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Monica Şerbu (geb. Apostoliceanu)

Technische Universität München

2005





Technische Universität München

Fakultät für Physik

Max Planck Institut für Plasmaphysik

Study of Microinstabilities Using
the Paraxial WKB Method
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”The flapping of a single butterfly’s

wing today produces a tiny change

in the state of the atmosphere. Over

a period of time, what the atmosphere

actually does diverges from what it

would have done. So, in a month’s time,

a tornado that would have devastated

the Indonesian coast doesn’t happen.

Or maybe one that wasn’t going to

happen, does.”

(Ian Stewart, Does God Play Dice?

The Mathematics of Chaos)





Abstract

The concept of energy production through the fusion of two light nuclei has been

studied since the 1950’. The main goal of controlled thermonuclear fusion research

is to achieve a high density and high temperature plasma for a long confinement

time. The most common way to confine the plasma is the tokamak. In the toka-

mak the energy and particle loss was found to be much larger than the neoclassical

transport and is called anomalous transport. Today is commonly accepted that

anomalous transport is due to microinstabilities driven by temperature and density

inhomogeneities. The present Thesis is centered on the study of two major microin-

stabilities, trapped electron mode (TEM) and ion temperature gradient (ITG).

In studying the microinstabilities, first a linear gyrokinetic code, GS2, was ap-

plied to ASDEX Upgrade L-mode discharges heated with Electron Cyclotron Heat-

ing. The most unstable mode is found to be the TEM. The scan performed around

the parameters obtained from the experiment has revealed that the growth rate

of the mode depends on several plasma parameters that are not usually considered

when analyzing the experiments, such as the density gradient length, R/Lne, and col-

lisions. The direct comparison of the observed heat flux with results obtained using

quasi-linear theoretical calculations shows a good agreement. Both, the experiments

as well as calculations show that there is a threshold for the TEM. The normalized

growth rate obtained from the gyro-kinetic stability calculations has been also com-

pared with Weiland and GLF23 models. A relative good agreement has been found

between GS2 and GLF23 models, whereas the Weiland model performs less well

(especially the shear dependence).

The ITG turbulence is generally believed to cause the observed anomalous loss

of particles and heat at the core of the tokamak. The study of the ITG mode

is performed using a two-fluid model, parallel ion dynamics being also included.

Both, analytical and numerical calculations are employed , using a novel asymptotic

approach, the beam tracing technique (BT), for solving the eigenvalue problem in

the short wavelength limit. To validate the numerical results, the dependence of the

ITG mode on different parameters, i.e ηi, Te, q, is compared with Weiland model.

For this comparison, a simplified BT model is used. Dependence on the Shafranov

shift, on the elongation and on the magnetic shear is studied.
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Chapter 1

Introduction

1.1 Thermo-Nuclear Fusion

The development of alternative energy sources is stimulated by the increasing world-

wide energy demand. Nowadays, the largest amount of electricity is produced by

burning fossil fuel, which is expected to cover the energy needs for the intermediate

time, but serious questions have been raised about the impact on the ecosystem and

the climate.

For long term strategy the nuclear power as well as renewable energy sources

are considered valid alternatives. Energy can be gained from the mass loss after a

nuclear reaction, such as the splitting of a heavy nucleus into two lighter ones, or the

fusion of hydrogen isotopes to give helium. In industrialized countries, nuclear fission

is developed enough to deliver already a significant amount of energy. However,

radioactive waste, with an extremely long lifetime, cannot be avoided. Nuclear

fusion would have also waste, since the inner walls of a reactor would be activated

by neutrons. However, improvements are achieved by choosing appropriate walls

and structure materials of low activation. Fusion, as a source of energy, would have

many advantages: abundant fuel supply, no risk of nuclear accidents, since no fossil

fuels are used, air pollution will not exist.

To produce energy through thermonuclear controlled fusion is still a challeng-

ing goal. An economically attractive fusion power plant is desired. A big difficulty

appears in realizing it, namely, the very low cross-section of the reaction, due to

the Coulomb barrier between charged nuclei. However, the cross-section increases

with energy so that this inhibition is overcome by increasing the average kinetic en-

ergy. The energy required for fusion is so high that fusion only occurs in appreciable

amounts once the temperature gets over 10 millions K. At such temperature the
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fuel is fully ionized. The electrostatic charge of the nuclear ions is neutralized by

the presence of an equal number of electrons and the resulting neutral gas is called

plasma. On Earth, the most feasible fusion reactions are listed in Table 1.1. For

temperatures below 500 keV the D-T reaction exhibits the highest cross section and

a very good energy production rate (17 MeV per reaction).

1 10 100 1000
T (keV)

10-25

10-24

10-23

10-22

10-21

<
σv

>
 (

m
3 /s

)

D+T

D+D

T+T

D+ He
3

Figure 1.1: Reaction parameters < σv > as a function of Ti for different fusion
reaction

D + D → n (2.45 MeV) + 3He (0.82 MeV) [50%]
D + D → p (3.02 MeV) + T (1.01 MeV) [50%]
D + T→ n (14.04 MeV) + 4He (3.54 MeV)
D + 3 He→ p(14.64 MeV) + 4He (3.71 MeV)

Table 1.1: Most relevant fusion reactions with deuterium. The particle energy after
the reaction is reported in the round brackets.

Therefore, it is the best candidate for a fusion reactor, even if tritium does not

occur naturally. The later problem can be solved using the neutrons produced in the

D-T reaction. Surrounding the plasma with Lithium, a second reaction can produce

Tritium which can be gathered and used for plasma fueling.
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Figure 1.2: Tokamak configuration: The innermost cylinder is the transformer coil
which induces the toroidal current and thus the poloidal magnetic field. The ring
of D-shaped coils creates the toroidal magnetic field. The resulting field lines run
helicoidally on the nested toroidal surfaces. The horizontal coils generate a vertical
magnetic field for the radial plasma equilibrium as well as for plasma shaping.

The D-T reaction rate starts to be relevant at particle energies of 10 keV or more.

The aim is to achieve the ignition where, as in the case of fossil fuels, the burning

process becomes self-sustaining without further applied heating. The conditions

needed to induce fusion reactions are so extreme that virtually natural fusion occurs

only in the interior of stars. In this case, the gravity compresses the gas, until

the temperature and pressure forces balance the gravitational compression. If there

is enough material in the star, pressure and temperature will grow large enough

and the fusion begins to occur. To obtain ignition on Earth, two approaches are

under investigation: ”inertial fusion” creates very dense plasmas for a short time,

”magnetic fusion” confines a relatively rarefied, hot plasma for a long time with the
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use of a magnetic field.

In the present fusion experiments ignition has not yet been reached: it is neces-

sary to supply power from outside to obtain the desired high temperature. One of

the main problems is the relatively large transport of the heat out of the plasma. In

the last 50 years many different approaches were investigated in order to approach

the fusion reaction. Among them, the most advanced concept towards the achieve-

ment of the required fusion reactor parameters is so-called Tokamak, realized for the

first time by L. Artsimovich in 1952. The name comes from the Russian acronym

TOroidalnaya KAmera MAgnitnymi Katushkami, toroidal chamber with magnetic

coils. The Tokamak is a toroidal system which confines the plasma by a magnetic

field [1]. The dominant magnetic field component is the toroidal one, Bζ , produced

by external coils. However, this field alone does not allow the confinement of the

plasma and an additional poloidal magnetic field Bϑ is necessary for an equilib-

rium which has the plasma forces balanced by the magnetic forces. This additional

magnetic field is produced by a large toroidal current in the plasma and by outer

poloidal field coils, figure (1.2). The combination of the toroidal and the poloidal

fields results in magnetic field lines with helical trajectories around the torus ly-

ing on so called magnetic surfaces. That way, the hot charged particles are confined

and cannot travel in the radial direction. An external energy source generates initial

current in the primary winding of the transformer (1.2). Lot of additional magnetic

coils help to variate shape of the plasma and to control its behavior during tokamak

operation.

At the beginning of the discharge, the plasma is heated by ohmic dissipation

of the plasma current. This heat is not enough for the typical fusion parameters

described. Thus, additional heating, such as the injection of high energy neutral

beams or launching electromagnetic waves into the plasma, are applied in fusion ex-

periments [1]. Once ignited, the nuclear reaction in the plasma would be completely

self-heating through the fusion-born α-particles.

Unfortunately, different types of instabilities appear in the plasma. They strongly

reduce plasma parameters and may even lead to disruption (dramatical event in

which plasma confinement is suddenly destroyed). The investigation of the instabil-

ities is, therefore, of crucial importance and they make the subject of this thesis.
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1.2 Transport in plasma

One of the main problems in fusion research is to understand the mechanisms that

govern heat and particle transport in the direction perpendicular to the magnetic

surfaces. It is thought that plasma is prone to instabilities, which causes the par-

ticle and the energy to escape from the core of the plasma, damaging in this way

the plasma confinement. During the last years, as larger tokamaks were built, im-

provement in confinement was achieved. Building larger tokamaks has also a very

important economical implication. Like fission, the cost optimum is achieved by

”big units” also in case of fusion (energy fission ≥ 1.2 GWe). To demonstrate the

feasibility of fusion would be easier by ”small device” (like the first fission reactors).

1.2.1 Confinement and ignition

The goals of fusion research include:

• To achieve the required temperature to ignite the fusion plasma.

• To confine the plasma at this temperature long enough to obtain useful amount

of energy out of the thermonuclear fusion reactions.

• To obtain more energy from the thermonuclear reaction than is used to heat

the plasma to the ignition temperature.

These goals are not trivial. The only reasonable ”container” for a plasma at 10

million K is a magnetic field.

The thermal energy stored in a plasma (see [1]) is

W =
3

2

∫

V

(neTe + niTi)dV,

where the labels refer to electrons and ions, nj and Tj represent the particle density

and temperature, respectively. We denote temperatures in terms of the average

kinetic energy of random motion per particle, expressed in units of energy. So

one million degree Kelvin corresponds roughly to kBT = 100 eV or an average

energy of one hundred electron volts. Here, kB = 1.38 × 10−16 ergs per degree

Kelvin, or equivalently one electron volt per about 11.600 degree Kelvin. In plasma

physics one normally expresses the temperature in eV with the Boltzmann constant

kB understood. In the steady state, the energy losses Pout are equal to the input

power Pin, supplied by different heating mechanisms. A measure of the thermal
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isolation capability of a plasma can be described by its confinement time τE, which

corresponds to the heat recycling rate

τe =
W

Pout

,

The reaction rate <, is proportional to the square of plasma density , < ∝ n2
DT ,

where nDT = nD + nT , with nD and nT being the deuterium and tritium density,

respectively. For a given ion density, a maximum rate is achieved for nD = nT . For

the quasineutral plasma (i.e no ash and no impurities) ne = nDT .

The so-called triple product neTiτE is a very important for the fusion efficiency:

the ignition is reached, as shown in [1], when the following relation is fulfilled:

neTiτE > 3× 1021m−3 keV s.

1.2.2 Particle orbits

Before we can discuss different transport mechanisms we must first look at the

particle orbits in a tokamak reactor. A tokamak is a device for magnetic confinement

of plasma. The principle is simple: charged particles in a uniform magnetic field

gyrate around the magnetic field direction with a fixed radius, called Larmor radius

and given by

ρj =

√
Tj

mjω2
cj

(1.1)

where ωcj = qjB/mj is the gyration frequency of the particle species j in presence

of a magnetic field B; qj is the particle electric charge and mj its relativistic mass.

If ρj ¿ a particles are confined. The direction of the gyration is always such that

the magnetic field generated by the charged particle is opposite to the externally

imposed field. The plasma particles tend to reduce the magnetic field and plasmas

are diamagnetic. The trajectory of a charged particle is, in general, a helix. The

particles can only leave the plasma through Coulomb collisions (classic and neoclassic

transport) or through fluctuating electromagnetic fields.

Particle drifts

In a laboratory plasma the electric and magnetic field strengths are actually inho-

mogeneous. In addition the magnetic field lines are not straight. Both the curvature

radius as well as the gradient length, LB, are of the order of the major radius R

and therefore much larger than ρj. Every force acting in the plasma is associated

6



with a particle drift. We try to give a simple physical picture of the drift associated

with ∇B. For simplicity, we assume that B = Bẑ. Here the magnetic field lines are

straight, but their density increases in y direction, B=B(y).

z x

y

B

z x

y

|B|

∆

Figure 1.3: The drift of a gyrating particle in a nonuniform magnetic field

The gradient in |B| causes the Larmour radius to be larger at the bottom of the

orbit than at the top, and this should lead to a drift, in opposite directions for ions

and electrons, perpendicular to, both, B and ∇B. Fig. 1.3 shows, the ”center” of

the gyration (the guide center) drifts from the ideal field-line following trajectory.

The drift is in opposite directions for ions and electrons because the gyration motion

around B is anticlockwise for ions and clockwise for electrons. This drift causes a

current transverse to B.

Particle trapping

Another important effect of the magnetic field inhomogeneity is particle trapping.

In this section we make use of the conservation of the kinetic energy (E = mv2/2)

and of the magnetic moment (µ = mv2
⊥/2B), which is an adiabatic invariant. The

magnetic field strength in a tokamak has the form B = B0R0/R, figure (1.4), so that

it increases towards the tokamak axis. Since the field line is twisted around a toroidal

surface, as a particle moves from a weak field region to a strong field region in course

of its thermal motion, it sees an increasing B, and therefore its v⊥ must increases

in order to keep µ constant. Since the total energy must remain constant, v|| must

necessarily decrease. If B reaches a critical value, Bref , v|| eventually becomes zero

and, the particle is ”reflected” back in the weak field region. This is known as

”mirror effect”. The trapping condition reads
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1

2
mv2

||0 < µBmax − µBmin,

where Bmax is the maximum field seen by a passing particle and v||0 is the parallel

velocity at the place where B = Bmin. For an isotropic distribution function, in a

tokamak we have:

v2
||0

v2
0 − v||0

=
v2
||0

v2
⊥

<
Bmax −Bmin

Bmin

≈ 2r

R0 − r
=

2ε

1− ε

where ε = r/Ro is the local inverse aspect ratio of the tokamak at the radial position

r. The trapped particles fraction is

f =
nt

n
≈ arcsin(

v||0
v0

)limit ≈
v||0
v0

|limit ≈
√

2ε

1 + ε
.

The projection of a trapped particle orbit on the poloidal plane of an axisymmet-

ric torus is sketched in figure (1.5). The flux surfaces are assumed to have circular

cross-sections. If particle drifts were not present, the orbit would be aligned to the

field line and would have zero width. But since B increases towards the torus axis,

both species drift in the vertical direction. Trapped particles may encircle the torus

in the toroidal direction but be poloidally confined to the low field side of the torus.

The width of the trapped particle orbit can easily be calculated

∆r = 2
v||m

eBp,m/cm
(1.2)

where r is the cylindrical radius and v||m is the value of the parallel velocity at the

midplane. Note that the denominator is the gyro-frequency in the poloidal field at

the mid-plane Bp,m.

1.2.3 Anomalous transport

As has been already said, the effect of the magnetic field is to turn the particle

motion perpendicular to the field into small circular orbits. Typically the orbit of the

plasma ions has a radius of a few millimeters. This means that the particles perform

very many orbits, a deuteron ion completing about 30 orbits per microsecond. The

electrons, being faster and less massive, move in an orbit 60 times smaller at 3672

times the ions gyrofrequency. The particles move freely parallel to the magnetic

field, but this takes them along surfaces which are closed within the tokamak.

The question naturally arises to what limits confinement in the magnetic field

of a tokamak. Why would particles not gyrate about a field line forever? The

9



first answer is that the particles collide with each other and the collisions cause a

displacement of the orbit. These displacements are random and so the particles

diffuse across the magnetic field until they reach the edge of the plasma. Collisions

also lead to a diffusive transfer of heat, as in a gas, the hotter particles passing

energy to their cooler neighbors.

Heat transport coefficient of the species j can be introduced without loss of

generality

χj = − qj

nj|∇Tj| ,

where qj is the absolute value of the heat flux qj , i. e. the amount of energy flowing

through a magnetic surface in the unit time per unit surface. The relation between

the confinement time and the heat transport coefficient is simply

τEj ∝ njTjV

qjS
∝ nj∇TjaV

njχj∇TjS
∝ a2

χj

,

where a is the minor radius of the tokamak. Therefore, χj provides a measure of

the effective perpendicular heat transport, regardless of its physical meaning and of

the mechanism governing transport.

Although calculation of the collisional diffusion is complicated, the simple ac-

count given above implies a straightforward process of particle and energy loss.

However, it is not like that. From the earliest days of fusion research, it was recog-

nized that experimental plasmas were not governed by the rules of collisional trans-

port. The loss rates are higher than calculated, and a large part of the experimental

effort on tokamak has been devoted to trying to understand this behaviour.

In tokamak experiments is found that the transport coefficients are much larger

than predicted by collisional transport theory. Having unexpected properties the

transport of heat and particles in tokamaks is called ”anomalous”. With high tem-

peratures and strong magnetic fields, it was expected that the losses of particles and

heat energy would be low enough, so that fusion would be demonstrated as soon

as the equilibrium problem was solved. The ion thermal transport is typically a

few times the collisional value, the precise ratio depending on the conditions. For

electrons, the energy confinement time decreases dramatically, while ion transport is

less affected. The electron thermal transport is much more anomalous but, because

the electron collisional transport is very small, the outcome is that experimentally

the two types of thermal transport are comparable in magnitude. Scaling laws have

been extracted from the experimental databases of different tokamaks [2] but their

understanding in terms of physics is still being investigated.
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The obvious explanation of this anomalous behaviour, in general terms, is that

the plasma is subject to instability. It turns out that plasmas are not quiescent at

all, but are always quivering with ”fluctuations” in all their parameters: density,

temperature and even the magnetic field. All these parameters have disturbances

about their mean values, and the disturbances are of the incoherent type of motion

called ”turbulence” if it is associated with waves or fluid-like flows. Additionally,

the electric field is never exactly zero, as might have been expected in an electrically

neutral plasma (average charge density zero), but participates as well in the fluctu-

ations. This is important since it gives rise to a fluid-like motion called the ”ExB

drift”. This is a drift of the plasma across magnetic field lines. Fluctuations in the

magnetic field could also give rise to transport since particles are not constrained

against motion along magnetic field lines (when the magnetic field fluctuates, all

three components are involved). Turbulent transport could be ”electrostatic” if due

to ExB turbulence or ”electromagnetic” if due to magnetic fluctuations. At this

moment both possibilities are open.

Since transport in confined plasmas is not yet fully understood, and it strongly

affects how well fusion devices perform, it is among the most important outstanding

problems in plasma physics. It is important to note as well that this is a physics

problem, in contrast to all other likely sources of energy, for which the problems are

of a technical or engineering nature.

1.2.4 Microinstabilities

A plasma instability involves plasma waves that grow exponentially. For proper

description of a particular instability, one should be able to define the mode of the

growing wave, the nature of the growth source of the free energy.

Because of all these points of view, the nomenclature for plasma instabilities is

even more cumbersome than for the wave modes themselves. A solid understanding

of plasma theories is needed in order to study the formation of different instabil-

ities. One important way to classify different instabilities is to divide them into

macroinstabilities and microinstabilities.

A macroinstability is driven by the structure of the medium in configuration

space. A familiar example of a macroinstability is for a convectively unstable sys-

tem: when the temperature gradient is super-adiabatic, internal gravity waves grow

to large amplitude and cause a large-scale convection of the fluid, which tends to

reduce the temperature gradient. Other familiar examples are the Rayleigh-Jeans
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instability, in which a denser fluid is supported by a less dense fluid, and the Kelvin-

Helmholtz instability, in which one fluid flows over another fluid, e.g., wind over

water, causing surface waves to grow. In plasmas the macroinstabilities occur in the

low-frequency regime and usually involve the magnetic field. Examples include flute

(or interchange) and ballooning instabilities. The latter ones are used, for example,

in some substorm models.

Microinstabilities, on the other hand, are usually driven by temperature and

density gradients. A consequence of a microinstability is a greatly enhanced level of

fluctuations in the plasma associated with the unstable mode. These fluctuations

are called microturbulences. Microturbulences can lead to an enhanced radiation

from the plasma and to enhanced scattering of particles resulting in ’anomalous’

transport coefficients, e.g., anomalous electric and thermal conductivities.

Before stability analysis is performed on any plasma, sources of free energy must

be identified. If there are sources of free energy, potential for instabilities exists.

In the tokamak, there are density and temperature gradients perpendicular to the

magnetic field. These gradients are sources of free energy which may drive drift type

modes. Microinstabilities may be driven by these sources of free energy.

Drift wave instabilities occur in low-frequency collective oscillations in which

the electric field, with a substantial perpendicular component and a small parallel

component arises, from the large scale charged particle interactions. The oscillation

frequencies are low compared to the ion gyrofrequency ωci (the gyrofrequency has

been introduced before in 1.2.2). A drift wave is a mode with frequency of the

order of the diamagnetic frequency ω ≈ ω? = k⊥ρscs/Ln, with k⊥ the perpendicular

wave vector, ρs electron Larmour radius, cs electron thermal speed and Ln the

density gradient length. Because of their different masses, electrons and ions respond

differently to the electromagnetic field perturbation and therefore play different roles

in the evaluation of microinstabilities. Typically, one species will provide the drive,

while the other provide the damping. Dissipation often plays a crucial role in causing

instabilities; this can be either collisional as in a low temperature plasma, or due to

a Landau resonance when the collisional frequency is low. The resulting instabilities

are called dissipative. Some of the microinstabilities are reactive and do not require

dissipation. The ion temperature gradient mode (ITG), is an example of this type.

There is agreement that the main candidate to explain ion transport is the Ion

Temperature Gradient (ITG) driven turbulence, possibly coupled to the Trapped

Electron Mode (TEM). The stabilizing contribution of the sheared plasma rotation

ωE×B [5] is also commonly accepted. A physical picture of the toroidal ITG and
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TEM instabilities mechanism is given in section 2.4. However, different models

based on the same basic modes yield different predictions, depending on the closure

of the set of equations, on the stabilizing and destabilizing terms included and on

the approximations made. For electron transport until a few years ago most of the

modelling attempts relied on empirical and semi-empirical models.

1.3 Ray tracing and eigenmodes

In order to study the wave phenomena in the short wavelength limit, different asymp-

totic approaches have been used. One of the most famous technique is the WKB

method. The short wavelength domain is of interest for tokamak plasma. In this

limit, the waves behave as particles so that one can use the geometrical optics to

study them. In this thesis, a modification of the WKB approach is introduced, the

beam tracing method (BT).

Actually, in spite of all the essential differences between the various asymptotic

approaches that exist, the leading order of any of them results in the description of

the ray tracing technique. So that discussing the BT method, or any other short

wavelength asymptotic method, is appropriate to discuss first the ray tracing.

A simple problem is proposed to be solved: one has to find the eigenfunctions of

the elliptic membrane.

1st pass 30 passes 200 passes 1000 passes

➪ ➪ ➪

Figure 1.6: The behaviour of one ray launched in a resonator.

Independent on the type of the excitation, the field amplitude distribution inside

the resonator will characterize the eigenmode structure. It can assumed that the

wavelength is so small that the one can use the ray representation for the propagating

waves. For this purpose one experiment is thought: a wave (a ray) is launched in

the resonator and its behaviour is traced, figure (1.6). A concentration of rays in

some region inside the resonator indicates that a localized eigenmode can be found

in this region. In turn, it is intuitively clear that the rays are localized around a

closed ray trajectory. This will be a limit cycle for any ray family representing the
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eigenmode and it will be called the basic contour. Then, a localized eigenfunction

can be found in the vicinity of a closed ray.

In [6] has been shown that subsequences of eigenfunction do exist in the neighbor-

hood of a closed ray trajectory. The eigenfunctions are concentrated in the vicinity

of a closed ray, and exponentially decay with the increasing distance from the ray

(see the end of this section).

Not any arbitrary ray trajectory can generate an eigenfunction. Only stable

closed trajectories give rise to an eigenmode. One has to distinguish between the

stability of an eigenmode and the stability of a closed trajectory. The stability of an

eigenmode describes how the mode is decreasing or increasing in time. When the

stability of a closed trajectory is discussed, this means that: after a long enough pass

in the medium, the rays that are initially closed to this trajectory are still located

in the small neighborhood. This is illustrated by figure (1.7) right-hand side. No

regular structure can be expected if the mode is unstable, figure (1.7) left-hand side.

➪

4 reflections

Unstable trajectory Stable trajectory

➪

Figure 1.7: Unstable trajectory and stable stable trajectory of the bouncy type.

After a closed ray trajectory is found, the conventional quantization condition

for the eikonal should be applied. This provides a set of wave numbers and eigen-

frequencies associated with the trajectory, but they do not say anything abound the

stability of the found trajectory and, therefore, about the realization of the eigen-

modes. In frames of the ray approach, one should further investigate the stability

of the ray traces around the basic contour.

In fusion plasmas, even when the condition λ ¿ L is fulfilled with large mar-

gin, the ray tracing could fail very often. The reason for this failure is that this

inequality provides only the necessary, but not sufficient, condition for applicability

of ray tracing. A breakdown of the applicability condition means that diffraction

phenomena which are not taken into account by the ray tracing, become significant.

The sufficient condition of applicability is known as Fresnel condition and in ad-

dition to λ ¿ L, it imposes a limitation on width of the beam Λ. In inhomogeneous

media, diffraction effects are significant for Λ ≈
√

λL.
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Figure 1.8: The width of the mode.

In order to evaluate the eigenmodes width consider a closed ray trajectory as

shown in figure (1.8) (left). Here the ray starting from the point M arrives at the

same point. An adjacent ray starting in the point M, after one loop, arrives into the

point M ′. As known from the Huygens-Fresnel principle, the diffraction becomes

important if the phase difference between the two points reaches π, or in terms of

the trajectory length, λ/2. The length difference between the two trajectories can be

evaluated as shown in figure (1.8) (right). We write
√

L2 + Λ2 − L ≈ Λ2/2L = λ/2

and find that the mode widths amounts to Λ ≈
√

λL ¿ L. The mode widths de-

pends on the real frequency ω and on the wavelength (the smaller is the wavelength

the narrower is the wave beam). So that:

• the phase information is essential,

• eigenmodes can be represented as narrow wave beams.

Both this requirements are contained in the BT technique. This method treats the

entire wave packets of the finite width and retains a description of the wave phe-

nomena. The full description of the BT method, including the full set of equations

used by this method, is given in Chapter 4.

1.4 Motivation and Outline

Understanding the anomalous transport in tokamaks is nowadays a primary chal-

lenge in fusion plasma research. In this thesis, in order to study the microturbu-

lences, which are considered to be the main cause of anomalous transport, a new

numerical code is developed. In the same time comparison with the existing ones is

done. The thesis is structured as follows:

Chapter 2 introduces the drift-waves. A simple description of the physics of

microinstabilities, focusing on the ion temperature gradient mode, trapped elec-

tron mode and electron temperature gradient mode, is also provided. This chapter

intends to provide the physical insight needed to understand the microturbulence.
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Chapter 3 presents the results of the simulation done for the standard L-mode

discharges. The gyrokinetic GS2 code is used in the simulations. The trapped

electron mode is found to be dominant for the considered set of parameters. The

results of the simulations are compared with the experiment. Comparison with two

other well known models, Weiland and GLF23 models, is also done. Good agreement

between GS2 and GLF23 models is found.

In Chapter 4, the BT method is applied for solving the stability problem in

multi-dimensionally inhomogeneous plasmas. In this method, eigenfunctions are

constructed as wave patterns located in the vicinity of closed ray trajectories.

The approach is applied to the analysis of ion temperature gradient instability

in a tokamak. The eigenmode can be thought of as a wave propagating in the

toroidal direction. The eigenmode axis is purely toroidal while the mode amplitude

exponentially decays both in radial and poloidal directions. Finally, wave interaction

with a plasma defines whether such a mode absorbs or releases energy.

The paraxial WKB method can describe drift-ballooning instabilities in the pres-

ence of sheared plasma rotation when the ballooning representation usually used for

this problem fails. Unlike the ballooning representations, the pWKB technique al-

lows for a radial dependence of the wave field kρ 6= 0 , it can be easily extended

to arbitrary geometry and three-dimensional systems, such as stellarators. On the

other hand, the two approaches are closely related because both use the same small

parameter (λ/L)−1/2. In some aspects, the pWKB is more restrictive than the

ballooning representation, therefore, the two techniques should be viewed as com-

plimentary.

In Chapter 5 the solution of the equations that describe the ITG turbulence is

presented. By using the pWKB method the set of equations that describe the ITG

mode is reduced to a set of algebraic equations easy to be solved by numerically

treatment. In the first step, the dependence of the growth rate of the ITG mode is

compared with Guo and Weiland model. Results from the full set of BT equations

are also shown. The BT model can be easily extended to arbitrary geometry so that

dependence on the Shafranov shift and on the elongation can be studied. Depen-

dence on the magnetic shear is also studied.

Finally, the results are summarized and their impact on transport research is dis-

cussed.
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Chapter 2

Drift waves in plasma

2.1 Introduction

Work for understanding transport in magnetic confined systems has been going on

for about 50 years. Despite this the transport problem is still a major scientific

issue. Its importance for the costs and size of the reactor its obvious and critical,

but the scientific difficulties associated with it are huge.

Low frequency modes with frequency, ω, much smaller than the ion cyclotron

frequency ωci are considered to be the most dangerous ones for the establishment of

quasi-stationary high beta-plasma states, necessary for the realization of the ther-

monuclear fusion. The main common feature of these modes is that they have

k|| ¿ k⊥. This means that these modes have a very slow variation along the mag-

netic field and may be denoted as quasi-flute modes. In this section we are going to

concentrate our attention exactly on these modes, trying to emphasize the physics

behind different kind of waves which can appear in plasma.

In studying plasma different models were used in order to get a good description

of the phenomena noticed in it. The transport phenomena observed in real experi-

ments can be explained using the fluid model, in which the identity of the individual

particle is neglected and only the motion of fluid element is taken into account. In

the case of plasma, of course, the fluid contains electrical charge. In an ordinary

fluid, frequent collisions between particles keep the particle in a fluid element mov-

ing together. It is surprising that such a model works for plasmas, which generally

have infrequent collisions. The fluid description of plasma is so far the simplest

description of the plasma and is indeed fortunate that this approximation is suffi-

ciently accurate to describe the majority of observed phenomena. A more refined

treatment - the kinetic theory of plasma - requires more mathematical treatment.
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2.2 Equilibrium

Before introducing the different descriptions of plasma is useful to present the toka-

mak equilibrium and the employed coordinate system.

The basic condition of equilibria in a tokamak is that the force on the plasma be

zero at all points. This requires that the magnetic force balances the force due to

the plasma pressure

~j × ~B = ∇p (2.1)

∇× ~B = µ0
~j (2.2)

∇ · ~B = 0 (2.3)

It is clear from equation (2.1) that ~B · ∇p = 0, i.e. there is no pressure gradient

along the magnetic field lines and the magnetic surfaces are surfaces of constant

pressure. Furthermore, ~j · ∇p = 0 and consequently the current lines also lie in the

magnetic surface.

To describe the toroidal magnetic configuration is convenient to use coordinates

defined by the field itself. The advantages gained by using a coordinate system which

is defined by, and is natural for, the description of the magnetic field outweigh those

gained by using a standard orthonormal system. The coordinates are taken to be

toroidal in form, because of the necessarily toroidal topology of the magnetic field

surface.

The general coordinates (ψ, ϑ, ζ) are introduced, as shown in figure (2.1). Sur-

faces of constant ψ are taken to consist topologically of nested axisymmetric tori,

which necessarily posses one axis designed usually by ψ = 0. Surfaces of constant

ϑ define a general poloidal angle and finally ζ defines the ”toroidal” direction. The

surface labeled with ψ is taken to be increasing outward and thus the system (ψ, ϑ,

ζ) defines a right hand coordinate system.
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Figure 2.1: Toroidal geometry

For a given surface, the minor radius is r and the major radius is R0. While R0

is constant, r is a surface label and therefore useful as a coordinate. The other two

coordinates being again ϑ and ζ, which are cyclic on the interval [0, 2π]. The surface

which has r = 0 is called the magnetic axis, and the reference surface at which the

turbulence is to be evaluated is r = a, with ”a” constant.

The equilibrium quantities are assumed to be functions of r only. The exception

is the magnetic field, whose flux is a function of r only but whose strength varies

inversely with R. The most general divergence axially symmetric free magnetic field

that confines the plasma has the form

~B = I∇ζ +∇ψ ×∇ζ,

with I = R0B0, B0 represents the magnetic field at the mid-plane, R = R0.

The magnetic flux ψ is a function of the minor radius a, so that one can write

∇ψ = (dψ/da)∇a and the magnetic field is then written

~B = I(∇ζ + Θ∇a×∇ζ), B =
I

R

√
1 + gaaΘ2

where Θ(a) = a/(2R0qs) [λ(a) + (aλ)′]. When ∆(a) = 0, δ(a) = 0 and λ(a) = 1.0

we obtain a circular geometry of the magnetic surfaces. The parameter qs(a) is an
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arbitrary safety factor defined as

q(a) =
∆ζ

∆ϑ
=

Bζ

Bϑ

r

R
, (2.4)

where ∆ϑ and ∆ζ are changes in ϑ and ζ on a translation along a field line. Bζ and

Bϑ are the toroidal and poloidal components of the magnetic field. They satisfy the

relation Bϑ ¿ Bζ .

The wave vector is given by

~k = ka∇a + kϑ∇ϑ + kζ∇ζ

where ∇a, ∇ϑ, ∇ζ are the reciprocal basis vectors, given in the appendix B, and ka,

kϑ, kζ are the covariant components of the wave vector. In literature, the covariant

component of the poloidal wave number is found as kϑ = m and of the toroidal wave

number kζ = n. Physical significance has kθ = m/a. The components of ~k parallel

and perpendicular to the magnetic field are approximated by

k|| =
~k · ~B

B
=

kζ

R
− kϑΘ

ad
≈ [m− nqs] /Rqs,

(2.5)

k2 = k2
ag

aa + k2
ϑg

ϑϑ + 2kakϑg
aϑ + k2

ζg
ζζ ,

where gaa, gaϑ, gϑϑ, gζζ and d in the general geometry are given in appendix B.

Another quantity of interest in the tokamak plasma is the magnetic shear, intro-

duced as

ŝ =
dlnq

dlnr
=

r

q

dq

dr
. (2.6)

For a tokamak, ŝ is typically small near the axis and is otherwise of order 1.

2.3 Fluid description of plasma

The most convenient and simple way to study tokamak plasma is the fluid approach.

This method allows in particular to define measurable quantities for the heat trans-

port analysis and diagnose the energy confinement capability of a plasma. The fluid

equations are given by the moments of the Boltzmann equation

∂f

∂t
+ v′ · ∇f +

~F

m
· ∂f

∂v
= (

∂f

∂t
)c, (2.7)
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where f(~r,v′, t) is the distribution function, ~F is the force acting on particles, the

symbol v′ being now used to distinguish the particle velocity from fluid velocity

~v, (∂f/∂t)c is the time change of f due to collisions. In a sufficiently hot plasma,

Coulomb collisions can be neglected. If the force is entirely electromagnetic, equation

(2.7) takes the special form

∂f

∂t
+ v′ · ∇f +

q

m
( ~E + ~v × ~B) · ∂f

∂v
= (

∂f

∂t
)c (2.8)

and in this case is called the Vlasov equation. ~E and ~B are self-consistent fields,

defined by the plasma particles. The equation (2.7) is multiplied by chosen functions

φ(v′) and integrated over the velocity space to obtain equations for

• Density: n =
∫

f(~r,v′, t)dv′

• Velocity: ~v = 1
n

∫
f(~r,v′, t)v′dv′

• The pressure tensor: P = m
∫

f(~r,v′, t)(v′ − v)(v′ − v)dv′

2.3.1 Continuity and Momentum Equations

The electron and ion fluid equations in a collisional plasma, i.e. the continuity

equation, motion and heat balance are called the Braginskii equations, since they

were first obtained in the celebrated article by S. Braginskii.

The continuity equation is obtained by integrating equation (2.7). One gets

∂nj

∂t
+∇ · (nj~vj) = 0, j = i, e. (2.9)

The equation expresses the density change at a stationary point as a divergence of

the particle flux ~Γj = nj~vj. There is no collision term considered, since Coulomb

collisions do not change the number of particles.

The momentum balance equation is obtained by multiplying equation (2.7) by

m~v and integrating over d~v. In this way we obtain the equation of motion which

describes the flow of momentum. Taking ~F to be the Lorentz force, for each species,

we have an equation of motion

mjnj
d~vj

dt
= mjnj

[
∂~vj

∂t
+ (~vj · ∇)~vj

]
= njqj( ~E +~vj× ~B)−∇pj−∇·πj +Rj. (2.10)

Here, the isotropic pressure pj = njTj and the anisotropic stress tensor πj were

introduced, nj and Tj are the density and the temperature of the ions or electrons,
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mj and qi represent the electron or ion mass and charge, Rj is the rate of momentum

transfer due to collisions.

Assuming an electrostatic approximation, ~E = −∇φ, we obtain taking the vec-

torial product of equation (2.10) with ~e||/mjnj

d

dt
~e|| × ~vj =

qj

mj

{
~e|| × ~E + B

[
~vj − ~e||(~e|| · ~vj)

]}− 1

mjnj

~e|| × (∇pj +∇ · πj) (2.11)

with d/dt = ∂/∂t + ~vj · ∇, and ~e|| = ~B/B.

Since ~vj − ~e||(~e|| · ~vj) is ~v⊥j we find

~v⊥j =
1

B
( ~E × ~e||) +

1

ωcj

d

dt
(~e|| × ~vj) +

1

qjnjB
~e|| × (∇pj +∇ · πj) (2.12)

The parallel velocity is obtained by considering the scalar product of ~e|| with the

equation (2.10)

∂v||j
∂t

+~e|| ·(~vj ·∇)~vj =
qj

mj

~e|| · ~E− 1

mjnj

~e|| ·∇pj = − qj

mj

~e|| ·∇φ− 1

mjnj

~e|| ·∇pj (2.13)

The linearized and Fourier transformed equation is

v||j = − i

ωmj

~e|| · ∇(qjφ +
pj

nj

) (2.14)

In the equation (2.13) the term ~e|| · (~vj ·∇)~vj contains only the perturbed velocity so

that the linear term is zero. Using the equations (2.14) and (2.13) the total velocity

is given by

~vj = ~v⊥j + v||j~e|| (2.15)

2.3.2 Drifts in plasma

As will appear clear further on, important features underlying the instabilities in

plasma are the various drifts that can arise in a magnetized plasma.

The perpendicular velocity in the equation (2.12) can be written as

~v⊥j = ~vEj + ~vpj + ~v?j + ~vπj (2.16)

In equation (2.16) the first term is the ~E × ~B drift. The second term is the po-

larization drift and contains the perturbed velocity. If the ~E × ~B drift is assumed
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to be the dominating part of the perturbed velocity it can be substituted into the

polarization drift. In equation (2.16) we have:

~vE =
~E × ~e||

B
, (2.17)

~vpj =
1

Bωcj

[
∂

∂t
~E + (~vj · ∇) ~E

]
(2.18)

~v?j = −∇pj × ~e||
qjnjB

, (2.19)

~vπj =
~e|| ×∇ · πj

qjnjB
(2.20)

The assumption ~vpj ¿ ~vE is consistent with the assumption ω ¿ ωcj. For this

approximation to be generally valid we must have ω ¿ ωci. The ~E × ~B drift is the

same for ions and electrons. It is important to note that ~vE is independent of qj and

mj. The velocity ~v?j is the diamagnetic drift velocity. It is a pure fluid velocity and

it is not a particle drift.

The velocity ~vpj, is the polarization drift while the velocity ~vπj is due to the stress

tensor πj. The stress tensor contains a viscosity part πv and a finite Larmor radius

part πl. The finite Larmor radius part ~vπl of ~vπ fulfils ∇·(n~vπl) ∼ k2
⊥ρ2n0|∇ln n0|~v⊥.

The contribution may be neglected if k2
⊥ρ2 ¿ 1.

2.3.3 Interpretation of the drifts

The drifts presented above are fluid drifts. They may differ from the particle or

guiding center drifts and these differences are sometimes sources of confusion. The

fluid velocity of a constituent species of plasma at a given point is simply the mean

velocity of the particle of that species in a small volume around the point. However,

the gyro-averaged velocity of the particle is the velocity of their guiding center.

Generally the fluid velocity and velocity of the guiding center at a given point is

not the same. Since the fluid element is composed of many individual particles, it is

expected to have drifts perpendicular to ~B if the individual particles have such drifts.

Since the ∇pj term appears only in the fluid equation, there is a drift associated

with it which the fluid elements have but the particles do not have. Therefore, we

will have drifts associated with fluid and drifts associated with particles.
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Figure 2.2: Origin of
the diamagnetic drift.
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The diamagnetic drift is due to the pressure gradient. The physical reason for this

drift can be seen in figure (2.2). Here we consider electrons gyrating in a magnetic

field. Two special cases are discussed: i) In figure (2.2a), there is a density gradient,

the electron temperature Te is kept constant. Through any fix volume element there

are more electrons moving downward than upward, since the downward moving

electrons are coming from a region with higher density. There is, therefore, a fluid

drift perpendicular to density gradient and ~B, even though the guiding centers are

stationary. An upward diamagnetic current appears; ii) In the second case, figure

(2.2b), the density is kept constant, so that the pressure gradient is due only to

the temperature gradient. The electrons moving downwards are much faster and

they have much larger gyroradius, since they are coming from regions with higher

temperature. Once again, there is an upward diamagnetic current. The diamagnetic

drift reverses its sign with the particle charge qj, (see Fig. 2.3) and produces a

diamagnetic current, which in turn balances the plasma pressure through the ~j× ~B

term.

The remaining drifts (except ~vπ) are the same for the fluid and particle descrip-

tion. Because the ~vE term is the same for electrons and ions it does not give rise to

a current.

The polarization drift, given by

~vpj =
~e||
ωci

× d~vE

dt
,

24



reduces to equation (2.18) when the magnetic field is stationary but the electric

field varies in time. This expression can be understood as a polarization drift by

considering what happens if an electric field is suddenly imposed on a particle at

rest. The particles initially accelerates in the direction of the electric field, but

then are deflected by the magnetic force. Thereafter, particles undergo conventional

gyromotion combined with the ~E × ~B drift. Note that, there is no deflection if

the electric field is directed parallel to the magnetic field, so this argument only

applies to perpendicular electric fields. The initial displacement of particles in the

direction of the field is of the order of δ ∼ eE
m

(∆t)2, where ∆t ∼ ω−1
ci represents the

time between the switch-on of the field and the magnetic deflection. Since, because

ωci ∝ m−1, the displacement of ions greatly exceeds that of the electrons, so that

the electrons polarization drift is usually neglected. Thus, when an electric field

is suddenly switched on in a plasma, there is an initial polarization of the plasma

medium caused, predominately, by a displacement of the ions in the direction of the

field. If the electric field, in fact, varies continuously in time, then there is a slow

drift due to the constantly changing polarization of the plasma medium.

The polarization drift is regarded as a correction to ~E× ~B drift when the ~E-field

is time dependent. There is also, a strong similarity between the polarization drift

caused by the time variation of ~E and the finite Larmor radius drift, which is due to

the space variation of ~E, since a gyrating particle cannot decide if the variation in
~E, which is experienced along its orbit originates from the time or space variation

of ~E. In [10] both the polarization drift and stress tensor drift are evaluated.

2.3.4 The Energy Equation

The highest order moment equation that is used is the energy equation. To treat

the flow of energy, the next momentum in the Vlasov equation has to be considered.

By multiplying the Vlasov equation by 1
2
m~v~v, the heat flow equation results in the

form
3

2

(
∂

∂t
+ ~vj · ∇

)
pj +

5

2
pj∇ · ~vj = −∇ · ~qj − πj∇~vj + Qj (2.21)

where ~qj is the heat flux and Qj is the heat transfer from one species to another

by means of collisions which here is neglected. Another usual form of the energy

equation is obtained after substracting the continuity equation (2.9). It is written

as
3

2
nj

(
∂

∂t
+ ~vj · ∇

)
Tj + pj∇ · ~vj = −∇ · ~qj (2.22)
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The heat flux ~qj for the collision dominating case (λ À lf ), with λ the wavelength

and lf the mean free path, according to Braginskii [7]

~qj = 0.71njTj
~U|| − κ||∇||Tj − κ⊥∇⊥Tj + ~q?j +

3

2
νj

njTj

ωcj

(~e|| × ~U) (2.23)

where ~U is the relative velocity between species. κ||j and κ⊥j represents the thermal

conductivity for in parallel and perpendicular direction for ions and electrons and

~q?j =
5

2

njTj

mjωcj

(~e|| ×∇Tj) (2.24)

One has

∇ · ~q?j =
5

2
nj(~v?j − ~vDj) · ∇Tj (2.25)

where

~vDj =
Tj

mjωcj

~B ×
(∇B

B
+ κ

)
(2.26)

is the drift due to ∇|B| and magnetic curvature κ = ~B ·∇ ~B. We have also ~k ·~vDj =

ωDj is the ∇|B| and curvature drift frequency.

The equations (2.21) and (2.22) are fluid equations and the velocities contain

the diamagnetic drifts.

2.4 Drift-waves

The micro-instability considered in this thesis is excited through the onset of drift

type waves. These waves, which are driven by temperature and density inhomo-

geneities have their name from their propagation velocity, the electron diamagnetic

drift velocity.

To understand how waves can create turbulence, one has to think of the surface

of a pond. If a stone is thrown in, a well defined circular wave starts to propagate

from the point where the stone hit the water. If, instead, a bunch of stones are

thrown in, the water surface becomes jumbled. Even though each stone still create

a well defined wave, the merging of all waves from all stones renders the surface

chaotic. In a similar way, a magnitude of drift waves causes the motion of the

turbulent motion in plasma. Hence, if one can improve the understanding of the

excitation and driving mechanisms of these waves one might be able to suppress

them and the turbulence they create.

J.B. Taylor [8] showed in 1977 that the drift waves could be damped due to

tilted magnetic filed lines in a tokamak plasma (magnetic shear damping). This
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damping mechanism may be decreased to the extent that it is lost by coupling of

drift modes situated on different magnetic surfaces.

For a plasma, or any other gas, to be completely stable it has to be in thermo-

dynamical equilibrium. This requires a Maxwell distributed plasma particles and

a spatial homogeneous plasma density. If the mobility of the particles is restricted

and the plasma is confined, these conditions are invariably broken. The plasma then

tries to regain equilibrium by exciting turbulent processes.

Drift waves are low frequency waves, (ω ¿ ωci), and have an electric field com-

ponent along the magnetic field. The parallel electric field allows electrons to flow

freely along the magnetic field lines and cancel any space charge in the plasma. In

addition, low frequency modes have often quite a slow variation along the magnetic

field lines and usually we assume that k⊥ À k||, where k⊥ and k|| are the wave vector

perpendicular and parallel to the magnetic field, respectively.

Since, the pressure inhomogeneities which drive drift waves are inherent in con-

fined plasma, this type of instability is often referred to as the universal instability.

In the very beginning we assume that the temperatures are constant and thus the

drift waves will be driven exclusively by density inhomogeneities.

2.4.1 The Universal Instability

From electromagnetic field theory we know that charged particles are trapped around

a magnetic field line due to a Lorentz force, but can move freely along the magnetic

field line. Moreover, any gas which contains particles which move without constraint

tends to equilibrate the temperature and the so called thermalization takes place.

The long wavelength characteristic along the magnetic field lines of drift waves allow

electrons to flow freely parallel to the magnetic field. Thermalized electrons obey

the Boltzmann relation

n = nee
(eφ/Te), (2.27)

where ne is the ambient electron density, e is the electron charge, φ is the perturbed

electrostatic potential and Te is the electron temperature.

If the perturbation in the potential is small, we can expand equation (2.27) in Taylor

series around zero and the perturbed electron density ñe becomes

ñe

ne

=
eφ

Te

, (2.28)

so ñe and φ are in phase. The density fluctuation in Fig.(2.4) also depicts a potential

variation. The equation (2.28) describes the so called ’adiabatic’ behaviour.
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At point 1 in figure (2.4) the density is larger than in the equilibrium, ñe is

positive, and therefore φ is positive. Similarly, at point 2, ñe and φ are negative.

The difference in potential means there is an electric field ~E1 between points 1 and 2.

Together with the background magnetic field ~B0, ~E1 creates a plasma flow with the
~E × ~B - velocity ~vE. As can be seen, the flow pushes the plasma in the x direction

between points 1 and 2 and then pulls the plasma in x direction between points

2 and 3, so that the perturbation starts to oscillate. So, if one stands in point 1

can observe the plasma of different densities move back and forth. This results in

the density perturbation propagating in y direction. A drift wave, therefore, has a

motion such that the plasma moves back and forth in the x direction although the

wave travels in y direction [9].
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Figure 2.4: Density perturbation in a plasma depicted by a fluctuation of the isobar.
The perturbation propagates in the ~k direction.

The instability of the drift waves comes about when one realize that the velocity,

~vE for ions is not quite the ~E × ~B velocity. Corrections have to be calculated for

drifts arising from temporal and/or spatial variations in the electric fields. As a

result of these drifts, the electrostatic potential φ always lags behind the perturbed

density ñe. Plasma already shifted outwards then has a velocity ~vE also pointing

outwards and vice-versa. Hence the amplitude of the perturbation increases and

waves become unstable.

The electric field ~E1, in the above model (Fig.(2.4)), would be short-circuited

by the unobstructed electron flow along the magnetic field lines. In reality, there
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are mechanisms which impede the electron motion such as electron-ion collisions,

magnetic mirror trapping of the electrons and Landau damping. When electron can

no longer provide quasineutrality, a phase shift between the perturbed density and

electrostatic potential emerges and one can write into equation (2.28)

ñe

ne

=
eφ

Te

(1− iδ), (2.29)

which describes the ’nonadiabatic’ behaviour. The resulting resistivity, given by the

phase shift δ, in conjunction with the long wavelength along the magnetic field lines

creates a potential drop and makes a finite value of ~E1 possible.

One can conclude that drift waves are always present in plasma and these waves are

intrinsically unstable.

2.4.2 Reactive modes

In the present section we study the drift-type modes which, now, are driven by tem-

perature inhomogeneities in addition to density inhomogeneities. This class of modes

are called reactive drift modes and do not necessarily require dissipative effects to

be unstable. As it has been already said, to destabilize drift waves driven only by

density inhomogeneities demands some kind of mechanism which inhibits electrons

from flowing freely along the magnetic field lines and neutralize space charge. The

mechanism that renders the reactive drift modes unstable is the competition between

the compression and expansion, driven by density and temperature inhomogeneities

which enter into the energy equation. The energy equation plays an important part

when it comes to closing the system of fluid equations introduced in section 2.3.

Since we are dealing with both, temperature and density perturbations, the energy

equation will be needed to close the system. In the energy equation, different fluid

models use different methods to truncate the expression for the heat flow and this is

what distinguishes one fluid model from another. The Weiland model [10] inserts

the expression of the diamagnetic heat flow into the energy equation to close the set

of fluid equations.

From the perspective of plasma confinement, reactive drift modes are commonly

considered the second most dangerous after MHD modes and are likely to be a

significant source of anomalous transport.

The driving mechanism responsible for the reactive drift type waves is the in-

terchange instability [9]. This instability is closely related to the Rayleigh-Taylor

instability response for the mixing of fluids when a light fluid supports a denser fluid.
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A classical example of this is the convection taking place in a saucepan. The heating

of the fluid from below, causes the fluid to expand, and as a result, it becomes less

dense than the cooler fluid on top. When the density difference reaches a critical

value, the lighter fluid rises and changes place with the cooler fluid, which heats up

and the convection motion of the fluid is excited. The driving force in this case is

the gravity.

In plasma, the magnetic field plays the role of the lighter fluid supporting the

heavier plasma fluid. The gravitational force is replaced by the centrifugal force

experienced by the plasma particles following the curved magnetic field lines of the

toroidal plasma. Heating of plasma is redundant. Since the magnetic field lines lie

closer together at the inside of the toroidal plasma, compression, which heats the

plasma automatically, occurs when particles move along the field lines.

The interchange stability is essentially a magnetohydrodynamic instability but

it can be recovered for drift-type waves in two cases. First, if some of the electrons

are trapped, e.g. due to the curvature of the magnetic field, they are not able to

cancel space charge which implies that curvature drifts lead to charge separation

[11]. Secondly, the curvature of the magnetic field in combination with tempera-

ture gradients can give an interchange-type mode which does not correspond to the

charge separation but rather to the compressibility of the plasma. One more mode

will be also briefly discussed, the electron temperature gradient. We will start by

considering the second case when an ion temperature gradient is present in a toroidal

plasma [12].

Ion Temperature Gradient Mode

There is now substantial experimental evidence that anomalous energy and particle

losses observed in large scale tokamak discharges can occur through the ion conduc-

tion channel [13]. In this case, the dominating instabilities causing the transport in

the bulk part of the plasma are considered to be electrostatic, low-frequency drift

wave type modes which are driven by the density and temperature gradients, and in-

homogeneities in the magnetic field. A particular class of drift instabilities which has

been recently proposed as the most probable candidate to explain the anomalous

ion thermal transport in tokamaks is the ion temperature gradient (ITG) driven

drift mode, so called ηi=Lni/LTi mode, where Lni and LT i are the characteristic

length scales of the density and the temperature inhomogeneity respectively. Two

important features of the ηi mode make it interesting for implication to experimen-

tal observations. First, the mode has a threshold in ηi in order to be unstable,
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ηi > ηic ≥ 1.5 , where ηic denotes the critical value ηi necessary for instability.

Therefore, the mode is expected to be important in devices with broad density pro-

files (ηi > 1). Second, being a reactive drift mode, its dynamics is independent

of collisions. This characteristic is also in quantitative agreement with observed

anomalies in the ion thermal transport.

The ITG instability was first identified in the slab geometry where it occurs as

a modified ion-acoustic wave [14]. Later it was found that another branch of this

mode can be destabilized by interchange effects even in the k|| → 0 limit, and this

branch is in fact the one with the largest growth rate. In the later case the toroidal

effects dominate in the dynamics of the mode. The growth rate of the toroidal ITG

driven mode is typically two or three times larger than the growth rate of the slab

ITG modes [15].

Typically, the fastest growing ITG driven modes exhibit a perpendicular scale of

the order of the ion Larmor radius, satisfying k2
⊥ρ2

s ∼ 1. This means that the ITG

spatial scale is small compared to the tokamak minor radius, but much larger than

the Debye length. Frequencies are in the range of the diamagnetic drift frequency

ω?, therefore much lower than the plasma frequency.

Equilibrium Ti

∇Ti

. B Ti

Perturbed T , low field sidei

∇B

Figure 2.5: Ti perturbation in the low field side of the tokamak: ∇B || ∇Ti.

The toroidal version of this mode is basically due to the combination of the

curvature and ∇B ion drifts on the one hand, and the ~E × ~B drift on the other.

A simplified picture of the instability in toroidal geometry can be given assuming a

local approximation, where each Fourier component of the perturbation is considered

independent, thus neglecting the possible coupling effect of plasma inhomogeneities

[18]. The instability grows in the unfavorable curvature region, where ∇Ti and ∇B

are parallel; this is the case in the low field side of tokamaks. A magnetic surface has

constant Ti, unless a perturbation occurs for some reason (figure 2.5). The poloidal
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ion drift, due to, both, ∇B as well as magnetic field curvature, is proportional to

Ti.

Therefore, if Ti is perturbed, this drift leads to a compression of ion density in the

poloidal direction, with queues where the poloidal velocity gradient is negative and

rarefaction in the zones with positive velocity gradient (figure 2.6). Quasi-neutrality

forces a corresponding electron density perturbation which is equal and hence also in

phase with the ion density perturbation. The electrons can assumed to be adiabatic

because of their fast dynamics, yielding an electrostatic potential proportional to

the density perturbation and with the same phase:

ñe

ne

=
eφ

Te

(2.30)

Min ∇v
(queue)

D

Max ∇vD

ne
v  ∝ T B x ∇BiD

φ ∝ n  ≈ n  > 0ei
∼ ∼

Figure 2.6: ni compression due to the magnetic curvature and ∇B.

The density perturbation is, therefore, associated with a poloidal variation of φ,

which gives rise to a radial electrostatic drift (figure 2.7). The perpendicular ion

fluid motion carries plasma from the side with lower B to the cold spot and from

the higher B region to the warm spot. If the background ∇Ti is parallel to ∇B, cold

plasma is carried to the cold region, thus amplifying the perturbation and driving

the instability, as shown in figure (2.7). A net amount of heat is transported as

to flatten the background ion temperature gradient: in figure (2.7), the heat flows

towards the right hand side. We notice that, since ~vE and ñe are phase shifted by

π/2, there is no net particle transport according to this simplified model.

32



E

φ > 0

φ < 0

v  =
E

E x B
B2

Figure 2.7: Amplification of the perturbation in Ti through the electrostatic drift,
last step of the ni − Ti instability loop.

To derive a dispersion relation for the ion temperature (ITG) modes we reapply

the two fluid model used in the previous section. After replacing the expression for

the total velocity equation (2.15) in the continuity equation (2.9), the continuity

equation in case of ITG modes takes the form

∂ni

∂t
+ ·∇(ni~v||) +∇ · (ni~vE) +∇ · (ni~v?i) +∇ · [ni (~vpi + ~vπi)] = 0, (2.31)

where the drift velocities, ~vE, ~v?i, ~vπi, ~vpi have been already introduced in section

(2.1) and their expressions in the case of the ions is written by equations (B.4).

In the following derivation we neglect, for simplicity, the parallel ion motion term

∇ · (ni~v||), although it will be included later in our model. An estimate of this

quantity can be found in appendix B, equation (B.5). In the continuity equation we

introduce the density ni → ni + ñi by defining the harmonic perturbation

ñi → ñie
(i~k·~r−iωt).

The frequency is in general a complex quantity, i.e. ω = ωr + iγ. In this convention,

an instability occurs if γ > 0. The linearized first order equation has the form

∂ñi

∂t
= −ni∇ · ~̃vdrift −∇ni · ~̃vdrift − ñi∇ · ~v(0)

drift −∇ñi · ~v(0)
drift, (2.32)

• where ~vDi is no fluid drift, so it does not appear in the fluid equations and

does not contribute directly to ∇ · (ni~vi).

• ∇ñi/∇ni can be assumed to be of the order 1 at the saturation, but in the

linear case it is arbitrarily small.
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• The products ñi∇·~v(0)
drift and∇ñi·~v(0)

drift, where ~v
(0)
drift is the background velocity,

should be considered, but here we assume that the background velocity is zero.

In the following, for simplicity, we write ~vdrift instead of ~̃vdrift. Calculation

with the drift background velocity different from zero will to be considered

later in our calculations.

Equation (2.32) is written as:

−iωñi = −ni∇ · ~vE −∇ni · ~vE −∇ · [ni(~vpi + ~vπi)]−∇ · (ni~v?i). (2.33)

In appendix B, equations (B.5), all terms appearing in equation (2.33) are evaluated.

The density inhomogeneities in equation (2.31) are coupled with the temperature

inhomogeneities through the energy equation

3

2
ni

(
∂

∂t
+ ~vi · ∇

)
Ti + niTi∇ · ~vi = −∇ · ~qi. (2.34)

In equation (2.34) the ion heat flux, ~qi is given by the diamagnetic expression

~q?i =
5

2

niTi

miωci

(~e|| ×∇Ti), (2.35)

and with this truncation the fluid hierarchy is closed. The divergence of the heat

flux in equation (2.34) takes the form

∇ · ~q?i =
5

2
nj(~v?j − ~vDj) · ∇Tj (2.36)

where ~vDi is the total magnetic drift of the ions due to ∇|B| and the magnetic

curvature. Here, the first convective diamagnetic part cancels with other convective

diamagnetic terms after substitution of the continuity equation for ∇ · ~vi. We shall

here retain the curvature part of ~q?i, which will turn out to be very important.

The linear temperature perturbation is now

T̃i

Ti

=
ω

ω − 5
3
ωDi

[
2

3

ñi

ni

− ω?e

ω

(
2

3
− ηi

)
eφ

Te

]
. (2.37)

Inserting equation (2.37) into the linearized ion continuity equation (2.31) reveals

ñi

ni

=
ω (ω?e − ωDe) + (ηi − 7/3 + 5/3εn) ω?eωDi − k2ρ2

s (ω − ω?iT ) (ω − 5ωDi/3)

ω2 − 10ωωDi/3 + 5ω2
Di/3

eφ

Te

(2.38)

Here we have introduced the diamagnetic drift frequency ω?j = ~k · ~v?j, j = e, i,

magnetic frequency ωDj = ~k · ~vDj, where ~k the perpendicular wave vector, the
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ion Larmor radius at the electron temperature, ρs = cs/ωci, the ion sound speed

cs =
√

Te/mi, ω?iT = ω?i(1 + ηi), εn = 2Ln/R.

The polarization drift and the lowest order FLR effects are also included here. The

key property of equation (2.37) is that we obtain the correct isothermal limit T̃i → 0

when ωDi À ω, ω?i. This is entirely due to the curvature part of ∇·~q?i, which enters

as an additional higher order contribution to the pressure force that may be either

destabilizing or stabilizing. For ion temperature modes it is usually stabilizing.

To find the dispersion relation of ITG modes it is assumed that the quasineutrality

holds and that the electrons are Boltzmann distribution. Replacing ñi/ni in equation

(2.38) with ñe/ne, equation (2.28,) yields the dispersion relation

ω = ωr + iγ. (2.39)

The real part

ωr =
1

2
ω?e

[
1− εn

(
1 +

10

3τ

)
− k2ρ2

s

(
1 +

1 + ηi

τ
− εn − 5

3τ
εn

)]
(2.40)

and the growth rate

γ =
ω?e

√
εn/τ

1 + k2ρ2
s

√
η−ηthi, (2.41)

with the ITG threshold,

ηthi =
2

3
− τ

2
+ εn

(
τ

4
+

10

9τ

)
+

τ

4εn

− (2.42)

k2ρ2
s

2εn

[
5

3
− τ

4
+

τ

4εn

−
(

10

3
+

τ

4
− 10

9τ

)
εn +

(
5

3
+

τ

4
− 10

9τ

)
ε2

n

]
.

The presence of εn in ηthi, introduces an upper stability limit for large εn. Usually,

large values of εn can be found in the bulk of tokamak plasma and especially in the

so called high confinement regime in which flat density profiles are common. It is

noticed that the ITG growth rate equation (2.41) and the threshold equation (2.42)

depend on both the ion and electron temperature explicitly. As it will be seen later

this in not the case for trapped electron mode. εn is referred to as fully toroidal, its

influence being one of the most important toroidal effects on drift-type waves.

Electron Temperature Gradient Mode

A mode that is sometimes used to explain the anomalous electron and heat transport

in a collisionless regime is the electron temperature gradient (ETG) mode. This
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mode exists in both slab and toroidal version. It is a very short wavelength mode

which satisfied

ρe ¿ λ ¿ ρi.

The ETG mode is characterized by a large mode number which makes the frequency

large, ω > ωci. The equations that describe the microinstability driven by ETG are

very similar with those describing the ITG. In fact, the linear instabilities are exactly

the same, except the species labels for length and time scales are exchanged. The

length scale for each is the Larmor radius for the non-adiabatic species, ρe and ρi

respectively.

The ITG mode propagates in the ion drift direction and ETG mode propagates

in the electron drift direction. Due to its short wavelength, the ETG mode only gives

a small nonlinear transport. However, it can excite modes with longer wavelength

through mode coupling. The slab version of the ETG mode is analogous to that of

ITG mode.

Trapped Electron Mode

When electrons are no longer free to move along the magnetic field lines and cancel

the space charge caused by the difference between the ion and electron curvature

drifts, the interchange instability is recovered. The magnetic configuration of the

tokamak, with stronger magnetic field on the inside (plasma facing the ’hole’ of the

doughnut) than the outside, traps the electrons in the so called banana orbits (as

have been already discussed in the previous chapter).

The trapped electrons do not contribute to the current parallel to the magnetic

field, since their bounce averaged velocity cancels out in this direction and one

may subsequently neglect the parallel electron motion. Comparison of the kinetic

integrals for trapped electrons and ions without parallel motion show that they are

symmetric. One may thus use the same model equation for trapped electrons as

for the ions. The Boltzmann distribution equation (2.28), valid exclusively for free

electrons in the derivation of trapped electrons (TE) modes is replaced by

ñe

ne

= ft
ñet

net

+ (1− ft)
ñef

nef

, (2.43)

where ñef is the perturbed density of the free electron and ft = net/ne is the fraction

of trapped electrons given by ñet. Since is nothing to prevent the free electrons from

becoming thermalized, one can suppose that they are Boltzmann distributed in

accordance with equation (2.28).
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If quasineutrality is assumed, so that ñi = ñef +ñet, the dispersion relation can be

obtained equating the ion density perturbation equation (2.38) with the equivalent

expression for the trapped electrons and the Boltzmann distribution equation for

the free flowing electron. This yields the dispersion relation,

ω?e

Ni

[
ω (1− εn) +

(
ηi − 7

3
+

5

3
εn

)
ωDi − k2ρ2

s (ω − ω?iT )

(
ω

ω?e

+
5

3τ
εn

)]

= ft
ω?e

Ne

[
ω (1− εn) +

(
ηe − 7

3
+

5

3
εn

)
ωDe

]
+ 1− ft (2.44)

where

Nj = ω2 − 10

3
ωωDj +

5

3
ω2

Dj, j = i, e. (2.45)

The denominator Nj acts as the resonant denominator in the dispersion relation of

a two-stream instability. When Ni < Ne, the mode propagates in the ion direc-

tion (ITG mode), and Ne < Ni, the mode propagates in the electron diamagnetic

direction (TEM). Equation (2.44) is a quadratic equation in the frequency ω. Ac-

cordingly, it can have two modes unstable at the same time. For εn of the order

of 1 the modes are rather independent, propagating in opposite directions, and the

dispersion relation can be well approximated by neglecting the part with larger Nj

in equation (2.44). For large εn, modes are strongly coupled and the direction of

propagation may change. Ignoring the trapped electron part with denominator Ne

we obtain the stability threshold

LTi
> LB

[
20(1− ft)

9ft

+
ft

2(1− ft)

]−1

. (2.46)

If instead we take Ni large, we obtain the only way of isolating a trapped electron

mode which can be driven only by compressibility and the electron temperature

gradient. This was first done in [16]. Since this mode is obtained for Ne ¿ Ni, it

is due to a fluid resonance.

2.5 Gyrokinetic Equations

Till now in this chapter we have introduced the simplest description of plasma, the

fluid description. Investigating the plasma microinstabilities we are making use also

of a more advanced code which contains a gyrokinetic approach for describing the
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tokamak plasma. That’s why, we find useful to describe briefly the general features

of this approach.

The gyrokinetic approach has been widely used in recent years to study low

frequency microinstabilities in a magnetically confined plasma. The electrostatic

gyrokinetic model was originally derived by Rutherford and Frieman [17] and Tay-

lor and Hastie [18] for low frequency modes (ω ¿ ωci). Since then, gyrokinetic

theory has been significantly advanced and its importance for magnetized plasmas,

especially for magnetic fusion, has been greatly appreciated. The gyrokinetic sys-

tem was first extended to electromagnetic modes by Catto [19] using the guiding

center coordinates [20] and implemented by Antonsen [21]. Nonlinear electrostatic

gyrokinetic equations for small amplitude perturbations were derived by Frieman

and Chen [22], Lee [24], Dubin [25] and Yang [26] using the Hamiltonian Lie

perturbation method and by Hahm [27] using the phase-space Lagrangian pertur-

bation method. Recently, Hahm [28] and Brizard [29]- [31] developed the nonlinear

electromagnetic gyrokinetic system. Meanwhile, a gyrokinetic system valid for both

long wavelength and short wavelength modes (without using the ballooning repre-

sentation) was investigated by Qin [32]- [35]. The importance of Maxwell equations

was later realized. Lee [24] first discovered the difference between the gyrocenter

density and the particle density in the Poisson equation, which was further studied

by Dubin [25]. The gyrokinetic effect in the Ampere’s law was the investigated

by Hahm [27]. More recently, Sugama [36] and Brizard [37] publishing the most

complete and elegant gyrokinetic descriptions.

Here, we are going to present the nonlinear electromagnetic gyrokinetic Vlasov

equation obtained by Brizard [38], based upon earlier gyrokinetic studies [28], [39],

[24], [25], [22], [23].

The standard gyrokinetic ordering is invoked as follow:

ω

ωci

∼ k||ρi ∼ eφ

T
∼ δB

B
∼ F1

F0

∼ ρi

L
∼ ε ¿ 1, k⊥ρi ∼ 1, (2.47)

where ω is a characteristic frequency of the fluctuations, k|| and k⊥ are typical fluc-

tuation wavenumbers parallel and perpendicular to the equilibrium magnetic field,

ωci is the ion cyclotron frequency, csi =
√

Ti/mi is the ion thermal speed, and

ρi = csi/ωci is the thermal ion gyroradius. L is a typical equilibrium scale length,

such as the density scale length Ln = −∇(lnn0)
−1, the temperature scale length

LT = −∇(lnT0)
−1 , or the plasma minor radius a or major radius R. T and B are

typical equilibrium temperatures and magnetic fields, and F0 is the equilibrium dis-

tribution. F1 is the fluctuating distribution function, φ is the electrostatic potential,
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and δB is the fluctuating component of the magnetic field.

Gyrokinetics averages over the fast gyromotion of particles around a strong mag-

netic field, reducing the kinetic equation from three to two velocity space dimen-

sions, and leaving the magnetic moment µ as a rigorously conserved quantity. The

gyrokinetic ordering takes advantage of the spatial anisotropy created by the strong

magnetic field. Parallel to the field, particles can stream freely, and fluctuating wave-

lengths are long, k||L ∼ 1. Perpendicular to the field, particle motion is strongly

restricted, and wavelengths scale with the gyroradius k⊥ρi ∼ 1.

The fluctuating distribution function is ordered small compared to the equilib-

rium distribution, which, here, is taken as a Maxwellian. Nonetheless, perpendicular

gradients of fluctuating quantities are the same order as perpendicular gradients of

the equilibrium (k⊥F1 ∼ F0/L), and hence the perpendicular nonlinearities due to

the ~E × ~B drift and field line bending are kept, while parallel nonlinearities are

small, and are ordered out here.

The gyrokinetic Vlasov equation is derived from the particle-kinetic Vlasov equa-

tion (2.7). A gyrocenter space coordinates is obtained by applying two transforma-

tions on the particle phase-space coordinates (x′,v′). The first transformation is a

guiding-center phase-space transformation, which eliminates the gyroangle depen-

dence due to equilibrium or unperturbed magnetic field and introduces the guiding-

center gyromomentum as an adiabatic invariant. The second transformation is the

gyrocenter phase-space transformation which eliminates the gyroangle dependence

reintroduced by the electromagnetic field fluctuations. The adiabatic invariance of

the guiding-center gyromomentum is destroyed by these electromagnetic fluctua-

tions and a new expression for the gyromomentum adiabatic invariant is recovered

with the gyrocenter gyromomentum, whose lowest-order term is the guiding-center

gyromomentum while higher-order terms correspond to arbitrary powers in electro-

magnetic fluctuations amplitude.

The transformation from the particle phase-space coordinates z′ ≡ (x′,v′) to

the guiding-center phase-space coordinates ~Z0 ≡ ( ~X0, v||0, µ0, ζ0) is given in terms of

asymptotic expansions in the small parameter εB = ρi/LB, where LB is the length

scale associated with the equilibrium magnetic non-uniformity. To lowest order in

εB, we have

~X0(x
′,v′) = x′ − ~ρ0,

v||0(x
′,v′) = ~e|| · v′,
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µ0(x
′,v′) = mv2

⊥/2ωci,

ζ0(x
′,v′) = tan−1 (~1 · v′/~2 · v)′,

(2.48)

where v⊥ ≡ |~e||× (v′×~e||)|, ~ρ0 ≡ ω−1
ci ~e||×~v⊥ = ρ⊥(cos ζ0

~1− sin ζ0
~2) is the gyroangle-

dependent gyroradius vector, and (~1,~2, ~e||) form a right-handed set of local unit

vectors at x′. The guiding-center dynamic equations are

~̇X0 = v||0~e|| +
~e||

mωci

× (µ0ωci∇lnB + mv2
||0~e|| · ∇~e||),

v̇||0 = −(µ0ωci/m)~e|| · ∇lnB,

µ̇0 = 0,

ζ̇0 = ωci,

(2.49)

where ~e|| and B are evaluated at the guiding-center position ~X0; ~X0 and v̇||0 are

given to first order in εB while µ̇0 and ζ̇0 are given to lowest order in εB. In this

presentation, we neglect effects due to an equilibrium electrostatic potential, φeq,

and consequently there is no equilibrium ~E × ~B velocity or equilibrium parallel

electric field E|| in (2.49). These effects should realistically be included but they are

omitted for the simplicity of the presentation. The Jacobian for the guiding-center

transformation (2.48) is ωci/m to lowest order in εB.

The transformation for the guiding-center phase-space coordinates ~Z0 to the

gyrocenter phase-space coordinates ~Z ≡ ( ~X, v||, µ, ζ) is

~X = ~X0 + δA⊥ ×
~e||
B
− 1

m

(
~e||
ωci

×∇0δS + ~e||
∂δS

∂v||0

)
,

v|| = v||0 +
eδÃ||
mc

+
~e||
m
· ∇0δS,

µ = µ0 +
e

c

(
δ ~A⊥ · ∂~ρ0

∂ζ0

)
+

∂δS

∂ζ0

,

ζ = ζ0 − e

c

(
δ ~A⊥ · ∂~ρ0

∂µ0

)
− ∂δS

∂µ0

,

(2.50)

and these expressions are correct to first order in perturbation field amplitude. The

perturbed fields are denoted δ. The perturbation fields (δφ, δA||, δA⊥) are calculated

to the particle position x′ = ~X0 + ~ρ0 and thus are gyroangle dependent through ~ρ0;
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δÃ|| denotes the gyroangle-dependent part of δA||, δÃ|| = δA|| − 〈δA||〉, where 〈 〉
denotes gyroangle averaging. The perturbation field, δS( ~X0, v||0, µ0, ζ0, t), appearing

in (2.50) is solution of dδS/dt = eδψ, where δψ ≡ δφ− δ ~A · (v||0~e|| + ωci~ρ0 × ~e||)/c.

The gyrokinetic Vlasov equation is written in terms of gyrocenter phase-space

coordinates ( ~X, v||, µ, ζ) as

∂F

∂t
+ ~̇X · ∇F + v̇||

∂F

∂v||
= C(F ), (2.51)

where the gyrocenter distribution function in the gyrocenter phase-space coordinates

F and the particle distribution function f are related by F (~Z, t) ≡ f(z′(~Z, t)) or

f(z′, t) ≡ F (~Z(z′, t)). Within the gyrokinetic ordering (ω ¿ ωci), the gyrophase

angle ζ is effectively averaged over, and does not appear explicitly (∂F/∂ζ = 0).

The gyrocenter magnetic moment µ = v2
⊥/2B + O(ε) is exactly conserved and is

contained by the equations only as a parameter. A collision operator C(F) has been

added to the right hand side.

Equation(2.51) is solved up to O(ε2) taking into account the gyrokinetic ordering

defined by (2.47). When ordering terms in the gyrokinetic equation, all frequencies

are compared to ωci, and all lengths to ρi. Hence, ∂F/∂t ∼ ωF1 is O(ε2), because

∂F0/∂t = 0, F1/F0 ∼ ε and ω/ωci ∼ ε. Any gradient operator acting on F0 or B is

O(ε) because ρi/L ∼ ε. A parallel gradient on F1 is proportional to O(ε2) because

k||ρi ∼ ε. However, a perpendicular gradient acting on F1 is O(ε) because k⊥ρi ∼ 1.

Because ∇F is O(ε), ~̇X is needed only to O(ε), while v̇|| must include terms up to

O(ε2).

The fluctuating magnetic field δ ~B is described to lowest order in terms of a mag-

netic potential along the equilibrium field, δ ~B = ∇×A||~e||. The perturbation along

the equilibrium field (δB||) is small for β ¿ 1, as can be seen from perpendicular

force balance, and δB|| is neglected here. A local kinetic analysis by Horton [40]

has found δB|| to be unimportant for β of the order of the MHD critical βc (ideal

MHD limit) or smaller. However, the toroidal kinetic code of Kotschenreuther [41]

has included δB|| and found it to be somewhat important for β ∼ βc, particularly

at low aspect ratio [42]. The gyrocenter velocity is then given by

~̇X = v||(~e|| +
〈δ ~B⊥〉

B
) + ~vE + ~vd. (2.52)

The first term on the right hand side represents free streaming along the total

magnetic field. The second term is the gyroaveraged ~E × ~B drift velocity, ~vE =
c
B
~e|| ×∇〈φ〉. ~vd is the combined curvature and ∇B is the drift velocity. In general,
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~vd can be written as

~vd =
v2
||

ωci

~e|| × (~e|| · ∇~e||) +
µ

ωci

~e|| ×∇B

=
v2
|| + µB

ωciB2
~e|| ×∇B +

v2
||

ωciB2
~e|| × (∇× ~B × ~B)

(2.53)

Using the equilibrium relations ∇p = 1
c
~J × ~B and ∇× ~B = 4π

c
~J , this can be written

~vd =
v2
|| + µB

ωciB2
~B ×∇B +

v2
||

ωciB2
~e|| ×∇p (2.54)

The second term on the right is small for β ¿ 1, and is neglected here for simplicity

and to maintain consistency with neglecting δB||. The definition

~vd =
v2
|| + µB

ωciB2
~B ×∇B +

v2
||

ωciB2
~B ×∇B (2.55)

is used henceforth.

The gyrocenter parallel acceleration can be written as

v̇|| = − e

mc

∂〈A||〉
∂t

− e

m
(~e|| +

〈δ ~B⊥〉
B

) · ∇〈φ〉

−µ(~e|| +
〈δ ~B⊥〉

B
) · ∇B + v||(~e|| · ∇~e||) · ~vE

(2.56)

The first two terms on the right hand side represent the total parallel electric field,

which includes a magnetic induction term, −1
c

∂〈A||〉
∂t

, and an electrostatic term eval-

uated along the total magnetic field. The next term is the total mirror force, and

the final term is important for phase space conservation, as shown in [Hahm 1988;

Beer 1995].

Using the definition δ ~B = ∇× A||~e||, the term δ ~B⊥ can be written as follows

δ ~B⊥ = ~e|| × (δ ~B × ~e||) = −~e|| ×∇A|| + ~e|| × ~e|| · ∇~e||A||, (2.57)

or upon gyroaveraging,

〈δ ~B⊥〉 = −~e|| ×∇〈A||〉+ ~e|| × ~e|| · ∇~e||A||. (2.58)

The second term on the right hand side is O(ε2) and therefore, it does not enter

into equation (2.51) to the required order.

42



The gyroangle averages are expressed in terms of a gyroaveraging operator J0 as

follows:

〈φ〉 = J0(α)φ, 〈A||〉 = J0(α)A||, (2.59)

where α is the operator defined by

α = −i

√
2µB

ωci

∇⊥ =

√
2µB

csi

k⊥ρi.

The operator J0 is simply a Bessel function in Fourier space

J0(α) =
1

2π

∫ 2π

0

dζ exp (iα cos ζ) =
∞∑

n=0

1

(n!)2

(
iα

2

)2n

=
∞∑

n=0

1

(n!)2

(√
2µB

2ωci

)2n

∇2n
⊥ .

(2.60)

In real space, J0 is an operator which does not, in general, commute with other

operators, and must be treated with care. It should be noted that J0 operates only

on the electrostatic potential φ and the parallel magnetic potential, A||, in equation

(2.51).

Defining the unit vector along the total magnetic field as ~̃e|| = ~e|| +
〈δ ~B⊥〉

B
, and

the total parallel electric field, ~̃E|| = −1
c

∂
∂t

J0A||− ~̃e|| ·∇J0φ, the gyrokinetic equation

can be written as

∂F

∂t
+ (v||~̃e|| + ~vE + ~vd) · ∇F +

[ e

m
Ẽ|| − µ~̃e|| · ∇B + v||(~e|| · ∇~e||) · ~vE

] ∂F

∂v||
= C(F ).

(2.61)
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Chapter 3

Linear gyro-kinetic stability
calculations of electron heat
dominated plasmas in ASDEX
Upgrade.

In this chapter gyro-kinetic stability calculations are compared with the experi-

mental results of ASDEX Upgrade. For this purpose, the well established stability

code GS2 is used. Our goal is to explain some of the observed phenomena and to

determine which parameters (based on theoretical description) could influence the

transport level. In this study, we will concentrate on the low density electron heat

discharge.

3.1 Introduction

The anomalous electron heat transport in toroidal magnetic confinement devices has

been studied experimentally by many people over a large period of time [43, 44],

and is in fact the best documented of all transport channels. The reason for the

good documentation is twofold: the electron temperature can be measured relatively

easily with a high sampling rate using the electron cyclotron emission from the

plasma, and localized heating of the electrons is possible using electron cyclotron

resonant heating. The latter also allows for perturbative experiments in which the

propagation of a heat wave is studied. This is a very powerful tool since it allows for

the study of the derivative of the heat flux with respect to the temperature gradient,

a quantity of primary importance in the understanding of heat transport. Most of

the experiments are done under dominant electron heating, with relatively cold ions,
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a regime on which we will also concentrate in this chapter.

All the experimental results can not be reviewed within the scope of this chapter.

Below we will only mention some striking published observations, which play a

role for the work presented here. A relatively old observation is that the electron

temperature profile shape reacts weakly to the change in power or deposition radius

of the electron heating [45, 46, 47, 48, 49, 50]. This phenomena is known as profile

consistency [51], profile resilience or profile stiffness. This resilience, however, is

known not to be absolute, i.e. the profile does show differences when comparing

strong on and off axis heating [52]. Widely different mechanisms in terms of the

underlying physics have been proposed in the literature, to explain this phenomena.

A nonlinear dependence of the heat flux on the gradient is experimentally demon-

strated by the fact that the heat conduction coefficient calculated from the heat wave

(χHP ) in general exceeds the heat coefficient calculated from the steady state so-

lution [53] (χPB). A graphical representation of this phenomena can, for instance,

be found in Figure 1 of [43]. Obviously, a sufficiently strong nonlinear dependence

of the heat flux on the temperature gradient can explain the profile resilience, since

largely different heat fluxes can be generated by small changes in the gradient.

Of interest is also the reported off-diagonal terms in the transport matrix that

link the electron heat flux to the density gradient [54] and the dependence of the

incremental heat diffusion coefficient on the safety factor χHP ∝ q1 to 2 [55] and

density χHP ∝ n−1 to 0
e [56, 55, 57].

Despite the large amount of experimental investigations, the corresponding com-

parison with theory is somewhat more limited. Different models have been proposed

and tested against the experiment [58, 59, 60]. In this chapter we try to explain some

basic features of the observations using the theory of micro-instabilities. For this

purpose we will use the well established gyro-kinetic code GS2 [41]. We stress here,

that our calculations are based on linear theory. It is our believe that only nonlinear

calculations could give precise answers on the heat flux in a fully developed nonlin-

ear state. However, in many nonlinear simulations of core transport the heat flux is

found to scale largely with the quasi-linear estimate leaving a weaker scaling with

parameters not described by the linear theory. Also linear calculations can be done

for many more cases, and are a necessary first step to approach the understanding

of electron heat transport. Because of this shortcomings we discuss mainly scalings

of the heat flux with the parameters and do not attempt to determine the absolute

level. It turns out that we can explain several observed phenomena, but that not

all the observed scalings are recovered.
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Profile resilience has been explained in different ways. The explanation directly

connected with micro-instabilities, that are thought to be the consequence of the

anomalous transport, is the strong increase of the transport with ∇Te/Te = 1/LTe

above a threshold for the mode. In fact there is a large amount of experimental

evidence for such a threshold [61, 62, 63]. If, under experimental conditions, the

threshold can not be exceeded by a large amount the profile will more or less reflect

the threshold of the mode and will be self similar. However, as stated before, the

electron stiffness is far from absolute and the relatively constant factor R/LTe that

is found in many experiments with central heating is, therefore, somewhat puzzling.

It is important to note here that the transport does not only increase with R/LTe

but also with temperature through the gyro-Bohm factor, i.e. χe ∝ T
3/2
e . A larger

electron heating power, leads to a larger heat flux but also to a larger electron

temperature. The latter makes that substantially more heat can be transported at

the same R/LTe , and the profile can appear very stiff, whereas in reality it is not

(this is explained in more detail in [52]).

Our calculations extend the work previously done on ASDEX Upgrade [60] using

the diagonal transport coefficients of the quasi-linear fluid model known as the Wei-

land model [64]. This model could represent the data relatively well. It was found

that under normal heating conditions one can exceed the threshold by a factor two

to three. Good agreement was, however, only obtained in discharges with 0.8 to 1

MA plasma current, at lower current the model tends to under predict the transport.

Furthermore, other work [65] has raised questions on the effect of collisions which

are not properly accounted for in the version of the model used. In this chapter

we will study this dependence. Also the gyro-kinetic model gives a more accurate

description of the threshold and quasi-linear heat flux.

The chapter is structured as follows. In the next section we determine the domi-

nant mode and vary the parameters that can influence this mode around a reference

set, directly calculated from an ASDEX Upgrade discharge, in order to determine the

main parameter dependences under the experimental relevant conditions. Section

III presents a comparison between the gyro-kinetic results and two other well known

models GLF23 and Weiland model. In Section IV we present a direct comparison

between the experiments and calculations. In Section V we discuss the implications

of the calculations for the interpretation of the experiments, and in Section VI we

give the conclusions.
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3.2 The trapped electron mode

The plasmas studied are low density Electron Cyclotron Resonant Heated (ECRH)

L-mode discharges of the ASDEX Upgrade experiment. They are taken from a series

of experiments with shot number #14793 until #14796, of which the steady state

electron temperature profiles are shown in Fig.3.1.
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Figure 3.1: The electron temperature profiles for the different discharges in the
series.

In this section we study the heat flux given by the micro-instabilities under

experimental relevant conditions in order to determine their main dependences on

the plasma parameters.

From the discharge #14793 (with on axis heating) a standard set of parameters,

necessary for the stability analysis, has been calculated. All parameters are evalu-

ated at the position ρtor = 0.5, and averaged over the time interval from 2.5 to 3.0

seconds. The standard set is given by: electron and ion density ne = ni = 2.16 1019

m−3, electron temperature Te = 1.5 keV, ion temperature Ti = 0.5 keV, normal-

ized inverse gradient lengths of the density, electron and ion temperature profile

R/Lne = 3.5, R/LTe = 7.9, R/LTi
= 0, safety factor q = 1.57, magnetic shear

ŝ = 1.07, inverse aspect ratio ε = r/R = 0.177, and effective charge Zeff = 1. The

major radius of ASDEX Upgrade is R = 1.65 m and the magnetic field on axis in

these discharges is 2.3 T. The gradient lengths given above are calculated using the
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averaged midplane radius as radial coordinate, i.e. r = (rout − rin)/2 where rout

(rin) is the major radius of the outer (inner) crossing of the flux surface with the

midplane. The off axis heated discharge had very similar parameters except for the

lower normalized inverse gradient lengths. The accuracy of the different quantities

are discussed in the next section where a direct comparison with the experiment is

made. The calculations shown are done for circular geometry, whereas in reality the

plasma is elongated, and has a low triangularity. The error made due to the approx-

imation in the geometry, however, is small compared to the errors in the physics

parameters.
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Figure 3.2: The normalized growth rate γR/vthi as a function of the normalized
poloidal wave number kθρi for parameters of the standard set and the gradients
of the electron temperature and density changed. Circles R/LTe = 8, RLn = 3.5,
squares R/LTe = 5, RLn = 3.5, and diamonds R/LTe = 8, RLn = 1.5.

Figure 3.2 shows the normalized growth rate (γR/vthi) as a function of the nor-

malized poloidal wave vector (kθρi). The ion thermal velocity and Larmor radius

are used for normalization here. The parameters are that of the standard set with,

however, the temperature and density gradient length changed (the values are given

in the figure caption). The latter choice is motivated by the fact that these gradients

have the largest influence on the mode as will be shown below. It can be seen that

the maximum growth rate is obtained for kθρi ≈ 0.3 in all cases.

The wavelength at which the maximum growth rate is obtained is insensitive to
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the parameters of the simulation, with the exception of the electron temperature

(for lower electron temperature the wave-number increases, Fig. 3.3). However, due

to the design of the experiments the electron temperature does not vary much in

the confinement region from shot to shot. Therefore, the results that will be shown

below have all been calculated at constant kθρi = 0.3.
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Figure 3.3: The normalized growth rate γR/vthi as a function of the normalized
poloidal wave number kθρi for three different values of the electron temperature.
Circles Te = 2 keV, squares Te = 1.5 keV, triangles Te = 1.0 keV. All the other
parameters are those of standard set.

The spectral range, as well as the real frequency which is in the electron dia-

magnetic direction, shows that the most unstable mode is a Trapped Electron Mode

(TEM). This is further tested by increasing R/LTi as shown in Fig 3.4. It is known

that at sufficient high R/LT i a transition to ion temperature gradient must occur.

This transition occurs at R/LTi ≈ 7 at which the frequency changes sign from the

electron diamagnetic (positive) to ion diamagnetic (negative). Simulations at higher

poloidal wave vectors show that the Electron Temperature Gradient mode (ETG) is

stable in these discharges, which is related to the large electron to ion temperature

ratio. This is further confirmed by the analytic formula for the threshold of the

ETG [66] which gives R/Lcrit = 10.5 for this case.

In the rest of this section the standard set of parameters is used, with one or

two parameters being varied while the rest is kept constant. This is done in order

to determine which of the parameters plays a dominant role in the TEM stability
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under experimental relevant conditions.
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Figure 3.4: The normalized growth rate γR/vthi (dashed line) and the normalized
real frequency ωR/vthi (full line) as a function of R/LTi.
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Figure 3.5: The quasi-linear heat flux in arbitrary units as a function of R/LTe for
different values of R/Ln = (0, 1, 2, 3, 4, 5, 6). With increasing R/Ln the heat flux
curve is shifted upward in the figure.

Figure 3.5 shows the quasi-linear heat flux of the mode as a function of R/LTe

for different values of R/Lne. Since GS2 solves only the linear problem, it calculates
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the electron heat flux normalized to 〈|φ|2〉, where φ is the electro-static potential.

For the heat flux we then assume 〈|φ|2〉 ∝ γ, where γ is the growth rate of the most

unstable mode, and the angle brackets denote the spatial average. This assumption

is in agreement with the general mixing length estimate. Note that no wave vector is

used here, since the calculations are done at fixed kθ. The heat flux, thus obtained,

is the quasi-linear heat flux except for an arbitrary scaling factor. The curves in the

figure show the typical behaviour of the growth rate of the TEM. At sufficient high

density gradient one finds two distinct regions. At zero temperature gradient length

the mode is unstable due to the density gradient drive. In this region the mode

becomes more stable when increasing the electron temperature gradient. In the

second region at sufficient high electron temperature gradient the electron heat flux

starts to increase linearly with the electron temperature gradient showing that the

temperature gradient drive takes over. Nevertheless, also in this region the density

gradient does part of the drive. Increasing the density gradient the curve of the heat

flux is shifted upward as can be seen in Fig. 3.5. The density drive is well known

from the theory on TEMs but is often ignored in the empirical description of the

electron heat transport. These simulations show that it cannot be neglected under

experimental relevant conditions. For sufficient steep density gradients the TEM is

always unstable, i.e. does not show a threshold in R/LTe . It is worth noting too

that all experimental observations made up to now on ASDEX Upgrade lie in the

second region.

Figure 3.6 shows the electron heat flux as a function of R/LTe for different values

of the effective collisionality, the electron collision frequency (νe) normalized to the

drift frequency (ωDe)

νeff =
νe

ωDe

≈ 0.1
n?

eZeff

T 2
ek

(3.1)

where n?
e is the electron density in units of 1019 m−3, and Tek is the electron temper-

ature in units of keV. It can be seen that the electron collisions change the heat flux

considerably. This is in line with previous observations on the influence of collisions

on density transport [65]. Although the collision frequency normalized to the transit

time is small and the electrons perform many bounces during one collision time, the

collision frequency is not necessarily small against the frequency of the TEM, and

can, hence, lead to a reduction of its growth rate.
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Figure 3.6: The quasi-linear heat flux in arbitrary units as a func-
tion of R/LTe for different values of the collisionality νeff =
(0.14, 0.26, 0.46, 0.83, 1.49, 2.67, 4.79, 8.60). The curves in the figure are num-
bered according to increased collisionality.
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Figure 3.7: The quasi-linear heat flux in arbitrary units as a function of the magnetic
shear ŝ = (0.20, 0.43, 0.65, 0.88, 1.1, 1.33, 1.55, 1.78, 2.0). The curves in the figure
have been numbered according to increasing shear.
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The magnetic field topology enters the equations through the safety factor and

magnetic shear. The heat flux as a function of R/LTe is shown in figure 3.7 for

different values of the magnetic shear. It can be seen that the magnetic shear has

a stabilizing influence. Since the mode is a trapped electron mode, the parameters

connected with the ions do not change the growth rate considerably. A scan on

the ion temperature, ion temperature gradient length is shown in figures 3.8 and

3.4. Both quantities hardly change the growth rate of the mode (here calculated for

R/LTe = 12).

The ion temperature, Fig. 3.8, leads to a slight destabilization whereas its gra-

dient, Fig. 3.4, is found to lead to a weak stabilization. The same effect has been

found for the effective charge, which plays a role almost only through the collision

frequency Fig 3.9, and electro-magnetic effects of the magnitude expected in these

experiments Fig. 3.10.
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Figure 3.8: The normalized growth rate
γR/vthi as a function of the ion tempera-
ture Ti normalized to the standard value
Ti = 0.5 keV.
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Figure 3.9: The normalized growth rate
γR/vthi as a function of Zeff. Without col-
lisions (stars), with collisions (circles).

Figure 3.11 shows the dependence of the growth rate on the safety factor, which

is found to be very small. It must be noted here that this dependence is in contrast

to the observations mentioned in the introduction.
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γR/vthi vs R/LTe. Without electromag-
netic effects (stars), with electromagnetic
effects (diamonds).
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Figure 3.11: The normalized growth rate
γR/vthi vs the safety factor q. Without
collisions (stars), with collisions (circles).

Generally, the transport coefficient is observed to increase with the safety factor

to the power 1 to 2. It should be noted too that the discrepancy can not be explained

over the magnetic shear dependence. The safety factor in experiments is increased

through lowering the current, which enhances the shear in the confinement region,

and should according to linear theory lead to a smaller growth rate, whereas a larger

transport is observed in the experiments. One possible explanation could be that

the density gradient, which is generally larger in low current plasmas gives more

drive to the mode. This assumption, however, is not supported by the experimental

data. The conclusion, therefore, is that the linear description is not complete. It was

suggested [67] that the radial correlation length of the turbulence depends on the

safety factor, an effect that is not reflected in the maximum growth rate. Non-linear

simulations are needed to investigate this point.

3.3 Comparison with Weiland and GFL23 models

In order to consolidate the study of the dependence of the normalized growth rate

γR/vthi on different parameters two other theoretical transport models, the Weiland

model [16] and the GLF23 model [68] have been considered. These two models

are regularly applied for the heat transport modelling of tokamak plasmas and they

adopt complementary approaches. In the following paragraphs we provide a general

overview on the two models employed for our study.
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3.3.1 The Weiland model

This is a fluid model based on ITG and TEM coupling. The most relevant approx-

imations of the model are summarized as follows:

• The model uses the so-called strong ballooning approximation. This leads to

a local dispersion relation with the quantities evaluated on the low field side.

• The closure of the fluid equation is obtained by taking the heat flux equal to

the diamagnetic heat flux with isotropic temperature.

• In the version considered here (7 equations), electromagnetic effects are ne-

glected. The ion parallel motion and shear effects are included, but their

description is simplified.

• The background electrostatic field is assumed to be zero, except when consid-

ering the stabilizing term ωE×B.

3.3.2 The GLF23 model

The GLF23 (Gyro-Landau Fluid) model is also based on the fluid equations [68].

However:

• The closure is different from that of the Weiland model. ”The complex co-

efficients of these linear combinations [of the lower moments] are chosen to

best fit the general kinetic plasma response function over the full range from

small and large values in all the kinetic parameters: the gyroradius param-

eter (kθρs)
2; the parallel motion parameter k||cs/ω; and the curvature drift

parameter ωD/ωci” ( [69], pag. 3138).

• ”The toroidal ion temperature gradient (ITG) mode, the collisionless to dis-

sipative trapped electron drift modes, and the ideal magnetohydrodynamic

(MHD) ballooning modes are included” ( [68], pag. 2482).

• The model assumes a magnetic shear (ŝ) - Shafranov shift (α) stabilization.

Landau damping is taken into account.
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Figure 3.12: Comparison of GS2 model (stars) with Weiland model (diamonds) and
GLF23 model (triangles): left: normalized growth rate vs R/LTi; right: normalized
real frequency vs R/LTi.
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Figure 3.14: Normalized growth rate
vs R/Lne. Comparison between GS2
(stars), GLF23 (triangles) and Weiland
(diamonds) models.

In this section the normalized growth rate (γR/vthi) and normalized frequency

(ωR/vthi) of the three models will be compared. Again the standard set of parame-

ters is used here and scans in all the relevant parameters have been made. The GS2

model is the most complete, and is thought to present the correct solution.

To test the transition from the TEM to ITG the ion temperature gradient has

been varied with the results shown in Fig. (3.12). In the Weiland model no clear

transition occurs, with the mode always rotating in the electron diamagnetic di-
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rection. GLF23 on the other hand, behaves qualitatively correct. Nevertheless,

frequency as well as the growth rate can show relatively large qualitative differences

with GS2.

The well known stabilizing effect of the magnetic shear is also found in the

GLF23, and is in very good qualitative agreement with GS2. The local approxima-

tions made in the Weiland model, however, almost completely eliminate the effect

of the magnetic shear.

As shown in the previous section the density gradient has strong influence on the

TEM. A comparison between the models for the growth rate is shown in Fig.3.14.

It can be seen that for all models the growth rate increases as a function of R/Ln.

The dependence is somewhat weaker for the Weiland mode.

In conclusion, the GLF23 model behaves qualitatively correct, and has a reason-

able accuracy for the growth rate of the models. The Weiland model behaves less

well.

3.4 Comparison with experiment

The ASDEX Upgrade tokamak (major radius R=1.65 m, minor radius a=0.5 m,

elongation κ ≈ 1.6) is equipped with an ECRH system consisting of four 140 GHz

gyrotrons delivering each about 400 kW to the plasma. The scheme used is 2nd

harmonic X-mode which yields a narrow (about 3 cm) heating deposition profile

with 100% single-pass absorption by the electrons only. Each of the four ECRH

beams is injected into the plasma with an independent mirror launcher providing

separate position steering of the deposition for each ECRH beam. The electron

temperature is measured by the 60 channel Electron Cyclotron Emission heterodyne

radiometer, which generally covers the whole plasma radius, with a distance between

channels of 1 to 3 cm. It has a spatial resolution of about 1 cm for each channel and

a bandwidth up to ≈ 32 kHz. The electron temperature is measured in addition by

the Thomson scattering diagnostic with 16 radial channels, yielding a profile every

16 ms. These two diagnostics generally agree within ±10%. The density profile is

provided by Thomson scattering and by deconvolution of the interferometer.

The series of experiments with shot number #14793 until #14796, of which the

steady state electron temperature profiles are shown in Fig. 3.1 were designed to test

the electron stiffness and have been reported in [52]. The ECRH power was deposited

at two locations, ρ1 ≈ 0.35 and ρ2 ≈ 0.65, with the respective intensities PECRH1 and

PECRH2. The powers were varied while keeping PECRH1 +PECRH2 constant at about
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1.3 MW which provides a constant edge temperature. In this way it was possible to

separate the effect of the temperature and its gradient on the electron heat flux. The

discharges were L modes in deuterium at low density, n̄e = 2 · 1019m−3, to reduce

the electron-ion energy transfer and provide good conditions to study the electron

heat transport. A variation of ∇Te/Te by about a factor of 2 could be achieved

in these experiments by varying the electron heat flux in the confinement region

(0.35 ≤ ρtor ≤ 0.65) by one order of magnitude while keeping the heat flux at the

plasma edge (ρtor ≥ 0.65) constant.

The electron temperature and its gradient were obtained from the Electron Cy-

clotron Emission (ECE) diagnostic and has reasonably small error bars of around

10%. Density and its gradient are calculated from Thomson scattering with a size-

able error of 20%. The ion temperature is calculated from the neutral particle

analyzer and is determined with an accuracy of ±20%. Its gradients is, therefore,

not calculated and set to zero. The safety factor and magnetic shear are calculated

from the equilibrium reconstruction, which however does not use internal q-profile

measurements. Therefore, they have relatively large error bars (estimated to be

around 20%). From the above it is clear that several quantities are quite inaccu-

rately determined. However, most of the inaccurate quantities have a relatively weak

influence on the growth rate, with the exception of the density gradient.

The comparison between the experimental data and the results from GS2 is

carried out on the heat flux as follows. The experimental surface integrated heat

flux qe has been estimated by power balance at ρt = 0.5. Due to the low electron-

ion coupling and to the well defined electron heating the values yielded by power

balance are precise. The experimental results, shown in figure 3.15, indicated a clear

increase of qe with R/LTe above a certain value of R/LTe. The GS2 calculations

have been done at the same radius taking into account the necessary experimental

data. Because only the scaling and not the magnitude of the heat flux is determined,

a scaling factor (1 free parameter, the same for all discharges) is chosen to overlay

the experiment and the calculations. This calculated heat flux is also shown in figure

3.15.

The figure shows the results without collisions at the nominal experimental value

of R/Lne = 3.5, as well as the result with collisions for R/Lne = 3.7. The latter

value of R/Lne makes the agreement between calculations and experiment slightly

better and is well within the uncertainty of ±20% of R/Lne. The agreement between

the calculations and the experiments is surprisingly good considering the limitations

of the modelling. As expected from the TEM stabilization by collisions, the points
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without collisions are above those with collisions. (the slight increase of the density

gradient has increased the growth rate and, therefore, works in the opposite direction

as the collisions.) Of course an arbitrary scaling factor is used here, but the curve

without collisions does not show a clear threshold, i.e. it can not be scaled on to the

experimental results. We conclude that collisions are important in the description,

especially when an accurate determination of the threshold is desired, and that they

play a role even in relatively low density plasmas.
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Figure 3.15: The electron temperature profiles for the different discharges in the
series.

3.5 The empirical model

At this point it is useful to compare the results of the calculations with the empirical

model proposed in [70] and extensively used in the literature [71, 52]

χe = χ0 + λT 3/2
e

(
1

LT

− 1

LT

∣∣∣∣
crit

)
H

(
1

LT

− 1

LT

∣∣∣∣
crit

)
(3.2)

where H is the Heaviside function. The heat pulse diffusion coefficient, which de-

termines the timescale for the propagation of the heat wave, can directly be derive

from this equation to be

60



χHP = χe +
∂χe

∂∇T
∇T = χ0 + λT 3/2

e

(
2

LT

− 1

LT

∣∣∣∣
crit

)
1/LT > 1/LTcrit (3.3)

This formula is often used to determine the parameters λ and LTcrit through a

fit to the experimental data, allowing a direct comparison between the different

experiments.

The formula indeed shows a strong resemblance with the calculations in this

chapter. This, of course, because theoretical arguments were used to determine its

functional form. There are nevertheless some differences worth noting. Obviously

the form represents the electron heat transport in the region of sufficient high∇T/T .

At low values of this quantity the mode can be entirely driven by the density gra-

dient, and does not necessarily have a threshold. This is possibly not of such great

importance since all experiments on ASDEX Upgrade, up to now, have been found

to lie in the region of the parameters space in which the electron heat flux is strongly

determined by ∇T/T . Nevertheless, close to the threshold some differences can be

expected.

Also for sufficient high electron temperature gradient the form of the heat trans-

port suggested by our calculations is somewhat different from the empirical formula.

From the figures above it can be seen that at sufficient large ∇T/T the heat flux

increases linearly with ∇T/T , whereas the empirical formula predicts a quadratic

dependence (more accurately it has a linear as well as a quadratic contribution.)

Although the data points agree well with the calculations, it turns out that the

errors bar do not allow to distinguish between the two models.

3.6 Conclusion

In this chapter we have compared the experimentally observed electron heat trans-

port with linear gyro kinetic stability calculations. The sensitivity scan around the

parameters obtained from the experiment have revealed that the growth rate of the

mode depends on several plasma parameters that are not usually considered when

analyzing the experiments. Most clearly these are the density gradient and the col-

lisionality. In the direct comparison of heat flux with the quasi-linear estimate a

good agreement can only be obtained if these two effects are taken into account.

The direct comparison between the quasi-linear and experimentally observed

heat flux shows a good agreement. It must be noted though that one free parameter

(the saturation level of the turbulence) has been used in this comparison, i.e. one
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can only compare the shapes of the curves. Also it must be noted that since the

maximum linear growth rate and phase relation between temperature and potential

fluctuation are used, the result is a quasi-linear result. Non linear effects such as

the shift of the maximum amplitude in the spectrum towards larger scale lengths

are not included.

The figure 3.15 explains many observations that have been made on the basis

of empirical descriptions in the last decades. Both the experiments as well as the

calculations show that a threshold for the TEM exists. The linear-offset relation

of the heat flux also explains why the heat pulse propagates faster than what can

be expected from the steady state heat conduction coefficient. Furthermore, the

experiments can exceed the threshold by a factor two. The latter reflects a moderate

stiffness of the electron channel. It must be noted here, that this is at least partly

due to the relatively low electron temperature. Comparisons with the ion channel

should be done carefully, because in many experiments in which the ion temperature

profile is investigated, the ion temperature is larger. The effect of collisionality or

density gradient might explain the coupling of the particle and electron heat channels

as observed in the experiment, or the decrease of the heat pulse conductivity with

increasing density, which are both mentioned in the introduction. Care is to be

taken here though, because in general many parameters change simultaneously, and

one would have to re-analyze the experiments using the results of the calculations

presented in this chapter.

The normalized growth rate obtained from the gyro kinetic stability calculations

have been also compared with Weiland and GLF23 models. A relative good agree-

ment has been found between GS2 and GLF23 models, whereas the Weiland model

performs less well (especially the shear dependence).

The comparison made with the empirical model have shown that the calculations

presented in this chapter give in fact an easier functional form of the electron heat

flux.

Despite the success of the comparison it should also be noted that not all prop-

erties can be explained. This is especially true for the dependence on the safety

factor. It has been suggested that the widening of the spectrum in the non-linear

state could account for such a dependence [67].
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Chapter 4

Paraxial WKB method

4.1 Introduction

For solving the wave equation in the short-wavelength limit k = L/λ À 1, where

L and λ are the typical inhomogeneity length and the wavelength of the medium

under consideration, different asymptotic approaches are used in plasma physics.

The ray method or geometrical optics is the most powerful and widespread in this

sense. It uses an asymptotic expansion with respect to the small parameter k−1.

Further approach, which are based on asymptotic expansion with respect to small

parameter k−1/2 or k−1/3, are available. Although these expansions results in more

complicated description, they are able to reproduce wave characteristics that are not

described in the ray method. In general, depending on the problem to be solved, the

one or other type is more suitable and provides a better asymptotic approximation

to the exact solution.

In spite of essential differences in various asymptotic expansions, the leading

order for any of them results in description that is well known as the geometrical

optics or the ray tracing. It is used in lots application of optics, seismology, physics

of fluid and solids, quantum mechanics, plasma physics and many other fields [72],

[73], [74]. The ray method uses an asymptotic expansion of the solution and reduces

the wave equations to an infinite set of coupled equations for the successive terms of

the expansion. The zero order therm is known as the eikonal approach. This order

describes the phase behavior in space which is the most rapid variation of the wave

field and it also gives rise to the ray or geometric-optics description. The first-order

equation describes the field amplitude evolution along the ray trajectory, it has

the important corollary that the flux energy is directed along the rays. In practice

only the leading order equation and the consequence of the first order are mainly
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used. This reduced approach is called the ray tracing or geometrical optics method.

In many cases of practical interest this method provides the only possibility of

obtaining a solution and for this reason it is widely used in plasma physic. However,

in plasma (in contrast to conventional optics), use of the ray method is in most of

the cases far from being really justified and sometimes clearly irrelevant. In fusion

plasmas, geometrical optics fails very often even when the condition λ ¿ L is fulfilled

with large margin. The reason for this failure is that this inequality provides only

the necessary, but not sufficient, condition for applicability of geometrical optics.

A breakdown of the applicability condition means that the diffraction phenomena,

which are not taken into account by the geometrical optics, become significant.

The sufficient condition of applicability is known as Fresnel condition and in

addition to λ ¿ L, it imposes a limitation on width of the beam Λ. For instance, in

homogeneous media the effect of diffraction can not be neglected if Λ2 ≤ λ`, where

` is the length of the propagation path. Hence, diffraction becomes important if ` is

sufficiently large. If one takes ` ≈ L (inhomogeneous media), diffraction effects are

significant for Λ ≈
√

λL.

In tokamak, even for highest frequency of electron cyclotron range, the Fresnel

condition can be violated. The diffraction should be taken into account in the

vicinity of focal points and caustics [75]. The diffraction could be also important

in the lower-hybrid frequency range [76]. In case of the lower-hybrid wave the

diffraction can be neglected only for the first wave pass along the minor radius. If

complete absorbtion does not take place before the Fresnel condition breaks, then

for the rest of the wave path in plasma, the field distribution is dominated by the

diffraction phenomena. For ion cyclotron waves Fresnel condition is violated from

the very beginning. In all cases, the violation results in wave energy flow not only

along the ray tube, as in the ray approach, but also across the rays, causing wave

packet and wave spectrum broadening.

The energy flow transverse to the rays appears also in the ray method, but only

in higher-order terms of the asymptotic expansion. The higher order terms of the

asymptotic expansion are very seldom used in practice because their complexity.

Therefore, when the wave properties of propagation have to be included different

asymptotic approaches are used. The wave properties of the propagating oscillations

are studied as usual by the quasi-optic approach. The first approach was introduced

more than 50 years ago as a parabolic equation technique by Fock and Leontovich

[77]. The method was based on the reduction of the wave equation to an equation

of Schrödinger type, being called parabolic equation. Another technique makes use
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of a complex phase or eikonal [78]- [80] in order to get the set of (real) generalized

wave equations in order to get diffraction effects. However, in this case also the final

set of equations is a set of partially differential equations, thus losing one of the

most attractive feature of the geometrical optics. Further advancement was made

( [81], [82]) with the introduction of a new technique called the paraxial Wentzel-

Kramers-Brillouin (WKB) or beam tracing.

Although based on the same physical assumptions as the method referred above, in

the beam tracing approach Maxwell’s equations are reduced to a set of first-order

ordinary differential equations, thus recovering the most useful feature of geomet-

rical optics. These equations give the evolution of the axis of the beam and a set

of parameters connected with curvature of the phase front and with the amplitude

profile. The paraxial WKB method includes the conventional ray tracing as a par-

ticular case, but it leads to a final set of equation which is different from that of

some other methods. The approach combines the simplicity of ray tracing with

description of the wave properties, diffraction and interference. The paraxial WKB

method is also more suitable for numerical treatment due to the smaller number of

equation that have to be solved in the paraxial WKB in comparison with the ray

tracing method. Unlike the ray method, dealing with separate noninteracting rays,

the paraxial WKB method treats entire wave packets of finite width and retains

a description of the wave phenomena discarded in the ray method. This becomes

possible because the paraxial WKB method incorporates nonlocal information on

the refractive index in the vicinity of the central ray and enables one to judge the

focusing and defocusing properties of the medium and thus the existence of the

eigenfunctions in the neighborhood of the ray under examination.

4.2 Beam tracing method

4.2.1 Beam tracing equations

In the BT approach the solution of the wave equation for the electric field E is

sought in the form

E (r) = eiks̄(r)

(
a (r)− i

k
c (r)

)
= eik[s(r)+iφ(r)]

(
a (r)− i

k
c (r)

)
(4.1)

where the (supposed large) dimensionless parameter

k =
Lω

c
À 1 (4.2)
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is introduced, L being the medium inhomogeneity scale, ω the wave frequency, and c

the speed of light. The amplitude vector a and the complex eikonal s̄ are functions of

position r. The phase of the wave s̄ (r) = s (r)+iφ (r) includes a real part, which has

the same meaning as in the geometrical optics, and an imaginary part (attenuation

function φ ≥ 0) connected with the description of the Gaussian field profile, in other

words, with the transverse (with respect to the propagation direction) structure of

the wave beam.

The underlying idea of the beam tracing method is that a wave beam is localized

in the space around some axis, where the amplitude reaches its maximum, and, far

away from the axis, the wave field is negligible. It is hence useless to know the

wave field everywhere in space with the same accuracy, and Taylor expansion of the

(complex) phase of the wave around the beam axis can be performed.

s (r) = sα (τ) [xα − qα (τ)] +
1

2
sαβ (τ) [xα − qα (τ)]

[
xβ − qβ (τ)

]

φ (r) =
1

2
φαβ (τ) [xα − qα (τ)]

[
xβ − qβ (τ)

]

As in the geometrical optics, the short-wavelength limit condition equation (4.2) is

supposed to hold. In addition, it is assumed that the beam width is ordered such

that λ ¿ Λ ¿ L (this is the case of typical experimental set-up). As was mentioned

before, the diffraction effects become significant just in this limit.

The beam tracing equations are obtained by substituting equation (4.1) into the

Maxwell’s equation

∇× (∇× E)− ω2

c2
ε̂E = 0 (4.3)

where ∇ = ∂/∂x, {x} = {r/L} being a dimensionless laboratory, and ε̂ is the

dielectric tensor. Similar to the geometrical optics, the case of weak absorbtion

is considered and the dielectric tensor is considered in the form ε̂ = ε̂H + ik−1ε̂A

with ε̂H and iε̂A being the Hermitian and an anti-Hermitian part respectively. Such

representation artificially attributes the anti-Hermitian component to the second

order of magnitude. From this substitution, a hierarchy of equation is obtained by

grouping together terms containing the same power of k and equating them with

zero. This gives in the lower and in the first order

ˆ̄La = 0 (4.4)

ˆ̄Lc + ˆ̄M [a] + ε̂Aa = 0 (4.5)
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where the algebraic operator

ˆ̄Le
def
= (∇s̄ · ∇s̄) e−∇s̄ (∇s̄ · e)− ε̂He (4.6)

and the differential operator

ˆ̄M [e]
def
= −∇× (∇s× e)−∇s× (∇× e) (4.7)

are introduced. The obtained set of equations (4.4)-(4.5) is a linear algebraic system

with respect to the unknown vectors a and c.

4.2.2 Solvability condition

The solvability condition for equations (4.4) is

H̄
def
= det

[
ˆ̄L
]

= 0. (4.8)

It is useful to introduce the following notations:

L̂e
def
= (∇s · ∇s) e−∇s (∇s · e)− ε̂He, H

def
= det

[
L̂

]
= 0 (4.9)

where s is real, L̂ is Hermitian and hence H is real. As is known, a real curve given

by a set of equations
dx

dτ
=

∂H

∂ (∇s)
,

d (∇s)

dτ
= −∂H

∂x
(4.10)

provides a solution to the equation H (∇s,x) = 0. If φ ≡ 0 then equation(4.8)

is obviously satisfied along any solution of equations (4.10), while equation (4.1)

is reduced to the conventional ray tracing. In what follows, we seek solution of

the equation (4.8) with φ 6= 0, but assume that, in the same point x0, φ (x0) =

0. We take a solution of the equation (4.10) passing through the point x0. This

characteristic will be called the reference ray and denoted by <.

The function φ, describing the Gaussian beam profile, is assumed now to have

the form:

φ =
1

2
ρij (τ) wiwj (4.11)

Here and below, Einstein’s summation is adopted and it is assumed that Latin

indices take the values 1,2 and Greek indices values 1,2,3. A new reference frame,

the ray coordinates system {τ (x) , w1 (x) , w2 (x)} can be introduced. We define it

by requiring that wj (x) |<= 0. The coordinate τ is a parameter along the reference
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ray. It can be assumed τ = τ (s) and s = s (τ). The coordinate curve given by the

equation w1 (x) = w2 (x) = 0 coincides with the reference ray < and the relation

∇φ |<= 0 (4.12)

is valid. It is immediately seen that, along the ray <, ∇s̄ = ∇s and, therefore,

H̄ = H. It follows that equation (4.8) is satisfied along the reference ray.

The quadratic form equation (4.11) is supposed to be positive definite, i.e, φ = 0

if and only if w1 = w2 = 0. The function e−kφ has its maximum on <, so that

constitutes the ”backbone” of the wave beam. It can be shown that

(
w1

)m (
w2

)n
e(−1/2)kρij(s)w

iwj

= O (
k−(m+n)/2

)
(4.13)

This means that in expanding any function containing the factor exp (−kφ) in powers

of wi around w1 = w2 = 0 only a few terms have to be retained, because the

increasing in the power of wi is equivalent to the transition to terms of higher order

in 1/
√

k. According to this, the ordering in half-integer powers of 1/k implied by

equation equation (4.13) is employed to perform an expansion (paraxial expansion)

of equation (4.8) around <.

An important remark has to be made here. After substitution of equation (4.1)

in equation (4.3), those terms that contain the factor k2 lead to equation (4.4) from

which the beam tracing equation can be derived. From the terms containing the

factor k, equation (4.5) results and it will be use to obtain the amplitude transport

equation in the beam tracing approach.

It follows then that equation(4.4) has to be fulfilled with an accuracy of O(k).

This means that is sufficient to replace equation (4.8) with H̄ = O(k), which in turn

is equivalent to

H̄ |<= 0 (4.14)

∂H̄

∂wi
|<= 0 (4.15)

∂2H̄

∂wi∂wj
|<= 0 (4.16)

In order to achieve more compact equations, the following notation is introduced.

The differentiation in respect to xα is denoted by the Greek subscripts:

s̄α
def
=

∂s̄

∂xα

, s̄αβ
def
=

∂2s̄

∂xα∂xβ

(4.17)
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while the total derivation in respect with xα is indicated by the symbol ∂α, so that

for any function f = f (s̄β (xα) , xα),

∂αf
def
=

∂f

∂xα

+
∂f

∂s̄β

s̄αβ (4.18)

From the relations

∂αf = wi
α

∂f

∂wi
+ τα

∂f

∂τ
,

∂f

∂τ
|<=

d

dτ
[f |<] (4.19)

along with equation(4.14), it follows

∂αH̄ |<=

(
wi

α

∂H̄

∂wi

)
|<, (4.20)

∂αβH̄ |<=

(
wi

αwj
β

∂2H̄

∂wi∂wj

)
|<, (4.21)

Equations (4.14)-(4.16) then read

H̄ |<= 0 (4.22)

∂αH̄ |<= 0 (4.23)

∂αβH̄ |<= 0 (4.24)

It is understood from now on that all the quantities in the following equations have

to be calculated on <. It has to be remarked that in the derivation equations

(4.22)-(4.24) are a consequence of the paraxial expansion of equation (4.8) around

the reference ray, or in the other words, of the ordering implied by equation (4.12).

From the previous relations, one can derive a set of ordinary differential equations

(beam tracing equations). Equations (4.22) and (4.23) give the equations for the

reference ray <.

dqα

dτ
=

∂H

∂sα

,
dsα

dτ
= − ∂H

∂xα
(4.25)

It has to be underline once again that on < one has s̄ = s and H̄ = H: this explain

the notation of equation (4.24).

Equation (4.24) can be explicitly written as

ds̄αβ

dτ
+

∂2H

∂xα∂xβ
+

∂2H

∂xβ∂sγ

s̄αγ +
∂2H

∂xα∂sγ

s̄βγ +
∂2H

∂sγ∂sδ

s̄αγ s̄βδ = 0 (4.26)
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The real part of this complex unknown sαβ is related with the curvature of the phase

front, while the imaginary part φαβ = ρikw
i
αwj

β describes the beam profile. Equation

(4.26) can be split into two real equations,

dsαβ

dτ
+

∂2H

∂xα∂xβ
+

∂2H

∂xβ∂sγ

sαγ +
∂2H

∂xα∂sγ

sβγ +
∂2H

∂sγ∂sδ

sαγsβδ =
∂2H

∂sγ∂sδ

φαγφβδ (4.27)

and

dφαβ

dτ
+

(
∂2H

∂xα∂sγ

+
∂2H

∂sγ∂sδ

sαδ

)
φβγ +

(
∂2H

∂xβ∂sγ

+
∂2H

∂sγ∂sδ

sβδ

)
φαγ = 0 (4.28)

An important remark is that the set of equations (4.27) and (4.28) formally includes

nine equations for sαβ and nine for φαβ but they are not independent: the symmetry

of sαβ and φαβ and the six constrains

sαβ
dxβ

dτ
+

∂H

∂xα
= 0 (4.29)

φαβ
dxβ

dτ
= 0 (4.30)

have to be taken into account. The first of these two equations is a consequence of

the second equation (4.25) and the second one comes from

∂wi

∂τ
= 0 = wi

α

∂H

∂sα

(4.31)

4.2.3 Equation for the wave amplitude

The only quantity not defined yet in equation (4.1) is a(r) = A(r)e, with e? · e = 1.

A(r) is the wave amplitude and e is the polarization vector. We find the wave

amplitude A(r) from a solvability condition for equation (4.5) in respect with the

unknown vector c. To find the solvability condition for the equation (4.5) Fredholm

alternative is applied.

This yields

e?
{

M̂ [a] + ε̂Aa
}

= e?M̂ [Ae] + Ae?ε̂Ae = 0 (4.32)

Using equation(4.7) one obtains

e?M̂ [Ae] = Ae?M̂ [e] + V · ∇A, (4.33)
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where the contravariant components of vector Vare given by

V α = e?Lαe = e? ∂L

∂sα
e =

∂H

∂sα
(4.34)

The last relation in equation (4.34) follows from the equation L̂αe + L̂eα = Hαe +

Heα, which by virtue of e? · e = 1 gives the identity

e?L̂αe = −e?L̂eα + Hαe? · e + He? · eα = Hα − e?Heα + e?L̂eα = Hα (4.35)

The equation for wave amplitude A(r) now reads

V · ∇A + A
{
e?M̂ [e] + γ

}
= 0 (4.36)

with γ determined by

γ = e?εAe. (4.37)

It is important to mention here that equations (4.32) and (4.36), are evaluated on

the reference ray < only. The equation (4.36), including the unknown function A,

depend on the single variable τ . Making use of equation (4.25), we write equation

(4.36) in the form
dA

dτ
+ A

{
e?M̂ [e] + γ

}
= 0 (4.38)

Another form of the equation(4.38) can be obtained by employing the property

e?M̂ [e] + eM̂ [e?] = ∇ ·V (4.39)

which can be proved by direct calculation. Combining equation (4.38) with its

complex conjugate, one obtain the differential equation for the wave amplitude

d | A |2
dτ

+ | A |2 ∇ ·V = −2γ | A |2 (4.40)

For numerical calculation, it could be useful to represent ∇ · V, making use of

identity (4.2.34), which on the reference ray gives

∇ ·V =
1√
g

∂

∂xα

(√
g
∂H

∂sα

)
=

1√
g

d
√

g

dτ
+

∂2H

∂qα∂kα

+
∂2H

∂kα∂kα

Kαβ (4.41)

with
√

g being the Jacobian of transformation from the Cartesian coordinates to the

curvilinear coordinates {xα}.
Represented in the form associated with the energy conservation low, equation(4.40)

becomes

∇ · (| A |2 V
)

= −2γ | A |2 . (4.42)
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4.3 Ballooning Representation (BR)

4.3.1 Description of the method

From studies of simple configurations it has been known that some of the most

persistent instabilities, in the investigation of the stability of a plasma confined by

magnetic fields, are those with long wave length parallel to the magnetic field and

short wave length perpendicular to it. (These characteristics minimize the stabilizing

influence of the magnetic field). However, in toroidal magnetic field with shear (that

is when the rotational transform varies from surface to surface) those characteristics

conflict with the requirement that the perturbation be periodic in both toroidal and

poloidal directions. The first problem in the investigation of stability was therefore

that of reconciling long parallel wavelength, short perpendicular wave length and

periodicity. One successful attempt for solving the periodicity difficulty was dealt

with by using the ”ballooning representation” method, described by Connor, Hastie

and Taylor [83] and it was further developed by Dewar and Glasser for application

to three-dimensional geometry .

In any axisymmetric system the calculation of linear drift wave eigenmodes can be

reduced (after Fourier transform decomposition ∼ einζ , ζ is the angle around the

symmetry axis) to a two dimensional eigenvalue problem

L(ϑ, x)φ(ϑ, x) = λφ(ϑ, x) (4.43)

where ϑ represents the poloidal angle and x is the flux surface coordinate. The

operator L is periodic in ϑ, 0 ≤ ϑ ≤ 2π and φ must be periodic in ϑ and bounded

in x.

Since drift waves are characterized by short perpendicular and long parallel wave-

lengths, a natural representation for the perturbed quantities would be in an eikonal

form

φ(ϑ, x) = F (ϑ, x)einS(ϑ,x) (4.44)

with the toroidal mode number nÀ1 and both F (ϑ, x) and S(ϑ, x) varying on the

equilibrium scale. The long parallel wavelength requires ~B · ∇(ζ + S) = 0, but

such a representation violates the periodicity constraints in the poloidal direction ϑ.

Therefore, it was introduced the transformation

φ(ϑ, x) = Σme−imϑ

∫ ∞

−∞
eimηφ̂(η, x)dη (4.45)
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By direct substitution of the transformation (4.45) in (4.43) it can be seen that any

φ̂(η, x) which is a solution of

L(ϑ, x)φ̂(ϑ, x) = λφ̂(ϑ, x) (4.46)

in the infinite domain −∞ < η < +∞ will generate a periodic solution φ(ϑ, x)

of (4.43) with the same eigenvalue. Actually, all the relevant periodic solutions of

(4.43) can be obtained from the eigenfuntions of (4.46).

This takes the problem from the periodic domain 0 ≤ ϑ ≤ 2π into the infinite

domain −∞ < η < +∞, with the same eigenvalue. The operator for this problem is

the same with that in the real problem so that properties such as short perpendicular

and long parallel wavelength retain their importance. The point of the transforma-

tion is that, because it does not have to be periodic, φ̂(η, x) (unlike φ(ϑ,x)) can be

represented in an eikonal form F (η, x)einS with the amplitude F (η, x) slowly vary-

ing compared to the phase function. The amplitude F (η, x) can be calculated as an

expansion in power of 1/n. The lowest order of the expansion F satisfies an ordinary

differential equation in the η coordinate alone while variation of F with x is deter-

mined by higher order equation. In lowest order the oscillations of each magnetic

surface are decoupled and a local eigenvalue is obtained. The lowest order theory

therefore defines a local oscillation frequency and fixes the structure of the mode

along the magnetic field. The lowest order theory does not determine the structure

of the mode transverse to the magnetic surfaces. This transverse structure, and the

relation of the local oscillation frequency to the true frequency, are determined in

higher orders of the expansion. This higher order theory shows that unstable modes

are localized in the vicinity of the surface with the smallest local eigenvalue, that

the true eigenvalue is close to the lowest local eigenvalue and that the most unstable

high n modes occur for n −→∞.

Although the higher order theory is necessary to complete the solution, this solu-

tion itself can be expressed entirely in terms of quantities calculated from the lower

order theory. Consequently the lowest order theory alone is sufficient to determine

the stability.

The ballooning transformation was initially developed for calculation of magneto

hydrodynamic ballooning modes, being later applied also to the drift modes.
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4.3.2 Relation of pWKB with the Ballooning Representa-
tion

The pWKB and ballooning representation solutions, even if they are different in

some respect, they have many similar features. This similarity has fundamental

basis. Both approaches search for the same solution in form of asymptotic expansion

with respect of the same parameter (λ/L)−1/2. Therefore they would coincide if

they didn’t use additional simplifications. Actually, the coincidence is not complete

because both technics are aimed to deal with ordinary differential equations, but in

order to achieve this goal, they omit different terms. The ballooning representation

discard any radial variation in plasma parameters in the leading order. In the higher

order, BR allows for a radial dependence ([84], [83]), but it is treated as a correction

of order 1/n. The pWKB method is free of this assumption, but it has restriction

due to the paraxial expansion.

A common simplified reduction of the BR approach, which allows one to treat

equations similar with equation (4.4) analytically, is the so called strong ballooning

limit ([84], [85]). This simplification is equivalent with the paraxial expansion in the

variable ϑ. In this limit, if there is no radial dependence both approaches coincide.

In the presence of a radial dependence, BR fails, while pWKB nevertheless provides

a solution.

The higher orders of the BR scale the radial dependence of the wave field as 1/n.

It is also good to mention here that this assumption is much more restrictive then

the paraxial assumption, which requires slow variation of the equilibrium medium

parameters rather than the perturbed wave field.

In particular, scaling radial field dependence as 1/n, limits the BR to the case

k̄ρ=0. (Here k̄ρ is understood as an average radial wave number of a mode.) A

physical requirement is a vanishing radial component of the group velocity vgr,ρ=0,

rather then of the phase velocity kρ=0. If vgr,ρ=0 occurs at kρ 6= 0, then such a mode

can not be properly described by BR technique. The BR presumes k|| = O(n−1/2)

and can therefore describe the eigenmodes with k|| ≈ 0.

In comparison, pWKB does not involve any preliminary assumption concerning

the wave number of the solution. The proper field dependence is obtained here as

a result of a standard procedure. Moreover, the pWKB technique allows arbitrary

spatial dependence (although slow enough). It can be applied directly to the general

dispersion relation without any other simplification. pWKB fails is the plasma

parameters vary to much on the width of the eigenmode. As a conclusion the two
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approaches are complementary. Depending on the problem under consideration,

one technique is more suitable than the other and should be used for the stability

analysis.

4.4 Our Model

In Chapter 2 we have already introduced the ion temperature gradient (ITG) tur-

bulence which is driven by density and temperature gradients. The mechanism that

leads to ITG turbulence and one dispersion relation that describes it has been al-

ready introduced there. The dispersion relation derived in chapter 2 neglects an

essential term, the term which includes the wave vector in the parallel direction k||.

In this section we solve again the wave equation for ITG mode, this time consider-

ing also k||. The paraxial WKB or beam tracing method is used for this purpose.

As it was already stressed, the beam tracing method has much larger applicability

because it takes into account the wave phenomena not described by some other

technics. Also, it reduces the full wave equation to a set of ordinary differential

equations allowing efficient numerical methods.

4.4.1 Description of BT application to eigenmodes, stability
analysis

In our case the beam tracing method is applied to the problem of plasma stability,

an eigenvalue problem. This means that we face a boundary value problem.

A necessary condition to construct an eigenmode of a plasma resonator is the

existence of a closed ray trajectory. All the trajectories passing through a selected

point r0 with the coordinates r0 = {qα
0 } are considered. After a nonzero path in

the medium, some of the trajectory return to the same point, obtaining in this way

a closed ray. In the beam tracing method the eigenfunctions are constructed as

patterns located in the vicinity of the closed ray trajectory.

Only stable trajectories give rise to eigenmodes. So that, we are interested only

in those trajectories which, in the course of further propagation will repeat the

same path as at the first loop. This requires that the ray in question starts at point

qα(τ0) = qα
0 with the wave vector k0 = {kβ(τ0)} such that

D(r0,k0, ω0) = 0 (4.47)

and arrives at the same point with the same set of six quantities:

qα(τ1) = qα(τ0), kα(τ1) = kα(τ0) (4.48)
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with τ1 6= τ0. Similar condition can be imposed on the quantities

s̄αβ(τ1) = s̄αβ(τ0) (4.49)

and on the amplitude function

|A(τ1)| = |A(τ0)|. (4.50)

If the last three equations, (4.48-4.50) are fulfilled then the wave amplitude |Φ(r)| in
the vicinity of point r0 is exactly the same, regardless of whether it is calculated at

τ = τ0 or at τ = τ1. The loop along the closed trajectory can be repeated arbitrary

many times as long as the quantities qα, kα, s̄αβ, |A| satisfy the first order differential

equation. Additionally, in order to make the phase Φ of the field single value, we

require also

Φ(r)|r={qα(τ1)} = eis0(τ1)+is̃(τ1)Φ(r)|r={qα(τ0)} (4.51)

Considering the correction s̃(τ1) = O(λ/L) small one obtain the quantization con-

dition

s0(τ1) =

∫ τ

0

kα
∂D

∂kα

dτ = 2πn (4.52)

where n À 1 is an integer number.

These equations show that the eigenmodes are localized in a small vicinity of

the closed ray trajectory, which is called also the reference ray or the basis contour.

The electric field decay exponentially, while the differences from the basis contour

increases. The decay is due to the positive definiteness of the quadratic form φ.

If the length of the decay is shorter than the distance from the basis contour to

the resonator boundary, the boundary influence is exponentially small and can be

neglected. No further boundary condition is needed in this case.

Because we are interested in the stability of eigenmodes in a toroidal device, the

eigenmode can be thought of as a wave propagating in the toroidal direction. The

eigenmode axis is purely toroidal while the mode amplitude exponentially decays

both in radial and poloidal directions. The wave interaction with the plasma defines

whether such a mode absorbs or releases energy.

4.4.2 Formulation of the problem

In order to proceed with our calculation the first thing to do is to write the set

of equations that describes the ITG in a more convenient form for us. In fluid

description, as we have already seen in the second chapter, the basic set of equations
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necessary to describe the ITG turbulence consists of the ion continuity (2.32) and

energy equations (2.34). Because we want to get a more complete description of

the ITG mode, we are not going to do any simplification of the equations, so that

deriving our beam tracing equations the term containing the parallel velocity is

going to be kept in the continuity equation. After replacing equations (B.5) in the

continuity equation (2.32) and the ion heat flux given by equation (2.35) in the

energy equation (2.34) we get

• Continuity equation:

Ĉ11
eφ

T0

+ Ĉ12
p̃i

p0

+
ñi

n0

n0

ni

= 0 (4.53)

• Energy equation:

Ĉ21
eφ

T0

− Tin0

T0ni

ñi

n0

+ Ĉ24
T̃i

T0

= 0 (4.54)

where the differential operators Ĉ11, Ĉ12, Ĉ21 and Ĉ24 are written explicitly

• Ĉ11 = { − i
ω
~v?0 · ∇+ i

ω
~vD0 · ∇ − 1

ni
∇⊥ ·

[
c20ni

ω2
ci
∇⊥

]
+

c20
ω2∇2

|| }

• Ĉ12 = n0

ni
{ i

ω
~vD0 · ∇ −∇⊥ ·

[
c20
ω2

ci
∇⊥

]
+

c20
ω2∇2

|| }

• Ĉ21 = −3
2

i
ω

Ti

T0

[
ηi − 2

3

]
~v?0 · ∇, Ĉ24 =

(
3
2

+ 5i
2ω

~vDi · ∇
)

Here c0, ρ0, ~vD0, ~vDi, ~v?0, have been all introduced explicitly in the appendix B,

equation (B.4).

In comparison with Chapter 2 where Boltzmann electrons were considered, here

the perturbed density is approximated by non-adiabatic trapped electron response

that we write as

• non-adiabatic behaviour:

T0

Te

(1− iδ)
eφ

T0

− n0

ni

ñi

n0

= 0 (4.55)

iδ = iε3/2(ω?eηe/νei) with νei being the electron-ion Coulomb collision frequency.

We write also

• pressure perturbation:
p̃i

p0

− Ti

T0

ñi

n0

− ni

n0

T̃i

T0

= 0 (4.56)
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In the above set of equations p0 = n0T0, n0 = const and T0 = const were introduced

to make the calculations simpler.

Defining the dimensionless perturbations

φ̂ =
eφ

T0

, p̂i =
p̃i

p0

, n̂i =
ñi

n0

, T̂i =
T̃i

T0

,

the present set of equations (4.53-4.56) can be regarded as a homogeneous set of

four differential equations for four unknowns, φ̂, p̂i, n̂i, T̂i. In the matrix form the

wave equation that describe the ITG turbulence reads as:




Ĉ11 Ĉ12
n0

ni
0

Ĉ21 0 −n0

ni
Ĉ24

0 T0n0

Tini
−n0

ni
−T0

Ti
T0

Te
0 −n0

ni
0







φ̂

p̂i

n̂i

T̂i


 = 0 (4.57)

The equation (4.57) is equivalent with the equation (4.3) from the general descrip-

tion of the pWKB approximation. In what follows, the technique described in the

beginning of this chapter, the paraxial WKB approximation, is applied in order to

reduce the equation (4.57) to a set of ordinary differential equations.

4.4.3 Beam tracing equations in case of ITG mode

We choose the solution of equation (4.57) in the form




φ̂

p̂i

n̂i

T̂i


 = eikS




X1︷ ︸︸ ︷


φ1

p1

n1

T1


 − i

k

X2︷ ︸︸ ︷


φ2

p2

n2

T2







(4.58)

where k is the pWKB expansion parameter. On substitution of equation (4.58) in

equation (4.57), one obtains

LX1 − i

k
LX2 − i

k
MX1 = 0 (4.59)

If we define ~k(~r, t) = ∇S the two matrices, L and M, in the equation (4.59) are

written as
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L =




(
~K + ~K? − ~KD

)
· ~κ n0

ni

(
~K − ~KD

)
· ~κ n0/ni 0

(
3
2
ηi − 1

)
~K?0 · ~κ 0 −n0/ni

T0

Ti

(
3
2
− 5

2
~KDi · ~κ

)

0 T0n0/Tini −n0/ni −T0/Ti

T0/Te 0 −n0/ni 0




.

(4.60)

with

~κ =
c0

~k

ω
, ~K =

ω2

ω2
ci

~κ⊥ − ~κ||, ~KD =
~vD0

c0

, ~KDi =
~vDi

c0

, ~K? =
~v?0

c0

M =

(
∂L
∂~k

· ∇
)

+
c0

ω

(
∇ · ~K

)



1 n0

ni
0 0

0 0 0 0

0 0 0 0

0 0 0 0


 +




c0
ω

~K · ∇ni

ni
0 0 0

0 0 0 0

0 0 0 0

−δ T0

Te
0 0 0




(4.61)

The equation (4.59) is fulfilled with an accuracy of O(k−3/2) if coefficients at

higher powers of k are equated with zero.

LX1 = 0 (4.62)

LX2 +MX1 = 0 (4.63)

As it could be noticed the equation (4.62) is an algebraic while the equation (4.63)

is still a differential equation. A solution of the linear algebraic system (4.62) is

determined to within a coefficient A and it is sought in the form

X1︷ ︸︸ ︷


φ1

p1

n1

T1


= A

e︷ ︸︸ ︷


φ̄0

p̄0

n̄0

T̄0


, (4.64)

where the vector e obeys the normalization condition (e? · e)|< = 1.

Because of the axial symmetry, the toroidal wave number kζ = ∂s/∂ζ = n =

const. The equilibrium quantities ni(a), Ti(a), Te(a) are all function only of the

minor radius a.
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The ray equation

The equation Le = 0 has non-zero solution if and only if det(L)=0. This writes

D = det(L) =
(Ω− 1) (Ω + 2αh0)

Ω(1 + 1
τ
) + ηi+1

τ
+ 2αh0(1 + 1

τ
) + 2Ω

3τ
− α

+ 2h0 + ρ2
sk

2
⊥Ω− c2

s

ω2
?e

k2
||

Ω
= 0

(4.65)

Ω =
ω

ω?e

, α =
5

3τ
, h0 = Ln

k̃z

k̃ϑ

,

where k|| and k⊥ are parallel and perpendicular components of the wave vector; ω?e,

k̃z and k̃ϑ are given in equations (B.5-B.7), appendix B. The above equation has

to be evaluated on the reference ray and is solved together with the ray tracing

equations
∂D
∂a

=
∂D
∂ϑ

=
∂D
∂ka

=
∂D
∂kϑ

= 0. (4.66)

The set of five equations (4.65-4.66) defines five unknowns, ā, ϑ̄, k̄a, k̄ϑ, ω, which

describe a toroidally closed ray trajectory. The coordinates
{
ā, ϑ̄

}
, defining the

radial and poloidal position of the closed toroidally symmetric ray trajectory, are

found from the first two equations in set (4.66). The corresponding wave vectors{
k̄a, k̄ϑ

}
are determined by the two remaining equations of (4.66), and the frequency

ω by the dispersion relation (4.65). One assumption of the beam tracing method is

small increment Im ω ¿ Re ω, so that ω is considered real from now on. Even if

in reality this is not so, we can do this assumption because from the experiments

done in plasma core it was noticed that the values of the particle and heat transport

coefficients above the threshold are not so large in comparison with the threshold

values.

The equations (4.65-4.66) give only the necessary condition for the existence

of an eigenmode. For a conclusive judgement on the mode existence and stability

one has to consider higher order equations (4.27-4.28) which after the solution of

equations (4.65-4.66) read as

F1 (Ψ) = Daa + 2Da
aΨaa + 2Dϑ

aΨaϑ +Daa (Ψaa)
2 + 2DaϑΨaaΨaϑ +Dϑϑ (Ψaϑ)

2 = 0.

F2 (Ψ) = Daϑ +Da
ϑΨaa +

(Da
a +Dϑ

ϑ

)
Ψaϑ +Dϑ

aΨϑϑ +DaaΨaaΨaϑ +Daϑ (Ψaϑ)
2

+DϑϑΨaϑΨϑϑ +DaϑΨaaΨϑϑ = 0 (4.67)

F3 (Ψ) = Dϑϑ + 2Dϑ
ϑΨϑϑ + 2Da

ϑΨaϑ +Daa (Ψaϑ)2 + 2DaϑΨaϑΨϑϑ +Dϑϑ (Ψϑϑ)
2 = 0.
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Ψαβ = Kαβ + iφαβ, where α, β=a, ϑ. Kαβ and φαβ describe the curvature of the

wave front and the width of the wave packet, respectively.

Dα =
∂D
∂qα

, Dα =
∂D
∂kα

, Dαβ =
∂2D

∂qα∂qβ
,Dβ

α =
∂2D

∂qα∂kβ

, Dαβ =
∂2D

∂kα∂kβ

There are more possible solutions for the above set of equations.

Once a closed ray trajectory (a solution to equations (4.65-4.66)) is found, the

question arises whether this closed ray trajectory is related to an eigenmode and, if

so, whether this eigenmode is stable or not. First, not any arbitrary closed ray can

lead to an eigenmode. A necessary condition for this is the stability of the closed

ray trajectory, which is equivalent with: the quadratic form φαβ = Im Ψαβ must be

positive definite. Second, as follows from the equation of energy conservation, the

marginally stable mode can exits if the medium under consideration provides the

necessary sink or source of energy.

With the solution of the system (4.67), the set of beam tracing equations is com-

pleted. The equations (4.65-4.66) represent a set of first-order algebraic equations.

To this end, note that all terms in equation (4.67) are evaluated on the reference

ray only. Therefore, all the partial derivative of D, as well a the functions Ψαβ, are

taken at a = ā(τ) which depends only on the argument τ .

Equation for the wave amplitude

The last step to be done in our calculation is to determine the wave amplitude A,

which is the factor that appears in front of the polarization vectors e in equation

(4.64). By applying Fredholm alternative the solvability condition for the equation

(4.63) is

X?
1 · M [X1] = 0 or X1 · M? [X?

1 ] = 0 (4.68)

where the symbol ” ? ” denotes the complex conjugate. Reminding that X1 = Ae

and adding the two relations in equations (4.68), we are going to find a relation for

the amplitude of the wave in the form

X?
1 · M [X1] + X1 · M? [X?

1 ] = (A?e?M∇ [A] e + AeM?
∇ [A?] e?)+

A?A (e?M∇ [e] + eM?
∇ [e?]) + A?A

(
e?M̃e + eM̃?e?

)
(4.69)

We have to remind the reader that the equation (4.69) has to be evaluated only on

the reference ray <. This means that the terms in equation (4.69), including the
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unknown function A, depend on the single variable τ . Evaluating all the terms in

the above equation, we get another form of transport equation.

d

dτ
|A|2 + γ|A|2 = 0

γ = { Da
a +Dϑ

ϑ +DaaKaa + 2DaϑKaϑ +DϑϑKϑϑ − 2δ
T0

Te

Φ̄0T̄0−

2
c2
0

ω2
ci

1

Ln

(
kag

aa + kϑg
aϑ

) [
Φ̄2

0 +
n0

ni

Φ̄0p̄0

]
+ 2

n0

ni

c2
0

ωωci

1

Ln

B̃√
g
Φ̄0p̄0 + 5

c2
0

ωωci

1

LTi

B̃√
g
p̄0T̄0

−2
c2
0

ωωci

[
Φ̄2

0 +
n0

ni

Φ̄0p̄0

]
C̃+2

c2
0

ωωci

1

Ln

[
Φ̄2

0 +

(
3

2
ηi − 1

)
Φ̄0p̄0

]
D̃−5p̄0T̄0

c2
0

ωωci

C̃ } = 0

(4.70)

where gαβ (α, β=a, ϑ) are the components of the fundamental contravariant funda-

mental tensor, g is the inverse of the determinant of the matrix gαβ, Ã = ∂aR and

B̃ = ∂θR, all these quantities are given explicitly in appendix B;

C̃ =

(
−ÃaR∂ϑd + B̃Rd + B̃aR∂ad

)

(aRd)2 , D̃ =
B̃d + R∂ϑd

aRd2
,

4.4.4 ITG eigenmodes in a rotating tokamak plasma

Experimental and theoretical investigation in the last decade have shown the im-

portance of plasma rotation in the confinement of tokamak plasma. Both poloidal

and toroidal plasma rotations have been observed in various tokamaks. Usually the

poloidal plasma rotation is associated with the ~E× ~B drift, induced by a strong inho-

mogeneous radial electric field Er whereas the toroidal plasma rotation is attributed

to external sources.

In the theory of ITG mode, effects of toroidal [86]-[88] and poloidal [89]-[91]

rotation was first introduced separately and then together [92]-[95] in a shear slab

geometry. The effects of flow were found to be rather subtle, being stabilizing in some

parameter ranges and destabilizing in others. However, for fairly strong toroidal and

poloidal flow shear there is a general tend of stabilization. The effects of velocity

curvature and magnetic field curvature were later realized to be very important.

The toroidal magnetic field curvature has been taken fully into account in nonlinear

simulation of ITG mode turbulence using the strong ballooning approximation and

both poloidal and toroidal flows in a kinetic model [88]. However in [88], the effect of

flow shear has been implemented in a rather heuristic way in simulations by making
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the substitution γL → γL − γE, where γL is the linear growth rate in the absence of

flow shear and γE is the shearing rate. Thus complete stabilization is expected is

γE ≥ γLmax

In [96] has been shown that the linear effects may be sufficient for an effective

stabilization of the ITG mode reactive instability in the presence of shear plasma

poloidal and toroidal rotation. In contrast to the ordinary drift mode for which a

velocity curvature of the poloidal rotation is a decisive stabilization factor, for a

reactively unstable ITG mode a velocity shear becomes more important.

Due to their importance, the poloidal and toroidal rotations have been included

also in our ITG fluid model. The difference with the previous calculation done in

the beginning of this section, is that now the total ion velocity writes as:

~v = ~v0 + ~vi

where ~v0 = v0ϑ∇a × ∇ζ + v0ζ∇ζ is the background plasma velocity flow and ~vi is

the perturbed velocity considered already in our calculations. By introducing the

background velocity component in our fluid model, the partial derivative in respect

with the time from the fluid ∂/∂t is replaced by ∂/∂t + ~v0 · ~k. The fluid equations

that describe the ITG mode when the background velocity flow is considered are

given in the appendix.

The dispersion relation results in:

(Ω− ~v0·~k
ω?e

− 1)(Ω− ~v0·~k
ω?e

+ 5
3

2h0

τ
)

(Ω− ~v0·~k
ω?e

)(1 + 1
τ
) + ηi+1

τ
+ 2αh0(1 + 1

τ
)− α + 2Ω

3τ

+ 2h0+

ρ2
sk

2
⊥(Ω− ~v0 · ~k

ω?e

)−
(

cek||
ω?e

)2
1

(Ω− ~v0·~k
ω?e

)
+

cek||ρs

ω?e

(~e|| ×∇v||0) · ~k
(Ω− ~v0·~k

ω?e
)

= 0 (4.71)

As could be noticed from equation 4.71 in the absence of plasma rotation the dis-

persion relation for the ITG mode in the pWKB approximation is given by equation

4.65.

4.5 Summary

In order to solve the wave equation in the short wavelength limit different asymp-

totic approaches have been used. One of the most famous technique is the WKB
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method. A modification of the WKB approach, the paraxial WKB or the beam

tracing method (BT), is introduced in this chapter. In pWKB approach the plasma

microinstabilities can be thought as waves propagating in the toroidal direction,

while the interaction with the a plasma defines whether such a wave absorbs or

release energy. The pWKB is closely related with the ballooning representation be-

cause both of them use the same asymptotic expansion. This method can provide

solution in many cases of interest where the BR fails.

The pWKB technique has been employed to formulate the model of the toroidal

ion temperature gradient driven instability. Calculations including plasma rotations

have been also performed. The resulting equation are obtained in a fluid limit, the

parallel ion dynamics being also included.
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Chapter 5

Results and discussions

In the previous chapter we have introduced the paraxial WKB approximation method

and we have found the set of ordinary differential equations that have to be solved

in case of ITG turbulence. As discussed in the previous chapter, three successive

steps have to be done in order to find the short-wavelength eigenmodes.

• finding the closed ray trajectory, equations (4.65-4.66).

• assessment of its stability by solving equation (4.67).

• evolution of the growth rate, equation (4.70).

Because of the quite complicated dependence of the BT equations (4.65, 4.66,

4.67) on the coordinates and on wave vectors, the solutions of these equations in a

general tokamak geometry requires a numerical treatment. This can be performed

in a straightforward way, since we have to do with a set of algebraic equations, as

already stressed. The code which solves the set of BT equation (4.65, 4.66, 4.67) is

written in C programming language. The iterative Newton method is used to solve

the systems of BT equations.

The beam tracing equations are solved for plasma parameters of ASDEX-Upgrade

tokamak. Typical values are R0 = 1.65 m, aM = 0.50 m, B0 = 3.0 T.

5.1 ITG mode

The dependence of the growth rate and the real frequency, which describe the ITG

turbulence, on different parameters has been already studied by many other authors.

To validate the results of our calculations different scans are carried out, similar

with those computed with some other fluid codes. We are going to observe the

85



common features of different results and to underline what BT model brings new.

One model used for our comparison is that of Guo & Weiland [85]. As have

been already mentioned in chapter 3, Weiland model is one of the most popular in

transport modelling. Therefore, comparison with it and studying its limitation is

needed.

In order to do easier the comparison between our model and Guo & Weiland, is

useful to overview briefly their features.

First of all, we emphasize that the both approaches employ two essential assump-

tions: (i) wavelength and (ii) eigenmode width are smaller in comparison with all

plasma parameters inhomogeneity lengths. The former one follows from inequality

ωci/ω À 1 and is always fulfilled with a large margin. The second is more restric-

tive. First, it implies that the radial mode extension is small in comparison with the

radial inhomogeneity length. This is usual well justified. Second, the mode should

be poloidally localized so that its angular size is smaller than π. This limit is called

”strong ballooning approximation” [Weiland]. If this is not true, then the results

discussed in this section are inapplicable.

The validity of the strong ballooning approximation can be checked in both

approaches compared below. The beam tracing provides an evaluation of the mode

width as part of the solution and thus enables the validation of the applicability

as a part of the solving procedure. On the other hand, the ballooning formalism,

allows to relax the strong ballooning approximation, and treat mode of arbitrary

poloidal extension. However, such a treatment requires solving differential equation

and therefore is much more time consuming.

5.1.1 BT (beam tracing) model

The beam tracing model does not involve any further approximations. It deals with

the dispersion relation

D = Ω3 [1 + bθτ(1 + α)]− Ω2 [1− 4αεn − 2εn − bθτΓ]

−Ω

[
2αεn − 2Γεn +

c2
s

ω2
?e

k2
||(1 + α)

]
− c2

s

ω2
?e

k2
||Γ = 0, (5.1)

where Ω = ω/ω?e, bθτ = (ρsk⊥)2, τ = Te/Ti, k2
⊥ = k2 − k2

||, α = 5/3τ , ηi =

ne∇Te/(Te∇ne), εn = ne/(∇neR0) and Γ = ηi+1
τ
− α + 2αεn(1 + 1

τ
).
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Arbitrary radial dependence of the parameters is allowed in equation (5.1).

Eigenmode position in the poloidal cross-section is defined by the set of algebraic

equations

∂D/∂ϑ = ∂D/∂a = ∂D/∂kϑ = ∂D/∂ka = D = 0. (5.2)

This makes 5 algebraic equation with 5 unknowns {ω, a, ϑ, ka, kϑ}. The eigen-

mode extension and the growth rate can be defined making use of higher order

equations equation (4.67). In a special case, when equation (5.2) does not have real

solution the procedure discussed in Appendix E should be applied.

5.1.2 Guo & Weiland approach

Extensively used transport model known as the Weiland model [Guo & Weiland] is

based on the ballooning representation. This representation can be obtained from

the dispersion relation (5.1) where

1. the wave vector component k|| is replaced with the differential operator −i∇||,

2. the component k⊥ whenever it appears is replaced with kθ (thus implying

ka = 0),

3. kθ is defined by the condition bθ = ρ2
sk

2
θ/τ = 0.1,

4. kφ is implicitly defined by the condition k|| ≈ 0,

5. the eigenmode is centered at the mid-plane ϑ = 0,

6. the radial dependence is neglected in all plasma parameters except for the

safety factor q where it is approximated by the linear dependence.

The problem is now formulated as a boundary value problem for this differen-

tial equation with proper boundary conditions. Further simplification can be

obtained by fitting the poloidal dependence by a parabola (strong ballooning

approximation) and finally replacing the eigenvalue problem by the solvability

condition for the fundamental mode:

Ω2 [1 + bθτ(1 + α)] − Ω

[
1− 4εnα− 2εn − bθτΓ− i

εnŝ

q
(1 + α)

]

−
[
2αεn − 2Γεn + i

εnŝ

q
Γ

]
= 0 (5.3)

87



This equation can be viewed as a combination of the 1st and 2nd orders of the

beam tracing technique. The only unknown in the equation (5.3) is the complex

frequency ω + iγ.

Unlike the beam tracing the wave-vector components are prescribed by the set of

conditions listed above. For this reason, in the Weiland model bθ is an independent

input parameter while in BT approach the quality kθ, and consequently bθ, is a result

of solving equation (5.2). Variation of the parameter bθ in the BT model can be

achieved by varying the external parameter kφ related to the toroidal wavenumber

n.

Another difference is that, in Weiland model, the eigenmode can be located

at any radial position in the plasma mid-plane (plane of the up-down symmetry.)

In order to impose the same property in the BT model the two first equation in

equation (5.2) were omitted. Finally, it should be noted that due to the limitation

of the Guo & Weiland model no background plasma rotation was included and that

the comparison was limited to the case of circular geometry.

After all these simplifications the plasma parameters εn, ηi, τ , q, ŝ can be con-

sidered as an independent input. Eigenmode characteristics calculated in this way

will be compared for both approaches.

5.2 Dependence of ITG model on different pa-

rameters in the two models

Guo & Weiland and the simplified BT models have been used to derive the frequency

and growth rate of the ITG mode. The Guo & Weiland results have been reported

in [85].

Using the BT model, considering the set of parameters as in [85] (s = τ =

1.0, ηi = 8.0, q=2.0), we have computed the un-normalized, figures (5.1) and the

normalized, figure (5.2), growth rates of ITG mode, as a function of bθ. Different

values of εn are considered. The values of bθ are obtained by making a scan in the

toroidal wave number n.

In case of the un-normalized growth rates, figure (5.1), can be noticed that for

any given value of εn the growth rate reaches its maximum at bθ ≈ 0.2. When

the normalized growth rates are considered, figure (5.2), for any given εn, the nor-

malized growth rate is decreasing with increasing bθ. Because of interest are the

un-normalized values of the growth rates, we can say that, for the set of parameters

considered in [85], the BT model finds the most unstable mode at bθ ≈ 0.2.
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The first comparison between the two models is illustrated in figure (5.3). The

figure contains the normalized frequencies and growth rates vs εn, in Guo & Weiland

model and BT model. In case of BT model two different values of the parameter bθ

were selected from figure (5.2): bθ = 0.1 (the same as considered in Weiland model)

and bθ = 0.22 (the value that was found above to correspond to the most unstable

mode).
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Figure 5.1: Linear growth rate vs bθ in our
model. s = τ = 1.0, ηi = 8.0, q=2.0..
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Figure 5.2: Normalized growth rate vs bθ

in our model. s = τ = 1.0, ηi = 8.0,
q=2.0..
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Figure 5.3: Normalized growth rate and real eigenfrequency as function of εn. Com-
parison of our model bθ = 0.1 (squares) and bθ = 0.22 (pentagons) with Weiland
model bθ = 0.1 (triangles). The parameters are s = τ = 1.0, ηi = 8.0, q=2.0.

Both, the qualitative and the quantitative comparison between the two models
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are done. Qualitatively, there is a good agreement between the two models. The

normalized growth rate has a maximum as a function of εn, figure (5.3a). The real

frequency is found in both models to be negative. This result is expected because we

deal with the ion temperature gradient mode. The real frequency increases linearly

from low values at smaller εn to around 10ω?e at the larger εn.
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Figure 5.4: Linear growth rate of εn in BT model: bθ = 0.1 (squares) and bθ = 0.22
(pentagons). The parameters are s = τ = 1.0, ηi = 8.0, q=2.0.

Quantitatively, in BT model the maximum of the normalized growth rate is

shifted to a larger value of εn. The mode corresponding to bθ = 0.22, in BT model

is in relative good agreement with Guo & Weiland model. As regards the real

frequency, there exists a good agreement between all the situations considered.

From figure (5.3a) one could get the feeling that in the BT model, the mode

corresponding to bθ = 0.1 (squares) is more unstable that the mode corresponding

to bθ = 0.22 (stars). It is useful to mentioned once again that figure 5.3(a) contains

the normalized values of the growth rates. To judge correct which of the two modes

is more unstable the un-normalized growth rates have to be considered. The un-

normalized growth rates are included in figure (5.4). In this way, can be noticed

that for each given εn, the mode corresponding to bθ = 0.22 is more unstable that

the mode corresponding to bθ = 0.1.

5.2.1 Te variation

The previous comparison was realized for the electron temperature Te = Ti = 1.0

keV. Let us now study the dependence of the growth rate and real frequency on
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temperature, using the BT model. For this purpose four different temperatures are

considered: Te = 0.1 keV, Te = 0.5 keV, Te = 1.0 keV, Te = 10 keV.
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Figure 5.5: (a)Normalized growth rate (b) normalized real frequencies (c) Linear
growth rate γ (d) real frequencies ω, corresponding to the most unstable mode, vs
εn for different temperatures. In all s = τ = 1.0, ηi = 8.0, q = 2.0.

In the above plot only the most unstable mode was selected. It can be noticed

that both, the normalized growth rate and real frequency, do not depend at all on

the temperature.

While in Guo & Weiland model the electron and ion temperature appear only

in the combination τ = Te/Ti, in the BT model the dependence on the electron

temperature is still kept explicitly in the term ρsk⊥. So that we are expecting that

in this case the eigenfunctions are going to depend on Te. Figures (5.5c) and (5.5d),

depict the linear growth rate and real frequency corresponding to the considered

temperatures versus εn. The real frequency, ω, depends on Te as ω?e. For the

dependence of the growth rate on Te another dependence comes into play → bθ =

(ρsk⊥)2.

For a given temperature the mode is found to be stabilized with increasing εn. On
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the contrary, for a given value of εn, the higher the temperature the more unstable

is the mode. It is also found that the value of bθ corresponding to the most unstable

mode is almost constant when the temperature is increased from 0.1 to 10.0 keV.

5.2.2 τ = Te/Ti variation
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Figure 5.6: (a) Normalized growth rate Weiland model, (b) real eigenfrequencies
Weiland, (c) Normalize growth rate in our model, (d) real frequencies in our model,
vs εn for different values of τ . s = 1.0, ηi = 8.0, q=2.0.

The stability of the ITG mode is also determined by the dimensionless parameter

τ = Te/Ti. The destabilizing effect of Te/Ti on ITG modes is already known from

the literature [97], [98]. Figure (5.6) shows the comparison between the normalized

growth rate and real frequencies, corresponding to Guo & Weiland 5.6(a,b) and BT

5.6(c,d) models, for different values of τ . It has to be mentioned that the plots that

include Guo& Weiland model are not a result of these thesis. They are done using

the dispersion relation (5.3), which is a result of [85], and are used here only for

comparison with our model. In case of BT model only the most unstable modes

have been selected. A very good qualitative agreement is found between the two

models. At τ = 0.5 the ITG mode is found to become stable for values of εn > 1.5.

In order to study how the mode behaves with the increasing parameter τ the linear
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growth rate is plotted using BT model in figures (5.7) and (5.8). For each given

value of τ , the stabilizing effect of εn is again found. Figure (5.8) shows the linear

growth rate versus τ , for εn = 1.5. The destabilizing effect of τ is obvious.
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Figure 5.7: Linear growth rate vs εn for
different values of τ in BT model. s = 1.0,
ηi = 8.0, q=2.0. τ = 0.5 (stars), τ =
1.0 (triangles), τ = 2.0 (squares), τ = 3.0
(circles).
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model. s = 1.0, ηi = 8.0, q=2.0, εn = 1.5.

5.2.3 q variation
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Figure 5.9: (a) Normalized growth rate and (b) real frequency corresponding to the
most unstable mode in BT model, for different values of the safety factor q (q=2
(stars), q=6 (circles), q=10 (diamonds)). s = τ = 1.0, ηi = 8.0, Te = 1.0 keV.
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It is useful to study also the dependence on the safety factor. In BT model, the

safety factor appears in the expression of k||. In this comparison with Guo & Weiland

model is the only quantity which is still keeping the dependence on the minor radius.

To study how the ITG mode depends on the safety factor three values of q are

considered: q = 2, q = 6, q = 10. Figure (5.9) shows the behaviour of the normalized

growth rate and real frequency as a function of the parameter εn. It is found that

BT model depends very weakly on the safety factor q, which in the core plasma

ranges from 1 to 4. This is in agreement with Guo & Weiland model [85].
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Figure 5.10: Linear growth rate γ (positive) and real frequencies ω (negative), cor-
responding to the most unstable mode, vs εn for different values of q. s = τ = 1.0,
ηi = 8.0, Te = 1.0.

Because the normalization is done in respect to ω∗e, which does not depend on

q, is expected that the values of linear growth rate and real frequency, figure (5.10),

do not depend also on q.

5.2.4 ηi variation

As discussed in Chapter 2, the parameter ηi = Lni/LTi plays a significant role in the

ITG stability. Both of them, the ion temperature gradient and the density gradient

influence the threshold stability of the ITG turbulence.

Figure (5.11) shows growth rate and real frequency (normalized to electron dia-

magnetic frequency) as a function of εn for seven different values of ηi. Results from

both models are presented again: Guo & Weiland figure (5.11a,b) and BT model

(5.11c,d). For each given ηi there exists a threshold in εn above which the mode

destabilizes. Because ηi/εn = R/LTi, one can also say that there exists a threshold
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in R/LTi above which the mode is destabilizing.
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Figure 5.11: (a) Normalized growth rate Weiland model, (b) real frequencies Weiland
model, (c) normalized growth rate BT model, (d) real frequencies BT model, vs εn

for different values of ηi. s = τ = 1.0, q = 2.0, Te = 1.0.
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Figure 5.12: Normalized growth rate γ (positive) and real frequencies ω (negative),
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Figure 5.14: The threshold in ηi vs τ . s=1.0, q=2.0.

The value of the real frequency increases linearly from low values at the lower ηi

threshold to around 8ω?e at the upper ηi threshold.

The value of the threshold in R/LTi can be better noticed looking to the next

figure (5.12). A comparison of the two models is done. Fixing εn = 1.5, ηi is varied

between 1.0 and 8.0. For small values of ηi both models found the mode to be

stable. For the considered set of parameters, when ηi becomes larger than 4.0 the

ITG mode is destabilized. This correspond to a threshold R/LTi = ηi/εn = 2.66.
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Figure 5.13: Linear growth rate γ (positive) and real frequencies ω (negative), cor-
responding to the most unstable mode, vs εn for different values of ηi (ηi = 8.0 -
ciel, ηi = 7.0 - red, ηi = 6.0 - pink, ηi = 5.0 - blue, ηi = 4.0 - green, ηi = 3.0 - black,
ηi = 2.0 - yellow). s = τ = 1.0, q = 2.0, Te = 1.0.

The linear growth rate and real eigenfrequency are shown in figure (5.13). It can

be noticed there that the larger is R/LTi the more unstable becomes the mode. This

behaviour is expected since the ITG turbulence is known to be driven by temperature

gradients. In figure (5.14) can be seen that the threshold in ηi is different for different

value of τ : at larger values of τ the mode becomes unstable for lower values of ηi.
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5.2.5 Dependence on the toroidal wave number
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Figure 5.15: (a) and (b) Linear growth rate γ, and the real frequency ω along the
toroidal wave number n for three different values of εn, Te = 1.0 keV, ηi = 8.0,
s = τ = 1.0, q = 2. (c) and (d) Linear growth rate γ and the real frequency ω
along the toroidal wave number n for three different values of Te, εn = 1.5, ηi = 8.0,
s = τ = 1.0, q = 2.

The calculations done till now with the BT model, depending on different param-

eters, the most unstable mode correspond to different value of the toroidal wave

number. All the calculation done have some common features. The linear growth

rate has a maximum as a function of the toroidal wave number, figures (5.15a) and

(5.15c). The modulus of the real eigenfrequency is increasing linearly with increas-

ing toroidal wave number, figures (5.15b) and (5.15d). This dependence is similar

to that of the normalized growth rate and real frequency on εn. In our calculations,

values of the toroidal wave number was varied n from 10 up to 200.

The stabilizing effect of εn obtained before appears again in figure (5.15a) (for

flatter density profiles, larger values of εn, the mode is stabilized). It is found that

the value of the toroidal wave number corresponding to the most unstable mode is

not changed by the flattering of the density profile.

In contrast with previous case, the value of the toroidal wave number correspond-

ing to the most unstable mode depends on the temperature, figure (5.15c). At small
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temperatures, values of the toroidal wave number larger than 100 correspond to

the most unstable mode. This value is decreasing with the increasing temperature.

The parameter bθ = 0.22 is found to correspond to the most unstable mode for all

considered temperatures.

5.3 The solution of the full set of beam tracing

equations

Up to now we have shown the results obtained using a ”simplified” beam tracing

model. This was done in order to make possible the comparison with Gue & Weiland

model. In the previous section the radial dependence was neglected solving only four

beam tracing equations, from the set of five.

In what follows we are going to extend our discussion to the case of global calcu-

lations, when the full set of beam tracing equation is solved. The radial extend of the

microinstability is computed together with the poloidal and radial wave numbers,

the poloidal angle and the frequency.

As mentioned in the beginning of this chapter, the BT approach allows arbitrary

radial dependence of all the profiles: the density, the ion and electron temperatures,

the safety factor.

5.3.1 Exponential like profiles

In this section we use profiles proposed in [101].

n(s)/n0 = exp

(
aM∆sN

L0N

tanh
s− s0

∆sN

)

(5.4)

T (s)/T0 = exp

(
aM∆sT

L0T

tanh
s− s0

∆sT

)

where n0 and T0 are on-axis values of the density and temperature, s = a/aM , aM

the minor radius, is the normalize radius variable, ∆sN,T the radial width over which

these profiles varies. The characteristics length LN,T has minimum at s = s0 and

given by L0N,T . For the safety factor, a four order polynomial is considered:

q(s) = q0 + c1s
2 + c2s

3 + c3s
4, (5.5)

where c1, c2 and c3 are constants that can be changed. This choice, allows one, for

instance, to fix safety factor on axis q0 and on the edge qs(1) as well as its value

qs(s0) and shear ŝ(s0) at an intermediate point s0.
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Considering profiles of this kind, the mode tends to localize at s = s0. So that,

by choosing an appropriate value of the parameter s0, one can somehow decide the

radial position where the mode occurs.

5.3.2 Toroidal wave number scan, benchmarking with gy-
rokinetic calculations.

To validate the global BT model, a toroidal wave number scan was carried out,

similar to the one previously computed in [101], with a nonlinear gyrokinetic code.

The above profiles are used for density, temperature and safety factor. A deuterium

plasma is considered. The magnetic geometry is chosen with B0 = 3.7 T, R0 = 2.58

m, aM = 0.92 m, q = 1.2+9.6s3. For the density profile we have chosen: L0N = 0.74

m, ∆sN=0.26, s0 = 0.315. Temperature profiles are identical for electrons and ions,

with T0 = 1.3 keV, L0T = 0.19 m, ∆sT = 0.26 and s0 = 0.315. These profiles are

identical with those used in [101].
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Figure 5.16: Growth rate and real frequency along a toroidal wave number scan. The
nonadiabatic responce of electrons is not taken into account. The results obtained
with the BT model are plotted with red color. Results of a gyrokinetic code for each
value of n are plotted with squares.

Figure (5.16) shows the growth rate and the real frequency, as a function of the

toroidal wave number n for both the BT model for the linear gyrokinetic code. All

frequencies are normalized in respect with ωnorm = Ti0/eB0a
2 = 404.2s−1. Values up

to n ∼ 100 have been computed. These plots shows good agreement through most

of the scan. A shift in the real frequency may be explained taking into account that
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the BT model is based on a two-fluid approximation, while the other code includes

a gyrokinetic model.

Non-circular flux surfaces: dependence on the Shafranov shift and on the
elongation.

Most present-day and future tokamaks have shaped equilibria and a small aspect

ratio. Therefore is useful to perform simulations employing a shaped tokamak equi-

libria. The flux surface shape is specified by Shafranov shift, ∆ and elongation, λ,

via

R = R0 + ∆(a) + a cos ϑ

z = λ(a)a sin ϑ.

Both, the Shafranov shift and the elongation are allowed to have radial dependence:

∆(a) = ∆0 + (a/aM)2(∆a −∆0),

λ(a) = λ0 + (a/aM)2(λa − λ0),

where values with index ’0’ are values considered on-axis and values with index

’a’ are values considered at the edge. To study the dependence of the mode on

Shafranov shift and on the elongation the same profiles as above have been used.
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Figure 5.17: The dependence of the
growth rate on the toroidal wave number
for different values of ∆0.
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Figure 5.18: The real frequency vs.
toroidal wave number, for different values
of ∆0.

First the dependence of the growth rate of the mode on the Shafranov shift has

been studied. Figure (5.17) emphasizes the linear growth rate as a function the
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toroidal wave number. Each curve in this plot corresponds to a different value of

the Shafranov shift ∆0. For the considered set of parameters, for each different

value of ∆0, the mode has a maximum at n = 67. At small values of the toroidal

wave number the growth rate of the mode does not depend at all on the Shafranov

shift. Increasing n, the mode is stabilizing with the increasing ∆0. One can say

that in this case, the increasing of the Shafranov shift slightly stabilizes the ITG

mode. The modulus of the real frequency, figure (5.18) increases linearly with the

increasing toroidal wave number and remains almost unchanged when Shafranov

shift is included in the calculations.
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Figure 5.19: The growth rate vs. radial dependence (which is a solution of the beam
tracing equations), for different values of ∆0.

The full set of beam tracing equations is solved here, so that for each toroidal

wave number one gets the radial position where the mode is localized. Figure (5.19)

shows the linear growth rate vs. the corresponding radial position. For all ∆0

considered, the radial position where the maximum growth rate occurs is almost

the same. The localization of the mode at this radius is a consequence of how the

parameter s0 have been chosen.

The next step is to study the dependence on the elongation. Figure (5.20) shows

the dependence of the growth rate on the toroidal wave number when different

values of λ0 are considered. It is noticed that the value of the toroidal wave number

corresponding to the maximum growth rate is not the same. Figure (5.21) shows

that, for all considered λ0, the most unstable mode tends to localized at the same

radial position, this being again a consequence of how the parameter s0 was fixed.

Both figures, (5.20) and (5.21), respectively, show that the impact of the elongation
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λ on the most unstable mode is rather weak.
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Figure 5.20: The dependence of the
growth rate on the toroidal wave number
for different values of λ0.
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dependence (which is a solution of the
beam tracing equations), for different val-
ues of λ0.

Dependence on the magnetic shear

A very important quantity is the magnetic shear parameter ŝ ≡ (r/q)(dq/dr). It

is known that magnetic shear has a stabilizing effect on many microinstabilities,

including ITG, ETG and TEM modes. Therefore, increasing in the magnetic shear

is expected to lead to a large decreasing of the growth rate.
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Figure 5.22: Growth rate as a function of the magnetic shear for different values of
the toroidal wave number.

In order to vary the magnetic shear, the safety factor profile is changed. Figure
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(5.22) shows the variation of the growth rate with the magnetic shear. Values of the

toroidal wave number from 20 to 96 are considered. Negative magnetic shear is also

considered. For each given toroidal wave number, the growth rate is stabilizing at

large values of the magnetic shear. For negative magnetic shear the mode is found

again to stabilize. The values of the magnetic shear where the linear growth rates

reach their maximum is different for different values of n.

5.3.3 The transport

In this section we shall study the ion heat transport coefficients χi included by the

ion temperature gradient mode. Different parameters effect on the transport have

been studied mixing length estimation of χimix and the quasi-linear formula of χiqs,

which was first derived in [102].

χimix = γ/k2
⊥ (5.6)

χiqs =
1

ηi

(
ηi − 2

3
− 20

9τ
εn

)
γ3/k2

⊥(
ω2 − 5

3
ωDi

)2
+ γ2

(5.7)

where k2
⊥ = k2

θ(1 + s2〈θ2〉) with 〈θ2〉 = 0.5/Φθθ.

In figure (5.23) is shown the scaling of the transport coefficient with the param-

eter bθ = (kθρs)
2, different values of the Shafranov shift being considered. When bθ

goes from 0.03 and 0.4, the transport is found to decrease. Here the effect of the

mode width is important. With the increasing value of the toroidal wave number

the width of the mode is decreasing in both, radial and poloidal directions, figures

(5.24&5.25).
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Figure 5.23: The variation of the transport coefficients with bθ = (kθρs)
2. Different

values of the Shafranov shift are considered.
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At small values of the parameter bθ (small values of the toroidal wave number),

the transport coefficients have a small increase with the increasing Shafranov shift.

No difference appear at large value of the toroidal wave number.

On the other hand, figure (5.26), the elongation have a large impact on the

transport coefficients. At small values of the parameter bθ, increasing the elongation,

a large decrease of the transport coefficients is noticed.
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Figure 5.26: The variation of the transport coefficients with the elongation.

In the same time, the impact of the magnetic shear on the transport is found to

be very important. As can be noticed in figure (5.27), large and negative values of

the magnetic shear are reducing the transport significantly. In the figure mentioned
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above, four different values of the toroidal wave number are considered. The decrease

of the transport with the increasing toroidal wave number is also noticed.
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Figure 5.27: The variation of the transport coefficients with magnetic shear.

5.4 Summary

In this chapter the solution of the equations that describe the ITG turbulence is

presented. By using the pWKB method the set of equations that describe the ITG

mode is reduced to a set of algebraic equations easy to be solved by numerically

treatment.

In the first step, the dependence of the growth rate of the ITG mode, computed

with the BT model, is compared with results obtained with Guo and Weiland model.

Studying the dependence of the mode on different parameters good agreement have

been found between the two models. Parameters as ion temperature gradient length,

density gradient length, τ = Te/Ti, have been found to have an large impact on the

growth rate of the ion temperature mode.
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Results from the full set of BT equations are also shown. The BT model reason-

ably reproduces results obtained with a much more complicated and time consuming

code, a non-linear gyrokinetic code. Our model can be easily extended to arbitrary

geometry so that dependence on the Shafranov shift and on the elongation has

been also studied. The increasing in both of them, Shafranov shift and elongation,

is found to have a slightly stabilizing effect on the linear growth rate of the ITG

driven instabilities. The well known stabilizing effect of the magnetic shear is also

found.

The scaling of the transport coefficients with different parameters has been also

studied. The toroidal wave number, the elongation and the magnetic shear have

been found to have a a large impact on the transport coefficients.
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Chapter 6

Summary & Conclusions

Nowadays is commonly accepted that the anomalous transport is due to microin-

stabilities driven by temperature and density gradients. Two of the most important

microinstabilities that appear in tokamak plasma, ion temperature gradient and

electron temperature gradient driven turbulence, have been studied in this thesis.

Paraxial WKB technique. The main task of this work has been to apply a

novel asymptotic approach in the study of microinstabilities that appear in toka-

mak plasma. This approach, called the paraxial WKB method, is different of all the

other techniques that have been used till now to solve eigenvalue problems in the

short wavelength limit (λ ¿ L).

In this thesis, implementing the pWKB method, a new technique for solving the

eigenvalue problem of the electrostatic ion temperature gradient microinstability

in a tokamak geometry, has been obtained. The ITG modes can be thought as

eigenmodes, while the interaction with plasma defines whether such a wave absorbs

or releases energy.

In the first step, the model equations that describe the ITG instability in this

new approach have been derived. The resulting equations have been obtained in a

fluid limit which includes also the parallel ion dynamics. A hierarchy of three sets

of algebraic equations have to be solved in this method. The first set, eqs. (4.65-

4.66), is the conventional Hamiltonian system of geometrical optics, formulated in

terms of the dispersion function as a Hamiltonian. It is decoupled from the other

two sets and therefore, it can be solved independently. This allows to find the basic

contour (the eigenmode position in the poloidal cross-section) and to judge about

the existence and stability of the mode. Once the contour is found the second set of

equations, eq.(4.67), comes into play. It involves second derivatives of the dispersion
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function and provides information on the transverse structure of the mode. Finally,

the third equation (4.70) should be involved if the first set (4.65-4.66) predicts the

marginal stability. To all these equations we are going to refer as the BT model. In

this new technique, apart from the common ansatz (λ ¿ L), only two simplifying

assumptions are done: a small variation of the medium characteristics on the mode

width (Λ ¿ L) and small increments Im(ω) ¿ Re(ω). Unlike the usually used

ballooning representation, arbitrary radial dependence for the plasma parameters

(density, temperature, safety factor, magnetic and rotational shear) and arbitrary

geometry are allowed.

To solve the pWKB sets of equation that describe the ITG mode requires a

numerical solution. So that, the second step in this thesis has been to write an

eigenvalue code. Once the solution is found, one gets a complete set of information

about the mode: frequency of the mode, radial and poloidal location of the mode,

plasma parameters at that location (i.e temperature, density, safety factor, magnetic

shear), wave vectors of the mode, width of the mode in both radial and poloidal

direction (which give the relevance of the solution). If the solution is valid one can

compute also the growth rate of the mode. A big advantage of this method is that

the routine is very fast and can be easily included in transport codes.

In order to validate our approximation, comparison with an extensively used

transport model, Weiland model, have been performed. Both models, BT and Wei-

land, are based on the same physics, the ion temperature gradient driven instability.

In Weiland model, unlike the beam tracing, the wave-vector components are pre-

scribed. Another difference is that, in Weiland model, the radial position of the

eigenmodes cannot be assessed. In order to impose the same property in the BT

model the two first equation in equation (4.66) were omitted. Finally, it should be

noted that due to the limitation of the Weiland model the comparison was limited

to the case of circular geometry. The normalized growth rates computed with both

codes have been compared. Good agreement between the two models has been found,

when the dependence of the normalized growth rate on different plasma parameters

has been studied. The same dependence on parameters (i.e. ion temperature gra-

dient length, density gradient length, τ = Te/Ti) as found in Weiland model, has

been obtained also using our model. The parameters mentioned before are known

to have a large impact on the growth rate of the ion temperature instability. In all

the scans that were done using Weiland model, the parameter bθ is included as an

independent input parameter. In the BT approach, this parameter is a result of the

calculations, so that one can derive the value of bθ which corresponds to the most
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unstable mode.

Comparison with results presented in [101] has been also done. There, a global

gyrokinetic code is used to study the ion temperature gradient instability. Figure

(5.16) shows a relatively good agreement between the results computed with the

two models. The difference that appears can be explain because our model is done

in a fluid limit, while the other results are obtained with a gyrokinetic model. Our

calculations are at least three orders faster than those presented in [101] (i.e while

in the gyrokinetic calculations it takes at least few hours to calculate one point, in

our code this process takes a few seconds). In our new approach arbitrary geometry

can be used so that the dependence of ITG growth rate on the Shafranov shift and

on the elongation was also studied. The increasing in the Shafranov shift and in

the elongation has been noticed to have a slightly stabilizing effect on the linear

growth rate of the ITG driven instabilities. The well known stabilizing effect of the

magnetic shear has been also found. Using our new code, the dependence of the

transport coefficients on plasma parameters was studied. The transport has been

found to decrease with the increasing of the toroidal wave number (increasing of

the parameter bθ). In the same time the magnetic shear is noticed to have a large

impact on the transport coefficients. For negative and large values of the magnetic

shear the transport coefficients become very small.

In conclusion, a new capable technique for analyzing the ion temperature gradi-

ent instability in plasma physics has been created. The technique is well suited for

numerical implementation. The results obtained using this technique reproduces

results computed with much more complicated and time consuming codes.

GS2 simulations. In the second part of this thesis, the experimentally ob-

served electron heat transport has been compared with linear gyro kinetic stability

calculations. The sensitivity scan around the parameters obtained from the exper-

iment have revealed that the growth rate of the mode depends on several plasma

parameters that are not usually considered when analyzing the experiments. Most

clearly these are the density gradient and the collisionality. In the direct comparison

of heat flux with the quasi-linear estimate a good agreement can only be obtained

if these two effects are taken into account.

Many experimentally observed phenomena can be explained on the basis of the

presented calculations. Both the experiments as well as the calculations show that

a threshold for the TEM exists. Care is to be taken here though, because in gen-
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eral many parameters change simultaneously, and one would have to re-analyze the

experiments using the results of the calculations presented here.

The normalized growth rate obtained from the gyro kinetic stability calculations

have been also compared with Weiland and GLF23 models. A relative good agree-

ment has been found between GS2 and GLF23 models, whereas the Weiland model

performs less well (especially the shear dependence). The comparison made with

the empirical model have shown that the calculations presented in this thesis give

in fact an easier functional form of the electron heat flux.

Despite the success of the comparison it should also be noted that not all prop-

erties can be explained. This is especially true for the dependence on the safety

factor. It has been suggested that the widening of the spectrum in the non-linear

state could account for such a dependence [67].
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Appendix A

Abreviation

Heating and diagnostics systems

EC(R)H Electron Cyclotron (Resonance) Heating

Experimental devices

ASDEX Axis-Symmetric Divertor Experiment

Physics abbreviations

MHD MagnetoHydroDynamics

ITG Ion Temperature Gradient

ETG Electron Temperature Gradient

TEM Trapped Electron Mode

χe Heat transport coefficient from Power Balance, perturbative analysis

ρtor Toroidal flux coordinate

Transport code and models

GS2 Gyrokinetic code

GLF23 Gyro Landau Fluid (from 2 dimensions and 3 dimensions simulations)
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Appendix B

Useful relations

In the thesis, we use :

The geometry :

x = Rcosζ;

y = Rsinζ;

z = aλ(a)sinϑ;

R = R0 + ∆(a) +
(
cosϑ− δ(a)sin2ϑ

)
;

(B.1)

Here R0 = 165 cm is the major radius, ϑ and ζ are the poloidal and the toroidal

angles. ∆(a), δ(a) and λ(a) represent the Shafranov shift, the triangularity, respec-

tively, the elongation.

The covariant basis vectors in toroidal coordinates are given by:

~ea =
{(

∆′ + cosϑ− (aδ)′ sin2ϑ
)
cosζ,

(
∆′ + cosϑ− (aδ)′ sin2ϑ

)
sinζ, (aλ)′ sinϑ

}

~eϑ = {−asinϑ (1 + 2δcosϑ) cosζ,−asinϑ (1 + 2δcosϑ) sinζ, aλcosϑ}
~eζ = {−Rsinζ, Rcosζ, 0}

(B.2)

and the associated reciprocal basis vectors:

∇a =
1

d
{λcosϑcosζ, λcosϑsinζ, sinϑ (1 + 2δcosϑ)}

∇ϑ =
1

ad

{− (aλ)′ cosϑsinζ,− (aλ)′ sinϑsinζ, ∆′ + cosϑ− (aδ)′ sin2ϑ
}

∇ζ =
1

R
{−sinζ, cosζ, 0}
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Metrix:

gaa =
1

d2

[
λ2cos2ϑ + sin2ϑ (1 + 2δcosϑ)2]

gaϑ =
1

ad2

[− (aλ)′ λsinϑcosϑ +
(
∆′ + cosϑ− (aδ)′ sin2ϑ

)
sinϑ (1 + 2δcosϑ)

]

gϑϑ =
1

a2d2

{[
(aλ)′

]2
sin2ϑ +

(
∆′ + cosϑ− (aδ)′ sin2ϑ

)2
}

gζζ =
1

R2

d =
(
∆′ + cosϑ− (aδ)′ sin2ϑ

)
λcosϑ + sin2ϑ (1 + 2δcosϑ) (aλ)′ ,

√
g = adR

(B.3)

Definitions :

~vE =
~e|| ×∇φ

B
, ~v?i = c

~e|| ×∇pi

eniB
, ~v|| = −i

c2
0

ω
~e|| · ∇

[
eφ

T0

+
1

T0ne

p̃i

]
~e||

~vπi =
~e|| ×∇ · πi

eniB
, ~vpi =

1

Bωci

[
∂

∂t
~E + (~vi · ∇) ~E

]
c0 =

√
T0

mi

, ρ0 =
c0

ωci

~vDi =
2cTi

eB

~e|| ×∇B

B
, ~vD0 =

2cT0

eB

~e|| ×∇B

B
, ~v?0 = cT0

~e|| ×∇ni

eniB
(B.4)

∇ · [ni (~vπi + ~vpi)] = ∇ ·
[

ni

ωci

∂

∂t

(
~e|| × ~vi

)]
= iωρ2

0∇⊥ ·
[
ni∇⊥

eφ

T0

+∇⊥
p̃i

T0

]

∇ · (ni~v||
)

= −i
c2
0

ω
∇ ·

[
ni∇||

eφ

T0

]
− i

c2
0

T0ω
∇ · [∇||p̃i

]

∇ · (ni~v?i) =
1

T0

~vD0 · ∇p̃i

~vE · ∇ni = −ni~v?0 · ∇eφ

T0

,

ni∇ · ~vE = ni~vD0 · ∇eφ

T0

,

(B.5)
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ωDi,0 = −2
c2
i,0

ωci

k̃z, ω?i,0 = −c2
i,0

ωci

1

Ln

k̃ϑ, ω?e =
c2
e

ωci

1

Ln

k̃ϑ

ωDi,0

ω?e

= −2Ti,0

Te

k̃zLn

k̃ϑ

,
ω?0

ω?e

= −T0

Te

, LTe = −Te

T ′
e

, Lne = −ne

n′e
(B.6)

where

k̃z =

{
Ã

kϑ√
g
− B̃

ka√
g

+ ÃΘkζg
aagζζ + B̃Θkζg

aϑgζζ

}
, k̃ϑ =

(
kϑ

ad
+

Θkζg
aa

R

)
,

k2
⊥ =

[
k2

ag
aa + k2

ϑg
ϑϑ + 2kakϑg

aϑ + k2
ζg

ζζ
]
, k2

|| =
I2

B2

[
kζ − Θ√

g
kϑ

]2

Ã = ∆′ +
(
cosϑ− (δa)′ sin2ϑ

)
, B̃ = −asinϑ (1 + 2δcosϑ)

(B.7)
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Appendix C

Derivation of the wave amplitude
equation

In the fourth chapter (section 4.4.3) the amplitude equation was introduced. Only

the final result has been related there, so that here we are going to give some more

details concerning that calculation. As have been already said, in order to determine

the amplitude equation, one starts from the equation

LX2 +MX1 = 0 (C.1)

with L and M given by the equations (4.60) and (4.61), and X1 is given in the

equation (4.64). The first term in the expression of the matrix M, in equation

(4.61), writes explicitly:

∂L

∂~k
=

ω

c0

∂L

∂∇S
=




(
2 ~K + ~K? − ~KD

)
n0

ni

(
2 ~K − ~KD

)
0 0

(
3
2
ηi − 1

)
~K?0 0 0 −5

2
T0

Ti

~KDi

0 0 0 0

0 0 0 0




(C.2)

By applying Fredholm alternative, one find that the equation (C.1) has solution if

and only if

X?
1 · M [X1] = 0 or X1 · M? [X?

1 ] = 0 (C.3)

In order to get an equation for the wave amplitude, the two relations in the above

equation are added, so that one get the equation 4.69. Let us evaluate one by one

the terms that appear in equation 4.69:
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1 )

A?e?M∇ [A] e + AeM?
∇ [A?] e? = A?e?

(
∂L

∂∇S
· ∇A

)
e + Ae

(
∂L?

∂∇S
· ∇A?

)
e?

The contravariant components of the group velocity V are given by (see the proof

at the end of this appendix):

~V = Hα = e? ∂L

∂∇S
e = eie

j
∂Li

j

∂~k

where ~k = ∇S and kα = Sα. The equation (??) can be written in the form:

A?e?M∇ [A] e + AeM?
∇ [A?] e? = A?V · ∇A + AV ? · ∇A? (C.4)

The group velocity V is real, so that in the above relation we have V ?=V.

2 )

AA? (e?M∇ [e] + eM?
∇ [e?]) = AA? ( ∇ · V − 2

c0

ω
∇ · ~K

[
Φ̄2

0 +
n0

ni

Φ̄0p̄0

]
−

c0

ω
Φ̄2

0∇ ·
(

~K? − ~KD

)
+

5

2

c0

ω
∇ ·

(
T0

Ti

~KDi

)
p̄0T̄0− (C.5)

c0

ω

[
∇

(
n0

ni

)
·
(
2 ~K − ~KD

)
− n0

ni

∇ · ~KD +∇ ·
((

3

2
ηi − 1

)
~K?

)]
Φ̄0p̄0 )

where

∇ · V = ∇ ·
(

e? ∂L

∂∇S
e

)

= ∇e? · ∂L

∂∇S
e + e?∇ · ∂L

∂∇S
e + e? ∂L

∂∇S
· ∇e

It is very easy to prove that:

−∇e? · ∂L

∂∇S
e + e

∂L?

∂∇S
· ∇e? = 0

3 )

AA?
(
e?M̃ [e] + eM̃? [e?]

)
= AA? ( 2

c0

ω
∇ · ~K

[
Φ̄2

0 +
n0

ni

Φ̄0p̄0

]

+2

(
c0

ω
~K · ∇ni

ni

Φ̄2
0 − δ

T0

Te

Φ̄0T̄0

)
) (C.6)

124



By adding the equation (C.4, C.5, C.6) we get

A?V · ∇A + AV · ∇A? + AA? { ∇ · V + 2
c0

ω
~K ·

(∇ni

ni

Φ̄2
0 −∇

(
n0

ni

)
Φ̄0p̄0

)

+
c0

ω
∇

(
n0

ni

)
· ~KDΦ̄0p̄0 +

5

2

c0

ω
p̄0T̄0∇

(
T0

Ti

)
· ~KDi +

c0

ω

(
Φ̄2

0 +
n0

ni

Φ̄0p̄0

)
∇ · ~KD−

c0

ω

(
Φ̄2

0 +

(
3

2
ηi − 1

)
Φ̄0p̄0

)
∇· ~K?+

5

2

c0

ω
p̄0T̄0

(
T0

Ti

)
∇· ~KDi−2δ

T0

Te

Φ̄0T̄0 } = 0 (C.7)

Writing explicitly the terms in the equation (C.7) we get the equation for the

wave amplitude given in the 4th chapter .

Proof

The contra-variant components of the group velocity V are given by:

~V = Hα = e? ∂L

∂∇S
e = eie

j
∂Li

j

∂~k
, ~k = ∇S, kα = Sα (C.8)

Lets consider the eigenvalue problem for the matrix:

Le = He,

and take its derivative in respect with ∂/∂sα. One gets

Lαe + Leα = Hαe + Heα

By multiplying the last relation with e? on the left hand side, one has:

e?Lαe + e?Leα = e?Hαe + e?Heα,

e?Lαe = −e?Leα + e?Hαe + e?Heα,

Leα = Heα, e?e = 1

e?Lαe = Hα − e?Heα + e?Heα,

The result is then:

e?Lαe = Hα
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Appendix D

The equations for the toroidal ITG
mode in rotating tokamak plasma.

The dispersion relation that describe the ITG mode in a rotating tokamak plasma,

in the beam tracing approximation, has already been included in the 4th chapter

(section 4.4.4). We find useful to include here also the set of fluid equations from

where that dispersion relation has been obtained.

When rotation is included, the total velocity writes:

~v = ~v0 + ~vi, where ~v0 = v0ϑ∇a×∇ζ + v0ζ∇ζ

~v0 represents the background velocity and it satisfies the incompressibility condition:

∇ · ~v0 = 0

The poloidal, the toroidal and the parallel background velocities are taken to be:

v0ϑ =
Bp〈Vp〉
〈Bp〉 ,

v0ζ =
Bt〈Vp〉
〈Bp〉 −RΩE,

v||0 =
B〈Vp〉
〈Bp〉 −

〈RBt〉
B

ΩE (D.1)

The equations above were related in [99] and represent a standard result that

a divergence free flow can be expressed in a component parallel to the magnetic

field proportional to B, and a rigid body rotation in the toroidal direction. BP and

Bt represent the poloidal and toroidal magnetic field, respectively. Because of the
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toroidal symmetry the divergence free nature of the magnetic field can be written

as ∇ ·Bp = 0.

The toroidal magnetic field satisfies Bt = Bt0R0/R, where R is the major radius.

The poloidal magnetic field satisfies Bp = Bp0R0∇Ψ/R(∇Ψ)0. The lowest order

electric field potential is assumed to be a flux function, and the radial electric field

Er satisfies Er = Er0RBp/R0Bp0. ΩE is a rotation frequency in the toroidal direction

which is connected with the effective radial electric field ΩE = c〈E?
r 〉/〈RBp〉.

The fluid equations that describe the ITG mode, with rotation included, take

the form:

(I) The continuity equation :

∂ñi

∂t
+ ~v0 · ∇ñi +∇ · (ni~vi) = 0 (D.2)

(II) The energy equation :

3

2
ni

(
∂

∂t
+ ~v0 · ∇

)
T̃i +

3

2
ni~vi · ∇Ti + niTi∇ · ~vi − 5

2
ni (~v?i − ~vDi) · ∇T̃i = 0 (D.3)

(III) The parallel velocity equation :

(
∂

∂t
+ ~v0 · ∇)

v||i
c0

+
~vi

c0

· ∇v||0 + c0~e|| · ∇eΦ

T0

+
n0

ni

c0~e|| · ∇ p̃i

p0

= 0 (D.4)

Starting from the above set of equations (I,II,III), considering also the perturbed

electron density response δne/ne = eΦ/Te and the perturbation of the ion pressure

p̃i = ñiTi + niT̃i, applying step by step the beam tracing approach, one gets the

dispersion relation, equation 4.71, introduced in chapter 4.
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Appendix E

Geometric optics in plasma
characterized by non-Hermitian
dielectric tensors

The geometric-optics approximation is widely used in studying electromagnetic phe-

nomena in inhomogeneous plasmas of various types and dimensions. Most of the

studies are based on ray tracing although the general theory, which uses the proper-

ties of the local dielectric tensor ε(~k, ω;~r, t) of the plasma also allows one to find the

wave amplitude of the electromagnetic field along the rays. The theory developed

to date is limited to cases where the tensor ε is Hermitian or ”almost” Hermitian,

namely it can be written as ε = iεA + εH , where εH is Hermitian and εA is the anti-

Hermitian part, with εA ¿ εH . This restriction on the type of the dielectric tensor

was imposed in order to provide a dispersion relation D(~k, ω, ~r, t) = detεH = 0 with

a real solution ω = ω(~k;~r, t) for real ~k. The anti-Hermitian part εA then contributes

only to the equation for the electromagnetic field and usually leads to a weak energy

dissipation along the rays. This case was discussed in chapter 4, when the beam

tracing technique was presented.

There are, however, cases where ε has a large anti-Hermitian part. This was

actually the situation in the study of the ITG mode. The use of only the Hermitian

part in these cases is not justified. The determinant of the dielectric tensor is

complex and therefore also cannot directly provide a real Hamiltonian for the ray

equations. The problem in this case can be solved by reordering the terms in the

expression for the determinant of ε so that it can be written in the form D =

A(D0 + iD1), where D0 and D1 are real and D1 ¿ D0. Then D0 is used in the

ray equations and the small correction D1 is used to determine the transport of

energy along the rays. This way of constructed the real Hamiltonian is nontrivial
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in the general case, and involves a study of all the terms in the expression for the

determinant. Moreover the possibility of such a reordering is more a priori.

E.1 The ray equation

L. Friedland and I.B. Bernstein have proposed in [100] a more simple and general

method of constructed the real Hamiltonian plasmas. The method does not require

the study of the determinant itself. They have derived also the general transport

equation for the amplitude of the electric field of the wave along the ray, but this

one is not going to be discussed here.

To present this method we are considering again the equations

L · ~a0 = 0 (E.1)

L · ~a1 + M · ~a0 = 0 (E.2)

As have been discussed in chapter 4, the equation (??) has nontrivial solution if

D = det(L) = 0. (E.3)

In chapter 4, we have restricted ourself to the case ε = εH + iεA, with εA ¿ εH .

If, however, the dielectric tensor is non-Hermitian, in the expression of L appears

this time ε and not only εH . So that the equation (E.3) in general cannot have a

real solution ω = ω(~k;~r, t) for real ~k. Since D is a complex function both, its real

and imaginary parts, must simultaneously vanish. This gives two, not necessarily

consistent dispersion relations for ω and ~k. Thus, in order to be consistent we must

modify the zero-order dispersion relation. This can be done in the following way.

Let us add and subtract a small quantity

∆ = iν
∂L

∂ω
· (~a0 − i

k
~a1), (E.4)

in the equation (E.3). We assume ν in (E.4) real and of order 1/k. Then equation

(E.3) becomes

(L + iν
∂L

∂ω
) · ~a0 − i

k
(L + iν

∂L

∂ω
) · ~a1 − i

k
M · ~a0 − iν

∂L

∂ω
· ~a0 = 0 (E.5)

We define Ω = ω + iν and correct to the first order in k

L̃ = L(~k, Ω;~r).
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The equations (E.1) and (E.2) become:

L̃ · ~a0 = 0, (E.6)

i

k
L̃ · ~a1 +

i

k
M · ~a0 + iν

∂L

∂ω
= 0. (E.7)

Note that the only difference between equations (E.1) and (E.6) in that in the latter

we are formally allowing the frequency Ω to have small imaginary part iν. This

assumption introduces a new term in the first-order equation (E.7) as compared to

(E.2). The modified dispersion relation is therefore

D̃ = det(L̃) = D(~k, Ω;~r) (E.8)

On separating real and imaginary part in (E.8), one gets a set of two equations

for two quantities ω and ν, and the aforementioned inconsistency is removed. One

can also use the smallness of ν and derive a real dispersion relation for ω and ~k,

independent of ν. This can be conveniently done in the following way. Let us rewrite

(E.7) in the form

D(Ω) = D0(Ω) + iD1(Ω) (E.9)

where D0 and D1 are the real and imaginary parts of the determinant D(ω). For

simplicity the arguments ~k and ~r will not be indicated explicitly. On multiplying

DH(Ω) = D0(Ω)− iD1(Ω) (E.10)

one gets

Φ(Ω) = DDH = D2
0(Ω) + D2

1(Ω) = 0 (E.11)

Correct to the second order in ν, this equation can be written

Φ(Ω) = Φ(ω) + iνΦω(ω)− 1

2
ν2Φωω(ω) = 0 (E.12)

Since Φ(ω) ≥ 0, ν will be real if and only if

Φω(ω) = 0 (E.13)

and

Φωω(ω) ≥ 0 (E.14)

In this case

ν = ± 2Φ(ω)

Φωω(ω)
(E.15)
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The plus and minus signs in this solution correspond to the zeros Ω = ω + iν of

DH(Ω) and D(Ω), respectively. Note that the real parts of the zeros are identical.

Note also that equations (E.13) and (E.14) define a minimum of the function Φ(x)

at the point x = ω.

To find the radial position, the poloidal angle, the radial and poloidal wave

number one has to solve the set of equations:

∂Φω

∂a
=

∂Φω

∂ϑ
=

∂Φω

∂ka

=
∂Φω

∂kϑ

= Φω = 0 (E.16)

By solving the equations (E.16) with the appropriate initial conditions, one can

simultaneously determine ν from equation (E.15). The smallness of ν in comparison

with ω will then give an estimate of wether the geometric-optics approximation can

be applied in a given case.
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