
Max-Planck-Institut für Astrophysik

Turbulent Thermonuclear
Combustion in Degenerate Stars

Wolfram Schmidt

Vollständiger Abdruck der von der Fakultät für Physik der Technischen Uni-

versität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. L. Oberauer
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ii

’Forgive my ignorance of stellar physics, but I’ve been
studying, so let me see if I get this right.’

’When that big, whirling cloud of dross and corpses
finally collapses, it’s going to dump a tenth of a solar
mass onto the hot, dense surface of that white dwarf. A
dwarf that’s already near its Chandrasekhar limit. Much
of the new material will compress to incredible density
and undergo superfast nuclear fusion, triggering–’

’What Earthlings used to call a “type one” superno-
va,’ the Niss Machine cut in, unable to resist an inbuilt
yen to interrupt.

’Normally, this happens when a large amount of mat-
ter is tugged off a giant star, falling rapidly onto a neigh-
boring white dwarf. In this case, however, the sudden
catalyzing agent will be the flesh of once living beings!
Their body substance will help light a pyre that should
briefly outshine this entire galaxy, and be visible to the
boundaries of the the universe.’

D. Brin, Heaven’s Reach



Motivation and Objectives

This Thesis is mainly concerned with turbulence and its significance for thermonu-
clear burning processes in degenerate stars. Contrary to main sequence stars such
as the Sun, in which a feed-back mechanism between reaction rates, expansion and
cooling moderates thermonuclear burning, the physical conditions in a white dwarf
of nearly critical mass entail a thermonuclear runaway, once density and temperature
rise above a certain threshold. The critical mass of a white dwarf is known as Chan-
drasekhar mass. In the course of the run-away, carbon and oxygen is rapidly burned
to heavier elements, in particular, nickel, and the star explodes due to the enormous
energy release. According to our present understanding, burning in these thermonu-
clear supernovae progesses as deflagration, which means that ignition is caused by heat
conduction rather than shock compression. Since the intrinsic propagation speed of a
deflagration front is much less than the speed of sound, there must be something acting
to accelerate the burning process. The agent is thought to be turbulence, which folds
and wrinkles flames and thereby increases the rate of burning. A major difficulty of
describing turbulent burning in numerical simulations stems from the fact that it is im-
possible to resolve the whole range of dynamical scales, even with the most powerful
of currently available computers. This restriction leads to the concept of a large-eddy
simulation, in which only the largest scales are numerically resolved. However, since
the burning process is susceptible to turbulent velocity fluctuations on scales smaller
than the numerical resolution, a model which accounts for effects on these scales is
indispensable. The investigation of several options for such a subgrid scale model is
the research subject of this Thesis. As testing and comparing different subgrid scale
models systematically in full supernova simulations would be quite hard, a simplified
scenario was chosen, where turbulence is artifically produced by a stochastic force
field in a cubic domain. In the beginning, pure hydrodynamical turbulence was in-
vestigated, and then thermonuclear burning was added. The research goal has been
to some extent a phenomenological understanding of turbulence and turbulent burn-
ing, but eventually it aims at a subgrid scale model, which makes physically sound
predictions and is applicable to simulations of thermonuclear supernovae.
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Chapter 1

White Dwarfs and
Thermonuclear Supernovae

Der wichtigste Stern ist α CMa, Sirius, der Hundsstern;
bei den Ägyptern stand der Große Hund für Anubis, den
schakalköpfigen Wächter der Totenstadt. Sirius ist mit
−1m.4 der hellste Stern am Himmel, ein A1-Stern in we-
niger als 9 Lichtjahren Entfernung; er hat einen kleinen
Belgeiter, der ihn in einem Abstand von 2,9 Milliarden
Kilometer in rund 50 Jahren einmal umrundet: Sirius B
mit einer Helligkeit von 9m.1 ist der erste Weiße Zwerg,
den man beobachtet hat.

Baker and Hardy, Der Kosmos-Sternführer

The mountain smoked beneath the moon;
The dwarves, they heard the tramp of doom.

J. R. R. Tolkien, The Hobbit

In 1862, A. G. Clarke found the dim companion of the bright star Sirius A, after F.
W. Bessel had deduced from parallax measurements that Sirius, in fact, is a binary star
system. It came as a great surprise to astronomers when in 1915 W. Adams discovered
that Sirius B is a blue-white star, much too hot for its luminosity L ≈ 0.03L�. Indeed,
the startling consequence inferred from the Stefan-Boltzmann law was that Sirius B
must be extraordinarily compact, a result first dismissed by astronomers as being ab-
surd. Later the temperature of Sirius B was determined to be 2.7 · 104 K, implying a
radius of a mere 5500 km and a density of about 3 ·106 g cm−3. The mystery was lifted
by R. H. Fowler in 1926. He applied the newly discovered exclusion principle of Pauli
and was able to show that a star like Sirius B must be entirely supported by electron
degeneracy pressure against gravity. Today a great variety of these white dwarfs are
known, with masses typically in the range from 0.4 to 0.8 M� and an average density
of 4.7 · 105 g cm−3 1.

1Sirius B has a mass of about 1 M� which is larger than the mass of most known white dwarfs. More
on the phenomenology of white dwarfs can be found in Liebert [1980] or Carroll and Ostlie [1996,
Section 15.2].



2 Physical Foundations

The formation of a white dwarf is the final stage in the evolution of a star less mas-
sive than about 8M�, which does not cease in a core collapse supernova. Isolated white
dwarfs are cooling over many billions of years. Eventually, they will fade and become
dark. White dwarfs which are members of close binary star systems, on the other hand,
may accrete mass from their companions and thereby go through violent evolutionary
changes. Such events are observable as novae. They belong to the class of cataclysmic
variables, which are characterised by short outbursts of radiation following long qui-
escent intervals. These outbursts are caused by the explosive thermonuclear burning
of a hydrogen surface layer, which is accumulated through accretion from the com-
panion star [cf. Carroll and Ostlie, 1996, Section 17.4]. In the course of nova, most of
the accreted mass is ejected into space. However, under certain circumstances a white
dwarf can gradually accrete material without entering a nova phase. In this case, the
mass will steadily increase and finally approach the Chandrasekhar limit, which is the
largest mass that can be supported by the degeneracy pressure of electrons. Close to
the Chandrasekhar mass, the density and temperature in the core of the white dwarf
reach a critical threshold. At this point, the rate of thermonuclear reactions increases
rapidly and a catastrophic runaway sets in, which incinerates and disrupts the whole
star within a few seconds. The released energy is of the order 1051 erg and gives rise
to one of the most luminous events in the universe, a type Ia supernova. Although
alternative progenitor systems have been suggested, the best match between observa-
tional properties and predictions from numerical simulations is found for the scenario
outlined above, which is known as the single degenerate (SD) scenario. The physics
of thermonuclear supernova explosions is introduced in the first part of this Chapter.
In particular, it is shown that turbulence plays a crucial role in the modelling of ther-
monuclear burning. Furthermore, theory and observations of type Ia supernovae are
discussed in a broader astrophysical context in the second part.

1.1 Physical Foundations

Our current theoretical understanding of thermonuclear supernovae in the SD scenario
rests on three fundamental pillars. Firstly, the physics of degenerate matter, secondly,
hydrodynamics including turbulence and, finally, thermonuclear combustion physics.
The underlying principles and some of the most important facts are outlined in the
following.

1.1.1 Degeneracy

Degeneracy pressure is a non-thermal property of a fermion gas. In the limit of zero
temperature, each fermion occupies the state of lowest energy available without violat-
ing Pauli’s exclusion principle. Let us consider a gas consisting of electrons and ignore
electrostatic interactions. According to Heisenberg’s uncertainty relation, the minimal
phase space volume occupied by any electron is (2π�)3/g, where g is the multiplicity
given by the number of possible spin orientations. For electrons, which are spin-1/2
particles, g = 2. In the ground state, all electrons occupy states within a sphere of
radius pF in momentum space. pF is called the Fermi momentum. It is related to the
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number density ne of electrons through the equation

ne =
2

(2π�)3

∫ pF

0
4πp2 dp =

2

(2π�)3
4πp3

F

3
. (1.1)

The non-vanishing momentum of electrons in the ground state gives rise to pressure
and a corresponding energy density [cf. Shapiro and Teukolsky, 1983, Section 2.3],

PF =
2

3(2π�)3

∫ pF

0

4πp4c2dp√
p2c2 + m2

ec4
=

mec2

λ3
e
φ(x), (1.2)

EF =
2

(2π�)3

∫ pF

0
4πp2

√
p2c2 + m2

ec4 dp =
mec2

λ3
e
χ(x), (1.3)

where x = pF/mec and

φ(x) =
1

8π2

[
x
√

1 + x2

(
2x2

3
− 1

)
+ ln

(
x +

√
1 + x2

)]
, (1.4)

χ(x) =
1

8π2

[
x
√

1 + x2
(
1 + 2x2

)
− ln

(
x +

√
1 + x2

)]
. (1.5)

PF is called the degeneracy pressure and EF the Fermi energy of the electron gas. The
characteristic energy and length scale associated with these quantities are, respectively,
the rest energy mec2 ≈ 8.187 · 10−7 erg and the Compton wavelength λe = �/mec ≈
3.862 · 10−11 cm of the electron. Thus, the order of magnitude of the degeneracy
pressure is given by

PF ≈ 1.422 · 1025φ(x) dyne cm−2 . (1.6)

In the limit x→ 0, the Fermi gas becomes non-relativistic, whereas x� 0 corresponds
to ultra-relativistic degenerate electrons.

At finite temperature, the simple distribution function of the electrons in the ground
state, f (E) = θ(EF − E), is smeared out in the vicinity of the Fermi energy, because a
certain fraction of electrons occupies excited states. In general, the integrals defining
energy and pressure of the free electrons in white dwarf matter of finite temperature
must be solved numerically. A parameter which measures the degree of degeneracy
is the ratio of the Fermi energy to the thermal energy, η = EF/nekBT . Complete
degeneracy is asymptotically approached in the limit η → ∞. Defining the Fermi
temperature by TF = EF/nekB, this limit is equivalent to T/TF → 0. The Fermi
temperature depends on the mass density. For example, TF ∝ ρ2/3 for non-relativistic
particles. This is why degeneracy is hugely dominated by thermal effects in matter
under typical terrestial conditions. In stellar matter, the phase space volume occupied
by an electron is of the order 180(2π�)3(M/M�)1/2(R/R�)3/2, as estimated by Shapiro
and Teukolsky. Hence, electrons in a star of one solar mass become degenerate if the
star contracts to a radius of roughly 0.03R�. Indeed, TF ∼ 1010K in the interior of a
white dwarf, while the central temperature is of the order 108 K. Consequently, the
degeneracy pressure exceeds the pressure due to thermal motions of the particles and,
thus, it maintains hydrodynamical equilibrium.

The equation of state (EOS) of the degenerate electron gas in a white dwarf is mod-
ified by several additional effects. An early account of the EOS was given, for instance,



4 Physical Foundations

by Baym et al. [1971]. At rather low densities (ρ � 104 g cm−3), electrostatic correc-
tions due to the attraction of electrons by ions are important [cf. Shapiro and Teukolsky,
1983, Section 2.4]. Chemical equilibrium at high densities (ρ � 108 g cm−3), on the
other hand, is heavily influenced by the neutronisation caused by inverse β-decays [cf.
Shapiro and Teukolsky, 1983, Section 2.5]. For thermonuclear supernovae, pair cre-
ation at temperatures of the order 1010 K must be taken into account. The nuclei, on
the other hand, constitute in very good approximation a perfect gas. Further discussion
of the full EOS can be found in Balberg and Shapiro [2000] and explicit formulae in
Reinecke [2001].

As the mass of a white dwarf increases, the number of electron states and the Fermi
momentum becomes ever larger. At a certain threshold, pF ∼ mec and the degenerate
electrons become relativistic. Since pF ∝ n1/3

e according to equation (1.1), the Fermi
energy in the relativistic regime is of the order

EF ∼ �cn4/3
e ∼ �cN4/3

R4
, (1.7)

where R is the radius of the star and N ∼ neR3 the total number of particles. The mass
of the white dwarf can be expressed as M = NmB, where mB is the mean mass of the
baryons in the nuclei, and the gravitational potential energy per unit volume is given
by

EG ∼ −
GN2m2

B

R4
. (1.8)

If EF > −EG, expansion of the white dwarf will lower the Fermi energy to the point
where the electrons become non-relativistic and EF ∝ R−5. Eventually, the total energy
E becomes negative and the star settles into hydrodynamical equilibrium. On the other
hand, if N and, consequently, M exceeds a certain threshold, then EG < −EF, and
E becomes smaller with decreasing radius. In this case, no stable configuration exists
and gravitational collapse sets in2. The critical mass is called the Chandrasekhar mass.
Modelling the white dwarf as a polytrope, a more elaborate analysis yields

MCh =

√
3π

2m2
B

(
�c
G

)3/2
Y2

e

[
−λdΘ3

dλ

]
λ=λ1

≈ 5.76Y2
e M�, (1.9)

where λ1 is the first zero point of the Lane-Emden function Θ3(λ) for the n = 3 poly-
trope [cf. Müller, 2002, Section 2.4]. For matter with equal fractions of protons and
neutrons, Ye = ne/nB = 0.5 and, thus, MCh ≈ 1.44 M�. However, an accreting white
dwarf which gradually approaches the Chandrasekhar limit does not necessarily end in
a collapse. The fate of the star depends on its composition and the accretion rate. For
white dwarfs which are composed of oxygen, neon and magnesium, electron capture
at sufficiently high density triggers the collapse to a neutron star, provided that the ac-
cretion rate is large enough to circumvent helium detonations [cf. Nomoto and Kondo,
1991]. For the more common carbon and oxygen white dwarfs, on the other hand,
a thermonuclear runaway under ultra-relativistically degenerate conditions is likely to
preceed the collapse and to cause a supernova explosion, as will be discussed further
in Section 1.2.1.

2The argument for a maximal mass of white dwarfs as outlined above was given by Landau [1932].
Originally, it was calculated by Chandrasekhar [1931].
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1.1.2 Turbulence

The dynamics of fluids in the continuum approximation is governed by a set of five
partial differential equations (PDEs) for the mass density ρ, the three components of
the velocity u and the specific energy e [cf., for instance, Warsi, 1993, Section 3.2]3:

Dρ
Dt
+ ρ∇ · u = 0, (1.10)

ρ
Du
Dt
= −∇P + ρ(a + g) + ∇ · σ, (1.11)

ρ
De
Dt
+ ∇ · (Pu − σ · u − ρcPχ∇T ) = ρ(a + g) · u. (1.12)

The operator D/Dt is the Lagrangian derivative,

D
Dt
=
∂

∂t
+ u · ∇, (1.13)

which, acting upon a dynamical quantity, gives the rate of change with respect to the
flow. The spatial derivative in the direction of the velocity, u · ∇, accounts for advec-
tion. It gives rise to a non-linearity, (u · ∇)u, in the equation of momentum conser-
vation. Motion is induced by any mechanical force ρa acting on the fluid, as well as
the gravitational force ρg and the pressure gradient ∇P. Dissipation of kinetic energy
ekin =

1
2 |u|2 into internal energy eint = e − ekin is caused by viscous dissipation. In the

momentum equation, the dissipation term is given by the divergence of the symmetric
tensor σ, which is called the viscous stress tensor. Both the pressure P and the temper-
ature T are coupled to ρ and eint through the equation of state. The product of the heat
capacity cP and thermal diffusivity χ yields the specific conductivity of the fluid. In the
following, the phenomenology emerging from the above set of equations is discussed.

Strain and Vorticity: On the Way to Turbulence

For Newtonian fluids of constant viscosity ρν, the viscous stress tensor is proportional
to the trace-free part of the rate-of-strain tensor:

σik = 2ρνS ∗ik ≡ 2ρν

(
Sik − 1

3
δik

)
, (1.14)

where

Sik = v(i,k) ≡ 1
2

(
∂vi
∂xk
+
∂vk
∂xi

)
. (1.15)

The total contraction |S | = 2SikSik is the scalar rate of strain, and the trace d = Tr S =
Sii is the divergence of the velocity field. If the dissipation term in equation (1.11) is
comparable to the advection term, i. e., 2νS∗ik,k ∼ vkvi,k, then viscosity dominates the
fluid dynamics and the flow is said to be laminar. In this case, the flow is completely
characterised by the boundary conditions, the spatial structure and temporal evolution
of the force fields a and g. For characteristic scales of spatial and temporal variations

3Basically, the continuum approximation holds if the mean free path of particles is much smaller than
the dynamically relevant length scales of bulk motion. In this case, a separation into internal energy due
to random thermal motions and kinetic energy due to bulk motion is possible.
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L and T , respectively, we have Sik,k ∼ L−1T−1, vkvi,k ∼ LT−2 and, thus, ν ∼ L2T−1. On
the other hand, if ν � L2T−1 or, equivalently,

Re =
LV
ν
� 1, (1.16)

where V = L/T is the characteristic velocity, then the strain increases to the point
where velocity fluctuations on scales much smaller than L are produced. The di-
mensionless number Re is called the Reynolds number. It was originally introduced
as a phenomenological parameter which characterises the state of a flow. For large
Reynolds numbers, the dynamics of the fluid becomes increasingly non-linear. Be-
yond Re ∼ 103, the flow usually enters the turbulent regime, in which the dynamics
is fully chaotic and sensitivity on initial conditions as well as mixing emerge as the
hallmarks of chaos. This means that two realisations of a turbulent flow with nearly
the same initial and boundary conditions diverge rapidly with time, and the trajectories
of test particles in the fluid tend to fill an increasing fraction of the accessible phase
space volume. The transition from a non-linear to a fully turbulent flow is beautifully
illustrated by the photographs of a grid flow with immersed soap films in Figure 1.1.

Figure 1.1: The onset of two-dimensional grid generated turbulence in flowing soap films
[Rutgers, Wu, and Goldburg, 1996].

Another aspect of the mixing property of turbulent flows is the mechanism of vor-
tex stretching. The initially produced vortices are stretched out by the flow to form
vortex filaments which become increasingly folded. A measure for the local strength
of rotational motion is the vorticity of the velocity field, which is defined by

ω = 2WikWik, (1.17)

where

Wik = v[i,k] ≡ 1
2

(
∂vi
∂xk
− ∂vk
∂xi

)
. (1.18)

From ω = ∇ × u, it follows that ω · ω = εiklεimnvl,kvn,m = ω
2. Iso-surfaces of vorticity

which are tangential to the vector field ω(x, t) at each point are called vortex tubes. In
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other words, vortex tubes are bundles of vortex lines that are integral curves of ω(x, t).
Compact vortex tubes evolve into vortex filaments of small cross section and large
circulation through stretching and folding. Different pieces of vortex filaments may
connect and merge, a phenomenon called vortex pairing. Thereby, the flow structure
becomes increasingly intricate. A bound on vortex stretching is set by the viscosity
of the fluid, which inhibits rotational motion below a certain scale and drains energy
from vortices of a size above that scale4.

Kolmogorov’s Theory: Self-Similar Developed Turbulence

Notwithstanding the complicated dynamics of vortex interaction, a phenomenologi-
cal theory of developed isotropic turbulence can be formulated on grounds of very
simple scaling arguments. This theory was put forward by Kolmogorov in the nine-
teenfourties and rests on three fundamental conjectures, which have a lasting impact
on contemporary theories [cf. Pope, 2000, Section 6.1]5:

Hypothesis of local isotropy: At sufficiently high Reynolds number, the dynamics on
small scales l� L tends to become statistically isotropic.

First similarity hypothesis: The statistics of isotropic velocity fluctuations on suffi-
ciently small scales are universal and uniquely determined by the viscosity and
the rate of kinetic energy dissipation.

Second similarity hypothesis: There is a subrange of scales for which the statistics
of turbulent fluid motions are independent of the viscosity, i. e., the mechanism
and the characteristic scale of dissipation.

The first hypothesis stems from the idea that anisotropies in large-scale motions
due to boundary conditions or the forcing on length scales l ∼ L is lost in the chaotic
dynamics on smaller scales. This is related to the notion of a turbulence cascade,
which was originally proposed by Richardson [1922]. In a pictorial way, the largest
vortices of size comparable to L pass on energy to smaller vortices which in turn act
on yet smaller vortices and so on. Thus, energy is transferred from the largest to
the smallest dynamical scales. In spectral space, the turbulence cascade corresponds
to the interaction between Fourier modes, where energy is transferred from modes
of smaller to those of larger wave numbers. Since energy is injected at the largest
scales, corresponding to the wavenumber k0 ∼ 1/L, the spectral interactions become
asymptotically independent of the external forces for k � k0. This is the universal
equilibrium range. There is an upper cutoff in wave number space and a lower cutoff
with respect to length scales, beyond which viscosity damps fluid motions. The cutoff
length is called the Kolmogorov scale and is given by

π/kK = ηK =

(
ν3

〈ε〉
)1/4
, (1.19)

where 〈ε〉 is the mean rate of dissipation of kinetic energy. Contracting the equation of
momentum conservation (1.11) with the velocity and integrating the viscous term by

4More on the mechanism of vortex stretching can be found in Chorin [1994, Chapter 5].
5A refined version of the theory was later published by Kolmogorov [1962].
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parts, one obtains

〈ε〉 = ν〈|S ∗|2〉 = ν
[
〈|S |2〉 − 2

3
〈d2〉

]
, (1.20)

where brackets 〈 〉 are used to denote the ensemble average. For a given driving force f ,
the rate of strain |S | becomes larger as the viscosity decreases, because the derivative
of the velocity is mostly determined by fluctuations on the smallest scales l ∼ ηK. For
an incompressible flow, |S ∗|2 = |S |2 = ω2. Thus, 〈εs〉 = ν〈ω2〉 is called the solenoidal
rate of dissipation.

As was shown by Landau, the ratio of the largest to the smallest dynamical length
scale is of the order [cf. Landau and Lifshitz, 1991]

L
ηK
∼ Re3/4. (1.21)

For sufficiently high Reynolds number, there are intermediate length scales ηK �
l � L in the so-called inertial subrange. On these scales, neither viscous dissipation
nor large-scale anisotropy affects the flow, and the dynamics is largely dominated by
the non-linear turbulent energy transfer corresponding to the advection term. Conse-
quently, turbulent fluid motions on scales within the inertial subrange are quasi inviscid
and isotropic. Furthermore, the scaling law v′(l) ∝ l1/3 holds for velocity fluctuations
v′(l) at the length scale l. Kolmogorov found that this scaling law is equivalent to the
kinetic energy spectrum function

E(k) = C〈ε〉2/3k−5/3, (1.22)

which specifies the mean kinetic energy per wave number interval [cf. Pope, 2000,
Section 6.5]. C is called the Kolmogorov constant. Data from numerous laboratory
experiments and numerical simulations suggest that the Kolmogorov constant is nearly
universal with C ≈ 1.5 . . . 1.7. However, deviations from universality may occur in
intermittent flows, in which laminar and turbulent regimes are alternating. From round
jet experiments, it was found that C decreases with the degree of intermittency, but the
k−5/3 scaling of the energy spectrum remains intact.

Heat Conduction and Buoyancy: Convectively Driven Turbulence

A particularly important kind of turbulence, which encompasses the weather on Earth
as well as convection zones in stellar interiors, is found in Rayleigh-Bénard systems.
The prerequisite is a thermally conducting fluid subject to gravity, with an incoming
heat flux from below and an infinite heat reservoir of lower temperature on top. The
mechanism producing turbulence works in the following way. As fluid is heated from
below, its density decreases and the bottom layer becomes Rayleigh-Taylor unstable
due to buoyancy. Thus, rising motion of warm fluid towards cooler layers sets in.
Depending on the thermal and viscous properties of the fluid, besides the tempera-
ture gradient and the gravitational field, there are several possible outcomes. If the
conductivity is very high, heated fluid will cool so quickly that the motion stalls and
conduction persists as the sole mechanism of heat transport. On the other hand, if
heat conduction is less efficient, plumes of hot fluid will rise all the way to the reser-
voir on top, where excess heat is disposed. If heat is added at a constant rate, this will
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eventually result in a steady state of fluid circulation (or “flywheel” motion) called con-
vection. With growing strength of buoyancy relative to viscous damping and thermal
diffusion, convection becomes increasingly turbulent.

Rayleigh-Bénard systems are characterised by several dimensionless parameters.
The relative strength of buoyancy compared with the inhibiting factors conduction and
viscosity is specified by the Rayleigh number:

Ra =
geffL3

χν
, (1.23)

where geff = gδP∆T/T0 is the buoyant acceleration due to the gravity g and the density
contrast between hot and cold parcels of fluid. T0 is the temperature of the heat reser-
voir and ∆T is the temperature difference over the vertical length scale L of the system.
The logarithmic gradient δP = −〈∂ log ρ/∂ log T 〉 measures the thermal expansion of
the fluid6. With increasing Ra, the fluid motion becomes ever more chaotic. Fully tur-
bulent convection is usually found for Ra � 108 [cf. Kadanoff, 2001]. Even then, the
flow is rather laminar inside rising convective plumes, while the strain exerted by fluid
which has cooled and is dragged downwards produces turbulent vortices. Since the
pattern of plumes and the turbulent down-drafts in between changes with time, a spa-
tially fixed region experiences quiescent conditions alternating with turbulent phases.
Evidence for the intermittency of convectively driven turbulence was inferred, for in-
stance, from the observation of solar granulation by Nesis et al. [1999].

The Prandtl number relates the diffusive properties of the fluid:

Pr =
ν

χ
. (1.24)

In liquids, Pr ∼ 1 and even for air Pr ∼ 0.1. In white dwarf matter, however, the
Prandtl number is much smaller than one. This is mainly a consequence of the high
thermal conductivity of the degenerate electron gas. According to an estimate of the
electron opacity by Woosley et al. [2003], ρcPχ ≈ 3 · 1018 erg cm−1 s−1 K−1 for typical
conditions in a white dwarf near the Chandrasekhar limit with T ∼ 108 K and ρ ∼
109 g cm−3. The corresponding heat capacity is cP ≈ 9 · 106 erg g−1 K−1. The viscosity
was calculated by Nandkumar and Pethick [1984]. They found ν ∼ 1 cm2 s−1. Putting
these values together, a Prandtl number of the order 10−3 is obtained. The product of
Pr and Ra yields a squared ratio of time scales:

Pr Ra =
gL3

χ2

δP∆T
〈T 〉 =

(
τχ

τB

)2
. (1.25)

The time scale of thermal conduction is defined by τχ = L2/χ and the time scale of
buoyant motion is given by τB = (LT0/gδP∆T )1/2. Thus, Pr Ra is a measure of the effi-
ciency of convection [cf. Canuto, 1996]. If τB � τχ, then convection is highly efficient
compared to conduction and the gross of heat transport is non-conductive. On the other
hand, if τχ ∼ τB, thermal conduction significantly influences the dynamics of the sys-
tem and tends to level super-adiabatic temperature gradients which support convection.

6In the context of stellar structure or atmospheres, it is customary to use the local super-adiabatic
temperature gradient in the definition of the Rayleigh number. For conceptual simplicity, however, we
use the absolute linear gradient here.
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For the thermonuclear “smoldering phase” in a critical white dwarf shortly in advance
of ignition, Woosley et al. [2003] estimated Ra ∼ 1025 and, hence, τχ ∼ 1011τB

7.
This result indicates that convection is extremely efficient, despite the excellent con-
ductivity of degenerate matter. The buoyant rise velocities are of the order 106 cm s−1.
In combination with the integral scale L ∼ 108 cm, which is given by the size of a
Chandrasekhar-mass white dwarf, a Reynolds number of the order 1014 is implied.
Once the thermonuclear runaway commences, heat is released in highly localised re-
gions, namely, the flame fronts, and the dominating buoyancy forces are caused by the
significantly larger density contrast between unburned and processed material.

1.1.3 Combustion

There are two fundamentally different modes of combustion. On the one hand, slow
burning or deflagration and, on the other hand, detonations [cf. Landau and Lifshitz,
1991, Chapter XIV]. In the case of a deflagration, the temperature of unburned fluid
(fuel) in the vicinity of the reaction zone rises due to thermal conduction. Once heat
generation is balanced by diffusion, the burning zone is propagating at a steady sub-
sonic speed, and pressure equilibrium is maintained across the reaction zone. Basi-
cally, this characterises what is commonly known as a flame8. The notion of a flame
applies if fluid motions do not significantly disturb the burning process within the re-
action zone, i. e., the time scale of burning is much smaller than the time scale of
velocity fluctuations on scales comparable to the flame thickness. If the ignition of
fuel is caused by compressive heating through a shock wave, the burning process is
called a detonation. In this case, there is an overpressure in the burned material (ash)
behind the supersonically propagating shock. Quantitatively, a classification of the
burning regimes can be made by means of the conservation laws for momentum and
the state variables across the reaction zones. In particular, if the thickness of the re-
action zone is small compared with all dynamical length scales, it can be treated as a
discontinuity and the variables hither and tither the burning front are linked by a set of
simple algebraic equations which are called the Rankine-Hugoniot jump conditions. In
particular, the conservation of the mass flux j = ρv across the flame front or detonation
wave implies

Pb − Pu = − j2
(

1
ρb
− 1
ρu

)
(1.26)

for the pressure difference between burned and unburned fluid. This is known as the
Rayleigh criterion. In a state diagram, the lines satisfying the Rayleigh criterion inter-
sect with the Hugenoit curve, which accounts for energy conservation:

eint,b − eint,u = εnuc − 1
2

(
1
ρb
− 1
ρu

)
(Pb + Pu), (1.27)

7Such an extraordinarily high Rayleigh number possibly indicates a regime of convection beyond
the turbulent Rayleigh-Benard convection. Unfortunately, this regime is also far beyond anything that is
accessible in laboratory experiments. Kraichnan argued that the convective cells might break up and fluid
motion should become utterly chaotic [cf. Kadanoff, 2001].

8For chemical combustion, a distinction is made between premixed and diffusive flames. Thermonu-
clear flames, however, are trivially premixed, because no additional agent, like oxygen in most chemical
burning processes, is required.
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where εnuc is the energy released per unit of burned mass. There are two branches of
intersection points at the Hugenoit curve which correspond to physical solutions. In
one branch, the propagation speed is supersonic and Pb > Pu, and in the other branch
Pb < Pu, with subsonic propagation speed. These solutions correspond to detonations
and deflagrations, respectively. Usually, explosions are attributed to detonations. How-
ever, deflagration can also lead to an explosion, if most of the fuel is incinerated before
the flames are quenched by the thermal expansion of the burning products. Indeed,
degeneracy of the fuel in a thermonuclear supernovae implies that there is only little
expansion while a significant fraction of carbon and oxygen has already been burned.
However, since the flame propagation speed is very small compared to the speed of
sound, turbulence is necessary to enhance the burning rate and, thus, to accelerate the
deflagration. Therefore, it is probably the combination of degeneracy and turbulence
which enables pure deflagration to cause an explosion. Nevertheless, there is an ongo-
ing debate whether there might be a transition from the deflagration to a detonation at
some point.

Laminar Burning and Flame Instability

To begin with, we shall consider laminar flames which are smooth on the smaller
length scales being considered. For a steady laminar flame, the width of the reaction
zone, δF, is determined by the equilibrium between energy generation due to nuclear
reactions, B, and the rate of diffusion caused by thermal conduction [cf. Landau and
Lifshitz, 1991, § 128]. The balance between these two processes can be expressed
in terms of their characteristic time scales, τburn and τcond. The former is given by
τburn ∼ ρεnuc/Bnuc, where εnuc is the specific energy released by thermonuclear fusion.
The time scale of diffusion, on the other hand, can be expressed as τcond ∼ δ2F/lec,
where le is the mean free path of electrons, which contribute the largest part of the
thermal conductivity. Setting these two time scales equal, one finds that the flame
thickness δF is approximately given by

δF ∼
√
ρεnuclec

B
. (1.28)

Defining the laminar flame speed by slam = δF/τburn, we have

slam ∼
√

lecB
ρεnuc

. (1.29)

Thermonuclear combustion of degenerate carbon and oxygen in the laminar burn-
ing regime was investigated by Timmes and Woosley [1992]. They computed the
conductive flame propagation with several methods and determined various parame-
ters, in particular, the flame speed slam for a wide range of mass densities and nuclear
compositions. For equal mass fractions of 12C and 16O at a density ρ0 = 109 g cm−3,
for example, slam ≈ 36 km s−1. The specific energy release is εnuc ≈ 7 ·1017erg g−1 [cf.
Steinmetz et al., 1992], which is of the same order of magnitude as the Fermi energy
per unit mass (see Section 2.3.2). Moreover, GMCh/R ∼ εnuc in a Chandrasekhar-mass
white dwarf. For this reason, almost all matter must be burned to get the star gravita-
tionally unbound, i. e., to produce an explosion. Assuming a spherical flame surface
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propagating at laminar speed from the centre of the white dwarf outwards, the time
required to burn the whole star would be of the order 10 s. As burning increases the
internal energy by an amount comparable to the Fermi energy, degeneracy is lifted and
expansion sets in. With decreasing density, this effect becomes even stronger. The
scale on which the star adjusts itself to the rising internal energy is the sound crossing
time τS. Initially, τS ∼ 0.1 s. Hence, the expansion would proceed too quickly and
quench the burning process before an explosion could commence, if the flame would
propagate more or less as a spherical surface. In conclusion, there must be surface-
increasing processes caused by flame instabilities.

Starting with a nearly planar flame front, deviations from the perfectly planar ge-
ometry are amplified in the course of propagation. This is a consequence of the normal
component of the velocity going through a jump across the flame front, while the tan-
gential component is continuous. If there is a bulge towards the unburned material,
the velocity at the crest is maximal and steadily increases with respect to those por-
tions of the front lagging behind. Thus, the bulge grows, an effect which is called
Landau-Darrieus instability [cf. Landau and Lifshitz, 1991]. However, as discovered
by Zel’dovic [1966], the perturbations cannot grow indefinitely, because eventually
cusps form between adjacent bulges, and the front assumes a stable cellular shape.
Since the surface area of a cellular front is larger than a planar front, the total rate of
burning is also higher. If the cellular structure of a flame cannot be resolved in a numer-
ical simulation, it is possible to account for the increase of the burning rate by means of
an an effective propagation speed sc = (Ac/A0)slam. The surface ratio Ac/A0 is deter-
mined by the density contrast ρb/ρu between burned and unburned material. Blinnikov
and Sasorov [1995] argued that the emerging cellular surface is fractal within certain
lower and upper cutoff scales. Implications of the cellular structure for deflagration
fronts in thermonuclear supernovae were investigated by Niemeyer and Hillebrandt
[1995a] and, furthermore, Niemeyer and Woosley [1997]. It became clear that the in-
crease of the rate of burning due to the cellular structure is small and definitely not
sufficient to produce an explosion. Röpke et al. [2003] have recently confirmed the
mechanism of flame stabilisation for two-dimensional deflagration in degenerate C+O
matter. The simulations performed with a fuel density of ρu = 5 · 107 g cm−3 indicated
an increase of the propagation speed by about 25 %.

In the presence of a gravitational field, the evolution of the burning process be-
comes even more intricate, as the burned fluid has lower density than the unburned
fuel and, hence, it is subject to buoyancy. Considering initially globular blobs of
thermonuclear ash, they will rise and form convective plumes, while the surrounding
unprocessed material is dragged downwards. The asymptotic rise velocity was experi-
mentally found to be of the order

√
geffLRT, where LRT is the characteristic spatial scale

(the “size of the bubble”) and geff = At g is the effective acceleration due to buoyancy
[cf. Niemeyer and Woosley, 1997]. The Atwood number At = (ρu − ρb)/(ρu + ρb) is
a measure of the density contrast between burned and unburned material. The corre-
sponding time scale is given by

τRT ∼
√

LRT

geff
=

√
LRT

At g
, (1.30)

which agrees with results obtained from linear stability analysis of sinusoidal pertur-



Physical Foundations 13

bations in a horizontal planar interface separating low-density fluid from high-density
fluid on top [cf. Padmanabhan, 2000, Section 8.13.1]. The gravitational amplification
of vertical density perturbations is called Rayleigh-Taylor instability and, in fact, is the
driving mechanism of turbulence in supernova explosions.

Turbulent Deflagration

The energy being generated by thermonuclear burning in a white dwarf is driving con-
vection. Thereby, heat is converted into mechanical energy. As the burned material
of lower density penetrates the high-density fuel, strain is generated at the interface,
which in turn gives rise to Kelvin-Helmholtz instabilities. In the beginning, the vor-
tices distort the convective plumes into mushroom-like shapes. As mentioned above,
the characteristic velocity of convection on the length scale l is vRT(l) ∼ √

geff l. In prin-
ciple, RT instabilities are generated on arbitrarily small length scales. However, non-
linear turbulent interactions among different scales will produces a cascade of vortices.
The scaling behaviour of these vortices asymptotically approaches Kolmogorov’s law
v′(l) ∝ l1/3 9. Consequently, turbulent vortices will increasingly dominate RT insta-
bilities on small length scales, provided that there is enough time for turbulence to
develop. The time required to produce turbulence on the scale l, given a characteristic
velocity vRT(l), is of the order τRT = l/vRT(l) ∝ l1/2. This is the self-interaction time
scale of convective plumes of size l. After the time τRT has elapsed, turbulence on
scales � l is developed. However, if the time scale τRT becomes comparable to the
sound crossing time, the expansion of the star tends to inhibit the production of tur-
bulent vortices. Consequently, τS ∼ 0.1 s sets an upper bound on the range of fully
turbulent length scales. This is the integral length scale L of the turbulence cascade,
which was estimated to be of the order 106 cm by Niemeyer and Woosley [1997]. On
the largest length scales l � L, buoyancy governs the dynamics, whereas turbulence
dominates the smaller length scales l � L. This Thesis is exclusively concerned with
the dynamics on the scales smaller than L.

In the figurative framework of a hierarchy of vortices or eddies, one can think of
v′(l) as being the typical velocity of an eddy of size l. The associated eddy turn-over
time is l/v′(l). If v′(l) is small compared to the laminar flame speed slam, then the flame
front will propagate through a region of size l in a time much faster than the turn-over
time l/v′(l). Thus, the turbulent flow appears to be more or less “frozen” with respect
to the burning process on these scales. For v′(l) � slam, on the other hand, the front
is significantly distorted while it is crossing a vortex of diameter l. Hence, there is a
threshold scale on which burning decouples from turbulence. This is the Gibson scale
lG, which is defined by

〈v′(lG)〉F = slam. (1.31)

The brackets denote the ensemble average of the velocity fluctuations over the whole
region in which burning takes place. On length scales l � lG, turbulence stretches
and folds the flame and thereby increases the surface area A. Since the rate of energy
generation is proportional to Aslam, ever more heat is released per unit time. This

9Niemeyer and Kerstein [1997] investigated the possibility of a different scaling law in the case of tur-
bulence being driven by convection. As of today, however, most experimental results favour the validity
of the Kolmogorov scaling law.
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enhances convection and the production of turbulence. The flame front would tend
towards a fractal, if it were not for the lower cut-off set by the Gibson scale10.

In a gedanken experiment, one can imagine a flame front propagating through an
infinite column subject to a vertical gravitational field. Initial perturbations of a hori-
zontal flame will grow due to RT instability. Turbulence will increasingly distort the
flame. A steady state will be approached asymptotically, in which the burning rate is
statistically constant. We shall denote the maximum burning rate in the steady state
by B∞. Actually, this scenario was implemented numerically by Khokhlov [1995].
He found that the mean burning rate in the steady state is independent of the laminar
flame speed slam. In fact, it is only determined by the asymptotic rise velocity of RT
instabilities and the length scale LRT:

B∞ ∝
√
geffLRT. (1.32)

Setting the initial burning rate B0 ∝ A0slam, where A0 is the surface area of the hori-
zontal planar front, the ratio B∞/B0 is equal to the ratio A∞/A0. A∞ can be regarded
as an ensemble average of the flame surface area in the steady state. The same rate of
energy generation would be obtained, if the surface area was A0, but the flame would
be propagating at an effective speed

st(LRT) =
A∞
A0

slam ∼
√
geffLRT. (1.33)

This is the turbulent flame speed. It captures the effects of turbulence in a purely
statistical manner.

The notion of a turbulent flame speed can be applied at the level of any scale in
between the Gibson and the integral scale of turbulence. The basic idea is that a front,
which is smoothed on scales smaller than l, must propagate with an effective speed
st(l) of the order v′(l), because the dynamics of the flame on scales ∼ l is governed by
turbulent vortices of size l. The relation st(l) ∼ v′(l) was first proposed by Damköhler
[1940], who studied Bunsen cones. Further evidence was found from other laboratory
measurements on steady open flames [cf. Williams, 1994, Chapter 7]. Kerstein [1988]
confirmed this relation on the basis of numerical studies. Invoking the Kolmogorov
scaling law v′(l) ∝ l1/3, st(l) can be estimated on scales l � L to be

st(l) ∼ v′(l) ∝ l1/3. (1.34)

In order to conserve the burning rate, the implied scaling law for the surface area of
the smoothed flame front is

A(l) ∝ l1/3. (1.35)

The power law A(l) ∝ lD−2 is characteristic for a fractal of dimension D. In the Kol-
mogorov regime, D = 7/3, where the lower cut-off is given by the Gibson scale lG and
the upper cut-off by the integral scale L. For the larger, buoyancy-dominated scales
L � l � LRT, the scaling law vRT(l) ∝ l1/2 implies a greater dimension, D = 5/2. Cal-
culating the turbulent flame speed is of crucial importance for numerical simulations.

10Of course, there are also topological reasons for the flame surface being limited. Once different
portions of the flame front collide and merge, the increase of the burning rate ceases, as pointed out by
Khokhlov [1995].
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Suppose that ∆ is the length scale corresponding to the discretisation. In the case of a
finite-volume scheme, ∆ is the size of the grid cells. The unresolved scales l � ∆ are
called subgrid scales. For most turbulent combustion processes which are of physical
or technological interest, lG � ∆, given the power of contemporary computers. The
effective propagation speed of the modelled flame front is st(∆) ∼ v′(∆). In conclu-
sion, an approximative description of turbulence on scales l � ∆, i. e., a subgrid scale
model, is required. This is the very topic of this Thesis.

So far we have assumed that the flame front is merely advected by the turbulent
flow but the internal structure of the reaction zone is not affected by turbulence. This is
the case in the flamelet regime of burning. Once turbulent vortices disrupt the reaction
zone itself, the notion of a flame front which locally propagates with a speed sl relative
to the fuel is not sensible, and one speaks of distributed burning. Traditionally, the
criterion for the breakdown of the flamelet regime is considered to be Ka = δF/ηK ∼ 1,
where Ka is known as the Karlovitz number. However, Niemeyer and Kerstein [1997]
pointed out that Ka ∼ 1 is not the appropriate criterion for Pr� 1, i. e., if the diffusivity
of turbulence energy is small compared to the thermal diffusivity of heat. In general,
δF ∼ lG marks the transition to distributed burning, because turbulent vortices of size
smaller than the Gibson scale do not affect the flame in any case. If Pr ∼ 1, lG ∼ ηK
and the conventional criterion is recovered. Since the Prandtl number is much smaller
than unity in white dwarf matter, δF � lG is the correct criterion for deflagration in
a thermonuclear supernova. It appears that the flamelet regime breaks down if ρ �
3 · 107 g cm−3 [cf. Niemeyer and Woosley, 1997].

Detonations

For the initiation of a detonation, a certain critical mass must explode and produce a
self-sustaining pressure wave. The fuel has to be heated up to the point of ignition in
less than one sound crossing time. Otherwise, the pressure wave will be damped too
quickly. It is thought that such pressure waves might be triggered by a local excess of
energy, which cannot immediately be disposed through adiabatic cooling. Whether this
induction time gradient mechanism can initiate a detonation depends on the level of
temperature fluctuations, as the reaction rate and the associated burning time scale are
largely determined by the temperature. According to Niemeyer and Woosley [1997],
the temperature fluctuations are very tightly constrained for a detonation to be initiated
in carbon and oxygen of density 3 · 109 g cm−3. However, such preconditioning is
virtually impossible under the condition of extremely high degeneracy, because even
minute variations in the local state entail very large temperature fluctuations. This is
probably the reason why prompt detonations of Chandrasekhar-mass white dwarfs are
not observed.

At lower density, on the other hand, turbulent mixing is a possible agent of pre-
conditioning. This led Khokhlov [1991] to the conjecture that a detonation might be
triggered by turbulent deflagration, once the white dwarf has expanded considerably.
Indeed, transitions from deflagrations to detonations are observed in combustion exper-
iments with explosive gaseous mixtures. However, an objection inferred from scaling
arguments persists. For instance, at a density of about 107 g cm−3, the minimal size
of a preconditioned region for the initiation of a detonation would be roughly 2 km.
However, this is still much larger than the heat diffusion scale δF (1.28). Since this is
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the length scale on which significant temperature variations occur, the transition to a
detonation seems very unlikely, as was pointed out by Niemeyer [1999]. Nevertheless,
it is not entirely excluded once the deflagration enters the regime of distributed burn-
ing. In this regime, the burning process is not localised to flames but spread out by
turbulence over regions much larger than δF. Then the preconditioning requirements
for a detonation could be met. However, the modelling of burning in the distributed
regime has not been attempted yet in the context of supernova explosions. For the
time being, there is no conclusive evidence, and the transition from deflagration to a
detonation remains hypothetical.

1.2 Models and Observations

Supernovae are classified according to their spectral properties. The category of type
Ia supernovae (SNe Ia) is distinguished from those of type II by the absence of hy-
drogen lines. Contrary to type Ib/c, there is no helium seen in the spectra of type Ia
supernovae but prominent silicon lines, in particular, a P-Cygni profile around 6100 Å.
As an example, spectra for the type Ia SN 2002bo at various stages are shown in
Figure 1.2. This classification scheme has grown historically form advances in the
observation of supernovae. Unfortunately, it is completely detached from the theoret-
ical understanding. At present, all but type Ia supernoave are thought to be caused by
the gravitational collapse of the core of a massive star. For supernovae of type Ia, on
the other hand, an entirely different mechanism was proposed by Hoyle and Fowler
[1960]. They identified a thermonuclear runaway as the cause for an explosion of de-
generate stars, namely, white dwarfs. This accounts well for another defining property
of type Ia supernova, the large mass of56Ni which decays into 56Fe and thereby powers
the light curve. Since the original proposal, there has been vivid controversy of how
such an explosion might come about and what the exact physical mechanism could be.
No final answer can be given yet. The most likely scenario from our current point of
view is the explosion of a Chandrasekhar-mass white dwarf, either being caused by
pure deflagration of carbon and oxygen or an initial deflagration followed by a deto-
nation. This is the aforementioned single-degenerate scenario. In the following, the
astrophysical framework of the consensus model is discussed.

1.2.1 Progenitor Scenarios

The main difficulty with the SD scenario is the search for evolutionary channels which
could produce a white dwarf of mass MCh ≈ 1.4M�. Since most white dwarfs are born
with masses near 0.6 M�, progenitors of thermonuclear supernovae presumably evolve
in semi-detached binary systems, in which a C+O white dwarf accumulates mass by
accretion of hydrogen form a companion star. However, if the mass-transfer rate is sig-
nificantly less than 5 · 10−7 M� yr−1, shell flashes burn most of the hydrogen layer on
top of the C+O core, once a critical amount has been accreted. Such events can be ob-
served as nova outbursts and are violent thermonuclear explosions, in which the outer
layer of the white dwarf is expelled into space. Consequently, there is no significant
gain in mass. For accretion rates just below 5 · 10−7 M� yr−1, on the other hand, steady
hydrogen-shell burning gradually increases the mass of the white dwarf. In between,
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Figure 1.2: Spectral evolution of SN 2002bo [taken from Benetti et al., 2003].

weak shell flashes might occur. Contrary to the detonations at lower accretion rates,
these flashes do not expel all the accreted matter, and so the white dwarf can grow. For
still higher transfer rates, mass loss due to strong wind works against the accumulation
of mass.

Basically, two possible evolutionary channels leading to the thermonuclear explo-
sion of a Chandrasekhar-mass white dwarf in a semi-detached binary system have been
identified. These channels are discussed, for instance, in Hachisu [2002], Nomoto et al.
[2003] and Fedorova et al. [2003]. Although there is no agreement yet on the details
of the binary evolution, the picture is more or less as follows. In one scenario, the
binary system goes through a common envelope (CE) phase once the primary reaches
the asymptotic giant branch. The CE gets ejected and the core of the primary star is
left with a secondary main sequence (MS) star in close orbit. The former is either a
C+O white dwarf or a helium star which subsequently becomes a white dwarf. The
secondary fills its Roche lobe when it is still on the MS or as a subgiant. Then the white
dwarf continuously accretes matter from the secondary and eventually approaches the
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Chandrasekhar mass. This is the WD+MS channel. In the other scenario, the more
massive star becomes a helium star after its first Roche lobe overflow, and helium core
burning produces a C+O white dwarf. Mass accretion by the white dwarf starts when
the secondary evolves into a red giant and fills its Roche lobe. Hence, this channel
is labelled WD+RG. Observationally, binary star systems evolving towards a type Ia
supernova are associated with supersoft X-ray sources, in which steady hydrogen burn-
ing produces the radiation. In the case of weak shell flashes, recurrent novae might
also indicate possible progenitors. Moreover, long-period dwarf novae were suggested
as an alternative route towards type Ia supernovae by King et al. [2003].

The minimal initial mass to produce a Chandrasekhar-mass white dwarf in the
WD+MS channel was deduced from binary evolution calculations by Han and Pod-
siadlowski [2003]. It appears that white dwarfs born with a mass less than 0.67 M�
cannot reach the Chandrasekhar limit. Since SNe Ia are quite rare events, this lower
bound does not seem too restrictive. However, for initial masses in the range below
0.8 M�, the constraints on the initial mass of the secondary and the orbital period are
very tight. From binary population synthesis, Han and Podsiadlowski found a birth
rate of roughly 10−3 type Ia supernovae in the Milky Way, which falls slightly short of
the observationally estimated rate of at least 3 ·10−3 yr−1. As for the WD+RG channel,
they inferred a negligible contribution to the Galactic supernova rate. Fedorova et al.
[2003] presented an even more conservative estimate of 0.2 ·10−2 yr−1 from both chan-
nels in the SD scenario. This would clearly be insufficient to account for the observed
supernova occurrence rate. Another problem which sheds doubt on the exclusiveness
of the SD scenario is the lack of observational evidence for binary star systems with a
substantially massive white dwarf component. So far only a single candidate for a type
Ia supernova has been discovered, the recurrent nova U Scorpii. According to new ra-
dial velocity measurements by Thoroughgood et al. [2001], the white dwarf primary
has a mass very close to the Chandrasekhar limit and is likely to undergo a thermonu-
clear supernova explosion in less than a million years. A further observational obstacle
is the lack of hydrogen in the spectra of type Ia supernovae, actually, the defining fea-
ture. If there was a companion star, it should contaminate the supernova ejecta with
hydrogen and possibly helium. An additional source of hydrogen could be residuals
from a CE phase. However, evidence for hydrogen has only very recently been found
in the single case of supernova 2002ic [Hamuy et al., 2003].

Of course, alternative progenitor scenarios have been proposed as well. One of
those is the double degenerate (DD) scenario, in which two white dwarfs merge to a
supercritical degenerate mass which explodes. The obvious difficulty encountered with
the DD scenario is the remarkable observational homogeneity of type Ia supernovae
regarding the explosion energy and the produced mass of 56Ni. Apart from that, the
merging of two white dwarfs could also result in the gravitational collapse to a neutron
star [cf. Hillebrandt and Niemeyer, 2000, Sections 4.1 & 5.3]. Nevertheless, the DD
scenario might explain some peculiar supernovae such as the extraordinarily bright SN
1991T which is hard to accommodate within the consensus model. Another possibility
put forward is the detonation of an accreted degenerate helium layer, which might
ignite the C+O core of a sub-Chandrasekhar mass white dwarf. In this case, burning
proceeds from the outer helium layer inwards. However, predictions deduced from this
scenario are in conflict with several observational properties of type Ia supernovae [cf.
Hillebrandt and Niemeyer, 2000, Section 5.2].
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1.2.2 Ignition and Explosion Models

The most poorly understood aspect of the SD scenario is the initiation of the deflagra-
tion phase, which is expected to occur at a temperature of roughly 109 K and a mass
density around 2 · 109 g cm−3. Once the mass of a C+O white dwarf approaches the
Chandrasekhar limit, thermonuclear heating surpasses cooling by neutrinos and the
core goes through a phase of strong convection. The convective turn-over time τB be-
comes ever smaller as the rate of thermonuclear reactions rises due to the increasing
temperature. At a certain point, the time scale of thermonuclear burning becomes so
small that a phase transition in the nuclear equilibria is initiated and microscopically
thin, conductively propagating burning zones are formed. Within the flames, carbon
and oxygen is completely burned to intermediate mass elements, which in turn are
processed to 56Ni and α particles by a multitude of reactions. The term ignition refers
to the initial formation of flames rather than the gradual onset of thermonuclear reac-
tions prior to the deflagration. Since the density contrast between fuel and the burning
products is typically much more pronounced than the thermal density fluctuations in
the convective regime, the initially formed bubbles of thermonuclear ash are lifted by
buoyancy at a much higher speed than the convective plumes.

Phenomenological 1D models of the explosion appeared in the nineteen eighties,
in particular, the well known deflagration model W7 by Nomoto et al. [1984]. Actu-
ally, this model is still in use for radiation transport calculations. For W7, the flame
propagation speed is a free parameter which is adjusted such that observational proper-
ties can be fit. A decade later, attempts towards multidimensional computations were
made. Assuming some arbitrary initial burning zones, these models evolve the hy-
drodynamical equations in combination with a simplified reaction network and some
numerical treatment of flame propagation. As with the early 1D models, two dis-
tinct branches of models have been developing since then. On the one hand, Khokhlov
[1991] picked up the idea of a delayed detonation (DDT), whereas Niemeyer and Hille-
brandt [1995b] began with pure deflagration models. As discussed in Section 1.1.3,
the transition from deflagration to a detonation is supposed to occur once the density
of the expanding white dwarf has dropped to roughly 107 g cm−3. Then the detonation
would rapidly consume the remaining carbon and oxygen and enhance the explosion
energy significantly. However, the mechanism which could trigger a detonation re-
mains dubious. In deflagration models, on the other hand, turbulence is highlighted as
the crucial factor producing enough energy for an explosion and the correct distribution
of elements. Apart from these two variants of the explosion of a Chandrasekhar-mass
white dwarf, the originally proposed prompt detonation model was dismissed, because
no elements of intermediate mass such as silicon were produced. This was definitely
contradicting observations [cf. Steinmetz et al., 1992]. Yet another flavour of the DDT
model assumes a pulsational delayed detonation, with alternating detonation phases
followed by a recollapse which triggers a further detonation, possibly, with re-ignition
of deflagration in between. By now, however, this appears to be a rather unlikely sce-
nario.

The main challenge encountered with the pure deflagration model is the very small
propagation speed of the flame fronts, especially, once the white dwarf has expanded
significantly and the density drops. As discussed in Section 1.1.3, turbulence aids
to the acceleration of the burning process. As the mechanism producing turbulence
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Figure 1.3: Evolution of the flame front in a 3D LES of a thermonuclear supernova with ran-
dom multi-point ignition. The numerical resolution is 768 3 [taken from Niemeyer,
Reinecke, Travaglio, and Hillebrandt, 2003].

is essentially three-dimensional, any sensible modelling of turbulent deflagration re-
quires 3D computations. It is instructive to note that the early 2D deflagration models,
which were computed by Niemeyer and Hillebrandt [1995b], Niemeyer et al. [1996]
and Reinecke et al. [1999], in most cases failed to produce sufficient energy for an
explosion. Apart from the deficiences in the modelling of turbulence, it was noted that
the explosion energy sensitively depends on initial conditions. With a new generation
of massively parallel supercomputers becoming accessible at the turn of the millen-
nium, high-resolution 3D simulations of thermonuclear supernovae became feasible
and, indeed, a total energy release on top of the gravitational binding energy of about
5 · 1050 erg was achieved [Reinecke, Hillebrandt, and Niemeyer, 2002]. The evolution
of the flame front in a recent 3D simulation is shown in Figure 1.3. With regard to the
explosion energy and nucleosynthesis, the results are still not fully satisfactory, but at
least it appears that the 3D deflagration models are on the right track [Niemeyer et al.,
2003].

Independent simulations with adaptive mesh refinement (AMR) were carried out
by Gamezo et al. [2003]. The most important difference in the methodology of the
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two groups is the determination of the turbulent flame speed. Gamezo et al. calculated
st from the asymptotic rise velocity associated with the RT instabilities, whereas a
subgrid scale turbulence energy model was used by Reinecke et al. The first method
is based upon the assumption that turbulent velocity fluctuations are mostly produced
by buoyancy, even at the cut-off length scales of typical contemporary simulations.
According to the discussion of turbulent deflagration in Section 1.1.3, however, this
assumption seems very questionable. On the other hand, if SGS velocity fluctuations
are indeed dominated by the turbulence cascade, in agreement with Kolmogorov’s self-
similarity theory, a subgrid scale model which accounts for the turbulent interactions
between resolved and subgrid scales has to be implemented. However, the model
utilised by Reinecke et al. is largely ad hoc. In any case, the subgrid scale model
must be sound even in the extremely complex scenario of a thermonuclear supernova
explosion. Actually, none of the aforementioned approaches meets this requirement,
as will be demonstrated in this Thesis.

1.2.3 Lightcurves and Spectra

The first observed supernova which was possibly of type Ia is Kepler’s supernova of
AD 1604. It was discovered several days before maximum light and there is a remark-
ably accurate record of the variation in brightness over about one year. This made
the reconstruction of the light curve possible [cf. Green and Richardson, 2003]. Since
then, no type Ia supernova within the Galaxy has been observed. Today the light curves
of type Ia supernovae are characterised by several phases, as described by Leibundgut
[2000]. The earliest detections of type Ia supernovae were made about 16 days before
the peak brightness. In the beginning, there is a steep rise of luminosity. In the max-
imum phase, MV ≈ −19.5 corresponding to roughly 1010 times the luminosity of the
sun. The distance modulus required to calibrate the luminosity is usually determined
by Cepheids. The spectra near maximum brightness are dominated by P-Cygni lines
of elements in the intermediate mass range, particularly, Si, Ca and Mg, which indicate
ejection velocities in the range 1.0 . . . 1.5 · 104 km s−1. There is also a second maxi-
mum in the infrared and red light between 20 and 40 days after the first maximum.
Following a rapid decrease of luminosity past the maximum, the lightcurves finally
enter a phase of exponential decline, with a rate that is roughly the same for most type
Ia supernovae. During the decline, forbidden Fe and Co lines become increasingly
prominent. From the relative intensities of these lines, it can be inferred that the tail of
the light curve is powered by the radioactive decay of56Co, which in turn stems from
the quickly decaying 56Ni [cf. Hillebrandt and Niemeyer, 2000, Section 2.1].

The rather homogeneous properties of type Ia supernovae and their extraordinary
brightness add up to a good cosmological distance indicator. According to Branch
[1998], a one-parameter representation is sufficient to normalise the absolute bright-
ness. Basically, less luminous events appear redder, and the light curve displays a
faster post-maximum decline. Moreover, the ejection velocities inferred from the lines
are smaller. A customary method of accounting for these variations is to calculate the
decline rate ∆m15, i. e., the change in the magnitude over fifteen days in the aftermath
of the peak luminosity [Phillips, 1993]. As a particular important application, the Hub-
ble constant can be measured [Branch, 1998; Riess and Filippenko, 2001; Perlmutter
and Schmidt, 2003]. In Figure 1.4, the current Hubble diagram for SNe Ia in the lo-
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Figure 1.4: Hubble diagram for observed type Ia supernovae in the local universe [taken from
Perlmutter and Schmidt, 2003].

cal universe is plotted. Moreover, data obtained by the Supernova Cosmology Project
[Perlmutter et al., 1999] and the High-z Supernova Search [Schmidt et al., 1998] for the
first time provided evidence that the expansion of the Universe is accelerating rather
than decelerating. The luminosities of distant type Ia supernovae in a sample taken
up to a redshift z ≈ 1 appear too dim to be reconcilable with a matter-dominated uni-
verse. The fits of high redshift SN Ia data for several cosmological models are shown
in Figure 1.5. In consequence, there must be a non-vanishing contribution from a cos-
mological constant or dark energy. This is, perhaps, both the most thrilling and the
most puzzling discovery in contemporary astrophysics. In combination with measure-
ments of the cosmic microwave background anisotropies and results from large-scale
structure surveys, the composition of the universe is constraint to be about 30% matter
and 70% dark energy [Perlmutter, 2003; Carroll, 2003]. Although the results have been
confirmed recently by Tonry et al. [2003] and reddening by dust as well as evolution-
ary effects are quite likely ruled out as sources of systematic errors, it has also become
clear that type Ia supernovae are actually more diverse than originally assumed [Lei-
bundgut and Suntzeff, 2003; Ruiz-Lapuente, 2003; Filippenko, 2003; Benetti et al.,
2003]. Apart from predicting light curves and spectral features, understanding the
physical origin of variations in luminosity, the amount of produced nickel and the dif-
ferent decline rates is therefore the major challenge for the theory of thermonuclear
supernovae.
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Figure 1.5: Luminosities of type Ia Supernovae, including those found at high redshifts, and
the corresponding fits for three different cosmological models. The best agreement
is found in the case of a flat universe with a non-zero cosmological constant [taken
from Perlmutter and Schmidt, 2003].
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Chapter 2

Forced Isotropic Turbulence

Fluid motion forces vortices to stretch, and a stretching
vortex must fold to accommodate an increasing length
in a fixed volume. To the extent that the flow is scaling,
I conjecture the vortex tends toward a fractal.

B. B. Mandelbrot, The fractal geometry of nature

Telperion the one was called in Valinor, and Silpion, and
Ninquelótë, and many other names.

J. R. R. Tolkien, The Silmarillion

The direct numerical simulation (DNS) of isotropic turbulence serves as a kind of
virtual experiment for the study of various properties of turbulent flows. Typically,
the compressible flow in a cubic domain subject to periodic boundary conditions is
computed. The fluid is set into motion by a random force field and, if the forcing is
statistically isotropic and stationary, the outcome is an almost perfect realisation of the
mathematical paradigm of homogeneous and isotropic turbulence. Although such a
scenario is highly artifical and could hardly be produced in any laboratory experiment,
it is still a valuable utility to infer fundamental properties of turbulence, to study the be-
haviour of the numerical scheme in use and to evaluate structural information, which
might be helpful in the context of subgrid scale modelling. In the first part of this
Chapter, the methodology of computing numerical representations of isotropic turbu-
lence is discussed. Then results from several high-resolution 3D simulations regarding
statistics, flow structure, energy spectra and numerical dissipation are presented, and
thereby a rich phenomenology of turbulence emerges. Each computation was carried
out on the Hitachi SR-8000 supercomputer of the Leibniz Computing Center, with
domain-decomposition using 512 processors in parallel.

2.1 Dynamical Equations and Spectral Representation

The hydrodynamical problem can be formulated as follows. There is no energy source
except for a stochastic force field a(x, t), which acts uniformly on the fluid. Forces due
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to self-gravity and also energy flux due to thermal conduction are neglected. Moreover,
we shall assume that viscous dissipation of physical origin is negligible compared to
dissipation produced by the numerical scheme for solving the dynamical equations.
One can formally account for this effect by including a putative numerical damping
term N(x, t) in place of the viscous dissipation term in the momentum equation. The
stripped conservation laws for momentum (1.11) and the total energy (1.12) are there-
fore

∂

∂t
ρvi +

∂

∂xk
ρvivk = − ∂

∂xi
P + ρai + Ni, (2.1)

∂

∂t
E +

∂

∂xk
Evk = ρakvk. (2.2)

The pressure P and temperature T are determined for given Eint via the equation of
state (EOS) of degenerate matter, which is outlined in Section 1.1.1. In the following,
two numerical issues are discussed. First the numerical scheme is outlined, which is
used to solve the above set of dynamical equations, and then some questions regarding
the spectral representation of field quantities subject to periodic boundary conditions
(BC) are addressed.

2.1.1 The Piece-Wise Parabolic Method

Contrary to the common approach of simulating homogeneous turbulence, which is the
pseudo-spectral method of advancing the Fourier modes of the velocity field according
to the Navier-Stokes equation in spectral space, we apply a finite-volume method to
solve the dynamical equations in physical space, namely, the piece-wise parabolic
method (PPM)1. Our implementation of the PPM originated from Fryxell, Müller, and
Arnett [1989] and was adopted by Reinecke [2001] in a new modular Fortran 90 code
featuring MPI for massively parallel computation on high-end platforms. We named
this code Telperion to distinguish it from the original Prometheus implementation by
Fryxell et al., which has been evolving into various branches by now.

The PPM is a finite-volume scheme based on the Godunov method for solving
the Riemann problem at the cell interfaces, with higher-order interpolation between
the cell-averaged variables. In addition, shocks are detected and treated with special
techniques. Thereby, oscillations and smearing out over several cells are inhibited.
The PPM is thus fully applicable to compressible and possibly supersonic flows, which
makes this method especially attractive for astrophysical applications. The ability of
the PPM to handle shocks particularly well is certainly not that important in the context
of thermonuclear deflagration, because the Mach numbers are typically small (at least
with respect to the bulk motion) and the flow remains strictly subsonic. Nevertheless,
the significant density contrast between nuclear fuel and processed material makes the
use of a hydrodynamical code applicable to compressible flows mandatory. Here we
will discuss turbulence at various Mach numbers, ranging from subsonic to partially
supersonic flows.

A crucial point in the application of the PPM is numerical dissipation. In a way,
the usual categories of DNS versus large-eddy simulation (LES) are merged in the case

1An introduction to pseudo-spectral methods is given, for instance, in Pope [2000, Chapter 9]. The
PPM was first proposed by Colella and Woodward [1984].
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of a dissipative finite-volume scheme like the PPM. In this case, dissipation terms of
purely numerical origin enter the conservation laws, which mimic on larger scales the
action of viscous dissipation on smaller scales. Consequently, when the hydrodynam-
ical equations are solved with the PPM, in fact, the Euler equation with an additional
numerical dissipation term is evolved (see equation 2.1). The underlying assumption
is that the damping force N smoothes the flow on scales l ∼ ∆, where ∆ is the size of
the finite-volume cells. For scales l � ∆, on the other hand, N is negligible compared
to the non-linear advection term and the forcing term, respectively. If, in addition,
those scales which are largely unaffected by numerical dissipation encompass at least
a fraction of the inertial subrange, then we can say that the numerically computed flow
is a fair representation of the physical flow on scales much larger than Delta. Indeed,
this is a tight constraint as we will see in Section 2.5. In this respect, applying the PPM
in a hydrodynamical simulation is considered to be equivalent to a LES, in which the
Navier-Stokes equations (NSE) with explicit subgrid scale dissipation are solved. If
numerical dissipation is the exclusive source of energy dissipation, then we shall speak
of a direct numerical simulation, regardless of whether the dissipation length scale is
of the same order or much larger than the physical Kolmogorov scale. The term large-
eddy simulation, on the other hand, will be used for any kind of computation including
a subgrid scale model. In particular, this applies to simulations of turbulent burning,
as the propagation speed of the flame front is determined by the unresolved part of the
kinetic energy.

There is a long record of publications on testing the PPM in simulations of com-
pressible turbulence. Particularly, in the series of papers by Porter, Pouquet, and
Woodward [1992], Porter et al. [1994], Porter and Woodward [1994], Porter et al.
[1998] as well as Sytine et al. [2000] a wealth of results from simulations of isotropic
turbulence in an isothermal perfect gas with resolutions up to 10243 cells is discussed.
All of these simulations are restricted to the case of decaying turbulence, where the
fluid is not continually driven but only some initial perturbations at low wave numbers
are set and the computation is advanced merely over a couple of large-eddy turnovers.
Sytine et al. especially advocated the key idea of using DNS with the PPM as alterna-
tive to applying schemes based on the NSE. Convergence tests presented in their paper
seem to indicate that a good approximation to the limit of infinite Reynolds number
can be achieved with the PPM on grids of about 5123 or more cells.

Although a slightly reduced resolution of 4323 cells was used for the sake of op-
timal computational performance, the simulations which are presented here introduce
several new features. Firstly, energy injection through a stochastic force field was
applied over several large-eddy turnover times, starting with a uniform fluid at rest.
Thereby, the complete evolution was computed, beginning with the production of tur-
bulence, which is followed by equilibration and then passes over into decay when
the forcing ceases. Secondly, the spectral composition of the random force field was
varied, in particular, the weights of solenoidal components, which set the fluid into
rotational motion, relative to the dilatational components, which act as compressive
forces. Thirdly, the full EOS applicable to degenerate C/O matter was used and a
comparison between simulations with different mass densities allowed the discrimina-
tion of EOS-dependent effects. Apart from the computationally demanding Riemann
solver for the PPM, it was mainly the computational cost of solving the complicated
EOS in combination with very long simulation runs, typically, over several thousand
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time steps, which necessitated the aforementioned moderation in spatial resolution.

2.1.2 Fourier Transforms of Periodic Dynamical Variables

For the composition of the stochastic force which drives the turbulent flow as well as
the computation of energy spectra, the formulation of a spectral representation of force
and velocity fields is indispensable. Since the equations of motion (2.1) and (2.2) are
solved in a cubic domain subject to periodic BCs, some care has to be taken in the
treatment of Fourier transforms. Obviously, the solution of these equations must be
spatially periodic and, consequently, the resulting fields are not absolutely integrable.
For this reason, Fourier transforms in the form of integrals over all space, as usually
found in the literature, are non-existent. For a mathematically sound formulation one
must recognise that the Fourier transform of a field which is periodic in space is a
generalised function which, naturally, leads to discrete spectral modes.

Assuming periodicity in (x, y, z) with wavelengths X, Y and Z, the Fourier trans-
form q̂(k, t) of a field variable q(x, t) can be defined by a normalised volume integral,

q̂(k, t) =
∫ Z

0

dz
Z

∫ Y

0

dy
Y

∫ X

0

dx
X

q(x, t) exp(−ik · x). (2.3)

The spatial region spanned by (X, Y, Z) is usually called the fundamental cell of the
periodic function. Here we will call it the fundamental domain which seems more
suitable in a computational context and avoids confusion with the finite-volume cells
associated with numerical discretisation. The inverse Fourier transform which is con-
sistent with the above definition of q̂(k, t) is given by

q(x, t) =
XYZ

(2π)3

∫
d3k q̂(k, t) exp(ik · x). (2.4)

Periodicity in physical space induces a dual structure in spectral space in the form
of an equipartition into cells of volume (2π)3/XYZ. Each of these cells is associated
with a wave vector k jlm = 2π( j/X, l/Y,m/Z). To that effect, any periodic function can
be expressed as a discrete Fourier series, i. e.,

q(x, t) =
∑
j,l,m

q̂ jlm(t) exp(ik jlm · x), (2.5)

where the Fourier modes are given by

q̂ jlm(t) =
∫ 1

0
dz̃
∫ 1

0
dỹ
∫ 1

0
dx̃ q(x, t) exp[−2πi( jx̃ + lỹ + mz̃)], (2.6)

with the dimensionless coordinates x̃i = xi/Xi ∈ [0, 1]. In order to consolidate the
notion of a Fourier transform and the existence of discrete Fourier modes, q̂(k, t) has
to be identified with the following generalised function:

q̂(k, t) =
(2π)3

XYZ

∑
jlm

q̂ jlm(t)δ(k − k jlm). (2.7)

By substitution into equation (2.4), it can be verified that the Fourier expansion (2.5)
of q(x, t) is recovered. We will find this identity helpful when it comes to the question
of calculating an energy spectrum function from discrete Fourier modes.



Stochastic Forcing 29

2.2 Stochastic Forcing

The simulation of turbulent flows with homogeneous statistics both in space and time
utilises random force fields. In mathematical terms, the temporal evolution of the
driving force at any spatial point is determined by a random function or stochastic
process. It is actually easier to compose these random fields in spectral space, in
which additional constraints such as vanishing divergence can be invoked. Apart from
spatial homogeneity, the evolution of the stirring field should be statistically stationary.
If this is the case, the flow will asymptotically approach an equilibrium state, in which
production of turbulence is balanced by dissipation. To that end, the spectral modes of
the stirring field are modelled by a certain flavour of diffusive stochastic processes, the
so-called Ornstein-Uhlenbeck process. In order to compose solenoidal fields, which
produce rotational fluid motion, one has to modify the spectral modes by means of
projection operators, a method that was suggested by Eswaran and Pope [1988] and,
for example, applied by Niemeyer et al. [1999].

2.2.1 The Ornstein-Uhlenbeck Process

The type of stochastic process which can be utilised to model a physically reasonable
random force is constrained by several mathematical properties. To begin with, let us
consider the simplest case of a scalar random force f (t). Firstly, the statistics of the
process should be completely determined by some initial statistics at time t0. More
precisely, given the probability distribution function F( f (t); t| f (t0); t0) of f (t) at time t
conditioned on the value f (t0) at an earlier time t0, we have a complete specification
of the corresponding stochastic process. Such a process is called a Markov process.
Secondly, the simplest assumption one can make about the statistics of the random
function is that it is Gaussian. A fundamental Markov process which has Gaussian
statistics is the Wiener processWt( f ) on a variable f , for which

∆hWt =Wt+h −Wt = N(0, h). (2.8)

This means that the distribution of the increment ∆hWt of the Wiener process over
a time step h is normal with mean zero and variance equal to h. A realization f (t) of
Wt( f ) is a path fluctuating around zero, where the magnitude of the fluctuations scales
with their duration.

As for driving turbulence, a process with certain temporal correlation properties is
is called for. This leads us to the more general concept of a diffusion process Dt( f ),
which is characterised as a Markov process with a continuous sample path and statis-
tics that is specified by two functions a( f , t) and b( f , t), called the drift coefficient and
the diffusion coefficient, respectively. Since limh→0N(0, h) = 0, any sample path of
Wt is, in fact, continuous and the Wiener process is therefore a normalised diffusion
process with a( f , t) = 0 and b( f , t) = 1. The infinitesimal increment dWt can formally
be written as

dWt =Wt+dt −Wt = N(0, dt). (2.9)

Using the Wiener process as building block, a general diffusion process can be defined
by the following stochastic differential equation (SDE):

dDt = a[Dt, t]dt + b[Dt, t]dWt = N(a[Dt, t]dt, b2[Dt, t]dt). (2.10)
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Yet another property we have to observe is statistical stationarity. The archetypical
statistically stationary diffusion process is defined by

a( f , t) = − f
t
, b2( f , t) =

2σ2

T
. (2.11)

Substituting the above drift and diffusion coefficients, the SDE (2.10) becomes the
Langevin equation

dUt = −Ut
dt
T
+

(
2σ2

T

)1/2
dWt. (2.12)

The process Ut( f ) is called the Ornstein-Uhlenbeck process. It has the conditional
distribution function

F( f2; t2| f1; t1) = N
(
f1e−(t2−t1)/T , σ2

[
1 − e−2(t2−t1)/T

])
. (2.13)

This implies that T is the autocorrelation time scale of the Ornstein-Uhlenbeck pro-
cess, i. e., given any value f1 at time t1, the memory of this value will be largely erased
after an elapse of time ∼ T . If t2− t1 � T , on the other hand, there is a high probability
that the change from f1 to f2 will be small.

The mean of Ut is given by 〈Ut〉 = 〈U0〉e−t/T . Therefore, any information about
the initial configuration is exponentially damped. Using the properties 〈UtdWt〉 = 0
(statistical independence) and 〈dW2

t 〉 = dt (variance equal to time increment), the
infinitesimal change of the second moment of this process is given by

〈U2
t+dt〉 = 〈U2

t 〉 + 2〈UtdUt〉 + 〈dU2
t 〉

� 〈U2
t 〉 −

2
T
〈U2

t dt〉 + 2σ2

T
〈dW2

t 〉

= 〈U2
t 〉 + 2

(
−〈U2

t 〉 + σ2
) dt

T
.

This is equivalent to the first-order linear DE

d
dt
〈U2

t 〉 =
2
T

(
−〈U2

t 〉 + σ2
)

(2.14)

which has the solution

〈U2
t 〉 = σ2 +

(
〈U2

0〉 − σ2
)
e−2t/T . (2.15)

If 〈U2
0〉 = σ2, then 〈U2

t 〉 = σ2 for all t. Otherwise, the deviation of 〈U2
t 〉 from σ2

is exponentially damped on a time scale T/2. In conclusion, the Ornstein-Uhlenbeck
process is asymptotically stationary with 〈U2∞〉 = σ2.

2.2.2 Spectral Representation of the Force Field

In order to construct a vectorial random force field a(x, t) in physical space, we first
determine the Fourier models âjlm(t). One can think of each mode as being the real-
ization of a three-component complex stochastic process. In this Section, some of the
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equations are formulated, for brevity, in terms of the components of the Fourier trans-
form, â(k, t). The evolution of â(k, t) is given by a three-dimensional generalisation of
the SDE (2.12) for scalar Ornstein-Uhlenbeck process:

dâ(k, t) = −â(k, t)
dt
T
+ F0

∑
jlm

(
2σ2(k)

T

)1/2
δ(k − k jlm)Pζ(k) · dWt. (2.16)

Recall that, according to equation (2.7), the Fourier transform is a generalised function.
This is the origin of Dirac delta in the stochastic diffusion term on the right-hand side.

The functional form of the dimensionless variance σ2(k) determines the symme-
tries of the force field. In particular, if σ depends on the wave number k = |k| only,
then the resulting stochastic force field will be isotropic in physical space. Moreover,
it is usually assumed that the spectral density of turbulence energy for the smallest
wave numbers within the energy containing range has the asymptotic form E(k, t) ∝
k4, which would imply σ(k) ∝ k2. On the other hand, for wave numbers k �
k0, where k0 is the characteristic scale of turbulence production, σ(k) should de-
crease exponentially. Combining these two asymptotic expressions, we obtain σ(k) =
σ0(k/k0)2e−k/k0 . However, the exponential tail of this function poses numerical diffi-
culties, because one would require a spectral grid of the same resolution as the spatial
grid and, consequently, the computation of the inverse Fourier would become pro-
hibitively expensive. This can be avoided if the stochastic force spectrum is confined
to a narrow interval of wave numbers corresponding to the largest scales of the system
and is set identically zero for all wave numbers outside this interval. One possibility
would be to use a certain cut-off wavenumber without altering the functional form of
the spectrum. But here we prefer a modified spectral profile which is purely polyno-
mial:

σ(k) =

σ0(k/k0)2
[
1 − (k/k0)2

]
if k ∈ [0, 2k0],

0 otherwise.
(2.17)

Introducing the parameter α = k0X/2π which must be an integer, the number of non-
zero modes is only (2α)3. This is by far less than the number of cells in the spatial
grid. Making use of this fact, the inverse Fourier transform can be implemented very
efficiently.

The symmetric tensor Pζ(k) is defined by the linear combination of the projection
operators perpendicular and parallel to the wave vector. The components of Pζ(k) can
be expressed as

(Pi j)ζ(k) = ζP⊥i j(k) + (1 − ζ)P‖i j(k) = ζδi j + (1 − 2ζ)
kik j

k2
, (2.18)

where the spectral weight ζ determines whether the resulting stochastic force field is
purely solenoidal or dilatational or a combination of both. This can be seen by tak-
ing, respectively, the divergence and the rotation of the dynamical equation in spectral
space.

• The dilatational part of the stochastic force field is obtained by contracting equa-
tion (2.16) with the wave vector:

k·dâ(k, t) = −k· â(k, t)
dt
T
+(1−ζ)F0

∑
jlm

(
2σ2(k)

T

)1/2
δ(k−k jlm)k·dWt. (2.19)
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In the case ζ = 1, the contracted diffusion term vanishes and the stochastic force
field has asymptotically zero divergence, i. e. it becomes purely solenoidal in
the stationary regime. If ζ < 1, there are components of the stochastic force
field which produce compressive forces in physical space. One can see from the
above equation that the ratio of the compressive or dilatational components to
the solenoidal components is of the order (1 − ζ).
• On the other hand, taking the cross-product yields

k×dâl(k, t) = −k× âl(k, t)
dt
T
+ζF0

∑
jlm

(
2σ2(k)

T

)1/2
δ(k− k jlm)k×dWt. (2.20)

This equation demonstrates that in the case ζ = 0 a completely rotation-free
force field subject to the initial condition k × â(k, 0) = 0 is obtained, i. e.,
a purely dilatational initial field remains dilatational. If the initial field has
solenoidal components, they are damped out exponentially on the time scale
T and, eventually, the field becomes purely dilatational as well.

Since different Fourier modes are completely uncorrelated, it follows that the mean
square of â jlm(t) in the limit of t/T � 1 becomes

〈â jlm(t) · â jlm(t)〉 � 1
2

F2
0σ

2(k jlm)|Pζ(k jlm)|2 (2.21)

= (1 − 2ζ + 3ζ2)F2
0σ

2(k jlm), (2.22)

where |Pζ |2 = 2(Pi j)ζ(Pi j)ζ is the total contraction of the projection tensor. However,
it is important to bear in mind that only a half-set of the Fourier modes can be evolved
randomly, while the other half-set is determined by the constraint that each mode
â jlm(t) must be Hermitian conjugate with respect to the wave number k0 = 2πα/X.
Otherwise the corresponding physical force a(x, t) would fail to be real. In conse-
quence, we choose the normalisation∑

jlm

σ2(k jlm) =
1
2
, (2.23)

with j, l,m ∈ {0, 1, . . . , 2α}. Summing up equation (2.21) for all modes, one obtains∑
jlm

〈â jlm(t) · â jlm(t)〉 � (1 − 2ζ + 3ζ2)F2
0. (2.24)

Let us now assume that the stochastic force field is identically zero for t < 0, and
then it is set to the initial configuration

â(0, k jlm) = F0

2σ2(k jlm)

T

1/2 Pζ(k jlm) ·N jlm(0, 1). (2.25)

HereN jlm(0, 1) is a complex random three-vector for each spectral cell, where both the
real and the imaginary part of each component are distributed normally, with mean zero
and variance unity. In this case, the stochastic force process immediately starts in the
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statistically stationary regime at t = 0. The subsequent evolution can be numerically
calculated, based upon the conditional distribution function (2.13) of the Ornstein-
Uhlenbeck process. Suppose, â(t, k) is known at time t. Then â(t + δt, k) can be
approximated for a finite time step δt � T in the following way:

â(t + δt, k jlm) � â(t, k jlm) e−δt/T︸︷︷︸
�1−δt/T

+ F0σ(k jlm)
√

1 − e−2δ/T︸���������︷︷���������︸
�(2δt/T )1/2

Pζ(k jlm) ·N jlm(0, 1).
(2.26)

Implementing this equation with a Gaussian pseudo-random number generator, the
Fourier modes of the force field can be advanced for each time step in a simulation.

2.2.3 The Physical Stochastic Force Field

In terms of the discrete stochastic Fourier modes âjlm(t), the force field a(x, t) in phys-
ical space is given by

a(x, t) =
∑
jlm

â jlm(t) exp

[
−2πi
αL

( jx + ly + mz)

]
, (2.27)

where j, l,m ∈ {0, 1, . . . , 2α}. Utilising operator splitting, the source terms in the con-
servation laws (2.1) and (2.2) are numerically approximated by means of a simple
Euler-forward scheme:

δu(f)(x, t) � a(x, t)δt, (2.28)

δe(f)
kin(x, t) � u(x, t) · a(x, t)δt +

1
2
|a(x, t)|2δ2t, (2.29)

where δu(f) is the virtual displacement of the velocity caused by the acceleration a
and the corresponding change in kinetic energy per unit mass is δe(f)kin. Of course, this
treatment is purely kinetic and does not account for changes of the mass density within
the time step δt. Nevertheless, it seems to be a sensible approximation, because the
stochastic force field acts on length scales L much larger than the size of the numerical
cells and on time scales of the order T � δt.

According to Parseval’s theorem, the ensemble average of the second moment of
the stochastic force field at time t ≥ 0 is equal to the sum of the mean squared Fourier
modes, i. e., ∫ 1

0
dz̃
∫ 1

0
dỹ
∫ 1

0
dx̃ 〈a(x, t) · a(x, t)〉 =

∑
jlm

〈â jlm(t) · â jlm(t)〉. (2.30)

Therefore, equation (2.21) implies that the root mean square of the stochastic force is
given by

arms = (1 − 2ζ + 3ζ2)1/2F0. (2.31)

The statistical homogeneity and stationarity of the stochastic force field also suggests
that the stochastic force process is ergodic, i. e., temporal and spatial averaging of a
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particular realisation of the process should approach the ensemble average in the limit
of infinite time:

lim
n→∞

1
nT

∫ nT

0
dt
∫ 1

0
dz̃
∫ 1

0
dỹ
∫ 1

0
dx̃ |a(x, t)|2 � (1 − 2ζ + 3ζ2)F2

0 . (2.32)

In particular, the spatially averaged stochastic force force is itself a stochastic process
with an expectation value of arms = (1 − 2ζ + 3ζ2)1/2F0.

In the limiting case ζ = 1, which corresponds to a purely solenoidal stochastic
force, we have arms =

√
2F0. This is a consequence of projecting the normally dis-

tributed random modes produced by the three-component Wiener process perpendic-
ular to the corresponding wave vectors, which leaves only two from three degrees of
freedom. On the other hand, if the modes were projected parallel to the correspond-
ing wave vectors, the complementary single degree of freedom would be retrieved.
In his case, the force is purely dilatational and, indeed, equation (2.31) shows that
arms =

√
1F0 if ζ = 0. Since F0 has the physical dimension of acceleration, it can be

expressed as the characteristic velocity of the flow divided by the integral time scale of
turbulence production. It seems reasonable to set this integral time scale equal to the
correlation time scale T , which was introduced in equation (2.16), because changes of
the stochastic force field are expected to evolve on the same time scale as large-scale
velocity fluctuations (the so-called large eddies). Hence, linking the time scale T to
the large-scale properties of the flow, we set T = L/V and F0 = V/T = LV2, where
V is the characteristic velocity of the large eddies associated with the integral length
scale L = 2π/k0.

2.3 Physical Scales

As a first step in setting up a DNS of turbulence, appropriate values of the fundamental
scales have to be chosen as simulation parameters. Starting with a uniform fluid at rest,
there are only five independent parameters. One possible set is given by the initial mass
density ρ0 and temperature T0, the integral length scale L, the characteristic velocity
V and, finally, the spectral weight of the solenoidal component of the driving force,
ζ. Then ρ0 and T0 fix the pressure P0, the internal energy E0 and the speed of sound
c0 over the equation of state (EOS), the integral time scale T is trivially given by
T = L/V , and the properties of the stochastic driving force are completely specified by
the magnitude F0 = LV2, the characteristic wave number k0 = 2π/L and the weighing
parameter ζ. For the structural properties of the flow, the main parameter of concern
is the ratio V/c0, which is the characteristic Mach number. Of course, V/c0 only
gives an order of magnitude for the actual average Mach number encountered in the
flow, once turbulence is fully developed. In this Section, typical values of the state
variables are considered, which follow from approximations for non-relativistic and
extremely relativistic degeneracy, and appropriate normalisations are introduced, in
order to obtain dimensionless parameters. Moreover, the admissible range for the
integral length scale L is determined.
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2.3.1 Mass Density

A characteristic density scale of degenerate matter in white dwarfs is given by the
mass density for which the Fermi momentum pF of the electrons is equal to mec. The
relativistic Fermi momentum can be expressed as pF = (3π2)1/3

�n1/3
e , where ne =

YFρ0/mB is the number density of electrons, given a mean baryon mass mB and a
fraction YF of electrons per nucleon [cf. Shapiro and Teukolsky, 1983, Section 2.3].
Setting mB ≈ mp, the mass density corresponding to pF = mec is given by

ρc =
mp

3π2YF

(mec
�

)3
=

mp

3π2YFλ
3
e
. (2.33)

This is the critical density, for which the particles of a Fermi gas become relativistic.
From the last expression, it can be seen that the mean particle separation at the critical
density is of the order of the Compton wavelength λe ≈ 3.862 · 10−11 cm. Thus, we
shall adopt the constant mp(mec/�)3 ≈ 2.903 · 107 g cm−3 as the fundamental density
scale and define the dimensionless density parameter

ρ̃0 =

(
�

mec

)3
ρ0

mp
. (2.34)

Now the ratio of density to critical density can be written in the form ρ0/ρc = 3π2YFρ̃0.

ρ̃0 ρ0[g cm−3] ρ0/ρc degenerate electrons

0.02 5.805 · 105 0.30 marginally relativistic
1.0 2.903 · 107 15.0 relativistic
50.0 1.451 · 109 740 extremely relativistic

Table 2.1: Some values of the mass density and related parameters.

For the numerical simulations, a mixture of equal parts of 12C and 16O with YF ≈
0.5 was used. The chosen mass densities are listed in Table 2.1. The lower density,
ρ0 ≈ 5.8 · 105 g cm−3, is close to the observed average density of white dwarfs, ρ̄0 ≈
4.7 · 105 g cm−3. The higher density, ρ0 ≈ 1.5 · 109 g cm−3, on the other hand, is of
the same order of magnitude as the central density in SN Ia progenitors close to the
Chandrasekhar limit.

2.3.2 Fermi Energy and the Speed of Sound

The internal energy and the pressure are dominated by the degenerate electron gas,
if the temperature is much lower than the Fermi temperature. In this case, Eint �
EF ∼ PF ∼ ρ0c2

0, and it is convenient to measure energy in units of ρ0c2
0, i. e., we

set Ẽ = E/ρ0c2
0. The temperature mec2/kB ≈ 5.929 · 109 K, which is of the order

of the Fermi temperature of relativistic electrons, provides a fundamental temperature
scale. Approximations which apply to the limiting cases of non-relativistic and rela-
tivistic degeneracy are commonly known and, for instance, discussed in Shapiro and
Teukolsky [1983, Section 2.3].
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The Non-Relativistic Limit

If ρ0 � ρc, the Fermi energy of the degenerate electron gas is given by

E(nr)
F � 3h2

10me

(
3
8π

)2/3 (YFρ0

mp

)5/3
≈ 1.49 · 1013(YFρ0)5/3 [cgs]. (2.35)

The speed of sound is readily obtained from c0 = (γPF/ρ0)1/2 with γ = 5/3, assuming
that P � PF in the limit of high degeneracy. Substituting PF = 2EF/3, with the Fermi
energy given by equation (2.35), we obtain

c(nr)
0 � h

(3me)1/2

(
3
8π

)1/3 ( YF

mp

)5/6
ρ1/3

0 ≈ 4.06 · 106Y5/6
F ρ

1/3
0 [cgs]. (2.36)

The normalised Fermi energy in the non-relativistic limit is therefore the constant
Ẽ(nr)

F = 9/10. The Fermi temperature TF = EF/nekB expressed in dimensionless form
depends on the density:

T̃ (nr)
F � 3

10
(3π2YFρ̃0)2/3 =

3
10

(
ρ0

ρc

)2/3
(2.37)

For ρ̃0 = 0.02, the Fermi temperature according to equation (2.37) is about T̃F ≈ 0.13
or TF ≈ 7.9 · 108 K. However, this pushes the limit of validity of the non-relativistic
approximation, as ρ̃0 ≈ 0.3ρ̃c. For the sound speed, equation (2.36) gives an estimated
value of c0 ≈ 1.9 · 108 cm s−1.

The Extremely Relativistic Limit

On the other hand, if ρ0 � ρc, then the Fermi energy is approximately given by

E(er)
F � 3

4

(
3
8π

)1/3
hc

(
YFρ0

mp

)4/3
≈ 1.85 · 1015(YFρ0)4/3 [cgs]. (2.38)

Using γ = 4/3 and PF = EF/3 in the extremely relativistic limit, we obtain for the
sound speed

c(er)
0 �

(
π

3

)1/3
(�c)1/2

(
YF

mp

)2/3
ρ1/6

0 ≈ 4.05 · 107Y2/3
F ρ

1/6
0 [cgs]. (2.39)

Hence, Ẽ(er)
F = 9/4. The corresponding Fermi temperature is

T̃ (er)
F � 3

4
(3π2YFρ̃0)1/3 =

3
4

(
ρ0

ρc

)1/3
. (2.40)

For the density ρ̃0 = 50.0, the Fermi temperature is T̃F ≈ 6.8 corresponding to TF ≈
4.0 · 1010 K, and equation (2.39) yields a sound speed of c0 ≈ 8.6 · 108 cm/s.
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2.3.3 Characteristic Velocity and Integral Length Scale

The magnitude of the stochastic force, F0, is determined by the integral length scale L
and the characteristic velocity V of the system. The dynamical properties of the flow
mainly depend on the characteristic Mach number V/c0. The initial sound speed c0

is determined by the initial mass density and temperature. Thus, using the estimates
of the sound speed form the previous Section, it is easy to estimate the characteristic
Mach number for a given value of V . As for the integral length scale, there appears
to be a large range of possible values and, as one would expect, scaling invariance of
turbulence implies that we are free to use any value within that range. Since we are
dealing with a system that, in principle, has no boundaries, there is no useful notion
of self-gravity for the whole system. However, local density fluctuations produced by
turbulence do, in fact, interact gravitationally. Of course, solving Poisson’s equation
for the gravitational field in a cubic domain would be computationally too expensive.
Therefore, one has to ensure that the typical gravity exerted by the largest regions of
density exceeding the average on the surrounding regions of lower density is dynami-
cally insignificant.

An order-of-magnitude estimate can be made as follows. The excess mass re-
lated to a density fluctuation of size ∼ l is roughly δm(l) ∼ l3δρ. The magnitude of
density fluctuations is given by the characteristic Mach number squared, i. e., δρ ∼
[v′(l)/c0]2ρ0, where v′(l) is the magnitude of turbulent velocity fluctuations on the
length scale l. The corresponding gravitational energy per unit mass is δeG(l) ∼
Gδm/l ∼ Gl2δρ. The gravitational interactions produced by these density fluctua-
tion will be dynamically negligible if the specific gravitational energy, eG(l), is small
compared to the kinetic energy per unit mass, v′(l)2. As c2

0 ∼ EF/ρ0, this constraint is
equivalent to Gρ20l2 � EF, which is independent of the characteristic velocity v′(l). In
conclusion, gravitational interactions are dynamically insignificant on arbitrary scales
of the simulated system, provided that

EG(L) = Gρ2
0L2 � EF. (2.41)

In the two limiting cases of non-relativistic and relativistic degeneracy, respec-
tively, the resulting upper bounds on the integral length scale L are

L�
8.4 · 109ρ−1/6

0 [cgs] if ρ0 � ρc,

1.0 · 1011ρ−1/3
0 [cgs] if ρ0 � ρc.

(2.42)

For ρ0 ≈ 5.8 · 105 g cm−3, the above constraint becomes L � 109 cm, which is
comparable to the size of a white dwarf of this density. On the other hand, in the
case of ρ0 ≈ 1.45 · 109 g cm−3, the constraint is lower by an order of magnitude,
L� 108 cm, which is about the size of a white dwarf close to the Chandrasekhar limit.
For the simulations discussed in the following, N = 432 cells of size ∆ = 103 cm
were used in each dimension and a characteristic wavenumber of stochastic forcing
k0 = 6π/N∆ ≈ 4.36 · 10−5 cm−1 corresponding to α = 3. The resulting integral length
scale is L = N∆/3 = 1.44 · 105 cm, which is well below the upper bounds imposed by
the constraints (2.42).
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2.4 Global Statistics and Flow Structure

The evolution of statistically homogeneous flows is well described by spatial averages
of dynamical quantities over the whole computational domain. Of particular interest
are the root mean square magnitude of momentum and the averaged kinetic and inter-
nal energy. In addition, mean structural invariants, which can be constructed from the
velocity derivative, play an important role in the investigation of turbulence. A more
vivid impression of turbulence is received by means of 2D sections of the flow, which
supplement the discussion in this Section.

2.4.1 Dimensionless Physical Quantities

It is commonly known that turbulence is a scale-invariant phenomenon. For example,
the properties of the velocity field mainly depend on the ratio of the mean velocity
to the speed of sound. The latter is determined by the equation of state and, in the
case of degenerate matter, one finds values in the range ∼ 107 . . . 109 cm s−1, which
are quite large compared to typical speeds under terrestial conditions2. Nevertheless,
if the velocity or other dynamical quantities are normalised with the corresponding
characteristic scales, than the flow will look similar regardless of whether it is turbu-
lence in air or in degenerate matter. Therefore, we shall exclusively use dimensionless
quantities. In the following, normalisation is indicated by a tilde on top of the variable.

Dimensionless time is obviously given by t̃ = t/T , with T being the integral time
scale, and length is normalised in units of the integral length scale, i. e., x̃i = xi/L. As
vi ∼ V , it seems appropriate to set ṽi = vi/V . For v � c0 � 1, a large contribution to the
total energy comes from internal energy and, thus, Eint ∼ PF ∼ ρ0c2

0, which suggests
Ẽ = E/ρ0c2

0. The dimensionless total energy is then of the form

Ẽ =
1
2

(
ρ

ρ0

) (
V
c0

)2
ṽ2 +

Eint

ρ0c2
0

. (2.43)

The time derivative of energy, however, is more conveniently normalised with respect
to the kinetic energy scale ρ0V2, as we shall see below. Structural invariants of concern
are the rate of strain |S | = (2SikSik)1/2, the vorticity ω = (2WikWik)1/2 = |∇ × u| and
the divergence of the velocity, d = vi,i = ∇ · u. Recall that Sik = v(i,k) and Wik = v[i,k]

denote, respectively, the symmetric and antisymmetric parts of the Jacobian matrix of
the velocity. The corresponding dimensionless counterparts follow immediately from
ṽi,k = (L/V)vi,k = Tvi,k. For instance, we have ω̃ = Tω, which is a measure of the
large-eddy turn-over time relative to time scales associated with the smallest eddies.

2.4.2 Solenoidal Forcing at Low Density

If the projection weight ζ = 1 in equation (2.26), then the random force field a(x, t)
will be purely solenoidal, i. e., ∇ · a(x, t) = 0. Usually, one refers to this kind of forcing
as stirring, because it is reminiscent of agitating the fluid into motion by mechanical
stirring with randomly changing magnitude and spatial orientation.

2For example, the speed of sound in air is of the order 105 cm s−1
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Figure 2.1: Evolution of dimensionless mean quantities for the simulation dns432nrsl. The
panels show the RMS momentum, the mean total and internal energy, the RMS
vorticity and divergence and the averaged rates of energy production and dissi-
pation as functions of the normalised time t̃ = t/T . The density parameter is
ρ̃0 = 0.02, the characteristic Mach number V/c0 = 0.42, and the spectral weight
of solenoidal forcing ζ = 1.

We will first analyse the statistics of a simulation called dns432nrsl that was
initialised with a mixture of equal mass fractions 12C and 16O of total mass density
ρ0 = 5.805 · 105 g cm−3 (ρ̃0 = 0.02) and temperature T0 ≈ 5.93 · 106 K (T̃0 = 0.001)
at rest. Solenoidal stirring was applied over an interval of time 0.0 ≤ t̃ ≤ 3.0, and
then the force field was decaying exponentially, according to equation (2.26) with the
stochastic diffusion term switched off. The characteristic velocity and Mach number
are, respectively, V = 7.29 · 107cm s−1 and V/c0 = 0.42. The computation was carried
out over roughly 19 sound crossing times until t̃ = 8.0.

The evolution of globally averaged quantities is shown in Figure 2.1. The root
mean square acceleration ãrms/

√
3 = 〈aiai/3〉1/2/F0 and momentum p̃rms/

√
3 =

〈ρ2vivi/3〉1/2/ρ0V are plotted in the upper left panel3. The factor 1/
√

3 accounts for
the statistical fraction corresponding to a single vector component. According to the

3The brackets 〈 〉 are used quite generically here. The can either mean an ensemble average or a spatial
average as well as a filter operation. In each case it should be clear from the context which operation is
specifically in use.
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discussion in Section 2.2.3, the expectation value of |a|/√3 is
√

2/3 ≈ 0.816 in the
statistically stationary regime. One would expect that p̃rms/

√
3 approaches the value√

2/3ρ0F0T ≈ 0.8ρ0V , after roughly one integral time scale has passed. Indeed, the
plot of p̃rms shows that a dimensionless momentum of about 0.8 is reached at t̃ ≈ 1.5,
and then it approaches stochastic equilibrium with a value near 0.7 in advance of the
exponential decay of turbulence from t̃ ≈ 3.0 onwards.

As one can see in the lower left panel of Figure 2.1, the root mean square vorticity
ω̃rms = T 〈ω2〉1/2 grows exponentially, before it reaches a plateau at time t̃ ≈ 2.0. This
marks the transition to steady turbulence with fully developed velocity fluctuations
on the smallest scales. In the steady regime, stochastic equilibrium between turbu-
lence production by the driving force and numerical dissipation is maintained. In the
follow-up decay regime, vorticity decreases exponentially. The divergence (also called
dilatation in the context of turbulence) is much smaller than vorticity, but in compari-
son still larger than the relative divergence of the stirring field, which is zero to a high
degree of accuracy4. This is a consequence of appreciable compression effects at Mach
numbers of the order unity. Furthermore, the numerical data evidence the identity

〈|S ∗|2〉
〈ω2 + 4

3d2〉 =
〈SikSik − 1

3d2〉
〈WikWik +

2
3d2〉 � 1. (2.44)

In fact, this relation between the globally averaged rate of strain, vorticity and squared
dilatation must hold, if the net flux through the boundaries of the computational do-
main is zero. This can be seen from the local relationship

|S ∗|2 = 2∂i(∂kuiuk − 2dui) + ω
2 +

4
3

d2. (2.45)

Volume integration over the whole domain implies equation (2.44) if the surface in-
tegral arising from the flux-divergence term vanishes, which is the case for periodic
BCs.

The development of vorticity is clearly reflected in the change of energy with time,
as can be seen in the right two panels in Figure 2.1. The initial value of mean internal
energy 〈Ẽint〉 is about 1.007 corresponding to 〈Eint(0)〉 ≈ 1.79 · 1022 erg and increases
only little before t̃ ≈ 1.5 5. In the course of this initial phase, vortices on the smallest
dissipative scales are not yet produced, and virtually all the injected energy is piled
up in the form of kinetic energy in the turbulence cascade. This can be seen from the
averaged rate of energy increase, also called the rate of production,

Π̃ =
T

ρ0V2

d
dt
〈E〉 =

(
V
c0

)−2 d
dt̃
〈Ẽ〉, (2.46)

which is plotted in the lower right panel. Π̃ is, of course, always positive and equal to
the mean power exerted by the stirring force upon the fluid. For this reason, it shows
the imprint of the stochastic variations in the stirring field. In between the time of

4Strictly speaking the term dilatation refers to the divergence of the velocity fluctuations. As there is
no mean flow in the case of isotropic turbulence, however, dilatation and divergence can be identified.

5The actual value of 〈Ẽint(0)〉 is by about 10 % larger than Ẽ(nr) = 9/10 (see Section 2.3.2). This
indicates that the Fermi gas is already partially relativistic.



Global Statistics and Flow Structure 41

maximal momentum and the peak of vorticity at t̃ ≈ 2.0, the internal energy increases
rapidly as the mean dissipation rate

〈ε̃〉 = T

ρ0V2

d
dt
〈Eint〉 =

(
V
c0

)−2 d
dt̃
〈Ẽint〉, (2.47)

rises to a sharp peak. At the maximum of 〈ε̃〉, more energy is dissipated than injected
into the system. By t̃ ≈ 2.5, the turbulence energy increases slightly once more, but
then the trend reverses when the exponential damping of the force field starts att̃ = 3.0.

The difference between production and dissipation is equal to the rate of change of
the kinetic energy:

Π̃ − 〈ε̃〉 = T

ρ0V2

d
dt
〈E − Eint〉 = 1

ρ0

d
dt̃
〈ρṽ2〉. (2.48)

This rate becomes strongly negative when the dissipation rate approaches the peak
near t̃ ≈ 2.0. Afterwards Π̃ − 〈ε̃〉 increases to a slightly positive value as the system
equilibrates. At time t̃ = 3.0, the rate of energy injection falls off exponentially and
the graphs of total and internal energy gradually flatten and converge towards the same
constant value when most of the kinetic energy is dissipated. The mean temperature
in the final state is 〈T 〉f ≈ 3.3 · 108 K (〈T̃ 〉f ≈ 0.056). This is still lower than the Fermi
temperature TF ≈ 7.9 · 108 K estimated from the non-relativistic approximation (2.37),
but only by a small margin. Hence, degeneracy more or less prevails against dissipative
heating, however, with a significant fraction of thermal excitation.

An impression of the structure exhibited by the flow is given in Figure 2.2, which
shows contour plots of various quantities in a horizontal 2D section at timet̃ = 1.5, i.
e., near the maximum of RMS momentum. At this stage, velocity fluctuations on the
smallest numerically resolved scales are not fully developed yet, but quite a complex
flow pattern has already evolved. In the left panel on the top, contours of the magnitude
of the dimensionless velocity ṽ = (vivi)1/2/V are plotted. As (V/c0)−1 ≈ 2.4, it is
clear that a significant fraction of the flow is supersonic. These regions appear in
colours from dark blue to reddish and are separated by steep velocity gradients from
the subsonic regions. As there are no extended strong shock fronts, the supersonic
regions in this kind of flow at moderate Mach number are called shocklets. In the right
top panel, which shows contours of the total energy Ẽ, shocklets can be seen even more
clearly as bright thread-like regions of high energy, and the boundaries of shocklets are
marked by a large rate of strain in the left panel on the bottom.

Furthermore, one can see that there are pronounced spots which are largely de-
pleted of energy. These spots are associated with the central cross-sections of vortices,
as is revealed by comparing the energy contour plot with the right bottom panel show-
ing the contours of vorticity ω̃ in logarithmic scaling. Here vortices appear bright, and
one can see that there is a tight correlation to regions of low energy. In fact, the greater
fraction of Ẽ is internal energy, which is tightly coupled to the mass density. Due to the
enormous under-pressure in the centre of a strong vortex, the density decreases quite
significantly, a phenomenon similar to the eye of a Hurricane in Earth’s atmosphere. It
is intriguing to consider the actual physical scales: The largest vortices contain a total
mass of about 1020 g, they are roughly 1 km in size, and the turn-over time is of the
order about 10−3 s 6.

6The vortex mass is comparable to the mass of the asteroid whose impact caused mass extinction on
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Figure 2.2: 2D contour sections of velocity, total energy, rate of strain and vorticity for model
dns432nrsl in the plane z̃ = 2.0 at time t̃ = 1.5. The model parameters are as
specified in Figure 2.1. Dimensionless scales are used for all quantities. Logarith-
mic contours are used both for the rate of strain |S ∗| and the vorticity ω in order to
fully uncover the spatial variation.

2.4.3 Solenoidal Forcing at High Density

As a consequence of the equation of state (EOS) for degenerate matter, hydrodynamics
is largely decoupled from thermodynamics, because the Fermi pressure of the electrons
is independent of temperature. For this reason, the EOS solely influences the Euler
equations through the relation between pressure and mass density. In order to see how
far this affects the dynamics of turbulence, a reference simulation, dns432ersl2, was
produced. For this simulation, the same characteristic Mach number as in the case
of dns432nrsl was used, however, with a mass density in the extremely relativistic
limit, ρ̃0 = 50.0, which implies a characteristic velocity V ≈ 4.92 × 7.29 · 107cm s−1 ≈
3.59 · 107cm s−1. The factor 4.92 is the ratio of the speed of sound for the density
ρ̃0 = 50.0 and ρ̃0 = 0.02, respectively.

Comparing the statistics of the simulations dns432nrsl and dns432ersl2 demon-
strates that the differences are only minute. The evolution of mean momentum pro-
gresses, in fact, very closely for both models. The relative fluctuations in the mass

Earth about sixty five million years ago.
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Figure 2.3: Comparison between the simulations dns432nrsl and dns432ersl2 with ρ̃ 0 =

0.02 and ρ̃0 = 50.0, respectively. The top panels show the RMS fluctuations of
internal energy and mass density, respectively. In the bottom panels, the rates of
energy production and dissipation are plotted. The characteristic Mach number is
V/c0 = 0.42 and the spectral weight of the solenoidal forcing component ζ = 1.

density as measured by σ(ρ)/〈ρ〉, where σ2(ρ) = 〈ρ−〈ρ〉〉2 is the variance of ρ, are not
markedly different either, as one can see in the two top panels of Figure 2.3. However
these panels also show that the magnitude of the relative fluctuations in the internal
energy are systematically larger in the case of lower density. It appears that the varia-
tions in the mass density are virtually the same for both models as it can be expected
on grounds of the equal characteristic Mach numbers. The fluctuations in pressure and
internal energy induced by compression effects, however, are not quite the same and
reflect the differences in the EOS. In the non-relativistic limit, δEF/EF ≈ (5/3)δρ/ρ
according to equation (2.35), whereas equation (2.38) implies δEF/EF ≈ (4/3)δρ/ρ in
the extremely relativistic limit. Actually, one finds for the ratio of the RMS fluctua-
tions of energy and mass density at time t̃ = 3.0 the value 1.32 for dns432ersl2 and
1.51 for dns432nrsl. This behaviour verifies the statement that a thermodynamical
quantity such as the internal energy, which is solely coupled via pressure to the mo-
mentum equation, have little influence on the evolution of hydrodynamical quantities,
in particular, the mass density. The production and dissipation rates, which are plotted
for both simulations the bottom panels of Figure 2.3, display some further dissimi-
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larities between the two simulations. The increase of internal energy in the course of
turbulence production is steeper in the case of higher density. Since the production
rate is also larger, however, the kinetic energy budget is approximately the same for
both models.

Figure 2.4: Comparison between dns432nrsl with ρ̃0 = 0.02 and another simulation,
dns432ersl, with the same characteristic velocity V and a higher density ρ̃ 0 =

50.0. The characteristic Mach number of the low-density model is V/c 0 = 0.42,
whereas V/c0 = 0.084 for the high density model. The panels on the left show the
RMS fluctuations of internal energy and mass density. The corresponding RMS
fluctuations of vorticity and the rate of strain are plotted in the panels on the right.

As supplementary experiment, an additional simulation with density ρ̃0 = 50.0
was carried out. This time, however, the same absolute magnitude of stirring as in
simulation dns432nrslwas used. The outcome, dns432ersl, is a low Mach-number
turbulence simulation with V/c0 = 0.084 owing to the significantly higher sound speed
in the extremely relativistic regime. A comparison of root mean square density and in-
ternal energy fluctuations for these two simulations can be found in the left-hand side
panels of Figure 2.4. While the shape of the graphs for the density fluctuations is quite
similar in both cases, the magnitude is found to scale with the square of the ratio of
Mach numbers, c2

0(0.02, 10−3)/c2
0(50.0, 0.1) ≈ 0.041, where the values in parentheses

specify the dimensionless initial density ρ̃0 and temperature T̃0, respectively. Indeed,
this scaling is implied by the Euler equations. Regarding the second moments of ω̃2
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and |S̃ ∗|2, both the evolution with time and the magnitude seem to be rather indepen-
dent of density and Mach number, except for a slightly higher peak of σ1/2(ω̃2)/〈ω̃2〉
and a lower peak of σ1/2(|S̃ ∗|2)/〈|S̃ ∗|2〉 in the case of model dns432ersl as compared
to dns432nrsl. Evaluating these quantities for the reference model dns432ersl2,
one finds that the differences in the peak heights solely depend on the Mach number
but not on the EOS. Moreover, note that the quasi-equilibrium values at t̃ = 2.5 are
almost the same both for the lower and the higher Mach number. This result also
demonstrates the universality of turbulence.

Figure 2.5: Evolution of dimensionless mean quantities for model dns432nrh20. The panels
show the RMS momentum, the mean total and internal energy, the RMS vorticity
and divergence and the averaged rates of energy production and dissipation as
functions of the normalised time t̃ = t/T . The density parameter is ρ̃0 = 0.02, the
characteristic Mach number V/c0 = 1.39, and the spectral weight ζ = 0.2.

2.4.4 Partially Dilatational Forcing

In the case ζ < 1, the random force field a(x, t) also has compressive or dilatational
components which induce non-rotational motions in the fluid. In order to investi-
gate the effects of dilatational forcing as opposed to the purely solenoidal stirring
applied in the preceding simulations, we will now discuss two further simulations,
dns432nrh20 and dns432nrh75, with spectral weights ζ = 1/5 and ζ = 3/4, respec-
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tively. The initial state is the same as in the case of simulation dns432nrsl. According
to equation (2.31), the characteristic amplitude of the driving force is reduced from the
value

√
2/3F0, which applies to purely solenoidal forcing, to

√
19/48F0 ≈ 0.63F0

for ζ = 3/4 and
√

6/25F0 ≈ 0.49F0 in the case of a mainly dilatational force with
ζ = 1/5. Apart from that, the dilatational component of the force field is less ef-
fective in producing turbulence, because it induces only small strain. Consequently,
higher characteristic Mach numbers were chosen: V/c0 ≈ 0.66 for dns432nrh75 and
V/c0 ≈ 1.39 for dns432nrh20.

Figure 2.6: 2D contour sections of velocity, density fluctuations, rate of strain and vorticity
for model dns432nrh20 in the xy-layer with z̃ = 1.0 at time t̃ = 2.0. The model
parameters are as specified in Figure 2.5. Also see the notes in the caption of
Figure 2.2.

Let us consider the statistics obtained from the data of simulation dns432nrh20.
Statistically stationary forcing was active in the interval 0 ≤ t̃ ≤ 5.0, and the decay
of turbulence was computed over an interval of five integral time scales. The whole
simulations encompasses about 7.2 sound crossing times. The various mean and RMS
quantities are plotted in Figure 2.5. The left panel on the top shows that the maxi-
mal value of p̃rms is significantly smaller than the expectation value 0.49F0T in the
stationary regime, and the maximum is not reached before t̃ ≈ 3.5. This confirms
that the production of turbulence by dilatational forcing is reduced in comparison to
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solenoidal stirring. From the panels on the right-hand side, some rather irregular evolu-
tion of energy becomes apparent. Prior to decay, the dimensionless rate of production
T 〈Ė〉/ρ0V2 ≈ 0.07, which falls about an order of magnitude short of the estimate
Ė ∼ ρ0F0V ∼ ρ0V2/T . However, if the reduced magnitude of the characteristic force
and the RMS momentum as well as the prolonged phase of production are taken into
account, the estimate becomes Ė ∼ 0.05ρ0F0V ∼ ρ0V2/T in good agreement with the
actual values found in the simulation. Furthermore, one can observe a rapid increase
of energy very early in the production phase, which suddenly drops att̃ ≈ 0.4 followed
by pronounced oscillations. This is a consequence of the formation of shocks which
efficiently dissipate energy. Indeed, the contour sections shown in Figure 2.6 demon-
strate that steep shock fronts are present at time t̃ = 2.0, which extend over a length
comparable to L and are much more pronounced than the borders of the shocklets
encountered in the simulation dns432nrsl. The correlation between minimal dissi-
pation and maximal increase of kinetic energy and vice versa indicates an alternating
conversion of internal energy into mechanical energy and the other way around. This
mechanism is entirely different from the turbulence cascade and is caused by pressure-
dilatation, which will be discussed in more detail in Section 2.5.2. Beyond t̃ ≈ 3.0,
the oscillations are vanishing, the rate of dissipation is rising, and a balance between
production and dissipation is approached near t̃ ≈ 4.0.

Shock fronts are clearly identified as the locus of a large rate of strain in the left bot-
tom panel of Figure 2.6. The right panel on the bottom, on the other hand, shows that
there is no appreciable vorticity at the shock fronts. Moreover, the left bottom panel
of Figure 2.5, in which the evolution of the averaged structural invariants 〈|S∗|2〉, 〈ω2〉
and 〈d2〉 is plotted, makes clear that the mean dilatation d̃rms = T 〈d2〉1/2 is significant
in comparison to the vorticity ω̃rms in the early phase production. This is character-
istic for the shock-dominated regime, in the course of which kinetic energy is mostly
dissipated by shock waves and the flow structure is largely influenced by shock com-
pression. From t̃ ≈ 3.0 onwards, however, the RMS rate-of-strain converges towards
the RMS vorticity, the ratio drms/ωrms becomes small compared to unity and the graphs
of 〈ε̃〉 and Π̃ resemble what is seen for lower Mach numbers. In this phase, the dynam-
ics is finally governed by the turbulence cascade and the system approaches stochastic
equilibrium. The transition from a phase of shock formation to the regime dominated
by turbulence cascade has previously been observed, for instance, by Porter, Pouquet,
and Woodward [1992] in a simulation of decaying turbulence with initial Mach num-
ber one. One can think of this transition as changing from an initial violent phase
governed by shock-fronts to a shocklet regime.

The specific properties of the flow in the simulation dns432nrh20 are also high-
lighted by a comparison with simulation dns432nrh75, in which the force field is
dominated by solenoidal components with the weight ζ = 0.75 and the characteris-
tic Mach number is V/c0 ≈ 0.66. Apart from lucid differences in the magnitude of
density and internal energy fluctuations, the panels on the left-hand side of Figure 2.7
show qualitative differences in the evolution which are noteworthy. During the produc-
tion phase, the graphs for model dns432nrh75 are quite similar in shape compared to
those in the corresponding panels of Figure 2.4. In the case of dns432nrh20, on the
other hand, the RMS density fluctuations are first growing rapidly, and then abruptly
settle onto a plateau at time t̃ ≈ 0.5, which coincides with the drop in energy produc-
tion shown in the right bottom panel of Figure 2.5. Beyond that point, the magnitude
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of density fluctuations remains nearly constant until decay sets in, despite the meta-
morphosis which the flow is experiencing meanwhile. A contour plot of the density
fluctuations at time t̃ = 2.0 is shown in the right panel on the top of Figure 2.6.

From the plots of the relative RMS fluctuations of |S∗|2 and ω2, which are shown
in the right panel on the bottom of Figure 2.7, the transition form the phase of shock
formation to the Kolmogorov regime can be identified as well. Whereas initially a
very sharp rise in strain and vorticity fluctuations occurs neart̃ = 1.0, the magnitude of
these fluctuations is quickly decreasing afterwards. Eventually, it approaches the same
asymptotic values as for solenoidal forcing at lower Mach numbers. Moreover, there
is crossing-over of the two graphs at t̃ ≈ 2.9. This indicates that the large strain, which
is locally induced by shock fronts, declines in comparison to the strength of vortices
built up by the turbulence cascade.

Figure 2.7: Comparison between the simulations dns432nrh75 with a spectral weight of
solenoidal forcing of ζ = 0.75 and dns432nrh20 with ζ = 0.2. The charac-
teristic Mach numbers are, respectively, V/c0 = 0.66 and V/c0 = 1.39. The panels
panels on the left show the RMS fluctuations of internal energy and mass density,
respectively, and the corresponding RMS fluctuations of vorticity and the rate of
strain are plotted in the panels on the right.
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2.5 Spectral Analysis

The quintessence of isotropic turbulence is found in the energy spectrum which de-
scribes the distribution of kinetic energy over the various wave numbers. From the
turbulence spectrum, three subranges of wave numbers can be identified, firstly, the
energy-containing range at the lowest wave numbers in the vicinity of k0, secondly, an
inertial range in which the Kolmogorov cascade of vortices reigns and, finally, the dis-
sipation range of wave numbers, where numerical dissipation dominates the dynamics.
In this Section, a discrete formulation of the turbulence energy spectrum is devised and
then applied to numerical data from the simulations discussed in Section 2.4.

2.5.1 The Energy Spectrum Function

According to the discussion of Fourier transforms in Section 2.1.2, the spectral repre-
sentation of the velocity field is given by the generalised function

û(k, t) =
(2π)3

XYZ

∑
jlm

û jlm(t)δ(k − k jlm), (2.49)

where the discrete Fourier modes ûjlm(t) are defined by

û jlm(t) =
∫ 1

0
dz̃
∫ 1

0
dỹ
∫ 1

0
dx̃ u(x, t) exp[−2πi( jx̃ + lỹ + mz̃)]. (2.50)

Note that û jlm has the dimension of velocity. The dimensionless spatial coordinates are
defined by x̃i = xi/αL, where the integer α specifies the ratio of the linear size of the
fundamental domain to the integral length scale of the flow.

The kinetic energy associated with a mode ûjlm(t) is given by 1
2 û jlm(t)û∗jlm(t). A

representation of kinetic energy in the spectral continuum can be constructed as fol-
lows. Assuming statistically homogeneous turbulence, the Fourier transform û(k, t) of
the velocity field is uncorrelated except for conjugate wave vectors, i. e., the ensem-
ble average 〈û(k, t) · û(k′, t)〉 is non-zero only for k + k′ = 0. If the velocity field
were absolutely integrable, this would motivate a velocity spectrum tensor of the form
Φ(k, t) = 〈û(k, t) ⊗ û∗(k, t)〉, and half of the trace of Φ(k, t) would yield the kinetic
energy. The periodic velocity fields which are considered here, however, necessitate a
different approach.

Inspired by Parseval’s theorem, let us invoke the condition that the total kinetic en-
ergy of all discrete Fourier modes must be equal to the mean kinetic energy in physical
space:

〈ekin(t)〉 =
∫ 1

0
dz̃
∫ 1

0
dỹ
∫ 1

0
dx̃

1
2
|u(αLx̃, t)|2

=
∑
jlm

1
2
û jlm(t) · û∗jlm(t).

(2.51)

Obviously, this identity expresses the requirement of energy conservation. Now the
velocity spectrum tensor can be defined implicitly by the integral relation∫

d3(αk̃)Φ(αk̃, t) =
∑
jlm

〈û jlm(t) ⊗ û∗jlm(t)〉, (2.52)
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where αk̃ = (αL/2π)k = (X/2π)k is the normalised wave vector which is dual to the
dimensionless vector x̃/α = x/X in physical space.

In the case of statistically isotropic turbulence, Φ(α̃k, t) is independent of angular
directions in spectral space and, hence, it is of the form [cf. Pope, 2000, Section 6.5.1]

Φi j(αk̃, t) =
V2Ẽ(αk̃, t)

4πα2k̃2

(
δi j − kik j/k

2
)
, (2.53)

where Ẽ(αk̃, t) is a dimensionless function. Substituting the above expression for
Φi j(αk̃, t) on the left-hand side of equation (2.52) and integrating over all angles, we
obtain ∫

d3(αk̃)Φi j(αk̃, t) =
2
3

V2
∫ ∞

0
d(αk̃)Ẽ(αk̃, t)δi j (2.54)

The velocity spectrum of isotropic turbulence is therefore completely determined by
the trace Φii(αk̃, t) and the tensor equation (2.52) can be contracted to yield the scalar
equation ∫ ∞

0
d(αk̃)Ẽ(αk̃, t) =

1

V2

∑
jlm

1
2
〈û jlm(t) · û∗jlm(t)〉 = 〈ẽkin(t)〉. (2.55)

Here ẽkin(t) = vivi/2V2 is the dimensionless specific kinetic energy. It is the function
E(k, t) = (αL/2π)V2Ẽ(αk̃, t) which is called the energy spectrum function.

For periodic flows, we face the difficulty that Ẽ(αk̃, t) is a generalised function.
This can be seen if the sum over all modes in equation (2.55) is expressed as an integral,∑

jlm

1
2
〈û jlm(t) · û∗jlm(t)〉 =

∫ ∞

0
d(αk̃)

∑
jlm

1
2
〈û jlm(t) · û∗jlm(t)〉δ[α(k̃ − k̃ jlm)], (2.56)

where αk̃ jlm = ( j2 + l2 + m2)1/2. Hence,

Ẽ(αk̃, t) =
1

V2

∑
jlm

1
2
〈û jlm(t) · û∗jlm(t)〉δ[αk̃ − ( j2 + l2 + m2)1/2]. (2.57)

In this form, the energy spectrum function is certainly not suitable for numerical eval-
uation. Consequently, a discrete counterpart of Ẽ(αk̃, t) is essential to proceed.

To that end, let us introduce a staggered mesh of wave numbers,

K = {0, k1/2, k1, k3/2, . . .} = {k(n−1)/2|n ∈ N},
and define a discrete measure

µn =
∑

α2k̃2
n−1/2≤α2 k̃2≤α2k̃2

n+1/2

∑
jlm

(
2π
αL

)3
δα

2k̃2

j2+l2+m2 , (2.58)

associated with the wave number kn. Note that the principal summation index α2k̃2 ∈
N. As one can see from the definition, µn is the total volume of all spectral cells of
wavenumber kjlm within the interval [kn−1/2, kn+1/2]. The normalised measure µ̃n =
(αL/2π)3µn is just the corresponding number of cells. The average kinetic energy of
modes with wave number kn−1/2 ≤ k jlm ≤ kn+1/2 at time t is thus given by

Φn(t) =
1
µ̃n

∑
α2 k̃2

n−1/2≤α2 k̃2≤α2 k̃2
n+1/2

∑
jlm

1
2
û jlm(t) · û∗jlm(t)δα

2 k̃2

j2+l2+m2 . (2.59)
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For small wave numbers k̃n ∼ 1,Φn(t) depends on the instantaneous state of the system.
For large wave numbers k̃n � 1, on the other hand, the above summation will cover a
great number of cells, even if the interval [̃kn−1/2, k̃n+1/2] is quite narrow, i. e., k̃n+1/2 −
k̃n−1/2 � 1. Hence, in the case of isotropic and statistically stationary turbulence, it
can be expected that Φn(t) approaches the ensemble average of 1

2 û jlm(t) · û∗jlm(t) in the
corresponding region of spectral space.

For this reason, we may conjecture that quasi-integration of Φn(t) over the spheri-
cal shell of wave number kn yields an approximation to the energy spectrum at least in
the limit of large wave numbers. Defining

Ẽn(t) =
4πk2

n

V2
Φn(t), (2.60)

we have∫ ∞

0
d(αk̃)

∑
n

Ẽn(t)
µ̃n

4πk2
n
δ[α(k̃ − k̃n)] =

1
V2

∑
jlm

1
2
〈û jlm(t) · û∗jlm(t)〉. (2.61)

It is by the meaning of this identity, that we will subsequently call Ẽn(t) the instan-
taneous discrete energy spectrum function. On grounds of the ergodicity argument
mentioned above,

∑
n Ẽn(t)δ[α(k̃ − k̃n)] can be regarded as approximation to the nor-

malised energy spectrum function,

Ẽ(αk̃) =
2π
αL
· 1

V2
E(k), (2.62)

where µ̃nd(αk̃)/4πk2
n is to be taken as the appropriate measure for the integration7. Av-

eraging Ẽn(t) for steady turbulence over many integral time scales, the approximation
is expected to match the exact spectrum asymptotically as n→ ∞.

The energy spectrum function can be separated into a longitudinal and a transversal
part, in discrete form denoted by E‖n(t) and E⊥n (t), respectively. The longitudinal spec-
trum function is computed according to equations (2.59) and (2.60), with the Fourier
modes û jlm(t) replaced by the modes projected parallel to the wave vector kjlm,

û‖jlm =
(

k jlm · û jlm

|k jlm|2
)

k jlm. (2.63)

The transversal part of the spectrum function, on the other hand, is obtained by setting
û⊥jlm(t) = û jlm(t) − û‖jlm(t) in place of ûjlm(t). Since

|û‖jlm|2 + |û⊥jlm|2 = |û jlm|2, (2.64)

the sum of E‖n(t) and E⊥n (t) gives the total spectrum function En(t).
According to the second similarity hypothesis of Kolmogorov, the so-called com-

pensated spectrum function Ψ(k) = 〈ε〉−2/3k5/3E(k) is approximately constant for an

7Only by means of this measure, the discrete and continuous points of view are reconciled. As an
alternative, one might use d(αk̃) as the right measure in both cases and renormalise the discrete energy
spectrum function such that the correct integral is obtained. In this case, however, consistency would
come at the cost of changing the energy in a certain wave number bin by a factor depending on the
particular choice of the wave number grid K and the energy spectrum itself.
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incompressible flow in the inertial subrange of wave numbers [cf. Pope, 2000, Sec-
tion 6.5]. This suggests the definition of a compensated discrete spectrum function,

Ψn(t) =
[
α

2π
〈ε̃(t)〉

]−2/3
(αk̃n)5/3Ẽ⊥n (t), (2.65)

as an indicator of Kolmogorov scaling. Note that only the transversal part of the en-
ergy spectrum is compensated, because it is the incompressible fraction of turbulence
energy which a priori fulfils Kolmogorov scaling. For the calculation of Ψn(t), the
mean dissipation rate has to be determined, and so we face the problem of numerical
dissipation.

2.5.2 Numerical Dissipation

The paradigm of turbulence put forward by Kolmogorov is based on the balance be-
tween energy injection and dissipation in equilibrium, regardless of the detailed mech-
anism of dissipation. For isotropic incompressible turbulence, this implies the scaling
relation E(k) = C〈ε〉2/3k−5/3 in the inertial subrange. The universality of Kolmogorov
scaling was confirmed in many laboratory experiments and numerical simulations.
For example, Cao et al. [1996] performed high-resolution 3D numerical simulations
of Navier-Stokes turbulence with normal viscosity and so-called hyper-viscosity and
found more or less the same scaling independent of the spectral dissipation profile.

The details of the numerical dissipation produced by the PPM are basically un-
known, but it is possible to infer the net mean dissipation rate from the globally aver-
aged energy conservation laws. Since the BCs are periodic, the total flux through the
boundary surfaces cancels out, and the equations governing the time evolution of the
mean total and internal energy are of the following simple form:

〈Π〉 = d
dt
〈Etot〉 = 〈ρviai〉, (2.66)

ρ0〈ε〉 = d
dt
〈Eint〉 = ρ0εnum − 〈Pd〉, (2.67)

〈Π〉 − ρ0〈ε〉 = d
dt
〈K〉 = 〈Π〉 − ρ0εnum + 〈Pd〉. (2.68)

Of course, no dissipation becomes apparent in the averaged equation for the total en-
ergy because the PPM is a conservative scheme. But the mean rate of numerical dis-
sipation ρ0εnum contributes to the increase of internal energy at the expense of kinetic
energy.

In fact, there are two distinct mechanisms of dissipation in a compressible fluid.
On the one hand, pressure-dilatation accounts for the conversion of internal energy
into mechanical energy and vice versa as the fluid, respectively, expands or contracts.
Although pressure-dilatation might locally produce mechanical work, it is effectively
a dissipative irreversible process, and the net rate of heat production is given by −〈Pd〉.
If pronounced shocks are present, however, there might be transient phases in which
〈Pd〉 becomes positive. All dissipation apart from the explicitly resolved pressure-
dilatation, on the other hand, must be of numerical origin, i. e.,

ε̃num =
T

ρ0V2

(
d
dt
〈Eint〉 + 〈Pd〉

)
(2.69)
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Representative values of ε̃num and the ratio −〈Pd〉/εnum are listed in the Tables 2.2,
2.3 and 2.4. Invoking Kolmogorov’s similarity hypothesis, we can say that εnum corre-
sponds to the rate of energy transfer through the turbulence cascade on a scale l ∼ ∆ in
the physical counterpart of the simulated flow. Thus, a reasonable approximation to the
compensated spectrum should be obtained if ε̃num was taken to be the mean dissipation
rate in equation (2.65).

Figure 2.8: Turbulence energy spectra for the simulation dns432nrsl. The panels in the row
on the top show the instantaneous discrete energy spectrum functions at repre-
sentative stages in the advanced production regime, near equilibrium and in the
late decay regime. In the bottom panels, the corresponding compensated spectrum
functions are plotted.

t̃ 〈ẽkin〉 〈e‖kin〉/〈ekin〉 ε̃num −〈Pd〉/ρ0εnum ηeff/∆ β lp/L

1.5 0.891 3.74 · 10−3 0.130 0.422 0.229 1.82
2.0 0.885 6.74 · 10−3 0.985 0.073 0.250 1.57 0.0659
2.5 0.706 7.56 · 10−3 0.660 0.095 0.264 1.59 0.0587
3.0 0.728 8.16 · 10−3 0.474 0.107 0.261 1.62 0.0674
4.0 0.574 9.41 · 10−3 0.498 0.053 0.264 1.61 0.0615
6.0 0.168 2.13 · 10−2 0.088 0.051 0.285 1.69 0.0644

Table 2.2: Energy, dissipation and characteristic length scales for dns432nrsl

2.5.3 Turbulence Energy Spectra

Using the definition of a discrete energy spectrum function (2.60), a number of spec-
tra were computed from the full 3D dumps of the simulation data at selected times.
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Moreover, by evaluating the mean pressure-dilatation and using the time derivative of
internal energy from the statistical data, the mean dissipation rate εnum was determined
for the calculation of compensated spectrum functions. Some of the obtained spectra
are shown in Figures 2.8, 2.9 and 2.10 for the low-density simulations dns432nrsl,
dns432nrh75 and dns432nrh20, respectively. For each spectrum, a coarse equidis-
tant wave number mesh was used in the energy containing range, 0 ≤ k̃ ≤ 2, and
a logarithmic mesh with narrow bins for the larger wave numbers. Mean values of
the turbulence energy and the numerical dissipation are listed in the Tables 2.2, 2.3
and 2.4.

Figure 2.9: Turbulence energy spectra for the simulation dns432nrh75.

t̃ 〈ẽkin〉 〈e‖kin〉/〈ekin〉 ε̃num −〈Pd〉/ρ0εnum ηeff/∆ β lp/L

2.0 0.668 2.25 · 10−2 0.322 0.158 0.244 1.66 0.0830
4.0 0.544 2.10 · 10−2 0.305 0.106 0.261 1.62 0.0601
5.0 0.571 1.87 · 10−2 0.350 0.070 0.260 1.61 0.0659
7.0 0.252 2.75 · 10−2 0.170 0.059 0.268 1.61 0.0601
9.0 0.092 6.72 · 10−2 0.037 -0.150 0.283 1.69 0.0644

Table 2.3: Energy, dissipation and characteristic length scales for model dns432nrh75

The panels on the top of Figure 2.8 show, from left to right, the discrete energy
spectrum function Ẽn(t) at representative stages in the production regime, close to
equilibrium and, finally, in the advanced decay regime for the simulation dns432nrsl.
In addition, the corresponding longitudinal spectrum functions Ẽ‖n(t) are plotted. The
corresponding bottom panels show plots of the compensated spectrum functionΨ̃n(t).
From these spectra, it becomes clear that a resolution of N = 432 is just at the brink
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where an inertial subrange begins to take shape. Even in the quasi-equilibrium state,
there is merely a narrow window of wave numbers in the vicinity of k̃ = 3.0, in which
nearly Kolmogorov scaling with C ≈ 1.7 is found. In the second and third row of pan-
els, there is a pronounced maximum of the compensated spectrum function at k̃ ≈ 15
corresponding to a flattening of the energy spectrum in comparison to the Kolmogorov
law. This so-called bottleneck effect was observed in many numerical simulations, for
instance, by Cao et al. [1996] and Sytine et al. [2000]. At time t̃ = 1.5, on the other
hand, the spectrum does not show a bump at higher wave numbers. In the production
phase, the cascade of eddies is still building up and the small-scale features, which
cause the distortion of the spectrum seen at later time, are not yet developed.

Figure 2.10: Turbulence energy spectra for the simulation dns432nrh20.

t̃ 〈ẽkin〉 〈e‖kin〉/〈ekin〉 ε̃num −〈Pd〉/ρ0εnum ηeff/∆ β lp/L

2.0 0.103 0.250 0.0105 0.663 0.811 5.57 0.323
3.5 0.157 0.195 0.0278 0.940 0.359 2.24 0.229
5.0 0.147 0.189 0.0618 0.147 0.300 1.75 0.066
6.0 0.121 0.134 0.0443 0.198 0.288 1.71 0.063
9.0 0.045 0.158 0.0141 -0.078 0.282 1.68 0.060

Table 2.4: Energy, dissipation and characteristic length scales for model dns432nrh20

More or less the same results are found in the case of dns432nrh75. Due to the
higher characteristic Mach number V/c0 ≈ 0.66, the gap between the total and the lon-
gitudinal energy spectrum functions is smaller, but the spectra are very similar in shape
to those of simulation dns432nrh20. Once more, a value C ≈ 1.7 is found for the
compensated spectrum function around k̃ = 3.0 at time t̃ = 5.0. As for dns432nrh20,
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differences can evidently be seen in Figure 2.10. There is a significant fraction of tur-
bulence energy in the longitudinal components of the Fourier modes, particularly, in
the early phase which is dominated by shock waves. The scaling appears to deviate
markedly from the Kolmogorov law with a steeper fall-off. In the course of the transi-
tion to the shocklet-regime the spectra change in shape and become similar to those of
simulation dns432nrh75, apart from a significantly lower value of the Kolmogorov
constant, C ≈ 1.3, at time t̃ = 5.0. Therefore, it appears that the universality of the
Kolmogorov law faces its limitations at transonic Mach numbers and for velocity fields
with significant non-rotational components.

The origin of the bottleneck in turbulence energy spectra is not fully understood
yet. To a certain extent, it might be a genuine feature of isotropic turbulence, a point of
view which is supported by She and Jackson [1993], who reported that experimental
data seemingly indicate a k−1 power law behaviour of the energy spectrum function in
the vicinity of the wave number of maximum dissipation. They attributed the anoma-
lous scaling to dynamical peculiarities on scales which are significantly influenced
by dissipation, whereas Dobler et al. [2003] suggested that it might be a generic fea-
ture of three-dimensional spectra, which is less prominent in one-dimensional spectra.
However, they do not clarify how the occurrence of this effect comes about in the
three-dimensional spectra. In any case, the peaks ofΨ̃n(t) at the bottleneck wave num-
ber k̃ ≈ 15 are quite distinct. There is certainly a significant pile-up of energy at wave
numbers k̃ � 10, once turbulence is fully developed. This might be caused at least
in part by differences between the numerical dissipation produced by the PPM and
viscous dissipation of physical origin (or the action of SGS stresses).

2.5.4 Dissipation Length Scales

The effect of numerical dissipation is equivalent to an implicit filter which smoothes
out the flow on a certain length scale, say, ∆eff . Fourier modes of wave number larger
than π/∆eff are suppressed by the filter. It is common to assume a sharp cutoff corre-
sponding to the numerical discretisation. If a grid of resolution ∆ = αL/N is used, then
the summation over the modes in equation (2.7) is truncated for indices j, l,m ≥ N −1.
As the Fourier modes of a real function are Hermitian conjugate, it follows that the
smallest wave number which can be resolved in all spatial directions is π/∆ and, thus,
∆eff = ∆. The corresponding dimensionless cutoff wave number is k̃c = N/2α = 72 8.

An improved estimate of the effective length scale ∆eff , which accounts for the
dissipation produced by the PPM, is based upon the notion of a characteristic filter
scale [Lund, 1997]. For a one-dimensional filter of explicitly known functional form,
a characteristic length scale can be calculated from the second moment of the Fourier
transform of the filter kernel, the so-called transfer function. Since the implicit filter
associated with the PPM is three-dimensional and the corresponding transfer function
is unknown, we have to resort to the numerically computed energy spectra. Using
Kolmogorov’s law as reference spectrum function, let us introduce an effective transfer
function

Ĝ2
eff(k, t) =

E(k, t)
E∞(k, t)

=
1
C
Ψ(k, t), (2.70)

8Since the diagonal of a cubic domain is larger by a factor
√

3 than the edges, modes in diagonal
direction can be resolved up to a wave number 72

√
3.
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where E∞(k, t) = Cε2/3num(t)k−5/3, and C = 1.65 [cf. Gotoh and Fukayama, 2001]. The
second moment of the squared transfer function is defined by9

M(2)[Ĝ2
eff] =

∫ ∞

0
k2Ĝ2

eff(k, t)dk. (2.71)

Of course, E(k, t) is not conform with the Kolmogorov law at wave numbers compa-
rable to k0 = 2π/L, because of energy injection on the largest length scales. However,
the contribution of these wave numbers to the above integral is small due to the factor
k2. Thus, we shall ignore this error. Discretising the transfer function according to the
procedure outlined in Section 2.5.1 and cutting off at wavelength π/∆, the following
approximation to the second moment is obtained:

M(2)[Ĝ2
eff] �

1
C

(
2π
αL

)3 ∫ N/2

0
d(αk̃)

∑
n

Ψn(t)
µ̃n

4π
δ[α(k̃ − k̃n)]. (2.72)

The second moment of the filter transfer function has the dimension of inverse
length cubed. Hence, a length scale is given by (M(2)[Ĝ2])−1/3, which is usually nor-
malised by referring to the second moment of the sharp cutoff filter. The transfer
function of this filter is given by Ĝ∆(k) = θ(π/∆ − k), and the second moment is
M(2)[Ĝ2

∆
] = (π/∆)3/3. Setting M(2)[Ĝ2

eff] = (π/∆eff)3/3, the effective filter scaling
factor of the PPM is therefore estimated to be

β =
∆eff

∆
=

N
2

 3
C

nc∑
n=1

Ψn(t)
µ̃n

4π

−1/3

, (2.73)

where nc = max{n|k̃n ≤ k̃c}. Numerically determined values of β for the three simula-
tions with marginally relativistic Fermi gas are listed in the Tables 2.2, 2.3 and 2.4. It
appears that β is more or less universal. For fully developed turbulence under station-
ary energy injection, we find ∆eff ≈ 1.6∆. As ∆eff is the smallest scale of the resolved
flow, the effective Reynolds number is given by Reeff = (N/αβ)4/3 ≈ 400. Of course,
the dependence of β on the numerical resolution should be investigated too. Changes
can be expected towards lower resolution, because the energy-containing and the dis-
sipation subrange will increasingly overlap. At higher resolution, on the other hand, β
should asymptotically approach a value independent of N. Unfortunately, the attempt
to validate this conjecture would require an undue amount of computational resources
though.

In fact, ∆eff is much smaller than the length scale of maximum dissipation lp, which
is given by the maximum of k̃2Ẽn(t) = k̃1/3Ψ̃n(t). For fully developed turbulence, the
peak of dissipation is located close to the second maximum of Ψ̃n(t), with a typical
value lp ≈ 0.065L. This result is yet another indication of the very narrow range
of inertial scales. In essence, the flow structure on these scales can be extracted by
smoothing the velocity field with a filter of characteristic length larger than lp. In
particular, a Gaussian filter of characteristic scale ∆G = 2lp was applied to the spectral

9Usually, filter length scales are defined by the second moment of Ĝ rather than Ĝ2. However, in the
context of turbulence energy and in relation to the scale ηeff introduced below, it seems better motivated
to use the square of the transfer function.
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representation of the velocity data of model dns432nrsl at the end of the stationary
regime (t̃ = 3.0). The transfer function of the Gaussian filter is given by

ĜG(αk̃) = exp

−π2

6

(
∆G

αL

)2
(αk̃)2

 . (2.74)

The filtered Fourier modes are given by 〈ûjlm〉G = ĜG(αk̃ jlm)û jlm, and the correspond-
ing velocity field 〈u〉G(x, t) is obtained by computing the inverse Fourier transform.
Basically, the filtering removes the more random velocity fluctuations on the small-
est scales, while vortical structures in the inertial subrange are preserved. This is
illustrated in Figure 2.11, which shows a planar section through the filtered velocity
field in simulation dns432nrsl together with contours of the fully resolved velocity
v = (vivi)1/2.

Figure 2.11: Flow map of the filtered velocity field (〈v x〉G, 〈vy〉G) with contours of the fully
resolved magnitude of the velocity, ṽ = (v2

x + v
2
y + v

2
z )

1/2, for the simulation
dns432nrsl. The applied filter is Gaussian, with twice the length scale of max-
imum dissipation chosen as characteristic filter width. The arrows depicting the
filtered velocity are normalised such that a length equal to the spacing 6∆/L be-
tween contiguous arrows corresponds to a magnitude (〈v x〉2G + 〈vy〉2G)1/2 = V.

Yet another approach is the calculation of the effective Kolmogorov scale ηeff ,
which marks the lower bound of the range of length scales dominated by dissipation.
In the case of viscous dissipation, this scale is defined by η = (ν3/〈ε〉)1/4. In fact, η is
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usually much smaller than the length scale of maximum dissipation. In order to deter-
mine the scale ηeff from known properties of a numerically computed flow, the velocity
derivatives vi,k can be utilised as a probe of the smallest turbulent velocity fluctuations.
To that end, we consider the full contraction vi,kvi,k, which is represented by v̂ikk v̂

∗
i kk in

spectral space. The average of vi,kvi,k in physical space can be expressed as the integral
over the energy spectrum times k2:

〈vi,kvi,k〉 = 2
∫ ∞

0
k2E(k, t)dk. (2.75)

Expressing the energy spectrum function E(k, t) in terms of the effective transfer func-
tion according to equation (2.70), the integral on the right-hand side becomes

2
∫ ∞

0
k2Ĝ2

eff(k, t)E∞(k, t)dk = 2Cε2/3num(t)
∫ ∞

0
k1/3Ĝ2

eff(k, t)dk. (2.76)

On the other hand, 〈vi,kvi,k〉 can be related to mean squared rate of strain, dilatation and
vorticity:

〈vi,kvi,k〉 = 〈|S |2 − d2〉 = 〈ω2 + d2〉. (2.77)

Putting together the different expressions for 〈vi,kvi,k〉, we obtain the equation[
2C

∫ ∞

0
k1/3Ĝ2

eff(k, t)dk

]−3/2

=
εnum

〈|S |2 − d2〉3/2 , (2.78)

where the expressions on both sides have the dimension of length squared.
The numerical evaluation of the integral on the left-hand side is prone to diffi-

culties, because the contributions from small wave numbers, for which the notion of
Ĝ2

eff(k, t) is ill posed, are not suppressed as in equation (2.72). For this reason, we will
define the effective Kolmogorov scale in terms of the mean dissipation rate and the
averaged structural invariants, which are readily obtained from numerical data:

ηeff =
ε1/2num

〈|S |2 − d2〉3/4 =
ε1/2num

〈ω2 + d2〉3/4 . (2.79)

Motivated by the relation η = (ν3/〈ε〉)1/4, an effective viscosity νeff = η2eff〈|S |2 − d2〉1/2
can be formulated. However, this is only a formal definition because, a priori, it can
not be assumed that numerical dissipation acts like viscous dissipation at all. For
nearly incompressible flows, d � |S |. Then the Smagorinsky model is recovered, with
the subgrid scale viscosity in place of the numerical viscosity and the Smagroinsky
length lS as effective Kolmogorov scale. This observation will be picked up as a key
idea for SGS modelling. In stochastic equilibrium, once more a nearly universal value
of ηeff ≈ 0.26∆ is obtained from the simulation data. This value is by a factor of about
1.5 larger than the Smagorinsky length for the sharp cutoff filter, a factor which is quite
close to the typical value of the effective filter scaling factor β = ∆eff/∆ ≈ 1.6. This
seems to indicate that both the notion of an effective filter scale ∆eff and an effective
Kolmogorov scale ηeff are sensible and numerically sound. As a concluding remark,
note that the typical value of ηeff indicates that numerical dissipation acts in such a
way that the flow is actually under-resolved. This might in part explain the strong
bottleneck effect observed in the spectra.
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Chapter 3

Subgrid Scale Models

Formally, the filtering approach stands between the
direct approach and the statistical approach and prob-
ably will produce in the future a unified theory linking
the direct approach to the statistical one by a continu-
ous interval of intermediate steps.

M. Germano, Turbulence: the filtering approach

Quantitative Unstimmigkeiten sind in der Wissen-
schaft an der Tagesordnung. Sie bilden ein “Meer von
Anomalien”, das jede einzelne Theorie umgibt.

P. Feyerabend, Wider den Methodenzwang

There is a substantial variety of subgrid scale (SGS) models which have been pro-
posed by scientists and engineers in the last few decades. A discussion of some repre-
sentative models can be found, for instance, in Lesieur and Métais [1996] or Meneveau
and Katz [2000]. An extensive overview of SGS models for incompressible flows is
given in the book of Sagaut [2001]. For the purpose of modelling the turbulent flame
speed, above all we have to tackle the problem of determining the SGS turbulence en-
ergy, i. e., the integrated kinetic energy of SGS modes. Unfortunately, the non-linearity
of the hydrodynamical conservation laws entails a major obstacle: there is no closed
analytical expression or dynamical equation in terms of known quantities from which
the turbulence energy could be computed. In consequence, either additional equations
which determine SGS moments of higher order are formulated, or one resorts to more
or less heuristic approximations which are called closures. In this Chapter, a subgrid
scale model based on a conservation law for the turbulence energy is developed and the
more common algebraic closures for this equation are discussed. For each of these clo-
sures a parameter has to be determined by means of an approximate turbulence theory
or from DNS data. In any case, the self-similarity of turbulence in the inertial subrange
implies scale invariance of the mean closure parameters. From the evaluation of DNS
data, it became clear that the commonly used closures are merely crude devices of
making the complicated turbulent interactions between different scales computation-
ally accessible without explicitly resolving the whole range of scales. The outcome of
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implementing the SGS models in large eddy simulations (LES) of turbulent burning
will be discussed in the next Chapter.

3.1 The Filtering Approach

To begin with, let us introduce a separation of length scales into a range l � ∆, for
which the flow is numerically resolved, and a complementary range of scales l � ∆,
which are called the subgrid scales. The range of resolved scales must encompass the
whole energy-containing range. Then it can be assumed that l ∼ ∆ is within the in-
ertial range of the physical flow. For brevity, we shall always refer to the numerically
resolved quantities with the standard symbols, whereas the hypothetical exact solutions
of the dynamical equations in the continuum limit, i. e., for infinite resolution, are in-
dicated by the superscript ∞ on top of the corresponding symbol. Notwithstanding the
deplorable lack of any proof of existence, we shall call the latter ideal quantities1. A
customary device of relating the smoothed numerical solutions to the intended exact
solutions is a filter, i. e., a convolution operation which satisfies certain properties,
as outlined in Appendix A.1. Introducing an implicit or effective filter 〈 〉eff which ac-
counts for the combined effect of numerical discretisation and dissipation, the resolved

velocity field u(x, t) can be related to the corresponding ideal field
∞
u(x, t) via2

u(x, t) =
〈∞ρ(x, t)∞u (x, t)〉eff

ρ(x, t)
, (3.1)

where ρ(x, t) = 〈∞ρ(x, t)〉eff is the filtered mass density. Quantities such as the velocity
or specific energy are therefore understood as mass-weighted averages over each grid
cell. For a state variable like the pressure, on the other hand, we have

P(x, t) = 〈∞P(x, t)〉eff . (3.2)

Identifying the resolved velocity in LES of compressible flows with the mass-weighted
filtered physical velocity, the dynamical equations assume the same form as those for
the ideal quantities except for additional terms stemming from SGS turbulence [Moin
et al., 1991]. In particular, the resolved momentum pi = ρvi = 〈∞ρ∞vi〉 is given by the
quasi-Navier-Stokes equation (qNSE)

∂

∂t
ρvi +

∂

∂xk
ρvivk = − ∂P

∂xi
+ ρ(ai + gi) +

∂

∂xk
(σik + τik). (3.3)

1According to Plato’s Cave Analogy, the objects we experience in the world are related to their ideals
like the silhouettes of outside things to someone trapped in a dark cave. In the same way, one can think of
a numerically simulated flow as being merely a vague image of the corresponding physical flow or exact
mathematical solution of the equations of motion.

2Of course, there is a twist due to sensitivity on initial conditions: inevitably, the numerically evolved
field u(x, t) will increasingly deviate from the exact solution. Therefore, the notion of relating u(x, t) and
∞
u(x, t) via an effective filter holds only in a small temporal neighbourhood of some time t′ < t at which
both fields are matched per definitionem. From an operational point of view, however, this difficulty does
not spoil anything further on.
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In comparison to equation (1.11), the viscous stress tensor is enhanced by the SGS
turbulence stress tensor3

τik ≡ τ(∞vi, ∞vk) = −〈∞ρ∞vi∞vk〉eff + ρvivk, (3.4)

This tensor accounts for the interaction between resolved and unresolved components
the velocity field. Here the closure problem shows up. Various approaches of approxi-
mately computing τik are the topic of this Section. Moreover, the notion of turbulence
energy and the corresponding energy conservation law are considered in more detail.

3.1.1 Turbulence Energy

One possible definition of the SGS turbulence energy is made on grounds of fluctu-
ations of the ideal velocity field with respect to the smoother resolved velocity field,
u′ = ∞u−u. The kinetic energy associated with these fluctuations is given by [cf. Canuto,
1997]

K′sgs =
1
2
〈∞ρ|u′|2〉eff = 1

2

(
〈∞ρ∞vi∞vi〉eff − 〈∞ρ∞vivi〉eff − 〈∞ρviv′i〉eff

)
(3.5)

Using this definition, the decomposition of the dynamical equation into a resolved part
and a subgrid scale part turns out to be rather complicated and results in what is known
as Leonard’s decomposition [cf. Sagaut, 2001, Section 3.3.1]. Nevertheless, the notion
of SGS turbulence energy being associated with the second moment of the unresolved
velocity fluctuations has been used quite commonly in LES applications.

According to Germano [1992], on the other hand, a generalised turbulence energy
can be defined in analogy to the form which the turbulence energy would assume if
〈 〉eff were a Reynolds operator. A filter 〈 〉 is called a Reynolds operator if it is a
projector, i. e., 〈 ρu − ∞ρ∞u〉 = 0. Whereas local filters of finite characteristic length
usually do not have this property, the global spatial average is a Reynolds operator.
Thus, Reynolds operators are related to statistical theories of turbulence. Extending
Germano’s proposition to the case of compressible turbulence, we define the specific
subgrid scale turbulence energy (SGSTE) in terms of the trace of the SGS turbulence
stress tensor:

Ksgs = ρksgs = −1
2

Tr τ =
1
2

[
〈∞ρ |∞u |2〉eff − ρ|u|2

]
(3.6)

Now the mass-weighted filtered kinetic energy, ρ−1〈∞ρ|∞u |2〉eff , is naturally decomposed
into the resolved fraction, kres =

1
2 |u|2, and a fraction associated with the subgrid scales.

Moreover, as was pointed out by Germano, the algebraic structure of the closure is the
same for every linear commuting filter. This is called the averaging invariance of the
turbulence equations. Finally, we define the characteristic velocity of SGS turbulence
by

qsgs =

√
2ksgs. (3.7)

3Here the opposite sign as customary in most of the literature is used in order to make τik a proper
stress tensor, which enters the right-hand side of the equation for the resolved energy with positive sign.
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3.1.2 A Non-Linear Algebraic Model

Given the definition of the generalised turbulence energy (3.6), a model for the SGS
turbulence stress tensor with non-vanishing trace Tr τ = τii is called for. Simple alge-
braic closures such as the Smagorinsky model or even non-linear extensions like those
of Lund and Novikov [1992] or Kosović [1997], in which τik is expanded into a series
of contractions of Sik and Wik of increasing order, do not meet this requirement. To the
lowest order, the trace-free part of the SGS turbulence stress tensor is given by

τ∗ik ≡ τik −
1
3
τii � 2ρ(CS∆)2|S |S ∗ik. (3.8)

This closure is known as the Smagorinsky model. The scalar factor νsgs = (CS∆)2|S |
has the dimension of a viscosity and is usually interpreted as the turbulent viscosity
due the interaction of SGS velocity fluctuations with the resolved flow. Thus, the form
of τik is analogous to the form of σik and the effective stress tensor in the qNSE (3.3)
can be written as

σik + τ
∗
ik = ρ(ν + νsgs)S

∗
ik. (3.9)

The isotropic part of the SGS turbulence stress, τii, can be absorbed into the pressure
if the flow is incompressible. Hence, there is no notion of a turbulence energy in the
framework of the Smagorinsky model.

Kosović et al. [2002] proposed a modification of the non-linear model which ap-
plies to moderately compressible flows and predicts a non-vanishing trace. There are
two additional terms of higher order in the closure for the SGS turbulence stress tensor:

τik � ρ(CS∆)2
[
2|S |S ∗ik +C1S ilS lk +C2(S ilWlk −WilS lk)

]
. (3.10)

Contracting this closure, an expression for the SGS turbulence energy is obtained,
which agrees with the result calculated by Yoshizawa [1986] from an approximate
analytical turbulence theory:

Ksgs = −1
2
τii � −1

2
ρ(CS∆)2C1SikSik. (3.11)

The corresponding SGS turbulence velocity is given by

qsgs �

√
−C1

2
CS∆|S |. (3.12)

Note that C1 < 0 is a necessary realisability condition. Speziale et al. [1988] pointed
out that the above approximation of SGS energy is limited to the case of weakly com-
pressible flows, for which d � |S |. Apart from that, the numerically resolved energy
budget is not affected, because the non-linear model only yields an energy scale, but it
does not predict the evolution of the SGS turbulence energy.

As we will see in Section 3.1.3, the contraction of τik with the rate-of-strain tensor
S ik yields the rate of SGS turbulence energy production. Assuming statistical equilib-
rium, the mean rate of production is balanced by the mean dissipation rate:

ρ0〈εsgs〉 = 〈τikSik〉. (3.13)
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Substituting the closure for τik, the rate of dissipation can be written as the sum of two
contributions, 〈εsgs〉 = 〈ε0〉 + 〈ε1〉, where

〈ε0〉 = (CS∆)2a0〈|S |2〉3/2, (3.14)

〈ε1〉 = (CS∆)2C1a1〈|S |2〉3/2 (3.15)

and the coefficients a0 and a1 are solely determined by structural properties of the flow:

a0 =
〈ρ|S ∗|2|S |〉
ρ0〈|S |2〉3/2 , (3.16)

a1 =
〈ρSikS jkS kl〉
ρ0〈|S |2〉3/2 =

1

2
√

2
skew(Sik). (3.17)

The last equation shows that a1 is basically the skewness of the rate-of-strain tensor.
Introducing the fraction of non-linear dissipation to the total rate of dissipation,

Cnl = 〈ε1〉/〈εsgs〉, as a free parameter, CS and C1 can be expressed as

CS =
√

1 −Cnl
�S
∆
, (3.18)

C1 =
a0Cnl

a1(1 −Cnl)
. (3.19)

The length scale

�S =
〈εsgs〉1/2
〈|S |2〉3/4 (3.20)

is the characteristic scale of the Smagorinsky model, which is obtained in the limit
Cnl = 0 under the assumption that a0 � 1. Since a1 ∝ skew(Sik) < 0 in isotropic
turbulent flows, the coefficient C1 is indeed negative, as required by the realisability of
the stress tensor4. In conclusion, the SGS turbulence velocity is given by

qsgs �

√
−Cnl

2a1
�S|S | =

−
√

2Cnl〈εsgs〉
skew(Sik)

〈|S |2〉3/2
1/2 |S |. (3.21)

V/c0 a0 a1 skew(Sik) �S/∆

0.084 1.342 -0.1045 -0.296 0.298
0.42 1.339 -0.1041 -0.295 0.260
0.66 1.333 -0.1037 -0.293 0.258

Table 3.1: Parameters of the non-linear algebraic SGS model for fully developed turbulence
in the simulations dns432ersl, dns432nrsl and dns432nh75.

Numerical values of the coefficients a0 and a1 can readily be calculated from DNS
data. If there is a sufficiently wide range of resolved scales, one can expect that these

4According to Kosović et al. [2002], the 〈ε1〉 can be interpreted as rate of transfer due to the backscat-
tering of energy from subgrid to resolved scales. However, this would imply that Cnl < 0 and, thus,
C1 > 0 in contradiction to the realisability condition C1 < 0. As it was not possible to trace back this
inconsistency, we will simply ignore this interpretation and consider Cnl as a positive free parameter.
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coefficients will be largely universal once turbulence is fully developed. This is in-
deed demonstrated by the values listed in Table 3.1, which were computed from full
3D structural data of the simulations dns432ersl, dns432nrsl and dns432nh75.
For each model, a data set corresponding to nearly steady turbulence was chosen. It
appears that the coefficients are well approximated by

a0 ≈ 4
3
, and a1 ≈ − 1

10
. (3.22)

The implied skewness of about −0.28 agrees with results of Kosović [1997]. There-
fore, the closure for the SGS turbulence velocity becomes

qsgs �
√

5Cnl �S|S |. (3.23)

Setting 〈ε〉 equal the mean rate of numerical dissipation,

ρ0εnum = 〈Π〉 − d
dt
〈K〉 + 〈Pd〉, (3.24)

it is also possible to compute �S numerically. A sample of values is also listed in
Table 3.1. �S ≈ 0.26∆ appears to be a typical value for characteristic Mach numbers
V/c0 ∼ 1. On the other hand, for small Mach numbers, such as in the case of simulation
dns432ersl, a slightly larger length scale of �S ≈ 0.30∆ is obtained. Thus, �S/∆eff ≈
0.16, which is about the value of the Smagorinsky constant obtained from analytical
treatments [cf. Pope, 2000, Section 13.4].

3.1.3 Decomposition of the Kinetic Energy Conservation Law

Alternatively, a dynamical equation for the SGSTE can be found by decomposing the
conservation laws for the ideal flow. Since we are mostly interested in the trace of the
turbulence stress tensor, we shall start from the equation for the kinetic energy of the

ideal flow,
∞
K = 1

2
∞
ρ|∞u |2, which is obtained by multiplying the Navier-Stokes equation

with the velocity and symmetrising:

∂

∂t

∞
K +

∂

∂xi

∞
K
∞
vi =

∞
vi

− ∂
∞
P
∂xi
+
∞
ρ(ai + gi) +

∂

∂xk

∞
σik

 . (3.25)

Note that the viscous dissipation term must not be neglected in this equation, regard-
less of how small the microscopic viscosity ν of the fluid is. Otherwise, there would
be no dissipation of mechanical energy except for compression effects. If forcing were
maintained indefinitely, the kinetic energy would increase to the point where the flow
becomes supersonic and shock dissipation sets in. In an incompressible flow, dissipa-
tion would be nil, which is clearly inconsistent.

As mentioned previously, the filtered ideal kinetic energy can be split into two
contributions,

〈∞K〉eff = 1
2
〈∞ρ|∞u |2〉eff ≡ ρ(kres + ksgs), (3.26)

one being the resolved and the other the subgrid scale contribution. Thus, filtering
and separating equation (3.25) yields a system of dynamical equations for the resolved
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and the SGS kinetic energy, respectively, which is known as the Germano consistent
decomposition (cf. Germano, 1992, and Sagaut, 2001, Section 3.3.2):

ρ
D
Dt

kres = vi

[
− ∂P
∂xi
+ ρ(ai + gi) +

∂

∂xk
τik

]
(3.27)

ρ
D
Dt

ksgs −Dsgs = Πsgs − ρ(λsgs + εsgs). (3.28)

In the first equation, the viscous dissipation term is neglected under the assumption that
the flow is virtually unaffected by microscopic viscosity at the resolved scales. This
is a good approximation if ∆ � ηK, where ηK is the Kolmogorov scale introduced
in Section 1.1.2. Consequently, the energy transfer from resolved to subgrid scales
is solely mediated by turbulence stresses. The equation for ksgs in the above form is
valid provided that the specific force ai and gravity gi only inject energy on scales
l � ∆. Regarding gravity, it comes to the question of the range of scales for which
turbulence is directly affected by buoyancy. For the time being, we will not pursue
this troublesome point any further and conjecture that buoyancy is not significant on
subgrid scales. The various abbreviated terms in equation (3.27) and (3.28) are defined
as follows.

• The rate of turbulence energy production on subgrid scales is given by

Πsgs = τikSik. (3.29)

In fact, τik mainly depends on the Fourier modes associated with wave numbers
in the vicinity of the cutoff π/∆eff [cf. Sagaut, 2001, Section 4.1.2].

• The rate of SGS dissipation,

εsgs = 〈∞σik
∞

S ik〉eff = ν〈|
∞
S ∗|2〉eff (3.30)

is determined by the second moment of the ideal rate-of-strain tensor. This poses

severe difficulties for the closure of the dissipation term, because
∞
S ik mostly

depends on velocity fluctuations at the smallest dynamical scales l ∼ ηK.

• SGS pressure dilatation accounts for compression effects on unresolved scales.
It is defined by an expression analogous to the SGS turbulence stress:

ρλsgs ≡ τ(
∞
P,
∞
d) = −〈∞P∞d〉eff + Pd. (3.31)

As was numerically confirmed by Gotoh and Fukayama [2001], the spectrum
of turbulent pressure fluctuations is governed by a k−7/3 power law. Given the
k−5/3 law for the turbulence energy spectrum, it follows that pressure-dilatation
is small compared to kinetic effects for high wave numbers, and λsgs is likely to
be negligible at sufficiently high resolution.

• The rate of SGS transport Dsgs is given by the gradient of the third-order mo-
ment (TOM) of the ideal velocity field and additional terms which accounts for
diffusion due to pressure effects and viscous transport:

Dsgs =
∂

∂xk

[
1
2
τiik + µk + 〈∞vi∞σik〉eff

]
. (3.32)
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The contracted TOM τiik is defined by

τiik ≡ τ(∞vi,∞vi, ∞vk) = −〈∞ρ∞vi∞vi∞vk〉eff − 2τikvi + 〈∞ρ∞vi∞vi〉effvk, (3.33)

and
µk ≡ τ(

∞
P,
∞
vk) = −〈

∞
P
∞
vk〉eff + Pvk. (3.34)

The viscous term can be neglected, if the scale separation between ηK and ∆ is
sufficiently large.

At this point, we encounter the fundamental problem of SGS modelling: The various
terms in the SGS turbulence energy equation depend on the ideal velocity field and
state variables. However, these quantities are not computable. The problem could
be tackled if turbulence theory provided closed analytic expression in terms of the re-
solved quantities. Alas, no such theory is at hand5. Therefore, putative approximations
must be invoked, which are applicable to numerical computations. Such approxima-
tions are called closures. In essence, any complete set of closures substituted into
equation (3.28) constitutes a subgrid scale turbulence energy model (SGSTE).

3.1.4 Closures for the Turbulence Energy Equation

Finding physically reasonable and computationally feasible approximations for τik,
εsgs, λsgs and Dsgs is a highly non-trivial task. There are many proposals on the mar-
ket. A universal model which includes the SGSTE equation merely as one building
block was formulated by Canuto [1994]. Although satisfying from a purely theoret-
ical point of view, Canuto’s model is extremely complicated, with a system of many
coupled PDEs to be solved. Consequently, the numerical implementation would be
very demanding. The issue of stability has not been investigated at all. A more com-
pact but still quite general model was proposed by Schmidt and Schumann [1989] for
applications in the framework of convective boundary layers, i. e., atmospheres. For
the problem of thermonuclear burning in degenerate matter, however, this model is not
suitable either, because it includes turbulent temperature fluctuations which cannot be
computed with reasonable precision in the limit of high degeneracy. Therefore, we will
first consider a simple variant of the SGSTE model, in which neither thermal effects
nor gravity are included.

Production: The anisotropic part of the SGS turbulence stress tensor,

τ∗ik = τik −
1
3
τllδik = τik +

2
3

Ksgsδik, (3.35)

is modelled by virtue of a turbulent-viscosity hypothesis [cf. Pope, 2000, Sec-
tion 10.1.]:

τ∗ik � 2ρνsgsS
∗
ik = 2ρνsgs

(
Sik − 1

3
dδik

)
. (3.36)

This closure is formulated analogous to the viscous stress tensor in a Newtonian
fluid. The turbulent viscosity νsgs is assumed to be proportional to the product of

5Actually, in the framework of Reynolds-stress models, a solution was presented by Canuto and
Dubovikov [1996] for a restricted class of problems.
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the characteristic length scale ∆eff of the implicit filter 〈 〉eff and the characteristic
velocity of SGS turbulence (cf. Sagaut, 2001, Section 4.3, and Pope, 2000,
Section 13.6.3), i. e.,

νsgs � Cν∆effk1/2
sgs = �νqsgs. (3.37)

The length scale �ν = Cν∆eff/
√

2 is associated with SGS turbulence production.

Dissipation: Assuming a Kolmogorov spectrum for the ideal flow, the mean SGS
turbulence energy corresponding to a sharp spectral cut-off can be related to the
mean rate of SGS dissipation:

〈ksgs〉 =
∫
π/∆

∞
E(k)dk =

3
2

C〈εsgs〉2/3
( π
∆

)−2/3
. (3.38)

The dissipation rate averaged over the whole domain of the flow is therefore
given by

〈εsgs〉 = π
(
3C
2

)−3/2 〈ksgs〉3/2
∆

≈ 0.81
〈ksgs〉3/2
∆

(3.39)

if C ≈ 1.65. Conjecturing that the above relation also holds locally for any
particular finite-volume cell [cf. Pope, 2000, Section 13.6.3], we have

εsgs � Cε
k3/2

sgs

∆eff
=

q3
sgs

�ε
, (3.40)

where �ε = 2
√

2∆eff/Cε and Cε ∼ 1. Basically, equation (3.40) implies that
SGS eddies of characteristic kinetic energy ∼ q2

sgs are dissipated on a time scale
∼ �ε/qsgs.

Pressure-dilatation: For a turbulent deflagration, the flow velocity is strictly sub-
sonic and local pressure equilibrium is maintained even across flame fronts. For
this reason, a crude and, possibly, qualitative closure should do. A particularly
simple relation was proposed by Deardorff [1973]:

λsgs � Cλksgsd. (3.41)

For negative Cλ, kinetic energy is dissipated by pressure fluctuations on subgrid
scales if d < 0, i. e., if the resolved flow is locally contracting. On the other
hand, if the fluid is locally expanding (d > 0), internal energy is converted into
mechanical energy which produces turbulence. The characteristic time scale of
pressure dilatation is given by −1/Cλd.

Diffusion: Apart from the pressure term in the SGS energy flux, one could attempt
to model the contracted TOM τiik itself by an additional dynamical equation.
Indeed, such an equation can be written down [cf. Canuto, 1994]. However,
the solution of this equation would entail additional complications, in particular,
further closure assumptions for yet higher-order moments. In cases where diffu-
sion is weak in comparison to production and dissipation, it is customary to use
the gradient-diffusion hypothesis [cf. Sagaut, 2001, Section 4.3]6

Dsgs �
∂

∂xk
ρCκ∆effk

1/2
sgs
∂ksgs

∂xk
=
∂

∂xk
ρ�κq

2
sgs
∂qsgs

∂xk
. (3.42)

6Also known as Kolmogorov-Prandtl relation.
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The characteristic scale of diffusion is defined by �κ = Cκ∆eff/
√

2, and the SGS
diffusivity is given by κsgs = �κqsgs. The notion of a diffusivity of turbulent en-
ergy stems from the analogy to thermal diffusion. The diffusion equation is a
macroscopic approximation which statistically describes the microscopic trans-
port of some passive scalar such as heat. In the case of thermal diffusion, heat
is transported due to molecular collisions, which appear to be random from the
macroscopic point of view. Regarding turbulent diffusion, the agent of transport
are turbulent velocity fluctuations on scales below the numerical resolution. The
analogy to thermal diffusion suggests the definition of a kinetic Prandtl number,

σkin =
νsgs

κsgs
=

Cν
Cκ
. (3.43)

Summarising, we obtain the following SGSTE model:

D
Dt

ksgs−1
ρ
∇ ·

(
ρCκ∆effk

1/2
sgs∇ksgs

)
=

Cν∆effk
1/2
sgs |S ∗|2 −

(
2
3
+Cλ

)
ksgsd −Cε

k3/2
sgs

∆eff
.

(3.44)

Alternatively, a dynamical equation for the SGS turbulence velocity qsgs can be for-
mulated:

D
Dt

qsgs − 1
ρ
∇ ·

(
ρ�κqsgs∇qsgs

)
− �κ|∇qsgs|2 = �ν|S ∗|2 −

(
1
3
+

Cλ
2

)
qsgsd −

q2
sgs

�ε
(3.45)

Although in non-conservative form, the equation for qsgs can be evolved starting with
qsgs = 0 for a fluid being initially at rest, which is appealing from a computational
point of view. Moreover, non-integer powers of qsgs do not occur, and the functional
dependence on qsgs is advantageous for the discretisation of the diffusion term. This is
shown in Section A.2 of the Appendix. The closure parameters Cν, Cε , Cλ and Cκ are
a priori unknown. In the case of stationary isotropic turbulence, values can be derived
analytically. Particular examples are Cν ≈ 0.054, Cε ≈ 1.0 and Cκ ≈ 0.1 [cf. Sagaut,
2001, Section 4.3]. For the Deardorff closure, it is customary to set Cλ = − 1

5 [cf.
Fureby et al., 1997]. Statistical closure parameters calculated from DNS data will be
discussed in Section 3.2. Furthermore, one can apply so-called dynamical procedures
to compute closure parameters in situ from structural properties of the resolved flow
in a LES.

3.1.5 Dynamical Procedures

In turbulent flows which are intermittent or anisotropic, constant closure parameters
are more or less inadequate. An archetypical example is turbulence near a wall, which
is inherently anisotropic. Both the naı̈ve Samgorinksy model and the SGSTE model
with constant parameters fail already in this simple case. In astrophysics, anisotropy
usually stems from the compressibility of the fluid. An obvious example are shock
waves in supersonic flows. Steep density gradients in stratified media such as in stel-
lar atmospheres can effectively act like walls, as was pointed out by Clement [1993].
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Moreover, turbulence driven by convection is highly intermittent. A flame front also
introduces anisotropy because of the density jump between burned and unburned ma-
terial, even at very low Mach numbers. A step towards a more flexible SGS model is
the determination of the production parameter Cν from the local flow structure on the
smallest resolved scales. Then the closure is said to be localised.

In the beginning, a localised Smagorinsky model for incompressible turbulence
was suggested by Germano et al. [1991]. They utilised an identity relating the SGS
turbulence stress and the stress associated with a larger length scale∆̂ > ∆:

Tik = τ̂ik + Lik, (3.46)

where Lik = −ρ(v̂ivk − v̂iv̂k). The hat on top of a symbol indicates a filter operation
with characteristic length ∆̂. This filter is called the test filter, and we can say that
Tik is the turbulence stress tensor at the level of the test filter. Germano et al. came
up with the following hypothesis. Owing to scale-invariance, the turbulent-viscosity
closure is expected to hold for the turbulence stress tensor associated with any length
scale within the inertial subrange. In particular, for the discretisation scale ∆ and the
test filter length scale ∆̂, the closures for the corresponding stress tensors are given by

τ∗ik � 2ρCS∆
2|S |Sik ≡ CSβik, (3.47)

T ∗ik � 2ρ̂CS∆̂
2|Ŝ |Ŝik,≡ CSαik. (3.48)

The rate-of-strain tensor Ŝ ik at the test filter level is computed from the filtered resolved
velocity field, i. e., Ŝ ik = v̂(i,k). The parameter CS is a function of position and time
which is to be determined. Filtering the closure for the SGS stress tensor τ∗ik and
substituting the identity (3.46) for Tik, it is possible to eliminate τ̂ik, a tensor which is
unknown. Then it follows that

Lik � ρ̂CSαik − ρ̂Cνβik. (3.49)

Assuming Ĉνβik � CSβ̂ik and minimising the residual error between Lik and the corre-
sponding closure expression, the Samgorinsky parameter is found to be7

CS =
mikLik

mikmik
, (3.50)

where mik = αik−β̂ik. Note that both mik and Lik can be calculated from the numerically
resolved flow. This method of localising the Samgorinsky model is known as the
Germano-Lilly dynamical procedure.

LES of turbulent channel flows, for example, carried out by Piomelli [1993], con-
tributed to confidence in the localised model. However, the dynamical procedure as
outlined above suffers from several difficulties. First of all, the algorithm used to de-
termine the Samgorinsky parameter is inconsistent because variations of CS over the
characteristic length of the test filter are neglected. This assumption was found to be
violated significantly. The origin of this problem is the presumed scale-invariance of
CS in contradiction to the calculation from local properties of the resolved flow on a

7The original expression proposed by Germano et al. for CS was slightly different but the basic idea
remains unaltered.
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certain scale that is given by the numerical cut-off. Apart from that, divergences can
occur locally if mik vanishes. The simplest solution would be to average CS in homo-
geneous directions of the flow, if there are any. A more sophisticated iterative scheme
was discussed by Piomelli and Liu [1995]. This scheme was also meant to tackle
numerical instabilities which are caused by persisting negative values of CS. Ghosal
et al. [1995] generalised the dynamical procedure and applied it to the SGS turbulence
energy model including the local determination of the dissipation and diffusion param-
eters. They formulated a variational algorithm to calculate the model parameters even
in completely inhomogeneous flows. Although the variational formalism turned out to
be a powerful method which overcomes the mathematical inconsistency and numerical
instability of the Germano-Lilly procedure, it is computationally very demanding, as
integral equations have to be solved.

Liu, Meneveau, and Katz [1994] made a different proposition based on experimen-
tal data from velocity measurements in a round jet. They used a decomposition into
wave number bands corresponding to a hierarchy of filters and investigated the corre-
lation between explicit turbulence stresses and turbulent-visocisity closures at different
levels for the Smagorinsky model. Although some correlation between the turbulent
stresses at different filter levels was found, they verified significantly better correlation
between the turbulent stress at a particular filter level and the stress associated with
the intermediate scales in between two adjacent levels, i. e., the Leonards stress. Their
observation can be understood as a consequence of most of the energy transfer across a
certain wave number k being caused by interactions in the spectral band [12k, 2k], which
follows from a theoretical analysis by Kraichnan [cf. Sagaut, 2001, Section 4.1]. With
regard to the Smagorinsky model, this implies that the turbulent-viscosity closure at
the level of the test filter applies to Lik in place of Tik. Thus, the localised Smagorinsky
parameter is given by

CS =
αikLik

αikαik
. (3.51)

Obviously, the difficulties encountered with the original dynamical procedure pro-
posed by Germano et al. [1991] are not encountered. The resulting closure for the
SGS turbulence stress tensor is called the similarity model.

Following the spirit of the dynamical procedure for calculating the Smagorinsky
parameter CS, a localised closure for production in SGSTE model can be formulated
as well. In this case, the expression for the parameter of production is analogous to
equation (3.51):

Cν =
αikL∗ik
αikαik

, (3.52)

where
αik = 2ρ̂∆̂k1/2

T Ŝ ∗ik (3.53)

and kT = Lii/2ρ̂ is the resolved kinetic energy on scales smaller than ∆T . The above
expression for Cν is part of the LDKM model proposed by Kim and Menon [1996]. It
was also shown that the resulting closure for turbulence production preserves Galilean
invariance and fulfils fundamental realisability conditions8 . Moreover, they suggested

8In particular, these conditions ensure that the turbulence energy, which is determined by the trace of
τik, is always positive [cf. Sagaut, 2001, Section 3.3.5].



The Self-Similarity of Turbulence 73

a localised closure for SGS dissipation,

Cε
k3/2

T

∆T
= νsgs|Ŝ ∗|2, (3.54)

which is based upon the prejudice that viscous dissipation acting on subgrid scales
is similar to the transfer of kinetic energy from resolved scales to scales below the
cut-off ∆. Comparing the above relation with the closure (3.40), one can see that the
SGS viscosity is put in place of the microscopic viscosity. This similarity assumption
is certainly questionable and, indeed, it was later revised [cf. Kim et al., 1999]. Yet
another, rather tentative method of determining Cε will be discussed in Section 4.3.4
in the context of LES of turbulent burning.

3.2 The Self-Similarity of Turbulence

The notion of self-similarity plays an important role in the theory of turbulence. Par-
ticularly, Kolmogorov’s theory of turbulence is, in essence, a self-similarity theory.
Actually, there are several different flavours of self-similarity. Usually, the largest co-
herent structures in a flow are shaped by boundary conditions, the action of external
forces etc. and, naturally, there is no similarity to smaller structures. But as we are
looking on ever smaller length scales, a turbulent flow becomes asymptotically self-
similar. Of course, even then a certain vortex or some turbulent patch is never exactly
similar to another one. However, statistical moments of the velocity fluctuations in
the turbulence cascade are scale-invariant. Therefore, turbulence is statistically self-
similar on small scales, which bears important implications on SGS modelling. Fur-
thermore, there is the question of correlation among different scales. For a cut-off
scale ∆ within the inertial subrange, the local dynamics of SGS turbulence should be
mostly influenced by the dynamics of turbulence on resolved scales above the cut-off.
Taking up this idea, Bardina et al. [1983] proposed that the statistical structure of the
turbulence stress tensor constructed on the basis of the subgrid scales is similar to that
of the equivalent evaluated on the basis of the smallest resolved scales. Indeed, this
hypothesis by Barden was later extended by Liu et al. [1994] to a spectrum split into an
arbitrary number of frequency bands, as mentioned in Section 3.1.5. The assumption
of similarity was then applied to the flow structure in consecutive bands and led to the
similarity model. In this Section, the self-similarity of turbulence with regard to SGS
closures is investigated on grounds of numerical data from the DNS presented in the
previous Chapter.

3.2.1 Hierarchical Filtering

To begin with, let us introduce an infinite series of homogeneous and time-independent
filters 〈 〉n. The kernel of the n-th filter is denoted as Gn(x). The corresponding filter
operation on a dynamical quantity q(x, t) is defined by

q(n)(x, t) =
∫

d3x′Gn(x′)q(x′, t) (3.55)

and symbolically written as q(n) = 〈q〉n. In the limit n → ∞, the identity operator is
obtained. Setting ∆0 = X, where X is the size of the fundamental domain, q(0) = 〈q〉 is
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the global mean of the field q(x, t). Moreover, the series of filters 〈 〉n is self-similar if

∀n ∈ N0 : Gn(x) = γ3Gn−1(γx). (3.56)

Here we shall assume that 〈 〉n is a Gaussian filter with a characteristic length ∆n and
wave number kn = π/∆n. The corresponding kernel is defined by [cf. Pope, 2000,
Section 13.2]

Gn(x) =

(
6

π∆2
n

)3/2
exp

(
−6|x|2
∆2

n

)
. (3.57)

In the following, we will mostly refer to a series of Gaussian filters with ∆n = {L/n}∞n=1.
The velocity field u[n](x, t) at the n-th filter level is defined by a mass-weighted

filter operation:

u[n](x, t) =
1

ρ(n)(x, t)

∫
d3x′Gn(x′)∞ρ(x′, t)∞u (x′, t) (3.58)

or, for brevity, u[n] = 〈∞ρ∞u〉n/〈∞ρ〉n. Filtering twice, we set

u[m][n]ρ(m)(n) = 〈ρ(m)u[m]〉n = 〈〈∞ρ∞u〉m〉n, (3.59)

where ρ(m)(n) = 〈〈∞ρ〉m〉n. If two filters of characteristic length scales ∆m and ∆n � ∆m

are applied in succession, we have

u[m][n]ρ(m)(n) = 〈ρ(m)u[m]〉n � 〈∞ρ∞u〉n = u[n]ρ(n). (3.60)

The validity of this approximation becomes immediately clear from the product of the
kernels of the Gaussian filters in spectral space [cf. Pope, 2000, Section 13.2]:

Ĝm(k)Ĝn(k) = exp

[
−k2(∆2

m + ∆
2
n)

24

]
� exp

[
−k2∆2

n

24

]
= Ĝn(k). (3.61)

Since the convolution with the filter kernel in physical space corresponds to the mul-
tiplication of the Fourier transforms in spectral space, it follows that 〈〈q〉m〉n � 〈q〉n if
∆n � ∆m.

The turbulence stress tensor associated with the n-th filter is defined by

τ[n]
ik = −〈

∞
ρ
∞
vi
∞
vk〉n + ρ(n)v[n]

i v
[n]
k . (3.62)

Note that τ[0]
ik is the Reynolds stress tensor in a purely statistical description of the flow.

For two consecutive filter levels, say, n and n − 1, there is a simple algebraic relation
between the corresponding stress tensors,

τ[n][n−1]
ik = 〈τ[n]

ik 〉n−1 + τ
[n,n−1](v[n]

i , v
[n]
k ), (3.63)

where
τ[n][n−1]

ik = −〈〈∞ρ∞vi∞vk〉n〉n−1 + ρ
(n)(n−1)v[n][n−1]

i v[n][n−1]
k︸�����������������������︷︷�����������������������︸

〈〈∞ρ∞vi 〉n〉n−1〈〈
∞
ρ
∞
vk〉n〉n−1

〈〈∞ρ 〉n〉n−1

. (3.64)
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and

τ[n,n−1](v[n]
i , v

[n]
k ) = −〈ρ(n)v[n]

i v
[n]
k 〉n−1 +

1

〈ρ(n)〉n−1
〈ρ(n)v[n]

i 〉n−1〈ρ(n)v[n]
k 〉n−1 (3.65)

is the intermediate stress tensor at the filter level n associated with the velocity field
filtered at the level n − 1. The above relation was originally formulated by Germano
[1992] in the case of incompressible flows for which the filtered velocity field is not
mass-weighted. The relation also applies to arbitrary filter levels, m and n, say. In the
limit ∆n � ∆m, the contribution from 〈τ[m]

ik 〉n becomes negligible and

τ[n]
ik � τ[m][n]

ik � τ[m,n](v[m]
i , v

[m]
k ), (3.66)

i. e., the turbulence stress associated with the scale ∆n is not sensitive to the flow
structure on much smaller scales. The asymptotic limit of the Germano relation is
especially useful for the numerical evaluation of turbulence stresses from DNS data.

The generalised turbulence energy at the n-th filter level is defined by

K[n] = ρ(n)k[n] = −1
2
τ[n]

ii . (3.67)

In particular, K[0] is the mean kinetic energy of the flow. Contracting the extended
Germano identity (3.63), we obtain the relation

K[n][n−1] = 〈K[n]〉n−1 + K[n,n−1], (3.68)

where

K[n,n−1] = −1
2
τ[n,n−1](v[n]

i , v
[n]
i ) (3.69)

is the intermediate turbulence energy, i. e., the kinetic energy of modes which are
concentrated in the spectral band [π/∆n−1, π/∆n]. As opposed to the spectral filter,
there are no sharp boundaries between adjacent bands associated with Gaussian filters.
Nevertheless, the notion of turbulence energy as proposed by Germano is well-defined
and unambiguously associates some energy contents with each band of wave numbers.
Furthermore, the asymptotic self-similarity of turbulence implies that the closures de-
fined in Section 3.1.4 are applicable to filters of characteristic length ∆n � L. Then
the time evolution of K[n] is given by the generalisation of equation (3.44),

D
Dt

k[n]− 1
ρ(n)
∇ ·

(
ρ(n)C(n)

κ ∆n

√
k[n]∇k[n]

)
=

C(n)
ν ∆n

√
k[n]|S ∗ [n]|2 −

(
2
3
+C(n)

λ

)
k[n]d −C(n)

ε
(k[n])3/2

∆n
,

(3.70)

where S ∗ [n]
ik = v[n]

(i,k) − 1
3d[n]δik are the components of the trace-free rate-of-strain tensor

and d[n] = v[n]
(k,k) is the divergence of the velocity field filtered at the level n. Now the

question of self-similarity boils down to the scaling-behaviour of the parameters C(n)
ν ,

C(n)
ε and C(n)

κ associated with the different filters in the hierarchy.
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3.2.2 Production

The turbulent-viscosity closure (3.36) for the production of turbulence energy at the
level of the n-th filter is given by

τ∗ [n]
ik S [n]

ik � ρ
(n)C(n)

ν ∆n

√
k[n]|S ∗ [n]|2. (3.71)

In order to verify this closure a priori, DNS data can be filtered in the intermediate
range of scales between the grid resolution and the integral scale. For the explicit eval-
uation of the turbulence stress tensor, an enhanced viscosity approximation is applied.
This means that the ideal velocity field in definition (3.62) is replaced by the numeri-
cally computed field which is smooth on scales l � ∆. One can think of the smoothness
being caused by an effective filter of characteristic length ∆eff , corresponding to a vis-
cosity of numerical origin, which enhances the physical viscosity of the fluid. By the
same line of reasoning as in the case of two filters with ∆n � ∆m, it follows that
〈∞q〉n � 〈〈∞q〉eff〉n = 〈q〉n if ∆n � ∆eff . Moreover, ∃N : ∆N+1 < ∆eff ≤ ∆N . According
to the asymptotic equation (3.66), τ[n]

ik can be approximated by τ[N,n]
ik . This, in turn,

implies
τ[n]

ik � −〈ρvivk〉n + ρ(n)v[n]
i v

[n]
k (3.72)

for a filter of much larger characteristic length than the the numerical scale ∆eff .

V/c0 ζ t/T ∆6/lp 〈C(6)
ν 〉 C(6)

ε C(6)
κ

0.084 1.0 2.5 2.25 0.0618 0.473 0.358
0.42 1.0 2.5 2.84 0.0615 0.424 0.369
0.66 0.75 2.0 2.00 0.0504 0.387
0.66 0.75 4.0 2.77 0.0574 0.461 0.390
0.66 0.75 6.0 2.53 0.0597 0.425 0.376
0.66 0.75 9.0 2.59 0.0570 0.512
1.39 0.20 3.5 0.73 0.0394 0.508
1.39 0.20 6.0 2.53 0.0548 0.474 0.484

Table 3.2: Mean production, dissipation and diffusion parameters calculated with a Gaussian
filter is ∆6 = L/6 = 24∆ for different Mach numbers V/c0, spectral weights ζ and
varying time t̃ = t/T .

However, the actual range of inertial scales in the DNS discussed in Section 2.4 is
only marginal. From the turbulence energy spectra shown in Section (2.5.3), one can
see that approximate Kolmogorov scaling is found for dimensionless wave numbers
in the narrow range 2 � k̃ � 5. The dimensionless wave number associated with a
Gaussian filter of characteristic length scale ∆n is k̃n = (π/∆n)(L/2π) = L/2∆n. Thus,
only filters with 0.1 � ∆n/L � 0.25 are more or less suitable for calculating C(n)

ν

from equation (3.71), with the turbulence stress given by the enhanced viscosity ap-
proximation (3.72). Notwithstanding these tight constraints, mean values of C(n)

ν were
calculated from a sample of 3D data sets using several different filters. The results are
plotted as functions of the characteristic filter wave number in Figure 3.1. For the sim-
ulation dens432ersl with a characteristic Mach number of V/c0 ≈ 0.084, the plotted
values seem to indicate a maximum of 〈C(n)

ν 〉 near the wave number k̃ = 2.0, which
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Figure 3.1: Statistical closure parameters 〈Cν〉, Cε and Cκ as functions of the normalised wave
number k̃n = L/2∆n for a Gaussian filter of characteristic length ∆n.

marks the upper bound of the energy-containing subrange. Towards higher wave num-
bers, i. e., for filters of smaller characteristic length, 〈C(n)

ν 〉 decreases and eventually
flattens in the vicinity of peak dissipation at the wave numberk̃p ≈ 13.5. Unfortunately,
no pronounced self-similarity is apparent. This is probably an indication of insufficient
resolution in the simulations. For the other models, a similar behaviour emerges, but
there is a trend of smaller production parameters for higher Mach number and partially
dilatational forcing. In any case, 〈Cν〉 ≈ 0.06 is adopted as an estimate for some of
the LES discussed in the next Chapter. This choice is further supported by the selec-
tion of numerical values listed in Table 3.2. All of these values were calculated with
the Gaussian filter of characteristic wave number k̃6 = 3. Near this wave number, the
compensated energy spectra in Section (2.5.3) go through a local minimum. Smaller
values of 〈C(n)

ν 〉 are found at early time when turbulence is still developing. Otherwise,
〈Cν〉 ≈ 0.06 appears to be a good value for fully developed turbulence.

Furthermore, let us contrast the statistical values for the production parameter with
those obtained on grounds of the similarity hypothesis following the proposition of Liu
et al. [1994]. To that end, the function C(2n,n)

ν (x, t) was determined from the intermedi-
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Figure 3.2: The rate of turbulence production evaluated from filtered data of simulation
dns432ersl in the plane z = 0 at time t̃ = 2.5 (left top panel) and the corre-
sponding deviations of the statistical and the similarity turbulent-viscosity closure,
respectively (bottom panels). The right panel on top shows the localised produc-
tion parameter inferred from the similarity hypothesis.

ated stress tensor τ[2n,n]
ik associated with the range of scales ∆2n � l � ∆n = 2∆2n:

C(2n,n)
ν =

τ∗ [2n,n](v[2n]
i , v

[2n]
k )S [n]

ik

ρ(n)∆n

√
k[2n,n]|S ∗ [n]|2

(3.73)

The quantities in the above expression can be evaluated by filtering DNS data at two
levels n and 2n in between the energy containing and the dissipation range, respec-
tively. The similarity closure for the turbulence stress τ[2n]

ik associated with the length
scale ∆2n is given by

τ∗ [2n]
ik S [2n]

ik � C(2n,n)
ν ρ(2n)∆2n

√
k[2n]|S ∗ [2n]|2. (3.74)

In order to validate the modelled rate of production given by equation (3.74), the tur-
bulence stress tensor on the left-hand side has to be evaluated from the DNS data on
grounds of the enhanced viscosity approximation.

The deviations of both the statistical and the similarity closure from the explicitly
evaluated rate of production is illustrated in Figure 3.2. The top panel on the left is



The Self-Similarity of Turbulence 79

a contour plot of τ∗ [6]S [6]
ik , which was computed with a Gaussian filter of character-

istic length ∆6 = L/6 from a 2D section of the flow in simulation dns432ersl at
time t̃ = 2.5. The corresponding turbulent-viscosity closure with the production pa-
rameter set equal to 〈C(6)

ν 〉 ≈ 0.0618 is plotted in the panel panel below. Although
the overall agreement is fairly good, some regions of pronounced production are not
well reproduced. On the other hand, the similarity parameter C(6,3)

ν was computed
with equation (3.73). A contour plot is shown in the right panel on top of Figure 3.2.
Obviously, C(6,3)

ν is negative in several regions of the flow. The resulting negative
turbulent viscosity is usually interpreted as backscattering of energy from smaller to
larger scales. In fact, energy transfer upwards through the cascade is well known from
turbulence theory and can only be described by a localised closure9. The outcome of
inserting C(6,3)

ν into the turbulent-viscosity closure for τ∗ [6]S [6]
ik is shown in the right

bottom panel of Figure 3.2. The deviations from rate of production are clearly less
than for the closure with the constant statistical parameter.

∆a/lp ∆b/lp 〈Cν〉 ρ(τ∗ikSik)|z=0

2.0 6.0 0.0401 0.769
2.0 5.0 0.0417 0.796
2.0 4.0 0.0426 0.825
2.0 3.5 0.0426 0.844
2.0 3.0 0.0421 0.865
1.5 5.25 0.0453 0.743
1.5 4.5 0.0465 0.760
1.5 3.75 0.0472 0.782
1.5 3.0 0.0469 0.814

Table 3.3: Mean production parameters computed from the intermediate turbulence stress as-
sociated with the length scales ∆a and ∆b. The data set was taken from simulation
dns432ersl at time t̃ = 2.5.

In a different numerical experiment, the influence of the width of the band for
the intermediate turbulence stress was investigated. This time, two Gaussian filters
with variable ratio of characteristic length scales ∆b/∆a were applied. The results are
summarised in Table 3.3. The parameter of production was calculated according to
equation (3.73), with the correspondence 2n ↔ a and n↔ b. Both the global averages
and the correlation coefficient between the explicitly evaluated rate of production and
the modelled counterpart in the plane z = 0 are listed. The filter length is measured in
units of the length scale of maximal dissipation, lp. It appears that the mean production
parameter is fairly robust with respect to the ratio ∆b/∆a and the correlation coefficients
are quite high, with a typical value of about 0.8 if ∆b/∆a ≈ 2.0 10 . This agrees well
with the comments on spectral transfer made in Section 3.1.5. However, corresponding

9Entirely different SGS models including backscattering processes are outlined in Sagaut [2001],
Section 4.4.

10High levels of correlation are usually found with regard to the scalar rate of production τikSik. If the
turbulence stress tensor τik itself were compared to the corresponding closure, the correlation would be
reduced due to the weak alignment of Sik and τik . This was recognised by Clark et al. [1979] from studies
of DNS data.
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values for the two different choices ∆a = 1.5lp and ∆a = 2.0lp are clearly different. This
might be a consequence of the stronger influence of numerical dissipation on the scale
1.5lp as compared to 2.0lp.

3.2.3 Dissipation

The rate of dissipation at the level of the n-th filter,

ε(n) = ν〈|
∞
S ∗|2〉n, (3.75)

is largely determined by velocity fluctuations on the smallest dynamical length scales
near the microscopic Kolmogorov scale ηK, even if ∆n � ηK. For this reason, there
is no way of explicitly evaluating ε(n) from under-resolved numerical data. Alterna-
tively, one could infer ε(n) from the rate of energy transfer across the length scale ∆n.
However, the direct calculation of the rate of transfer is extremely complicated and
was not attempted [cf. McComb, 1990, Section 2.7.1]. Consequently, a different ap-
proach is called for. A simple estimate can be made if the resolved flow is more or less
in stochastic equilibrium. Taking the global average of the turbulence energy equa-
tion (3.70), the diffusion term cancels out and the mean time derivative is negligible in
the case of steady turbulence. Hence,

0 � 〈τ[n]
ik S [n]

ik − ρ(n)(ε(n) + λ(n))〉. (3.76)

Dropping the minor contribution of pressure dilatation and substituting the closures
for production and dissipation, we obtain

C(n)
ν ∆n〈|S ∗ [n]|2〉 − 1

3
〈d[n]q[n]〉 − 1

2
C(n)
ε
〈(q[n])2〉
∆n

� 0. (3.77)

From this averaged production–dissipation balance, a statistical estimate of the dissi-
pation parameter C(n)

ε can be calculated. Results obtained from DNS data are shown
in Figure 3.1. It appears that the graphs of C(n)

ε flatten near the transition to the range
of wave numbers dominated by dissipation. For the simulation with the lowest Mach
number, dns432ersl, C(8)

ε ≈ 0.48 was found, and the corresponding values for the
other models are not much different. A further sample of values for the dissipation
parameter is listed in Table 3.2. In most cases, C(n)

ε is slightly less than 0.5 for the filter
levels 6 ≤ n ≤ 12, which highlights the robustness of this parameter.

3.2.4 Diffusion

The turbulent flux of kinetic energy is given by

F[n]
k =

1
2
τ[n]

iik + µ
(n)
k , (3.78)

where the contracted TOM τ[n]
iik and the pressure-diffusion flux µ(n) are defined anal-

ogously as in equations (3.33) and (3.34), respectively, with the effective numerical
filter replaced by the filter 〈 〉n. In the gradient-diffusion closure, the flux is set equal
to the mean product of kinetic diffusivity and the gradient of the turbulence energy:

F[n] � ρ(n)C(n)
κ ∆n

√
k[n]∇k[n]. (3.79)
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This closure immediately reveals a consistency problem. The parameter C(n)
κ is over-

determined because there are three flux components. For a well defined solution, the
gradient of k[n] has to be aligned with the flux vector F[n]. If this were the case, a
least-square approach could be employed to calculate the closure parameter:

C(n)
κ =

〈F[n] ·∇k[n]〉
〈ρ(n)∆n

√
k[n]|∇k[n]|2〉

. (3.80)

Figure 3.3: The turbulent flux magnitude computed with a Gaussian filter of characteristic
length ∆6 = L/6 from data of simulation dns432nrh75 at time t̃ = 5.0. The
left panel on the top shows the contours of the actual flux magnitude |F [6]|. The
projection of the modelled flux as defined by equation (3.80) unto the actual flux
is shown in the right top panel, and contours of differently modelled fluxes are
plotted in the bottom panels.

The outcome of this ansatz was matched against the explicitly evaluated flux F[6]
k

for a 2D section of the filtered flow in simulation dns432nrh75 at time t̃ = 4.0. The
filtering length is ∆6 = L/6 ≈ 15∆eff . Equation (3.80) yields C(6)

κ ≈ 0.0358 from the
full 3D data set. This is of the same order as the statistical parameter of production,
C(6)
κ ≈ 0.0574, and appears to support a turbulent kinetic Prandtl number close to one.

However, the overall agreement between the modelled and the explicitly evaluated
turbulent flux is very poor, as the two panels on the top of Figure 3.3 reveal. Actually,
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the typical magnitude of the flux is underestimated by a factor of about 8 according
to the different scales for both plots. The discrepancy indicates that the assumption of
turbulent transport in the direction of the turbulence energy gradient is not fulfilled.
In particular, the dark wiggling ribbons in the right top panel, which basically shows
contours of∇k[6]·F[6], correspond to those points where the turbulence energy gradient
is oriented perpendicular to the turbulent flux vector.

Hence, we forsake the approach outlined so far and determine the diffusivity pa-
rameter through matching of the flux magnitudes in a scalar equation:

C(n)
κ =

〈|F[n]|〉
〈ρ(n)∆n

√
k[n]|∇k[n]|〉

. (3.81)

With this equation, C(6)
κ ≈ 0.390 is obtained from the DNS data mentioned above.

This is larger by about an order of a magnitude than the value computed with equa-
tion (3.80). Contours of the corresponding modelled flux, ρ(6)C(6)

κ ∆6

√
k[6]|∇k[6]|, are

plotted in the left panel on the bottom of Figure 3.3. The remarkably good correla-
tion to |F[6]| is evident. Even surfaces at which the flux vanishes as pressure-diffusion
cancels the TOM contributions are well reproduced. Therefore, we conclude that the
gradient-diffusion closure is a fair statistical description of turbulent transport, which
correctly accounts for the magnitude but not for the local direction of transport. Nu-
merically calculated values of C(6)

κ for different DNS are listed in Table 3.2. It appears
that there is a trend towards stronger diffusion for higher Mach number. Figure 3.1
shows the variation of C(n)

κ with the smoothing length scale ∆n. As one can see, the
parameter of diffusion is almost scale-invariant for n ∈ 2, . . . , 10, which corresponds
to the nearly inertial subrange.

Finally, it was tested whether turbulent diffusivity is correlated with the turbulent
viscosity. Recall that κsgs = σkinνsgs with σkin ∼ 1 is a commonly used hypothesis. To
that end, the parameter C(n)

ν was computed locally according to the similarity closure
for production. Then the diffusivity was set equal to the viscosity for positive values
of C(n)

ν and equal to zero for negative values. Negative diffusivity in the SGSTE model
would cause numerical instability as energy could pile up more and more in certain
regions contrary to the mechanism of diffusion11. According to the numerical evalua-
tion, the resulting diffusive flux is too low by an order of a magnitude. An exemplary
2D contour section is shown the bottom of Figure 3.3. Although the discrepancy can
be lowered by choosing a higher kinetic Prandtl number σkin, the level of correlation
is found to be unsatisfactory in any case.

11Apart from that, the second law of thermodynamics would be violated, because entropy could de-
crease arbitrarily.



Chapter 4

Deflagration in the Cube

But the hope that “homogeneous turbulence” would be a sen-
sible model was dashed by Landau & Lifschitz 1953-1959,
which notes that some regions are marked by very high dis-
sipation, while other regions seem by contrast nearly free
of dissipation. This means that the well-known property of
wind, that it comes in gusts, is also reflected—in more con-
sistent fashion—on smaller scales.

B. B. Mandelbrot, The Fractal Geometry of Nature

The senses’ pleasure in colour and melody is the mind’s
pleasure in pictures and music, and they in turn most often
(though not invariably, because the mind enjoys abstraction
too) prompt thought.

A. C. Grayling, The Reason of Things

With the SGS turbulence energy model, we have one of the keys for tackling tur-
bulent combustion numerically. A further prerequisite is a method of representing and
tracking the flame front. In the code Telperion, flames are modelled as discontinuities
by means of the level set method. This is an excellent approximation for thermonu-
clear deflagration in degenerate matter, because the typical thickness of the reaction
zones is much smaller than the resolution of the numerical grid. In the following, the
performance of different SGS models in simplified numerical experiments is investi-
gated. Stochastically driven turbulence in a cube, as discussed in Chapter 2, is set up as
the stage on which burning takes place. Due to the periodic boundary conditions, the
average mass density in this setting remains constant and there is no explosion. The
deflagration rather proceeds in the form of a percolation process. All fuel is gradually
consumed, and the system eventually approaches a state in which degenerate carbon
and oxygen is replaced by nickel and alpha particles in statistical nuclear equilibrium.
Another crucial point is that gravity is not included in the simulations. According
to the order-of-magnitude estimate in Section 2.3.3, this is a valid approximation on
scales l � 108 cm. It is still controversial, whether SGS models, which do not account
for gravity, are applicable to thermonuclear supernova. Some arguments in favour of
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such a conjecture were given in Section 1.1.3, and further discussion will follow in
the concluding Chapter. The major indicators which are used to compare different
SGS models in LES of deflagration are the time evolution of the rate of burning and
the SGS turbulence velocity. The single most important result obtained from these
simulations is that the evolution of the burning process is significantly affected by the
SGS model in use. This underlines the importance of choosing a faithful SGS model
and certainly bears consequences on the simulation of deflagration in thermonuclear
supernova. The most favoured SGS models emerging from the numerical studies is a
semi-localised hybrid model, which encompasses a fully localised procedure for SGS
turbulence production, a partially statistical method of calculating the dissipation and
a purely statistical treatment of diffusion.

4.1 Burning and the Problem of Flame Tracking

In a LES, the total energy Etot is given by the sum of resolved kinetic energy Kres, SGS
turbulence energy Ksgs and internal energy Eint, the latter being itself a mass-weighted
filtered quantity:

E = Kres + Ksgs + Eint =
1
2
ρ(vivi + q2

sgs︸�����︷︷�����︸
〈∞ρ∞vi∞vi〉eff

) + Eint. (4.1)

Filtering the conservation law for the total energy in the ideal system and splitting
up the resulting equation into a resolved and a SGS part, as in Section 3.1.3 for the
kinetic energy, the following equation for the resolved total energy, Eres = Kres + Eint,
is obtained:

∂

∂t
Eres +

∂

∂xk
(Eres + P)vk = ρ fkvk + B − ρ D

Dt
ksgs. (4.2)

The source term B accounts for the rate of heat production due to thermonuclear fusion
of degenerate carbon and oxygen. As will be explained below, thermal conduction is
implicitly included in the treatment of flame propagation. For this reason, there is
no explicit thermal diffusion term in the above equation. Furthermore, one faces the
challenge of the hugely disparate length and time scales of the thermonuclear reactions
in comparison to anything that can be resolved in a numerical simulation with integral
scales of interest. This fact entails two problems. On the one hand, the flame must be
either artifically made thick or modelled as discontinuity. Regarding the latter option,
which is considered here, a supplementary evolution equation for the propagation of
the discontinuity has to be solved. On the other hand, the flame dynamics cannot be
computed explicitly on arbitrarily small scales. Consequently, the enhancement of
the burning speed due to turbulence on unresolved scales larger than the Gibson scale
must be taken into account. Thus, we are lead to the SGSTE model which provides
the turbulent flame speed st ∼ qsgs and determines the loss of mechanical energy to the
subgrid scales, Dksgs/Dt.

4.1.1 The Level Set Method

In the early studies of deflagration by Khokhlov [1995] and Niemeyer and Hillebrandt
[1995b], a reactive-diffusive flame model with artifical diffusion and reaction rates was
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utilised. In this approach, the thickness of the flame brush is artifically increased over
several grid cells and the propagation speed is adjusted to a prescribed value. As a
consequence of the high diffusivity, however, the flame front is rather inert against
turbulent distortions. For this reason, the surface area and, thus, the energy generation
rate remain too small in the course of the burning process. This shortcoming of the
reactive-diffusive flame capturing method lead Reinecke, Hillebrandt, and Niemeyer
[1999] to a front tracking method which describes the interface separating ash from
fuel as a genuine discontinuity, corresponding to an infinitesimally thin flame front.
Naturally, this is a sensible approximation if the physical flame thickness is very small
compared to the Gibson scale. The interface is numerically represented by the set of
all points for which a suitably chosen distance function vanishes, i. e., the zero level
set. This level set method was proposed by Osher and Sethian [1988] and was later
adopted for the problem of flame propagation in a flow.

Details of the implementation are discussed in Reinecke et al. [1999] for the two-
dimensional case. The generalisation to three-dimensional flames is presented in Rei-
necke [2001]. In principle, a signed distance function G(x, t) with the property |∇G| =
1 is introduced. The absolute value |G(x, t)| is equal to the minimal distance of the point
x from the flame front at time t. The front itself is given by the constraint G(x, t) = 0,
i. e., it is represented by the zero level set Γ(t) = {x|G(x, t)} = 0. With the sign conven-
tion G(x, t) > 0 in regions containing burned material, the unit normal vector pointing
towards unburned material is given by n = −∇G/|∇G|. The time evolution of the
front Γ(t) is implicitly determined by the total time derivative of G(xΓ(t), t) = 0. For a
certain point at the front, xΓ(t) ∈ Γ(t), we have

d
dt

G(xΓ(t), t) =
∂G
∂t
+ ẋΓ · ∇G = 0. (4.3)

The speed function ẋΓ is given by the sum of two contributions. Firstly, the advection
speed normal to the flame front, uu · n, where uu is the velocity of the fuel immediately
ahead of the front in an Eulerian frame of reference. And, secondly, the intrinsic
propagation speed s of the flame front relative the fuel.

The local equation (4.3) can be formulated globally, without constraining the po-
sition x to the flame surface. Substituting the definition of the normal vector n and
expressing the speed function in the form uu · n+ s, the evolution equation for the level
set function at any point in space becomes

∂G(x, t)
∂t

= [uu(x, t) + s(x, t)n(x, t)]|∇G(x, t)|. (4.4)

The advection part on the right-hand side can be treated with any finite-volume scheme
like the PPM. However, the updated distance function has to be corrected after each
time step, in order to preserve the property |∇G| = 1. In the implementation of Rei-
necke et al. [1999], this is achieved with a method called re-initialisation. The intrin-
sic front propagation is usually calculated by means of an entropy-satisfying upwind
scheme. In general, non-planar fronts will develop sharp corners and the corresponding
level set must be a weak solution: information about the initial conditions is lost, once
a cusp has formed, and the subsequent evolution is irreversible. The corresponding
entropy condition can be formulated in the following way: once a certain fluid element
is burned, it remains burned thereafter. In fact, this implies the equivalent Huyghen’s
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principle in optics for the propagation of the front over an infinitesimal interval of time
[cf. Sethian, 1996, Section 5]. An illustration of cusp formation in a two-dimensional
flame is given in panel (a) of Figure 4.1.
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Figure 4.1: Evolution of perturbations in a two dimensional flame front. In the beginning,
the perturbations are growing due to the Landau-Darrieus instability. Eventually,
cusps begin to form and the flame stabilises. The panel on top shows a simula-
tion of front propagation with complete reconstruction of the states, whereas the
bottom panel shows the corresponding result obtained with the passive implemen-
tation. The density of the fuel is 5 · 107 g cm−3 [taken from Röpke et al., 2003].

For a complete implementation of the level set technique, both the burned and the
unburned state in an intersected cell must be reconstructed from the jump conditions
across the front. Assuming that there is a volume fraction of unburned material α,
conservation of momentum imposes the constraint

ρu = αρuuu + (1 − α)ρbub, (4.5)

given the finite-volume averages ρ and u. Supplementing the momentum equation with
the Rayleigh criterion (1.26), the Hugoniot jump condition (1.27) and the continuity
constraint for the tangential velocity components, a non-linear system of equations is
obtained, from which uu, ub and the corresponding state variables can be determined.
The volume fraction α can be calculated by linearly interpolating the discrete numeri-
cal values of the distance function G. However, the deviation of the interpolated front
element from the exact smooth solution can introduce significant errors in the recon-
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structed states. Due to the EOS of degenerate matter, it is sometimes impossible to
reconstruct physically sound states. Moreover, one faces topological ambiguities for
certain configurations. Reinecke et al. [1999] suggested to average over all possi-
ble values, whenever one of these rare cases is encountered. Although Röpke et al.
[2003] have recently succeeded with the implementation of in-cell reconstruction in
two dimensions, generalising the algorithm to three dimensions, unfortunately, would
be much more challenging.

These difficulties are avoided in the so-called passive implementation, in which the
difference between burned and unburned states is neglected and the advection speed is
set equal to u · n. The discrete values of G are then interpreted as cell-centred averages.
This is a fair approximation in the limit of moderate density jumps between fuel and
ash. A caveat of using the passive implementation for simulations of burning at low
density is the generation of numerical artifacts. This is drastically demonstrated by
panel (b) of Figure 4.1. The front becomes increasingly distorted by numerical noise
and finally does not resemble the exact solution at all. Fortunately, these problems are
mainly encountered for densities lower than about 108 g cm−3. We shall discuss this
point further in Section 4.2. Apart from the systematic errors introduced by the aver-
aged density and advection velocity, the burning zone is not properly represented as
a discontinuity. There is a mixed phase between the regions containing pure fuel and
ash, respectively. The width of the diffusive smearing of the flame is typically a few
cells, which is still less than for the reaction-diffusion method. In conclusion, the pas-
sive implementation gives a satisfactory representation of flame fronts at high density
and is robust even in three dimensions, as was demonstrated by numerous applications
in type Ia supernova simulations [Reinecke et al., 2002]. The code Telperion features
only the passive implementation and, thus, it was used for all simulations discussed in
the following.

4.1.2 The Turbulent Flame Speed

The range of scales larger than the flame thickness δF can be divided into two regimes,
in which the flame dynamics is markedly different. In the case l � lG, burning pro-
ceeds fast and is only weakly affected by turbulent velocity fluctuations. For l � lG, on
the other hand, turbulence wrinkles the flames. In a numerical simulation, the flame
dynamics is fully resolved for a Gibson scale lG � ∆eff , where ∆eff is the effective
numerical scale (see Section 2.5.4). The intrinsic front propagation speed is, in first
approximation, given by the laminar burning speed. However, setting s = slam does
not account for the cellular structure of the flames due to instabilities on length scales
comparable to lG. If lG is just slightly above the numerical resolution and, in partic-
ular, if the passive implementation of the level set method is used, the cellular flame
texture is largely made smooth by numerical diffusion. This systematic error can be
compensated by enhancing the propagation speed, s = scell [Niemeyer and Woosley,
1997].

On scales beyond the Gibson scale, flames are predominantly shaped by turbulence
and the cellular regime breaks down. If lG � ∆eff , a numerically computed flame front
appears inevitably smoother than its physical counterpart. Consequently, the predicted
burning rate would be underestimated, if the intrinsic propagation speed s were set
equal to scell. This is where the notion of a turbulent flame speed comes in. Accord-
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ing to the discussion in Section 1.1.3, an effective propagation speed st(∆eff) can be
associated with the surface area A(∆eff) of the numerically resolved flame fronts, and,
setting s = st(∆eff), the total burning rate is preserved. Although the turbulent flame
speed was introduced as an ensemble average, Niemeyer and Hillebrandt [1995b] pro-
posed that st(∆eff) is locally given by the magnitude of unresolved turbulence velocity
fluctuations. In a way, this assumption is based on self-similarity, i. e.,the conserva-
tion of the burning rate for the flame as a whole should hold individually for pieces of
the flame as well. Since the propagation speed cannot be less than the laminar flame
speed, it was suggested to set

st(∆) = max(sl, qsgs). (4.6)

Certainly, this is a very limited approximation, which can be expected to hold in the
regime of fully developed turbulence only. Even then it is not clear whether the con-
stant of proportionality between st(∆) and qsgs is actually unity. In transient phases, the
relation between turbulent flame speed and turbulence velocity might very well be dif-
ferent1. The right-hand side of the above relation ignores the transition from resolved
laminar burning to unresolved turbulent burning. However, this transition progresses
rather quickly at any particular location, and a correct description in the intermedi-
ate phase is probably not overly important. Despite these uncertainties, the relation
proposed by Niemeyer and Hillebrandt [1995b] remains to be in use for numerical
simulations.

A different turbulent flame speed model was derived theoretically by Pocheau
[1994]:

st

slam
=

[
1 +Ct

(
qsgs

slam

)n]1/n
. (4.7)

In the scale-invariant regime, with qsgs � slam, the asymptotic form st � C1/n
t qsgs is

obtained. Thus, the parameter Ct determines the asymptotic scaling of the turbulent
flame speed for fully developed turbulence. The particular case Ct = 1 agrees with the
asymptotic limit of equation (4.6). Kim et al. [1999], however, chose Ct ≈ 20 for LES
of gas turbine combustor flows. This value was inferred from laboratory experiments
with hydrocarbon/air flames. As mentioned in Williams [1994, Section 7.4], the pa-
rameter Ct supposedly depends on thermodynamical properties of the system. Thus,
one has to be careful with adopting any experimental values for LES of thermonuclear
burning. If qsgs � slam, the Calvin-Williams relation is obtained from Taylor series
expansion of the right-hand side of equation (4.7) in the case n = 2:

st

slam
= 1 +Ct

(
qsgs

slam

)2
. (4.8)

The validity of this relation for weak turbulence is supported by some numerical results
[cf. Im et al., 1997]. The heuristic relation (4.6), on the other hand, implies st = slam if
qsgs ≤ slam and entails a discontinuity in the derivative of st(qsgs) at the transition from
laminar to turbulent burning.

1Im et al. [1997] mentioned a quadratic dependence on the turbulence velocity in the case of weak
turbulence, whereas Röpke [2003] reported a linear relation, even for turbulence velocities which are only
marginally larger than the laminar flame speed.
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4.2 Transient Laminar Burning in a Developing Flow

To begin with, let us consider a simulation of stochastic deflagration, in which the
flame dynamics is completely resolved. Since the Gibson scale is the lower cutoff
scale, lG � ∆eff is a sufficient condition, regardless of the Kolmogorov scale ηK. As
before, ∆eff is the effective numerical scale of the finite-volume scheme, namely, the
PPM. The Gibson scale lG is mostly determined by the initial density ρ0 and the char-
acteristic scales of turbulence. Assuming Kolmogorov scaling, one can estimate the
magnitude of turbulent velocity fluctuations at a separation of the order to the Gibson
length:

v′(lG) ∼ V (lG/L)1/3 , (4.9)

As in (Section 2.3.3, L and V are, respectively, the integral length and the characteristic
velocity of fully developed turbulence. Setting v′(lG) = slam, the scaling law for the
Gibson scale becomes

lG ∼ L (slam/V)3 . (4.10)

Obviously, the Gibson scale is very sensitive to the ratio of the laminar burning speed
to the characteristic velocity of the flow. In the following, suitable parameters for
a completely resolved simulation of thermonuclear deflagration in high-density C+O
matter are identified and results from a DNS with these parameters are discussed.

4.2.1 Critical Parameters

For N ∼ 103 grid cells in each dimension, the relation (4.10) implies slam � 0.1V ,
if the flame dynamics is to be resolved completely. In fact, the constraint becomes
even tighter, if the ratio of the integral scale to the size of the computational domain,
α = N∆/L, and the ratio of effective numerical scale to the grid scale, β = ∆eff/∆, are
taken into account. With the effective Reynolds number Reeff = (N/αβ)4/3, it follows
that

V � Re1/4
eff slam (4.11)

is required for a DNS. Since Reeff ≈ 400 was found in the simulations of isotropic
turbulence with 4323 grid cells, at most V ≈ 4slam would be admissible, if burning
were included. For moderate densities, this would imply very low Mach numbers,
which are computationally infeasible. The laminar burning speed is sufficiently large
compared with the speed of sound only at high densities. For example, one obtains
slam ≈ 1.05·107 cm s−1 at a density ρ0 = 100ρc ≈ 2.903·109 g cm−3 via interpolation of
the numerical values for the laminar burning speed in Table 3 of Timmes and Woosley
[1992]2. The speed of sound for this density is c0 ≈ 9.70 · 108 cm s−1. Choosing
V = 4slam ≈ 4.20 · 107 cm s−1 , the characteristic Mach number is V/c0 ≈ 0.043. This
is quite small, but still computationally manageable with a fully compressible hydro
code.

Choosing the aforementioned parameters, a DNS of thermonuclear burning was
carried out with the code Telperion, including the passive level set implementation.

2Timmes and Woosley [1992] also gave a fit formula for slam, which was determined from their nu-
merical data. However, the values obtained from this formula do not agree well with the tabularised
values in certain cases.
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Figure 4.2: Simulation dns432burn of thermonuclear deflagration in C+O of density ρ 0 ≈
2.903 · 109 g cm−3 with V/slam = 4 and a characteristic Mach number is V/c0 ≈
0.043. Shown are 2D contour sections of the normalised specific energy ẽ = e/c 2

0
at different stages of the burning process.

Subsequently, we shall refer to this simulation as dns432burn. In place of the com-
plicated network of thermonuclear reactions, the fusion of equal mass fractions of12C
and 16O to 56Ni and 4He was used as representative reaction [cf. Steinmetz et al.,
1992]. The integral length was set to half of the size of the computational domain
(α = 2) and turbulence was produced with purely solenoidal stochastic forcing. The
Gibson length corresponding to V = 4slam and L = 216∆ is roughly lG ≈ 3.3∆, which
allows for some margin between lG and ∆eff . Since the Gibson scale is just within the
range of resolved scales, the cellular flame structure induced by Landau-Darrieus in-
stability will be largely smoothed out by numerical dissipation. Hence, s = scell would
be the correct intrinsic propagation speed (see Section 4.1.2). However, this effect was
ignored, as the purpose of the simulation in question is the study of level set propa-
gation with constant intrinsic speed. Whether this speed is s or scell was not of much
concern, because both are of the same order of magnitude. Regarding the numerical
distortion introduced by the passive implementation, one should be on the safe side
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for a mass density larger than 108 g cm−3. Apart from that, the randomisation caused
by turbulence tends to diffuse any numerical artifacts. In this respect, simulating the
propagation of symmetric flame fronts, say, nearly planar or spherical ones, is a more
demanding task. Furthermore, flow maps prepared form the simulation data clearly
show a tight correlation between the shape of the front and the flow structure. If there
were significant spurious propagation or deformation, the evolution of the front should
become increasingly uncorrelated to the flow. In conclusion, the simulations which
will be discussed subsequently are likely to give a sound description of the flame dy-
namics, albeit the shortcomings of the level set method in the passive implementation.

Figure 4.3: 2D contour sections of the relative density fluctuations (ρ−ρ 0)/ρ0 in the simulation
dns432burn corresponding to the panels shown in Figure 4.2.

4.2.2 Evolution of the Burning Process

The progression of the deflagration in the simulation dns432burn is illustrated by a
sequence of contour plots in Figure 4.2. In this DNS, burning was ignited in eight
small spherical regions, each one in the centre of a cubic subdomain of volume L3

corresponding to one integral scale. The contours of the zero level set can be seen as
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Figure 4.4: 2D contour sections of the logarithmic dimensionless rate of strain, log 10(T |S ∗|),
corresponding to the panels shown in Figure 4.2 and Figure 4.3.

thin white lines which separate dark regions containing unburned matter of low energy
density from the brightly coloured regions containing processed material of high en-
ergy density. In the course of the first integral time T , the regions of burned material
are expanding gradually. At the same time, they are stretched an folded by the vor-
tical large-scale flow. From t̃ ∼ 1.0 onwards, vortices are generated on small scales.
However, around t̃ ≈ 1.5 most of the fuel has already been consumed by the burn-
ing process, and the last fuel patches disappear quickly. Thus, the peak of burning is
reached before turbulence is fully developed. Consequently, the front propagation is is
not much affected by small-scale velocity fluctuations. In the top panel on the right of
Figure 4.5, the mean burning rate 〈B〉. The rate of burning increases exponentially in
the interval 0.3 � t̃ � 1.2. The peak of 〈B〉 at t̃ ≈ 1.35 marks the percolation threshold.
Afterwards ash encloses fuel rather than the other way around. This threshold occurs
significantly earlier than the peak of vorticity at time t̃ ≈ 1.9, which can be seen in the
bottom right panel. For V/slam = 4, two adjacent burning zones would merge within
two integral time scales if they were not perturbed by the flow. However, since the
advection increases the surface as compared to a spherical shape, flame fronts origi-
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nating from different ignition zones are likely to collide earlier and burning proceeds
faster. Furthermore, percolation entails a density inversion, as the ash gets compressed
once most of the domain volume is burned. The inversion of the density is shown in
Figure 4.3. Viewing the contour plots of the rate of strain in Figure 4.4, one can see
that the flames appear elongated and shaped by the strain. Small-scale features of the
flow affect the flame propagation only marginally, because of the high laminar flame
speed. Apart from that, most of the fuel is burned before small vortices are formed
appreciably. The statistics shown in the bottom panel on the right of Figure 4.2 also
suggests that the growth of the burning rate prior to the percolation threshold correlates
with the exponentially increasing RMS rate of strain.

Figure 4.5: Evolution of dimensionless statistical moments for the simulation dns432burn.
The panels show the RMS force, momentum and Mach number, the average rate
of energy release due to burning and the chemical composition, the mean rate
of energy production and dissipation, respectively, as well as averaged structural
invariants.

The rate of change of the mean mass fraction of fuel, 〈Ẋ(C + O)〉, is also a mea-
sure of the burning speed. For an energy release εnuc per unit mass, the total energy
generated by fusion of C+O in the whole cubic domain per unit time can be expressed
as

(αL)3〈B〉 = −εnucMcube〈Ẋ(C + O)〉, (4.12)
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where Mcube = ρ0(αL)3 is the total mass contained in the computational domain. On
the other hand, the rate of energy production can be related to the total surface area
of the flame fronts, AF, and the laminar propagation speed slam, if compression effects
are neglected:

(αL)3〈B〉 = ρ0εnucAFslam. (4.13)

Combining equations (4.12) and (4.13) with Mcube = 8ρ0L3, the approximate total
surface area is found to be

AF � (2L)3

slam
〈Ẋ(C + O)〉. (4.14)

The graph of the normalised surface area3,

ÃF =
AF

8π2L2
= − 1

π2

V
slam
〈T Ẋ(C + O)〉, (4.15)

is shown in the left bottom panel of Figure 4.2. The exponential growth of the burning
rate is manifest in this plot as well. At the peak, ÃF ∼ 1. Thus, it appears that the flame
surface does not significantly increase due to wrinkling in the course of the burning
process. This agrees with the impression of rather smooth flames in Figure 4.2. Also
plotted is the graph of −〈TẊ(C + O)〉/〈X(C + O)〉, which is a measure of the ratio of
the flame surface area to the amount of still unburned material4. There is sustained
exponential behaviour even beyond the maximum burning rate, continuing almost to
the end point of combustion, which demonstrates the invariance of laminar burning
with respect to the amount of fuel.

4.3 Turbulent Burning

The laminar propagation speed decreases much faster towards lower densities than
the speed of sound. For example, setting ρ0 = 10ρc ≈ 2.903 · 108 g cm−3, which is
by an order of a magnitude smaller than the density chosen in Section 4.2, slam ≈
9.78 · 105 cm s−1 is obtained from interpolating the data in Table 3 of Timmes and
Woosley [1992]. Choosing a characteristic velocity V = 100slam, we have a Mach
number V/c0 ≈ 0.15, and an estimate of the Gibson scale is lG ∼ 10−6L. Thus, keeping
the Mach number ∼ 0.1, it is not possible to resolve the flame over the whole range
of dynamical scales, and a numerical simulation of the burning process is necessarily
a large-eddy simulation (LES). In this Section, LES of thermonuclear burning with
the parameters outlined above are discussed. First the non-linear algebraic model is
compared to the SGS turbulence energy model. Then several flavours of the turbulence
energy model are investigated. In particular, a semi-localised variant is formulated and
tested a posteriori.

4.3.1 The Algebraic vs. the Dynamical Model

The lowest-order algebraic closure for the SGS turbulence stress tensor implies that the
corresponding turbulence energy is solely determined by the local rate of strain (see

38π2L2 is the total surface area of eight spheres of radius L/2.
4Strictly, the volume of fuel left at a certain time would be given by (αL)3〈ρX(C + O)〉/ρ0. However,

the mass-weighted fraction of C+O was not calculated in the simulation.
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Section 3.1.2). According to equation 3.23 for the SGS turbulence velocity qsgs, there
is one closure parameter, Cnl, which is a priori undetermined. The other parameter of
the model, namely, the linear Smagorinsky length scale, were determined from DNS
data. In the following, we consider the simulation les216nlk075 with Cnl = 3/4
and �S ≈ 0.30∆, the latter being an appropriate Smagorinsky length length for a Mach
number ∼ 0.1 (see Table 3.1). In the reference simulation les216kinw, the SGSTE
model (3.45) with the constant closure parameters Cν = 0.06, Cε = 0.48 and Cκ = 0.36
from Section 3.2 was used. The pressure-dilatation term was neglected (Cλ = 0) and
the effective numerical length scale ∆eff = 1.8∆ was chosen. Both simulations were
computed with 2163 grid cells of size ∆ = 2 · 103 cm and an integral scale of the flow
L = 108∆ = 2.16 · 105 cm.

Figure 4.6: Comparison of the evolution of SGS turbulence and thermonuclear burning for
the simulations les216nlk075 and les216kinw with the non-linear algebraic
and the SGS turbulence energy model, respectively.

The evolution of three statistical moments of the mass-weighted SGS velocity is
shown in the top panels of Figure 4.6. These moments are the global mean 〈ρqsgs〉/ρ0,
the standard deviation σ(ρqsgs)/ρ0 and the skewness, which is defined by (cf. Lumley
[1970], Section 2.1)

skew(ρqsgs) =
〈[ρqsgs − 〈ρqsgs〉]3〉
σ3(ρqsgs)

. (4.16)
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Both the mass-weighted average and the standard deviation of qsgs are plotted in units
of the laminar propagation speed slam. For fully developed turbulence at time t̃ � 2.0,
the mean SGS velocity is much larger than the laminar speed in both simulations. In
the case of the algebraic SGS model, 〈ρqsgs〉/ρ0 is exponentially growing, proportional
to the mean rate of strain. In comparison with the SGSTE model, there is more SGS
turbulence in the early production phase, but less once the flow approaches stochastic
equilibrium. The standard deviations are also quite different for both models. The
relative fluctuations of qsgs are definitely smaller for the SGSTE model. This is mainly
a consequence of the absence of any diffusion mechanism in the algebraic model.

Figure 4.7: 2D contour sections of the normalised specific energy ẽ = e/c 2
0 at z̃ = 0.0 for

les216kinw. In this simulation, the SGS turbulence energy model with constant
closure parameters was used to calculate the turbulent flame speed.

In contrast, there is an exponential increase of the mean burning rate 〈B〉 from
t̃ ≈ 1.2 to t̃ ≈ 1.8 in the case of les216kinw, as one can see in the right bottom panel
of Figure 4.6. The non-linear algebraic model, on the other hand, predicts a slower
growth of the burning rate in this time interval. However, since the burning proceeds
faster in the beginning, the peak of 〈B〉 is shifted towards an earlier time. The maxi-
mum rate of energy release is of the order ρc20/T , which indicates that the density of
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Figure 4.8: 2D contour sections of normalised energy, density fluctuations, rate of strain and
pressure dilatation for les216kinw at time t̃ = 1.75.

internal energy, Eint ∼ ρc2
s , rises substantially in the course of the combustion process.

In fact, the final mean internal energy is by a factor of about 1.5 greater than the initial
energy. Furthermore, the mean mass fractions of fuel and the approximate flame sur-
face areas according to equation (4.15) are plotted in the bottom panels. As opposed to
the DNS of laminar burning, ÃF ∼ 10 at the time of most rapid burning, which implies
that the flames are more folded and wrinkled. Indeed, the zero level set contours for
simulation les216kinw, which are shown in Figure 4.7, are clearly more structured
at small scales than those of model dns432burn (see Figure 4.2). There also appears
to be a more pronounced leakage of energy into unburned material, as the errors in the
passive implementation are larger at lower resolution and lower mass density. How-
ever, the energy diffusion extends only over a few numerical cells, and the separation
between ash and fuel is basically maintained in the course of the whole burning pro-
cess. Contour sections for several quantities at time t̃ = 1.75 are shown Figure 4.8.
Comparing the two panels on top, one can see that ash is contained in regions of high
specific energy ẽ = e/c2

0, whereas the mass density of ash falls short of as much as
30 % compared to most of the unburned material. Such a large density contrast is not
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encountered in thermonuclear supernovae. However, since the total volume is constant
and mass must be conserved in a cube with periodic BCs, heated material compresses
its surroundings and thereby enhances the density gradient. The bottom panel on the
right depicts the corresponding normalised pressure dilatation, P̃d̃ = (P/ρ0c2

0)(Td). In
fact, the locus of significant expansion is the vicinity of the flames, while most of the
fuel, but also some of the ash, are being compressed.

4.3.2 Statistical vs. Localised Closures

Independent of numerous attempts by engineers to localise turbulent-viscosity models,
a method of including “wall effects” in simulations of stellar interiors was suggested
by Clement [1993]. Bringing to mind that a steep density gradient in a turbulent strat-
ified medium, such as the convection zone in a star, acts more or less like a wall,
Clement found empirically that the ratio of internal energy to the turbulent kinetic
energy, eint/ksgs, serves as an indicator of the local level of turbulence and the wall
proximity. Thus, he suggested the following relations for the closure parameters of
production and dissipation in the SGSTE model:

Cν = 0.1W, and Cε =
0.5
W
, (4.17)

where the wall proximity function W is defined by

W = min

100,max

0.1, 2 · 10−4 eint

q2
sgs

 . (4.18)

As Supplementary relation, Clement set Cκ = Cν. These are the specifications of the
SGS model which has been used in all simulations of thermonuclear supernovae start-
ing with Niemeyer and Hillebrandt [1995b] up to the most recent models by Reinecke
et al. [2002]. However, as was pointed out by Niemeyer and Hillebrandt, it is not all
clear whether the numerical constants chosen by Clement [1993] for stellar interiors
are also appropriate for supernova explosions. Actually, this is very doubtable. A more
rigorous objection comes from the observation that turbulence production is inhibited
close to a wall [cf. Meneveau and Katz, 2000, Fig. 2]. However, the production pa-
rameter Cν = 0.1W , with W given by equation (4.18), tends to become larger as the
SGS turbulence energy decreases, which works against inhibition near a wall.

The evolution of statistical moments in a LES with the SGSTE model and Clement’s
rules for calculating the closure parameters are plotted in the left column of panels in
Figure 4.9. A moderate resolution of 1443 grid cells was chosen, the mass density,
integral length scale and characteristic velocity are the same as before. The effective
numerical scale was set equal to ∆ in order to maintain consistency with earlier im-
plementations of Clement’s model. As one can see in the top panel on the very left,
the ratio 〈ρqsgs〉/〈|ρu|2〉1/2 is nearly constant throughout the simulation. Moreover,
〈ρqsgs〉/ρ0 is large compared to the laminar burning speed almost right from the be-
ginning. Accordingly, the rate of burning increases more or less gradually as one can
see in the bottom panel. In the middle column of panels in Figure 4.9, the correspond-
ing evolution for a simulation with the SGSTE model with the constant parameters
Cν = 0.06, Cε = 0.48, Cκ = 0.36, Cλ = −0.2 and β = ∆eff/∆ = 1.8 is shown.
Contrary to the LES with Clement’s procedure, the SGS turbulence velocity is rising
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Figure 4.9: Comparison of the evolution of SGS turbulence and thermonuclear burning for
different SGS models. In the first simulation, Clement’s law of the wall was used
to calculate the closure parameters, the second one was computed with constant
statistical parameters and for the third simulation, the semi-localised model was
applied.

much slower while turbulence is being produced. The maximum of 〈ρqsgs〉 coincides
with the peak of the rate of strain. In consequence, there is only little enhancement
of the burning speed at first, but then it is rising ever faster as turbulence sets in and
eventually becomes space filling. Note that the steep rise of the burning rate begins
around t̃ ≈ 1, although the mean SGS turbulence velocity is of the same order as the
laminar burning speed as early as t̃ � 0.5. This can be understood if one considers
the standard deviation and skewness of the SGS turbulence velocity. In the production
phase, there are large fluctuations in qsgs and the distribution in space is quite inho-
mogeneous. Consequently, SGS turbulence is concentrated in certain regions, and the
probability of the flame front crossing one of those is rather low. Once SGS turbulence
becomes rather homogeneous, however, an increasing fraction of the flame surface is
subject to turbulent acceleration. This impressively illustrates the spatial intermittency
of turbulence, even though the system approaches a homogenous steady state at later
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time. Intermittency is clearly ignored in Clement’s law of the wall.
However, one has to keep in mind that the SGSTE model with constant closure

parameters is not fully adequate either, when it comes to transient and intermittent
systems. The statistical values for Cν, Cε and Cκ strictly apply to the case of de-
veloped isotropic turbulence only. Deflagration in a developing turbulent flow, how-
ever, is neither homogeneous nor steady. Moreover, the flames themselves introduce a
kind of anisotropy, albeit a weak one, because the hydrodynamical quantities are only
marginally affected by the burning process. For this reason, a semi-localised SGSTE
model was formulated which is based upon the self-similarity closure for the produc-
tion term. Diffusion is still treated statistically, with the constant parameter Cκ = 0.36,
and so is pressure-dilatation. Dissipation, on the other hand, is computed in a semi-
statistical fashion. Details of the model will be explained in Sections 4.3.3 and 4.3.4.
For the time being, we shall merely contrast the outcome of a LES using the semi-
localised model with the other models. The results are plotted in the very right column
of panels in Figure 4.9. Regarding SGS turbulence and the evolution of burning, there
are no pronounced differences compared with the purely statistical closures. Indeed,
this does not come as a surprise, because of local isotropy. If there is only little SGS
turbulence, incorrect values of the closure parameters merely influence something that
is insignificant anyway. Once turbulence has developed in a certain region, it is locally
isotropic. Only in between, in the course of the non-linear transition, a dynamical
production parameter makes a difference. Does this imply that determining Cν from
local time-dependent properties of the flow is not essential? It depends what questions
one intends to answer. Apart from that, in more complex scenarios, the localisation of
closures is probably much more significant.

As a matter of fact, the physical conditions inside and outside of a flame are dif-
ferent. For example, averages of the production parameter Cν over the three principal
topological regions of the computational domain are shown in the top panels of Fig-
ure 4.10. The region ash corresponds to the bulk of cells in the interior, and fuel to
those in the exterior with respect to the flame front. Cells in the vicinity of the zero
level set constitute the flame region. On the left, the evolution of the mean values
for Clement’s law of the wall is plotted, and the corresponding graphs for the semi-
localised model are shown on the right. With Clement’s wall proximity function, large
values are obtained in the early stage of production, whereas the dynamical procedure
predicts initially small values of Cν. Since β = 1 for the former, the averages of Cν
calculated according to Clements prescription are normalised by a factor 1/β ≈ 0.56.
The asymptotic value of the mean characteristic length 〈�ν〉 is about the same for both
models, which implies that Clement’s rules are not too far off in the case of fully
developed turbulence. Nevertheless, a higher rate of production is obtained with the
semi-localised model and, consequently, a higher level of SGS turbulence energy in
stochastic equilibrium. Furthermore, one can see from the standard deviations of qsgs,
which are plotted in Figure 4.9, that the distribution of SGS turbulence is more homo-
geneous in the case Clement’s model. Apparently, variations of Cν induced by local-
isation create patches of intense SGS turbulence, which contribute to a higher mean
velocity. Remarkably, this happens despite the stronger diffusion in the semi-localised
model. Recall that Cκ = 0.36, whereas following Clement, the parameter of diffusion
is set equal to the parameter of production, a very poor approximation according to
the tests performed upon DNS data in Section 3.2.4. Therefore, diffusion effects are
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Figure 4.10: Contributions to the rate of change of the SGS turbulence velocity and the
mean production parameters in ash, flames and fuel, respectively. In one case,
Clement’s law of the wall was used to calculated Cν, in the other case, the lo-
calised self-similarity model for turbulence production.

seemingly over-compensated by locally enhanced production, owing to fluctuations in
the dynamically computed production parameter.

4.3.3 The Similarity Closure for Production

The dynamical computation of the production parameter Cν is based upon the filtering
approach introduced by Germano [1992] in combination with the self-similarity clo-
sure. In Section 3.2.2, this closure was formulated with respect to a couple of Gaussian
filters of characteristic length scales ∆n and ∆n−1 > ∆n, respectively. For a SGS model,
the less smoothing filter corresponds to the implicit numerical filter with the associated
length scale ∆eff . The filter of larger characteristic length ∆T is called the test filter and
has to be applied explicitly. Since the implicit filter is, of course, not explicitly known,
one cannot readily formulate a test filter which would be similar to the implicit filter.
According to Carati and van den Eijnden [1997], this does not pose any difficulties if
the production parameter Cν is computed in the fashion of the Germano-Lilly proce-
dure. In this case, the implicit filter is always formally similar to the composition of
the implicit and the test filter. For the self-similarity procedure proposed by Liu, Men-
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eveau, and Katz [1994], on the other hand, the test filter itself ought to be similar to the
implicit filter. However, this cannot be implemented. In consequence, one is forced to
abandon the similarity condition for the filters. Notwithstanding this caveat, we may
assume that the de-correlation due to the dissimilarity of the implicit and the test filter,
respectively, is not significant compared with the inherent inaccuracy of the turbulent-
viscosity closure. For the SGS module in the code Telperion, a discrete box filter was
utilised as test filter. Details of the implementation are described in Appendix A.1. A
Gaussian filter, on the other hand, would be computationally too costly, and the action
of a sharp cut-off filter is clearly very different from the gradual damping of modes due
to numerical dissipation.

Applying the closure (3.35) with the turbulent viscosity (3.36) at the test filter level,
the parameter of production is given by [cf. Kim et al., 1999]:

Cν =
τ∗T(vi, vk)S

[T]
ik

ρT∆Tk1/2
T |S ∗ [T]|2 , (4.19)

where ρT = 〈ρ〉T is the test-filtered mass density, S [T]
ik = ∂(i〈ρv j)〉T/ρT the rate of strain

of the smoothed velocity field, and τ∗T(vi, vk) is the trace-free part of

τT(vi, vk) = −〈ρvivk〉T + 1
〈ρ〉T 〈ρvi〉T〈ρvk〉T, (4.20)

which specifies the intermediate stress exerted by turbulence on scales in the range
between ∆eff and ∆T. The specific kinetic energy of velocity fluctuations associated
with this range of scales is defined by

kT = −1
2
τT(vi, vi). (4.21)

Therefore, Cν is locally determined by structural properties of the flow at the smallest
resolved scales.

Substituting equation (4.19) into the closure for the SGS rate of production (3.29),

Πsgs � �νqsgs|S ∗|2 =
τ∗T(vi, vk)S

[T]
ik

γTρT

|S ∗|2
|S ∗ [T]|2

√
ksgs

kT
, (4.22)

one can see that the result scales with the inverse of the filter scaling ratio γT =
∆T /∆eff . In consequence, it is crucial to find a reliable and robust estimate of γT . ∆T is
explicitly known for standard filters like the box filter, but determining the characteris-
tic length ∆eff of the implicit filter is non-trivial. In the following, we shall assume that
∆eff = β∆, where β is given by equation (2.73). Although the values listed in the Ta-
bles 2.2, 2.3 and 2.4 suggest that β is almost universal, there is actually a trend towards
larger values of β as the Mach number becomes smaller (see Table 4.1). Hence, there
is some ambiguity in the dynamically computed production parameter, stemming both
from the uncertainties in β and the filter scaling ratio γT .

The impact of varying γT was investigated a posteriori in a series of LES with dif-
ferent test filters. The chosen scaling ratios, which are listed in Table 4.2, are motivated
in Appendix A.1. An increasing number of supporting nodes, 2NT + 1, was included,
in order to allow for larger length scales ∆T . Statistical results from these simulations
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Figure 4.11: LES with the semi-localised SGSTE model (passive implementation): Compari-
son of the evolution of SGS turbulence and thermonuclear burning for test filters
of varying characteristic length ∆T (see Table 4.2).

are shown in Figure 4.11. Basically, the evolution of the burning process appears to be
fairly robust with respect to the test filtering length. Only in the case of the maximal
scaling ratio γT ≈ 3.75, combustion proceeds somewhat faster. The flattening of the
SGS turbulence velocity also sets in at an earlier time in this case. The average value
of Cν in the stationary regime is about 0.045 for the largest test filter length. This is
within the range of values which was inferred from DNS data (see Table 3.3). It is
also reasonably close to most values found in the literature [cf. Kim and Menon, 1996,
Section 5.2]. In any case, the degree of uncertainty is comparable to that one of statis-
tically determined closure parameters. However, one can clearly see that the level of
production is less for a smaller characteristic length of the test filter. This is a rather
worrisome fact, as SGS turbulence production is expected to be quite insensitive to the
choice of the filter length. Actually, even if γT ≈ 6.74∆, the test filter length scale is
still smaller than the length scale of maximal dissipation, lp ∼ 10∆. Unfortunately,
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V/c0 〈ẽkin〉 〈e‖kin〉/〈ekin〉 ηeff/∆ β lp/L

0.084 0.714 1.36 · 10−5 0.298 1.82 0.0740
0.42 0.728 8.16 · 10−3 0.261 1.62 0.0674
0.66 0.571 1.87 · 10−2 0.260 1.61 0.0659

Table 4.1: Mean energy, rate of dissipation and characteristic length scales for fully developed
turbulence in the simulations dns432ersl dns432nrsl and dns432nh75.

2NT + 1 ∆T/∆ γT

5 2.771 1.54
7 4.773 2.65
9 6.742 3.75

Table 4.2: Specifications of the test filters in three LES with the semi-localised SGSTE model.

using a test filter with ∆T � lp is computationally intractable5. In Section 4.3.5, we
will see that this deficiency of the dynamical computation of Cν can be cured, if the
feedback of SGS turbulence onto the resolved momentum is included.

4.3.4 The Semi-Localised Model

In the variational approach of Ghosal et al. [1995], the parameter of dissipation Cε is
determined by subtracting the test-filtered SGS turbulence energy equation (3.28) from
the corresponding equation for the unresolved kinetic energy ksgs + kT at the level of
the test filter. Taking up this idea, we shall formulate a spatially averaged difference
equation. Upon averaging equation (3.28), we obtain〈

ρ
D
Dt

ksgs

〉
= 〈τikSik〉 −

〈
ρ(λsgs + εsgs)

〉
. (4.23)

The diffusion term cancels out, because integrating the divergence of the diffusive flux
over a domain with periodic BCs yields zero. Furthermore,〈

ρ
D
Dt

ksgs

〉
=

〈
∂

∂t
ρksgs

〉
+

〈
∂

∂xi
ρviksgs

〉
︸���������︷︷���������︸

=0

=
d
dt
〈Ksgs〉, (4.24)

i. e., there is vanishing net advection over the whole domain of the flow. The turbulence
energy at the characteristic scale of the test filter is defined by

−1
2
τT(
∞
vi,
∞
vi) = −1

2
〈τii〉T + 1

2
τT(vi, vi) = 〈ρksgs〉T + ρTkT, (4.25)

5This would require component filters in excess of 20 supporting nodes. However, apart from un-
favourable memory access, restrictions come from the limited number of ghost cells. Actually, only four
ghost cells are available in Telperion. This number is hard-coded, and changing that would be a rather
tedious endeavour.
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and the corresponding averaged dynamical equation is6

∂

∂t
〈ρKsgs + ρTKT〉 =

〈
τT(
∞
vi,
∞
vk)S

[T]
ik

〉
−
〈
ρ(λsgs + εsgs) + ρT(λT + εT)

〉
. (4.26)

Equations (4.23) and (4.25) in combination with the Germano identity imply the fol-
lowing conservation law for the mean turbulence energy KT on small resolved scales,
∆eff � l � ∆T:

d
dt
〈KT〉 =

〈
τT(vi, vk)S

[T]
ik + 〈τik〉TS [T]

ik − τikSik

〉
− 〈ρT(λT + εT)〉 . (4.27)

Substituting the turbulent-viscosity closures for the various production terms on
the right-hand side, the above equation becomes

d
dt
〈KT〉 �

〈
ρTCν∆T

√
kT |S ∗ [T]|2

〉
− 2

3

〈
KTd[T]

〉
︸������������������������������������������︷︷������������������������������������������︸

(I)

−〈ρTλT〉 + 〈ρTεT〉

+
〈
〈ρνsgsS

∗
ik〉TS ∗ik − ρνsgs|S ∗|2

〉︸������������������������������︷︷������������������������������︸
(II)

−2
3

〈
〈Ksgs〉Td[T] − Ksgsd

〉︸���������������������︷︷���������������������︸
(III)

.

(4.28)

Analogous to the rate of strain at the test filter level, the divergence d[T] is given by
d[T] = ∂i〈ρvi〉T/ρT. The complete numerical computation of the production terms
in the above equation would be rather demanding, in particular, the evaluation of the
numerous tensor components at the test-filter level. For this reason, we shall putatively
drop the contributions (II) and (III), while only retaining (I), which is intuitively the
most significant production term. Then the rate of dissipation εT is approximately
given by

〈ρTεT〉 � − d
dt
〈KT〉 +

〈
ρTCν∆T

√
kT |S ∗ [T]|2

〉
− 2

3

〈
ρT(kTd[T] + λT)

〉
. (4.29)

In order determine the parameter Cε from this balance equation, one can conceive of
two alternatives: On the one hand, the closure (3.40) could be applied to the total
rate of dissipation on the length scale ∆T. In this case, the net rate of dissipation on
intermediate scales would be given by

〈ρTεT〉 � Cε
∆T

〈
ρT

( 〈ρksgs〉T
ρT

+ kT

)3/2
− γTρk

3/2
sgs

〉
. (4.30)

On the other hand, one could set

〈ρTεT〉 � Cε
〈ρTk3/2

T 〉
∆T

. (4.31)

This expression can be regarded as limiting case of the other one for γT = ∆T/∆eff →
∞, corresponding to kT � ksgs. From numerical tests, it became clear that using the
more involved closure (4.30) is troublesome, because it introduces singularities and

6Here the relation 〈〈a〉T + b〉 = 〈a + b〉 is used.
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can be either positive or negative. Thus, with the Deardorff closure for the intermediate
pressure-dilatation,

λT � CλkTd[T], (4.32)

the dissipation parameter is, to the lowest order, determined by

Cε = − ∆T

〈KT
√

kT〉
[

d
dt
〈KT〉 −

〈
CνρT∆T

√
kT |S ∗ [T]|2

〉
+

(
1
3
+Cλ

) 〈
KTd[T]

〉]
. (4.33)

As opposed to the statistical values estimated from DNS data, the above equation
yields a spatially constant parameter evolving in time. This method of calculating
Cε in combination with the dynamical procedure for Cν makes up the semi-localised
SGSTE model. For the numerical implementation, two further modifications were
added.

On account of the anisotropy in the vicinity of a flame front, it seems advisable
to average over the principal topological subdomains introduced in Section 4.3.2, i. e.,
the interior, the exterior and the interface. The latter is identified by marking all grid
cells which have a certain maximum distance to those cells in which the level set
function G swaps its sign. In discrete steps, this maximal distance is set to NT/2. For
example, if the component mesh filters had 9 supporting nodes (see Appendix A.1.1),
±2 cells up or down any cell intersected by the zero level set would be included in
the interface. With this procedure, the functions C(a)

ε (t), C(b)
ε (t) and C(f)

ε (t) are obtained
for the mean dissipation parameters in ash, the burning zone and fuel, respectively.
However, these functions were empirically found to oscillate rapidly, especially, in the
early stage of the burning process. This is presumably a consequence of the dissipation
being very intermittent in developing flows. Apart from that, the closure relation for
dissipation is based upon the notion of a turbulence cascade with Kolmogorov scaling.
In the course of the transition from non-linear to turbulent flow, this closure is not
really applicable, and equation (4.33) might be ill posed. As a pragmatic solution,
which is surely contestable, a temporal filtering procedure was implemented in order
to clear possible spurious effects. To that end, both the enumerator and dominator in
equation (4.33) are separately smoothed via convolution with an exponential damping
function, as described in Section A.1.2 of the Appendix. The characteristic time scale
of smoothing is prescribed by the parameter Tε .

An appropriate choice for the time scale Tε has to be found a posteriori. Fig-
ure 4.12 shows results from three LES with 1443 grid cells, using the method outlined
above. The values 0.01, 0.05 and 0.25 for the dimensionless smoothing time scale
T̃ε = Tε/T were tested in these simulations. The smallest smoothing parameter en-
compasses roughly 10 time steps. As one can see from the evolution of the dissipation
parameters C(a)

ε (t), C(b)
ε (t) and C(f)

ε (t), there are still large fluctuations in the case of
the shortest smoothing time, whereas most features are suppressed in the case of the
T̃ε = 0.25. Fortunately, the influence of Tε , which is a purely numerical parameter, on
the evolution of the SGS turbulence is only marginal. Setting Tε ≈ 0.1 appears to be a
good choice in order to get well behaved functions C(a)

ε (t), C(b)
ε (t) and C(f)

ε (t), without
overly damping dynamical variations.
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Figure 4.12: Evolution of SGS turbulence, the dissipation parameter C ε and dynamical con-
tributions to the rate of change of q sgs for different choices of the smoothing time
scale Tε in the semi-localised SGS model.

4.3.5 Active Subgrid Scale Modelling

In the previously discussed LES, the SGS model merely yields the turbulent flame
speed. Although the SGS turbulence energy is taken into account in the energy budget,
the action of the turbulence stress is not included in the dynamical equation for the
resolved momentum (3.3). In this mode, qsgs is treated just as a passive scalar. For
the justification of passive SGS modelling, usually numerical dissipation is invoked.
The argument goes like this. If a finite-volume scheme produces dissipation, it will
mimic, at least statistically, the energy transfer from resolved to subgrid scales. The
turbulent stress terms in the equations of motion could be included, but it is not worth
the trouble, because there is not going to be much improvement anyway. The combined
action of numerical and SGS dissipation might even produce too much viscosity and
influence the resolved flow in an unfavourable manner. Actually, there are numerical
investigations in support of this view, for instance, by Rider and Drikakis [2002]. Of
course, the DNS discussed in Chapter 2 bear on this very argument. No SGS model
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was used for these simulations at all, despite the fact that the microscopic viscosity
was much smaller than the putative numerical viscosity of to the PPM.

In most LES in engineering and geophysics, on the other hand, the SGS turbulence
stress is actually acting on the resolved flow. There are several reasons for this active
SGS modelling. In atmospheric or oceanic turbulence, measurements revealed features
breaking scale-invariance on small scales, which cannot be resolved in contemporary
simulations Kupka [2003]. In this case, the SGS model is the only possibility to ac-
count for such effects. In laboratory flows, inhomogeneities entail significant spatial
variations of the SGS turbulence stress. Whether this could be reproduced solely with
numerical dissipation seems to be rather questionable. Moreover, if the localised sim-
ilarity closure for production is used, one can make another good case for including
the explicit turbulence stress terms in the momentum equations. Since the parameter
of production Cν inevitably becomes negative in some regions, there is transfer of ki-
netic energy from unresolved to the resolved scales. This backscattering will locally
contribute to an increase of the total resolved energy, eres =

1
2 |u|2+ eint. However, if the

corresponding stresses in the momentum equation were neglected, the velocity would
remain utterly unaffected by the process of backscattering. On account of this, the tur-
bulence energy transfered to resolved scales would effectively be converted into heat
which is palpably wrong, for backscattering must increase the resolved kinetic energy.
The LES which have been discussed thus far suffer from this very inadequacy.

For this reason, the SGS turbulence stress terms in the qNSE (3.3) were modelled
according to the turbulent-viscosity closure,

∂

∂xk
τik � 2

∂

∂xk

(
ρνsgsS

∗
ik −

1
3

Ksgsδik

)
= 2
∂

∂xk
ρ�νqsgs

(
Sik − 1

3
dδik

)
− 1

3
∂

∂xk
ρq2

sgs,

(4.34)

and numerically implemented in order to facilitate active SGS modelling. The spa-
tial derivatives in the above expression were discretised as fourth-order centred differ-
ences. This is of the same order of accuracy as for spatial derivatives in the PPM
[cf. Colella and Woodward, 1984]. The performance of the active semi-localised
model was investigated in a series of three LES, using 9-node component filters of
varying characteristic length on a grid of 1923 cells. In one case, the optimal length
∆T ≈ 3.75∆eff was chosen, in the other simulations a larger length, ∆T ≈ 4.72∆eff , and
a smaller one, ∆T ≈ 2.78∆eff . Some of the resulting statistics is plotted in Figure 4.13.
The most striking result is that now the SGS dynamics appears to be fairly invariant
with respect to the test filter, quite contrary to the simulations with the passive SGS
model (see Figure 4.11). As one can see in the top panels, it appears that the parameter
of production converges towards the same average value, independent of the character-
istic length of the test filter. Thermonuclear burning evolves rather similar in all three
LES, although the peak is slightly higher and narrower for ∆T ≈ 3.75∆eff . The tem-
poral changes of mechanical energy production and dissipation, respectively, which
are plotted in the bottom panels of Figure 4.13, indicate that stochastic equilibrium is
approached faster for test filters of larger characteristic length. Combining all of these
observations, we conclude that the active SGS model is preferable compared to the
passive one, and a test filter of characteristic length ∆T ≈ 4∆eff should be chosen. Note
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Figure 4.13: LES with active semi-localised SGSTE model: comparison of the evolution of
the parameter Cν, thermonuclear burning, mechanical production and dissipation
rates. Each column of panels corresponds to a different characteristic length ∆ T

of the test filter.

that the factor 4 is significantly larger than the scaling ratio γT ≈ 2, which is recom-
mended in most of the literature. However, in the case of PPM, it appears that such a
small ratio is not a sensible choice.

As a further test of the reliability of the active semi-localised model, the numer-
ical resolution was varied in a series of runs with a test filter of characteristic length
∆T ≈ 3.75∆eff . For a constant integral length scale L = 2.16 · 105 cm, the numerical
resolution N was, respectively, set to 144, 160, 192 and 216. The averaged values
of the production parameter Cν and the dissipation parameter Cε in ash and flames,
respectively, are plotted in Figure 4.14. The invariance with respect to the numeri-
cal resolution is thereby impressively demonstrated. The asymptotic mean values for
steady turbulence are 〈Cν〉 ≈ 0.042 and Cε ≈ 0.65. Of course, there are variations
in the evolution due to different realizations of the stochastic stirring process in each
simulation7. In particular, the behaviour of C(f)

ε in the exponential growth phase prior

7Even if the same initialisation was used for the random number generator in each case, the resulting
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Figure 4.14: LES with varying resolution: mean production parameter C ν and the correspond-
ing dissipation parameter Cε in regions containing thermonuclear ash and the
burning zones, respectively.

to peak of the burning rate does not display any trend following the numerical resolu-
tion. This could reflect a sensitive dependence of C(f)

ε on stochastic variations in the
early flame fronts, but it might also indicate a shortcoming of the rather crude method
of calculating the parameter of dissipation. The average rate of energy release and
the composition as functions of time are shown in Figure 4.15. The maxima of 〈B〉 are
found around t̃ ≈ 2.0 for each LES. This is a reasonable result, as one would intuitively
expect that the peak of the burning rate coincides more or less with the complete ho-
mogenisation of turbulence, which was found to occur at the same time. Apart from
that, some variations in the shape of the graphs for 〈B〉 can be seen, particularly, in the
vicinity of the transition to turbulent burning. Cross-checking with the evolution of the
mean momentum shows that these variations can largely be attributed to differences in
the random driving forces. However, the bumps near t̃ ≈ 1.0 are probably numerical
artifacts related to the anomalies in C(f)

ε .
Finally, different relations between the turbulent flame speed st and the SGS tur-

bulence velocity qsgs were numerically investigated. In Figure 4.16, statistical results

stochastic processes would still not be the same, because of the different time steps depending on the
resolution.



Turbulent Burning 111

Figure 4.15: LES with varying resolution: evolution of the mean burning rate and nuclear
composition.

from three LES are shown. The first simulation corresponds to the standard case, with
st given by equation (4.6). For the other two LES, Pocheau’s relation (4.7) with the
exponent n = 2 was used to determine st. The values 4 and 16 were chosen for the
parameter Ct, corresponding to the asymptotic relations st � 2qsgs and st � 4qsgs,
respectively, in the limit qsgs � slam. As one can see from the plots of the burning
statistics in the middle row of panels, the peak of the burning process is shifted to-
wards earlier time for increasing Ct, but the shape of the graph is not significantly
changed. It should be noted that even Ct = 16 is still smaller than the value proposed
by Kim et al. [1999]. They adopted Ct = 20 from laboratory experiments with gaseous
flames. The row of panels on the bottom of Figure 4.16 show the mean rate of pro-
duction and dissipation for each simulation. A feature which comes to attention in
the case of the LES with Pocheau’s relation are the strong oscillations in 〈Π − ε〉 and
〈ε〉. This indicates alternating conversion of internal to kinetic energy and vice versa
due to pressure waves, as discussed in the context of the supersonic flow simulated
in dns432nr20 (see Section 2.4.4). Although the characteristic Mach number in the
LES of turbulent burning is ∼ 0.1, the flow can locally become as fast as Mach 0.3.
Given the low resolution of N = 144, the SGS turbulence velocity is possibly of the
order 0.1cs in some regions. Thus, in combination with the enhancing coefficient in
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Figure 4.16: LES with different relations for the turbulent flame speed s t. In one case, equa-
tion (4.6) was used to calculate st and for the other simulations equation (4.7),
with the parameter Ct as specified on top of the corresponding columns of panels
and the exponent n = 2.

Pocheau’s flame speed relation, the turbulent propagation speed st might reach a sig-
nificant fraction of the speed of sound during the late stage of burning. Moreover, as
the remaining patches of fuel get compressed, significant disturbances in the pressure
equilibrium might be generated. These results suggest that we actually face limitations
of the turbulent flame propagation model. If Pocheau’s relation is used, then probably
both a higher resolution and a more precise treatment of SGS pressure dilatation are
required. Otherwise, Ct ≈ 1.0 appears to be the most sensible choice.

4.3.6 The Evolution of Turbulent Burning

Let us finally review the phenomenology of turbulent burning. The evolution of the
burning process in a LES with 2163 grid cells and active semi-localised SGS mod-
elling is illustrated in the sequence of Figures 4.17, 4.18 and 4.19. In this case, the

turbulent flame speed is modelled as st = slam

√
1 + (qsgs/slam)2, which follows from
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Figure 4.17: LES with the active semi-localised SGSTE model: 2D contour sections of the
normalised specific energy ẽ = e/c2

0 at z̃ = 0.0.

Pocheau’s expression (4.7) with Ct = 1 and n = 2. The characteristic length of the
test filter is ∆T ≈ 3.75∆eff , the smoothing time scale is Tε = 0.1T , and the physical
parameters are the ones specified earlier for les216kinw. In comparison to the burn-
ing process in the LES with constant closure parameters, it appears that the shape and
topology of the flame is even more complex and small-scale features are particularly
pronounced if the semi-localised model is used. Supposedly, this can be attributed
to the more complex interaction between resolved and subgrid scales if Cν is com-
puted in situ. From the visual impression alone, one should become aware that the
localised self-similarity closure, indeed, makes a difference. The corresponding evo-
lution of the SGS turbulence is illustrated in Figure 4.18, with contour sections of the
ratio of qsgs to the laminar speed, and Figure 4.19, which shows contours of the rate of
SGS dissipation. For t̃ � 1.5, the SGS turbulence energy is distributed very inhomo-
geneously in filamentary and eddy-like structures. Slightly later, pieces of flames are
penetrating concentrations of turbulence and get accelerated. From this point onwards,
the flame front is shaped by complex interaction with both resolved and subgrid-scale
turbulence. Thereby, the burning rate increases exponentially, as one can see in the
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Figure 4.18: LES with the active semi-localised SGSTE model: contours of the ratio q sgs/slam

corresponding to the panels in Figure 4.17.

plot of the mean burning rate 〈B〉 in Figure 4.20. One should also note that the bump
around t̃ ≈ 1, which was found for the LES discussed in Section 4.3.5, is flattened
considerably. Apparently, there is a smoother onset of turbulent burning, with st given
by Pocheau’s prescription. After two integral time scales have elapsed, turbulence is
virtually space filling and the system is relaxing gradually into stochastic equilibrium.
The equilibration is clearly demonstrated by the plots of 〈ρqsgs〉/ρ0 and the averages
of Cν as well as Cε .

Moreover, the dynamics of SGS turbulence can be inferred from the middle panel
on the right, which shows the RMS production, dissipation and diffusion of qsgs. After
the initial relaxation of the hot bubbles of ash, the SGS rate of dissipation vanishes
and then re-emerges at time t̃ ≈ 1.1. Presumably, the physical dissipation is never
altogether zero, but the trend seen for 〈εsgs〉 in the LES is basically correct. Around
t̃ ≈ 1, the first small-scale vortices are formed and, as we have seen for the DNS in
Section 2.4, this marks the onset of dissipation. With increasing vorticity of the flow,
the rate of SGS dissipation grows, as one can see from the logarithmic contours of εsgs

in the sequence of panels shown in Figure 4.19. In the early phase of turbulent burning,
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Figure 4.19: LES with the active semi-localised SGSTE model: logarithmic contours of the
normalised SGS rate of dissipation, T εsgs/V2, corresponding to the panels in Fig-
ure 4.17.

dissipation vanishes in the vicinity of the flame or the interior regions. This entails
discontinuities which are certainly unphysical. Nevertheless, one can expect that the
three different values for the closure parameter Cε account for inhomogeneities arising
from the flames in a statistical manner. It is also interesting to note that even for nearly
steady turbulence at time t̃ = 2.0, SGS dissipation varies over roughly four orders
of magnitude, which confirms the statement of Mandelbrot cited in the header of this
Chapter. The energy injection due to stirring, the rate of change of kinetic energy on
resolved and subgrid scales, respectively, as well the increase of internal energy due to
dissipation is shown in the bottom panel on the left of Figure 4.20. There is a phase of
rising SGS turbulence production accompanied by increasing dissipation of resolved
kinetic energy, while the second large-eddy turn-over is elapsing. For t̃ � 2, the trend
reverses and the system evolves towards a steady state.
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Figure 4.20: Statistics of the LES with the active semi-localised SGSTE model.



Chapter 5

Résumé

The question is not whether one model or the other is right. All
models are wrong. They only help us to understand the physics.

Jens Niemeyer during coffee break in the Villa Tambosi

The investigation of purely hydrodynamical turbulence and turbulent deflagration
presented in this Thesis has clearly demonstrated that the physical understanding of
a complex phenomenon by means of computer simulations cannot be detached from
numerical issues. This would be possible, if computers of infinite memory and un-
limited speed were available. Since this is not the case, numerical simulations are
tentative by their very nature. For the treatment of deflagration in the flamelet regime,
the level set method in combination with a subgrid scale model to determine the intrin-
sic propagation speed in a turbulent flow are powerful tools. However, one faces many
uncertainties regarding particular approximations. Whether a certain formulation of a
numerical model is applicable to the problem at hand, is mainly a matter of the robust-
ness of the physically relevant results with respect to the free model parameters. In the
case of LES of burning in a cubic domain, one must ensure that the evolution of the
burning statistics is largely independent of resolution and any prescribed SGS closure
parameters. As for simulations of thermonuclear supernovae, the total amount of en-
ergy produced by the explosion, the final chemical composition and the distribution of
elements in velocity space can be compared to observational data. In this concluding
Chapter, a few comments on the results discussed in Chapters 2 and 4 are made, and it
is pointed at possible directions of future research.

5.1 Concerning Turbulence

Turbulence has pushed to the frontiers in astrophysics in the course of recent years. It
has been realised that turbulence plays a key role in many phenomena of interest. In
the case of thermonuclear deflagration, a particularly intriguing example is found. It
is actually turbulence which drives the burning process. Although LES of deflagration
in a cube have produced valuable information, there are still a number of open issues,
which are beyond the reach of this Thesis.
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5.1.1 Localisation of the Subgrid Scale Closures

The main results emerging from the numerical studies discussed in Chapter 4 can
be summarised as follows: First of all, the SGS turbulence energy model basically
appears to perform very well in LES of turbulent deflagration. However, details of
the burning process were found to be quite sensitive to the computation of the closure
parameters Cν, Cε and Cκ for SGS production, dissipation and diffusion, respectively.
Three different options were investigated: Firstly, an ad hoc procedure introduced
by Clement [1993], secondly, constant statistical values determined from DNS data
and, finally, a semi-localised model which, in part, follows the dynamical procedure
proposed by Kim, Menon, and Mongia [1999]. From these three possibilities, only the
statistical and the localised closures seem to be adequate. Whether the semi-localised
model is indeed superior to the statistical model is difficult to answer purely on grounds
of LES of isotropic turbulence with artificial forcing. In any case, one must be aware
that the SGS closures introduce supplementary numerical parameters. Therefore, we
can definitely not speak of parameter-free models. The discussion of the influence of
different SGS parameters in Section 4.3 underlines this statement. In order to arrive
at sound physical predictions, it is of the uttermost importance to study carefully what
changes come about if some particular parameter assumes different values. From
this point of view, it is encouraging that the semi-localised model is fairly robust with
respect to changes in the numerical resolution, the characteristic length of the test filter
and the temporal smoothing scale for dissipation.

It is actually the rate of SGS dissipation, from which the most difficult closure
problem arises. This can be attributed to the fact that dissipation is spatially intermit-
tent and most significant on scales of the order of the Kolmogorov scale ηK. Con-
trary to SGS production, which is mostly determined by the dynamics on scales in the
vicinity of the numerical scale ∆eff , similarity assumptions usually fail for closures of
dissipation. Thus, the statistical approach outlined in Section 4.3.4 was applied. Ba-
sically, the parameter Cε is calculated from the numerically resolved energy budget in
the three distinct topological regions containing fuel, the flames and ash, respectively.
Using this method in LES, the following is observed for the evolution of the dissipa-
tion statistics. During the first integral time, there is very little dissipation, as virtually
no small-scale vortices are present. Then the rate of dissipation is rising sharply and
subsequently settles into a plateau with Cε ≈ 0.6. This value basically agrees with
numerical or theoretical estimates in the literature and is about 20 % larger than the
statistical result Cε ≈ 0.5, which was computed from DNS data (see Section 3.2.3).
On account of the uncertainties in both approaches and the significant scatter among
cited values for closure parameters calculated with different methods, the result for Cε
appears to be satisfactory.

An entirely different ansatz is a two equation model in the spirit of the well known
k − ε model. The basic idea is to formulate a supplementary dynamical equation for
the rate of dissipation, which is obtained by dimensional multiplication of the equation
for the SGS turbulence energy with the inverse time scale τ−1

ε = εsgs/ksgs:

D
Dt
εsgs − 1

ρ
∇ ·

(
ρκsgs

σε
∇εsgs

)
= −Cε 1

εsgs

ksgs
Πsgs −Cε 2

ε2sgs

ksgs
, (5.1)

where Cε 1 = 1.44, Cε 2 = 1.92, and σε = 1.3, if κsgs = νsgs [cf. Pope, 2000, Sec-
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tion 10.4]. The source terms can be interpreted as non-linear relaxation of τ−1
ε towards

the equilibrium value ∼ (Πsgs/ρνsgs)1/2 ∼ |S ∗|. The diffusion term is completely anal-
ogous to Dsgs, with an effective diffusivity κsgs/τε

1. Canuto [1994] actually proposed
to adopt the above second-order closure for the rate of dissipation in a SGS model.
The implementation for LES of turbulent deflagration, however, did not succeed. In
fact, the two-equation SGS model fails to converge, once turbulence is fully developed,
which becomes manifest in a slow persistent growth of the SGS turbulence energy. The
drift might be caused by deficiencies in the numerical scheme for the SGS equations.
However, it could reflect an inherent inadequacy of the two-equation model as well.
This issue certainly has to be investigated in the future.

Very little is known about the influence of gravity on small scales. On grounds of
scaling arguments, it was argued in Section 1.1.3 that buoyancy effects should become
asymptotically negligible towards length scales much smaller than the integral scale.
However, this conclusion applies in the case of fully developed, steady turbulence only.
Since a supernova explosion is a transient phenomenon, one can doubt the validity of
the argument. The dominance of the turbulence cascade over Rayleigh-Taylor insta-
bilities has actually been questioned by Khokhlov et al. However, so far they have
not produced convincing evidence in favour of their conjecture. Anyhow, it would be
important to investigate whether gravitational effects are significant on subgrid scales,
by including the buoyancy terms in the SGSTE model. Firstly, scale separation in the
filtering approach would imply the following modification of the SGS rate of produc-
tion:

Πsgs = τikS ik + Γsgs, (5.2)

where

Γsgs ≡ −τ(vi, gi) = 〈∞ρ∞vi∞gi〉eff − ρvigi (5.3)

accounts for gravitational energy injection on unresolved scales. Secondly, an ad-
ditional convective transport term would have to be included in the resolved energy

conservation law. This term is given by the divergence of the flux 〈∞Eint
∞
vi〉eff − Eintvi.

The closure for the convective flux is usually made in terms of an adiabatic tempera-
ture gradient [cf. Canuto, 1996], or it is modelled by a dynamical equation [cf. Canuto,
1994, Section 5]. In any case, it is hard to see how this could be carried over to the
problem of turbulent deflagration. There are also indications that the rate of dissipa-
tion has to be modified under the action of gravity. For instance, Canuto and Minotti
[1993] pointed out that gravity waves store kinetic energy lost by turbulent vortices
in a stable stratification of fluid. This would lead to the Lumley-Weinstock model of
dissipation. Of course, a supernova explosion is non-stationary and, therefore, the
Lumley-Weinstock model appears not to be appropriate. However, once turbulence
freezes out due to the expansion of the unbound white dwarf, so-called fossil turbu-
lence is produced [cf. Gibson, 1999]. Possibly, this phenomenon plays a key role in
the transition to ballistic expansion in the late stage of the explosion. One should note
that the observable distribution of elements in velocity space is ultimately determined
by the flow structure at freeze-out time.

1A tensor diffusivity proportional to τik is discussed in Speziale [1991].
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Figure 5.1: Filtered flow map with contours of the SGS turbulence velocity relative to the
laminar burning speed in a 2D section at time t̃ = 1.75. The numerical resolution
is N = 216. The semi-localised SGS model with ∆T = 6.74∆was actively coupled
to the resolved flow in this simulation.

5.1.2 Flame Physics and the Level Set Method

The LES of turbulent deflagration presented in this Thesis impressively demonstrate
that the level set method is indeed well suited for the representation of flame fronts.
As an illustration, a 2D flow map with contours of qsgs/slam is shown in Figure 5.1 for
a LES of turbulent deflagration with the semi-localised SGS model. In this simulation,

the turbulent flame speed was defined by st = slam

√
1 + (qsgs/slam)2. Nevertheless,

some deficiencies of the current implementation remain a matter of concern. Firstly,
there are limitations due to the passive implementation, in which differences between
burned and unburned states are ignored. This makes simulations prone to significant
numerical errors for burning at densities � 107 g cm−3. Secondly, the algorithm for the
re-initialisation of the level set is inefficient and eats away a lot of computing power.
As for the first problem, complete reconstruction in 3D is the only reliable option.
However, this might very well turn out to be computationally too involved. There
are also alternatives to the re-initialisation method. Unfortunately, one particularly
promising option, the so-call fast marching method, is not readily parallelisable [cf.
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Adalsteinsson and Sethian, 1999].
Apart from the implementation of the level set technique, another crucial question

concerns the relation between the intrinsic propagation speed s of the level set and
the velocity scale qsgs associated with SGS turbulence. Two different options were
investigated. Firstly the naı̈ve relation s = max(slam, qsgs) and, secondly, Pocheau’s
relation (4.7). The latter introduces the parameter Ct, which fixes the asymptotic ra-
tio of st to qsgs. From numerical experiments, it appears that Ct � 1 is preferable.
Furthermore, one could include SGS effects in the dynamical equation (4.4) for the
level set function. This was indeed investigated by Im et al. [1997]. They even sug-
gested a dynamical procedure for the computation of Ct in the fashion of the localised
closure for the production parameter Cν. Whether this is advisable with the passive
implementation, where numerical artifacts in the shape of the resolved level set could
produce significant spurious contributions, is questionable. For this reason, it has not
been attempted. In addition, there is a SGS transport term for the level set, which is

of the form ∂k(〈∞vk
∞
G〉eff − vkG) and effectively introduces diffusion of the level set due

to SGS turbulence. However, Kim et al. [1999] argued that the contributions arising
thereof are not particularly important and, in fact, cannot be determined within the
available framework of SGS modelling. Yet another interesting proposal is to extend
the methodology based upon the notion of a level set with a turbulent propagation
speed to flames in the thin-reaction-zone regime, when the Gibson scale is compara-
ble to the flame thickness. This regime is possibly important in the late stage of a
thermonuclear supernova explosion. Kim and Menon [2000] suggested a generalised
flame speed relation which accounts for turbulent broadening of the reaction zone in
a deflagration front. Basically, small-scale turbulence enhances the transport of heat
and, thus, preheating is more efficient than in the case of purely conductive transport.
Implementing the generalised model, which was originally developed for engineering
applications, might extend the interval of time over which a supernova explosion can
reasonably be simulated.

5.2 Towards New Supernova Explosion Models

As follow-up action, the SGS model developed in the course of this Thesis will be
applied to simulations of thermonuclear supernovae. This is not quite as straight-
forwards as one might think. One problem stems from the rapidly decreasing density
at the surface of the white dwarf, which poses difficulties for a compressible SGS
model. Even more important, however, is the feedback between burning and turbu-
lence production in a supernova explosion. If SGS turbulence enhances the rate of
burning, more ash is produced and buoyancy increases convection, which in turn gen-
erates more SGS turbulence. For this reason, it is possible that the semi-localised SGS
model with dynamical treatment of production predicts a significantly accelerated pro-
gression of the deflagration, once convection is initiated. In the early phase, on the
other hand, the burning process should proceed slower in comparison to Clement’s
model, because the production parameter of the localised model is initially small.

Whatever the outcome will be, the pure deflagration model for SNe Ia is pushed
hard to accommodate recent observational facts. One issue is the observation of inter-
mediate mass elements (IMEs) ejected at extraordinarily high velocity in SN 2002bo
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[Benetti et al., 2003], which indicates that the burning zone penetrates into the outer-
most layers of the expanding white dwarf. At the same time, however, the mass of
produced 56Ni is comparable to those found in events with significantly smaller ejec-
tion velocities of IMEs. Therefore, the properties of SN 2002bo can not be understood
solely on grounds of the explosion energetics. Moreover, evidence for polarisation in
the spectra of SN 2001el points at a non-spherical structure of the explosion [Kasen
et al., 2003]. For the time being, delayed detonations and, possibly, a significant ro-
tation of the progenitor are favoured as explanations for these peculiarities. Even if
this should put an end to the pure deflagration model, the thorough understanding of
the physics of turbulent deflagration will still be essential, in order to model the early
phase of a SN Ia explosion prior to the transition from deflagration to a detonation.
The investigation of turbulent burning and the development of a more sophisticated
SGS model presented in this Thesis will hopefully turn out to be a step in achieving
such an understanding.
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Appendix A

Numerical Techniques

A.1 Implementation of Discrete Filters

In general, a filtering operation 〈 〉F on a field q(x, t) is defined by a convolution prod-
uct:

〈q〉F(x, t) =
∫ t

−∞
dt′

∫
d3x′ q(x′, t′)F(x − x′, t − t′), (A.1)

where F is called the filter kernel. The filter is called spatial, if the kernel is of the
form

F(x − x′, t − t′) = G(x − x′)δ(t − t′). (A.2)

On the other hand,
F(x − x′, t − t′) = δ(x − x′)H(t − t′) (A.3)

is the kernel of a temporal filter. Note that the upper boundary of the interval of time
integration preserves causality. In spectral space, filtering is a merely a multiplication:

〈q̂〉F(k, ω) = F̂(k, ω)q̂(k, ω). (A.4)

The hat on top of a symbol indicates the Fourier transform of the corresponding quan-
tity in physical space and in the time domain. The wave vector k and the frequency ω
are dual to x and t, respectively. In the context of LES, only low-pass spatial filters
are relevant, which suppress modes of high frequency and wavenumber. The most
common of these filters are discussed in Sagaut [2001, Chapter 2]. For the numerical
implementation, either discrete Fourier transforms are applied, or the convolution in-
tegral in physical space is discretised. In the former case, the filtering operation itself
is trivial, but the computation of Fourier transforms is costly, both in terms of CPU
time and memory. In the second case, the major challenge is the numerical integra-
tion. If the filter kernel is of local support in physical space, the computation of the
convolution integral will be significantly less demanding than the Fourier transforma-
tion. Apart from that, it is also a matter of the application, which option is preferable.
For the post-processing of DNS data, as discussed in Sections 2.5.4 and 3.2, Gaussian
filters are particularly useful. Since a Gaussian filter operation is not bounded in physi-
cal space, the computation is most easily carried out in spectral space. To that end, the
implementation FFTW of the discrete fast Fourier transform algorithm was utilised
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[cf. Frigo and Johnson, 1998]1 . For the test filter in the semi-localised subgrid scale
model, on the other hand, a discretised box filter was applied. The numerical imple-
mentation of this filter as well as a temporal smoothing procedure are briefly outlined
in the following.

A.1.1 Spatial Filtering

Discrete spatial filters for the application in LES are discussed in Vasilyev and Lund
[1997]. In one dimension, the kernel of a discrete filter is defined by a series of weights
for each grid node:

1
∆

G

(
xi − x′

∆

)
=

NG∑
l=−NG

wilδ(xi+l − x′). (A.5)

If a dynamical quantity q(x) is numerically represented by the discrete sequence of
values {qi}Ni=1, then the filter operation is defined by

q̄i =

NG∑
l=−NG

wilql, i ∈ {1, . . . ,N}. (A.6)

The cells with indices i − NG, . . . , i + NG are the supporting nodes for filtering qi, and
(2NG + 1) is the number of supporting nodes. Obviously, one must impose boundary
conditions in order to determine the ghost values for −NG ≤ l < 1 and N < l ≤ NG.
Moreover, the weights wil must satisfy the normalisation condition

∀i ∈ {1, . . . ,N} :
NG∑

l=−NG

wil = 1. (A.7)

Here we will exclusively consider homogeneous filters on equidistant grids. In this
case, ∀i ∈ {1, . . . ,N} : wil = wl, i. e., the weights are uniquely given by the offset l
from the central supporting node. Moreover, if w−l = wl, then the filter is symmetric.

In the framework of finite-volume schemes, a particularly suitable kind of filter is
the box filter. In one dimension, this is basically the average over an interval:

q̄(x) =
1

∆̄

∫ ∆̄/2

−∆̄/2
q(x′)dx′ (A.8)

where ∆̄ is the characteristic length of the box filter. Appropriate filter weights can be
found by means of a Fourier analysis. Suppose, a symmetric mesh filter with 2NG+1 =
5 supporting nodes acted upon a harmonic function qi = Q exp(ikxi), then

q̄i = Q
2∑

l=−2

wl exp(ikxl) = (w0 + 2w1 cos k∆ + 2w2 cos 2k∆)qi. (A.9)

Hence, the spectral representation of a 5-node filter is given by

Ĝ(5)(k) = 1 − 2w1(1 − cos k∆) − 2w2(1 − cos 2k∆)

� 1 − (w1 + 4w2)k2∆2 +
w1 + 16w2

12
k4∆4 + O(k6∆6).

(A.10)

1The acronym FFTW stands for Fastest Fourier Transform in the West. FFTW is a library which was
developed at MIT by M. Frigo and S. G. Johnson. It can be downloaded from www.fftw.org for free.
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For an analytic box filter of characteristic length ∆̄ = γ∆, on the other hand, we have
[cf. Pope, 2000, Table 13.2]

Ĝγ∆(k) =

(
γ∆

2

)−1

sin

(
γ∆

2

)
� 1 − γ

2

24
k2∆2 +

γ4

1920
k4∆4 + O(k6∆6)

(A.11)

Matching the Taylor expansions of Ĝ(5)(k) and Ĝγ∆(k), respectively, the discrete filter
weights can be expressed in terms of the scaling ratio γ:

w0 = 1 − 5γ2

48
+
γ4

320
, w1 =

γ2

6

(
1
3
− γ

2

80

)
, w2 =

γ2(3γ2 − 20)
5760

. (A.12)

Naturally, γ ∈ [1, 5] for a filter with 5 supporting nodes. In fact, setting wi = 1/5 for
−2 ≤ i ≤ 2, no consistent solution which would satisfy all of the above equations can
be found for γ.

γ w0 w1 w2

2.0 0.6333 0.1889 -0.0056
2.5 0.4710 0.2658 -0.0014
3.0 0.3156 0.3313 0.0109
3.5 0.1929 0.3679 0.0356
4.0 0.1333 0.3556 0.0778
4.5 0.1721 0.2707 0.1433
5.0 0.3490 0.0868 0.2387

Table A.1: Weights for a 5-node mesh filter of characteristic scale γ∆ .

A sample of weights for 2 ≤ γ ≤ 5 is listed in Table A.1. If the monotonicity con-
straint w2 < w1 < w0 is imposed for strictly positive weights, then there remains only a
narrow range of possible values for γ around 2.7. Actually, there is a particular value,
for which the discrete and the analytical kernels agree at the grid cut-off wavenumber
π/∆, i.e., Ĝ(5)(π/∆) = Ĝ(π/∆). With this constraint, the remaining degree of freedom
can be eliminated, and numerically γ = 2.77108 is found. The corresponding weights
are w0 = 0.38438, w1 = 0.30376 and w2 = 0.00405. We shall call this the optimal
filter, because a particularly good agreement between discrete and analytical box fil-
ter is found in the whole range of numerically relevant wave numbers k ≤ π/∆. The
procedure outlined thus far may also be applied to mesh filters with a larger number
of supporting nodes. Since the mathematical expression become increasingly compli-
cated, it is convenient to resort to software for symbolic computation. The weights
and scaling factors for the optimal mesh filters with 7 and 9 nodes, respectively, were
calculated with MATHEMATICA (see Table 4.2). Last but not least, it is very easy
to construct multidimensional discrete box filters from homogeneous 1D filters, if
the grid is equidistant. This is trivial by the separability of the analytic box filter,
G∆̄(x, y, z) = G∆̄(x)G∆̄(y)G∆̄(z), in a 3D Cartesian coordinate system. Therefore, we
consider 1D mesh filters to be the component filters of homogeneous, discrete 3D box
filters.
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A.1.2 Temporal Filtering

In order to smooth a time-dependent function f (t) on a time scale T , the convolution
of f with an exponential damping function is computed, and the result is normalised
with the integral of the damping function:

f̄ (t) =

∫ t

0 f (t′)e−(t−t′ )/Tεdt′∫ t

0 e−(t−t′)/Tεdt′
. (A.13)

This is a modified time low-pass filter [cf. Sagaut, 2001, Section 2.1.4]. Note that
the convolution integral preserves causality. The discretised counterpart of the above
equation is straightforward. Let fm be the value of f at time tm, then

f̄ n =
f 0e−(t1−t0)/TεTε +

∑n
m=1 f me−(tn−tm)/Tε (tm − tm−1)

e−(t1−t0)/TεTε +
∑n

m=1 e−(tn−tm)/Tε (tm − tm−1)
. (A.14)

The discrete equation is equivalent to a system of recursion rules, which makes the
calculation of the smoothed functions particularly easy:

f̄ 0 = f 0, f̄ n =
1
Nn

[
Nn−1 f̄ n−1 exp

(
− tn − tn−1

Tε

)
+ f n

(
tn − tn−1

Tε

)]
, (A.15)

N0 = 1, Nn = Nn−1 exp

(
− tn − tn−1

Tε

)
+

tn − tn−1

Tε
. (A.16)

A.2 Implementation of Subgrid Scale Diffusion

The dynamical equation (3.45) for the SGS turbulent speed is a non-linear parabolic
PDE, which is both explicitly and implicitly coupled to the resolved state and flow
variables. Explicit coupling is introduced by the rate of strain Sik and the divergence
d. Moreover, the resolved flow influences SGS turbulence dynamics in a more subtle
way through a localised production parameter. A systematic analysis of these complex
interactions is certainly not feasible. This is why stability with regard to the source
terms in the semi-localised model can only be established a posteriori in numerical
simulations. As for diffusion, a simple numerical scheme is employed, for which a
stability analysis can be carried out on the assumption of constant SGS parameters.

For brevity, we shall consider the one-dimensional problem. The scheme outlined
here carries over to three dimensions via operator splitting. Let qi be the turbulent
speed in the i-th cell. The diffusive fluxes through the interfaces to the adjacent cells
are naturally given by [cf. LeVeque, 2002, Section 4.2]

Fi+1/2 = κi+1/2
qi+1 − qi

∆
, Fi−1/2 = κi−1/2

qi − qi−1

∆
, (A.17)

assuming an equidistant grid. The above expressions follow from the discrete formu-
lation of Fick’s law of diffusion. However, the diffusivities κi±1/2 are actually functions
of the quantity being transported. Hence, SGS diffusion is nonlinear, with the mean
diffusivity in the i-th cell given by κi ∝ ρiCκqi, where Cκ is the constant closure param-
eter for turbulent diffusion. The simplest possibility of defining κi±1/2 is by averaging
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over the corresponding couples of adjacent cells:

κi+1/2 =
Cκ
2

(ρiqi + ρi+1qi+1) , (A.18)

κi−1/2 =
Cκ
2

(ρi−1qi−1 + ρiqi) . (A.19)

The increment of qi corresponding to diffusion over the time step δtn is explicitly given
by the following Euler-forward step:

δq(D1)n
i =

1
ρn

i

δtn

∆
(Fn

i+1/2 − Fn
i−1/2) (A.20)

For linear diffusion, this scheme is subject to a rather restrictive stability constraint:
δt < min(ρi∆2/κi). Consequently, implicit schemes like the Crank-Nicholson method
are usually preferred to solve diffusion equations. The problem of non-linear diffusion
we are concerned with, on the other hand, can be treated quite well with the scheme
outlined above. This can be shown analytically by means of a Fourier stability analysis
for the simplified case of an incompressible flow. Even in the general case, however,
the performance of the scheme in various simulations has not given any indication of
instability.

If a Fourier mode of wavenumber k is substituted, qi = Qeikxi , and the density is
constant, then the amplification factor for this mode is given by2

gi =

√
2Cν∆effδt

∆2
Q sin∆k =

√
2Cνβδt
∆

Q sin∆k. (A.21)

The numerical scheme for diffusion is stable if |gi| < 1, which implies

δt <
∆√

2CνβQ
∼ 10∆

Q
(A.22)

Thus, the grid spacing ∆ constrains the time step linearly and not quadratic as in the
case of linear diffusion. Since δt is basically determined by the CFL condition δt <
min(∆/ci), where ci is the speed of sound in the i-th cell, the above condition for
the maximal SGS turbulence energy is effectively Q < 0.1 max(ci). This is almost
certainly fulfilled for moderate Mach numbers and sufficient resolution.

The quadratic gradient term, which originates from reducing the conservation law
for SGS turbulence energy to an equation for qsgs =

√
2ksgs, is spatially symmetric,

i. e., this term depends on the magnitude of the gradient ∇qsgs, but it is independent of
direction. For this reason, centred differences appear to be appropriate for the discreti-
sation:

δq(D2)n
i = Cκ

(
qn

i+1 − qn
i−1

2∆

)2
. (A.23)

2The method of calculating amplification factors of Fourier modes in finite difference schemes is
introduced in the book of Potter [1973].




