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1. Prologue

One evening, when, as usual, I was contemplating the
heavenly dome whose face was so familiar to me, I saw
with inexpressible astonishment a radiant star of extraor-
dinary magnitude.

Struck with surprise, I could hardly believe my eyes. Its
brightness was greater than that of Sirius, and Jupiter. It
could only be compared with that of Venus. People gifted
with good eyesight could see this star in daylight, even at
noon.

— Tycho Brahe on the 1572 supernova encounter

Transient phenomena in the sky have attracted the attention of mankind for millennia and
still today cosmic explosions pertain to the most fascinating objects of astrophysics. The
observation of supernova explosions, which belong to the brightest astrophysical events,
played an outstanding role in the history of astronomy. Ancient records provide obser-
vational data of astonishing accuracy, sometimes even allowing for the reconstruction of
the light curve of historical supernovae (Stephenson & Green2002, Green & Stephenson
2003). The dawn of modern European astronomy coincides with the systematic observa-
tion of two supernovae conducted by Tycho Brahe in 1572 (Brahe1573) and by Johannes
Kepler in 1604. The termsupernovawas introduced byBaade & Zwicky(1934) to dis-
tinguish these events from classical novae. Supernovae are astrophysical objects whose
luminosity raises on timescales of a few days to weeks and then decreases over several
years after reaching a peak luminosity up to 1042 – 1043 erg s−1, equivalent to the lumi-
nosity of an entire galaxy. The overall energy release of supernova explosions amounts to
1051 to 1053 erg.

The observation of supernovae revealing Balmer lines in their near-maximum light spec-
tra and others showing no signs of hydrogen ledMinkowski (1941) to the suggestion of
a classification of these events. The former class is termed Type II, while the latter is
called Type I. Further spectroscopic and photometric features gave rise to a further sub-
classification (e.g.Harkness & Wheeler1990). This astronomical classification, however,
does not reflect the astrophysical mechanism. Except for only one sub-class of Type I su-
pernovae, namely the Type Ia events, all other types gain the explosion energy from the
binding energy of a compact object that forms in the gravitational collapse of a massive
star. This may occur after thermonuclear burning has ceased and the thermal pressure fails
to stabilize it against collapse. Consequently, a Type II supernova gives rise to the for-
mation of a neutron star or possibly even a black hole. In contrast to this scenario,Hoyle
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1. Prologue

& Fowler (1960) suggested that Type Ia supernovae (abbreviated frequently as SN Ia in
this text) originate from the thermonuclear explosion of a degenerate compact object, a
white dwarf star. No compact object as a remnant of a SN Ia can be expected from this
scenario. The observable light curve is believed to be powered by the decay energy of
radioactive56Ni produced in the explosion (Truran et al.1967, Colgate & McKee1969).
These assumptions define the astrophysical picture of SN Ia which is generally agreed on.

In the present work we shall investigate some aspects of the thermonuclear explosion
mechanism of the white dwarf star.

1.1. Observational facts on Type Ia supernovae

The classification of SN Ia is based on spectroscopic features. Besides the absence of
hydrogen absorption lines in the spectra defining them as Type I supernovae, the subclass
Ia is characterized by the presence of strong silicon lines in the early and maximum light
spectra.

One of the most intriguing features of Type Ia Supernovae is that most of them form
a class of objects that is homogeneous in spectra, photometry, and absolute magnitude
to a remarkable degree. These supernovae are frequently called “Branch normals” after
the definition suggested byBranch et al.(1993). A prominent example is supernova SN
1994D. Nevertheless, even within this class detailed observations revealed subtle differ-
ences. However, a number of peculiar objects has been observed deviating considerably
from Branch normals in their properties. We mention here in particular super-luminous
(“1991T-like”) and sub-luminous (“1991bg-like”) objects. The peculiarity rate is not well-
determined yet.Branch et al.(1993) estimate 15 % of all observed SNe Ia diverging from
Branch normal type while recent observations suggest an even higher fraction of peculiar
objects (Li et al. 2000).

A review on observational data is given byLeibundgut(2000). We will summarize
here only the aspects that are most important for theoretical modeling and thereby neglect
peculiarities.

Type Ia supernova rates

SN Ia frequencies carry important information on their progenitor systems and the explo-
sion mechanism. However, the determination of reliable rates remains difficult. Cappellaro
et al.(1997) report SN Ia rates as low as 1 event every 500 to 600 years for a galaxy with
1010 LB� (blue unit solar luminosity) assuming a Hubble constant of 65 km s−1 Mpc−1. In
contrast to other supernova types, SN Ia occur in late and early type galaxies, but in the lat-
ter the frequency appears to be lower. They also show preference for star forming galaxies
and spiral arms.

2



1.1. Observational facts on Type Ia supernovae

Spectral features

Apart from the absence of Hydrogen lines in the spectra of SN Ia, no Helium has been de-
tected for most objects either. Near maximum light the spectra are dominated by P-Cygni
lines of intermediate-mass elements, such as Si, Ca, Mg, and O, corresponding to the outer
layers of the ejecta. Different expansion velocities for different spectra point to a layered
structure of the outer shell. Typical velocities observed in the lines are between 1×109 and
1.5× 109 cm s−1. Low-ionization lines of Ni, Fe, and Co are present and increase after the
peak, when the photosphere reaches the inner regions. One month after maximum the su-
pernova enters the so-called nebular phase. Here the spectrum is dominated by forbidden
FeII, FeIII, and CoIII lines1.

Presently, efforts are taken to acquire a larger sample of UV and IR spectra. No appre-
ciable polarization has been detected so far except for one object (Kasen et al.2003, Wang
et al.2003). Attempts to detectγ-rays from the nuclear decay have not been successful
with one exception (Diehl & Timmes1998). Neither X-ray nor radio detections have been
reported for SNe Ia.

Photometry

Light curves are taken with several filters. The first phase shows a rapid raise in luminosity
at a timescale of about 20 days. Maxima appear at different times in different bands reveal-
ing a rapid color evolution at peak luminosity. In theI band and redder, most SN Ia show a
second peak around 25 days after maximum. In the bluer bands a decline in luminosity of
about 3 magnitudes in the weeks after maximum is observed. Finally, the SN enters an ex-
ponential decline of about one magnitude per month. From observations in separate bands,
bolometric light curves can be constructed (e.g.Contardo et al.2000). At maximum the
luminosity reachesMB ≈ MV ≈ −19.3 mag (Riess et al.1999) and logLbol ≈ 1043 erg s−1

(Contardo et al.2000).

Despite of the overall homogeneity of the SN Ia class, there exist small deviations in the
peak luminosity even among Branch normal SNe. However, it has been noted that corre-
lation between the peak magnitude and the decline rate of the light curve exists (Hamuy
et al.1996). The more luminous the supernovae, the broader is the light curve. Correla-
tions can also be found between other observable features (e.g.Branch1998). The class of
SN Ia seems to be representable as a one-parameter sequence. Furthermore, the luminosity
seems to depend on the environment. SN Ia in early type galaxies are generally fainter than
in late types but the correlation between the light curve shape and the maximum luminosity
still holds.

1For a recent detailed survey of spectral features in the optical we refer toFilippenko(1997).
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1. Prologue

1.2. Astrophysical implications

1.2.1. Conclusions from the observations

From the observations the energetics of a SN Ia explosion can be inferred. Following
the idea that the light curve is powered by the decay of56Ni over 56Co to stable56Fe,
measurement of the nickel mass would be a tool to test the explosion model. One way is to
determine the bolometric peak luminosity and to apply “Arnett’s law” (Arnett1982, Arnett
et al.1985). It states that the energy released at the surface at maximum luminosity is equal
to the energy injected by nuclear decay at the bottom of the ejecta, the reason being that
the atmosphere is turning optically thin at this point. Note, however, that this assumption
does not generally apply if multi-dimensional effects play a significant role. The nickel
masses for a number of objects were derived from the peak bolometric luminosity by
Contardo et al.(2000) for a number of objects and lie typically around∼ 0.6M� for normal
supernovae with a significant scatter.

1.2.2. Constraints for the astrophysical models

Several constraints for theoretical models result from the observations summarized above
(cf. Hillebrandt & Niemeyer2000). Obviously, the overall homogeneity of normal SNe Ia
requires robustness of the explosion mechanism and does not allow dependence on fine-
tuning of model parameters or initial conditions. A powerful explosion should result from
the model, i.e. produce sufficient amounts of56Ni and high-velocity intermediate mass
elements in the outer layers. In addition, the model should contain at least one parameter
accounting for the intrinsic variability in explosion strength. The model should give rise
to that parameter in a natural way. Moreover, the parameter has to be correlated with
the progenitor system in order to explain the observed variations as a function of the host
stellar population.

Some of these constraints apply directly to the explosion mechanism. Since the theoreti-
cal basis of the explosion will be established in Chapter2, we will postpone that discussion
to Section3.1.1and envisage here the consequences for the progenitor systems only.

1.2.3. Possible progenitor scenarios

The identification of the SN Ia progenitor is probably still one of the most uncertain com-
ponents of the model. Nevertheless, from observations the following conclusions can be
drawn: The occurrence of SNe Ia in old stellar population is a hint to relatively low-mass
stars as progenitors. The spectral features point to a thermonuclear explosion of a rather
compact object. The absence of hydrogen and to the greatest extent helium imply that the
progenitor must have lost its envelope and the amount of circumstellar material is small.
The failure to detect radio or X-ray emission from SN Ia disfavor a connection with a
neutron star or a black hole.

These arguments leave low-mass electron-degenerate remnants of stellar evolution, so-
calledwhite dwarfs(WDs) as possible progenitor candidates. A single WD, however is
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1.2. Astrophysical implications

an inert object and any dynamics necessary to trigger the explosion is missing. Therefore,
a binary system with mass transfer onto a WD provides a promising progenitor scenario.
Three chemical compositions of WDs come into consideration: WDs composed of helium,
of carbon and oxygen (C+O WDs in the following), and of oxygen, neon and magnesium
(O-Ne-Mg). The first composition will always produce nearly pure nickel when inciner-
ated and is therefore not consistent with the observation of intermediate-mass elements in
the spectra. Although O-Ne-Mg WDs show the tendency to collapse rather than to ex-
plode when ignited, they cannot be completely ruled out as a possible progenitor at least
for some peculiar supernovae. However, there is general agreement that the majority of
normal SNe Ia originates from thermonuclear explosions of C+O WDs, which we will
focus on throughout this work.

The dynamics can be introduced by different scenarios: Depending on the nature of the
binary companion of the WD, the models are called “single degenerate” if the companion is
a main sequence star or a giant or “double degenerate” if the system consists of two WDs.
For the first case, two classes of models are discerned. If the WD accretes matter until
it reaches a limiting mass of∼ 1.4M�, electron-degeneracy pressure cannot compensate
gravity anymore. This mass is called Chandrasekhar massMCh. When the WD reaches
this mass, its central density increases rapidly while its heat capacity decreases. For masses
too high, the WD will collapse to a neutron star, while otherwise the strongly temperature
dependent thermonuclear reaction rates increase and a thermonuclear runaway is possible.

These so-calledChandrasekhar-mass modelsare particularly appealing, because the
Chandrasekhar-mass limit provides a natural way to explain the homogeneity of SNe Ia.
Hence they are the most promising scenario for Branch-normal SNe and will serve as
the background for the studies presented in this work. However, the parameter space that
allows the formation of aMCh progenitor is extremely narrow (cf. Figure1.1) and observa-
tions enabling an estimation of the frequency of potential candidates are lacking. Usually,
Supersoft X-ray sources are associated with binary systems capable of evolving toward a
SN Ia (e.g.Livio 1996).

Sub-Chandrasekhar-mass modelsform the other single degenerate scenario. Here a WD
below MCh accretes helium from the companion until a shell of∼ 0.3M� covers the C+O
core. Reaching this mass, the helium will ignite near the interface and from a detonation
wave. This detonation can then trigger C/O fusion in the WD. Whether or not this will in
fact happen is not yet answered as well as the question at which location in the WD fusion
will start eventually (Woosley & Weaver1994, Livne & Arnett 1995, Benz1997). The
spectra produced by sub-Chandrasekhar-mass models are, however, not in good agreement
with observations.

Double-degeneratescenarios were proposed byWebbink (1984) and Iben & Tutukov
(1984). Numerical simulations show, that the less massive WD will be torn into a disk
around its more massive companion (Benz et al.1990, Mochkovitch & et al.1997). At
the boundary between core and disk thermonuclear reaction starts and propagates inward
by incinerating the star into O-Ne-Mg (Nomoto & Iben1985, Saio & Nomoto1985). The
resulting object collapses to a neutron star. It appears unlikely that this model can account
for the normal SNe Ia.
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1. Prologue

Figure 1.1.: The final fate of an accreting C+O WD expected depending on its initial
massMC+O and accretion ratėM (from Nomoto & Kondo1991).

The sub-Chandrasekhar-mass and the double-degenerate models both share the advan-
tage that these systems are observed in sufficiently large numbers. However, in contrast to
theMCh-models the homogeneity of the SNe Ia is not naturally inherent in both scenarios.

1.2.4. Pre-ignition evolution

The evolution toward ignition of the thermonuclear flame is one of the crucial points of
the model. It determines the initial conditions for the explosion models.Niemeyer et al.
(1996), Reinecke et al.(1999a), Reinecke et al.(2002b), andHillebrandt et al.(2003)
point out the sensitivity of the explosion energy (and eventually the nucleosynthetic yields)
to possible off-center and multi-spot ignitions. However, the ignition conditions are not
well-determined yet since numerical simulation of the pre-ignition phase is hampered by
several factors, mainly the inherent multi-dimensionality and the wide range of timescales
involved.

A review of the phase until flame ignition inMCh- models is given byHillebrandt &
Niemeyer(2000). As the white dwarf approaches the Chandrasekhar mass, two compet-
ing processes govern the energy budget near the core. These are plasmon neutrino losses
and compressional heating. Above a central density of∼ 2×109 g cm−3 the former become
strongly suppressed (Woosley & Weaver1986) while electron screening enhances the nu-
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1.2. Astrophysical implications

clear reactions. The core region enters the so-called “smoldering phase” marking the be-
ginning of the thermonuclear runaway. Smoldering proceeds over about 1000 years. Con-
vection due to internal heating takes place with progressively smaller turnover timescales.
On the other hand, the time scale for thermonuclear burning drops even faster due to the
strong temperature dependence of the reaction rates. A further complication is introduced
by the action of the convective URCA process (introduced in this context byPaczýnski
1972). However its effect on the evolution is discussed controversially. At a temperature
of T ≈ 7 × 108 K the timescales of convection and nuclear reaction become compara-
ble and the core enters the regime of strong reactive convection. AtT ≈ 1.5 × 109 K
the burning timescale becomes so small compared to the convective timescale, that a new
equilibrium between energy generation and transport (now thermal conduction by degen-
erate electrons) establishes at much smaller length scales ofl ≈ 10−4 cm. This marks
the birth of a flame. A crude model of the pre-ignition phase byGarcia-Senz & Woosley
(1995) suggests that the flame may ignite at the surface of burning bubbles that can rise
some hundred kilometers from the center, giving support to the idea of off-center multi-
spot ignition. On contrast,Höflich & Stein(2002) report on no indication of an off-center
ignition. Instead, they claim that the flame starts out in a carbon-depleted centered region
and find convective velocities that greatly exceed the expected flame propagation speed.

1.2.5. Astrophysical relevance of Type Ia supernovae

Type Ia supernovae have strong influence on their environment. Moreover, they can be
used as tools for astrophysical and cosmological measurements.

Leibundgut(2000) refers to the following aspects illustrating the significance of SNe
Ia: SN Ia are believed to be the main source of iron in the universe. The heating of the
interstellar medium depends on the SN Ia rate of the corresponding galaxy. SNe Ia as
explosions of WDs in binary systems can provide information on the binary fraction of
stars and the evolution of binary systems in our Galaxy and as a function of look back
time. They also play (together with other SN types) an important role during early galaxy
formation and may influence the star formation process. Furthermore, they have been
suggested as being responsible for substantial loss of material from galaxies. Note, that
the suggestion of SNe Ia as significant source of metallicity sets a further constraint to
the astrophysical models by requiring the nucleosynthesis to produce approximately solar
isotopic abundances.

Cosmological distance measurements

The most spectacular application of Type Ia supernovae is certainly their use as cosmo-
logical distance indicators. Though variations in peak luminosity observed in nearby SNe
confuted early claims that SNe Ia be “standard candles” (i.e. possess always exactly the
same maximum brightness), the correlation between the light curve shape and the peak
luminosity provides a handy tool to “standardize” them. Today it is agreed on the fact that
SNe Ia are excellent distance indicators at high redshifts, owing to their enormous bright-
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1. Prologue

ness. However, they still depend on the calibration of the nearby sample using Cepheid
distances.

The most surprising result of cosmological SN Ia distance measurements is that super-
novae at high redshifts appear to be dimmer than expected for a universe withΩΛ = 0.
From this, two independent research groups (Riess et al.1998, Perlmutter et al.1999)
draw the conclusion that the universe is acceleratingly expanding. A possible interpre-
tation is, that the supernova data (together with measurements of the Cosmic Microwave
Background radiation, CMB) imply that we live in a universe dominated by “dark energy”.
The cosmological parameters are determined byΩm = 0.3 andΩΛ = 0.7. A recent anal-
ysis of the presently available data from SN Ia measurements is provided byTonry et al.
(2003).

Of course, one could think of other explanations for the dimming of distant supernovae.
Possible explanations are absorption by “grey dust”, attenuation by gravitational lensing,
or evolutionary effects of SNe Ia depending for instance on the different metallicity of
progenitors. These possibilities are reviewed byLeibundgut(2001). While the first two
effects have to be investigated by astronomers, the study of a possible evolution of SNe
Ia is a challenge to theoretical models and a motivation for currently ongoing efforts to
improve numerical SN Ia simulations.

Another worrying fact is that the relation between light curve shape and peak luminos-
ity, which forms the foundation of the application of SNe Ia as distance indicators, is of
pure phenomenological nature and lacks theoretical reasoning so far. Moreover, the in-
dividual research groups apply different correction methods (seeLeibundgut(2000) for a
review). Drell et al. (2000) andLeibundgut(2000) point out differences between those
corrections, although all corrections lead to a considerable improvement of the data in the
nearby Hubble diagram.

These arguments call attention to the importance of a profound theoretical understanding
of the SN Ia explosion mechanism as well as the progenitor scenario and the radiation
transport.

1.3. Current status of Type Ia supernova research

To embed the present work in the currently ongoing investigation of SN Ia events, a brief
overview of the current status of research shall be given in the following.2 In doing so
we will restrict ourselves to models of the explosion mechanism in the single degenerate
MCh-scenario. We will omit the ongoing investigation of progenitor models and the light
curve and spectra modeling. For a broader review we refer toHillebrandt & Niemeyer
(2000).

The ultimate goal of SN Ia models is the restriction to only basic physical principles as
input, thereby reducing the number of free parameters. This will allow to deduce clear
statements on the validation of cosmological interpretations of the distance measurements

2It is natural that some of the terms used in this section cannot be introduced in detail here and we refer to
Chapters2 and3 for an exact description of these.
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and provide insight into the (possibly substantial) contribution of SNe Ia to the nucleosyn-
thetic evolution of the universe.

As will be discussed in Chapters2 and 3 in detail, thermonuclear burning in SNe Ia
proceeds in a spatially confined region which propagates as a wave through the star. This
phenomenon will be called “flame” henceforth. Hydrodynamically, two distinct modes
of propagation of that flame are permitted: a supersonicdetonationand a subsonicde-
flagration. The fundamental parameter of all SN Ia models is the velocity by which the
flame propagates through the material, since it determines both the energy release and the
nucleosynthetic yield of the explosion. In the detonation mode the flame speed is fairly
well known. It is essentially the speed of sound in the fuel. Enough energy is released
to power a SN Ia explosion, but the nucleosynthesis of models applying pure detonations
is inconsistent with observed spectra. Therefore, the currently favored scenario is, that
the flame propagates in the subsonic deflagration mode, at least initially. The so-called
laminar flame velocity under conditions prevailing in a C+O WD has been determined by
one-dimensional numerical models (Timmes & Woosley1992). These fully resolve the
inner structure of the flame and apply a realistic nuclear reaction network to model ther-
monuclear burning. In the deflagration mode, however, instabilities and turbulent effects
have drastic impact on the flame speed giving rise to an effective flame propagation veloc-
ity exceeding the laminar value by far. This results from the fact that the increase in flame
surface by turbulent wrinkling is associated with an increase in the total energy release rate
by the burning.

Due to the lack of sufficient computational power, numerical models of the first decades
of supernova investigations were restricted to one dimension. This assumption of spher-
ical geometry fell short of providing a self-consistent value of the flame speed since it
neglected the inherent multidimensional effects of turbulence. Thus, the flame speed was
treated as a free parameter in these models and tuned in a way that the model would agree
with observed spectra. A prominent example of these class of models is W7 byNomoto
et al.(1984), which is still widely used as input for spectra and light curve modeling. Al-
though these models can provide some insight to the needs of a viable self-consistent SN
Ia model, they have low predictive power. Other one-dimensional models achieved good
agreement with observations by imposing a transition of the flame propagation mode from
deflagration to detonation at an arbitrarily chosen instant. Since the parameters of the one-
dimensional models can be tuned to fit the observations, we will refer to that class in the
following asempirical SN Ia models.

Contrasting to these, another class of models attempts to describe SN Ia explosions in a
self-consistent way. From these models one can hope to ultimately get insight into possible
evolution effects of distant supernovae and to understand the origin of the peak luminosity–
light curve shape correlation. This has become possible with increasing computational
capacity in the 1990s that made multidimensional models possible. A self-consistent de-
termination of the effective flame propagation velocity from turbulent effects came into
reach. However, multidimensional simulations suffer from a serious obstacle. Owing to
the vast range of relevant length scales involved in the problem, it is impossible to resolve
the full SN Ia event here. Therefore the task has to be tackled in different approaches

9
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Figure 1.2.: Comparison of observed light curves in theU, B,V, andI filter bands with
numerical models (one-dimensional simulation (W7,Nomoto et al.1984)
and a preliminary result form a three-dimensional simulation (mr0,Rei-
necke et al.2002a)). FromSorokina & Blinnikov(2003).

to gain insight to various aspects of the explosion mechanism. FollowingNiemeyer &
Hillebrandt(1997) these simulations can be classified in the following way:Large scale
calculations(LSCs) try to model the explosion on scales of the stellar radius (for recent
examples seeReinecke et al.2002a, Gamezo et al.2003). These, of course, have to rely
on certain assumptions on the physics on small scales that are not numerically resolved.
So-called sub-grid models supply information on the effects of turbulence on these scales
on the flame. The underlying assumption is here, that turbulence is driven only from insta-
bilities on large, numerically resolved scales. LSCs have been very successful in releasing
enough energy to gravitationally unbind the star. However, the energy release and the
nickel production are consistent only with weak SNe Ia so far. A further achievement
is that light curves derived from these models agree amazingly well with observations
(Sorokina & Blinnikov(2003), see also Figure1.2). The deviation from observational data
in the I filter originates from the method of the light curve calculation rather than from the
explosion model.
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The verification of the assumptions on the physics at unresolved scales made by LSCs
is carried out bysmall scale calculations(SSCs) which perform simulations of the flame
propagation in a small window in scale space in order to isolate the physical effects to be
studied. The hope is to include the information gained here into LSCs. SSCs are sub-
ject of the present work. In particular, flame propagation in the so-called cellular regime
will be investigated. These are performed on scales where the Landau-Darrieus instability
(cf. Section2.3.1) is expected to dominate flame propagation. A nonlinear stabilization
mechanism (cf. Section2.3.2) counteracts this instability and causes a cellular shape of
the flame. The precursor of these studies are SSCs performed byNiemeyer & Hillebrandt
(1995). They demonstrated for the first time that thermonuclear flames in WDs are in-
deed subject to the Landau-Darrieus instability, which was tested before only for chem-
ical flames. However, their numerical implementation was not capable of entering the
nonlinear regime of flame propagation. The authors reported on indications for a flame
destabilization at low fuel densities.

A breakdown of the nonlinear stabilization of the flame could have dramatic impact
on the flame propagation.Niemeyer & Woosley(1997) proposed the possibility that the
flame would then produce turbulence on its own and thereby actively accelerate. This has
been suggested as a mechanism for the transition of the flame propagation mode from
deflagration to detonation.

1.4. Objectives of this work

As motivated in the previous section, the subject of this work is the study of flame propaga-
tion in the cellular regime. The astrophysical background is the “standard model” of Type
Ia supernovae, i.e. the thermonuclear incineration of a C+O white dwarf star. In particular
we refer to the Chandrasekhar-mass model and assume flame propagation in the deflagra-
tion mode. In the cellular regime (under conditions that apply to SN Ia explosions), flame
propagation is dominated by two competing physical effects: the Landau-Darrieus insta-
bility and the nonlinear stabilization of the flame in a cellular pattern. The length scales at
which these phenomena determine the flame evolution are around and below the so-called
Gibson scale (see Section3.1.2), where turbulent effects from large scale instabilities do
not appreciably affect the flame propagation anymore. As will be discussed later, the Gib-
son scale depends on the density of the unburnt material and the turbulent scaling in the
white dwarf, which is not established beyond doubt yet. Therefore its exact value is not
well-known but lies orders of magnitude above the width of the internal flame structure.
Thus, we arrange our small scale calculations at scales around 104 cm. This justifies the
description of the flame as a sharp discontinuity in the state variables in our numerical sim-
ulations. We aim on the study of flame evolution in two spatial dimensions in this work.
The main questions to be answered here are:

1. Does the cellular regime exist for thermonuclear flames in Type Ia supernovae? Al-
though a number of previous studies assume that it does, so far no simulation with
full treatment of the hydrodynamics has demonstrated that the flame here will stabi-
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lize in a cellular pattern. We know, however, from the simulations byNiemeyer &
Hillebrandt(1995) that the burning front is subject to the Landau-Darrieus instabil-
ity.

2. A more technical question is, what numerical model is appropriate to perform the
studies? What accuracy of the flame representation is necessary to reproduce the
predicted growth rate of perturbation due to the Landau-Darrieus instability (cf.
Section2.3.1) and eventually the cellular stabilization? The investigation of these
questions provides information on the quality of the numerical flame models.

3. What is the exact shape of the flame in the cellular regime? How does it compare
to available analytical approximations and results from chemical combustion exper-
iments?

4. What flame acceleration results from the increase in flame surface?

5. Does the flame stabilize for all densities of the unburnt material?Niemeyer & Hille-
brandt(1995) reported on the flame destabilization and subsequent turbulization at
a fuel density of 5× 107 g cm−3, which is low compared to the original density of
the WD (∼ 109 g cm−3), i.e. it marks a late stage of the explosion when the star
has already expanded considerably. Interestingly, this instant coincides with the fa-
vored choice of a deflagration-to-detonation transition from empirical SN Ia models.
The possibility that the claimed flame destabilization can account for the underlying
mechanism deserves thorough investigation.

6. Can the anticipated cellular structure of the flame be broken up due to interaction
with a turbulent velocity field? This question is important since it appears to be a
physically unrealistic scenario that the flame propagates into quiescent fuel. Relics
from pre-ignition convection and from the turbulent cascade are sources of velocity
fluctuations.

7. What will be the flame evolution after a possible breakdown of stabilization? Will
the flame produce additional turbulence which could lead to a feedback in which the
flame would actively accelerate?

These questions condense in two yet uninvestigated aspects of the current large scale su-
pernova models. The first concerns the contribution to flame acceleration from scales
where flame propagation proceeds in the cellular regime. The second addresses the possi-
bility that physical effects at these scales could eventually account for the mechanism of a
deflagration-to-detonation transition, which would include new pieces of physics into the
large scale deflagration models for SNe Ia.

12
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1.5. Organization of the thesis

After the introduction shed some light on the general framework and some physical con-
siderations that play a role in our study, we will provide the theoretical background in
Chapter2 that enables us to synthesize the astrophysical picture (Chapter3) of the prob-
lem we aim to answer. We will also review some analytical considerations which will be
necessary to evaluate the later results of our numerical simulations. Some of the concepts
loosely mentioned in the present chapter will be introduced in a more precise way in Chap-
ter 3. Both the theoretical foundation and the astrophysical scenario help us to establish a
numerical model that meets the requirements to answer the questions stated in Section1.4.
Chapter5 presents and discusses the results from our simulations after some tests to verify
the numerical model have been performed. Conclusions for Type Ia supernova models are
drawn in Chapter6 where also a comparison of our simulations with experimental results
will be discussed. Finally, possible directions for further work will be pointed out.
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2. Theoretical Considerations
The theory of combustion occupies a unique place in the
mechanics and physics of continuous media because of the
number of striking peculiarities.

— Ya. B. Zel’dovich (1980)

In this chapter some of the basic theoretical concepts shall be introduced that will be used
later to build a model of thermonuclear flame propagation in SN Ia explosions. Further-
more, theoretical predictions shall be reviewed, that will be compared with the results from
the numerical simulations.

2.1. Reactive fluid dynamics

In this section we will summarize the hydrodynamics that forms the foundation of our
numerical modeling. We will present the basic equations that govern our physical sys-
tem. The treatment of the white dwarf matter with concepts of hydrodynamics is based
on the so-called continuum assumption. We describe it as a fluid, which is justified be-
cause of its negligible resistance to shear. In general, the matter consists of individual
particles (molecules, atoms, elementary particles . . . ). However, the equations of hydro-
dynamics do not solve for the behavior of these individual particles but instead assume that
the medium is a continuous, macroscopic fluid. This assumption incorporates statistical
averaging processes over inter-particle processes.

The adopted hydrodynamic picture evidently depends on the spatial scale range on which
the physical effects shall be modeled. The application of concepts of hydrodynamics
throughout this work implicates a restriction to length scales much larger than the mean
free path of particles composing the matter. At the same time, continuity of the matter
premises scales on which quantities defied by statistical averaging like mass densityρ and
temperatureT do not change noticeably. In this spirit “fluid elements” contain certain
amounts of matter and are not to be confused with individual particles. Furthermore, we
require the matter contained in a fluid element to be in thermodynamical equilibrium which
allows the complete description of its state with a basic set of thermodynamical quantities.

The system under consideration is appropriately described by the reactive flow equa-
tions. These equations represent physical effects originating from the nuclear, atomic, and
molecular nature of matter in an averaged way, as well as collective phenomena. Diffusive
transport and chemical or nuclear reactions fall into the first class while convection and
wavelike properties (that are contained implicitly in the equation set) belong to the second
class.
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2.1.1. General form of a balance equation

The equations of hydrodynamics can be derived from basic principles of statistical physics
(derivation of the Boltzmann equation from the Liouville equation making use of the Born-
Bogoljubov-Green-Kirkwood-Yvon (BBGKY) hierarchy and calculating the moments of
the Boltzmann equation) or in the spirit of a theory of continua. We will briefly discuss
here the latter since it is more instructive for the numerical methods we are going to ap-
ply in Chapter4. The derivation can be found in many textbooks on hydrodynamics or
thermodynamics (e.g.Kluge & Neugebauer1994)

Consider an extensive quantityA in a volumeV that is fixed in space. The amount ofA
can be changed only due to creation or destruction ds of A insideV, i.e. there is a source
or sink ofA insideV, or due to flow df of A over the boundary∂V of the volume:

dA
dt
=

df A
dt
+

dsA
dt

(2.1)

This is the integral form of a balance equation. Deriving the differential form of it makes
use of the representation ofA with help of its densitya(x, t):

A =
∫
V

a(x, t) dV. (2.2)

The amount ofA flowing over∂V per unit time can be written as

df A
dt
= −

∮
∂V

ja(x, t) d f , (2.3)

where df denotes the surface element pointing toward the exterior ofV and ja stands for
the flux density ofA. The production (or depletion) ofA in V can be formulated using the
production densitys(a):

dsA
dt
=

∫
V

s(a) dV. (2.4)

Making use of the divergence theorem the above equations yield

d
dt

∫
V

a(x, t) dV =
∫
V

∂

∂t
a(x, t) dV =

∫
V

{
−∇ · ja + s(a)

}
dV. (2.5)

Since the volume can be chosen arbitrarily, we end up with the differential form of the
balance equation

∂a
∂t
= −∇ · ja + s(a). (2.6)

We will now apply this equation to conserved quantities that characterize our hydrody-
namical system.
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2.1.2. The Euler equations

A simplified set of hydrodynamical equations is obtained when reaction and diffusive
transport phenomena are neglected. This set of equations describes the dynamics of an
ideal fluid and is based on three physical principles: the conservation of mass, momentum,
and energy. The equations represent a balance between the convective transport terms and
source terms.

The problem of thermonuclear combustion in SNe Ia is of non-relativistic nature. There-
fore, mass and energy are conserved separately. The mass conservation equation reads

∂ρ

∂t
= −∇ · (ρu). (2.7)

Momentum conservation yields

∂ρu

∂t
= −∇ · (ρuu) − ∇p+ ρ f (2.8)

with pressurep. Combining equation (2.8) with (2.7) gives the so-calledEuler equation1:

∂u

∂t
= −(u∇) · u −

∇p
ρ
+ f , (2.9)

where f denotes the specific external force acting on the system. Finally, energy conser-
vation leads to

∂ρetot

∂t
= −∇ · (ρetotu) − ∇ · (pu) + ρu · f . (2.10)

Incorporation of (chemical or nuclear) reactions requires at least an additional source
termρS in the energy balance equation (2.10)

∂ρetot

∂t
= −∇ · (ρetotu) − ∇(pu) + ρu · f + ρS, (2.11)

which depends on the reaction ratesω of the species (i = 1 . . .N), and the extension of the
set of equations with the balance of species:

∂ρXi

∂t
= −∇ · (ρXiu) + ρωXi i = 1 . . .N. (2.12)

Here,Xi denotes the mass fraction of speciesi, defined as

Xi =
niAi∑
j n jA j

, (2.13)

with n andA denoting the number density and the atomic mass, respectively. For simplicity
we included only a single one-step reaction.N is the number of species contained in the
reacting mixture. This overdetermines the system, since the sum of all equations (2.12) is

1but note that the whole equation set is also frequently referred to as Euler’s equations
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equivalent to mass conservation (2.7) and yields the constraint for the species conversion
rates

N∑
i=1

ρωXi = 0.

Thus, either mass conservation or one of the species equations is redundant. This is usually
overcome by dropping one of the latter and lettingN denote the total number of species
minus one.

2.1.3. The Navier-Stokes equations

The Euler equations describe the dynamics of ideal fluids. For SN Ia events, however, it
is (at least from a theoretical point of view) crucial to include effects like internal friction
and diffusive transport since these effects dominate the fluid dynamics on smallest scales
and are responsible for flame propagation. To include the effects of viscosity originating
from internal friction an extension to the momentum (2.8) and energy balance equations
(2.11) must be made. This is achieved by generalizing the pressure scalarp to a pressure
tensorΠ:

Π ≡ p I + τ, (2.14)

where the viscous stress tensorτ is defined as

τ ≡ −µ
(
∇u + (∇u)T

)
+

(
2
3
µ − κ

)
(∇ · u) I . (2.15)

Here, the coefficients of bulk and shear viscosity are denoted withκ andµ, respectively.
Momentum balance now takes the form

∂ρu

∂t
= −∇ · (ρuu) − ∇ ·Π + ρ f , (2.16)

which is calledNavier-Stokes equation,and energy balance now reads

∂ρetot

∂t
= −∇ · (ρetotu) − ∇ · (uΠ) + ρu · f + ρS. (2.17)

2.1.4. General reactive flow equations

The Navier-Stokes equations are still not sufficient to describe combustion processes. For
deflagrations for instance, the combustion wave is mediated by heat conduction and dif-
fusion of chemical species. To incorporate these effects into the system of equations it is
necessary to take into account additional terms in species and energy balance. The diver-
gence of the heat flux vectorq

q = −σ∇T + ρ
N∑

i=1

hiu
D
i Xi , (2.18)
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whereσ, hi , anduDi denote thermal conductivity, enthalpy, and diffusion velocity of species
i, respectively, is subtracted from the right hand side of equation (2.17). The balance
of species equation (2.12) is completed with the additional term describing the species
diffusion

−∇ · (ρuDi Xi) (2.19)

on the right hand side, while in the energy balance equation the term

ρ

N∑
i=1

Xiu
D
i · f i

must be added, where thef i denote the external forces per unit mass acting on speciesi.
The system under consideration in this work is therefore described by the following set of
equations:

• mass conservation
∂ρ

∂t
= −∇ · (ρu). (2.20)

• momentum balance
∂ρu

∂t
= −∇ · (ρuu) − ∇ ·Π + ρ f (2.21)

• species balance

∂ρXi

∂t
= −∇ · (ρXiu) − ∇ · (ρu

D
i Xi) + ρωXi i = 1 . . .N, (2.22)

• energy balance

∂ρetot

∂t
= −∇ · (ρetotu) − ∇ · (uΠ) + ρu · f + ρ

N∑
i=1

Xiu
D
i · f i − ∇ · q+ ρS (2.23)

Certainly, the terms included in these equations do not account for all physical effects that
could be related to a combustion process. We neglect, for instance, radiative heat flux for
reasons given byTimmes & Woosley(1992). The balance equations given above have
to be completed by a set of auxiliary relations. The equation of state relates pressure to
density, internal energy (eint = etot − u

2/2), and composition:

p = fEOS(ρ,eint,Xi). (2.24)

Additionally one has to supply an expression for the diffusion velocities, for instance Fick’s
law2 (given the conditions deviate only slightly from equilibrium) for the diffusion flux j i
of speciesi,

j i = ρu
D
i Xi = −ρ

N∑
k=1

Dik∇Xi , (2.25)

2This is certainly not a very elaborate model for the transport properties, since diffusion could respond also
to pressure and temperature gradients as well as external forces. A multicomponent diffusion equation
taking these effects into account can be found in (Chapman & Cowling1960).
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whereDik denotes the binary diffusion coefficient for speciesi andk. The source terms in
the species and energy equation depend on density, temperature, and composition as

ωXi = ωXi (ρ,T,Xi) (2.26)

S = S(ωXi ) (2.27)

2.1.5. Nondimensional representation of the general reactive
flow equations

Consider two systems governed by the reacting flow equations that differ in size, compo-
sition and other conditions. In some special cases it is nevertheless possible that the two
different systems show a similar behavior. This fact is extensively used in experimental
studies of fluid mechanical processes with help of down-scaled models. It turns out that
the condition for the similarity in the flow properties is that certain ratios of parameters
be comparable. These ratios characterize the hydrodynamical flow and the combustion
processes occurring in a system. They are obtained when flow equations are written in a
dimensionless form by dividing the dimensional quantities (x, t, ρ, p . . .) by some reference
values. The equations then contain coefficients in form of ratios of dimensional parameters
which are given special names according to Table2.1. The combination of thesedimen-
sionless numberscharacterizes universal solutions of the equations. In this way a universal
formulation of the reactive flow equation system is possible. Of particular interest is the
fact that the order of magnitude of a specific dimensionless number is a key to the rele-
vance of the corresponding term in the equations and tells one which physical processes
dominate the dynamics of the system.

As an example, we write the dimensional parameters occurring in the mass conservation
equation (2.20) as

ρ = ρrefρ
∗ t = treft

∗ xi = lrefx
∗
i vi = vrefv

∗
i , (2.28)

where the dimensionless quantities are indexed with∗ and the variables with index “ref”
are the (dimensional) reference values. Writing the mass equation using (2.28) one ends
up with

lref

trefvref

∂ρ∗

∂t∗
+
∂ρ∗v∗i
∂x∗i

= 0. (2.29)

The ratio of reference values in the first term defines theStrouhal number3 Sr. It compares
the characteristic time scale of the system to the convective timescalelref/vref. Often it is
convenient to choose the convective timescale as reference settingSr = 1. Proceeding in
the way outlined above with the other equations of the system yields:

• dimensionless momentum balance

1
Sr
∂ρ∗u∗

∂t∗
= −∇∗ · (ρ∗u∗u∗) −

1

Ma2
∇
∗p∗ +

ρ∗ f ∗

Fr
−

1
Re
∇
∗ · τ∗ (2.30)

3Sometimes a dimensionless number characterizing oscillating properties of the flow is also termed “Strouhal
number”. This deviates from the definition used here.
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Symbol Name Definition Significance

Da1 (first) Damköhler number tflow/treaction chemical reaction rate/ convective transport
rate

Fr Froude number v2ref/lrefaref internal forces/ external forces (a denotes ac-
celeration caused by these)

Lei Lewis number σ/(ρrefDicp) thermal conduction/ diffusive energy transport
Ma Mach number vref/cs magnitude of compressibility effects
Pe Peclet number Re Pr convective heat transport/ thermal conduction
Pr Prandtl number µcp/σ momentum transport/ thermal conduction
Re Reynolds number lrefvrefρref/µ inertial forces/ viscous forces
Sci Schmidt number µ/(ρrefDi) momentum diffusion/ mass diffusion
Sr Strouhal number vreftref/lref timescale of convective transport/ reference

timescale

Table 2.1.: Similarity numbers

• dimensionless species balance

1
Sr

∂ρ∗X∗i
∂t∗

= − ∇∗ · (ρ∗X∗i u
∗)

+ Da1 ρ
∗ω∗Xi

−
1

Sci Re
∇
∗ · (ρ∗u∗Di X∗i ) i = 1 . . .N,

(2.31)

• dimensionless energy balance

1
Sr

∂ρ∗e∗tot

∂t∗
= −∇∗ ·

(
[ρ∗e∗tot + p∗] u∗

)
−

Ma2

Re
∇
∗ · (u∗τ∗)

+
Ma2

Fr

ρ∗u∗ · f ∗ − ρ∗
N∑

i=1

X∗i u
∗D
i · f ∗i

 + 1
Re Pr

∇
∗ · (σ∇∗T)

−
1

Re Pr
∇
∗ ·

ρ∗ N∑
i=1

1
Lei

h∗i u
∗D
i X∗i

 + ρ∗S∗ (2.32)

These equations are obtained by setting

pref ≡ c2
sρref, v

D
i ref ≡

Di

lref
, etot ref ≡

pref

ρref
, Tref ≡

etot,ref

cp
, (2.33)

href ≡ etot,ref, and Sref ≡
etot,refvref

lref
. (2.34)

Here,cs andcp denote the sound speed in the material and the specific heat at constant
pressure, respectively. The definitions of the similarity numbers applied here are given in
Table2.1.

2.1.6. Source terms for nuclear reactions

In astrophysical systems, a number of different coupled reactions usually has to be taken
into account. Thermonuclear burning in C+O white dwarf matter is dominated by the
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heavy ion reactions12C+12C, 12C+16O, and16O+16O, since they have a high Coulomb
barrier and thus the ignition temperature is high. The reaction after the heavy ion reactions
up to56Ni areα-reactions exhibiting a much smaller Coulomb barrier and are thus much
faster. Hence, the reaction rate is governed by the initial heavy-ion reaction (for the rate of
the12C+12C seeCaughlan & Fowler1988).

Introducing the specific abundanceYi as

Yi =
Xi

Ai
=

ni∑
j n jA j

(2.35)

as the ratio of the number of nuclei of speciesi to the total number of nuclei in the sys-
tem, the following equation describing the change inYi due to reactions up to three-body
interactions can be established (e.g.Müller 1998):

Ẏi =
∑

j

ci( j)λ jYj

+
∑
j,k

ci( j, k)

∑
a

naAa

 < jk > YjYk

+
∑
j,k,l

ci( j, k, l)

∑
a

naAa

2

< jkl > YjYkYl .

(2.36)

The first term on the right hand side describes changes due toβ-decays and electron cap-
tures or photo-disintegrations, the second and third describe two-body and three-body re-
actions. Accordingly,λi denotes the weak interaction rate, and< jk > and< i, j, k > are
the thermally averaged products of cross sections and relative velocities in the center of
mass system for the two-body and three-body interactions. The coefficientsci abbreviate

ci( j) = ±Ni , ci( j, k) = ±
Ni

N j !Nk!
, and ci( j, k, l) = ±

Ni

N j !Nk!Nl !
. (2.37)

The signs indicate production (+) or destruction (−) of nucleusi. The rate terms usually
contain second and higher orders of the abundances sought and equations (2.36) thus state a
set of coupled ordinary nonlinear differential equations, called anuclear reaction network.
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2.2. Combustion theory

Combustion takes place under various circumstances in nature and technology. All these
processes are subject to fluid dynamics combined with some sort of reactions resulting in
species conversion and release of thermal energy. In principle, they can be described by a
set of equations similar to that introduced in the previous section. The particular conditions
of these processes are reflected in the relevance of corresponding terms in the equations
characterized by the magnitude of dimensionless numbers.

The main subcategories of combustion phenomena are discriminated by the state in
which the fuel for the reaction is available. One can imagine realizations where all ingre-
dients necessary for the reaction to take place are contained in the fuel mixture(“premixed
flames”)and situations where the reaction can only take place in regions where the ingre-
dients encounter due to diffusion processes(“nonpremixed flames”or “di ffusion flames”).
In the context of Type Ia supernovae (like in all combustion processes on the basis of
thermonuclear reactions) only the former case is relevant. An analogous case in technol-
ogy would be the combustion in an injection car engine. We will restrict the following
considerations to premixed flames.

2.2.1. The discontinuity approximation of burning fronts and
modes of propagation

The burning reactions release energy and heat the burnt material resulting in an increase of
temperature across the burning front. For common equations of state of gases the increase
in temperature causes a decrease in density. In case of thermonuclear burning in white
dwarfs this statement holds true. The fuel consists of material containing a degenerate
electron gas. Since the degeneracy of the relativistic electron gas is partly lifted in the
burnt matter, the temperature increase across the reaction zone yields a decrease in density.

Thus, if the scales under consideration are much larger than the width of the reaction
zone, it is well justified to simplify the burning front to a moving discontinuity in the state
variables. This is the simplest model of a flame, which, however, neglects completely its
internal structure. It only provides a description of the hydrodynamical states in front of
and behind the flame. All physical processes that actually govern the flame propagation,
the reaction kinetics and the transport processes inside the thin flame structure are ignored.
Nevertheless, even in this strongly simplified picture it is possible to derive conditions for
the pre-front and post-front states from conservation laws across the flame sheet.

The Euler equations of fluid dynamics admit the formulation of certain jump conditions
for the state variables on the basis of continuity in all flux densities of conserved quantities
across the front. The derivation is done most conveniently in the rest frame of the front.
Here, the velocitiesvu andvb represent the fluid velocities relative to the front in the unburnt
and burnt material, respectively. The velocityvu in the chosen frame of reference will be
used as a definition of the propagation velocity of the simplified flame4. Integration of

4It will later be identified with the laminar burning velocitysl .
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equations (2.7), (2.8), and (2.10) over some arbitrary volume containing part of the front
yield

ρuuun = ρbubn (2.38)

pun+ ρuvu(vun) = pbn+ ρbvb(vbn) (2.39)

ρuetot,uuun+ puuun = ρbetot,bnub + pbubn, (2.40)

wheren is the normal vector to the front, without loss of generality defined as pointing
toward the fuel region. The quantities in the region of unburnt and burnt material are
denoted with the indicesu andb, respectively. Equation2.40can be reformulated making
use of the specific enthalpyh = (eint + p)/ρ:

ρuuun
(
v2u
2
+ hu

)
= ρbubn

(
v2b
2
+ hb

)
. (2.41)

Without loss of generality we may assume that the boundary of the domain of integration
is chosen in a way, that the normal vector of its interface is parallel to the normal vector
of the front. Now we can split the velocity on both sides of the front into a componentvnn
normal and a componentut tangential to it:

u = vnn+ ut; vn = un, ut = u − vnn. (2.42)

Thus, momentum conservation over the front yields

pu + ρuv
2
u,n = pb + ρbv

2
b,n, (2.43)

ρuvu,nuu,t = ρbvb,nub,t. (2.44)

Combination of equations (2.38)

ρuvu,n = ρuvb,n (2.45)

and (2.44) leads to continuity of the tangential velocity component over the front

uu,t = ub,t, (2.46)

provided the mass flux over it is non-vanishing, which is actually the case for reaction
fronts. Hence, combustion front discontinuities fall into the class of shock waves. Finally,
energy conservation over the discontinuity gives

v2u,n

2
+ eint,u + puVu + ∆h0 =

v2b,n

2
+ eint,b + pbVb, (2.47)

whereV := 1/ρ denotes the specific volume.
Equations (2.45), (2.43), (2.46), and (2.47) are known as theRankine-Hugoniot jump

conditions. The connection between the states (p,V) of unburnt and burnt material is
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Figure 2.1.: Relation between unburnt (Vu, pu) and burnt (Vb, pb) states.

found by combining equations (2.45) and (2.43). The square of the mass flux on both sides
of the front is then given by

j2m = (ρuvu,n)2 = (ρbvb,n)2 =
pu − pb

Vb − Vu
. (2.48)

This is the so-calledRayleigh criterion.Elimination of the velocities in (2.47) using (2.48)
leads to

eint,u − eint,b = ∆h0 −
pu + pb

2
(Vb − Vu), (2.49)

defining theHugoniot curve.
Using the Hugoniot curve and the Rayleigh criterion, conditions for burnt states can

be derived for given unburnt states. This is illustrated in Figure2.1 assuming an ideal
gas equation of state. The state of the burnt material must lie on the Hugoniot curve
(sometimes also called detonation adiabatic). Because of the Rayleigh criterion (2.48), the
unburnt and the resulting burnt state are connected by a straight line, the slope of which
corresponds to the square of the mass flux density over the front. This excludes the part
AA′ of the Hugoniot curve from the range of possible final states, because for states of
the burnt material in this range the mass flux density would be imaginary. Constructing
the tangentials on the Hugoniot curve starting from (Vu, pu), four regions of possible final

25



2. Theoretical Considerations

PSfrag replacements

p

V

pu

Vu

O

a

b

c
d

e

Figure 2.2.: Close-up of the detonation branch, followingLiñan & Williams (1993) and
Landau & Lifshitz(1959).

states emerge: the parts of the Hugoniot curve aboveA and belowA′, each separated again
into two sub-regions byO andO′, respectively. The significance of these regions will be
explained in the following.

Figure2.2 shows a close-up of the Hugoniot curve aboveA′. The bold dashed curve
corresponds to the ordinary shock adiabatic for the unburnt state, while the solid curve is
the Hugoniot. Thus, the former does not take into account reaction from the unburnt state
to the burnt states and passes through the initial state (Vu, pu). The possible final states
(Vb, pb) must lie on the Hugoniot curve and are connected to the state of the fuel by the
Rayleigh lines (shown as light dashed lines, e.g.ac). By virtue of equation (2.48), the
slopes of these lines correspond to the velocity of the unburnt materialvu. Contrary to
that, the slopes of the tangents to the dashed curve measure the sound speed in the unburnt
materialcs,u. The smallest possible slope of a Rayleigh-line is the one of the tangentialaOe
to the Hugoniot curve. It is evident, that aboveA the velocity of the flame with respect to
the fuel is supersonic (vu > cs,u). Combustion processes terminating on this branch of the
Hugoniot curve are termeddetonations.

Starting frompu,Vu, we now construct the tangential on the Hugoniot inO. The mass
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flux corresponding to that Rayleigh line has to satisfy the condition

d( j2m)
dpb

= 0. (2.50)

It can be shown (seeLandau & Lifshitz1959) that this impliesvb = cs,b in O. Furthermore,

d
dpb

 v2bc2
s,b

 = − d
dpb

 j2m

(
∂Vb

∂pb

)
sb

 = − j2m

∂2Vb

∂p2
b


sb

, (2.51)

wheresb denotes the entropy density of the burnt material, holds. Assuming an adiabatic
compressibility consistent with (

∂2V

∂p2

)
sb

> 0 (2.52)

(which is the case for most materials), we conclude that the relation

d
dpb

(
vb
cs,b

)
< 0 (2.53)

applies inO. The considerations outlined above can be performed in a similar way for the
lower branch of the Hugoniot. The results can be summarized as follows:

above O: vu > cs,u, vb < cs,b, “strong detonations”
in O: vu > cs,u, vb = cs,b, “upper Chapman-Jouguet point”
segment AO: vu > cs,u, vb > cs,b, “weak detonations”
segment A′O′: vu < cs,u, vb < cs,b, “weak deflagrations”
in O′: vu < cs,u, vb = cs,b, “lower Chapman-Jouguet point”
below O′: vu < cs,u, vb > cs,b, “strong deflagrations”

For reasons given inLandau & Lifshitz(1959), the region belowO′ represents an un-
stable wave and the corresponding combustion regime can not be realized. Detonations
mostly proceed in the upper Chapman-Jouguet point. Strong and in particular weak deto-
nations require special experimental arrangements.

2.2.2. Internal structure of detonation and deflagration waves

The classification of combustion processes given in the last subsection refers only to con-
ditions that are derived from the conservation laws across the flame front described as a
discontinuity. This picture is, however, oversimplified because it assumes that the reaction
proceeds to completion instantaneously.

We will now briefly review5 the internal structure of a deflagration and a detonation
wave. The latter can be understood as a trajectory in the pressure-volume plane. Return
to Figure2.2, which shows the detonation branch of the Hugoniot curve and consider for

5The discussion proceeds closely toLiñan & Williams (1993) andLandau & Lifshitz(1959).
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Figure 2.3.: Internal structure of a deflagration wave (top) and a detonation wave (bot-
tom). Adopted fromLiñan & Williams (1993).

example the detonation represented by the final state (Vb, pv) = c. Then we can follow the
change of state within the finite internal structure of the detonation wave. The front of that
wave is actually a shock wave, which heats and compresses the gas to stated following
the path of the shock adiabaticaed. Point d is known as thevon Neumann spike.The
reaction inside the detonation wave corresponds to the transition along linedc. The heat
release of the reaction causes subsequent expansion and pressure decline of the gas until
the final statec on the Hugoniot curve is reached. A more realistic path of the change of
state deviates from both the Hugoniot and the Rayleigh lines (dashed-dotted line in Figure
2.2). This is due to the fact that strong shocks are only a few molecular mean-free-paths
in thickness and an exact treatment must therefore apply kinetic theory rather than use
continuum equations.

The theory underlying the concept of the detonation structure was developed indepen-
dently byZel’dovich(1940), von Neumann(1942), andDöring(1943) and is usually called
“ZND theory”. It is schematically illustrated in Figure2.3. In case of detonations, burn-
ing is mediated by a shock wave that heats the unburnt material. For gaseous mixtures,
across that shock pressure and temperature increase, velocity decreases and the chemical
composition remains unchanged, because the shock is too thin to cause enough collisions.
Reactions then take place in a zone downstream from the shock. In the subsonic flow
behind the shock, heat release from the reactions causes the pressure to decrease and ve-
locity and temperature to increase. The reaction typically starts out slowly in a so-called
induction zone and then proceeds more rapidly.

In contrast to the detonation mechanism, flame propagation in the deflagration mode is
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2.2. Combustion theory

mediated by transport processes, i.e. thermal conduction and diffusion. One of the earliest
descriptions of flames in the deflagration mode, usually calledlaminar flames,goes back
to Mikhel’son (1889). Here, the pressure over the flame, as well as the specific heatcp of
the mixture, are taken to be constant. Thus, the energy per unit mass added to the mixture
is

e0 = cp(Tb − Tu). (2.54)

With l f denoting the thickness of the flame andw standing for the conversion rate (mass
per unit volume per unit time) due to the reaction, the chemical energy released per unit
area per unit time readse0wl f . This produces upstream conduction of energy from the hot
ashes to the cold fuel:

e0wl f = σ(Tb − Tu)/l f (2.55)

Substituting (2.54) into (2.55) yields

l f =

√
σ

cpw
(2.56)

for the flame thickness. The laminar burning velocity of the flame,sl , sets the mass of fuel
converted per unit flame area per unit time to

ρusl = wl f . (2.57)

Thus, according to Mikhel’son,

sl =
1
ρu

√
wσ

cp
. (2.58)

These are, however, only crude estimates for the flame thickness and the laminar burning
velocity. The structure of a laminar deflagration flame according to Mikhel’son is schemat-
ically given in Figure2.4. For a one-step Arrhenius reaction ofn-th order, the conversion
rate is

w ∝ Xn
fuele

−EA/(RT). (2.59)

Here,EA andR denote the activation energy of the reaction and the universal gas constant,
respectively. Typical values forEA/R are very large compared with temperatures within
the flame. Therefore, the reaction is strongly temperature-dependent. This dependency is
estimated by theZel’dovich number

β = EA
Tb − Tu

RT2
b

. (2.60)

For a large Zel’dovich number the reaction rate throughout most parts of the flame is
negligible and appreciable reaction takes place only at the hot end of the flame, in a region
l f /β, called thereaction zone.The part upstream of the reaction zone is termed convective-
diffusive zone orpreheat zone.This new model, which is depicted in Figure2.4, revises
the balance (2.55) to

e0wl f /β = σ(T∗ − Tu)/l f ≈ σ(Tb − Tu)/l f , (2.61)
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whereT∗ denotes the value of the temperature at the boundary between the preheat zone
and the reaction zone. Equivalently, (2.57) becomes

ρusl = wl f /β (2.62)

and the flame thickness and the burning velocity now read

l f =

√
σβ

cpw
(2.63)

and

sl =
1
ρu

√
wσ

cpβ
, (2.64)

respectively.

2.2.3. Laminar flames

The mathematically correct description of laminar flames is obtained from the general
reactive flow equations (2.20)–(2.23). The simplest nontrivial solution of those are planar
laminar flames found by assuming translational symmetry in two dimensions and looking
for stationary solutions in the remaining direction denoted byx. We will additionally
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neglect external forces. In terms of the dimensionless formulation stationarity is expressed
by settingSr → ∞. Together with (2.29) this givesρv = constant. Equation (2.31)
becomes

ρ∗s∗l
∂X∗i
∂x∗
= −

1
Sci Re

∂

∂x∗
(ρ∗v∗Di X∗i ) + Da1 ρ

∗ω∗Xi
, i = 1 . . .N, (2.65)

and (2.32) gives

ρ∗s∗l
∂e∗tot

∂x∗
= −
∂p∗s∗l
∂x∗

−
Ma2

Re
∂

∂x∗
(s∗l τ

∗) +
1

Re Pr
∂

∂x∗
(σ
∂

∂x∗
T)

−
1

Re Pr
∂

∂x∗

ρ∗ N∑
i=1

1
Lei

h∗i v
∗D
i X∗i

 + ρ∗S∗. (2.66)

Choosing boundary conditions forX∗ ande∗tot at x∗ = ±∞, i.e. burnt and unburnt states,
(2.65) and (2.66) establish a system of ordinary differential equations with the laminar
flame velocitysl being an unknown eigenvalue.

2.2.4. Phenomenological description according to Markstein

A flame description that goes one step beyond the discontinuity approximation of Section
2.2.1was suggested byMarkstein(1951). The simplicity of the approach in the disconti-
nuity approximation is retained by restricting the model to length scales far above the flame
thickness. Therefore this flame description applies to cases in which the flame is wrinkled
by perturbations much larger than the flame thickness, which leads to a bending of the
reaction zone without affecting its internal structure. The phenomenological ansatz made
by Markstein(1951) models the burning speed of the flame as being curvature-dependent:

sM = sl(1− lMκ), (2.67)

whereκ denotes the curvature of the flame front andlM is a phenomenological parameter,
calledMarkstein length,which is of the order of the flame width. This assumption on the
flame propagation velocity prevents the burning front from forming apices with infinite
curvature, which are inconsistent with the picture of a finite inner structure of the flame. A
numerical approach to determine values oflM for astrophysical thermonuclear flames was
given byDursi et al.(2003).

2.2.5. Thermonuclear deflagration in C+O white dwarf matter

The transport processes in white dwarf matter are dominated by the electron gas. This is
due to the high degeneracy of the material. The Fermi energyEF of the electron gas is
about 1 MeV while the thermal energy iskBT ∼ 10 keV. Electron states belowEF − kBT
are occupied limiting the final states for scattering processes to high velocities. Therefore
the mean free path of the electrons is much larger than that for the baryons.
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Following Timmes & Woosley(1992) we estimate the relevant similarity numbers for
white dwarf matter. Typical values for the shear viscosity and the diffusion coefficients
are (Nandkumar & Pethick1984, Paquette et al.1986) µ ∼ 109 g cm−1 s−1 and D ∼
10−4 cm2 s−1. Thermal conductivityσ is composed of contributions from radiative and
conductive transport processes:

σ ∝

(
1
κrad
+

1
κcond

)
, (2.68)

whereκrad andκcond denote the opacities.Timmes & Woosley(1992) argue, that the ra-
diative opacity has much higher values than the conductive opacity. As an example they
give values of the opacities ofκrad ∼ 5 × 10−2 cm2 g−1 andκcond ∼ 1.5 × 10−4 cm2 g−1

under the conditionsρ = 6 × 109 g cm3 andT = 4 × 109 K, assuming the composition
X(C) = X(O) = 0.5. Thus,σ is dominated by conductive processes due to the electrons
and its value is given withσ ∼ 1019 erg cm−1 K−1 s−1 (Timmes & Woosley1992).

This yields for the Lewis and Prandtl numbers:

Le=
σ

ρDcp
∼ 107 (2.69)

and
Pr =

µcp

σ
∼ 10−3, (2.70)

characterizing one of the main differences between thermonuclear flames in degenerate
matter and chemical flames, where usuallyLe∼ 1.

The basic objective in the investigation of laminar thermonuclear flames is to determine
their fundamental properties, such as the burning velocity and the flame width. This can
be achieved in a one-dimensional flame model. The most general way of these studies is
to solve concurrently for the hydrodynamics, nuclear kinetics, and transport properties.

In this spirit, Timmes & Woosley(1992) set up a numerical simulation based on the
equations for the general reactive flow (2.20)–(2.23), neglecting the bulk viscosity. To a
good approximation they setLe to infinity andPr to zero, i.e. the ionic diffusion velocities
and the shear viscosity are neglected, leading to a substantial simplification of (2.20)–
(2.23) and (2.18). Additionally, (2.26) and (2.27) have to be specified. The net reaction
rates for thei-th isotope for all reactions of the formi( j, k)l are given by

ρωXi =
1
Ai

∑
j,k

−λ j,k(i)
XiX j

AiA j
+ λk j(l)

XlXk

AlAk
, (2.71)

with λ jk andλk j denoting the forward and reverse reaction rates, respectively. WithBi

standing for the nuclear binding energy of thei-th isotope, the nuclear energy generation
rateṠ is related to the net reaction ratesṘi (ṘiAi = ρωXi ) by

Ṡ = NA

N∑
j=1

1
A j

Ṙj Bj . (2.72)
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Timmes & Woosley(1992) solve the above equations by applying a 19 isotope nuclear
reaction network that couples 80 reaction rates. They claim that

sl = 92.0× 105
(
ρu

2× 109

)0.805
[
X(12C)

0.5

]0.889

cm s−1 (2.73)

fits the computed values for laminar flame speeds in C+O white dwarf matter to about
10% in the density range 107 g cm−3 ≤ ρu ≤ 1010 g cm−3. We note, however, that the
discrepancy between this fit and the data from numerical simulations given byTimmes &
Woosley(1992) can be larger than that (in particular toward low fuel densities and for fuel
compositions deviating fromX(12C = X(16O = 0.5).

A further method is, to assume the existence of a steady flame propagation into the
unburnt material with a constant velocitysl (see Section2.2.3). Its value now can be
determined from the eigenvalue problem (2.65), (2.66) together with an appropriate choice
of boundary values for the composition and total energy atx = ±∞. This, however,
involves the difficulty of specifying the total energy of the burnt material which is not
a priori known. Nevertheless, it is possible to approximatesl numerically by means of
a “trial-and-error”-method using properties of the integral curve that joins the boundary
values (Zel’dovich et al.1980a, Khokhlov et al.1997).

2.3. Flame instabilities

Fluid motions generally feature various instabilities depending on the physical and geomet-
rical context. These instabilities play a crucial role in various astrophysical phenomena. In
particular, many of the instabilities occur in the context of flame propagation. Those are
of eminent importance in Type Ia supernova models. In the following, three instabilities
that dominate the flame propagation on different scales in the supernova explosion, namely
the Rayleigh-Taylor, the Kelvin-Helmholtz, and the Landau-Darrieus instabilities, shall be
reviewed. The first two instabilities occur in many fields of hydrodynamics, whereas the
Landau-Darrieus instability is specific to the propagation of burning fronts.

There exist, of course other instabilities of flames, such as the so-called diffusional-
thermal instability. This instability is, however, not relevant to the propagation of ther-
monuclear flames in degenerate matter. It results from the competing effects of enhanced
heat loss and enhanced accumulation of fuel due to diffusion at bulges of the flame front.
The former decreases the temperature in the reaction sheet and therefore reduces the reac-
tion rate, while the latter increases the reaction rate. The growth rate of the perturbation
amplitude is given byBarenblatt et al.(1962) as

ωtd = λ

[
1
2
β(1− Le)

]
k2 (2.74)

(for the definition ofβ see equation (2.60)) Thus, forLe< 1 thermal-diffusive effects exert
a stabilizing action on the flame. This is the case in Type Ia supernova explosions, where
Le∼ 107 (see Section2.2.5).
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2.3.1. Linear stability analysis

In the following, the linear stability of three different simplified configurations, charac-
terizing the Landau-Darrieus, the Rayleigh-Taylor, and the Kelvin-Helmholtz-instability,
respectively, shall be discussed. Here one starts out with a system in equilibrium and
perturbs the relevant variables slightly using plane waves. Because the perturbations are
small, all relevant equations can be linearized in terms of the perturbed quantities. The
resulting linearized system of equations is then solved making use of an ansatz in the form
exp(ik · x + ωt). The result of the linear stability analysis is a dispersion relation between
the growth rateω and the wavenumberk of the perturbation. Ifω contains a positive real
part, then the perturbation will grow exponentially with time and the system is unstable.

The Landau-Darrieus instability

Landau(1944) andDarrieus(1938) independently discovered the surprising fact that the
propagation of a laminar flame in the discontinuity approximation is actually unstable.
This instability is of pure hydrodynamical origin and is known as theLandau-Darrieus
instability6, abbreviated as LD instability hereafter, sometimes also calledhydrodynamic
instability. It is universal and applies to all scales that are adequately described by in the
discontinuity picture.

Under the assumption that this condition is satisfied, the linear stability analysis given
by Landau(1944) andLandau & Lifshitz(1959) shall be followed here. For simplicity
the flow is considered as non-viscous. The low Mach number of deflagration phenomena
additionally justifies the assumption of incompressible fluids. Consider a small part of the
flame front which may be regarded as a plane. Without loss of generality, the coordinate
system is chosen to be detached to the front, so that the flame is in rest to it. The plane
of the flame front is spanned iny andz direction and the unperturbed motion of the fuel
and ashes is stationary with the velocity vectoru coinciding with the positivex direction
(i.e. vy = 0). Let the regionx > 0 contain the unburnt material. Here, the quantities will
be indexed byu while the burnt material inx < 0 is labeled by the indexb in the relevant
quantities. Suppose now that a small perturbationu′ is superimposed to the unperturbed
constant motion, so that this perturbation is periodic with respect to time andy-coordinate.
From continuity (2.7) and Euler’s equation (2.9), it follows for the perturbation to leading
order that

∂v′x
∂x
+
∂v′y

∂y
= 0; (2.75)

∂v′x
∂t
+ vx
∂v′x
∂x
= −

1
ρ

∂p′

∂x
;
∂v′y

∂t
+ vx
∂v′y

∂x
= −

1
ρ

∂p′

∂y
, (2.76)

with vx representingvu,x or vb,x andρ denotingρu or ρb, according to the region for which
the equations are written. Note, thatvu,x = sl for the chosen frame of reference. Differen-
tiating the first equation of (2.76) with respect tox and the second with respect toy, one

6or Darrieus-Landauinstability, depending on the country of origin of the respective publication
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obtains by adding both resulting expressions

∂2p′

∂x2
+
∂2p′

∂y2
= 0. (2.77)

The jump conditions over the front discontinuity (see Section2.2.1) have to be satisfied.
Let ξ(y, t) be a small displacement of the front inx direction due to the perturbation.
Then the component of the fluid velocity tangential to the flame front consists of two
contributions: the projection ofu′ on the surface, which, in first approximation, equals
v′y, and the projection of the unperturbed velocityvx, which isvx∂ξ/∂y. Continuity of the
tangential velocity component (2.46) thus reads

v′u,y + sl
∂ξ

∂y
= v′b,y + vb,x

∂ξ

∂y
. (2.78)

It will additionally be assumed that the small perturbation leaves the propagation velocity
of the discontinuity unchanged. This condition cannot be derived from conservation laws
and is posed artificially here. In the adopted coordinate system this is equivalent to the
condition that variations in the relative velocities of the fluid and the discontinuity be zero,
i.e.

v′u,x = v
′
b,x =

∂ξ

∂t
. (2.79)

Finally, it is stipulated that
p′u = p′b. (2.80)

Looking for a solution of equations (2.75)–(2.77) for x < 0 (burnt material) in whichp′,
v′x, andv′y are proportional to the factor exp{iky + ωt}, one finds

v′b,x = Aeiky+kx+ωt, v′b,y = i Aeiky+kx+ωt

p′b = Aρb

(
ω
k − sl

)
eiky+kx+ωt

 (2.81)

Settingp′ = 0, equations (2.76) yield another solution with the same dependency ony and
t of the form const·exp{iky+ωt}. The right hand side of Euler’s equations (2.76) vanishes
and the resulting homogeneous system has a solution in which

v′x, v
′
y ∝ exp

{
iky + ωt −

ω

vx
x

}
. (2.82)

It is sufficient to consider this solution only in the unburnt region (x > 0) because the
aim is to determine whether frequenciesω can exist having positive real parts. For such
frequencies, however, the factor exp{−ωx/v} increases without limit with|x| for x < 0.
Thus a solution of this form is not possible in the region of the burnt fluid.

Choosing appropriate constant coefficients, a solution forx > 0 of the form

v′u,x = Beiky−kx+ωt +C eiky+ωt−ωx/vu,x,

v′u,x = −i Beiky−kx+ωt − iω
kvu,x

C eiky−iωt+iωx/vu,x,

p′u = −Bρu

(
vu,x −

ω
k

)
eiky−kx+ωt


(2.83)
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Figure 2.5.: Dispersion relation betweenω andk for the Landau-Darrieus-instability ac-
cording to (2.86) – dashed line and modified according to Markstein’s burn-
ing law (2.87) – solid line.

is seeked for. By putting
ξ = D eiky+ωt, (2.84)

and substituting all obtained expressions into the conditions (2.78)–(2.80), four homoge-
neous equations for the coefficientsA, B, C, andD emerge. These yield (making use of
ρusl = ρbvb) the following compatibility condition:

ω2(sl + vb) + 2ωkslvb + k2slvb(sl − vb) = 0. (2.85)

For sl > vb this equation has either two real roots or two conjugate complex roots with
<ω < 0 and the flow is stable. On contrast, ifsl < vb (andρu > ρb correspondingly),
both roots of equation (2.85) are real, with one of them positive, resulting in the dispersion
relation (in the following frequently referred to asLandau’s dispersion relation)

ωLD = ksl
µ

1+ µ


√

1+ µ −
1
µ
− 1

 , (2.86)

with µ = ρu/ρb. Thus the flow is unstable. Note, that this is just the case for a burning
front since the density of the products is always smaller compared with that of the unburnt
fluid due to the heating during the combustion.

The fact that=ω = 0 means that the wave does not propagate along the front but is
amplified as a standing wave. For fixedk the slope increases with largerµ. The instability
occurs on all wavelengths of the perturbation, while the increment of the amplification
grows withk. Here it shall be stressed, that the given derivation, which treats the front as a
geometrical surface, is valid only if the wavelength of the perturbation is large in compar-
ison to the flame thicknesskl f � 1. Thus, the model breaks down for high perturbation
wavenumbers.
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2.3. Flame instabilities

The finite flame thickness is expected to exert a stabilizing effect at perturbation wave-
lengths comparable to the flame width. This can be modeled in terms of Markstein’s
approach (Section2.2.4) deviating from the assumption that led to equation (2.79). A
derivation similar to that carried out above (seeMarkstein(1951) for details) with the
burning velocity modeled according to (2.67) yields the modified dispersion relation

ωM = ksl
µ

1+ µ


√

1+ µ −
1
µ
+ k2l2M − 2klMµ − (1+ klM)

 , (2.87)

which is plotted in Figure2.5. This dispersion relation introduces two scales to the system.
One is the perturbation wavelengthλcrit which grows fastest and the other is the cutoff scale
below which perturbations are not amplified anymore. From (2.87) the cutoff scale is found
to be

λcutoff = 4πlM
µ

µ − 1
. (2.88)

The cumbersome expression forλcrit shall not be given explicitly here.
While for the two other instabilities to be discussed in the following the mechanism

may be clear from physical intuition, it seems appropriate to provide a more descriptive
interpretation of the mechanism that causes the LD instability.

The origin of the instability is the refraction of the streamlines of the flow on the density
change over the flame (approximated as a discontinuity). The fluid velocity component
tangential to the flame front is steady and mass conservation leads to a discontinuity in the
normal velocity component. Consider a flame front that is perturbed from an originally
planar shape (see Figure2.6). Mass flux conservation leads to a broadening of the flow
tubes in the vicinity of a bulge of the perturbation. Thus the local fluid velocity is lower
than the fluid velocity at±∞. Therefore the burning velocitysl of the flame is higher
than the corresponding local fluid velocity and this leads to an increment of the bulge.
The opposite holds for recesses of the perturbed front. In this way the perturbation keeps
growing.

The Rayleigh-Taylor instability

TheRayleigh-Taylor(RT) instabilityor buoyancy instabilityis caused by the stratification
of fluids of different densities inversely to the gravitational field. Consider the most sim-
ple case of two different non-viscous, incompressible fluids of densitiesρ1 andρ2 resting
on top of each other with a gravitational field acting downwards. Now choose a coordi-
nate system in which thex–y plane coincides with the equilibrium surface separating both
fluids, while thez axis points upwards.

Proceeding similar to the last section (see alsoChandrasekhar1961), one applies a small
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perturbation to the equilibrium configuration, yielding

ρ
∂

∂t
v′x = −

∂

∂x
p′, ρ

∂

∂t
v′z = −

∂

∂z
p′ − gρ′, (2.89)

∂v′x
∂x

= −
∂v′z
∂z

(2.90)

∂

∂t
ρ′ = −v′z

∂

∂z
ρ′, (2.91)

from Euler’s equation (2.9), incompressibility condition, and mass continuity (2.7), re-
spectively. The gravitational acceleration is denoted byg. Again, it is assumed that the
perturbations be proportional to exp{ikx + ωt}. Substituting this into (2.89)–(2.91) one
obtains the equation

∂

∂z

(
ρ
∂

∂z
v′z

)
= k2ρv′z−

k2

ω2
gv′z
∂

∂z
ρ′. (2.92)

Integration over a volume containing a part of the interface of the two fluids yields

ρ1
∂

∂z
v′1,z− ρ2

∂

∂z
v′2,z = −

k2

ω2
gv′z,12(ρ1 − ρ2), (2.93)

wherev′z,12 denotes the value of the velocity at the interface. Treating the fluids separately,
one finds from (2.92) (

∂2

∂z2
− k2

)
v′z = 0, (2.94)
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which is solved by the ansatz
v′z = Aekz+ Be−kz. (2.95)

For v′z to be continuous over the interface,

v′1,z = Aekz (z< 0) and v′2,z = Ae−kz (z> 0) (2.96)

must hold. Inserting these expressions into (2.93) gives the result

ωRT =

√
gk
ρ1 − ρ2

ρ1 + ρ2
. (2.97)

Thus, in case ofρ2 > ρ1 the configuration is unstable.

The Kelvin-Helmholtz instability

Another instability of fluid motion is theKelvin-Helmholtz(KH) instability or shear in-
stability. It occurs on the interface of two fluids moving with different velocities. This
interface marks a tangential discontinuity. Again, followingLandau & Lifshitz (1959),
consider an incompressible medium and a small part of the discontinuity, which can be
regarded as plane. Without loss of generality, choose a coordinate system comoving with
one of the fluids. The other fluid moves then with the velocityu, which defines thex-
direction of the coordinate system. Fluid 1 with velocityv1,x is located at positivez and
fluid 2 (resting in the chosen frame of reference) at negativez. The derivation proceeds
analogous to those given above. A perturbation proportional to exp{ikx+ ωt} is applied to
the relevant quantities as well as to the coordinates of the interface itself. Equations simi-
lar to (2.75)–(2.77) describe the system. The displacement of the discontinuity surface in
z-direction due to the perturbation is denoted byζ = ζ(x, t) and the velocity of the move-
ment of the surface at fixedx is given by∂ζ/∂t. Since this velocity equals the velocity
component of the fluid motion normal to the discontinuity surface, the condition

∂ζ

∂t
= v′z− v1,x

∂ζ

∂x
(2.98)

must hold (v′z being the value at the surface). An ansatz for the pressure perturbation in the
form

p′ = f (z)eikx+ωt (2.99)

yields from the analog of equation (2.77)

∂2 f

∂z2
− k2 f = 0 (2.100)

Therefore the pressure on side 1 (positivez) becomes

p′1 = const· eikx+ωte−kz. (2.101)
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Setting the displacementζ proportional to exp{ikx+ωt}, equations (2.98), (2.100) and the
analog to (2.75) give

p′1 = −ζ
ρ1(ω + ikv1,x)2

k
. (2.102)

and on side 2 (v = 0)

p′2 = −ζ
ρ1ω

2

k
. (2.103)

The condition that the pressure on both sides of the interface be equal yields

ωKH = kv1,x
−iρ1 ±

√
ρ1ρ2

ρ1 + ρ2
. (2.104)

Owing to the existence of a positive real part inωKH , the system is unstable with respect
to small perturbations. The growth rate of the perturbation increases with its wavenum-
ber. Thus, small-scale perturbations are not suppressed in this idealized model. In real
flows a shear layer of finite thickness will develop instead of the discontinuity due to finite
viscosity. This will prevent small-scale perturbations from growing.

2.3.2. Corollaries from the flame instabilities

In this section, some consequences from the flame instabilities discussed in the preceding
section shall be drawn, keeping in mind the situation of SN Ia explosions. After having re-
vealed the instabilities in the linear approximation, the question arises what flame structure
and flow field would establish as result of these instabilities?

The structure of the flame front is of particular interest, since one of the fundamental
tasks in order to model SN Ia explosions is to determine the effective flame propagation
velocity. Consider the simplified case of a flame front advancing with the constant laminar
burning speedsl independently of the flame shape. Comparing the flame propagation
velocity of a planar laminar flame with the surface areaA0 to the effective speedveff of the
mean position of a flame wrinkled due to instabilities (surface areaA′ > A0) yields

veff = sl
A′

A0
. (2.105)

The flame thus accelerates with increasing surface area. Therefore the task to determine
the effective flame propagation velocity reduces to the determination of the increase in
flame surface area. One has to describe the rate of that increase and to find out, whether
there exists a limiting steady state of the flame structure.

Effects of the Rayleigh-Taylor and the Kelvin-Helmholtz instabilities

As discussed in the previous section, departing from the idealized models, the LD and KH
instabilities will be suppressed for small wavelength perturbations. Is there a similar effect
for the RT instability?
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2.3. Flame instabilities

Consider the situation that occurs in SNe Ia. Here, the flame front will be RT unstable
because the ashes of the thermonuclear reaction have lower density than the fuel, as argued
in Section2.2.1. As the flame is ignited near the center of the WD and propagates outward,
the density stratification due to the nuclear burning is inverse to the gravitational field.
Now, if the RT instability acts on the propagating burning front, it is clear that it can have
effect only in the case that the timescale of its growth is larger than time for the flame to
cross the length scale of the perturbation. Therefore, there exists a minimum length scale
capable of deforming the flame front (Timmes & Woosley1992):

λmin = sl τRT(λmin) (2.106)

The time scale of the RT instability is given by

τ2RT = ω
−2
RT =

λ

2π

(
g
ρu − ρb

ρu + ρb

)
, (2.107)

according to (2.97). Hence,

λmin =
s2
l

2π

(
g
ρu − ρb

ρu + ρb

)
. (2.108)

What flow field is caused by the RT instability? In Section2.3.1only the linearized be-
havior of the flame front under the influence of instabilities was investigated. Yet the flow
field will very soon be dominated by nonlinear effects. This results in large rising bubbles
of light burnt material with fingers (in two dimensions) or sheets (in three dimensions)
of dense fuel sinking down in between. The preference of large structures as a result of
the RT instability originates from the tendency of initially smaller bubbles to merge into
larger ones while rising. For the situation in SN Ia explosions this has been simulated by
Reinecke et al.(1999a, 2002a,b,c), andGamezo et al.(2003).

The general picture of a flow field dominated by the KH instability is that in the vicinity
of the tangential discontinuity vortices will develop in the nonlinear regime. However, for
the KH instability to occur, a tangential discontinuity is necessary. This kind of discontinu-
ity requires the mass flux across the surface of discontinuity to vanish (see Section2.2.1).
This is, however, not the case for burning fronts, where finite mass flux across the discon-
tinuity stabilizes the flame against the KH instability. Nevertheless the situation changes
if the flow field around a burning RT-bubble is dominated by buoyant acceleration. Here,
the mass flux can become negligibly small compared with the tangential velocity com-
ponents (Niemeyer1995). This system can be regarded as being similar to the situation
of a tangential shear flow in a viscous fluid. Here, the mass flux across the surface does
not vanish either, because of microscopic transport and this leads to a shear layer of finite
thickness. The question of the stability of this modified configuration was addressed in a
numerical simulation byNiemeyer(1995) andNiemeyer & Hillebrandt(1997). The au-
thors found that the flames become unstable when the shear velocities reach the laminar
burning velocities of the flame fronts.

Summarizing the effects of the RT and the KH instabilities for the situation in SN Ia
explosions, one finds, that rising bubbles of light burnt material will develop surrounded

41



2. Theoretical Considerations

PSfrag replacements
sl

cos θ

θ

θ

sl

sl

AA

1
2

3
4

Figure 2.7.: Nonlinear effect stabilizing the flame front (adopted fromZel’dovich et al.
1980a).

by sinking dense fuel. At the interfaces strong shear flows cause the development of a
vortical flow field.

The Landau-Darrieus instability: cellular stabilization

The reason why the LD instability has been ignored in all large scale SN Ia models so
far is that there exists a nonlinear stabilization mechanism which limits the perturbation
growth. Figure2.7 illustrates this effect. FollowingZel’dovich (1966), it can be explained
in terms of geometrical considerations. The reason for the growth of the LD instability is
a multi-dimensional motion of the fluid as described in Section2.3.1. Suppose that one
would shut off this fluid motion ceasing the development of the hydrodynamic instability.
The self-propagation of an initially sinusoidally perturbed flame due to burning is now
followed by means of Huygens’ principle, that is one constructs circles of the radiussl∆t
around each point of the front and determines the front position att + ∆t by their envelope
(see Figure2.7, left hand side). This procedure changes the original shape of the flame.
Convex regions grow while concave ones diminish. Finally, a cusp forms at the inter-
faces of neighboring cells (pointA). Here Huygens’ principle breaks down and the flame
propagation enters the nonlinear regime. The propagation velocity at the cusp exceedssl :

vcusp=
sl

cosθ
, (2.109)
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which can be inferred from the simple vector addition illustrated at the right hand side of
Figure2.7. This effect causes a decrease of the perturbation amplitude ˆx which balances
its increase due to the LD instability. This leads to a stabilization of the flame in a cellular
shape which has been observed in experiments.

It is now straight forward to derive the steady state amplitude, which will attune as a
result of the competing effects. The reduction of the perturbation amplitude due to the
increased velocity of the cusps reads(

dx̂
dt

)
−

= sl

(
1−

1
cosθ

)
. (2.110)

Prescribing the shape of the cells as parabolae leads in case of smallθ to

tanθ =
4x̂
λ
=

2x̂k
π
≈ θ, (2.111)

with λ andk denoting the wavelength and wavenumber of the perturbation, respectively.
Equation (2.110) then gives (

dx̂
dt

)
−

= −
2
π2

k2sl x̂
2. (2.112)

Combining this expression with the result from Landau’s linear stability analysis (see equa-
tion (2.86)) yields

dx̂
dt
= ωLD x̂−

2
π2

k2sl x̂
2. (2.113)

The quadratic damping term was not included in the linear stability analysis of Section
2.3.1. It accounts for the stabilization of the flame in a cellular pattern with the stationary
amplitude

x̂s =
ωLDπ

2

2k2sl
(2.114)

The assumption of a parabolic cell structure allows an estimation of the effective flame
propagation velocity in the cellular regime (Zel’dovich et al.1980b). The line integral
over a cell of stationary amplitude yields

L =
λ

2


√

1+

(
4x̂s

λ

)
+

1
4x̂s

sinh−1
(
4x̂s

λ

) . (2.115)

Equation (2.105) now gives
vcell

sl
=

L
λ

:= 1+ ε. (2.116)

Using Landau’s dispersion relation (2.86), Zel’dovich et al.(1980b) estimates the velocity
incrementε of a cellularly shaped flame compared to a planar flame from equations (2.115)
and (2.114) as

ε =
π2

24

(
1−

1
µ

)2

. (2.117)
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This result has been applied to the conditions of SN Ia explosions byKhokhlov (1995).
Note, however that the above relations for the amplitude and propagation velocity of the
steady cellular flame can only give a rough estimate, since the approach taken here does
not allow for treatment of the full nonlinear problem. An approach that is capable of doing
so will be discussed in Section2.4.2.

2.4. Analytical studies of nonlinear flame propagation

In this section we will review some analytical approaches to model the propagation of
flame fronts, which in certain approximations give insight to the nonlinear stage of evolu-
tion. This is of interest for the present study because it sheds light on the roots of phenom-
ena that will later be observed in our numerical investigations of the full problem. Some of
the features of these simulations will be explained referring to analytical and semianalyti-
cal results based on the concepts introduced in the following. Two of them shall be briefly
described in the following. Both reach the conclusion that the flame shows a preference
to stabilize in a long-wavelength pattern, which may considerably exceed the wavelength
λcrit, that should be fastest growing according to Section2.3.1. At first glance this may
seem surprising, but is observed in experiments with chemical flames.

2.4.1. Stability analysis after Zel’dovich

Zel’dovich et al.(1980b) investigate the propagation of curved flames in cylindrical tubes.
They point out, that this problem is closely related to the cellular flame propagation, the
tube walls acting similar to the cusps of the flame front. The study of the flame stability in
this paper is particularly interesting for us.

Zel’dovich et al.(1980b) describe the flame as a hydrodynamic discontinuity and assume
a potential flow field upstream of it. The authors derive a flame structure that resembles
a one-cell pattern filling the tube and is convex to the fuel. Analyzing the flow ahead of
the flame front, they find that there exists a tangential velocity along the flame that in-
creases from the flame tip to the tube walls. Due to this phenomenon, short-wavelength
perturbations are advected toward the walls where they will be absorbed. In order to guar-
antee stability of the flame propagation this has to happen faster than the LD growth time.
Another point that has to be taken into consideration is that a velocity gradient along the
flame front introduces a stretch of the perturbation wavelength that modifies its growth
rate. The combination of effects is analyzed byZel’dovich et al.(1980b) in a WKB-like7

approach. They derive a criterion for stability relating the (finite) initial perturbation to the
tube radius.

7semi-classical technique in quantum mechanics, developed by and named after Wenzel, Kramers, and Bril-
louin (see standard textbooks of quantum mechanics)
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2.4.2. The Sivashinsky equation

In his analysisSivashinsky(1977) derived an asymptotic nonlinear integrodifferential equa-
tion. It captures the flame evolution for the case of a potential flow ahead of the front in
the limit of weak thermal expansion. Two asymptotic cases were investigated: the flame
being dominated by the hydrodynamic instability or by diffusional and thermal effects,
respectively. The chemistry inside the flame was modeled by a one-step reaction taking
place in a narrow reaction zone. The flame model comprised the diffusion equation for
the concentration of the component limiting the reaction, the heat conduction equation and
the Navier-Stokes-equations (see Section2.1.3) together with boundary conditions of con-
stant temperatures and concentrations far ahead and beyond the flame front. The flow was
assumed to be incompressible.

AppendixA provides the derivation of the Sivashinsky equation following the simplified
case presented bySivashinsky & Calvin(1987). This approach focuses on the description
of the hydrodynamic instability and neglects diffusional and thermal effects. The perturbed
flame front is parametrized by

x = φ(y, t). (2.118)

Sivashinsky & Calvin(1987) derive the evolution equation forφ,

φt +
1
2
φ2
y =
γ

2
I {φ}, (2.119)

whereI {.} represents a linear singular nonlocal operator defined by (A.42). It is responsible
for the LD instability.

Equation (2.119) is a simplified version of the original Sivashinsky equation. A more
general derivation (seeSivashinsky1977) does not imply the condition (A.2) of a constant
propagation velocity of the flame with respect to the ashes . The resulting Sivashinsky8

equation includes a term that describes a Markstein-like propagation behavior (cf. Section
2.2.4) of the flame front:

φt +
1
2
φ2
y =
γ

2
I {φ} + lMφyy. (2.120)

Sivashinsky(1977) derives an even more generalized equation that apart from the hydro-
dynamic (LD) instability also reproduces effects of the thermal-diffusional instability9. We
wish to emphasize here, that the Sivashinsky equation relies on the assumption of a poten-
tial flow ahead of the front and describes the flame evolution in the limit of smallγ. It also
assumes that the perturbation of the flame front from a planar shape is weak.

A number of modifications of the original Sivashinsky have been proposed in literature.
These models it have been widely applied in studies of the flame propagation. It is not our
intention to provide a comprehensive list of references here and we thus refer toSivashin-
sky (1983), Gutman & Sivashinsky(1990), Filyand et al.(1994), Rahibe et al.(1995),

8sometimes also calledMichelson-Sivashinsky-equation
9This variant includes aφyyyy-term and the equation neglecting the hydrodynamical instability (by omitting

the integral term) is frequently calledKuramoto-Sivashinskyequation
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Boury & Joulin (2002), and references therein.Frankel(1990) introduces a significant
improvement by an approximative equation which is not restricted to the limit of weak
perturbations anymore. One possibility to infer the flame evolution from these equations
is via numerical integrations (e.g.Gutman & Sivashinsky1990). We will refer to this ap-
proach as “semianalytical” studies of flame propagation. The above equations also have
been applied to the supernova problem (e.g.Blinnikov & Sasorov1996).

2.4.3. Pole decomposition

A rather exceptional property10 of the Sivashinsky equation is, that it admits a pole-de-
composition (Thual et al.1985). This reduces the original partial differential equation to a
finite set of ordinary differential equations describing the motion of the poles in the spatial
derivative ofφ in the complex plane. This provides another possibility to determine flame
evolution from the Sivashinsky equation.

Differentiating (2.120) with respect toy yields

ut + u∂yu = Λu+ lM∂
2
yu, (2.121)

whereu = ∂yφ following the notation ofThual et al.(1985). This equation has solutions
of the form

u(y, t) = −2lM
2N∑
α=1

1
y − zα(t)

, (2.122)

corresponding to the slope of the flame front. Thezα (α = 1,2, . . . ,2N) denote poles in
the complex plane coming in complex conjugate pairs. They move according to

żα = −2lM
∑
β,α

1
zα − zβ

− i sign
{
=(zα)

}
. (2.123)

A proof that (2.122) and (2.123) satisfy (2.120) is given byThual et al.(1985). The
only constraint is that they must occur in complex conjugate pairs. Otherwise, they may
be arbitrarily numerous. Their number is a constant of motion and given by the initial
conditions. A mechanism for the creation of poles at later times is controversial. Solutions
of (2.120) can thus be found in the form

φ(y, t) = −2lM
2N∑
α=1

log{y − zα(t)}. (2.124)

Assuming 2π spatial periodicity makes it sufficient to consider only poles with real parts
between−π andπ. Instead of equations (2.122) and (2.123) now

u(y, t) = −lM
2N∑
α=1

cot
(
y − zα

2

)
(2.125)

10shared only by very few other equations, like the Burgers, the Benjamin-Ono and the Korteweg-de Vries
equations
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Figure 2.8.: (a),(b) example of a solution to the Sivashinsky equation withlM = 1 and
four poles as two complex conjugate pairs located at (−0.6 + 0.06i) and
conjugate complex; (1.2+0.1i) and conjugate complex.(c) shows the slope
and (d) the corresponding structure of the flame front for a two complex
conjugate poles solution withlM = 0.05 anda = 0. In all examples 2π
spatial periodicity is applied.

and

żα = −lM
∑
β,α

cot
(zα − zβ

2

)
− i sign(=(zα)) (2.126)

are used. Thus solutions of (2.120) for spatially periodic perturbations read

φ(y, t) = −2lM
2N∑
α=1

log
{
sin

(
y − zα

2

)}
. (2.127)

An example with two complex conjugate pairs of poles is plotted in Figure2.8(a),(b).
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2. Theoretical Considerations

The existence of a pole-decomposition allows to study the continuous non-linear prob-
lem in terms of a discrete N-body problem for movable singularities. For the simplest
dynamical situation, i.e. two complex conjugate poles at the locationsz(t) = a(t) + ib(t)
andz∗(t) = a(t) − ib(t), it is easily seen from equation (2.126) thata = const for both the
non-periodic and the periodic case and the stable equilibrium configuration isbeq = lM
for the non-periodic andbeq = tanh−1 lM for the periodic situation. Figures2.8(c) and (d)
show the slope and the structure of the flame front for a two-pole equilibrium solution.
Note that Figures2.8(a),(b) do not correspond to an equilibrium configuration.

From the study of the interaction of two polesThual et al.(1985) show that poles have
the tendency to attract each other horizontally (in the real direction of the complex plane)
and to repel each other vertically. Additionally, they exhibit a drift toward the real axis.
Studies forN poles confirm that steady state solutions with all poles aligned parallel to the
imaginary axis exist. A steady state solution in case of multiple poles is a solution of the
simultaneous equations ˙zα = 0, α = 1 . . . 2N. In the spatially periodic caseThual et al.
(1985) derive a criterion which restricts the maximum number of poles for a steady state
solution depending onlM .

Thual et al.(1985) perform a transition from discrete dynamics to a continuous approx-
imation at largeN. They find that the poles show the tendency to concentrate near the real
axis. This phenomenon is termedpole condensation. The concentration proceeds without
limit for the non-periodic case andN → ∞. In the periodic case, however, the maximum
number ofN is restricted and the cusp forming here will always be rounded for finitelM ,
since the innermost pole will still have a finite distance from the real axis.

Concluding, we note that the pole dynamics resembles the picture of flame front evolu-
tion in Zel’dovich’s reasoning (Section2.4.1). The tendency of the poles to align parallel
to the imaginary axis corresponds to the advection of perturbations toward the cusp.

2.5. Fractal descriptions of flame fronts

As discussed in the preceding sections, instabilities lead to a complex spatial flame struc-
ture. The relation of the effective flame propagation to the surface area of the wrinkled
flame front (equation (2.105)) thus gave rise to attempts of capturing the flame geometry
in a fractal description. In connection to the supernova problem this idea was put forward
by Woosley(1990) who suggested a fractal model for the RT unstable burning front.

The numerical studies that will be presented in this work focus on scales, where the LD
instability is the dominant effect. Therefore we will concentrate on a fractal description
of the cellular burning regime. This topic has been addressed byBlinnikov & Sasorov
(1996), Niemeyer(1995), andNiemeyer & Woosley(1997).

Fundamental to these approaches is the assumption of the formation of a hierarchy of
cellular structures as a result of the nonlinear stabilization of the LD-unstable burning
front. The mechanism that accounts for the build-up of the hierarchy is the superposition
of a cellular structure by cells of shorter wavelength in an overall planar flame geometry or
repeated cell-splitting in a spherically expanding flame. This idea is supported by exper-
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2.5. Fractal descriptions of flame fronts

imental observations and also by numerical integrations of the Sivashinsky equation (e.g.
Gutman & Sivashinsky1990, Filyand et al.(1994), andBlinnikov & Sasorov(1996)).
However, the origin of the cell-splitting is controversial. In the pole decomposition ap-
proach, the number of complex poles is a constant of motion and thus the repeated cell
splitting phenomenon appears to be non-generic in the class of pole-decomposable solu-
tions as argued byJoulin(1989, 1994). Here, numerical noise in the simulations applying
the Sivashinsky equation is suggested to account for the phenomenon, whileRahibe et al.
(1995) suggest that solutions built with a fixed number of poles are not stable solutions of
the Sivashinsky equation (in its modified version that accounts for flame expansion). This
controversy, however, is not relevant for the reasoning of a fractal flame model for cellular
flames in SN Ia explosions, since physical noise is expected to be present here, which can
account for cell splitting anyway.

The foundation of the fractal models is the notion that a flame in a certain range of
length scales can be considered as an irregular surface whose statistical properties change
in a self-similar way. Self-similarity can be defined in the following way: LetA denote
a surface area. Then̄Al denotes the surface area smoothed on a length scalel by filtering
out all scales belowl (by convolution with an appropriate low-pass filter). Consider the
flame surfaceĀl0 smoothed atl0 and make a transition in the length scalel′ = bl0, b ∈ R.
Self-similarity then states

Āl′ = Āl0 f (b), (2.128)

f (b) being a function independent ofl0. The constraintf (b) f (c) = f (bc) implies power
law dependence off . A scale range in that this similarity holds is then called similarity
range. SetsS(D) in n spatial dimensions whose (n − 1)-dimensional surface scales self-
similarly

Āl ∝ l β y f (b) ∝ bβ (2.129)

are termedfractals Mandelbrot(1983). The fractal dimensionD of the surface is then
defined as

D = n− 1+ β, (2.130)

whereβ denotes the so-called fractal excess. Consider the case of a flame front in two-
dimensional space. Then the fractal dimension of the one-dimensional flame surface reads

D1d = 1+ β. (2.131)

Blinnikov & Sasorov(1996) proved analytically that a flame modeled by the Frankel
equation11 (Frankel1990) obeys

β = D0(1− 1/µ)2. (2.132)

By means of numerical simulations applying the Frankel equation, they determinedD0 ≈

0.3 within an error of about 50%.

11That means, this model for a flame is valid only in the limit of weak thermal expansion. The authors also
showed that the fractal excessβ is rigorously zero for a flame modeled by the Sivashinsky equation, i.e.
equation does not produce a fractal flame surface.
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Niemeyer & Woosley(1997) andNiemeyer(1995) take a simplified approach and de-
scribe the flame front as a hierarchy of cells at all length scales above a critical scalelmin

of the order of the Markstein length. The effective front propagation speedvi on each scale
l i is then related to the scalel i−1 < l i by

vi = vi−1 + εvi , (2.133)

with the velocity increment defined by equation (2.117). Taking the continuum limit and
assuming cell splitting to occur after a spatial dilatation interval ofS gives

veff ≈ sl

(
l

lmin

)ε/ ln S

, (2.134)

which yields

β =
ε

ln S
. (2.135)

This agrees with (2.132) in the functional dependence on (1− 1/µ)2. The parameterS,
however is not fixed by this model. It can be estimated by comparison with the simulation
result ofBlinnikov & Sasorov(1996) to S ≈ 4.

2.6. Turbulent combustion

As has been pointed out in literature many times and recently has been confirmed by
large scale supernova simulations (Reinecke et al.2002b, Gamezo et al.2003), turbulent
combustion is the key to deflagration models of SN Ia. After introducing some basic
concepts to describe turbulent flows, we will give an overview of the effects of turbulence
on flame propagation. Since the fluid velocities in SN Ia explosions are mostly well below
sound speed, we will restrict the discussion to turbulence in incompressible flows, i.e.
∇ · u = 0. Thus, neglecting external forces, the Navier-Stokes equation (2.16) takes the
form

∂ρu

∂t
= −∇ · (ρuu) − ∇p+ µ∆u, (2.136)

or in nondimensional notation12

1
Sr
∂ρ∗u∗

∂t∗
= −∇∗ · (ρ∗u∗u∗) − ∇∗p∗ −

1
Re
µ∆∗u∗ (2.137)

12In principle, one could derive this equation from taking the limitMa→ 0 of equation (2.30), but obviously,
that equation then gets singular in the second term on the right hand side. Thus, the common procedure
is to expand the quantities in a series of the Mach number and to analyze the equations for powers ofMa
separately. Making (2.136) nondimensional applying the procedure from Section2.1.5does not involve
the Mach number anymore, since the incompressible limit corresponds to infinite sound speed, which then
cannot serve as a reference velocity anymore. Thus the reference pressure to make the second term of
(2.136) dimensionless is chosen such, that it cancels out withρrefvref from the kinematic term.
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2.6. Turbulent combustion

The only relevant characteristic dimensionless quantity here (choosingSr= 1 as discussed
in Section2.1.5) is theReynolds number13

Re(l) =
ρlv(l)
µ
. (2.138)

It compares inertial forces to the viscous forces at a given reference length scale. Thus,
different flows show the same features as long as the Reynolds number is unchanged. Con-
sider the Reynolds number at the integral scaleRe(L), whereL is defined by the boundary
conditions of the problem. A large number of experiments revealed distinct regimes of
flow characteristics depending onRe(L). In case of small Reynolds numbersRe. 10 (that
is, the impact of the advection term is still balanced by the viscous term in the Navier-
Stokes equation), the flow is stationary and laminar. For higher Reynolds numbers the
advection term becomes more and more dominant. The flow adopts a quasi-stationary
pattern and forRe& 200 it develops spatially and temporally chaotic fluctuations. This
is called fully developed turbulence and we will assume the flow to be in that state in the
following paragraphs and simply refer to it as “turbulence”.

2.6.1. Basic concepts of turbulence theory

In our discussion of turbulence we will restrict ourselves to a heuristic approach instead
of a more rigorous statistical description. It is founded on the concept of aturbulent cas-
cadeintroduced byRichardson(1922). The basic element of this cascade is theturbulent
eddy14. Turbulent eddies are produced by large scale instabilities at the integral scaleL (in
case of SN Ia explosions the RT and KH instabilities) and become themselves unstable.
Thus they decay into successively smaller eddies of lower rotation velocityv(l) forming a
cascade in spatial scale space15. Since the Reynolds number is scale-dependent and de-
creases with smaller scales, viscosity effects become dominant at a certain scale and the
turbulent eddies are dissipated into heat. The corresponding scale is termed dissipation
scale orKolmogorov scale lK . Clearly, a single energy input and dissipation scale is an
idealized concept. However, if both scales are separated well enough, then one can expect
a scale range in between where a constant amount of kinetic energyε is gradually trans-
ported from larger to smaller eddies. This amount should be equal to the energy input and
the energy dissipation. Otherwise energy would pile up or disappear at a certain scale,
which would be unphysical. The described scale range is calledinertial range,

lK � l � L, (2.139)

and here turbulence can be expected to be isotropic and inviscid.

13The scale-dependent Reynolds number defined by (2.138) is sometimes also calledturbulent Reynolds
number.

14A precise definition of an “eddy” is lacking; it is meant to be a turbulent motion localized within a region
of a specific size.

15A more exact formulation would define the reference velocityv(l) in (2.138) as the statistical velocity
fluctuationv′(l) at scalel.
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Kolmogorov (1941) formulated this model in a more quantitative way. He based his
considerations on three hypotheses: on local isotropy, on a universal form of the statistics
of the small scale motions, and on similarity of intermediate-scale turbulent motions. We
will not follow this approach in detail here and refer toPope(2000) for further reading.
Nevertheless, some of the consequences of Kolmogorov’s hypotheses shall be summarized
in the following.

Starting from the notion that the properties of the flow in the inertial range are completely
determined by the quantitiesρ, l, andv(l), one finds that the only combination of these
possessing the dimension of a rate of specific energy [erg g−1 s−1] is (Landau & Lifshitz
1959)

ε ∝
v(l)3

l
. (2.140)

yielding

v(l) = v(L)

(
l
L

)1/3

. (2.141)

Inserting (2.141) into (2.138) one obtains

Re(l) =
ρv(L)l4/3

µL1/3
= Re(L)

(
l
L

)4/3

. (2.142)

It is clear that the dissipation of turbulent kinetic energy takes place at scaleslK where
viscous effects become dominant, i.e.Re(lK) ∼ 1. Thus

lK ∼
L

Re3/4
. (2.143)

The spectrum of the turbulent kinetic energy in the inertial range can be derived giving
(Pope2000)

E(k) = Cε2/3k−5/3, (2.144)

wherek = 2π/l denotes the wavenumber of the turbulent eddy of sizel andC is a universal
constant.

In the discussion so far, we neglected external forces. However, on large scales gravity
is relevant for the SN Ia problem and the presence of a gravitational field can modify the
turbulent scaling. According toBolgiano(1959) andObukhov(1959) velocity fluctuations
then follow the relation

v(l) ∝ l5/3. (2.145)

The effects of this modifications on supernova explosion models are discussed byNiemeyer
& Kerstein(1997a,b).

2.6.2. Turbulent burning regimes and resulting length scales

The most important question regarding turbulence with respect to the subject of this work
is: How does turbulence interact with combustion? The theory of turbulent combustion
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Figure 2.9.: Regimes of premixed turbulent combustion (followingPeters1999).

stems mainly from applications of chemical flames. Here one distinguishes between pre-
mixed and non-premixed turbulent combustion. Of course, a mixture of reactants is not
required in thermonuclear reactions as in SN Ia. Here, combustion is consequently similar
to premixed combustion, which will be discussed henceforth.

Turbulence alone is a complex field and combustion processes add even more complica-
tions. Therefore the theory of turbulent combustion is still under continuous development
and only a fraction of phenomena can be regarded as being well understood. One of the
most important notions in this subject is probably, that turbulent combustion takes place in
distinct regimes, which are accessible by different methods of theoretical modeling. One
way of classification is to relate the turbulent velocity fluctuations (normalized to the lam-
inar burning velocity) to the corresponding length scale (normalized to the flame width).
A diagram of this classification was introduced byBorghi (1985) andPeters(1986) and
is shown in Figure2.9. The transition regions between the regimes are determined here
by comparing the velocity of turbulent eddies at certain scales characteristic to the flame
to the laminar burning velocity. As long as the turbulent eddies of a given size are much
slower than the laminar burning velocity, the flame will burn through the eddies before
they can affect its structure. The corresponding regime is calledwrinkled flamelet regime.
The turbulent flow bends the flame slightly on scales large compared to the flame width
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and thereby increases the flame surface (and thus the total energy release rate according
to equation (2.105)). However, it does not affect the inner structure of the flame (and thus
microscopically the flame velocity remainssl). This changes in thecorrugated flamelet
regime, where the turbulent eddies now noticeably alter the shape of the flame, but still
leave its inner structure unaffected. The transition scalelGibs between the regimes is de-
fined by comparing the eddy turnover time to the flame crossing time at that length:

τeddy(lGibs) = τflame(lGibs), (2.146)

yielding
v(lGibs) = sl . (2.147)

The scalelGibs is identified with theGibson scale(Peters1986). If the Kolmogorov scale
of the turbulent flow becomes smaller than the thermal width of the flame, then turbulent
motion starts to modify the structure of the preheat zone and the flame enters thethin
reaction zoneregime. Eddies are now able to distribute burning material and to disrupt the
closed flame front. Therefore, the regionlK < l f is also termeddistributed burning regime.
At an even smaller Kolmogorov scale the turbulent eddies finally start to dominate the
structure of the reaction zone (l f /β, see Section2.2.2). The corresponding regime is that of
broken reaction zones which ultimately turns into the so-called well-stirred reactor. Except
for the flamelet regimes all other turbulent burning modes modify the inner structure of the
flame, whose propagation velocity then deviates fromsl accordingly.

We would like to emphasize at this point, that the above classification and in particular
the transition regions only apply to chemical combustion processes. Here, the Prandtl
number isPr ∼ 1. This is not true for the situation in SN Ia explosions, wherePr ∼ 10−3

(cf. Section2.2.5). The possible changes have been investigated byNiemeyer & Kerstein
(1997a). The authors point out that the transition between the flamelet and the thin reaction
zones regimes may shift toward stronger turbulent fluctuations for lower Prandtl numbers.

2.6.3. Active turbulent combustion

The consideration in the preceding section neglected any feedback of burning on the turbu-
lent flow. However, it may be true that the expansion of the burnt material inside the flame
significantly increases the strength of turbulent fluctuations. AsNiemeyer & Woosley
(1997) point out, the efficiency of such a feedback mechanism need not be large in order
to have substantial impact on the supernova model. Following from the fact that thermal
expansion behind the flame is the origin of the LD instability, one could conclude, that the
resulting stabilization of the flame in a cellular pattern will prevent a feedback between
burning and turbulence. However, it is not known what will happen if the cellular stabi-
lization breaks down. This can possibly occur due to the turbulent cascade from above.
Niemeyer & Woosley(1997) predict a flame structure that still resembles a cellular pat-
tern but now in a random orientation that inhibits self-stabilization. They assume in a
first approximation that this effect is most efficient on the scale of the expanding regions
themselves and does not significantly couple to turbulent velocities on other scales. It thus
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affects only the fluctuation amplitudes and not the spectrum. The simplest case is then a
constant scale-independent growth rate, that is a function of the expansion parameter only,
leading to an exponential growth of the turbulent velocity fluctuations.

The conjecture of a feedback mechanism attempts to reason a possible production of
turbulence by the flame itself and was thus termed“active turbulent combustion”(ATC)
by Niemeyer & Woosley(1997). The idea is supported byKerstein(1996) in a study ad-
dressing the evolution of a flame that is missing any stabilization mechanism. Taking into
account the two-way interaction between the turbulent burning velocity of the flame and
the turbulent velocity fluctuations ahead of it, the author concludes that such a flame model
does not admit a statistically steady propagation resulting in an increase of the turbulent
flame speed until finite Mach-number effects predominate.Kerstein(1996) argues that this
runaway is caused either by a self-acceleration mechanism or by a purely statistical effect
and predicts a power law growth of the turbulent burning velocity. The growth exponent
is sensitive to the details of the flame dynamics and strongly configuration-dependent and
therefore remains undetermined in that study.

2.7. Deflagration to detonation transition

In Section2.2.1we showed that the conservation laws admit two distinct modes of the
propagation of a flame, the subsonic deflagration mode and the supersonic detonation
mode. These modes are also different in the mechanism of flame mediation: microphys-
ical transport processes on the one hand and shock waves on the other. Here arises the
question, whether or not a transition from one mode into the other is possible and what
mechanisms can account for it.

In fact,deflagration to detonation transitions(DDTs) are observed in experiments with
terrestrial flames. Here, however, it appears that mostly interaction with obstacles in the
combustion chamber or the walls of it (e.g.Shchelkin1940) account for the transition.
These effects do, of course, not apply to astrophysical explosions. In general, the physics
of the DDT is not well understood.

Nevertheless, mechanisms providing a DDT in the context of SN Ia explosions have
been suggested in literature (for a discussion of those seeNiemeyer1999). Assume that
the turbulization of the flame proceeds passively by the turbulent eddy cascade evoked by
large-scale instabilities. Then the creation of a pressure spike that turns into a detonation
can only be achieved by burning a critical volume of fuel in sound-crossing time (or less).
Augmentation of the flame surface by turbulent wrinkling (captured for instance in a fractal
model of the flame) is unlikely to allow for this, since in the flamelet regime the flame
acceleration is determined by the turbulent velocity fluctuations. These, however, cannot
exceed sound speed in standard SN Ia explosion models (Niemeyer & Woosley1997).

Thus, a mechanism that is often proposed to account for a possible DDT in SNe Ia is
the induction time gradient mechanism (Zel’dovich et al.1970). It was applied to the
supernova problem byBlinnikov & Khokhlov (1986) and later re-examined byKhokhlov
et al.(1997). This mechanism is based on the pre-conditioning of the temperature gradient
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in a sufficiently large volume. The combustion wave moving along this volume may then
build up a pressure wave that turns into a detonation. However,Niemeyer(1999) argues
that the preconditioning of a smooth temperature gradient in large volumes is very unlikely
to be achievable in SN Ia explosions. As an alternative route for a DDT he suggests
acceleration of the flame propagation via active turbulent combustion.
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After the introduction of the physical fundamentals in the last chapter we now turn to
the synthesis of the astrophysical model of Type Ia Supernova explosions focusing on the
aspects relevant to the objective of this work. Here we will apply the concepts described in
the previous chapter and infer constraints on the numerical implementation of this model
that will be subject of the next chapter. The astrophysical model that sets the framework
for our study has already been discussed briefly in Chapter1. We will now assemble the
theory summarized in the preceding chapter into this model.

3.1. Thermonuclear combustion in Type Ia Supernovae

3.1.1. Models for the explosion mechanism

In our work, we focus on Chandrasekhar-mass models for SN Ia. Despite the general
agreement that C+O white dwarfs are promising progenitors for SNe Ia, the details of the
explosion mechanism is still controversial. AtT ∼ 1010 K the carbon burning reaction
rate scales aṡS ∼ T12 (Hansen & Kawaler1994). This confines the reaction to very thin
layers and gives rise to the formation of a flame. The fundamental question in models of
the explosion is, how does the flame propagate through the star? We will now give a brief
overview over the various mechanisms that have been proposed leading to the problem we
address in our study.

• The detonation modelwas first applied in a numerical simulation byArnett (1969).
A spherically symmetric detonation wave was initiated near the center of the WD
and propagated outward. Criteria for the spontaneous formation of a detonation
wave have been investigated byBlinnikov & Khokhlov (1986) andWoosley(1990).
They reach the conclusion, that a detonation can initiate for certain prerequisites. A
prompt detonation as explosion model produces enough energy required for a SN Ia
event. However, ahead of a supersonic detonation wave the fuel cannot expand and is
therefore incinerated at the high densities of an equilibrium white dwarf. This results
in the almost complete conversion of the material in nickel-peaked nuclear statistical
equilibrium (Arnett 1969), which is in conflict with the intermediate mass elements
observed in SN Ia spectra. These nucleosynthetic problems and uncertainties on the
possibility of the initiation of the detonation wave rule out a pure detonation scenario
as a standard model for SN Ia explosions.

• The deflagration modelassumes the flame propagating in the subsonic deflagration
mode. As explained in Section2.2.2, the laminar burning speed of the deflagration
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flame is determined by microphysical transport processes. For conditions of carbon
burning in C+O WDs it is highly subsonic (Timmes & Woosley1992) and therefore
the flame propagates far too slowly to explain SN Ia explosions. The expansion
of the star will then quench burning before the WD gets unbound. On the other
hand, this model can cure the problem of nucleosynthesis, since rarefaction waves
can travel ahead of the flame with sound speed and lower the fuel density prior to
burning. Thus the material can partly be processed to intermediate mass elements.

This model undergoes a significant improvement when multidimensional effects are
taken into account. Since the deflagration front is unstable (cf. Section2.3), turbu-
lent effects will increase the effective propagation velocity of the flame. This has
been incorporated as a free parameter in one-dimensional models leading to rea-
sonable results both regarding the energy release of the explosion and the produced
spectra. Recent three-dimensional numerical simulations (Reinecke et al.2002b,
Gamezo et al.2003) that self-consistently model turbulent effects confirmed that the
star can successfully be unbound in that way.

• The delayed detonation (DD) modelconjoins the advantages of the deflagration
and the detonation models. It was put forward byIvanova et al.(1974), Khokhlov
(1991), andWoosley & Weaver(1994). Burning starts out in the slow deflagration
mode and the star can pre-expand. When the flame reaches fuel of a certain transi-
tion densityρtr, flame propagation turns into a detonation and burns the star until the
flame is quenched at low densities. This detonation is an easy way to explain the en-
ergy release necessary for a SN Ia explosion. The important notion in this model is
that a detonation at low fuel densities can lead to only partial burning and is therefore
capable to generate intermediate mass elements. Another possible advantage of this
model derives from a problem of current three-dimensional implementations of the
deflagration model. The Rayleigh-Taylor bubbles being the origin of the turbulent
flame acceleration cause considerable amounts of unburnt C+O matter to remain in
“fingers” near the center of the star, which are eventually in conflict with spectral SN
Ia observations. A detonation wave initiated at later stages of the evolution could be
capable to burning out those fingers and to process the unburnt material.

The main disadvantage of the DD model is that the transition density is an artificially
introduced parameter. The mechanism of a possible DDT is completely unclear yet
(if there exists one at all, cf.Niemeyer1999) and thus the exact value ofρtr is
unknown, although phenomenological models suggestρtr ∼ 1×107 g cm−3 (Höflich
& Khokhlov 1996, Iwamoto et al.1999).

• The pulsational delayed detonation (PDD) model(Arnett & Livne 1994a,b) is sim-
ilar to the DD model in the sense that it combines an initial deflagration with a later
detonation. The flame is assumed to propagate in the initial deflagration phase with
its laminar burning speed and pre-expands the star. Due to the slow flame velocity,
the burning front stalls and fails to unbind the star. The WD then re-contracts giving
the interface between burnt and unburnt material enough time to mix and to become
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nearly isothermal. Compressional heating finally triggers a detonation at densities
that are lower than that prior to the first expansion phase.Höflich & Khokhlov
(1996) employ this scenario in a phenomenological one-dimensional model and con-
clude that it may account for sub-luminous SN Ia. However, the assumption that the
flame propagates with the pure laminar burning velocity in the deflagration phase
seems unrealistic, because of the flame instabilities and the resulting turbulent flame
acceleration. Recent multidimensional deflagration models (Reinecke et al.2002b)
demonstrated that taking into account these effects, the star will get unbound and
not recontract.

The studies in this work apply to the deflagration model and possibly to the DD model. We
will study the flame evolution in the deflagration mode on scales, where the flame propa-
gates in a cellular pattern. This burning regime is yet unexplored by full hydrodynamical
simulations. It could modify the effective flame propagation velocity and eventually (as
suggested byNiemeyer & Woosley1997) provide some insight into possible DDT mech-
anisms.

3.1.2. Turbulent combustion in Type Ia supernova explosions

The flame instabilities that play an important role in the SN Ia problem and their effects
on the flow and the flame shape in SN Ia explosions have been discussed in Section2.3.
On large scales, the RT and KH instabilities predominate and lead to the development of a
turbulent cascade.

The fact that turbulent effects will be present can be easily understood from estimating
the Reynolds number around a RT bubble. With the typical size of a RT bubble ofL ∼
107 cm, its characteristic shear velocity of∼107 cm s−1, µ ∼ 1 cm2 s−1 (cf. Section2.2.5),
andρ ∼ 109 g cm−1, one obtainsRe(L) ∼ 1014 and can thus expect pronounced turbulent
effects. According to equation (2.143) this yields the Kolmogorov scalelK ∼ 10−3 cm. The
large scale space in between the integral length scaleL andlK allows a turbulent cascade
to build up.

Consequently, thermonuclear burning in SN Ia explosions is subject to turbulent com-
bustion. Classification of the turbulent combustion in SN Ia yields burning in the flamelet
regime for fuel densities&107 g cm−3, and transition to distributed burning (thin reaction
zones regime) below.

A relevant scale to classify the burning regime is the Gibson scale1, defined by (2.147).
This scale is, however, afflicted with considerable uncertainties. Firstly, the fitting formula
by Timmes & Woosley(1992) for the laminar burning velocitysl does not as well agree
with the simulation data as the authors claim. Nevertheless, we applied this expression for
sl in our simulations. Because of the power law dependence oflGibs on sl this may cause
large discrepancies. Secondly, the power law exponent is dependent on the scaling relation

1Note, that we use a slightly generalized notion of this term which was originally introduced in connection
with Kolmogorov scaling. In this work, the “Gibson scale” is defined solely by equation (2.147) with no
presumed scaling.
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Figure 3.1.: Gibson length as function of fuel density for various compositionsX(12C),
X(16O) = 1.0− X(12C), assuming Kolmogorov (Kol) or Bolgiano–Obukhov
(BO) scaling.

of the eddy cascade. For Kolmogorov scaling one obtains from (2.147)

lGibs = L

(
sl

v(L)

)3

(3.1)

and Bolgiano-Obukhov scaling gives

lGibs = L

(
sl

v(L)

)5/3

. (3.2)

Figure3.1displays the Gibson length for Kolmogorov and Bolgiano-Obukhov scaling for
different fuel compositions, assuming theTimmes & Woosley(1992) fit for sl to be correct
in the density range of consideration. Despite the obvious uncertainties we will assume
throughout our astrophysical and numerical modeling that the Gibson scale is well above
the thermal width of the flame and burning therefore takes place in the flamelet regime.
We shall arrange the computational domains in our simulations in a way that effects on
scales around 104 cm can be explored. Since simulations at these scales do not resolve the
inner structure of the flame, we will develop numerical techniques that treat the flame in
the discontinuity approximation (see Chapter4).
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3.2. Hydrodynamical considerations

3.2. Hydrodynamical considerations

3.2.1. The equation of state for white dwarf matter

White dwarfs are the relics of stars that have ceased nuclear burning and are therefore not
supported against gravitational collapse by thermal pressure anymore. By contracting from
their former size they reach extremely high densities defining them as part of the class of
compact objects besides neutron stars and black holes. The interior of a WD resembles
a very dense solid with an ion lattice surrounded degenerate electrons. These provide the
cold degenerate fermion pressure that supports the WD against further contraction.

The mass of a WD is limited by the Chandrasekhar mass to be less than∼ 1.4M�.
Typical parameters are (Balberg & Shapiro2000) a radius of∼5× 108 cm, a mean density
of ∼107 g cm−3, and a mean pressure of∼1024 dyne cm−2. SinceGM/Rc2 ∼ 10−4, general
relativistic effects are not relevant to our model. Temperatures of the white dwarf depend
on its pre-ignition evolution and age but are below∼109 K.

The equation of state of white dwarf matter is governed by the electron gas. Further
contributions come from the photon gas, the nuclei, and—at high densities—from electron
positron pair creation. We will neglect solidification effects, allowing the treatment of
the nuclei as an ideal gas. Corrections due to Coulomb interaction between electrons and
baryons are only marginal and thus will be neglected here. This leads to the following
constituents of the equation of state:

• The electronsare both degenerate and relativistic to a degree that depends on the
Fermi energyEF and the temperature. The degeneracy is partially lifted in the burn-
ing products due to the higher temperature. Defining the relativistic Fermi integrals
as

Fk(η, β) =

∞∫
0

xk(1+ 1
2βx)1/2

e−η+x + 1
dx, k > −1, (3.3)

energy and pressure of the electron gas are given by

ee =
8π
√

2
h3

m4
ec5β5/2 [

F3/2(η, β) + βF5/2(η, β)
]

(3.4)

pe =
16π
√

2
3h3

m3
ec5β3/2

[
F3/2(η, β) +

1
2
βF5/2(η, β)

]
, (3.5)

where the parameters

η =
EF

kBT
and β =

kBT

mec2
(3.6)

characterize the degrees of degeneracy and the effects of relativity, respectively.
Here,c denotes the vacuum speed of light.

• Thenucleiare entirely ionized owing to the high prevailing temperatures and pres-
sures. The high densities under consideration justify the assumption of thermal equi-
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librium between electron gas and nuclei. This allows the unique definition of a tem-
perature. Thus, the nuclei are described in a good approximation by the Maxwell-
Boltzmann statistics yielding

en =
3
2
RTρ

∑
i

Xi

Ai
, (3.7)

pn =
2
3

en. (3.8)

• The contribution of thephotonsis assumed to follow a local black-body spectrum
and are obtained from the Stefan-Boltzmann law:

eγ =
4σSB

c
T4, (3.9)

pγ =
eγ
3
, (3.10)

with σSB denoting the Stefan-Boltzmann constant.

• Electron-positron pair creationmay occur if the photon energy exceeds 2mec2 and
corresponding cells in phase space of the electrons are unoccupied. This effect is
noticeable in the hot ashes. The contributions of the electrons and positrons follow
equations (3.4) and (3.5) with the modified Fermi integrals (Cox & Giuli 1968)

Fk(η, β) =

[
Fk(η, β) + Fk(−η −

2
β
, β)

]
. (3.11)

Neutronization may occur in the reaction products (Nomoto & Kondo1991, Brachwitz
et al.2000), but this effect will not be taken into account here.

3.2.2. External forces: gravity

Obviously, the self-gravity of the white dwarf star introduces an external force to the hy-
drodynamical equations (cf. Section2.1):

f = −∇Φ, (3.12)

whereΦ is the gravitational potential. As stated in Section3.2.1 it is well-justified to
apply the Newtonian limit, whereΦ is given by Poisson’s equation∆Φ = 4πGρ. The
numerical solution of this elliptic partial differential equation introduces some complica-
tions especially in parallel computational code designs (cf.Reinecke2001). However, we
concentrate on scales where gravitational effects are negligible and will therefore neglect
external forces in the following.
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4. Numerical implementation

In principle, a full numerical implementation of a system describing the propagation of
a thermonuclear flame in white dwarf matter would require to solve concurrently for the
hydrodynamics (Section2.1.4), nuclear kinetics (Section2.1.6), and transport properties
together with an appropriate equation of state (Section3.2.1). In one dimension, this has
been done byTimmes & Woosley(1992) and currently efforts are taken to perform such
simulations in more than one dimension (Fryxell et al.2000). In principle, this task is
feasible with today’s computer power, although simulations of this kind will not be able to
reach the global scales of the white dwarf.

The reason for this is the vast range of relevant length scales involved in the Type Ia
supernova explosion problem. From the scales of the white dwarf star (radius∼5×108 cm)
and the integral scales of turbulence due to the RT instability (∼107 cm) down to the scales
of the inner structure of the thermonuclear flame it spans about 10–11 orders of magnitude.
Clearly, there is no hope to be able to resolve the full scale space in numerical simulations
in foreseeable future.

Thus, one has to apply approximations in order to be able to perform flame simulations
on scales of the white dwarf star (LSCs, see Section1.3) or on intermediate scales, such as
the Gibson scale, which we will tackle in this work. A model that is physically rigorous at
these scales is the discontinuity approximation for the flame (Section2.2.1).

The general reactive flow equations (see Section2.1.4) incorporate the hydrodynamics as
well as microphysical transport phenomena that determine the internal flame structure and
are responsible for flame mediation. The discontinuity approximation does not resolve the
inner structure of the flame front. Hence, the laminar flame velocitysl is not intrinsically
given, but must be provided as an external parameter. In that sense, flame propagation is
now decoupled from the remaining parts of the flow equations and can be treated separately
in the numerical scheme. This results in an operator splitting.

Apart from the microphysical phenomena, there still remains complex interplay between
flame propagation and hydrodynamics. The density contrast across the flame affects the
flow field and the flame in turn is advected by the flow. These effects have to be modeled
by an appropriate way of flame/flow coupling.

Our numerical implementation of the thermonuclear combustion model is based on
methods described byReinecke et al.(1999b), but differs in the treatment of the flame/flow
coupling, which turns out to be essential for the present study (cf. Section5.3.1).

In this chapter, the numerical models applied in the simulation of thermonuclear burning
fronts in SN Ia shall be introduced, starting with the hydrodynamical model. After dis-
cussing the implementation of the equation of state and the thermonuclear reactions, the
flame model and the flame/flow coupling method shall be described.
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4. Numerical implementation

4.1. Fluid dynamics

The general equations of reactive fluid dynamics (2.20)–(2.23) state an inhomogeneous
system of nonlinear partial differential equations in Eulerian formulation that have to be
solved numerically. In terms of mathematical classification they are a mixed system con-
taining hyperbolic and parabolic contributions, namely the advection terms and the diffu-
sion terms, respectively.

As mentioned before, we will treat flame propagation and hydrodynamics of the flow
separately. The former will be numerically modeled in a parametrized way, neglecting the
underlying microphysical mechanisms (see Section4.4). This gives more flexibility in the
choice of scales which will be investigated in this study and is a necessary prerequisite1 for
the large-scale simulations of SN Ia explosions performed byReinecke et al.(2002a). The
treatment of the hydrodynamics part will be discussed in the following paragraphs. First
we note, that the discretization on an Eulerian grid introduces a considerable simplification
of the hydrodynamics equations. Since viscous effects are expected to become relevant on
scales smaller than the numerical resolution reached in our simulations, it is sufficient to
employ the (physically) simpler Euler equations (cf. Section2.1.2) rather than the complete
Navier-Stokes (cf. Section2.1.3) equations to model the fluid flow. The error introduced
by the discretization outweighs the error resulting from the omission of the viscosity terms
substantially.

4.1.1. Operator splitting

The general reactive flow equations (2.20)–(2.23) can be written as a vector equation:

∂

∂t
U +

∂

∂x
I +
∂

∂y
J +
∂

∂z
K =

∂

∂x
L +

∂

∂y
M +

∂

∂z
N +Q. (4.1)

The vectors in that equation are given in AppendixB on page139. We neglect external
forces, since these are not relevant to the situation that will be simulated. The vectors on the
left hand side of equation (4.1) correspond to the hyperbolic Euler equations (cf. Section
2.1.2), while the flame microphysics is governed by the terms on the right hand side of it.

Following the strategy proposed byStrang(1968), an operator splitting is applied, which
allows subsequent treatment of the Euler equations and the flame propagation. Addition-
ally, the terms are splitted in direction. Provided the change of the state vectorU during a
time step is small, the operator splitting ansatz provides a reasonable approximation to the
solution of the vector equation (4.1), though this method is mathematically not rigorous.

In this section, the methods which are used to solve the first part of the problem, namely
the Euler equations,

∂

∂t
U +

∂

∂x
I +
∂

∂y
J +
∂

∂z
K = 0 (4.2)

1Another approach, put forward byKhokhlov(1993), Gamezo et al.(2003), is to artificially broaden the inner
structure of the flame so that it can be resolved in large scale calculation. This is achieved by modification
of the diffusion coefficients and the reaction rates. This method is frequently calledreaction-diffusion
approach.
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shall be discussed.

4.1.2. Discretization on a computational grid

In our numerical implementation, the Euler equations are discretized on an equidistant
regular Cartesian grid. The computational domain is therefore divided into computational
cells of quadratic shape with the conserved quantities defined at the cell centers. These
represent the mean value of the surrounding cell. We employ explicit discretization.

Consider a the density of a conserved quantitya. Its numerical discretization in one
spatial dimension will be denoted by

an
i ≈ a(xi , tn) (4.3)

in the following.

4.1.3. Numerical solution of the Euler equations

Numerical fluid dynamics distinguishes various strategies to solve the underlying hyper-
bolic system of partial differential equations. General strategies are classified intofinite-
differenceand finite-volume methods. A brief review of the fundamental ideas will be
given here, following in partsLeVeque(1998), where further details can be found. The
foundation of our numerical implementation is a finite-volume approach, which is applied
in the solution of the Euler equations. Moreover, it forms the basis of the specific method
of flame/flow coupling that shall be used.

Finite-difference methods

Finite-difference methods are based on the balance equations in differential form, such
as (2.6). The derivatives in those equations are replaced by difference quotients and the
system is then evolved in time iteratively. Finite-difference methods in this basic imple-
mentation share severe disadvantages. Due to inevitable discretization errors the schemes
are locally non-conservative, i.e. the integral value of the conserved quantities (mass, mo-
mentum, and energy) changes. Because the balance equations in their differential form
allow only for continuous solutions, finite-difference techniques are incapable of resolving
discontinuities, such as shock waves. These are smeared out and thus require rather high
resolutions.

Finite-volume methods

Finite-volume methods on the other hand are based on the integral formulation of the bal-
ance equations (2.1). These schemes do not directly compute the changes in the conserved
quantities that are defined in the centers of the computational cells, but rather determine
the fluxes of mass, momentum, and energy across the interfaces between individual cells
in a certain time interval followed by a corresponding update of the cell mean values. This
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4. Numerical implementation

approach guarantees the exact balance of gains and losses in each cell and the scheme is
thus conservative by construction. Although finite-volume schemes are numerically much
more expensive than simple Taylor-expansion based finite-difference methods, they re-
quire much less resolution in order to reach the same accuracy and therefore are much
more efficient—especially in multi-dimensional simulations.

While in finite-difference methodsan
i is regarded as an approximation to a single value

a(xi , tn), finite-volume methods view this expression as an average value ofa(xi , tn) over
some interval∆x (“grid cell”). Splitting the domain intoN intervals

Vi = [xi−1/2, xi+1/2],

where the integer indices denote centers of the interval and half-valued indices its bound-
aries in the following, yields

an
i ≈

1
∆x

∫
Vi

a(x, tn) dx. (4.4)

Conservativity of the scheme (with exception of the boundaries of the domain) is achieved
by applying the integral form of the conservation law (2.5) to each grid cell:

1
∆x

∫
Vi

a(x, tn+1) dx =
1
∆x

∫
Vi

a(x, tn) dx

−
1
∆x


tn+1∫
tn

j(a(xi−1/2, t)) dt −

tn+1∫
tn

j(a(xi+1/2, t)) dt

 (4.5)

In general, the quantitiesa(xi−1/2, t) anda(xi+1/2, t) along the cell edges vary with time and
it is thus impossible to evaluate the corresponding fluxesj(a(xi−1/2, t)) and j(a(xi+1/2, t))
exactly. Nevertheless, (4.5) suggests that a conservative numerical scheme should follow
the ansatz

an+1
i = an

i −
∆t
∆x

(Fn
i+1/2 − Fn

i−1/2)

whereFn
i+1/2 is a numerical approximation to the average flux alongx = xi+1/2:

Fn
i+1/2 =

1
∆t

tn+1∫
tn

j(a(xi+1/2, t)) dt. (4.6)

Godunov’s method

The obstacle to be overcome in order to compute the hydrodynamical fluxes across the cell
interfaces is that these depend on the values of the conserved quantitiesan

i that are defined
at the cell centers. Thus, values from the cell centers have to be extrapolated to the cell
boundaries by some means. Conceptually simplest is the approach suggested byGodunov
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(1959). There, the mean values are extrapolated in a piecewise linear way, yielding the
following piecewise constant approximation toa(x, tn):

a(x, tn) ≈ ãn(x, tn) = an
i ; x ∈ Vi .

This approximation forms discontinuities at the cell interfaces, which in turn define Rie-
mann problems consisting of the conservation law for the quantity ˜an

∂

∂t
ãn +

∂

∂x
jãn = 0

together with the initial condition

ãn(x, tn) =

 an
i , if x < xi+1/2

an
i+1, if x ≥ xi+1/2.

The key feature that is exploited in the scheme is the self-similarity of the solution to this
Riemann problem, i.e. it is constant along rays (x − xi+1/2)/t = const. Leta∗(an

i ,a
n
i+1)

denote the exact solution to the Riemann problem along the rayx/t = 0. Then the solution
ãn(x, t) to the conservation laws over the time intervalt ∈ [tn, tn+1] is

ãn(xi+1/2, t) ≡ a∗(an
i ,a

n
i+1), (4.7)

provided the time step is small enough to prevent waves from the Riemann problem from
traveling further than∆x. This solution is now inserted into (4.6) yielding the numerical
fluxes of conserved quantities across the cell borders:

Fn
i+1/2 =

1
∆t

tn+1∫
tn

j(ãn(xi+1/2, t)) dt. (4.8)

Thus, the main features of the Godunov scheme are that a shock-capturing property is
inherent in the solver by construction and that the method is conservative. The main draw-
back is that is is rather diffusive compared to more elaborate finite-volume approaches.

Timestep determination

In the last paragraph, the condition was posed that the time step must be taken small
enough so that there is no interaction of waves from neighboring Riemann problems with
the states at the given interface. This is a special case of the CFL criterion (Courant et al.
1928). In general, this criterion states that a numerical method can be convergent only if
its numerical domain of dependence contains the true domain of dependence of the partial
differential equation, at least in the limit as∆t and∆x go to zero (cf.LeVeque1998). If
the method described in the last paragraph would end up with the explicit construction of
the cell averages according to (4.4) from the solution of the Riemann problem, than this
would mean that the time step must be taken small enough to prevent interaction of waves
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from neighboring problems. However, using the flux formula (4.6) requires only constant
values of the conserved quantities at the cell interfaces over the time step, which hence can
be roughly twice as large:

∆t ≤
∆x
smax
, (4.9)

wheresmax denotes the largest possible wave speed, i.e in time stepn it is given by the
advection velocityv and the sound speedcs:

sn
max = maxi

{
|vni | + cn

s,i

}
. (4.10)

The CFL criterion is necessary but not sufficient for stability of the scheme. In order to
ensure stability it is thus common practice to reduce the time step by a factorCCFL ∈

[0.2,0.8].

Reconstruction scheme

Although it is conservative, the Godunov scheme has the severe drawback of being still
rather diffusive compared to other methods. This is cured in so-calledhigh-resolution
shock capturing methods. The key to those methods is to reconstruct the boundary values
of the Riemann problem from the cell averages in higher order. In case of Godunov’s
method, a piecewise constant reconstruction is applied yielding only first-order accuracy.
A better alternative would be to implement a piecewise linear reconstruction instead. Even
more sophisticated is the approach suggested byColella & Woodward(1984). The mean
values are interpolated by local parabolae constrained to be monotonic inside the cells.
Accordingly, this scheme is calledPiecewise Parabolic Method(PPM).

In order to avoid still possible oscillations at the discontinuities so-called slope-limiter
and flux-limiter methods have been introduced (cf.LeVeque1998). PPM comprises ap-
propriate limiting.

Approximate Riemann solver

Exact Riemann solvers require the knowledge of the spectral decomposition of the system
that is to be solved. If this is not available or numerically too expensive, one usually falls
back on approximative Riemann solvers. Several of those have been proposed in literature,
and in connection with PPM usually the efficient numerical method suggested byColella
& Glaz (1985) is applied.

4.1.4. Boundary conditions

Since numerical simulations are performed on a finite grid, it is necessary to prescribe
certain boundary conditions at the edges of it. One way would be to develop a special
treatment of the boundary cells, which have no neighbors in one direction and conse-
quently cannot be updated in the manner described above. A simpler approach which is
commonly applied in numerical schemes is to introduce “ghost cells” at the edges of the
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4.2. Equation of state

computational grid and to update the edge cells in exactly the same way as all other cells.
The contents of the ghost cells is set prior to each time step and is determined by the phys-
ical type of boundary that is to be set. The required number of ghost cells depends on the
employed hydrodynamics solver and in particular on the reconstruction scheme.

• Periodic boundary conditionsare easily imposed by mapping the contents of cells
next to the opposite edge of the domain into the ghost cells. SupposeQn

0 andQn
N

represent the contents of the marginal cells at timen at opposite sides of the grid.
Then Qn+1

0 is determined using the contents of the ghost cellQn
−1 which is set to

equalQn
N.

• Reflecting boundary conditionsmimic a line of symmetry or a solid wall. These are
enforced by simply mirroring the contents of near-edge cells into the ghost cells.
HenceQn

−1 = Qn
1 in this case.

• Outflow boundary conditionsare meant to ensure that no waves can enter from these
edges of the domain. This can be achieved by extrapolating from near-edge cells
into the ghost cells, thereby effectively computing the Riemann fluxes on the basis
of the near-edge cells alone. The simplest approach is zero-order extrapolation:
Qn
−1 = Qn

−2 = . . . = Qn
0.

• Inflow boundary conditionswill also be employed in our numerical simulations.
Here the quantities in the ghost cells are artificially imposed with a velocity pointing
toward the domain. In conjunction with outflow boundaries on the opposite side of
the domain they provide a possibility to establish a computational grid that comoves
with some object—in our particular case with the flame front.

4.1.5. Implementation of the hydrodynamics solver

In order to solve the Euler equations, we employ the PROMETHEUS implementation
(Fryxell et al.1989). It is based on the Piecewise Parabolic Method (PPM) suggested by
Colella & Woodward(1984). However, the problems to be investigated in our numerical
simulations are highly subsonic. Therefore, PPM is certainly not the most effective scheme
available. A future implementation of alternative hydrodynamics solvers that are tailored
to the specific situation, such as incompressible low Mach-number approximations, would
be desirable.

To avoid multidimensional Riemann problems, directional splitting is applied in the two-
dimensional simulations. Time steps for the integration are determined according to the
CFL criterion with a time step reduction by a factor ofCCFL = 0.8.

4.2. Equation of state

Since the calculation of the Fermi-integrals needed to determine the electron-contribution
and the electron-positron pair creation is numerically too expensive to be carried out during
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the simulation, these contributions are read off a recalculated table via bilinear interpola-
tion. The table entries were located on a regular grid in the (logT, logρ)-plane and spanned
ranges of log10 T [ K] = [3; 11] and log10ρ [ g cm−3] = [−5; 11] (Reinecke2001).

4.3. Thermonuclear reactions

The thermonuclear burning considered in the presented simulation takes place at fuel den-
sities above 107 g cm−3 and terminates in nuclear statistical equilibrium (NSE), which con-
sists mainly of nickel. Because of the high computational costs of the implementation of
a full nuclear reaction network (see Section2.1.6) and due to the fact that our intention
is the investigation of flame dynamics rather than a correct nucleosynthetic description of
SNe Ia, we simplify the nuclear processes to an effective reaction (see alsoSteinmetz et al.
1992):

14 12C −→ 3 56Ni.

This yields a specific energy release ofq = 9.28667· 1017 erg g−1 (Audi & Wapstra1995).
Consequently, we model the initial composition as being pure carbon.

4.4. Flame model

The method that is applied in our simulations to parameterize the flame propagation is
based on the so-called level-set technique that was introduced byOsher & Sethian(1988).

As argued in Section3.1.2, it is justified to treat the thermonuclear flame as a disconti-
nuity in the state variables in simulations at scales we aim at. This picture does not resolve
the inner structure of the flame and therefore the laminar burning velocitysl has to be
taken as a parameter from direct numerical simulations. We use the results byTimmes &
Woosley(1992) (cf. Section2.2.5, equation (2.73)).

For the purpose of describing the flame in this “burning front approach” the level-set
technique is particularly well suited.

4.4.1. The level-set technique

The central idea of the level-set method is to associate the flame with a moving hypersur-
faceΓ(t), which is the zero level set of a functionG(x, t):

Γ(t) := {x | G(x, t) = 0}. (4.11)

In principle, there is no constraint onG away from the front and it thus could be chosen
arbitrarily. However, it is convenient to prescribeG to be a signed distance function

|∇G| ≡ 1 (4.12)

with respect to the flame front and withG < 0 in the unburnt material andG > 0 in the
ashes. This is illustrated in Figure4.1
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Figure 4.1.: Illustration of theG-function according to equation (4.12). The zero level
set ofG (black curve) corresponds to the location of the flame front (cour-
tesy of M. Reinecke).

4.4.2. The G-equation

Follow the pathxP of a point P attached to the propagating front in Eulerian frame of
reference. Its motion will obviously be determined by the advection due to fluid motion
and propagation due to burning of the front:

ẋP = uu + sun, (4.13)

whereuu, su, andn denote the fluid velocity in the fuel region, the flame propagation speed
with respect to the unburnt material, and the normal vector to the front, respectively. The
latter will be defined to point toward the unburnt material by

n = −
∇G
|∇G|
, (4.14)

which becomes possible by fixingG as in equation (4.12).
The value ofG on the trajectory of such a point is zero by definition. Hence the total

time derivative ofG on the trajectory vanishes:

dG(xP)
dt

=
∂G(xP)
∂t

+ ∇G(xP) · ẋP := 0. (4.15)

This condition yields together with equations (4.13) and (4.14) the temporal evolution of
G,

∂G
∂t
= −∇G(xP) · ẋP = − (uu + sun) (−n |∇G|) = (uun+ su)|∇G| (4.16)

for points located on the front. This equation is often termed the “G-equation” in literature.
It bears physical meaning only for points at the front, sincesu is undefined elsewhere.

To apply this formula to the region of fuel and ashes, the velocities have to be spread out
from the front.
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4.4.3. Re-initialization

Additional measures have to be taken in order to preserve theG-function’s property of
being a distance function (4.12). One way, according toSussman et al.(1994), is to employ
a pseudo time iteration of

∂G
∂τ
=

G
|G| + ε

(1− |∇G|) , (4.17)

until convergence to|∇G| = 1 is reached. Values used in our numerical implementation
are∆τ ≈ 0.1∆x andε ≈ ∆x. Further measures (Reinecke et al.1999b) have to be taken to
prevent this algorithm from affecting the zero level set ofG, since this would correspond
to an unphysical shift of the flame front. Also topological changes of the flame require a
correction of theG field. For a detailed discussion of these methods we refer toReinecke
(2001).

4.5. Flame/flow coupling

In the context of the finite-volume method we apply to discretize the hydrodynamics, the
cells cut by the flame front (“mixed cells” in the following) contain a mixture of burnt
and unburnt states. Therefore the quantityuu needed in (4.16) is not readily available.
One strategy to circumvent this problem is the so-called “passive implementation” of the
level-set method (Reinecke et al.1999b). There it is assumed that the velocity jump is
small compared to the laminar burning velocity anduu is approximated by the average
flow velocity. An operator splitting approach for the time evolution ofG (4.16) yields
the advection term due to the fluid velocity in conservative form which is identical to the
advection equation of a passive scalar. This part can be treated by the PROMETHEUS
implementation of the PPM method. Front propagation, energy release, and species con-
version due to burning are performed in an additional step.

The strategy we use is called “complete implementation” byReinecke et al.(1999b). It
was developed bySmiljanovski et al.(1997) and enables us to reconstruct the exact burnt
and unburnt states in mixed cells. This allows accurate treatment of (4.16). The main
advantage is that it now becomes possible to treat flows of burnt and unburnt material
over cell boundaries separately. This prevents the flame front from smearing out over
several cells as it does for the “passive implementation”. The flame front is resolved as
a sharp discontinuity without any mesh refinement, which would lead to very small CFL
timesteps. The “complete implementation” consisting of in-cell reconstruction and flux-
splitting schemes will be reviewed in the following paragraphs. The description focusses
on two-dimensional simulations.

4.5.1. Geometrical information

A prerequisite of the in-cell reconstruction and flux-splitting schemes is the knowledge of
geometrical quantities, such as the front normaln, the unburnt volume fraction of mixed
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cell, and the unburnt fraction of the interface area between the cells. The normal vector of
the flame front can be directly derived from theG field using equation (4.14).

Although not necessarily needed for the in-cell reconstruction, the level set method pro-
vides a convenient way to determine the curvatureκ of the flame front (Sethian1996):

κ = ∇ · n = ∇ ·
∇G
|∇G|

=
GxxG2

y − 2GxGyGxy +GyyG2
x(

G2
x +G2

y

)3/2
. (4.18)

This quantity is eventually used in a burning law according toMarkstein(1951) (cf. Section
2.2.4).

The unburnt volume fractionα of a cell is obtained from the intersections of the zero
level set of theG-function with the cell interfaces. Connecting these intersection points
with straight lines results in a piecewise linear approximation of the flame in the cells.
Then,α is obtained by calculating the area behind the connecting line. This procedure
is depicted in Figure4.2. The rightmost sketch shows a situation, where the geometry
is ambiguous. In these (fortunately rare) cases we choose thatα of the two possibilities,
which is closest to the value of the preceding time step.

4.5.2. In-cell reconstruction

With this geometrical information it is now possible to reconstruct the exact states of burnt
and unburnt material in each mixed cell from the given average quantities. This is done
by setting up a system of equations. The first three equations of thatreconstruction system
of equationsdescribe the cell averages of the conserved quantities mass, momentum, and
total energy as linear combinations of the unburnt and the burnt part of the cell:

ρ = αρu + (1− α)ρb (4.19)

ρu = αρuuu + (1− α)ρbub (4.20)

ρetot = αρuetot,u + (1− α)ρbetot,b. (4.21)

Here,ρ stands for the mass density,ρu for the momentum density, andρe for the density
of the total energy. Again, the indicesu andb denote the unburnt and burnt quantities
respectively.
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4. Numerical implementation

In Section2.2.1we derived how continuity of mass flux density, momentum flux density,
and energy flux density over the flame front yield the Rankine-Hugoniot jump conditions
and the Rayleigh criterion. To incorporate the former into the equation system it is conve-
nient to split the velocity vector into a normal partun and a tangential partut with respect
to the front. Equation (4.20) then reads

ρvn = αρuvu,n + (1− α)ρbvb,n (4.22)

and equation (2.46) gives
vt = vu,t = vb,t. (4.23)

The Rayleigh (2.48) criterion and the Hugoniot jump condition (2.49) for the internal
energyeint = etot − u

2/2 read

(ρusu)2 =
pu − pb

Vb − Vu
(4.24)

and

eint,b − eint,u = ∆h0 −
1
2

(pb + pu)(Vb − Vu). (4.25)

The equation of state provides the pressures

pu = pEOS(ρu,eint,u, Xu) and pb = pEOS(ρb,eint,b, Xb), (4.26)

whereX denotes the mass fractions of the species. In Section2.2.1we considered the rest
frame of the flame front. Thus,vu,n andvb,n in equation (2.38) are of the same value as the
laminar flame speed with respect to fuel and ashes,su(= sl according to our notation) and
sb, respectively, but they have opposite signs. This equation hence yields for the jump of
normal velocities across the flame front at rest

sb = sl
ρu

ρb
. (4.27)

For a moving flame Galilean invariance2

vu,n − vb,n = sb − sl (4.28)

(taking into account the opposite signs of the fluid velocities and the burning speeds) yields

vb,n − vu,n = su

(
1−
ρu

ρb

)
(4.29)

as a further equation of the system. Additionally, a burning rate law prescribing the laminar
burning velocity (e.g. in terms of the front geometry) must be provided. The reconstruc-
tion system of equations consists of (4.19), (4.21), (4.22), (4.24), (4.25), (4.26), and (4.29).

2Note thatvu,n andvb,n here correspond to the moving flame front and should rather be denoted asv′u,n and
v′b,n in order to avoid confusion with the variables used in equation (2.38)
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1999b).

Assuming the composition of the fuel and the ashes as known, we end up with eight equa-
tions for the unknown quantitiesρu, ρb, vn,u, vn,b, ei,u, ei,b, pu, andpb. Thus the nonlinear
reconstruction system of equations is closed and can be solved iteratively.

To solve that system we reduce it to four equations in the unknown variablesρu, ρb, eu,
andeb and employ the MINPACK implementation (Moré et al.1980) of Powell’s hybrid
scheme (Powell1970).

4.5.3. Flux-splitting

In addition to the accurate treatment of theG-equation (4.16), the knowledge of the exact
burnt and unburnt states allows for the separate handling of the numerical fluxes of burnt
and unburnt material in the finite-volume hydrodynamics solver. Again, these fluxes are
interpreted as linear combinations of two single fluxes: the flux resulting from the unburnt
part of the cellFu and the flux resulting from the burnt partFb. Imagine a computational
cell as composed of two volume parts containing fuel and ashes separately. Then the cell
interface can be divided into a partβ adjoining to fuel and a part (1− β) adjoining to ashes
(see Figure4.3). The fluxesFu andFb are being weighted withβ and (1− β), respectively.
Since the front usually moves over a time step, we take the time averages of the interface
fractions,β̄ for the unburnt cell part and (1− β̄) for the burnt cell part:

β̄ =

tn+1∫
tn

βdt (4.30)

The total fluxF̄ of a conserved quantity over the cell interface is now given by

F̄ = β̄Fu + (1− β̄)Fb. (4.31)

This flux-splitting procedure guarantees that the newly computed mixed state is consistent
with the volume partsα and (1− α) to be computed in the next time step. It also prevents
the burning front from smearing out by assuring that for example in the situation depicted
in Figure4.3no unburnt material flows over the third cell interface from the left.
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4. Numerical implementation

4.5.4. Treatment of the source terms

So far, we have neglected that a flame generates source terms in species and energy, which
have to be dealt with in addition. Taking into account the species source termωXfuel, the
mass fraction evolution (2.22) reads

∂

∂t
(ρXfuel) + ∇ · (ρXfuelu) = ρωXfuel. (4.32)

In a finite-volume approach employing directional splitting, thex-sweep is discretized as

(ρXfuel)
n+1
i, j,k = (ρXfuel)

n
i, j,k−

∆t
∆x

(
Fn+1/2

i+1/2, j,k(ρXfuel) − Fn+1/2
i−1/2, j,k(ρXfuel)

)
− (ρωXfuel)

n
i ∆t. (4.33)

The numerical fluxes are determined according to Section4.1.3. Now the task is to deter-
mine the species source termρωXfuel which then enters the energy balance.Smiljanovski
et al. (1997) introduce a method for an explicit evaluation of the term.Reinecke et al.
(1999b) follow this approach. We summarize their implementation here to point out the
difference to our implementation. The different treatment of the source terms may be part
of the reason whyReinecke et al.(1999b) were not able to apply the complete implemen-
tation of the level set method to more complex problems, while it is successfully used in
the present work.Reinecke et al.(1999b) perform the species and energy conversion steps
after the in-cell reconstruction in mixed cells. Here, the amount of matter consumed over
a time step reads

∆m=

tn+1∫
tn

Aslρudt, (4.34)

whereA denotes the flame surface in the cell. For thex-sweep in directional splitting this
yields

∆mx =

tn+1∫
tn

n2
xAslρudt. (4.35)

The square of thex-component of the flame normal results from projections of the flame
surface and flame speed. The ratio of the projected flame surface and the cell interface in
cell i is approximately given by|β̄i+1/2 − β̄i−1/2| resulting in the following expressions for
the source terms for species and energy:

∆Xashes,i =
∆t
∆xi

ρu,i

ρ̄i

∣∣∣su,inx,i(β̄i+1/2 − β̄i+1/2)
∣∣∣ (4.36)

∆Xfuel,i = −∆Xashes,i (4.37)

∆etot,i = ∆h0∆Xashes,i . (4.38)

Schmidt(2001) points out that this method can raise severe complications, which may
cause a failure of the reconstruction. The reason is that the species evolution is solved
in a conservative way whereas theG-evolution is non-conservative. This leads eventually
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4.5. Flame/flow coupling

to a discrepancy between the front shape represented by the zero level-set ofG and the
species field. In order to avoid these problems,Schmidt(2001) suggests an algorithm for
an implicit evaluation of the reaction term with help of theG-function. He introduces a
“predictor” of the energy in the hydrodynamics module which is then corrected after the
reconstruction. We follow this suggestion in our implementation in a slightly modified
version according toGröbl (1999). The energy balance equation reads

∂

∂t
(ρetot) + ∇ · (uρetot + p) = −∆h0ρωXfuel = −∆h0

(
∂

∂t
(ρXfuel) + ∇ · (ρXfuelu)

)
, (4.39)

making use of equation (4.32). Its discretized form is

(ρetot)n+1
i, j,k − (ρetot)n

i, j,k

∆t
+

1
∆x

(
Fn+1/2

i+1/2, j,k(ρetot) − Fn+1/2
i−1/2, j,k(ρetot)

)
=

− ∆h0

 (ρXfuel)n+1
i, j,k − (ρXfuel)n

i, j,k

∆t
+

Fn+1/2
i+1/2, j,k(ρXfuel − Fn+1/2

i−1/2, j,k(ρXfuel)

∆x

 . (4.40)

Unless the source terms are evaluated, (ρXfuel)n+1
i, j,k remains unknown and the energy evo-

lution cannot be computed. However, it is possible to determine a predictor (ρetot)∗i, j,k by
ignoring the source term:

(ρetot)∗i, j,k − (ρetot)n
i, j,k

∆t
= −

1
∆x

(
Fn+1/2

i+1/2, j,k(ρetot − Fn+1/2
i−1/2, j,k(ρetot)

)
. (4.41)

After the reconstruction of burnt and unburnt states in the mixed cell, it can be corrected
appropriately.Schmidt(2001) introduces a more general scheme for accomplishing this,
but in our case the procedure reduces to a single step since we assume—in addition to com-
plete fuel consumption—the unburnt material to consist entirely of fuel. Thus,Xfuel,u ≡ 1,
so that

(ρXfuel)
n+1
i, j,k = (αρuXfuel,u)n+1

i, j,k, (4.42)

which can easily be evaluated after reconstruction. The correction of the energy predictor
then reads

(ρetot)
n+1
i, j,k = (ρetot)

∗
i, j,k − ∆h0

 (ρXfuel)n+1
i, j,k − (ρXfuel)n

i, j,k

∆t

+
Fn+1/2

i+1/2, j,k(ρXfuel − Fn+1/2
i−1/2, j,k(ρXfuel)

∆x

 . (4.43)
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5. Results and discussion

In this chapter, results of the numerical simulations of flame evolution will be presented
and discussed. It is organized in three parts, the first concerning tests to verify the nu-
merical implementation, the second investigating the flame evolution for propagation into
quiescent fuel, and the third discusses results of studies of the flame interaction with vor-
tical fuel flows.

5.1. Some verification tests of the implementation

The appropriate tool for our investigation is the “complete implementation” of the level
set scheme (see Section4.5). The reason for this is that it provides an accurate coupling
between the flame propagation and the flow field, which the “passive implementation” can-
not afford. This statement will be supported by a simulation comparing the two algorithms
(see Section5.3.1).

Some verification tests of the “complete implementation” have already been performed
by Smiljanovski et al.(1997) (who also validated the technique by comparison with the
Russian RUT experiments) andReinecke et al.(1999b). Our computer code is a direct
successor of that developed byReinecke et al.(1999b). Since parts of it have been changed
in this work (e.g. new implementation of the method in FORTRAN 90, changes in the
treatment of the source terms, parallelization), it seems appropriate to repeat some of the
tests of the numerical implementation here. One has to keep in mind that the aim of this
work, i.e. the investigation of the flame evolution, crucially depends on the accuracy of the
methods used.

First of all, the propagation of a one-dimensional flame is investigated. Since a truly
one-dimensional implementation of the flame propagation would require some changes in
the code, we study a “pseudo one-dimensional” flame instead. That is, the computational
domain has been set to the minimal extend iny-direction, namely 4 grid cells. Addi-
tionally, we impose reflecting boundaries in this direction. Inx-direction, the domain of
15× 103 cm was divided into 300 grid cells with a reflecting boundary to the left and an
outflow condition to the right. The flame was placed initially atx = 500 cm. The fuel
density was set toρu = 5× 108 g cm−3. We refer to Table5.1on page90 for the complete
set of initial values. The initial velocity was set to zero on the entire domain. The resulting
profiles of density, total energy, velocity, and concentration of12C are plotted in Figure
5.1. It is evident, that the two constant states of burnt and unburnt material are separated
by only one “mixed cell”, meeting the theoretical expectations. This result is in excellent
agreement withReinecke et al.(1999b). These authors also point out that the “passive
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Figure 5.1.: Profiles of density, total energy, velocity and fuel concentration att = 0.8 ms

implementation” of the level set method differs considerably from the results of the “com-
plete implementation”. The former smears out the flame front over a number of grid cells
and obscures the velocity profile.

We notice that there occur some minor bumps in the velocity profile of our implemen-
tation. These are probably caused in cases when the flame enters a new cell. To cure this
problem,Schmidt & Klein (2001) suggest a special reconstruction procedure in case of
small burnt or unburnt volume fractions, which is not applied here.

A second test concerned the propagation velocity of the flame front. This quantity
was measured in the pseudo one-dimensional simulation described above. The reflect-
ing boundary condition on the left hand side of the domain ensured zero velocity in the
burnt material. Thus, together with a density jump ofµ = ρu/ρb = 1.62 equation (4.29)
gives for the propagation velocity with respect to the grid

vgrid = vu + sl = µsl = 9.06× 106 cm s−1. (5.1)

Figure 5.2 compares this value with measurements from the simulation. The excellent
agreement achieved here is not very surprising, since the value of the fluid velocity is
exactly reproduced in the “complete implementation” (cf. Figure5.1). On contrast, the
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“passive implementation” deviates substantially in the flame propagation speed (seeRei-
necke et al.(1999b)), in that it lags behind the theoretical expectation.

In order to test the isotropy of the algorithm, a simulation of a spherically expanding
flame was performed again setting the fuel density toρu = 5× 108 g cm−3. In contrast to
Reinecke et al.(1999b) this is done in a parallelized version of the code, where the domain
was divided into four sub-squares. Deviations from the exact spherical shape (cf. Figure
5.3) occur after some time of flame evolution but are reasonably small. In comparison to
the result ofReinecke et al.(1999b), no additional distortion of the flame shape due to the
parallelization can be noted. However, the speed of the flame propagation considerably
falls short of the theoretical expectation (cf. Figure5.3b). This can be explained by the
fact, that the velocity inside the circular flame deviates substantially from zero in contrast
to the one-dimensional case. Thus, the prediction (5.1) does not hold for the flow field
altered by the circular flame geometry, and the actual flame propagation lags behind it.

The next test concerned the ability of the implementation to handle topological changes.
Four circular flames of different sizes were set up initially with a fuel density ofρu =

5 × 108 g cm−3. Figure5.4 shows that the merging of the fronts happens smoothly. Also
the burn-out of the “island” of fuel in the center of the four merged domains of burnt
material causes no numerical difficulties. The slight deformation of the circular flames
can be explained by the velocity fields generated between the flames. This numerical
simulation demonstrates the superiority of the level set method over other techniques of
front tracking in describing complicated topological situations without further numerical
effort.
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Figure 5.3.: Expansion of a circular flame front(a) each solid contour represents a
timestep of 1.5 × 10−5 s; exact circles (dotted) given for comparison(b)
flame font location att = 0 s, t = 1.5 × 10−5 s, andt = 6.0 × 10−5 s (solid)
and corresponding expected location (dotted)

The verification tests indicate that simulations applying the method specified in Chapter
4 adequately model the hydrodynamical situation. However, some numerical problems
remain in the implementation. These will be discussed in the following section.

5.2. Problems with the numerical implementation

For reasons given in Section5.1 and for comparison of the results with both theoretical
expectations and experiments that will be presented below and in Chapter6, we are con-
fident that our numerical implementation reflects reality to a reasonable degree. However,
numerical experiments (in particular those discussed in Section5.4) can have only indica-
tive character. Keeping this in mind, we will perform the forthcoming studies aiming on
the exploration of possible behaviors of flame propagation.

In this section we would like to emphasize, that especially the “complete implementa-
tion” of the level set method is an intricate task. Some problems that still remain will be
discussed in the following.

Reinecke et al.(1999b) reported on difficulties with the implementation of the complete
version of the level set method. We examined our implementation in order to evaluate the
improvements that could be achieved to stabilize the algorithm. Robustness of the recon-
struction scheme is a prerequisite for its application to more complex simulations, such as
flame evolution in presence of imprinted turbulence or Type Ia supernova explosions.

From given pre- and post-front states, which exactly fulfill the Rankine-Hugoniot jump
conditions,Reinecke et al.(1999b) synthesize a mixed cell according to (4.19)–(4.21) for a
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given volume fraction of unburnt materialα0. While trying to reconstruct for the burnt and
unburnt states imposing an unburnt volume fractionα that deviates slightly from the exact
valueα0, they find that the solver for the nonlinear reconstruction equation system can
enter regions for which the equation of state is undefined. It reaches values for the internal
energy of the unburnt material, which are lower than the internal energy belonging to zero
temperature. This, of course, means that the reconstruction fails. The problem is caused by
the degenerate equation of state and is not observed in simulations of chemical deflagration
fronts.

In simulations of thermonuclear flames this effect is a serious obstacle to build a stable
implementation, because the flame front is linearly interpolated in mixed cells and there-
foreα usually deviates from the exact value. This deviation becomes most pronounced in
highly curved front geometries. One would expect higher orders of interpolation to cure
this problem. This, however, would strongly increase the number of topological uncertain-
ties of the kind depicted in the rightmost sketch of Figure4.2.

The described difficulty remains a critical issue in our simulations, although it is some-
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what attenuated here. From Figure5.5 it is obvious that the reconstructed temperature of
the unburnt material enters unphysical values for a deviation of the assumedα from α0 of
more than 7%, whileReinecke et al.(1999b) report a tolerance in the volume fraction of
only 2%. The reason for this may simply be that we assume the fuel to consist of pure
carbon, whileReinecke et al.(1999b) apply a 50% mixture of carbon and oxygen. The
energy release from the thermonuclear net reaction is thus in our case≈9.3× 1017 erg g−1

in contrast to≈7.8×1017 erg g−1 for 1/2 C+ 1/2 O fuel. Additionally, in the laminar flame
speeds differ considerably in both cases andReinecke et al.(1999b) even underestimate
the energy release by assuming only≈7.0× 1017 erg g−1.

Nevertheless, in our simulations a failure of the reconstruction may still occur when the
front is highly curved, which is especially the case for cusps of cellularly stabilized front
geometries. Here situations are possible which lead to a large deviation of theα-value
determined by linear interpolation from the intersection points of cell borders with zero
level set ofG and the actualα0 given by the exact shape of the zero level line ofG, as
illustrated in Figure5.6. In these cases energy is added to the cell in order to obtain a
physical unburnt state with positive temperature. This, of course, makes our numerical
scheme slightly non-conservative. Fortunately, the cases where cusps are aligned in an
unfavorable manner with respect to the computational grid are rare. Of course, as stated by
Reinecke et al.(1999b), a straight forward method to extenuate the problem is to limit the
flame curvature by introducing a curvature-dependent effective burning velocity according
to (5.3). In the presented simulations we did not explicitly prescribe such a burning law.
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However, as will be discussed in Section5.3.4, a Markstein-like behavior may be already
present for numerical reasons, but an even larger Markstein length1 might contribute to the
robustness of the in-cell reconstruction scheme.

A further issue in theReinecke et al.(1999b) implementation is that the implicit treat-
ment of the source terms in the reconstruction scheme (see Section4.5.2) was not applied.
This leads to an additional deviation of energy and species distribution from the zero level
set of theG-function. Implementation of this method in our code made the reconstruc-
tion scheme more reliable and may also contribute to the larger tolerance of the method to
deviations in the volume fraction.

5.3. Flame propagation into quiescent fuel

The first task in this study is to investigate the evolution of a flame front that propagates
into quiescent fuel. Objectives are to explore the general flame evolution and to quantify
the effective flame propagation speed at various fuel densities.Niemeyer & Hillebrandt
(1995) were able to confirm by means of a numerical simulation that the propagation of
thermonuclear flames in degenerate matter under conditions that are to be expected in Type
Ia supernovae is in fact subject to the LD instability. However, their simulations did not
reach the nonlinear regime of flame front evolution. Thus, one question to be answered in
this study is, whether or not the flame would stabilize in a cellular pattern as predicted from
theoretical considerations (see Section2.3.2) and as observed in terrestrial flames. Previ-
ous numerical studies addressing this question can be found in literature, but these either
apply a numerical integration of the Sivashinsky equation (Blinnikov & Sasorov1996) to
describe the flame evolution and do not model the complete hydrodynamics or apply gen-
eral analytical considerations based on certain assumptions (Bychkov & Liberman1995).

The goal of this first part of our investigation is consequently, to model the nonlinear
regime of flame evolution in a hydrodynamical simulation. After some remarks on the
version of the implementation that is to be chosen for the forthcoming simulations and on
the simulation setup, we study the linear regime of flame evolution. Here comparison with

1This “Markstein length” would be artificially introduced for numerical reasons and is not to be confused
with the original purpose of that quantity to model finite flame thickness.
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Landau’s dispersion relation (2.86) (page36) provides a tool to judge the accuracy of our
model. Following this, we will focus on the nonlinear evolution of the flame propagation.
Additionally, measurements of the flame acceleration will be presented.

5.3.1. Passive vs. complete implementation

The question that has to be answered initially is, which of the two implementations of the
level set technique is appropriate for our numerical simulations. The “passive implemen-
tation” (see Section4.5) has the advantage, that it is much easier to implement and much
more robust, while the “complete implementation” can cause difficulties in solving the
reconstruction system of equations.

The basic assumption of the “passive implementation” is, thatuu needed in theG-
evolution equation (4.16) can be approximated by the known average flow velocity in
the mixed cells. The reason why this is an acceptable approach in large scale supernova
simulations is, that these concentrate on early phases of the explosion where the density
of the unburnt material is still high causing a small density jump over the flame front.
Additionally, as pointed out byReinecke(2001), the turbulent burning velocity is derived
from a dimensional analysis there and only determined up to a factor of the order of unity.
Both points obviously are not fulfilled in our studies. Therefore, the favorable method here
is the “complete implementation”. The “passive implementation” can not be expected to
provide an accurate flow field. This is, however, a prerequisite to describe the flame evo-
lution under the influence of the Landau-Darrieus instability correctly, because the origin
of that instability lies in the interaction of the flame propagation with the hydrodynamical
flow (see Section2.3.1).

In order to demonstrate the superiority of the “complete implementation” of the flame/

flow coupling over the “passive implementation”, we compared the flame evolution for a
fuel density of 5×107g cm−3 for both methods. The physical domain was set to be periodic
in y-direction. On the left boundary of the domain an outflow condition was enforced and
on the right boundary we imposed an inflow condition with the unburnt material entering
with the laminar burning velocitysl . Together with additional measures this keeps the
flame centered in the domain. Details of the setup will be described in the next section. A
sinusoidal initial perturbation was imposed on the flame shape. The state variables were set
up for a fuel density of 5× 107g cm−3 according to Table5.1on page90. Keeping in mind
the considerations of Section3.1.2, the extent of the domain was chosen as [3.2×104 cm]2.

The result is shown in Fig.5.7. It illustrates very drastically that the “passive imple-
mentation” fails to reproduce theoretical expectations like an increase of the perturbation
amplitude due to the LD instability or the stabilization of the flame in a cellular pattern.
Both effects are present in the “complete implementation”. The difference can be attributed
to the incorrect treatment of the flame propagation velocity in theG-evolution equation
(4.16) in the “passive implementation”. This prevents the flow field from adjusting to the
perturbed flame shape, which would cause the LD instability. It is evident that the “com-
plete implementation” is the appropriate tool for our study. All simulations presented in
the following are performed applying this method.
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Figure 5.7.: Temporal evolution of the flame front atρu = 5×107 g cm−3 for a resolution
of 200× 200 cells:(a) “complete implementation”,(b) “passive implemen-
tation”; Each contour represents a timestep of 1.5 ms.

5.3.2. Simulation setup

From theoretical considerations (resulting for instance from the Sivashinsky equation), it
can be expected that the general features of the evolution of the flame front shape depend
significantly on the numerical setup used in the simulations. Possible parameters that
influence the flame evolution are the overall geometry of flame propagation (i.e. planar
or circularly expanding), the width of the computational domain compared to the length
scale of perturbations, the resolution, the boundary conditions, sources of numerical noise
(which is likely to be different when the simulation is parallelized to a varying number
of sub-processes), and the initial flame shape. Therefore care has to be taken in choosing
the specific setup depending on the questions that are addressed by the simulations as well
as in the conclusions drawn from the simulation results. As will be discussed later, the
separation between effects that can be expected in the astrophysical scenario and effects
that are caused by the specifics of the numerical setup is a highly non-trivial issue.

The influence of some of the mentioned setup parameters on the flame evolution will be
discussed here2. First, we address the question of the overall geometry of flame propa-

2The questions of the effects of the resolution and the width domain compared to the wavelength of the initial
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gation. The two most obvious cases (that are commonly studied in literature) are an on
average planar flame geometry and a flame that is on average circularly expanding. Al-
though a naive approach would choose the second scenario for the supernova explosion, it
is probably not the appropriate description of the flame propagation there. As discussed in
Section3.1.2, the flame evolution on scales of the star, where expansion effects are most
pronounced, quickly becomes dominated by the Rayleigh-Taylor instability. This leads
to a flame evolution completely diverging from a circular (or in three dimensions spher-
ical) geometry (cf.Reinecke et al.2002a). It rather proceeds in raising bubbles of burnt
material. Nevertheless, it could be argued that these structures again partly resemble a
spherically expanding geometry.

As has been pointed out in literature, the case of a circularly expanding flame reveals very
interesting physical effects. Similar to the planar case, the flame will stabilize in a cellular
pattern. However, as will be discussed in detail below, in a planar setup the tendency of
the cells to merge forming a single domain-filling structure can be observed. This is not to
be expected in a circular geometry. Here, expansion effects may lead to a mode splitting of
the cells resulting in a fractalization of the flame front. This effect has been studied in the
context of SN Ia explosions byBlinnikov & Sasorov(1996). They apply a semianalytical
approach making use of the Sivashinsky and Frankel equations. It is interesting to test
whether or not our implementation, which describes the hydrodynamics in a more realistic
way, can reproduce these results. AsBlinnikov & Sasorov(1996) point out, the effect of
mode splitting depends on the density contrast over the flame. To this end we performed
two ad hocsimulations with fuel densities of 5× 107 g cm−3 and 5× 108 g cm−3 (for the
complete set of initial values cf. Table5.1on page90). The corresponding density contrasts
wereµ = 2.41 (At = 0.413) andµ = 1.62 (At = 0.237), respectively, and the simulations
were performed on a 1000× 1000 cells grid. The result of the simulations is plotted in
Figure5.8. In both cases, the propagation of the circular flame is accelerated with respect
to the motion of a planar or unperturbed circular flame front. This can be attributed to
the surface increase by growing perturbations. This effect is more pronounced in the case
of lower fuel density and a resulting higher Atwood number, which is consistent with
the results ofBlinnikov & Sasorov(1996). Cell splitting can be observed in both cases.
It is, however, suspicious that it seems to be preferred in the directions parallel to the
axes, indicating that—in contrast to the unperturbed circular flame (cf. Figure5.3)—the
isotropy is slightly broken here. However, a closer inspection reveals cell splitting also in
tilted directions, at least for theρu = 5× 107 g cm−3 simulation. The overall shape of the
flame in Figure5.8is—up to a certain degree—similar to the results from the applications
of the Sivashinsky equation or the Frankel-equation obtained byBlinnikov & Sasorov
(1996), Filyand et al.(1994), andKupervasser et al.(1996). However, in order to obtain
significant results, the flame evolution would have to be followed for a much longer time.
In our simple setup this requires prohibitively large computational domains.

Yet the objective of our study is somewhat different from theBlinnikov & Sasorov(1996)
investigation. We aim on effects on scales around the Gibson length, at which global

flame perturbation will be postponed to the next sections.
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Figure 5.8.: Evolution of a circular flame with sinusoidal initial perturbation.(a) ρu =

5 × 107 g cm−3, (b) ρu = 5 × 108 g cm−3. Each contour corresponds to a
timestep of 25∆x/sl , ∆x denoting the with of one grid cell.

expansion effects are negligible. This has a technical advantage. It is much simpler to
keep an overall planar flame in the center of the domain by choosing a comoving frame
of reference. This enables us to study the long term flame evolution without requiring
large computational domains. This is the reason why parameter studies (such as presented
below) become possible at all.

The “experimental setup” applied in most of the simulations of the evolution of the flame
subject to the LD instability is the following: The spatial extent of the computational
domain was set to correspond to scales around the Gibson length and was fixed according
to the discussion in Section3.1.2to ∼104 cm. The flame was set up in the center of the
domain in an on average planar vertical shape with the unburnt material on the right hand
side and the burnt material on the left hand side, so that in laboratory frame of reference
the flame would propagate to the right. The domain was set to be periodic iny-direction.
These boundary conditions affect the global flame evolution, as will be discussed in the
next section. On the left boundary of the domain an outflow condition was enforced and
on the right boundary we imposed an inflow condition with the unburnt material entering
with the laminar burning velocitysl . This would yield a computational grid comoving
with a planar flame. The LD instability leads to a growth of the perturbation and therefore
increases the flame surface. This results according to equation (2.105) in an acceleration
of the flame and therefore it is necessary to take additional measures in order to keep the
mean position of the flame centered in the domain. One possibility is to detect the mean
location of the flame and to simply shift the grid to keep the flame centered. The method
is consistent with the boundary conditions applied inx-direction. The described method
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5. Results and discussion

Label ρu[ g cm−3] ρb[ g cm−3] µ At sl [ cm s−1] (TW) ei,u[ erg g−1] ei,b[ erg g−1]

1× 107 9.969× 106 2.691× 106 3.70 0.575 2.39× 105 1.619× 1017 8.59× 1017

1.25× 107 1.232× 107 3.830× 106 3.22 0.526 2.86× 105 2.005× 1017 8.99× 1017

2.5× 107 2.484× 107 8.69× 106 2.86 0.482 5.01× 105 2.56× 1017 9.50× 1017

5× 107 4.988× 107 2.071× 107 2.41 0.413 8.74× 105 3.584× 1017 1.051× 1018

7.5× 107 7.50× 107 3.345× 107 2.24 0.383 1.21× 106 4.29× 1017 1.13× 1018

1× 108 1.00× 108 4.789× 107 2.09 0.352 1.53× 106 4.89× 1017 1.182× 1018

1.25× 108 1.25× 108 6.21× 107 2.01 0.336 1.83× 106 5.373× 1017 1.22× 1018

5× 108 5.05× 108 3.11× 108 1.62 0.238 5.58× 106 9.614× 1017 1.654× 1018

1× 109 1.00× 109 6.80× 108 1.47 0.190 9.75× 106 1.27× 1018 1.96× 1018

Table 5.1.: Setup values for the simulations of the flame evolution.

allows the study of the long term flame evolution. In order to induce the development of
perturbations, we usually imposed a sinusoidal perturbation on the initial flame.

The state variables were set up with values for the burnt and unburnt states obtained
from (pseudo-)one-dimensional simulations performed with the “passive implementation”
of the level-set method byReinecke et al.(1999b), imposing a value for the density of the
fuel. These values also served as initial guesses for solving the reconstruction equations.
A compilation of the relevant setup values for different fuel densities is given in Table
5.1. Note that frequently in this text fuel densities refer to a label of a specific set of
values rather than giving the accurate fuel density. The laminar burning speed is calculated
according to equation (2.73), although it is realized that this fit does not reproduce the
simulation results ofTimmes & Woosley(1992) as good as the authors claim. For high-
precision explosion models a different fit is therefore advisable. However, owing to the
more indicative character of our study, we settle for the results of equation (2.73).

5.3.3. General features of flame evolution

For all simulations presented henceforth we applied a simulation setup as described in5.3.2
making use of the complete implementation of the level set technique. In this section, we
describe some general features of the flame evolution for an exemplary case. We choose
againρu = 5×107g cm−3 as initial fuel density (see Table5.1for the complete set of initial
values). This will remain our standard numerical setup up to Section5.3.6

Figure5.9shows the result of a simulation for a grid resolution of 100×100 cells. Here,
the flame evolution reveals two stages. First, in the linear regime of flame evolution, the
perturbation grows due to the LD instability (see Figure5.9; snapshots att = 0.000 s,
t = 0.001 s, andt = 0.002 s). The second stage is the nonlinear regime, where a cusp
forms at the intersection of two adjacent bulges of the front (see snapshot att = 0.004 s).
As theoretically predicted (Section2.3.2), the formation of a cusp, where the propagation
speed of the flame is increased, balances the perturbation growth and stabilizes the flame in
a cellular pattern, i.e. in case of the simulation presented in Figure5.9 in a single domain-
filling cusp-like structure. This structure is stable and the flame reaches a steady state as
can be seen from the snapshots followingt = 0.004 s.
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Figure 5.9.: Flame propagation into quiescent fuel,ρu = 5 × 107 g cm−3, resolution:
100× 100 cells, snapshots taken att = 0.000 s,t = 0.001 s,t = 0.002 s,
t = 0.004 s,t = 0.090 s, andt = 0.150 s (top left to bottom right).
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Figure 5.10.: Flame propagation into quiescent fuel,ρu = 5 × 107 g cm−3, resolution:
400× 400 cells, snapshots taken att = 0.000 s,t = 0.001 s,t = 0.002 s,
t = 0.004 s,t = 0.090 s, andt = 0.150 s (top left to bottom right).
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(a) (b)

Figure 5.11.: Fluid velocity in the simulation withρu = 5 × 107 g cm−3 and 100× 100
cells resolution. Thex-axis and they-axis show position in cm; thez-axis
represents|u|/sl (a) snapshot att = 0.01 s,(b) snapshot att = 0.09 s

For higher resolutions of the computational domain the general features of perturbation
growth in the linear regime and the stabilization in a large domain-filling cusp in the non-
linear regime are similar to that described above. However, the flame evolution differs
in detail. As can be seen from the simulation at a resolution of 400× 400 cells (shown
in Figure5.10), the structure now becomes superimposed by a short-wavelength cellular
pattern. This effect will be discussed in Section5.3.5. In order to recheck the stability of
our numerical implementation in the applied setup, we performed a simulation of a flame
that was initially exactly planar. The resolution here was again 400× 400 cells. Over
the time that is covered by all other simulations we did not observe any deviation of the
flame from its planar shape. This indicates rather low numerical noise in our numerical
implementation.

It is certainly worth noticing that the basic shape underlying the flame structures ob-
served in our simulations resembles the structures obtained via pole decomposition meth-
ods (cf. Figure2.8).

In the snapshots of the flame evolution depicted in Figures5.9and5.10the vorticity of
the flow field,ζ = ∇ × u, is color-coded. For our two-dimensional simulations the (scalar)
vorticity reads

ζ =
∂vy

∂x
−
∂vx
∂y
. (5.2)

Note that we color-code the logarithm of the absolute value of the vorticity and therefore
even slight deviations from zero vorticity are visible. The flame produces vorticity in the
burnt material. This effect is especially strong behind cusps. Analytical approximations
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Figure 5.12.: Velocity field in the simulationρu = 5 × 107 g cm−3; 100× 100 cells at
t = 0.09 s.

of the flame evolution frequently make the assumption of a potential flow ahead of the
flame. In contrast to that, we observe the development of vorticity in the fuel region.
This, however, is not surprising, since the flame propagates sub-sonically and the regions
downstream and upstream of the flame are causally connected.

We will now discuss the development of the flow field in more detail, since this is the
foundation of all effects connected to the LD instability and the cellular stabilization. For
simplicity we refer to the simulation with 100× 100 cells resolution.

The physical mechanism underlying the LD instability was described in Section2.3.1.
It is of purely hydrodynamical origin. The refraction of the streamlines at the flame front
leads to the development of a flow field that causes the perturbation to grow. In the vicinity
of bulges of the front the local fluid velocity is decreased, while it is increased near recesses
due to deformation of the flow tubes. This can be observed in our simulations. Figure5.11a
depicts the absolute value of the fluid velocity normalized to the laminar burning velocity
of the flame att = 0.01 s. It is well in agreement with what is expected from theory. Figure
5.11a illustrates clearly that the complete implementation of the level set method is capable
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Figure 5.13.: Evolution of the flame front atρu = 5×107 g cm−3. The contours mark evo-
lution steps of 2.5 ms;(a) resolution 50×50 cells;(b) resolution 100×100
cells;(c) resolution 200×200 cells;(d) resolution 400×400 cells;
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Figure 5.14.: Perturbation amplitudes ln ˆx as a function of timet; (a) resolution 50×50
cells;(b) resolution 100×100 cells;(c) resolution 200×200 cells;(d) reso-
lution 400×400 cells;

to reproduce the LD instability. This is not trivial as can be seen from the failure of the
passive implementation to develop the correct flow field. Figure5.11b shows the absolute
value of the velocity after a cusp has formed.

The velocity field after the formation of a cusp is represented by arrows in Figure5.12.
Note, that the streamlines converge toward the cusp ahead of the front. This leads to the
formation of a layer upstream of the front, in which the fluid velocity is directed toward the
cusp. As will be discussed in Section5.3.5, this is a crucial effect providing flame stability.
In the downstream region, the flow diverges from the cusp.

To test the dependency of the results on the numerical resolution, a sequence of sim-
ulations was performed applying computational grids of 50× 50 cells, 100× 100 cells,
200× 200 cells, 300× 300 cells, and 400× 400 cells. The results are given in Figure5.13.
In the plots, each contour is shifted artificially into thex-direction for better visibility and
corresponds to a time evolution of 2.5 ms. Thex-coordinate is stretched by a factor of
about 2. We will now discuss the linear and nonlinear regimes of flame evolutions from
these simulations.
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Case ω [s−1]

Theory 88.7

50× 50 cells 47.8
100× 100 cells 69.0
200× 200 cells 79.7
300× 300 cells 90.0
400× 400 cells 91.4

Table 5.2.: Growth rate of perturbation amplitude

5.3.4. The linear regime of flame evolution

In order to quantify the flame evolution in the linear regime, the growth of the amplitude
of the perturbation was measured and compared to the theoretical prediction (equation
(2.86) on page36). This was done by a simple determination of the distance between
the rightmost and the leftmost points of the flame front. Figure5.14 shows the growth
rates of the perturbation amplitudes over time. The dashed line corresponds to Landau’s
dispersion relation (2.86). All results share the feature that the growth of the amplitude is
shifted in the beginning. This is due to the fact that we impose an initial perturbation but
not the corresponding flow field. Thus some relaxation period is necessary for the correct
velocities to establish in the vicinity of the flame front. In Figure5.14, the linear regime
of perturbation growth can be clearly distinguished from the later nonlinear stage, where
the perturbation amplitude saturates. For now, we will discuss the linear part of the flame
evolution.

It is evident from Figure5.14 that the difference between the growth of the perturba-
tion amplitude in our simulation and that predicted from theory decreases with resolution.
According to Table5.2 the deviation is about 46% for the 50× 50 cells simulation and
only about 10% for the 200× 200 cells simulation. In the higher resolved runs the initial
perturbation quickly gets superimposed with perturbations of higher wavenumber, so that
the values of the growth rate can not safely be assigned to the largest wavelength of per-
turbation anymore. This is the reason why it exceeds the theoretical expectation slightly.

One could conclude from the results that the simulated growth rate matches the theo-
retical expectations better with higher resolution and converge for a resolution between
200 and 300 cells per dimension for our given fuel density. Alternatively an explanation
could be given in terms of a finite effective flame thickness. Even with the special mea-
sures described in Section4.5, l f can not be expected to be smaller than one cell width.
As mentioned in Section2.2.4, a theoretical approximation of a finite flame width is the
assignment of a curvature-dependent flame speed:

sM = sl(1− lMκ). (5.3)

This burning law changes the dispersion relation depending on the Markstein lengthlM . In
our case one would expect the Markstein length to be higher for less resolved simulations.

The altered burning law (5.3) breaks the scale invariance of the theory connected to
the LD instability. As explained in Section2.3.1, it introduces a critical perturbation
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Figure 5.15.: Dispersion relation between the growth rate of the perturbation amplitude
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wavenumber leading to a maximum growth rate and a cutoff scale below which pertur-
bations will not grow anymore. The measurement of the dispersion relation resulting from
the Markstein burning law should be consistent with the plot shown in Figure2.5. This,
however, would at least require that other parameters than the wavenumber of the pertur-
bation must be kept constant. In particular, the growth rates of all perturbations should be
measured at the same numerical resolution. This, however, does not realistically reflect
the situation in the simulations presented in this chapter. Since these aim on the study of
the flame shape evolution, it is interesting to know, to what extent the altered dispersion
relation of the LD instability (2.87) effects it. Here, of course, short-wavelength perturba-
tions are less resolved. Therefore we measured the growth of the perturbation amplitude
for different wavelengths keeping the width of a numerical grid cell∆x fixed. The result
is plotted in Figure5.15. The perturbation growth rate increases for higher wavenum-
bers until it reaches a maximum value after that it rapidly drops. However, a clear cutoff

wavenumber is not visible. The shape of the dispersion relation in Figure5.15 differs
considerably from Figure2.5.

The sequence of plots in Figure5.14shows increasing similarity of the overall evolution
of the amplitudes with higher resolution. This indicates that our numerical model of the
LD instability in thermonuclear flames converges in the global properties for resolutions
between 200× 200 and 400× 400 cells.
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5.3. Flame propagation into quiescent fuel

5.3.5. The nonlinear regime of flame evolution

Figure5.13 clearly shows the transition in flame propagation from the linear regime in
the beginning—where perturbation growth by virtue of the LD instability dominates the
dynamics—to the nonlinear burning regime. In accord with theoretical expectations (cf Sec-
tion 2.3.2) this happens by the formation of cusps in recesses of the front. The flame adopts
a cellular shape.

The global picture of the cellular regime is similar in all resolutions. We will now dis-
cuss some peculiarities in the details. The most prominent deviation occurs in the lowest
resolved flame, where the cell splits and a two-cell structure forms. As reported byJoulin
(1994) the phenomenon of cell splitting is not supported by analytical investigations of the
nonlinear regime, but this could be owing to the restricted class of solutions studied there.
Its invocation is usually attributed to numerical noise. This would explain why this feature
is observed in the low-resolution simulation where the discretization errors are large.

All other runs share the feature that the final outcome is a single-cell structure, which
steadily propagates forward. An effect contrary to the deviation in low resolved simula-
tions is that with increasing resolution perturbations of smaller wavelength become ob-
servable that superimpose the initial long-wavelength perturbation. This is evident for the
highest resolved run (Figure5.13d). Again, the invocation of this phenomenon is discussed
controversially in literature andJoulin (1994, 1989) argues that it should be attributed to
numerical noise (as roundoff and truncation errors). It is even present in highly accurate
numerical solutions of the Sivashinsky equation. However, a prerequisite for its observa-
tion is a wide enough computational domain (in our case a sufficiently high resolution in
y-direction), as reported byGutman & Sivashinsky(1990). This observation is consistent
with our results, pointing to the fact that, as mentioned before, one important setup pa-
rameter that influences the final flame structure is the width of the domain. Figure5.16
reprints a result from the semianalytical study ofGutman & Sivashinsky(1990). We note
that our results (e.g. Figure5.13d) are in good agreement with it.

The paradox why a superimposed smaller-wavelength cellular pattern does not destroy
the global cusp-like structure—although its amplitude should grow faster due to the higher
wavenumber (see equation (2.86))—was explained byZel’dovich et al.(1980b) on the
basis of a WKB-like linear analysis and byJoulin (1989) in the nonlinear regime (see
Sections2.4.1and2.4.3). Following the arguments ofZel’dovich et al.(1980b), the origin
of the effect lies in a flow component parallel to the flame with increasing velocity toward
the cusp. The velocity fields that establish in our simulations (see Figure5.12) show this
feature clearly. Therefore the superimposed perturbation is advected toward the cusp while
its wavelength is stretched. In that way their growth is reduced until they disappear in the
cusp. This is exactly what we observe in our highest-resolved simulation.

5.3.6. Increase in flame surface and acceleration of the flame

The wrinkling of the flame front amplified by the LD instability increases the flame surface.
This causes the mean fuel consumption rate to grow and the flame is expected to propagate
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5. Results and discussion

Figure 5.16.: Flame evolution (periodic boundary conditions) according toGutman &
Sivashinsky(1990)

with an increased mean velocityvmeanaccording to (2.105),

vmean(t)
vmean(t0)

=
A(t)
A(t0)

, (5.4)

whereA(t) denotes the flame surface area (i.e. length of the one-dimensional flame in our
two-dimensional simulation) at timet.

In Figure5.17we present a measurement of the temporal evolution of the flame surface
area and the mean velocity. As expected, the evolution of the velocities follows the growth
of the initial perturbations in the beginning and saturates in the cellular regime. The flame
area in Figure5.17is normalized to the flame area of our initial configuration whereas the
mean velocity is normalized to the laminar flame speed. This results in a shift between
vmean(t)/sl andA(t)/A(t0) because the initial configuration is already perturbed from the
planar shape and the corresponding value of the mean velocity deviates fromsl . The flow
field needs some time to adapt to the initial flame geometry. Figure5.17c depicts the dif-
ference betweenvmean(t)/sl andA(t)/A(t0). Apart from the initial shift there is a deviation
which can partly be explained by the different methods of measurement. While the mean
propagation velocity was calculated from the flame positions (determined by the contents
of ashes in the grid cells), the flame surface area was obtained by linear interpolation of
the zero level-set of theG-function in the cells. Additionally one has to keep in mind that
equation (5.4) holds strictly only for a burning velocity that is constant over the flame front.
This is rigorous in the framework of the discontinuity model of the flame, ignoring any in-
ternal flame structure. Thus this relation may not exactly apply to our simulation, since we
would expect an intrinsic Markstein-like behavior (see Section5.3.4). Nevertheless, in the
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Figure 5.17.: (a) Growth of flame surface area and(b) mean velocity for a resolution of
100× 100 cells;(c) deviation of area and velocity

following simulations we will use the increase in surface area of the flame as a measure of
the flame acceleration.

The growth of the flame surface area for the simulations with different numerical reso-
lution is plotted in Figure5.18. All higher resolved simulations reveal roughly the same
basic shape of the surface area profile reflecting the similar development of a cusp-like
structure. However, in contrast to the growth of the perturbation area, a saturation in sur-
face growth toward higher resolution can not be observed. This is due to the superposition
of the flame with the short-wavelength cellular pattern, which does not alter the amplitude
much, but increases the flame surface considerably. From theoretical approximations (see
Section2.3.2, equations (2.116, 2.117)), one would expect an increase in flame propa-
gation velocity ofvcell = 1.14sl , givenρu = 5 × 107 g cm−3 andµ = 2.41. Our results
are consistent with this estimation (see Figure5.18). The slight deviations are due to the
uncertainties in the determination of the flame propagation velocity via the flame surface
mentioned above. Furthermore, the theoretical prediction assumes a parabolic shape of the

101



5. Results and discussion

PSfrag replacements

t [s]

A
/A

(t
=

0)

0.00 0.03 0.06 0.09 0.12 0.15

1.0

1.5

2.0

2.5

3.0

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.40

1.50

1.60

1.02

1.04

1.06

1.08

(b)

(a)(c)

(d)

(e)

PSfrag replacements

t [s]
A
/A

(t
=

0)

0.00 0.03 0.06 0.09 0.12 0.15

1.0

1.5

2.0

2.5

3.0

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.40

1.50

1.60

1.02

1.04

1.06

1.08

(b)
(a)

(c)

(d)

(e)

PSfrag replacements

t [s]

A
/A

(t
=

0)

0.00 0.03 0.06 0.09 0.12 0.15

1.0

1.5

2.0

2.5

3.0

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.40

1.50

1.60

1.02

1.04

1.06

1.08

(b)

(a)
(c)

(d)

(e)

PSfrag replacements

t [s]

A
/A

(t
=

0)

0.00 0.03 0.06 0.09 0.12 0.15

1.0

1.5

2.0

2.5

3.0

1.00

1.05

1.10

1.15

1.20

1.25

1.30
1.40

1.50

1.60

1.02

1.04

1.06

1.08

(b)

(a)

(c) (d)

(e)

PSfrag replacements

t [s]

A
/A

(t
=

0)

0.00 0.03 0.06 0.09 0.12 0.15

1.0

1.5

2.0

2.5

3.0

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.40

1.50

1.60

1.02

1.04

1.06

1.08

(b)

(a)

(c)

(d)

(e)

Figure 5.18.: Growth of flame surface area for a resolution of(a) 50 × 50 cells, (b)
100× 100 cells,(c) 200× 200 cells,(d) 300× 300 cells, and(e)400× 400
cells.
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Figure 5.19.: Evolution of the flame front forρu = 5 × 107 g cm−3 (a) with periodic
boundaries iny-direction, (b) with reflecting boundaries iny-direction.
Each contour marks a time step of 0.5τLD(λpert = 3.2× 104 cm).

cells, which is only a crude approximation, and it does not take into account the develop-
ment of a superimposed small-wavelength pattern.

5.3.7. Influence of the initial flame shape and the boundary
conditions

One topic we have postponed so far is the influence of the shape of the initial flame per-
turbation and of the boundary conditions on the flame evolution. In order to test this,
we performed two long-term simulations with the setup described above at a resolution of
200×200 grid cells with a cell width of∆x = 160 cm. The fuel density was 5×107 g cm−3.
In both cases we perturbed the flame front initially in a sinusoidal way with a wavelength
of 1/6 of the domain width, but we applied different boundaries transverse to the flame
propagation. In the simulation whose result is plotted in Figure5.19a, we applied periodic
boundary conditions iny-direction. Figure5.19b shows the result of the simulation with
reflecting boundaries iny-direction. Both simulations were carried out over a time corre-
sponding to 30 growth timesτLD = ω

−1
LD according to Landau’s dispersion relation (2.86)

and corresponding to a wavelength of the domain width (i.e. 3.2 × 104 cm). Again, the
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5. Results and discussion

flame contours are artificially shifted inx-direction for better visibility. The conclusions
that can be drawn from these results are:

1. In the given setup, the initial perturbation shape is not retained, although the initial
perturbation at first develops into a cellular structure of the same wavelength in the
nonlinear regime. The flame shows the tendency to align in a the shape of a single
domain-filling cell. The transition to this steady-state pattern happens by growth of
preferred cells from the initial perturbation and the disappearance of smaller cells
in newly formed cusps. We will refer to this effect as “merging” of cells in the
following.

2. The merging of the small cells proceeds smoothly without drastic effects on the
flame shape. In particular it does not lead to a loss of flame stability.

3. The cases of reflecting and periodic boundary conditions differ in the alignment of
the ultimately developed flame cell. In the case of periodic boundary conditions the
cusp develops in the center of the domain and the crest tends toward the bound-
ary. This result is consistent with numerical solutions of the Sivashinsky equation
(Gutman & Sivashinsky1990). For the reflecting boundary condition the pattern is
reversed. Here, the crest centers in the domain.

These results support the generality of the simulations presented in the last sections. Al-
though the restriction to an initial domain-filling perturbation wavelength may appear
rather artificial, it avoids the time-consuming cell merging before the final steady-state
flame structure is reached.

5.3.8. Flame stability at different fuel densities

Further numerical experiments addressed the flame stability at different fuel densities.
With lower fuel density, the AtwoodAt number—defined asAt = |ρu − ρb|/(ρu + ρb)—
(and, equivalently, the density contrastµ over the flame front) increases (cf. Table5.1 on
page90). At the same time the laminar burning velocity of the flame decreases. Does
this influence the flame stabilization? Originally, this question was raised byNiemeyer
& Hillebrandt (1995), who reported on indications that the flame may destabilize at fuel
densities.5× 107 g cm−3. In the following tests of the flame stability at a variety of fuel
densities will be presented. These use the setup introduced in Section5.3.2and we again
refer to Table5.1for the complete set of setup values. The resolution chosen for this study
was 200× 200 cells.

Figure5.20shows the temporal evolution of the flame front for fuel densities of 2.5 ×
107 g cm−3 and 5×107 g cm−3. In both cases the flame stabilizes in a single domain-filling
cusp-like structure. Note, that the evolution time has been normalized to the growth time of
the LD instability corresponding to the initial perturbation wavenumberτLD = ω

−1
LD . This

offers comparability between the different simulations. The spacing between individual
contours is, however, artificial since the original simulations were performed in the frame
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Figure 5.20.: Evolution of the flame front at(a) ρu = 2.5 × 107 g cm−3 and (b) ρu =

5× 107 g cm−3. The contours mark evolution steps of 0.2τLD .

of reference comoving with the flame. It has been chosen in a way that the contours fill
the plot window and does not reflect flame propagation.

The outcome from simulations with even lower fuel density reveals a completely dif-
ferent flame evolution. Figure5.21shows the flame for fuel densities of 1× 107 g cm−3

and 1.25× 107 g cm−3. Although the initial flame evolution resembles that ofρu ≈ 5 ×
107 g cm−3, the forming cusp lacks long term stability. As can be seen from the plots, the
stable structure breaks up from the cusps outward and the flame subsequently evolves in an
irregular pattern. The origin of these effects is most likely numerical. For a fuel density of
1×107 g cm−3 a simulation run with 600×600 cells resolution did not result in a disruption
of the cusp anymore. Thus, a rather high grid resolution is required in order to describe a
stable cusp properly at low fuel densities (.1.25×107 g cm−3). Nevertheless, if the reason
for the disruption of the stable flame pattern is numerical noise, then one could argue that
flames at lower fuel densities are likely to become more sensitive to velocity fluctuations
in the fuel region. These, however, can be expected to be present in realistic scenarios of
SN Ia explosions. Therefore we will address that question in Section5.4.

A rather unexpected result is obtained from simulations for fuel densities around 1×

108 g cm−3. Here, the flame does not propagate in a stable manner in the first stages of the
flame evolution. This is illustrated by Figure5.22. Small-wavelength perturbations super-
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Figure 5.21.: Evolution of the flame front at(a) ρu = 1× 107 g cm−3 and(b) ρu = 1.25×
107 g cm−3. The contours mark evolution steps of 0.2τLD .

pose the initial flame shape shortly after the beginning of the simulation. They appear to
dominate the flame evolution (in particular in Figure5.22b) for a while but then the flame
stabilizes in the single-cell structure. This implies thati) the flame structure appears to be
less stable against small-wavelength perturbations at these fuel densities andii) the mech-
anism for a stabilization in a preferred long-wavelength pattern as analytically predicted
(cf. Sections2.4.1and2.4.3) does finally stabilize the flame evolution.

This initial flame destabilization becomes less pronounced in flame evolution at even
higher densities. Figure5.23shows an example withρu = 1× 109 g cm−3.
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Figure 5.22.: Evolution of the flame front at(a) ρu = 7.5 × 107 g cm−3 and (b) ρu =

1× 108 g cm−3. The contours mark evolution steps of 0.2τLD .
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Figure 5.23.: Evolution of the flame front atρu = 1 × 109 g cm−3. The contours mark
evolution steps of 0.2τLD .

107



5. Results and discussion

1 3 5

1.2

1.4

1.6

1.8

2.2

PSfrag replacements

τLD

A
/A

(t
=

0)

0 2 4

6

8

1.0

1.5

2.0

2.5

3.0

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.40

1.50

1.60

1.02

1.04

1.06

1.08

(a)
(b)
(c) (a)

PSfrag replacements

τLD

A
/A

(t
=

0)

0 2 4 6

8

1.0

1.5

2.0

2.5

3.0

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.40

1.50

1.60

1.02

1.04

1.06

1.08

(a)
(b)
(c) (b)

PSfrag replacements

τLD

A
/A

(t
=

0)

0 2 4 6 8

1.0

1.5

2.0

2.5

3.0

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.40

1.50

1.60

1.02

1.04

1.06

1.08

(a)
(b)
(c) (c)

PSfrag replacements

τLD

A
/A

(t
=

0)

0 2 4 6 8

1.0

1.5

2.0

2.5

3.0

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.40

1.50

1.60

1.02

1.04

1.06

1.08

(a)
(b)
(c) (d)

PSfrag replacements

τLD

A
/A

(t
=

0)

0 2 4 6 8

1.0

1.5

2.0

2.5

3.0

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.40

1.50

1.60

1.02

1.04

1.06

1.08

(a)
(b)
(c) (e)

PSfrag replacements

τLD

A
/A

(t
=

0)

0 2 4 6 8

1.0

1.5

2.0

2.5

3.0

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.40

1.50

1.60

1.02

1.04

1.06

1.08

(a)
(b)
(c) (f)

1.2

1.4

1.6

PSfrag replacements

τLD

A
/A

(t
=

0)

0 2 4 6 8

1.0

1.5

2.0

2.5

3.0

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.40

1.50

1.60

1.02

1.04

1.06

1.08

(a)
(b)
(c) (g)

PSfrag replacements

τLD

A
/A

(t
=

0)

0 2 4 6 8

1.0

1.5

2.0

2.5

3.0

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.40

1.50

1.60

1.02

1.04

1.06

1.08

(a)
(b)
(c) (h)

Figure 5.24.: Increase in flame surface area at fuel densities of
(a) ρu = 1 × 107 g cm−3, (b) ρu = 1.25× 107 g cm−3,
(c) ρu = 2.5 × 107 g cm−3, (d) ρu = 5 × 107 g cm−3,
(e)ρu = 7.5 × 107 g cm−3, (f) ρu = 1 × 108 g cm−3,
(g) ρu = 1.25× 108 g cm−3, and(h) ρu = 1× 109 g cm−3.
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5.4. Flame interaction with a vortical flow

ρu [ g cm−3] vcell/sl

(measured)
vcell/sl (according to
eqs. (2.116, 2.117))

2.5 × 107 1.23 1.17
5 × 107 1.20 1.14
7.5 × 107 1.25 1.13
1 × 108 1.30 1.11
1.25× 108 1.35 1.10
1 × 109 1.09 1.04

Table 5.3.: Flame propagation velocities in the cellular regime.

Again, we measured the flame acceleration in these simulations via the increase in flame
surface area. The result is plotted in Figure5.24. The final steady-state velocities of the
cellular flames are compared to the theoretical predictions from equations (2.116, 2.117)
in Table5.3. Keeping in mind the limitations discussed in the previous paragraph, the mea-
surements agree reasonably well with the theoretical predictions. However, the predicted
trend of decreasingvcell/sl with increasing fuel density is obscured by the development of
short-wavelength perturbations in some of the simulations.

5.4. Flame interaction with a vortical flow

The second part of our numerical investigations concerned the interaction of flames in the
cellular regime with turbulent velocity fields as motivated from the presence of velocity
fluctuations in Type Ia supernovae. These stem from pre-ignition convection or may be a
relic from the turbulent cascade (see Sections1.2.4and3.1.2).

5.4.1. Simulation setup

The numerical investigation of flame interaction with turbulence is generally an intricate
issue. In principle, the straight forward way to go would be to produce an isotropic tur-
bulence field by external forcing and to set up a flame in this field. The production of the
turbulence field would have to be carried out in three dimensions and a two-dimensional
cut could provide the velocity field to perform 2-d flame simulations in it. However, the
numerical production of a turbulence field is very costly and combined with flame model-
ing it is far too expensive for the level of accuracy intended in our studies and given the
parameter space that is to be explored.

For these reasons we follow a different approach. The inflow boundary condition is
modified in order to induce a vortical flow field instead of quiescent fuel (as in the previous
simulations). The flow field is not stirred anymore and turbulence is not actively produced
inside the computational domain by external forcing. This means, that turbulence injected
here partly decays before reaching the flame front. It turned out, that injection of a fully
developed isotropic turbulence field was hampered by the fact that small scale fluctuations
were damped quickly in our implementation.
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Figure 5.25.: Vortical flow field as applied in the simulations (here for the caseρ =
5 × 108 g cm−3). The frame of reference is comoving with the vortices.
The snapshot is taken after 1.5 flame crossing times over the entire com-
putational domain.

Because of these difficulties we decided to step back to a simplified configuration. As
suggested byHelenbrook & Law(1999) we applied an “oscillating” inflow boundary con-
dition on the right hand side of the computational domain, which generates a vortical
velocity field approaching the flame. The velocity at the boundary reads:

vx = sl
{
−1+ v′ sin 2kπy cos 2kπ(x− tsl)

}
(5.5)

vy = sl v
′ cos 2kπy sin 2kπ(x− tsl). (5.6)

The parameterv′ characterizes the strength of the imprinted velocity fluctuations. This
produces what is termed “square vortices” byHelenbrook & Law(1999). A similar flow
field is used byVladimirova et al.(2003) who name it “cellular flow” and alsoZhu &
Ronney(1994) apply a flow with cellular vortices to study flame propagation in it. This
specific flow has the advantage of being very simple—ideally containing only one Fourier
mode. This helps to make the effects visible more clearly and simplifies the interpretation.
Figure5.25 illustrates the vortical flow applied in our simulations. It shows an example
at a density ofρ = 5 × 108 g cm−3. In Figure5.26a they-component of the velocity is
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Figure 5.26.: Profile of they-component of the vortical flow field parallel to thex-axis
(a) ρ = 5 × 108 g cm−3; (b) ρ = 1 × 108 g cm−3. The snapshots are taken
after 1.5 flame crossing times over the entire computational domain.

plotted against thex-coordinate for the same simulation. It is apparent that the velocity
fluctuation is damped while propagating from the inflow boundary into the computational
domain. The damping is even stronger for lower densities. Figure5.26b shows a plot for
ρ = 1 × 108 g cm−3. This causes some problems in the interpretation of the simulation
results that will be discussed below.

The other boundaries were set up in the same way as in section5.3.2. In order to capture
the full flame front in cases of strong deformation, we changed from a quadratic domain
to a rectangle of 300× 200 computational cells. Several experiments with initially planar
flames yielded drastic responses of the flame shape when the vortices encountered it. This
can be attributed to the high sensitivity of planar flames to perturbations. Consequently, in
order to make the results of different simulations comparable and to enable a quantification
of the flame evolution, the flame was perturbed initially in a sinusoidal way with eight
periods fitting into the domain. This initial perturbation grows due to the LD instability
and stabilizes in a cellular pattern, before the injected vortices reach the flame front. In
this way it is possible to study the interaction of a stabilized flame with a vortical flow field
preventing the incoming flow from unpredictably deforming the flame shape at the first
encounter.

5.4.2. What can be expected?

Before we present the results of our numerical study we shall discuss what we actually are
looking for in the simulations. That is, we will somehow have to define, how to discrimi-
nate between stable flame propagation and a breakdown of the stabilization. Why is this a
question of definition? From the conjecture of active turbulent combustion it may appear
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that a breakdown of the stabilization must be obvious from a rapid and unlimited growth of
the flame propagation velocity. However, this cannot be expected to occur in a numerical
simulation where the growth of the flame surface accounting for that effect is limited by
discretization and resolution. So, the maximum effect that can be anticipated is a rapid
increase in flame surface and burning velocity and a saturation at some higher value. An-
other possibility is that with increasing strength the vortical flow starts to dominate the
flame evolution.

On the other hand, how can we guarantee flame stabilization? Owing to the high com-
putational costs it will not be possible to follow the flame propagation for an arbitrarily
long time. However, in case of stabilization we can actually make use of the knowledge
on the flame pattern that is to be expected in case of stability in our specific simulation
setup. From Section5.3 (see alsoRöpke et al.2003) it is known that the flame propagat-
ing into quiescent fuel finally stabilizes in a single domain-filling cusp-like structure for
the given setup. This structure may be superimposed by a smaller-scale cellular pattern in
sufficiently resolved simulations. A similar result can be anticipated for interaction with
weak imprinted vortices.

Thus we may expect two extremal behaviors of the flame. In case that the flame stabilizes
and the incoming perturbation fails to break the cellular pattern, the cells of the stabilized
small wavelength pattern caused by the initial perturbation of the flame front will merge
forming the single domain-filling cusp which then propagates stably. On the other hand,
if the intensity of the incoming vortices is high enough to break up the stabilization, no
single domain-filling cusp will finally emerge, but the flame should rather show a transient
pattern.

5.4.3. Simulation results

The general features of flame evolution in a vortical flow field will again be presented in
exemplary cases. The intention is to give an overview over the possible behaviors. Some
peculiarities will also be mentioned. The next section will then summarize the numerical
experiments covering a certain parameter space.

First, we consider again the case of a fuel density amounting to 5×107 g cm−3 (cf. Table
5.1 on page90). Figures5.28and5.29show snapshots of the flame evolution. Here, we
applied incoming flows with two different strengths of vortices, namelyv′/sl = 0.7 and
v′/sl = 2.5. These values are imposed at the boundaries and will in the following be used
to label the simulations. Note, however, that they do not necessarily represent the values
experienced by the flame front for reasons given in section5.4.1.

Figure5.27provides the comparison with flame propagation into quiescent fuel for the
chosen setup. It resembles the features of the simulations presented in Section5.3. Due
to the LD instability, the initial perturbation grows and the flame stabilizes in a cellular
pattern in the nonlinear regime. The following snapshots show the “merging” of the short-
wavelength cells imprinted by the initial condition resulting in the formation of larger
cells. The tendency to form a domain-filling cell is apparent. However, following the
evolution until the steady-state of a cusp-like structure centered in the domain is reached
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Figure 5.27.: Flame evolution for a fuel density of 5× 107 g cm−3 and propagation into
quiescent fuel. Snapshots taken at time stepst = 0 s, t = 8.0 × 10−3 s,
t = 1.6× 10−2 s, t = 2.4× 10−2 s, t = 3.2× 10−2 s, andt = 4.8× 10−2 s.
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Figure 5.28.: Flame evolution for a fuel density of 5×107 g cm−3 and a velocity fluctua-
tion of v′/sl = 0.7 at the right boundary. Snapshots taken at time steps
t = 0 × 10−3 s, t = 1.2 × 10−2 s, t = 2.4 × 10−2 s, t = 3.2 × 10−2 s,
t = 4.0× 10−2 s, andt = 4.8× 10−2 s (top left to bottom right).
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Figure 5.29.: Flame evolution for a fuel density of 5×107 g cm−3 and a velocity fluctua-
tion of v′/sl = 2.5 at the right boundary. Snapshots taken at time steps
t = 0 × 10−3 s, t = 4.0 × 10−3 s, t = 8.0 × 10−3 s, t = 1.6 × 10−2 s,
t = 3.2× 10−2 s, andt = 4.8× 10−2 s (top left to bottom right).
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(as it would be expected from the results presented in section5.3.5) is very expensive
and shall not be tried here. This is certainly a drawback in the current study, but it was
chosen as a compromise in order to be able to explore a larger parameter space with given
computational resources.

Contrary to the flame evolution in Figure5.27, Figure5.29clearly shows the disruption
of the initial cellular pattern by interaction of the flame with vortices. Also, the formation
of a single domain-filling cell is suppressed by the interaction. The overall flame shape
evolution in this case can be interpreted as an adaptation to the imprinted vortical flow
structure. The change in the flame evolution from the extreme cases depicted in Figures
5.27and5.29does, however, not proceed abruptly, but rather in a smooth transition. Fig-
ure5.28presents an example of intermediate behavior. Similar simulations were also per-
formed in some cases with higher resolution of the numerical grid in order to test whether
or not insufficient resolution prevents small scale flame structures from developing. How-
ever, no significant difference to the flame evolution depicted in Figures5.27–5.29 was
noticed. This agrees withHelenbrook & Law(1999), who found in their simulations of
chemical flames that the wavelength of perturbations that develop in interaction with a
vortical flow is determined by the scale of the vortices.

5.4.4. A Parameter study

In order to quantify the the flame evolution as qualitatively described in the preceding
section, we conducted a parameter study. It aimed on the determination of the trend of the
flame behavior as a function of the strength of the vortices in the incoming flow and in
dependence on the fuel density.

As discussed in Section5.3.8, the cellular flame pattern looses stability at around 1.0×
107 g cm−3, which, however, is attributed to numerics rather than being a physical effect.
Correct description of cellular stabilization at these low fuel densities would therefore
require unaffordable high numerical resolutions. On the other hand, it can be observed, that
at higher fuel densities the sensitivity of the initial flame to small-wavelength perturbations
increases. This causes difficulties in producing a stable flame configuration prior to the
incoming vortices encountering the flame front. Because of these difficulties we restricted
the study to four fuel densities:ρu = 1.25× 107 g cm−3, ρu = 2.5 × 107 g cm−3, ρu =

5× 107 g cm−3, andρu = 7.5× 107 g cm−3 (cf. Table5.1on page90).

General features

Before we turn to a statistical evaluation of the parameter study, we will illustrate the flame
evolution for the different fuel densities by presenting a sample of four simulations for
each fuel density (see Figures5.30and5.32–5.34). These differ in the strength of velocity
fluctuations imposed on the boundary condition, but note, that the velocity fluctuations
experienced by the flame do not scale directly with these values, as mentioned before.
Therefore, the plots in Figures5.30and5.32to 5.34are ordered according to the mean of
the strength of velocity fluctuations at the flame front over a certain period of time. We

116



5.4. Flame interaction with a vortical flow

will make use of this quantification later in this section.
For comparison, in Figure5.30the flame evolution at a fuel density of 5× 107 g cm−3 is

given again for propagation into quiescent fuel and for velocity fluctuations ofv′/sl = 0.7,
v′/sl = 2.0, andv′/sl = 2.5 at the inflow boundary. The general trends discussed in Section
5.4.3—as the tendency to form domain-filling cusp-like structures in case of low velocity
fluctuations and adaptation to the incoming flow at high velocity fluctuations—are appar-
ent here. The plots also reveal the gradual change from one extreme behavior to the other.
For this example we will discuss the measurement of some quantities for this simulation.
The measured flame surface area as a function of time is plotted in Figure5.31a,b for the
simulations withv′/sl = 0.7 andv′/sl = 2.5, respectively. Apart from fluctuations on a
small time scale, the interaction with the vortical flow field introduces also considerable
long term fluctuations. These are, of course, expected in the initial phase when the flame
starts to react to the incoming vortices. But even at much later times the flame surface
area does not reach a steady state. The reason for this effect will be discussed below. Two
other quantities that are instructive for the examination of flame evolution are certainly
the velocity fluctuations in the fuel upstream of the front and in the ashes downstream of
it. As discussed above, the strength of the vortices created at the inflow boundary is not
a reliable measure of what the flame actually experiences, since the velocity fluctuations
get quickly damped when propagating toward the flame and bending of the flame front
may lead to different velocity fluctuations at different locations on the flame. Moreover,
the dependence of the damping on the fuel density hampers the comparison of simulations
with a variety of these values. Therefore we determine the standard deviations of the ve-
locity fields,σ(vu) andσ(vb), in a certain belt around the flame. It is obvious from plots
5.31c,d,e,f that both quantities fluctuate considerably.

Figures5.32 and 5.33 indicate that at lower fuel densities the effect of the incoming
vortices on the flame structure is generally more drastic. Atρu = 2.5× 107 g cm−3 (Figure
5.33) the tendency of the formation of the domain-filling structure is still visible in the case
of propagation into quiescent fuel. This is not the case anymore forρu = 1.25×107 g cm−3

(Figure5.32) for reasons discussed in Section5.3.8. However, with increasing strengths
of the imprinted velocity fluctuations, the flame still gradually adapts to the flow.

Figure5.34shows the flame evolution at a fuel density of 7.5× 107 g cm−3. The trends
are the same as forρu = 5 × 107 g cm−3. Only in case of propagation into quiescent fuel
(Figure 5.34a) the initial destabilization with respect to small wavelength perturbations
(cf. Section5.3.8) alters the evolution for a transition period, before the flame stabilizes in
a domain-filling single-cell structure.

Statistical quantification

In a statistical evaluation of our parameter study of the flame evolution for different fuel
densities we will now addressi) the dependency of the effective flame propagation veloc-
ity on the strength of the imprinted velocity fluctuations andii) the amplification of the
velocity fluctuation by the flame front. As was discussed above, all quantities necessary
for this are not easy to determine, because they fluctuate considerably with time (see Fig-
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Figure 5.30.: Flame evolution for a fuel density of 5× 107 g cm−3. (a) propagation into
quiescent fuel and for velocity fluctuations at the right boundary of(b)
v′/sl = 0.7, (c) v′/sl = 2.0, and(d) v′/sl = 2.5. Each contour represents a
time step of 8.0× 10−4 s (a,b), and 2.4× 10−3 s (c,d).
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Figure 5.31.: (a,b) Flame surface area over time(c,d) standard deviation of the velocity
field ahead of the front over time(e,f) ratio of the standard deviations of
the velocity fields beyond and ahead of the flame over time (the time is
normalized to the crossing time of the laminar flame over one grid cell
τ∆x) The left and right columns of plots correspond tov′/sl = 0.7 and
v′/sl = 2.5, respectively.
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Figure 5.32.: Flame evolution for a fuel density of 1.25× 107 g cm−3. (a) propagation
into quiescent fuel and for velocity fluctuations at the right boundary of(b)
v′/sl = 2.0, (c) v′/sl = 2.5, and(d) v′/sl = 3.0. Each contour represents a
time step of 4.2× 10−4 s.
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Figure 5.33.: Flame evolution for a fuel density of 2.5×107 g cm−3. (a) propagation into
quiescent fuel and for velocity fluctuations at the right boundary of(b)
v′/sl = 1.75, (c) v′/sl = 1.5, and(d) v′/sl = 3.5. Each contour represents a
time step of 1.2× 10−3 s (a) and 2.4× 10−3 s (b)–(d).
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Figure 5.34.: Flame evolution for a fuel density of 7.5×107 g cm−3. (a) propagation into
quiescent fuel and for velocity fluctuations at the right boundary of(b)
v′/sl = 1.0, (c) v′/sl = 2.0, and(d) v′/sl = 3.0. Each contour represents a
time step of 8.3× 10−7 s.
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ure5.31). Therefore we will have to average these quantities over a certain time. For this
averaging we chose a time range from 480τ∆x to 720τ∆x (τ∆x denotes the crossing time
of the corresponding laminar flame over one grid cell). Additionally, in order to make the
measurements for different fuel densities comparable, we scaled the belt around the flame
in which the standard deviation of the velocity field was determined in a way that the time
for flame crossing over the width of this belt remained the same for all fuel densities.

In Figure5.35 the temporal mean value of flame surface areaAsurf (normalized to the
surface area of the corresponding planar flame frontAplanar) is plotted against the temporal
mean of standard deviation of the velocity in the fuel region (normalized to the laminar
burning velocity of the flame). This measures according to Section5.3.6the flame propa-
gation velocity in dependence on the imprinted velocity fluctuations.

The increase of the flame speed with stronger incoming velocity fluctuations is evident
from Figure5.35. However, there is quite a large scatter in the data. This has two reasons.
Firstly, we certainly did not follow the flame evolution long enough to undoubtly reach
the steady state of the flame shape—which should ideally be the clearly distinct single
domain-filling cusp-like structure in case of weak incoming vortices. To follow the flame
propagation up to this stage would, however, be much too expensive for a parameter study.
Secondly, some peculiar features of the flame shape may develop as a result of small
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ρu [ g cm−3] a b c

1.25× 107 1.25712± 0.0215 0.177654± 0.05236 1.28103± 0.0.04581
2.5 × 107 1.29816± 0.0797 0.180935± 0.01718 0.779895± 0.01982
5 × 107 1.05533± 0.04931 0.141428± 0.01171 0.558411± 0.01883
7.5 × 107 1.07245± 0.05131 0.150079± 0.2911 0.466975± 0.03134

Table 5.4.: Fit parameters according to fitting formulas (5.7) and (5.8) with correspond-
ing asymptotic standard errors.

perturbations (e.g. due to numerical noise). In particular, this causes substantial deviations
if it affects the long-wavelength structure of the flame and is primarily responsible for the
scatter of the results in case of strong incoming velocity fluctuations. Our simulations
suggest here, that the flame shape gradually adapts to the incoming flow, which has short-
wavelength velocity fluctuations imprinted on it. The larger scale features here are only
transient phenomena, that, however can alter the flame surface significantly. Again, this
scatter could very likely be cured by taking the mean over longer time intervals.

Damköhler(1940) proposed a linear dependence of the effective flame propagation ve-
locity on the turbulence intensity for turbulent combustion in what is today called flamelet
regime. Our results are consistent with a linear growth. Linear fits to the data are included
in Figure5.35. Values for the fit parametera according to the fitting formula

〈Asurf〉

Aplanar
= 1.0+ a

〈σ(vu)〉
sl

(5.7)

are given in Table5.4. It is evident from Figure5.35that interaction of the flame in the
cellular regime with turbulent velocity fluctuation can lead to a substantial acceleration of
the flame propagation velocity. It is certainly not possible from this parameter study to
infer a clear trend of the slope depending on the fuel density.

In order to estimate the amplification of the velocity fluctuations across the flame for
different densities, we investigated the strength of velocity fluctuations downstream of the
flame in dependency of the strength of the imprinted vortices in the fuel. As already shown
for the case of flame propagation into quiescent fuel (Section5.3.3), the flame produces
vorticity in the ashes. Here, the question is addressed, whether vorticity present in the fuel
will be amplified in the flame, This question arises in connection with the conjecture of
active turbulent combustion (Niemeyer & Woosley1997, see also Section2.6.3).

The result of the study for a variety of fuel densities is plotted in Figure5.36. In this
plot, trends show up much more clearly than in Figure5.35. However, some scatter is still
present in the data. But the reason for this scatter is only partly connected to the effects
that cause the scatter in Figure5.35. As can be seen from snapshots of the evolution of the
flame front (an example is the bottom left snapshot in Figure5.29), eventually the merging
of cusps can produce transient “bursts” in vorticity beyond the flame. This is particularly
prominent in case of changes in the long-wavelength flame structure, but not necessarily
connected to it. From Figure5.31f, where this “burst” in velocity fluctuation appears as a
spike in the profile, it can be seen that the duration of those events is very short. Hence their
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Figure 5.36.: Relation between velocity fluctuations upstream and downstream of the
flame front.

contribution to the temporal mean is small (whereas the long-wavelength flame structure
and thus the flame surface changes slowly). Consequently, the scatter in plot5.36is much
smaller than in plot5.35.

The data plotted in Figure5.36 can be fit rather well by the assumption that the ratio
〈σ(vb)/σ(vu)〉 is proportional to the incoming turbulence intensity, i.e.

〈σ(vb)〉 = b+ c〈σ(vu)〉. (5.8)

Table5.4 provides the fit parameters. In contrast to Figure5.35, the plot in Figure5.36
reveals a clear trend for the fuel density. The slopec increases with lowerρu. This is what
would be expected taking into account the increased production of specific volume in the
flame with lowerρu. In Figure5.37the factorc is plotted against the corresponding density
ratioµ, accentuating the trend. Of course, a functional dependence cannot be inferred from
this small sample of data. It is interesting to note that forρu ≈ 2.5× 107 g cm−3 the slopec
becomes greater than unity, indicating a slight amplification of velocity fluctuation in this
case.

We would like to mention here that the above interpretation of this result requires some
caution, since the cellular stabilization of the flame has been shown to be weaker with
lower fuel density. This seems to be a numerical rather than a physical effect, since
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Figure 5.37.: Ratio of the velocities upstream and downstream of the flame front as a
function of the density contrastµ over it.

the cusps become more stable with higher resolution. Thus, at the given resolution of
our parameter study, the flame evolution shows peculiar behavior below a fuel density of
1.25× 107 g cm−3. Cusps loose eventually stability distorting the flame shape, which then
responds with accelerated propagation of the perturbed part for a short period, after that
the flame stabilizes again. Here, the results can not be trusted anymore.

However, we do not observe such a flame evolution at higher fuel densities included in
this parameter study. Thus, the dependency on the fuel density is likely to be (at least
partially) of physical origin.

The result of the presented parameter study is that no drastic flame acceleration or
turbulence production is observed even if the imprinted velocity fluctuations are strong
enough to break up the original cellular stabilization of the flame front. We rather ob-
serve a gradual adaptation of the flame to the vortical flow field. This is consistent with
the result of the numerical investigation of chemical flames byHelenbrook & Law(1999)
Therefore the simulations performed in the parameter space of fuel densities ranging from
ρu = 7.5× 107 g cm−3 down toρu = 1.25× 107 g cm−3 and imprinted velocity fluctuations
up toσ(vu)/sl ∼ 1.7 reveal no indication of a deviation of the flame propagation in the
flamelet regime of turbulent combustion.
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Yet not every solution of the equations of motion, even if
it is exact, can actually occur in Nature. The flows that
occur in Nature must not only obey the equations of fluid
dynamics, but also be stable.

— L. D. Landau & E. M. Lifshitz (1959)

6.1. Conclusions

The present study addresses the question of stability of thermonuclear flames in Type Ia
supernova explosions. The underlying model of all investigations discussed in this work
explains SNe Ia as thermonuclear explosions of a Chandrasekhar-mass white dwarf star
composed of carbon and oxygen. The thermonuclear burning is confined to a very thin
layer (.1 cm), called aflame, which initially propagates in the subsonic deflagration mode,
i.e. the combustion wave is mediated by microphysical transport processes.

Our study focuses on scales around the Gibson scale (see Sections2.6.2and3.1.2) and
we thus confined the typical width of the computational domain in that we performed our
studies to∼104 cm. It is therefore well-justified to model the flame in the discontinuity
approximation ignoring any inner structure of it. The reason for our interest in this scale
range, which is orders of magnitude below the radius of the exploding WD (∼108 cm) is,
that large scale SN Ia simulations (e.g.Reinecke et al.2002b) trying to model the scales
of the WD are unable to resolve it and therefore rely on the assumption of stability of the
flame there. However, this has not been convincingly checked so far. Below the Gibson
scale, the flame propagation is not affected anymore by the turbulent eddy cascade that is
evoked by large-scale instabilities. Here, flame evolution is dominated here mainly by a
hydrodynamic instability, known as theLandau-Darrieus instability. Theoretical consid-
erations suggest that the flame stabilizes against this instability by a nonlinear mechanism.
It should adopt a cellular shape. So far, there exists no numerical simulation including full
treatment of the hydrodynamical flow that proves this conjecture for conditions that are
expected in SN Ia explosions.

A key parameter to all deflagration SN Ia models is the effective flame propagation ve-
locity. Wrinkling of the flame surface due to instabilities or interaction with turbulence
increase the surface and this accelerates the flame speed beyond the value that corresponds
to a planar flame geometry. Only this effect qualifies deflagration models as candidates
to explain SNe Ia. Therefore it is highly desirable to determine the flame acceleration
that results from the cellular pattern at scales we address in our simulations. Furthermore,
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there have been speculations in literature about a possible breakdown of the cellular sta-
bilization of the flame front and a following self-turbulization of the flame. This effect
has been discussed under the termactive turbulent combustionby Niemeyer & Woosley
(1997), Niemeyer(1999), andHillebrandt & Niemeyer(2000). It would have drastic con-
sequences for SN Ia explosion models and could eventually lead to a transition of the
flame propagation mode from subsonic deflagration to supersonic detonation. From one-
dimensional empirical supernova models it is known that such a transition at low fuel
densities of∼1 to 5×107 g cm−3 (i.e. late in the explosion phase, when the star has already
considerably expanded) produces spectra that are in good agreement with observations.
Furthermore,Niemeyer & Hillebrandt(1995) reported on a loss of flame stability at a fuel
density of 5× 107 g cm−3. We therefore focussed our investigation on effects at rather low
fuel densities.

In Section1.4we raised a number of questions that were to be answered in the framework
of the present study. According to the results from our numerical studies presented in
Chapter5 and the discussion therein, we can state:

1. Both the Landau-Darrieus instability1 and the nonlinear cellular stabilization bal-
ancing it exist for thermonuclear flames in Type Ia supernova explosions. The latter
has been shown in the framework of the present study for the first time applying full
treatment of the hydrodynamical flow.

2. The presented numerical method based on the level set approach and comprising in-
cell reconstruction and flux-splitting techniques was shown to be capable of appro-
priately modeling the propagation of the flame in the discontinuity approximation.
The measured growth rate of perturbations of the planar flame shape in the linear
stage of flame evolution was in agreement with Landau’s dispersion relation. In
contrast, the “passive implementation” of the level set method applied in the large-
scale supernova simulations byReinecke et al.(2002b) has been shown to be unable
to reproduce the expected behavior. This was attributed to the fact that unlike the
“passive implementation”, the scheme used in the present study provides correct
coupling between flame propagation and the hydrodynamical flow.

3. In the nonlinear regime of flame evolution the flame adopts a cellular pattern. In the
simulation setup we applied, the steady-state shape of the flame front is a domain-
filling single-cell structure that may be superimposed with a short-wavelength cel-
lular pattern at sufficient numerical resolution. This result does not depend on the
shape of perturbation that was initially imposed on the flame. The alignment of
the large cell in the computational domain depends on the boundary conditions ap-
plied in the direction transverse to that of flame propagation. In case of periodic
boundary conditions, the cusp centers in the computational domain while in case of
reflection boundary conditions the crest of the pattern tends to align in the domain

1This part is in accord with the result byNiemeyer & Hillebrandt(1995)
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center. All these results are consistent with predictions resulting from analytical and
semi-analytical studies.

4. For the steady-state cellular flame structure we measured an effective flame prop-
agation velocity of∼ 1.1sl depending on the fuel density. Keeping in mind the
discussion from Section5.3.8the agreement with theoretical predictions is reason-
able.

5. In contrast toNiemeyer & Hillebrandt(1995), we found no indication for a decrease
of flame stability at a fuel density of 5×107 g cm−3. The loss of stability of the cusps
of the cellular flame structure atρu ≈ 1 × 107 g cm−3 observed in our simulations
can be attributed to insufficient numerical resolution. To our surprise, we observed
a loss of flame stability atρu ∼ 108 g cm−3. This, however, was identified as a tran-
sient phenomenon and the flame stabilized finally in a domain-filling cell. We thus
may conclude that our simulations did not reveal significant flame destabilization at
the density range under consideration (1× 107 to 1× 109 g cm−3), although some
peculiarities were observed.

6. If the cellularly stabilized flame interacts with vortices of sufficient strengths, then
the initial cellular pattern can break up in the sense that the initial shape is lost and
the flame adapts to the incoming vortical flow. The tendency of the flame to form
a single-cell structure is suppressed by this effect. However, we do not observe a
sharp transition but rather a gradual change in the flame behavior.

7. Our numerical simulations suggest that the flame smoothly adapts to the incoming
vortical flow with increasing turbulence intensity. No drastic effects were observed.
Although we measured an amplification of the strength of the velocity fluctuation
across the flame forρu = 2.5× 107 g cm−3, we could not observe a deviation from a
linear scaling between the flame surface area (and thus the effective flame propaga-
tion speed) and the strength of the imprinted velocity fluctuations.

We conclude from that, that the results of our study are consistent with flame propagation
in the so-called flamelet regime. Thus our simulations do not conflict with the assumptions
of large-scale supernova models on the stability on small unresolved scales. Although we
can probably not completely rule out the possibility of active turbulent combustion, we
found no convincing hint for such an effect in our numerical investigations. Our simu-
lations indicate that effects resulting from the cellular regime of flame propagation are
unlikely to trigger a presumed deflagration to detonation transition.

6.2. Comparison with experiments

One question that is still unanswered is to what degree does our numerical model reflect
the flame evolution in nature? Of course, comparison with experiments is usually not pos-
sible in astrophysics owing to the extreme conditions in the objects studied here. However,
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Figure 6.1.: Flame propagation in Hele-Shaw cells(a) in a 7.3 % propane – 92,7 %
air mixture and(b) in a 6.8 % methane – 93.2% air mixture (courtesy of
P. D. Ronney, Figure (b) is taken from theeFluids Gallery of Fluid Flow
Images, http://www.efluids.com/efluids/gallery/Premixed-gas.htm)

we can compare our results with terrestrial flames. Although this cannot provide a quanti-
tative validation of our results, one can still judge from that comparison, whether the basic
physical concepts that enter our model are appropriate to describe real flames to a certain
degree.

Experiments that are suitable for comparison with our results are investigations of the
propagation of premixed gaseous chemical flames in so-calledHele-Shaw cells, performed
in the group of P. D. Ronney at the Department of Aerospace and Mechanical Engineering,
University of Southern California, Los Angeles (Sharif et al.1999, Abid et al.1999). The
Hele-Shaw cells applied there consist of two Plexiglas plates separated by a thin aluminum
frame and form a combustion chamber that essentially restricts flame evolution to two
dimensions. The chamber is filled with the fuel mixture (typically hydrocarbon and air)
and the flame is ignited on one side of the chamber by one or more sparks. Figure6.1
shows two examples.

In the comparison with our results one has to keep in mind that the Lewis numberLe
for the chemical flames in the experiments is orders of magnitude lower than in thermonu-
clear flames under conditions of SN Ia explosions. Therefore the pattern of these chemical
flames is not solely caused by the LD instability, but also by the diffusional-thermal insta-
bility (cf. Section2.3).

Nevertheless, the basic features we observe in our simulations are present in the experi-
ments:

1. The flame stabilizes in a cellular pattern.

2. The flame front shows the tendency to form a one-cell structure that fills the entire
width of the combustion chamber (see Figure6.1b; this feature is also apparent in
many other snapshots and movies from the experiments that cannot be shown here)
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3. The one-cell flame structure aligns with the crest centered in the combustion cham-
ber, as is the case in our simulations when reflecting boundary conditions are applied
transverse to the direction of flame propagation. These would be adequate in models
of Hele-Shaw cells anyway.

4. The long-wavelength structure is superimposed by a small-wavelength cellular pat-
tern, consistent with our highest-resolved simulations.

Thus, although a quantitative comparison is not possible, we conclude that our numerical
model reflects at least the phenomenology of flame propagation in nature to a reasonable
degree.

6.3. Implications for SN Ia models

As stated above, our study corroborates the assumption of flame stability at unresolved
scales in large-scale SN Ia explosion models. This is an important contribution that our
small-scale model makes to the credibility of those simulations. At least at fuel densities
aboveρu ≈ 2.5 × 107 g cm−3 no deviations from burning in the flamelet regime can be
expected from our result. The slight amplification of the turbulent velocity fluctuations
across the flame atρu = 2.5× 107 g cm−3 (and possibly even more pronounced below that
value) may have no significant impact on the current SN Ia models, since the flame width
at those densities will become non-negligible anymore (cf. the data given byTimmes &
Woosley1992). Then the burning is expected to enter the distributed regime of turbulent
combustion, which requires completely different numerical approaches. In case of SN Ia
explosions, an approach to study this regime was discussed byLisewski et al.(2000b).

Although the increase in effective flame propagation resulting from the cellular regime
will be negligible compared to the increase in flame speed at larger scales where the flame
is affected by the turbulent cascade, it may be significant in the early stages of the ex-
plosion. In the current large-scale models, the flame is assumed to propagate with its
laminar flame velocity before the rising RT bubbles establish the turbulent cascade. This
may cause a problem with the nucleosynthetic yields from the SN Ia explosion (Reinecke
2001). Since the laminar flame speed is very low, the WD expands slowly in the beginning
of the explosion and thus the combustion products remain at rather high densities for a
considerable time. This effect leads to a neutronization of the material by electron capture
and an overproduction of neutron-rich heavy nuclei (Nomoto & Kondo1991, Brachwitz
et al.2000), eventually even leading to a collapse of the star. Taking into account the veloc-
ity increase resulting from the cellular regime, this problem could be extenuated. As has
been shown in this study, this may be in particular the case if strong velocity fluctuations
left over from the pre-ignition convection interact with the flame. However, the strength of
turbulence resulting from pre-ignition effects is not well-determined yet.Höflich & Stein
(2002) claim surprisingly high values of∼107 cm s−3.

In the current SN Ia models byReinecke et al.(2002b), the effective flame propagation
velocity is determined as the maximum of the value derived from a subgrid model and the
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laminar burning velocity according to equation (2.73). Our study suggests that the lower
cutoff value corresponding tosl may underestimate the actual propagation velocity taking
into account the effects in the cellular mode of flame propagation. We therefore propose a
higher cutoff value for the flame speed corresponding to the velocity of the cellular flame
at the Gibson scale.

6.4. Future work

Directions for further work resulting from our study concern on the one hand the numerical
scheme applied here and on the other hand the physical effects.

Throughout this work, we restricted our study of the flame evolution to two dimensions
only. This was mainly due to the fact that extending our numerical scheme to three di-
mensions is highly non-trivial. The in-cell reconstruction is based on the assumption that
the position flame front inside a computational cell can be linearly interpolated from in-
tersections of the zero level set of theG-function with the cell interfaces. Already in two
dimensions this caused a topological uncertainty (see Section4.5.1). In three dimensions
one would have to deal with a much higher number of ambiguous geometries. One can
even easily imagine situations, where the intersections of the flame with the cell interfaces
do not span a plane. However, a three-dimensional study of the cellular flame stabilization
would be desirable. Furthermore, the sensitivity of the reconstruction to deviations in the
unburnt volume fraction of the mixed cell (cf. Section5.2) hampers the application of the
scheme to large-scale SN Ia models. Nevertheless, since the “complete implementation
of the level-set method provides a more accurate flame description, it would be worth try-
ing to implement this scheme in large scale SN Ia models (at least in a two-dimensional
version.

The nonlinear flame evolution investigated in this work is partly determined by the setup
in an on average planar flame shape. It would be interesting to study the flame propagation
in case of circularly expanding geometries, since these are expected to reveal cell-splitting
and consequent fractalization of the flame fronts in contrast to the cell merging observed
in our simulations. Moreover, there exists rich literature on this problem (e.g.Blinnikov &
Sasorov1996, Filyand et al.1994). All studies so far employed the Sivashinsky equation
or its descendants. A comparison of hydrodynamical simulations to those results has the
potential to reveal interesting nonlinear physics.

A further field for investigation is the nucleosynthetic yield of large-scale supernova
models when an initial flame propagation velocity higher than the laminar value is pre-
scribed. According to our study, this new value depends on the velocity fluctuations present
in the WD matter at the ignition time. The strength of those, however, needs further inves-
tigation. A possible result from the proposed study could be the attenuation of the problem
of neutronization of the burning products in the early stages of the SN Ia explosion.

Finally, the question on the possibility of a deflagration to detonation transition is still
open. Although recent three dimensional large scale deflagration models (Reinecke et al.
2002b, Gamezo et al.2003) suggest, that this transition may not be necessary for the ex-
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plosion energetics, still nucleosynthetic arguments favor a delayed detonation. It would
provide a way to burn the fuel that is still left in the center of the exploding star because
of the fingers of fresh material sinking in between the rising RT bubbles. This unburnt
material may ultimately be in conflict with spectra from observations2. Although we did
not find an effect that could account for this transition in the scale space under consider-
ation, the possibility of active turbulent combustion cannot completely ruled out by our
numerical experiments. Another approach would be to look for a mechanism to trigger
the transition at even lower fuel densities when burning proceeds in the distributed regime.
However,Lisewski et al.(2000a) concluded that this turbulent burning regime is unlikely
to establish the conditions required for a deflagration to detonation transition.

Currently, the observation of Type Ia supernovae is a very active field of astronomy, pro-
viding observational constraints of increasing accuracy. Together with the cosmological
relevance of these astrophysical events, this makes the theoretical and numerical model-
ing of Type Ia supernova an exceptional fascinating and absorbing subject of astrophysical
research.

2This is speculative since the corresponding observations are still missing and a nucleosynthetic evaluation
of the SN Ia models is not yet complete. However, both issues are currently being tackled.
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A. Derivation of the Sivashinsky
equation for a hydrodynamical
model of the flame

We shall now briefly repeat the main ideas included in the derivation of the Sivashinsky
equation (2.119), following the simplified case presented bySivashinsky & Calvin(1987).
This approach focuses on the description of the hydrodynamic instability and neglects
diffusional and thermal effects. The perturbed flame front is parametrized by

x = φ(y, t). (A.1)

Assuming the flame propagation velocity relative to the burnt material to be constant yields
the condition

u+ · n− D = 1 (A.2)

at x = φ(y, t), where

n =
(1,−φy)√

1+ φ2
y

, (A.3)

D =
φt√

1+ φ2
y

, (A.4)

(A.5)

and the subscript ’+’ denotes quantity in the burnt material, while a ’−’ will refer to the
unburnt values in the following. The subscriptsy andt stand for the corresponding partial
derivatives. Describing the flame as a surface of density discontinuity and modeling the
fluid as incompressible and non-viscous yields the following form of the Euler equations
for the hydrodynamic development of the system in two spatial dimensions:

∂u±
∂t
+ (u± · ∇)u± = −

1
ρ
∇p±, ∇ · u± = 0, u± = (u±, v±). (A.6)

A convenient choice of reference values gives the density on both sides of the front in the
nondimensional form

ρ+ = 1, ρ− = (1− γ)−1. (A.7)

Continuity of mass and momentum flow across the flame front now reads

ρ+(u+ · n− D) = ρ−(u− · n− D), (A.8)

ρ+(u+ − Dn)(u+ · n− D) + p+n = ρ−(u− − Dn)(u− · n− D) + p−n, (A.9)
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respectively, which can be rewritten using (A.2) giving

u+ · n = γ + u− · n, (A.10)

u+ · t = u− · t, (t · n = 0), (A.11)

p+ = −γ + p−. (A.12)

The basic solution of the system (A.2), (A.6), (A.8), and (A.9) corresponding to a plane
flame (φ = 0) is given as

u(b)
+ = 1, v(b)

+ = 0, p(b)
+ = 1 for x > 0; (A.13)

u(b)
− = 1− γ, v(b)

− = 0, p(b)
+ = 1+ γ for x < 0. (A.14)

This model does not contain a characteristic length scale and therefore the coordinatesx
andy can be assumed to be of the order of unity. Under the assumptionγ � 1 Sivashinsky
(1977) estimates the following states for the perturbed flame based on a linearized stability
analysis:

φ ∼ γ; u± − u(b)
± ∼ γ

2; v± − v
(b)
± ∼ γ

2; p± − p(b)
± ∼ γ

2; x, y ∼ 1; t ∼ γ−1. (A.15)

This leads to the introduction of scaled variables:

u+ = 1+ γ2U+; v+ = γ
2V+; p+=1+ γ2P+;

u− = 1− γ + γ2U−; v− = γ
2V−; p−=1+ γ + γ2P−; φ = γΦ; γt = τ, (A.16)

which, together with the transformation to curvilinear coordinatesξ, η attached to the front

ξ = x− γΦ(y, τ), η = y (A.17)

lead to the following form of (A.6):

∂U±
∂ξ
+
∂P±
∂ξ

= −γ
∂U±
∂τ
+ O(γ2), (A.18)

∂V±
∂ξ
+
∂P±
∂η

= −γ
∂V±
∂τ
+ γΦη

∂P±
∂ξ
+ O(γ2), (A.19)

∂U±
∂ξ
+
∂V±
∂η

= γΦη
∂V±
∂ξ
. (A.20)

Conditions (A.10), (A.11), (A.12), and (A.2) become

U+ − U− = −
1
2
γΦ2
η + O(γ2), (A.21)

V+ − V− = −Φη + O(γ2), (A.22)

P+ − P− = 0, (A.23)

Φτ +
1
2
Φ2
η = U+ − γV+Φη + O(γ2). (A.24)
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As an ansatz for the solution of system (A.18)–(A.24) the asymptotic expansion

Φ =Φ(0) + γΦ(1)+ · · · (A.25)

U± =U(0)
± + γU

(1)
± + · · · (A.26)

V± =V(0)
± + γV

(1)
± + · · · (A.27)

P± =P(0)
± + γP

(1)
± + · · · (A.28)

is chosen, which in the first approximation yields

∂U(0)
±

∂ξ
+
∂P(0)
±

∂ξ
= 0, (A.29)

∂V(0)
±

∂ξ
+
∂P(0)
±

∂η
= 0, (A.30)

∂U(0)
±

∂ξ
+
∂V(0)
±

∂η
= 0, (A.31)

U(0)
+ − U(0)

− = 0, (A.32)

V(0)
+ − V(0)

− = −Φ
(0)
η , (A.33)

P(0)
+ − P(0)

− = 0, (A.34)

Φ
(0)
τ +

1
2

(
Φ

(0)
η

)
= U(0)

+ . (A.35)

The solution of (A.29)–(A.31) can be written as

U(0)
± =

∂Π(0)
±

∂ξ
+ R(0)

± (η, τ)

V(0)
± =

∂Π(0)
±

∂η
(A.36)

P(0)
± =

∂Π(0)
±

∂ξ
,

where the potentialΠ(0)
± is a solution of the Laplace equation

∂2Π
(0)
±

∂ξ2
+
∂2Π

(0)
±

∂η2
= 0 (A.37)

in the form

Π
(0)
± =

1
2π

"
Q(0)
± (η′, τ)eik(η−η′)∓|k|ξdkdη′. (A.38)

The functionR(0)
± is related to the flow vorticity:

∂U(0)
±

∂η
−
∂V(0)
±

∂ξ
=
∂R(0)
±

∂η
. (A.39)
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Assuming the flow ahead of the flame to be irrotational yields

R(0)
− = 0. (A.40)

Now, (A.36) and (A.40) can be inserted into (A.32)–(A.34) giving

R(0)
+ = 0, Q(0)

+ = −
1
2
Φ(0), Q(0)

− =
1
2
Φ(0). (A.41)

Hence,

U(0)
± = ±

1
2

I
{
Φ(0)

}
, I

{
Φ(0)

}
=

1
4π

"
|k|Φ(0)(η′, τ)eik(η−η′)∓|k|ξdkdη′, (A.42)

which is inserted into (A.35) giving

Φ
(0)
τ +

1
2

(
Φ

(0)
η

)2
=

1
2

I
{
Φ(0)

}
. (A.43)

Returning to the original variables this yields

φt +
1
2
φ2
y =
γ

2
I {φ}, (A.44)

which is a simplified version of the original Sivashinsky equation, here derived from a
purely hydrodynamic model of flame propagation.I {.} represents a linear singular nonlocal
operator defined by (A.42), which is responsible for the LD instability.

Sivashinsky & Calvin(1987) continue with the derivation of the second approximation
which, however, leaves the qualitative picture of flame front dynamics unchanged. The
equation resulting from the second approximation yields a dispersion relation consistent
with the result from Landau’s stability analysis (2.86).
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B. Vectors of the general reactive flow
equation

The vectors used in equation (4.1) on page64 read

U =



ρ

ρvx
ρvy
ρvz
ρXi

ρetot


I =



ρvx
ρv2x + p
ρvyvx
ρvzvx
ρXivx

(ρetot + p)vx


J =



ρvy
ρvxvy
ρv2y + p
ρvzvy
ρXivy

(ρetot + p)vy



K =



ρvz
ρvxvz
ρvyvz
ρv2z + p
ρXivz

(ρetot + p)vz


L =



0
τxx

τxy

τxz

ρvDi,xXi

τxxvx + τyxvy + τzxvz+ qx



M =



0
τyx
τyy
τyz
ρvDi,yXi

τxyvx + τyyvy + τzyvz+ qy


N =



0
τzx

τzy
τzz

ρvDi,zXi

τxzvx + τyzvy + τzzvz+ qz



Q =



0
0
0
0
ρωXi

ρS



139





C. Nomenclature

The following list of notations is not complete and contains only identifiers that are most
important to the work or frequently used in it. The symbols follow as much as possible the
general conventions. Auxiliary variables are defined in the text and will not be included.
Multiple use of identifiers could not always be avoided, but in those cases the meaning
should be clear from the context. The similarity numbers are defined in Table2.1on page
21.

Greek

∆x cell size
Π pressure tensor
Φ gravitational potential
α volume fraction containing unburnt material
β Zel’dovich number; interface fraction
ζ scalar vorticity
ζ vorticity
κ bulk viscosity; curvature
κcond conductive opacity
κrad radiative opacity
λ wavelength
λi interaction rate
µ density contrastρu/ρb over the flame; shear viscosity
ρ (mass) density
σ thermal conductivity; standard deviation
σSB Stefan-Boltzmann constant
τ viscous stress tensor
φ flame front
ω growth rate
ωXi reaction rate of speciesi
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C. Nomenclature

Uppercase Latin

A flame surface
Ai atomic mass of speciesi
Dik binary diffusion coefficient
EA activation energy
EF Fermi energy
F,F Fermi integrals
G level set function
G gravitational constant
L integral scale of turbulence
MCh Chandrasekhar mass
R universal gas constant
ρS energy source term due to reaction
T temperature
V volume; specific volume
Xi mass fraction of speciesi
Yi specific abundance

Lowercase Latin

an
i discretized value (celli, time tn)

cp specific heat at constant pressure
cs sound speed
eint specific internal energy
etot specific total energy
f specific external force
g gravitational acceleration
h specific enthalpy
j flux density vector
k wavenumber
kB Boltzmann’s constant
l length scale
l f flame width
n normal vector
ni number density of speciesi
p pressure
q heat flux vector
sl laminar burning velocity
t time
u velocity
v′ velocity fluctuation
uDi diffusion velocity of speciesi
x position
x̂ amplitude
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Indices

� solar
∗ nondimensional quantity
Gibs Gibson
K Kolmogorov
KH Kelvin-Helmholtz
LD Landau-Darrieus
M Markstein
RT Rayleigh-Taylor
b post-front (burnt) state
eff effective
ref (dimensional) reference value
u pre-front (unburnt) state

Following abbreviations were used frequently in the text:

Abbreviations

ATC active turbulent combustion
DDT deflagration to detonation transition
KH Kelvin-Helmholtz
LD Landau-Darrieus
RT Raleigh-Taylor
SN(e) Ia Type Ia supernova(e)
WD white dwarf
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