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Prüfer der Dissertation:

1. Priv.-Doz. Dr. Ewald Müller

2. Univ.-Prof. Dr. Andrzej J. Buras

Die Dissertation wurde am 29. Januar 2004 bei der Technischen Universität München

eingereicht und durch die Fakultät für Physik am 12. März 2004 angenommen.





Contents

1 Extragalactic Jets 7
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Numerical RMHD 21
2.1 Equations of ideal relativistic MHD . . . . . . . . . . . . . . . . . . . 21

2.1.1 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 The RMHD equations as a system of conservation laws . . . . 22
2.1.3 The equations in primitive variables . . . . . . . . . . . . . . . 24
2.1.4 The equations in cylindrical coordinates . . . . . . . . . . . . 25
2.1.5 Spectral decomposition . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Numerical techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.1 Discrete space-time . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Conservative method . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.3 The Riemann problem . . . . . . . . . . . . . . . . . . . . . . 30
2.2.4 Directional splitting . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.5 An approximate Riemann solver — HLLE . . . . . . . . . . . 31
2.2.6 Spatial interpolation . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.7 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.8 Recovery of primitive variables . . . . . . . . . . . . . . . . . 37
2.2.9 Conservation of ∇ · B = 0 . . . . . . . . . . . . . . . . . . . . 38
2.2.10 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.11 Code structure . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Code validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.1 1D test problems . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.2 2D test problems . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.3 Convergence Tests . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Parameter Study 55
3.1 Introduction to jet simulations . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 C2 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 B1 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5 C1 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5



6 Contents

4 Long Term Evolution 91
4.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.2 Temporal evolution . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.1 Comparison with previous simulations . . . . . . . . . . . . . 103
4.3.2 Influence of the magnetic field on the long term evolution . . . 104
4.3.3 Comparison with observations . . . . . . . . . . . . . . . . . . 105
4.3.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Summary and Conclusions 111

List of Figures 117

Bibliography 121



1 Extragalactic Jets

1.1 Introduction

An extragalactic jet has first been described by Curtis (1918) as “A curious straight
ray . . . connected with the nucleus” in an optical image of the galaxy M87. In
the 1950s the term jet was first used for describing this phenomenon. It was as-
sociated with the ejection of material from the inner region of the galaxy (Baade
& Minkowski, 1954). By then radio observations of twin lobes in extended radio
galaxies – of which Cygnus A is one of the best known (Jennison & Das Gupta,
1953) – provided more and more evidence for highly collimated jets. After many
of these radio sources had been identified with extragalactic objects at cosmological
distances, it became clear that they were of gigantic dimensions (up to megaparsec
scales) and had huge powers. Shklovskii (1953) suggested that the radio emission
might be electron synchrotron radiation, an idea which was indirectly supported
by the results of measuring the optical polarisation of the M87 jet (Baade, 1956).
Attempts to explain these observations with ballistic ejection of plasma from the cen-
tral object all failed because of the huge energies involved and because of the short
synchrotron lifetimes of electrons (< 106 years) which would require the presence of
reacceleration mechanisms.

By the 1960s the term jet was in common use although still without the recognition
that a continuous flow of matter was involved. In an attempt to explain the M87 jet
and the double lobed radio sources, Shklovskii (1963) used a number of ideas which
are still important for today’s theories: the accretion of plasma into the gravitational
potential of the active galactic nucleus (AGN) which is then heated, breaks out along
a preferred axis and flows into the intergalactic medium. In 1974 Blandford & Rees
(1974) and Scheuer (1974) developed the idea that the energy transport is in form of
beams where most of the plasma’s internal energy is transformed into kinetic energy
by a collimation process and recovered where the beam interacts with the external
medium. Thus supersonic fluid flow can deliver the required energy continuously
from the nucleus to the radio lobes and even allows for particle reacceleration. With
increase in angular resolution of radio telescopes, bridges of non-thermal radiation
were discovered between the cores and the radio lobes establishing a surprisingly
collimated physical link between nuclei and lobes.

During the last three decades this theory has gained substantial support from ob-
servational evidence. In particular the advent of the Very Large Array (VLA) in
the beginning of the 1980s led to the discovery of many jets in powerful extragalac-
tic sources in accordance with the beam theory. Very–Long–Baseline–Interferometry
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8 CHAPTER 1. EXTRAGALACTIC JETS

(VLBI) has made it possible to observe small-scale nuclear jets on the milliarcsecond
scale. Optical identification of many sources became possible with the Hubble Space
Telescope (HST) in the 1990s. Recently, the Chandra X-Ray Observatory, launched
in 1999, has made it possible to observe kiloparsec-scale jets in AGNs with high
angular resolution and sensitivity in the X-ray band. These observations not only
led to the detection of many X-ray jets in sources of low radio power but also show
relativistic bulk motion on very large scales (see e.g. Worrall et al., 2001; Sambruna
et al., 2002; Gambill et al., 2003, and references therein).

1.2 Observation

Terminology

Radio galaxies are observed in a large number of forms. Therefore, several classi-
fication schemes were introduced by different observers. We will describe some of
these schemes here and also the properties of the galaxies falling into those cate-
gories. Some elements of radio source structure which are most commonly used by
astronomers will be described here:

Cores are the stationary components associated with the power source in the nucleus
of the radio galaxy. Their spectrum is flat (see below) and they are often only
resolved by VLBI observation (i.e., at angular resolutions <0.1 arcseconds). The
core is identified with the optical image of the galaxy in large scale observations (see
central panel of Fig. 1.1).

Lobe is the general term to describe the extended region of radio emission, generally
assumed to consist of plasma transported from the galaxy cores by the beams. They
often have a plume like appearance as illustrated in Fig. 1.1.

Jets are linear features linking the cores with the outer extended lobe structures.
Following Hughes & Miller (1991) a structure must meet the following criteria to be
called a jet: (i) its length must be at least four times its width, (ii) the separation
from the extended structure should be possible by high resolution observations, and
(iii) it should be aligned to the core where closest to it. Jets may be visible along
either part of, or the whole inferred path and on one or both sides of the core (one-
sided or two-sided jets), smooth or knotty, centre–brightened or edge–brightened.
In high resolution observations the jet breaks down into distinct bright features,
usually attributed to standing shocks in the jet’s flow, thus giving the jet a knotty
structure (see Fig. 1.1).

Components are local brightness peaks with sufficient statistical significance, nor-
mally associated with moving features. Single components can be followed for ex-
ample by VLBI observations to measure their proper motion. Their spectral index
is typically around 0.6.

Hotspots are the bright regions at the outer extremities of the lobes. They have linear
sizes of less than 1 kpc and are naturally interpreted to be the working surface where
the beam meets the ambient medium, thus creating a shock which converts kinetic
energy into internal energy of relativistic particles leading to further radiation. Their
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spectrum is somewhat flatter than that of the jets.

Basic facts

Very little is known about the central nucleus of radio sources, because the resolution
of today’s instruments is limited to regions larger than 100 mpc. Consequently, our
knowledge of jets starts at the time when they are well collimated at a distance of
0.1 to 1 pc.

On the parsec scale (100 mpc to 100 pc) jets emit from radio through X-ray fre-
quencies due to synchrotron and inverse Compton processes. They are observed
using VLBI or the Very Large Baseline Array (VLBA). They display a high degree
of collimation and their morphologies are characterised by components which sepa-
rate from the core at sometimes super-luminous speeds. Many parsec-scale jets are
one–sided and show intra-day variability of the radio emission. If the variability is
intrinsic, this constrains the actual sizes of the emitting regions to less than a light
day.

On the kiloparsec scale (1 kpc to 1 Mpc) radio and X-ray jets are very common
and extended radio lobes with or without bright hotspots can be found. Their
overall morphologies depend on their interaction with surrounding gas and may be
influenced strongly by high peculiar velocities in rich galaxy clusters. Evidence for
relativistic speeds on kpc-scales in the beams of jets have been found both in radio
(e.g. Bridle et al., 1994) and X-ray observations (Sambruna et al., 2002).

Classification

Common to all extragalactic radio sources is that they are manifestations of the
spectacular phenomenon of Active Galactic Nuclei (AGNs). They produce enormous
energies (1041 − 1049 erg s−1) of up to four times the luminosity of a typical galaxy
in very small volumes of probably ¿ 1pc3 (Krolik, 1999). Their emission can be
observed from infrared to gamma ray frequencies.

Generally large scale radio sources can be divided into two groups: (a) extended,
steep spectrum objects with a roughly collinear double lobe structure extending out
to either side of the host galaxy, and (b) compact, flat spectrum sources where no
or very little extended structure is observed. The terms flat spectrum and steep
spectrum refer to the spectral index α of the flux density S in its conventional form
S ∝ ν−α where ν is the frequency. Conventionally, flat is defined as α ≤ 0.5 and
steep as α ≥ 0.5. Steeper spectra are associated with radiatively aged material, i.e.,
synchrotron radiation loss combined with expansion as material flows away from sites
of active acceleration (Leahy, 1991). As observational methods advanced, it became
apparent that compact objects contain some of the extended steep spectrum emission
elements present in extended objects and vice-versa. The classification was then
modified to lobe-dominated and core-dominated, respectively (Muxlow & Garrington,
1991). Core-dominated objects are those where the bulk emission region is not
resolved by the VLA and therefore must be smaller than 20(DAH0/c)(h/0.75)−1 kpc,
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Figure 1.1: Montage of different images of the radio galaxy M87. The largest image
demonstrates the huge size of the outer lobes, while the next smaller image shows that
the inner lobes are of plume like form. Evidence for a complex internal structure is seen
in the smaller images of the jet, which exhibits a very jet. The montage also illuminates
the fact that many observations with different telescopes are required to resolve a radio
galaxy on all scales.
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where DA is the angular diameter distance1, H0 = 100h km s−1 is the Hubble
constant and h is the scale factor of H0. Both of these types are divided into
several sub–classes. Lobe-dominated sources, found in luminous spiral and elliptical
galaxies, fall into three distinct sub–types, associated to different types of AGNs:
radio Seyfert galaxies, lobe–dominated radio galaxies and lobe–dominated radio–
loud quasars.

Many Seyfert galaxies show S-shaped kpc scale radio structures (possibly due to
disruption of the jet) and they are often less powerful emitters than elliptical galaxies.
This is commonly attributed to the lower power output of the AGN and to the dense
interstellar medium of the galaxies discs (making plasma ejection through it more
difficult). Some Seyfert galaxies do not contain any evidence of jets. Their radio
luminosities at 1 GHz are typically P ∼ 1021 − 1025 W Hz−1 (at 1 GHz).

The properties and morphology of lobe–dominated radio galaxies undergo an abrupt
change at a luminosity of around P = 5 × 1025 MW Hz−1 (at 178 MHz). A simple
classification scheme was first introduced by Fanaroff & Riley (1974): galaxies below
the critical luminosity are called Fanaroff–Riley type I (FR I) objects, those above
are known as FR II type objects.

FR I sources tend to have smooth, continuous two–sided jets running into large
scale lobe structures also called plumes. They are edge–darkened meaning that the
ratio of the separation between the peaks of radio emission and the total size of
the source is small, e.g. less than 0.5 in the case of FR I galaxies (see e.g. Muxlow
& Garrington, 1991; Krolik, 1999). The jets contribute more than 10% of the total
radio power of the source. Their steepest radio spectra, and therefore the radiatively
oldest material lie furthest from the host galaxy in the extended lobes. FR II sources
tend to be edge–brightened, i.e. they show bright hotspots at the outer edges of the
extended emission regions. Their jets are usually one–sided (with a jet to counter
jet intensity ratio of > 4/1). Furthermore, these jets are not smooth as in FR I
sources but consist of several bright knots. The core and the jets together often
only contribute < 10% to the total radio power, and in many sources the core is not
detected at all. The steepest spectra are measured in the bridges, the inner regions
of the lobes. A special class of objects, the fat doubles, marks the transition between
FR Is and FR IIs. Fat doubles are weak FR II sources with large double lobes and
almost no evidence for core, jets and hotspots.

Figure 1.2 shows a radio-optical superposed image of the FR II object 3C219. The
bright dot in the centre is the host galaxy, i.e., the core. The inflated radio lobes with
their hotspots, and on one side of the core, a part of the jet, are clearly visible. The
image also illustrates the immense size of the jets and lobes when compared to the
core, which is coincident with the optical image of the galaxy. Another archetype
FR II object is Cygnus A (3C 405). The FR I object M87 is shown in Fig. 1.1.
Another typical FR I source is 3C 449.

There are a couple of sub-classes of FR I and FR II objects. Narrow-Angle-Tail
(NAT) sources, e.g. NGC 1265, are of FR I type with bent two–sided jets running
into extended tails. This is believed to be due to the proper motion of the host

1DA is the distance between an observer and objects at which two object on the sky with angular
separation ε have the mutual distance εDA.
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Figure 1.2: Fanaroff–Riley class II radio galaxy superposed onto an optical image. Note
the difference in size between the core and the lobes. A jet is only visible on one side of
the core, but hotspots are visible in both outer lobes. The image was taken from the home
page of Alan Bridle (Bridle, 2003).

galaxy with respect to the cluster it resides in. The radio structure is then bent by
the ram pressure of the hot cluster gas (Begelman et al., 1979). Wide-Angle-Tail
sources (WAT, Owen & Rudnick (1976), for example 3C 465) are C–shaped objects
with disrupted FR I type tails and inner hotspots linked to the central component
by FR II type jets. Although not many of these sources are observed, they are often
associated with optically dominated galaxies in rich clusters.

With a morphology similar to that of FR IIs, lobe–dominated radio–loud quasars
display bright, knotty, one–sided jets and bright cores with higher luminosities than
those of radio galaxies. They are mainly found at high redshift and consist of pow-
erful extended radio emission regions (with a luminosity of P > 5 × 1025 MW Hz−1

at 178 MHz observing frequency) surrounding some quasars. An example of this
class of objects is 3C 179 (Shone et al., 1985).

The defining property of core–dominated sources is a luminous core in the centre
often combined with a bright, one–sided jet. These sources have a high surface
brightness and are thus particularly suited for observation by VLBI. Knots in VLBI
jets are often observed to move with apparent superluminal speeds. For example,
in 3C 120 superluminal motion was detected from the parsec scale (Seielstad et al.,
1979; Walker et al., 1987) to tens of pc (e.g. Benson et al., 1988; Walker, 1997, etc.).
In Gómez et al. (1998) and Gómez et al. (1999) up to ten components with apparent
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speeds between 2.3 and 5.4 h−1c are shown in 3C 120. A significant bending of the jet
is very common in core–dominated sources. The jet of 3C 273 bends by ≈ 20◦ within
the first 10 milliarcseconds from the core and extends continuously to 22 arcseconds
from the core (Whitney et al., 1971; Cohen et al., 1971). In addition to the bright
components, VLA images show a low surface brightness extended component, often
on the opposite side of the jet.

Magnetic fields

The orientation of magnetic fields projected on the plane of the sky can be detected
by polarisation measurements, i.e. the fact that many sources display a high degree of
polarisation implies ordering of the magnetic field perpendicular to the line of sight.
A general trend for large scale magnetic fields of radio jets is that low power radio
sources (e.g. FR I radio galaxies) are dominated by transversal fields (B⊥) while
sources with larger total and core powers (like FR IIs) show parallel magnetic fields
(B‖) aligned with the jet axis (see e.g. Bridle, 1984; Bridle & Perley, 1984 for kpc
scale observations and Wardle, 1998 for VLBI observations). However, this trend is
not absolute, as the observed polarisation patterns of radio sources are as diverse
as the sources themselves. Since the magnetic fields and thus also the polarisation
of the radiation are tracers of the underlying hydrodynamics, oblique shocks, shear
flows and bending of jets may lead to changes in the magnetic field configuration.
For example bright knots in FR IIs, attributed to shocked gas, often display a B⊥

configuration while the fainter emission of the surrounding jet might still have B‖.
More recent studies by Laing & Bridle (2002) and Laing et al. (2003) infer that
the FR I jets in 3C 31 primarily display toroidal and to a lesser degree longitudinal
components and only a very small radial component; only where the magnetic field
becomes isotropic at the edge of the jet, the radial component becomes comparable.

Directly measuring the strength of the magnetic fields in AGNs and extragalactic
radio sources is not possible. Therefore inferring the magnetic field always depends
on the physical model fitted to the observation. Using equipartition arguments
(i.e. equating thermal and magnetic pressure) and fitting observed spectra to stan-
dard synchrotron models lead to values of B = 10−6 − 10−3 G for radio galaxies.
For the jet of M87 Heinz & Begelman (1997) get a magnetic field strength of 0.1 to
0.7 times the equipartition value. Combining X-ray and radio observations in a sin-
gle synchrotron self-Compton emission model allows to constrain the magnetic field
strength further. A number of authors have applied this method to the hotspots of
several radio galaxies and have inferred values between a factor of 25 below equipar-
tition and slightly above equipartition. (e.g. Harris et al., 1994; Hardcastle et al.,
1998, 2002; Wilson et al., 2000; Donahue et al., 2003).

Theoretically understanding the magnetic fields in the jets is not simple since ob-
servations do not yield enough data. However it is believed that the spine of the jet
is threaded with a mainly toroidal field configuration surrounded by a longitudinal
field. Radial fields do not play a large role (Begelmann et al., 1984; Laing, 1993). An
average magnitude of the equipartition field would be Beq ∼ 10−3 G in the hotspots
to Beq ∼ 10−5 G in the lobes, compared to Beq < 10−6 − 10−5 G in the external
medium (Ferrari, 1998).
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1.3 Modelling

The standard model

Although there is no complete theory to describe the observations of AGNs and
extragalactic jets, the hydrodynamic explanation of Blandford & Rees (1974) is
considered the standard model for explaining extended radio galaxies by most of
the scientific community (see Begelmann, Blandford & Rees, 1984; Ferrari, 1998,
for detailed reviews). In summary the facts are the following: Twin opposite jets
are produced and collimated in the cores of AGNs. They are most likely powered
by accretion of material onto a very massive black hole which continuously thrusts
out magnetised plasma along its rotational axis. The plasma is channelled into jets
with a highly relativistic bulk flow speed. The jets plough their way through the
intergalactic gas thus transporting energy and momentum away from the core. A
working surface which produces a bow shock is generated where the head of the jet
pushes against the external gas and is associated with the hotspot; and a cocoon is
formed around the entire source which is filled with a mixture of shocked ambient
material and turbulent back flow of jet material.

On parsec scales the jet material moves with bulk Lorentz factors of W ≈ 10 (Ghis-
ellini et al., 1993) or even W ≈ 30 − 100 (Begelman et al., 1994). Single moving
components are explained by the shock–in–jet model as travelling shock waves inside
the jet which heats the material and thus accelerates electrons. The main reasons
for that model are the spectral evolution of the components and their variability
time scales (Marscher & Gear, 1985). It is also supported by VLBI observations of
the polarisation of the components (Wardle, 1998).

The morphologies of FR Is on kiloparsec scales are the result of the jets’ deceleration
from relativistic to sub-relativistic speeds (Bicknell, 1996; Laing, 1996a). They are
assumed to be moving at transonic speeds (Begelmann et al., 1984) and thus appear
two–sided as Doppler boosting (see next section) has no effect. Deceleration happens
by entrainment of external material, a process which is only efficient when the speeds
are transonic. If the jet is able to re-collimate a FR I source occurs, when the power
is too large, it cannot re-collimate and the result might be a WAT. However, if the
jet does not decelerate it continues with relativistic speed and will remain supersonic
until it impacts with the external medium thereby forming a hotspot, and A FR II
source results. Then the jet emission is enhanced by relativistic beaming (see below)
while the counter jet suffers the opposite effect, therefore the source appears one–
sided. The beam has two components: a fast spine and slower, hot shear layer which
divides it from the cocoon (Sol et al., 1989; Swain et al., 1998; Aloy et al., 2000;
Stawarz & Ostrowski, 2002).

In a unified model (see e.g. Urry & Padovani, 1995; Laing, 1996b) the observed
differences between the many classes of extragalactic radio sources and quasars are
explained by their different orientation towards the observer (e.g. a quasar might
then simply be a radio galaxy seen head on) or influences of the external medium.



1.3. MODELLING 15

Observer

Jet v   c

v > capp

Figure 1.3: Illustration of superluminal motion. The radiation originating from points 1
and 2 reaches the distant observer nearly simultaneously, which leads to apparent trans-
verse speeds greater than the speed of light.

Superluminal motion and relativistic beaming

There are two main arguments supporting the relativistic nature of extragalactic
jets: (i) the observations of apparent superluminal motion; and (ii) the one-sidedness
observed in most FR II jets.

When radio jets are observed in several epochs, most of them display components
that are apparently moving away from the core at superluminal speeds (25 of 25
sources in Hough et al., 2002; more than 40 sources in Ghisellini et al., 1993). This
effect is explained by assuming that the jets propagate with relativistic velocity, i.e.,
v ≈ c, at a small inclination of the jet axis to the line of sight to the observer.
The situation is illustrated in Fig. 1.3. Then the apparent time duration between
two radiating events (labelled by 1 and 2 in Fig. 1.3) seen by a distant observer
appears compressed, because the source moves at a similar speed and in the same
direction as its radiation. Therefore the apparent transverse velocity as measured
by a distant observer on the plane of the sky can exceed the speed of light. A distant
observer measures an apparent transverse velocity vapp for any component with a
flow velocity v at an angle θ to the line of sight towards the observer, which is given
by (Blandford & Königl, 1979):

vapp =
v/c sin θ

1 − v/c cos θ
. (1.1)

This implies that the apparent speed has a maximum for cos θ = v/c with vmax
app =

Wc, where W = (1− v2/c2)−1/2 is the Lorentz factor. For example, for W = 10 and
θ = 6 degrees the apparent speed would be almost 10c.

The one-sidedness of jets observed in FR II sources can be explained by relativistic
motion at a small angle to the line of sight, too. The so-called Doppler beaming is
a combined effect of relativistic aberration and of the ordinary Doppler effect which
makes the emission of the approaching jet become blue shifted in the frame of the
observer. The resulting asymmetry in the luminosity of the twin jets is given by the
Doppler factor (Blandford & Königl, 1979)

D = W−1(1 − v/c cos θ)−1 . (1.2)

Thus, although the extended diffuse lobe emission is more or less symmetric (as
the emitting plasma in the lobes is moving with small velocities and, therefore, its
isotropic emission is not Doppler boosted), the jet only appears one–sided. Figure 1.2
illustrates how the Doppler beaming boosts the emission of the jet propagating



16 CHAPTER 1. EXTRAGALACTIC JETS

towards the observer: on one side of the core there is a bright linear feature which
can clearly be identified with a jet, whereas on the other side no jet is visible.

Jet production

The large powers produced by AGNs concentrated in such small volumes lead to
the consideration of models for jet formation and collimation based on processes
around supermassive black holes (> 106 solar masses, Rees, 1984). Two mecha-
nisms suggest themselves for extracting energy from the black hole to power the
launching of the jet, (a) accretion of matter onto the black hole, thereby liberating
gravitational energy that is transferred to matter flung along the rotational axis;
(b) electrodynamic processes, tapping black hole rotational energy and feeding it
into Poynting flux. In both cases the procedure leads to twin opposite jets as sug-
gested by Blandford & Rees (1974). Both possibilities are general enough to allow
for many different models for the formation and collimation of jets. This and the
fact that we have no observations of the central region of the AGNs have led to the
publication of a myriad of different models, from the early ones for electrodynamic
or magnetohydrodynamic jet formation (Blandford & Znajek, 1977; Blandford &
Payne, 1982) to very recent ones (Vlahakis & Tsinganos, 1999; Krasnopolsky et al.,
2003; Meier et al., 2001; Tominmatsu & Takahashi, 2003; Okamoto, 2003, to name
a few). Most likely a combination of electrodynamic energy extraction with magne-
tohydrodynamic collimation is needed to explain the jet formation and collimation
phase. The former has recently been supported by direct observational evidence
(Wilms et al., 2001), while the latter seems now to be the generally accepted idea
(Blandford, 2002): the magnetic field that is attached to the accretion disk can be
twisted to form a sort of helical magnetic sleeve around an emerging jet, consisting
of an almost purely toroidal field. The highly relativistic jet is then collimated by
the hoop stress magnetic pressure (i.e. by the Lorentz force created by the toroidal
field around the flow), while material is further accelerated by magnetocentrifugal
forces (Meier et al., 2001).

1.4 Numerical simulations

Time-dependent numerical simulations of jets have proven to be a very successful
tool for the theoretical understanding of extragalactic radio sources. For this, the
intergalactic medium (IGM) and the jets are approximated as fluid-like continu-
ous media where the equations of hydrodynamics (HD) or magnetohydrodynamics
(MHD) hold. This is justified because the collisional mean free path of the jet
plasma is limited by collisional coupling through micro-Gauss magnetic fields. Then
the Lamor radii and Debye lengths of electrons and protons in extragalactic jets are
several orders of magnitude smaller than the jets’ radii.

The first milestone in the field were the 2D Newtonian simulations performed by
Norman et al. (1982). Their results verified the jet model of Blandford & Rees (1974),
and many detailed features of VLA observations could be reproduced: for example
the hotspots can be associated with the working surface (the terminal shock) of the



1.4. NUMERICAL SIMULATIONS 17

beam, the knots in the jet with internal conical shocks, and the lobe structure with
the hot turbulent material of the inflated cocoon behind the bow shock of the jet.
Figure 1.4 shows a sketch of the jet morphology as produced in a two-dimensional,
axisymmetric hydrodynamic simulation (Müller, 1998). The following expressions
are commonly used when describing the features of a jet simulation:

• the cavity is the region inside the leading bow shock, it is divided into

• the beam, which terminates in a shock (the Mach disk) near the head of the
jet,

• the cocoon, formed by a mixture of back flowing beam material deflected by
the Mach disk shock and ambient medium and

• the shell, the remaining outside part of the cavity consisting of high density,
shocked ambient gas;

• cross shocks or internal shocks in the beam;

• the hot spot, the high pressure region of shocked gas downstream of the termi-
nal Mach disk.

The cocoon is usually turbulent, vortices being ejected from the terminal shock
(a process usually called vortex shedding), and flowing backwards in the opposite
direction of the beam.

Following the initial success, numerical work in the 1980s and early 1990s focused
on Newtonian HD and ideal MHD simulations in order to explain the observations
by the VLA (see Burns et al., 1991, for a review). Both 2D and 3D simulation were
used to gain insight on NAT (Balsara & Norman, 1992) and WAT (Norman et al.,
1988; Loken et al., 1995) sources. MHD simulations demonstrated the importance of
the toroidal magnetic field for jet confinement (Clarke et al., 1986, 1989; Lind et al.,
1989; Kössl et al., 1990; Appl & Camenzind, 1992). Given the fact that extragalactic
jets remain collimated flows for such length scales up to Mpc, many authors have
performed simulations addressing the question of jet stability. Mixing properties of
high Mach number HD jets have, for example, been studied in 3D by Bodo et al.
(1998), while the stability of MHD jets has, for example, been examined by Hardee
& Norman (1988), Norman & Hardee (1988) or Hardee et al. (1992) in 2D slab
geometry, and by Hardee et al. (1995) or Rosen et al. (1999) in 3D.

Since the middle of the 1990s the advance in numerical algorithms and computer
technology has made it possible to simulate relativistic (RHD) flows in 2D (e.g.,
Duncan & Hughes, 1994; Mart́ı et al., 1994, 1995, 1997). One absolute necessity
for developing a time dependent RHD code is to write the equations as a system of
conservation laws and exploit their hyperbolic character (see e.g. Mart́ı et al., 1991;
Mart́ı & Müller, 1996). Mathematically, this is required to guarantee that the RHD
equations (as any other hyperbolic system of partial differential equations) converges
to the right physical solution. One main conclusion of relativistic jet simulations is
that both the internal energy and the Lorentz factor increase the effective inertial
mass of the beam, i.e. it can become both thermally and kinematically relativistic.
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Figure 1.4: Sketch of the morphology of an axisymmetric supersonic light jet in a homoge-
neous ambient medium (image taken from Müller, 1998). The different components found
in the simulations can be associated with corresponding observations, e.g., the hotspot is
found between the interface dividing beam and ambient gas and the terminal shock at
the head of the beam (called Mach disk shock). The knots observed in many jets (e.g.,
Fig. 1.1) can be identified with internal shocks.

This enhances the stability of the beam compared to equivalent classical flows. An
early review by Norman (1996) describes the relativistic effects and the differences
between 2D and 3D non-relativistic simulations. Long term evolution studies of
2D axisymmetric, powerful jets have been performed by Mart́ı et al. (1998) and
Komissarov & Falle (1997, 1998) for fixed plasma compositions and by Scheck et al.
(2002) with different plasma compositions. Highly relativistic jets from collapsars
were simulated as a likely explanation for long gamma-ray bursts (Aloy et al., 2000,
2002). More recently even in full 3D RHD simulations have become possible (Aloy
et al., 1999b,a, 2000; Aloy & Mart́ı, 2002; Aloy et al., 2003). While cross shocks
on the beam are similar to 2D simulations, the turbulence in the cocoon is entirely
different. Also, the propagation of the jets is more efficient due to wobbling of its
head (drill effect).

Relativistic MHD (RMHD) simulations of jets are still difficult because the RMHD
equations do not form a strictly hyperbolic system of conservation laws and, there-
fore, pose severe difficulties to the application of standard numerical techniques to
solve systems of hyperbolic PDEs (see Sec. 2.1.5). Consequently, only a few codes
exists for that purpose. The first 2D simulations performed by van Putten (1993,
1996) used pseudo-spectral techniques and were very limited in their range of pa-
rameters. Simulations performed by the group around Koide in 2D (Koide et al.,
1996; Koide, 1997) and 3D (Nishikawa et al., 1997, 1998) suffered from similar draw-
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backs: low resolution (only 2 zones per beam radius), low Lorentz factor (only up
to 4.56) and short evolution times of the jets. In addition, this group has never
published a full suite of test results that would validate their numerical method.
Komissarov (1999a) applied his non-conservative, second-order RMHD code to 2D
jets with toroidal fields (Komissarov, 1999b, , see also Sec. 2.3.2) and to the recently
discovered jet-torus structure in the crab nebula (Komissarov & Lyubarsky, 2003).

Finally, in the past few years, jet formation has been studied using general relativis-
tic MHD (GRMHD) simulations. Koide et al. (1998, 1999, 2000, 2002) and Koide
(2003) performed 2D simulations of jet formation from accretion disks of rotating
Schwarzschild and Kerr Black holes and from a rapidly rotating black hole mag-
netosphere. While their results support the current view of jet formation theory,
they should be treated with caution: due to the considerable numerical challenge
involved, their code can only evolve the system for very few rotational periods and
the outflow only reaches a Lorentz factor of about 2. And in these simulations there
is no specific control on the evolution of ∇ · B = 0 (Sec. 2.2.9). Additionally, mag-
netic twisting might change the picture completely when looking at the problem in
3D (Blandford, 2002).
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2 Numerical RMHD

RMHD deals with the behaviour of relativistic, conducting fluids and electromag-
netic fields. It is based on the assumption that the mean free path of the electrons
is much smaller than the characteristic length scale of the problem, leading to a
high collisional frequency of the electrons, such that Ohm’s law is valid in its simple
form, J = σconE. In an ideal RMHD plasma the electromagnetic fields act on both
the electrons and the ionised atoms to produce bulk motion of the medium itself
with no charge separation, which in turn will produce modifications of the electro-
magnetic fields. In the limit of infinite conductivity, this is fulfilled, and the electric
field vanishes in the fluid’s rest frame. The mechanical motion of the matter can
be described in terms of a single conducting fluid by combining the Euler equations
with the Maxwell equations (Jackson, 1975). Ideal (R)MHD applies to many astro-
physical plasmas, and in particular to the physics of extragalactic jets (Begelmann
et al., 1984).

This Chapter is split into three parts. First, we will describe the equations of ideal
RMHD and the equation of state used in our numerical implementation. We use the
equations in the same form as Anile (1989), where a full derivation can be found.
In the second Section we will explain the numerical methods used to solve these
equations in time dependent simulations. And finally, in the third part, we will
demonstrate how well our code solves various numerical test problems, and how it
compares to other RMHD simulation codes.

2.1 Equations of ideal relativistic MHD

2.1.1 Units

The equations and the simulation code described in this section are written in natural
units where the speed of light c = 1. The code itself is written in scale free form
and the system of units is fixed by selecting a length scale and a scale for the rest
mass density given in cgs units:

ρ[g/cm3] . (2.1)

The thermodynamic pressure, p, is measured in units of

ρc2[dyn/cm2] , (2.2)

21
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and the specific internal energy, ε, in units of

c2[erg/g] . (2.3)

All velocities are given in units of [c]. The units of magnetic fields in the laboratory
frame are given by

√
ρc2[

√
4πG(auss)] (2.4)

to avoid cluttering of the equations by factors of π.

2.1.2 The RMHD equations as a system of conservation laws

Throughout the following the metric will be gαβ = diag(−1, 1, 1, 1) unless stated
otherwise. The usual conventions for indices and summation will be used. Roman
indices run from 1 to 3 (or x, y, z in Cartesian geometry), Greek indices run from 0
to 4. Three-vectors like the velocity, v, or the laboratory frame magnetic field, B,
are set in boldface.

The velocity four vector is

uα = W (1, vx, vy, vz) , (2.5)

where W = 1/
√

1 − v2 is the Lorentz factor. The covariant magnetic field vector, bα

(lower case opposed to the upper case letter for the laboratory frame field) is given
by

b0 = W (v · B) , (2.6)

bi =
Bi

W
+ vib0 . (2.7)

Note that |b|2 = bαb
α = B

2

W 2 −(v ·B)2 . The covariant magnetic field vector is defined
such that, in the infinite conductivity approximation, Ohm’s law can be written as

bαuα = 0 , (2.8)

which translates into a vanishing electric field in the fluid’s rest frame.

The equations that describe the evolution of a relativistic magneto-fluid can be
written in the form of conservation laws, the conservation of mass,

∂α(ρuα) = 0 , (2.9)

and the conservation of total energy-momentum,

∂αT
αβ = 0 , (2.10)

where the energy-momentum tensor of a magnetic fluid is given by

T αβ = ρh∗uαuβ + p∗gαβ − bαbβ . (2.11)
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Here h∗ and p∗ are the hydromagnetic specific enthalpy and the hydromagnetic total
pressure, respectively, given by

h∗ = h+
|b|2
ρ

= 1 + ε+
p

ρ
+

|b|2
ρ

and p∗ = p+ pmag , (2.12)

where ε denotes the specific internal energy, h = 1 + ε+ p/ρ is the specific enthalpy,
and

pmag =
|b|2

2
(2.13)

is the magnetic pressure. The evolution of the magnetic field components is described
by the relativistic induction equation

∂α(uαbβ − uβbα) = 0 , (2.14)

the spatial part of which, in terms of the laboratory frame magnetic field, reads:

∂B

∂t
−∇× (v × B) = 0 . (2.15)

Ideal RMHD assumes infinite conductivity of the plasma, thus ∂E

∂t
= 0 and E =

−v × B. The time component of Eq. (2.14) becomes the usual MHD constraint

∇ · B = 0 , (2.16)

which has to be fulfilled at all times. Equations (2.9), (2.10) and (2.14) provide the
complete set of RMHD equations.

It is useful to introduce the magnetisation parameter, β, which is the ratio of mag-
netic to thermal gas pressure:

β =
pmag

p
. (2.17)

A value of β = 1 means that the magnetic field energy density equals (or is in
equipartition with) the thermal energy density of the plasma. Following Appl &
Camenzind (1988), we introduce another parameter that will prove useful in param-
eterising RMHD flows: the ratio of magnetic field energy density to that of the rest
mass given by

σ =
|b|2
ρ

. (2.18)

Then h∗ = h+ σ and for σ À h, the magnetic field dominates h∗. This means that
the Poynting flux in the first term of the energy-momentum tensor (2.11) will be
much larger than the material energy flux. We have defined σ to be the inverse of
the definition used by Appl & Camenzind (1988) or Komissarov (1999b). In this way
both β and σ become large for large magnetic fields and zero for non-magnetised
plasma.
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The system of RMHD equations given by (2.9), (2.10), and (2.15) is closed by an
equation of state (EOS):

p = p(ε, ρ) . (2.19)

In the following we will use an ideal EOS with a constant adiabatic index, γ:

p = (γ − 1)ρε . (2.20)

The speed of sound waves, cs, can then be calculated from (e.g. Landau & Lifschitz,
1966)

hc2s =
∂p

∂ρ

∣∣∣∣
ε

+
p

ρ2

∂p

∂ε

∣∣∣∣
ρ

, (2.21)

thus

cs =

√
γp

ρh
. (2.22)

In magnetic fluids, in addition to sound waves, another type of wave motion is
possible, called Alfvén waves (e.g. Jackson, 1975). In RMHD, the Alfvén speed, ca,
is defined through (Anile, 1989)

c2a =
|b|2
ρh∗

=
σ

h+ σ
. (2.23)

There are three ways for a magnetised plasma to become relativistic: (1) when the
flow velocity is close to c and therefore the Lorentz factor of the flow becomes much
larger than one; (2) when the plasma is hot, i.e. p À ρ such that the sound speed
(2.22) becomes relativistic; and (3) when |b|2 À ρ, i.e. σ À h, such that the Alfvén
speed (2.23) is close to c.

2.1.3 The equations in primitive variables

The RMHD system of partial differential equations can be cast in conservation form
as follows

∂tU + ∂xF
x + ∂yF

y + ∂zF
z = Q , (2.24)

where U is the vector of conserved quantities, the Fi are the vectors of fluxes, and Q

is the vector of source terms (see Sec 2.1.4). Written in terms of primitive variables,

V = (ρ, vx, vy, vz, p, Bx, By, Bz)T , (2.25)

and using the symbols D,S and τ for the conserved rest mass density, momentum
density vector and energy density measured in the laboratory frame, respectively,
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the conserved quantities, U, read

U =




D
Sx

Sy

Sz

τ
Bx

By

Bz




≡




ρW
ρh∗W 2vx − b0bx

ρh∗W 2vy − b0by

ρh∗W 2vz − b0bz

ρh∗W 2 − p∗ − b0b0 − ρW
Bx

By

Bz




. (2.26)

The fluxes, Fi, are then

Fi =




ρWvi

ρh∗W 2vivx + p∗δi
x − bibx

ρh∗W 2vivy + p∗δi
y − biby

ρh∗W 2vivz + p∗δi
z − bibz

ρh∗W 2vi − b0bi − ρWvi

viBx −Bivx

viBy −Bivy

viBz −Bivz




. (2.27)

Note that while system (2.24) consists of eight conservation equations, only seven
components of the fluxes, F i, are non-trivial. Owing to the antisymmetric character
of the induction equation (2.15) the flux of Bi in i-direction is always zero. For
example in the x direction the evolution equation for Bx reads

∂tBx = ∂x(vxBx −Bxvx) = 0 . (2.28)

2.1.4 The equations in cylindrical coordinates

For jet applications where axisymmetry is assumed (Chapters 3 and 4), Eq. (2.24)
has to be written in cylindrical coordinates. This will yield the vector of geometrical
source terms, Q, and the appropriate geometrical factors for numerical implemen-
tation.

Using cylindrical coordinates (r, φ, z) the metric becomes

gαβ = diag(−1, 1, r2, 1) . (2.29)

Then the mass conservation equation (2.9) reads

∂0D +
1

r
∂r (rDvr) +

1

r
∂φ(Dvφ) + ∂z(Dvz) = 0 , (2.30)
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and the momentum and energy conservation equations (2.10) become

∂0S
r +

1

r
∂r

[
r
(
ρh∗W 2vrvr + p∗ − brbr

)]
+

1

r
∂φ

(
ρh∗W 2vrvφ − brbφ

)

+ ∂z

(
ρh∗W 2vrvz − brbz

)
=
ρh∗W 2vφvφ + p∗ − bφbφ

r
,

(2.31)

∂0S
z +

1

r
∂r

[
r
(
ρh∗W 2vzvr − brbz

)]
+

1

r
∂φ

(
ρh∗W 2vzvφ − bzbφ

)

+ ∂z

(
ρh∗W 2vzvz + p∗ − bzbz

)
= 0 ,

(2.32)

∂0S
φ +

1

r
∂r

[
r
(
ρh∗W 2vφvr − bφbr

)]
+

1

r
∂φ

(
ρh∗W 2vφvφ + p∗ − bφbφ

)

+ ∂z

(
ρh∗W 2vφvz − bφbz

)
= −ρh

∗W 2vrvφ − brbφ

r
,

(2.33)

∂0τ +
1

r
∂r

[
r
(
ρh∗W 2vr − brb0 −Dvr

)]
+

1

r
∂φ

(
ρh∗W 2vφ − bφb0 −Dvφ

)

+ ∂z

(
ρh∗W 2vz − bzb0 −Dvz

)
= 0 .

(2.34)

Accordingly, written component-wise, the induction equation (2.15) in cylindrical
coordinates reads

∂0B
r + ∂z(vzBr − vrBz) +

1

r
∂φ(vφBr − vrBφ) = 0 , (2.35)

∂0B
z +

1

r
∂r [r(vrBz − vzBr)] +

1

r
∂φ(vφBz − vzBφ) = 0 , (2.36)

∂0B
φ +

1

r
∂r

[
r(vrBφ − vφBr)

]
+ ∂z(vzBφ − vφBz) =

Bφvr −Brvφ

r
. (2.37)

Equations (2.30)-(2.37) cast the RMHD system into cylindrical coordinates, where
geometrical source terms occur in the equations for the r- and φ-momentum, and
for the φ magnetic field. Thus the vector of source terms is

Q =

(
0,
ρh∗W 2vφvφ + p∗ − bφbφ

r
, 0,−ρh

∗W 2vrvφ − brbφ

r
, 0, 0, 0,

Bφvr −Brvφ

r

)T

.

(2.38)

2.1.5 Spectral decomposition

Wave speeds

In order to compute the eigenvalues, λ, of the one dimensional RMHD system

∂tU + ∂xF
x = 0 , (2.39)

where U and Fx are given by (2.26) and (2.27), respectively, one has to solve the
characteristic polynomial

|A1 − λA0| = 0 , (2.40)



2.1. EQUATIONS OF IDEAL RELATIVISTIC MHD 27

where A1 and A0 are Jacobian matrices of system defined as

A1
ij =

∂Fx
i

∂Vj

and A0
ij =

∂Ui

∂Vj

. (2.41)

Here i, j = 1 . . . 7 are the components in the vectors (2.25), (2.26) and (2.27). (2.40)
yields a polynomial of degree seven, the solution of which is non-trivial.

In order to simplify the problem Anile (1989) has used a covariant system of the
RMHD equations to derive eigenvalues and eigenvectors. By augmenting three non-
physical quantities the system becomes fully covariant, a fact which is skillfully
exploited by Anile in finding a solution. After solving the system the waves corre-
sponding to the augmented variables can be discarded as unphysical. The remaining
seven waves are physical. Anile derives the following expressions for the eigenvalues:
the matter/entropy wave,

λ0 = vx , (2.42)

the two Alfvén (a) waves,

λ±a =
b1 ± u1

√
ρh∗

b0 ± u0
√
ρh∗

, (2.43)

and the four magnetosonic (ms) waves (two slow and two fast ones), which are the
roots of a quartic polynomial in λms,

C4λ
4
ms + C3λ

3
ms + C2λ

2
ms + C1λms + C0 = 0 , (2.44)

where

C4 = 1 − ω2v2 − (b0)2c2s
ρh∗W 4

, (2.45)

C3 = −4vx(1 − ω2) − 2vxω
2

W 2
+

2b0b1c2s
ρh∗W 4

, (2.46)

C2 = 6v2
x(1 − ω2) − (1 − v2

x)ω2

W 2
+

((b0)2 − (b1)2)c2s
ρh∗W 4

, (2.47)

C1 = −4v3
x(1 − ω2) +

2vxω
2

W 2
− 2b0b1c2s
ρh∗W 4

, and (2.48)

C0 = v4
x(1 − ω2) − v2

xω
2

W 2
+

(b1)2c2s
ρh∗W 4

. (2.49)

ω is a combination of sound and Alfvén speeds defined as ω2 = c2s + c2a − c2sc
2
a .

Unfortunately, equation (2.44) does not allow for simple analytic expressions for the
fast and slow magnetosonic wave speeds, and therefore has to be solved numerically
(see Sec. 2.2.5). However, the eigenvalues can always be ordered

λ−fms ≤ λ−a ≤ λ−sms ≤ λ0 ≤ λ+
sms ≤ λ+

a ≤ λ+
fms , (2.50)

where fms and sms mean fast and slow magnetosonic, respectively.
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Eigenvectors

Once the eigenvalues of the system are known one can compute the right eigenvectors
by solving the set of equations

(B − λI) · r = 0 , (2.51)

where B is the Jacobian matrix B = ∂F
x

∂U
= A1 · (A0)

−1
and I is the unitary ma-

trix. Since it is difficult to derive B in analytical form, it is easier to solve the
corresponding system

(A1 − λA0) · r′

= 0 (2.52)

and afterwards multiply the resulting vectors by (A0)
−1

.

The eigenvectors provided by Anile (1989) in the ten by ten augmented system can
easily be transformed to a seven by seven primitive variable system, see e.g. Balsara
(2001). The eigenvectors corresponding to the four magnetosonic waves can only
be given as generic expressions which depend on the eigenvalues themselves. It
serves no purpose to list these expressions here, so we refer the reader to the above
mentioned publications.

Degeneracies

A system is called strictly hyperbolic if all eigenvalues of its characteristic problem
are real and distinct. In RMHD there exist degeneracies where system (2.39) is not
strictly hyperbolic: (i) in the case where Bx = 0, the slow magnetosonic and the
Alfvén waves have the same speed as the entropy wave; (ii) in the case where By =
Bz = 0 in the fluid’s rest frame (but not in the laboratory frame due to relativistic
aberration, see Komissarov, 1999a) the Alfvén waves have the same speeds as the
slow and/or fast magnetosonic waves depending on the relation between ca and cs.
For the system to remain hyperbolic all degenerate eigenvalues have to be paired
with linearly independent eigenvectors.

For the first degenerate case, Bx = 0 in Eq. (2.39), we can find an analytic solution to
the eigenvalue problem, Eq. (2.40). In that case both the Alfvén waves and the slow
magnetosonic waves degenerate to the material wave. Equation (2.44) then becomes
a quadratic equation in λ the solutions of which are the two fast magnetosonic waves.
The complete set of eigenvalues then is given by

λ0 = vx (five times degenerate) (2.53)

and

λ±fms =
vx(1 − ω2) ±

√(
(v2 − 1)ω2 +R

)(
(v2 − v2

x)ω2 + v2
x − 1 +R

)

1 − v2ω2 −R
(2.54)

with R = c2s(v·B)2

ρh∗W 2 and ω = c2s+c2a−c2sc2a. The solution of Eq. (2.52) is also analytic for
Bx = 0, although one has to be careful to chose five linearly independent eigenvectors
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for the five-fold degenerate eigenvalue λ0. However, we do not include the expressions
for the eigenvectors here, because we will not use them in our scheme (see Sec. 2.2.5).

In the second degenerate case the characteristic polynomial (2.40) does not have
such simple solutions.

2.2 Numerical techniques

In the following we will restrict all equations to two spatial dimensions for two
reasons: (a) readability, and (b) all of our applications discussed later in this work
will be 2D. Generalisation to 3D is straightforward, and in principle, all the methods
described here work in 3D, too.

2.2.1 Discrete space-time

The equations of RMHD (2.24) are solved numerically in a discrete sample of events
in space-time. Space is discretised into a grid of zones or cells, the positions of
their centres denoted by lower integer indices i and j. Time is divided into steps
which are denoted by an upper index n, such that tn stands for the time after the
nth time step. For example on a 2D Cartesian grid indices (i, j) correspond to
coordinates (x, y), while on a 2D cylindrical grid used for the simulations described
in Chapters 3 and 4 indices (i, j) denote the r and z coordinates, respectively. The
vector U(ri, zj, t

n) in grid zone (i, j) at time tn is written as Un
i,j . Cell interfaces are

denoted by half integer indices, e.g., the flux across the interface between zone (i, j)
and (i+ 1, j) at time tn is denoted by Fn

i+1/2,j . For clarity, the superscript n will be
dropped whenever all variables are given at the same time step.

2.2.2 Conservative method

The magnetohydrodynamic equations are solved in their conservation form which
is obtained by integrating (2.24) over a finite volume, V , with surface S(V ) (hence
conservative methods are also called finite volume methods). For a component, U(k)

of the state vector U the integral reads

∂

∂t

∫

V

U(k)dV +

∮

S(V )

F(k) · dS =

∫

V

QkdV ,where F(k) =

(
(F(k))

x

(F(k))
y

)
. (2.55)

Then the densities of mass, momentum, energy, and magnetic field in that volume
can only change in time by the corresponding fluxes across the volume’s boundary.
In this way conservation of the state vector U is implemented naturally and exactly.

The discretisation of Eqs. (2.24) can be written down, following the method of lines
(e.g., LeVeque, 1991), such that the time variation of the state vector U within a
numerical cell reads

dUi,j

dt
= − 1

∆x
(F̂x

i+(1/2),j − F̂x
i−(1/2),j)−

1

∆y
(F̂y

i,j+(1/2)− F̂
y
i,j−(1/2)) +Qi,j ≡ D(U) ,
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(2.56)

where D(U) is the spatial operator of the method. Thus the mean value of the
state vector Ui,j in the corresponding cell is calculated be considering the numerical

fluxes (denoted by a hat symbol) across the cell interfaces, F̂x
i+(1/2),j and F̂

y
i,j+(1/2),

and the mean vector of sources in that cell, Qi,j .

For the computation of the numerical fluxes a Godunov method can be used (e.g.,
LeVeque, 1998), which exploits the Riemann problem discussed in section 2.2.3. In
the case of the original Godunov method the spatial distributions of the states are
approximated by piecewise constant functions, i.e., the states are assumed to be
constant inside a grid zone. Thus discontinuities at the cell interfaces are created,
the breakup of which can be addressed by solving Riemann problems and will be
explained below in detail. The numerical fluxes are then obtained by solving these
Riemann problems at each cell interface approximately (see section 2.2.5). In this
way discontinuities in the fluid are captured naturally, and are resolved within a
few grid zones. Hence, methods of this type are also called high–resolution shock–
capturing schemes (Mart́ı & Müller, 1999).

In order to avoid numerical instabilities and unphysical solutions, the Courant-Fried-
richs-Lewy (CFL) condition for the size of the time step has to be taken into account
(LeVeque, 1991): information must not travel further than one grid zone within one
time step, i.e., the flux across a cell boundary may only change the states in the
adjacent cells. If vmax(tn) is the maximum physical speed in the computational
domain and ∆x the minimal size of a zone, then the following relation must be
fulfilled:

∆t = tn+1 − tn < min (∆x/vmax(tn)) ≡ ∆tcfl . (2.57)

In actual applications the time step must be further decreased to compensate errors
introduced by the spatial interpolation scheme (Sec. 2.2.6). One introduces a scale
factor, the so-called CFL number, fcfl < 1, such that

∆t = fcfl∆tcfl . (2.58)

fcfl is usually chosen between 0.5 and 0.8.

2.2.3 The Riemann problem

The hydrodynamic Riemann problem consists of computing the breakup of a dis-
continuity, which initially separates two arbitrary constant states VL (left) and VR

(right) in a gas, where V = {p, ρ,v}. Imagine an infinitely thin membrane separat-
ing the two states at point x0 = xD (See Fig. 2.1, top panel. L ≡ 1 and R ≡ 5). At
time t0 the membrane is suddenly removed and the discontinuity breaks up. The
solution of this problem is self-similar: it only depends on the two constant states
defining the discontinuity, and on the ratio (x − x0)/(t − t0). The discontinuity
decays into two elementary non-linear waves (shocks or rarefaction waves). Between
these waves two new constant states VL∗ and VL∗ (L∗ ≡ 3 and R∗ ≡ 4 in Fig. 2.1)
appear, separated by a contact discontinuity which moves with the fluid. While
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the density shows a jump across this contact discontinuity, pressure and velocity
are continuous. The self-similar character of the flow through the rarefaction waves
together with the Rankine–Hugoniot jump conditions across shocks (Landau & Lif-
schitz, 1966) provide the equations to relate the intermediate states (the ∗-states)
with their corresponding initial states. In that way the fluid flow velocity in the
intermediate states can be expressed in terms of the pressure. This can be used
to derive an exact solution for the relativistic Riemann problem (Mart́ı & Müller,
1994).

However, in RMHD, the initial states contain two more variables, By and Bz,
i.e. V = {p, ρ,v, By, Bz}. Therefore the discontinuity breaks up into seven states
instead of five, so far no general analytical solution has been found (see Sec. 2.1.5).

2.2.4 Directional splitting

In multi–dimensional numerical hydrodynamics it is common to treat each spatial
dimension separately. In the case of a Godunov method this means that the compu-
tation of the fluxes is split up into sweeps. On a 2D cylindrical grid two sweeps are
required, in the first sweep all fluxes in the radial direction are computed, and in a
second sweep all fluxes in axial direction. This method is called directional splitting.
Hence, a routine which solves the Riemann problems at the cell interfaces only has
to handle one dimensional “sub-grids” and is therefore very efficient computation-
ally. In addition the approximate Riemann solver discussed below only needs to be
implemented for a reduced one dimensional system. For example, in the x-direction
it is of the form

∂U

∂t
+
∂F(U)

∂x
= 0 . (2.59)

The hydrodynamic conserved quantities are also updated sweep-by-sweep, i.e. the
contribution of fluxes from the different directions are added one after the other.
The magnetic fields, however, can not be updated in a split fashion because the
antisymmetric form of the induction equation (2.15) leads to a coupling of the di-
rections perpendicular to the sweep. Ignoring this coupling generates (numerical)
magnetic monopoles. Instead magnetic fluxes are saved into arrays, and are used at
the end of a time step to update the fields using an unsplit formula, which explicitly
keeps ∇ · B = 0 (see Sec. 2.2.9).

Another important advantage of directional splitting is that the spatial interpolation
algorithms discussed in section 2.2.6 are much easier to implement in 1D than in
2D.

2.2.5 An approximate Riemann solver — HLLE

Approximate Riemann solvers are based on the linearisation of (2.59),

∂U

∂t
+ A

∂U

∂x
= 0 , (2.60)
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Figure 2.1: Schematic explanation of a hydrodynamic Riemann problem. The top figure
shows the initial state (t < t0) which consists of two constant states 1 and 5: p1 > p5,
ρ1 > ρ5 and v1 = v5 = 0 separated by a diaphragm at x0 = xD. The middle diagram
shows the flow pattern after the breakup of the discontinuity. The self-similar evolution
of the flow pattern is displayed in the space-time diagram (bottom figure) with a shock
(solid line) and the contact discontinuity (dashed line) moving to the right and rarefaction
waves propagating to the left (from Mart́ı & Müller, 1999).
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where A = const is an approximation of the Jacobian matrix ∂F(U)
∂U

.

If the system of seven equations (2.59) is hyperbolic, A is diagonalisable and has only
real eigenvalues, λp, p = 1 . . . 7, with a complete set of left and right eigenvectors, lp

and rp, respectively (LeVeque, 1998). Multiplying system (2.59) by L = (l1, . . . , l7)
from the left yields the decoupled system of advection equations

∂W

∂t
+ Λ

∂W

∂x
= 0 , (2.61)

where W = LU is the new vector of characteristic states and Λ = LAL−1 =
diag(λ1, . . . , λ7). The solution for every component, wp, of W is simply wp(x, t) =
wp(x − λpt, 0), because in the linear approximation, information propagates along
straight lines, x = λpt, called characteristics. Transforming back to U = L−1W

yields

U(x, t) =
7∑

p=1

wp(x− λpt, 0)rp and (2.62)

F(x, t) =
7∑

p=1

λpwp(x− λpt, 0)rp . (2.63)

In a Godunov method the initial states UL and UR on the left and right side of a
cell interface are given. For the computation of the resulting numerical fluxes (F̂
in equation (2.56)) across the cell interface we use the HLLE flux formula (Harten
et al., 1983; Einfeldt, 1988). It is based on the calculation of the two fastest signal
velocities perturbing the initial states on both sides of the interface:

F̂(UL,UR) = ψ+F(UL) − ψ−F(UR) +
ψ+ − ψ−

ψ+ψ−

(UR − UL) , (2.64)

where, in our case,

ψ+ = max(λp,L, λp,R) and ψ− = min(λp,L, λp,R), p = 1, . . . , 7 (2.65)

are the minimum and maximum of the characteristic wave speeds, λp, of the local
Riemann problem.

As described in Sec. 2.1.5 these speeds can be computed by solving the quartic equa-
tion (2.44). We have found that the best procedure to obtain the four solutions is the
following: (1) first we compute the two fast magnetosonic wave speeds employing
a Newton-Raphson iteration scheme; (2) then we reduce the quartic to a quadratic
equation by polynomial division; (3) finally we get the two slow magnetosonic wave
speeds by another set of Newton-Raphson iterations in combination with a bisection
scheme (Press et al., 1992). However, these methods lead to severe numerical prob-
lems and will make the solver unstable for high Lorentz factors. This is illustrated in
Fig. 2.2 where we have plotted the quartic in the relevant range for a flow velocity of
vx = 0.999 (i.e. Lorentz factor W ≈ 20). In this case, the combination of two facts
make it difficult to find the four zeroes by numerical iteration schemes: all of them
lie within 0.1% of each other, i.e. the quartic is less than 10−14 from zero for a rela-
tively broad interval such that it reaches the machine precision of P = O(10−16) and
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Figure 2.2: Plot of the quartic equation (2.44) for a Lorentz factor of 20. Due to limi-
tations by machine precision of P = O(10−16) the equation has more than four solutions.
The line is not smooth but juggles around the true, smooth curve by the amount P.

numerically has more than four zeros. Using quadruple precision (P = O(10−32))
does not merit the considerable increase in computation time, since it only shifts
the problem to slightly higher Lorentz factors. Del Zanna et al. (2003) claim that
an analytical solution of the full quartic yields better results than a numerical one,
but we have found that this is not the case. Since the former involves square roots
of cubic roots it suffers even more from the problem of machine precision, returning
signal velocities that are larger than one in many test cases with high Lorentz factors
in addition to being slower than the numerical solution.

Therefore, instead of dealing with all these difficulties, and in order to get a robust
solver, we use the analytical solution of the two fast magnetosonic waves, λana, in
the first degenerate case of the RMHD system given by expression (2.54). This
expression always returns values lower than the speed of light, even in the most
extreme relativistic cases examined. In addition, we have found through numerical
testing that these values are lower and upper bounds to the real fastest and slowest
magnetosonic wave speeds (as computed by the numerical solution of the quartic,
λnum), respectively. This property makes them ideal for use in the HLLE flux formula
(2.64). Figure 2.3 shows the relative difference between λana and λnum for the right
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Figure 2.3: Contour plot of the relative difference between the analytic fast magnetosonic
eigenvalue and the numerical solution of the system’s quartic equation, ∆λ. In the white
region ∆λ > 1%, in the grey region 0 < ∆λ ≤ 1% and in the black region ∆λ ≤ 0.
This plot illustrates that the numerical solution becomes unreliable for W > 40, where it
sporadically assumes values larger than the speed of light.

going fast magnetosonic wave speed,

∆λ =
λana − λnum

λana

. (2.66)

The plot covers a large fraction of the parameter space by varying Bx and vx = vy,
with p = 0.01, ρ = 0.1, vz = 0, and By = Bz = 1. It shows that λana is an upper
bound to λnum in all the grey and white areas of the parameter space. Moreover,
we can see that the numerical solution fails for Lorentz factors W > 40, where
it sporadically assumes values larger than the speed of light (the black areas in
Fig. 2.3).

The complexities described above together with the fact that the RMHD system
is not strictly hyperbolic (see Sec. 2.1.5) make it very difficult to implement more
refined flux formulas like Roe-type solvers (Roe, 1981), or Marquina’s flux (Donat
& Marquina, 1996), because all of them make use of the complete set of eigenvalues
and eigenvectors (see Aloy et al., 1999c, for an overview). Since the eigenvectors
depend on the eigenvalues, inaccurate values for the latter will lead to inaccurate
results of the former, thus making any scheme unstable, which uses eigenvectors to
compute numerical fluxes. The regions in the phase space where the degeneracies of
the system occur will lead to further instabilities. Our implementation of the HLLE
flux (2.64) combined with well behaved expressions for the fastest signal speeds does
not suffer from these problems, and is also computationally much more efficient than
any method that makes use of the full spectral decomposition.
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2.2.6 Spatial interpolation

The original Godunov method uses piecewise constant functions to approximate the
spatial distribution of the variables, thus setting the spatial accuracy of the code
to first order, which means that errors of discretisation are of the order O(∆x). In
order to increase the accuracy to second or third order (discretisation errors O(∆x2)
or O(∆x3)), the zone-averaged values of the primitive variables, V = {p, ρ,v,B},
are interpolated within the cells (Toro, 1997). This is achieved by using a piece-
wise linear method or a piecewise parabolic method (Colella & Woodward, 1984),
respectively. Since the primitive variables are needed in the equation of state (2.20),
interpolating them instead of the conserved ones has several advantages: (i) it is less
time consuming as the primitives only need to be recovered (see 2.2.8) once per sub
time step as opposed to every time when the equation of state needs to be evaluated;
(ii) the interpolated states can be checked for thermodynamic consistency; and (iii)
the sound speed and other derived thermodynamic quantities are straightforwardly
obtained.

Piecewise linear method (PLM)

We use a modified version of the minmod linear inter-cell interpolation algorithm
(e.g. LeVeque, 1991). For every variable ai in zone i we construct a slope, ∆i:

s+ =
ai+1 − ai

xi+1 − xi

, s− =
ai − ai−1

xi − xi−1

and (2.67)

∆i = 0.5 (sign(s+) + sign(s−)) min(|s+|, |s−|) . (2.68)

Values at the interface i+ 1/2 are then computed according to

ai+1/2,L = ai + ∆i(xi+1/2 − xi) , (2.69)

ai+1/2,R = ai+1 + ∆i+1(xi+1/2 − xi+1) . (2.70)

For conserving monotonicity of the data, ∆i = 0 where local maxima and minima of
the variable occur, i.e. the scheme switches back first order piecewise constant data.

We apply this algorithm to the variables

{ln ρ, ln p,Wv,B} . (2.71)

A further modification of the original minmod algorithm for RMHD applications is
to limit the absolute value of the slope to 2.0 for the interpolation of ln ρ and ln p
in those zones where the magnetisation parameter β (2.17) is larger than a certain
threshold (between 4 and 10 in our applications).

Piecewise parabolic method (PPM)

The explicit algorithm used here is described in detail in Mart́ı & Müller (1996). It
was developed and tuned for RHD.
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For each zone i the quartic polynomial which has zone-averaged values ai−2, ai−1, ai,
ai+1, ai+2 is obtained, where a is the variable to be reconstructed. The polynomial
then interpolates the structure in the zone and provides the values at the left and
right interfaces of the zones, aL,i and aR,i. These reconstructed values are then mod-
ified such that the parabolic profile defined by aL,i, aR,i and ai becomes monotonic
inside the zone. The modified, interpolated values at the zone interfaces are then
used to calculate the corresponding conserved variables which are the input values
of the local Riemann problem solved by (2.64). Near contact discontinuities the
interpolation procedure is slightly modified to produce narrower jumps. The scheme
switches locally to a piecewise constant approximation in the vicinity of shocks in
order to avoid spurious post shock oscillations (Appendix I in Mart́ı & Müller, 1996).

2.2.7 Time integration

Time integration of equation (2.56) is done using a multi-step Runge–Kutta algo-
rithm developed by Shu & Osher (1988) which provides third order accurate inte-
gration in time. Our implementation also includes a second order accurate version
of the algorithm. Dropping the vector notation from (2.56), the update procedure
of the states from Un to Un+1 is divided into three Runge–Kutta steps:

U ′ = Un + ∆tD(Un) , (2.72)

U ′′ =
1

4
(3Un + (U ′ + ∆tD(U ′))) , (2.73)

Un+1 =
1

3
(Un + 2(U ′′ + ∆tD(U ′′))) . (2.74)

Important advantages of the Shu & Osher scheme (2.72)–(2.74) are that it preserves
the total variation diminishing (TVD) property of the method, and that it only
requires the information of the previous time step, and therefore needs less memory
than the generic third order Runge–Kutta algorithm.

2.2.8 Recovery of primitive variables

The code evolves the conserved quantities {D,S, τ,B} and not the primitive vari-
ables {p, ρ, ε,v,B}. Therefore an algorithm has to be included, which computes the
latter from the zone-averaged values of the former set. Since the conserved quanti-
ties can be written in terms of the primitives in analytic, closed form, but not the
other way round, one has to employ numerical iteration algorithms.

We use (2.26) and (2.20) to construct two functions of the Lorentz factor, W , and
the auxiliary variable Z ≡ DW (1 + γε),

F1(Z,W ) =
τ +D

1 + B2
−Z + B2

1 + B2
+

(B · S)2

2Z2(1 + B2)
+
γ − 1

γ

Z +DW

W 2(1 + B2)
+

B2

2W 2(1 + B2)

(2.75)
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and

F2(Z,W ) = 1 − 1

W 2
− 1

(Z + B2)2

(
S2 + 2

(B · S)2

Z
+ B2

(
B · S
Z

)2
)
. (2.76)

The combined zero of both functions – computed by a two dimensional Newton–
Raphson iteration (function mnewt in Press et al., 1992) – yields values for Z and
W which are then used to compute the primitives via

vi =
Si + b0

W
Bi

Z + B2
where

b0

W
=

B · S
Z

, (2.77)

ρ =
D

W
and ε =

1

γ

(
Z

DW
− 1

)
. (2.78)

The thermal pressure, p, can then be computed simply through (2.20).

The following checks are done to determine whether the recovery mechanism has
provided the correct results:

• The relative difference between p and palt has to be smaller than 10−6, where
palt is computed according to the alternative formula

palt = Z + B2

(
1 − 1

2W

)
− 1

2

(
B · S
Z

)2

− τ −D . (2.79)

• The velocities have to be smaller than the speed of light.

• Pressure and density have to be larger than predefined minimum values (far
smaller than the characteristic values of the problem) in order to prevent vac-
uum zones. For example, the minimum value for the thermal pressure is set
to 10−20 in a problem where the characteristic value is around 10−4.

If any of these tests fails for a zone, the values are interpolated from those of the
neighbouring zones. The recovery may fail when one of the terms in the total energy
τ , Eq. (2.26), is much larger than the others, e.g. when the Lorentz factor is very
large, while the pressure is small. Subtracting of that term from τ will lead to
numerical errors.

2.2.9 Conservation of ∇ · B = 0

Although the constraint (2.16) is implicitly conserved by equations (2.24), their
spatial discretisation and evolution by approximate solvers produces small errors
which may grow and lead to unphysical results. Therefore, every MHD code has to
include a method to keep ∇ · B = 0.

In principle there are two different approaches to ensure this (see Tóth, 2000, for an
overview):
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(i) Divergence cleaning which removes the unphysical monopole part of the mag-
netic field. The three most popular methods in this category are (a) the 8-wave-
formulation by Powell (1994), (b) the projection of the numerical solution of B onto
a subspace of zero divergence solutions (first suggested by Brackbill & Barnes, 1980,
in the context of MHD), or (c) General Lagrange Multiplier methods like hyperbolic
divergence cleaning (Munz et al., 2000). All of these methods require additions to
the base numerical scheme, and have been developed for Newtonian MHD. While
they have been used and tested for Newtonian MHD, their application to RMHD
is not straightforward. Method (a) introduces a non-physical wave into the system,
and thus violates the conservative properties of the system of equations. Method
(b) requires a time consuming solution of a Poisson equation in every sub time step.
In the hyperbolic divergence cleaning approach (c), the divergence errors are prop-
agated off the grid by a wave equation (Dedner et al., 2002). However, we have not
found an operative RMHD counterpart of this method, because the speed of light
limits the speed of this wave, i.e. errors are not removed from the grid sufficiently
fast, which is not the case in Newtonian MHD.

(ii) Constrained transport (Evans & Hawley, 1988) where one updates the magnetic
field in a way that exactly conserves ∇ · B in a specific discretisation. If the initial
magnetic field has zero divergence in this discretisation, then this will be maintained
to the accuracy of machine round off errors as long as the boundary conditions are
compatible with the constraints. Most published applications of this approach use a
staggered grid representation of the magnetic field, where the field components are
defined at the cell interfaces and are interpolated to the zone centres in every time
step in order to compute the fluxes. Tóth (2000) showed that it is possible to apply
this idea without the need for a staggered grid. Staggered grid discretisations of the
magnetic fields in combination with Godunov type, Riemann solver methods were
published by Dai & Woodward (1998), Balsara & Spicer (1999) or Ryu et al. (1998).

In our code we use the method described by Ryu et al. (1998). We define two sets
of magnetic field vectors (see Fig. 2.4):

1. the zone centred vector Bi,j defined at coordinate (i, j) and

2. the staggered interface magnetic field Bi,j where Bx
i,j is defined at (i− 1/2, j)

and By
i,j at (i, j − 1/2). Note that we have introduced a slight inconsistency

in the notation in order to avoid formulae cluttered with indices.

The zone centred vector, B, is computed (temporarily) in the sweeps by simple
interpolation from the staggered field components,

B
x

i,j =
1

2
(Bx

i,j +Bx
i+1,j) . (2.80)

It is required for setting the boundary conditions and source terms, and for the
calculating the fluxes of the other variables. The field components are updated
according to

(Bx
i,j)

n+1 = (Bx
i,j)

n − ∆t

∆y
(Ωi,j+1 − Ωi,j) and (2.81)
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Figure 2.4: Illustration of the grid zone (i, j) and the positions of the staggered magnetic
and electric fields, the fluxes and the zone centred variables.

(By
i,j)

n+1 = (By
i,j)

n +
∆t

∆x
(Ωi+1,j − Ωi,j) , (2.82)

where

Ωi,j =
1

4
(F̂ y(Bx)i−1,j + F̂ y(Bx)i,j + F̂ x(By)i,j−1 + F̂ x(By)i,j) (2.83)

is the flux interpolated electric field component in z-direction defined at the lower
left corner of the zone (i, j). Here F̂ y(Bx)i,j is the numerical flux of Bx in y-direction
across interface i − 1/2, j. It is easy to show that Eqs. (2.81)–(2.83) conserve the
following discretisation of the divergence:

(∇ · B)i,j ≡
Bx

i+1,j −Bx
i,j

∆xi,j

+
By

i,j+1 −By
i,j

∆yi,j

. (2.84)

Figure 2.4 illustrates the locations of the different variables on the grid.

2.2.10 Boundary conditions

At the boundaries the computational grid is extended by four so-called ghost zones,
which serve to enforce the boundary conditions for the primitive variables before
the spatial interpolation is done, and before the Riemann solver is called. The
number of ghost zones employed in this process depends on the order of the spatial
interpolation algorithm (one for PLM, four for PPM).
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Figure 2.5: Flow diagram of the code.

A second boundary routine is called after the dimensional sweeps (see Fig. 2.5). It
sets the boundary values for the magnetic field fluxes, Eq. (2.83). These only need
to be enforced in the first ghost zone (see Eq. (2.83)), e.g. for computing Ω1,1 one

has to set both F̂ y(Bx)0,1 and F̂ x(By)1,0. Usually we will copy the fluxes from a grid
zone to its adjacent ghost zone, to enforce zero flux gradients.

2.2.11 Code structure

The code is based on the 3D relativistic hydrodynamics code GENESIS (Aloy et al.,
1999b). While we have kept the general structure, most of the modules were substi-
tuted by their RMHD counterparts. The code is written in fortran 77/90, and
relies on the cpp preprocessor software to allow the program to perform on many dif-
ferent machine architectures. Preprocessing options also manage the parallelisation
through OpenMP, and the selection of different algorithms for the different parts of
the code.

A flow diagram of the code is displayed in Fig. 2.5. After the input parameters
are read, the grid is constructed and all variables are initialised. The size of the
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first time step, ∆t1, is given by the input parameters and is usually chosen to be
very small. From the second time step onwards ∆t is increased by 20% until it
reaches the nominal value set by the CFL condition (2.58). In the beginning of
each time step the code determines the active part of the computational domain,
i.e. the number of grid zones involved in the simulation. For example, if there is a jet
propagating into a grid filled with a uniform medium at rest, the equations are only
evolved in that part of the grid where the fluid is affected. In this way one saves at
least a factor of 2 of computational time when simulating jets. During each of the
three Runge-Kutta sub time steps (Sec. 2.2.7) appropriate boundary conditions and
geometric factors are provided, the numerical fluxes are computed along each spatial
dimension, and the vector of source terms is calculated. Subsequently, the vector of
conserved variables is updated, before the primitive variables are recovered by the
method described in Sec. 2.2.8. After the third Runge-Kutta step the time step is
complete, and the data output routines are called. Until the simulation reaches the
final time given by the input parameters, the size of the next time step is computed,
and the procedure starts from the beginning (Fig. 2.5).

All the results presented in this work were produced on IBM p690 Regatta systems
at the Rechenzentrum Garching (RZG) of the Max-Planck-Gesellschaft.

2.3 Code validation

Before a numerical simulation code is used to solve a physical problem, it is necessary
to validate its results by comparing them with known solutions of test problems. To
this end one sets up a couple of Riemann problems in one or more dimensions, and
checks whether the code can resolve all the waves that result from the breakup of
the initial discontinuity. Ideal test cases would be those where an analytical solution
to the problem is known. However, in RMHD there are not too many tests with
known solutions, mainly because a closed solution for the general RMHD Riemann
problem has not been found yet (Sec. 2.2.3). An alternative way of testing a RMHD
code is to cross-check its test results against those obtained by other authors for
the same test problems. With this aim in mind we have validated our code against
the 1D test problems from Balsara (2001) which were also reproduced by Del Zanna
et al. (2003). In 2D we have used the results of Komissarov (1999a).

2.3.1 1D test problems

Table 2.1 lists the parameters of the five Riemann problems described in Balsara
(2001). The first four of these test were also considered by Del Zanna et al. (2003).
Every test involves a discontinuity placed in the centre of a computational domain
of 1600 grid zones. We ran each of the five problems twice: (1) using PLM interpo-
lation, where we chose a threshold of β = 4 for the slope limiting (see Sec. 2.2.6),
and (2) using PPM. A Courant number of fcfl = 0.5 was used in all of the test runs.

The first test, shown in Fig. 2.6, is the Newtonian MHD test of Brio & Wu (1988)
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adapted to RMHD by van Putten (1993). It displays a fast rarefaction wave and a
compound wave propagating to the left, a contact discontinuity, and a slow shock and
a fast rarefaction wave propagating to the right. The higher order of the parabolic
interpolation compared to the linear one is obvious from the difference in the number
of points both methods need to resolve discontinuities. While the PLM scheme
requires more than 20 points to resolve the contact discontinuity, PPM only needs 2
points compared to 10 points in Balsara. Our implementation of PPM also resolves
both shock waves better than in Balsara (2001), i.e. the scheme can also handle
the magnetically dominated right state of this particular Riemann problem, where
the slow shock causes a problem for Balsara’s method. Since both of our schemes
display an overshooting of vx at the rarefaction (Fig. 2.6c), we attribute this to our
Riemann solver. The same overshooting is also visible in Del Zanna et al. (2003),
whose results are a little less resolved than our PPM results.

The results of the blast wave test problems 2 and 3 are displayed in Figs. 2.7 and
2.8, respectively. Again, for both of our runs, the resulting waves are the same as
in Balsara (2001). Test 2 is a blast wave with a moderate initial pressure difference.
Its initial discontinuity breaks up into a fast rarefaction wave and a slow rarefaction
propagating to the left, a contact discontinuity, and a slow shock and a fast shock
propagating to the right (Fig. 2.7). All waves are well resolved using PPM, while
PLM smears both shock waves across many zones. A maximum Lorentz factor of 1.36
is reached in both runs (Fig. 2.7e), which was also found by Balsara (2001). Test 3 is
a blast wave with a strong initial pressure difference. It also develops two rarefaction
waves propagating to the left, for example displayed in Figs. 2.8a and 2.8b, both
captured equally well by PPM and PLM. However, the high density structure on the
right is neither resolved in our runs nor in Balsara (2001). Nevertheless, using PLM
and PPM, we obtain the same maximum Lorentz factor of about 3.4 (Fig. 2.8e) as
Balsara (2001). This illustrates that despite the numerical viscosity of the algorithm
we can obtain the physically correct overall structure for this test problem. The
comparison with Del Zanna et al. (2003) shows that our PPM results are again

Table 2.1: Parameters for the 1D Riemann problems.

No. initial state ρ p vx vy vz By Bz Bx γ tfinal

1 left 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.5 2.0 0.4
right 0.125 0.1 0.0 0.0 0.0 -1.0 0.0 0.5 2.0 0.4

2 left 1.0 30.0 0.0 0.0 0.0 6.0 6.0 5.0 5/3 0.4
right 1.0 1.0 0.0 0.0 0.0 0.7 0.7 5.0 5/3 0.4

3 left 1.0 1000.0 0.0 0.0 0.0 7.0 7.0 10.0 5/3 0.4
right 1.0 0.1 0.0 0.0 0.0 0.7 0.7 10.0 5/3 0.4

4 left 1.0 0.1 0.999 0.0 0.0 7.0 7.0 10.0 5/3 0.4
right 1.0 0.1 -0.999 0.0 0.0 -7.0 -7.0 10.0 5/3 0.4

5 left 1.08 0.95 0.4 0.3 0.2 0.3 0.3 2.0 5/3 0.55
right 1.0 1.0 -0.45 -0.2 0.2 -0.7 0.5 2.0 5/3 0.55
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: First 1D test problem. Relativistic analogue of the Brio & Wu (1988) test.
The black crosses are the results with interpolation via PPM, the grey dots are computed
with PLM.
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slightly better resolved in test No. 2, while we get slightly worse results in the
stronger blast wave test No. 3. This is visible from the height of the high density
shell (Fig. 2.8a) which is 40% larger for PPM than for PLM, but approximately 2%
smaller than in Del Zanna et al. (2003).

Figure 2.9 shows the results of test No. 4, a strong relativistic shock reflection
test with two streams approaching each other at Lorentz factors of 22.366. This
set up produces two fast and two slow shocks. Both PPM and PLM handle this
test very well, but PLM requires more zones to resolve the slow shocks. At the
initial collision point (x = 0) a certain amount of “wall heating” occurs, which is
a numerical pathology of approximate Riemann solvers (e.g. Donat & Marquina,
1996). The problem arises because an excess of entropy is generated at the collision
point at t = 0. This can diffuse numerically only slowly, because the fluid is at rest
at that point. Higher order reconstruction schemes help to confine the problem to a
small number of points initially but generate less diffusion. Hence the “hole” in the
rest mass density (Fig. 2.9a) is larger with PPM (confined to only three grid zones
with a relative error of about 10%) than with PLM (the “hole” is much more spread
out with an error of 5%). In this test our PLM results are of similar quality than
those of Balsara (2001) and Del Zanna et al. (2003), while our PPM implementation
requires less zones to resolve the slow shocks.

Figure 2.10 shows the results of the fifth 1D test, a Riemann problem where all
the velocities and magnetic field components are non zero initially. It shows a fast
shock, an Alfvén wave, and a slow rarefaction propagating to the left, a contact
discontinuity, and a slow shock, an Alfvén wave, and a fast shock propagating to the
right. PLM and PPM perform similar on the fast shocks, while PPM is superior to
PLM on all other structures. The PPM results are again better or comparable to
those of Balsara (2001) apart from the spikes in vz (Fig. 2.10e) and Bz (Fig. 2.10g)
in the left Alfvén wave, where our method is off by about 3% compared to the values
in Balsara (2001).

In summary, our code solves all of the test problems presented in Balsara (2001)
correctly. As a rule of thumb, the PPM runs require less zones to resolve structures
(in particular those of slowly moving waves) than both methods described in Balsara
(2001) and Del Zanna et al. (2003), which are closer to our PLM results.

2.3.2 2D test problems

While the one-dimensional tests have shown that our code can resolve all the waves
appearing in RMHD reasonably well, two-dimensional calculations introduce further
complexities related with the constraint that the divergence of the magnetic field
should remain zero (Sec. 2.2.9), which is trivially fulfilled for 1D tests.

Cylindrical explosion test

The cylindrical explosion test consists of a strong shock propagating into a magnet-
ically dominated medium. Although there is no analytic solution to verify against,
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: Second 1D test problem. Blast wave test with moderate initial pressure
difference. The crosses are the results of the PPM run, the grey dots those of the PLM
run.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: Third 1D test problem. Blast wave test with large initial pressure difference.
The crosses are the results of the PPM run, the grey dots those of the PLM run.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9: Fourth 1D test problem. Shock reflection test. The black crosses are the
results of the PPM run, the grey dots those of the PLM run.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 2.10: Fifth 1D test problem. A non-coplanar Riemann problem displaying all the
MHD waves (see text for details). The black crosses are the results of the PPM run, the
grey dots those of the PLM run.
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this test still has very useful properties which make it a standard test of multidimen-
sional numerical schemes for gas dynamics and MHD. For example, it encompasses
all the degeneracies of the RMHD eigensystem (Sec. 2.1.5). Its simple setting makes
it easy to spot bugs or weaknesses of a scheme which might not be seen so clearly
in more complicated problems. Results for different cylindrical explosion problems
in RMHD have been published (1) by Dubal (1991) indicating severe problems with
his scheme, (2) by van Putten (1995) reaching only a maximum velocity of v = 0.35,
(3) by Komissarov (1999a), and (4) by Del Zanna et al. (2003).

We have chosen a setup very similar to that in Komissarov (1999a): a cylinder of
high pressure and density is located in the centre of a square Cartesian grid, which
initially contains a uniform, strong magnetic field. The grid has 200 by 200 zones
spanning 12 by 12 units of distance. In the centre of the grid there is a circle of
radius 0.8 where ρ = 10−2 and p = 1. Between a radius of 0.8 and 1.0 the values
smoothly decrease to those of the homogeneous ambient medium (ρ = 10−4 and
p = 5 × 10−4). Initially, the magnetic field is Bx = 0.1, and the velocity is zero
everywhere. The simulations were carried out on an IBM Power4 processor and
required about 300 seconds of CPU time.

Figures 2.11 and 2.12 show the results of this test at time t = 4.0 using PLM and
PPM, respectively. One recognises an outer fast shock, which is almost circular,
because the fast magnetosonic speed varies little across the grid. The innermost
region is also circular and bounded by a reverse fast shock. The expansion of this
region is almost circular, because the Lorentz force is small there. In between these
two shocks there are two more discontinuities, bounded on the outside by the com-
pressed magnetic field (see the field lines in Figs. 2.11d and 2.12d). The constrained
transport works in both cases as demonstrated by the plots of ∇ · B (Figs. 2.11b
and 2.12b).

While the overall picture is very much the same in both cases, there are some
obvious differences. The maxima and minima of both magnetic field components
are slightly different in the two methods, see panels (a) and (b) in Figs. 2.11 and
2.12. In addition, the PPM results show oscillations on a 5% level. These are a
consequence of the staggered grid approach keeping the code divergence free (see
Sec. 2.2.9), because the linear interpolation (2.80) of the staggered field components
is of different order than the spatial PPM reconstruction described in Sec. 2.2.6.
Increasing the resolution removes this problem. Figure 2.13 shows plots of the
thermal pressure along x = 0 for two different resolutions: 200 by 200 zones (upper
panel) and 800 by 800 zones (lower panel). While PPM (black crosses) requires less
points than PLM (grey dots) in discontinuities in the higher resolution run, there is
no such trend in the lower resolution run. At both resolutions PPM produces small
oscillations.

Toroidal field jets

Up to now there exists only one publication where a RMHD code is applied to the
simulation of strongly relativistic magnetised jets. Komissarov (1999b) presents two
models of axisymmetric RMHD jets injected into a non-magnetised, homogeneous
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(a) (b)

(c) (d)

Figure 2.11: Cylindrical explosion test with PLM reconstruction.

(a) (b)

(c) (d)

Figure 2.12: Cylindrical explosion test with PPM reconstruction.
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Figure 2.13: Plot along x = 0 of the thermal pressure of the cylindrical explosion test.
The top panel shows the results for the original grid of 200 by 200 zones, while the bottom
panel is the result of the same test on a grid of 800 by 800 zones. The black crosses are
the PPM results, the grey dots are the PLM results.
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Figure 2.14: Jet model A from Komissarov (1999b) at time 110. For a direct comparison
we have the same variables, β (top), pressure (middle) and the relativistic density ρ∗ =
ρW 2 (bottom) at the same time t = 110 as in Komissarov (1999b).

ambient medium. A toroidal field component is added to the inflowing jet plasma.
We have repeated both calculations described there. For the details of the setup of
the simulations we refer the reader to Komissarov (1999b).

Figure 2.14 shows the results of jet model A at evolutionary time 110 computed
with the PLM spatial reconstruction. Directly comparing these plots to Fig. 3 in
Komissarov (1999b) we can identify the same number and position of shocks on the
jet axis. In addition the length and position of the nose cone, the high pressure
region that makes up the tip of the jet, only differ by a few percent. Differences in
the cocoon structure are to be expected given the different numerical schemes used
to obtain both results. For the low Poynting flux model, model B, we find a similar
good agreement with the results of Komissarov (1999b).

2.3.3 Convergence Tests

The tests discussed in the previous subsections are mainly devoted to demonstrate
the robustness of the code when simulating relativistic flows and shocks. They also
show that PPM is of higher accuracy than PLM, which should be third and second
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Figure 2.15: Convergence test for the 2D Alfvén wave problem. Not that the convergence
is of slightly lower order in PPM, the absolute error in PPM is smaller than in PLM.

order accurate, respectively, for flows without discontinuities. This, however, is only
valid when the staggered magnetic field components are zero. Otherwise, the second
order accurate interpolation of the staggered field components, Eq. (2.80), reduces
the order of the method. This has to be studied in an appropriate test simulation.
To this end we computed the propagation of relativistic circularly polarised Alfvén
waves as described in Del Zanna et al. (2003).

The initial conditions for the test are the following: in a generic Cartesian reference
frame (ξ, η, χ) we set ρ = 1, p = 0.1, Bξ = B0 =

√
2, vξ = 0 ,Bη = −0.01 cos (2πξ),

and Bχ = −0.01 sin (2πξ). In the limit of small wave amplitudes, the total mag-
netic field strength is conserved, the Alfvén speed is B0/

√
ρh∗, and the relation

between velocity and magnetic field fluctuations is such that vη = Bη/
√
ρh∗ and

vχ = Bχ/
√
ρh∗. On a 2D grid we consider a propagation in x = y direction such

that (ξ, η, χ) = ((x+ y)/
√

2, (−x+ y)/
√

2, z). We have assumed periodic boundary
conditions, and a grid size of [0,

√
2] × [0,

√
2] in order to satisfy these conditions.

The convergence can be tested by measuring the relative error of the numerical
solution of vz after one period, T . As in Del Zanna et al. (2003), we evaluate the L1

norm of vz,

L1(v
z) =

∑
i,j

∣∣vz
i,j(t = T ) − vz

i,j(t = 0)
∣∣

∑
i,j

|vz
i,j(t = 0)| . (2.85)

The errors are plotted in Fig. 2.15 for both PPM and PLM as functions of the
number of grid points N = Nx = N y. As expected, the staggered grid formulation
of the magnetic field reduces PPM from third to second order. The reduced second
order accuracy of the PPM/staggered field implementation leads to a convergence
rate which is slightly smaller than the second order convergence rate of PLM. The
absolute errors, however, remain smaller in PPM. In a second test (not shown here)
with the staggered field components absent, i.e. Bx = By = 0, we have verified
that PPM is indeed third order as expected from the 1D test results presented in
Sec. 2.3.1.



3 Parameter Study

3.1 Introduction to jet simulations

The numerical grid

All jet simulations in this work were performed on a 2D equidistant grid in cylindrical
coordinates, (r, z) assuming axisymmetry. Thus every grid zone (i, j) at position
(ri, zj) has a volume of 2πri∆r∆z. In fact, the simulations themselves are 2.5-
dimensional as we evolve all three spatial components using Eqs. (2.30)–(2.37), and
thus include toroidal magnetic fields and motion.

The simulated jets are produced by injecting beam matter into the grid through a
nozzle at z = 0 of width 0 < r < 1 (Fig. 3.1). This also fixes the basic length scale
used for measuring distances which is the beam radius, rb ≡ 1. Outside the nozzle,
i.e. for 1 < r < rmax and z = 0 we impose special reflecting boundary conditions
by implying that the axial and toroidal velocity and field components are mirrored.
This is justified by the presence of a twin counter jet in real radio galaxies and
eliminates the Lorentz force in the equatorial plane. The assumed axisymmetry also
implies reflecting boundary conditions on the symmetry axis at r = 0 where the
radial and toroidal velocity and magnetic field components are mirrored, i.e. they
are zero at zero radius. At the two outer edges of the grid, i.e. r = rmax and z = zmax

we impose zero gradient boundary conditions. Material is allowed to freely leave the
grid there.

We assume that the computational domain is initially filled with a uniform medium
of density ρ = 1 at rest having the same thermal pressure and adiabatic index as
the jet. The initial magnetic field configuration depends on the type of simulation.

Jet parametrisation

Every jet simulation is fully specified by setting a few independent parameters:

• the flow speed of the beam, vb, where the subscript b stands for beam;

• the ratio of the rest mass densities of the beam fluid and the external medium,
η;

• the adiabatic index, γ, used in the equation of state (2.20);

55
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Figure 3.1: Diagram of a 2D cylindrical grid. The sizes of the different boundaries are
not proportional.

• the classical beam Mach number Mb = vb/cs (which controls the thermody-
namic relativistic effects of the model) or its relativistic analogue,the proper
Mach number, Mb = MbWb/Ws, where Ws ≡ (1−c2s)−1/2 is the Lorentz factor
associated with the local sound speed (Königl, 1980);

• the magnetisation parameter, β (see Eq. (2.17)), both of the beam fluid and
the external medium.

Another parameter, σ, defined by Eq. (2.18), roughly measures the ratio of Poynting
flux and mass flux. It will prove useful when discussing the simulations. It is not
independent of the others, therefore not needed to specify a jet model.

Magnetisation parameter

When simulating a jet with a non-uniform magnetic field, the magnetisation pa-
rameter of the beam is given by the average value, β, across the beam. In our
simulations of jets with toroidal magnetic fields presented below we have assumed
that the beam has a core of uniform electric current with radius rm—called mag-
netisation radius—and a shell without any current. Then the (toroidal) magnetic
field in the beam, bφb = Bφ ·W , is the following:

bφb =





b0
r

rm
if r < rm ,

b0
rm

r
if r ≥ rm ,

0 if r > rb .

(3.1)

Averaging (3.1) over a beam cross section and dividing by the uniform thermal beam
pressure, pb, yields

β =
b20r

2
m(0.25 − ln rm)

pb

. (3.2)

From pb, β and rm one can obtain b0 through (3.2). In the simulations with a purely
poloidal magnetic field we have chosen a simpler initial setup: the grid is initially
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filled with a uniform, axial magnetic field, Bz, which according to the definition of
the parameter β (2.17) is given by

|b|2 =

(
Bz

W

)2

+ (vzBz)2 = 2
β

pb

⇒ Bz =

√
2
β

pb

. (3.3)

Through the nozzle the same field is injected with the flow.

Analysis tools

In Chapter 1 we have already described the morphological features of jets obtained
from numerical simulations (see Sec. 1.4 and Fig. 1.4). We will point out these
features by presenting snapshot images of the rest mass density, the thermal pressure,
the magnetic fields, the Lorentz factor and other quantities. For further analysis of
the results we introduce a number of global quantities:

• the head position of the jet is the z–coordinate of the leading bow shock and,
therefore, the length of the cavity, lc;

• the cylindrical aspect ratio, Ac ≡ lc/rc, is the aspect ratio of a cylinder which
has the same volume and length, lc, as the cavity, i.e. rc =

√
Vc/(πlc);

• the cocoon mass, Mcc (see below for a working definition of cocoon);

• cavity averages which are number averages in order not give to much weight
to the large zones at larger radii. We will use cavity average of the thermal
pressure and the β parameter;

• the hot spot pressure which is the pressure averaged over a small number of
zones downstream of the contact discontinuity at the termination of the beam
(defined via the tracer variable, see next paragraph).

Local quantities that will be used are

• the beam averages, quantities averaged over the first 10 zones in radial direction
and plotted along the axis; and

• magnetic field lines.

For tracing the beam material we evolve another variable in our code that represents
the beam mass fraction, f ≡ ρb

ρ
. This tracer variable is set to f = 1 for the material

injected through the nozzle and to f = 0 for the ambient medium. In the following,
the beam mass fraction will be used to divide the different parts of the jet: zones
where f ≥ 0.9 belong to the beam, and zones where 0.1 < f < 0.9 belong to
the cocoon. The same scheme was used by Scheck et al. (2002) which simplifies
a comparison with their results (Cha. 4). The cavity is defined as all the region
where f > 0. Note that cavity and cocoon are different things according to this
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definition, whereas in the literature the terms cocoon and cavity are sometimes used
interchangeably.

A one dimensional estimate for the head advance speed of a non-magnetised, rela-
tivistic jet can be obtained by equating the momentum flux of the beam and the
ambient gas in the frame of the working surface (Mart́ı et al., 1997):

v1d =

√
η∗R

1 +
√
η∗R
vb , (3.4)

where η∗R = ηRW
2
b . ηR = ρbhb

ρaha
is the ratio of the enthalpies of the beam and the

ambient medium (subscript a stands for ambient medium). Even though this does
not hold for magnetised jets, it will, as below, proven to be a very good estimate in
most of the simulations.

The evolution of 2D jets can be divided into two phases (Scheck et al., 2002): (1) a
1D phase where the velocity is constant and approximated by (3.4); and (2) a 2D
phase where 2D effects become important and the jet decelerates. The 2D phase
starts when the first major vortex shedding occurs at the terminal Mach disk.

3.2 Model parameters

We have selected three of the jet models of Mart́ı et al. (1997) to study the effects
of different magnetic field configurations on the dynamics and morphology of rela-
tivistic jets. All of these jets are light, supersonic and gas pressure matched with
the ambient medium. In the toroidal field models the magnetisation radius was
chosen to be rm = 0.6, and the magnetic field (3.1) is injected with the beam into a
uniform, non-magnetised medium. In the poloidal field runs, the whole grid is filled
with a uniform, purely axial magnetic field of the same strength as that injected with
the beam according to (3.3), otherwise the external medium is the same as in the
toroidal field models. The simulations were performed on a grid of 420 by 2000 zones
covering a domain of 10.5 by 50 beam radii, i.e. the resolution is 40/rb. The purely
hydrodynamic and toroidal field models were carried out employing PLM spatial
interpolation while the poloidal field runs were done with PPM interpolation. All
models were evolved until the head of the jet reached the edge of the computational
domain in the z-direction.

Table 3.1 lists the parameters of all models. We use the same model names as Mart́ı
et al. (1997) extended by suffixes describing the magnetic field strength, for example,
the toroidal field model of the C2 series with an average magnetisation of 1 (i.e. the
equipartition model) is called C2-1, and the corresponding poloidal field model is
called C2-pol-1. All models have σ < 1, i.e. they have a low Poynting flux. The
models of the B1 and the C2 series only differ in the adiabatic index, γ, and those
of the C1 and the C2 series only differ in the velocity of the beam, vb.

Note that we use different boundary conditions (reflecting outside the nozzle, see
previous section) compared to Mart́ı et al. (1997), who imposed zero gradients out-
side the jet nozzle. Therefore, the results of our purely hydrodynamic reference
simulations are slightly different from their results.
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All the simulations presented in this section were carried out on the IBM p690
Regatta computer of the Max-Planck-Society’s Rechenzentrum Garching. They re-
quired between 8 and 30 hours on a shared memory node with 32 Power4 1300 MHz
processors.

3.3 C2 series

C2-0 to C2-10/3: purely hydrodynamic and toroidal field models

Figures 3.2 to 3.4 show images of the rest mass density, the thermal pressure and
the Lorentz factor of the purely hydrodynamic model C2-0, and the toroidal field
models C2-1/20, C2-1 and C2-10/3 (from top to bottom). Apart from differences
in details, one morphological feature is especially noticeable: with growing toroidal
field strength, the supersonic part of the beam ends further and further away from
the leading edge of the bow shock (see the f = 0.9 tracer contours in Fig. 3.2 or the
Lorentz factor images in Fig. 3.4). The high density and pressure structure between
the termination of the supersonic beam and the head of the jet is called nose cone
(Clarke et al., 1986) or plug (Lind et al., 1989). It is made up of entrained ambient
material. Both the density and the pressure in the nose cone are very high, and show
turbulent structures. Moreover, the pressure in the nose cone is relatively smooth
and particularly high on the axis (due to magnetic confinement; see the equipartition
contours in Fig. 3.3). The nose cone makes the head of the jet appear narrower for
higher values of β.

Concentrating on the first recollimation shock on the axis, one recognises, that it

Table 3.1: Parameters of the different models.

Model field config. η γ vb Mb Mb β σ

C2-0 none 0.01 5/3 0.99 6.0 41.95 0 0
C2-1/20 toroidal 0.01 5/3 0.99 6.0 41.95 1/20 0.0017
C2-1/2 toroidal 0.01 5/3 0.99 6.0 41.95 1/2 0.0171
C2-1 toroidal 0.01 5/3 0.99 6.0 41.95 1 0.0341
C2-10/3 toroidal 0.01 5/3 0.99 6.0 41.95 10/3 0.1135
C2-pol-1 poloidal 0.01 5/3 0.99 6.0 41.95 1 0.0341
B1-0 none 0.01 4/3 0.99 6.0 41.95 0 0
B1-1/20 toroidal 0.01 4/3 0.99 6.0 41.95 1/20 0.0022
B1-1/2 toroidal 0.01 4/3 0.99 6.0 41.95 1/2 0.0222
B1-1 toroidal 0.01 4/3 0.99 6.0 41.95 1 0.0445
B1-10/3 toroidal 0.01 4/3 0.99 6.0 41.95 10/3 0.1482
B1-pol-1 poloidal 0.01 4/3 0.99 6.0 41.95 1 0.0445
C1-0 none 0.01 5/3 0.9 6.0 13.61 0 0
C1-1 toroidal 0.01 5/3 0.9 6.0 13.61 1 0.0279
C1-10/3 toroidal 0.01 5/3 0.9 6.0 13.61 10/3 0.0931
C1-pol-1 poloidal 0.01 5/3 0.9 6.0 13.61 1 0.0279
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is located closer to the nozzle and gets stronger (i.e. it reaches higher values of
thermal pressure) with increasing magnetic field strength, and has a more extended
post-shock state. In C2-0 the post-shock state extends from z = 12 to z = 18, in
C2-1/20 from z = 8 to z = 17; in C2-1 from z = 6 to z = 14; and finally, in C2-10/3
from z = 5 to z = 14. In fact, in C2-10/3, it is impossible to distinguish between
the end of the post-shock state of the first cross shock and the start of the second
cross shock, therefore they have been counted as one. In general, the cross shocks
on the axis are stronger in the more magnetised models, while their number seems
to be independent of the degree of the magnetic field strength.

How the beam material reacts to the toroidal magnetic field can be inferred from
the tracer contour in Fig. 3.2. In C2-1/20 the beam material fills up the low density
bubble at the head of the jet. With increasing toroidal fields this bubble is shifted
away from the head and becomes larger in size. In C2-10/3 it roughly stretches
from z = 20 up to z = 35, and has become confined by a shell of highly magnetised
material (see the equipartition contours in Fig. 3.3). The position of the bubble
nearer to the nozzle follows from the fraction of the length of the jet that is occupied
by the nose cone, which grows with increasing magnetic field strength. The Mach
disk and terminal shock of the beam reside in the middle of the bubble. The beam
flow stops at the Mach disk and the matter has to flow around it to reach the head of
the jet (Fig. 3.4). In the case of model C2-1, the flow around the Mach disk reaches
relativistic speeds with Lorentz factors of 3 or more. The beam itself ends at the
Mach disk, i.e. it does not penetrate into the nose cone. But even if the beam is
not stopped before the head of the jet, already the small degree of magnetisation of
model C2-1/20 leads to a decrease of the bulk Lorentz factor in the beam well before
it reaches the head of the jet. In general, the beam Lorentz factor will decrease with
an increasing magnetisation of the beam.

Figure 3.5 displays the magnetisation and magnetic field distribution of models C2-1
and C2-10/3. In both models the magnetisation β decreases drastically in the first
cross shock due to an increase in thermal pressure. It remains low inside the beam
until this reaches the terminal shock. β increases again downstream of the shock,
and becomes even larger where shocked plasma flows away radially from the jet axis.
The pinching force provided by the toroidal field in this region suppresses further
sideways expansion of the jet and pushes a large fraction of the plasma into the
nose cone. In model C2-10/3 this pinching is strongest at z = 38 (see the bottom
panel of Fig. 3.4). The nose cone contains primarily highly magnetised plasma
which leads to a strong pinching force confining the flow close to the axis. The high
magnetisation of the material around the bubble is interesting. The magnetic field
accumulates at the inside of the high density shell of the jet, where the thermal
pressure is low, leading to a large value of β. This magnetic shell may influence the
emission properties of the jet, because it may appear very bright, in contradiction
to observations of astrophysical sources. The magnetic field itself is largest in the
beam and in the nose cone (lower two panels in Fig. 3.5).
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Figure 3.2: Snapshots of the logarithm of the rest mass density of models C2-0, C2-1/20,
C2-1 and C2-10/3 (from top to bottom). The white lines are contours of the tracer variable
f = 0.9
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Figure 3.3: Snapshots of the logarithm of the thermal pressure of models C2-0, C2-1/20,
C2-1 and C2-10/3 (from top to bottom). The black contour is the line of equipartition
where β = 1.
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Figure 3.4: Snapshots of the Lorentz factor with velocity vectors of models C2-0, C2-
1/20, C2-1 and C2-10/3 (from top to bottom).
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Figure 3.5: Snapshots of β (top two panels) and Bφ (bottom two panels) of the two
strongly magnetised models of the C2 series.
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C2-pol-1: poloidal field model

Figure 3.6 shows the rest mass density, the thermal pressure and the Lorentz factor
of the poloidal field model C2-pol-1. The strength of the magnetic field and its
geometry are displayed in Fig. 3.7. Although the overall morphology and structure
of the jet and the cocoon of this model are very similar to those of the other C2
models, there are a number of striking differences. In particular, we will compare
model C2-pol-1 with the hydrodynamic model C2-0, and the toroidal field model of
the same magnetisation (C2-1).

First of all, instead of forming a narrow nose cone structure, the beam broadens close
to its termination point, giving the head of the jet a hammer-like appearance. The
beam plasma flows along the field lines which are bend sidewards by the expansion
of the leading bow shock. This behaviour is not only reflected by the tracer contour
in the top panel and the velocity vectors in the bottom panel of Fig. 3.6, but also
by the field lines plotted in the top panel of Fig. 3.7.

Another difference between model C2-pol-1 and the other models is in the strength
of the cross shocks on the axis. While the first cross shock in model C2-pol-1 occurs
much nearer to the nozzle (at z = 7) than in model C2-0, it is also much weaker and
has a smaller post-shock region in axial direction than any other model. Downstream
of this shock, the beam pressure and density remain low until the flow reaches the
second cross shock, which is also weak compared to that of the other models. It is
especially weak compared to the toroidal field model with the same average β. The
reason for this behaviour is the magnetic field in the beam: the Lorentz force on the
axis repels waves driven into the beam. Therefore, during the whole evolution the
beam remains much less affected by shocks than in the other models. The terminal
shock, however, is as strong as in model C2-1 or C2-0.

Not only the beam but also the cocoon is much more homogeneous in model C2-pol-
1 than in the other C2-models. This becomes especially apparent when comparing
the pressure images in Figs. 3.3 and 3.6. The poloidal field model shows much
fewer waves anywhere in the cocoon, whereas the other models show a much more
turbulent behaviour. The back flow of beam material through the cocoon is almost
straight (Fig. 3.6, bottom panel). This is a major difference to the toroidal field and
purely hydrodynamic cases, where the back flow is much more violent.

Figure 3.7 shows that the magnetic field is almost completely expelled from the
cocoon. In the top panel one can see that the absolute value of the field strength
remains on a very low level. The narrow bright filaments in that image trace the
magnetopauses, i.e. the surfaces where the magnetic field changes direction and
hence becomes zero. The magnetopauses are surrounded by areas of higher magnetic
field strength giving rise to the impression of extended, twisted filaments. The
β parameter depicted in the bottom panel is nearly zero everywhere in the jet,
further demonstrating the expulsion of the magnetic field from the cavity. The field
accumulates in the shell of the jet, where the thermal pressure is very large yielding
a low value of β. It is remarkable, that the poloidal field has such a large effect on
the pressure in the beam and the cocoon, even though β is very small everywhere.
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Figure 3.6: Snapshots of the poloidal field model C2-pol-1. From top to bottom: rest
mass density with f = 0.9 contour (white), thermal pressure with β = 1 contour (black)
and Lorentz factor with velocity vectors.
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Figure 3.7: Snapshots of the poloidal field model C2-pol-1. The top panel shows the
logarithm of the absolute value of the magnetic field strength with field lines superimposed.
The lines are placed randomly, but weighted with the local field strength, such that on
average their density reflects the field strength. The bottom panel shows β together with
the magnetic field vectors.
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Figure 3.8: Head position, cylindrical aspect ratio, cocoon mass, and average cavity
thermal pressure (top to bottom) as a function of time for all C2 models. The straight
line in the top panel shows the 1D velocity given by Eq. (3.4). Time is measured in code
units, i.e. rb/c
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C2: temporal evolution

The top panel of Fig. 3.8 shows the position of the jet’s head versus time for all of
the C2 models, including a straight line for the 1D velocity given by Eq. (3.4). Apart
from model C2-10/3 the differences between the models are not large, i.e. in all the
models the jet propagates at essentially the same speed. The 1D estimate gives a
very good approximation to the speed in the 1D phase and becomes an upper bound
in the 2D phase. Remarkably, there is no simple dependence of propagation speed
on magnetic field strength: while C2-10/3 propagates fastest, C2-1 is slowest, C2-
1/20 is second fastest, and the remaining models fall in between. The propagation
speed of magnetised jets depends on a number of competing effects related to the
strength and the configuration of the magnetic field. However, our simulations do
not show a clear trend with those two parameters which means that the dependency
is not linear in any of those two. The high speed of C2-10/3 can be explained by
its large nose cone which has a high density and pressure, therefore increasing the
momentum of the jet’s head while at the same time reducing the effective area of
the bow shock in the direction of propagation.

The second panel of Fig. 3.8 shows the cylindrical aspect ratio of the different models
against time. Due to the fact that the jet reaches the radial boundary of the grid
quite early in all of the models, the aspect ratios converge to that of the grid, which
is roughly 5. The differences between the models are less then they would be on
a larger grid, i.e. this plot has to be interpreted with caution. Nevertheless, our
explanation for the high propagation speed of model C2-10/3 is further supported
by the large aspect ratio found for this model. The other models do not show a
trend.

The third panel of Fig. 3.8 shows the cocoon mass against time, i.e. the total mass
with 0.1 < f < 0.9. Obviously a toroidal magnetic helps to entrain mass. The
models without magnetic field and with poloidal magnetic field entrain considerably
less mass into their cocoons. The reasons for this behaviour are: (a) matter is
locked into the high density nose cones, and (b) pinching modes excited by toroidal
magnetic field lead to more mixing in the cocoon.

The average thermal cavity pressure of all C2 models is displayed in the bottom panel
of Fig. 3.8, which follows a power law distribution of the same index in all models.
Since they all have the same beam thermal pressure, a transfer of toroidal magnetic
field energy to the plasma’s thermal energy density must occur. Therefore, the
average thermal pressure is larger for a larger toroidal magnetic field at any time of
the simulation. This trend is reversed when considering poloidal magnetic fields: in
model C2-pol-1 the average thermal pressure is even lower than in the non-magnetic
model indicating a transfer of thermal energy into magnetic field energy.

3.4 B1 series
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B1-0 to B1-10/3: purely hydrodynamic and toroidal field models

The results of the non-magnetised and toroidal field models of the B1 series are
displayed in Figs. 3.9 to 3.11. The rest mass density (Fig. 3.9) shows some of the
trends of the C2 series, but not all of them. In particular, the effects caused by
the toroidal magnetic field do not scale linearly with magnetic field strength; the
weakly magnetised model B1-1/20 behaves much different from the equipartition
model B1-1 and the strongly magnetised model B1-10/3. The more magnetised
models also develop nose cones preceded in the case of B1-10/3 by a magnetically
confined bubble. In addition both B1-10/3 and B1-1 display a widening of the
beam combined with low density pockets that are filled with beam material. The
rest mass density and the pressure (Fig. 3.10) show much more structure in the two
more strongly magnetised cases than in the non-magnetised case. B1-1/20, however,
is exceptionally smooth. In all variables very little structure is present, as if the weak
magnetic field inhibits any structure formation.

The first recollimation shock on the axis shows the same trend as in the C2 series of
models. Due to magnetic pinching the shock gets stronger and occurs closer to the
nozzle for stronger toroidal field. In model B1-0 the post-shock state extends from
z = 16 to z = 25, in B1-1/20 from z = 15 to z = 25, in B1-1 from z = 9 to z = 15
and in B1-10/3 from z = 6 to z = 18, respectively. The strong pinching of the
beam in the latter two cases leads to the widening of the beam downstream of the
shock and to a reduced Lorentz factor (Fig. 3.11). The same picture holds for the
second cross shock, which is also stronger than for the weak field or non-magnetised
case. The flow patterns around the terminal Mach shock of the beam, described for
the strongly magnetised C2 models, are also visible in models B1-1 and B1-10/3,
although to a lesser degree.

In model B1-1/20 the pinching is very weak and no difference to the non-magnetised
model can be recognised. Instead it is even better collimated than model B1-0, and
the flow remains highly relativistic up to the terminal shock of the beam, where the
beam plasma is deflected and flows backwards smoothly in a very thin layer around
the beam. This behaviour explains why model B1-1/20 has propagated further than
the other models in the same time. This implies, that with the right combination
of parameters, a small toroidal field helps to collimate the beam without producing
too much pinching, which helps to keep the jet stable.

Figure 3.12 shows the magnetisation, β, and Bφ for the two models B1-1 and B1-
10/3. As for the corresponding C2 models the initial magnetisation of the beam is
reduced very much in the first cross shock. It is strongest near the beam’s terminal
shock, where the plasma flows radially away from the axis leading to the formation of
the nose cone through the forward directed Lorentz force. Apart from the fact that
the structures are much narrower than in the C2 models, the overall distribution of
β and Bφ is very similar everywhere in the cavity. β varies radially: it is lowest near
the axis and increases until it reaches its maximum value in the magnetic shell. Bφ

remains largest in the beam and in the nose cone.
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Figure 3.9: Snapshots of the logarithm of the rest mass density of models B1-0, B1-1/20,
B1-1 and B1-10/3 (top to bottom). The white lines are contours of the tracer variable
f = 0.9
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Figure 3.10: Snapshots of the logarithm of the thermal pressure of models B1-0, B1-1/20,
B1-1 and B1-10/3 (top to bottom). The black contour is the line of equipartition where
β = 1.
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Figure 3.11: Snapshots of the Lorentz factor with velocity vectors of models B1-0, B1-
1/20, B1-1 and B1-10/3 (top to bottom).
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Figure 3.12: Snapshots of β (upper two panels) and Bφ (lower two panels) for the two
strongly magnetised models of the B1 series.
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B1-pol-1: poloidal field model

Figure 3.13 shows snapshots of the rest mass density, the thermal pressure and the
Lorentz factor of model B1-pol-1. The magnetic field strength and the β parameter
of the same model are displayed in Fig. 3.14. Most of the features described for
model C2-pol-1 are also present in B1-pol-1: the whole jet is extraordinary smooth,
both in density and pressure, the cocoon showing only an indication of an eddy. The
beam is almost undisturbed, and the cross shocks are very weak. The back flow is
confined to a narrow region directly around the beam, and is absolutely straight.
But whereas model C2-pol-1 develops a hammer-like head with beam plasma flowing
away radially from the axis, B1-pol-1 shows no such behaviour. Instead the beam
remains well collimated up to the very tip of the jet until it reaches the terminal
shock. This is possibly a consequence of the magnetisation parameter: the β = 1
contours in the pressure snapshot (Fig. 3.13) show that most of the beam itself
is strongly magnetised. This is confirmed by the distribution of the β parameter
(Fig. 3.14, bottom panel). Values between 1 < β < 2 hold for the most part of the
beam.

The smoothness of the cocoon can doubtlessly be explained by the presence of the
axial field. As shown in the top panel of Fig. 3.14, the field almost retains its purely
axial structure. It is only twisted in the narrow low density sheet around the beam,
and even there, the twist seems to be mostly aligned with the axis. This does not
favour the formation of eddies, which could drive strong shocks into the beam. As
in C2-pol-1, β ≈ 10−6 in a large part of the cavity, which however, does not diminish
the effect of the poloidal field on the morphology of the jet.

When comparing to the toroidal field models of the B1 series, it is most surpris-
ing that the overall morphology of the leading bow shock is so similar given the
differences in the internal structure and in the beam. However, since the final evo-
lutionary times of the complete B1 series are so small (because these jets propagate
faster and reach the edge of the computational grid sooner than in other models),
we suppose that the differences would affect the propagation and dynamics of the
jet more strongly later in the evolution.

Temporal evolution

The top panel of Fig. 3.15 shows the head position, lc, of the B1 jets versus time.
Again, the propagation speed does not depend linearly on the magnetic field strength.
However, in contrast to the C2 jets (Fig. 3.8), the weakest toroidal field jet propa-
gates faster than all other models, followed by the pure hydro model and the poloidal
field model. At t = 80 the strongest toroidal field model has the smallest lc. The
reason for this behaviour has already been described above: the weak toroidal field
collimates the beam of B1-1/20 and smoothes the surrounding cocoon. In addition,
the form of the leading bow shock is equally pointy in all of the B1 jets. This be-
haviour is also reflected by the aspect ratio (Fig. 3.15). The only difference here is
that the poloidal field model B1-pol-1 is even more elongated than model B1-1/20,
because the initial axial field inhibits sideways expansion and leads to the elongated
morphology of this model. Note that, in this case, the 1D estimate is a lower bound
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Figure 3.13: Snapshots of the poloidal field model B1-pol-1. From top to bottom: rest
mass density with f = 0.9 contour (white), thermal pressure with β = 1 contour (black)
and Lorentz factor with velocity vectors.
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Figure 3.14: Snapshots of the poloidal field model B1-pol-1. The top panel shows the
logarithm of the absolute value of the magnetic field strength with field lines superimposed.
The lines are placed randomly but weighted with the local field strength, such that on
average their density reflects the field strength. The bottom panel shows β together with
magnetic field vectors.
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Figure 3.15: Head position, cylindrical aspect ratio, cocoon mass, and average cavity
thermal pressure (from top) as a function of time for all B1 models. The straight line in
the top panel shows the 1D velocity given by Eq. (3.4).
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for the propagation velocity.

The cocoon mass of the B1 models (Fig. 3.15, third panel) follows the same trend
as in the C2 series, although the differences between the models are not as drastic.
The stronger toroidal field models B1-1 and B1-10/3 entrain considerably more mass
than the other models, whereas the weakest toroidal field model B1-1/20 entrains
the least mass of all B1 jets. This is to be expected from the same two reasons
described above: the beam plasma of B1-1/20 does not mix very much with the
ambient plasma, and its cocoon morphology is the smoothest of all the models
described here.

The temporal evolution of the average thermal pressure in the jet also follows the
same trend as for the C2 jets. Toroidal magnetic field energy is transfered to thermal
energy leading to an overall larger average pressure. In the poloidal field case the
behaviour is the opposite. As before, the average pressure follows a power law
distribution.

3.5 C1 series

Toroidal and poloidal field models

Figures 3.16 to 3.18 show the rest mass density, the thermal pressure and the Lorentz
factor of all the models of the C1 series, respectively. Many of the effects of the
different magnetic field configuration described in the previous sections also hold for
the C1 series, some of them greatly enhanced compared to the other models.

Concentrating on the toroidal field models (middle panels in Figs. 3.16 to 3.18), we
can immediately see the large nose cones in both models. In model C1-10/3 the nose
cone covers up 50% of the total length of the jet. It has a high density and pressure
spine consisting of beam plasma preceded by a large low density bubble filled up
with beam material. The same structure is visible in the results of C1-1, although
the nose cone is only half as long as in C1-10/3.

A second effect already observed in the B1 and C2 series is the growing strength
of the cross shocks with increasing toroidal field. In the case of the C1 models this
is not only true for the first cross shock (which is also closer to the nozzle in the
toroidal field models), but for all four cross shocks visible in the pressure images of
models C1-0, C1-1 and C1-10/3 (Fig. 3.17). These snapshots also indicate the reason
for this behaviour: according to the β = 1 contours both toroidal field models are
dominated by magnetic pressure in most of their cocoons. The distribution of the β
parameter (Fig. 3.19) further illustrate this. It also explains the high pressure and
density spine of the nose cone of model C1-10/3, which is confined by completely
magnetically dominated material.

The strong cross shocks in the two toroidal field models lead to an early decrease
of the Lorentz factor in the beam, which, in particular in the second cross shock,
drops to values near 1. This does not imply, however, that the propagation speed
of the whole jet is lower in the toroidal field cases. Quite the opposite is true. The
back flow of beam plasma through the cocoon is confined by the toroidal field, and
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is thus slower and less expansive than in C1-0 (Fig. 3.18).

The poloidal field model C1-pol-1 also shows the same, but enhanced, features as
model C2-pol-1. The density and pressure morphology look very similar to that of
C1-0, which also has a similar propagation speed. However, the pressure distribution
(bottom panel of Fig. 3.17) reveals that the cross shocks on the axis are weaker than
in the non-magnetised model. In addition, the pressure in the cocoon is slightly
more homogeneous. The tracer contour in the density snapshot (bottom panel of
Fig. 3.16) shows the same hammer-like head structure as observed in model C2-pol-
1. In combination with the field line plot (top panel of Fig. 3.20) it becomes clear
that the beam material follows the magnetic field lines at the end of the jet and
flows away radially from the axis, thereby forming the hammer-like head structure.

Model C1-pol-1 displays the same magnetisation structure as C2-pol-1, but the shell
has a larger magnetisation (bottom panel of Fig. 3.20). The magnetic field is almost
completely expelled from the jet’s cocoon, being reduced by four to five orders of
magnitude compared to the initial value (top panel of Fig. 3.20). Only twisted
filaments of larger magnetic field strength survive inside the cocoon, which also
have a higher density than the rest of the cocoon.

Temporal Evolution

The top panel of Fig. 3.21 shows the head position, lc, of all the C1 models versus
time. The straight line is given by the 1D velocity, Eq. (3.4), which is that of three
of the models up to an evolutionary time of t ≈ 80. Only model C1-10/3 propagates
faster from the very beginning of its evolution, and shows no sign of slowing down
during the whole simulation time. The head’s position grows linearly with time until
the jet leaves the computational domain. The other three models leave the 1D phase
at around t = 80 and start slowing down. Model C1-1 is still faster than the poloidal
field and non-magnetised models, the latter two following a similar trajectory. Thus,
there is a clear distinction between the different field configurations: toroidal fields
lead to a speed up of the propagation by almost 100% in the case of model C1-10/3
and about 20% in the case of model C1-1 compared to C2-0. The poloidal field does
not have a large effect on the propagation speed of the jet; model C1-pol-1 shows
only a slightly stronger deceleration compared to model C1-0 at the very end of the
simulation.

The cylindrical aspect ratio is displayed in the second panel of Fig. 3.21. As with
the C2 series this plot has to be treated with caution, since all the models reach the
edge of the grid in radial direction quite early in the simulation. Thus all the aspect
ratios will converge to the aspect ratio of the grid itself, which is approximately 5.
Nevertheless, the differences between the models are larger than suggested by their
propagation speeds alone. While model C1-10/3 has a much larger aspect ratio than
any of the other models, probably because of its long nose cone, the two equipartition
models, C1-1 and C1-pol-1, have similar aspect ratios for the first 140 time units.
After that point C1-1 evolves differently and its aspect ratio almost doubles until
the end of the simulation. C1-pol-1, however, maintains a constant aspect ratio of
around 2.4 until it reaches the end of the radial grid at t ≈ 300. The aspect ratio
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Figure 3.16: Snapshots of the logarithm of the rest mass density of all C1 models. The
white lines are contours of the tracer variable f = 0.9
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Figure 3.17: Snapshots of the logarithm of the thermal density of all C1 models. The
black contour is the line of equipartition where β = 1.
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Figure 3.18: Snapshots of the Lorentz factor with velocity vectors of all C1 models.
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Figure 3.19: Snapshots of β (upper two panels) and Bφ (lower two panels) for models
C1-1 and C1-10/3.
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Figure 3.20: Snapshots of the poloidal field model C1-pol-1. Absolute value of the
magnetic field with randomly placed field lines and β with vectors of magnetic field.

of C1-0 is even smaller in the beginning, but starts to divert from that low value
earlier in the simulation.

The plots of the cocoon mass vs. time, displayed in the third panel of Fig. 3.21,
show a radically different behaviour from that of the B1 and C2 series of models.
Whereas in the other two series the toroidal field models carry the most mass in
their cocoons, C1-pol-1 is the record holder in the C1 series. C1-10/3, the model
with the strongest toroidal field even carries the least mass. This can be explained
by the magnetic confinement to the axis: since the density is high near the axis,
where the zone volumes are small, the total mass is not as large as in the case where
the cocoon is more spread out sideways. Therefore, C1-10/3 with its extreme aspect
ratio does not carry as much mass as C1-pol-1 with a low aspect ratio, but where the
cocoon extends further radially and thus encompasses a larger volume. The mass of
the cocoon of C1-1 only starts growing rapidly at t ≈ 160, approximately the same
time when the aspect ratio of this model starts to increase, too. This is also the
point in time when C1-1 starts forming its high density nose cone. C1-0 carries less
mass than the two equipartition models and only a little bit more than the extreme
toroidal field model. Note that the mass in the C1 models is much smaller than that
in the C2 models at the same time because of the smaller propagation speeds. For
the same reason the mass in C1 is larger than that in the C2 models when comparing



86 CHAPTER 3. PARAMETER STUDY

Figure 3.21: Plots of the head position, the cylindrical aspect ratio, the cocoon mass,
and the average cavity thermal pressure against time for the different models. The straight
line in the top panel shows the 1D velocity given by Eq. (3.4).
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at the end of the simulations.

The bottom panel of Fig. 3.21 gives the average thermal pressure in the jet versus
time. As already seen in the case of the B1 and C2 series, the evolution follows a
power law distribution. Furthermore, the trend that higher toroidal field leads to
higher thermal pressure, and that poloidal field leads to lower thermal pressure is
confirmed by the C1 series of models.

3.6 Discussion

The most remarkable result of the simulations is that the inclusion of the magnetic
field leads to diverse effects which do not always scale linearly with the relative
strength of the magnetic field. There are, however, some clear trends which we will
discuss here.

Morphology

The most prominent feature caused by the toroidal magnetic field is the nose cone.
As found in previous Newtonian (e.g. Clarke et al., 1986; Lind et al., 1989; Kössl
et al., 1990) and relativistic simulations (Komissarov 1999b, see also Sec. 2.3.2) this
structure occurs for jets with toroidal fields of equipartition strength or larger and
σ & 0.01. The reason for the formation of the nose cone is the magnetic pinching
by the Lorentz force which acts inwards radially near the beam. The magnetised
beam plasma (which in a non-magnetised beam is deflected from the Mach disk
shock and flows backwards inflating the cocoon) is partially forced to flow around
the Mach disk into the nose cone. Only a smaller fraction of the beam plasma
(namely the less magnetised fraction for which the Lorentz force is not as strong)
flows backwards into the bubble like structure that resides upstream of the nose
cone, thus forming a similar cocoon as the hydrodynamic model. This procedure
explains a number of the properties of nose cones: (a) the larger the magnetisation
of the beam plasma, the stronger is the Lorentz force acting on its flow. Thus, more
of the shocked beam plasma is forced into the nose cone which in turn gets larger
with larger magnetisation of the beam at the cost of a lower inflation of the cocoon;
(b) nose cones contain larger magnetic fields than cocoons, because only the weakly
magnetised plasma flows into the cocoon, and (c) the tracer variable in the nose cone
is larger for large magnetisation, as a larger fraction of the beam plasma is injected
into the nose cone. The high magnetic field in the nose cone itself is the cause for
the confinement to a narrow region with a high pressure (approximately two orders
of magnitude higher than the external pressure in the β = 10/3 models) and high
density (∼ 10ρb) spine.

Since a considerable fraction of shocked beam plasma is locked in the nose cone,
it cannot flow back in the direction of the nozzle and drive the radial expansion
of the cavity. However, most of the toroidal field models do not appear thinner
than their corresponding hydrodynamic reference models, their aspect ratios are not
much different (Figs. 3.8, 3.15, 3.21). In fact, B1-1 and B1-10/3 have lower aspect



88 CHAPTER 3. PARAMETER STUDY

ratios than B1-0. How is this possible, when they have “lost” part of their shocked
beam plasma into their nose cones? It is again the Lorentz force that acts upon
the back flowing beam plasma, but this time in outwards radial direction. This
creates an additional driving force for the expansion of the cavity, and can explain
the opposite trends observed in the evolution of the aspect ratios of C1-10/3 and
B1-10/3. While both models have the same strong magnetic field, the nose cone of
the former is much larger than that of the latter, leaving a much lower fraction of
highly magnetic field plasma to drive the radial expansion of the cavity.

According to Komissarov (1999b), low Poynting flux jets should not form prominent
nose cones even if the magnetisation parameter is large. However, we see the most
prominent nose cone in C1-10/3 where σ has a considerable lower value than in
B1-10/3 or C2-10/3 which have the same β.

Owing to the same inward directed Lorentz force that produces the nose cones the
internal cross shocks are stronger in the toroidal field models than in the corre-
sponding hydrodynamic jet models. In the poloidal field case, however, the effect is
opposite: the magnetic field makes the jet less susceptible to shock waves driven into
the beam perpendicular to the field lines as the magnetic pressure on the axis repels
shock waves. While the cross shocks in hydrodynamic jets are produced mainly by
shock waves driven into the beam from the outside (e.g. by eddies in the cavity),
the cross shocks in the toroidal field cases are of different nature. They are created
intrinsically by the inwards pointing magnetic stress such that even models with
smooth cocoons like B1-1/20 show strong cross shocks. Still, in all models the mean
magnetisation in the beam becomes negligible after the plasma has passed through
the first recollimation shock (apart from B1-pol-1 where the beam remains almost
completely unperturbed), such that even in the most strongly magnetised models,
the field never reaches equipartition values in the cross shocks or in the hot spot.
This has consequences for observations where equipartition is usually assumed for
the magnetic field in the hotspot and other bright emission features of radio sources.
However, there might be configurations of the magnetic field which lead equipar-
tition values, although this hypothesis has to be tested by simulations combining
poloidal and toroidal fields on different footings.

We should point out that the setup of the toroidal and the poloidal field models
differs in more respects than the field direction alone. In the toroidal field models
Bφ is injected together with the beam into a domain filled with a non-magnetised
medium. In the poloidal case however, the grid is initially already filled with the
same field strength that is injected with the beam. Hence, the poloidal field models
are not only pressure matched in thermal pressure, but also total pressure matched,
p∗ being the same inside the beam and in the ambient medium. In contrast, the
toroidal field models are over-pressured in p∗ by a factor of 1 + β.

Another interesting result is the almost completely featureless cocoon in model B1-
1/20. It seems that the low toroidal field strength in combination with the other
parameters of the model suppresses the formation of shocks or eddies in the cocoon
and thus keeps the beam undisturbed from external effects. The propagation effi-
ciency becomes optimal and the collimation remains nearly perfect until the end of
the simulation. Although this behaviour is not repeated in model C2-1/20 (and we
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have not computed the model C1-1/20), it still implies that with the right combina-
tion of parameters, the morphology of jets can be influenced by magnetic fields of a
strength far below equipartition.

Dynamics

The evolution of 2D jets can be divided into a 1D phase and a 2D phase. The models
of the B1 series do not reach the 2D phase in our simulations. Their propagation
velocity remains constant until the jets have reached the end of the computational
domain. The C1 and C2 models, however, reach the 2D phase sufficiently early
in our simulations. Especially in the C1 models, where the evolutionary times are
very large, we can see the different phases clearly: the propagation velocities are
constant and coincide with the estimated 1D velocity [Eq. (3.4)] up to t ≈ 50, where
the jets start to decelerate. The aspect ratios become nearly constant at about the
same time (top panels of Fig. 3.21, all models but C1-10/3). A similar behaviour
is observed for all C2 models. Model C1-10/3 is different, because its dynamics are
completely dominated by the high density nose cone, thus its propagation is more
ballistic and not influenced by 2D effects.

An interesting result is that the propagation velocity of most of the C1 and C2
models in the 1D phase of their evolution agrees very well with the 1D estimate.
This implies that different morphologies of the working surfaces in the toroidal field
models, or their p∗ over–pressured beams, do not influence the propagation in the 1D
phase. It would be interesting to simulate models with higher Poynting flux to find
out whether this affects the 1D propagation. Models B1 all propagate faster than
estimated by Eq. (3.4). This is a consequence of the reflecting boundary conditions,
which we have used outside the nozzle and which in this case influence strongly the
propagation of the jets.
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4 Long Term Evolution of a Powerful
Magnetised Jet

Simulations of the long term evolution of extragalactic jets can address many aspects
of jet physics. One can study the influence of the ambient medium (e.g. model the
galactic halo), plasma compositions, or the influence of magnetic fields. We are
interested in the impact of equipartition magnetic fields on the long term evolution
of powerful jets, particularly on the morphology and the dynamics of large scale jets
and their cavities. In this regard we examine a different aspect than Scheck et al.
(2002), whose main goal was to establish a link of the jets’ dynamics and morphology
with their plasma composition.

4.1 Simulation setup

For setting up long term simulations we have chosen the same parameters as Scheck
et al. (2002) in their cold baryonic model. In this way we can compare with their
results straightforwardly. The parameters used by Scheck et al. (2002) are such
that the jet has a kinetic power of Lkin = 1046 erg/sec and a 1D velocity (3.4) of
v1d = 0.2c. With an external density of ρext = 1.67×10−27 g/cm3 and a beam radius
of rb = 0.366 kpc these requirements yield the following parameters:

η Wb Mb γb

10−3 7.95 16.4 1.42

Using these parameters we have constructed two different models. Model LA0 is a
hydrodynamic reference model with β = 0. It should evolve similar to model BC
of Scheck et al. (2002), the only difference being that we have set up the model as
pressure matched with the ambient medium, while Scheck et al.’s model was slightly
over pressured. Model LA1 is like LA0 but with a toroidal field of equipartition
strength (i.e. β = 1) added to the jet inflow. We have used the same profile of Bφ

as in the short term simulations given by Eq. (3.1) with a magnetisation radius of
rm = 0.6. The resulting jet model has a very low Poynting flux with σ = 5.199×10−3.
Since we have seen that the equipartition models in the short term simulations are
strongly affected by the toroidal field (Cha. 3), we can expect a similar behaviour
here. We have restricted the magnetic field to a purely toroidal component, because
(1) toroidal magnetic fields affected the morphology and dynamics much more than
poloidal magnetic fields in the parameter study of short term simulations, and (2)
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the accuracy of our spatial interpolations methods is of higher order in the absence
of poloidal fields allowing for a smaller grid resolution (see below). Please note that
Scheck et al. (2002) have chosen the parameters such that the jet is comparable to
a typical FR II radio galaxy like e.g. Cyg A.

The computational domain spans a region of 200rb × 500rb (approximately 73.2 kpc
× 183 kpc) covered by an equidistant grid of 2400 by 6000 zones. This yields a
resolution of 12 zones/rb, which is twice the resolution of Scheck et al. (2002). The
boundary conditions and grid setup are the same as in the short term simulations,
and are described in Sec. 3.1. For spatial interpolation we have used PPM which
is of third order spatial accuracy in case of a purely toroidal field (see Sec. 2.3.3)
thus allowing for the relatively small spatial resolution compared to the short runs,
which used a PLM interpolation instead.

Each of the two simulations took about 600 hours on an IBM p690 Regatta node of 32
1300 MHz Power4 CPUs. The final evolutionary times of 6580 rb/c ≈ 7.85 × 106 y
(LA0) and 6780 rb/c ≈ 8.09 × 106 y (LA1), respectively.. These times are still
relatively short compared to the typical lifetime of a radio galaxy (107 − 108y), but
are of the same order of magnitude. We will compare the results at the final time
of model LA0.

4.2 Results

4.2.1 Morphology

Rest mass density and thermal pressure

In Fig. 4.1 we have plotted snapshots of the rest mass density of both models.
Superposed are the tracer contours f = 0.9 and f = 0.1, in order to mark the beam
and the cocoon. Despite its magnetisation, LA1 does not have a nose cone. Since all
of the equipartition toroidal field models of the short term simulations develop a nose
cone, this is surprising, but probably due to σ being more than five times smaller
in model LA1 than in the short term models. In fact, the missing nose cone of the
magnetic model makes the two density snapshots look very similar at first glance,
but there are a number of differences which we would like to point out. Model LA1
has a smaller cocoon than model LA0: the f = 0.1 contour extends from 90 kpc to
130 kpc in z direction and up to 5 kpc in radial direction in model LA1, whereas
in LA0 it ranges from 80 kpc to 135 kpc in z-direction and up to 7 kpc in radial
direction. The remainder of the cavity has a much higher density, especially at the
base of the jet, where the density is up to two orders of magnitude larger near the
beam in model LA1 than that of model LA0. On average, the density of model LA1
is half an order of magnitude larger than that of model LA0 in the region the region
r < 15 kpc and z < 70 kpc. In the same region, the density distribution of model
LA0 is much less homogeneous than that of LA1, which exhibits less filaments and
a smaller number of eddies. Moreover, the eddies in model LA1 are larger. Finally,
a slight difference can be observed in the overall form of the bow shock, which is
convex in LA0, while it is concave in the case of LA1 up to z ≈ 25 kpc and from 80
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Figure 4.1: Rest mass density snapshots of the long term simulation models. Superposed
are tracer contours with f = 0.9 (inner contour) and f = 0.1 (outer contour).

to 130 kpc and convex in between.

Another difference between the two models is visible in the tracer contours in Fig. 4.1.
The beam of LA1 is pinched strongly at z ≈ 7 kpc and z ≈ 32 kpc, whereas the
beam of LA0 is almost undisturbed in that region. In the top panel of Fig. 4.2 we
have plotted the beam averaged rest mass density along the jet axis of models LA1
and LA0 in solid and dashed lines, respectively. The plots show that the density of
model LA1 is disturbed much more by the cross shocks than that of model LA0;
up to a distance of 100 kpc from the nozzle the maxima (minima) of the curve are
half an order magnitude larger (smaller) in the magnetic model compared to the
hydrodynamic one.

Snapshots of the thermal pressure distribution of both models are displayed in
Fig. 4.3. Here the difference between the two models are less subtle than in the
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Figure 4.2: Various quantities averaged over the innermost 10 radial zones and plotted
along the axis. The solid lines correspond to model LA1, and the dashed lines to model
LA0.
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Figure 4.3: Thermal pressure snapshots of the longterm simulation models.

density distribution. The pressure image of LA0 shows a chain of cross shocks and
rarefaction waves in the beam and an extended high pressure region in the hot spot.
The cavity is turbulent streaked by many waves and eddies everywhere between
beam and bow shock. The cavity pressure varies locally by one or two orders of
magnitude, but on average it is the same everywhere outside the beam. The pres-
sure distribution of LA1 is much different. Up to z = 90 kpc (i.e. the beginning of
the cocoon, see above) the thermal pressure decreases with growing radial distance
from the beam. Near the beam, roughly in a triangle spanned by the axis and the
line connecting (r, z) = (20, 0) and (r, z) = (0, 90), the pressure is much higher than
in the remainder of the cavity. In between that region and the shell of shocked
ambient gas there is another distinct extended region (between 20 < r < 30 kpc and
0 < z < 40 kpc ) of much lower pressure than anywhere else in the cavity. Both
the high pressure and the low pressure region are much more homogeneous than the
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turbulent cavity of model LA0 in the same regions. However, the pressure structure
in the cocoon (between z = 90 kpc and the hot spot, see above) and in the shell is
qualitatively the same as in the hydrodynamic model LA0.

In the beam, the pressure differences between shock and rarefaction waves are also
much larger in model LA1 than in LA0, i.e. the cross shocks in the beam are much
stronger in the magnetised model. One especially extended rarefaction wave marks
the beginning of the cocoon. It is followed downstream by an extended region of
high pressure starting with a planar shock (z ≈ 103 kpc). The strength of the cross
shocks on the axis is illustrated by the beam averaged pressure, displayed in the
second panel of Fig. 4.2. The solid line, belonging to model LA1 has higher peaks
and lower minima by nearly one order of magnitude compared to the dashed line
(LA0).

Beam averaged values for the sound speed of both models are displayed in the third
panel of Fig. 4.2. The stronger cross shocks in the beam of model LA1 make the
plasma hotter, i.e. the sound speed is on average larger in the magnetised model.
Especially in the region between 60 and 100 kpc we can see much higher peaks in
the sound speed of model LA1 than in that of model LA0. From z ≈ 103 kpc to
the terminal Mach disk at z ≈ 125 kpc the sound speed of model LA1 remains on
a very high level, near to the possible maximum value of 0.648c1, i.e. the beam is
very hot in that region. The behaviour is similar in LA0, but not as extreme.

Lorentz factor and velocity divergence

The two upper panels of Fig. 4.4 show snapshots of the Lorentz factor of both
models. Superposed are velocity vectors. The differences between the two models
are obvious. While the beam of model LA0 has bulk Lorentz factors larger than
5 up to the end of the beam, LA1 already decelerates to only mildly relativistic
speeds 20 kpc closer to the nozzle. As described previously, the beam of model LA1
is disturbed much more than that of model LA0 already in the first cross shock, and
consequently maintains the high initial Lorentz factor for a much shorter distance
from the nozzle compared to model LA0.

The hydrodynamic model also shows a stronger and more extended back flow. While
any significant back flow is confined to z > 90 kpc in model LA1, it reaches back
to z ≈ 60 kpc in the case of LA0. Furthermore, some areas of the back flow near
the head of the jet reach relativistic speeds with Lorentz factors of W ≈ 2 in model
LA0. In LA1 this is not the case (W ≈ 1.3).

The beam averaged Lorentz factor of both models is displayed in the fourth panel of
Fig. 4.2. The plot shows once more, that the beam of the magnetised model (solid
line) is influenced more strongly by cross shocks than that of the hydrodynamic
model (dashed line). In particular near the head of the jet, the beam flow in model
LA1 is nearly stopped (z ≈ 86 kpc) or even completely stopped (103 < z < 107 kpc),
while the flow of LA0’s beam remains at least mildly relativistic until its termination

1In an ideal EOS, the sound speed (2.22) converges to maximum in the limit of infinite internal

energy, i.e. cs

ε→∞−−−→ √
γ − 1c. In our models γ = 1.42, therefore cs → 0.648c.
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Figure 4.4: Snapshots of the Lorentz factor and of div(Wv) of the long term simulation
models.



98 CHAPTER 4. LONG TERM EVOLUTION

point.

The two lower panels of Fig. 4.4 show snapshots of the relativistic velocity divergence,
div(Wv), of both models. In the snapshots, shock waves appear in dark as there
the velocity divergence is negative, while rarefaction waves have a positive velocity
divergence and appear in bright colours. Again we would like to point out that
high p and ρ regions associated with the post-shock states and low p and ρ regions
associated with the rarefaction waves in the beam are much more extended in the
magnetised model than in the hydrodynamic one (cf. Figs. 4.1 and 4.3). At z =
90 kpc the beam of LA1 is accelerated in a rarefaction region of 10 kpc length and
2 kpc radius. There it becomes more than five times wider and 27 times longer than
the initial beam radius. The fact that the cavity of model LA1 is less turbulent
than that of model LA0 is also reflected in the velocity divergence. Whereas model
LA1 does not show many shocks for z < 60 kpc outside of the beam, model LA0 is
streaked by shock waves everywhere in its cavity.

The magnetic field in model LA1

Snapshots of the toroidal magnetic field component (upper panel) and of the β
parameter (lower panel) of model LA1 are displayed in Fig. 4.5. The magnetic field
is especially high inside the beam, where it reaches values of slightly larger than the
averaged injected Bφ ≈ 4×10−6 G in the two first cross shocks. The beam magnetic
field, plotted in the fifth panel of Fig. 4.2, decreases slowly with distance from the
nozzle but remains above 10−6 G up to z ≈ 90, where it decreases by one order of
magnitude remaining uniform on average until the end of the beam. Near the head
of the jet, in the hotspot, Bφ increases again to values similar to the highest beam
values (Fig. 4.5). From there it is transported backwards with the beam material
and reaches a nearly constant value around 10−6 G in most parts of the cavity. In
particular for z < 60 kpc, the magnetic field distribution is even more homogeneous
than the thermal pressure distribution described above. A thin layer surrounding
the beam only contains a very weak magnetic field.

Since the distribution of the magnetic field strength is so homogeneous in the greater
part of the cavity, the image of β (Fig. 4.5, bottom panel) mostly reflects the distri-
bution of the thermal pressure, which, as we have described above, varies radially
in the cavity. β is very low for r < 5 kpc. It then increases with radius, and reaches
values ≈ 1 only where the magnetic field accumulates at the reflecting z = 0 bound-
ary, and where the pressure is low. The β distribution also demonstrates why LA1
does not develop a nose cone. In the short term simulations of equal initial magneti-
sation β grows to values larger than 1 near the terminal Mach disk (Cha. 3), and
in particular in the plasma that flows away radially from the beam’s termination
point, which gives rise to the nose cone. In model LA1 this is not the case, β only
reaches values of 0.3 or less near the terminal shock (z ≈ 125 kpc). This might be
explained by the lower Poynting flux of model LA1 (σ is at least five times lower in
model LA1 than in all equipartition short term models).

The beam averaged β value plotted along the axis (bottom panel of Fig. 4.2) reveals
that the initially high magnetisation of the beam decreases by more than two orders
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Figure 4.5: Snapshots of the logarithm of Bφ (upper panel) and of β (lower panel) of
model LA1.

of magnitude in the first recollimation shock at z = 7 kpc, and afterwards remains
at an average value of 10−2, which is modulated by the beam’s cross shocks. In these
shocks the magnetisation can grow by more than a factor of 5. Close to the head
of the jet β starts oscillating wildly, reaching a peak value of ≈ 5 × 10−2 near the
hotspot.

4.2.2 Temporal evolution

For studying the dynamics of the two long term models, we examine the evolution
of various global quantities defined in Sec. 3.1.

Time evolution plots of the head position, lc are shown in Fig. 4.6 (top panel). The
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1D phase of the evolution lasts until t ≈ 5 × 105y, when the heads of both models
reach z ≈ 20 kpc. After that LA1 decelerates slightly more than LA0 until the
distance between the head positions of the two models reaches a quasi constant state
at t ≈ 3.5 × 106y. At later times the deceleration is minimal, and the propagation
speed is nearly constant at v ≈ 0.04 c.

The differences in the evolution of the cylindrical aspect ratio, Ac, (middle panel of
Fig. 4.6) are correlated with the differences in the propagation speed. The evolution
can be divided into the same three phases (1) a rapid increase of the aspect ratio
in the 1D phase until t ≈ 5 × 105y; (2) a slow increase of the aspect ratio until
t ≈ 3.5×106y; and (3) a nearly self similar phase to the final times of the simulations
with only a slight total increase. The aspect ratio of model LA1 remains lower than
that of LA0 throughout the last two phases and reaches a maximum of 5, while
model LA0 reaches Ac ≈ 5.3.

The bottom panel of Fig. 4.6 shows the time evolution of the average thermal pres-
sure in the cavity. For both models it follows an almost perfect power law distribu-
tion. Apart from the interval 3× 105 < t < 5× 105y, the magnetised jet has slightly
higher average pressure at any time of the simulation. Since initially both models
begin with the same p, there is some transfer of toroidal field energy to the thermal
energy, as in the short term simulation.

The hot spot thermal pressure of both models is displayed in the top panel of Fig. 4.7.
No systematic trend dividing the two models can be observed. The evolution is such
that the pressure in the hotspot remains approximately constant in the 1D phase of
the simulations, and then decreases following, on average, some kind of power law
until the final time is reached. The definition of the hotspot position via the beam
mass fraction, f , leads to the oscillations seen in Fig. 4.7. However, a smoothing of
the data does not yield any further insight.

Fig. 4.7 also includes plots of the average cavity magnetisation, βc (middle panel),
and the average cocoon magnetisation, βcc (bottom panel), of model LA1. Note that
the cavity includes the cocoon (Sec. 3.1 on page 57). Both curves show opposite
trends. The magnetisation of the whole cavity increases from an initial value of
βc ≈ 0.04 to βc ≈ 0.095 at t ≈ 106 y, and then remains on that level for the last two
million years. However, βcc decreases rapidly from a value around 0.07 to 0.04 in
the first two million years, then decreases slowly for another two million years, until
it reaches a constant level of βcc ≈ 0.03 for the remaining four million years. This
is interesting, because neither of the two quantities seems to follow the evolutionary
phases exhibited by all other quantities. In addition, the magnetisation of the whole
cavity is an order of magnitude larger than that of the beam at the final time of the
simulation (cf. Fig. 4.2, bottom panel).

4.3 Discussion

The results of models LA1 and LA0 are remarkably similar. This is unexpected as
the short term simulations of equipartition toroidal field and corresponding hydro-
dynamic models have shown considerable differences in morphology and dynamics
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Figure 4.6: Head position, aspect ratio and average cavity pressure plotted against time.
The solid lines correspond to model LA1, and the dashed lines to model LA0.
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Figure 4.7: Hot spot pressure, average cavity β and average cocoon β plotted against
time. The solid lines correspond to model LA1 and the dashed line to model LA0.
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(Sec. 3.6). The relatively small differences between both models are due to the small
value of the Poynting flux in contrast to the mass flux (σ ∼ 5 × 10−3). That is the
reason why fixing the kinetic power and speed of the jet determines the overall evo-
lution, whereas the physical differences in the beam do not have a large influence.
This behaviour has also been observed by Scheck et al. (2002) who simulated three
jet models with varying plasma compositions. However, we find that the models
differ substantially in the internal morphology of the cavity and of the beam.

4.3.1 Comparison with previous simulations

Since our long term evolution simulations use nearly the same parameters as those
of Scheck et al. (2002), we compare our results with their baryonic cold (BC) model.
Their simulations were performed with a grid resolution of 6 zones/rb using the
code of Mart́ı et al. (1997), i.e. they used a similar method, but only half of our
grid resolution. The main difference is that Scheck et al. (2002) use an equation
of state with varying adiabatic index including protons, electrons and positrons
(Synge, 1957, see also the appendix of Komissarov & Falle, 1998) whereas we use an
ideal equation of state. The overall morphology of both our models and their BC
model is very similar. However, some quantities show a different behaviour. The 1D
evolution phase ends at t ≈ 5 × 105y in our models compared to t ≈ 105y in their
BC model. Their model has an aspect ratio of ≈ 4 at their final simulation time
of 6 × 106y, whereas our models reach a maximum of 5.3. In addition, our models
propagate slightly faster, reaching a length of 120 kpc (LA1) or 125 kpc (LA0) at
t ≈ 6.3 × 106y when their BC model has a length of 110 kpc.

A simple theory for the evolution of the jet cavity was introduced by Begelman &
Cioffi (1989). Scheck et al. (2002) have found that the evolution of their models fol-
lows an extended version of this theory, the extended Begelman-Cioffi (eBC) model.
In this model the evolution of the head position, lc, the average cavity pressure, Pc,
and the aspect ratio, Ac, ban be described by the power laws

lc ∝ t1+α, Pc ∝ t−1−α

2 , and Ac ∝ t
1

2
+ 5α

4 , (4.1)

respectively. Since the magnetisation of the matter in model LA1 is at least one order
of magnitude below equipartition almost everywhere in the cavity (see Fig. 4.5), we
can neglect the effects of the magnetic field pressure, and apply the same theory to
both our jets. In exactly the same way as Scheck et al. (2002) did, we have extracted
the index α by fitting the head position, lc, as a function of time with a power law,
separately in the 1D and the 2D epochs. We have also fitted Pc and Ac with power
laws to compare the exponents with the ones predicted by the eBC model, P eBC

c and
AeBC

c , using the value of α from the fit to lc. The results are listed in Table 4.1. In
the 1D phase the values are considerably different from those of Scheck et al. (2002),
possibly because it lasts longer in our case. The exponents themselves are within
20% of those predicted by the eBC model in the 1D phase, and within 10% in the
2D phase. A self-similar growth of the cavity requires that the aspect ratio does not
change with time. According to (4.1) this implies α = −0.4. The fitted values of
α are ∼ 30% smaller, i.e. our models are not self-similar yet. However, the trend
is that α → −0.4 at larger evolutionary times, e.g. extracting α from the fit of the
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cavity pressure in the second part of the 2D phase yields a value of -0.405 for model
LA0. Comparing with the numbers in Scheck et al. (2002) we see that our models
are less self-similar than their BC model because our values of α are smaller.

4.3.2 Influence of the magnetic field on the long term evolution

The toroidal magnetic field of initially equipartition strength in model LA1 does not
greatly influence the evolution of the jet. It only leads to slightly lower propagation
speeds and aspect ratios (Fig. 4.6), the differences being less than 10%. Given that
the LA1 beam has a total pressure, p∗, which is twice as large as that of LA0, this
is unexpected. In fact, we expected a much larger difference owing to the results of
the short term simulations. However, the differences in the internal structure of the
cavity and the beam are substantial.

Similar to the short term models, the toroidal magnetic field in model LA1 leads to
a different density and pressure distribution in the beam and in the cavity compared
to model LA0. This can be explained by the Lorentz force which is directed radially
inwards in side the beam, leading to larger pressure differences between the cross
shocks and the rarefaction waves. The more violent shock pattern in the beam of
LA1 leads to a deceleration of the flow, explaining the lower beam Lorentz factors
(Fig. 4.4). In turn, this leads to a less violent back flow of beam material. Conse-
quently, the cocoon is smaller in model LA1 than in LA0. The cavity, however, is not
smaller in LA1, since the Lorentz force acting on the back flowing beam plasma is
directed radially outwards, and hence adds to the sidewards expansion of the cavity.
The magnetic field assumes values of 10µG in the cross shocks on the axis and in
the hot spot. The jet remains super-Alfvénic everywhere with a maximum Alfvén
speed of cA = 0.35c in the hot spot.

The second major effect of the magnetic field is that it suppresses eddies and shock
waves in the part of the cavity up to z < 60 kpc. There the magnetic field is
very homogeneous, assuming values near 1µG. The Alfvén speed in that part of the
cavity is uniform (cA ≈ 0.1c) as is the sound speed (cs ≈ 0.03c). The matter is also
sub-Alfvénic in that part of the cavity, which helps to suppress instabilities there.
Moreover, the Lorentz force either enlarges or contracts eddies, depending on the
direction of rotation of the eddies. This explains why there are only very large or

Table 4.1: Exponents of the eBC model. The values of α are extracted from fits to lc
according to Eq. (4.1). Columns Pc and Ac contain the exponents of fits to Pc ∝ tβ and
Pc ∝ tγ , respectively. The values in columns P eBC

c and AeBC
c are the same exponents

calculated using α and Eq. (4.1).

Phase Model α Pc P eBC
c Ac AeBC

c

1D LA0 -0.215 -0.821 -0.893 0.274 0.231
LA1 -0.189 -0.825 -0.906 0.303 0.264

2D LA0 -0.323 -0.799 -0.839 0.107 0.096
LA1 -0.315 -0.785 -0.843 0.120 0.106
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very small eddies in LA1 compared to those in LA0 (Fig. 4.1). Once the eddies
get too large, they are destroyed. When they are too small, they are dissolved my
numerical viscosity. Given the large evolutionary age of the cavity (the width of
the cavity at the base of the jet is 3 times the sound crossing distance and 10 times
the Alfvén wave crossing distance at the end of the simulation), many eddies are
dissolved already. Owing to that reasoning the cavity of model LA0 shows much
more turbulence than that of LA1.

LA1 does not develop a nose cone at any time during its evolution. The jet models in
the short term simulations (Cha 3), which have the same magnetisation all develop
nose cones, because the magnetisation parameter, β, is larger than unity around
their terminal Mach disks. Consequently, the Lorentz force is larger than the thermal
pressure force and, thus, the geometrical source term of the radial momentum (2.31)
becomes negative. Matter is forced into the nose cone instead of flowing backwards
into the cocoon. The reason for β being so small in the head of LA1 is the small
value of σ at injection.

4.3.3 Comparison with observations

The results of model LA1 at the final time of the simulation can be compared
with observations of FR II radio galaxies. Observers usually assume equipartition
between magnetic and thermal energy density in the hotspots of powerful radio
galaxies. Therefore, absolute numbers are given in equipartition values. We find
that the magnetic field is far from equipartition in the hotspot, the cocoon and most
part of the cavity. Values of 10µG (β ≈ 0.01 − 0.05) are found in the beam and the
hotspot, and values from 0.1µG to 1µG in the cavity, where β ranges from 0.001 to
1. These fields are much smaller than the equipartition values of 1000µG (hotspot
and jet) and 10µG (lobe) obtained for young powerful radio galaxies (Ferrari, 1998).
Compared to Cyg A, our values agree reasonably well (Carilli et al., 1996). More
recent observations using the Chandra X-ray observatory constrain the β value in
the hot spots of 3C 280 and 3C 254 to 0.2-0.3 (Donahue et al., 2003) and to 0.04-0.1
in 3C 351 (Hardcastle et al., 2002). The values found in our simulation are smaller
(β ≈ 0.03), but agree within one order of magnitude.

In our simulation the magnetisation in the hotspot is much smaller than assumed in
many observations (e.g. Hardcastle et al., 1998, assume equipartition values). Most
probably, in order to obtain equipartition magnetic fields in the hot spots, the initial
magnetisation of the beam must be much larger than in our models. Even in the
short term models with β = 10/3 the magnetisation in the beam decreases by two
orders of magnitude in the first recollimation shock. In addition, a combination of
poloidal and toroidal fields might help to conserve the initial beam magnetisation,
since axial fields would remain in the beam (e.g. model B1-pol-1, Cha. 3) confined
by the toroidal field.

The hot spot pressure of ≈ 2×109 dyn/cm2 found in our models is within a factor of
1.5 of that deduced for Cyg A, while the average jet pressure of 2.4×10−10 dyn/cm2

agrees even better with the Cyg A value of 3× 10−10 dyn/cm2 (Carilli et al., 1996).
The propagation velocity of ≈ 0.05c in the 2D phase is in good agreement with the
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estimates by Daly (1995).

Hydrodynamic properties of jets can only indirectly be inferred from observations.
Yet, we can compare our simulated jets with observations by computing the non-
thermal synchrotron emission for model LA1. Previous, hydrodynamic long term
simulations (Scheck et al., 2002; Komissarov & Falle, 1998) had to make assumptions
about the magnetic field strength and structure, because the magnetic field was
not included in these simulations. However, our simulations do not include the
evolution of the non-thermal matter content of extragalactic jets. We assume that
this non-thermal population of particles is coupled to the thermal plasma (the one
we simulate) through the magnetic field. In a first approach, we have computed
radio maps according to the method used by Scheck et al. (2002). This approach
assumes an electron energy distribution by taking the energy density of the non-
thermal particles to be proportional to the beam mass fraction. The energy of these
particles is distributed according to a power law. To calculate the emission of the
complete galaxy including both jet and counter jet, we have exploited the symmetry
properties of our models. However, the results are unrealistic, as the large magnetic
field in the cavity (compared to that of the cocoon) leads to images without radio
lobes at all viewing angles (surface brightness, S, given in arbitrary units for three
viewing angles in Fig. 4.8). Instead, these images look more like X-ray images of
radio galaxies. This failure led us to consider a second model for the distribution of
non-thermal particles, both inside the beam and inside the cavity.

In this second approach, we assume two non-thermal electron distributions: (1)
a diffuse part, whose energy distribution, normalised with the square of the beam
mass fraction, is distributed among the emitting non-thermal particles according to a
power law N(E) ∝ E−σ with cutoffs at the maximum and minimum energies for the
non-thermal population (similar to model type-E in Mimica et al., 2004), and (2) a
second population of electrons which takes into account acceleration by local shocks
by scaling the cutoff energy densities with the velocity divergence and the pressure
(similar to model type-N in Mimica et al., 2004). The resulting surface brightness
images are displayed in Fig. 4.9 (S2, in arbitrary units) for viewing angles of 10, 45
and 80 degrees. The resolution of the images is much larger than that of actual
observations, because in that case the data is convolved with the instrumental beam
resolution. This explains why we see such narrow and well defined profiles in the
synthetic radio images. The two main features known from observations of powerful
radio galaxies are present in all three images: radio lobes with hotspots and bright,
knotty jets. Focussing on the image of 45 degrees viewing angle we can see a one–
sided jet and two hotspots and radio lobes much like those seen in the image Cyg A
in Fig. 4.10. Moreover, the brightness ratios of hotspot to lobe of the approaching
jet of S2(45 degrees) and Cyg A are of the same order of magnitude. However, the
ratio of the beam’s width to the lobe width is too large compared with that of a
prototypical FR II source. This might be the case, because our model has not yet
reached the final evolutionary time of 107−108y of a typical FR II source, or, because
of the assumed axisymmetry of our simulation. In our results the cocoon emission
from the counter jets is slightly brighter than that of the approaching jet. This
follows from the relatively high speed of the back flow material, which enhances
the emission from the counter jet lobe through Doppler boosting, while dimming
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Figure 4.8: Simulated radio maps for model LA1 using one electron population. The
surface brightness is given in arbitrary units, with viewing angles of 10, 45 and 80 degrees,
respectively (from top to bottom).

the lobe emission of the approaching jet. In real sources this is not observed, i.e.
back flow with relativistic speeds is not supported by observations. However, the
large back flow velocities may be caused only by the axisymmetry imposed on our
model. 3D relativistic simulations predict much more moderate values of the back
flow velocity (Aloy et al., 2000).

4.3.4 Limitations

Our simulations are restricted to 2D axisymmetric flows, i.e. we force the jet to
propagate along the symmetry axis. This is a considerable drawback, because the
head of the jet cannot wobble around, which would change the effective head area,
and thus the morphology of the cocoon and the hotspot. Specifically, the aspect
ratio of axisymmetric jets is larger than that of 2D Cartesian simulations without
imposed symmetry (Komissarov & Falle, 2003). In three dimensions, the wobbling
of the jet’s head may lead to different scenarios: (a) the effective area grows, leading
to a faster deceleration (dentist drill effect, Cox et al., 1991), or (b) the wobbling
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Figure 4.9: Simulated radio maps for model LA1 using two electron populations. The
surface brightness is given in arbitrary units, with viewing angles of 10, 45 and 80 degrees,
respectively (from top to bottom).

Figure 4.10: Radio image of the FR II radio galaxy Cygnus A (taken from the web page
of the National Radio Astronomy Observatory, http://www.nrao.edu).



4.3. DISCUSSION 109

Mach disk reduces the cross sectional area of the jet, leading to acceleration (Aloy
et al., 2000). Thus, three dimensional simulations are required to clarify this issue.

The grid resolution of twelve zones per beam radius at the injection nozzle is too
small to account properly for mass entrainment and mixing. However, it is twice as
large as in Scheck et al., 2002, leading to a more accurate description of the gross
morphology and dynamics of the cocoon. On the other hand, the beam cross section
grows with distance from the nozzle. Thus, the effective resolution is ∼ 20/rb for
z > 50 kpc. Comparison with the short term simulations (see Cha. 3) shows that a
larger resolution does not necessarily lead to different morphologies. Furthermore,
the required computational time is proportional to (zones/rb)

3, i.e. doubling the
resolution to (24/rb) would require 4600 instead of 600 hours of computing time
to reach tend = 8 × 106y on the same IBM p690 Regatta computer node with 32
processors. Translated into turnaround time, this means that a simulation would
require 24 months, which is far beyond the scope of a PhD project. This also means
that long term simulations of RMHD jets in 3D with a similar resolution will either
require much faster computers or multi-node parallel codes.

The ambient medium was uniform and non-magnetised. This is not entirely realistic,
because extragalactic jets on kiloparsec scales will propagate into a stratified intra-
cluster medium. Both pressure and density will decrease with distance from the
galactic nucleus. A declining density atmosphere will cause a widening of the jet and
might lead to considerable deceleration (Hooda et al., 1994). The galactic nucleus
might also be moving with respect to the atmosphere, causing further deformation
of the jet (Loken et al., 1995). Moreover, the intra-cluster medium will contain a
diffuse magnetic field. This might lead to additional deceleration and bending of
the jet (Koide, 1997). The number of parameters involved in modelling such an
atmosphere is very large, i.e. many runs have to be performed (a parameter study
is required).

In 2D axisymmetry the toroidal field cannot reverse its direction, i.e. it remains
positive everywhere on the grid, if it is so initially. A reversal is only possible in
3D in combination with poloidal field components. In addition, poloidal fields may
influence the magnetisation of the beam plasma and of the hot spot (see above).
However, a full interplay between poloidal and toroidal field components would
again require three dimensional simulations. In 2D the toroidal field will merely act
as an additional pressure term on the poloidal fields.
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5 Summary and Conclusions

In the past decade, time dependent numerical simulations have been used extensively
to study the hydrodynamic properties of relativistic extragalactic jets. Simulations
have proved to be very successful tools for understanding their morphology and dy-
namics, when compared to observations. Already in two dimensional, axisymmetric
simulations most of the key features of large scale jets can be found. However,
magnetic fields are considered to play a crucial role in the creation, collimation and
propagation of jets. While our current understanding is that the formation of jets
depends on magnetic fields, their large scale collimation over several hundred kilopar-
secs probably requires magnetic confinement. The synchrotron radiation observed
in these galaxies relies on the presence of magnetic fields in the emitting plasma,
too, even where it is dynamically negligible. Therefore, relativistic magnetohydro-
dynamic (RMHD) simulations are required for an adequate treatment of large scale
extragalactic jets.

It was the aim of this work to examine the properties of extragalactic radio jets by
means of RMHD simulations in two spatial dimensions. To this end, we have de-
veloped a simulation code that solves the equations of ideal RMHD in conservation
form. It is based upon an existing high-resolution, shock-capturing relativistic hy-
drodynamics code. Numerical fluxes are computed with an approximate Riemann
solver which does not require a full spectral decomposition of the RMHD system
of equations. Instead, we use an analytic estimate as upper (lower) bound for the
largest (smallest) eigenvalue of the system. We developed this method to avoid the
numerical instabilities, which arise from the degeneracies of the RMHD eigensystem.
The magnetic field components are updated in time following a second order accu-
rate constraint transport method which keeps the code divergence free. We have
demonstrated that the code properly solves a full suite of one and two dimensional
test problems and is at least competitive when compared to other RMHD codes
published in the past years.

Summary of the results

Using this new tool, we performed a parameter study based on 14 two dimensional
axisymmetric jet models, varying the strength and configuration of the magnetic
field, the beam Lorentz factor and adiabatic index of the gas. We have found
that the effects of toroidal magnetic fields on the morphology and dynamics of
the jets are multifarious. With growing toroidal field strength jets develop strongly
magnetised nose cones which have high density and pressure. They are created
when magnetised beam plasma deflected at the terminal Mach disk of the beam is
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driven in forward direction by the Lorentz force instead of flowing backwards into
the cocoon. During that process, the beam plasma is mixed with higher density
material from the ambient medium. Upstream of the nose cone, the beam material
gathers in a bubble like structure, which is confined by a shell of large magnetisation.
If the nose cone has grown to a size of ∼ 40% of the total jet length, the jet becomes
ballistic and propagates much faster than those with a smaller or without any nose
cone. Apart from that, we have not found a simple trend connecting the strength or
configuration of the magnetic field with propagation speed. Toroidal field jets also
suffer from deceleration of their beam through strong oblique shocks enhanced by
the inwards directed Lorentz force. Thus, the bulk Lorentz factor in the beams of
toroidal field jet models is much smaller than that of non-magnetised or poloidal field
jets. The opposite is observed in poloidal field jets. The oblique shocks are weaker
than in the purely hydrodynamic jets, and the beam retains high bulk Lorentz
factors up to its termination point. Even a toroidal field of a strength 20 times
below equipartition can already have a large effect on the properties of a jet. In one
of the jet models, the small magnetic field suppresses turbulent structures in the
cavity, thus keeping the beam undisturbed from external influences and increasing
the propagation efficiency of the jet. In all toroidal field jets we have found that
the magnetisation in the beam becomes negligible (two orders of magnitude below
equipartition) after the beam has passed through the first oblique shock. This has
consequences for observations where it is usually assumed that the magnetic field
energy density is in equipartition with the thermal energy density of the plasma in
the hot spot and other bright emission features of the jet. Poloidal fields are almost
completely expelled from the cavity of the jet, and the magnetic field accumulates in
the high pressure region near the bow shock. In side the beam and in the hot spot
the poloidal field retains its initial values, but the magnetisation decreases similarly
to the toroidal field cases in two out of our three poloidal field jet models.

To study the influence of the magnetic field on the morphology and dynamics of a
powerful radio jet, we have performed the first long term evolution simulation of a
RMHD jet with toroidal field together with a reference simulation of a purely hydro-
dynamic jet of the same length. The simulations extend up to an evolutionary age
of 8×106y, which is only a few times smaller than the typical age of a powerful radio
source. The differences between both models in overall morphology and dynamics
are surprisingly small. After an initial fast propagation epoch, both jets inflate
their cavities in an almost self-similar manner, which is in good agreement with a
simple theoretical model for the cocoon inflation (Scheck et al., 2002). The aspect
ratios of both jets are practically constant during the last four million years of their
evolution, but the average cavity pressure decreases according to a simple power
law. The propagation velocities are almost equal, the reference model being approx-
imately 2.5% faster than the magnetised one. Although the magnetised jet does not
develop a nose cone, the toroidal field has a large impact on the internal structures
of its beam and its cavity. The bulk Lorentz factor of the beam plasma is consider-
ably smaller than in the hydrodynamic reference model. This is caused by stronger
oblique shocks present inside the beam, which are induced by the inwards directed
Lorentz force. The same force is also responsible for the less turbulent cavity of the
magnetised jet. The Lorentz force either contracts or expands turbulent eddies, thus
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dissolving most of them with time. In addition to being less turbulent, pressure and
density decrease with radial distance from the axis. At large radii they are much
larger in the magnetised jet than in the reference model. The magnetic field itself
is almost completely uniform inside the cavity. The field strength is about 1µG,
which is only a few times less than the initial value injected with the beam. The hot
spot pressure, the propagation speed and the magnetic fields found in our simulation
agree very well with those observed in powerful radio jets. Yet, the magnetisation of
the plasma in the hot spot and inside the beam of our model is one to two orders of
magnitude smaller than that reported by observers. For a further comparison with
observations we have computed synthetic radio maps from our model. The maps
exhibit two of the most prominent features found in observations of powerful radio
galaxies: (1) bright, knotty jets and (2) hot spots surrounded by extended lobes of
diffuse emission. Depending on the viewing angle and the model of the synchrotron
emitting plasma, the synthetic images are in good agreement with observed images
of the powerful radio galaxy Cygnus A. The differences between our radio maps and
the observations are probably caused by assuming axisymmetry in our simulations.
The ratio of the width of the beam and the radio lobes is too large, as is the amount
of emission from the lobe of the counter jet.

Outlook

Our results demonstrate that the step from purely hydrodynamic to RMHD simu-
lations leads to a large number of effects, not all of which we can fully understand
by the simulations presented here. The most prominent effect of toroidal magnetic
fields on the large scale structure of jets is the generation of nose cones. We have
found that the ratio of Poynting and mass flux could be the decisive parameter
determining whether models develop nose cones. Although nose cones where also
found in Newtonian MHD simulations, this issue has never been clarified. For fur-
ther examination, a series of simulations with jet densities lower than those in our
parameter study is required. We would also like to deepen our understanding of how
the magnetic field affects the stability of the beam. Particularly interesting in that
respect would be to find out exactly which combination of jet parameters leads to
the suppression of turbulence in the cavity. Starting point for such an examination
should be model series B1, where a weak toroidal field has a larger effect on the
cavity than a strong one. The low magnetisation of beams and hot spots is another
interesting result of our simulations. Since observers usually infer larger magnetic
field strengths in those regions, further simulations with larger initial fields are re-
quired to clarify this issue. The combination of poloidal and toroidal fields could also
have the desired effect. However, the study of many features related with the combi-
nation of poloidal and toroidal magnetic fields require three dimensional simulations
(in order to allow for helical field structures or field reversals).

Considering long term simulations of large scale jets, several further steps are quite
obvious (apart from continuing our existing model up to the full life time of a power-
ful radio jet). First of all, we would like to include poloidal fields in the simulations,
ideally in combination with a larger toroidal field component. This could help to
increase the magnetisation of the plasma inside the beam and in the hot spots.
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Moreover, this would allow us to compute realistic polarisation maps from our sim-
ulation data. In a second step we would include a model for the galactic atmosphere
in the initial setup of the external medium. A density and pressure declining with
distance from the nucleus could lead to a much larger sideways expansion of the
jet’s cavity, and thus to smaller aspect ratios, which are closer to those observed.
Additionally, intra cluster magnetic fields on the micro Gauss level should be in-
cluded in the model. As a third step we suggest to perform the computation of the
emission of the jets during the simulation itself. This would allow us to use more
advanced models for the emitting electrons. However, such a procedure requires a
considerably larger amount of computing resources, which will only become available
in a few years time. Finally, as mentioned above, three dimensional simulations are
required to capture all the effects of the magnetic field.
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Schließlich möchte ich folgenden Menschen für Freundschaft und Unterstützung
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