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Introduction

The study of nuclear many-body systems plays an outstanding role in the development of
many-body theories [RS80]. One of the most active areas of research since the beginning of
last century, nuclear physics has always demanded for a strong link between experiments
and theories of atomic nuclei. Early experimental techniques allowed only the study of
nuclei on or close to the 3-stability line, and, in addition, they were limited to energy scales
considerably smaller than the nucleon mass M = 939.0 MeV/c?. Thus, the nucleus has
traditionally and successfully been described as a collection of non-relativistic nucleons
interacting through an instantaneous two-body potential, with the dynamics given by the
Schrodinger equation.

For the last two decades, the new generation of accelerators has been providing an
always larger amount of valuable informations for a better understanding of the nuclear
force. Although intimately related, three main areas of investigation of the strong inter-
action may be distinguished: heavy ion collisions at relativistic energies, as for example
at LHC and at RHIC, probe the nature of quark-gluon confinement and the assumptions
of the underlying QCD. Electron and muon scattering experiments probe the quark-gluon
structure of hadrons and of nuclei, and, finally, experiments at lower energies with beams
of stable and unstable nuclei, performed with Radioactive Nuclear Beams (RNB) facilities
in Europe, Japan, and in the USA, probe the structure and the dynamics of nuclei on
and far from the stability line [RTIA00, NuP00]. In particular, the study of exotic nuclei
with RNB techniques encompasses new aspects of nucleonic matter: limits of nuclear ex-
istence, extended distributions of neutron matter, nuclei with large N to Z ratio, pairing
correlations in both 7' =1 and 7" = 0 channels are some of the most interesting issues
that RNB techniques may address.

From the theoretical point of view, it is well established that quantum chromody-
namics (QCD) is the fundamental theory of strong interactions. However, due to the
mathematical problems raised by the non-perturbative character of QCD in the low en-
ergy regime, a quantitative understanding of the structure and interactions of nucleons in
terms of QCD, and therefore of nuclei as bound systems of nucleons, remains an essential
long-term goal of nuclear theory.

Since the early days of nuclear physics diverse quantitative theoretical approaches have
been developed in order to describe and predict nuclear structure properties. One of the
most fundamental challenges of the nuclear many-body theory is to derive the bulk proper-
ties of nuclei from a bare nucleon-nucleon (NN) interaction, viewed as residual interaction
of the underlaying quark-gluon dynamics of QCD. Here, the term bare refers to nuclear
potentials which reproduce NN scattering data. Representative examples are the Bonn
[Ma89], Paris [LLR80|, Argonne [WSA84], and Nijmegen [MRS89] potentials. Typically,
these forces contain a very repulsive core which accounts for NN correlations at short



internucleonic distances, an intermediate attraction and as long range part a one-pion
exchange potential. For very light nuclei, using a bare interaction plus a phenomeno-
logical three-body potential as only inputs, Quantum Monte Carlo methods provide an
exact solution for the few-body problem and allow to calculate various properties of nu-
clear bound, and low energy continuum states. At present, this is possible only up to
A = 10 [WPCO00]. For the description of heavier nuclei, bare NN interactions may be
used for example in the framework of the Brueckner-Hartree-Fock (BHF) approximation.
In this approach, starting from an appropriate model wave function of the system un-
der investigation, the Bethe-Goldstone equation determines an effective interaction, the
so-called G-matrix, which takes into account the effects of NN correlations as, for ex-
ample, the Pauli principle and dispersion effects. For many years, non-relativistic BHF
calculations have been performed with only limited success. Well known is the so-called
phenomenon of the Coester band, which stands for the fact that many-body calculations
based on various realistic models of the NN interaction lead to predictions for the satu-
ration point of nuclear matter that either fail to yield enough binding energy or predict a
saturation density larger than the empirical value [CCD70]. Such a Coester band can also
be observed in non-relativistic studies of finite nuclei: in this case BHF calculations yield
either correct binding energies but too small radii, or correct radii but too small binding
energies [SMM91]. Through the years it has turned out that relativistic effects cannot
be neglected, and Dirac-Brueckner-Hartree-Fock (DBHF) calculations have given results
for the saturation point of nuclear matter in quite a good agreement with the empirical
saturation point [BM90]. So far no self-consistent solutions of the DBHF equations for
finite nuclei have been established.

In parallel, since Brueckner calculations suggested a density dependence of the effective
interaction, phenomenological approaches based on energy functionals have been devel-
oped and successfully applied to the nuclear many-body problem. In full analogy with the
Kohn-Sham approach [KS65] to the density functional theory [DG90], the minimization
of the energy functional determines the exact ground state energy and density of a given
system. In particular, these approaches are mainly used in the mean field approxima-
tion in which atomic nuclei are described as systems of A nucleons moving independently
in an average field produced by other nucleons. With this assumption hamiltonian and
density reduce to single-particle operators. Then, the variational principle determines
the equilibrium density of the ground state which provides the Hartree-Fock equations
and defines at the same time the average field in the system. Therefore, in this sense,
a mean field description contains already exchange and short-range correlation effects,
and in the relativistic case in particular also contribution from the vacuum. However,
in nuclear physics such a density functional theory does not allow ab initio calculations
because it gives no practical guide for the construction of the effective energy functional,
and therefore, several phenomenological parametrizations have been adopted (well known
non-relativistic examples are the Skyrme interactions [Sk59] and Gogny forces [DG80]):
they contain a certain number of fit parameters which are adjusted to reproduce experi-
mental data. Successful in many applications, with only a few fixed parameters, they can
explain many experimental data encompassing nuclei over a large range of the periodic
table.

Over the past decades, the phenomenological models have been fined tuned primarily
to reproduce the properties of nuclei close to the valley of stability. For this reason, they



may not always be appropriate for use in the calculations of nuclei far from this valley.
In this contest, it is expected that the spectroscopy of exotic nuclei by means of RNB
techniques will test the existing forces in the exotic region of the periodic table and will
lead to a better determination of the effective nuclear forces and their isospin dependence.

In recent years, since the work of Walecka and collaborators [SW86], who re-introduced
an idea proposed already in the Fifties by Schiff [Sc51] and Teller [JT55, DT56], relativistic
approaches to nuclear physics have been studied and applied to problems of scattering,
nuclear matter at zero and finite temperature, and nuclear structure. Starting from a
relativistic Lagrangian density containing mesonic and nucleonic degrees of freedom, a
relativistic theory of the nuclear many-body problem is formulated on the basis of the
three following assumptions: first, it is fully Lorentz invariant; second, it obeys strictly
causality; and third, the nucleons are treated as point-like particles. Therefore, from
its definition, it is a relativistic quantum field theory. However, it cannot be treated in
perturbation theory because of the strong coupling constants. The lowest order of the full
quantum field theory is the mean field approximation.

Relativistic Mean Field (RMF) models form a phenomenological effective theory for
the relevant degrees of freedom of QCD at very low energy. The relativistic Lagrangian,
whose parameters are fitted to nuclear data, is an effective functional of the density and,
therefore, describes the nuclear many-body system exactly. In this approach independent
nucleons are treated as Dirac spinors and they interact only by the exchange of virtual
mesons characterized by their masses, coupling constants, and by the quantum numbers
spin, parity, and isospin. Although from scattering experiments at intermediates energies
it is well known that many mesons play a role in a quantitative description of the bare NN
interaction, in the RMF theory, being a phenomenological approach, one tries to include
as few mesons as possible, classified by their quantum numbers, in order to reproduce the
experimental data with a minimal number of fit parameters. In particular one is tempted
to incorporate those mesons which are experimentally known to exist in free space and to
use their properties as far as possible.

Most of the applications of the RMF theory to the study of nuclear systems have been
performed at the Hartree level. In this approach the nucleons and the virtual mesons
o, w, and p are the only degrees of freedom of the theory: ¢ is an isoscalar scalar me-
son which mediates the attractive intermediate-range of the nuclear interaction, w is an
isoscalar vector meson that is responsible for the short-range repulsion of the nuclear
force, and, finally, p provides the isospin dependence of the nuclear force. Furthermore,
it was recognized very early that relativistic models based only on one-meson exchange
could not reproduce quantitatively essential nuclear properties such as the incompress-
ibility or surface properties, as for example nuclear deformations [PRB87]. Therefore,
Boguta and Bodmer [BB77] extended the model by including a non-linear self-coupling
amongst the o-meson of the form of a cubic and quartic potentials. The parameters
of the non-linear terms are adjusted to the surface properties of finite nuclei, and since
the o field is strongly dependent on the nuclear density, non-linearities in the potential
corresponds in some sense to a density dependence of the ¢ mass. Finally, at this level
the pion, responsible of the tensor term of the nuclear force, is not included because its
corresponding mean field has a negative parity, while in real nuclei the mean field is parity
conserving to a very high degree of accuracy.

Starting from the corresponding local Lagrangian density, the variational principle



determines the equations of motions of the fields which are then solved self-consistently. In
particular, the nucleons obey the Dirac equation and the mesons Klein Gordon equations.
In the relativistic Hartree (RH) approximation the meson fields are replaced by their
expectation values, i.e. they are considered as classical fields. Furthermore, the no-sea
approximation is used in almost all the applications of the RMF theory. This means that
one neglects the negative energy solutions of the Dirac equation which should be taken
into account for a fully relativistic description of the system. It has been argued that
effects of vacuum polarization are taken into account in the fit of the parameters.

A large number of calculations of ground state properties of nuclei in many regions
of the periodic table have argued that the RMF theory is at least as successful as non-
relativistic mean field theories based on density-dependent forces as the Skyrme or Gogny
interactions [VB72, DG80]. Amongst the successes: ground state properties (such as
nuclear radii, isotopes shifts, and magnetic moments) of closed shell spherical nuclei and
nuclei with deformations are successfully predicted by the RMF theory. As well, nuclei
far from the line of (-stability and collective vibrations of small amplitudes and giant
resonances in time-dependent problems are well described. A review of the RMF theory
is given in Ref. [Ri96].

As the RMF theory is a completely phenomenological approach, in spirit very similar
to the non-relativistic DDHF models of Skyrme and Gogny, the question arises whether
it is really necessary to choose a relativistic description of the nuclear many-body system.
Although on the phenomenological level non-relativistic approaches may explain all data
maybe at the cost of a larger number of parameters, a relativistic, even phenomenological,
description of the nuclear many-body problem goes beyond these ”classical” theories. In
particular, because the kinetic energy of the system turns out to be small in comparison
to the rest mass, it has to be stressed that the consequences of relativity are dynamical
and not kinematic.

Several are the motivations which may lead to prefer a relativistic theory for the de-
scription of nuclear systems. First of all, it starts on a more fundamental level, treating
mesonic degrees of freedom explicitly and it includes the spin properties in a natural way.
Another essential point is the classification of different physical quantities by their behav-
ior under Lorentz transformation, for example the distinction between scalar and vector
densities (p, and p, ), and between the Lorentz scalar field S and the Lorentz vector field
V# = (V,V). In particular, it has been shown that the difference between p, and p,, a
purely relativistic effect, introduces a new mechanism of saturation. It seems that also
in non-relativistic DDHF calculations this effect is considered in a phenomenological way
and it is hidden amongst other many-body effects in the strongly repulsive density de-
pendent terms which produce saturation. Concerning the scalar field S and the time-like
component of the vector field V', their absolute sizes are large and cannot be neglected in
comparison to the rest mass, and from Lorentz invariance it follows that S is attractive
and V is repulsive. They are particularly important as they characterize the essential
properties of the nuclear systems: in fact, their difference determines the weak mean field
in which nucleons move and their sum the strong spin-orbit term. Thus one derives the ex-
istence of the traditional nuclear shell model and the validity of its assumptions. Another
important point in favor of a relativistic description of the nuclear many-body system is
the fact that |S| ~ V| leads to the pseudo-spin symmetry in nuclear spectra, a symmetry
which has been known for thirty years in nuclear physics but which could be understood



only recently as a consequence of the relativistic content of nuclear structure [Gi97]. A
further example that shows the advantage of being relativistic is the nuclear magnetism
phenomenon. In systems, where the time-reversal symmetry is broken, such as in those
with an odd number of particles or in the rotating ones, one has to consider currents. In
a relativistic system they induce potentials connected with the spatial components of the
vector field V. Thus they lead to time-reversal breaking mean fields and to polarization
currents playing an important role in a quantitative understanding of nuclear magnetic
moments of odd-mass nuclei and of moments of inertia in rotating nuclei. Finally, from
the mathematical and numerical point of view, the relativistic models considered at the
Hartree level are in many respects easier to handle than non-relativistic DDHF calcula-
tions. In fact, in the former case only local terms enter into the RH equations, which
may be solved rather easily by using several techniques, for example by expansion in an
oscillator basis [GRT90] or in coordinate space.

Although a RH approach provides a successful nuclear phenomenology, the variational
principle and the classical treatment of the meson fields do not allow a satisfactory descrip-
tion of pairing correlations in the pp-channel, neither do they take into account explicitly
the Fock term of one-meson exchange potentials in the ph-channel.

Starting from a quantized version of the theory and using Green’s functions tech-
niques relativistic Hartree-Fock-Bogoliubov (RHFB) equations can be derived as shown
by Kucharek and Ring in Ref. [KR91]. The explicit energy dependence of the relativistic
nuclear wave function, the non-localities introduced by the Fock terms in the ph-channel,
and the presence of pairing correlations in the pp-channel make these equations much
more complicated than the non-relativistic HFB and the RH equations. So far, in the
relativistic framework the problems of exchange terms and pairing correlations have been
considered separately.

Of course, in going from a RH to a relativistic Hartree-Fock (RHF) approximation
of the nuclear many-body problem the parameters of the effective Lagrangian must be
readjusted. Up to now the RHF equations have been solved for infinite nuclear mat-
ter [BMMS85, GRW89] and for spherical nuclei [BMG87, HS83, BI87], but due to the
involved numerics no satisfactory parameters sets have been determined, and RHF re-
sults do not reproduce experimental data as well as calculations performed with the most
recent parameters sets of RH models. As previously alluded, the latters already contain
the exchange effects. In fact, although relativistic forces have finite ranges, the heavy
mass of the mesons o, w, and p, and the local character of their corresponding inter-
action, allow one to consider these fields in the limit of infinite mass, i.e. as zero-range
forces. Analogously to the non-relativistic case [VB72], it can be shown that the exchange
terms of zero-range relativistic forces have the same form of the direct terms, but different
coefficients. Therefore, adjusting the parameters of these mesons in the RH calculations
to the experimental data takes already into account in a phenomenological way a large
part of the Fock terms contribution. This approximation does not apply to the case of
the pion: in fact it is a light particle and the corresponding interaction has a non-local
character.

Concerning the treatment of pairing correlations, at the Hartree level they are usu-
ally taken into account in the constant gap approximation, a variational procedure first
introduced for density dependent Skyrme forces [Va73]. In the BCS scheme, using the
experimental value of the gap parameters taken from the odd-even mass formula, one



calculates the occupation probabilities, which are then used in the calculation of the
physical observables. Although for nuclei close to the (-stability line, the RMF calcula-
tions performed within this scheme are in good agreement with experimental data and
non-relativistic HFB calculations, this method is not satisfactory when applied to very ex-
otic nuclei. In the first instance no data are available, and, in addition, it has been proved
that the BCS approximation is not the proper way to treat pairing correlations as it does
not provide a correct description of the scattering of nucleonic pairs from bound states
to the positive energy continuum [DNWO96], leading to unbound systems. Therefore, for
a proper description of pairing correlations relativistic Hartree-Bogoliubov (RHB) equa-
tions, as those derived in Ref. [KR91], have to be used. In the same work the authors have
shown that the one-boson exchange interaction used in for the description of the nuclear
mean field leads to unrealistic pairing correlations. On the other hand, the effective force
in the pairing channel should be the K-matrix [La59, Mi68], which is the sum over all
the particle-particle irreducible diagrams and it has probably very little to do with the
Brueckner’s G-matrix which enters in the ph-channel. However, very little is known about
this matrix in the relativistic framework and up to now only phenomenological forces have
been used to describe pairing correlations in finite nuclei. On one side, since it is supposed
that relativistic effects do not play a role in the pp-channel, a RHB model with a non-
relativistic finite-range pairing interaction has been successfully applied in the study of
several isotope chains of spherical nuclei [GLE96], and exotic systems: for example it has
been used for the investigation of the halo phenomenon in light nuclei [MR96, PVL97],
properties of light nuclei near the neutron drip line [LVP98a], reduction of the spin-orbit
potential in nuclei with extreme isospin values [LVP98b], ground state properties of Ni
and Sn isotopes [LVR98], properties of proton rich nuclei [VLR98, LVR01]. Although
extremely successful, pairing correlations are not treated in a fully self-consistent rela-
tivistic way. On the other side a RHB model with a phenomenological relativistic delta
interaction has been developed in Ref. [CHO0| and applied to several isotopic chains of
even-even spherical and deformed nuclei.

The present status of the RMF theories of the nuclear many-body problem may be
summarized as follows:

e Although very successful, RH approximations presents two main shortcomings: first,
it does not allow a satisfactory description of pairing in nuclei and second it does
not allow to take into account tensor terms of the nuclear force, introduced by the
pion exchange potential.

e RHF theories exist, but no satisfactory parameters sets have been determined yet.
This is due to the fact that the numerical methods used for the iterations of the
RHF equations are too slow to fit accurately the parameters sets of the new effective
force.

e A fully relativistic theory of pairing is still an open question.

In this thesis a new RHF and a fully relativistic HB approaches are developed. Applica-
tions in infinite nuclear matter and spherical finite nuclei are presented.

With respect to the RHF approximation, our principal goal is to study the effect of
the tensor term of the nuclear force on the ground state properties of finite nuclei. Our
starting point is then an effective relativistic Lagrangian density containing nucleons and
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the mesons o, w, p, and 7, and the the non-linear self-interactions of o as degrees of
freedom. By using the experimental values for the pion mass and coupling constant,
the parameters which have to be fitted to experimental data are the same as those of
standard RH approximations. Due to the complexity of the RHF equations, in order to
determine the parameters set of the model in the most effective way, we have developed
a new numerical techniques which allows a fast iteration of the RHF equations. The
fit of the parameters of the new force is now in progress. As test for our numerics we
have used our method for solving the RHF equations in the case of RHF models already
existing. Calculations of ground state properties of finite spherical nuclei carried out
with our expansion method are in excellent agreement with the results obtained solving
the RHF in coordinate space (see for example Ref. [BMGS87]) and the calculation time
is much shorter, once that the matrix elements have been calculated. Furthermore, we
have investigated the contribution of the contribution of the Fock term to several nuclear
properties, as for example binding energy, rms radii and energy splittings of spin-orbit
partners. In the latter case, we have found that the inclusion of the m-meson produces a
large effect in comparison with RH calculations.

With respect to the relativistic theory of pairing, we aim to solve the RHB equations
for finite nuclei fully relativistically, i.e. by using a relativistic interaction also in the pp-
channel. We start with an investigation of pairing correlations in infinite nuclear matter:
we solve the relativistic BCS equations for the pairing gap using the relativistic bare
potential adjusted by the Bonn group [Ma89], which corresponds to the first order of
the K-matrix, the interaction which should be used in the pp-channel. The results for
the 'Sy pairing gap are in good agreement with non-relativistic calculations based on
realistic forces fitted to reproduce pairing properties of finite nuclei. This is a first hint
that a relativistic field theoretical description of nuclear many-body problem is able to
reproduce pairing properties of finite systems.

Moving to finite nuclei, we propose a fully relativistic HB model which uses the stan-
dard relativistic force NL3 in the ph-channel and which treats fully relativistically also
the pp-channel. Although the most ambitious goal would be to use a realistic pairing
interaction, as in the case of the relativistic Hartree-Fock model, it is considerably more
difficult to solve the RHB equations than the RH + BCS equations, and in particular a
fully relativistic treatment of the pp-channel with realistic OBE interactions requires a
big numerical effort. Therefore we have constructed a phenomenological pairing interac-
tion based on the exchange of the o- and w-meson and, in first approximation, we have
considered a limit of infinite mass. In this way, the interaction reduces to a zero-range
force for which it is easier to solve the RHB equations. With this model we have calcu-
lated ground state properties of isotopic chain of Sn nuclei and we have compared the
results with existing RHB calculations which use a non-relativistic approximation for the
pp-channel. In particular we have investigate whether relativity plays a role also in the
pp-channel which has always be considered as non-relativistic.

The work in organized as follows: in Chapter 1 the Lagrangian density of the RMF
theory is presented, the corresponding equations of motions are derived, and the approx-
imations of the theory are discussed. Here RMF is treated as a classical field theory;
in Chapter 2, through a quantization of the theory, the relativistic HFB equations are
derived. They allow a self-consistent treatment of pairing correlations and of the effects
of the Fock terms in the description of nuclear systems; in Chapter 3 the relativistic



Hartree-Bogoliubov equations derived in Chapter 2 are applied for an investigation of the
S, pairing in infinite nuclear matter. In particular, a BCS approximation is used for the
study of the pairing gap at the Fermi surface produced by a realistic pairing potential; in
Chapter 4 relativistic Hartree-Bogoliubov equations for finite nuclei are given explicitly
and a fully relativistic solution for a isotopic chain of Sn nuclei is presented. Ground state
properties are discussed and in particular the effects of relativity in the pairing channel
are investigated; in Chapter 5 a relativistic Hartree-Fock model is introduced and appli-
cations to nuclear matter and finite nuclei are presented. In particular, the strength of
the Fock term is compared with the direct term of the total OBE interaction and of the
single one-meson exchange potential, and the effect of the spin-isospin and of the tensor
term introduced by the exchange of the pion on the spin-orbit partners is investigated.
Isotopes of Ca and Sn nuclei are considered; in the Conclusion we summarize our work
and we give some hints for possible investigations and extensions which could be done in
the future.



Chapter 1

Relativistic Mean Field Theory

The Relativistic Mean Field (RMF) theory, based on a local, Lorentz-invariant Lagrangian
density, is an effective theory of the nuclear many-body problem [SW86]. It describes
nuclear systems in terms of hadronic degrees of freedom, i.e.

e nucleons, treated as point-like particles, obey the Dirac equation;

e effective, point-like mesons mediate the interaction between the nucleons.

Mesons are characterized by their quantum numbers as spin J, parity P, isospin 7', by
their masses m,, and coupling constants g,,. Because the theory is phenomenological,
these parameters are fitted to reproduce bulk nuclear properties and therefore they are
different from the values in free space.

From nucleon-nucleon (NN) scattering data (see for example Ref. [Ma89]), it is known
that for the description of the nuclear force in the low energy domain the following mesons
are necessary:

e The isovector pseudo-scalar m—meson (0~,1). It mediates the long-range (essen-
tially tensor) attraction between nucleons. Although in nuclear physics it is one of
the most important meson, closely connected to the chiral properties of QCD, its
corresponding parity breaking mean field gives no contribution if the nuclear many-
problem is treated at the Hartree level. However, in the case of the Hartree-Fock
theory or in an investigation of pairing in nuclear systems, the role of the 7-meson
must be included explicitly.

e The isoscalar scalar c—meson (07, 0). It is a phenomenological meson which parametrizes
the scalar part of the nuclear force. Namely, it is well known that the exchange of two
or an even number of pions contribute to positive parity scalar fields and, although it
is possible to form mean fields out of meson pairs, one prefers to introduce the phe-
nomenological o-meson, which is thus understood as an approximation of a two-pion
exchange and other diagrams of higher order. It mediates the intermediate-range
attraction;

e The isoscalar vector w—meson (17,0). It mediates the short-range repulsion;

e The isovector vector p—meson (17,1). It provides an isospin dependence of the
nuclear force.



1.1 Relativistic Lagrangian Density

The starting point of a relativistic field theory of the nuclear many-body problem is the
following classical Lagrangian density [Ri96]

L=_Ly+Ly+ Lin, (1.1)

where Ly, L and L;,,; describe free nucleons, free mesons and nucleon-meson interactions
respectively. Explicitly

e Ly reads

L = Piv"d, — M)¢ (1.2)

where M is the bare nucleon mass and 1 is a Dirac spinor.

e Considering only the mesons previously mentioned, £, contains

Ly, = %(8u08”0—m302), (1.3)
L, = %(8ﬁ6“7?—mfr)ﬁ2, (1.4)
L, = —%(QWQ“”—mf,w“w“), (1.5)
£, = —5 (B —m'5,), (1.6)
Lo = —%F“,,F’“’ (1.7)

where mg,, m,, m, and m, are the rest masses of the mesons, and

Qv o= 9w — Wt (1.8)
R = orp - 0"p, (1.9)
™ = QrAY — 9" AV, (1.10)

(1.11)

are the field tensors of the w— and the p— mesons and of the photon. The arrows
indicate vectors in isospin space.

e L, reads

Lint= — goYotp —U(0) — igrthys77y
9y W — gy, TP — ey, AFY (1.12)

where U(o) is the non-linear self-coupling term amongst the o—mesons and rep-
resents a sort of density dependence of the o-mass. It was recognized that the
original linear (o, w)-model of Walecka [Wa74] with linear parameter sets is not able
to reproduce essential nuclear properties as incompressibility, surface properties and
deformations. Therefore, Boguta and Bodmer [BB77] extended the model including
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a non-linear self-coupling amongst the oc—mesons. They added to the mass term

sm20? a quartic o- potential of the form

Uo) = %g203 + %g304 (1.13)
where the parameters g, and g3 are adjusted to the surface properties of nuclei. In
principle, such a density dependence of the effective parameters is expected also from
more fundamental arguments. For example, starting from the bare NN interaction
Brockmann and Toki [BT92] have carried out relativistic Brueckner-Hartree-Fock
calculations to determine the properties of nuclear matter at various densities. For
each value of p they found density dependent coupling constants g, and g,,.

In principle, the Lagrangian (1.1) defines a fully fledged relativistic field theory [IZ80]
and, therefore, it should be quantized and treated by methods of quantum field the-
ory. In this way one encounters the usual problems of divergent terms in many orders
of perturbation theory. Although it may be shown that this theory is renormalizable,
in practice the Lagrangian (1.1) is treated in mean field approximation, i.e. on the
classical level and its parameters are adjusted by comparing the results with exper-
imental data. In a way the situation is similar to non-relativistic density-dependent
Hartree-Fock theory with a phenomenological ansatz for the energy functional [Va73]
and to the Kohn-Sham theory in condensed matter physics [DG90, JG89].

In L;,;, instead of the pseudo-scalar coupling of the pion the pseudo-vector coupling
is often used

Lo = T gy, 770 (1.14)

because it provides a better description of 7N scattering data.

The dynamics of the system is determined by the variational principle
§S =0, S = /d%«ﬁ(x) (1.15)

through the Euler-Lagrange equations
or | ot _
a(auqi) aQi

where the generalized coordinates g; are the nucleon field ¢, and the meson fields o, w,, g,
and A,. Explicitly

A( 0, (1.16)

e nucleons obey the Dirac equation

1—7’3

V(0 — guwyu — 9P, T — € Ap) = (M + 9,0) +ignYs77p =0 (L.17)

and the baryon current B* = 1yt is conserved, i.e.

8,8 = 0. (1.18)
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e the mesons o and 7 obey Klein-Gordon equations

(0,0" +m2)o = —g, P — go0” — gao®, (1.19)
(0,0" + m2)® = —gahy5TY. (1.20)

e the mesons w and p obey the Proca equations

QU+ miw! = gy, (1.21)
O, R" +m2pt = gy T, (1.22)

which, using the conservation of the baryon current (1.18), can be rewritten as
Klein-Gordon equations

(0u0" +m)w" = gy, (1.23)
(3u5“+mf,)ﬁ“ = g, T, (1.24)

e the electromagnetic field obeys the Maxwell equations

1—’7'3

0, F"" = elpy" Y (1.25)
which in the Lorentz-gauge are reduced to
I
0,0" A* = ewv“TT?’¢ (1.26)

The energy-momentum tensor of the system is calculated as usually from £ and it is given
by

T = —g" [ . 1.27
gL ox, 0(0q; /0x") (1.27)
It obeys the continuity equation
o,I" =0, (1.28)
and therefore the four-momentum
pr = /d% ", (1.29)
is conserved. The energy is defined as the integral over the Hamiltonian density
P’=F = /d3r H (1.30)
with or
=T"=_""¢,- L. 1.31
H aqj q] ( )

The transition from a classical field theory to a quantum field theory [IZ80] is achieved
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by introducing the anti-commutator relations for fermions at equal-time points

(o (2, 1), 05(y, 1)} = dapd(x —y) 1.32)
{Yal@ 1), 05(y,0)} = {¥L(z,0),9}(y,0)} =0, 1.33)

where o and [ are Dirac indices and the commutator relations for mesons
[0, (2, 1), T} (y,1)] = ©bud(z—y) 1.34)
[bu(@, 1), 6,(y, )] = [}(2,1), 1L} (y, 1) =0. 1.35)

Here ¢,(x) are the meson fields and II,(z) the conjugate momenta
oL

= —. 1.36
" 3, (1:30)

In the case of the vector mesons the Greek indices are Lorentz indices and the Kronecker

symbol ¢,, has to be replaced by the metric tensor —g,, .

1.2 Approximations and Equations of Motion of the

RMF Theory

The RMF theory is formulated on the basis of two approximations of the effective La-
grangian density £ given by Eq.s (1.2)-(1.7): The Mean Field and the No-Sea approxi-

mations.

e The Mean Field approximation corresponds to a classical treatment of the field

theory defined by L. It removes all quantum fluctuations of the meson fields using
their expectation values

o, W, —<o><T><w > <t >

In this way the handling of the nucleons is simplified: in fact they interact only
via the mean field moving as independent particles in the meson fields. Derived
from a classical variational principle, the RMF equations of motion are a relativistic
Hartree approximation. Exchange corrections can be taken into account starting
from the quantized version of the theory and using Greens function techniques
[KRI1]. Solving the relativistic Hartree-Fock equations for nuclear matter [BMMS85,
GRW89] and finite spherical nuclei [HS83, BMGS87] it turns out that the effects due
to the exchange terms are not negligible and consequently the parameters of the
Lagrangian have to be readjusted. On the other side this could mean that fitting
the parameters of the Lagrangian in the relativistic Hartree approximation to the
experimental data takes already into account the effects of exchange terms in a
phenomenological way. This is easy to understand for non-relativistic Hartree-Fock
calculations with zero-range: in fact, in this case, apart from a different factor,
the exchange term has essentially the same form as the direct term, and, as a
consequence in this case, the only difference between the Hartree and the hartree-
Fock approximation consists in different values of the parameters which are adjusted
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anyway. However, since in a relativistic framework the forces do not have zero-range,
the exchange terms are much more complicated. On the other side, in the case of
the mesons with large mass, as o, w, and p the range of these forces is very small and
therefore it may be argued that there is not a big difference between the relativistic
Hartree and the relativistic Hartree-Fock approximation. This argument does not
apply to the case of the m-meson because of its light mass and its tensor nature.

e The spectrum of the Dirac equation (1.17) for the nucleons consists of the negative
energy continuum, a large number of negative energy bound states, positive energy
bound states, which correspond to the usual nuclear shell model states, and the
positive energy continuum. In principle, all the solutions should be taken into
account for a fully relativistic description: In other words, one should allow for a
polarization of the vacuum. This leads to divergent terms, which have to be removed
by a proper renormalization. Analytically this has been done only for infinite nuclear
matter, see for example Ref.s [CW74, Ch77]. Due to the fact that only numerical
solutions can be obtained, in the case of finite nuclei an exact renormalization is not
possible. To avoid this problem a local density approximation has been proposed
by Horowitz and Serot in Ref. [HS84], and semi-classical extensions of this method
have been used by Wasson in Ref. [Wa88] and Zhu et al. in Ref. [ZMR91] to
study the influence of the vacuum polarization in spherical and deformed nuclei
respectively. It has turned out that the renormalization effects are of the order of
20-30%. Therefore, if one takes into account vacuum polarization, the parameter set
of the Lagrangian has to be readjusted, and with new force one finds approximately
the same results as in the case of neglecting vacuum polarization. This means that
by fitting the parameters of the Lagrangian in the no-sea approximation a large
part of the effect of the vacuum polarization is already taken into account. Most of
the application of the relativistic mean field theory to finite nuclei are done in the
no-sea approximation.

Consistently with the Mean Field approximation, to each nucleon corresponds a spinor
Y;, 1 =1,... A satisfying the Dirac equation

{7, (@0 + V) + M 4 S +iysPyip; = 0 (1.37)

where the relativistic fields read

S(z) = goo(x), (1.38)
P(x) = g.77(x), (1.39)
Vi(z) = gow'(x)+ g,70" (x) + eA"(z). (1.40)
The mesons fields obey the Klein-Gordon equations
(O+me)o = —gop, — g20° — g30°, (1.41)
(D + mﬂ')ﬁ = _gﬂ'ﬁpsi (142)
(D + mw)wu = gwj“a (143)
(O+my)d" = gp3", (1.44)
OA* = ejt, (1.45)
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with the scalar density defined as

ps(@) =Y bilw)vy(x) (1.46)

the pseudo-scalar density .,

ﬁps(x) = Zq_ﬁi(x)%ﬁﬁi(x)a (1.47)
the baryon current )

(@) =Y (@) (), (1.48)
the isocurrent

@) =Y i@ 7i(a), (1.49)

and the electromagnetic current

@) = Y Bla)5 (0 + o) o) (1.50)

For the description of even-even nuclei only stationary states with good parity of the
Dirac equation (1.37) are concerned. In the static approximation it is assumed that the
nucleon wave functions oscillate with the single-particle energies ¢; and that the meson
fields are time-independent functions. Moreover, as the nuclear ground state of even-even
nuclei is even under time-reversal and has a good parity, the space-like components of all
currents 7j, ; , and 7, of the vector fields w, p and A, and the pion field vanish. Finally,
as the nucleon single-particle states do not mix isospin, only the third component of the
isospin vector is needed. With these further simplifications, the equations of motion of
the system read

{=iaV + M+ S)+ VY, = ey, (1.51)
{=A+m,}o = —gop, — G20> — g30°, (1.52)
{-A+m, 3’ = gup, (1.53)
{(=A+m,}p5 = gpps, (1.54)
where now the scalar density p, reads
A —
ps(x) =D Py, (1.56)
the baryon density p,
A
po(z) =Y vl (1.57)
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the isovector density p, .,
po(@) =D _vlTath, (1.58)
and the charge density p, )
pe(x) = 21/11%(1 +73);, (1.59)
In the Dirac equation (1.51) V' is the vector potential and reads
V(r) = g,w°(r) + g,m305(r) + eA%(x), (1.60)

and S the scalar potential
S(r) = g,0(r) (1.61)

which contributes to the effective Dirac mass
M* =M + S(r). (1.62)

Using Eq.(1.30) and the Klein-Gordon equations given by (1.52)-(1.55), the total energy

of the system can be written as

A

1 1 1

E = E &~ / d*r (gop,0 + gggas + 59304 + gupp® + gop305 + ep A°). (1.63)
i=1

1.3 Parameters of the RMF Theory

The parameters of the model are
e the meson masses m,, m,,, and m,
e the coupling constants g,, g2, g3, 9. and g,.

In Mean Field approximation there is no mass-renormalization for the nucleon, which is
then fixed to an average of the experimental values of the neutron and proton masses

M = 938.0 MeV or M =939.0 MeV.
The mass of the p-meson is fixed to the empirical value
m, = 763.0 MeV,
and the photon coupling e? to the known value
e 1
4m  137.03602
requiring that the Coulomb field of the nucleus has the right asymptotic behavior. The

seven free parameters are usually obtained by a least-squared fit to bulk properties of
nuclear matter and spherical nuclei. The fitting procedure is done in such a way to
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Parameter | NL1 NL-SH NL3

M [MeV] | 938.0 939.0 939.0
me [MeV] | 492.25 | 526.059 | 508.194
my, [MeV] | 795.359 | 783.0 782.501

9o 10.138 | 10.444 | 10.217
%o 13285 | 12.945 | 12.868
9 4976 | 4.383 | 4.474
go [fm~1] [-12.172 [ -6.9099 | -10.431
gs -36.265 | -15.8337 | -28.885

Table 1.1: Parameters of the effective interactions NL1, NL-SH and NL3 in the RMF
theory.

minimize the sum of the squared deviations from the data whose selection is restricted to
some observables, that is to quantities which can be measured and computed reliably by
the model.

Several parametrizations of the RMF theory exist, and amongst them NL1 [RRM86], NL-
SH [SNR93], and NL3 [LKR97] are particularly used in nuclear structure calculations. In
these parametrizations the main fitted properties are the charge radii, the binding energies
and the available neutron radii of spherical nuclei. In NL-SH six nuclei (%0, *°Ca, “Zr,
116Sn  124Gn and 2%8Pb) are used, while for NL1 also *®Ca and °®Ni are considered. The
experimental informations used in this last case are the total binding energy, the diffraction
radii and the surface thickness. For NL3, in order to take into account a larger variation
in isospin, also the nuclei *?Sn and 2'*Pb are included in the fit and for open shell nuclei
pairing was considered using the BCS formalism (see Chapter 2).
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Chapter 2

Relativistic Theory of Pairing

Pairing plays an essential role in the understanding of nuclei with open shells. Therefore,
a relativistic theory of the nuclear many-body problem without pairing as presented in
the previous Chapter, can only be applied to a few doubly magic nuclei as 60O, 4°Ca,
8Ca, 2Pb. Early extensions of the RMF theory to open shell nuclei [GRT90] could
only achieve a satisfactory agreement with the experimental data treating pairing with
the constant gap approximation, a procedure first introduced in Ref. [Va73] for non-
relativistic density-dependent Hartree-Fock calculations. It corresponds to the variation
of an energy functional containing a pairing energy of the form

Epair = -G Z(vkuk)2 (21)
k>0

where the constant G is fixed and is connected to the pairing gap by the self-consistency
condition
A= GZukvk. (2.2)

At each step of the iterative solution one uses the single-particle energies of the Hartree-
Fock potential and the experimental gap A, and A, to calculate the BCS-occupation
probabilities. The experimental value of the gap parameter is taken from the odd-even
mass difference

A= %[E(z\uz) _B(N+1) = (B(N +1) — B(N))], (2.3)

and the occupation probabilities v? are calculated according to the BCS formula (see for

example Ref. [RS80])
Ek — A

2.4
\/(ek—)\)2+A2] 24)
where ) is the chemical potential. All the sums over the occupied orbitals are replaced
by a sum over all orbitals multiplied with the corresponding occupation probabilities:

Z:ZU’% (2.5)

For fixed values of the gap parameters for neutrons and protons the self-consistent solution
is obtained by iteration.

U/%:§[1—
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Unfortunately, this method has a major problem: if the sum over k is not restricted,
the sums in Eq.s (2.1) and (2.2) diverge. Therefore, in these sums one has to introduce
a cut-off energy which cannot be taken from experiments and it defines the so-called
pairing window. For fixed values of the gap parameter A this problem occurs only in
the evaluation of E,q;, given in Eq. (2.1), which is usually very small as compared to
the total energy and can often be neglected. The importance of pairing is largest in the
occupation numbers for the evaluation of the densities, and these quantities are completely
determined by the value of the gap.

From assumption (2.3) it follows that the predictive power of this method is limited
to the ground state of the nuclei for which experimental values of the gap parameters are
available. Moreover, apart from the dependence on a cutoff which cannot be controlled by
experimental data, this approximation cannot be applied in the study of rotating nuclei
and of those close to the driplines. In fact, in the first case time-reversal is broken and the
corresponding alignment effect lead to a large off-diagonal contributions of A, while in the
second case it leads to unbound states, because one populates states in the continuum.

Finally, it can be summarized that, although being successful, the constant gap approx-
imation is a recipe and therefore a better understanding and a self-consistent treatment
of pairing in a relativistic field theory of the nuclear many-body systems is needed. In
the next section a derivation of the relativistic Hartree-Fock-Bogoliubov theory [KR91]
is presented: in particular it is shown that from the microscopical point of view, pairing
correlations may originate from relativistic OBE interactions.

2.1 Relativistic Hartree-Fock-Bogoliubov Theory

As seen in Section (1.2), RMF theory treats mesons as classical fields. As a consequence,
the relativistic Hamiltonian which describes the nuclear system, is a single-particle opera-
tor and contains only terms of the structure 171). Therefore, in this classical framework, it
is impossible to describe a superfluid behavior of the nuclear many-body system for which
a two-body interaction of the form T or a generalized single-particle potential of
the form 19" + 1) are needed. In order to derive these terms the meson fields have to
be quantized too (see Eq.s (1.34)-(1.35)). In the following considerations we neglect in a
first step the non-linear coupling of the o-field.

For the nuclear system defined by £ in Eq.s (1.2)-(1.7) with U (o) = 0, the Hamiltonian
H consists of three parts
H=Hy+ Hy+ Hit

which read explicitly:

e for nucleons

Hy = / &2 ' (ap + BM)Y, (2.6)

e for free mesons
Hy=H,+H,+H,+H,
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with the o-term is given by

1
"= / &z (I + [Vo]? + m2o?), (2.7)
the m-term .
Hy= / & (T2 + (VAP + m27), (2.8)
the w-term )
H, = ~3 /d3x (TI*1,, + Vw*Vw, + m2whw,), (2.9)
and the p-term
1 — — — — = =
H, = b /d% (LI, + VB'Vp, + miPHPM)Q (2.10)
e for the nucleon-meson interaction
Ho= [ @05,(5)Th05(2)6,(z). (21)
which contains the nucleon-nucleon-meson vertices I} 5
Top = Gobag o (2.12)
Ths = GuVhs w (2.13)
| = gxVopT 7 (ps) (2.14)
Thp = =P )as 7 ™ (pv) (2.15)
Tos = 907057 p (2.16)

To simplify the notation of the equations which will follow, in analogy to Ref. [BW63], a
Latin index combining the Dirac- or meson-indices and the space-time coordinates

a= (o, z,t) m = (u, z,t), (2.17)

is introduced, and the convention to sum or integrate over the indices occurring twice in
a formula is used. The interaction (2.11) is then written as

Hint = &arﬁwbqﬁm’ (218)

where the local vertices now read
U5 = b s(Tas Ty, Tm) = T30 (20 — 23)0 (20 — Tm).- (2.19)
In this notation the Green’s functions are defined by
Gas = —i{AIT 0,0,/ 4), (2.20)

where |A) is the exact ground state of a A—nucleon system, v the time-dependent field
operator in the Heisenberg representation
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and T is the time-ordering operator. The equations of motion of the field operators

O (w) = i[H, P(z)] (2.22)
lead to the following equation of motion for the two-point Green’s function G,
(= M)acGes = dap — LG Al T cpmihy | A), (2.23)
where
b= 0(id: — ap). (2.24)

Eq. (2.23) is exact, but not closed. As the goal is to describe pairing correlations in
nuclei, relativistic anomalous Green’s functions Fy, and F,;, can be introduced:

Fu = —i(A+2[T 1| A) and (2.25)

Fu = —i{AIT 4,04 +2) (2.26)
and their equation of motion can be obtained by using Eq. (2.22). For Fy, it reads
(P = M)eaFp = 1T (A + Q‘T{pcémﬂ’b'/l)a (2.:27)

in which p is defined as
P = 7(~i0; — ap). (2.28)

In Eq.s (2.25)-(2.27) |A + 2) is the exact ground state of a (A + 2)-nucleon system. In
order to eliminate the meson field operators ¢,, from Eq.s (2.23) and (2.27), the following
procedure, valid for an arbitrary vertex function, can be applied. First, the equation of
motion of ¢,, (in this case they are Klein-Gordon equations) are derived, and they read

(070, +mp)¢™ = Fh Loy, (2.29)

in which the + signs hold for scalar and vector meson fields respectively. Then, the
equations of motion are solved for the meson field operator by inversion. This gives

G = F Dongmr VT 10, (2.30)

where D,y represents the meson-propagator [IZ80]:

d* e—ik(w—z’)
Dy = — / i i (2.31)

For vector mesons the Kronecker symbol 4, has to be replaced by the metric tensor
kuk,1
G — %
Substituting Eq. (2.30), the meson field operators may be eliminated and Eq.s (2.23)

and (2.27) become

(b= M)aGeor = Bap F T Dy T (AT 0 400 13| A, (2.32)
(B— M)aFsp = FilT Dy T (A + 2|T ), 420 1| A). (2.33)

21



The rh.s. of these equations, which, as before, are still exact but not closed, depends on
the four-point Green’s functions. The Gorkov factorization [Go58|, which approximates
the four-point by products of two-point Green’s functions

<A‘T we&dwc¢b|A> ~ _GedGcb + chGeb + Fechba (234)

(A+2T Y00 A) = —GeaFep + GecFap — GepFue- (2.35)

allows one to close the system of Eq.s (2.32)-(2.33). In the second equation G, is actually
the normal Green’s functions of the A + 2 system. Neglecting this difference in particle
number and replacing it by the normal Green’s functions of the A—particle system leads
to the well known violation of particle number symmetry in BCS-theory.

The first and the second terms of rhs of Eq.s (2.34)- (2.35) are the well known Hartree-term
and the Fock-term. In addition the third term, commonly called Gorkov-term, describes
correlations between particles. Neglecting the last two terms in Eq.s (2.34)-(2.35), the
classical mean field theory, i.e. the relativistic Hartree approximation is recovered. To-
gether with the second term, this theory represents the relativistic Hartree-Fock theory
[Br78, BMG87]. Taking into account all three terms leads to the following system of
equations:

(ﬁ - M)achb = 5ab + Z.FZZDmm’FZgGedGCb
F AT Dy T GGy (2.36)
+ Z'FZZiDmm’ F’gélﬁ‘echb

and

(ﬁ - M)caFcb = =+ iFZZDmm’Fg;’Gechb
T i1 Dy T™ GeaFlp (2.37)
4+ i Dy T Fye G,

This system of equations is obviously not closed yet, because it still contains the unknown
function F.

Because of the invariance of the Lagrangian under translation in time and the time-
dependence of the normal and anomalous Green’s functions, one can show that

e (7, depends only on the difference in time t, — ¢,

A

Gab(ta - tb) = éaﬁ(a:a, Ly, ta — tb)
Gaﬂ' (maa tq, Tp, tb)’Y%’g; (238)

e the other two functions Fj;, and Fj, can be decomposed in functions F,, and Fy,
depending only on this difference and an exponential part, depending on t,,

A

Fop(te — 1) = Faﬂ(waa Tp;ty — tp) (2.39)
e_ﬂ)‘t“ Fa’ﬁ’ (waa taa mb; tb)fyg’alyoﬁ’ﬂﬂ

~ ~

Fab(ta_tb) = Faﬂ

e+i2)\ta Faﬁ (a:av ta7 Lp, tb)
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where 2\ = F 4,5 — E4 is the difference of the ground state energy of the A+ 2 and

the A particle system and therefore twice the chemical potential (A = g—ﬁ).

In Eq.s (2.38), (2.39), the time dependence is treated explicitly, and the Latin indices now
contain, apart from the Dirac indices «, only the spatial coordinates x,.

Using the instantaneous approximation, i.e. neglecting the retardation effects in the
interactions which determine the mass operator ¥ and the pairing potential A, these
quantities become time-independent, and a time-independent two-body potential can be
defined as follows

Vabed = F 0(®q — )0 (To — Ta) (2.40)
Bk eik(a:rm,,)

OF[L o OF /
X ;(’Y )’7(7 u)ﬂ5 (271')3 a:Q_i_mIQL ’

with the usual convention for the signs.
Introducing the normal density matrix

Pab = Pap(@as To) = (A} ()0 ()| A) (2.41)
and the anomalous density matrix (pairing tensor)
Kab = Fap(@a, To) = (A[Y5(@6) V0 (€a)|4), (2.42)

respectively, hermitian and skew symmetric tensors
o' =p, k' = —kK (2.43)
the mass operator in Hartree-Fock approximation and the pairing field read explicitly

Ea.c = 5acM+Fac

Fuac = V;zdceped_vadecped (244)
Aac = V;Lcde/fde- (245)

Eq.s (2.36) and (2.37) can thus be written in the following form:

(18 —ap — ﬂz)ac —Age éc (t) B 5a
( t Aza (_iat +2\—ap — BE)ca ) ( FAI:cb ) = ( Ob ) . (2.46)

The time-dependence is taken into account explicitly by a Fourier transformation:

Gab((U)

Gop(Ta, Tp; W) :/éaﬂ(wa,mb;t)ei(“’*’\)tdt, (2.47)

Fab(CLJ)

Faﬂ(wa,wb;W) == /Faﬂ(maawb;t)ei(w+)‘)tdt_

this transforms Eq. (2.46) into the following matrix-equation

(w—H) ( §§g§ ) = ( (1) ) , (2.48)



where the matrix H L A
’H=( A —h*—}-/\) (2.49)

is the relativistic form of the Hartree-Fock-Bogoliubov-Matrix. We call it Hartree-Fock-
Bogoliubov Matrix because the Hamiltonian A is the Dirac Hamiltonian A

h = ap + . (2.50)

The indices of this matrix are combinations of Dirac index and coordinates. In particular
matrix multiplication means then a summation over the Dirac index and an integration
over the coordinates.

Like in nonrelativistic physics we obtain the eigenfunction by a spectral decomposition

U, U Vu Vi
G, = v by by 2.51
o(w) zu:w—e,,+i77+w—e,,—i77 ( )
V., U U,V
F, = = by av by 2.52
() Zw—ey—in+w—sy—in ( )

v

where the poles of these functions are the quasi particle energies ¢, and the residues are
given by the amplitudes

Usa = (Alth|A + 1, v) and V.= (Alpl|A—1,v), (2.53)

containing the wave functions plus BCS-occupation numbers. Finally we obtain the rela-
tivistic form of the Hartree-Fock-Bogoliubov -Equations, which we have called the Dirac-
Hartree-Fock-Bogoliubov equations:

(il—_AA _hAH)(g)ﬂ([é) (2.54)

where F, are the quasi-particle energies. These equations can be applied for a fully self-
consistent description of open-shell nuclei, where the possibly deformed mean fields and
the pairing field are determined simultaneously.

Let us consider the pairing field A. Its components (see Eq.(2.45) are given by the
product of the two-body matrix elements of the interaction V4. and the pairing density
k. One of the biggest open question is which interaction has to be used in the pp-channel.

Following the Fermi’s Liquid theory proposed first by Landau in Ref. [La59] and then
by Migdal in Ref.s [Mi67, Mi68] the effective force in the pairing channel should be
the particle-particle K —matrix, which is the sum over all particle-particle irreducible
diagrams.

In this theory the pairing field A is defined as the sum of all diagrams converting a
particle into a hole and a correlated pair (or two particles into a correlated pair), which
cannot be divided into parts connected by one line of any direction. These graphs have
the following structure. (see the Figures in the next page). First, there is an interaction
(since A does not include free states by definition). This is followed by the complete set
of graphs modifying the direction of the particles, which represent the anomalous Green’s
functions F'. Since, by definition, F' includes the ends, all the interaction diagrams that
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may be split into parts connected by two lines of any direction enter in the equation for
F. Tt follows that only the graphs which do not contain parts connected by two lines of
any direction enter in the gap equation, i.e.

: O

The block K does not contain parts connected by two vertical lines of any direction as
such graphs are contained in F' and for this reason K is represented in form of a narrow
rectangle. The first terms in perturbation series for K are
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Chapter 3

Relativistic Theory of Pairing for
Infinite Nuclear Matter

As first application of the relativistic Hartree-Fock-Bogoliubov (HFB) theory presented
in Chapter 2, we calculate the pairing gap 'Sy at zero temperature in infinite nuclear
matter. Since pairing correlations are concentrated mostly at the Fermi surface, we have
performed the calculation of the gap and other pairing properties by using a relativis-
tic BCS approximation to the fully relativistic HFB equations given in Eq. (2.54). A
similar investigation was already performed by Kuchareck and Ring in Ref. [KR91] and
by using the relativistic BCS approximation with the same force in the ph- and in the
pp-channel, they found a pairing gap of a factor three too large with respect to standard
calculations in infinite nuclear matter, see for example Ref.s [KRS89a, BCL90, CCD93|.
That result has been justified by the fact that although from the microscopical point of
view pairing correlations may originate from relativistic OBE interactions, the force in
these two channels is not the same: in particular, the effective force in the ph-channel
has large contributions in the region of high momenta, i.e. it does not contain a cutoff.
Therefore, in our investigation, we have used a relativistic bare potential adjusted by the
Bonn group [Ma89] which is adjusted to scattering data and has an appropriate cutoff.
Therefore it corresponds to the first diagram of the K-matrix, i.e. the interaction which
should be used in the pp-channel.

We are particularly interested in the study of the pairing gap in symmetric nuclear
matter for the link that may be established with pairing in finite nuclei through a local-
density approximation [KRS89b|. In particular, from experimental evidences it is well
known that in the latter case the largest contribution to pairing comes from the 'S,
channel. For example, scattering data show that this is the most attractive channel of
the NN interaction, and therefore it should favorite the formation of a nucleonic pair. In
addition, nuclei with even N and even Z are more stable than others. Pairs of neutrons
and also pairs of protons couple to total spin 0, with a little extra binding. That feature,
which accounts for the fact that all known even-even nuclei have ground state angular
momentum of 0, motivates the study of the pairing gap 1S, in nuclear matter.

We have compared our results for the pairing properties of nuclear matter obtained
with the bare relativistic Bonn potential with non-relativistic calculations based on the
Gogny force [DG80], a very successful phenomenological effective interaction whose pa-
rameters have been determined by fitting properties of finite nuclei obtained with HFB
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calculations to the experimental data. Since it is supposed to describe pairing properties
of finite nuclei properly, with the help of the local-density approximation one can pass
to infinite nuclear matter and this interaction with the aim to set a benchmark against
which pairing properties of other forces could be compared.

In the following Sections we introduce the Dirac-Hartree-Bogoliubov equations for
infinite nuclear matter and we solve the gap equation by using the bare Bonn potential
as pairing interaction. Further pairing properties as for example pairing densities in
momentum and in coordinate space, and coherence length are studied. The results are
always compared with non-relativistic calculations based on the Gogny force, parameter
set D1 [DG80]. Finally, phenomenological relativistic interactions in the pairing channel
are discussed in order to extend the relativistic theory of pairing to finite nuclei.

3.1 Relativistic BCS Equations for Nuclear Matter

To derive the BCS equations in infinite nuclear matter we neglect for simplicity the Fock
term and the vacuum polarization as it is usually done in RMF theory. Because of the
translational invariance of the system, the mass operator ¥ in Eq. (2.44) has the simple
form

with the fields
2
9o
S = _m—g s) (32)
g2
T (3.3)
determined by the scalar density
ps = (Alp|A) (3.4)
and by the vector density
po = (A[p1y]A). (3.5)
The RHBF equations (2.54) become
ap+X—M -\ A U \ U,

and they should be solved self-consistently. In analogy with A, the relativistic pairing
field A, whose components are given in Eq. (2.45), is a 2 X 2-matrix. A contains the
same terms of the relativistic OBE interaction V.. For example, in the simple case of
an interaction based only on the exchange of the two mesons ¢ and w, A contains a scalar
term, and a vector term with time-like and space-like components, i.e.

AT — ( AL +AY AL AL +AY AL )

AL A AL AT ATt A (3.7)
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where the signs + and — refer to the large and small components of the U, and V.
Although for a fully RHB calculation (see also Guimaeres et al. in Ref. [GCF96]), all the
components of A should be taken into account, since in infinite nuclear matter pairing
correlations play only a minor role in the neighborhood of the Fermi surface, a BCS
approximation, in which pairing is considered only on top of a simple Hartree solution,
is still a good framework for this calculation. Consistently with this scheme we first
diagonalize the hamiltonian h, i.e. we solve the usual Dirac equation for infinite nuclear
matter. Writing the RHB equations given in (3.6) in this basis the h part is diagonal,
and the pairing field A is transformed into another field A which is not diagonal. Up
to now the equations are still equivalent to the full HFB equations. Neglecting the off-
diagonal elements of the new matrix A, the problem decomposes in a large number of
small 2 x 2 matrices where h and A are both diagonal. The diagonalization of these new
matrices leads to the BCS solution on top of Hartree. It must be remarked that in this
approximation only the effects of the off-diagonal matrix elements of A are neglected.
Fully relativistic HB calculations in finite nuclei (see Chapter 4) will show that they are
negligible. No antiparticle solutions are considered in the calculations.

We start from the eigenvalues and eigenfunctions of the Dirac equation of a nucleon
propagating in a uniform nuclear medium

(v P+ M )u(p, s) =1 E u(p,s). (3-8)
They are characterized by the momentum k and the spin index s, the eigenvalues are
e(k) =V £ E*(k), (3.9)

with E*(k) = Vk? + M*?, where M* = M+ S is the effective mass, and the eigenfunctions
are the well known Dirac spinors for positive and negative energies [see Appendix B].
Moreover, as usual in RMF, the densities p in Eq. (2.41) and & in eq. (2.42) are calculated
in the no-sea approximation and, as usually done in BCS, time reversed orbits with
the quantum numbers (k,s) and (—k,—s) are assumed to be pairwise occupied with
occupation amplitudes v(k) (u? + v?> = 1). Then, in the basis characterized by the
quantum numbers (k, s) the matrices for scalar and vector densities are diagonal

ps(ks,k's') = 6(k— k')ésSIUQ(k)EJ}KI—(;), (3.10)
p,(ks, k's) = 6(k—Kk)o,0v?(k), (3.11)
and the pairing tensor skew diagonal
k(ks,k's') = (—)2*5(k + k'), gu(k)v(k). (3.12)
The density matrices allow the calculation of the densities

4 [ M*

= v} (k)k?dk, 3.13
Ps 2n? J, E*(k) (k) ( )
= —_— .14
b = g | ORI, (3.14)

and consequently of the potentials V' and S given in Eq.s (3.2) and (3.3). The factor 4
originates from the spin-isospin degeneracy.
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Analogously, the pairing tensor  leads to the skew diagonal pairing field
A(ks,k's'") = (=)0 (k + k)0 ,_y A(k), (3.15)

where the gap parameter A(k) obeys the gap equation

Ay =- | N g%;vpp(k,mu(p)v(p), (3.16)

where v,,(k,p) is the interaction in the pp—channel. In the following we will use the
relativistic bare Bonn potential.

Substituting these expressions into the DHFB equations (2.54), one notices that it
decomposes into (2 x 2)—matrices of BCS-type as in the case of non-relativistic HFB
equations in infinite nuclear matter

(G 30 ) () =rw (). e

This yields the well known occupation numbers

207 _ 1 B (k) — A
T (1 NECEvE N(k)) 49

with the eigenvalues
e(k) =V + E*(k), (3.19)

and

E(k) = \/(V + VR + M — \)2 + A2(k). (3.20)

The effective mass is obtained from the solution of the implicit equation

2 o *

gs 4 M

M =M-—- <% —
m22n? J, E*(k)

v?(k)k*dk. (3.21)

The gap parameter is determined by the non-linear gap equation given in Eq. (3.16)

1 A(p) 2

Ak =——/ Upp (K, p pdp, 3.22
0 =gz ] wlkD) (322

where v,,(k,p) is the average over the angle of the amplitude v,,(k, p)
vk, p) = / dcos Ou,y (K, p). (3.23)

with 6 angle between the vectors k and p. In appendix B the amplitudes v,,(k, p) are
given for a arbitrary nucleon-meson vertex and the resulting integral (3.23) for the Bonn
potential and two phenomenological relativistic pairing interactions discussed at the end
of this chapter. The equations (3.21) and (3.22) are solved iteratively.
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3.2 Pairing with Bonn Potential

In this Section we present a BCS solution of the gap equation (3.22) obtained by using
a relativistic version of the Bonn potential (for more details see Appendix B and Ref.
[Ma89]) as vy, (k,p), which corresponds to the first diagram of the K —matrix. In the
ph—channel we use the RMF Lagrangian density, and, as we are dealing with infinite
nuclear matter, the c— and w—meson only are considered. The eigenvalues of the Dirac
equation are given in Eq. (3.19) where the effective mass M* and the vector field V' are
given by

M* = M+g,0 (3.24)
V = guw (3.25)

and the fields o and w are determined by the meson equations of the non-linear Walecka
model [Ri96]

44, d*k M* 2 2 3
7= _m—?,/(27r)3 e (F) 90 T g0 (3.26)
4g, &Pk
= — . 2
w m? (27031) (k) (3.27)

In Eq.s (3.26)-(3.27) the BCS occupation numbers v?(k), the Fermi energy A which is
related to the Fermi momentum kg by the relation

A=V +/kZ + M=, (3.28)

are thus determined by the density of the system p = m2w/g,. The coupling constants
9o, 9w, g2 and g3, and the meson masses m,, m,, are taken from the parameter set NL1 of
the non-linear Walecka model [GRT90, RRM86]. We have also performed the calculations
with the parameters sets NL2 and NL3 and we have found no differences in the results
for the pairing gap at the Fermi surface. The numerical technique used for the solution
of Eq.s (3.21)-(3.22) is described in detail in Ref.s [BCL90, Ru94, EEH96| and references
therein.

3.2.1 Gap Parameter at the Fermi Surface

In Fig. 3.1 we show the resulting gap parameter at the Fermi surface kr Ap = A(k = kp)
as a function of the density represented by the Fermi momentum kp for the relativistic
Bonn-B potential A2 (solid line) and compare it with the same quantity obtained in a
non-relativistic calculation [KRS89a] based on the Gogny force D1 [DG80] A% (dashed
line). Apart from the difference at larger densities, the solutions are in excellent agree-
ment. In both cases we find maximal pairing correlations of roughly 2.8 MeV at the
Fermi momentum kg ~ 0.8 fm™', i.e. at roughly one fifth of nuclear matter density. In
particular, for the Bonn B potential we have

AP x5 2.84 MeV at kp ~ 0.76 fm™" (3.29)
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Figure 3.1: The gap parameter at the Fermi surface Ar as a function of the density
represented by the Fermi momentum kp for the relativistic Bonn potential (version B)
and for the Gogny force D1.

and for the Gogny force
AS ~ 2.78 MeV at kp ~ 0.8 fm ! (3.30)

Since pairing correlations are largest for small densities, i.e. in the surface of the nucleus,
this result agrees with the usual observation that pairing in nuclei is a surface phenomenon.
Moreover, the agreement between AZ and A% is a particularly interesting result as in the
latter case it has been shown [KRS89a] that using this density dependence of the gap
parameter in a semiclassical calculations the average pairing properties of finite nuclei
can be reproduced rather well. Therefore we hope that this remains true also for the
Bonn potential. At the saturation density (k% = 1.35 fm™"), it is rather difficult to decide
whether nuclear matter is superfluid. In any case it seems to depend crucially on the
interaction. For Gogny forces a small pairing gap of roughly 0.5 MeV is left at saturation,
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Figure 3.2: Various contributions to the integral in the gap equation (3.16) for the density
corresponding to the Fermi momentum kp = 0.3 fm™'. Comparison of the relativistic

Bonn-B potential and the Gogny force. The details are discussed in the text.

whereas for the Bonn-B potential there seems to be no pairing. In the next paragraph we
will explain the origin of this discrepancy.

Till now we have presented relativistic calculations based on the version B of the Bonn
potential [MHES87]. The version A and C of the potential produce nearly identical pairing;
in particular at kp = 0.76 fm™" for the maximum of the gap parameter we find

AP 280 MeV, AP ~2.83 MeV. (3.31)

In Ref.s [BCLY0, CCD93, EEH96] non-relativistic calculations of the pairing gap 'S,
based on the bare Paris potential [LLR80], a non-relativistic version Bonn potential, and
on the CBF method respectively leads to a very similar result for Ag.

To understand the difference between AZ and A% at higher densities, we analyze the
behavior of A(k) and wvp,(kr, k) for different values of kr in both cases. We choose kr =
0.3, 0.8 fm ' for which the agreement between the relativistic and the non-relativistic
solutions is good and kr = 1.2 fm™" for which AZ drops more rapidly than A%. From
Eq. (3.22) we see that the gap parameter at the Fermi surface is given by the integral of

o _k—Qv A(k)
i(k) = A2 oo (K K) \/(e(k) —A) +A2(/€).

(3.32)
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Figure 3.3: Various contributions to the integral in the gap equation (3.16) for the density
corresponding to the Fermi momentum kp = 0.8 fm '. Comparison of the relativistic

Bonn-B potential and the Gogny force. The details are discussed in the text.

In the following considerations we focus our attention on v,,(kr, k) and on A(k). In Fig.
3.2, 3.3 and 3.4 we show vy, (kr, k), A(k) and i(k) for the three previously mentioned values
of kr. On the left side the graphs refer to the Bonn potential and on the right side to the
Gogny force. First of all, we consider the interactions which are plotted with dotted lines:
we observe that the behavior of the Bonn potential differs considerably from the behavior
of the Gogny force. In the first two cases, Fig. 3.2 and Fig. 3.3, the relativistic force
consists of two parts: one negative at small momenta and one positive at larger momenta,
its zeros kg are located at around 1.0 fm™'. Moreover, going up to higher Fermi momenta,
we notice that the strength of the negative part decreases, and for kp = 1.2 fm™" (see
Fig. 3.4), it has disappeared. On the contrary, the non-relativistic force consists of a
negative part at small momenta and a positive one at large momenta for each value of
the Fermi momentum. Its zeros ko are located at around 2.0 — 3.0 fm ' independently
of kr and the strength of the positive part is always negligible. Next, we consider the
pairing fields A(k), plotted with solid lines. For both the interactions and for each kp,
they show a maximum at k& = 0, decrease with a zero at k &~ 2.0 fm™", reach a minimum
at k ~ 3.0 fm™', and, finally, go to zero at large momenta. For kr = 0.3 and 0.8 fm™"
the maxima and the minima of AZ(k) and A% (k) have comparable magnitudes, while for
krp=1.2fm ' A%(k) is far greater than A(k)”. This last observation agrees also with the
fact that A2 goes to zero faster than A%. Finally, in the figures we show the integrand
i(k) given in Eq.(3.32), plotted with dot-dashed lines and whose shaded areas represent

33



Bonn Potential Gogny Force

40 |

20} 7

0.0 %» -—- -

=0

— AK)
—— Vpp(kK’k)
— ik

40 F

-6.0
0.0 20 4.0 6.0 8.0 0.0 20 4.0 6.0 8.0 10.0

« (fm™) « (fm™)

Figure 3.4: Various contributions to the integral in the gap equation (3.16) for the density
corresponding to the Fermi momentum kp = 1.2 fm *. Comparison of the relativistic

Bonn-B potential and the Gogny force. The details are discussed in the text.

Ap, and we examine how v,,(kr, k) and A(k) contribute to it. As before we observe
differences in the quantities calculated with the Bonn potential and with the Gogny force.
In the latter case, for each value of kr and for momenta smaller than ko, A(k) is positive,
while vy, (kF, k) is negative. Together with the minus sign in (k) in Eq. (3.32), this gives
a positive contribution to the gap parameter at the Fermi surface, as we may from the
shaded area. In the interval £ > ko, A(k) is negative and v,, is positive, but because
they have rather small strengths the total contribution to A% of this interval is negligible.
Thus we may conclude that for the non-relativistic interaction Ap originates mainly from
the interval of small momenta only.

For the Bonn potential, the way A(k) and v, (kr, k) contribute to A2 depends on
kg. For kp = 0.3 and 0.8 fm™', as we may see Fig. 3.2 and Fig. 3.3, we distinguish
three intervals: for k < 1.0 fm ' A(k) is positive and vy, (kr, k) negative, then, because
of the minus sign in i(k), the contribution of this interval to Ag is positive (positive
area). For 1.0 < k fm~' < 2.0 A(k) and vy, (kr, k) are both positive and consequently
the contribution to A is negative (negative area). Finally, due to the fact that A(k)
is negative and v,, positive, the contribution to Ap of the interval k£ > 2.0 (fm) " is
again positive. Therefore, as it can also be seen from the shaded areas in the figures,
Ap(kp =0.3fm ') and Ap(kr = 0.8 fm ') are given by the sum of two positive and one
negative contributions. For kp = 1.2 fm ! Upp is positive for £ > 0. At small momenta
A(k) is also positive, then the contribution of the interval for which & < 2.0 fm™" is
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Figure 3.5: Matrix elements of the relativistic Bonn-B potential in momentum space
vpp(kp, k) at the Fermi momentum of maximal pairing correlations kr = 0.8 fm ™. The
thick solid line corresponds to the full potential, the thin lines to the various one-meson
exchanges.

negative. In the interval k& > 2.0 fm™* A(k) is negative so that the contribution to A is
positive. Therefore, in this last case, we observe that Ap is given by the algebraic sum of
two areas only: one positive and one negative, and since they are of comparable size they
cancel each other. In conclusion, the fact that A drops to zero faster A% is due to the
strong dependence of the Bonn potential on the Fermi momentum.

From Fig.s 3.2, 3.3, and 3.4 we notice that for both the interactions and for each Fermi
momentum, the integrand i(k) presents a peak at k ~ kp. This is simply due to the fact
that for this value of the momentum the denominator in Eq. (3.32) is minimum. In the
relativistic case, we observe the presence of a second peak that is a maximum for each
kr. It corresponds to the maximum of the positive part of vp,.

The fact that also the large momentum part of the bare interaction contributes sensitively
to the gap parameter was already pointed out in Ref. [BCL90].

In order to understand the discrepancy between the relativistic and the non-relativistic
calculations, one should also mentioned that it could be due to the effects of the polariza-
tion. In fact, while the Gogny force is an effective force, i.e. it adjusted to the data and
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Figure 3.6: Contributions of the different one-meson exchange potentials to the gap pa-
rameter at the Fermi surface as a function of the density represented by the Fermi mo-
mentum kg. The thick solid line corresponds to the full gap, the thin lines to the various
mesons gaps.

all the effects are already taken into account, the Bonn potential is a bare interaction,
and therefore one has to say that the full pairing force contains an additional part that it
is induced by the presence of the background medium and as a consequence the effect of
the polarization diagram in the K-matrix should be investigated.

We now concentrate on the relativistic pp—interaction. The Bonn potential is defined
as the sum of OBE contributions of six mesons, namely o, w, 7, p, 6, and 7 (see Appendix
B). In Fig. 3.5 we show the different meson contributions and the resulting Bonn potential
at the Fermi momentum kr = 0.8 fm . We observe that the full interaction results from
the cancellation of two main terms: the negative and the positive contributions of ¢ and
w respectively. The other mesons play only a minor role, for example, at k£ ~ 0 the size
of the 7 and p potential is only 10% of the size of the 0 — w exchanges. Anyway, their
contribution cannot be neglected because of the large cancellation between o and w. The
influence of ¢ and 7 is even smaller, and although they are considered in the calculations,
we neglect them in the following discussion. Since we are working in momentum space
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Figure 3.7: p—meson contributions to the integral in the gap equation (3.16) for the
density corresponding to the Fermi momentum kr = 0.8 fm '. Comparison of one-p
exchange potential matrix elements: the dotted line corresponds to the full potential, i.e.

vector+tensor+tensor-vector terms; the long-dashed line to the vector term only.

for a fixed value of the Fermi momentum, we cannot infer any further properties of the
pp—interaction. In Fig. 3.6 we study how the exchange of the different mesons contributes
to Ap. As we have just seen for the potential, the pairing gap at the Fermi surface
mainly results from the the exchange of o and w whose corresponding pairing gaps at
the Fermi surface A%” are of the order of +9.5 MeV and —6.8 MeV for maximal pairing
correlations respectively, and, as before, the other mesons play a minor role. Among them

T &~ —0.85 MeV and A% ~ +0.42 MeV for the same kr. Quite surprising is the case of
the p—meson whose contribution to the total gap at the Fermi surface A% has the same
sign of the interaction, while for every other meson we observe an inversion of the signs
of v,, and AF. This behavior is due to the tensor Vi and vector-tensor Vi, terms in
the one-rho exchange potential. To understand this property, in Fig. 3.7 we show AP(k),
vb (kr, k), wh (kr, k), and i°(k), where v, (kr, k), plotted with a dotted line, is the one-
rho exchange potential with V4 and Vi1 calculated at kx = 0.8 fm™' and wgp(kp,k),
plotted with a long-dashed line, contains the vector term only. Comparing vy, and wf, we
observe that the presence of V; and Vi, modifies the potential: it is no longer a monotonic
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decreasing function of k¥ as w),, but it has now a maximum at k ~ 3.5 fm™" and then goes
to zero. In addition, the strength of v, is considerably greater than the strength of wf .
Proceeding as in the previous considerations for the full potential in the figures 3.2, 3.3,
and 3.4, we notice that A% is given by the sum of a negative contribution in the interval
0 < k (fm™") < 2.0 and a positive contribution for k¥ > 2.0 fm™", the interval where the
effects of Vr and Vyr on vf, are stronger. As A%, is positive, we may therefore deduce
that the effect of the tensor and vector-tensor terms in one-p meson exchange cannot be

neglected.
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Figure 3.8: Cooper pair wave functions in momentum space x(k) calculated at different
values of the Fermi momentum kr as functions of the momentum £ for the relativistic
Bonn-B potential and for the Gogny force.

3.2.2 Cooper Pair Wave Function and Coherence Length

For a better understanding of the pairing properties we study the Cooper Pair wave
function. In momentum space it is defined by

(3.33)
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Figure 3.9: Cooper pair wave functions in coordinate space x(r) calculated at different
values of the Fermi momentum kp as functions of the coordinate r for the relativistic
Bonn-B potential and for the Gogny force.

By comparing the equations (3.16) and (3.22), it is immediately clear that the function
X (k) just defined in Eq. (3.33) is simply proportional to the product u(k)v(k) that is the
pairing tensor. In the formalism of the second quantization it is given by

Kab = Kap(XaXp) = (Alth5(%) 4 (%a) [A)

and from this it follows that y is the wave function which describes a pair of nucleons. In
Fig. 3.8 on the left we show x(k) obtained with the Bonn potential and with the Gogny
force on the right at the three values of the Fermi momentum previously considered,
ie. kp = 0.3, 0.8 and 1.2 fm™'. First of all, we observe that every wave function is
peaked at k = kr. As already said before, this is due to the fact that the denominator in
Eq.(3.33) at £ = kp is minimum: in fact it reduces to A(kr). Moreover, the pair wave
functions asymmetry in the momenta intervals & < kr and k£ > kr may be explained as a
consequence of the variation of the gap function A(k) with k. For both the interactions,
the widths of the peaks, which represent the inverse of the coherence length, have the
same size for kr = 0.3, and 0.8 fm ', while they are smaller for kx = 1.2 fm ', In
addition, the fact that for kr = 1.2 fm~"! the width of the peak is narrower for the Bonn
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Figure 3.10: Upper part: even-singlet central part of the Bonn potential in coordinate
space and its one-meson exchange contributions. The former is plotted with a thick
solid line and the latters with thinner lines. Lower part: Cooper pair wave function at

kr = 0.8 (fm'). It is peaked where the interaction is mostly attractive. x(r) is given in
fm=3

potential than for the Gogny force is consistent with the observation that in the former
case the gap parameter at the Fermi surface Ap drops faster than in the latter. Apart
from this, in momentum space there are no big differences between the wave functions
X (k) calculated with the relativistic and non-relativistic forces. A similar behavior of x (k)
has been found also in Ref. [EH98|.

In order to look further into the physical content, we now turn to the dependence on
r, that represents the distance between the two nucleons forming a Cooper pair. In Fig.
3.9 we plot the pair wave functions in coordinate space of the Bonn potential and of the
Gogny force x(r), with

X(r) = [ e ) (3.34)

at the three values of kr used before. Here r is the interparticle distance. For both the
interactions they are oscillating functions of r, and the oscillation rate increases with the
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Figure 3.11: Upper part: channel 1S, for the Gogny force in coordinate space. Lower
part: Cooper pair wave function at kp = 0.8 (fmfl). It is maximal where the interaction
is mostly repulsive.

density represented by kr. However, we also observe important differences between the
relativistic and the non-relativistic calculations. In the former case, for each kg, x(r = 0)
is close to zero, then increases till a maximum at r,,,; =~ 1.0 fm and thereafter it starts to
oscillate at different rates for each kr. We observe that the highest maximum of the pair
wave functions X(7rmee) ~ 0.0062 fm~3 corresponds to the Fermi momentum for which
pairing correlations are maximal, i.e. kp = 0.8 fm™'. For kr = 0.3 and 1.2 fm™', we
have X(7maz) = 0.0015 fm ™. In principle there is no reason why the height of the x(r)s
corresponding to these two kp is the same. However, from Fig. 3.1, we observe that the
magnitude of the pairing gap at the Fermi surface is roughly 0.9 MeV for both these two
values of kg, and this could explain why we obtain the same height in the two Cooper pair
wave functions. In the case of the Gogny force, the situation is quite different. First of
all, the pair wave functions x(r) do not present any pronounced peak at small distances.
In particular they are almost constant in the interval k¥ < 1.0 fm™" for each kg, then
decrease and oscillate with an oscillation rate increasing with kr as we have noticed for
the relativistic interaction. Comparing the strength of x”(r) and x“(r) at the different
densities, we observe that they are of the same order for kr = 0.3 and 0.8 fm™", for which,
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Figure 3.12: Coherence length as function of the Fermi momentum kg for the relativistic
Bonn-B potential and for the Gogny force.

as it can be noticed from Fig. 3.1, also the agreement between the corresponding pairing
gap at the Fermi surface is very good, namely AZ(kr = 0.3 fm™!) ~ A% (kr = 0.3 fm™!) ~
0.9 MeV and AZ(kr = 0.8 fm™") ~ A%(kr = 0.8 fm™") ~ 2.8 MeV. On the contrary,
for kp = 1.2 fm ™! the strength of x%(r) is far greater than the strength of xZ(r). This
agrees with the observation that at this Fermi momentum the pairing gap obtained with
the Gogny force is much greater than the pairing gap obtained with the Bonn potential,
namely we find A% (kr = 1.2 fm™") ~ 1.9 MeV and AB (k1.2 fm™") ~ 0.9 respectively. In
both cases the interparticle distance for which the Cooper pair wave function is maximal
is ~ 1.0 fm.

Starting from the fact that the Bonn potential is a rather complicated function of r,
the Cooper pair wave functions in coordinate space allow us to find an answer to the
following question: which part of the interaction is responsible for pairing correlations?
Let us consider the Bonn potential. In the upper part of Fig. 3.10, we show the even-
singlet (1Sy) central part of the bare interaction in coordinate space. We have to remark
that we have used here a non-relativistic reduction of the potential in coordinate space,
which is however a good approximation of the relativistic one at small distances, since the
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Figure 3.13: Ratio M*/M as function of the Fermi momentum kp for the relativistic
Bonn-B potential.

Fourier transformation of the latter from momentum to coordinate space cannot be carried
out analytically because of the presence of non-local terms [Ma89]. We observe that the
full potential, represented in the figure by a thick solid line, is repulsive at short distances,
has a zero at r ~ 0.7 fm and then a minimum of the order of —50 MeV at 7,5, =~ 0.9 fm
and, finally, goes to zero for larger distances. The thinner lines represent the single meson
contributions. In particular we notice the monotonic increasing and decreasing potentials
corresponding to the attractive c— and to the repulsive w—mesons, the contribution of
the one-pion exchange that in this channel of the pp—interaction is strongly repulsive
for r < 1.0 fm and weakly attractive for r > 1.0 fm, the one-rho exchange potential
which is also strongly repulsive at small distances, has a zero at r ~ 0.6 fm and gives
an attractive contribution of the order of —40 MeV at 0.8 fm much stronger than the
contribution of 7. This is probably due not only to fact that p is heavier than 7 but
also to the presence of the tensor and vector-tensor in the potential. Moreover, we also
remark that the d—functions in the spin-spin (central) force of the one-pion and of the
one-rho exchanges are removed by the form factors applied to the nucleon-meson-nucleon
vertices of the potential. In the picture we have omitted the contributions of the — and
n—meson as they are negligible. In the lower part of Fig. 3.10 we show the Cooper pair
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. . . -1
wave function in coordinate space for kr = 0.8 fm™ and we observe a correspondence

between the potential and the x(r) behaviors: at small distances, where the interaction
is strongly repulsive, the size of x(r) is small, in particular for interparticle distances less
than 0.1 fm it seems very unlikely that two nucleons condensate into a Cooper pair. At
larger distances the strength of x(r) clearly increases together with the decreasing in the
strength of the potential, in particular x(r) has a maximum of 0.006 at 7, ~ 0.8 fm at
which the interaction is mostly attractive. The same observations can be repeated also
for the other values of the Fermi momentum, as we have seen that every Cooper pair wave
function in coordinate space shows a peak at the same r = r,,;,,, independently kr. From
these considerations, we may conclude that pairing correlations in nuclei are mainly due
to the attractive part of the interaction and that the effect of the repulsive part is to shift
the peak of the Cooper pair wave function outwards.

The relativistic Bonn potential gives a good quantitative description of pairing corre-
lations, which result in a extra-binding energy of the system, in infinite nuclear matter
and we have just seen that in the interval where it is repulsive, it is unlikely to find two
nucleons bounded into a Cooper pair. On the other side, from Fig. 3.10 and Fig. 3.6
we may see that to a potential repulsive along the whole r—axis (for example w) corre-
sponds a finite gap. Therefore, we could deduce that the exchange of mesons producing
a repulsive potential generates a finite energy which would loose the system.

As we have done for the relativistic interaction, in Fig. 3.11 we show the Gogny force
in coordinate space in the upper part of the figure and the Cooper pair wave function
in coordinate space for kr = 0.8 fm™" in the lower part. In this case the situation does
not seem to be realistic, since x(r) is not suppressed by the repulsive part of the force,
indeed its strength is maximal in the corresponding interval. In comparison with the
Bonn potential, the Gogny force is far less repulsive at small distance and less attractive
at intermediate distances.

Another important quantity that we investigate for a better understanding of the
pairing properties in nuclear systems is the coherence length & that, from a microscopic
point of view, represents the squared mean distance of two paired particles on top of the
Fermi surface. In terms of the Cooper pair wave functions it is defined as

2 _ [ &r|x(r)|*r? _ Is° dkk?|ox (k) /Ok[?
J @r|x(r))? Jo" dER?|x (k)2

and for our calculation we have chosen the coordinate space representation since it is
more convenient on the numerical point of view. In Fig. 3.12 we show the resulting £ as
a function of the Fermi momentum kp for the Bonn potential, plotted with a solid line,
and for the Gogny force, plotted with a dashed line. In both cases, we observe that in
the interval 0.4 < kp(fm™") < 0.9, ¢ has a minimum of the order of 5.0 — 6.0 MeV and
it is an almost constant function of the Fermi momentum. This is in agreement with the
fact that in this interval pairing correlations are maximal, namely we find Ar > 1.5 MeV
as it may be seen from Fig. 3.1. For low densities (kxz < 0.25 fm™") and high densities
(kg > 1.0 fm™") the strength of the coherence length increases rapidly, meaning that the
two nucleons becomes more and more separated, i.e. do not form a Cooper pair. The
difference of the coherence length obtained with the Bonn potential and the coherence
length calculated with the Gogny force at larger densities agrees with the observation that

3

(3.35)
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the pairing gap drops faster for the relativistic interaction than for the non-relativistic
force. Furthermore our calculations are in good agreement with the results given in
Ref. [EH98|.

Finally, since, as we have mentioned at the beginning of the section, the pairing gap
at the Fermi surface kr Ay is given by the solution of the system of non-linear differential
equations for the pairing field A(k) and for the effective mass M* given in Eq.s (3.22)-
(3.21), we show the ratio M*/M in Fig. 3.13. As expected, it is a decreasing function of
the Fermi momentum and for maximal pairing at kp = 0.8 fm™" correlations its value is

0.88.

3.3 Pairing with Relativistic Phenomenological In-
teractions

As the relativistic bare Bonn potential reproduces fairly well the pairing gap at the Fermi
surface and other pairing properties obtained with non-relativistic calculations [KRS89a]
based on phenomenological interactions [DG80] adjusted to finite nuclei experimental
data, our next goal is to investigate pairing properties in finite nuclei in a fully rela-
tivistic Hartree-Bogoliubov approach. Unfortunately, as we solve the RHB equations by
expanding the wave functions and nuclear densities in terms of harmonic oscillator wave
functions, the relativistic Bonn potential cannot be used as interaction in the pp-channel.
In fact, by using this expansion method the energy associated to a nuclear shell with
principal number N is

Eyn = Nhwg (3.36)

where wy = 41/A'3, and for finite nuclei that fiw, is approximately 10 MeV. As 16-20
shells are needed for the convergence of the RHB equations, the maximal energy in the
spectrum is around 200 MeV. On the other side, the cutoff masses A,, associated to the
nucleon-meson vertex functions A,, are of the order of 1500 — 2000 MeV. This means
that the effect of the Bonn potential cutoffs cannot be totally included in the calculations
performed by using such an expansion method. In [TM99] a relativistic phenomenological
particle-particle channel interaction is presented. It is based on the exchange of a o- and
a w-meson and suits the gap equation for nuclear matter. This is done by introducing a
density independent momentum cutoff parameter A to the relativistic mean field model
so as to reproduce the pairing properties obtained by the Bonn-B potential and not to
change the saturation property. Nevertheless, as the cutoff mass A is fixed to the value
of =~ 700 MeV, which, as for the Bonn potential, is too high to be used in the framework
of an expansion method. Therefore, we have constructed a relativistic phenomenological
particle-particle channel interaction, also based on the exchange of a ¢ and a w-meson,
but for the form factor F/(q%) we we have chosen a gaussian function in order to assure the
convergence of the RHB equations solved by the HOWF expansion method. Starting from
the parameters set NL2 and keeping constant the meson masses, we have fixed the cutoff
mass p and changed the coupling constants in order to reproduce the pairing gap at the
Fermi surface obtained by using the relativistic Bonn potential. In Fig. 3.14 we display
the gap parameter at the Fermi surface A as a function of the Fermi momentum kg for
the different pairing interactions. On the left side we show the calculations obtained by
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Figure 3.14: The gap parameter at the Fermi surface Ap as a function of the density
represented by the Fermi momentum kp for the different pairing interactions. On the
left side form factors of monopole type are used, while on the right side form factors of
gaussian type are used.

using the relativistic Bonn B potential (solid line), and the phenomenological interaction
introduced in [MT99], based on the exchange of a o- and a w-meson and whose form
factor F,,(q?) given in Eq.(B.25) is of monopole type (dotted line). The relativistic
phenomenological interaction produces a pairing gap which is in excellent agreement with
AB for all the values of the densities kx. On the right hand side of the figure we plot the
same quantity obtained by using non-relativistic Gogny forces, parameters sets D1 [DG80]
and D1S [BGG84], and by using our new phenomenological relativistic interactions based
on the exchange of a - and a w-meson and with the form factor F,,(q?) given in (B.27) of
gaussian type. First, we notice that the two Gogny forces D1 and D1S plotted with a solid
and long-dashed line respectively, show the same functional dependence on kg although
there is a difference of 0.3 MeV in the strength of the maximal pairing correlations at
kr = 0.8 fm~!. The other two curves dot-dashed and the dotted lines display Ag(kr) that
we obtain by using the new phenomenological relativistic interaction. The dot-dashed line
is obtained with a cutoff mass pu of 50. MeV for which g, and g, have been reduced of
the 15% of the original NL2 parameters set. The dotted line is obtained with a cutoff
mass p of 140. MeV for which g, and g, have been reduced of the 40% of the original
NL2 parameters. We are in particular interested in the gap parameter produce by the
new force with the cutoff of 140. MeV as it corresponds to the same cutoff value of the
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non-relativistic Gogny force D1. From the figure, we may see that in these two cases the
agreement of Ar in the strength of the pairing for each value of the density is excellent.
Finally, from the comparison of the results for Ay, displayed in this figure, we may say
that at large densities the pairing gap is very sensitive to the interaction.
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Chapter 4

Relativistic HB Theory for Finite
Nuclei

In the previous Chapters it has been explained that a relativistic theory with classical
meson fields does not allow the description of superfluid nuclei, because it contains only
terms 'y and not Cooper pairs ¢! or ¥1p. A reformulation of the theory in terms
of an energy functional (in analogy to what was done in Skyrme models) allows one to
take into account monopole pairing within the BCS approximation. However, although
successful for the nuclei close to stability, it has been shown in Ref.s [DNW96, DFT84]
that the BCS scheme cannot be applied to the study of very neutron rich nuclei close to the
dripline, where pairing is embedded in the continuum. In this case a HFB theory has to
be used. As discussed in Chapter 2, relativistic HFB (RHFB) equations have been derived
by Kucharek and Ring in Ref. [KR91], where it was shown that, microscopically, pairing
correlations originate from a one-meson exchange interaction. However, a fully relativistic
solution of the RHFB equations with meson exchange forces for finite nuclei has not been
carried out yet. All the investigations of superfluid nuclei which have been done so far
neglect the Fock term in the ph-channel, and most of them use non-relativistic forces with
finite or zero range in the pp-channel. For recent reviews see Ref.s [LVR99, Me98] and
the references therein. In this Chapter we present a fully relativistic Hartree-Bogoliubov
(RHB) approximation for finite nuclei and we study in detail the relativistic effects in
pairing correlations in finite nuclei.

In Section 4.1 we give the general expressions of the RHB equations for finite nuclei. In
Section 4.2 we discuss our phenomenological relativistic potential in the pairing channel,
and in Section 4.3 we show the results for an isotopic chain of Sn nuclei.

4.1 Relativistic Hartree-Bogoliubov Equations

The fully relativistic HFB equations have been already introduced in Chapter 2. Starting
from the usual relativistic Lagrangian density of the RMF theory, the quantization of
the meson fields together with Green’s functions techniques allows the derivation of the
relativistic HFB equations:

(hA_*A —h*A+A)<g:):Ek<g:) (4.1)

48



where h and A are the single-nucleon Dirac Hamiltonian and the relativistic pairing
field respectively, X is the chemical potential, Fj are the quasi-particle energies and the
eigenvector (Uy, Vi) is defined by

fu,
Uk 190,
= 4.2
_Zng

(For details on the HFB theory see Ref. [RS80]). In Eq. (4.2) f and g are the large and
the small components of the Dirac spinor given in Eq. (D.2). The phases in Eq. (4.2)
have been chosen in such a way that we finally obtain real RHB equations. We write the
pairing field A in analogy to the Dirac Hamiltonian as

_ [ A A4
A= ( A A__) (4.3)

with real matrices Ay, A._, A_, and A__. The + and — denote the relativistic indices
pi, which refer to the large or small component of a Dirac spinor. They are defined in
Eq. (D.7). A generic matrix element of the relativistic pairing field reads

1
aipiazpz — 9 Z (a1p1a9p2| VPP |a3p304P4) 0 Kagpsasps (4.4)

a3p3a4p4

A

where (V?P), is the relativistic antisymmetrized two-body matrix element (see Eq.s (D.1)
and (D.7) for notations and definitions) and the total pairing energy E,.;, is given by

1
Epair - Z Z K'a2p2a1p1 <a1p1a2p2‘Vpp‘a3p3a4p4>a/€a3p3a4p4- (45)

a1P1a2P2G3P304P4

In the relativistic case one has to sum also over the relativistic index p;, and for a fully
relativistic self-consistent solution of the Eq.s (4.1), all the four matrices in Eq. (4.3) have
to be considered. Since we solve the RHB equations by expanding nuclear wave functions
and densities in terms of a finite basis of the Harmonic Oscillator (see Ref.s [GRT90,
GR93|), the two-body matrix elements of the pairing interaction VPP which appear in
Eq.s (4.4)-(4.5) are calculated in terms of the Harmonic Oscillator wave functions. The
expressions of these matrix elements are given explicitly in Appendices D, E, and F. The
choice of the phase given in Eq. (4.2) allows one to write the DHFB Eq.s (4.1) as a
real eigenvalue problem. Explicitly, considering only the scalar and vector mesons with
time-reversal symmetry in the Dirac Hamiltonian, and neglecting the Fock term in the
ph-channel, the relativistic Hartree-Bogoliubov (RHB) equations read

M*+V_)\ O'V A_|__|_ A_|__ f f
(- V) M 4V -\ A, A U Ui
gUk —F gUk
foo | M M
AT AT M*+V + A o-V k k
+t + v, gv,
AT AT (- V)t M 4V 4+ K k
(4.6)

49



This equation has solutions for the quasi-particle creation operators of (U, V) and so-
lutions for the quasi-particle annihilation operators a (U*,V*). In addition, there are
particle solutions (f, g) and antiparticle solutions (f, ).

The relativistic coefficients U, and Vj of the Bogoliubov transformation, can be com-
bined to the unitary matrix W

fo fu fx*/ i

U v gy gy 19y 10y
w=(9 )= i i (4.7)

fv fv It It

—igy —igy  —i9y —iGg

from which, as in the non-relativistic case (see for example Ref. [RS80]), the relativistic
generalized density matrix R is obtained as

R:W(Ol)wf (48)
_ Vvt ov=uT\ p K
S \uvvt vt )T 1= )

In Eq.s (4.7) f and § are the large and small components of the antiparticle solutions of
the Dirac equation. The relativistic density matrix p is given by

p = Vvt (4.9)
( WL+ WIE =ilfval + fval) ) _ ( Pov —ips )
igv v +av i) gvev +avay 7/ .

and the relativistic pairing tensor x by

ko= VU (4.10)
< fvf%+fvj§§ i(fvot + fvdt) >:( Kyy ikg_ )
i(QVfIT; + f}vfg) —(gvgg + ﬁvﬁg) ko, —k__ )~

As before, in Eq.s (4.9) and (4.10) the indices + and — refer to the large and small
component of the Dirac spinor, and, as given in Eq.s (4.9) and (4.10), the relativistic p
and k contain also the contributions of the antiparticles. Similarly to the non-relativistic
case, the density matrix is a symmetric tensor, while the pairing tensor is skew symmetric
Since as we work in the no-sea approximation in the ph-channel, the antiparticles are
not included in the expression for p given in Eq. (4.9), i.e. we neglect the terms fy ft,
fvg¥, gv fir, and Gy gl in p. The effect of the antiparticles on the pairing tensor is still a
complete open question. It is argued that as pairing correlations are concentrated on the
Fermi surface and that at the same time the antiparticles have an energy of about —1200
MeV, they should not contribute to «, but this should be clarified. We will address the
problem later on. In any case k is antisymmetric only with respect to the complete basis,
i.e. only if the antiparticle solutions (f, §) are taken into account in its calculation.
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4.2 A Relativistic Pairing Interaction for Finite Nu-
clei

In Chapter 3 it has been shown that the relativistic Bonn potential gives a fairly good
description of pairing correlations in infinite nuclear matter. Being a bare interaction, it
corresponds to the first diagram of the K-matrix, i.e. the interaction that should be used
in the pp-channel. Therefore, it seems reasonable to describe ground state properties of
finite nuclei by solving the RHB Eq.s (4.6) using the Bonn potential as interaction in the
relativistic pairing field given in Eq. (4.3). However, the mathematical properties of the
potential make the numerical solution of the RHB equations quite a difficult task: due to
its high cutoff no convergence is achieved in a reasonable oscillator space and therefore
they should be solved in coordinate space. Although it would be preferable to have a
relativistic pairing force with a finite range with a cutoff fixed by reproducing the pairing
properties of nuclear matter, for this study we have constructed a relativistic pairing in-
teraction with zero-range. Starting from the fact that on the microscopic point of view,
pairing correlations originate from a one-meson exchange interaction, our phenomenolog-
ical relativistic pairing potential consists of the exchange of the two mesons ¢ and w, and
the zero-range approximation of the force simply means to work in the limit m,, m,, — oo.
In other words, we have considered a point-coupling model (see Appendix A) based on
two isoscalar relativistic fields: a Lorentz scalar s and a Lorentz vector field v* = (v°,v.
As coupling constants we have used the parameters of NL3. In addition, because in this
approximation it is a d-force which enters into the RHB equations, we needed to introduce
a cutoff which assures the convergence of Eq.s (4.6). This has been done by multiplying
the s- and v-field couplings for a constant parameter ¢y, fixed to reproduce the pairing
energy of a given nucleus to the value obtained with other HFB calculations. Explicitly,
the pairing interaction reads

‘/Jpp(rl, 1‘2) = O {—052 ’}/(1)3’)’84 + 03 113124 — 03 a3 (124} 5(1‘1 — I‘Q) (411)

where the coupling constants are defined by

c, =2 c, =

4.12
. m (4.12)

(see also Appendix A). Then, V results from three terms: the two attractive terms of
s and of the spacelike component of the v-field v, and the repulsive term of the timelike
component of the v-field v°. Since it will be shown that a fully relativistic treatment
of the pp-channel induces a new production mechanism of pairing correlations in finite
nuclei, we write explicitly the expression A, ,, A, | A_, and A__ given in Eq. (4.3) for
the pairing force given in Eq. (4.11). Writing

Aalmazpz (1'1, 1‘2) = 5(1‘1 - rZ)Aalplazm (1‘1) (413)

Ha1p1a2p2(r1’r2) = l{a1p1a2p2(r1) (414)

the components of the relativistic pairing field read

Aal-i-az-l- 1‘1 = _CO Z 02 + C ’fa3+a4+(r1) - 3051'{@3_&4_(1‘1), (415)

a3aq
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1
Aal-f-az—(rl) = 500 Z [03 + Cg] l€a3+a4_(1‘1) - Cz’€03—a4+(r1)’ (416)

aszas4

Aal*@*(rl) = _COZ C2+02 lfaa aq— (1'1) 303K03+a4+(r1)' (4'17)

azaq

We have omitted the component A,, _,, since it has similar expression of A, 4,4, . From
Eq.s (4.15)-(4.17) an interesting characteristic of the relativistic structure appears: the
matrix elements of the relativistic pairing field result from a combination of two compo-
nents of the relativistic pairing tensor given in Eq. (4.10): namely, to a given A, ,, (here
the indices a; and ay have been omitted for simplicity), both &,,,, and ;,;, contribute: in
particular, the fields s and v°, which constitute the central part of the interaction (4.11),
are connected to the term k,,,,, while the field v, which is the spin dependent part of
the interaction, is connected to xp,5,. This is a relativistic effect and originates from the
structure of the Dirac matrices in the nucleon-meson vertices of the interaction (4.11).
Finally, due to the simple structure of the ¢ force, the pairing field and tensor are diagonal
inr,ie ry =rs.
Also the total pairing energy results from a combination of different terms:

1
Epair = ZCO Z /dl‘ { [_03 + Cﬂ Ha2+a1+(r)’€a3+a4+(r) (418)
ajazasaq
+ [_052 + 03] K’a2—a1—(r)’<’as—a4—(r) (4'19)
— 203 Koy yar+(F)Kay—as—(T) (4.20)

+ 2 (I:C? + Cqﬂ Kas+ar—(T)Kag—as+(T) — Csﬁa2+a1—(r)’%a3+a4—(r))} .
(4.21)

In order to see the differences induced by a fully relativistic treatment of the pairing
channel, we compare these expressions with those used in the RHB model NL3+Gogny
(for a recent review see Ref. [LVR99]). The Gogny force was used for the first RHB
calculations for finite nuclei by Gonzales-Llarena et al. in Ref. [GLE96] where it was
argued that since the matrix elements of a two-body force in the pp-channel are of a few
MeV only, a non-relativistic force could be used also in the solution of the RHB equations.
Comparisons of binding energies and pairing energies showed a good agreement between
the calculations carried out by the RHB model NL3+Gogny and non-relativistic HFB
model based on the Gogny force. However, since this interaction is non-relativistic in the
calculations of the two-body matrix elements given in Eq. (4.4) the relativistic index p;
remains arbitrary and it has to be decided in which part of the relativistic pairing field
the Gogny force acts. On the basis of the previous considerations, the Gogny force is used
only with k. The pairing field and energy reduce then

1
Autart(r,12) = 5 > Ve (T1T2) Koy gy (T1,T2) (4.22)
azaq
1 pp
Epair = Z Z VGogny(rl’ I'Q)I{a2+a1+(l‘1, r2)K03+a4+(r1: r2)' (423)
a1a2a30a4

Therefore by comparing the equations for the pairing field (4.15)-(4.17) and (4.22) and the
pairing energy (4.18)-(4.21) and (4.23), the situation with a fully relativistic interaction
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is more complicated. In particular, relativity leads to the fact that in the pp-channel, the
spin dependent part of the interaction mixes large and small components of the pairing
density k.

4.2.1 Applications to Sn Isotopes

We present here an investigation of the ground state properties of an even isotopic chain of
Sn. Particular attention is focused on the relativistic structure of the pairing tensor x and
of the pairing field A and the energy E,q;,. We have solved the RHB equations given in
Eq. (4.6) using as pairing interaction the relativistic point-coupling potential introduced
in the last Section and taking into account the contribution of the antiparticles in the
calculation of the pairing tensor in order to have an antisymmetric « (see Eq. (4.10)).
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— Gogny DSA1
— = Relativistic ¢,=0.116
-~ Relativistic ¢,=0.118
— = Relativistic ¢;=0.120

%0
100 120 140 160

Figure 4.1: Neutron pairing energy of the even isotopes of Sn, as a function of the mass
number A, calculated with the relativistic pairing interaction given in Eq. (4.11) for
three values of the parameter ¢y, and with non-relativistic Gogny force DSA1.
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Figure 4.2: Difference between the calculated binding energy and the Audi-Wapstra ex-
perimental energy [AW93], for the even isotopes of Sn, as a function of the mass number
A. The RHB calculations are performed by using the relativistic pairing interaction given

in Eq. (4.11) for three values of the parameter ¢y, and with non-relativistic Gogny force
DSAL.

Comparisons have been made with RHB calculations based on NL3 and on the Gogny
force with the parameter set DSA1 [BGG84|. The parameter ¢, has been fixed in such a
way to reproduce the pairing energy of the nucleus 2°Sn obtained with the RHB model
NL3+Gogny. In principle, the choice of the nucleus used to fix ¢y is completely arbitrary,
but we have chosen the isotope A = 120 because it is stable and the NL3+Gogny model
gives reasonable results as compared to the experiments.

In Fig. 4.1 we display the neutron pairing energies Ejq;, given in Eq.s (4.18)-(4.21)
for different values of ¢q as a function of the mass number. The solid line corresponds
to the Gogny force calculations, whereas the long-dashed, the dotted and the dot-dashed
lines refer to the relativistic pairing interaction. Three different values for the strength
parameter ¢y, namely 0.116, 0.118, and 0.120, have been used. First of all, we observe that
very small variations of the value of ¢y change F,,;, quite considerably. This is due to the
high non-linearity of the RHB equations. The value of ¢y which reproduces the pairing
energy of '2°Sn obtained with the Gogny force E . is 0.116. With this value for ¢y the

pair
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Figure 4.3: Two-neutron separation energy of the even isotopes of Sn, as a function of the
mass number A. The filled dots are the values obtained from the experimental masses
of Ref. [AW93]|. The lines show RHB calculations performed by using the relativistic
pairing interaction given in Eq. (4.11) for three values of the parameter ¢y, and with
non-relativistic Gogny force DSA1.

agreement between the two RHB models is excellent in the mass region 114 < A < 132.
For 100 < A < 114 the behavior of EgaiT differs considerably from the behavior of Eﬁm.
In particular, Egm decreases almost monotonically with the mass number till A = 120,
while EJ,;. shows two minima one at A = 110 and one at A = 120 and it is roughly
symmetric with respect to A = 114. This effect is particularly interesting as it seems to
be due to the fully relativistic structure of the pairing interaction. For 134 < A < 160
Egm., is smaller than Egm, but it shows a similar behavior, i.e. it decreases till a minimum
at about A = 146 and then it increases again.

In Fig. 4.2 we plot the difference between the binding energies calculated with the
theoretical models and the experimental values of Audi-Wapstra given in Ref. [AW93] as
a function of the mass number A. As before, the solid line corresponds to the RHB model
NL3+Gogny and the dashed lines refer to the fully relativistic RHB calculations performed
with the same three values of ¢y, We observe that By, — By depends quite sensitively on

the choice of the interaction in the pp-channel. In the region N = Z, the calculations give
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Figure 4.4: Average neutron pairing gaps (Ay) for the even Sn isotopes, as a function of
the mass number A. RHB calculations performed with the relativistic pairing potential
given in Eq. (4.11) are shown for the three values of ¢.

an overbinding with the respect to the experimental value. This discrepancy is largest at
A =100 with a value of about 4 MeV. Since °°Sn is a double magic nucleus, this result
does not depend on pairing and it can be attributed to some deficiencies in the isospin
dependence of the NL3 parameter set. The best average agreement seems to be yielded by
the fully relativistic RHB calculations for the strength parameter values ¢y = 0.116 and
0.118. In particular, it is interesting to remark that although Egm and Egaz-r (o = 0.116)
agree extremely well in the range 114 < A < 132, the relativistic RHB calculations give a
total binding energy closer to the experimental value for the lighter isotopes. At the shell
closure A = 132 the discrepancy of about 2 MeV between theoretical and experimental
values depends once more on some deficiency of NL3 in the ph-channel.

In Fig. 4.3 we show the two-neutron separation energy S,
Son = B(Z,N) — B(Z,N — 2) (4.24)

for the even Sn isotopes as a function of A. In the mass region 102 < A < 108 the
NL3+Gogny model underestimates the two-neutron separation energies of about 2.5 —1.5
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Figure 4.5: The components k, 1,k ,and k__ of the pairing tensor given in Eq. (4.10) for
the nucleus '2°Sn, as a function of the radial coordinate. The calculations are performed
by using the relativistic pairing potential given in Eq. (4.11) for ¢y = 0.116.

MeV, while a relativistic description of the pp-channel yields a better agreement between
the theoretical calculations and the experimental values. Up to the shell closure at A =
132 both models agree fairly well with the experimental data, although it seems that
the Gogny force gives a two-neutron separation energy slightly larger that the pairing
potential. All the calculations reproduce the two-neutron separation energy at A = 134
and for A > 136. The agreement between the results obtained with non-relativistic and
relativistic pairing interactions is excellent, but the fully RHB calculations give a slightly
larger two-neutron separation energy. Finally, we compare only the RHB calculations
performed with the relativistic pairing interaction. Although the two-neutron separation
energies almost coincide, the calculation with ¢y = 0.120 is closer to the Sy, calculated
from the experimental data. From Fig. 4.1, we observe that for this value of co, EJ,;,
differs mostly from ES;.. In the same figure it is also shown that for the nuclei from
100 < A < 108 EJ,;, decreases faster than EC, ., and this is responsible for the larger Sy,
obtained with the relativistic pairing interaction. However, it cannot be concluded that
a better result for Ss, comes only from the pairing energies.

In Fig. 4.4 we plot the average of the neutron pairing gaps (Ay) in the mass region
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Figure 4.6: Neutron pairing field components A, ,A, ,and A__ given in Eq.s (4.15)-
(4.17) for the nucleus *°Sn as a function of the radial coordinate. The calculations are
performed by using the relativistic pairing potential given in Eq. (4.11) for ¢y = 0.116.

100 < A < 132. It is defined by

A2
(An) = Znty SV (4.25)

2
anj Unij
2

where vy, are the occupation probabilities, and it provides a quantitative measure of
pairing correlations. Calculations are shown for the relativistic pairing potential for the
three values of ¢y. (Ay) reflects the behavior of the pairing energies shown in Fig. 4.1.
Two maxima appear at A = 106 and at A = 120 and they correspond to the two minima
observed in E2,;,. For 100 < A < 114 the values of (Ay) are larger than those in the
mass region 114 < A < 132. This result agrees with the observation that the decrease of
Egai, is faster in the first interval than in the second one. The values of (Ay) are between
1.3 and 1.5 MeV for ¢y = 0.116 and slightly larger for the other values of cy. In Fig. 12
of Ref. [LVRI8] (Ay) obtained with the Gogny force is a quasiparabolic function, almost
constant in the central interval. This comparison reflects also the difference between the
non-relativistic and the relativistic interactions already pointed out through the discrep-
ancy in the neutron pairing energies. Moreover, the values of (Ay) obtained with the
Gogny force are about 2 MeV, therefore 0.5 MeV larger than the ones resulting from the

relativistic pairing potential.
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Figure 4.7: Neutron pairing tensor components k4,5, ,and x__ given in Eq. (4.10),
and neutron pairing field components A, A, jand A given in Eq.s (4.15)-(4.17) as
a function of the radial coordinate for '%Sn, '4Sn, and '?2°Sn. The calculations are
performed by using the relativistic pairing potential given in Eq. (4.11) for ¢y = 0.116.

In the following we concentrate on the relativistic structure of the pairing tensor x
given in Eq. (4.10) and of the pairing field A given in Eq.s (4.15)-(4.17). In particular,
we investigate the contributions to these quantities coming from the large and small
components of the Dirac spinors and the effects of the antiparticles.

In Fig. 4.5 we display the three components of the relativistic pairing tensor given in
Eq. (4.10) for '2°Sn, namely x,,, s, and k, , as a function of the radial coordinate
r = |r|. In the upper part of the figure, the solid line shows k., given by the product
of the large components fy, and fyy of the Dirac spinors, and the dashed line shows k|
given by the product of the small components gy and gy of the Dirac spinors, i.e.

Kot (rr) =Y fu(r) fulr) (4.26)
ko (rr) =Y gv(r)gu(r) (4.27)

Both the functions are largest at the origin and decrease towards the surface. This behav-
ior has already been observed in non-relativistic HFB calculations with the interaction
SkP? (see Ref. [DNW96]). s, is a factor 10 larger than x__, and both are always posi-
tive. In the lower part, we show x,_, given by the product of large and small components
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Figure 4.8: Neutron pairing energy of the even isotopes of Sn, as a function of the mass
number A, calculated with the relativistic pairing interaction given in Eq. (4.11) for
co = 0.116, with the relativistic (s,v°) pairing interaction for ¢y = 0.207 and with non-
relativistic Gogny force DSAL.

fv and gy of the Dirac spinor, as a function of the coordinate,

Ki_(r,r) = Z fv(r)gu(r) (4.28)

In this case the pairing tensor has an oscillating structure and it is of the same magnitude
of k__. Later on, the study of the pairing field and energy will show that the contribution
of k. is almost negligible, whereas it is crucial to consider x__ in the solution of the
RHB equations. This is due to the the vector part of the relativistic pairing interaction.

In Fig. 4.6 we show the three components of the relativistic pairing field, namely A, ,,
A, and A, , given in Eq.s (4.15)-(4.17) for '**Sn, as a function of the coordinate. The
thick solid line displays the total pairing field, and the thin lines show the contributions
of the different parts of the relativistic pairing interaction: the long dashed line is the
contribution of s, the dotted line gives the contribution of v°, and the dot-dashed line
the contribution of the v. A,., A__, and A,_ behave similarly to x;,, k__, and
Ky, i.e. they are largest at small » and then decrease to zero in the first two cases,
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and they oscillate in the third case. From the upper and the lower parts of the figure
it follows that the relativistic interaction produces A, and A__ through completely
different mechanisms. A, is given by the cancellation of the large positive s term, the
large negative v° term, and the smaller but not negligible v term. The first two terms are
proportional to k., while the last one to k__. On the contrary, A__ originates mostly
from the large positive contribution of v, which enters into the expression (4.17) with the
large k.. s and v°, being proportional to k__ are, in this case, almost negligible. Finally,
it is interesting to observe that A is of a factor 2 larger than A, ,. This is due to the
fact that the large matrix elements of the spin dependent part of V,, are even amplified
with the multiplication by ;. In the middle part of the figure the mixed component of
the pairing field A, _ is plotted. It is an oscillating function of the coordinate, negative
at r = 0 and it originates from the s-field only, as the contributions of v° and v cancel
exactly. This is true only in the case of a ¢ interaction. The size of this component of
the pairing field is negligible with respect of the other two components. This means that
nearly no mixing of the large and small components of the Dirac spinors originates from
pairing and therefore the operator o - V of the Dirac Hamiltonian which describes the
ph-channel remains the only responsible for it.

In Fig. 4.7 we plot k__, A__, and k;,, A, as functions of the radial coordinate
for the three even Sn isotopes A = 108, 120, and 154. We have not shown x,_ and A, _
because their contributions are negligible. By adding more neutrons, the essential features
of the pairing tensor and field do not vary in a sensitive way; i.e. they are largest at small
r, and then they decrease to zero. However, we observe that at small r, k and A are
larger for the lighter isotopes, and that they decrease to zero more slowly for the heavier
nucleus. This is due to the fact that in the case of the ligther isotopes the s level gives
the largest contribution, while in the case of the heavier nuclei the largest contribution
comes from higher levels because changes in the shell structure.

We now go back to Fig. 4.1, and we concentrate on the discrepancy between Egm and
Epcfm in the mass regions 100 < A < 114 and A > 136. In order to understand the origin
of this difference, we first compare the expressions of the pairing field and energy for the
pairing potential given in Eq.s (4.15)-(4.17) and (4.18)-(4.21), and for the Gogny force
given in Eq.s (4.22) and (4.23). It has already been remarked that the Gogny force is used
only with the elements of the pairing tensor given by the product of two large components
of the Dirac spinor, while the relativistic pairing interaction uses all the components of
k. In particular we have seen that the spin dependent part of the relativistic model, i.e.
v, enters into the expression of A always with matrix elements of x which are different
from those connected to the spin independent term. Therefore, one may ask whether it
is the spin dependent part of the interaction which is responsible for the discrepancies in
the pairing energies. In order to answer this question, we have constructed a relativistic
pairing interaction based only on the Lorentz scalar field s and on the timelike component
of the Lorentz vector v-field, v°, i.e. V;fp’vo reduces only to the first line of Eq. (4.11). In
this way the expressions of the pairing field given by Eq.s (4.15)-(4.17) and energy given
by Eq.s (4.18)-(4.21), become very similar to the correspondent expressions used with
the Gogny force given in Eq.s (4.22) and (4.23) respectively.

In Fig. 4.8 we display the pairing energies obtained by RHB calculations with different
pairing interactions. The solid line shows the results obtained with the Gogny force, the
long dashed line those obtained by using all the components of the relativistic interaction
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with the cutoff ¢¢ = 0.116, and the dashed line refers to the calculations performed
with the new relativistic s, v interaction. We find that by switching off v, the strength
parameter ¢y has to be readjusted in order to reproduce E,.,(A = 120). We observe

that without v, the discrepancy between E;g;i and EPGM-T is reduced in particular in the
mass region 100 < A < 114. Although the effect of the v seems to be stronger in this
mass range, also in the region 134 < A < 160 the difference between E;;Z;Z and ES;, is
also reduced. However, from this investigation we may only conclude that in particular
for the lighter Sn isotopes the effect of v is very strong and changes the non-relativistic
description of the pairing properties in finite nuclei. Unfortunately, it is not possible to
make any statement about the realistic case. It can also be noticed that the use of the
Gogny force in the pairing channel of the RHB equations does not take properly into

account the spin degree of freedom.

Next, we consider the expression of the pairing energy given in Eq.s (4.18)-(4.21) for
the (o,w) pairing potential of Eq. (4.11). As already discussed for the relativistic pairing
field components, the Dirac matrices in the nucleon-meson vertices of the interaction (4.11)
introduce some selection rules for the expression of the total pairing energy. In particular,
the central spin independent part of Eq. (4.11) enters into Egair with terms proportional to
KitKyy K——K__ Ky_Kk4_, while the spin dependent part of the interaction shows terms
proportional to k; k__ and k;_k_,. In the following we denote the terms r, k.
with ETt++ k__k__ with E~~77, and so on. In Table 4.1 we show the the total neutron
pairing energy for the three isotopes 1°Sn, '4Sn, and '2°Sn, and the different contribution
originating from the terms just discussed. We notice that the main contributions to Ep,,
are given by ETttT and E**~~. They are both negative and almost of the same size.
From this we conclude that the spin independent and the spin dependent parts of V;,‘i, have
the same importance in the production of pairing correlations in nuclei in a relativistic
theory of the nuclear many-body problem. In the case of the lighter isotopes 1°%Sn and
114Gn E++ is larger than ET+*+, for 2°Sn we observe the opposite. Finally, the sizes
of E-~~ and of E* ™ are only about 1% of the the previous two terms, therefore they
may be neglected in the discussion.

In Table 4.2 we repeat the same investigation for the relativistic pairing interaction
s,v%. In this case ™"~ is zero, because v is not considered and, therefore E,;, results
mainly from ETT*+ being E~~~~ E*~T~ negligible. This situation is analogous to the
case of the Gogny force.

In Table 4.3 we study the contributions of the different mesons to the total pairing
energy for the relativistic (s, v) interaction of Eq. (4.11). s provides the largest attractive
term, v° the repulsive one, and v another attractive term.

So far, all the results have been obtained starting from an antisymmetric pairing
tensor. As already mentioned, this means that also the contribution of the antiparticles
has been taken into account in the calculation of &, it has been calculated using Eq. (4.10).
In this respect it is still an open question whether the contribution of the antiparticles
leads to a divergent term in k, as they do in p. However, since in our subspace the
antiparticles give a finite contribution to x, we have investigated whether they influence
the pairing properties of finite nuclei. In Fig. 4.9 we show the components ., k4, and
k__ of the relativistic pairing tensor x in coordinate space and we study the contribution
of the negative energy solutions of the Dirac equation. The solid and the dashed lines
show the pairing tensor calculated with and without the contribution of the antiparticles.
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A | Epyy | EVTHE | E==== | ¥t | Bt
108 | —14.1 | —6.81 | —0.059 | —7.25 | 0.036
114 | —124 | —6.11 | —0.049 | —6.25 0.040
120 | —=15.1 | —7.75 | —0.0563 | —7.38 | 0.088

Table 4.1:

Total neutron pairing energy and contributions of the terms given in
Eq.s (4.18)-(4.21) for the isotopes %Sn,!'*Sn, and 2°Sn. The energies, given in MeV,
are obtained with the relativistic pairing potential given in Eq.

co = 0.116. In the pairing tensor the antiparticles are included.

A | Epyy | EVTHE | E==== | ¥t | Bt
108 | —12.0 | —12.0 | —0.024 | 0.00 0.076
114 | —12.1 | —12.2 | —0.022 | 0.00 0.112
120 | —15.1 | —15.2 | —=0.053 | 0.00 0.132

Table 4.2:

Total neutron pairing energy and contributions of the terms given in

(4.11) for the cutoff

Eq.s (4.18)-(4.21) for the isotopes 1%Sn,!%Sn, and 12°Sn. The energies, given in MeV, are
obtained with the relativistic (s,v°) pairing potential given in Eq. (4.11) for ¢y = 0.207.
In the pairing tensor the antiparticles are included.

A | EBpir | F* | E” | EY
108 | —14.1 | —20.7 | 13.9 | —7.27
114 | —12.4 | —18.6 | 12.5 | —6.28
120 | —13.3 | —20.2 | 13.6 | —6.68

Table 4.3: Total neutron pairing energy and contributions of the single meson as given
in Eq. (4.11). The parameter ¢y = 0.116 is used in the calculations. The energies are in

MeV.
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Figure 4.9: Self-consistent neutron pairing tensor components k. ,x4 ,and k__ given in
Eq. (4.10), as a function of the radial coordinate for '?°Sn. The calculations are performed
by using the relativistic pairing potential given in Eq. (4.11) for ¢y = 0.116. The solid line
shows the results obtained by considering also the negative energy solutions of the Dirac
equation, while the dashed line shows the calculations in the no-sea approximation.

In the lower part of the figure we plot k__: we observe that the calculation without
antiparticle is very much reduced compared to the full calculation. This result can be
understood because the g are the large components of the negative energy solutions of the
Dirac equation. In particular, for small r they differ of a factor 3 and, as a consequence,
the contribution of v to the pairing field is considerably reduced. In the middle part of
the figure, we show x,_ and in this case there is no considerable difference between the
calculations with or without antiparticles. Finally, in the upper part of the figure we plot
k4. In this case the calculation in the no-sea approximation is also reduced with respect
to the full calculation, but the difference is less pronounced than in the case of x__. This
agrees with the fact that the f are the small components of the antiparticle solutions of
the Dirac equation. Performing self-consistent RHB calculations with the pairing tensor
calculated with and without antiparticles we have found considerably different results
for the pairing energy. For example, a calculation of the nucleus 2°Sn with the cutoff
cp = 0.116 gives a pairing energy E,,;, of about —15 MeV when the pairing tensor includes
the antiparticle solutions, while it gives a pairing energy of about —4 MeV if the pairing
tensor is considered in the no-sea approximation. Therefore, the effect of the antiparticles
is larger on the spin-dependent part of the relativistic pairing interaction.
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Figure 4.10: Neutron pairing energy of the even isotopes of Sn, as a function of the
mass number A, calculated with the relativistic pairing interaction given in Eq. (4.11) for
co = 0.116 with and without antiparticles in the pairing tensor x, and with non-relativistic
Gogny force DSAL.

In the following we investigate whether the calculation of the relativistic pairing tensor
k given in Eq. (4.10) calculated in the no-sea approximation may resolve the discrepancy
between Egg‘;’r and Egu-r when also the antiparticles are considered. As already mentioned,
the results which have just been presented, have been obtained by calculating x as given in
Eq. (4.10). In Fig. 4.10 we display the pairing energy as a function of the mass number for
different RHB models. The solid line refers to the RHB model NL3+Gogny. In this case
no antiparticles are considered in the calculation of the pairing tensor. The long dashed
line corresponds to the RHB model NL3+ (o, w) pairing potential with ¢g = 0.116, and
the dashed line to the RHB model NL3+(o,w) pairing interaction for which the pairing
tensor is calculated in the no-sea approximation, i.e. in Eq. (4.10) the terms containing f
and ¢ are omitted. Also in this case, neglecting the antiparticles contribution to x leads to
a much smaller pairing energy and therefore the cutoff parameter must be readjusted. It
is observed that in the mass regions 100 < A < 114 and 134 < A < 160 the calculation of
the pairing tensor in the no-sea approximation does not influence the results for E,,;. very
much, therefore it may be concluded that the discrepancy in the pairing energies obtained
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A | By | EYtH | E-=—= | Bt | B+
108 | —13.6 | —9.32 | —0.017 | —4.32 | 0.049
114 | —12.9 | —8.94 | —0.014 | —3.96 | 0.057
120 | —15.1 | —-10.8 | —0.015 | —4.43 | 0.116

Table 4.4: Total neutron pairing energy and contributions of the terms given in Eq.s
(4.18)-(4.21) for the isotopes °Sn,''*Sn, and '?°Sn. The energies, given in MeV, are
obtained with the relativistic (s, v) pairing potential given in Eq. (4.11) for ¢y = 0.142.
The pairing tensor is calculated in the no-sea approximation.

with the fully relativistic RHB model and the RHB model NL3+Gogny is mainly due to
the space-like component of the w-meson.

In Table 4.4 we investigate the effects of the antiparticle on the different terms con-
tributing to Ep.i,. Also in this case, the main contributions to E,;, originates from the
negative terms ETTt* and E+*~~, which is now only about 40% of E****. This can
be explained by the fact that in the no-sea approximation x__ is more reduced that k
because the g are the large components and the f the small components of the antipar-
ticles. As a consequence, the contribution of v is more quenched than the one of s and

00,
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Chapter 5

Relativistic HF Theory

The Lagrangian density (1.1) of the relativistic RMF theory is considered to be an effec-
tive Lagrangian in connection with the mean-field and the no-sea approximations. The
equations of motion are derived from the classical variational principle, and, therefore,
exchange terms are not included. The meson fields and their couplings are assumed to
parametrize the G-matrix for the nucleon-nucleon scattering in the nuclear medium and
possibly quantum field effects on the nucleons. The situation is fully analogous to the
non-relativistic effective Hamiltonian in connection with Hartree-Fock calculations, as for
example Skyrme forces, which are developed to parametrize the non-relativistic nucleon-
nucleon G-matrix [VaT73].

The figure illustrates the non-relativistic hierarchy of approximations for the many-body
problem for the mass operator X which describes the difference between the free and the
dressed Green’s functions of a nucleon. Graph a represents the mean-field contributions,
graph b the exchange term, and graph c the ladder series and higher corrections (e.g. core
polarization diagrams). The according levels of approximations are: graph a corresponds
to a Hartree theory, graphs a + b correspond to the Hartree-Fock treatment, and graphs
a+b+c to the Brueckner theory. Although the situation is more involved in the relativistic
case because also the quantum field effects have to be reduced in addition to the many-
body effects, the relativistic hierarchy of approximations for the mass operator of the
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nucleon ¥ may again be illustrated by the same figure, and the stages of development
can be taken analogously to the non-relativistic theory. One has to notice, anyway, that
this representation ceases to distinguish the effects of the Dirac sea from the effects of the
valence nucleons. However, in the contest of the mean-field and no-sea approximations
the graph a + b correspond to the relativistic Hartree-Fock.

As already discussed in Chapter 2, starting from a quantized version of the theory,
Green’s functions techniques allow the derivation of the relativistic HF (RHF) equations,
which are technically much more difficult to solve than the relativistic Hartree (RH) equa-
tions. Another problem that has to be faced in going from a RH to a RHF approximation,
is the treatment of the non-linear self energies of the o-meson. As it is well known, these
terms are essential for a quantitative description of finite nuclei properties, but their ex-
change term is not defined. So far, various relativistic models have been proposed and
the corresponding RHF equations solved for infinite nuclear matter and finite nuclei. Al-
though in the first models, self-energies of the o-meson were neglected, they showed that
the inclusion of the exchange term for isovector mesons changed considerably the prop-
erties of nuclear matter and finite nuclei. For example, in Ref.s [BMM85, BMG87| the
RHF equations derived from the linear version of the (o,w)-, (0,w,7)-, and (o, w, T, p)-
models have been solved for nuclear matter and finite nuclei in coordinate space and it
has been found that in going from the RH to the RHF approximation, meson masses and
coupling constants have to be renormalized by 15 — 20% in order to reproduce nuclear
matter and finite nuclei properties. However, in the framework of these relativistic linear
models, it was not possible to obtain a good description of the spin-orbit interaction and
of the total binding energy. In order to include the self-interactions of the scalar field,
two ”philosophies” have been followed up to now. In one case (see Ref. [ RWWO90]), the o
self-energies were considered on the Hartree level, while the o-meson exchange was treated
in the Hartree-Fock approximation. In the second case (see Ref.s [BFG93, SMQ97]), a
linearization recipe was introduced to treat them in the Hartree-Fock approximation.
Due to their more complex structure, the solution of the RHF equations is computation-
ally much more involved than the solution of the Hartree equations. Together with the
fact that the parameters set has to be readjusted, this means that to fit an effective force
in the HF approximations is technically much more complicated than on the Hartree level.

In the next Sections we present a RHF model for the description of the nuclear many-
body systems. Our starting point is a OBE interaction in the ph-channel containing the
o-, w-, p-, and m-meson as degrees of freedom. Only the Fock term of the pion-exchange
interaction is included explicitly, while the interactions originating form the exchanges of
the o-, w-, and p-meson are considered at the Hartree level. This first approximation is
justified by the fact that the masses of these mesons are large, and, as a consequence,
the range of their interaction is very small. In the limit m,, — oo we obtain zero-range
forces. In this case the exchange term of the force has the same force of the direct term,
up to a different factor (see Ref. [VB72]). We take the experimental values for the pion
mass and coupling constant. Therefore the free parameters are the same as those in the
RH approximation: i.e. the meson masses m,, m,, and m,, and the coupling constants
9o, 9w, Yp» G2, and g,, and we would like to fit the same properties of finite nuclei
used for the non-linear set NL3. Since m, and f, are fixed, to work in an expansion
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of the Harmonic Oscillator wave functions (HOWF) is the most effective way to fit the
parameters for the new effective force. In fact, in this way, the matrix elements for the
pion exchange are calculated in the basis of the HOWF's only once, and then the HF
equations are solved iteratively and at each iteration the pion exchange contribution is
added to the Hamiltonian h. Pairing is treated in the BCS approximation. In addition,
the RHF equations have to be solved for infinite nuclear matter in order to see if the
nuclear saturation can be reproduced by the new force.

The rest of the Chapter is organized as follows: in Section 5.1 the RHF equations for
nuclear matter are presented for the model that we use to fit the new force. As the fit
to the finite nuclei properties requires a long time and it is now in progress, we present
preliminary results for the parameters set obtained by fitting only the nuclear matter
properties, and it will be shown that although they look reasonable, they do not work
for finite nuclei. Therefore a fit to the finite nuclei properties is necessary. In Section
5.3 we present the general RHF equations for finite nuclei, and, finally, in Section 5.4
we apply them to the linear (o,w)- and (o, w,7)-model of Ref. [BMG87], in which the
RHF equations were solved in coordinate space. First, we repeat some calculation for the
bulk properties of the nuclei considered in Ref. [BMG87] for checking our numerics. In
addition, we investigate also the exchange term contribution to the Hartree-Fock energies
of the single meson exchanges for the (o,w)- and (0, w,7) models. As it is well known
that the inclusion of the pion exchange modifies considerably the isospin dependence of
the force from the Hartree approximation, we consider not only the stable double magic
nuclei of Ref. [BMG87], but also the exotic short-lived #Ni, 1%°Sn, and 32Sn for which
the isospin is stronger. We present now the RHF equations for infinite nuclear matter for
the model previously discussed.

5.1 Relativistic HF Theory for Nuclear Matter

Since the RHF equations for nuclear matter have already been discussed extensively in
the literature, see for example Ref. [BMMS85] and the references therein, in this Section we
only briefly remind the most important points. The Hartree-Fock equations are obtained
by defining an approximate effective Hamiltonian Hj in terms of an approximate field
operator 1, (z) satisfying the following Dirac equation

(=i"0, + M + X))y(z) = 0, (5.1)

We now consider the baryon self-energy ¥ produced by the meson exchanges. As already
pointed out in Ref. [HS83, SW86|, in nuclear matter, due to time-reversal and rotational
invariance, > may be written quite generally as

Y(p) = Zs(p) + 7Z0(p) + v - BEv(p), (5.2)

where P is the unit vector along p. The different components of ¥, the scalar X5, the time
component Y, and the space component Xy of the vector, are functions of p = (E(p), p)-
This Ansatz for ¥ leads to an equation for 1;(x) in infinite medium formally identical to
the equation for free particles. The solution is finally used to calculate the energy density
per given volume 2

Qe = (¢o|Hol¢) = (T) +(V) (5-3)
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M = 939.0 (MeV)

m, = 522.521 (MeV) ¢, = 10.150
My = 783.000 (MeV) g, = 12.774
m, = 763.000 (MeV) g, = 3.548
my = 138.000 (MeV)  f, /47 = 0.08

go=—9.521 (fm™1) g3 = —26.790

Table 5.1: Parameters of the preliminary effective interaction NLHF.

where (T') is the kinetic energy and (V') is the potential energy which consists of the direct
and exchange terms, (Vp) and (Vg) respectively. The detailed expressions of the Dirac
equation for ¢, and for € are given in Appendix C.

5.1.1 Preliminary Fit

Although the Lagrangian parameters are usually obtained by a fitting procedure to some
bulk properties of a set of spherical nuclei, due to the technical difficulties caused by
the inclusion of the Fock term of m, we have done a preliminary fit of the Lagrangian
parameters set using only nuclear matter properties, i.e. saturation density p,, binding
energy per particle (E/A)y, nuclear matter incompressibility K, asymmetry energy .J,
and the effective mass M*/M. In Table 5.1 we show the values for the new preliminary
parameters set NLHF. The nucleon mass M is fixed to 939.0 MeV, the masses of the w- and
of the p-meson are also fixed to their empirical values of 783.0 and 763.0 MeV respectively,
as well as the mass of the m-meson (138.0 MeV) and its coupling constant f /47 (0.08).
Then, we have calculated the charge radius and the total binding energy of two magic
nuclei, the light O and the heavy 2®Pb, in order to study whether a parameters set
fitted only to nuclear medium properties, may lead to reasonable predictions for finite
nuclei properties. From Table 5.2, in which the bulk properties of *O and 2%®Pb are
listed, we see that with the parameters set NLHF the total binding energies result in
overbinding for the heavy nucleus and underbinding for the light one with respect to the
experimental values also included in the Table. We can therefore draw the conclusion
that a fitting procedure based on infinite nuclear matter only is not enough to make
reasonable predictions for finite nuclei. It is therefore absolutely necessary to fit masses
and couplings of the relativistic Lagrangian density to finite nuclei bulk properties. Such
a fit is in progress now. The same set of spherical nuclei and the same bulk properties
used for NL3 [LKR97| are considered.

5.2 Relativistic Hartree-Fock Theory for Finite Nu-
clei
Although the aim of our work is to adjust a new effective force containing only the

exchange term of the pions in addition to the degrees of freedom of standard RH approx-
imations, in this Section we develop the RHF equations for finite nuclei for the exchange
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160 208Pb

Etot Teh Etot Teh

NLHF | —135.82 | 2.699 | —1611.94 | 5.517
Exp. —127.62 | 2.730 | —1636.47 | 5.503

Table 5.2: Total energies E and charge radius r., of 'O and 28Pb calculated with the
preliminary set of parameters NLHF. The energies are in MeV and the charge radii in fm.

glf gUJ
(a) (o +w)m 8.862 13.802

() (c+w+m)gr 8.200 12.493

Table 5.3: Isoscalar scalar ¢ and isoscalar vector w meson coupling constants for the
linear model in Ref. [BMG87]. All the parameters correspond to m, = 440.0 (MeV),
my, = 783.0 (MeV), and m, = 763.0 (MeV)
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term of an arbitrary nucleon-meson vertex of the interaction Lagrangian density (1.1).
We write the general expression for the RHF self-consistent field I'ZF and the energy
EHF energy. In Appendix H the explicit expressions of the self-consistent field for every
nucleon-meson vertex considered in the model are given.

5.2.1 RHF Equations

As seen in Chapter 2, the relativistic Hartree-Fock equations may be derived from the
canonical quantization of the meson fields. Therefore, we start here from the relativistic
Hamiltonian h defined in Eq. (2.44) in which the mass operator as given in Eq. (2.44) by

Say = 0ayM + T (5.4)

contains explicitly the direct and the exchange terms of the self-consistent field TZF

T = ) (Vasys — Vassy)Pps
56

= Il +T7, (5.5)

where v,5,5 are the relativistic two-body matrix elements of an OBE interaction and pg;
is the relativistic generalized density matrix given in Eq. (4.11). The relativistic indices
«... have been defined in Eq.s (D.6) and (D.7). Since the Hartree approximation has
been treated extensively in the literature, see for example Ref. [Ri96], in the following we
concentrate on the exchange term of the RHF approximation. Explicitly the exchange

term of the self-consistent field F; of an arbitrary meson-exchange interaction m reads

Lim == {0102|Vin|0s0s) poya, (5.6)

Q204

and the corresponding energy

1
EFm[p] = _5 Z pa3a1 FE::LI;; (57)

alag

In this expression the sum runs also over neutron and proton states. The relativistic
two-body matrix elements in Eq. (5.6) are given by

)

(10| Vin |asrs) = (a1praspo] (’)’Orm) T Dy, (r)|aspaazps) (5.8)

Pipa ( p2p3

where the meson propagators D,, are discussed in Appendix A. The expressions of the
relativistic two-body matrix elements in terms of the HOWFs are given explicitly in
Appendix D, E and F.

5.2.2 The Linear RHF /(o,w, m)-Model

As first application of the RHF equations for finite nuclei discussed in the previous Section,
we consider the RHF/(o,w, ) model presented in Ref. [BMGS87], in which the RHF
equations have been solved in coordinate space. It contains the Hartree terms for the
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mesons ¢ and w, and the Fock terms for o, w and 7, and no self-energies of the o-meson
are included. The investigations of ground state properties of the nuclei already studied
in Ref. [BMG87] are a good test for our numerics which has been developed to solve
the RHF equations as fast as possible in order to perform an effective fit of the new
force parameters set. In fact, although fast, our method is based on an expansion of the
nuclear wave functions in terms of Harmonic Oscillator wave functions, whose radial part
is difficult to handle for large oscillator numbers.

In addition to the stable nuclei studied in Ref. [BMG87], we have considered also magic
nuclei towards both the neutron and the proton driplines in order to investigate the role
of the Fock terms on the properties of exotic nuclei, whose nuclear potential structure is
expected to change significantly as the limit of the nuclear existence is approached. We
have compared the results obtained with the RHF/(o,w, 7)-model with the RH calcula-
tions performed with the parameters set NL3, whose predictions have been shown to be
in good agreement with the experimental data of binding energies of the known stable
nuclei and with the extrapolations for the exotic nuclei given in Ref. [AW93].

The rest of the Section is organized as follows: we first investigate the Fock term
contributions of the different meson-exchange potential to the total Fock energy. Then,
we turn our attention to the neutron and the proton spin-orbit splittings in isotopic chains
of Ca and Sn nuclei. In this way we can see explicitly the role of the spin-isospin term
of the nuclear force introduced the inclusion of the pion. Comparisons are always made
between the RHF and the RH approaches and the available experimental data. Finally,
we compare the neutron and the proton single-particle spectra.

Table 5.4 shows the binding energies per particle E/A, the rms charge radii r., and
the proton spin-orbit splittings AFEj; of some double closed shell nuclei calculated in the
framework of the RHF /(o,w, 7)-model and of the RH theory. The used meson masses
and couplings are given in Table 5.3 (parameters set c¢)) and in Table 1.1 respectively.
First of all, the calculations for °O, “°Ca, and “®Ca are in excellent agreement with the
results shown in Ref. [BMGS87]. As already remarked, this constitutes a good test for our
numerics in the case of light nuclei. However, one of the major problem that we have
encountered concerned heavier nuclei, e.g. 2%®Pb, whose ground state properties were not
shown in Ref. [BMG87] in the framework of the (o,w,7)-model. In fact, in this case,
more nuclear shells are occupied, and therefore, it is essential to treat the fast oscillating
radial HOWF's with the greatest accuracy. To test our numerics for heavy nuclei, we have
implemented a version of our code which used the NAG Library for the evaluation of
the two-body matrix elements of the exchange term of the OBE interaction (5.8). The
results of the two versions are the same up to the fifth-sixth digit. In addition to these
nuclei, we have considered also *8Ni, 1°°Sn, 32Sn, and 2%Pb in order to investigate the
contribution of the pion-exchange in the case of large neutrons and protons excess. From
the first column of the table we observe that in the framework of the RHF / (o, w, 7)-model
the nuclei are underbound. In the second part of the Table we show the E/A obtained
with the parameters set NL3 of the RH theory. In this case, the results are in good
agreement with the experimental data available for 60, “°Ca, *8Ca, and ?*®Pb and with
the extrapolations for the exotic '%Sn, !32Sn (see for example Ref. [AW93]). On the
contrary RH and RHF calculations of the rms charge radii are in a better agreement,
although r. obtained with the (o,w, 7)-model are somewhat larger than the r.’s given by
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Dirac-Hartree-Fock Dirac-Hartree

Nucleus | E/A re | AE, | EJA re | AE

160 —3.10 1291 | 5.04 | —=7.28 | 2.73 | 6.40
0Ca | —4.90 | 3.59 | 7.07 | —8.32 | 3.45 | 6.62
8Ca | —5.36 | 3.57 | 3.54 | —8.47 | 3.47 | 6.38
BNi —4.01 | 3.86 | 4.62 | —7.10 | 3.78 | 4.62
100Sn | —5.38 | 4.55 | 1.73 | —8.22 | 4.47 | 5.70
132G | —6.03 | 4.73 | 1.20 | —8.32 | 4.71 | 4.24
28pp | —5.81 | 5.52 | 1.08 | —7.85 | 5.52 | 1.66

Table 5.4: Binding energy per particle E/A, rms charge radii r., and proton spin-orbit
splittings AFj, calculated in the framework of the RHF (o, w, ) model (parameters set
(c) of Table 5.4) and of the RMF theory with the parameters set NL3 (Table 1.1). E/A
and the proton AFEj, for the 1p shell (160), 1d shell (*°Ca, **Ca, *®Ni), and 1f shell ('%Sn,
13281, and 2%8Pb) are given in MeV; the rms charge radii are in fm.

RH. Probably this is a consequence of the lower binding energies. More interesting is the
situation of the proton spin-orbit splittings AFj, defined by

Aps = Eppj=i—1/2 — Engj=i41/2- (5.9)

Apart from *®Ca, we observe an overall reduction of AEj, in going from the Hartree
to the Hartree-Fock approximation. We will come back to this point later with further
investigations of neutron and proton spin-orbit splittings for isotopic chains of Ca and Sn
nuclei.

In Table 5.5 we consider the total energy of the Fock term of the OBE interaction EF

E" =Y "E"™ (5.10)

m

where the Ef™ are the contributions of the different mesons given in Eq. (5.7), and the
index m stands for o, w, and 7. As in RH approximations, E¥ results from a subtle
cancellation of the various meson fields. We first consider the o-meson, responsible for
the attraction in RH calculations: as expected, Ef° becomes positive, and it amounts
to &~ 21% of the corresponding Hartree term. Second, we consider the mw-meson. It is
well known, see for instance Ref.s [BMG87, BMMS85] that the OBE potential produced
by the exchange of 7 in the pseudo-vector coupling scheme contains a repulsive contact
interaction J, (see Appendix E.3). This d-term is neglected in these calculations as often
in the literature, with the argument that the short-range repulsion is already described by
the w-meson. In the second and third columns of Table 5.5, we show the contributions to
the exchange energy of the pion. E¥%" is the energy originating from the é-term and E*'™
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Nucleus | E*° EF7 Efms EF’ Efw | EF
160 328.84 | 123.71 | —191.09 | —283.89 | 25.40 | 2.97
0Ca | 956.52 | 376.63 | —569.00 | —835.87 | 106.04 | 34.32
48Ca | 1231.53 | 497.25 | —729.92 | —1091.92 | 142.98 | 50.77
“Ni | 1201.63 | 487.39 | —716.79 | -1060.79 | 134.62 | 46.06
100Gy | 2725.34 | 1147.66 | —1654.43 | -2423.88 | 355.06 | 149.75
132Gn | 3675.13 | 1463.35 | —2116.91 | -3273.22 | 505.49 | 253.84
208ph, | 5864.47 | 2347.40 | —3420.20 | -5216.41 | 842.65 | 417.91

Table 5.5: Fock energies of the different mesons exchanges calculated in the framework of
the RHF (o, w, ) model with the parameters set (c) of Table 5.3. E¥™ are expressed in
MeV.

is the full contribution of the pion (containing the J-term). In fact, only the difference
EF7_ EFox enters in our calculations. The presence of the §-force makes EF™ positive, and,
at the same time, the removal of the d-force leaves EF'™ negative. The sum of these two
terms results in the usual attractive term for the pions. Third, we consider the w-meson
for which the situation becomes more involved than in Hartree approximation. On the
contrary to RMF theory, in which only the time component w® of the w-exchange potential
does not vanish, in the RHF approximation also the spatial component w contributes.
In particular, we observe that the Fock energy of w° is negative, while that one of w
is positive because of the Lorentz scalar product of the Dirac matrices in the two-body
interaction term of the nuclear Hamiltonian. As already seen in Chapter 4 for the RHB
theory, relativity separates the spin independent and the the spin dependent part of the
nuclear force. This is due to the structure of the Dirac matrices that mixes large and
small components of the self-consistent field and of the generalized density matrix. In
the fourth and fifth columns we list the Fock energies corresponding to w°® and w: EF*’
is attractive and it amounts to & 22% of the RH term of the w-meson for all the nuclei
in the Table. On the other side, E¥% is much smaller. This is due to the fact that the
Dirac matrices 4* in the nucleon-meson vertex I'” mixes large and small components of
the self-consistent field and of the generalized density matrix. Finally, in the last column
of the Table, the total Fock energies Ef" as in Eq. (5.10) are given. We observe that it
increases from the lighter to the heavier nuclei. In particular, the strength of EX goes
from ~ 4.5% of the total energy in *O up to ~ 35% in 2°*Pb. This seems to be connected
not only to the neutron excess, but also with the nuclear mass.

In order to investigate further the importance of the spin-isospin term of the nuclear
interaction introduced by the exchange term of the m-meson, we explicitly write E¥ of
Eq. (5.7) as sum of the neutron and proton exchange energies EX™ and E*? respectively:

F
Z P55 + Z P35
13 13
= EM+ E™.

EF =
(5.11)
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Nucleus | Ef? EfP EF

160 1.94 1.03 | 2.97
40Ca 19.48 | 14.86 | 34.34
8Ca | 47.51 | 3.26 | 50.77
48N 6.59 | 39.46 | 46.05
100G | 83.98 | 65.79 | 149.77
132Gy | 256.54 | —2.70 | 253.84
208ph | 407.14 | 10.77 | 417.91

Table 5.6: Neutron and proton Fock energies calculated in the framework of the RHF
(0,w,T) model with the parameters set (c) of Table 5.3. Ef™ and E*P are expressed in
MeV.

Nucleus | EF° EF° EFw EF

8Ca | 1298.10 | —1099.34 | 155.58 | 354.34
48Ni | 1269.74 | —1071.45 | 147.01 | 345.30
100Gy | 2880.09 | —2450.52 | 390.52 | 820.09
132Gn | 3873.39 | —3297.95 | 552.20 | 1127.64

Table 5.7: Fock energies of the different mesons exchanges calculated in the framework
of the RHF (o, w) model with the parameters set (b) of Table 5.3. Ef™ are expressed in
MeV.

In Table 5.6 we show the Fock energies of neutrons and protons in the second and third
column respectively and the total exchange energy in the last column of the Table for the
spherical nuclei previously considered. For the N ~ Z nuclei, i.e. %0, “°Ca, and '%°Sn,
Ef™ and ETP have a comparable magnitude. For the nuclei with neutron or proton excess
the situation is completely different: in the N > Z case, i.e. *8Ca, 1¥2Sn, and 2°*Pb, Ef'™
gives the bigger contribution to E*, while in the Z > N case, i.e. *®Ni, Ef? gives the
larger contribution to E¥. In order to understand whether these results depend upon
the isovector nature of the m-meson exchange, we follow two ways. First, only for the
nuclei with neutron or proton excess, we repeat the same calculations just shown, using
the RHF (o, w)-model of Ref. [BMG87] (parameters set (b) of Table 5.3). As this seems
to suggest that the m-meson exchange is really responsible for this behavior, second, we
try to isolate the neutrons and protons contributions to Ef™ and E¥P in the contest of
the RHF /(o, w, 7)-model.

In analogy with the RHF/(o,w, m)-model, in Table 5.7 we list the o- and w-meson
contributions to E¥. As before, E¥ results from a cancellation of the various meson
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Nucleus | Ef» EfP EF

48Ca | 214.88 | 139.45 | 354.33
“8Ni | 145.01 | 200.30 | 345.31
1005y | 423.92 | 396.17 | 820.09
132Gn | 774.02 | 353.62 | 1127.64

Table 5.8: Neutron and proton Fock energies calculated in the framework of the RHF
(0,w) model with the parameters set (b) of Table 5.3. E*™ and E'? are expressed in
MeV.

contributions. In this case, the Fock terms are stronger than in (o, w, 7)-model.

Efn and ETP are given in Table 5.8: in the RHF (o, w)-model they are always of
comparable sizes. Therefore, it seems that the the m-meson exchange plays an important
role.

To investigate further this discrepancy, we explicitly write Ef™ and E*? in terms of
neutron and proton self-consistent fields. Using the two-body matrix elements of the
isospin part of the nuclear interaction given in Appendix I for Ef™ we obtain

B = AT = 3 vt +
13 13
_ Ean+EFnP (5'12)

and, analogously for E?

Efr — Z P I?y = Z P51 (V1243005 + 201243 0}5)
13 13
_ pFw g gFe (5.13)

Ef™ and E*P contain a T = 0 and a T = 1 contributions. From Appendix I, we see that
the T' =1 originates from the exchange of both isoscalar and isovector meson, while the
T = 0 only from the exchange of isovector meson and it gives the factor 2 in front of the
matrix elements. Finally, we can remark that in Eq.s (5.12)-(5.13) Ef™ and ETPP are
different in size due to the neutron and the proton densities p" and pP, while it holds

Ean — EFpn )

In Table 5.9 we list ™", E¥PP_and E¥™ and the corresponding E¥™ and E*? for the
nuclei with neutron and proton excess. We notice that EX™" and E¥PP are always positive,
while Ef™ is always negative, i.e. the m-meson exchange, which is responsible for the the
Fock energy in the 7' = 0 channel binds the system. In addition, it is possible to state in
18(Ca, 1328n, and 2%8Pb, the large EI™ originates from the neutron excess (Ef"™" > ETrp),
as well as in *®Ni the large EP originates from the proton excess (EfPP > Efnn),
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Nucleus | Efnn | EFrrp Efnp Efn EfP

8Ca | 12551 | 81.26 | —78.00 | 47.51 | 3.26
BNi 83.60 | 116.47 | —=77.01 | 6.59 | 39.46
1328n | 467.90 | 208.66 | —211.36 | 256.54 | —2.70
208php | 756.21 | 35.84 | —349.07 | 407.14 | 10.77

Table 5.9: Neutron and proton Fock energies calculated in the framework of the RHF
(0,w, ) model with the parameters set (c) of Table 5.3. The energies are expressed in
MeV.

On the left and on the right side of Fig. 5.1 we display the energy splittings of spin-
orbit neutron and proton partners for Ca isotopes respectively, as function of the mass
number A. The filled circles refer to the RHF/ (o, w, m)-model calculations, the stars to the
results obtained with RMF (parameters set NL3), and the triangles are the experimental
data. For the Ca isotopes with open shells, pairing has been treated with the filling
approximation. Apart from the 2p shell of proton spin-orbit partners, the calculations of
AFE;, show a linear A-dependence. We now consider the proton spin-orbit partners in the
1d shell. While the value of RMF decrease only slightly (fairly constant), those of the
RHF/(0,w, 7)-model show a much larger decrease (about 3 MeV). This is agreement with
the results of Ref. [LGMO00], in which the same investigation is made in the framework of
different self-consistent relativistic and non-relativistic approaches. In particular, we may
compare our results for the proton spin-orbit partners of this shell with the calculations of
Ref. [LGMO00], performed with the RHF/(o,w, 7, p)-model of Ref. [BMG87]. Both show
the same strong dependence of AE;; on the neutron number. In the framework of the
RHF/(0,w, 7)-model the proton AEj,(1d) are 7.1 MeV for *°Ca and 4.06 MeV for **Ca,
while in the framework of the RHF /(o,w, 7, p) model they are 8.01 MeV and 4.06 MeV
respectively. We can thus conclude that the major responsible for the strong decrease of
AE; in dependence on A is the light m-meson. We observe the same situation for the
neutron spin-orbit partners in the 1d shell. There is still a linear decrease of A Ej,, of about
2.0 MeV in the RHF/(o,w, 7)-model and of 0.5 MeV in RMF/NL3, which agrees fairly
well with the experimental data, available for “°Ca only. In the 1f shell we still observe a
linear dependence of AE;; on A for both neutrons and protons. However, while the proton
and the neutron spin-orbit partners decrease of about 2.0 MeV and 1.0 MeV respectively
in the RHF/(0, w, 7)-model, they increase of about 2.0 MeV and 1.0 MeV in RMF. The
only experimental data available for “¥Ca (see for example Ref.s [Ma93, Ma94]) is not
reproduced by any of the two approaches. Finally, in the 2p shell the linear dependence of
the AEj, is still shown by the neutron spin-orbit partners: in this case RHF /(o, w, 7) and
RH/NL3 give the same predictions for AE;; which decreases of about 0.6 MeV in going
from A =40 to A = 48. Again, none of the two approaches reproduces the experimental
data. The results of the RHF and RH for the proton spin-orbit partners in the 2p shell
are quite different and no linear dependence is observed anymore. In the first case, AEj,
increases from 1.2 MeV at A = 40 to 1.4 MeV at A = 42, and then decreases till about 1.1

78



MeV at A = 48. RMF predicts a smooth increase of AEj; only of about 0.1 MeV along all
the Ca isotopic chain. In general, the predictions of the two relativistic approaches agrees
better for *°Ca and *2Ca, i.e. for N ~ Z, than for heavier isotopes. This suggests that
the effects of the Fock terms are stronger in nuclei with a large neutron excess. This is
particularly interesting in relation with the still open question of the isospin dependence
of the spin-orbit splittings.

In Fig. 5.2 we plot the energy splittings of spin-orbit neutron and proton partners for
Sn isotopes. The notations used are the same as in the previous Figure. In this case
pairing has been included with the BCS approximation. As input values, we have taken
the results of the average neutron pairing gaps (Ay) obtained with the RHB calculations
of Ref. [LVR98]. We have considered the shells 1f, 1g, and 1h. Apart from the proton
1h shell in which it is constant, we observe that RMF always predicts a decrease of AFEj,
in going from A = 100 to A = 132. In every shell that we have considered it decreases
of about 2.0 MeV although for neutron is somewhat larger. In the framework of the
RHF/(0,w, ) model the behavior of AEj; is very different: it always starts at a minimum
value, then it increases till A = 116, and, finally, it decreases again till A = 132. For
each shell we find AEj;(100) > AFE;;(132). Considering the proton spin-orbit splittings
for the 1f shell and making a comparison with the results shown in Ref. [LGMO00], we can
conclude again that the main responsible for the different behavior of AFE;; in the RHF
approach is due to the m-meson, while the p-meson tensor and vector-tensor terms seems
to shift the spin-orbit splittings of about 1.0 MeV along all the isotopic chain. From the
Figures 5.1 and 5.2 we have observed that the spin-orbit splitting is reduced in going from
the RH to the RHF approaches to the nuclear many-body problem. Although the Fock
terms of the isoscalar o- and w-meson are included, also this is mainly due to the isospin
dependence of the exchange term of the m-meson. This question is important because
the isospin dependence is supposed to be one of the factors contributing to significant
structural changes in nuclei with large neutron excess.

In order to understand whether the magnitude of the splittings of spin-orbit partners
depend on the neutron excess, in Table 5.10 - 5.14 we show neutron and proton single
particle states in N ~ Z nuclei, namely 160, “°Ca, and !°°Sn, and in nuclei with a large
neutron excess N > Z, namely 32Sn and ?®Pb. The experimental data are taken from
Ref. [TEMO1] where an isospin dependence of a mean spin-orbit potential is suggested
also by the use of the latest experimental data on '32Sn and of the extrapolation of the
properties of nuclei with less neutron deficiency for 1°°Sn. From the experimental values
of the neutron and the proton single particle states, it is seen that in the N ~ Z (see
Tables 5.10-5.12) the spin-orbit splittings differ only from 1 — 2%, while in the N > Z
nuclei (see Tables 5.13-5.14) the neutron spin-orbit splitting is about 10% larger than the
corresponding proton spin-orbit splittings. Going to the calculations of the two relativistic
approaches to the nuclear many-body problem, we observe that the RHF/(o,w, ) model
predicts a neutron spin-orbit splitting always about 10% stronger than the corresponding
proton spin-orbit splitting in both N ~ Z and N > Z nuclei. On the other side, in
the framework of RMF the neutron and the proton spin-orbit splittings differ from a few
percent (1 — 2) in almost all the considered cases in both N ~ Z and N > Z nuclei.
From this, it follows that the spin-orbit splitting remains still an open question. It will
be interesting to see how it will be described in the framework of the non-linear Dirac
Hartree-Fock model.
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Neutrons Protons

nlj Exp. RHF RH nlj Exp. RHF RH
1ds/o (0.94) 2.45 1.02 Lds)o (4.40) 5.02 3.97
251/2 —-3.27 —1.49 | —2.43 | 2519 —0.11 1.23 0.49
1d5/2 —4.14 —241 | —4.83 1d5/2 —0.60 0.81 —1.38
Ip1jp | —15.67 | —=11.00 | =15.25 | 1pyp | —12.13 —7.43 | —11.46
1p3/2 (—21.84) | —16.69 | —21.27 1p3/2 (—18.45) | —12.94 | —17.85

1p 6.17 5.69 6.02 1p 6.32 5.51 6.39

1d 4.18 4.86 5.85 1d 5.00 4.21 5.35

Table 5.10: Neutron and proton single particle states of 10, and spin-orbit of the 1p and
1d shells. RHF and RH refer to the o,w, m-model and to NL3 respectively. The energies
are expressed in MeV.

Neutrons Protons

nlj Exp. RHF RH nlj Exp. RHF RH
1fs/2 | —3.48 1.03 —1.43 | 1f5)2 3.86 6.90 5.13
2p1y | —4.42 | —1.24 | =212 | 2pypp 2.64 4.21 3.83
2p3p | —6.42 | —2.99 | —3.86 | 2p3/o 0.63 2.93 2.39
1f72 | —8.36 | —6.66 | —8.65 | 1f7/2 | —1.09 0.18 —1.64
ldgje | —15.64 | —12.51 | —16.18 | 1d3)2 | —8.33 | —5.40 | —8.83
2519 | —18.11 | —14.46 | —17.00 | 2515 | —10.85 | —7.33 | —9.68
1d5/2 —21.64 | —19.86 | —22.89 1d5/2 —14.33 | —=12.47 | —15.45

1f 4.88 7.69 7.22 1f 4.95 6.72 6.77

2p 2.00 1.75 1.74 2p 2.01 1.28 1.44

Table 5.11: Neutron and proton single particle states of “°Ca, and spin-orbit of the 1f and
2p shells. RHF and RH refer to the o, w, m-model and to NL3 respectively. The energies
are expressed in MeV.
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Neutrons Protons

nlj Sys. RHF RH nlj Sys. RHF | RH
Lhi1/2 —8.6(5) —243 | —=5.82 | 1g7p2 3.90(15) 3.97 3.97
2d3/2 —9.2(5) —6.49 | =7.30 2d5/2 3.00(80) 5.28 4.37
3512 —9.3(5) —6.19 | —6.79 | 1g9/2 —2.92(20) | 0.38 | —3.67
197/2 —10.93(20) | —9.56 | —10.00 2p1/2 —3.53(20) | —4.37 | —5.19
2dso —11.13(20) | —7.82 | —9.09 2p3/2 —6.38 —5.19 | —6.55
1gg/2 —17.93(20) | —13.54 | —17.72 1fs/2 —8.71 —-9.39 | —=9.70
2p1/2 —18.38(20) | —18.66 | —19.66

1g 7.00 3.98 7.72 1g 6.82 3.59 6.74

Table 5.12: Neutron and proton single particle states of 1°°Sn, and spin-orbit of the 1g
shell. RHF and RH refer to the o,w, m-model and to NL3 respectively. The energies are
expressed in MeV.
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Figure 5.1: Energy splittings between spin-orbit partners for neutron and proton levels
on the left and on the right side of the figure respectively in Ca isotopes, as functions
of the mass number. The filled circles refer to the RHF/(o, w, 7)-model calculations, the
stars to the RH/NL3 calculations, and the triangles are the experimental data.
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Figure 5.2: Energy splittings between spin-orbit partners for neutron and proton levels
on the left and on the right side of the figure respectively in Sn isotopes, as functions
of the mass number. The filled circles refer to the RHF/(o, w, 7)-model calculations, the

stars to the RMF /NL3 calculations.
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Neutrons Protons

nlj Exp. RHF RH nly Exp. RHF RH
2f5/2 —0.58 —0.46 0.09 3512 (—6.83) | —1.36 | —4.27
3p1/2 (—-0.92) | —0.74 | —0.21 lhiyp | —6.84 1.22 -5.30
Lhg/s —-1.02 —1.80 | —0.44 | 2d3), —-7.19 —-2.29 | =5.26
3p3/2 —-1.73 =111 | —0.54 | 2d5), —&.67 -3.36 | —=7.00
2f7/2 —2.58 —1.82 | —1.32 | 1g7/2 —-9.63 —6.86 | —9.94
2d3/9 —7.31 —9.54 | =875 | 1g92 | —15.71 | —9.41 | —16.12
1hiyye | —7.55 —6.87 | —=7.64 | 2p1sp | —16.07 | —13.87 | —17.02
3512 —7.64 —-9.08 | —8.33

2ds /9 —8.96 | —11.00 | —10.45

1g7/2 —-9.74 | —14.04 | —12.29

2d 1.65 1.46 1.70 2d 1.48 1.07 1.74

Table 5.13: Neutron and proton single particle states of *?Sn, and spin-orbit of the 2d
shell. RHF and RH refer to the o, w, m-model and to NL3 respectively. The energies are

expressed in MeV.
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Neutrons Protons

nlj Exp. RHF RH nlj Exp. RHF RH
3dzp | —1.40 | —0.46 | —0.01 | 3pys2 0.17 5.25 2.60
2972 | —1.44 | —0.81 | —0.56 | 2f5/2 | —0.68 3.56 0.56
4sy/9 | —1.90 | =0.79 | —0.36 | 3p3;, | —0.97 4.73 1.84
Ljisp2 | —2.09 | —0.14 | —0.48 | 1a13/0 | —2.19 4.74 —1.02
3ds;p | —2.37 | —1.14 | —=0.63 | 2f72 | —2.90 2.09 —1.44
liy1y9 | —3.16 | —3.80 | —2.97 | lhgp | —3.80 | —1.73 | —4.60
2990 | —3.94 | =274 | —2.50 | 3sy2 | —8.01 | —4.90 | —8.15
3prj2 | —7.37 | =811 | —7.65 | 2d3p | —8.36 | —6.30 | —9.25
2f52 | —7.94 | =9.50 | —9.09 | 1hyyp | —9.36 | —4.53 | —10.20
3p3je | —8.27 | =879 | —8.40 | 2dso | —10.04 | —7.38 | —10.88
L1392 | —9.00 | —8.95 | —=9.60 | 1g7p | —12.18 | —12.42 | —15.04
2f7/2 | —10.07 | —11.42 | —11.11
lhgy | —10.78 | —14.75 | —13.39

2f 2.13 1.92 2.02 2f 1.93 1.47 2.00

Table 5.14: Neutron and proton single particle states of 2°Pb, and spin-orbit of the 2f
shell. RHF and RH refer to the o, w, m-model and to NL3 respectively. The energies are

expressed in MeV.
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Conclusions and Outlook

To conclude this work we summarize the most significant results that have been obtained
and give some hints for possible future extensions and investigations.

Motivated by the facts that a relativistic theory of pairing is still an open question
and the existing relativistic Hartree-Fock models have given results for properties of fi-
nite nuclei very much less satisfactory than relativistic Hartree approximations, in this
thesis we have followed two lines of research: namely a relativistic Hartree-Bogoliubov
approximation and a relativistic Hartree-Fock model for the description of the nuclear
many-body problem. Applications to infinite nuclear matter and to finite nuclei have
shown interesting relativistic dynamical effects.

The essential ingredients for a relativistic Hartree-Bogoliubov theory are: a fully rela-
tivistic treatment of the pp-channel and a realistic pairing interaction, i.e. the K-matrix.

First, we have investigated pairing correlations in infinite nuclear matter in the 1S,
channel by using a relativistic BCS approximation: the successful non-linear parameters
set NL1 of the RMF theory in the ph-channel and the relativistic bare interaction of
the Bonn group in the pp-channel lead to a description of pairing properties in good
agreement with non-relativistic calculations based on the Gogny force, a phenomenological
potential fitted to experimental data of finite nuclei. As a consequence, one can hope that
also pairing properties of finite nuclei may be successfully described in a relativistic self-
consistent theory with a realistic pairing interaction.

In symmetric nuclear matter, we have calculated the contributions of the various
meson exchange potentials to the pairing gap at the Fermi surface. As expected there is
a large cancellation between the strongly repulsive w-exchange and the large attractive
o-exchange that dominates the essential region of small momenta. The contribution of
the other mesons is smaller, but not negligible because of this cancellation. For densities
close to saturation, differencies between the relativistic and non-relativistic calculations
have been observed, and we have shown that they originate from the strong repulsion in
the bare NN interaction at high densities. An interesting question for the future is to
investigate whether the polarization effects might reduce these discrepancies.

Finally, we have also shown that it is possible to construct simpler relativistic pairing
interactions with finite range based only on the the o- and w-exchange, which reproduce
pairing properties obtained by using the Bonn potential. For future investigations, it
would be interesting to use these phenomenological interactions in RHB calculations for
finite nuclei.

Second, we have presented the RHB equations for finite nuclei treating the pp-channel
in a fully relativistic way. By constructing a simple phenomenological relativistic pairing
potential with zero-range, attractive in the scalar and repulsive in the vector channel, we
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have investigated for the first time how pairing properties of finite nuclei are produced
in the framework of a relativistic field theory. An application of the model to a isotopic
chain of Sn nuclei has shown interesting new effects due to relativity: in particular, in a
fully relativistic treatment of the pp-channel it turns out that, although small, the matrix
elements of the pairing tensor given by the product of two small components of the Dirac
spinors give large contribution to the pairing field because they are connected to the very
strong spin dependent part of the interaction. Thus, the spin independent and the spin
dependent parts of the relativistic pairing interaction mix the small and the large pairing
tensor components whose contributions to the total pairing field result to have the same
size.

We have also investigated whether the antiparticles affect the properties of pairing
in a fully relativistic treatment of the pp-channel. We have found that they contribute
more to the spin dependent part of the interaction than to the spin independent term.
However, a readjustment of the force parameters leads to similar results for the pairing
properties in both the cases.

Comparisons of the pairing energy obtained with this model and with RHB calculations
using the Gogny force in the pp-channel for the Sn isotopic chain considered suggest that
within a fully relativistic treatment the pairing field depends rather weakly on the level
density. This is mainly due to the strong contribution of the spin dependent term of the
interaction.

Furthermore, comparisons between ground state properties calculated with the rel-
ativistic and non-relativistic pairing forces with those obtained from the experimental
data show a better agreement in the case of the new fully relativistic treatment of the
pp-channel.

Although a relativistic treatment of the pp-channel seems to be quite successful, this
model is still a very simple approximation of the realistic pairing potential. The essential
shortcoming is that the parameters of the pairing force have to be readjusted for each
isotopic chain. They also depend on the number of shells used in the calculations. This
suggests that future fully relativistic HB calculations for finite nuclei should use a more
realistic pairing potential.

Finally, due to the fact that RMF approximations do not contain a spin-isospin term
of the form o - 0971 - 79 and a tensor term of the nuclear force, we have proposed a
new relativistic Hartree-Fock model for the description of the nuclear many-body system.
Since, up to now, the numerical complexity of the RHF equations has not permitted to
determine a good set of parameters for the new force, one of our main result has been
the development of a fast numerical technique which allows an accurate fitting procedure.
A preliminary fit only to properties of infinite nuclear matter and calculations of ground
state properties of finite nuclei have shown that the new parameters cannot reproduce the
properties of finite systems. Therefore, it is needed to consider finite nuclei properties in
the fit and the determination of the new set is now in progress.

As a test of our new numerical method we have repeated previous calculations of
ground state properties of spherical nuclei for a linear (¢,w)- and a (o,w, 7)-model and
we have found good agreement for all the results. Moreover, by studying the Fock term
of relativistic meson exchange potentials, we have seen that, as in the case of pairing
correlation, relativity mixes large and small components of the generalized density matrix.
As expected, the Fock energies of the ¢ and w meson-exchange potential have opposite
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sign of the corresponding direct term and the m-meson gives a negative contribution once
that the spurious contact term is eliminated.

Furthermore, we have investigated the effect of the Fock terms, and that one of the
pions in particular, on the spin-orbit splitting. It is well known that this term is naturally
described in a relativistic approach to the nuclear many-body system. However, all the
successful RMF approximations include only the p-meson for the isospin dependence. We
have found that the m-meson with its o1 - 0971 - 79 and tensor terms produces essential
contributions to the isospin dependence of the spin-orbit splitting. Calculations of the
energy splittings of the spin-orbit partners in isotopic chains of Ca and Sn nuclei with the
linear RHF model and comparisons with results obtained with the standard parameters
set NL3 have shown that the effect of the pion is extremely large in particular for the
nuclei with a larger neutron to proton ratio.

There are only few experimental data for the isospin dependence of the spin-orbit
splitting. In particular, so far, there is no evidence for the strong influence of the tensor
terms. Therefore we need further theoretical and experimental investigations in order to
be able to make reliable predictions for nuclear structure phenomena far from the valley
of stability.
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Appendix A

One-Meson-Exchange Interactions

In this Appendix we write explicitly the relativistic one-boson-exchange (OBE) interac-
tions which are used in the applications of the relativistic Hartree-Bogoliubov model and
of the relativistic Hartree-Fock approximation presented in Chapters 3 and 4 and in Chap-
ter 5 respectively. As already seen in Chapter 2, starting from the nucleon-meson vertex
functions I'™ given in Eq.s (2.12)-(2.16), the quantization of the meson fields allows the
definition of a relativistic two-body potential as given in Eq.(2.40), in which the propa-
gator D,,(r1,ry) is simply of the Yukawa type. However, as pointed out in Chapter 2, for
a microscopic understanding of pairing correlations in nuclear systems a bare interaction,
or a phenomenological potential adjusted to a bare interaction, has to be used. As shown
in detail in Ref. [MHES7, Er74], for the description of free NN scattering data, so-called
form factors F,,, functions of the squared transferred momentum q?, have to be inserted
at each vertex of the OBE diagram. Physically, they take into account the extended struc-
ture of the nucleons and assure the convergence of the dynamical equations. Of course,
the introduction of F,,(q?) in the nucleon-meson vertices leads to a more complicated
expression of the propagator D,, in Eq.(2.40).
For the meson m (m = o,w, p...), the relativistic OBE interaction V,, reads

Vin(1,2) = g7 (YT )1 D (1,2) (7T ), (A.1)

in which D! are the meson propagators and they will be discussed in more details at the
end of the section, and the indices 1 and 2 refer to the first and second particle. For a
static problem, the OBE interaction (A.1) reads

vo(1,2) = —g;71 Do (1, 2)7; (A.2)

for the exchange of the isoscalar scalar c—meson,
vo(1,2) = +95 (77,1 D5 (1,2) (7,2 (A.3)

for the exchange of the isoscalar vector w-meson,

w2 = (£

™

2
) (Y71 - TaV1iVaDr(1, 2)(7°9°7)s (A.4)
for the exchange of the isovector 7 (only pv coupling is considered),

vy (1,2) = +g2(v*,7)171 - 72DE (1, 2) (1%, 7)2 (A.5)
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for the isovector vector term of the p-meson,

2
U,:;F(lv 2)=+ (%) q)‘<71,\uq)‘,02>\’u7_"1 -?zDﬁ"(l, 2) (A.6)

and, finally, for the isovector vector-tensor term of the p-meson,
fo9 o o
U;/T(la 2) =g, [’Y%Ulquu - Uzmqﬂ/i‘] T1 - TZDg (1, 2) (A7)

In Eq.s (A.2)-(A.7), the fully relativistic meson propagator in coordinate space D¥’(1,2)
is the Fourier transformation of the propagator in momentum space D#’(q, w)

Dt (r,w) = / g " DM (q,w) (A.8)
m 7 (27_‘_)3 m 7 7 *
where DM (q,w) is given by
1
D,(qw) = —F2(q?) for scalar mesons, (A.9)

—w? 4 g% +m2, —in
v 9" —¢"¢"/m
DI (q,w) = R Tj mFé(q2) for vector mesons. (A.10)
m

F,.(q?) are the form factors applied to each nucleon-meson vertex ['™. Since the term
quqv/Mm in Eq.(A.10) may be omitted because vector mesons are coupled to the conserved
nucleon sources j, and since retardation effects in the mesons propagation are neglected
(i.e. w? << ¢*>+m2,), the functions (A.9) and (A.10) reduce simply to

1 2

Dp(q) = ———F2(q?
(a) & m(d)
DE(a) = — o F2(e) (A11)

From Eq.(A.11) it follows that in coordinate space, the propagators depend only on the
relative coordinate
D,,(1,2) = Dy, (r) (A.12)

where 7 = |r; — ro|. For the investigations presented in this thesis, three kind of form
factors have been considered, namely

2 A2, —m? o A2 (2)
Faa) =4 (S72) ", s ), (A.13)
efq/4A2 (C

in which m,, are the meson masses and A,,, and A are the cutoff masses in the form
factors. In the RHF approach to the nuclear many-body problem discussed in Chapter 5,
no form factors have been applied to the nucleon-pion vertex I'". Therefore, for F}, given
by Eq.(A.13a), the meson propagator in coordinate space reads simply

1 e—mm'r

T ar v

Dy (r) (A.14)
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However, it has to be noticed that in this case the derivatives V; - V5 in the pseudo-
vector, tensor, and vector-tensor OBE interactions in Eq.s(A.4), (A.6), and (A.7) pro-
duce a zero-range term in the nuclear interaction. Since this contact force would be in
reality suppressed by short-range correlations due to the repulsion of the NN potential at
short distances (i.e. w-meson exchange), by analogy with what is done in non-relativistic
calculations, the spurious 6 component is removed from the potential part of the nuclear
Hamiltonian by subtracting the zero-rank tensor term of the NN potential coming from
7, pt, and p¥7T

1 Bq o
Doy (1,2) = g/(%)E,,eq. (A.15)

The form factors given in Eq.s (A.13b) and (A.13c) have been used for the investigations
of pairing correlations in nuclear matter discussed in Chapter 3. In particular, the first
expression in Eq.(A.13b) is the form factor applied to a nucleon-meson vertex in the Bonn
potential [Ma89], while the second one refers to a phenomenological interaction introduced
in Ref. [TM99]. For the Bonn potential form factor, a direct integration [AS64, PBM86] in
momentum space of Eq.(A.11) leads to the following expressions of the meson propagator
in coordinate space. For n,, =1

1 femnr e fmm m2 A2
Dy (r) = - < L T W ) : (A.16)
and for n,, = 2
1 e~ MmmT e—Amr m2 _ A2
D _ = _ m m —Amr A1l
m(7) 4T [ T r + 2A,, ¢ (A-17)
(A2, —m2)? (e Amr N re=Am?
8 A3, A2,
(A?n _ m?n)3 e*Amr T.efAmr ,},.267Amr
- + +
16 A3 AL 3A2,

The Fourier transformation of Eq.(A.11) for the phenomenological pairing interaction in
Ref. [TM99] is analogous to Eq.(A.18) apart from the constants in front of the various
terms. We can thus remark that the introduction of a form factor of monopole type leads
to smooth the divergence at r = 0 by means of a second Yukawa type potential depending
on the cutoff mass and with opposite sign of the first Yukawa, and an exponential potential.
Finally, a direct integration [AS64, PBM86] of Eq.(A.11) with a gaussian cut off of Eq.
(A.13c), gives

emm/A 9 e ™ myn A
Dm(r) = — 2 sinhmy, p(lm 2
(r) o L sinh m,,,r + . erf( A 27")
e Mmm"” m A
— f(—2 4+ = Al
. erf( A + 27‘)] (A.18)

where the error function erfz is defined by

2 Z 2
erfz = —/ e~ dt. A.19
V7 Jo (419

We notice that in this case the error function erf prevent any divergence in the meson
propagator.
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A.1 Limit for Infinite Meson Mass: Point Couplings

A zero-range approximation of a relativistic OBE interaction is obtained by considering
the limit of infinite meson mass m,,, — co. In this case the propagator

00 d3q iq-r
DX (r) ==+ Cfn/ (27)38(1 =+ C2 6(r; —1p) (A.20)

2
where the coupling constant is now defined by C? = (%—Z) :
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Appendix B

Relativistic BCS for Infinite Nuclear
Matter: Two-body Matrix Elements

In Chapter 3, the calculation of the pairing gap at the Fermi surface in infinite nuclear
matter is performed in the BCS approximation. Therefore the eigenvalues and the eigen-
functions of the Dirac equation for a spin-1/2 particle propagating in a uniform nuclear
medium (3.8) are needed together with a pairing interaction in order to solve the gap
equation (3.22). In this Appendix, we briefly remind the solution of the Dirac equation
in this case, and we write the pairing two-body matrix elements of OBE interaction in
momentum space. Moreover, we explicitly list the nucleon-meson amplitudes v,,(k, p)
for a generic form factor F,, and calculate their average over the angle v,,(k, p) given in
Eq.(3.23) for the three form factors considered in Eq.(A.13a,b,c).

The plane wave Dirac spinors corresponding to the eigenvalues €(k) given in Eq.(3.9)
are characterized by momentum k and spin s, o = (k, s) and read

1 .
¢(+) () = ——e Ty, (B.1)

V4 27r3

1 .
¢(_)(:v) = — etz (B.2)

V4 27?3

for positive and negative energies respectively, with

E* 4+ M* X )
Uks = _ i B.3
- 2E" ( T2 X (B3)
s = _— HMrAS ) B4
o - ( i (B.4)

Working in the formalism of the second quantization and using Eq.s (B.3)-(B.4) as basis,
the interaction between tow nucleons may be written as

1
V= 5 Z Va1a2a3a4b;tl bizbazlba?,a (B5)

aja20304

where bﬁs are creation operators for particles states, and Vj, 45050, the matrix elements
(not yet antisymmetrized) of the two-body potential. For the OBE interaction given in
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Eq.s (A.2)-(A.7) they read explicitly

U U U U
o _ 2 kis1 Ykgss Ykoso Ykassa 122/ 2
Vk151k2$2k383k454 - _g06k1+k2;k3+k4 q2 + m2 Fo’ (q )7 (B6)
g
Usey 51 VM Uy 55 Ut 50V Uk
w _ 2 181 383 Wkasa [ ppWkass 49, 9
Vk151k232k353k454 - +gw6k1+k2,k3+k4 q2 + m2 Fw (q )’ (B7)
w
f2 — 5—; — —
1744 - _drs Ukys17 TAUk3s3Ukoss V5T QUkys4 FQ( 2) (B 8)
kisikasaokssskassa T m72r ki+ka,ks+ka q2+m§r a\ad ) :
Uk ’y“?uk Ukysy”Y TUy
p . 2 151 383 Ukasa Iy 484 2/ 9
Vk151k282k353k454 - +gp5k1+k2,k3+k4 Fp (q ) (Bg)

q* +mg
For the solution of the gap equation (3.22) the antisymmetrized matrix elements
(ks, ks|V|ps', ps') — (ks, ks|V|ps', ps') (B.10)
are needed. In Eq.(B.10) the tilde denotes the time-reversed states, i.e.
ks) = T |ks). (B.11)

Since the gap parameter A(k) in the state S = 0, T = 1 depends only on the absolute
value of the momentum k£ and not on the spin index s, the evaluation of the matrix
elements in Eq.(B.10) yields for the direct term

1 1

d _ = m = ms
vy, (K, p) = :FZ k—primt ZuksF Ups' Uks " Ups (B.12)
and for the exchange term
1 1 _
vt (k,p) = £~ D taes Tl Tiges T ™ty (B.13)

4 (k+p)? +m2,

ss’

The vertices I'™ are given in Eq.s (2.12)-(2.16). Trace techniques [IZ80] and replacing the
vector p by —p in the integral in the gap equation (3.22), it may be shown that the direct
and the exchange terms give the same contribution, and therefore the total two-body
matrix elements v, in the gap equation is simply

M= Tr[Ay (K)TA, (p)Y°TITITH]

k,p) = B.14
Upp( ap) ZFQE*(k)E*(p) (k— p)2+m%n ( )
where b M
+ *
A = B.1
+(p) W (B.15)
is the projector onto positive energy solution [IZ80] and
T =iy'v’K (B.16)

is the representation of the time reversal operator in Dirac space.

The two-body matrix elements given in Eq.(B.14) have to be finally integrated over the
angle between k and p as given in Eq.(3.23) in order to be used in the solution of the gap
equation (3.22). Since the integration depends on the form factors F,, in the following
sections we present the final expressions of v,,(k, p) for the three different form factors
given in Eq. (A.13) used for the solution of the gap equation.
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B.1 Bonn Potential

The relativistic Bonn potential [MHES87],[Ma89] is a bare interaction defined as sum of
one-boson-exchange (OBE) of six mesons, namely o, w, @, p, 7, and 3, and the tensor
and the vector-tensor term of the p-meson are included. According to the Landau’s theory
of superfluid systems [Mi67, Mi68] it therefore corresponds to the first diagram of the K-
matrix (see Section 2.2) which should be used to solve the gap equation. In momentum
space, the Bonn potential two-body matrix elements v,,(k, p) are given in Eq.s (B.6)-(B.9)
in which the form factors F,,(q?) read

A2 —m2\""
2y _
i) = (57 B
where m,, and A,, are the meson and the cutoff masses respectively, and n,, can be 1 or

2. Carrying out analytically the integration over the angle (3.23), the final form of the
Bonn potential which enters into the gap equation (3.22) may be written as

(k) = S 2 % (Ak2)Ou(k.) + Bk, p)®.(k.p) + Ci(k. T (k. p)

(B.18)
where i = 0, w, T, p, 7}, and 5, the functions ©;(k,p), ®;(k,p) and Y;(k,p) are defined by

(k+p)?+mi (k—p)?+A]

Oulkop) = log (k—p)?+mi (k+p)”+ A (B.19)
®;(k,p) = (A?—m?)< = — ! ) (B.20)
AP COU kA (B-p)?+ A '

(k+p)” + A7
(k—p)* +Af
and the coefficients A;(k,p), B;(k,p) and C;(k,p) are given in Table B.1. Finally, the
functions a(k,p), b(k,p), and c(k,p) in Table B.1 are defined by

Yi(k,p) = (A?—m?)Qlog (B.21)

a(k,p) = AM** — (E, — E,)? (B.22)
b(k,p) = 4(2EE, — M*?) (B.23)
c(k,p) = AELE, + (Ex + E,)*. (B.24)

The meson masses m,,, cutoff masses A,,, and coupling constants g,, are given in Table

B.2.

B.2 Phenomenological Pairing Interactions

B.2.1 Monopole Form Factor

In the left side of Fig. 3.14 we display Aj, obtained by using the phenomenological
relativistic pairing interaction introduced in [TM99]. This is based on the exchange of a
o- and of a w-meson and a monopole form factor

Fl@?) = - (B.25)




1 Xi A;i(k,p) Bi(k, p) Ci(k, p)
o | —g a(k,p) — m2 a(k,p) — A
w | te b(k, p) b(k, p)
Tow | + <£_> p* =k —mg a(k,p) | P — k* — A7 a(k, p)
pV + gﬁ , b(k,p) b(lﬁ,p)
()| g | e |
VT | 4 olo8 r m2 A?
T | e (k.p) ~ A
g5 , ,p ms a\r,p [
Npy + <T{T_ﬂn> p2 — k% — m727 Cl(k‘,p) p2 —k? - A727 a(k’p)

Table B.1: The functions A;(k,p), Bi(k,p), and C;(k,p) for the relativistic pairing inter-
action based on the Bonn potential.

Potential A Potential B Potential C
Me _ _—

(MeV)  g%/4ar A, (GeV) g%/ar A, (GeV) g2/4am A, (GeV)

7 138.03 14.9 1.05 146 1.2 146 1.3
n 5488 7 1.5 5 1.5 3 1.5
p 769  0.99 1.3 0.95 1.3 0.95 1.3
w 7826 20 1.5 20 1.5 20 1.5
§ 983  0.7709 2.0 3.1155 1.5 5.0742 1.5
o 550 83141 2.0 8.0769 2.0 8.0279 1.8

Table B.2: Parameters sets of the relativistic Bonn OBE Potential [Ma89]. The pseudo-
vector coupling is used for the mesons 7 and 7.

96



244 | a(k,p)—m2Z | a(k,p)—AZ
o - A (/(X? _)mz )2 &2 _)mz
274 b(k,p) b(k,p)
w A
T 9ol | W2-mzy | R2-m3

Table B.3: The functions A;(k, p) and B;(k, p) for the relativistic pairing interaction with
a monopole form factor applied to each nucleon-meson vertex.

is applied to each meson-nucleon vertex. In this case the total potential can be written
as

tplh0) = s 37 X (A POk p) + Bilh, DBk ) (B20)

in which the coefficients y;, the functions A;(k,p) and B;(k,p) are given in Table B.2.
There, the functions a(k,p), and b(k,p) are defined in Eq.s(B.22)-(B.23).

B.2.2 Gaussian Form Factor

We have constructed a phenomenological relativistic pairing interaction also based on the
exchange of a o- and of a w-meson, but with a form factor of gaussian type:

F(q?) = e (a/?’ (B.27)

Starting from the parameters set NL2, we have fixed the cutoff parameter p to 140.0
MeV or 0.7 fm, therefore we have chosen the same value used in the Gogny force, in
order to assure the convergence of the RHB equations. We have then scaled the coupling
constants g, and g, in order to reproduce the pairing gap at the Fermi surface obtained
by the Bonn potential or the Gogny force. The meson masses have not been changed.
The total potential can be written as

vpp(k,p) = Z X (Ai(k, p)©i(k, p) + Bi(k,p)®;(k, p)) (B.28)

’LO'UJ

where the functions ©;(k, p) and ®;(k,p) are given by

2 2 2 k+p) +m2
| _ oowfem? k) (1 (BT mE B.2
Il (Y (5.29)
S L ,LL_Q " 2 k 2\n 2 k 2\n
+ D |5 ) [md+ (k+p)")" = (i + (k= p)*)"]
n=1 '
ik,p) = %e‘“2('“2+”2)/2sinh(u%p), (B.30)

the coefficients x;, and the functions A;(k,p) and B;(k, p) are given in Table B.3. There
the functions a(k, p) and b(k, p) are given in Eq.s Eq.s(B.22)-(B.23).
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2
o

o|—g2 1 a(k,p) —m

wl|+g2 0 b(k,p)

Table B.4: The functions A;(k, p) and B;(k, p) for the relativistic pairing interaction with
a gaussian form factor applied to each nucleon-meson vertex.

In the limit s — 0 vy, (k, p) tends to the expression obtained by using a simple one-meson-
exchange potential [KR91].
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Appendix C

Relativistic HF Theory for Infinite
Nuclear Matter

With the ansatz for the mass operator X given in Eq.(5.2), the Dirac equation (5.1) for
the spinor 1, becomes

(v P+ M )u(p, s) = v Eu(p, s) (C.1)
where the starred quantities are defined by

p'(p) = p+DXv(p),
M*(p) = M+Es(p, (C.2)

)
E*(p) = E(p) — Zo(p).
Here M* is the usual scalar effective mass of the baryon, and E* the single particle energy
E*2 — p*2 + M*Z. (03)

Eq.(C.1) is formally identical to the Dirac equation for a free particle, and therefore its
positive energy solution may be written as

E* + M*\Y? 1
u(p, s) = (W) O p* > Xs (C4)
E*+M*

(see also eq. (B.3)). As said in Section 5.1, the energy density can be calculated as in
Eq.(5.3). In the following we write explicitly the kinetic term (7'), the direct and the
exchange terms of the potential, (V) and (V) respectively, for the non-linear (o,w, 7)-
model that we consider to fit the parameters of the new force.

Using standard trace techniques and the projection operator onto positive energy states
(see Eq.s (B.14) and (B.15)), (T') becomes simply

(T) = % /0 " pdp (pp* + MM™). (C.5)

With the inclusion of non-linear o terms, the direct part of the potential energy (Vp)
reads

1 1
(Vb) = §(ma<7)2 + 9s0ps — §(mww)2 + gowpy + %03 + ‘2 (C.6)
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A7r B ™ C7l'

—3Lm20 | —3L5m20 | 6L ((0* + )6 — pp')]

Table C.1: The functions A,(k,p) and B, (k,p) and C;(k,p) for the exchange potential
energy (Vg) of the m-meson.

where the scalar density pg and the vector density py read

2 PF M* (p)

2
= — dp ———=. .
Ps 2 PR (C.7)
2 3
Pv = —37r2pF' (C.8)

The exchange potential energy (Vg) originates from the pions only. It can be expressed
as

M*(p) M*(p')
E*(p) E*(p)

Bﬂ(p7p,) + Cﬂ'(pap,):|

(C.9)

where the functions A,, B, and C, are listed in Table C.1 in terms of the functions

1 pr ! / /
(Vi) = 2t / pdpp'dp [Aw(p,p)Jr
0

2+(10+p’)2]
B(p,p) = log |Zx , C.10
) = tog | T T LEEL (10
2 /9 2
N P HpiEmi,
o(p,p) = pp 0(p,p') — 1.

This expression includes the removal of the zero-range interaction in the pseudovector-
pion contribution.

The self-energies (5.2) are obtained by differentiating (V') by respect to u(p,s). They
read

550) = ~(£) o5+ oy | FWNCBGS)  (©11)
So(p) = (57) oty || PAG) (C.12)
Sy(p) = @%/ﬂmp(p')c’(p,p')- (C.13)
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Appendix D

Relativistic Two-Body Matrix
Elements For Finite Nuclei

A general expression for two-body matrix elements of the relativistic one-boson-exchange
(OBE) interaction given in Eq. (A.1) reads

(g |Vin|azou) = /d37”1d37°2 Py (r1) Yy(r2) Vin(Jrr — 1af) thg(r1) 1hy(r2). (D.1)

¥y (r;) are Dirac spinors. For spherical nuclei they have the form
fr(r) ) ( Fo (7) |Skle k) )
r)=1| : t)=1{ : B t D.2
ante) = (10 Vst = (Ol ) (D.2)

where x,, is the isospin wave function and ¢, . ...

[sljm) = C(smglmy|jm)Yim, ()X, (D.3)

mims

is the spin spherical harmonics of the nucleon & with spin s, = 2. In Eq. (D.2) the orbital
angular momenta [ and [ are determined by the spin 7 and the parity = as

1

1 1 - ,
k=tg), l=j+g [=j—g for m=(-p* (D.4)
and
o1 | i1
H=—(]+§), l=j—§, l=]+§, for 7= (-)"2. (D.5)

In Eq. (D.1) the index a = (a,p) denotes the complete set of quantum numbers that
define the single particle state, and, in particular the index a refers to the radial quantum
number, the spin, the orbital and total angular momenta, and the isospin, i.e.

a=(n,s,l,j,m,t). (D.6)

Relativity introduces the additional index p that labels the large and small components
of 1, (r;). Therefore it can assume only two values

p=(+-) p=(=+). (D.7)
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Writing explicitly the OBE interaction V,, and using the momentum representation of
the propagator given in Eq.(A.8) and after neglecting retardation the relativistic two-body
matrix elements given in Eq. (D.1) may be rewritten as

d - . _
(escalVlasas) = gfy [ oty [ ndiraby )T s (a1) 50 DA gy (12 T )

2 dq iqr Qv efiqr
0 / (1 I013) Dit(a) (200 a) (D3)

This is the final expression that has be to be calculated explicitly. Moreover, since we
study only spherical nuclei it is convenient to calculated the two-body matrix elements
coupled to zero total angular momentum J. In the following Sections, the expression
of the coupled two-body matrix elements given in Eq. (D.8) are given explicitly for the
OBE interactions in Eq.s (A.2), (A.3), and (A.5). The case of a pseudo-vector coupling
is treated separately because it is more complicated.

D.1 Multipole Expansion

Using the multipole expansion for plane waves

e =4y il (kr) Y7, (K) Yy (F) (D.9)

we obtain

(120153 4) = Caman)® S [ 0T, dalar) Va3 ) D 0) (210, ar) Vi)
(D.10)

D.2 jj-Coupled Matrix Elements

D.2.1 Direct Term

We now calculate the two-body matrix elements coupled to good angular momentum.
Introducing the index |k) = (axpx) to shorten the notation, for the direct term we obtain

1L 2Va34) = ) (=)*7"C(jumajs — ms|JM) x

mims
X Z Y22 O (Gamyfa — ma| J M) x
m4msa
X (jimy Jame|Vin|jams jama) (D.11)
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Using the reduced matrix elements

_\jz—m3
(ima |Qunrlizms ) = (Q)Jﬁc(jlmlj?)
we find for the vertices I', which do not depend on the spin (1, v4,75)

_m3‘JM)<j1 ||QJH]§> (D-12)

oVl ayy = 70y [ AL (D13

X(UITr 4,5 (ar) Y5113 ) D () 2T, 55(gr) Y54 )

and for vertices which carry spin (for instance spatial part of the vector mesons: I'; = ;)

(47Tgm)2 jo+jat+L+J Qqu
(12|Vi|3 4)7 = § SR (=) /— (D.14)
— 2J +1 (2m)3

X (U7 (qr) [V Yl 113 ) D (@) 217 (ar) [T Y2l 14 )

oc—meson: ['=1

(11T, 2(ar)YI3) = (Y31l (1 rods(ar)13), (0.15)
with:
(hoistanl3) = [ e istar) (i (I50) = 51 0)0s0)- (D.16)
and
(alvifa ayg = STIE a1y 1) 1Yol
[ EEE 10ds a3 D@2 s lar)i4) (DD

For J =0, j; = 73, and j, = j4 this means
<1 2|VU|3 4)2 = 551&3552n2j1j24ﬂ-gg

X/(q;:)qsﬂ [ 70d0(a7) 13 ) Do (@) (2| yodo(ar)[4)  (D.18)

w— and p—meson

e for the time-like part of the w- and p-meson: T' = Y

(L [Ty 7 (ar)Y513 ) = Giul|Y;l173) (1 | 7,(qr)|3) (D.19)
with:
(L14s(qr)[3) = / r2dr 3 (qr) (f (r) f3(r) + g7 (r)gs(r)) (D.20)
and
(4mg,,)?

(12[V,,[3 4)7

o7 + ( )7 Gl 1) ol Y1)

)13)D,(0)(2]5,(gr)[4)  (D.21)
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For J =0, 71 = j3, and j, = j4 this means

<1 2|Vvu10|3 4)2 = 5!61&36&2@.7152471'93;

X/(q;;l)q?»<1 [ jo(qr)|3 ) Du(a)(2] jo(gr)|4)  (D.22)

e for the spatial part of the w- and p-mesons: [' = «

(Ulljelgr) @Yl 13) = - {(hjll\ [5YL]J||l~3j3>i/TQdTJ'L(QT)ff(T)gs(QD-Q?))

— (Ll [6Yz) [|lags) i / r’drjr(qr)g; (r)fg(r)}

The minus sign comes from the fact that w originates an attractive interaction. For
J =0, j1 = j3, and jp = j; this means (with Eq. (J.19)

(12,1349 = —(drg,)’ / (‘122:; (D.24)

X (1 [[j1(gr) [eYi], || 3) Du(q) (2 [|51(gr) [WValo I 4)

= = —diatng? [ B0 [ il 1)) = i) )

% D.(q) / P2dra gu(ara) L3 (r2) g (ra) — g3(ra) fu(ra)]

D.2.2 The Exchange Term
The exchange term is defined as
(12V[34)
= D (=)™ C(imags — ms|JM) Y (=)™ C(jumags — mo| JM)

mims m4ama2
X (Jimagame|V |jamajzms)
= Y @+ 1)(-)9‘3+j4+J+A{ i Js i }<1z|V|43>3 (D.25)
X J2 J4
We therefore obtain for vertices I', which do not depend on the spin (1, v,,75)
o g
12/Vnl3 4), = (dmgn)? Y (—)Rtietar ] J1 Js } D.26
Q23 0 = (nam)” D) non (D.26)
g*dg . .
X (%)3(1 T 32 (qr) Y514 ) Dyy(q) (2T, 5 (gr) Y213 )
and for those, which depend on the spin (v;)
o T
123 4)), = (4mgy)? Y (=) dats+b y J1 I3 } D.27
(L 2Wal3 2 = (amgn)* 3() nn (D21)

< [ 50 i) [Fadi] 19 D(0) @lstar) [Fni] 12
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o—meson

12(V,34)), = (47rga)22(—)”+“““{ ;; ;i ) }<]1||YA||]4><]2||YA||J3>
A

X/é:)qg<1|’yoj/\(q7')‘4> D, (q) (2]7,7x(gr)|3) (D.28)

For J =0, j; = 73 and j, = j4 this means:

B 14 (—)a+a+A N s\
<1 2|Vg|3 4>2$ = 5j1j35j2j4]1]22%(2)\+ 1) ( " 1 >

ol
wcang? [ 5 WUaian)l1) Dolo) @hois @)l (0:29)

w— and p—mesons

e for the time-like part of the w- or p-meson:

(AR 3 O s S XA AATA IS
A

(arg.)” [ S8 Dula) Qir(an)l®) - (©30)

For J = 0, j1 = jg, l1 = l3 and jQ = j4, lQ = l4 this means:

o 14 (=)atl+x o i\ 2
<1 2|Vw0|3 4>2w = 5j1j35j2j4]1]22%(2A+1)( ]11 0 ]12 )

cang [ L9 ian)le) D) Qlier)®) (D31)

e For the spatial part of the w— and p—mesons
For J =0, j; = j3 and j, = j4, the matrix elements given in Eq.(D.28) become

1 .
(L2AVal3 4%, = =0jiadiir D (<) (amg, ) (D.32)
N2 57
2
< [ Gy (Hinlar) [FoYa] 114) Do) 2llintar) [TV ], 1)

where the reduced matrix elements are given by Eq.(D.24).

D.2.3 The Pairing Term

The pairing term is defined as

J
(12|V[34)7, (D.33)
= Z C(j1majame|J M) Z C(jamajamalJ M)(jimi jomea|V|jzmajama)
mime m3mmaq
stiats | 1 J2 J by
= ) @A+ 1)(—)tn { L }(12|V|34>d (D.34)
)\ Ja Jz A
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We therefore obtain for vertices I', which do not depend on the spin (1, v,,75)
o g
12V,,[34) = —-72+J3+J{].1 I }
0 2iol3 4, = 35 e
2 [ 4°dg . .
X (47 gm) (%)3(1 [T 5x (qr) Y313) D (@) 2T dx (gr) Y24 )
and for those, which depend on the spin (v;)

(D.35)

(12[Vul3 )], = Z(—)””*”J“{ o J}

v Ja J3 A

(mgn)” | (q;Td)%,u l7z(ar) [FnYz) 113)Dm(@)2 lljz(ar) [FnYa] 114).

(D.36)

o—meson

12V,|34);, = Z(—)”*”“{ﬁ ﬁ 3 }<31|IYA||13)<32||YAIIJ4)
A

¢dq

<(ang)* [ EEE i an)l3) Dola) 2hoi(ar)4) (D3

For J =0, j; = 72, and j3 = j4, this means

. 14 (— li+I3+A . PO 2
I S e LR (E A GEY
A

2 2

2
qdg : .
wcang? [ 5 Uin(ar) 3 Dela) (2aislar)4)
w— and p—mesons

e for the time-like part of the w- or p-meson:

2Wiafs ay, = ST L8 LG ) Gl o
A

<(im,)* [ EEE (i) Do) QUi (039

For J =0, j; = jo and j3 = j; this means

o 1+ (- li+1l3+A - A g 2
2Vl = S 3 (P (B o)
A 2 2
o [ d°dg . .
xAm g [ Tome halar)I3) Dula) 2lialar)14) (D.40)
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e for the spatial part of the w— and p—mesons
For J =0, j; = j» and j3 = j4, the matrix elements given in Eq.(D.37) become
1
(12Vol3 1)y, = _5j1j25j3j4ﬁz (=) (4mg)? (D.41)

13)\L

[0 Wiar) [F13],13) Do) @lintar) [Eu1:], 1)

where the reduced matrix elements are given by Eq.(D.24).
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Appendix E

Pseudo-Vector Coupling: Two-body
Matrix Elements

As the Dirac spinors defined in Eq.(D.2) are time-independent, the vertex and the prop-
agator of the 7-meson (pv-coupling) reduce to

[V = 7y (E.1)
1 e*m7r|l‘1*1‘2|
DP)(1.92) = —— rn—V, E.2
P01,2) = VT (E2)
1
Do) - - E.3
T (C]) (]24_77172r ( )

respectively. Therefore, the two-body matrix elements in the momentum space represen-
tation become

(1 2]VED|3 4y = (E)Q / g / iy B (1) 1, (r2) (B.A)

(2m)?
- = . A -
X Fl-Vrl ezq(r17r2) DW(Q) Vl‘z Ty ¢3(r1) ¢4(I‘2) (E5)

2 3 . ) . )
(£) [ st 1B 9iei3) Dufa) (209, Faemioi

For the moment we neglect the isospin dependence, and we concentrate on the angular
part of the matrix elements. A multipole expansion given in Eq. (D.9) of the plane waves
of Eq.(E.4), and an integration over the transferred momentum angles €, gives

(7)|3 4y = (47d™ ¢°dg
vy = n S [ 65

™

(1179vs7 - Ve dz(qr) Yoa, (2)[3) (E.6)

X Dr(q) (2170757 - Ve in(ar)Yiu, (2)[4),

where the integrals over the coordinates still contain the gradient of Bessel functions and
spherical harmonics. Writing explicitly

. —o-V, 0 .
w7 Veiro @ = 70V _ 00 ) i@, @)
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and using the gradient formula for the Bessel functions

L+1

Veic(qr)Yon, (2) = qi+1(qr)Y Lpq1nm, ()
2L +1
L

+

qir-1(qr)Y p1m, () (E.8)

[\
h
+
—_

in which the vector spherical harmonics Y j;,, are given by

Y n(Q) = Y Cllmlmy|JM) em, Yom, () (E.9)

mpms

and e,,, are the spin spherical unit vectors, allows us to remove the gradient from the
integrands and to rewrite them as a linear combination of Bessel functions and vector
spherical harmonics. After recoupling spin and angular momentum, we obtain

L+1

o-Veir(qr)Yom, (2) = 2L+ 1 qJr+1(qr) [0YLs1lpa,

/[ L .
+ oL +1 qjr-1(qr) [UYL—I]LML : (E.10)

Therefore, the relativistic uncoupled two-body matrix elements of the 7-meson (pv-
coupling) read

ﬂ d L+1 , .
a2y = (ram2y [ L8 {\/QleauLH(qr) 2 Yeiilzar, 13)
T LMg

+ QLI:i— : (Uiz—1(gr) Yo 1lpp, |3>} Dr(q)
§ { V 212/%11 (2ljr41(gr) [X YL-H]L—ML 4)
+ 2LI:’_ ] (2j2-1(qr) [EYr-1]p_ar, |4>} , (E.11)
where
5 ey = ( v 2 ) _ (E.12)

E.1 jj-Coupled Matrix Elements

In the following we calculate the relativistic two-body matrix elements of the m-meson
coupled to good angular momentum.
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E.1.1 Direct Term

For the direct term we have

L2V )] = Y (=) ™ C(jhimjs — ms|JM) x

mims
X Z JZ mZC J4m4]2—m2|JM)
mamso
X (jimy jama VP | jamy jama) (E.13)

Using the reduced matrix elements given in Eq.(D.12), we obtain for the direct term of
the m-meson matrix elements

(1 2[VP)3 4)7 = (4r T{L—Z) (;;)ff; / (612:)(13 (E.14)

x {(J+1) (mulljseler) [ YJ+1]J [n37s) Dr(q) (naje||js41(gr) [Z YJ+1]J |[747a)
+ VI + 1) (nugilldra(gr) (EY 4], [Inads) Dr(q) (nagalldr-1(gr) [EYs-1]; [|najs)
+ VI + 1) (ngillgr—i(gr) [ Y], [Insgs) Dr(q) (najalljrsa(qr) [E Yial, [[naja)

+  J(nugi||jr-1(gr) (B Yr1]; [|nsgs) Da(q) (nege|lgr—1(ar) [EYs-1]; ||najs)

where the reduced matrix elements read
(nugulldr+1(gr) Y41l Inags) = (il [0Yral; [[lags) / r2dr jy41(qr) oy (1) fy (1)
b @il 0¥ ) [ e iria(ar)g7, (7)9,,(0)
(E.15)

and so on.

E.1.2 Exchange Term

As already seen, the exchange term is defined as

(12|V.P)|34)7 = Z(g)\ + 1)(_)j3+j4+J+)\{ oz J

(12|V.P")|43)) (E.16)
X Jo Ja /\}

Therefore we obtain

J2+J4+J+)\ . - 4d
p'u) ,71 .73 J fﬂ' q q
A2VI3)z, ZA A+1 {jz ji A } U | Gy (E.17)

X {A+1) (nuji|liner(ar) [EYagaly [[nags) Dr(q) (n2jallire1(qr) [E Yagaly [[msd3)
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+ VA A+ 1) (nugilldasi(gr) [Z Yagal, l[maga) Dr(q) (najallja-1(gr) [X Yail, [[ns]3)
+ VA A+ 1) (nugil[ga-1(gr) [Z Yacaly l[maga) Dr(q) (najalljasi(gr) [X Yagal, [nsg3)

+  Anajulldia-1(gr) [EYa-1ly [|nada) Dx(q) (neja||da-1(qr) [BYa-1], [|nsjs)}

E.1.3 Pairing Term

The pairing term is defined as

(12]V#34)], = ) _(2A+ 1)(—)“”“”{ . ‘i }(12\1/75””)\34)2 (E.18)
4 3
A

Therefore we obtain

_\j2+istJ ; : 14
12lvjaayy, = 3 0 {*71 e } (4 T2 / “
A

22 +1 Ja g3 A My (2m)3

X AN+ 1) (nugi|linei(er) [ Yaga]y [nsds) Dr(q) (naja|ire1(qr) [X Yagi]y [[1ads)
+ VAN + 1) (nga|liaga(ar) [ Yagaly [Insds) Da(q) (nogallir-1(gr) [E Ya-1], ||[n4da)
+ VA +1) (g ]ia-1(gr) [ Ya1], l[nsds) Dr(q) (nejallire1(ar) [E Yaga], |[nags)

+ A{mgillin-1(gr) [E Yacily [[nsds) Dx(q) (nejallia-1(gr) [E Yazil, [[naja) }
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E.2 Matrix Elements Coupled to J =07

Introducing the Slater integral as

2 ) )
Sﬁii2n2l2n3l3n4l4 = ; /q4dq <nlll|jk1 (C]T’)|’I’L3l3> Dw(q) <n2[2|.7k1 (qr)|n4l4) (Elg)

we write the coupled matrix elements as follows.

E.2.1 Direct Term
(12|V#)|34)) = (7{1—”)2<11j1|| [2Y1]g [1sds) (lagal | [EY1]g [1ada) Spitimotonatanats  (E-20)

™

E.2.2 Exchange Term

_\j1—J2 1
12|V Pv)[34)0  — RLEPY ) E.21
(12[VP"(34),, (mﬁ) i ;2A+1 (E.21)

X [+ 1) (il [EYagly lada) (oda|| [EYa], [Tsds) Soiimaimnatansts
+ VAN D) (]| [BYagaly 1laga) (gl [EYA 1]y [1lsd3) o imoianatansis
+ VAN ) (W] [BYa ]y 1laga) (gl [EYaraly [11sd3) Siimaianatanss
+ AUl [EYaaly [[laga) (agall a1y |llsds) Spimtsnstansts)

E.2.3 Pairing Term

1 1
12|V ) [34)0  — ﬁZﬁ —)A
(12[VP(34),, (mw) A (—) 1

(E.22)
X [(A+1) (gl [EYag1]y sgs) (lagall EYagaly lada) St imttnstanate

+  VAAF L) Gl [EYasly lsgs) (lagall [EYac1]y lada) Sotim s ionate
+ VAN D) (Gl BV, [Tds) (adall [EYas]y | [lada) Sttt tanats

+ AUl [BYaz1)y lsds) (legel | [SYa1]y [[ada) S iimiengtanate)
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E.3 ¢-Force in Pseudo-Vector Coupling

The matrix elements of a OBE interaction with pseudo-vector coupling given in Eq. (E.4)
contain a contact term in the central spin dependent channel of the force. Similarly to the
non-relativistic case, it is argued that the short-range correlations mask the action of this
divergent term, and, therefore, it has to be removed from the expression of the matrix
elements. In this Section we show how it arises and how to remove it. The two-body
matrix elements of one-pion exchange interaction given in Eq.(E.4) may be rewritten as

2 3
a2y = () [ [endrnuie) s avm)

M (2m)3

x 9T D (g) ol (1) B - q 1 (1) (E.23)

where the pion propagator is given in Eq. (E.3) with F, =1 and X is the Dirac matrix
given in Eq. (E.12). In order to see how the j-force arises, it is more convenient to restrict
the discussion to the non-relativistic case, therefore, instead of the Dirac matrix X we
simply consider the non-relativistic spin, i.e.

¥.-q—o0o-q

Let us consider the scalar products between the spin of the nucleon 1 and 2 and the
transferred momentum q given in Eq. (E.23): writing q in terms of spherical harmonics
of rank 1 Yy,,, m = —1,0,1 as

A7 m
a=q\/5 ;(—) Vi mem

where e,, is the unitary vector along the axis, and the scalar product o -Y as a zero-rank
tensor by using the relation [0Y;]o = —1/4/3 & - Y, we obtain the following identity

4 4
01°qQOoOy-qQ= ?qzal Yi00-Y = 3? ¢* [01Y1]o [02Y1]o- (E.24)

Recoupling the angular and the spin part of the zero-rank tensors, leads to have

1 47
g1-Qq02-q= g q2 o109 + ? q2 (0'10'2)2 (YIYQ)Q. (E25)
Thus, in the two-body matrix elements of a pseudo-vector coupling a tensor of rank 0 and
a tensor of rank 2 are contained. Considering the product of the propagator D,(q) with
the term of rank 0 given in Eq.s (E.3) and (E.25) respectively, it may be written as

1 q? 1 m2

in which the constant term % is the d-force in momentum space. Therefore, going back
to the relativistic structure of the problem, in order to eliminate the effect of the contact
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term in the matrix elements of the one-pion exchange interaction, we have to subtract a
two-body matrix element of the form

2
vz = —4 (L) [ 20 [ endn @) i

M (2m)3

X By - X, T2 g (1) 9, (1y) (E.27)

Using the multipole expansion for the plane wave given in Eq. (D.9), the previous ex-
pression reads

v L[ fe\ . o .
Q2VEls ) = =3 () S Vil ) G (22l
7r LAp
X 521l1n2l2n3l3n4l4 (E28)

where the Slater integral S}, . . is defined in Eq. (F.1). However, using the

orthogonality relation of the Bessel functions it can be noticed that it does not depend
on A in the case of a d-force and it reads

521l1n212n3l3n4l4 = Snllln2l2n313n4l4 = /TerRmh (T)anlz (T)Rnals (T)Rn4l4 (7‘) (E29)

The direct two-body matrix elements coupled to a total momentum .J become

. 1 () 1 o
<1 2|‘/6(f ))|3 4)5 = _g (m—w> m(_)j2+]4+JSn1lln2l2nsl3n4l4 (E30)
x> () A=Y llEsds) (Lol SVl sl Lais)
L

By using Eq. (D.25) the two-body matrix elements for the exchange term coupled to a
total momentum J read

v 1 s 2
<1 2“/;5(,? ))|3 4>iz = _g (T{L—> Sn1l1n2l2n3l3n4l4 (E31)

X

O B AN ANAN

L J2 J4

and the matrix elements coupled to a total momentum J = 0 with j; = j3 and jo, = J,4
become

v 1 f7r 2
(1 2|V5(f V|3 4o, = ~3 (—> Snilinalanglanala (E.32)
1 - . . . .
§ Gij > (=Y G |[[SY ) aga) (Tagal [SY2)a | Tss) -
1J2
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Appendix F

Slater Integrals

From the previous two Appendices, we have seen that the Slater integrals in the two-body
matrix elements of a OBE interaction read

2 [ . y .
S7/z\1l1n2l2n3l3n4l4 = ;/ (]2 d(] <1|Fu])\(q’f‘)|3> Dﬁn (Q) <2|FV.7>\(qT)|4> (Fl)
0

for the mesons o, w, p, and 7 (pseudo-scalar coupling), and

2 [ = =
i tnstnts = = [ 0 da Wi, (07)13) D@2 (ar)lt) (P2
0

for the 7-meson (pseudo-vector coupling). In this notation |k) represent the relativistic
radial wave functions. In the following, we calculate the Slater integrals for the nonrel-
ativistic wave functions of a harmonic oscillator. In particular, an analytical expression
for the radial matrix elements of spherical Bessel functions are determined.

F.1 Harmonic Oscillator Wave Functions

The normalized wave functions of a three-dimensional oscillator with an oscillator length
b= \/h/mw 3DHOWF can be written as

Uty (£) = R (1) Yim, (£2). (F.3)
where
3 T r2
Ry (r) = b_icbnl(g)efﬁ. (F.4)
with the quantum numbers n = 0,1,..., 1 = 0,1,...,. Working in units of the oscillator

length x = r /b the radial functions ®,,;(x) are expressed in terms of Laguerre polynomials
(l+%) 2
Ly 2 (z?)
®py(x) = Ny 2 LI (22) (F.5)

with

92 = (+n+2) 2 (F.6)



-2 - )q 2q
- S A (F.7)
Na < ) (I+q+ )

and the normalization constants NV,; are given by

2n!
Ny=,|——m—. F.9
TV i+ L) (£-9)
The orthonormality relation is
/rzdr R (r)Run(r) = /xzdaj Dy (2) Pt ()™ = G- (F.10)

As the oscillator wave functions form a complete set, the product of two oscillator functions
can be expressed as a linear combination of oscillator functions. This is the addition
theorem of oscillator functions

* -5 l —r2 /22
lpnlllmll (r),l‘/)nzlgml - b Z T7?13113n2l2 llmll |}/23m1 |l2ml2>/¢)n3l3ml3 (I')e /2b (Fl]')

nsls

where Tr?lsl 2 o1, are referred as Talman coefficients [Ta70]. Multiplying by Yl:mzs and inte-
grating over df2, a similar theorem for the radial functions
(I)nlll (.’L‘)(I)n213 (.’L‘) = ZT:flllsnzb n3l3 ) (F'12)
7‘2
Rml1 (T)le3 (T) = big Z Tr?fllfnglanala (r)efﬁ (F13)

n3

is obtained. It holds for arbitrary values of I3 satisfying |l; — l3|<I3<l; + Iy and [ =
(I1 + Iy + I3)/2 integer. Using the orthogonality of the radial functions, we obtain

2

T1?13ll13n2l2 = / l'Zdl' ©n1l1 (x)¢n2l2 (x)(pngls (‘/L‘)e_m (F 14)

— Nty Nosis Noais / drz? 2L 2) (32) L) (1 2) LB 2y (p 15)

where | = 1(I; + I + I3) is an integer number. We expand LD (32) and LETY?) (22)

as in Eq. (F.6) and using

[Tt P wer =@ e (7)) (F.16)

0 2 n
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we find
2Npy (—)% ( n; > / JR A
T:ahﬂ — n3t3 ? dny1+Q2+l+2L 373 (y)e—y
1linals anlan2l2 %ZL,[Q (lz +q; + %)' q; n3

Nn313 nl!ng!
anlan2l2 n3!

= 2 bres (F.17)

nilinals

where the coefficients bZﬁi’mh are defined as

nals _ s Z Z =)0t e (g 4+ o+ (b + 1o+ 13) /2 + 3)!
mibinalz =0 0r=0 ¢'g!(n — q1)!(ne — @)W (qn + 11 + 2).(qz + 1y + %)'

(14 @+ (L + 1o —13)/2)!

F.18
(1 + g+ (L + 1y —13)/2 — ny)! ( )
F.2 Nonrelativistic Slater Integrals
As nonrelativistic form of the Slater integrals, we take
2 [ , .
Sr)b\1l1n212n3l3n4l4 = ;/ q2 dC] <nlll‘])\(qr)|n3l3> Dm(q) (n2l2|j)\(qr)\n4l4). (Flg)
0

This expression is identical to Eq.(F.1) apart from the fact that we have now omitted
the nucleon-meson vertices. In Eq.(F.19) the radial matrix element of a spherical Bessel
function jy

(mals i (gr) nala) = / 2 dr Ry (1) (gr) Rty () (F.20)

can be explicitly calculated. The addition theorem given in Eq.(F.13) and the expansion
of the resulting harmonic oscillator wave function R,,, in terms of polynomials (Eq.s
(F.4)-(F.6)) lead to the following expression

1 Zn3 (=)™
Y
(nali]ja(qr)Inalz) E :anls n1l1n212 (ng + 15 + 2)' m=0 (n3 —m)Im!(m + I3 + %)’

i/ da 2?2 T o (bga), (F.21)
20bq Jo

in which z =  and J), is a Bessel function of half integer order. For I3 we choose l3 = I;+15.
Using

o 2 B'L(5+ 5 +l) B/ 1+v—p 52
/0 dr zte ™ J,(fz) = Ty P )2 / 1F1(T,1/+ 1, Z) (F.22)

and the relation between the confluent hypergeometric function | /7 and the generalized
Laguerre polynomials L{®

1Fi(—n,a+1,2) = o) (x)

(F.23)
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we arrive

1 1
(nily|ja(qr)|nels) = b3/2?\/n1!\/n2!\/(n1 +1 + 5)!\/(nQ + 1, + 5)!

"3 —\)m ls — A 2 2
x prals (-) m + RN Pl vl
%3: nilinala mz_:() (77,3 _ m),m'(m + l3 + %)‘( 2 )
1 bg
R (2. F.24
g Nm+@)\ m+¥/\( 2 ) ( )
)

in which 232 is integer. Exchanging the order of the sums over nz and m

ni+n2 n3 n1+n2 ni+n2
2.2 =22 (F.25)
n3=0 m=0 m=0 nz=m

and using the explicit expression for the bZ‘ﬁfmh given in Eq.(F.18) with I3 = I; + I, we
find

(nali]ix(gr)nals) = g\/niﬂ\/niz'\/(nl + 0L+ %)!\/(n2 + 1+ %)1

ni+mn2 (_)m

ls— A e t0/8
X + !
Z (ng—m)!m!(m+l3+%)!(m 2 N, tmay

m=0

ni,m2

b (=)0 (g +qo + 1 + 1o + ) (g1 + g2)!
X R (5) Z 1o | 1 21 v Y1
72 a!g!(m — q)l(ne — @)@ + b + ) (@2 + I+ 3)!

q192,0
q1+4q2
()
X . F.26
Z (ng —m)!(q1 + g2 — n3)! ( )

n3=m

In Eq.(F.26) we have replaced the upper limit of the sum over ng, n; + ny with ¢; + ¢o.
This comes from the condition ¢; + g2 > n3. Introducing the index

I3 — A\
f=m+ = 5 (F.27)
the matrix elements of a Bessel functions can be simply rewritten as
. m 1 1
(nily|gr(gr)|nale) = %anh/nQ!\/(m +1+ 5)'\/(712 + o+ 5)'
Kar - —b2¢2/8
(=) Hm e b%a bg
X Z _ (1 — o+ L ! N R“’\(E)
S (= ) (i = i 13+ 3)1 N
y ”i (=) F (g + g2+l + b+ ) + 2)!
Py ¢! (n1 — q1)!(n2 — @)@ + 1 + 5 g2 + 1o + 3)!
q1+q2
(-
X F.28
na_%:“ (ns — i+ ) (a1 + g2 — n3)! (F-28)
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where p,, = 132_ A =ny + ng + p,,,. With the new variable
v=mng— W+ U, (F.29)
that changes the inner sum as
q1+q2 q1+q2—ptfhyy,
Ty F30
N3=p—lm v=0
we obtain
. m 1 1
(mliga(gr)|nals) = £\/ nilvnay/(m + i+ )/ (n2 + 12 + 5)!
2 2 2
1227 — —p2 2/8
(= )1 Hm e b bq
,Z,;m (= po ) =t + 13+ 3! N 02

(=) (g + g+ L+ b+ )@+ @)

X
11%2:,0 ailgp! (1 — 1) (ne — g2)!(qr + 1 + 3)!g2 + 1o+ 3)!

_ q+ae—ptiiy,
(_)N Him ' 22: (_)V<Q1+QQ—M+,um)

(1 +a@—p+u) = v
where the sum over v may be carried out using the relation

i(—)k ( Z ) = Son- (F.32)

k=0

Therefore, the matrix elements of a spherical Bessel function read

. - bq
<nlzlm(qr)\n2z2>=\f e Q/SZ et B () (F.33)

U=l

where the coefficients A" are defined by

nilinala
1 1 1
B = VA4t 00 G2
n1,n2 50q1+q2 e
* 7 F.34
qgo qlg!(m — q)(n2 — @) + 1 + ) (go + lo + ) ( )

These coefficients are always positive. Thus, the nonrelativistic Slater integrals given in
Eq. (F.19) may be rewritten as

Ky By

821l1n2l2n3l3n4l4 Z Z (F35)

Nl :uml Ho= Nmz

242 b b
X / ¢dge™1 /4R ol ;)Dm(q)Ruz)\(Eq)-
0

Analogous considerations apply to the Slater integrals for the pseudo-vector coupling.
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Appendix G

Relativistic HB Theory for Finite
Nuclei

In this Appendix we write the expressions of the pairing fields and energies of the o- and
w-exchange interactions which habe been used in the relativistic HB calculations for finite
nuclei presented in Chpater 4. Explicitly

e for the o-meson

ACal.—1p1CL2pz = Z(alplanpQ |ry(1)3ryg4D0' ‘a3p1a4p2>l{a3p1a4pz (Gl)
a3a4
1
Epeir = 4 D" Faspsarp: (0191029215754 Do 03P104D2) Fasprasps  (G-2)
Q1020304

e for the wl-meson

0
AL oy = Z(alpmzpz\113124Dw|a3p1a4pz>f€a3p1a4p2 (G.3)
azaq
1
0
E;)Uair = Z Z ﬁa2p2a1p1<a'1p1a2p2‘113124Dw|a'3p1af4p2>’€a3p1a4p2 (G4)
a1a2a3a4

e for the w-meson

w . _ _
Aa1p1a2p2 = E (611271@2])2‘0413 : a24Dw|a3plaf4p2>Ha2ﬁ1a4ﬁ3 (G-5)
a3a4
1
w _ _
Epir = 1 E Kaspsarps (01P102P2| 013 - 24Dy |a3P104P2) Kaspy aaps (G-6)
Q1020304

The meson propagators D,, are given in Eq.s (A.11) in which the form factors F,
depend on the interaction used in the pp-channel.
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Appendix H

Relativistic HF Theory for Finite
Nuclei

In this Appendix we write the expressions of the selfconsistent fields and energies of the
Fock term of the OBE interactions that have been used for the relativistic Hartree-Fock
calculations presented in Section 5.2. Explicitly

e for the o-meson

e = D _{01P102P3]734733 Do |04D105D5) Py aaps (H.1)
asa4
1
Eg;o—c - _5 Z pa3p3a1p1 <a1p1a2p3 ‘7?4733190' ‘a'4p1a3p3>pagp1a4p3 (H2)
a1a2030a4

e for the wY-meson

0
Caprasps = Z<a1p1a2p3\114123Dw(7“)|a4p1a3p3)pa2ma4ps (H.3)
a2a4
1
0
Eh = D) Z Paspsarps (@1P102P3| 114103 Dy | 04P1a3D3) Payprasps (H-4)
1020304
e for the w-meson
Ffl‘;)la3p3 = Z<a1p1a2153|0114'astw|a4ﬁ1a3p3>pazﬁla4ﬁ3 (H.3)
as2a4
1 _ —
B, = "9 Z Paspsarp (G1P102P3| €14 - @23 Doy |04D103D3) Py ags(H-6)
a1a20304

e for the 7@ (pseudo-vector coupling)

Fleasm = Z<a1pla2p3\214'223DW\G4P1G3P3>P@pla4p3 (H7)
asa4
" 1
Ege = D) > Puspsarp: (01P102D3 Z1a - B3 Dr04P105D3) Payprasps(H-8)
1020304
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e for the d-term in the 7 (pseudo-vector coupling)

FaFlﬁpﬁaspg = Z(a1p1a2p3|214 * 2935, |04p103D3) Paypyagps (H.9)
aza4
1

ELy = 5 Z Paspsarps $@1D102P3| B14 - Bz Dy [a4P103P3) Py, a,pH-10)

Q1620304

The meson propagators D,, for the mesons o, w, p, and 7 (pseudo-scalar coupling)
are given in Eq.s (A.11) and the form factor is simply 1, and the meson propagator of the
m-meson (pseudo-vector coupling) is given in Eq. (E.2) and the propagator the d-term in
the pseudo-vector term of 7 is

1 ™ 2 1 7F 2 d3 1q-(r;—r
Ds, (r) = 5 (%) O(ri—12) =3 (i—ﬁ) /ﬁ eld(r1-r2) (H.11)
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Appendix 1

Two-body Matrix Elements for the
Isospin

In this Appendix we consider explicitly the two-body matrix elements of the isospin part
of a OBE interaction as they enter into the pairing fields A of the DHB approximation
and into the self-consistent field I' of the DHF approximation.

Denoting with V, the isospin part of the OBE interaction, one has

VS =141, (I.1)
for isoscalar mesons, and

VV — 7_-'1 . 7_"2 = 4t1zt22 + 2t1+t2— - 2t1—t2+ (:[2)

T

I.1 Two-body Matrix Elements for the Isospin in the

pp-Channel
As we consider T' = 1 pairing only, the neutron and proton pairing fields simply read
A, = Z(ln 2n|V;|3n 4n) k%, (I.3)
34
A%, =) (1p 2p|V;[3p 4p) Kb, (1.4)

34

In this notation |1) contains all the quantum numbers which label the state, except the
isospin one. The two-body matrix elements for the pairing channel are

(nnl ( ;111_]1;2 ) nn) = ( X ) . (L5)

(nn|V:lnn) = (pp|V;pp). (1.6)

It holds
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I.2 Two-body Matrix Elements for the Isospin in the
ph-Channel

We consider as an example the self-consistent field for neutrons. Using the previuos
notation for the quantum numbers, it reads

[y = Z(1n2n|VT|3n4n> pis + (1n2p|V;|3n 4p) o, (L.7)

24
— {(In2n|V;|4n3n) pi, — (1n2p|V,|4p 3n) pl,. (L.8)

Analogously for the self-consistent field of the protons. The two-body matrix elements
for pure neutron or proton states are the same as Eq.(I1.5) for the direct and the exchange
terms, while for mixed states they read

ool (A2, Y= () ) (L9)
ool (272 Y= (5 ) (110

for the exchange term. We remark that the isospin independent part of the interaction
gives no contribution to the exchange term in the isospin space. As for the pairing case,
the isospin symmetry of the nuclear force leads to

for the direct term, and

(np|VzInp) = (pn|V;|pn) (L.11)
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Appendix J

Appendix: Auxiliary Formulas

Ju J2 J3 Ji J2 J3
( myi Mo M3 ) { ll lQ l3 } (Jl)
_ Z (_)l1+lg+l3+u1+u2+u3< ol 3 ) ( i g2 13 ) ( Ll g3 )
oot my Ko —H3 —H1 M2 U K1 —He T3
Jio  Ja J Jio s T
My My, M oo Js s (7.2)
Jo Ja Ju
_ Z Jiog2 Jio J3  Ja Jau JiJ3 Ji3
G\ T My M, ms my My mi mz —mi — ms3
mama

% J2 4 Jo4 Jis Jos J
Mo My —Mo — My —Tmm1 — M3 —My — My M
Recoupling for the ph-channel:
D030 Y (H)ETC(imags — mal JM)(=)2 ™ C (jamags — ma| JM) X

M1m2 M3ma Ay

(—)j4_m40(j1m1j4 - m4|Au)(—)f3"”3+“0(szzjs = myA = p)

3 J
(A 3 2 (1.3

and

ST S SO Gimags — mal JM) (=) C(jamags — mal TM) X

M1ma M3m4a Ay

(=)™ O (jima s — malAp) ()220 (J3msja — ma|Ap)

- 1 73 J
= (=)tiatItA 9y 11 { ]_1 ].3 } J.4
A WIS (1.4
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Recoupling for the pp-channel:

D >0 Climugama| JM)C (jsmsjama| JM) x

mimg m3ma Ap

X (=) C(1maja — ma| Ap) (=)™ TEC (jamaga — ma| X — p)

— _\J2+j3+J 2N+ 1 { .7'1 .7.2 }
(-) ( ) A

and

Z Z ZC(j1m1j2m2‘JM)C(j3m3j4m4‘JM) X

M1m2 M3m4 A

(=Y C (s — mal An) (=20 G — ma| )

o . T
—  (_\istiatJ 22 +1 { -7'1 -7.2 }
(-) ( ) i i A

NS,

{J& L j2}<l1 L 12>:_1+(—)ll+lz+L 1 (45 L
L 25 Lo oo 2 L\ -1 0

1 .
2 b L LI
2 b 00 0)"
S L J

2 V2L

(=)etits (5 [ ] i1 J g 1 L J n J
Os1 NG 000 Lo -) »3\-101 11
2 2 2

Reduced matrix elements:

1+ (=)atltl ()L _\lo+jot+s+L T
()4 () %ﬂ&;) <ﬁ 0;2)+
S

. | (m)me o
(]1m1|Q,\“|j2m2) = Wc(hmlh - szM)(]lHQAHb)
This yields:
1 1
G5 = V2
1 1
(5lloll5) = V6
! _ (_)l N1 L axr
amin = SEair (¢ 0 0)

(J.6)

(J.10)

(J.11)

(J.12)

(J.13)



20+1

Yo|ll'Y = O/ —— J.14
(U] Yollt') Y R (J.14)
. . 1+(_)l+l'+J jjlj 'l( ] J ]I>

Yy = —) 2 J.15
TN = (=Y @Yl (J.16)
. . 27 +1
(FIYlll'5") = dwdjy —j4 (J.17)
s
and
L1 1
. 137 AN T ! 2 2/
(Ul oY) 105y = 37T le DY) § & 1 Lo, (J.18)
g3 J
Using Eq. (J.3) this yields
, _ 14 (=)L 57 L [ oo (1 L J i J g
l Y, l, ! — _\I+L \l'+5 +3
1 L J jg J 7
~(LeT)( A
-1 0 1 % -1 %
and "
. N 1= (=)t 27 +1
{llloV (115 = =50\ = — (J.19)
The conjugation relation between the spin-dependent matrix elements yields
U3\ oYil, ) = (=) (G| [oYa), |57 (J.20)
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