is strong damping, and individual trajectories (z;,y;) converge
to the steady mean state; cf. Figure 3.10 top. On the other hand.for p — 0 at
fixed v(s) [see equation (3.103)] or at fixed v,(s) [see equation (3.106)] (q/qo)
is dominated by a 1/u*-singularity. This means that at high background
activity (q/qo) > 1; there is no damping of individual trajectories (z;,y;).
Since the adaptation dynamics is a temporally homogeneous Markov chain, at
any time we find qualitatively the same situation as at the start of the process,
implying that there is no qualitative change in the trajectories (x;,y;) on a
long time scale; cf. Figure 3.10 bottom.

We have also checked numerically the variance (q*) — (q)?, and found it
to be of the same order of magnitude as (q)?. This leaves open the question

0. (3.105)

_ 2(r/7)? _ l<z
2

B dey — (ey)? +4(r/T) 7'> <«1. (3107)

p=1
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AN T Figure 3.12: Trajectories of ((£);, (n);) [bold
spiral curve; cf. equation (3.100)] and or-
bits defined by q(§,n7) = const. [dashed el-
lipses; cf. equation (3.101)] corresponding to
undamped oscillations of (&;,n;).

q(&,m) = const.

of whether there is a preferred orbit with q = const. where the system spends
most of the time.

We conclude that if g and (r/7) are both small enough, i.e., if the back-
ground is strong and the total stimulus dense or fast enough, the RTDs show
a sustained oscillation with a mean period given by equations (3.73) and
(3.65), or by (3.79). In Figure 3.13 we compare mean oscillation periods ob-
served in computer simulations with the mean period (3.79) of mean RTDs.
The match is perfect for small (r/7), that is, in the regime where oscilla-
tions are rather regular. For increasing interstimulus times (r/7), when the
random-walk component of RTD dynamics grows stronger (cf. Figure 3.11),
the measured values eventually drop below the curve given by (3.79), indi-
cating that fluctuations cause RTDs to jitter around their mean values faster
than the oscillatory component of the dynamics alone. For details on the
computer simulations and sampling of oscillation periods see appendix G.

As a particular scenario, consider that when background is added to any
given stimulus, both the object weight y and the mean interstimulus time
(r/T) decline towards zero and sustained oscillations eventually develop.

If 1 is close to one, on the other hand, the RTDs converge to a stationary
state. The remaining case of small p and rather large (r/7) is quite unin-
teresting. It corresponds to a stimulus consisting of a sparse background
without any significant object, which may be identified with mere noise.
Adaptation will be weak and look rather erratic in this case; cf. equation
(3.67) and Figure 3.11 bottom.

Let us rephrase the above mathematics by saying that the ongoing os-
cillations are the result of an interplay between two contrary drives. One is
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Figure 3.13: Comparison of mean oscillation periods of mean response time
differences (RTDs) as given by equation (3.79) (solid line; cf. Figure 3.7) with
mean periods of simulated RTD dynamics (diamond symbols; bars indicate
standard errors) in the regime of diffusion-sustained oscillations. The match
is perfect for small (r/7), where oscillations are rather regular. As oscillations
are increasingly degraded by fluctuations for larger (r/7) (cf. Figure 3.11), the
observed ‘jitter period’ drops below the period of the mean RTD. Parameters:
u=1/3, s, =15, (|s]) = 17.1, var(|s|) = 15.6%, v = 0.2. See appendix G for
details on the computer simulations and sampling of oscillation periods.

the tendency of the system to relax in a damped oscillation to its stationary
state. The other is the diffusion contributed by the background activity that
drives the system away from its stationary state. For a strong background
this diffusion is strong enough to keep the state at a significant distance away
from the stationary state. For a dense or fast total stimulus the oscillation is
fast enough to be not obscured by the diffusion process. We call the dynam-
ics resulting from the coincidence of both conditions a diffusion-sustained
oscillation.

One can heuristically understand the occurrence of diffusion-sustained
oscillations by recalling that there are two populations of cortical neurons
responsive to opposite directions of motion and producing feedback signals
of opposite signs. Whenever some local feature stimulates a cortical neuron,
RTDs of neurons encoding motion in the feature’s direction are pulled to-
wards the feature’s passage time and, hence, closer to each other. On the
other hand, due to the opposite signs of the feedback signals, RTDs of neu-
rons encoding motion in the opposite direction are pushed apart from each
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other. Hence, if there are features moving both ways, there is an alternating
convergence and divergence of RTDs, with the RTDs of neurons stimulated
by object plus background features being at average closer together than
RTDs of neurons stimulated by background features only.

3.4.6 Correlation of Adaptation Dynamics
Between Cell Classes

The occurrence of ongoing oscillations in RTDs as derived in the last sub-
section motivates the question of how such oscillations are correlated. Cor-
relation across space is trivial in the present model, since global lateral con-
nections have been assumed to synchronize adaptation in a pool of cortical
neurons that jointly represent an extended retinal area; cf. the model defini-
tion in section 3.3. Correlation of the response time differences RTD(¢%)(¢)
across classes ¢ of cortical neurons, on the other hand, is mediated by the
stimulus.

For neurons of two classes (c1,+) and (c2,+) to be well tuned to an ob-
ject’s speed at the same, possibly periodic, times, RTD()(¢) and RTD2H) (¢)
have to be positively correlated, if they are both smaller or larger, and anti-
correlated, if one is smaller and the other larger than the object’s passage
time (s),; cf. Figure 3.10. Synchrony of adaptation to an object’s speed
across classes of cortical neurons has important consequences on cortical ac-
tivity and information processing, as will be detailed in subsections 3.5.1
and 3.5.3 in the discussion. Here we are interested in the inter-class correla-
tions of RTDs in general and in the conditions for synchronous adaptation
in particular.

Neuron classes ¢ are characterized by the initial value A of their RTD;
cf. definition (3.36). We denote the initial RTDs of two different classes
(c1,+) and (c,+) by Ay and Ay, Accordingly, the two classes’ dynamic
variables (z,y) as defined in (3.37) and (3.41) are denoted (x1,y;) and (z2, y2)
throughout this subsection. Although the index of x and y previously labeled
stimulus/response events in chronological order, no confusion will arise from
the notation used in this subsection.

The temporal evolution of the mixed-class moments (z122), (1/2(z1y2 +
x2y1)), and (y1y2) is determined by the transition probabilities

pS(xlay17x27y2|x/1ay/17$,27yé) = (3-108)
[ dsvils)a(er — o) ooz — ah)
xOyr =y — (s — 27 — A1)] 0ly2 — vy — (s — 2 — Ap)]
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+ ,u_/ dsv_(s)d(xq — 2) 6(xg — a3)

X O[yr =y — (s = @) + A1)] Olye — v — (s — 25 + As)]
PR(T1, Y1, o, Y2l 1, Y1, 25, Ys) = (3.109)
7 drusfan = @+ T)e ] blas - (ay + b )N

0 T T
X 5(y1 - yie”’/7> 5(3/2 - y’Qe”"/T> .
Much like in subsection 3.4.2, we obtain from these transition probabilities
for the mixed-class moments the dynamic map

(T122); (T122); 4 i1
<%($1y2 + $2yl)>j = M, <%($1yz + 372y1)>j_1 + fij_l ,
(y192); (V1y2);_4 Wj—1
(3.110)

where it turns out that M;; = Ms; cf. equation (3.81). In fact, this may
be seen directly by comparing the transition probabilities (3.52), (3.53) with
(3.108), (3.109). The vector components of the map are

i = yp(aby + 2B85e — 2yaea) ((s), — A1) ((s), — A2) (3.111)
+ Yo ((Js) — A1) ({Is]) — Ag) ++7 CzV&l‘(|S|)

0; = yp(ajag + Biby — yaybs) ((s), — A1) ((s), — A2)  (3.112)
+ %7252 ((Is[) = A1) (([s]) — A2) + 57252 var(s|) ,

Wy = 2yu (B —yay) as ((s), — A1) ((s), — A2) (3.113)

+ Paa ([s) — A1) (sl) — A2) + 7 az var((s]) -

Because M;; = M, the mixed moments converge, if and only if the second
moments do so; cf. subsection 3.4.4. We are interested in the asymptotic

value
(T1209) = (T172) - (3.114)

The covariance between the two RTDs is
cov(zy, xa) = (r129) — (21) (22) (3.115)

= P1((8) = A1) ({8), = A2) + pa ((Is]) = A1) ({[s]) — A2) + psvar(s]) ,

-~ {2ypa(l = az)by + 2yppBb; + Ayp [B(1 — az) — ya] ca}
2+ 6a2 — 2a3 + 4vby + 123 — 2v2¢y — 2a5(3 + 2vby + Y2¢2)
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2
pyb
_ 7 3.116
l’ﬂ?l + (1= a1)2] (3410
2b2
by = S 2 , (3.117)
2+ 6a35 — 2a3 + 4vby + 72b5 — 279%cy — 2a(3 + 2vby + ¥2c2)

2[2(1 — b3

by = 7”20 = az)er + ) . (3.118)

2+ 6a3 — 2a3 + 4yby + 723 — 272cy — 2a5(3 4 27y + 72c2)

In order to have positive correlation between the two RTDs, if both neuron
classes prefer speeds below or above an object’s speed, and negative correla-
tion, if one prefers speeds below and the other above the object’s speed, it
would be required that cov(zy,z3) is proportional to ({s), — A1)({s), — As).
By inspection of equation (3.115), however, we see that cov(zy,z2) also con-
tains terms that are proportional to ((|s|) — A1)({|s]) — As), and terms that
are proportional to var(]s|). In general, therefore, arbitrary classes of cortical
neurons do not synchronize their phases of close tuning to an object’s speed.
Using the results of subsection 3.4.4 we can explicate the correlation

cov(zy, xa) ‘
\/V&r(xl)var(xg)

For the general case, however, this is a rather lengthy expression that is
not easily interpretable. Instead, we discuss the correlation for the case of
Poissonian stimulus/response times ¢;. To this end, we introduce the complex
vectors

(3.119)

cor(zy,xg) =

(ve+(£)) (Isl) - A»
((s)

|
v; = i,u\/ye (ve+2(2)) L i=1,2, (3.120)
(76 + <£>) Var(|s|)
and the bilinear form
((v1, v9,v3), (U1, ug, uz)) := viuy + Voug + v3uz , (3.121)

which is not positive definite on complex vector spaces. For Poissonian stim-
ulus/response times we get

(v1,v9)

\/(Ulv V1) (v2,v3)

cf. appendix D. It now turns out that in the regime of diffusion-sustained
oscillations, where p? is small, the sign of the correlation is in fact largely

cor(xy, xg) = ; (3.122)
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determined by ({|s|) — A1)({|s]) — Az); cf. equation (3.120). Without loss of
generality, let us assume that A; < A, and introduce the variables

D - %( Ay = (s), (3.123)
C = Do(A—(s)) = (Aa—(s))=D > 0, (3.124)
S = (ls]) = (s), . (3.125)

We can now ask the question: Given a certain stimulus parameter S and a
certain distance D from the mean object passage time (s),, how far must a
neuron’s initial RTD be from D, i.e., how large is the minimum value of C,
such that neuron classes below D — C' are anti-correlated with neuron classes
above D+(C'"? Denoting this particular value of C' by C, the RTD gap between
anti-correlated populations of neurons around D is thus 2C. To answer this
question we have to investigate the change of sign of the correlation. Its sign
is determined by the numerator of expression (3.122). Substituting D, C,
and S into (3.122), we obtain

cor(xy, ) = (3.126)

(s 2)) -0 ]

+(D - 8)? (’ye + <£>)2 — u*yeD? (fye +2 <£>> + (’ye + <£>)2var(\s])} .

Response time differences of neurons are thus anti-correlated, if and only if

~

C>C = (3.127)

(ve + (r/7))
(76 + e /) (L= ) + {1/ 7"
In particular, the smallest gap between anti-correlated populations of neurons
occurs around D = S, that is, between classes with initial RTDs around (|s|),

JDQ + [S? = 2DS + var(|s|)]

Coin = C = (3.128)
D=S

{yb_ (e + (r/7))? 4
(72 + 29¢ (/7)) (1 = 2) + (r/7)
(e + {r/7))? F”,

(722 + 29e (/7)) (L - 2) + (r/7)?
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Note that the coefficient of S? in the radical argument is always positive, and
zero only if u = 0.

Finally, coming back to the issue of synchrony of adaptation to an object’s
speed, the gap around the object’s passage time (s), is 2C' with

_ J (e + (r/r))*[S? + var(|s|)]

~

C

(3.129)

(v2e2 + 27e (/7)) (1 = p2) + (r/7)*

It thus turns out that the maximum number of neurons can be recruited for
synchronous adaptation to an object’s speed, if S = 0, that is, for a stimulus
with (s), = (|s]), and as u — 0, that is, for a weak object in the stimulus.
The gap between anti-correlated classes of neurons increases with var(|s|),
i.e., with the diversity of speeds in the stimulus. For illustration, Figure 3.14
compares a time course of adaptation with S = 0 and var(|s|) = 0 (top) to
one with S > 0 and a rather large var(|s|) > 0 (bottom).

3.4.7 Crossing of Response Time Differences:
Disruption of Adaptation

The dynamics (3.19) for the RTDs that is decoupled for different neuron
classes ¢ is a valid description of the full dynamics given in equations (3.12)
through (3.15) only as long as the RTDs for different classes do not cross
over, i.e., as long as condition (3.17) holds. As soon as RTDs of classes ¢ — 1
and ¢ + 1 cross, the system will produce PSP amplitudes A§C) of the wrong
sign [cf. equation (3.15)] and adaptation will be disrupted. In the full system
dynamics, however, due to the finite slope of the sigmoidal o at zero, the
amplitudes AZ(»C) become small, if RTD ) (¢) and RTDE 1) (¢) get close
to each other. As a result, wrong amplitudes AEC) are only small for slightly
crossed RTDs, and the system tolerates slight crossing without disruption of
the adaptation course. An example of adaptation dynamics where disruption
occurs following repeated crossing of RTDs is given in Figure 3.15.

After having derived and discussed the solutions of (3.19) in the past sub-
sections, we now have to take care of their consistency with the full dynamics
(3.12) through (3.15) by giving conditions on the stimulus and system pa-
rameters for the trajectories RID™)(#) to not cross over. These conditions
constrain not only the validity of the solutions obtained previously, but also
the range of parameters for which successful adaptation occurs. In the latter
sense, they are additional to those for the convergence of the first and second
moments of RTDs derived in subsections 3.4.3 and 3.4.4, respectively.

Since the RTDs’ dynamics is a stochastic process, the event of RT'D cross-
ing is probabilistic. The most appropriate analytic treatment would therefore
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Figure 3.14: Computer simulations of the adaptation dynamics for the re-
sponse time differences RTD®) (¢) of 7 classes of neurons (¢ = 1,...,7). The
time scale is set by 7, the rise time of corticothalamic postsynaptic potentials;
cf. equation (3.1). The stimulus consists of an object and a background com-
ponent. Only the 7 trajectories RTD(¢+) (1), i.e., representative of the neurons
selective for the direction of object motion, are shown. The passage time of
object features is indicated by the straight horizontal line in each graph. The
two graphs compare the dynamics resulting from a stimulus consisting of fea-
tures moving all at the same speed in two opposite directions [var(|s|) = 0,
S =0, top] with the dynamics resulting from a stimulus that comprises fea-
tures moving at a large range of speeds [var(|s|) = 22.3%, S = 1.24, bottom];
cf. equation (3.125). In the top scenario the inter-class correlation of the
RTDs reverses sign precisely at the object’s passage time. As a result, RTDs
of all classes approach the object’s passage time in perfect synchrony. In the
bottom scenario all RTDs close to the object’s passage time are positively
correlated. Synchrony of adaptation to the object’s passage time is thus not
possible across all 7 classes of neurons. Other parameters: u = 1/3, s, = 23,
(Is]) = 24.2, (r/7) = 0.004, v = 0.06. See appendix G for details on the
computer simulations.
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Figure 3.15: Example of an adaptation process that leads to crossing of the
response time differences RTDH) () of 4 classes of neurons (¢ = 1,2,3,4)
representing the direction of an object’s motion. The passage time of object
features is indicated by the straight horizontal line in the graph. The time
scale is set by 7, the rise time of corticothalamic postsynaptic potentials; cf.
equation (3.1). In the example shown the RTDs are slightly crossed several
times before adaptation is finally disrupted. Crossing with a dominant object
in the stimulus occurs, if the feedback coupling ~ is too large or the stimulus
parameter a; is too close to one, i.e., (r/7) is too small, corresponding to
a very fast or dense stimulus. Parameters: u = 4/5, s, = 17, {|s|) = 17.2,
var(|]s|) = 852 (r/7) = 0.01, v = 0.2. See appendix G for details on the
computer simulations.

be to calculate the probability of the crossing event as a function of time and
stimulus parameters. This, however, turns out to be unfeasible. Instead, we
want to estimate under which stimulus conditions crossing is likely to occur.
To this end, we will investigate when the mean trajectories of the RTDs cross
in the course of adaptation.

There are good reasons for analyzing the mean dynamics, if one is inter-
ested in crossing of RTDs. In the usual regime of the system’s operation we
have (r/7) < 1; see the previous footnote 2 on page 89. In the last sub-
section we have found that, then, individual trajectories RTD®)(¢) are well
described by their means for several periods of their oscillation; cf. equation
(3.98). Moreover, for u close to one we have also found in the last subsection
that there is strong damping of RTD oscillations [cf. equation (3.107)]. For
any damped oscillation, crossing, if it occurs, is restricted to the first cycle of
oscillation, where the amplitude is largest. The mean trajectories hence are
good approximations to individual trajectories during the initial, and often
critical, phase of adaptation.

The exception is the regime of diffusion-sustained oscillations, where
(r/T) < 1 and p is not close to one; see subsection 3.4.5. In that case
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it is not possible to predict the amplitudes of late cycles of the oscillation.
Ensuring no crossing in early cycles is necessary, but not sufficient for a RTD
dynamics free of crossing. We will return to this issue at the end of this
subsection.

If 41 is small and (r/7) rather large, the input is just noise and adaptation
is weak and erratic; cf. equation (3.67) and Figure 3.11 bottom. RTD tra-
jectories may cross in that case, if the feedback coupling strength ~ is large
enough.

Generally, crossing of the mean RTD trajectories indicate a high prob-
ability for the event of crossing of individual trajectories. Necessary and
sufficient conditions for a mean adaptation dynamics free of crossing can
thus be interpreted as necessary for individual adaptation dynamics free of
crossing.

By inspection of equation (3.62) we see that the mean RTD dynamics
does not cross, if and only if the mean degree of adaptation obeys a; <1 for
all j € IN, or

®; = Iaxa; <1. (3.130)
Since «; always converges in a damped oscillation to o < 1 [cf. equation
(3.67)], it assumes its maximum within the first cycle of the oscillation, that
is, j € INis an index of some event within the first oscillation period.

The evolution of a; is given by equations (3.70) and (3.71). The angle
¢ defined in (3.70) gives the angular increment of «; per cortical response
event. ¢ is a function of the parameters a; and by, which is plotted in
Figure 3.16 for vb; < 4ay, the region where ¢ is defined and where the first
and second moments of the RTDs converge; cf. Figure 3.5 and subsections
3.4.3 and 3.4.4. For vb; ~ 4a; we have ¢ ~ m, and thus j = 1. Condition
(3.130) becomes in that case

ap = puyby < 1. (3.131)

This constraint on the parameters is illustrated in Figure 3.17 for different
values of p by horizontal lines. The condition holds below the line for the
corresponding value of p.

As we increase the stimulus density or speed, thus moving towards the
point a; = 1, by = 0, we have ¢ — 0. In this limit a continuous approximation
of the dynamics of a; with j € R, seems adequate, and 7 is the first positive
solution of the equation

a—jaj =0. (3.132)

We will verify the adequacy of the continuous approximation below. After

106



3.4. ANALYSIS AND RESULTS

Figure 3.16: Plot of ¢ in units
of m as function of a; and vb;.
¢ is defined for vb; < 4day;
cf. equation (3.70) and Fig-
ure 3.5. In particular, ¢ = =
for by = 4ay, and ¢ = 0 for
’)/bl = 0.

Figure 3.17: Plots of the constraints on the parameters a; and b, for adapta-
tion dynamics without crossing of the mean response time differences (RTDs).
In the shaded region the first or second moments diverge; cf. Figure 3.5 and
subsections 3.4.3, 3.4.4. For each value of p, the parameters a; and vb; have
to lie in the area below the corresponding curve to the right of its maximum,
and below its horizontal tangent to the left of the maximum. The constrain-
ing curves terminate in a; = 1, yb; = 0 for 4 > 1/2, and in a; = 1, vb; > 0
for < 1/2. Their slope in a; = 1, vb; = 0 is zero for > 1/2, and infinite
for p=1/2.
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some lengthy but straightforward algebra we find

N
2
= , 3.133
5 (3.133)
with
Y = arg {ybl +2a® — 2a; — i\/7b1(4a1 — b)) | +arg (¢ —ilnay) < g .
(3.134)

We can rearrange condition (3.130) to read

F(a177b1) =

/2=

pag ° [(Qaf —2a; + ’Ybl) \/751(4a1 —Yb1) cosp — by (day —by) siny

+ puyby (day — vby) — (4ay — vby) {(1 —a)* + 751} <0. (3.135)

Note that by utilizing the continuous approximation for j, condition (3.135)
is actually more restrictive than the real condition (3.130), which is only
imposed for j € IN. We will therefore investigate a posteriori the continuous
values of j that effectively delimit the region of parameters by imposing the
condition a; < 1 or, equivalently, (3.135).

Obviously, there is no crossing of RTDs for vb; = 0, since v = 0 means
no feedback. We thus seek solutions vb; = C,(a1) of F(ay,vb1) = 0, such
that

v < Cula;) = Fl(ar,7b1) < 0. (3.136)

These have to be determined numerically and are plotted in Figure 3.17 for
different values of p. We stress that the continuous approximation is very
bad close to the line vb; = 4a;, because there ¢ = 7. In that limit the true,
and less-constraining, condition is given by (3.131); cf. Figure 3.17. It will
become clear shortly, where precisely in parameter space condition (3.131)
gives the correct constraint.

Although we cannot give the curves yb; = C,,(a;) in an explicit analytical
form, one can make a couple of analytical assertions on them. Developing
these assertions will occupy the rest of this subsection. Longer proofs are
relocated to appendix E. To start with, since a; € [0, 1] and 7> 0 we know
that ) A

: J : J
b @ € O (i g en € 0] (3.137)
where the precise values of the limits depend on the path taken to the points
(ay,7b1) = (0,0) and (1, 0), respectively. It follows that F(0,0) = F(1,0) = 0.
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However, as can be seen from Figure 3.17, the point a; = 1, vb; = 0 does
not always lie on the curve vb, = C,(a1).

Assertion 1:The curve vby = C,(a1) terminates in aq =1, vby = 0, if and
only if p>1/2, i.e.,

= 0 ifu>1/2
Cu(l) { > 0 ifp<1/2 (3.138)
To prove this assertion, one may verify by patient calculation that
li 0 F(1,2) 4(2 1) (3.139)
im — z = —-1). :
b1—0+ Oz by a

Since F(1,0) = 0, equation (3.139) implies that, if and only if ;4 < 1/2, there
is some € > 0 such that for 0 < vb; < € the condition (3.135) is satisfied.
When looking at the curves in Figure 3.17 one can see that a; = 1,
vb; = 0 is a critical point as far as crossing of mean RTDs is concerned.
The slopes of C,51/2(a1) seem to approach zero as a; — 1. For Poissonian
stimulus/response times we know that the parameters a; and vb; lie on the
parabola
vbr =veay (1 —ay), (3.140)

plotted in Figure 3.6 left; cf. appendix D. In the point a; = 1, vby = 0
the parabola has a slope of —ye < 0. So, as a; — 1, eventually we have
by > Cus1/2(a1) and condition (3.135) will be violated, no matter how small
the feedback coupling v is. On the other hand, the slope of C,—1/2(a1) seems
to diverge to —oo as a; — 1, implying that the parabola stays below the curve
for a; close to 1, no matter how large 7 is. Finally, we have C,.q/2(1) > 0,
such that, again, vb; < C,<1/2(a1) as a; — 1 for all v. We point out that ),
the derivatives 0F /0a; and OF/0(vby), and the quotient of the derivatives
are undefined in (a;,7vb;) = (0,0) and (1,0), and that their limits depend
on the path taken to these points. In particular, one cannot appeal to the
implicit-function theorem to obtain the derivatives dC,/da; at these points.
Nonetheless, in appendix E we proof the observations of this paragraph.
Assertion 2:For Poissonian stimulus/response times, there exists € > 0 such
that

1
’)/bl < C#(al) for a; € [1 — €, 1) — pn < 5 . (3141)

Although condition (3.131) is sufficient to avoid crossing of mean RTDs only
close to the line vb; = 4aq, it is necessary everywhere in parameter space.
Put differently, the constraining curves C,(a;) obtained from the continuous
approximation have to lie completely below the lines vb; = 1/u; cf. Figure
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3.17. In appendix E we, moreover, prove that the maxima of the curves
Cp(ay) lie in fact on these lines, as long as p is not too small.
Assertion 3:There exist i < 1/2 and a(p) € (0,1) such that

o 1 )
Cla()] = max Cula) = < 4> J. (3.142)

In Figure 3.17 we see that there is in fact only one maximum on each curve
Cu>1/2. In the proof of assertion 3 (cf. appendix E) we learn that to the
left of the maximum, that is, for a1 < @, we get j < 1, while to the right
of it, that is, for a1 > @, we get j; > 1. This implies that for a; < @
the condition on the parameters that is necessary and sufficient for avoiding
crossing of the mean RTDs is given by vb; < 1/u, as a stimulus/response
event index of j < 1 is not sensible. For a; > a, on the other hand, the
condition is approximated by vb; < C,(ay). For a; — 1 on the curve C,
the discrete angular increment ¢ drops to zero [see Figure 3.16] and the
continuous event index j grows to infinity, if © > 1 /2. This makes the
difference between the true, discrete condition (3.130) and its continuous
approximation (3.135) vanish. In particular, our results on the occurrence of
mean RTD crossing close to the point a; = 1, vb; = 0 for p > 1/2, and its
absence for p = 1/2 (cf. assertion 2) have been obtained in the limit where
the continuous approximation becomes exact.

The above analysis has revealed that for u < 1/2 there is no mean RTD
crossing for all stimuli, if the feedback coupling « is not too large, and for all
v, if the stimulus is dense or fast enough, that is, with a; close to one. With
the means not crossed, however, the probability for RTD crossing increases
with the asymptotic variance of the RTDs; cf. equation (3.91). In particular,
1 small and a; close to one is the regime of diffusion-sustained oscillations;
see the previous subsection. The variance of the RTDs may grow large,
indicative of growing amplitudes of oscillation, and crossing may occur after
many cycles.

3.4.8 Corticogeniculate Delays

In order to be able to formulate the loop dynamics as a Markov chain in
subsection 3.4.2, we have neglected corticothalamic delays. The preliminary
justification for doing so has been that the delays are more than one order of
magnitude smaller than the rise time 7 of corticothalamic PSPs (Tsumoto
et al., 1978; Tsumoto & Suda, 1980; von Krosigk et al., 1999). We still
have to be concerned, however, about structural stability of the dynamics
analyzed above with respect to small delay perturbations. In other words,
we have to ask whether the statements made about the dynamics in the
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previous subsections remain qualitatively valid when delays are introduced
into the corticothalamic loop. To this end, we shall extend the previously
studied dynamics to incorporate first-order delay effects. This will result
in a higher-dimensional dynamic map. We then show that the dynamics
essentially reduces to the one derived without regard for delays when only
zero delays occur. By continuity of eigenvalues and asymptotic values in
the delays within the extended model, we can then conclude that for small
delays there is only a small quantitative, and no qualitative, change in RTD
dynamics. All what has been said on the patterns of adaptation dynamics
will thus turn out to remain true for small delays. We moreover calculate
first-order corrections for the asymptotic mean degree of adaptation and for
the mean oscillation period of RTDs.

Expanding equation (3.19) to first order in the delays d;/7, we have to
note that PSP(¢ — ¢;) is not differentiable at ¢ = ¢;; cf. equation (3.1). We
can take advantage of the fact, however, that d; > 0 and write

PSP(t — t; — d) — PSP(t — t;)

2

(fﬂ . (3.143)

that is, we take the derivative of PSP(t — t;) from the left. Substituting
(3.143) into the dynamic equation (3.19) and performing some transforma-
tions analogous to (3.40) we end up with the stochastic iteration

d—0+

PSPt —t)+ & (1 - t) T Ot — ;) + O
T

T

Z; Tj—1
yi | = Ri(rj1)oS'(sj-1,dj1) | Y1 |, To=%yo =2 =0, (3.144)
Zj Zj—1
€T i
S'(s,d) : y | — | y+{s— [z + (sgns)A]} (1 + g) . (3.145)
z z+v{s — [z + (sgns)A]} £
x (x +eyr — ez) e 7/T
RI(T') : Yy — ye_r/’r . (3146)
z ze T/T

The dimension of the dynamic map is increased by one compared to the case
without delays; cf. equation (3.42). The maps for the moments of z, y, and =z
in this subsection will have accordingly higher dimensions than those for the
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moments of x and y without delays. This underlines the necessity to check
structural stability of the dynamics derived previously.

Treating the stochastic dynamic map (3.144) for (z, y, z) analogous to the
map (3.42) for (x,y) in subsection 3.4.2, we can derive dynamic maps for the
moments of z, y, and z. Under the action of S§’(s,d) the moments change
according to

(amymat), = (3.147)
m l -l R VR R Ay
o o (_1)z+z ,yh-&—z—i—ﬁ-h T ATHI
h+i§km <h‘7 Z? ]7 k) h’+i/§+k/l (h/? Z/’ .]/7 kl)
Jj even j! even

<Sh+h,> <<1 - g>h+z’+j <g>h+i +J > <xn+i+i/yk2kl>

m l . L,
2 : 2 : 1)t h4i+j5+h" +i'+5" A J+7
(h’ @'7% k) (h/, i/,j', k/) ( ) Y A

htitjt+k=m h! +i! 5+ k=1
jodd j’ odd

Sh+h/> <<1 B g>h+i+j (g) h’+i/+j/> <xn+i+i/yk2k/>

m Cy YA A AT
n m § -1 i+i'+1_ h+i+j+h'+i'+j A]-‘r]
Z (h’ %, k) K il +] = h/ Z ] kl) ) !

htitjtk=m
jeven 4’ odd

h+h' _ h+h’ S ﬂ S n+i+i’ ) kK
(e ) e . (&)

m Y R N NI AR
i3 +1 . h+it+j+h'+i' ) ﬁ]+]
Z ( ; ) h/ Z, )/ k/) 1) 7
Rl il g k=

hitgohem \N0s 0,7, K
<M+ <Sh+h’> — <Sh+h/> ) <<1 — g) S <g>h/+i/+j/> <xn+i+z ykzk’> .
+ - T T

jodd §' even
Mean values of quantities involving the corticothalamic delay d are taken
with respect to the density of such delays. We do not need to specify any
density for the delays, but keep in mind that typical values of d are more
than an order of magnitude smaller than 7. We also have to remember that,
due to the expansion (3.143) of the delayed PSP we have used, any results
will be valid only to first order in (d/T).
Under the action of R'(r) the moments change according to

(amym2t) = (3.148)
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"o\ (n— ; er i—nm r/T n—i—j, m+i,l+j
<Z>Z< ; )(_e)J<(T> o~ (ntm+i)r/ ><x Ty +zl+J> .

3 J

Mean Delayed Adaptation Dynamics

Analogous to what we have done in subsection 3.4.3, we introduce the dy-
namic variables

<33>j
(s)y— A

aj =

Bii= Tt = (3.149)
The dynamics of the mean RTDs can now be written as

Oéj Oéjfl b1 — <g> (ea1 + bl)
B | =Mi| Bj—1 | +m (1= (9)) : (3.150)
i Vi-1 <§> a,

with the stimulus parameters a; and b; as defined in (3.64) and the matrix

CL1—’7b1 bl —eaq ea1+b1 0 0

M| = —va; a; 0 +fy<—> a; 00| . (3151
0 0 T —a;, 0 0

Because a; < 1, it is now evident that for (d/7) = 0 the dynamics stably
converges into the subspace spanned by the (z) and (y) components®, where it
is exactly the same as we have derived without regarding delays; cf. equation
(3.63). This implies, by continuity in (d/7), that for small (d/7) the mean
dynamics and the conditions for its stability are slightly modified versions of
those derived in subsection 3.4.3.

Variance and Inter-Class Correlation of Delayed
Adaptation Dynamics

The dynamics of the second moments of z, y, and z is

<5U2>j <x2>j—1 U;_l

(zy j <$y>j_1 U;'_l

W | Z o | W L] owia (3.152)
(z2); 2 (@), iy '
(yz); {yz);_1 vy

<Z2>j <Z2>j71 wg'l—l

3Note that, of course, (z); = 0 for all j, if all delays are zero; cf. equations (3.144)
through (3.146). However, it is the stability with respect to delay perturbations that
matters.
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Fortunately, for investigating structural stability of the delay-free dynamics
(3.81) of the second moments we do not need to spell out the matrix M) or
the vector (u}, v}, w),uf,vj,wy). The latter depends on the first moments
(x);, (y);, and (z); and converges, if they converge. Here it is sufficient to

take a look at
M, - (3.153)
(d/m)=((d/7)?)=0
as —yby +7%co by —2ycy ¢y —2eay +yeby —eby  e’ay

—vag + ng as — by %bg veas —eas 0
v2as —2vas  ap 0 0 0
0 0 0 a9 — %bg %bg —eas
0 0 0 —Yao a9 0
0 0 0 0 0 as

with the stimulus parameters as, by, and ¢y as defined in (3.82). By com-
parison with equation (3.81), it is evident that the dynamics of the second
moments (z?);, (zy);, and (2?); with zero delays is identical to the dynamics
derived without regard to delays, if and only if the moments (xz);, (yz);,
and (z%); stably converge to zero*. This, in turn, is determined by the lower
right submatrix

Ao — %bg %bg —ea9
—yay  ay 0 (3.154)
0 0 a9

of (3.153). Its eigenvalues are

1 [~2
Vys = Qg — %62 + 5\/ Vzb% — 2vasbs | (3.155)

Vg — Qg . (3156)

Since |vg| < 1, convergence requires that |5 < 1, that is, vby < 2(ag + 1)
In general, this is a condition for convergence in the delayed corticothalamic
loop that is additional to those derived for the undelayed loop. For Poisson
statistics of the times of responses to local stimuli, however, we know that
as and by lie on the parabola

by = eas(1l — as) ; (3.157)

see appendix D. Together with the condition v < 4/e derived in subsection
3.4.4 for the convergence of (z?);, (xy);, and (y?);, this implies
")/bg < 4day < 2(&2 -+ 1)2 (3158)

“Note that, of course, (zz); = (yz); = (2%); = 0 for all j, if all delays are zero; cf.
equations (3.144) through (3.146). See, however, the previous footnote 3 on page 113.
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(see appendix D), that is, [v4/5] < 1. Thus, for Poisson statistics there is no
extra condition to ensure structural stability of the zero-delay dynamics of
second moments.

Analogous to the situation without delays, M/ determines stability also
of the class-mixed moments; cf. subsection 3.4.6. The inter-class correlation
derived in subsection 3.4.6, therefore, is the correct zeroth-order correlation
for the dynamics with delays.

At this point we have demonstrated structural stability of the dynamics
investigated in the preceding subsections neglecting delays.

Delay Correction for Asymptotic Mean Degree of Adaptation

From equations (3.150) and (3.151) we get for the asymptotic mean degree
of adaptation with corticothalamic delays

o (1 —a1)*(ear +by) d d 2
o (e Tk <>+O(<>> e

where « is the asymptotic mean degree of adaptation without any delays
given by (3.67). It turns out that delays degrade the mean degree of adapta-
tion to an object’s speed.

Delay Correction for Mean Oscillation Period

For the eigenvalues of M| we get

!/

ea; + b
= Al/ﬁu

P el ]<§>
Vabi(dar —yb1) | \T

L0 (<g>2) , (3.160)

N, = ay, (3.161)

where )/, are the eigenvalues of M; defined in (3.65). This expansion is valid

only for yb; # 4a;y. For vb; = 4a; an expansion in powers of /(d/7) would be
appropriate. However, as derived previously, for convergence of the second
moments we always require that yb; < 4a;; cf. subsection 3.4.4. In this
regime the pairs of eigenvalues A;/, and A /2 are each complex conjugate,
such that the dynamics of the moments and, for (r/7) small enough, of
individual RTDs is oscillatory; cf. equations (3.72) and (3.98). The period of

115



CHAPTER 3. OBJECT SEGMENTATION BY ADAPTIVE VELOCITY TUNING

840 No delays
& 35
30
25
20 Object
passage
15 time
10
5
1 2 3 4 5 /T
E 40 Delays
& 35
30
25
20 Object
passage
15 \/ time
10
5
1 2 3 4 S¢/r

Figure 3.18: Computer simulations comparing the adaptation dynamics for
the response time differences RTD(“®)(t) of 4 classes of neurons (¢ = 1,2, 3, 4)
without (top) and with delays (bottom) in the corticothalamic loop. The time
scale is set by 7, the rise time of corticothalamic postsynaptic potentials; cf.
equation (3.1). The delay for the simulation shown in the bottom graph is
d/T = 0.05. For best comparison, precisely the same stimulus consisting of
an object and a background component has been used for both simulations.
The passage time of object features is indicated by the straight horizontal
line in each graph. With and without delays the system is in the regime
of diffusion-sustained oscillations. As predicted by equation (3.160), the os-
cillation period is slightly longer with the delays in the loop. Parameters:
u=1/3, s, =17, (|s|) = 17.8, var(|s|) = 15.62, (r/7) = 0.01, v = 0.1. See
appendix G for details on the computer simulations.

oscillation with corticothalamic delays is

2T

P = .
arg(\1)

(3.162)

Inspection of (3.160), taking care of the two cases vb; < 2a; and 2a; <
vby < 4aq, yields that, to first order in (d/7), arg(\]) < arg(A;). It thus
turns out that delays increase the mean period of oscillation of RTDs. This
is illustrated for diffusion-sustained oscillations in Figure 3.18.
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3.5 Discussion

We have proven that the model system adapts the speed preferences of cor-
tical layer 4 neurons to the speed of an object through the corticothalamic
loop. As explained in section 3.2, this enables the system to perform object
segmentation against a background and reduction of visual data to behav-
iorally relevant aspects of a stimulus.

The proposed adaptation mechanism could be characterized as pre-atten-
tive, since it requires no ‘act of will’ and no information from higher brain
areas where different objects or shapes are categorized. On the other hand,
like attentional mechanisms, it does act as a kind of bottleneck, namely, as a
bottleneck for information on visual motion. Multiple adaptive motion sys-
tems could act in parallel for different directions of motion, in different parts
of the visual field, and on different spatial scales. From the perspective of
efficiency, higher perceptual and attentive mechanisms can be envisaged best
to operate on top of a representation level where object-unrelated activity
is reduced, as provided by the adaptive motion system. Although at this
point it is difficult to pin down the precise mechanisms of contextual effects
on neuronal responses in the visual system, it seems clear that modulation
related to object segmentation occurs as early as in the primary visual cortex
(V1), at least in primates; see Lamme et al. (1998) and references therein.

Responses of cat area 17 neurons to moving stimuli are modulated by
motion within a region extending far beyond their classical RF®. Both facil-
itatory and suppressive effects have been observed for addition of surround
motion at the same velocity as the central motion (Hammond & MacKay,
1981; Gulyas et al., 1987; Casanova, 1993; Li & Li, 1994). The model pre-
sented here predicts that speed preferences are pulled closer to the speed of
a stimulus moving in a region surrounding the classical RF. Whether this
would result in facilitation or suppression of responses depends on the def-
inition of the reference response. If the latter is measured in an unadapted
state, surround motion at the velocity of the central motion should facili-
tate the response. If, on the other hand, it is measured under conditions of
optimal adaptation to a stimulus moving inside the classical RF, the addi-
tion of further moving features in the surround may drive the RTDs to cross
and disrupt the adaptation process; cf. condition (3.17) and subsection 3.4.7.
Failure of adaptation to the stimulus moving inside the classical RF would
show up as a ‘suppressive’ effect; cf. Figure 3.15. Often in experiments, the
reference response is defined as the best response, that is, the response to

5The ‘classical’ RF of a neuron is the region of visual space that must be stimulated
in order to produce a response. It is the same as the RF in the narrower sense used
throughout this work.
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the optimally moving stimulus. If speed adaptation is effective, however, the
best response would indeed be seen under conditions of optimal adaptation.
In future experiments it, therefore, may be important to be more careful with
the definition of the reference response so as to uncover the true interaction
between classical RF and surround.

Recently, Li et al. (1999) have investigated specifically those neurons in
area 18 that show a suppressive surround effect in their experiment. The
authors describe a repulsion of the neurons’ preferences from the speed of
surround motion. The shift in preference is towards lower speeds, if the
surround motion is faster, and towards higher speeds, if it is slower than the
neuron’s preference without any surround motion. While the fact of a shift
of speed preference in response to a large-field motion stimulus supports the
basic idea advanced in this work, it is unclear how to relate the details of
their observations to our theoretical results. There are at least four problems.
First, Li et al. selected only neurons with a suppressive surround effect for
their study. Neurons that participate in speed adaptation as proposed here
should certainly show response facilitation by surround motion under some
conditions; see the last paragraph. Second, their results have been obtained
in area 18 of the cat. To area 18 the direct geniculate Y-projection is strong,
not the direct X-projection we have discussed in chapter 2 and on which
our reasoning concerning dynamic cortical velocity tuning has been based.
Third, the indirect X-projection to area 18 via area 17 takes at least two
synapses more than the X-projection to geniculate recipient cells in area 17.
Velocity tuning in area 18 may thus be differently affected by adaptation than
in area 17. Fourth, related to what has been discussed in the last paragraph,
it is not clear whether the tuning properties as measured in their experiment
should be interpreted as unadapted tuning, or rather as the ‘effective’ tuning
observed after adaptation to different stimuli.

A critical experimental test of a control loop such as the one analyzed
here is to look for changes in spatiotemporal RF structure on a timescale of,
say, 100 ms in response to moving, especially large-field, stimuli. It would be
interesting to study reverse correlations in the speed or temporal-frequency
domain, analogous to work that has uncovered dynamic orientation tuning
in the monkey (Ringach et al., 1997).

Great care must be taken when extrapolating from cats to primates. No
lagged relay cells have been described in the primate LGN so far. On the
other hand, a recent study (Valois & Cottaris, 1998) does suggest a set of
geniculate inputs to directionally selective simple cells in macaque striate
cortex that is essentially analogous to the lagged-nonlagged set envisaged for
cat simple cells. If indeed primates employ a similar system at the lowest level
of motion analysis, the corticogeniculate loop would implement at this level
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the classical Gestalt principle of ‘common fate’, which recognizes common
motion as a powerful cue for object segmentation in humans (Wertheimer,
1958; Julesz, 1971).

Some interesting properties that are not directly related to the computa-
tional goal of object segmentation, but nonetheless linked to the basic design
of the system, have shown up in its analysis. We now discuss them in relation
to experimental data.

3.5.1 Spatiotemporal Patterns of Cortical Activity

The response time differences RTD(*%) (t) of all layer 4 neurons in the system
are correlated, both across space and classes c. The correlation across space
is the result of the lateral connectivity of the system. The correlation across
classes is mediated by the stimulus; cf. subsection 3.4.6.

If RTDs converge on a stationary state, they do so simultaneously; cf.
Figure 3.10 top. Even for diffusion-sustained oscillations of RTDs we have
shown in subsection 3.4.6 that, depending on the stimulus, all or part of the
neuronal classes (¢, +) synchronize the phases of closest match of their RTD
to the object’s passage time; cf. Figure 3.10 bottom. In phases when many
classes are closely tuned to the object’s passage time, object features elicit a
strong class-averaged response (R,

n
(R®) (s,1) := iZf“s—RTD(C’i)(t)” ; (3.163)
c=1
cf. equation (3.13). In phases when most RTDs diverge from the object’s
passage time, on the other hand, they also diverge from each other, since
there is no attractor of RTDs besides the object’s passage time; cf. Figure
3.10 bottom. Hence there are no strong class-averaged responses (R™)),
neither to object, nor to background features.

It turns out that each time course of adaptation is associated with a
certain spatiotemporal pattern of cortical activity. For an adaptation time
course such as shown at the top of Figure 3.10 there are permanent strong
class-averaged responses (R()) to object features as soon as the RTDs have
converged to the object’s passage time. On the other hand, an oscillatory
time course as shown at the bottom of the figure is associated with alternat-
ing phases of weak and strong responses (R(*)), the strong responses being
restricted to object features. In fact, the dynamic RTDs act as a pacemaker
for distributed cortical activity. A periodic time structure is imposed that
tends to synchronize the firing of layer 4 cells representing the object. As
an illustration of this point, we show in Figure 3.19 the adaptation dynam-
ics and associated spatiotemporal pattern of activities of an array of cortical
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neurons exposed to a stimulus comprising an object and a strong background
component.

In summary, an object is represented in spatially distributed cortical ac-
tivity that has an oscillatory and synchronous spatiotemporal structure, if the
background activity is strong, and no temporal structure, if the background
activity is weak. It is important to note that background activity in the
present sense may be associated with the stimulus, with ocular microtremor
(see subsection 3.5.3 below), or with neuronal noise. The oscillations may
show up in single cell activity or in multi-unit activity, depending on the na-
ture of the stimulus and the size of RFs. In particular, single neurons show
periodic activity, if their responses last longer than one period of oscillation
of the RTDs. Their response then comprises several ‘elementary’ response
events of the kind marked by a single dot in Figure 3.19.

There is indeed evidence for temporal structure in the response of neurons
in primate middle temporal (MT) area to moving random dot stimuli with
a strong incoherent component, while no temporal structure was observed
for mainly coherent random dot motion (Bair & Koch, 1996). For neither
kind of stimulus, though, a preferred frequency of oscillation was found in
the activity data analyzed by Bair & Koch (1996). In terms of the present
model, this may be due to the summation by MT neurons of inputs from
areas V1 and V2 that oscillate independently at various frequencies.

More detailed modeling is required to compare the oscillations and syn-
chronization that arise in the loop model under certain conditions with recent
data on persistent oscillations in area 17 that are preferentially evoked by
moving stimuli (Bringuier et al., 1997; Castelo-Branco et al., 1998). In the
loop model, oscillations may arise from visual stimulation at geniculocortical
synapses, showing up as periodic excitatory synaptic potentials in cortical
neurons. Because of the slow potentials that modulate the GRC states we
would expect such oscillations to be at the lower end of the observed fre-
quency spectrum (below, say, 30 Hz); cf. Figure 3.19. Clearly, since periodic
synaptic potentials are not restricted to layer 4 (Bringuier et al., 1997), in-
tracortical connections have also a role to play, certainly in the propagation
of the periodic activity.

3.5.2 Figure-Ground Segregation

According to Gestalt terminology, in a visual scene of two distinguishable
parts the figure is the one which constitutes the minority, the ground is what
constitutes the majority component (note that the ground is not necessarily
the same as the background in our sense). Usually retinal motion of the figure
indicates motion of an object in the environment, while retinal motion of the
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Figure 3.19: Computer simulations of the adaptation dynamics for the re-
sponse time differences RTD“®)(¢) of 4 classes of cortical neurons (c
1,2,3,4) (bottom) and their associated spatiotemporal pattern of activity
(top). Their receptive fields are arranged in an array of 60 x 60 retinal lo-
cations with 8 neurons per location. The time scale is set by 7, the rise
time of corticothalamic postsynaptic potentials; cf. equation (3.1). The sys-
tem is stimulated by 15 dots placed on a circle, all moving at a common
velocity to the right (object), and 30 dots moving at various random speeds
(exceeding or less than the object’s speed) either to the left or to the right
(directionally unbiased background). At the bottom of the figure we show
the 4 trajectories RTDT)(#), i.e., representative of the neurons selective for
the direction of object motion. The passage time of object dots is indicated
by the straight horizontal line in the graph. Whenever the neurons’ pref-
erences, that is, response time differences (RTDs), get close to the object’s
passage time (corresponding to the object’s speed), object dots elicit a strong
response in neurons that represent their actual retinal positions. The cor-
responding array of activity is shown in the panels at the top of the figure.
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Figure 3.19: The lower row of panels displays all responses that occur within
the indicated intervals of time; the upper row displays only those responses
where the class-averaged activity (R™)) [see equation (3.163)] for a location
exceeds a certain threshold. Nearly all supra-threshold activity is related
to object features, demonstrating the segmentation of the object against
the background. Spurious supra-threshold activity derives from responses to
background dots that by chance have speeds very close to the object’s speed.
The supra-threshold activity is oscillatory and synchronous. If 7, the rise
time of corticothalamic postsynaptic potentials [cf. equation (3.1)], is taken
to be 100 ms, the oscillation frequency is roughly 25 Hz in this example. The
feedback strength is v = 0.25.

ground is often induced by self-motion of the observer, e.g., by eye or head
movement. The visual system is normally able to distinguish the two kinds
of motion, providing for perception of a stable visual world.

There is evidence for the utilization of extra-retinal signals to compensate
for eye and head movements in the perception of heading direction (Royden
et al., 1994; Bradley et al., 1996; Crowell et al., 1997). On the other hand,
it is well known that a stationary subject viewing a coherent large-field mo-
tion stimulus after a few seconds has the impression of self-motion in the
reverse direction (Biittner & Henn, 1981; Straube & Brandt, 1987). More-
over, there is a series of classical psychophysical experiments, reviewed in
Kaufman (1974) and in Van Essen & Anderson (1990), whose results can
be summarized as follows. First, the perception of motion of an object is
greatly facilitated, if a larger stationary reference stimulus is given. Sec-
ond, motion of an object in the presence of a smaller stationary reference is
not easily perceived. Instead, at low speeds motion of the reference in the
reverse direction is inferred (‘induced motion’). These facts suggest some
visually driven mechanism that contributes to a different processing of figure
and ground motion.

As explicated in the previous subsection, cortical activity associated with
the proposed adaptation mechanism inherently distinguishes stimuli with
small and large weights 1 of moving objects by the presence or lack of tem-
poral structure, respectively. This difference could be read out by subsequent
processing stages, e.g., by neurons that are good coincidence detectors, and
other neurons that are stronger driven by a high mean input rate. The for-
mer would function as ‘figure channels’, the latter as ‘ground channels’. In
order to explain in the current framework the perceptions of relative motion
reported above (Kaufman, 1974; Van Essen & Anderson, 1990), one has to
assume that only activity in ‘figure channels’ is interpreted by the visual
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system as signaling motion of objects in the environment.

Consistent with the idea of ‘figure channels’ is the finding of Peterhans &
Baumann (1994) and Peterhans (1997) of neurons in primate area V2 that
prefer coherent motion of a row of dots against a background of stationary
dots to both coherent motion and stationarity of the whole field of dots. As
the authors suggest, area V2 might extract form information from motion
cues. Within our current framework of adaptive motion processing, this
would mean that V1 detects an object through common motion and V2 then
analyzes its shape.

In agreement with the concept of ‘ground channels’, neurons in primate
area MT respond best to fields of dots extending over their classical RF
and moving coherently into their preferred direction, and are suppressed by
the addition of motion in other directions (Snowden et al., 1991; Qian &
Andersen, 1994; Bair & Koch, 1996). The data on MT neurons really look
more complicated, though. Allman et al. (1985) found that MT responses to
the optimal coherent motion within a neuron’s classical RF are commonly
suppressed by addition of the same coherent motion in a large surrounding
region. When interpreting their results in relation to the present model,
however, there is the same problem of the definition of the reference response
as we have mentioned above for experiments in area 17 of the cat. In their
experiments motion inside the classical RF was always adjusted to be optimal
in the context of a stationary surround stimulus. In terms of the present
model, this would mean that V1 neurons projecting to a MT neuron are
optimally adapted to the motion in their classical RF by that particular
combination of stimuli. Now, if more motion in the same direction and
extending over a large area of the visual field is added, the mean interstimulus
time (r/7) will drop. According to subsection 3.4.7, then, this procedure
may easily drive RTDs to cross and disrupt adaptation; cf. Figure 3.15. As
a result, M'T neurons will be out of tune with the stimulus speed and their
responses decline. Addition of motion with less speed has less severe effects,
consistent with the data of Allman et al. (1985). It certainly needs further
experiments, such as simultaneous stimulation of the classical RF and the
surround by slower or sparser dot patterns, to establish whether there are
really distinct center and surround regions working in antagonism, or rather
areas over which adaptation acts homogeneously, or perhaps a combination
of the two. The same care must be taken when interpreting results in the
light of the present model from analogous studies in primate areas V1 and
V2; see, e.g., Allman et al. (1990).

The general notion that areas V2 and MT may perform different aspects
of motion processing is supported anatomically by the existence of separate
projections from V1 to these areas (Zeki & Shipp, 1988; Felleman & van
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Essen, 1991).

There is evidence for a systematic spatial variation and columnar organi-
zation of the neural response characteristics to wide-field motion stimuli in
area MT (Born & Tootell, 1992). Response suppression by uniform wide-field
motion is interdigitated with response facilitation. This apparent functional
specialization within area MT persists beyond MT (Tanaka et al., 1986; Ko-
matsu & Wurtz, 1988; Tanaka et al., 1993; Eifuku & Wurtz, 1998; Berezovskii
& Born, 2000). It remains to be established whether these two streams of
processing could subserve the function of representing figure motion versus
ground motion in the way that ‘figure channels” and ‘ground channels” would

do.

3.5.3 Fixational Eye Movements

An important side effect of the adaptation mechanism is that it can account
for visual stabilization during fixational eye movements. During fixation,
erratic eye movements, called microtremor, occur with a frequency content
ranging from roughly 25 to 100 Hz in humans, with the dominant component
usually above 70 Hz (Eizenman et al., 1985; Spauschus et al., 1999; Bolger
et al., 1999). They cause retinal slips that are in principle detectable by
velocity-tuned neurons in the primary visual cortex. Nonetheless, no such
motion is perceived during fixation. The reason may lie in the fact that fixa-
tional eye movements provide motion signals that are directionally unbiased
on the timescale of the corticogeniculate control loop (~ 100 ms). Since
unbiased motion, that is, a stimulus with object weight ¢ = 0, does not
lead to adaptation to any particular velocity [cf. equation (3.67)], none of
the moving features is highlighted. Now, if the brain relies on the activity
of adaptively speed-tuned neurons to infer coherent motion, no such motion
will be inferred from fixational eye movements. Stabilization of the visual
world is thus achieved because successive motion signals cancel out in the
control loop.

Interestingly, this stabilization mechanism explains the recently reported
‘jitter after-effect” (Murakami & Cavanagh, 1998). An observer is first ex-
posed to dynamic noise for 30 s, and then fixates a larger area of static noise.
The perception is a coherent jitter of the static noise that follows fixational
eye movements, specifically, in the region that has not been exposed to the
prior random motion. The explanation in terms of the present model relies
on the fact that responses of velocity-selective neurons are reduced (fatigued)
after stimulation for 30 s [also called ‘adaptation’, but unrelated to the adap-
tation of speed preferences proposed here; see Hammond et al. (1988)]. Let
us consider two models of cortical response reduction, one multiplicative and
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one subtractive, that is,
R, = kR;, R! = max(R;,— K,0), (3.164)

where 0 < k < 1 and 0 < K < 1, such that R, and R/ are the reduced
responses to event i. According to equation (3.10), then, the respective
amplitudes of corticogeniculate potentials [cf. equation (3.2)] are

Al = yA(kR)) o [k(R; — RY)], Al = yA(Ri—K)o(R;—R;) . (3.165)

Generally, the function A is monotonically decreasing from a maximum value
of A(0) to its minimum A(1) = 0, and o is sigmoidal between —1 and +1 with
0(0) = 0; cf. subsection 3.3.2. It follows that A, = 0 for kK = 0 and k = 1/R;.
Although for R; < 1 the value 1/R; > 1 is outside the range of k we have
in mind, continuity implies that there is a maximum of A; for some value
k € [0,1/R;], and that this maximum will be at larger  for higher responses
R;, R7, R:. Put differently, for any fixed response reduction xk < 1, there
will be an increase in PSP amplitude, i.e., A, > A;, if the responses R;,
R;7, Ry are high enough, and a reduction, i.e., A} < A;, if they are lower.
For the subtractive model of cortical response reduction we have larger PSP
amplitudes, A7 > A;, if R; > 0, and unchanged amplitudes, A7 = A, if
R; =0.

The motion stimulus induced by ocular microtremor is characterized by
a certain mean passage time (|s|). From the last paragraph we conclude
that, while the mean adaptation with reduced cortical responses remains
zero (because p remains zero), the fluctuations of RTDs close enough to
(|s|) increase. In fact, for close enough RTDs the effect is similar, although
not equivalent, to increasing the amplitudes A; by strengthening the corti-
cothalamic coupling parameter ~; cf. equation (3.10). More precisely, the
variance var(z) — oo as 7 — 4/e—; cf. subsection 3.4.4. For multiplicative
response reduction increased fluctuations of RTDs are restricted to a smaller
neighborhood of (|s|) than for subtractive response reduction, because higher
responses are required in the case of multiplicative response reduction; see
the last paragraph.

In subsection 3.4.6 we have shown that the gap between anti-correlated
RTDs is smallest around (|s|) and for p = 0; cf. equation (3.128). For the
motion stimulus induced by erratic eye movements the gap is

= 24/var(|s]) . (3.166)

u=0
As passage times s induced by fixational eye movements are generally brief
(Eizenman et al., 1985; Spauschus et al., 1999; Bolger et al., 1999), we can

~

2 C’min
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assume that var(|s|) is rather small, that is, smaller than true motion stimuli
usually give rise to. The gap 2 Cinin is thus small, implying that the mean
induced passage time (|s|) will be approached synchronously by correlated
fluctuations of many RTDs. Of course, when cortical responses are reduced
according to equation (3.164), the results of subsection 3.4.6 apply only to
zeroth order.

In Figure 3.20 we show computer simulations of the adaptation dynamics
with normally responsive neurons (top), and with reduced response ampli-
tudes for part of the neurons, both for multiplicative (middle) and subtractive
(bottom) response reduction. The stimulus is jitter motion and mimics mo-
tion as induced by fixational eye movements. The normal-response condition
demonstrates visual stabilization (see above), the condition with partial re-
sponse reduction simulates the ‘jitter after-effect’ (Murakami & Cavanagh,
1998), where part of the cortical neurons have been fatigued. As a result
of strong fluctuations of RTDs which tend to approach the induced passage
time (|s|) synchronously (cf. Figure 3.20 middle and bottom), there are peri-
ods when the system is much closer tuned to the speed of eye-induced motion
than under normal conditions (cf. Figure 3.20 top). Normally responsive neu-
rons, that is, neurons outside the region of reduced (fatigued) responsiveness,
now exhibit enhanced class-averaged responses (R™®)) [cf. equation (3.163)]
to eye-induced motion. Thus the same mechanism that ensures perceptual
stabilization during normal fixation will now signal jitter motion as reported
by Murakami & Cavanagh (1998).

3.5.4 Encoding Stimulus Speed

In a system of neurons with steady speed tuning absolute speed is encoded
straightforwardly in the population activity of neurons with different tuning.
Evidently, this is not true of our model system. Instead, speed differences
relative to an object’s speed are represented with high accuracy due to the
clustering of tuning curves around the object’s speed; cf. Figure 3.1 bottom.

There is an interesting experiment by Watamaniuk et al. (1993) that
demonstrates the influence of dot density in random dot kinematograms on
perceived speed: the higher the dot density, the higher the perceived speed.
Suppose now that speed estimation had to be based on the outputs of adap-
tively velocity-tuned neurons. As expressed by equation (3.67) and Figure
3.6, at fixed p the statistics of interstimulus times r determines the mean
degree of adaptation of the neurons to the stimulus. Since the interstimulus
times decrease with both increasing stimulus speed and stimulus density, a
perceptual interaction between the two as observed by Watamaniuk et al.
would have to be expected. In other words, their results are consistent with
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Figure 3.20: Demonstration of visual stabilization during fixation (top) and
of the ‘jitter after-effect” (Murakami & Cavanagh, 1998; middle and bottom)
in computer simulations of the corticogeniculate loop model. The stimulus
mimics fixational eye movements and is a jitter consisting of alternating
episodes of motion in opposite directions with a jitter passage time of sjiter =
410, indicated by the straight horizontal line in each graph. The length [
of each episode is drawn independently according to the Weibull density
p(l) = 1/100 exp(—1?/200) with a maximum probability for [ = 10 stimulus
events, and rounded to the nearest integer. Thus the jitter motion reverses
direction at time intervals of on average 5v/27(r/7) = 0.063, which is fast on
the time scale of the plots in this figure. We arbitrarily show one direction
population of the response time differences RTD“®)(t) (¢ = 1,2,3,4); both
populations (“+”) look qualitatively the same, as there is no object in the
stimulus (@ = 0) and, hence, no drift of the RTDs. The top graph shows
adaptation for normal fixation. Fluctuating RTDs approach the eye-induced
passage time sjiier Synchronously, but no RTD gets close to sjiter; hence, no
cortical neuron responds strongly to the eye-induced motion.
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Figure 3.20: The middle graph shows adaptation to exactly the same stimulus
with 1/3 of cortical responses (randomly selected) reduced multiplicatively
to 75 %. The fluctuations of the RTDs near the jitter passage time Sjitter
are now stronger. Amongst the corresponding cortical neurons, those that
have remained normally responsive now exhibit enhanced responses to the
jitter motion. The bottom graph shows adaptation, again, to exactly the
same stimulus but with subtractive reduction of 1/3 of neuronal responses
(randomly selected) by 25 % of the maximum response. Fluctuations are now
stronger for all RTDs. The system, again, exhibits enhanced responses to the
jitter motion. Other parameters: (r/7) = 0.005, v = 0.03. See appendix G
for more details on the computer simulations.

the idea that estimation of speed is to some degree based on the output of
neurons that adapt their velocity tuning in the way proposed here.

Another set of experiments (Clymer, 1973; Smith & Edgar, 1994; Schrater
& Simoncelli, 1998) has demonstrated repulsion of perceived speed away
from the speed of an adapting stimulus. Again, this is just what is to be
expected, if speed is estimated from responses of neurons that shift their
speed preferences towards the speed of the adapting stimulus, which is the
basic operation of the present model.

The human absolute measure of speed is not very accurate, which might
not be a severe perceptual deficit. Detecting relative motion and exploiting
it for object segmentation seems to be much more important than a mere
determination of speed itself.

3.5.5 Unaddressed Issues and Possible Model
Extensions

There are several directions in which one may extend the present model of
the corticogeniculate loop in order to explore issues that have been left aside.
Perhaps the most urgent question that has not been addressed here is how a
control loop for adaptive velocity tuning could react sensibly to the presen-
tation of multiple objects in motion. Of a system for object segmentation
one would require that each object is represented as being distinct from the
others. The loop model was analytically treated in a linear approximation;
cf. equation (3.16). Within this approximation, the sole target of adaptation
is always (s)/u, regardless of how many objects are present in the stimulus;
cf. equation (3.62). Multiple objects that move at different speeds into the
same direction or that move in opposite directions thus cannot be selected for
enhanced representation by the velocity-tuned neurons. A nonlinear system
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needs to be analyzed to see, if the population of cortical neurons can split
such that different parts become tuned to different object velocities. If, on the
other hand, different objects move into different directions, they are picked
up by different direction populations of velocity-tuned neurons. Successful
object segmentation then depends on the directional tuning characteristics
and on the interactions that are assumed between the different direction pop-
ulations. In the limiting case of narrow directional tuning and no interaction
between the populations, we are left with a collection of independent systems
as analyzed above, some of which are stimulated by a single object. Adap-
tation then proceeds in each population as has been demonstrated here. In
particular, in the regime of diffusion-sustained oscillations cortical neurons
responsive to parts of the same object tend to fire in synchrony, while those
responsive to different objects fire without correlation between them.

The choice of interactions between direction populations has to be made
consistent with data on motion integration across different directions, such as
data on perceived global flow and transparent or rigid plaid motion; see, e.g.,
Watamaniuk et al. (1989), Braddick (1993), Stoner & Albright (1993), and
Kim & Wilson (1993). In particular, for segmentation it should be possible
to bind different features of the same object regardless of their orientation.
Several authors have proposed that binding is encoded in correlation of firing
of neurons that respond to related parts of a stimulus (von der Malsburg,
1981; von der Malsburg, 1986; Abeles, 1982; Eckhorn et al., 1988; Engel et al.,
1992). Diffusion-sustained oscillations may realize just this in a control loop
for velocity tuning that incorporates interactions between different direction
populations. Visual cortical areas beyond the primary visual cortex are likely
to be involved, as they are believed to be the stage where the so-called
‘aperture problem’ is solved®.

We here have dealt only with translatory motion. It is well-known, how-
ever, that more complex velocity fields, such as resulting from object and
observer motion in depth and motion of non-rigid objects, are utilized by the
visual system as cues for object segmentation; cf. section 3.1. Again, higher
visual cortical areas, notably area MST in primates, are likely to be involved
in representing such patterns of motion; see, e.g., Zemel & Sejnowski (1998).
With regard to segmentation of multiple objects in complex motion, it would
be interesting to study a model that includes stages of convergence of out-

6By ‘aperture problem’ one denotes the simple fact that it is impossible to judge the
true two-dimensional direction of retinal motion of, say, a bar from viewing only a part of
the bar that excludes the bar’s ends. Since simple cells respond only to bar orientation,
and not to the location of the bar’s ends (even if inside their RF), they are blind to the
two-dimensional direction of motion. Rather, simple cells only represent the component
of motion that is orthogonal to a bar’s orientation.
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puts from different direction populations as analyzed here. Neurons of the
higher stages could be envisaged to either only collect the adapted signals of
the lower stage or to influence the adaptation process in the lower stage by
way of their feedback connections. In this context it is interesting to note
that intracortical feedback connections terminate in layer 6 (and layer 1) of
the primary visual cortex, that is, in the same layer that projects back to
the LGN (Zeki & Shipp, 1988). Statistical detection and enhanced represen-
tation even of complex, object-related, patterns of motion may thus result
from the basic mechanism of adaptive velocity tuning that has been explored
here.
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Appendix A

Biophysical Neuron Models

Since Hodgkin & Huxley (1952) have revolutionized both electrophysiology
and models of excitable membranes with their work on the squid giant axon,
there has been a common approach to detailed modeling of neurons of various
types. The essential electrical properties of neuronal membranes have been
found to be captured by the type of circuit shown in Figure A.1, often referred
to as the ‘equivalent circuit’. According to this circuit model, the membrane
potential V' of a cell obeys the differential equation

T axh (A.1)

v 1 &

=1
where I; are the currents through the different types of ion channels in the
membrane, and C'is the membrane capacitance. The art of building a neuron
model is to find good empirical, quantitative descriptions of all the relevant
ion currents. It was the achievement of Hodgkin & Huxley (1952) to have
provided the first successful mathematical account of voltage-dependent ion
channels.

Equation (A.1) describes a point-like neuron. If the spatial dimension is
relevant, e.g., because the neuron is of complex geometry or the types of ion
channels vary significantly over the cell’s surface, different local models, called
compartments, of the kind (A.1) must be coupled by current-exchange accord-
ing to the cell’s topology. In this work we use a single-compartment model.
Neurons that are well-described by single-compartment models, like the tha-
lamic relay neurons investigated in this work (Huguenard & McCormick,
1992; McCormick & Huguenard, 1992), are called electrically compact.

The way Hodgkin & Huxley (1952) have modeled the Nat and K ion
channels of the squid giant axon has become the paradigm for a large range
of ionic currents. We here introduce the general concepts, the characteristic
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Figure A.1: Model circuit for the electrical properties of a cell’s membrane,
often referred to as the ‘equivalent circuit’. V is the membrane potential,
C' is the membrane capacitance, and I; are ion currents. The characteristics
of ion currents are determined by their reversal potential (batteries) and
their conductance that may in general depend on the membrane potential,
on intracellular ion concentrations, or on the time elapsed after reception of
an input spike (variable resistors).

functions, the parameters, and the common notation, along with modifi-
cations that are necessary for some channels. Characteristic functions and
parameter values for the model of thalamic relay neurons (Huguenard & Mec-
Cormick, 1992; McCormick & Huguenard, 1992) employed in this work can
be found in appendix C. For a detailed exposition of data and theory on ion
channels and excitable membranes the reader is referred to Tuckwell (1988a,
1988b) and Hille (1992).
Within the Ohmic approximation, the ion currents are described by

Ii = gimi" b (Vi=V) (A.2)

with the reversal potential V;, the maximal conductance g;, the gates m; and
h;, and some positive, usually integer, constants p; and ¢;. The reversal
potential V; is given by the Nernst potential for ions of type i,

V, = @ In (Ci’e> 7 (A.3)

Z;€ Czﬁ

where ¢; , and ¢;; are the ion’s concentrations in the extra- and intracellular
space, respectively, and z; is its valence. As usually, e is the elementary
charge, k is the Boltzmann constant, and 7' is the absolute temperature. The
gates m; and h; are dynamic variables that assume values between zero and
one according to differential equations that involve the membrane potential
V; see below.

It must be stressed that expressions of type (A.2) are primarily empirical
fits to the voltage dependence of ionic currents. Nonetheless, an oversim-
plified but intuitive physical interpretation of (A.2) is that ion currents flow
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through an ensemble of channels of type ¢ that have p; m-gates and ¢; h-gates
each. The gates are open and closed with certain probabilities. An individual
channel allows ions to pass only if all its gates are in the open state.

In what follows we will drop the index ¢ for notational simplicity. With
the given picture of ionic gates in mind, we may ‘understand’ the dynamics
of the gates m and h. Transitions between the open and closed states are
governed by the transition rates o, , and 3,5,

‘Z_T — (V) (1 =m) = Bu(V)m | (A.4)
i_? = an(V)(L—h) = Bu(V) . (A.5)

The rates, in turn, are functions of the membrane potential V. Instead of
transition rates, one may specify the gates’ asymptotic values m,, and h.,
and time constants 7,,/,. Their relation to the transition rates is

. (V')
V) = W ) o
(Xh(V)
heoV) = ) 4 (V) (A7)
(V) ! (A.8)

@ fn (V) + Bnyn(V)

By convention, the m-gate is usually the one that opens (m., ~ 1) at higher
and closes (ms ~ 0) at lower membrane potentials; for the h-gate the situa-
tion is just the other way round. The m-gate is called the activation gate, the
h-gate the inactivation gate. Accordingly, a current is said to activate when
the m-gate opens; it is said to inactivate when the h-gate closes. As a typ-
ical example, Figure A.2 displays plots of the gates’ asymptotic values and
time constants for the transient Na™ current Iy,; see equations (C.1) through
(C.5) in appendix C. It can be understood from these plots (see the Figure
caption) that the current Iy, is prominently involved in the production and
propagation of a neuron’s action potentials, or spikes.

For the firing pattern of thalamic relay neurons, the transient and low-
threshold Ca?* current It is of particular importance; see section 1.2 and
equations (C.29) through (C.33) in appendix C. Analogous to the production
of Na™ spikes by Iya, the Ca*" current It produces Ca*" spikes (that, in
turn, can promote Na™ spikes). In Figure A.3 we show plots of the gates’
asymptotic values and time constants for Ir.

Some types of ion channels do not inactivate, i.e., they have ¢ = 0. A
somewhat unusual current of this type is the h-current I; see equations
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Figure A.2: Plots of asymptotic values (left) and time constants (right) of the
gates for the transient Na™ current Iy,; see equations (C.1) through (C.5) in
appendix C. The m-gate is the activation gate, the h-gate the inactivation
gate. The effect of Iy, is to initiate action potentials once the cell’s membrane
is sufficiently depolarized. As can be seen from the left plots, when the
membrane potential increases from a resting level of —70 mV to roughly —50
mV, the m-gate starts opening (activation). At the same time, the h-gate
starts closing (inactivation). In the right plots we see that activation is much
faster than inactivation. The net effect is a transient opening of both m- and
h-gates. As the Na™ concentration in the cell’s interior is much lower than
in the exterior space, an influx of Na*t into the cell results. Importantly,
Na™ influx leads to additional depolarization. Activation of Iy, is thus a
self-reinforcing effect. The cell is repolarized to lower potentials, and the
action potential is terminated, by inactivation of Iy, and activation of K+
currents; see appendix C.

(C.41) through (C.43) in appendix C. Unlike for Iy, and I, the activation
gate of I, opens when the cell is hyperpolarized!. The h-current is, therefore,
said to be ‘hyperpolarization-activated’.

An ion channel that neither inactivates nor de-activates, i.e., p = ¢ =
0, is called a leak channel. Leak channels are characterized by a constant
conductance g; cf. equation (A.2).

Within the picture of open and closed m- and h-gates we can reason that
the asymptotic values mq, and h. have to obey the Boltzmann equilibrium
distribution for the open and closed states. Since this equilibrium is depen-
dent upon the membrane potential V', some gating charge zp, e has to be
moved in the electric field in order to switch between the open and closed

! Alternatively, one might say that for I;, we have p = 0 and the current is always
activated. For some reason, this way of looking at it is not favored.
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Figure A.3: Plots of asymptotic values (left) and time constants (right) of
the gates for the transient and low-threshold Ca?* current It; see equations
(C.29) through (C.33) in appendix C. The m-gate is the activation gate,
the h-gate the inactivation gate. The effect of It is to initiate Ca?t spikes
after sufficient hyperpolarization of the cell’s membrane to open the h-gate
(de-inactivation). The series of events during the production of a Ca®* spike
is analogous to the one for the Na* spike; cf. Figure A.2.

states of the m/h-gates. Let W,,/, be the conformational energy increase
associated with channel opening at V' = 0. The equilibrium ratio of the
numbers of open and closed channels in an ensemble at membrane potential

V' then is open
n Wb — Zm/meV
m/h _ _ "Vm/h m/h A9
i oo -He ) A9
implying that
nopen 1
V) = —sa = , (A.10
Moo(V) N ndosed 1 4 exp[(W,, — zmeV) /KT ( )
ny>" 1
hoo(V) = = (A.11)

nzpen + nﬁlosed 1+ eXp[(Wh — Zhev)/kT] .

In fact, equations (A.10) and (A.11) represent commonly, although not ex-
clusively, used fits to the voltage dependence of m., and h., respectively.
The valence 2/, of the gating charge then turns out to be some effective,
possibly fractional, number.

Equations (A.10) and (A.11) indicate a temperature dependence of my,
and ho. Likewise, the time constants 7,,/, and the maximal conductance g
depend upon temperature. The time constants become shorter and the con-
ductance larger with increasing temperature. The amounts of change depend
on the specific channel, but often a time constant will reduce to roughly 1/3
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and a conductance will increase about 1.5-fold, Ca?* conductances 3-fold,
when the temperature is increased by 10 degrees.

For some ion channels the Ohmic description (A.2) for the ion current
I does not provide a satisfactory approximation. In those cases Goldman’s
constant-field equation

Vz2e? ¢ — coexp(—zeV/KT)

I — amP he
gm ET 1 —exp(—zeV/kT)

(A.12)

often is a better choice (Tuckwell, 1988a). Here ¢; and ¢, are the ion’s concen-
trations in the intra- and extracellular space, respectively, and z is its valence.
For the thalamic relay neuron, the Ca?" currents are modeled according to
equation (A.12); see appendix C.

Ion channels that have a conductance which depends on the membrane
potential V', as introduced here, are called voltage-gated channels. There are
other ion currents, like the Ca?*-activated K* current /¢, with a conductance
depending on the membrane potential and the intracellular concentration of
Ca?" ions; see equations (C.38) through (C.40) in appendix C. They are, ac-
cordingly, called voltage- and Calcium-gated currents. Their transition rates
a and f [cf. equations (A.4) and (A.5)] are functions of membrane voltage
and intracellular Ca?" concentration. Moreover, receptor-gated channels can
be found, e.g., at synapses, where they provide for transmission of chemical
signals. All three types of channels are used for the model of thalamic relay
neurons studied in this work; see appendix C and subsection 2.2.1.
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Appendix B

The Spike-Response Model of a
Neuron

The spike-response model has been introduced by Gerstner & van Hemmen
(1992); see also Gerstner & van Hemmen(1994). Its basic idea is to reproduce
a neuron’s spiking behavior by a threshold process on its membrane poten-
tial. The evolution of a model neuron’s membrane potential is given by the
linear response to presynaptic input spikes and to spikes generated by the
cell itself. Spikes are represented as point events and all that matters are
the times of spike generation in the neurons. Justification for these model-
ing assumptions is obtained from the observation of real neurons. Moreover,
the spike-response model can be understood as the systematic first-order ap-
proximation to the celebrated, but computationally much more expensive,
Hodgkin-Huxley model (Hodgkin & Huxley, 1952; Kistler et al., 1997); see
appendix A. We here introduce the principles and parameters of the spike-
response model. Numeric values for the parameters are given elsewhere; see
the descriptions of specific simulations in subsection 2.2.1 and appendix F.

The dynamic variable of the neuron model is usually denoted by h and is
reminiscent of a neuron’s membrane potential. In the deterministic version
of the model, a spike is triggered whenever h crosses a given threshold 6 from
below. Probabilistic versions define a function q(h — 6) that gives the rate
of spikes, in the sense of an (inhomogeneous) Poisson process, depending
on the distance of the ‘membrane potential’ A from the threshold #. The
function q(h — @) drops to zero as h — 6 approaches —oo. In the simulations
presented in this work we have used external sources of noise, i.e., other
neurons’ inputs, and thus have employed the deterministic version of the
spike-response model, that is, with the hard threshold 6.
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The ‘membrane potential’ h is the sum of two terms,
BE) = hegn(t) + haet(1) (B.1)

the synaptic contribution hgy, and the refractory contribution h.es. The
synaptic term describes the response at the cell’s soma to past synaptic
input at times t1,%s,...,t, <1,

Here €(t) is the unary postsynaptic potential. Different choices for €(t) are
possible. In particular, for e(t) = exp(—t/7) ©(t) we recover the widely-used
integrate-and-fire model as a special case. A more realistic model is obtained
for €(t) being an alpha function,

() = — exp(l— ! )@(t). (B.3)

Texc/inh Texc/inh

We have chosen the alpha function with rise times 7y and 7, for excitatory
and inhibitory input, respectively. Additionally, conduction and synaptic
delays may be incorporated. The amplitudes w; of postsynaptic potentials
[see equation (B.2)] are reflections of the ‘weight’ of the different transmit-
ting synapses. The ‘weight’ is positive for an excitatory, and negative for
an inhibitory synapse. They are collectively referred to as wey and wiyy,
respectively.

The refractory term in equation (B.1) describes the refractory phase that
a neuron enters after generation of a spike. During the refractory phase a
neuron is less likely to generate another spike. This behavior is implemented
as a transient reduction in the ‘membrane potential’ h. Within the linear
approximation we get

n
href(t) = Wref Z 77(t - tz) ) (B4)
i=1
where t!, 2, ..., t" < t are the times of past spike generation by the neuron,
and 7(t) < 0 is the refractory potential. Different choices for n(t) are possible.
For the simulations in the present work we have used

0 if t <0,
T](t) = —00 it 0 S t < Trefa (B5)
- exp( L) if Trer <.

Tref
During the time interval T,. after each generated spike no further spikes
can be triggered, no matter how large hgn gets. Tier is called the absolute
refractory period. It reflects the time it takes a neuron’s Na't channel to
de-inactivate; cf. appendix A.
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Appendix C

Model of Thalamic Relay
Neurons

In accordance with Huguenard & McCormick (1992) and McCormick &
Huguenard (1992), and with information privately communicated by J. R.
Huguenard we have set the membrane area at A = 29000 pym?, the membrane
capacitance at C' = 0.29 nF, and have implemented the ionic currents listed
below. We have adapted the model to 37 degrees Celsius and all equations
refer to this temperature. Moreover, V' denotes the membrane potential in
mV, I; the ionic currents in nA, and 7,,/, the gating time constants in ms.
The concentrations cca,1,/1/e Of Ca?* ions are measured in mol/l. m, and
ho are dimensionless, asymptotic gating variables. For an introduction to
biophysical neuron models and of the notation used here see appendix A.

Transient Na™ current In,

1

Moo = T770.681 exp|—(V + 38)/5] ° (€.1)
1
oo = 14129 exp[(V 4 55)/15] /{1 + exp[(17 = V') /21]} ’ (€:2)
o 0.227 {exp[(V + 38)/5] — 1} (3)
™ =V + 38){0.091 exp[(V + 38)/5] + 0.062} ’ '
o 0.227 (C4)
0.016 exp[—(V + 55)/15] 4+ 2.07/{1 + exp[(17 — V) /21]} ’
Ine = 128mPh(41-V). (C.5)
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Persistent Na® current In,p

1
Moo = 771 exp[—(V +49)/5] 0
- 0.227 {exp[(V + 38)/5] — 1} (C.7)

™ T (V4 38){0.091 exp[(V + 38)/5] + 0.062} |

Inap = 0.00744m (41 — V) | (C.8)

Rapidly inactivating K current I,

1

Moo = T expl—(V + 60)/8.5] ° (C9)
foo = 1+exp[(‘1/+78)/6] ’ (C-10)
Tm = eXp[(V—i—35.8)/19.7]0fz>7cp[—(v+79.7)/12.7] +0.084, (C.1L)
o= { 51’,‘5[{”46”5”%’3‘2’[7‘W“?’S”?”“ iefls‘e/vvjle;f,?)’ (C.12)
Iny = 0.644m*h(—=105-V) . (C.13)

Rapidly inactivating K+ current I,

1

Moo = T exp[—(V + 36)/20] (C-14)
oo = 1+exp[(‘1/+78)/6] ’ (C.15)
Tm = exp[(V—{—35.8)/19.7]0fz>7cp[—(v+79.7)/12.7] +0.084, (C.16)
Th = { i§§[éV+46)/5]+%f§[7—(V+238>/37.5] fls‘efwze;z?” (C.17)
Ing = 0.429m*h (—105-V) . (C.18)

Slowly inactivating K™ current I'gs,

1

Moo = T expl=(V + 43)/17] ° (C-19)
|

foo = 1+ exp[(V + 58)/10.6] ’ (C-20)
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0.227

N 2.2 21

" expl(V — 81)/25.6] + exp[—(V + 132)/18] = (C.21)
0.227

N 27.2 22

S expl(V = 1329)/200] + expl—(V + 130)/71] T o2 ()

Ixza = 0.129m*h(—105—V) . (C.23)

Slowly inactivating K™ current I'gs,

- ! (C.24)

Moo = T exp[—(V + 43)/17] '

1
heo = : C.25
1 4 exp[(V + 58)/10.6] ( )
0.227
- 2.95 . C.26
B exp[(V — 81)/25.6] + exp[—(V + 132) /18] + ( )
0.227 :
+272 if V< -=70
— exp((V —1329)/200]+exp[—(V+130)/7.1] ’
Th { 2020 elsewhere, (C.27)
I, = 0.0857m*h(—=105—V) . (C.28)
Transient and low-threshold Ca?* current It
1
" 1+ exp[—(V +60.5)/6.2] (C-29)
1
hoo = , C.30
1+ exp[(V + 84) /4] ( )
0.181

m = 0.111, (C.31
B exp[—(V 1 132)/16.7] + exp[(V 1 16.8)/18.2] © (C31)
[ 0.249 exp[(V + 467)/66.6] if V < —80, (©.52)

TR T 0.249 {exp[—(V 4 22)/10.5] + 28} elsewhere, '

ae —0.0748 V') — ccaT — Cca

In = 681m2hy “Cue P ) — Ccar = Coar (C.33)

1 —exp(—0.0748V)

Here ccae = 0.002 mol/l is the (fixed) extracellular concentration of Ca®*
ions, and ccy v and cc, 1, are the intracellular concentrations of Ca?* as con-
tributed by the Ca currents It and Iy, (see below), respectively. The contri-
bution by the T-current is modeled by

deca,T 0.0518 mol 1
- — — CCa,T »
dt A InAms & ms CaT

as long as ccar > 5 - 108 mol/l. The dynamics of ¢, 1 is constrained to
never drop below 5 - 107® mol/l.

(C.34)
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Long-lasting and high-threshold Ca?" current I,

1
Mee = 17 exp[—(10+ V) /10]
1.6
= 0227
i /[1.43 exp(—0.072V) + 1
0.02 (V — 1.31)

i 0.783 exp(0.186567V) — 1|

CCae €Xp(—0.0748 V') — ccat — CoalL
I, = 1360m?V =2 : :
L " 1 — exp(—0.0748 V)

(C.35)

(C.36)

(C.37)

The Ca concentrations ccae, cca, 1 and cca 1, have the same meanings as above.
The intracellular concentration cc,y, is modeled exactly like cca, that is,
by equation (C.34) with ‘T” replaced by ‘L’ and with the same minimum

concentration.

Ca’t-activated K+ current I¢

1
14+4-10""/ccar exp(—V/12) ’
0.227
0.1 exp(—V/24) + 250000 cc, 1, exp(V/24)
Io = 1.06m(—105—V) .

My =

Tm =

The Ca** concentration cc, 1, has the same meaning as above.

Hyperpolarization-activated cation current I

1

1+ exp[(V +75)/5.5]
0.227

Moo

Tm =

I, = 0.0213m(-43-V).

Leak Na' current Inaleak

Inateax = 0.000266 (41 — V') .

Leak K* current Ixijeax

Ikieak = 9Kieak (—105 — V) |
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exp(—0.086 V — 14.59) + exp(0.0701 V — 1.87)

(C.38)

(C.39)
(C.40)

(C.41)

(C.42)
(C.43)

(C.44)

(C.45)



where gkieax has been varied between 0.00106 uS and 0.0159 pS in order
to yield resting membrane potentials between —61 mV and —76 mV; see
subsection 2.2.6.
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Appendix D

Stimulus Parameters for
Poissonian Stimulus Events

In the absence of accurate data, it is reasonable to assume the times ¢; at
which visual features drive cortical neurons to fire to obey Poisson statistics.
For the density u of interstimulus times r this means

G D.1)

u(r) = . 1
(r)

In order to reformulate and uncover dependencies between the stimulus pa-

rameters a;, b;, ¢; introduced in equations (3.64) and (3.82), we calculate the

mean values
k
B = (—%) ./0 dru(r)e /™

<<£)ke_m> _ (_%>k<e—zr/r>

a\" 1
- <‘%> ey (D-2)
Hence the stimulus parameters turn out to be
B 1 _ e (r/T)
R e A ey o
0y — 1 . 2e (r/T) .Y — 22 (r/7)* .
1+2(r/7)’ (1+2(r/7))*’ (1+2(r/7))°

There are now dependencies between these parameters. In particular, we

have
bi:eai(l—ai) s i:1,2, (D4)
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such that the stimulus parameters aq, b; lie on the parabolas plotted in the
left graph of Figure 3.6.

In subsection 3.4.4 we have established that the necessary and sufficient
condition for the second moments to converge is v < 4/e for small (r/7).
Multiplying equation (D.4) by -, we see that this bound implies for Poisson
statistics

vb; < 4da; (1 —a;) <4a; fora; €(0,1),i=1,2. (D.5)

In particular, the loop system is in the regime of damped oscillation of the
mean RTDs for all a; € (0,1); cf. Figure 3.5. Conversely, vb; < 4a; for all
a; € (0,1) together with equation (D.4) implies v < 4/e.
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Appendix E

Proof of Two Assertions on
Crossing of Mean Response
Time Differences

We here present the proofs of assertions 2 and 3 on crossing of mean response
time differences (RTDs) that are formulated in subsection 3.4.7. (Assertion

1 of subsection 3.4.7 is briefly proven there.)

Proof of Assertion 2

In order to prove assertion 2 we have to make use of equation (3.140) and

investigate the sign of

lim Fay,vea; (1 —aq)] .

a1—1

Since F(1,0) = 0, the sign of (E.1) depends on the sign of

d
iy SRR =)

OF(z,2") N OF(z,2")
0z 0z

(llﬂlf

- iy | (e~ 202

z=a1,z'=veai(l—a1)

With patience and some calculus one finds

lim OF(z,7)

a1—1— z

z=aj,z'=veai(l—a1)

146

(E.1)

(E.2)

(E.3)



: ( U )

=42u—1). E.4
Jim S (2u—1) (B4)

z=ai,z'=vea1(l—a1)
[This is the same limit as obtained on a different path in (3.139).] The last
two limits, substituted into equation (E.2), indeed imply assertion 2.

Proof of Assertion 3

Despite the fact that the implicit-function theorem is not applicable, we can
derive the slope of C,(a;) in the point a; = 0, vb; = 0. Because of (3.137)
we know that

F(ay,vb1) = by — 4ay + o(ay, vby) ; (E.5)

cf. equation (3.135). This directly implies

ac,

da1 a1=

=4, (E.6)

as can be verified in Figure 3.17. Of course, the derivative of C,(a;) at the
point a; = 0 is taken from the right side only. (Note that the line vb; = 4a,
is another solution of F(ay,vb;) = 0 that starts from the point a; = 0,
~vb; = 0 with slope 4, a fact that, again, shows that the conditions for the
implicit-function theorem are not satisfied.)

We now have to show that for p large enough there is a value of a; € (0, 1),
to be called a, such that

J =1; (E.7)
'yb1a:1<?:(d)

cf. equations (3.133) and (3.134). Let us investigate the two limits taken
along the curve vb; = C,(aq)

~ ~

o, lm (E.8)
vb1=Cp(a1) vb1=Cp(a1)
From (E.6) we know that
lim  arg |70 + 2a7 — 2a; — i\/7b1(4a1 —vb))| = 0, (E9)
"/blzlcﬂ(al)
}}glo o = w. (E.10)
v61=Cp(ay)
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RESPONSE TIME DIFFERENCES

Taking furthermore into account that
limoarg(¢—ilna1) =7/2, (E.11)
we can conclude from equations (3.133) and (3.134) that

lim j =0. (E.12)

a1 —0
vb1=Cp(a1)

For the second of the limits (E.8) we have to distinguish the case p > 1/2
from p < 1/2; cf. equation (3.138). For p > 1/2 we have the limits

lim  arg(¢—ilna) € [0,7/2], (E.13)
’Yb1=C;Z1/2(a1)
lim ¢ = 0. (E.14)
701=C) >1/2(a1)

where the precise value of the first limit depends on the path taken to the
point a; = 1, vb; = 0, i.e., on the analytically not known curve C,>;/,. While
this does not bother us here, we need the ansatz

Cﬂzl/g(al) = C(l — (11>N + 0[(1 — (11>N] , ai < 17C > O, k>0 , (E15)

in order to calculate the remaining limit

ap—1
61=Cp>1/2(a1)
—

arg [fybl +2a% — 2a; — i\/7b1(4a1 — fybl)}

arg [c(l —a1)® —2(1 —ay) —iy/4e(l — al)"‘}

= arg [\/E(l —ay)"? - %(1 —ay) 2 — 211

—m/2 for k < 2,
“d L arctan(y/©) — w1 for K = 2, (E.16)
—T for kK > 2.

With the help of these limits we can conclude from equations (3.133) and
(3.134) that
lim  j = oo, (E.17)
7b1=g;;/2<u1)

independent of the exponent x in the ansatz (E.15), that is, independent of
the path the curve C,>1/2(a1) takes to the point a; = 1, yb; = 0.
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For 1 < 1/2, on the other hand, we get the end point a; = 1, vb; > 0 of
the curve C,.1/2 as a function of p by solving

F(1,95,) = 0 (E.18)

for vby; cf. equation (3.135). Equation (E.18) can be rewritten as

ul%(%ﬂ/ﬁ)ﬂ] = 1. (E.19)

Its solution is 1—9 {
by =4 H 0<p<s, (E.20)
1

and can be substituted into expression (3.133) to give

. T + arctan[u?/(1 — 2
ai=1qbi() OIS (u2 +2u — 1+ 2ipy/1 - 2#)
In particular, it now turns out that
~ 1 . ~
J =—, lim j = 00 . (E.22)
a1=1,7b1(p=0) Hl/2- ar=1,yb1(p)

Concluding the proof, we obtain the result that ;j varies continuously from
zero at a; = 0 to infinity at a; = 1 on the curves C,>1/2, implying that
there is at least one point on these curves where j = 1. At this point Cuz1/2
assumes its maximum 1/4. The same is true of the curves C,<1/2, as long as
i is not too small.
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Appendix F

Computer Simulations of
Corticogeniculate Feedback

We have simulated the local cortical feedback pathway depicted in Figure 3.3
left, consisting of three groups of layer 4 neurons, one interneuron, and two
corticothalamic neurons that feedback onto geniculate relay cells (GRCs).
Each of the layer 4 groups comprises 10 neurons that have each been mod-
eled as Poissonian spike sources. The other neurons have been modeled
as spike-response neurons; see appendix B. Note that each of the spike-
response neurons, i.e., the interneuron and the two corticothalamic neurons,
can equivalently represent a group of spike-response neurons with accordingly
down-scaled synaptic output weights.

The layer 4 neurons’ responses to a local feature passing their receptive
fields has been modeled as a transient rise of their firing rates according to

R(1 = gt — 100 ms|) if 0 < ¢ < 200 ms,

(F.1)
0 elsewhere,

where the amplitude R assumes the values denoted in Figure 3.4 and its
caption as R~, R, and R*< for the three groups of layer 4 neurons, respectively.

Using the notation of appendix B, the parameters for the spike-response
neurons and the network in the simulations are given in Table F.1. Synaptic
delays have always been set at 2.0 ms. All time constants lie within physio-
logical ranges. None of the parameters is critical and qualitatively identical
results are obtained within a wide range of parameters.

The postsynaptic potential (PSP) in a GRC following the layer 4 re-
sponses (F.1) has been calculated as the sum

F1 F2
PSP(t) := Y PSP(t —t\)) = S PSP(t —t?) (F.2)
=1 f=1
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0 | Wexe layer 4 | Wexe layer 6 | winy | Wref
1.0 0.3 5.0 6.0 | 1.5

Texc Tinh Tref Tref
3.0ms | 6.0 ms | 10.0 ms | 2.0 ms

Table F.1: Neuron and network parameters used in the simulations of corti-
cothalamic feedback. See appendix B for an explanation of the parameters
and Figure 3.3 left for a sketch of the network structure. Note that the high
values of wey. for the two layer 6 neurons and of ws,, for the interneuron
should be interpreted as the weight of the all-over excitation/inhibition ex-
erted by each of the three groups of neurons represented (equivalently) by
just single neurons in the model. In contrast, wey. for layer 4 neurons is the
weight of excitation exerted by each of 30 (3 groups of 10 each) stochastically
firing individual neurons.

where tgl), . 7t§$) and th), e ,t%) are the times of spikes fired by each of

1

the two corticothalamic neurons, and the unary potentials PSP (¢t — t}k)) are
given by equation (3.1) with a rise time of 7 = 100 ms. Longer rise times
yield similar results. Significantly shorter rise times prevent the building up
of higher amplitudes and alter the shape of PSP(#); see below. In accordance
with the model of the corticothalamic loop depicted in Figure 3.3 left, the two
cortical inputs to GRCs contribute to the net potential PSP(¢) with opposite
signs. We have determined the mean amplitude A of PSP(t), averaged over
100 response events of the type (F.1), as a function of the response amplitudes
R”, R, R~ for the three groups of layer 4 neurons; cf. Figure 3.4.

Since the time window max{t%), t%)} - min{tgl), th)} during which cor-
ticothalamic feedback spikes are initiated by a layer 4 response event (F.1)
turn out to be typically much shorter than the rise time 7 of the unary PSPs,
the sum (F.2) is well approximated by

PSP() ~ A exp(l _ t‘f) ot —1') . (F.3)

T T

Here t' € [min{tgl),tf)},max{t%),t%)}] is the effective time of the stimu-
lus/response event and 7/ > 7 is the effective rise time of corticothalamic
PSPs. We now arrive at equation (3.2) for a GRC’s membrane potential
by labeling effective stimulus/response times by t1, ts, . .., the corresponding
PSP amplitudes by Aj, A, ..., dropping the prime on the effective rise time
7/, and introducing corticothalamic delays.
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Appendix G

Computer Simulations of the
Corticogeniculate Loop

In the model of the corticogeniculate loop, the time scale is set by the rise time
7 of the corticogeniculate postsynaptic potentials defined in equation (3.1).
All dynamics and characteristic times are given in units of 7. The passage
times s of local features in the stimulus and the cortical neurons’ preferences,
that is, their response times differences (RTDs), are only meaningful relative
to each other. They cannot be compared to 7, as we have not made any
assumptions on the size of receptive fields. The units of s and RTD(5)(¢)
are thus arbitrary.

The dynamics of the simulated system is given by equations (3.12) through
(3.15) with

= () i es < a0,
f(s) = { 0 ( ) elsewhere, (G-1)
A(R) = 40V1—-R, (G.2)
o(6R) := tanh(200R) , (G.3)

and with delays d; = 0 except where stated differently. In particular, we have

|0s| if |ds| < 40,

Alf(0s)] = { 40  elsewhere. (G-4)

The parameters are not critical and different parameters yield similar results.
However, the width of the passage-time-tuning function f and, hence, of the
linear range of the combination A of should not be made too small such that
each class of cortical neuron can ‘see’ a significant part of the whole speed
statistics in the stimulus.
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With the exception of the simulation shown in Figure 3.19 (see the figure
caption), we have created the stimuli in the following way. The time intervals
r between successive stimulus/response events have been drawn from the ex-
ponential density (D.1) with some fixed value for (r), given in the respective
figure captions, thus realizing a Poisson process for the stimulus/response
times. The stimulus/response times have been restricted only by the preci-
sion of the machine representation of floating point numbers. In this way,
the numerical simulations have proceeded in ‘quasi-continuous’ time. Unless
stated otherwise, the passage times s of local features have been drawn from
the density

v(s) = pvo(s) + (1= p)v(s) = (G.5)

O (|| = Smin) © (Smax — |5]) ,

/L5(S SO) + (1 :u) 9 ln(smax/smin) |8‘
independently for each stimulus event. Here 0 < sy < Smax denote the
minimum and maximum values of |s| of background features, and s, the
passage time of object features. We always have chosen sy, < S» < Smax-
The density (G.5) takes into account that features moving across the retina
are sampled with a frequency proportional to their speed. The stimulus
parameters that are relevant and that are given in the caption of the figures
presenting simulation results are

(s) = wso, (G.6)
(sl = pwsot (L= p) {lshy = prsot (1= g2 (G
var(s|) = (1 —p)vary(|s]) = (1 — p)omax " Smin__ (G.8)

2 1n(smax/smin)

In particular, we have used sp;, = 10 and sp. = 30 to yield for the back-
ground component alone

(Js]), =~ 18.2048 , vary(|s|) ~ 364.096 ~ 19.1% (G.9)

and Sy, = 10 and s = 50 to yield
(|s]), ~ 24.8534 , vary(|s|) ~ 745.602 ~ 27.3° . (G.10)
In order to measure the period of the RTDs under conditions of diffusion-
sustained oscillations (and compare it to the analytical period of the mean
RTDs; cf. subsection 3.4.5 and Figure 3.13), we have simulated a single tra-
jectory RTD™)(¢) with the dynamics given by equation (3.19) for a range
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APPENDIX G. COMPUTER SIMULATIONS OF THE CORTICOGENICULATE
LOOP

of values for (r/7) and without delays. The RTD’s resting value has been
chosen as RTD™)(0) = s,, such that there is no drift of RTD™)(¢), that is,

lim (RTD™)(t)) = RTD™)(0) ; (G.11)

cf. equation (3.62). The resulting dynamics is a more or less orderly, ongoing
oscillation around RTD™)(0); cf. Figure 3.11. As periods we have sampled
the time intervals between successive crossings of RITD™)(¢) of the value
RTD™)(0) from below'. Note that this is not the same as analyzing the power
spectrum of RTD™)(t). The power spectrum is the Fourier transform of the
autocorrelation function which in turn is related to the covariance function
cov(xj, xjyk); cf. equation (3.74). The period of the latter has been shown in
subsection 3.4.3 to be identical to the period of the mean (x);,. Hence there
is no use in comparing these two quantities in a computer simulation.

LOf course, the intervals between crossings from above yield identical statistics of the
period.
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Appendix H

List of Abbreviations

The following is a list of abbreviations used in the text. Most of them are
part of the neurobiological standard terminology.

AMPA  a-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid
GABA  ~-aminobutyric acid
GRC geniculate relay cell

LGN lateral geniculate nucleus
MT middle temporal area
NMDA N-methyl-D-aspartate
PGN perigeniculate nucleus
PSP postsynaptic potential
RF receptive field

RGC retinal ganglion cell
RTD response time difference
V1 primary visual cortex

V2 secondary visual cortex
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