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Vollständiger Abdruck der von der Fakultät für Physik der Technischen Universität München zur

Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Lothar Oberauer
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1
Introduction

About two times per century a massive star dies in our Milky Way. Instead of passing away
silently, these stars die in spectacular explosions — supernovae. In the first seconds of such an
extremely violent event, more energy is set free than was radiated away by the star during its
whole life. Only a small part of this energy is released in the form of electromagnetic radiation,
but this amount already suffices for the explosion to outshine even its parent galaxy. For this
reason supernovae have been noticed since the beginnings of astronomical observations. Reports
of strange stars that appear for some time and vanish again can be found in records of Chinese
astronomers more than 2000 years ago. Supernova observations appear also in early Korean,
Japanese, Arabic and European records. Two of the first “modern” astronomers were fortunate
to witness such rare1 events, Tycho Brahe in 1572 and Johannes Kepler in 1604.

With the advent of modern astronomical instruments it became possible to study the spectra
of supernovae. This allowed Minkowski (1941) to distinguish two classes of supernovae, a clas-
sification that is still in use today: The spectra of Type II supernovae show strong Balmer
hydrogen lines near maximum brightness, whereas the spectra of Type I supernovae show no
signs of hydrogen. The absolute peak magnitude and the shape of the lightcurve also differ
for the two classes. Differences in the spectra and the light curve behaviour within the two
classes led to subclassifications. The early spectra of Type Ia supernova show lines of silicon, in
contrast to types Ib and Ic, which do not. Type Ib and Ic supernovae differ in the presence or
absence of helium lines, respectively. The lightcurve of Type II-L supernovae declines linearly
after maximum light, whereas Type II-P supernova are characterised by a plateau phase in the
light curve.

This purely phenomenological classification does not involve any theoretical understanding of
the underlying explosion mechanism that could explain the observed differences. A first hint that
there are actually two fundamentally different mechanisms at work came from the identification
of the environments, in which the supernovae occurred. Type Ia supernovae show no tendency to
occur in a certain galaxy type, nor in a certain location within the galaxy. In contrast, Type II,
Type Ib, and Type Ic supernovae are observed only in spiral galaxies, and most of them occur
in regions with a high star formation rate, i.e., in spiral arms and H II regions. This points

1Only supernovae occurring in the Milky Way could be observed by early astronomers. Using modern instru-

ments, nowadays more than 100 supernovae per year are detected in remote galaxies.
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6 CHAPTER 1. INTRODUCTION

to the possibility that the progenitors of Type Ia supernovae are old, low-mass stars and that
supernovae of the other classes originate from younger, short-lived, massive stars. Currently the
generally agreed upon interpretation is that Type Ia supernovae are thermonuclear explosions
of white dwarfs, which do not leave any compact remnant behind. All other types are thought
to arise from the collapse of a massive star’s core, which triggers an explosion that disrupts
the outer layer of the star and leads to the formation of a neutron star or even a black hole.
The various subclasses differ in the presence of hydrogen and helium layers at the moment of
explosion. The stars can have stripped these outer stellar layers by stellar wind loss or mass
transfer in binary star systems. The processes taking place in the first seconds of such a “core
collapse supernova”, which are still not well-understood, are the subject this work.

1.1 The explosion mechanism

In 1934, Baade & Zwicky realized that enormous amounts of gravitational binding energy must
be released, when the core of an ordinary star collapses to a neutron star. They suggested
that this energy powers the supernova explosion of the dying star. The existence of extremely
compact neutron stars had been proposed by Landau only two years before (after the discovery
of the neutron by Chadwick in 1932), but such objects were found only some decades later, when
periodic radio signals were detected from pulsars, rotating neutron stars with strong magnetic
fields. Yet, the process itself, i.e. the mechanism leading to the explosion and the formation of
a neutron star, is still not completely understood after more than seventy years of research.

1.1.1 Core collapse

There is, however, some agreement about the processes taking place right before the onset of
the explosion (see Bethe 1990 for a more detailed description). Near the end of their lives, stars
with main sequence masses of more than about 8 M� have gone through several burning phases
and have developed an onion-shell like structure. For main sequence masses larger than about
10 M� the core of such a progenitor star consists of iron-group elements (mostly 56Fe and 56Ni),
which are the most tightly bound elements and consequently cannot release further energy by
nuclear burning. This core is surrounded by shells of lighter nuclei – around the iron core there
is Si/S, and further out O/Ne/Mg, C/O, He, and finally H (the latter two shells may have been
lost due to stellar winds or mass transfer in binary systems). At the surface of the iron core,
silicon burning still takes place and adds mass to the core. Inevitably the core approaches the
Chandrasekhar mass limit (about 1.4 M�) above which the self-gravity of the core cannot be
balanced by the pressure of the degenerate, relativistic electron gas any more. Finally, electron
captures and the endothermic photo-disintegration of heavy nuclei, two effects that reduce the
pressure, trigger the collapse of the iron core when its mass is close to this limit of stability. The
core, the radius of which is initially several thousand kilometres, collapses within about 0.1 s
(which is on the order of the free-fall time scale) and forms a “proto-neutron star”, the pre-stage
of the final neutron star with a radius of only ∼ 50 km.

The gravitational binding energy released during the collapse is converted into internal energy
of the core. Initially, neutrinos produced by electron captures are able to escape unhindered and
transport energy out of the collapsing core efficiently. However, the mean free path for neutrinos
decreases during the collapse, as the density increases. Once the density has become sufficiently
high (ρ ≈ 1012 g/cm3) the time scale for the neutrinos to diffuse out of the core becomes larger
than the collapse time scale and thus the neutrinos are “trapped” inside the core. For this reason
most of the gravitational binding energy remains stored in the core during collapse and leaks



1.1. THE EXPLOSION MECHANISM 7

out only later (and more slowly – on a time scale of about 10 s) in the form of neutrinos. The
latter diffuse from the dense neutron star interior towards the outer layers and are finally able to
escape. The energy- and neutrino-type dependent radius, at which the transition from diffusion
to free streaming occurs, is called “neutrinosphere”. The total energy that is released (i.e. the
maximum energy that can be radiated away by neutrinos) is several 1053 erg. The collapse is
stopped in the centre of the core, when supranuclear densities are reached and repulsive nuclear
forces prevent a further compression of the matter. The infalling matter is decelerated abruptly,
overshoots the equilibrium density and rebounds (“core bounce”), thereby generating pressure
waves that steepen to a outward propagating shock wave with an energy of several 1051 erg.

1.1.2 Prompt explosions

Initially, it was thought that the shock wave could reach the outer layers of the star and make
them unbound. However, it soon turned out that such a “prompt explosion mechanism” does
not work, because the shock wave experiences a severe energy loss on its way outwards. There
are two reasons for this: Firstly, the matter overrun by the shock after its formation consists
of iron group nuclei, which are dissociated at the shock. In this endothermic process the shock
loses 8.8 MeV per nucleon or about 17 × 1051 erg per M�. And secondly, the outward moving
shock reaches regions with lower density and also the postshock density decreases. After a few
milliseconds the density has become low enough to allow neutrinos to escape from the postshock
region. This leads to a strong “neutrino burst” that cools the postshock matter rapidly and
extracts a significant amount of energy from the shock wave. As a consequence, the shock
stalls only milliseconds after core bounce and becomes a slowly moving accretion shock (i.e. the
postshock velocity turns negative). The shock reaches a radius of 100–200 km and recedes again.
Therefore a different mechanism must drive the explosion.

1.1.3 Delayed explosions

In 1966 Colgate & White speculated about the possibility, that the absorption of neutrinos in the
outer stellar layers might deposit enough energy to trigger an explosion. Although their model
was too simplistic and did not include a real neutrino transport, their basic idea seemed quite
promising and stimulated other studies: After core bounce there is a huge reservoir of energy
in the core, from which energy leaks out slowly in form of neutrinos. If only a small fraction of
this energy was re-absorbed, it would suffice to power an explosion with the canonical energy of
1051 erg known from observations.

As the models were improved with time, those who hoped that such a “neutrino heating” could
prevent the supernova shock from stalling shortly after its formation were disappointed. How-
ever, Wilson (1985) discovered that the stalled shock could be“revived”by neutrino heating on a
much longer time scale (several 100 ms). This so-called “delayed explosion” scenario is still con-
sidered to be the most promising way to trigger an explosion. This explosion mechanism leads
to unbound matter because neutrinos deposit energy in a “gain layer” below the shock, mainly
due to neutrino absorption by free protons and neutrons. In the one-dimensional simulations
(i.e. simulations, for which spherical symmetry was assumed) of Wilson (1985) and Bethe &
Wilson (1985), this persistent deposition of energy increases the shock radius, and finally leads
to an explosion. However, in the two decades after this pioneering work most of the new one-
dimensional (1D) simulations with progressively improved transport treatment (and including
also relativistic effects) failed to produce explosions. Nowadays there is growing consensus that
the neutrino-driven explosion mechanism of core collapse supernovae does not work in spher-
ical symmetry, at least for progenitors more massive than about 10 M�. None of the recent
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one-dimensional state-of-the-art simulations with detailed descriptions of the neutrino transport
develops an explosion (Rampp & Janka 2000; Liebendörfer et al. 2001; Liebendörfer et al. 2005;
Thompson et al. 2003; Buras et al. 2003, 2006a,b). Only for the least massive stars experiencing
a core collapse (those whose cores contain O/Ne/Mg instead of iron group elements) explosions
in spherical symmetry turned out to be possible (Kitaura et al. 2006).

Yet, when two-dimensional simulations (i.e. simulations, for which axisymmetry was assumed)
became feasible, multi-dimensional effects were recognised to be helpful. In these simulations
small seed perturbations grow by hydrodynamic instabilities to large amplitudes and affect the
evolution significantly. In particular, it has been shown that convection is able to develop below
the stalled supernova shock and can increase the efficiency of neutrino-heating significantly
(Herant et al. 1994; Burrows et al. 1995; Janka & Müller 1996). Current 2D simulations are
considerably closer to the explosion threshold than models in spherical symmetry (Buras et al.
2003, 2006a,b), and a successful explosion has been reported for an 11.2 M� progenitor (Buras
et al. 2006b). Despite these encouraging results, it still has to be shown that the “convectively
supported delayed explosion mechanism”works robustly, i.e. that it is able to produce explosions
for a wide range of parameters and not only for certain progenitor models. Nevertheless, this
mechanism is still the most promising way to explain supernova explosions. Current 2D models
are on the verge of exploding, but at the moment, it is not clear what is missing (see Buras
et al. 2003). It may be that improvements in the EoS, the treatment of neutrino transport
or the weak interaction rates of neutrinos are needed. It could also be that multidimensional
effects were not modelled correctly due to the restriction to two dimensions, the assumed initial
conditions, or shortcomings of the applied numerical methods. It is even possible that rotation
and hydromagnetic effects have to be taken into account, although at the moment it is believed
that they will change the picture only for special cases.

1.2 The anisotropy of core collapse supernovae

However the final, robust explosion mechanism works in detail, it will also have to explain why
core collapse supernovae are non-spherical. There is mounting evidence that these explosions
develop a pronounced global anisotropy, and several explanations for this behaviour have been
proposed.

1.2.1 Evidence for anisotropy

The best example for an anisotropic explosion is the nearest supernova observed in the last
centuries, Supernova 1987A, which is located in the Large Magellanic Cloud. Already soon
after the explosion, it was recognised that the lightcurve could only be explained if radioactive
nickel was mixed outward into the hydrogen envelope (Woosley et al. 1988). When the ejecta
became optically thin in the infrared, the velocity distributions of iron group elements could be
deduced from infrared lines and provided further evidence for large-scale mixing of the ejecta
(Colgan et al. 1994; Haas et al. 1990). Furthermore, the red/blue asymmetry of some of the
lines pointed towards a global asymmetry (Haas et al. 1990; Jennings et al. 1993). Nowadays,
the non-spherical, prolate distribution of the ejecta (Fig. 1.1) can be directly imaged with the
Hubble Space Telescope (Wang et al. 2002). Also anisotropic ejecta distributions of other, older,
supernova remnants have been imaged directly, e.g. Cassiopeia A (Hwang et al. 2004) or Puppis
A, which seems to be an almost one-sided explosion (Winkler & Petre 2006).

For many other supernovae that are not spatially resolved, information about the anisotropy
could be obtained by spectropolarimetry (Leonard et al. 2006; Wang et al. 2003, 2001, and
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Figure 1.1: Optical image of supernova 1987A taken by the Hubble Space Telescope in 2003. The ring-
like structure is thought to be caused by the collision of the supernova shock with matter that has been
stripped by the progenitor star in an anisotropic stellar wind more than 10 000 years prior to the collapse.
The supernova ejecta are visible in the centre of the ring and show a pronounced prolate deformation.
Credit: NASA, P. Challis, R. Kirshner (Harvard-Smithsonian Center for Astrophysics) and B. Sugerman
(STScI)

references therein). The observed polarisation of light of typically 1–2 percent translate into
axis ratios of up to 3 : 1 (assuming a prolate, spheroidal shape of the photosphere) and indicate
that global anisotropies are a common feature of many core-collapse supernovae. Interestingly,
the deeper one can look into the expanding and increasingly transparent supernova ejecta, the
higher is the asymmetry inferred from the observed polarisation. This indicates that the origin
of the anisotropy seems to be intrinsically linked to the mechanism of the explosion.

1.2.2 Possible origins

Various kinds of hydrodynamic instabilities may be responsible for the global anisotropy of the
ejecta that seems to be present already soon after the onset of the explosion. The first instability
that has been recognised to be important is convection. Inside the neutron star convection can
enhance the core neutrino luminosity (see e.g. Keil et al. 1996; Buras et al. 2006b) and is therefore
of interest for the explosion mechanism, but leads only to anisotropy on relatively small angular
scales.

More relevant concerning global modes is a second convectively unstable region, the gain layer.
Here the neutrino heating is stronger for smaller radii than near the shock and therefore flow with
a negative radial derivative of entropy establishes, a situation which is convectively unstable.
Perturbations grow with a local growth rate of at most (for small-scale perturbations) the Brunt-
Väisäla frequency, which attains values of up to ∼ 1000 s−1. However, considering only local
stability is not sufficient in this case, as we are mainly interested in modes comparable to the
size of the whole unstable region. The first study of global stability related to this problem
was performed by Chandrasekhar (1961), who investigated volume-filling convection in a fluid
sphere by means of a linear perturbation analysis. Chandrasekhar found the dipole or l =
1 mode (in terms of an expansion in spherical harmonics Y m

l ) to be the most unstable. In
fact, Woodward et al. (2003) and Kuhlen et al. (2003) demonstrated with three-dimensional
hydrodynamic simulations that the l = 1 mode dominates the convection in red giant and main
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sequence stars, respectively. However, Foglizzo et al. (2006b) studied a problem that resembles
the stalled shock phase in supernovae more closely, taking also into account the limited radial
thickness of the convectively unstable layer below the shock and the transport of matter out
of the unstable region (as it settles onto the neutron star). The latter process turns out to
have a stabilising effect and can hamper the growth of convection significantly. In particular,
the lowest modes are convectively unstable only if the ratio of the convective growth time scale
to the “advection time” (i.e. the time required by the matter to cross the unstable layer) is
sufficiently small. Foglizzo et al. (2006b) estimate that this may not be the case in general and
propose that instabilities different from convection may be responsible for the occurrence of low
(dipolar or quadrupolar) modes.

The so-called “advective-acoustic cycle” (Foglizzo & Tagger 2000; Foglizzo 2001, 2002), is a
promising candidate for such an instability. It is based on the production of sound waves
by the advection (i.e. transport by fluid motion) of entropy and vorticity perturbations from
the shock to the neutron star. These sound waves rise and hit the supernova shock, thereby
producing new entropy and vorticity perturbations. By means of linear stability analysis, Galletti
& Foglizzo (2005) and Foglizzo et al. (2006a) showed that these processes result in an amplifying
feedback loop for non-radial perturbations in the stalled accretion shock phase of core collapse
supernovae. Highest growth rates are found for the lowest modes (in particular l = 1). Global
instabilities different from convection are also found in the non-linear regime by hydrodynamic
simulations. Blondin et al. (2003) discovered in 2D hydrodynamic simulations that the adiabatic
accretion flow below a standing shock develops a non-radial, oscillatory instability (which they
termed “standing accretion shock instability” or SASI), dominated by the l = 1 or l = 2 modes.
Similar results were found in simulations with neutrino cooling and heating terms (Blondin &
Mezzacappa 2006; Ohnishi et al. 2006). The nature of this instability mechanism is still a matter
of debate. While Ohnishi et al. (2006) regard the advective-acoustic cycle as the cause of the
low mode oscillations, Blondin & Mezzacappa (2006) argue that a different kind of instability,
which is purely acoustic and does not involve advection, is at work in their simulations.

Due to strong simplifications (in particular boundary and initial conditions are taken from
a stationary flow solution), these simulations cannot be regarded as accurate models for the
situation in supernova cores. The lack of more detailed simulations that could allow to assess
the impact of instabilities like the advective-acoustic cycle in the non-stationary flow around a
forming neutron star was an important motivation to perform the simulations we present in this
work — in particular, as in addition such simulations could provide new insights about another
process, that is not well-understood, the acceleration of neutron stars during their birth.

1.3 Neutron star kicks

The high velocities of neutron stars is a topic closely related to the anisotropy of core collapse
supernovae. Observations suggest that neutron stars receive a strong “kick” during their forma-
tion in the supernova, possibly linked to an anisotropic explosion. In the following we give an
overview of observations and possible kick mechanisms.

1.3.1 The neutron star velocity distribution

Neutron stars move with space velocities much higher than those of their progenitors (e.g. Cordes
et al. 1993; Lyne & Lorimer 1994; Hansen & Phinney 1997; Zou et al. 2005; Chatterjee et al.
2005). In the most extreme cases the velocities can exceed 1000 km/s. For instance, Chatterjee
& Cordes (2002) deduced a pulsar velocity of ∼ 1600 km/s for the neutron star in the Guitar
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Nebula using radio observations, and Winkler & Petre (2006) measured the velocity of the
neutron star in Puppis A directly (using X-ray observations) and found a value of 1500 km/s.
However, in general pulsars are slower than these extreme cases, and the presence of pulsars in
globular clusters (with small escape velocities) shows that in many cases the neutron star birth
velocity must in fact be very small. Efforts to determine the birth velocity distribution function
of neutron stars agree in the finding that the average velocity is several 100 km/s. However,
claims of a bimodality of the pulsar velocity distribution are still controversial. While some
authors have obtained evidence for a low- and a high-velocity component of the distribution
function (Cordes & Chernoff 1998; Fryer et al. 1998; Arzoumanian et al. 2002; Brisken et al.
2003), others have found that a simple Maxwellian fit works best (Hansen & Phinney 1997;
Hobbs et al. 2005).

1.3.2 Neutron star kick mechanisms

The disruption of binary star systems, in which one star explodes as a supernova and leaves a
neutron star behind, does not lead to sufficiently high velocities, and also the orbital parameters
of many binary systems imply an intrinsic acceleration mechanism of the pulsars, probably linked
to their creation (see Lai 2001; Lai et al. 2001 for reviews). Quite a number of explanations
have been suggested, mostly involving anisotropic mass ejection in the supernova explosion or
anisotropic neutrino emission of the cooling, nascent neutron star.

The latter suggestion, i.e. a “neutrino rocket engine” that boosts neutron stars to big velocities
makes use of the fact that the huge reservoir of gravitational binding energy released during
the collapse of the stellar core is mostly carried away by neutrinos. Creating a global emission
anisotropy of these neutrinos of even only 1% — which is sufficient to obtain a NS recoil of
about 300 km s−1 —, however, turned out to be very difficult. Most ideas refer to unknown
neutrino properties (e.g., Fuller et al. 2003; Fryer & Kusenko 2006 and refs. therein) and/or
require the presence of a very strong magnetic field with a large dipole component (instead of
being randomly structured and variable with time) in the newly formed NS (e.g. Arras & Lai
1999a,b; Socrates et al. 2005). Such assumptions are not generally accepted and are not the
result of self-consistent calculations but put into the models “by hand”.

The other possibility — i.e. a “hydrodynamic kick mechanism”, in which the momentum of the
anisotropic ejecta is balanced by a recoil of the neutron star — might be supported by the fact
that some pulsars seem to propagate in a direction opposite to mass distribution asymmetries of
their associated supernova remnants (see, e.g. Winkler & Petre 2006). However, clear observa-
tional evidence is still missing. Herant (1995) has shown that in principle a hydrodynamic kick
mechanism can produce neutron star velocities of the required magnitude in strongly anisotropic,
(in the most extreme cases one-sided i.e., dipole-dominated) explosions.

Yet, so far only simulations started from the assumption that a considerable dipolar asymmetry
was already present in the pre-collapse iron core gave rise to a large anisotropy of the supernova
explosion and yielded high neutron star velocities of ∼ 500 km/s (Burrows & Hayes 1996).
The origin of such big pre-collapse perturbations, however, is not clear (Murphy et al. 2004).
Simulations, in which the initial perturbations were not that extreme (see e.g. Janka & Müller
1994), were not dominated by low modes and consequently the neutron star recoil velocities
remained rather small. In this situation it seems to be worthwhile to investigate whether the
latter result still holds true when simulations are performed with improved methods and new
data regarding the neutrino luminosity of nascent neutron stars is taken into account.
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1.4 Aims of this thesis

The main goal of this work is an investigation of hydrodynamic instabilities in the supernova
core during the onset of the explosion. In particular, we are interested in the question, whether
such instabilities can lead to a global anisotropy of the explosion without the aid of special initial
conditions (such as macroscopic asymmetries in the star before gravitational collapse, extremely
rapid rotation or extraordinary strong magnetic fields in the progenitor star). Furthermore, we
would like to know whether large recoil velocities as observed for many young pulsars can result
from anisotropic mass ejection in the explosion. To this end we present a comprehensive 2D
study of supernova dynamics that can be considered as a significant improvement and extension
of the earlier calculations of Janka & Müller (1996) with respect to the treatment of neutrino
transport, the assumed characteristics of the neutrino emission from the neutron star core, the
inclusion of rotation, the spatial resolution, and the covered evolutionary time of the supernova
explosions.

Apart from determining the magnitude of the explosion anisotropy we aim also at investigating
its origin. In particular we will try to find out, whether hydrodynamic instabilities different
from convection are able to grow sufficiently fast in the non-stationary postshock flow to have
an significant influence on the explosion, and to what extent these instabilities are responsible
for the formation of global modes. Neither the linear studies of Foglizzo et al. (2006a) (for which
a stationary background flow was assumed) nor the 2D hydrodynamic simulations of Blondin
et al. (2003); Blondin & Mezzacappa (2006); Ohnishi et al. (2006) (for which initial and boundary
conditions were taken from a stationary solution) can answer these questions. Yet, there is still
no concensus on a more fundamental question, which we also want to investigate: What is
the nature of the non-convective instability present in the above mentioned 2D simulations –
is the instability mechanism related to the advective-acoustic cycle, a purely acoustic cycle (as
advocated by Blondin & Mezzacappa) or something else? In this work we will present a series
of 2D simulations that are able to address these questions.

And finally we would like to study how 3D effects change the evolution and morphology of
our supernova models. We will present the first 3D simulations using high-resolution, shock-
capturing methods and demonstrate that also in three dimensions global modes are able to
develop. Due to the enormous computational costs of 3D simulations it is still not feasible to
perform full parameter studies in 3D. However, already the few 3D simulations we were able to
compute allow some insight concerning the differences between 2D and 3D models.

We use a simple and fast, yet sufficiently accurate neutrino transport scheme for the transparent
and semi-transparent regimes that allows us to study fundamental aspects of the still poorly
understood interaction between hydrodynamic instabilities and neutrino heating for a large
number of 2D models and even several 3D models. This scheme may not be accurate enough
to answer the question whether neutrino heating is viable to drive supernova explosions or not.
However, this is not a goal of this work either. In fact we do not attempt to follow the transport
of neutrinos seamlessly from the optically thick core of the proto-neutron star into the optically
thin regime. Instead, we treat the fluxes and spectra of the neutrinos emitted from the core of the
nascent neutron star as a boundary condition, and explore the explosion dynamics in dependence
of systematic variations, limited by fundamental constraints of the neutrino emission properties
of the nascent neutron star. Our models are therefore parametric studies and based on the
assumption that the convectively supported neutrino-heating mechanism (Herant et al. 1994;
Burrows et al. 1995; Janka & Müller 1996) works.

We proceed by summarising our numerical algorithms and computational approach in Chap-
ter 2. In Chapter 3 we will discuss about 80 2D Models and their dependence on different initial
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and boundary conditions. The topic of Chapter 4 is a more detailed investigation on the nature
of non-convective instabilities, which are studied by means of a further series of 2D simulations.
In Chapter 5 our 3D simulations are discussed and compared to the corresponding 2D simula-
tions. Chapter 6, finally, contains our conclusions. Appendix A presents a detailed description
of our neutrino transport scheme, in Appendix B we analyse the explosion energetics of the
neutrino-driven supernovae in our simulations and in Appendix C we discuss the solution of the
hydrodynamics equations in an accelerated frame of reference. Parts of the present work were
already presented in the publications of Scheck et al. (2004, 2006).
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2
Computational approach and numerical

methods

2.1 Hydrodynamics and gravity

The matter taking part in the processes we intend to study can be regarded as an ideal fluid
(Müller 1998), as viscosity and heat conduction have been shown to be negligible (except in shock
waves). Therefore the flow is ruled by the following conservation laws for mass, momentum (the
inviscious, compressible Euler equation) and energy,

∂ρ

∂t
+ div (ρ~v) = 0, (2.1)

∂

∂t
(ρ~v) + div [ρ (~v ⊗ ~v)] + grad p = −ρ grad Φ + ~QM, (2.2)

∂

∂t
(ρE) + div [(ρE + p)~v ] = −ρ~v · grad Φ + QE + ~v · ~QM. (2.3)

Here ρ is the density, ~v the fluid velocity, p the pressure, E = v2/2 + ε the specific total energy,
ε the specific internal energy, and Φ the gravitational potential. The momentum and energy
source terms due to neutrinos, ~QM and QE, are discussed in Appendix A. In order to solve the
set of equations (2.1)–(2.3), an equation of state (EoS), e.g. a relation between pressure, density
and temperature has to be specified. In general this relation depends also on the composition
of the matter, i.e. on the mass fractions Xi or number fractions Yi of nuclei and nucleons.
Therefore one has to take into account the evolution of the abundance for each species according
to a conservation equation,

∂ρXi

∂t
+ div (ρXi~v) = Ri. (2.4)

Here Ri denotes the source term due to nuclear reactions. In the case of nuclear statistic equi-
librium (NSE) the composition is determined by temperature, density and only one additional
variable, e.g. the electron fraction Ye. Thus instead of computing the rates Ri for each species
one has to determine the source term only for Ye, whose evolution is determined by

∂ρYe

∂t
+ div (ρYe~v) = QN. (2.5)

15
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Here QN is the source term caused by neutrino absorption and emission (see Appendix A). Yet,
also in case of NSE Eqn. (2.4) has to be solved for each species (with Ri = 0) in order to
distinguish compositional changes due to mixing (which do not affect the internal energy) from
those caused by nuclear reactions that lead to changes in the internal energy and therefore result
in an additional source term in Eqn. (2.3).

In spherical coordinates (r, θ, φ) and omitting source terms due to neutrino processes and nuclear
reactions (which are treated separately in an operator splitting procedure), equations (2.1)–(2.4)
read

∂tρ +
1

r2
∂r(r

2[ρvr]) +
1

r sin θ
∂θ(sin θ[ρvθ]) +

1

r sin θ
∂φ[ρvφ] = 0, (2.6)

∂t(ρvr) +
1

r2
∂r(r

2[ρv2
r ]) +

1

r sin θ
∂θ(sin θ[ρvrvθ]) +

1

r sin θ
∂φ[ρvrvφ]

+

{

−ρv2
θ

r
−

ρv2
φ

r

}

+ ∂rp = −ρ∂rΦ, (2.7)

∂t(ρvθ) +
1

r2
∂r(r

2[ρvθvr]) +
1

r sin θ
∂θ(sin θ[ρv2

θ ]) +
1

r sin θ
∂φ[ρvθvφ]

+

{

ρvθvr

r
−

ρv2
φ cos θ

r sin θ

}

+
1

r
∂θp = −ρ

∂θΦ

r
, (2.8)

∂t(ρvφ) +
1

r2
∂r(r

2[ρvφvr]) +
1

r sin θ
∂θ(sin θ[ρvθvφ]) +

1

r sin θ
∂φ[ρv2

φ]

+

{

ρvφvr

r
+

ρvφvθ cos θ

r sin θ

}

+
1

r sin θ
∂φp = −ρ

∂φΦ

r sin θ
, (2.9)

∂t(ρE) +
1

r2
∂r(r

2[ρvr(E + p)]) +
1

r sin θ
∂θ(sin θ[ρvθ(E + p)]) +

1

r sin θ
∂φ[ρvφ(E + p)]

= −ρ

(

vr∂rΦ + vθ
∂θΦ

r
+ vφ

∂φΦ

r sin θ

)

, (2.10)

∂tρXi +
1

r2
∂r(r

2[ρXivr]) +
1

r sin θ
∂θ(sin θ[ρXivθ]) +

1

r sin θ
∂φ[ρXivφ] = 0. (2.11)

The terms in curly braces are fictitious forces that are caused by the fact that in general curvilin-
ear coordinates (and in particular in spherical geometry) the directions of the base unit vectors
vary in space.

Adopting the dimensional splitting procedure of Strang (1968), we do not solve Eqns. (2.6)–(2.11)
simultaneously, but in directional sweeps. That is, in a first step (the radial sweep) we neglect
all terms with θ- or φ-derivatives and fictitious forces acting in θ- or φ-directions, so that the
non-radial components of the flow are just advected, but do not feel any forces. Analogously, in
the second and the third step we consider only forces in the θ− and the φ-direction, respectively.

For two-dimensional simulations it is sufficient to perform only the r− and θ−-sweeps, if the
velocity in φ-direction is zero, i.e. for non-rotating models. If, however, rotation is included, one
has to account for the changes of ρvφ due to fictitious forces (which guarantee that the specific
angular momentum of a mass element is conserved). In 3D these forces act during the φ-sweep.
As we want to avoid to perform the φ-sweep also in 2D simulations, we distribute the fictitious
forces in Eq. (2.9) over the first two sweeps, i.e. for ρvφ we take into account additional source
terms ρvφvr/r and ρvφvθ cot φ/r in the r- and the θ-sweep, respectively.



2.1. HYDRODYNAMICS AND GRAVITY 17

The equations to be solved in one sweep are the one-dimensional hydrodynamic equations (with
some additional factors accounting for the geometry) plus two advection equations for the lateral
components (i.e. the flow perpendicular to the current sweep direction). For instance, in the
radial sweep the following set of equations has to be solved:

∂U

∂t
+

∂(AF )

∂V
+

∂H

∂r
= G, (2.12)

where
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


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. (2.13)

Here U are the conserved quantities, F (U) is the flux function, V (r) = 4π
3 r3, and A(r) = 4πr2.

Conservation laws like (2.12) can be solved accurately using finite volume methods. In such
approaches the fluxes F (U) at the interfaces of the numerical grid cells are computed and used
to update the cell-averaged values of the conserved quantities, U . In one dimension the update
step for a cell i can be written as

Ui(t
n) = Ui(t

n−1) +
tn − tn−1

Vi

(

Ai−1/2Fi−1/2 − Ai+1/2Fi+1/2

)

, (2.14)

where Fi±1/2 and Ai±1/2 are the fluxes and areas of the left and the right cell interface, re-
spectively, and Vi is the cell volume. This procedure guarantees that the physically conserved
quantities are also numerically conserved, which is important for a correct treatment of shock
waves and in particular to avoid unphysical shock velocities (LeVeque 1998).

In a special class of finite volume methods, the Godunov type schemes, the fluxes at the cell
interfaces are computed solving a local Riemann problem, and thus taking the non-linearity in
the equations explicitely into account. For the calculations discussed in this work we use an
improved version of the original Godunov method, the Piecewise-Parabolic Method (PPM) of
Colella & Woodward (1984), which is a “high-resolution shock-capturing” (HRSC) scheme. The
ability of PPM to achieve high accuracy with a relatively low number of grid cells and to avoid
that shock waves become more than a few cells wide (“shock capturing”) is based on a rather
complicated reconstruction of the hydrodynamic state within the grid cells, which is discussed
in detail in Colella & Woodward (1984). The implementation we are using is basically the same
as described in Kifonidis et al. (2003). It consists of a hydrodynamics module which is based on
the direct Eulerian version of PPM (augmented by the HLLE solver of Einfeldt 1988 to avoid
the odd-even-decoupling instability, which is discussed in Kifonidis et al. 2003), and a module
that computes the source terms for energy and lepton number which enter the hydrodynamic
equations due to neutrino absorption, scattering, and emission processes (see Sect. 2.2).

The equation of state used for our simulations is that of Janka & Müller (1996). It includes
contributions by photons, electrons and positrons of arbitrary degeneracy and relativity, and
non-degenerate neutrons, protons, α’s and a representative nucleus of the iron group (in our
case this nucleus is chosen to be 54Mn) in NSE. In contrast to Kifonidis et al. (2003, 2006) we do
not follow explosive nucleosynthesis in this work. This allows us to save a considerable amount
of computer time, which is mandatory for carrying out an extended parameter study like the
one presented here.
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Following Kifonidis et al. (2003), we include relativistic corrections in our otherwise Newtonian
code by replacing the “spherical part” of the gravitational potential of the 2D mass distribution
by the “effective relativistic potential” of Rampp & Janka (2002) (for details, see Marek et al.
2006). For describing the gravity of the central “point mass” (i.e., the mass enclosed by the
inner boundary) we use the baryonic mass where Eq. (53) in Rampp & Janka (2002) requires
the gravitational mass. This turned out to yield very good agreement with the improved version
of the effective relativistic potential developed by Marek et al. (2006).

2.2 Neutrino transport and neutrino source terms

The original code version of Kifonidis et al. (2003) made use of a simple light-bulb approximation
(Janka & Müller 1996) in which luminosities of neutrinos and antineutrinos of all flavours were
imposed at the inner boundary (which is usually below the neutrinospheres) and kept constant
with radius. These luminosities were typically not chosen to give accurate values for the fluxes
prevailing below the neutrinospheric layers, but their choice was guided by the asymptotic lu-
minosities that emerge from the contracting and accreting nascent neutron star at large radii.
This was necessary in order to cope with the main problem of a light-bulb approach, namely
that it neglects changes of the neutrino fluxes and spectra that result from the interactions of
neutrinos with the stellar matter, thus ignoring, for example, the contributions of the neutrino
emission from accreted matter to the neutrino luminosity.

In this work we considerably improve upon this former approach by explicitly including these
effects. We achieve this by abandoning the light bulb in favour of a gray, characteristics-based
scheme, which can approximate neutrino transport in the transparent and semi-transparent
regimes. The approach is not particularly suitable to handle also the regime of very large optical
depths, τ . Therefore we still do our simulations with an inner grid boundary at τ ≈ 10 . . . 100.
However, the luminosities prescribed there have no relation to those used in the older light-bulb
calculations. We have chosen them to reproduce qualitatively the evolution of the luminosities
in a Lagrangian mass shell below the neutrinospheres as obtained in recent Boltzmann transport
calculations. More details will be given in Sect. 2.4.2.

The transport scheme itself solves the zeroth order moment equation of the Boltzmann transport
equation in spherical symmetry in the form

∂

∂t
L + ceff

∂

∂r
L = 4π r2 ceff Q+

ν − κcL. (2.15)

Here L(r, t) stands for the neutrino number flux or the neutrino luminosity, Q+
ν is the neutrino

number or energy production rate per unit volume (which is equal to the corresponding loss
rate of the stellar medium), and κ is the corresponding absorptivity. The “effective speed” of
the neutrino propagation, ceff , is governed by diffusion at high densities and reaches the speed
of light, c, at large radii and low optical depths. Equation (2.15) has been derived under the
assumption that ∂tceff = 0. It can be solved analytically, when Q+

ν , κ and ceff are assumed to be
constant within each cell of the numerical grid. For ceff a functional form in dependence of τ is
adopted, which fits the results of detailed transport simulations in neutron star “atmospheres”.

The neutrino-matter interaction rates are calculated using the assumption that the spectra have
Fermi-Dirac form. Charged-current processes with neutrons (n) and protons (p),

νe + n 
 p + e−, (2.16)

ν̄e + p 
 n + e+, (2.17)
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thermal electron-positron (e±) pair creation and annihilation,

e+ + e− 
 νi + ν̄i (i = e, µ, τ), (2.18)

and neutrino scattering off nuclei (A), nucleons, and electrons and positrons,

νi + A 
 νi + A, (2.19)

νi +

{

n
p

}


 νi +

{

n
p

}

, (2.20)

νi + e± 
 νi + e±, (2.21)

are taken into account.

We solve Eq. (2.15) for neutrino number and energy transport separately for neutrinos and
antineutrinos of all flavours (e, µ, τ). This allows us to adopt a non-equilibrium description of
the transport in the sense that the spectral form is assumed to be Fermi-Dirac, but the neutrino
temperatures Tνi

are not necessarily equal to the gas temperature T . Solving two transport
equations for neutrino number and energy, we therefore can determine locally neutrino number
and energy densities and thus the spectral temperatures Tνi

from the mean neutrino energies. A
detailed description of our approximative solution of the non-equilibrium transport problem and
the exact expressions for the employed interaction kernels can be found in Appendix A. While
giving qualitatively similar results as Boltzmann-solvers in spherical symmetry (cf. Sect. 3.2.4),
the computational cost of this approximative transport scheme is two orders of magnitude lower.

Equation (2.15) describes the neutrino transport in the radial direction only. Transport in the
lateral direction is ignored in our two-dimensional simulations, but lateral variations of the
neutrino quantities are allowed for by applying the radial transport solver independently on
different radial “rays” corresponding to the different angular (i.e. lateral in 2D) directions of our
polar grid.

2.3 Numerical grid

The hydrodynamic equations are solved on a spherical grid with coordinates (r, θ, φ). We denote
θ = 0 as “north pole” and θ = π as “south pole”. The interfaces of the grid cells are located at

ri± 1
2

= Rib
(i± 1

2
− 1

2
)·α, i = 1 . . . Nr

θj± 1
2

= θ0 + (j ± 1

2
− 1

2
) · ∆θ, j = 1, . . . , Nθ

φk± 1
2

= (k ± 1

2
− 1

2
) · ∆φ, k = 1, . . . , Nφ

where α is typically chosen such that the outermost zone ends at Rob ≈ 2 · 109 cm, which is
usually sufficient to prevent the supernova shock to run off the grid in the first second after core
bounce.

The inner boundary is placed within the forming neutron star after core bounce, at a Lagrangian
mass shell somewhat below the electron neutrinosphere. The spacing of the zones near and below
the neutrinospheres is chosen such that variations of the optical depth per zone remain smaller
than a few. The baryonic matter of the neutron star interior to the inner boundary, Mcore

(which is typically ∼ 1.1 M�), is removed and its gravitational attraction is taken into account
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by assuming a point mass at r = 0 (see Sect. 2.1). In the course of the simulation the grid
contracts radially, mimicking the contraction of the neutron star (see Sect. 2.4.1).

The resolution in the second and third dimension is given by ∆θ = θtot/Nθ (where θtot = π−2θ0)
and ∆φ = 2π/Nφ, respectively. Here Nθ and Nφ denote the number of zones in latitudinal and
longitudinal directions, respectively. The total solid angle covered by the grid is called Ωtot.
Unless noted otherwise, the calculations presented in the following are carried out in a full
sphere, i.e. θ0 = 0. In 2D the angular resolution is chosen such that square-shaped cells are
obtained in the convective region, i.e. ∆r ≈ r∆θ. Typically 400 radial and 180 lateral zones
(i.e. ∆θ = 1◦) are used. In 3D the significantly higher computational cost forced us to increase
the angular zone size to ∆θ = ∆φ = 2◦–4◦.

The spherical grid is well-suited to represent the approximately spherical symmetric regions in
our simulations, in particular the neutron star and the strong density gradient at its surface.
An accurate representation of the latter region on a Cartesian grid would require significantly
higher resolution and would therefore be computationally much more expensive. However, the
spherical grid has the disadvantage of having a non-uniform angular resolution. For equidistant
zone interfaces in latitudinal and longitudinal direction, the numerical zones near the poles
occupy much smaller solid angles than those near the equator. This has an influence on the
local growth rate of instabilities (see Sect. 5.2.1).

Furthermore, in 3D additional problems arise due to the fact that, in contrast to the equatorial
region, the zones near the poles are not roughly rectangular but rather strongly deformed. The
poles pose singularities in the sense that the zone interfaces coinciding with the polar axis have
zero area. Therefore the flux of matter through these interfaces must be zero, which means
that reflecting boundary conditions have to be applied at the polar axis. The reflection of a
fluid element with a lateral momentum plat at this axis leads to a fluid element with momentum
−plat, i.e. −2plat is added to the total momentum of the fluid on the grid. Thus the total
momentum is not a strictly conserved quantity any more. If the grid includes the polar axis,
i.e. θ0 = 0, then at least the z-component of the total grid momentum is conserved because
right at the axis the lateral momentum has no z-component. Note that in 2D also the x- and
y-components are conserved because the x- and y-momentum of every zone is zero due to the
assumed axisymmetry.

Since we are also interested in neutron star kicks, we need to point out that the use of the inner
boundary condition (enclosing the neutron star “core”) implies that the neutron star is attached
to the centre of our computational grid. It is therefore not free to move relative to the ejecta
during the simulation (unless special measures are taken, see below). This is tantamount to
assuming that the neutron star has an infinite inertial mass. Two implications result from this
approximation: A potential hydrodynamic feedback of a displacement of the neutron star relative
to the ejecta is neglected, and the neutron star recoil velocity has to be determined indirectly in
a post-processing step by making use of the assumption of total momentum conservation (see
Sect. 3.1.3).

The relative motion between neutron star and ejecta can, however, be accounted for during a
simulation by“wagging the dog”, i.e. by assuming that instead of the neutron star the ejecta move
coherently in the opposite direction of the neutron star’s recoil velocity. This can be achieved
technically by applying a Galilei transformation to the gas on the computational grid after every
time step. To accomplish this for several of our computed models (Table 3.3), we assume that
the frame of reference connected with the neutron star core is (in a first approximation) an
inertial frame (see Appendix C for a justification of this assumption). We then evaluate for
every time step n the change of the total linear momentum of the matter on the grid, ∆ ~Pn

grid.
By virtue of momentum conservation this must be equal to the change of the momentum of the
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neutron star core. In case the core mass is constant, this gives

∆~Pn
grid = −Mn

core ∆~v n
core. (2.22)

Hence, after the time step, the core should move with a velocity that has changed by ∆~v n
core.

Changing the frame of reference instead, we perform a Galilei transformation by adding −∆~v n
core

to the gas velocities in all zones of the grid. In the new inertial frame the neutron star core
remains at rest and centred at r = 0. Simulations including this procedure will be used to
investigate potential deficiencies of our standard assumption that the NS has an infinite inertial
mass and takes up momentum without starting to move (see Sects. 3.2.2 and 3.5).

2.4 Boundary conditions

2.4.1 Hydrodynamics

The boundary conditions for the hydrodynamics equations are defined similar to those in Kifoni-
dis et al. (2003). Reflecting conditions are imposed at the lateral boundaries at θ = 0 and θ = π,
while transmitting (i.e. zero gradient) boundary conditions are employed at the outer radial
boundary. For the 3D simulations, periodic boundary conditions have to be used in φ-direction.

The inner boundary, which is located at the Lagrangian mass coordinate where we cut our
initial (i.e. immediate post-bounce) models, is taken to be impenetrable. The contraction of
this mass shell (and hence of the neutron star core) is mimicked by moving the inner boundary
of our Eulerian grid from its initial radius, Ri

ib, inwards to a final radius Rf
ib according to the

expression

Rib(t) =
Ri

ib

1 + (1 − exp(−t/tib)) (Ri
ib/R

f
ib − 1)

(2.23)

of Janka & Müller (1996). The parameter Ri
ib is typically in the range 55 km < Ri

ib < 85 km.

For Rf
ib and tib we use two alternative prescriptions: In what we henceforth will call the“standard

boundary contraction case”, we set Rf
ib = 15 km and tib = tL, where the time scale tL is connected

to the luminosity decay and will be defined in Sect. 2.4.2. In the second prescription, the so-called
“rapid boundary contraction case”, we set Rf

ib = 10.5 km and tib = 0.25 s.

Figure 2.1 compares both prescriptions with each other and with data from a supernova sim-
ulation with the nuclear equation of state of Lattimer & Swesty (1991) and with Boltzmann
neutrino transport (Buras et al. 2003) for one of our initial models. In this figure, we show also
the contraction used for one of the 3D models, which is even somewhat faster than the “rapid”
contraction.

The standard boundary contraction results in a larger final radius and a slower contraction of the
neutron star. The rapid boundary contraction gives results which are almost indistinguishable
from the Boltzmann calculation, and might therefore be considered as more realistic. The
standard case has practical advantages, though, because it allows for larger time steps and thus
reduces the computational cost of a simulation. Unless noted otherwise, the simulations are
performed for the standard contraction of the inner boundary.

2.4.2 Neutrinos

The boundary conditions for the neutrino properties at the inner grid boundary are chosen to
be isotropic. We impose luminosities for neutrinos and antineutrinos of all three flavours which
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Figure 2.1: Evolution after core bounce of the radius corresponding to a mass coordinate of 1.1M�

from a supernova simulation with Boltzmann neutrino transport (Buras et al. 2003), compared to the
motion of the inner boundary radius as defined by Eq. (2.23) for the “standard” and “rapid” boundary
contraction cases, as well as the somewhat faster contraction used for the rotating 3D Model R103F (see
Chapter 5).

are assumed to be constant for a time interval tL (typically 1 s), and to decay subsequently with
a power-law:

Le,νe(Rib, t) = Ltot,0
ν Kνe h(t), (2.24)

Le,ν̄e(Rib, t) = Ltot,0
ν Kν̄e h(t), (2.25)

Le,νx(Rib, t) = Ltot,0
ν Kνx h(t), (2.26)

where

h(t) =

{

1.0 if t ≤ tL,

(tL/t)3/2 if t > tL,
(2.27)

and νx ≡ νµ, ν̄µ, ντ , ν̄τ . The constants Kνi
denote the fractional contributions of the individual

luminosities to the total neutrino luminosity. They fulfil the requirement

Kνe + Kν̄e + 4 Kνx = 1. (2.28)

The functional form used in Eq. (2.27) can be motivated by the Boltzmann transport calculations
of Buras et al. (2003). These show that after a transient phase of ∼ 50 ms, which is short
compared to the explosion time scales of our simulations, the sum of all luminosities is almost
constant or varies only very weakly, at least over the next ∼ 250 ms, for which data from the
Boltzmann transport simulations are available (see Fig. 2.2).

According to Eqs. (2.24–2.27) we need to prescribe the time scale tL and the total initial lu-
minosity Ltot,0

ν . However, instead of choosing these two quantities as basic parameters of our
models, we prefer to prescribe tL and the gravitational binding energy ∆E∞

ν,core that is released
by the neutron star core asymptotically (i.e. for t → ∞) via neutrino emission. Introducing the
energy that the core looses up to time t

∆Etot
ν,core(t) =

∫ t

0
Ltot,0

ν h(t′) dt′, (2.29)

the following relations hold for the asymptotic energy loss

∆E∞
ν,core =

∫ ∞

0
Ltot,0

ν h(t) dt = 3 ∆Etot
ν,core(tL) = 3 Ltot,0

ν tL, (2.30)
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Figure 2.2: Evolution after core bounce of the neutrino luminosities at a Lagrangian mass shell of
1.1M� from a supernova simulation with Boltzmann neutrino transport (Buras et al. 2003). After an
initial phase of 50ms duration, the sum of the νe and ν̄e luminosities, as well as the νµ/ντ luminosities
vary only slowly.

i.e. our ansatz of Eq. (2.27) implies that 1/3 of ∆E∞
ν,core is radiated away within the chosen time

interval tL in neutrinos and antineutrinos of all flavours.

We also prescribe the mean energies of neutrinos entering the computational grid at the inner
boundary. The corresponding values are chosen to be 〈ενe〉ib = 12 MeV, 〈εν̄e〉ib = 16 MeV, and
〈ενx〉ib = 20 MeV, and kept constant during our simulations. Thereby also the number fluxes
Ln,νi

= Le,νi
/〈ενi

〉 at r = Rib are defined.

The total lepton number lost by the neutron star core until time t, normalised to the total
baryon number Nb, core of the core, is given by

∆Ye,core(t) = N−1
b, core

∫ t

0

(

Ln,νe(Rib, t
′) − Ln,ν̄e(Rib, t

′)
)

dt′. (2.31)

For t = tL this yields

∆Ye,core(tL) =
Ltot,0

ν tL
Nb, core

(

Kνe

〈ενe〉ib
− Kν̄e

〈εν̄e〉ib
)

. (2.32)

We assume that the lepton number loss during time interval tL is proportional to the energy loss
during this time. Therefore we choose Kνi

= const, because 〈ενi
〉ib = const, and set Kνe = 0.2,

Kν̄e = 0.215 for the calculations in this work. Kνx follows from Eq. (2.28).

2.4.3 Moving the inner boundary to a different mass shell

The rapid boundary contraction we assume for some of our models leads to a fast increase of
the speed of sound and the optical depth at the inner boundary, which can cause numerical
problems in the neutrino transport routine and small time steps due to the CFL condition. To
avoid these issues, we shift the inner boundary to higher radii (i.e. to a different mass shell)
each time the optical depth for electron neutrinos becomes higher than a certain value, typically
τmax = 200. We place the new inner boundary at a radius Rib

′ where the optical depth is about
100. Note that this procedure is not necessary for models with the slower “standard” boundary
contraction.
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When the optical depth at the inner boundary has become too high at a time t, we shift the
boundary from the original radius Rib to Rib

′ and adjust the boundary parameters and the point
mass are in the following way (δt → 0+):

Lνe

ib (t + δt) = Lνe(Rib
′, t − δt)

Lν̄e

ib (t + δt) = Lν̄e(Rib
′, t − δt)

Lνx

ib (t + δt) = Lνx(Rib
′, t − δt)

Rib
i(t + δt) = Rib

i(t − δt) × (Rib
′/Rib)

Rib
f (t + δt) = Rib

f (t − δt) × (Rib
′/Rib)

Mib(t + δt) = M(Rib
′, t − δt) (2.33)

This means that the luminosity produced in the region [Rib, Rib
′] that is “cut off” the numerical

grid is added to the new boundary luminosity, and that the mass M(Rib
′) − M(Rib) in this

region is added to the point mass Mib representing the inner part of the neutron star. Therefore
the luminosity and gravitational acceleration above Rib

′ do not change, and global quantities,
e.g. the heating rate in the gain layer, do not show jumps or kinks at the time we shift the
boundary. However, in the subsequent evolution small differences can be observed, compared
to a corresponding run performed without this boundary shifting. This is due to the fact, that
the velocity we assume for the new inner boundary at Rib

′ may not agree with the velocity of
the mass shell M(Rib

′) in a run where we leave the boundary at the original mass coordinate
(the same applies for the luminosity). Yet, several 10 ms after shifting the boundary, we see only
very small differences.



3
Explosion anisotropy in two dimensions

In this chapter we will investigate the anisotropy of core collapse supernova explosions and the
associated acceleration of neutron stars by means of two-dimensional simulations. We start
by discussing the considered progenitor stars and defining physical quantities which charac-
terise the different runs of our large set of simulations in Sect. 3.1. Moreover, we describe the
post-processing procedures that we applied to the numerical calculations to compute these char-
acteristic quantities. In Sect. 3.2 we present results for two exemplary neutrino-hydrodynamic
calculations. In Section 3.3 we explore the dependence of our simulations on the properties of the
stellar progenitors and on the assumed core neutrino fluxes, and establish correlations between
explosion parameters and neutron star kicks. Section 3.4 is devoted to the effects of rotation.
In Sect. 3.5 we return to the neutron star recoils and investigate their robustness with respect
to the approximations and assumptions that we have employed. Furthermore, we investigate
the long-time evolution of the recoil velocities for a few models beyond the time interval of one
second after core bounce, for which we have evolved most of our models. Estimating the termi-
nal values of the NS velocities by a calibrated extrapolation procedure, we will finally speculate
about the possible implications of our results for the velocity distribution of neutron stars in
Sect. 3.6.

3.1 Preliminaries

3.1.1 Initial models and initial perturbations

Our calculations are started at ∼ 15−20 ms after core bounce from detailed post-collapse models.
We make use of four such models which are based on three different progenitors. The first
was calculated by Bruenn (1993) with a general relativistic, one-dimensional (1D), Lagrangian
hydrodynamics code coupled to neutrino transport by multi-group, flux-limited diffusion (see his
Model WPE15 LS 180). It employs the 15 M� progenitor of Woosley et al. (1988). Simulations
based on this model will henceforth be called the “B-series”.

Our second 1D post-collapse model, provided by M. Rampp (priv. comm.), uses a 15 M� progen-
itor star of Limongi et al. (2000) and was computed with the Prometheus PPM hydrodynamics

25
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Figure 3.1: Density and entropy as functions of the enclosed mass for the B, L and W initial models a
few milliseconds after core bounce (see the main text for details). The differences in the density profiles
have a strong influence on the mass accretion rates. The relatively low densities in the B model lead to
a small accretion rate and a fast onset of the explosion. The opposite is true for the L model, which
shows the highest densities (see Sect. 3.3). The small steps in the density profiles correspond to interfaces
separating shells of different composition. These interfaces are better visible in the entropy profiles. The
pronounced “discontinuity” at ρ = 1010 g/cm3 is the supernova shock.

code coupled to the Vertex multi-group variable Eddington factor/Boltzmann neutrino trans-
port solver (Rampp & Janka 2002). Our “L-series” of simulations makes use of that model.

We also consider two post-bounce models that were computed for the s15s7b2 progenitor of
Woosley & Weaver (1995) with Prometheus/Vertex by Buras et al. (2003, 2006a) (see their
Models s15/1D and s15r). The first of these models is from a one-dimensional simulation and
gives rise to the “W-series” of runs, while the second is a rotating, two-dimensional (axisymmet-
ric) model, which we use for our “R-series” of calculations. Density and entropy profiles of all
1D initial models plotted as a function of the enclosed mass are displayed in Fig. 3.1.

To obtain the rotating model, Buras et al. (2003, 2006a) imposed the angular velocity profile
shown in Fig. 3.2 on the s15s7b2 progenitor and followed the evolution of this model through
core bounce, assuming equatorial symmetry and using a computational wedge extending over
0 ≤ θ ≤ π/2. The initial angular frequency was assumed to be constant in the Fe and Si core
and to decrease as r−3/2 outside a radius of 1750 km (corresponding to a mass coordinate of
1.425 M�, which is the inner edge of the oxygen-rich silicon layer in the progenitor). Outside the
iron core the rotation profile followed (on average) the profile of the rotating 15 M� progenitor of
Heger et al. (2000). Inside the iron core an angular frequency of Ω = 0.5 rad/s was chosen, which
is lower than in the stellar evolution calculations for non-magnetised stars of Heger et al. (2000),
but somewhat higher than in the calculations of Heger et al. (2004), which include the effects of
magnetic torques. This choice ensured that the ratio of the centrifugal to the gravitational force
was below 7 × 10−3 everywhere in the pre-collapse core. The ratio of the rotational energy to
the gravitational binding energy of the pre-collapse star was only T/W ≈ 10−3, which resulted
in negligible effects of rotation on the evolution until core bounce.

The level of numerical noise in our hydrodynamics code is so low that a one-dimensional, isotropic
initial configuration remains isotropic, even in the presence of a convectively unstable stratifica-
tion. Therefore we need to explicitly add random perturbations in order to start the convective
activity. The portable, high-quality random number generator RANLUX due to James (1994,
1996) and Lüscher (1994) is employed. We apply the perturbation to the velocity field and
typically use an amplitude of 0.1%. To break the equatorial symmetry of the rotating 2D model
of Buras et al. (2003, 2006a), we have to add perturbations with an amplitude of several per
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Figure 3.2: Angular velocity profiles for the rotating 15M� pre-supernova model (dashed curve) of Heger
et al. (2000), for the magnetised, rotating 15M� pre-supernova model (dash-dotted curve) of Heger et al.
(2004), and for the rotating model s15r of Buras et al. (2003) prior to core collapse (solid curve).

cent, since in this model the initial perturbations have already grown to such a level by the time
we map the model to our full 180◦ grid (see Sect. 2.3).

3.1.2 Overview of the simulations

Tables 3.1–3.3 give an overview of the parameters and characterising quantities (that will be
defined in Sect. 3.1.3) for all simulations performed with our “standard boundary contraction”.
The naming convention we have chosen for our models is the following: The first letter denotes
the initial model (i.e. the progenitor/post-bounce data), followed by a two-digit code which
corresponds to the chosen value for the total neutrino energy loss of the neutron star core,
∆E∞

ν,core (see Eq. 2.30), in units of 1
100 M�c2. Thus B18, for example, refers to a simulation based

on the Woosley et al. (1988)/Bruenn (1993) initial data with an assumed release of gravitational
binding energy of the core of ∆E∞

ν,core = 0.18 M�c2. In Tables 3.1–3.3 we give also a value for
the energy lost by the core in the first second,

∆Etot
ν,core(t) =

∫ t

0
Ltot

ν (Rib, t
′) dt′, (3.1)

with t = 1 s. The second fundamental model parameter, the luminosity time scale tL (see
Sect. 2.4.2), is not taken into account in the model names, because it has the same value for all
models of a series. The chosen value in each case is given in the captions of Tables 3.1–3.3.

Simulations performed on a larger grid (with an outer boundary radius of 1010 cm and 500 radial
zones) are indicated by the letter“g”appended to the model name, e.g. B18-g, simulations which
account for the recoil motion of the neutron star contain the letter “m” in the model name, and
model series started from different random seed perturbations are denoted by numbers appended
to the model names. Hence Model B18-1 differs from Model B18 (and from Models B18-2, B18-3
etc.) only in the random perturbations imposed on the initial velocity distribution (with the
perturbation amplitude being the same in all cases).

The model parameters should be chosen (or should come out) such that basic constraints for the
loss of energy and lepton number from the forming neutron star core are fulfilled. For example
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the lepton number loss during time tL is in all cases of order 0.1–0.2, and the total (asymptotic)
energy loss

∆E∞
core = 3 × ∆Etot

ν,core(tL) (3.2)

does not exceed the gravitational energy

E ≈ 3 × 1053

(

Mns

M�

)2( Rns

10 km

)−1

ergs, (3.3)

which can be released during the birth of a neutron star. The energy ∆E500 radiated in νe and
ν̄e is roughly consistent with the expected contribution of these neutrinos to the energy loss
during the time interval tL, i.e. ∆E500 ≈ 1

3 × 1
3 E.

3.1.3 Definitions and approximations for post-processing the simulations

We evaluate our about 80 hydrodynamic models for interesting characteristic quantities by post-
processing the data of the simulations. To keep the evaluation as straightforward as possible we
sometimes employ approximations which we will define below.

A characterising value for the neutrino luminosities imposed at the inner boundary is

Lib(t) ≡ Le,νe(Rib, t) + Le,ν̄e(Rib, t), (3.4)

neglecting the contribution from heavy-lepton neutrinos, whose interactions in the computational
domain are less important than those of νe and ν̄e, and who, in particular, do not contribute to
the neutrino heating behind the shock at a significant level. We also consider the sum of the νe

and ν̄e luminosities at a radius of 500 km,

L500(t) = Le,νe(r = 500 km, t) + Le,ν̄e(r = 500 km, t), (3.5)

and define the time average of this quantity in the time interval [0, texp] as

〈L500〉 = texp
−1

∫ texp

0
L500(t) dt. (3.6)

The value of 〈L500〉 represents approximatively the (νe + ν̄e) luminosity that is responsible for
the energy deposition behind the supernova shock until the explosion sets in at a post-bounce
time t = texp. Therefore the difference between 〈L500〉 and Lib can be considered as a rough
measure for the radial change of the neutrino luminosities in contrast to their constancy in case
of the light-bulb scheme used by Janka & Müller (1996).

We will also consider the total energy in νe and ν̄e neutrinos that streams through a sphere with
a radius of 500 km in the time interval [0, t],

∆E500(t) =

∫ t

0
(Le,νe + Le,ν̄e)(r = 500 km, t′) dt′. (3.7)

The explosion energy, Eexp, of a model is defined as the sum of the total energy of all zones of
the grid where this energy is positive, i.e.

Eexp =
∑

etot,i>0

etot,i ∆mi, (3.8)
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Table 3.1: Simulations based on the Woosley et al. (1988)/Bruenn (1993) post-bounce model. The luminosity time scale tL is 1 s. Unless noted otherwise
the inertial mass of the neutron star is assumed to be infinite for these and the simulations listed in the following tables, i.e. the neutron star takes up
momentum but cannot move on the grid. For the definitions of the listed quantities, see Sect. 3.1.3. All time-dependent quantities are given at a time t = 1 s,
when we terminated the simulations. Energies are given in units of 1B = 1bethe = 1051 erg.

Model Lib ∆Etot
ν,core ∆Ye,core 〈L500〉 ∆E500 Eexp texp Mns vns

z vns,ν
z ans

z αgas dshock

[B/s] [B] [B/s] [B] [B] [s] [M�] [km/s] [km/s] [km/s
2
]

B10 24.7 59.6 0.09 57.1 45.9 0.19 0.294 1.426 -164.1 44.4 -180.2 0.24 0.67
B11 27.2 65.5 0.10 58.8 46.3 0.27 0.280 1.401 -23.6 0.7 -248.9 0.03 0.97
B12 29.7 71.5 0.11 60.6 48.7 0.37 0.220 1.399 -389.5 45.0 -372.4 0.32 0.06
B12-1 29.7 71.5 0.11 60.5 47.5 0.33 0.228 1.377 72.8 -4.7 47.9 0.07 0.22
B12-2 29.7 71.5 0.11 60.9 48.5 0.39 0.212 1.391 85.8 9.7 345.7 0.07 0.82
B12-3 29.7 71.5 0.11 60.9 46.5 0.38 0.207 1.369 242.0 2.0 464.3 0.18 0.97
B12-4 29.7 71.5 0.11 61.1 47.7 0.35 0.216 1.385 -115.1 20.4 -154.2 0.10 0.51
B12-5 29.7 71.5 0.11 61.0 47.8 0.33 0.211 1.387 -206.9 11.6 -483.1 0.19 0.52
B13 32.2 77.5 0.12 62.4 49.6 0.45 0.188 1.378 -355.3 32.0 -408.0 0.25 0.36
B14 34.6 83.4 0.13 63.6 49.6 0.51 0.198 1.345 -128.0 -11.2 -66.7 0.07 0.40
B15 37.1 89.4 0.14 65.3 50.3 0.65 0.162 1.318 36.1 -1.0 36.0 0.02 0.27
B16 39.6 95.3 0.15 66.3 51.8 0.81 0.160 1.305 -214.6 -2.6 -334.4 0.08 0.57
B17 42.1 101.3 0.15 67.6 53.3 0.95 0.146 1.289 -25.5 14.8 -102.6 0.01 0.05
B17-1 42.1 101.3 0.15 67.8 53.4 0.92 0.160 1.290 -354.0 5.6 -202.2 0.12 0.31
B18 44.5 107.3 0.16 68.3 54.8 1.16 0.152 1.275 515.3 5.2 290.5 0.15 0.42
B18-1 44.5 107.3 0.16 68.4 54.7 1.12 0.154 1.274 -126.5 -0.8 -49.1 0.04 0.20
B18-2 44.5 107.3 0.16 68.9 54.7 1.14 0.152 1.268 82.5 -5.2 16.5 0.02 0.07
B18-3 44.5 107.3 0.16 68.8 57.1 1.15 0.142 1.305 798.8 -41.2 552.1 0.24 -0.06
B18-4 44.5 107.3 0.16 68.2 54.6 1.14 0.150 1.272 -171.6 4.0 65.7 0.05 0.46
B18-5 44.5 107.3 0.16 68.5 55.2 1.09 0.164 1.280 -121.8 -0.9 15.4 0.04 -0.02
B18-6 44.5 107.3 0.16 68.7 55.4 1.11 0.160 1.283 502.1 -20.6 220.0 0.15 -0.06
B18-g1 44.5 107.3 0.16 68.7 54.5 1.12 0.142 1.269 -60.3 3.9 -55.4 0.02 0.06
B18-g2 44.5 107.3 0.16 68.7 54.8 1.12 0.138 1.273 267.9 -8.1 126.7 0.08 0.28
B18-g3 44.5 107.3 0.16 68.5 54.9 1.10 0.150 1.274 -7.4 -3.5 0.9 0.00 0.02
B18-g4 44.5 107.3 0.16 68.7 54.5 1.16 0.132 1.270 -416.8 1.7 -150.9 0.11 0.37
B19-g1 47.0 113.2 0.17 69.6 55.9 1.31 0.148 1.253 -273.8 0.3 -96.7 0.07 0.41
B19-g2 47.0 113.2 0.17 69.5 56.0 1.33 0.148 1.255 188.5 6.4 48.8 0.05 0.15
B19-g3 47.0 113.2 0.17 70.0 56.6 1.26 0.132 1.263 366.6 1.1 183.7 0.10 0.13
B19-g4 47.0 113.2 0.17 70.0 56.8 1.33 0.130 1.267 477.1 -18.3 195.6 0.12 -0.02
B20 49.5 119.2 0.18 71.0 57.3 1.49 0.128 1.238 133.2 5.6 52.6 0.03 0.40
B21 51.9 125.1 0.19 72.1 58.5 1.72 0.122 1.222 30.6 -0.9 -20.2 0.01 0.24
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Table 3.2: Simulations based on the Limongi et al. (2000)/Rampp progenitor and the Woosley & Weaver (1995)/Buras et al. (2003) post-bounce model
(non-rotating and rotating cases). The luminosity time scale tL is 0.7 s for the Limongi et al. (2000)/Rampp simulations and tL = 1 s for the Woosley &
Weaver (1995)/Buras et al. (2003) models. For more details, see the caption of Table 3.1.

Model Lib ∆Etot
ν,core ∆Ye,core 〈L500〉 ∆E500 Eexp texp Mns vns

z vns,ν
z ans

z αgas dshock

[B/s] [B] [B/s] [B] [B] [s] [M�] [km/s] [km/s] [km/s2]

L12 42.4 94.6 0.13 90.7 70.7 0.51 0.321 1.677 278.5 -12.9 334.3 0.24 0.11
L13 45.9 102.5 0.14 91.7 69.2 0.68 0.268 1.620 -92.6 -5.9 -333.6 0.05 0.77
L14 49.5 110.4 0.15 94.6 72.8 0.81 0.280 1.628 482.1 -22.0 297.1 0.26 0.31
L15 53.0 118.3 0.17 96.2 75.2 1.02 0.266 1.617 -239.5 -3.9 -378.5 0.10 0.63
L16 56.5 126.2 0.18 97.8 76.3 1.07 0.256 1.586 -437.9 12.8 -715.2 0.17 0.47
L17 60.1 134.0 0.19 100.3 77.4 1.19 0.256 1.558 -24.7 5.5 -47.6 0.01 0.37

W10 24.7 59.6 0.09 64.3 55.4 0.21 0.420 1.568 -129.8 42.1 -443.1 0.15 0.81
W12 29.7 71.5 0.11 69.0 53.9 0.31 0.322 1.501 -97.7 -9.7 -132.5 0.10 0.61
W12-1 29.7 71.5 0.11 68.0 59.5 0.32 0.374 1.563 -363.8 81.2 -377.0 0.32 0.13
W14 34.6 83.4 0.13 72.9 56.6 0.46 0.250 1.473 -62.0 -1.5 66.1 0.04 0.37
W16 39.6 95.3 0.15 76.0 58.5 0.67 0.244 1.430 287.2 -5.5 464.2 0.14 0.68
W18 44.5 107.3 0.16 79.3 61.5 0.89 0.226 1.401 -283.6 4.2 -290.1 0.11 0.44
W20 49.5 119.2 0.18 82.0 63.5 1.36 0.216 1.354 -377.3 0.6 -277.0 0.10 0.39

R10 24.7 59.6 0.09 59.9 48.8 0.25 0.418 1.521 -15.4 -14.3 -118.7 0.02 -0.02
R12 29.7 71.5 0.11 64.6 49.9 0.50 0.316 1.461 -235.8 17.5 -203.4 0.16 0.15
R14 34.6 83.4 0.13 69.2 52.4 0.69 0.264 1.420 88.4 14.6 86.9 0.04 0.15
R16 39.6 95.3 0.14 71.9 56.0 0.98 0.256 1.396 321.2 -8.9 210.1 0.11 0.06
R18 44.5 107.3 0.16 75.8 58.3 1.24 0.232 1.349 -4.8 -3.7 -26.7 0.00 -0.07
R18-g 44.5 107.3 0.16 75.8 58.5 1.23 0.226 1.352 -113.9 2.1 -188.1 0.03 0.07
R20 49.5 119.2 0.18 78.8 60.9 1.64 0.214 1.309 280.1 0.8 123.9 0.06 0.14
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Table 3.3: Simulations based on the Woosley et al. (1988)/Bruenn (1993) post-bounce model. The luminosity time scale tL is 1 s. For more details, see the
caption of Table 3.1. Different from the models listed in all other tables, the recoil motion of the neutron star was accounted for in the simulations listed
here (as described in Sect. 2.3).

Model Lib ∆Etot
ν,core ∆Ye,core 〈L500〉 ∆E500 Eexp texp Mns vns

z vns,ν
z ans

z αgas dshock

[B/s] [B] [B/s] [B] [B] [s] [M�] [km/s] [km/s] [km/s2]

B12-m1 29.7 71.5 0.11 60.9 47.4 0.36 0.226 1.384 -56.8 -1.7 -208.2 0.06 0.48
B12-m2 29.7 71.5 0.11 60.9 47.7 0.31 0.222 1.385 -100.0 19.1 -63.5 0.10 0.72
B12-m3 29.7 71.5 0.11 61.2 47.8 0.38 0.210 1.388 272.6 -16.5 91.9 0.23 0.35
B12-m4 29.7 71.5 0.11 60.9 47.0 0.35 0.209 1.378 -104.3 -7.4 -197.2 0.09 0.43
B12-m5 29.7 71.5 0.11 60.8 47.9 0.35 0.219 1.389 365.6 -10.1 219.1 0.32 0.47
B12-m6 29.7 71.5 0.11 60.7 48.4 0.36 0.229 1.395 -334.1 42.4 -462.9 0.30 0.26
B18-m1 44.5 107.3 0.16 68.9 54.9 1.12 0.136 1.274 43.3 -4.8 -108.8 0.02 0.12
B18-m2 44.5 107.3 0.16 68.9 54.8 1.14 0.139 1.273 -86.8 -1.1 -31.1 0.03 0.20
B18-m3 44.5 107.3 0.16 68.8 55.3 1.12 0.131 1.281 76.4 -8.8 -11.4 0.03 0.39
B18-m4 44.5 107.3 0.16 68.5 54.9 1.14 0.150 1.274 -118.7 14.5 -156.4 0.05 0.13
B18-m5 44.5 107.3 0.16 68.3 54.7 1.12 0.166 1.273 -339.7 -4.5 -152.4 0.13 -0.06
B18-m6 44.5 107.3 0.16 68.6 55.4 1.12 0.166 1.283 -439.3 14.0 -194.5 0.17 0.04
B18-m7 44.5 107.3 0.16 68.8 54.7 1.12 0.138 1.272 109.2 8.6 2.1 0.04 0.38
B18-m8 44.5 107.3 0.16 69.3 54.5 1.13 0.134 1.269 455.0 -4.1 187.4 0.17 0.05



32 CHAPTER 3. EXPLOSION ANISOTROPY IN TWO DIMENSIONS

where i is the zone counter, ∆mi the mass contained in zone i, and the total specific energy etot

is given by the sum of the specific gravitational, kinetic, and internal energies,

etot = egrav +
1

2
v2 + eint. (3.9)

For the sake of simplicity we use here the one-dimensional Newtonian expression

egrav(r) = −GM(r)

r
(3.10)

to evaluate the gravitational energy, neglecting the relatively small general relativistic correc-
tions, which have been taken into account in the simulations.

Another quantity of interest is the explosion time scale, texp, which we define as the time after
the start of the simulation when Eexp exceeds 1048 erg. It turns out that the exact choice of this
threshold value does not matter very much. Other definitions of the explosion time scale (e.g.,
linked to the time when the expansion velocity of the shock exceeds a certain value) do also not
lead to qualitatively different results.

The neutron star mass and the neutron star radius are considered to be associated with a certain
value of the density, ρns = 1011g cm−3. The neutron star radius, Rns, is then simply defined as
the radius where the lateral average of the density is equal to ρns, and the baryonic mass of the
neutron star, Mns, is given by the sum of the central point mass and the mass integral over all
grid zones with densities ≥ ρns. Since Mns will in general vary with time due to accretion and
mass stripping in the neutrino-driven wind, we also monitor the rate of mass change, Ṁns, using
finite differences in time. The sign of Ṁns is positive/negative when net accretion/ablation of
matter occurs.

In evaluating the neutron star recoil velocity, ~vns, we have to distinguish between simulations
in which we consider the neutron star motion relative to the ejecta by changing the frame
of reference after each time step (see Sect. 2.3), and simulations in which this motion is not
accounted for. In the first case no post-processing is required, because the neutron star velocity
is given at all times by the accumulated effects of the Galilei transformations applied until time
t or time step n,

~vns(t) =
∑

m=1,...,n

∆~vm
core. (3.11)

In the second case, ~vns is computed a posteriori, by making use of linear momentum conservation.
The total momentum of the system, i.e. the sum of the neutron star momentum ~Pns = Mns~vns

and the momentum of the surrounding gas on the computational grid, ~Pgas, is initially zero (be-
cause all models that we consider are spherically symmetric or equatorially and axially symmetric
just after collapse). Hence we have for all times

~vns(t) = − ~Pgas(t)/Mns(t), (3.12)

and ~vns(t) can be determined by evaluating the neutron star mass and the momentum integral
of the ejecta gas,

~Pgas(t) =

∫

Rns<r<∞
ρ~v dV . (3.13)

Here dV = r2 sin θ dr dθ dφ. Note that the volume integral in Eq. (3.13) is limited by the outer
boundary of our Eulerian grid and that the momentum flux associated with anisotropic mass
flow over the grid boundary would have to be taken into account.
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Equation (3.12) may actually also be coined in terms of an anisotropy parameter of the ejecta,
αgas (see Janka & Müller 1994; Herant 1995). To accomplish this, we make use of the following
scalar quantity

Pej(t) :=

∫ Rs(θ)

Rns

ρ |~v| dV , (3.14)

which has the dimension of a momentum. Then we can write the anisotropy parameter as

αgas := |~Pgas| / Pej, (3.15)

and the absolute value of the neutron star velocity as

|~vns| = αgas Pej / Mns. (3.16)

The neutron star acceleration corresponding to the velocity change at a given time is calculated
by finite differences:

~a (n)
ns =

~v
(n+1)
ns − ~v

(n−1)
ns

t(n+1) − t(n−1)
. (3.17)

In computing the recoil velocity according to Eqs. (3.12) and (3.16), we have so far neglected
the fact that the neutron star may also be accelerated by anisotropic neutrino emission. While
our core luminosities at the inner grid boundary are assumed to be isotropic at all times and
no neutron star acceleration can result from these, direction-dependent variations of the ther-
modynamic variables in layers close to the neutron star surface develop during the simulations
and ultimately lead to anisotropies of the neutrinospheric emission of neutrinos. In particular,
density inhomogeneities and local hot-spots (in temperature) occur as a consequence of narrow
accretion flows that transport gas from the postshock layers to the neutron star, where they
are decelerated in shocks and radiate away energy in neutrinos. The anisotropy of this neu-
trino emission can give rise to a “neutrino rocket effect”, whose magnitude can be estimated by
considering the integrated momentum of the escaping neutrinos.

For a transport scheme along radial rays like ours, the neutrino momentum density has only a
radial component and can thus be written as (see also Appendix A)

pν ~er =
nνεν

c
~er =

Fν

c2
~er, (3.18)

where Fν is the local neutrino energy flux and ~er the unit vector in the radial direction. The
integrated neutrino momentum at time t is then given by

~Pν(t) =

∫

Rib<r<∞
pν ~er dV

=

∫

Rib<r<Rob

pν ~er dV +

∫ t

0
dt

∮

r=Rob

pνc~er dS, (3.19)

with the surface element dS = r2 sin θ dθ dφ. Here the surface integral accounts for the fact that
a significant amount of neutrino momentum may have left our grid through the outer boundary
by the time t. The momentum of the neutron star, including now also the effect of anisotropic
neutrino emission, is

~Pns = −
(

~Pgas + ~Pν

)

, (3.20)
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so that the neutron star velocity, corrected for the recoil by anisotropic neutrino emission, can
be written as

~vns,corr = ~vns + ~vns,ν = −~Pgas/Mns − ~Pν/Mns. (3.21)

We finally note that for symmetry reasons ~Pgas and ~Pν , and thus also ~Pns and ~vns, can have only a
component parallel to the symmetry axis, i.e. along the z-axis, in 2D axisymmetric calculations.
Equation (3.13), for instance, therefore reduces to

Pz,gas = 2π

∫ ∞

Rns

dr

∫ π

0
dθ r2 sin θ pz(r, θ)

= 2π

∫ ∞

Rns

dr

∫ π/2

0
dθ r2 sin θ [ pz(r, θ) + pz(r, π − θ) ]

= PN
z,gas + P S

z,gas. (3.22)

Here pz(r, θ) = ρ (vr cos θ − vθ sin θ) is the z-component of the momentum density of the gas,
and PN

z,gas and P S
z,gas are introduced as the z-momenta of the gas in the northern and southern

hemispheres, respectively.

To characterise the deviation of the shape of the supernova shock from a sphere we introduce a
shock deformation parameter,

dshock :=
max (Rs(θ) cos θ) − min (Rs(θ) cos(θ))

2 × max (Rs(θ) sin θ)
− 1, (3.23)

where Rs(θ) is the local shock radius as a function of polar angle θ. The numerator and denom-
inator in Eq. (3.23) are the maximum shock diameters in projection on the symmetry axis and
perpendicular to it, respectively. A prolate deformation leads to a positive value of dshock, an
oblate deformation gives a negative value. Note that a linear shift of the shock surface in the
direction of the z-axis does not change dshock.

Note that in Tables 3.1–3.3 the time-dependent quantities ∆Ye,core, ∆Etot
ν,core, ∆E500, Eexp, Mns,

vns
z , vns,ν

z , ans
z , αgas and dshock are given at the time t = 1 s, at which we usually stop our

simulations. We have to point out here that the listed neutron star recoils velocities, vns
z , are not

the final ones, but that even at the end of our simulations the neutron star can still experience a
large acceleration. We therefore also give the neutron star acceleration, ans

z = dvns
z /dt (averaged

over the last 100 ms and without neutrino effects), at the end of our simulations and will attempt
to estimate final velocities of the neutron stars in Sect. 3.5.4.

3.2 Two representative models

3.2.1 The character of the flow

Giving an accurate qualitative description of the flow that establishes in our calculations is a
difficult endeavour, as the evolution that we observe during the first ∼ 300−400 ms is wildly time-
dependent and extremely non-linear. One may even characterise it as chaotic (see Sect. 3.2.5).
The layer between the proto-neutron star and the supernova shock is Ledoux-unstable, because
a negative entropy gradient is established due to neutrino heating within ∼ 50 ms after bounce.
Small Rayleigh-Taylor mushrooms grow from the imposed random seed perturbations and start
rising towards the shock. They merge quickly and grow to fewer but larger bubbles that deform
the shock and push it outward (Fig. 3.3). Initially, this deformation of the shock is confined to
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Figure 3.3: Entropy distributions in Model B12 (left column) and Model B18 (right column) for different
times. The figures are plotted such that the polar axis is oriented horizontally with “south” (θ = π) on
the left and “north” (θ = 0) on the right. Dotted black lines mark the gain radius and white lines the
supernova shock. Note that the scales differ between the plots. Convective activity starts with small
Rayleigh-Taylor structures (t = 50ms) which then grow and merge to larger cells and global anisotropy.
In contrast to Model B18, the low-energy model B12 develops pronounced bipolar oscillations (compare
the plots for t = 200ms and t = 250ms between both cases). After the explosion has set in, the convective
pattern “freezes out” and the expansion continues essentially self-similarly (see the plots for t = 500ms
and t = 1000ms).
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latitudes close to the poles, where the growth of the bubbles is faster than near the equator (cf.
Sect. 3.2.3), but soon the entire shock surface is affected.

Due to the violent convective motions of the rising high-entropy plumes the shock gets bumpy
and deformed, and caustic-like kinks of the shock emerge where two such bubbles approach
each other and collide. Downstream of the shock, decelerated and compressed matter forms
a high-density (low-entropy) shell, which sits atop high-entropy material that boils vigorously
as it is heated by neutrinos from below. The interface between these layers is Rayleigh-Taylor
unstable (Herant 1995) and gives therefore rise to narrow, low-entropy downflows of matter,
which penetrate from the postshock layer to the neutron star with supersonic velocities. When
they reach surroundings with entropies lower than their own, the downflows are decelerated
and their material spreads around the neutron star. The evolution of these downflows is highly
dynamic. They form, merge with other accretion funnels, or are blown away by the rising
buoyant matter on a time scale of 10–20 ms, while their number decreases with time. The most
massive of these downflows originate from the kinks at the shock surface, where the deceleration
of the infalling matter is weaker due to the (local) obliqueness of the shock. During this phase of
violent “boiling” the shock develops a strong, time-dependent deformation and expands slowly
outward. In Model B12, whose evolution is shown in the sequence of plots on the left side of
Fig. 3.3, pronounced bipolar hemispheric oscillations become visible after about 150 ms. This
model differs from Model B18 (on the right side of Fig. 3.3) by lower neutrino luminosities at the
inner boundary and a correspondingly lower explosion energy and later onset of the explosion.
Model B18 shows also violent convective activity, but no such bipolar oscillations.

Owing to the persistent deposition of energy by neutrinos in the region between gain radius
and shock, and the increase of the efficiency of the heating by convection, Models B12 and
B18 ultimately explode at texp = 220 ms and texp = 152 ms, respectively, in contrast to one-
dimensional counterparts of both models, which fail to explode. At these times the morphology
is still evolving rapidly. About 100 − 200 ms later, however, the overall flow has settled into a
quasi-self-similar state and has become remarkably stable (as predicted by Herant 1995), in stark
contrast to the preceding phase. The boiling motions have given rise to only two bubbles, which
show a Kelvin-Helmholtz unstable shear layer at their outer boundaries, and are separated by a
single accretion funnel. The bubbles may occupy roughly a hemisphere each as in Model B18,
but they may also differ significantly in size, resulting in a global l = 1 mode anisotropy as in
Model B12 (see Fig. 3.3).

For sufficiently high core luminosities, accretion of matter onto the neutron star is eventually
superseded by the onset of a neutrino-driven wind (see also Burrows et al. 1995; Janka & Müller
1996). If the wind is strong enough, as in Model B18 where the mass-loss rate of the nascent
neutron star by the wind is Ṁns = −5.1 × 10−2 M�/s, it blows away the accretion funnel and
establishes a high-entropy shell or cavity of rapidly expanding low-density material around the
neutron star, which is separated from the ejecta by a strong reverse shock. Otherwise accretion
through the funnel continues until more than about 1 s after bounce, as in Model B12. In this
case the accreted material reaches infall velocities of about 1/4 of the speed of light, while the
accretion rate at t = 1 s has decreased to Ṁaccr ≈ 4 × 10−2 M�/s. Since at the same time the
neutron star mass changes at a rate of Ṁns ≈ 1.1 × 10−2 M�/s, only a fraction of ∼ 25% of the
infalling matter is actually integrated into the neutron star. The remaining 75% are heated and
reejected with high velocity, inflating the buoyant bubble of neutrino-heated gas. The resulting
flow, which is characterised by a strong dipole mode, can be conveyed only incompletely with
plots such as Fig. 3.3 and is much more impressively captured by movies that we have produced
from our data and which are available as online material to Scheck et al. (2006).
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Figure 3.4: Graphical illustration of the momentum balance between neutron star and ejecta. The
largest fraction of the ejecta mass is concentrated in a dense shell behind the shock (bright coloured
ring). For a spherical explosion (left panel) the momenta of the neutron star and the ejecta are zero. If
the expansion of one hemisphere lags behind the other, the gas has a net momentum in the direction of the
faster expanding hemisphere. The neutron star is always accelerated in the opposite direction, i.e towards
the slower moving gas (middle and right panels). This acceleration can be mediated by the gravitational
attraction of the anisotropic ejecta (middle panel). In case accretion flows reach down to the neutron
star surface (right panel), additional (hydrodynamic) forces may contribute, but the gravitational force,
in general, remains dominant.

At the end of the simulations, Models B12 and B18 have attained explosion energies of 0.37 ×
1051 erg and 1.16 × 1051 erg, respectively, which makes them representative of a low-energy and
a rather high-energy (more standard) explosion.

3.2.2 Acceleration and recoil of the neutron star

We have shown in Sect. 3.1.3 that in a 2D axisymmetric calculation the neutron star recoil can
only have a component parallel to the z-axis, and that for its calculation only the z-momenta
of the gas in the northern and southern hemispheres need to be considered (see Eq. 3.22). If
the momentum density of the ejecta, pz(r, θ), is mirror symmetric with respect to the equatorial
plane, i.e., if

pz(r, θ) = −pz(r, π − θ) (3.24)

holds, the sum of the z−momenta of the two hemispheres vanishes

Pz,gas = PN
z,gas + P S

z,gas = 0, (3.25)

and thus also the neutron star remains at rest (cf. Eqs. 3.22 and 3.12). The latter situation
is given e.g. for an l = 2 mode, i.e. for two polar bubbles of equal size separated by a single
downflow which is located in the equatorial plane. However, in general the expansion of the
ejecta will proceed differently in the two hemispheres, so that a net momentum Pz,gas 6= 0 will
result.

If a single downflow has formed, e.g., in the southern hemisphere, the expansion of the ejecta will
be hampered there. On the other hand it will proceed unaffected in the northern hemisphere,
and thus |PN

z,gas| will be larger than |P S
z,gas|. Hence, Pz,gas will be dominated by PN

z,gas (which is
positive since all of the gas in this hemisphere is moving outwards). According to Eq. (3.12), the
neutron star must then be accelerated in the negative z-direction, i.e. towards the (southern)
hemisphere which contains the downflow. This is the situation that ultimately establishes in
Model B12 (compare Fig. 3.3 and Table 3.4), and which is also illustrated in the right panel of
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Table 3.4: Integrated momenta of the ejecta in the northern (θ < π/2) and southern hemispheres as
well as their sum, Pz,gas, and the resulting neutron star recoil velocity, vns

z , at t = 1 s.

Model PN
z,gas [g cm

s ] P S
z,gas [g cm

s ] Pz,gas [g cm
s ] vns

z [km
s ]

B12 1.26 × 1041 −0.20 × 1041 1.06 × 1041 −389.3
B18 1.77 × 1041 −3.07 × 1041 −1.30 × 1041 515.1

Figure 3.5: Left: Evolution of the neutron star velocities for Models B12 and B18. The solid curve
is the neutron star recoil velocity derived from total momentum conservation of gas and neutron star
(see Eq. 3.12). The dotted curve includes corrections due to anisotropic neutrino emission. The dashed
curve is an estimate obtained by integrating Eq. (3.26) over time. Right: Evolution of the neutron star
acceleration (solid curve), as computed from the (numerical) time derivative of the solid curve shown in
the velocity plots on the left side. Also shown are the individual terms of Eq. (3.26), corresponding to
momentum transfer due to downflows, outflows (e.g. in the neutrino-driven wind), anisotropic pressure
distribution around the neutron star, and gravitational pull of the anisotropic ejecta. The sum of these
terms (the long-dashed curve labelled “total”) agrees well with the (solid) curve obtained independently
from total momentum conservation applied to the hydrodynamics results.
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Fig. 3.4. In this case the neutron star has attained a velocity of vns
z = −389 km/s one second

after core bounce, and is still accelerated with ans
z = −372 km/s2 (Fig. 3.5).

Model B18 also develops a single downflow, which, however, is located in the northern hemi-
sphere, rather close to the equator. Although this model is clearly less anisotropic than Model
B12 (which is dominated by an l = 1 mode), the larger explosion energy and faster expansion
result in a larger |Pz,gas| (Table 3.4). This leads to a larger neutron star kick of vns

z = 515 km/s at
t = 1 s, while the acceleration at this time is ans

z = 290 km/s2 (Fig. 3.5). Note that these values
are comparable to the mean pulsar birth velocities derived from observations (see Sect. 3.5.4),
and that they are considerably higher than those found in earlier simulations (e.g. Janka &
Müller 1994). This is mainly due to the low-order modes in our calculations, which result in a
larger anisotropy, αgas, compared to previous work.

The neutron star velocities shown in Fig. 3.5 (left panel), as well as their time-derivatives labelled
with “derivative” and plotted with solid lines in the acceleration plots of Fig. 3.5 (right panel),
are calculated from the simulation data with our standard post-processing approach by assuming
total momentum conservation (see Sect. 3.1.3). The use of this approach requires a justification,
because momentum conservation may be numerically violated due to deficiencies of the solver
for the gravity potential. Moreover, it can be guaranteed analytically and rigorously only if the
gravitational potential can be written as the solution of a Poisson equation. This is, of course,
the case for Newtonian gravity. Yet, for the “general relativistic potential” of Rampp & Janka
(2002) that we used in the simulations, an equivalent of the Poisson equation cannot be derived
(Marek et al. 2006).

We do not expect that the small general relativistic corrections can seriously affect the results
of our post-processing to an extent that unrealistically large values for the neutron star recoil
velocities are obtained, especially because we find similarly large neutron star kicks in simu-
lations with Newtonian gravity (see Sect. 3.5.3). Yet, to provide additional support that our
standard post-processing method yields reliable results, we check it by calculating the neutron
star acceleration as a sum of the different forces which contribute to the momentum transfer to
the neutron star.

For this purpose we consider a sphere of radius r0 ≈ 1.1Rns that encloses the neutron star. The
time-derivative of the neutron star momentum (and hence the neutron star acceleration at a
certain time) can then be obtained by integrating the Euler equation over the volume of that
sphere, resulting in

~̇Pns ≈ −
∮

r=r0

p d~S −
∮

r=r0

ρ~v vr dS +

∫

r>r0

GMns
~r

r3
dm. (3.26)

Here the individual terms account for the varying pressure p around the sphere, the flux of
momentum through the surface of the sphere, and the gravitational acceleration due to the
anisotropic matter distribution outside the sphere. For the gravitational term we assume that
the matter distribution inside the sphere is spherically symmetric and that the gravitational
potential is Newtonian.

The time evolution of the acceleration corresponding to these terms, calculated from the data
of Models B12 and B18, is shown in the right panels of Fig. 3.5. Here the second term has
been split into two components associated with momentum flux into (“downflows”) and out of
the sphere (“outflows”). Also displayed is the sum of all terms (labelled by “total”). Integration
over time of the latter quantity yields the dashed velocity curve for vns,syn

z in the left panels
of Fig. 3.5. This should be compared to the solid curve (vns

z ) which was computed with our
standard post-processing approach of the gas momentum (and which includes the effects due to
general relativistic corrections). It is evident that there are only small differences between both



40 CHAPTER 3. EXPLOSION ANISOTROPY IN TWO DIMENSIONS

Figure 3.6: Radial profiles of the sum of the νe and ν̄e luminosities for Models B12 and B18 at different
times after the start of the simulations.

results, which are significantly smaller than 10%. This demonstrates that the use of relativistic
corrections to the gravitational potential is not the cause of our high neutron star velocities.

An interesting implication of Fig. 3.5 is the fact that the largest contribution to the acceleration
is, in general, due to the gravitational term. In certain evolutionary phases also the other
terms may contribute significantly. Yet, the total acceleration points nearly always in the same
direction as the gravitational pull. Momentum transfer by pressure and gas flow (the first and
the second term in Eq. 3.26) are only important as long as the inhomogeneous ejecta have
sonic contact with the neutron star and thus can exert hydrodynamic forces on the central
object. This is the situation found in Model B18 for times before t ≈ 0.5 s. After that time the
supersonic neutrino-driven wind, which is very strong in this energetic model (due to the high
neutrino luminosities) has blown away the accretion downflows from the neutron star. Ongoing
acceleration is then exclusively caused by the gravitational pull of the anisotropic ejecta and
decreases slowly as the nearly spherically symmetric wind clears the surroundings of the neutron
star. Hydrodynamic forces therefore do not contribute at later times in Model B18. On the other
hand, they are important at all times in Model B12. The acceleration due to the momentum
flux associated with the narrow downflows that reach the neutron star is usually the second most
important term, and is directed opposite to the gravitational acceleration. Anisotropies in the
pressure distribution and wind outflow contribute on a smaller level.

Finally, we show in Fig. 3.5 (left) with dotted lines the neutron star velocities corrected for the
effects of anisotropic neutrino emission (see Sect. 3.1.3). These effects turn out to be small. For
Model B12 the neutron star kick is thus reduced by about 10%, which is unusually large. For
most of our models (including Model B18) the corrections due to anisotropic neutrino emission
are smaller than 5% (see Sect. 3.5.1).

3.2.3 Possible origin of the low-order modes

In all simulations discussed in this chapter, it is Ledoux convection which breaks the initial
spherical symmetry. However, as we have discussed in Sect. 1.2.2, it is not clear if convection
alone can explain globally anisotropic explosions like those that develop in our simulations.
Other instabilities like the “advective-acoustic cycle” (Galletti & Foglizzo 2005) or the “standing
accretion shock instability” (Blondin et al. 2003) may be responsible for the excitation of low
modes. It is possible that such instabilities are present, but not clearly visible due to the
convective overturn. In fact, the bipolar oscillation (or “sloshing”) of the shock in low-energy
models, like B12, resembles the l = 1 mode instabilities as associated with the advective-acoustic
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s

Figure 3.7: Luminosities of νe and ν̄e at the inner boundary, at the νe-sphere, and at a radius of 500 km.
Note the different importance of the accretion contribution to the luminosity in the low-energy explosion
(Model B12) compared to the high-energy explosion (Model B18) and the rapid decay of the accretion
luminosity after the onset of the explosion in the latter model.

instability and the SASI much more than the non-oscillatory growth (at intermediate values of
the mode index `) that is expected for convection (Foglizzo et al. 2006b). We will postpone a
more detailed discussion of the origin of global modes to Chapter 4.

It should be noted that for the simulations discussed in this chapter we have constrained ourselves
to 2D axisymmetry, deferring the three-dimensional case to Chapter 5. It is well-known that
the assumption of axisymmetry leads to smaller growth rates for equatorial, toroidal structures
than for polar buoyant bubbles, and that both of these growth rates differ from those in a
corresponding 3D calculation (see Kane et al. 2000). Furthermore, the use of reflecting boundary
conditions in θ restricts the degrees of freedom of the flow. In addition, a coordinate singularity
is present at the polar axis of a spherical grid. Therefore the question arises whether these
shortcomings of axisymmetric calculations are causal for a preference of low-mode flows in two
dimensions, whereas the true 3D situation might look different. This point was also raised by
Blondin et al. (2003). The preliminary three-dimensional simulations that we have performed
(Chapter 5) suggest that this is not the case. Low-order modes occur also in these simulations,
and the evolution resembles qualitatively the two-dimensional case.

3.2.4 Comparison with previous works

In previous 2D simulations Janka & Müller (1996) and Kifonidis et al. (2003) did not obtain
the global anisotropies and low-mode flows that we discuss in this work. Instead, these models
developed only small scale anisotropies, except for one model in Janka & Müller (1996), which
exploded with a rather low energy and revealed the tendency towards an l = 1 asymmetry in
the late post-bounce flow.

The fact that these earlier 2D simulations, which were performed with a neutrino light-bulb
description, were not dominated by low-order modes, poses the question to which extent the
development of such global asphericity in the flow is sensitive to the treatment of the neutrino
transport. Figure 3.6 shows that our new neutrino transport description (which is presented
in detail in Appendix A) yields radial profiles for the sum of the νe and ν̄e luminosities which
deviate markedly from the radius-independent luminosities used in a light-bulb approach: The
luminosities are significantly modified compared to the values imposed at the inner boundary.
After some adjustment to the local thermodynamic conditions, which takes place in a few radial
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Figure 3.8: Evolution of the mean νe and ν̄e energies at the inner boundary (ib), at the νe-sphere,
and at a radius of 500 km. Note that due to the contraction and compressional heating of the nascent
neutron star the average energies of the radiated neutrinos continue to rise until the end of our simulated
evolution.

zones next to the inner boundary, the luminosities rise steeply in the cooling region below the gain
radius, and decline slightly in the heating region farther out. The rise is caused by the creation
of neutrinos when gravitational energy is released during the accretion and the contraction of
the neutron star, while the slight decline results from the absorption of the νe and ν̄e in the
heating region.

The “accretion” luminosity that is produced on the grid is usually of the same order as the lumi-
nosity emerging from the core. In low-energy models, like B12, the accretion component exceeds
the core component early on, while in high-energy models the core component is dominant at
all times (see the neutrino “lightcurves” for Models B12 and B18 shown in Fig. 3.7).

Yet, we point out here that all these (previously not modelled) effects are not the reason why the
development of l = 1, 2 modes is seen here, whereas it was not visible in the calculations of Janka
& Müller (1996) and Kifonidis et al. (2003). Highly anisotropic explosions can also be obtained
with the light-bulb assumption (see Janka et al. 2003; Janka et al. 2004 for an example). In
other words, the details of the functional form of L(r), which are visible in Fig. 3.6, are not
decisive for the growth of the l = 1, 2 modes. What is crucial, however, is that the explosions in
the current models start slowly. This was not the case in all but one of the simulations of Janka
& Müller (1996) and Kifonidis et al. (2003), where the neutrino luminosities were assumed
to decay exponentially instead of varying slowly. The exponential, “burst-like” decline of the
neutrino light bulb implied fairly high initial luminosities – which were required in case of the
exponential decay for getting “typical” supernova explosion energies – and thus strong neutrino
heating occurred at early times after bounce. This led to rapid explosions, which in turn did not
leave enough time for the convective cells and bubbles to merge before the expansion became
so fast that it continued in a quasi self-similar way. Since the convective bubbles are initially
small, their early“freezing out” in the rapidly expanding flow had the effect that small structures
(i.e. high-order modes) prevailed until very late times. The rapid explosions also caused a quick
end of the accretion of the proto-neutron star, and therefore the neutron stars remained small.
In contrast, the present transport description gives neutrino luminosities between the neutrino
spheres and a radius of 500 km that vary much less steeply than exponentially with time (see
Fig. 3.7). This leads to explosion time scales that are sufficiently long to allow for the formation
of low-order convective modes.

A comparison with hydrodynamic supernova models which solve the Boltzmann equation for
neutrino transport (e.g. Liebendörfer et al. 2001; Liebendörfer et al. 2005; Rampp & Janka
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Figure 3.9: Density distributions one second after core bounce for four simulations with the same initial
and boundary conditions as Model B18, but different patterns of the random seed perturbations imposed
on the velocity field of the initial model. The amplitudes of the perturbations (10−3) are the same in all
cases. The morphology of the explosion depends in a chaotic way on the initial perturbations.

2000; Buras et al. 2003, 2006a,b; Thompson et al. 2003) shows that the approximative transport
description of this work reproduces qualitatively well the temporal behaviour of the νe and
ν̄e emission (luminosities, Fig. 3.7, and mean energies, Fig. 3.8) after core bounce found with
the more accurate spectral transport solvers. Also the size of the neutrino luminosities and
mean neutrino energies is in reasonably good agreement with the Boltzmann results. A more
detailed comparison beyond the qualitative level, however, is not possible and in fact does
not make much sense, because the approximations employed in the transport description of
this work are manifold, e.g., the spectra are assumed to have Fermi-Dirac shape, the effective
neutrino flux velocity is parametrised, and the relativistic effects and O(v/c) corrections in
the transport are neglected. Therefore important differences in the neutrino-matter coupling
must be expected. For these reasons one should not demand a quantitative reproduction of
the behaviour of hydrodynamic models with Boltzmann transport when the luminosities at the
inner boundary are adopted from the Boltzmann results at the corresponding Lagrangian mass
coordinate.

Nevertheless, our transport scheme can account qualitatively well for the evolution of core and
accretion components of the neutrino luminosities, for the radial and temporal evolution of
the luminosities and mean energies of the radiated neutrinos, and for the relative sizes of the
νe and ν̄e emission. We therefore think that our current transport treatment is a reasonably
good method for performing parametric explosion studies with the aim to better understand the
role of hydrodynamic instabilities during the shock-revival phase of neutrino-driven supernova
explosions. This confidence is supported by comparisons of our models to Models s11.2 and s15r
of Buras et al. (2003), and to the (flux-limited diffusion) 2D simulations of Burrows et al. (1995),
who found similar shock“pulsations”and the same boiling of neutrino-heated matter that we see
in our models. However, both groups used computational wedges of only 90◦ latitudinal width
with periodic boundaries in θ-direction. In thus constrained simulations global l = 1, 2 modes
cannot occur.
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We believe that the use of small computational wedges was one of the major drawbacks of
previous calculations (e.g. Herant et al. 1992; Burrows et al. 1995; Buras et al. 2003). It is likely
that the occurrence of low-mode instabilities would have been observed if these simulations had
been carried out with a full 180◦ grid for a sufficiently long period of post-bounce evolution.
Indeed Buras et al. (2006b) have recently recalculated their Model s11.2 on a 180◦ grid, and
obtained a pronounced l = 2 mode with significant l = 1 contribution. Moreover, this model
exploded whereas its 90◦ counterpart failed. Apparently, low-order convective modes can help
or even trigger the supernova, if the neutrino luminosities are close to the threshold required
for an explosion. This is in agreement with the results of our calculations and lends support to
the idea that low-order convective modes, the explosion itself, and large neutron star kicks can
go hand in hand. The 2D simulations of Fryer (1999) and Fryer & Heger (2000) as well as 3D
simulations of Fryer & Warren (2002, 2004) are not in conflict with our findings, because their
transport treatment leads to very rapid and powerful explosions in which case we usually also
observe that the growth of l = 1, 2 mode instabilities is suppressed.

3.2.5 Sensitivity to the seed perturbations

The highly nonlinear character of the evolution that we see within the first ∼ 300 ms suggests
that the convective mode that will finally establish in a simulation, might be sensitive to the
seed perturbation for triggering convection. To test this we repeat the calculations of some
models with varied random seeds for the initial velocity perturbations. Figure 3.9 displays
density plots at t = 1 s for the B18-series of models thus obtained. These differ from the
original Model B18 (Fig. 3.3, right column) only in that they are computed with different seed
values for the random number generator. The amplitude of the perturbations is kept the same
(the effects of different perturbation amplitudes will be discussed in the Chapter 4; but see
also Sect. 3.3). The outcome supports our conjecture: A sensitive dependence of the late-time
shock morphology and anisotropy of the explosion on the initial seed is visible. In fact this
sensitivity is so extreme that the system may be described as exhibiting symmetry breaking in a
chaotic manner. Even the same model computed on different machines (with supposedly IEEE
compliant 64-bit arithmetics) may actually end up with a different morphology.

We emphasise here that integral quantities like the explosion energy, Eexp, the explosion time
scale, texp, or the mean shock radius are only weakly affected by varying the random seed
perturbations in the described way (see Tables 3.1–3.3 and Fig. 3.9). In contrast, quantities
like the neutron star recoil velocity, vns

z , and the anisotropy parameter, αgas, which depend on
the morphology of the ejecta, are affected dramatically. Given the extreme sensitivity on the
initial perturbations, such quantities must be regarded as stochastic. Meaningful conclusions
concerning their average values, the shape and width of their distribution functions, etc., can
thus only be drawn on the basis of a large number of simulations. The large scatter of neutron
star recoil velocities for Models B18-2 to B18-5 (see Table 3.1) illustrates this clearly. While the
neutron star in Model B18-2 moves with only ∼ 80 km/s, it is accelerated to 800 km/s in Model
B18-3. This latter model is actually the most extreme one that we have found in our ∼ 80
simulations. It features an l = 1 mode with a long-lasting downflow (Fig. 3.9), which, despite
the relatively high core luminosity of this model, is still connected to the neutron star at times
as late as t = 1 s after bounce. We also see that neither bipolar oscillations nor the dominance
of an l = 1 mode are excluded when the explosion energy is relatively large.
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Figure 3.10: Dependence of some global quantities on the inner boundary luminosity. The quanti-
ties in the left column (explosion time scale, explosion energy, and neutron star mass) depend only on
the progenitor and the boundary conditions. The quantities in the right column (anisotropy, neutron
star velocity, and acceleration) are strongly influenced by the initial perturbations. All time-dependent
quantities are shown at t = 1s. Crosses stand for the B-series of models, stars mark results for the
L-series, triangles denote the W-series, and diamonds refer to the R-series of models (see Sect. 3.1.1 for
the differences between these models).

Figure 3.11: Mass of the gain layer at the onset of the explosion (texp) as a function of the boundary lu-
minosity for the set of models displayed in Fig. 3.10. For every initial model there exists an approximately
linear relation between ∆Mgain and Lib.



46 CHAPTER 3. EXPLOSION ANISOTROPY IN TWO DIMENSIONS

Figure 3.12: Anisotropy parameter αgas (upper panel) and (scalar) quasi-momentum of the ejecta, Pej,
(lower panel, see Eq. 3.14) for a time of 1 second after core bounce as a function of the explosion energy.
The different symbols have the same meaning as in Fig. 3.10.

Figure 3.13: Neutron star velocities vns
z and accelerations ans

z as functions of the explosion energy for
all models of Tables 3.1–3.3. The plot displays the situation at t = 1 s and shows that the accelerations
(indicated by the arrows) are still high at this time. The different symbols have the same meaning as in
Fig. 3.10.
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Figure 3.14: Top: Neutron star acceleration as a function of the neutron star velocity after one second.
Bottom: Acceleration computed as time-averaged value over the last half of a second of the simulations
versus neutron star velocity. The acceleration is multiplied by a factor σ = sign(vns

z ), i.e. σ〈ans
z 〉 < 0

corresponds to a deceleration of the neutron star. The different symbols have the same meaning as in
Fig. 3.10. Typically, low values of the acceleration (σ〈ans

z 〉 . 250 km/s2) are associated with low velocities
(|vns

z | < 200 km/s), while much higher values of σ〈ans
z 〉 are reached for higher velocities |vns

z |. This suggests
two components of the distribution, one with low velocities and lower average acceleration values and one
with both values being higher. The thin solid line indicates the mean values of σ〈ans

z 〉, binned in velocity
intervals of 100 km/s.

3.3 Dependence on the initial model and the core luminosity

In this section we discuss the variation of the quantities introduced in Sect. 3.1.3 as functions
of the initial model and a systematic variation of the imposed core neutrino luminosity Lib.
Tables 3.1–3.3 give an overview. To facilitate their interpretation, we also display the most
important quantities for all models as a function of Lib graphically in Fig. 3.10.

The results plotted in that figure show that the neutrino-driven mechanism as computed in
our models is able to account for different key observational aspects of supernovae and neutron
stars simultaneously, provided that sufficient time is available for low-order convective modes
to form. Typical supernova explosion energies of about 1051 erg, typical baryonic neutron star
masses around 1.4 M� (actually between 1.3 and 1.6 M� depending on the progenitor) and high
neutron star recoils (with a maximum of 800 km/s in Model B18-3 after 1 s of post-bounce
evolution, see Table 3.1), are obtained at the same time.

What is also apparent is that the quantities displayed in Fig. 3.10 can be grouped in two classes,
those which show a clear correlation with the core luminosity, Lib, and those which do not.
Among the former are the explosion time scale, texp, the explosion energy, Eexp, and the neutron
star mass, Mns. For a given initial model these quantities show a systematic variation with the
boundary luminosity with only little scatter. Among the latter quantities are the ones that
depend on the morphology of the explosion, i.e. the anisotropy parameter, αgas, the neutron
star recoil velocity, vns

z , and the neutron star acceleration, ans. These show the essentially
stochastic behaviour in dependence of the seed perturbations as discussed in Sect. 3.2.5.

A higher luminosity, Lib, from the neutron star core causes the explosion to develop faster, to
become more energetic, and to leave behind a neutron star with a smaller mass, because less
material can be accreted onto the core when the explosion occurs faster. The monotonic correla-
tion between Lib and the explosion energy Eexp shows that our chosen approach to parameterise
our simulations can also be interpreted as one in terms of explosion energy. In this sense Lib

and Eexp can be exchanged as governing parameters. Note, however, that the Lib-Eexp relation
differs between the initial models.
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A similar behaviour is also visible in Fig. 3.11 for ∆Mgain(texp), the mass contained in the gain
layer at time texp, as a function of Lib for all models. In fact, it is actually ∆Mgain(texp) which
is responsible for the progenitor dependence of the Lib-Eexp relation visible in Fig. 3.10, mainly
because the recombination of free nucleons to α particles and nuclei in the expanding and cooling
ejecta from the gain layer yields a significant fraction of the final explosion energy. This energy
contribution increases with more mass in the gain layer. The rest of the explosion energy is
due to the power of the neutrino-driven wind of the proto-neutron star (see Appendix B). Since
∆Mgain(texp) depends on the mass accretion rate through the shock, there is a dependence on the
density profile of the progenitor star. The different initial models reveal significant differences in
this respect. In particular, the Limongi et al. progenitor exhibits considerably higher densities
at the edge of the iron core and in the silicon shell than the Woosley et al. models (Fig. 3.1),
but this progenitor explodes later and thus at a time when the mass accretion rate has already
decreased significantly.

It should be noted that rotation will also affect ∆Mgain(texp) (see Sect. 3.4). The systematically
larger mass of the gain layer (Fig. 3.11), and the up to ∼ 50% higher explosion energies of
the rotating models compared to the non-rotating models of the s15s7b2 progenitor (Fig. 3.10),
though, are strongly affected by the larger initial perturbations that we have used in the rotating
case (see Sects. 3.1.1 and 3.4).

A progenitor dependence is also visible in case of texp and Mns as a function of Lib, as displayed
in the left column of Fig. 3.10. The simulations that are based on the newer 15 M� progenitor
model s15s7b2 of Woosley & Weaver (1995) give explosion time scales that are systematically
higher by ∼ 30%, and final neutron star masses that are higher by ∼ 10% than those of the
older Woosley et al. (1988) core. On the other hand, the results belonging to the Limongi et al.
(2000) progenitor again exhibit larger systematic deviations from those for the Woosley et al.
stars. The higher mass accretion rate in simulations with the Limongi et al. progenitor delays
the development of convective motions, and thus the onset of the explosion (texp) compared to
the other models. This prolongs the time that the revived bounce-shock needs to reach a certain
radius. It also reduces the explosion energy, and leads to a larger neutron star mass, for a given
value of the boundary luminosity Lib.

We focus now on the right column of Fig. 3.10. Recalling the highly nonlinear, chaotic hydrody-
namic evolution in response to a variation of the initial perturbations as described in Sect. 3.2.5,
one can understand that there is no clear correlation between Lib and the quantities αgas, vns

z ,
and ans

z , which depend on the explosion morphology. When, however, αgas is plotted as a func-
tion of the explosion energy (see Fig. 3.12), it becomes apparent that the area near the upper
right corner in the αgas–Eexp diagram, satisfying

αgas / α0 + Eexp / Eexp,0 > 1 (3.27)

with Eexp,0 ≈ 2×1051erg and α0 ≈ 0.3, is almost void. This indicates that high-energy explosions
with large anisotropies are disfavoured, which is plausible because there is not sufficient time
available for high-order modes to merge. In order to assess the impact of this result on the
neutron star recoil by virtue of Eq. (3.16), we need to consider also the scalar quantity Pej, which
is defined in Eq. (3.14). Figure 3.12 shows that it is linearly increasing with the explosion energy.
Since |vns

z | ∝ αgasPej, this increase of Pej with Eexp will tend to compensate the smaller values
of αgas for higher explosion energies. Therefore high neutron star velocities (up to 800 km/s at
t = 1 s) can result for a wide range of explosion energies (cf. Fig. 3.13). We expect, however, that
for sufficiently large boundary luminosities the explosion time scale, and correspondingly αgas,
will become so small that the neutron star velocities will remain low for (very) large explosion
energies.
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Figure 3.15: Angular frequency, Ω, as a function of the enclosed mass, and radial profiles of the specific
angular momentum, jz, for several times after the start of the simulation for Model R18-c. In both
cases the equatorial profiles of the quantities are shown. The “mass coordinate” is defined by the masses
enclosed by spheres with different radii.

Fig. 3.13 shows that also high acceleration rates (up to more than 700 km/s2) are obtained for
the range of explosion energies covered by our simulations. In particular, the neutron stars that
have already reached high velocities at t = 1 s have typically higher accelerations, too. This
becomes somewhat more apparent in the panels of Fig. 3.14, which display the acceleration
at the end of our simulations (top) or averaged over the last half of a second, respectively,
as a function of the neutron star recoil velocity. One may discriminate two populations, a low-
velocity, low-acceleration component in the lower left corner of the figure and a second component
extending to much higher accelerations and velocities. The latter contains simulations with a
strong contribution of the l = 1 mode, whereas the former is made up of models in which l = 2
or higher modes are dominant. Since in many of the simulations the accelerations are still high
at t = 1 s, one can expect that their neutron star recoil velocities will significantly increase at
still later times. We will discuss this in Sect. 3.5.4.

3.4 The effects of rotation

We have shown that the magnitude of the neutron star recoil depends sensitively on the con-
vective mode. Here we will consider the influence of rotation, which can have an effect on the
pattern of convection (see e.g., Tassoul 1978). In order to investigate how rotation changes
the morphology, the energetics of the explosion, and the neutron star recoil velocities, we have
computed the R-series of our models. These models start from a post-bounce configuration with
a perturbation amplitude of several percent (cf. Sect. 3.1.1), which is more than an order of
magnitude larger than the standard perturbations that we employed in our non-rotating models.
Such a large increase of the perturbation amplitude leads to noticeable changes in the explo-
sion time scale and energy. A clean discussion of rotationally induced effects therefore requires
recomputing some of the non-rotating models with a higher amplitude of the initial random
perturbations. We do this in case of Models W12-c and W18-c (see Table 3.5), in which the
same initial perturbations are applied as in Models R12-c and R18-c, whose results are listed in
Table 3.5, too.
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Table 3.5: Rotating and non-rotating models with the same initial perturbations. For more details, see
the caption of Table 3.1.

Model Lib Eexp texp Mns vns
z vns,ν

z ans
z αgas dshock

[B/s] [B] [B] [s] [M�] [km/s] [km/s] [km/s2]

W12-c 29.7 0.40 0.301 1.535 44.4 54.0 85.4 0.03 0.63
W18-c 44.5 1.06 0.215 1.392 640.4 -8.5 444.4 0.21 0.08

R12-c 29.7 0.43 0.329 1.480 49.9 31.3 148.1 0.04 -0.03
R18-c 44.5 1.26 0.236 1.345 166.1 -3.5 116.2 0.04 0.05

3.4.1 Evolution of the rotation rate

The initial rotation profile that we employ was already discussed in Sect. 3.1.1. Our choice of
this angular velocity profile on the one hand maximises rotational effects in view of the most
recent evolution calculations for magnetised rotating massive stars, it yields rotation rates that
are more than a factor of two higher in the iron core, and on average a factor of ten higher in
the silicon shell than in the calculations of Heger et al. (2004). On the other hand, it avoids
sub-millisecond rotation of the newly formed neutron star, which would result for even higher
pre-collapse rotation rates. Figure 3.15 shows that due to angular momentum conservation the
contracting proto-neutron star spins up to a maximum angular velocity of about 8 × 102 rad/s
until one second after core bounce for the assumed contraction. This corresponds to a rotation
period of several milliseconds.

3.4.2 Morphology

Figure 3.16 compares Model R18-c with its non-rotating counterpart W18-c. It is evident that
during the first 75 ms after the start of the calculations both models evolve quite similarly.
Convection sets in between 100 and 150 km, and bubbles of high-entropy matter start rising
above the gain radius. The number, wavelength, and location of the convective structures show
hardly any differences between both models. This may appear somewhat surprising because the
criteria for convective stability differ between the rotating and non-rotating cases. In the former
case the flow is stable to convection only if the Høiland condition,

CH := CS + CL (3.28)
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is fulfilled (Tassoul 1978). Here ~a is the total (gravitational and centrifugal) acceleration, and
jz is the specific angular momentum (jz = x · vφ, where x = r sin θ is the distance from the
axis of rotation). In the non-rotating case the condition of Eq. (3.28) reduces to the familiar
Ledoux criterion for stability, CL > 0, whereas for negligible entropy- and Ye-gradients Eq. (3.28)
becomes the Solberg-condition CS > 0.

Note that since we assume axisymmetry, there are no forces (other than fictitious ones) acting
in φ direction, and hence no source terms for jz are present. The specific angular momentum of
a fluid element therefore remains constant, and jz is simply carried along with the flow. In three
dimensions jz is not conserved and this leads to significant differences (see Chapter 5) compared
to the flow that develops in 2D and which we will discuss in the following.
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Figure 3.16: Entropy distributions of the rotating Model R18-c (left) and of the non-rotating Model
W18-c at 75 ms, 100 ms, 200 ms, 400 ms, and 800 ms after the start of the simulations. Dotted black lines
mark the gain radius and white lines the supernova shock. Note the two polar downflows in the rotating
model, which form soon after convection has set in, and are visible for t ≥ 100ms. At t = 800ms they
have been blown away from the vicinity of the neutron star by the neutrino-driven wind. The rotation
axis is oriented horizontally in the left panels.
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Figure 3.17: Distribution of the specific angular momentum jz of the rotating model R18-c at t = 150 ms.
Matter with larger and larger specific angular momentum has fallen through the shock (outer solid line),
which leads to an overall positive gradient djz

2/dx in the gain layer. However, due to convection, which
is suppressed only near the poles, the jz stratification and its gradient are locally perturbed. The rotation
axis is oriented horizontally.

Figure 3.18: Radial profiles of the Solberg-term, CS, and of the Ledoux-term, CL, (see Eq. 3.28) for
θ = 5◦ (“pole”) and θ = 90◦ (“equator”) in Model R18-c. We show these quantities for t = 50ms (left
column) and t = 150ms (right column). For regions in which CS or CL are negative, the absolute values
are plotted as dotted lines. At t = 50ms |CL| > |CS| and unstable regions (CL + CS < 0) are present for
both latitudes. At a time of 150ms the gradient djz

2/dx has become sufficiently large to make CS > |CL|
at the pole, and thus to stabilise the flow, whereas in the equatorial region |CS| is still small.
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Figure 3.19: Evolution of the shock deformation parameter dshock (see Eq. 3.23) for the rotating (R-
series) and the non-rotating models (W-series). Positive and negative values of dshock characterise oblate
and prolate deformation of the shock, respectively.

Both Models show a very similar evolution during the first 75 ms because the Solberg-term,
CS, is negligible in this phase. The total angular momentum and the derivative of jz in the
postshock region are initially rather small (see Fig. 3.15). However, the influence of the Solberg
term increases with time because there is a positive gradient of jz upstream of the shock,
and matter with increasingly large specific angular momentum is advected into the postshock
region. Therefore the positive derivative of this quantity with x grows within the postshock flow
(Figs. 3.15 and 3.17).

For t > 75 ms this causes the Solberg term to become sufficiently large so that it affects the
pattern of convection. The latter exhibits differences now compared to the non-rotating case.
All the rotating models develop downflows at both poles, whereas there is no preference for the
formation of polar downflows in the non-rotating models (see Fig. 3.16). These polar downflows
remain stable until they are blown away from the vicinity of the neutron star by the neutrino-
driven wind (Fig. 3.16). The stabilisation is caused by the positive x-derivative of j2

z in the
Solberg term, which is amplified by the factor 1/x3 near the axis of rotation. Given a positive
derivative of j2

z , a matter element pushed towards the axis feels a larger centrifugal acceleration
ac = j2

z/x3 than the surrounding matter, and therefore moves back to its original position.
Analogously, a fluid element pushed away from the axis feels a restoring force as well. Thus,
perturbations perpendicular to the axis are suppressed and perturbations of a gas configuration
in rotational equilibrium can only grow parallel to the axis of rotation.

For t > 75 ms this stabilising effect of the positive angular momentum derivative becomes suf-
ficiently large to suppress convection near the axis of rotation, i.e. to make CH = CS + CL > 0
there. In the rest of the postshock flow the Solberg term is negligible (because of its dependence
on x−3) compared to the Ledoux term (i.e. |CS| � |CL|) and convection is not affected much.
Radial profiles of CS and CL illustrating this situation are shown in Fig. 3.18.

The fact that only polar downflows and no polar outflows form can also be easily explained.
Material inside a polar downflow always consists of the lowest jz-gas which is advected through
the shock (see Fig. 3.17). This guarantees a stable situation because the angular momentum
derivative with x remains positive. In contrast, a polar outflow, i.e. a rising polar bubble,
would contain postshock matter that would be rather well mixed, because a convective plume
encompasses matter from a larger range of latitudes. Therefore such a polar bubble would not
consist of gas with a lower jz than the infalling material near the poles that surrounds such a
bubble. This situation would therefore be unstable due to the absence of a positive derivative
djz

2/dx.



54 CHAPTER 3. EXPLOSION ANISOTROPY IN TWO DIMENSIONS

Figure 3.20: Evolution of the explosion energy and of the mass in the gain layer for Models R18-c and
W18-c. The symbols mark the onset of the explosion at t = texp. The rotating model attains an explosion
energy which is higher by 0.2 × 1051 erg than in the non-rotating model due to a mass in the gain layer
that is larger by 0.013M�.

Besides the differences in the pattern of convection another morphological difference becomes
evident: The rotating models remain more spherical, whereas the non-rotating models in general
develop a clear prolate deformation (Fig. 3.19). This is partly due to the polar downflows, which
damp the shock expansion near the poles. A second reason is the centrifugal acceleration of the
matter between neutron star and shock. Owing to the accumulation of angular momentum
behind the shock, the initially weak centrifugal forces increase, and their radial components
reach up to 20% of the gravitational acceleration. Consequently the shock is pushed out farther
in the equatorial region than in the non-rotating models. This has interesting consequences for
the explosion energy.

3.4.3 Energetics

In both rotating Models R12-c and R18-c the explosion energies are higher and the neutron
star masses are correspondingly lower than in the non-rotating counterparts of these models
(Table 3.5). In case of models R18-c and W18-c the energy difference amounts to ∼ 20% (i.e.
0.2 × 1051 erg) and must be caused by rotational effects. This difference builds up when the
expanding and cooling neutrino-heated matter in the gain layer recombines from free nucleons
to alpha particles (and partly to nuclei) and remains approximately constant in the subsequent
phase, in which the explosion energy increases further due to the neutrino-driven wind (see
Fig. 3.20 and Appendix B). It is caused by the larger equatorial shock radius in the rotating
model R18-c and the thus wider gain layer, which increases the recombining mass by 0.013 M�

compared to the non-rotating case.

3.4.4 Neutron star recoil

What are the implications of the morphological differences between rotating and non-rotating
models for the neutron star kicks? In the non-rotating case we found that the highest recoil
was obtained for Model B18-3, in which a pronounced l = 1 mode with a single polar downflow
is present. In the rotating case such a flow pattern cannot establish, since we always obtain
downflows at both poles. However, significant asymmetries can still develop, since one of the
polar accretion funnels may be much stronger than the other, or a third downflow may be
dominating the mass distribution. High neutron star recoils are thus not precluded, although
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Figure 3.21: Estimated velocity correction due to anisotropic neutrino emission, vns,ν
z , as a function of

the neutron star velocity vns
z caused by the anisotropies in the gas ejecta. The dashed lines correspond

to a ratio |vns,ν
z /vns

z | of 10%.

we expect the mean and the maximum kicks to be somewhat smaller than in the non-rotating
case.

The results of our rather few simulations, which comprise only nine rotating models (see Ta-
bles 3.2 and 3.5), are in agreement with this expectation: The largest neutron star recoil velocity
obtained in the R-series of models is 321 km/s, whereas it is 640 km/s in case of the W-series
(see Model W18-c in Table 3.5). The average kick velocities for the R- and W-type models are
151 km/s, and 280 km/s, respectively. If one omits Model W18-c, the only W-type model with
a “pure l = 1 mode”, the average kick velocity of the non-rotating models decreases to only
228 km/s, i.e. it is 50% larger than that of the rotating models. This is a relatively moderate
effect if one recalls that the initial angular velocity assumed in the progenitor core of our calcula-
tions is clearly extreme compared to the rotation rates obtained from the latest stellar evolution
calculations (Heger et al. 2004). Furthermore, for a more rapid contraction — a parameter we
have kept constant in this section — higher kick velocities can be expected (this will be discussed
in Sect. 3.5.3) and a model with rapid contraction that will be presented in Sect. 5.3 reaches a
velocity of more than 450 km/s already at t = 0.7 s.

3.5 Robustness and long-time evolution of the neutron star recoils

We have seen above that rotation, even when it is noticeably faster than in the most recent stellar
evolution models, does not preclude neutron star kicks of several hundred km/s. However, we
have made a number of approximations in our post-processing analysis and used assumptions in
our simulations whose impact on the neutron star recoil still needs to be assessed. In addition,
we have stopped most of our simulations at a time of one second after core bounce, when the
neutron star acceleration was, in many cases, still high. Hence we need to comment also on the
later evolution of the kicks. These issues are discussed in the following.

3.5.1 Anisotropic neutrino emission

The neutron star recoil velocities, vns
z , that are listed in Tables 3.1–3.3 are computed from

Eq. (3.12), i.e. they do not include the effects of anisotropic neutrino emission. As we have
shown in Sect. 3.1.3, anisotropic neutrino emission results in a correction, vns,ν

z , of the neutron
star velocity which is described by Eqs. (3.19) and (3.21). In Sect. 3.2 we have already seen
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Figure 3.22: Neutron star velocity as a function of the explosion energy for simulations with “fixed” (i.e.
infinite inertial mass) and “moving” (i.e. finite inertial mass) neutron stars. All models of the left/right
group have the same boundary luminosity as Model B12/B18, respectively.

that this correction is small for Models B12 and B18. In Fig. 3.21 we now display vns,ν
z as a

function of the neutron star velocity vns
z for all models of Tables 3.1–3.3. It is obvious that

for most models vns,ν
z is only a small fraction of the velocity which the neutron star obtains

due to anisotropies in the gas ejecta. Only in some cases is |vns,ν
z /vns

z | > 10%, and in most
of these cases the neutron stars have small recoil velocities. Note that the correction due to
anisotropic neutrino emission in general reduces the kick. This can be understood from the fact
that in most models a single prominent accretion funnel is present. The neutron star recoil
caused by gas anisotropies is always directed towards this downflow, while the neutrino emission
associated with the “hot-spot” created by the downflow on the neutron star surface results in a
“neutrino-rocket engine” that kicks the neutron star in the opposite direction.

3.5.2 Inertial mass of the neutron star

In most of our simulations we make the simplifying assumption that the inertial mass of the
neutron star is infinite, i.e. the consequences of the neutron star motion are ignored during
the hydrodynamic simulation. This assumption is dropped in one set of models which is listed
in Table 3.3. In these simulations the feedback effect of the neutron star motion is taken into
account by changing the frame of reference in every time step, thus allowing the ejecta to move
relative to the neutron star instead of following the neutron star motion through the ambient
gas (see Sects. 2.3 and 3.1.3 and Appendix C).

In Fig. 3.22 results obtained from this approach are compared with corresponding simulations
in which the neutron star is assumed to have infinite inertial mass. The neutron star velocities
are displayed versus explosion energies for a bunch of low-energy and a number of high-energy
models computed with the boundary parameters of Models B12 and B18, respectively. Each
group contains simulations with and without “neutron star motion” (labelled as “moving” and
“fixed”, respectively, in Fig. 3.22). The distribution of data points is very similar for both sets
of simulations in both the high- and low-energy groups. A single model with vns

z ≈ 800 km/s
sticks out, but represents the rather rare cases where neutron star velocities higher than about
500 km/s are reached after one second. Usually a larger set of computations is needed to get
statistically significant results for these extreme velocities.
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Table 3.6: Important parameters of models W12-c and W12F-c.

Model Lib Eexp texp Mns vns
z vns,ν

z ans
z αgas dshock

[B/s] [B] [s] [M�] [km/s] [km/s] [km/s2]

W12-c 29.7 0.40 0.301 1.535 44.4 54.0 85.4 0.03 0.63
W12F-c 29.7 0.94 0.118 1.411 611.7 -1.9 580.6 0.21 0.31

3.5.3 Neutron star contraction and gravitational potential

For practical reasons, all simulations listed in Tables 3.1–3.3 and Table 3.5 were performed
with our “standard” prescription for the contraction of the neutron star core (see Sect. 2.4.1),
although the “rapid contraction case” also discussed in Sect. 2.4.1 might be more realistic. To
study the corresponding differences, we take the “high-perturbation”, non-rotating Model W12-c
(see Sect. 3.4 and Table 3.5) as a reference case and perform an additional simulation, Model
W12F-c, in which we replace the slowly contracting inner boundary of Model W12-c with the
prescription for a rapidly contracting proto-neutron star. Table 3.6 compares some quantities
characterising the two models.

Model W12F-c explodes earlier and attains a higher explosion energy than Model W12-c. This
can be explained by the facts that for a smaller inner boundary radius more gravitational energy
is released, and that for a shorter contraction time scale this release occurs earlier (see also
Appendix B). With vns

z (1 s) = 611 km/s the neutron star recoil velocity of Model W12F-c is
very high. Large kicks are also found in a set of simulations performed with rapid boundary
contraction in combination with

1. smaller initial random velocity perturbations of 0.1% (Model W12F in Fig. 3.23),

2. a Newtonian gravitational potential and a constant central point mass chosen such that
the same initial gravitational acceleration is obtained at a mass coordinate of 1.1 M� as
in the models of Buras et al. (2003), see Models W12F-n0, W12F-n1 and W12F-n2 in
Fig. 3.23,

3. a Newtonian gravitational potential and a varying central point mass, which is increased
with time to reproduce the evolution of the gravitational acceleration at a mass coordinate
of 1.1 M� in the models of Buras et al. (2003), see Models W12F-nv, W12F-nv1 and
W12F-nv2 in Fig. 3.23.

All of these models have in common that they explode more quickly than models with the
standard boundary contraction. Yet, for all of these variations we obtain at least one simulation
with a neutron star recoil velocity of more than 400 km/s at t = 1 s (see Fig. 3.23). This
demonstrates that a faster neutron star contraction does not preclude high neutron star kicks
and in particular it shows that it is not the absolute value of the time scale for the onset of
the explosion which matters. What matters is the time delay until the start of rapid expansion
relative to the growth time scale of low-mode anisotropies by hydrodynamic instabilities like
convection, the acoustic-vortex cycle or the SASI mechanism. With the faster shrinking of the
neutron star not only the explosion time scale decreases, but also other important conditions
change, e.g. the neutrino luminosities and ν-heating become larger, the advection time scale in
the postshock layer shorter and the sound speed between shock and neutron star higher. These
changes affect the growth of instabilities strongly, which will be discussed in detail in Chapter 4.



58 CHAPTER 3. EXPLOSION ANISOTROPY IN TWO DIMENSIONS

Figure 3.23: Neutron star velocities (absolute values) as functions of time for Models W12F-c, W12F
and several other models with fast neutron star contraction. In six out of eight models the neutron star
moves faster than 300 km/s at t = 1 s.

In fact, there are indications that a faster contraction of the nascent neutron star favours higher
values for the average recoil velocity. In our largest sample of models sharing the same (slowly
contracting) boundary condition, i.e. the 18 B18-like models listed in Tables 3.1 and 3.3, only
three simulations develop neutron star recoil velocities of more than 500 km/s, and only seven
produce neutron stars with more than 300 km/s at 1 second. In contrast, in just eight simulations
with rapid boundary contraction we obtain six models with neutron star velocities of more than
300 km/s and three models with neutron stars moving faster than 500 km/s (Fig. 3.23). Better
statistics would require more simulations, which should also be based on the same initial model1

and should make use of the same gravitational potential.

We performed some of the simulations discussed above with Newtonian gravity to demonstrate
that the choice of the effective relativistic potential in our models was not essential for our
results. We recall that only when we use the Newtonian gravitational potential, momentum is
strictly conserved in our simulations (also when the point mass is increased with time). The
results therefore show that large neutron star recoil velocities are not linked to any violation of
total momentum conservation associated with the use of the effective relativistic potential (see
the discussion in Sect. 3.2.2).

3.5.4 Long-time evolution of the neutron star kicks

In order to investigate how the neutron star recoil velocities evolve beyond a time of one second
after core bounce, we perform six exemplary long-time simulations. For these we add 150 radial
zones to our grid and place the outer grid boundary at a larger radius of 1010 cm, which allows
us to simulate the first 3–4 s of the post-bounce evolution. In three of the simulations an infinite
inertial neutron star mass is assumed, while in the other models the hydrodynamic feedback of
the neutron star motion is taken into account. Four of the six models are just continued from
models which we have computed up to a time of one second with our standard grid. We map

1The comparison between B and W models is viable, however, because both progenitor models are quite similar.
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the corresponding data onto the larger grid at t = 750 ms and extend the initial model profile
from the old to the larger outer boundary of the new grid.

The evolution of the neutron star velocities for all of the long-time simulations is displayed in
Fig. 3.24. The neutron star of Model B18-3, which we already discussed as an extreme case
in Sect. 3.2.5, is accelerated to more than 1200 km/s within 3.7 s. This demonstrates that the
acceleration mechanism at work in our calculations has the potential to explain even the highest
observed pulsar velocities (see e.g. Chatterjee et al. 2005). The fact that Model B18-3 is the
only one in our sample that produces a neutron star with more than 1000 km/s does not appear
problematic to us. It may be a matter of low-number statistics and might also change when
more extreme conditions are realized in models, e.g. by a faster contraction of the neutron star
than assumed in our standard set of models. In this respect the sample of simulations plotted
in Fig. 3.23 looks promising. In quite a number of those the neutron stars have large velocities
at one second and also still high accelerations (see, e.g., Model W12F-c in Table 3.6).

After 3–4 s the neutrino-driven wind has blown away all downflows from the neutron star vicinity
and has generated a nearly spherically symmetric wind bubble around it. Therefore the neutron
star acceleration diminishes and the recoil velocities approach their terminal values. The latter
can be estimated by extrapolating the velocities at t = 1 s, applying an average acceleration
value 〈ans

z 〉, as computed for the time interval between t = 0.5 s and 1 s, over a time period
∆textrapol, according to

v∞ns = vns
z (t = 1 s) + ∆textrapol × 〈ans

z 〉. (3.29)

The average acceleration 〈ans
z 〉 is introduced as a time-average which is less sensitive to short-

time variations of the neutron star acceleration and thus allows for a more robust extrapolation
of the velocities. The factor ∆textrapol = 0.35 s is “calibrated”by optimising the estimates in case
of the models of Fig. 3.24. The agreement of extrapolated and computed terminal velocities is
typically of the order of 10%. In the following section we use Eq. (3.29) to estimate the final
neutron star velocities for all models listed in Tables 3.1–3.3. The basic findings of our analysis
do not depend on whether we use ans

z (the acceleration values at the end of our simulations) or
〈ans

z 〉 (the mean values in the last 0.5 s) for extrapolating the velocities beyond the simulated
period of one second of evolution.

3.6 Implications for the neutron star velocity distribution

In Sect. 3.3 we mentioned that Fig. 3.14, showing the neutron star velocities and accelerations
at t = 1 s, suggests the existence of two groups of models. One group consists of cases with
low velocities and on average low acceleration, and the other group cases with high velocities
and significantly higher average acceleration. The latter models are typically characterised by a
strong l = 1 mode in the flow pattern at the end of our simulations.

Provided the acceleration shows a trend of increasing more steeply than linearly with the neutron
star velocity, one can expect a growth of the separation of both populations when the acceleration
continues over a longer period of time. Thus a bimodal velocity distribution will emerge, caused
by the larger acceleration associated with the presence of a dominant l = 1 mode in the models
of the high-velocity group. To test this possibility, we extrapolate the neutron star motions of
all of our 70 models listed in Tables 3.1–3.3 from one second to the expected final conditions
by applying Eq. (3.29). Figure 3.25 displays both the velocity distribution at the end of the
simulated evolution (at t = 1 s; left panel) and the terminal distribution (right panel).
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Figure 3.24: Evolution of the neutron star velocities in six long-time simulations with the same boundary
conditions as Model B18. After four seconds the acceleration has become very weak in all models and
no significant further increase of the velocities is expected. For each model a thin horizontal line marks
the extrapolated velocity value v∞

ns according to Eq. (3.29), which is a rough estimate of the final neutron
star velocity.

Figure 3.25: Histograms of the neutron star velocity distribution for the 70 models of Tables 3.1–3.3.
The left panel shows the velocity distribution at t = 1 s (solid black line). The darker shaded area
corresponds to the fraction of models whose neutron stars are moving with more than 200 km/s one
second after bounce. The same models are displayed with dark shading also in the right panel, which
shows the final velocity distribution as obtained by extrapolation with Eq. (3.29).
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A comparison of the panels in Fig. 3.25 shows that most neutron stars of the high-velocity and
high-acceleration group (which is indicated by the darker shading) accelerate to significantly
higher velocities on time scales longer than one second. In contrast, only very few stars of the
low-velocity group reach velocities in excess of 200 km/s. As a consequence, a minimum develops
in the extrapolated distribution around 300 km/s, separating clearly the two components in
velocity space.

We interpret this result as an interesting demonstration that the kick mechanism discussed
here is able to produce a bimodal distribution of neutron star velocities simply due to the
presence or absence of a dominant l = 1 mode in the spatial distribution of the supernova ejecta.
Invoking two different processes for neutron star acceleration is not required. It is, however,
unclear whether this may provide an explanation of a possible bimodality in the observed velocity
distribution of pulsars. The existence of such a bimodality is not only ambiguous, some authors
finding hints (e.g. Cordes & Chernoff 1998; Fryer et al. 1998; Arzoumanian et al. 2002; Brisken
et al. 2003), while others favour a one-component Maxwellian distribution (e.g. Lyne & Lorimer
1994; Hansen & Phinney 1997; Hobbs et al. 2005; Zou et al. 2005). Also the parameters for the
two-component fits differ significantly between the publications.

Though our result is inspiring as well as tantalising, we refrain from making a direct connection
with observations. Such attempts are hampered by the limitations of our analysis, which does
not only assume the extrapolation of Eq. (3.29) to be valid for all cases. Our analysis is also
affected by our finding that the magnitude of the neutron star kicks seems to depend on the
neutron star contraction (see Sect. 3.5.3) that is mimicked in our simulations by a moving
inner boundary of the computational grid. Moreover, our analysis is constrained to a set of
15 M� stars2, while linking theory with observations would require modelling explosions for a
representative distribution of supernova progenitors, making reasonable assumptions about the
progenitor dependence of the explosion energy and including the effects from binary breakup. A
large set of calculations would have to account for the stochastic nature of the discussed neutron
star acceleration mechanism, thus establishing the distribution of kick velocities as a function
of the progenitor properties. One might have the concern that in the combined data of all of
these runs the minimum visible in the velocity distribution of Fig. 3.25 is filled up. Finally,
quantitatively meaningful calculations of neutron star kicks will ultimately have to be obtained
by three-dimensional modelling.

2The employed progenitor models, however, exhibit large differences in core sizes and core density profiles, which

actually may be considered as reflecting the variations over a broader range progenitor masses.
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4
The origin of the global anisotropy

The simulations that we have presented in the last chapter developed pronounced global modes
and neutron stars moving with high recoil velocities. These promising results seem to be in
agreement with observations concerning the anisotropy of core collapse supernova and the mea-
sured neutron star kick velocities. What is still missing, however, is a better understanding of
the origin of the global anisotropy.

As we mentioned already in Chapter 1, it is unlikely that convection alone can explain that low
modes dominate our models. Non-radial, non-convective instabilities like the“advective-acoustic
cycle” (Galletti & Foglizzo 2005; Foglizzo et al. 2006a) may play an important role and have
already been observed in simulations: Blondin & Mezzacappa (2006) and Ohnishi et al. (2006)
demonstrated that there is a non-radial instability in the flow below a standing accretion shock,
even if neutrinos (which could have a damping influence) are taken into account. Yet, because of
strong simplifications, theses simulations are not able to assess the importance of the instability
for supernova explosions. In these simulations boundary and initial conditions were taken from
a stationary solution, which means that the growth rate of the hydrodynamic instability (that
depends solely on the properties of the flow) is constant and determined by the initial conditions
(as long as non-linear effects can be neglected). In real supernovae, however, the flow changes
continuously, because the shock adapts to the varying mass accretion rate, the neutrino heating
below the shock changes, and the proto-neutron star contracts. Therefore the growth rate also
varies, and a priori it is not clear, whether it will be sufficiently high for a sufficiently long time
to allow a growth of the instability into the non-linear phase on a time scale comparable to the
explosion time scale (which is, of course, a priori also unknown).

Our aim is therefore to go one step further in the direction of realism and abandon the as-
sumption of stationarity. Yet, as we are using the same numerical setup as for the simulations
of Chapter 3, our simulations must still be regarded as simplified compared to state-of-the-art
supernova simulations with a detailed description of the neutrino transport (Rampp & Janka
2002; Liebendörfer et al. 2001; Liebendörfer et al. 2005; Thompson et al. 2003; Buras et al. 2003,
2006a,b). This approximative, parametric approach appears to be justified, because we do not
aim at demonstrating the viability of the neutrino-driven mechanism, but just want to study
the evolution of instabilities in a plausible scenario. In particular we will address the following
questions:

63
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• Is a non-radial instability of the accretion shock able to develop in a “real” supernova core
on time scales comparable to the explosion time scale? How is this influenced by neutrino
effects?

• Can this instability be identified as an amplifying advective-acoustic cycle, a growing
standing pressure wave (Blondin & Mezzacappa 2006) or something else?

• What determines the growth rate? Is it possible that the instability grows faster than
convection and which influence will this have on the subsequent evolution?

• What is the relationship between convection and the instability in the non-linear phase?

• What is the influence of the instability on the explosion energetics and the neutron star
recoil?

We proceed by summarising the most important properties of convection in the gain layer and the
advective-acoustic cycle in Sect. 4.1. In Sect. 4.2, we present eight two-dimensional simulations
that address the questions listed above. Then we discuss these results in detail, the linear phase
in Sect. 4.3 and the non-linear phase in Sect. 4.4.

4.1 Hydrodynamic instabilities

4.1.1 Linear and non-linear convective growth of perturbations

In a hydrostatic atmosphere, regions with negative entropy gradients are convectively unstable
for all wavelengths. Short wavelength perturbations grow fastest, with a local growth rate equal
to the Brunt-Väisäla frequency

ωbuoy ≡
√

−agrav C / ρ. (4.1)

Here agrav is the local gravitational acceleration, ρ is the density and

C ≡
(

∂ρ

∂S

)

P,Yl

· dS

dr
. (4.2)

Note that C < 0 is the instability condition for Schwarzschild convection.

Foglizzo et al. (2006b) noticed that in the stalled shock phase, the convective growth time scale
ω−1

buoy in the unstable layer below the shock is of the same order as the time scale for advection
from the shock to the gain radius,

τg
adv ≡

∫ Rs

Rg

dr

|vr(r)|
, (4.3)

where Rg is the gain radius, Rs the shock radius and vr the radial velocity. Advection is
stabilising because it gives perturbations only a finite time to grow, before they are advected
into the stable layer below the gain radius. Considering only local instability (see below), the
amplitude δ of a small-wavelength perturbation may grow during the advection from the shock
to the gain radius, at best by a factor exp(χ),

δgain = δshock exp(χ), (4.4)
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where the quantity

χ ≡
∫ Rs

Rg

ωbuoy(r)
dr

|vr(r)|
= τg

adv/τconv (4.5)

can be interpreted as the ratio between the advection time scale and the average local growth
time scale the perturbation experiences, τconv ≡ 〈ω−1

buoy〉 (the latter quantity is implicitly defined
by Eq. 4.5). Thus it would appear that in order to reach a given perturbation amplitude at the
gain radius, a certain seed perturbation amplitude of the matter crossing the shock would be
necessary.

However, in their linear stability analysis of the stationary flow below the shock, Foglizzo et al.
(2006b) found that a global instability can occur in the gain layer and grow from arbitrarily small
seed perturbation amplitudes, if sufficient time is available. According to Foglizzo et al. (2006b)
this instability occurs for a limited range [lmin, lmax] of modes, when χ exceeds a critical value
χ0,

χ > χ0 where χ0 ≈ 3. (4.6)

For χ < χ0 the flow remains linearly stable, even though a negative entropy gradient is present.

The analysis of Foglizzo et al. (2006b) applies only for the linear phase of the instability, i.e. for
small perturbation amplitudes. However, it is possible that the situation has to be regarded non-
linear right from the beginning, i.e. that already the seed perturbations grow to large amplitudes
during the advection to the gain radius. In this context “large” can be defined by considering
the buoyant acceleration of the perturbations.

For a small bubble, in which the density ρ is lower than the one of the surrounding medium,
ρsurr, the convective growth during the advection to the gain radius may lead to an increase of
the relative density deviation δ ≡ |ρ − ρsurr|/ρsurr (which can be considered as the perturbation
amplitude) as given by Eq. (4.4). The bubble experiences a buoyant acceleration |agrav| δ towards
the shock, which is proportional to the local gravitational acceleration agrav. The time integral of
the buoyant acceleration becomes comparable to the advection velocity, when the perturbation
amplitude reaches a critical value

δcrit ≡
〈|vr|〉gain

〈agrav〉gain τg
adv

≈
〈|vr|〉2gain

Rs 〈agrav〉gain
Rs

Rg − Rs
≈ O(1%), (4.7)

where 〈|vr|〉gain and 〈agrav〉gain are the average values of the radial velocity and the gravitational
acceleration in the gain layer, respectively. For δgain > δcrit a small-scale perturbation is able to
rise against the accretion flow. If the full flow is perturbed, the buoyant motions on small scales
affect the situation globally and could allow for the onset of a convective overturn also on larger
scales. Note that in contrast to the linear growth of the instability this process does not require
χ > χ0, but it does require sufficiently large seed perturbations,

δshock > δcrit / exp(χ). (4.8)

A sufficient condition for the suppression of convection is therefore that neither Eq. (4.6) nor
Eq. (4.8) are fulfilled.

4.1.2 The advective-acoustic cycle

A second hydrodynamic instability has recently been recognised to be of potential importance
in the stalled shock phase. The so-called “advective-acoustic cycle” (in short AAC) was first
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Figure 4.1: Schematic view of the advective-acoustic cycle between the shock at Rs (thick solid line)
and the coupling radius, Rc (thick dashed line), in the linear regime. Flow lines carrying vorticity
perturbations downwards are drawn as solid lines, and the pressure feedback corresponds to dotted lines
with arrows. In the gray shaded area around Rc the flow is decelerated strongly.

discussed by Foglizzo & Tagger (2000) in the context of accretion onto black holes, and later
studied for supernovae by Galletti & Foglizzo (2005) and Foglizzo et al. (2006a), who performed
a linear stability analysis. The explanation for these oscillations is based on the linear coupling
between advected and acoustic perturbations, due to flow gradients.

Although this linear coupling occurs continuously throughout the accretion flow from the shock
to the neutron star surface, some regions may contribute more than others to produce a pressure
feedback towards the shock and establish a global feedback loop. The analysis of the linear
phase of the instability in Sect. 4.3 reveals the importance of a small region at a radius Rc

above the neutron star surface, where the flow is strongly decelerated. The feedback loop can
be described schematically as follows (see Fig. 4.1): small perturbations of the supernova shock
cause entropy and vorticity fluctuations, which are advected downwards. When the flow is
decelerated and compressed above the neutron star surface, the advected perturbations trigger
a pressure feedback, which hits the shock, causing new vorticity and entropy perturbations.
Instability corresponds to the amplification of perturbations by a factor |Qaac| > 1 through each
cycle.

The duration τ f
aac of each cycle is a fundamental time scale: it corresponds to the the time

needed for the advection of vortical perturbations from the shock to the coupling radius Rc,
where the pressure feedback is generated, plus the time required by the pressure feedback to
travel from this region back to the shock.

The exponential growth resulting from the AAC can be described by a complex eigenfrequency
ω satisfying the following equation:

exp(−iωτ f
aac) = Qaac, (4.9)

where the real part ωr is the oscillation frequency and the imaginary part ωi is the growth rate
of the AAC. Note that Eq. (4.9) is a simplified form of Eq. (49) of Foglizzo (2002): for the sake
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of simplicity, it neglects the marginal influence of the purely acoustic cycle of pressure waves
trapped between the shock and the accretor.

According to Eq. (4.9), the oscillation period τosc ≡ 2π/ωr of the AAC depends both on the
duration τ f

aac of the cycle and on the phase ϕ of Qaac:

ωrτ
f
aac + ϕ = 2kπ, (4.10)

where k is an integer. The fundamental mode of the AAC is thus identical to the duration τ f
aac

of the cycle only in the particular case when Qaac is real and positive. However, according to
Foglizzo et al. (2006a) |ϕ| is small and therefore τosc ≈ τ f

aac is a reasonable approximation for
the fundamental oscillation period, which we will use in the following.

The amplitude of perturbations in the AAC increases like exp(ωi t), with a growth rate ωi

deduced from Eq. (4.9):

ωi ≡
log(|Qaac|)

τ f
aac

. (4.11)

Comparing equations (4.5) and (4.11) it is interesting to note that while the growth of entropy-
driven convection is suppressed for small advection time scales, the latter actually leads to higher
growth rates for the AAC (neglecting the logarithmic dependence on Qaac). Thus the AAC may
operate under conditions which are not favourable for convection and vice versa.

4.2 Simulations

In the following we will present a sequence of eight two-dimensional simulations, which are
characterised by an increasing degree of realism, concerning the physics we take into account
and the boundary conditions we employ. The most simplified case, Model W00FA, does not
include neutrinos and serves mainly to demonstrate the effects of a shrinking inner boundary
(as opposed to the fixed inner boundary used e.g. in Blondin & Mezzacappa (2006)) and,
in comparison with the other models, the influence of neutrino cooling and heating. For five
further simulations including neutrino transport, Models W00F, W00, W00S, W05S and W05V
we choose boundary conditions such that convection is suppressed, which allows us to identify
and study other instabilities like the AAC more easily. For Models W12F and W12F-c, finally,
we adopt boundary conditions motivated by state-of-the-art Boltzmann simulations, which leads
to typical explosion energies of about 1051 erg. Table 4.1 lists some important parameters and
results for the models presented below.

4.2.1 A model without neutrinos

Model W00FA is a purely hydrodynamic simulation without neutrinos. This description applies
also for the simulations of Blondin et al. (2003), who use an inner boundary at a fixed radius
with outflow boundary conditions to allow for a stationary unperturbed flow. In our simula-
tions, however, the inner boundary is an impenetrable Lagrangian mass shell which contracts,
mimicking the shrinking of a cooling proto-neutron star. Furthermore unlike in Blondin et al.
(2003) also the accretion rate varies, as stellar matter of different composition falls through the
shock. Thus the postshock flow is generically non-stationary.

Due to the stalling shock and the neutrino heating up to 16 ms after bounce (i.e. before the
start of our simulation) a convectively unstable negative entropy gradient is present in the
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Table 4.1: Some important quantities for the models discussed in this section: Boundary luminosity Lib,

final inner boundary radius Rf
ib, contraction time scale tib, amplitude of initial perturbations δi, time at

which the average lateral velocity in the gain layer exceeds 109 cm/s, tnl, mass in the gain layer ∆Mgain

at the explosion time texp, explosion energy Eexp, neutron star mass Mns and neutron star velocity vns.
The latter three quantities are given at t = 1 s, for model W00F at t = 750ms. Model W00FA does not
include neutrinos and does not produce a well-defined neutron star, and only the models W00F, W12F
and W12F-c explode. Therefore the related quantities are not specified. The luminosity decay time scale
tL (see Sect. 2.4.2) is set to one second for all models containing neutrinos. We use the unit 1B = 1051 erg
and give all times relative to the start of the simulation, i.e. t = 0 s means 16ms after core bounce.

Name Lib Rf
ib tib δi tnl texp ∆Mgain Eexp Mns vns

[B/s] [km] [s] [s] [s] [M�] [B] [M�] [km/s]

W00FA – 8.0 0.5 10−3 vr – – – – – –
W00F 0.2 8.0 0.5 10−3 vr 0.154 0.194 0.004 0.37 1.50 200
W00 0.2 15.0 1.0 10−3 vr 0.346 – – – 1.63 -3
W00S 0.2 15.0 4.0 10−3 vr – – – – – –
W05S 7.4 15.0 4.0 106cm/s – – – – – –
W05V 7.4 15.0 10.0 3 × 107cm/s – – – – – –
W12F 29.7 10.5 0.25 10−3 vr 0.144 0.164 0.010 0.87 1.44 -558
W12F-c 29.7 10.5 0.25 O(10−2) vr 0.090 0.117 0.015 0.94 1.41 612

Figure 4.2: Entropy distribution of model W00FA 30ms and 190ms after the start of the simulation.
The initial entropy profile and the postshock entropy gradients caused by the varying preshock conditions
give rise to weak convection. A weak l = 1 oscillation develops.
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Figure 4.3: Mass shell trajectories for model W00FA. The spacing of the thin lines is 0.1M�. Green
lines mark the mass shells at which the composition of the progenitor changes. The red lines are the
minimum, average and maximum shock radius, the black line marks the radius, at which the average
density is 1011 g/cm3. The difference between minimum and maximum shock radius are caused by bipolar
shock oscillations (see Fig. 4.2).

initial model, around r ≈ 70 km. Soon after the start of the simulation buoyant bubbles form in
this region and rise towards the shock (Fig. 4.2). Convection is present throughout the whole
simulation, because on the one hand the postshock entropy varies and therefore unstable entropy
gradients are newly created all the time and, on the other hand, cooling processes that could
dampen the convective motions are absent. However, without neutrino heating the convective
overturn does not become as strong and dynamic as in the simulations of Chapter 3 including
neutrino transport. The varying postshock entropies are caused by the varying preshock state
and the radial motion of the shock (which adapts to changes in the accretion rate), as well as
by bipolar shock oscillations (see Sect. 4.4.1). The latter are rather weak (the amplitude does
not exceed 15%) and occur semi-periodically on time scales of 20–50 ms (Fig. 4.3).

These multi-dimensional effects do not seem to be important for the model, though, as the
evolution of the shock position is almost identical to the one of a one-dimensional simulation
with the same parameters. Although the inner boundary is contracting the shock expands
slowly but continuously (Fig. 4.3). A temporarily faster expansion occurs at t ≈ 150 ms, when a
progenitor composition interface falls through the shock, abruptly lowering the mass accretion
rate. After 660 ms we stop the simulation. At this time the shock has reached a radius of
400 km.

Although the shock is expanding slowly, this can by no means be interpreted as an explosion –
without neutrino-heating the total energy of the matter below the shock remains negative. The
reason for the shock expansion is rather that matter piles up in the postshock region, slowly
pushing the shock further out and forming an extended atmosphere around the neutron star.
The matter cannot loose entropy (which would require neutrino cooling) and thus is not able to
settle down onto the neutron star quickly. Therefore the flow that develops in Model W00FA
is quite different from the ones found in detailed supernova simulations or the stationary flows
that have been assumed for the simulations of Blondin et al. (2003). The advection velocity
remains much lower and the shock radius becomes larger.

On the one hand this demonstrates that once a “realistic” boundary condition (mimicking an
shrinking neutron star) is used, also neutrino transport has to be included. On the other hand,
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Figure 4.4: Evolution of the quantity χ (left panel, see Eq. 4.5) and the ratio δgain/δcrit (right panel, see
Eqns. 4.4, 4.7) for Models W12F-c, W12F, W00F and W00. For each model a diamond symbol marks the
time tnl, at which the average lateral velocity in the gain layer exceeds 109 cm/s. For later times χ and
δcrit cannot be measured reliably any more. χ . χ0 ≈ 3 for t < tnl in all models. Only Model W12F-c
comes close to δgain/δcrit = 1 before t = tnl, i.e. only in this model convection is able to set in.

it shows that neutrinos are actually required to create the conditions needed for an effective
advective-acoustic cycle, for which small advection times from the shock to the neutron star are
necessary (see Sec. 4.1.2). Including the effects of neutrino emission, like in the models described
below, leads after some time to quasi-stationary flows (because neutrino radiating matter can
settle onto the forming neutron star) that are more similar to the ones considered by Blondin
et al. (2003) and Ohnishi et al. (2006). Yet, unlike in the latter two works, the quasi-stationary
flow is not put in “by hand” (i.e., by prescribing boundary conditions taken from a stationary
solution), but establishes during the simulation and varies with time, as it adapts to changes of
the accretion rate and the neutron star contraction.

4.2.2 Models with suppressed convection

For the simulations discussed in this section we include neutrino effects. However, in an in-
termediate step we do not apply boundary conditions motivated by the results of Boltzmann
simulations, but instead we choose boundary contraction prescriptions and core luminosities
such that convection is suppressed. This will allow us to identify and study non-convective in-
stabilities more easily. Suppressing convection is achieved by prescribing low or negligibly low
core luminosities. In these cases essentially only the luminosity produced between the inner
boundary and the gain radius is available to deposit energy in the gain layer. Thus the neutrino
heating is reduced, which results in a weaker entropy gradient and consequently a larger buoy-
ancy time scale. Therefore for low core luminosities the ratio of advection to buoyancy time
scale, χ (see Eq. 4.5), remains below the critical value and convection is stabilised by advection
(see Sect. 4.1.1). A second possibility to achieve χ < χ0 would be to reduce the advection time
scale, e.g. by prescribing a more rapid contraction of the inner boundary, which leads to small
shock radii and high (negative) postshock velocities. In addition to the condition χ < χ0 also
the progenitor perturbations have to be small enough to avoid that convection starts in the
non-linear way described in Sect. 4.1.1. Both conditions are fulfilled in our low core luminosity
models (see Fig. 4.4).

We performed five simulations, in which convection is suppressed due to the low core luminosities,
and which differ in the contraction prescription for the inner boundary. For Models W00 and
W00F we use the “standard” and “rapid” contraction prescriptions (see Sect. 2.4.1), respectively.



4.2. SIMULATIONS 71

Figure 4.5: As Fig. 4.3, but for Models W00 (left panel) and W00F (right panel). Up to t ≈ 300ms
model W00 remains nearly spherical and evolves like a one-dimensional model with the same boundary
conditions. However, an initially very weak l = 1 oscillation mode in the postshock flow grows in this
phase and finally becomes non-linear, causing strong shock oscillations. Yet, this model does not explode
– although the shock expands transiently in a semi-periodic way, the average shock radius decreases and
all matter remains bound. In Model W00F an l = 2 mode develops and starts to affect the shock shape
at t ≈ 100ms, much earlier than in model W00. The oscillations become non-linear, and at t = 194ms
(marked with a dotted line) the model explodes.

In order to cover a wider range of advection time scales (which will turn out to be decisive for
the identification of the low mode instability we observe in our simulations, see Sect. 4.3), we
performed three simulations with slower boundary contraction, Models W00S, W05S and W05V
(see Tab. 4.1). In the latter two models the boundary luminosity is set to a non-negligible
(but still low) value, which leads to larger shock radii and even longer advection times. For
Models W00F, W00 and W00S we apply our standard perturbations (0.1% random noise in the
velocity). For Models W05S and W05V we use an l = 1 velocity perturbation, which allows us
to suppress high mode noise and to measure the oscillation period of the low mode instability
despite of the low growth rates in these models.

Figure 4.5 gives an overview of the evolution of Models W00 and W00F. In the first 200 ms the
evolution of Model W00 is quite similar to models with larger boundary luminosity, like Model
W12 from Chapter 3, except that there is no convective overturn. At t ≈ 150 ms the accretion
rate declines steeply, when a composition interface (the one where oxygen appears inside the
silicon shell) is falling through the shock. In models with “normal” boundary luminosity (see the
W series in Chapter 3), this leads to a shock expansion, enhanced convection and, 50 to 150 ms
later, to the onset of the explosion. In model W00, though, the shock expands only temporarily
by about 20 km, and contracts continuously in the following 150 ms (Fig. 4.5).

Already several ten milliseconds after the start of the simulation a lateral velocity component
(which changes direction with a period of about 30 ms) is observable in the flow between shock
and neutron star surface. The amplitude of this l = 1 oscillation mode starts to increase
continuously after t ≈ 100 ms and grows by a factor of about two per period. Only at t ≈ 250 ms
the amplitude is sufficiently large to affect the shock shape. This is due to the finite resolution
of the numerical grid — the shock cannot be pushed out by less than one radial zone and thus
remains perfectly spherical for low oscillation amplitudes (lateral variation is already visible in
the postshock flow, though).

In the subsequent evolution the shock radius is initially still slowly decreasing and the shock
shape remains approximately spherical, but the shock surface shifts back and forth along the
symmetry axis. The direction of the postshock flow changes periodically and alternatingly
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Figure 4.6: Lateral velocity distributions (with superimposed vectors indicating the direction of the
flow) for Models W00 and W00F. The white lines mark the shock, the black, dotted lines the gain radius.
For each model we show the situation for two times near t = tnl, in which the oscillations are in opposite
phases (i.e. the times differ by half an oscillation period) and a third time, at which the oscillations have
run out of phase (see Sect. 4.4.1). In Model W00 an l = 1 mode develops, i.e. the still nearly spherical
shock shifts back and forth along the z-axis, whereas in Model W00F an l = 2 mode develops, i.e. the
shock oscillates between a prolate and an oblate deformation. The postshock matter attains high lateral
velocities, because the radial preshock flow hits the deformed or displaced shock at an oblique angle.

transports matter from the southern into the northern hemisphere and vice versa (Fig. 4.6).
This behaviour is quite similar to the bipolar oscillations of the low-energy models discussed in
Chapter 3. However, due to the missing convection the flow pattern and the shock shape are
much simpler in Model W00.

At t ≈ 360 ms the amplitude of the shock oscillations has become very large, the shock radii at the
poles differs by up to 50 km, whereas the average shock radius is only about 100 km. In this phase
the entropy behind the shock starts to vary strongly with time and angle (Fig. 4.7). Pronounced
negative entropy gradients (dS/dr = O(1 kb/km)) develop and convective instabilities start
to grow at the interfaces between low- and high-entropy matter. The lateral postshock flow
attains velocities of several 109 cm/s and supersonic downflows towards the neutron star form
(see Sect. 4.4.1 for a discussion of these processes). Within a few oscillation cycles the whole
postshock flow becomes very similar to the non-linear convective overturn present at the onset
of the explosion in the low-energy models of Chapter 3.

However, in contrast to the latter, model W00 does not explode. At t ≈ 390 ms the bipolar
oscillations reach their maximum amplitude. In the further evolution they become weaker and
on average the shock radius declines (Fig. 4.5). The slow decay of activity is interrupted by



4.2. SIMULATIONS 73

Figure 4.7: Evolution of the entropy distribution of Model W00 for several times at the begin of the
non-linear phase (differing by half an oscillation period) and at t = 1 s. Within each oscillation cycle
the postshock entropies vary strongly and steep, unstable entropy gradients develop in the postshock
flow. Finally the Rayleigh-Taylor growth time scale becomes smaller than the oscillation period and
perturbations are able to grow. In the subsequent evolution the low-mode oscillations saturate and the
model does not develop an explosion.

several short phases of stronger shock expansion and bipolar oscillation, which occur semi-
periodically every 50–100 ms. When we stop the simulation at t = 1 s the shock is has retracted
to a radius of only 70 km.

The slow-contracting Models W00S, W05S and W00V evolve qualitatively very similar to Model
W00. However, with increasing contraction time scale the oscillation period becomes longer (up
to 100 ms) and the growth rate of the low mode instability decreases. All of the models are
dominated by an l = 1 mode and none of them is able to explode.

Also Model W00F with its rapidly contracting inner boundary evolves initially quite similar
to Model W00. However, all time scales are smaller: The oscillation amplitude starts to grow
already after 50 ms, the shock becomes non-spherical at t ≈ 100 ms and convection sets in at
t ≈ 170 ms. Furthermore, the l = 2 mode (i.e. oscillation between prolate and oblate states) is
stronger than the l = 1 mode in this model (Fig. 4.6).

In contrast to the models with slower boundary contraction, the persistent neutrino heating in
Model W00F is sufficiently strong to trigger an explosion at texp = 194 ms. This difference is
related to the fact that due to the faster contraction gravitational energy is released at a higher
rate in Model W00F and therefore also the neutrino luminosity is higher (see Sec. 4.4.2 for a
further discussion). The anisotropic morphology caused by the low-mode oscillations “freezes
out” when the shock accelerates outward. A single accretion funnel forms in the northern
hemisphere and the shock develops a prolate deformation. Thus the explosion proceeds very
similar to what we found for models with “normal” boundary luminosities (see Chapter 3). As
the boundary luminosity is negligible the energy of the explosions does not become very high
(extrapolated 0.5 × 1051 erg after 1 s), but the neutron star is moving relatively fast (vns ≈
350 km/s for t = 1 s).
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Figure 4.8: Entropy distribution at several times for Models W12F-c (left column) and W12F (right
column). Model W12F-c becomes anisotropic quite early on due to the onset of convection, whereas in
Model W12F convection is initially suppressed and low-mode oscillations become apparent after about
100ms. After these oscillations have grown to large amplitudes and triggered convection also in Model
W12F, the two models explode qualitatively very similar, whereas the positions of the downflows and the
associated shock deformations differ.
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Figure 4.9: Left panel: As Fig. 4.3, but for model W12F. After an initial phase, in which the model
remains nearly spherical symmetric, the AAC becomes strong enough to deform the shock and to trigger
convection. This model explodes at t ≈ 160ms (marked by the dotted line), when the oxygen-enriched
silicon shell is falling through the shock. Right panel: As Fig. 4.3, but for model W12F-c. The convective
overturn starts to deform the shock at t = 60ms, and this model explodes already at t = 120ms, even
before the oxygen-enriched silicon layer (denoted with “O in Si”) has fallen through the shock.

4.2.3 Models with typical explosion energies

Is the non-radial instability present in Models W00 and W00F also able to develop in simulations
with more realistic boundary conditions? To answer this question we performed two simulations,
Models W12F-c and W12F, with boundary luminosities that allow for typical explosion energies
of about 1051 erg. The contraction of the inner boundary is chosen to match the motion of the
corresponding mass shell in a Boltzmann simulation of the same progenitor (Buras et al. 2003).

For the boundary luminosity and the contraction prescription used in the two models the param-
eter χ (see Sec. 4.1.1) is below the critical value of about 3 (Fig. 4.4). Therefore the progenitor
perturbation amplitude decides, if convection is able to set in (in the non-linear way discussed
in Sec. 4.1.1) or not. As the properties of these progenitor perturbations are not well-known, it
appears interesting to compare two cases, one with a strongly perturbed initial model allowing
for convection, and one with a rather weakly perturbed initial model, in which convection is
suppressed. Thus for model W12F-c we use the same perturbations as for models W12-c and
W18-c from Chapter 3, with radially varying amplitudes of up to several percent. These per-
turbation have been taken from a 2D core collapse Boltzmann simulation, Model s15r of Buras
et al. (2003). For model W12F we apply our standard 0.1% velocity perturbations. An overview
of the evolution of the two models is given in Figures 4.8 and 4.9, where we show the entropy
distributions at several times and mass shell trajectories.

In the strongly perturbed Model W12F-c first convective bubbles form at t ≈ 60 ms and at
t ≈ 90 ms the full gain layer has become convective (see Fig. 4.8). From this time on the total
energy in the gain layer rises continuously and already at texp = 117 ms the first zones acquire
positive total energy and the model explodes. The weakly perturbed Model W12F behaves quite
differently in the first 200 ms. There is no indication of convection and for the first 100 ms the
shock radius evolves as in a one-dimensional model with the same parameters. However, as in
Model W00 a weak l = 1 oscillation mode is present in the postshock flow already at early times
(t ≈ 30 ms) and grows exponentially to large amplitudes. At about tnl ≈ 150 ms pronounced
convectively unstable entropy gradients are generated below the oscillating shock and within
two cycle periods a situation develops that strongly resembles model W12F-c at the onset of the
explosion. Also Model W12F explodes soon afterwards, at t = 164 ms.
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Figure 4.10: Evolution of the explosion energy (thick) and the neutron star velocity (thin) for Models
W12F (solid) and W12F-c (dotted).

Although the pre-explosion evolutions and the explosion time scales are rather different for the
two models, they behave quite similar after the explosion has set in. The convective structures
merge and downflows form at the interface between rising, neutrino-heated matter and the matter
with relatively low entropy directly below the shock. The number of downflows decreases with
time and from t ≈ 200 ms on a single downflow dominates the morphology. Its position differs in
the two models, as does the shape of the shock, but the explosion energy and even the neutron
star velocities agree quite well for t > 0.3 s (Fig. 4.10).

4.3 Interpretation of the linear phase

In the following we will discuss the non-radial instability growing in our simulations in detail.
The determination and comparison of characteristic time scales and radii in the linear phase will
allow us to identify the instability mechanism at work.

4.3.1 Measuring oscillation period and cycle efficiency

For a more quantitative analysis of the low-mode oscillations in our models we use a spherical
harmonics expansion of the quantity A defined as

A(t, r, θ) ≡ 1

sin θ

∂

∂θ
(vθ(t, r, θ) sin θ) . (4.12)

rA is the divergence of the lateral velocity. At the gain radius,

A(t, Rg(t), θ) =
∞
∑

l=0

al(t) Yl,0(θ, 0). (4.13)

Here Yl,m(θ, φ) are the spherical harmonics and due to the assumption of axisymmetry only
m = 0 has to be considered.

For l > 0, the spherical harmonics coefficients al of this quantity are proportional to the ones
of the shock displacement (see Foglizzo et al. 2006b, Appendix F), so A(t, Rg, θ) contains ba-
sically the same information as Rs(t, θ). We prefer to use A(t, Rg(t), θ) rather than the shock
displacement δR = Rs(θ) − 〈Rs〉θ (used in Blondin et al. 2003 and Ohnishi et al. 2006) because
A is much less affected by noise (A(t) = 0 for a non-stationary spherical flow, whereas Rs(t) is
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Figure 4.11: Evolution of the lowest spherical
harmonics coefficients of the quantity A(r, t, θ)
(Eq. 4.12) at the gain radius of Model W00F.

Figure 4.12: Cycle efficiency, |Qaac|, as a func-
tion of the oscillation period, τosc, for Models
W00F, W00, W00S, W05S, W05V and W12F.

varying) and allows to measure the oscillation period and growth rate already much earlier than
it is possible for Rs. As an example the coefficients for Model W00F are shown in Fig. 4.11.

For a given mode l the oscillation period τosc,l can be determined by detecting the minima of
|al(t)|, which occur at times t = tnmin,l. This detection works reliably only for a sufficiently
high amplitude (i.e. it fails in the first 10–20 ms) and is not feasible any more, when convective
instabilities involving a broad range of frequencies arise in the non-linear phase. During one
cycle of mode l the corresponding coefficient al(t) becomes zero two times, so the cycle period
can be measured as

τosc,l(t
n
min,l) = tn+1

min,l − tn−1
min,l. (4.14)

The evolution of the period of the l = 1 modes, τosc,1, obtained using Eq. 4.14 is displayed in
Fig. 4.13 for three of the models. The periods range between ∼ 15 ms and ∼ 80 ms. The largest
values are found for Model W05V, in which the advection time scale and the sound crossing
time scale are rather long because the shock radius is quite large and the post shock velocities
are low.

In order to measure the cycle efficiency, Qaac, we use again the coefficients al defined in Eq. 4.13.
We detect the positions of the maxima of |al(t)|, which occur at times t = tnmax,l. If the oscillations

of mode l are dominated by the kth harmonic (i.e. τosc = τ f
aac/k, where τ f

aac is the period of
the fundamental mode), |al(t)| has 2k maxima during one fundamental cycle period τ f

aac, so the
amplification per fundamental cycle can be measured as

Qaac,l(t
n
max,l) =

(

al(t
n+1
max,l)

al(t
n−1
max,l)

)k

. (4.15)

This method fails, if several of the harmonics are excited with similar strength. However, these
phases can be identified and in general one of the harmonics dominates (in most cases the
fundamental mode, k = 1). The efficiencies measured using Eq. (4.15) are shown in Fig. 4.12.
For the models with low boundary luminosity and contraction time scales up to 1 s, we find
values between 2 and 3, whereas for the slowly contracting models the efficiency can even fall
below 1. For Model W12F, the only simulation with a higher core luminosity, the efficiency
reaches exceptionally high values of more than 6.
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Figure 4.13: Evolution of the oscillation period,
τosc, the advection time from the shock to the ra-
dius of the strongest deceleration, τ∇

adv, and two
times the sound travel time through the shock
cavity, τsound, for Models W00, W12F and W05V.
The vertical dotted lines enclose the time spans
used in Figs. 4.17 and 4.12. While in Model
W00 all time scales are similar (τosc ≈ τ∇

adv ≈
2 × τsound), both τ∇

adv and 2 × τsound are smaller
than the oscillation period in Model W12F. In
Model W05V only the advection time agrees with
the oscillation period, whereas 2×τsound is signif-
icantly (about a factor 1/2) smaller.

Figure 4.14: Radial profiles of the radial deriva-
tive of the radial velocity for Models W12F,
W00F and W00FA at several times. The gray
shaded area indicates the range of values 1/τosc

takes on during these times. In the models includ-
ing neutrinos a pronounced “deceleration peak”
forms (with a maximum value significantly higher
than 1/τosc), whereas in Model W00FA the latter
is absent.
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4.3.2 Identification of the instability mechanism

So far we have discussed the temporal behaviour of the flow at one certain radius, Rg. The radial
structure of the oscillations becomes evident in Figs. 4.15 and 4.16, where we show spherical har-
monics coefficients of the lowest modes as a function of time and radius for Models W00, W00F
and W12F. Figure 4.16, which displays the coefficients for the pressure, reveals the presence of
coherent pressure modes (i.e. “acoustic perturbations”), which oscillate with the same period as
the “advected perturbations” made visible using the quantity A (see Eq. 4.12) in Fig. 4.15. The
advected perturbations are created at the shock, advected downwards and decelerated above the
neutron star surface.

The pattern of the pressure perturbations reveals the presence of a particular radius, Rφ, where
the phase is shifted. The dashed-dotted line in Figs. 4.15 and 4.16 is defined as the radius
R∇ where the velocity gradient of the unperturbed flow is strongest (i.e. at the maximum of
|∂v/∂r|, which can be clearly localised in the linear phase and lies somewhat above the neutron
star surface). This particular radius appears to be closely connected to the structure of pressure
perturbations — in all the flows studied, these two radii coincide:

R∇ ≈ Rφ. (4.16)

This striking coincidence may be a consequence of a particularly efficient coupling between
advected and acoustic perturbations at this radius. In order to test this hypothesis, we have
compared the wavelength 2πv/ωr of advected perturbations at this radius to the length scale
(d log v/dr)−1 of this deceleration zone. An efficient coupling is expected if the flow velocity
varies on a short distance compared to the wavelength of advected perturbations:
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(4.17)

If our interpretation of the phase shift is correct, condition (4.17) should be fulfilled at Rφ and
the value |dv/dr| at other radii should be significantly lower (otherwise efficient coupling and
an associated phase shift would be expected for a wide range of radii). This is the case, as
illustrated in Fig. 4.14. Further support comes from the observation that the deceleration peak
is absent Model W00FA, in which the instability is very weak. Moreover, for the other models
condition (4.17) is not or only marginally fulfilled in the first few oscillation periods, which is
consistent with the fact that the growth rate is initially low. This leads us to interpret R∇ ≈ Rφ

as a radius of effective coupling:

Rc ≡ R∇ ≈ Rφ (4.18)

It should be mentioned that the“deceleration peaks”present in our simulations with approximate
neutrino transport are also found in Boltzmann simulations and seem to be a generic feature of
the post-shock flow.

Now that the main features of the AAC (downwards advected perturbations, acoustic pertur-
bations and a coupling region) have been identified, it remains to be shown that the oscillation
period observed in our simulations matches the predictions. For this purpose, we compare the
oscillation period τosc with the time scale τ f

aac of the cycle, approximated by the advection time
τadv(R∇) from the shock to R∇ in Fig. 4.13. In all models except W12F (that we will discuss
later), this advection time is very close to the oscillation period. Fig. 4.13 also indicates the
value 2 × τsound of the sound travel time through the full diameter of the cavity. This time
scale is the longest time scale which may be associated to a purely acoustic mode in the cavity,
as advocated by Blondin & Mezzacappa (2006). According to Fig. 4.13, this time scale can
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Figure 4.15: Spherical harmonics coefficients
of the quantity A (corresponding to the domi-
nating oscillation mode) as a function of radius
and time for Models W00, W00F and W12F. The
solid lines are the minimum, average and maxi-
mum shock radius, the dotted line is the gain ra-
dius, the dashed line is the neutron star surface
and the dash-dotted line marks the location of
the strongest velocity gradient. Already several
ten milliseconds after bounce a zebra-like pattern
becomes visible, which is caused by the advection
of matter with lateral velocity from the shock to-
wards the neutron star.

Figure 4.16: Spherical harmonics coefficients
of the pressure (corresponding to the dominat-
ing oscillation mode and divided by the l = 0
coefficient) as a function of radius and time for
Models W00, W00F and W12F. The lines have
the same meaning as in Fig. 4.15. A low mode
oscillation develops in the postshock flow. A
pronounced phase shift is visible at a radius
RΦ(t) which agrees well with the position of the
strongest velocity gradient, R∇(t). The “noise”
(short-wavelength sound waves) visible in the
early phases is caused by the shock propagation
and not related to the advective-acoustic instabil-
ity.
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Figure 4.17: Advection time τ∇
adv (from the shock to the radius of maximum deceleration, R∇) and two

times the sound crossing time for the shock cavity, 2× τsound, as a function of the oscillation period, τosc,
for Models W00F, W00, W00S, W05S, W05V and W12F. For this plot only data from phases is used, in
which the oscillations are clearly detectable and in which the flow is quasi-stationary (see Fig. 4.13). In
particular from the models with slow neutron star contraction it becomes clear that the oscillation period
scales with τ∇

adv rather than τsound. Model W12F is a special case (see text).

be comparable to τosc as in Models W00, but is a factor two shorter in Model W05V. A more
systematic comparison between the oscillation, acoustic, and advective time scales is shown in
Fig. 4.17 for each of the eight models. This figure is a clear proof that the oscillations are not
the consequence of a purely acoustic process, and that advection plays an important role. This
leads us to the conclusion that the instability mechanism at work in our simulations is indeed
the advective-acoustic cycle.

Figures 4.13 and 4.17 show that Model W12F, the only one in these figures with significant
boundary luminosity, is a special case — the oscillation period is longer than expected. There is
some delay, i.e. a phase shift, in each oscillation cycle of this model. This phase shift is actually
visible on the pressure profile in the bottom plot of Fig. 4.16, and is localised in the vicinity
of the gain radius. This exception might thus be due to the particular intensity of neutrino
heating in Model W12F, which favours the Rayleigh-Taylor growth of perturbations in the gain
region and may be responsible for an additional advective-acoustic coupling at the gain radius.
The presence of an additional source of amplification in Model W12F is further supported by its
exceptionally high amplification factor Qaac (Fig. 4.12). This possible cooperation of the AAC
and convection should be investigated further.
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4.4 Interpretation of the non-linear phase

In the following we will focus on the non-linear phase, in which the AAC cannot be regarded as
a small perturbation any more. In particular we will discuss the relation between the AAC and
convection and the influence of these instabilities on the onset of the explosion and the explosion
energy.

4.4.1 AAC triggers convection

Within a few oscillation cycles after t = tnl (see Tab. 4.1) a flow has established in our simula-
tions with low core luminosities that shows not only low-mode oscillations, but also small-scale
structures and features typical for the non-linear convective overturn of the models of Chapter 3,
like rising plumes of neutrino-heated matter and supersonic downflows of low-entropy matter.
There are two effects that contribute to this change of the flow character, which are related to
the motion and the deformation of the shock, respectively.

Firstly, due to the shock motion the flow becomes Rayleigh-Taylor unstable. This is because
the shock attains local velocities of O(109cm/s), a significant fraction of the preshock velocity.
As the postshock entropy depends on the the preshock velocity in the frame of the shock, the
fast shock oscillations result in strongly varying postshock entropies. Expanding parts of the
shock leave high entropies behind, whereas contracting parts lead to lower postshock entropies.
For a fixed angle the alternating shock expansion and contraction results in layers with high
and low entropies on top of each other, which are compressed and advected towards the neutron
star. With increasing shock oscillation amplitude the convectively unstable entropy gradients
between these layers become finally sufficiently steep to bring the corresponding Rayleigh-Taylor
growth time scales down to about 1 ms, much shorter than the advection time scale. Therefore
perturbations are able to grow quickly at the interfaces and form vortices and mushroom-like
structures (see Fig. 4.7).

Secondly, also the displacement (by the l = 1 mode) and deformation (by l ≥ 2 modes) of
the shock at large cycle amplitudes plays an important role. The radial preshock flow hits the
deformed or displaced shock at an oblique angle. As the velocity component parallel to the shock
is conserved, the matter crossing the shock attains a lateral velocity component (whose direction
changes with the cycle period, see Fig. 4.6). As long as the cycle amplitude is low, these lateral
velocities are small and the flow remains approximately radial. For a strong shock deformation,
however, the flow becomes predominantly non-radial, as the lateral postshock velocity reaches a
significant fraction of the preshock velocity (up to several 109 cm/s, i.e. the lateral flow becomes
supersonic). For an l = 1 mode, the highest negative lateral velocities are obtained, when the
shock has attained the maximum shift in negative z-direction (see Fig. 4.6, upper left panel).
A shell of matter with high negative lateral velocity formed in this phase is advected towards
the neutron star, and half an oscillation period later the highest positive lateral velocities are
generated below the shock, when the latter is shifted into positive z-direction (see Fig. 4.6,
middle left panel). With increasing oscillation amplitude the shock radius – and consequently
also the advection time scale and the cycle period – vary finally so strongly during one cycle that
the northern and southern hemispheres run “out of phase”, so that the local shock radii at the
north (θ = 0◦) and the south pole (θ = 180◦) reach their maximum values not any more by turns,
but at almost the same time. In this case streams of matter with high positive and high negative
lateral velocities are produced simultaneously near the north and south pole, respectively. These
streams collide and one of them is deflected upwards, producing a “kink” in the shock surface,
while the other one is diverted downwards, forming a supersonic downflow akin to the ones we
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observe in the simulations of Chapter 3 (see Fig. 4.6, lower left panel and 4.8, middle right
panel). By these two processes a large-amplitude AAC is able to trigger a non-linear convective
overturn even in models in which the convective growth is suppressed according to Eqs. (4.6)
and (4.7).

4.4.2 Explosion vs. non-explosion

Why is Model W00F able to explode whereas Model W00 and the models with even slower
boundary contraction do not develop an explosion? The two parameters that differ between
W00F and W00 are the final inner boundary radius, Rib, and the contraction time scale, tib. A
lower value of Rib implies that the matter sinks deeper into the gravitational potential and thus
more potential energy is released. The lower value of tib requires that this release of energy occurs
earlier. Most of this potential energy is radiated away in the form of neutrinos. Consequently
the luminosity in the gain layer is much higher for Model W00F at early times (Fig. 4.18).

Figure 4.18: Evolution of the sum of the angle-averaged νe and ν̄e luminosities at the neutrino sphere and
at r = 500 km for models W00 and W00F. The highest luminosities are found for early times (t < 0.2 s),
when the accretion rate is still large. For model W00F the luminosities are higher, because the neutron
star contracts faster, releasing more gravitational energy.

Yet, these high luminosities alone are not enough to start an explosion. This is demonstrated by
a one-dimensional simulation with the same parameters as Model W00F, which fails to explode.
However, in the two-dimensional case convection leads to an improved efficiency of the neutrino
energy deposition in the gain layer. On the one hand this is because owing to the convective
overturn the advection time scale is becoming larger, which increases the time during which a
fluid element is exposed to the neutrino fluxes and enlarges the gain layer mass. On the other
hand the neutrino-heated matter rises quickly to regions with lower temperature, which reduces
energy loss by neutrino reemission. The former effect is working also if a high-amplitude AAC
is present, because in this case the average shock radius increases, which results in a larger
advection time and a higher gain layer mass.

In model W00F we observe such a rise of the advection time scale starting at t ≈ 150 ms, when the
postshock flow is already predominantly non-radial, but the non-linear convective overturn has
not yet been triggered (Fig. 4.19). Like for convection the increasing τ g

adv leads to a“boost”of the
heating rate, which becomes even more pronounced once the non-linear convective overturn has
established (t & 170 ms). The total energy distribution in the gain layer peaks initially sharply
at −11 MeV/nucleon, but the distribution becomes broader under the influence of the large-
amplitude AAC and the convective overturn (Fig. 4.20). Due to the strong neutrino heating the
mean value of the total energy increases and finally the first zones acquire positive total energy
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Figure 4.19: Evolution of the mass in the gain layer, the advection time scale and the heating rate in the
gain layer for models W00 and W00F (solid lines). The dotted lines are from one-dimensional simulations
with the same parameters. When the AAC becomes non-linear (t ≈ 350ms for W00, t ≈ 150ms for W00F)
and triggers convection (about 30ms later) the advection time scale and the mass in the gain layer increase.
Thereby the heating rate is strongly enhanced, compared to the one-dimensional case. For model W00F
this enhanced heating is sufficiently strong to make the gain layer unbound and produce an explosion. The
advection time scale increases also in the one-dimensional version of model W00F, because a progenitor
shell interface is falling through the shock at this time. However, this one-dimensional model does not
explode, since without the multidimensional effects the heating does not become sufficiently strong. For
model W00 the luminosity is so low that even the increase of the heating rate by almost a factor of two
does not lead to an explosion.
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Figure 4.20: Evolution of the average total (thick solid line) and kinetic (dashed line) energy per baryon
in the gain layer for models W00 and W00F. The thin solid lines enclose the energy range, in which 90%
of the gain layer matter is contained.

and the explosion sets in. Also in model W00 we see an enhanced neutrino heating (up to two
times higher than in the corresponding one-dimensional simulation) from t ≈ 350 ms on, caused
by a combination of the non-linear AAC and convection (Fig. 4.19). However, due to the low
accretion rate at this late time the absolute value of the luminosity and consequently also the
heating rate are much lower than in model W00F. The total energy in the gain layer increases
only temporarily by about 1 MeV, but falls back soon and decreases further (Fig. 4.20). The
broadening of the energy distribution does not become sufficiently efficient to make any matter
unbound. For both models the kinetic energy in the gain layer remains relatively small (about
1 MeV/nucleon, see Fig. 4.20).

The failed explosion of Model W00 is in contrast to the simulations of Blondin et al. (2003),
in which the lateral kinetic energy below the shock increases continuously and the energy is
redistributed efficiently so that some of the matter finally attains positive total energy (which
is interpreted as an explosion). The likely cause for this discrepancy is the neutrino cooling
present in our simulations, which acts as an energy sink and seems to dampen the AAC at high
amplitudes. Thus in our simulations the redistribution of the energy by the cycle is not sufficient
to allow for explosions.

This means that sufficiently strong neutrino heating is required and that also in the presence of
the AAC there is a threshold luminosity, which has to be exceeded to allow for an explosion.
This conclusion is in accordance with the fact that also Ohnishi et al. (2006) (who include
neutrino cooling and heating) find an explosion only in one high-luminosity case, but not for
lower luminosities. In fact the increase of the heating efficiency by the AAC and convection
seems to be more important than the limited direct effect of the AAC on the explosion (by energy
redistribution). Thus both convection and the AAC can be seen as “catalysts”, which facilitate
an explosion, rather than sources of explosion energy. The failure of one-dimensional explosion
models with detailed transport descriptions shows, however, that these multidimensional effects
are important and required for successful neutrino-driven explosions. While the non-radial flow
associated to the AAC may be helpful to reach the onset of an explosion, it is not important
for the total energetics in the subsequent phase in our models. The lateral kinetic energy is
limited to several 1049 erg in all of our simulations – two orders of magnitude smaller than
typical explosion energies.

To allow for explosions, convection or the AAC have to become non-linear sufficiently early, in
a phase in which the neutrino luminosities are still high enough. Whether this is the case or
not, depends on the growth rate, which is determined by the properties of the postshock flow,
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which in turn depend in a complex way on the neutron star contraction, the core neutrino flux
and the progenitor structure. Furthermore, also the amplitude of the progenitor perturbations
from which instabilities start to grow can be important, as we will discuss in the next section.

4.4.3 The AAC as an alternative to convection

Detailed transport simulations (Buras et al. 2006a) suggest that the ratio of growth to advection
time scale, χ, is below the critical value (see Eq. 4.8) and therefore convection can grow only
in the non-linear way discussed in Sect. 4.1.1. This means that the progenitor perturbation
amplitude is required to exceed a certain threshold value, estimated to be δc/ exp(χ), where δc is
typically one to several percent (see Eq. 4.8). It is unclear, though, which perturbation amplitude
should be adopted, as stellar evolution calculations are still performed in one dimension and
multidimensional simulations of the pre-collapse phase are just becoming practicable. According
to Goldreich et al. (1996) and Bazan & Arnett (1998) shell nuclear burning leaves behind density
perturbations with a radius-dependent amplitude of up to several percent. However, in the
subsequent evolution the amplitudes are modified, e.g. during the collapse they are dampened
in the subsonic region and grow by at most one order of magnitude in the supersonic region
(Lai & Goldreich 2000). Thus the perturbation amplitude distribution after core bounce is still
not well-known and one cannot exclude the possibility that the perturbations do not reach the
critical amplitude, such that convection is suppressed.

Model W12F and W12F-c represent two cases in which χ . χ0 due to sufficiently fast contraction
of the inner boundary and in which the perturbation amplitudes remain below the threshold
value and become higher than the threshold value, respectively (Fig. 4.4). Therefore the initial
sources of anisotropy are the AAC in Model W12F and convection in Model W12F-c. Without
the presence of the AAC model W12F would not become anisotropic and would fail to explode
— a one-dimensional simulation with the same parameters as Model W12F does not develop
and explosion. This demonstrates that the AAC could allow for explosions in cases, in which
convection is not able to develop. In contrast to convection the AAC is neither hampered by low
values of χ nor does it stop to work when the initial perturbations are below a certain amplitude.

Could one distinguish, whether the initial source of anisotropy in an observed supernova explo-
sion is the AAC or convection? Considering Models W12F and W12F-c, this may be hard to
achieve. Although the early evolution of the two models is rather different and the explosion
time scales differ by 50 ms, they behave quite similar at late times. Although the morphologies
of the two models are different, they do not differ qualitatively. Such differences are also found if
only the initial seed perturbations are changed (see Sect. 3.2.5). Furthermore, important global
parameters of the models are very similar: One second after core bounce both models reach ex-
plosion energies of about 0.9 1051 erg, neutron star masses of 1.4 M� and neutron star velocities
in excess of 500 km/s. They explosion energies are not affected strongly by the different explo-
sion times, because the bulk of the explosion energy is built up after the onset of the explosion
in the wind phase, which is very similar for both models (see Appendix B).

The high neutron star velocity of Model W12F demonstrates that the cycle alone is sufficient to
excite low modes and that convection is not required. This is in accordance with the analysis
of Foglizzo et al. (2006b), who found that the lowest modes become convectively unstable only
for values of χ significantly higher than 3. Although the latter result is valid only in the linear
regime, it supports the suspicion that the excitation of low modes in all of our simulations —
also the ones in which convection is not suppressed — is mainly due to the AAC.



5
Three-dimensional effects

One-dimensional simulations are based on the physical assumption that anisotropies are negli-
gible. Two-dimensional axisymmetric simulations, on the other hand, assume that anisotropies
are confined to the latitudinal direction only, and that the flow does not vary in the longi-
tudinal direction. All of these simplifying assumptions are artificial. The assumption of ax-
isymmetry allows one to perform simulations, which are computationally much cheaper than
three-dimensional calculations, while allowing for some important effects that are missing in
one-dimensional simulations, as e.g. convection. Yet, 2D simulations can only be regarded as
an intermediate step that can and should be taken as long as three-dimensional simulations
are computationally still too expensive. Parameter studies like those discussed in the previous
chapter require dozens of models and are still infeasible with a three-dimensional treatment.
However, with the increase of computational capacity in the last years it has become possible
to perform single three-dimensional simulations with an approximate treatment of the neutrino
transport. First results of this kind have been reported by Fryer & Warren (2004) (but were not
dominated by low modes).

In this chapter we present the first three-dimensional models based on a high-resolution shock-
capturing finite-volume method (see Sect. 2.1). These simulations are still limited in several
aspects. On the one hand, the physics we include is the same as in our two-dimensional sim-
ulations: We use an approximate neutrino transport scheme which considers transport in the
radial direction only, and we do not simulate the inner core of the neutron star, whose influence
is taken into account by prescribing appropriate boundary conditions. On the other hand the
models are restricted due to numerical grid we use: The simulations had to be run on a rather
coarse grid and in most cases do not contain the full (4π) solid angle. The probably strongest
limitation, however, arises from the fact that only few models could be calculated. This means,
that we cannot be sure that all features found in these simulations are generic and that questions
requiring statistics (e.g., “What is the average kick velocity in 3D?”) cannot yet be conclusively
answered.

Despite of these limitations the simulations provide some insight in the differences between two-
and three-dimensional supernova simulations that will prove useful on the way to the long-term
goal of conducting a large number of three-dimensional simulations with high grid resolution
using a detailed neutrino transport description.
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5.1 Model parameters

5.1.1 Initial models and boundary conditions

Owing to the restricted computational resources, only three three-dimensional simulations could
be performed. We chose to simulate two three-dimensional versions of model B12 from Paper I,
because most of the two-dimensional variations of this model show clearly a single downflow in
advanced stages of the evolution. Using such a model seemed therefore promising to investigate
whether low-order modes establish also in three dimensions. Thus we performed two B12-like
simulations, although they have the disadvantage that they attain only a somewhat low explosion
energy (Eexp ≈ 0.3 · 1051 erg), compared to the typical supernova energy of 1051 erg.

The aim of the third simulation is to explore the influence of rotation on the explosion in three
dimensions. It is based on the rotating inital model that we have already used for the 2D
simulations in Chapter 3. The angular velocities in this initial model are somewhat higher than
those expected for typical supernova progenitors (see Sect. 3.4), so that the effects of rotation are
overestimated. The boundary contraction used for this model is slightly faster than the “rapid
contraction” defined in Sect. 2.4.1. This requires that we apply also in this case the procedure
to move the inner boundary to a different mass shell (see Sect. 2.4.3), each time the optical
depth becomes too high for our transport scheme. The (extrapolated) explosion energy after
one second for this model is about 1.5 · 1051 erg.

5.1.2 Numerical grid

During our 3D simulations we encountered numerical problems in the polar regions. Independent
of the resolution numerical noise started to affect these regions after some time. Several test
showed that the noise was not created at the boundary, but inside the grid. The problem is
probably related to the deformation of the grid zones near the poles and could not be fixed in
a simple way. However, we have found two workarounds for this issue: It is possible to omit
the “noisy” parts of the grid by setting θ0 ≈ 20◦ (see Sect. 2.3 for the definitions of grid related
quantities) and thereby excluding two cones around the poles from the computational domain.
The second possibility is to reduce the time step to 0.3 · τCFL instead of the usual value 0.7 · τCFL

(where τCFL is the timestep obtained from the Courant-Friedrichs-Levy condition). For both
methods the noise is dampened to a lower level than the perturbations we add to the initial
model. Excluding cones around the poles has the additional advantage that a strong timestep
restriction due to the very thin (in φ-direction) zones at the pole can be avoided.

For the non-rotating simulations we use the first method, i.e. we set θ0 to a value greater than
zero. The first B12-like simulation, Model B123-a, is rather limited in terms of the angular
resolution (3◦) and the covered solid angle (θ0 = 22.5◦, i.e. Ωtot ≈ 3.7π), but extends up to
t = 1 s. For the second simulation, Model B123-b, we increased the angular resolution to 2◦ and
extended the numerical grid to include almost the full sphere (θ0 = 5◦, i.e. Ωtot ≈ 3.99π). In
this simulation we followed the evolution only up to t = 0.5 s. Even for this shorter duration the
simulation required 85000 CPU hours – more than three months of continuous computation on
a 32 processor IBM p690. For the rotating simulation, Model R103F, we included the full solid
angle (θ0 = 0) and had therefore to reduce the CFL factor to 0.3. At an angular resolution of
4◦ we simulated about 400 ms post-bounce evolution.
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5.1.3 Additional 2D simulations

To allow for a comparison of two- and three-dimensional simulations (see Section 5.2.2) we
also calculated several sets of accompanying two-dimensional models. This was necessary to
disentangle the origins of the differences between the models. These differences are not only
caused by the different dimensionality, but can also depend on the angular resolution and the
size of the numerical grid. A further problem is the chaotic dependence of the morphology on the
initial perturbations. All of the interesting global quantities that we want to compare depend
more or less strongly on the morphology. For a clean comparison it is therefore advisable to use
averages of these quantities obtained from several sets of two-dimensional models, which differ
only in the random numbers used for the initial perturbations.

Adopting this strategy we performed six sets of B12-like 2D simulations, four sets including
the full solid angle (θ0 = 0◦, i.e. θtot = 180◦) and angular resolutions of ∆θ = 3◦, 2◦, 1◦ and
0.5◦, as well as two sets with a reduced azimuthal range, θ0 = 22.5◦ (θtot = 135◦, ∆θ = 3◦)
and θ0 = 5◦ (θtot = 170◦, ∆θ = 2◦). The numerical grids of the latter two sets are, except for
the longitudinal part, equal to the grid of the two B12-like three-dimensional models. For the
models with ∆θ = 0.5◦ the radial grid consists of 800 zones, whereas for all other models 400
radial zones have been used. Each set contains at least five models. The set with the ‘standard
resolution’ of 400 × 180 zones contains twelve models. As a naming convention for the model
sets we use “θtot[

◦] - ∆θ[◦]”.

We did not produce a comparably extensive set of 2D models for comparison with the rotating
3D Model R103F, but we performed at least six rotating 2D Models with the same boundary
conditions, three with the same radial and angular (in θ-direction) resolution as the 3D model
and three with ∆θ = 0.5◦ and twice the radial resolution as the 3D model.

5.2 Non-rotating models

The most important quantities of all non-rotating 2D and 3D models discussed in this section
are listed in Tab. 5.2. To allow for a reasonable comparison of models containing the full solid
angle (Ωtot = 4π) and models covering only a part of the latter, we normalise all quantities,
which are proportional to the grid size, e.g. Eexp → Eexp · 4π/Ω0. Before we compare two- and
three-dimensional morphology and anisotropy in detail, we will first discuss the influence of the
grid resolution and grid size on the evolution of global quantities.

5.2.1 Evolution of global quantities

Simulations should be run at a resolution for which they can be regarded to be numerically
converged, i.e. the results should not change if the resolution is increased further. In one spatial
dimension convergence can be tested easily by performing a few simulations with different reso-
lutions, which are not very time-consuming. Using the PPM method and spherical coordinates a
radial resolution (radial zone width divided by zone radius) increasing from dr/r = 0.5% at the
inner boundary to about dr/r = 1% for larger radii (which requires 400 radial zones) is sufficient
to achieve convergence for the present problem. The higher resolution at the inner boundary
is required for several reasons: The resolution decreases with time, as the inner boundary con-
tracts and the zone width stays constant. Furthermore, the neutrino transport routine fails if
the change of optical depth per zone becomes too large. And finally, within the first second after
bounce a steep density gradient forms at the neutron star surface. To resolve this gradient with
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Table 5.1: Several quantities characterising the non-rotating two- and three-dimensional models with
the same boundary conditions as model B12. The gain region mass Mgain is given for t = texp. Explosion
energy Eexp, neutron star mass Mns, radius Rns, velocity |vns| and acceleration ans as well as the anisotropy
parameter αgas are given for t = 1 s (and therefore not available for Model B123-b).

Model θ0 ∆θ tsim texp ∆M exp
gain Eexp Mns Rns |vns

z | ans
z αgas

[◦] [◦] [s] [s] [M�] [B] [M�] [km] [km/s] [km/s2]

B123-a 23 3 1.0 0.272 0.019 0.36 1.383 37.2 113.5 73.8 0.11
B123-b 5 2 0.55 0.273 0.019 – – – – – –

B12-z45 23 3 1.0 0.371 0.017 0.24 1.417 37.2 45.8 -59.6 0.07
B12-z45-1 23 3 1.0 0.336 0.013 0.24 1.417 37.2 15.8 36.0 0.02
B12-z45-2 23 3 1.0 0.364 0.013 0.25 1.411 37.2 26.8 53.9 0.04
B12-z45-3 23 3 1.0 0.342 0.015 0.29 1.405 37.2 73.3 -98.9 0.09
B12-z45-4 23 3 1.0 0.384 0.014 0.27 1.416 37.2 120.4 227.5 0.16
B12-z60 0 3 1.0 0.347 0.015 0.26 1.410 37.2 153.9 -311.1 0.19
B12-z60-1 0 3 1.0 0.250 0.018 0.28 1.389 37.2 15.0 268.7 0.02
B12-z60-2 0 3 1.0 0.306 0.017 0.26 1.425 37.2 270.0 -297.2 0.31
B12-z60-3 0 3 1.0 0.256 0.019 0.31 1.393 37.2 247.4 -568.6 0.25
B12-z60-4 0 3 1.0 0.312 0.015 0.26 1.408 37.2 210.3 366.5 0.25

B12-z85 5 2 1.0 0.324 0.014 0.26 1.411 37.2 218.2 298.5 0.25
B12-z85-0 5 2 1.0 0.302 0.017 0.32 1.400 37.2 37.2 170.7 0.04
B12-z85-1 5 2 1.0 0.276 0.018 0.26 1.406 37.2 117.2 166.3 0.15
B12-z85-2 5 2 1.0 0.297 0.014 0.30 1.397 37.2 76.7 -103.7 0.08
B12-z85-3 5 2 1.0 0.289 0.016 0.26 1.410 37.2 8.1 -43.9 0.01
B12-z85-4 5 2 1.0 0.285 0.017 0.31 1.383 36.9 48.9 54.0 0.05
B12-z90-1 0 2 1.0 0.275 0.018 0.24 1.407 37.2 105.1 -68.9 0.13
B12-z90-2 0 2 1.0 0.252 0.017 0.30 1.395 37.2 130.6 273.3 0.13
B12-z90-3 0 2 1.0 0.282 0.017 0.30 1.408 37.2 160.7 346.0 0.17
B12-z90-4 0 2 1.0 0.241 0.018 0.31 1.397 37.2 260.0 391.9 0.26
B12-z90-b0g 0 2 1.0 0.248 0.020 0.36 1.398 37.2 245.1 -229.3 0.22
B12-z90-b1g 0 2 1.0 0.258 0.019 0.28 1.385 36.9 46.7 13.7 0.05
B12-z90-b2g 0 2 1.0 0.242 0.018 0.32 1.378 36.7 130.0 -199.3 0.12
B12-z90-0 0 2 1.0 0.266 0.019 0.32 1.398 37.2 301.0 258.9 0.29

B12 0 1 1.0 0.220 0.020 0.37 1.399 37.3 389.5 -372.4 0.32
B12-1 0 1 1.0 0.228 0.021 0.33 1.377 37.7 72.8 47.9 0.07
B12-2 0 1 1.0 0.212 0.020 0.39 1.391 38.1 85.8 345.7 0.07
B12-3 0 1 1.0 0.207 0.021 0.38 1.369 37.2 242.0 464.3 0.18
B12-4 0 1 1.0 0.216 0.019 0.35 1.385 37.2 115.1 -154.2 0.10
B12-5 0 1 1.0 0.211 0.022 0.33 1.387 37.2 206.9 -483.1 0.19
B12-m1 0 1 1.0 0.226 0.020 0.36 1.384 37.2 56.8 -208.2 0.06
B12-m2 0 1 1.0 0.222 0.019 0.31 1.385 37.2 100.0 -63.5 0.10
B12-m3 0 1 1.0 0.210 0.022 0.38 1.388 37.2 272.6 91.9 0.23
B12-m4 0 1 1.0 0.209 0.021 0.35 1.378 37.1 104.3 -197.2 0.09
B12-m5 0 1 1.0 0.219 0.020 0.35 1.389 37.2 365.6 219.1 0.32
B12-m6 0 1 1.0 0.229 0.020 0.36 1.395 37.2 334.1 -462.9 0.30

B12-z360 0 0.5 1.0 0.200 0.020 0.31 1.380 37.9 169.7 357.7 0.16
B12-z360-1 0 0.5 1.0 0.219 0.022 0.34 1.383 37.9 149.3 -84.4 0.13
B12-z360-2 0 0.5 1.0 0.218 0.020 0.34 1.403 38.2 256.5 341.6 0.23
B12-z360-3 0 0.5 1.0 0.219 0.019 0.40 1.395 38.1 300.6 -147.9 0.24
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sufficient accuracy, one has to avoid that the logarithm of the density changes by more than
1/10 per zone (R. Buras, personal communication).

In fact, due to the chaotic dependence on the initial perturbations numerical convergence in
its strict sense cannot be achieved for the present problem in two or three spatial dimensions.
Even the slightest changes in the initial state, which are unavoidable when the resolution is
increased, will yield different final shock morphologies. In this case the only possible check for
convergence is a comparison of quantities like the explosion energy and the mean shock radius,
which depend only weakly on the morphology of the explosion. To minimise the influence of
the random morphology one can consider averages of these quantities averaged over a set of
models that use the same numerical grid and different initial perturbations. Although the 33
two-dimensional models we performed for this purpose cannot provide excellent statistics, they
demonstrate some important dependencies on resolution and angular grid size quite clearly.

From Figs. 5.1 and 5.2 two fundamental trends are obvious: Both a lower resolution and a
reduced angular grid size lead to a delayed onset of the explosion, a slower shock expansion
and lower explosion energies. The averaged quantities of the models sets with ∆θ = 1◦ and
∆θ = 0.5◦ show a very similar evolution, the differences are much smaller than the variation
within the sets. For coarser resolutions and narrower angular grids the differences in the averaged
quantities become similar to the scatter within the model sets. Going from ∆θ = 2◦ to ∆θ = 3◦

at θtot = 180◦ has a similar effect as changing from θtot = 180◦ to θtot = 170◦ at ∆θ = 2◦.
However, there are no significant differences between the shock radii in the first 50 ms, only the
mean convective velocity

vconv =

√

Egain
kin,lat

∆Mgain
(5.1)

(where Egain
kin,lat and ∆Mgain are the lateral kinetic energy and the mass contained in the gain

region, respectively) deviates slightly in this phase. For t > 50 ms, vconv increases much faster
in the better resolved models. Consequently the shock radius and the gain region mass become
larger for these models and the efficiency of neutrino energy deposition is higher. Thus the
better resolved models explode earlier and the gain region mass at the onset of the explosion,
∆Mgain(texp), is larger. The variation within a model set of this quantity, which is about
0.01 M�, is consistent with the scatter in the explosion energy at t = 1 s of about 0.1 · 1051 erg.
Considering all models, the scatter is about 0.2 · 1051 erg, i.e. the most energetic models have
twice the explosion energy of the least energetic models. The neutron star mass is also affected
by the varying explosion time scale. The explosion stops the efficient accretion of matter, the
subsequent accretion of matter through one or a few remaining downflows is much slower. Thus
the neutron star masses of the better resolved, early exploding models are smaller.

How do grid resolution and grid size lead to this delayed onset of the explosion? Initially the
solution is nearly spherical symmetric, so angular resolution and grid size do not play a role
and the models evolve nearly identically. The onset of small-scale (high-mode) convection does
not change this significantly. The convective growth rate increases with decreasing wave length,
and therefore the convection grows somewhat faster in the better resolved models. However, in
the presence of high-mode convection the situation is still nearly spherical symmetric and the
convection is not yet important for the total energetics. This changes when the convective growth
becomes non-linear and quickly-growing convective bubbles start to influence the shock shape.
At t = 75 ms most of the models have developed 3 to 5 large bubbles separated by thin downflows.
In the models including the full solid angle one or two of the bubbles near the symmetry axis
grow significantly faster than the other bubbles and start to deform the shock earlier. The faster
non-linear growth of bubbles near the axis is a consequence of the axisymmetry: At the axis
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Figure 5.1: Evolution of the average shock radius, the gain region mass, the explosion energy, the
convective velocity and the neutron star mass (from top to bottom row) for the models listed in table
5.2. The right column shows the evolution of the quantities for each individual model, whereas the in
left column the average values for sets of models with the same resolution and grid size are displayed.
The black and gray lines correspond to the three-dimensional models, the coloured lines correspond to
the two-dimensional model sets (see upper left panel – the naming convention for the model sets is
‘θtot[

◦] -∆θ[◦]’).
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Figure 5.2: Correlations between several quantities and the explosion time scale texp. The gain mass
at the onset of the explosion and the explosion energy at t = 1 s decline with an increasing explosion
time scale, which depends clearly on the resolution and the grid size. The neutron star mass at t = 1 s
increases with texp, because for t > texp the accretion is strongly suppressed. The average neutron star
velocity seems to become lower with declining resolution (i.e. increasing texp). However, there are to few
low-resolution models to quantify the latter statement.
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the two-dimensional bubbles have the same geometry as three-dimensional bubbles, whereas
equatorial bubbles are ring-like. The different drag coefficients associated with these geometries
lead to different non-linear growth rates (see Kane et al. 2000). If the polar regions are omitted
(θ0 > 0), the faster-growing polar bubbles are suppressed and the excitation of convective modes
as well as the deformation of the shock are delayed. This explains the difference between the
model sets 180-2 / 170-2 and 180-3 / 135-3. Already θ0 = 5◦ seems enough to suppress the
faster polar growth, a larger θ0 should not make a difference in this respect.

Like reducing the grid size, also reducing the resolution results in a delayed onset of the explosion.
The very similar average evolution curves of total quantities for resolutions of 1◦ and 0.5◦ suggest
that these models are nearly converged. What is causing the differences for coarser resolutions?
As already mentioned, for the higher resolutions smaller wavelengths are resolved, for which the
convective growth rates are higher. This explains the slightly faster increase of vconv for the
high-resolution models in the first 60 ms. However, the strongest differences arise only after this
phase, when convection has become non-linear and low convective modes, i.e. large bubbles,
dominate. The latter should be resolved quite accurately even on rather coarse grids. Yet there
is feature that requires high resolution also in this phase: Due to the large pressure gradient
in the vicinity of the neutron star the lowest parts of the downflows are compressed into very
thin accretion funnels with a thickness of only a few degree. The matter which is accreted onto
the neutron star and generates accretion luminosity – an important contribution to the total
luminosity – must go through these funnels. It is therefore likely that these thin downflows must
be resolved adequately to reach numerical convergence. Angular resolutions of 2◦ and 3◦ seem
to be below the required minimum resolution.

For three-dimensional simulations it is not possible to find the resolution needed for numerical
convergence by performing resolution studies. With the available CPU time only two simulations
could be carried out, with angular resolutions that are not sufficient for convergence in two
dimensions. In the first 400 ms the global quantities (Fig. 5.1) for model B123-b lie between
those of the model sets 180-2 and 170-2. This is what one could expect, given that model B123-
b also has an angular resolution of 2◦ and covers the same solid angle as the models of the 170-2
set. However, one would not expect that model B123-a with its lower resolution and covering a
smaller solid angle, shows almost exactly the same behaviour and is not delayed, compared to
model B123-b. This is clearly different from the two-dimensional case, where the delay between
model sets 180-1 and 180-2 or 180-2 and 180-3 is obvious.

It is quite surprising that global quantities of the two models like the shock radius, the gain
region mass and the explosion energy show almost exactly the same evolution. The differences
between the global quantities of these two single models are as small as the differences between
the averaged quantities for the models sets 180-0.5 and 180-1, which we regarded as nearly
converged. If this coincidence is not accidental, it suggests that numerical convergence could be
reached in three dimensions at a lower angular resolution than in two dimensions. The following
discussion of the morphological differences between two- and three-dimensional models will yield
a possible explanation.

5.2.2 Convective overturn

Considering the evolution of global quantities the three-dimensional are quite similar to the
two-dimensional models. For all the global quantities shown in figure 5.1 one can find a two-
dimensional model showing roughly the same behaviour as Models B123-a or B123-b. However,
the flow developing in three dimensions shows some significant differences, compared to the
two-dimensional case, which has been discussed in detail in Sect. 3.2.1.
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Convection sets in at the same time in three as in two dimensions, and during the first 70 ms
also the mean convective velocity evolves very similarly (Fig. 5.1). In the subsequent phase vconv

increases roughly as in the corresponding 2D model sets 170-2 and 135-3. The maximum of vconv

is reached at about 300 ms, shortly after the onset of the explosion. In the three-dimensional
models it amounts to vconv ≈ 9 · 108 cm/s, whereas in two dimensions we find maximum average
values of vconv ≈ 11 · 108 cm/s for the highest angular resolutions. These differences seem do not
appear significant, considering that the variations of vconv with time and within a model set are
rather large.

However, obvious differences exists in the number of the buoyant bubbles: In three dimensions
the convective instability is not restricted to the latitudinal direction any more, since a second
angular direction is available. If the growth of convection from small to large scales proceeds
similar in two and three dimensions, and we find N convective bubbles in a two-dimensional
model at a certain time, we would expect to find of the order of N 2 bubbles at this time in a
three-dimensional version of this model. Indeed we find that the ratio of N : N 2 for the number
of bubbles in two- and three-dimensional models is roughly consistent with our simulations.
E.g. at t = 75 ms about 15 . . . 20 bubbles with angular diameters of about 20 . . . 30◦ are present
in models B123-a and B123-b. At the same time we find typically 3–5 bubbles in the two-
dimensional models. For later phases it is hard to verify this relation, because the convective
structures become very complex and individual bubbles cannot be clearly distinguished.

A further difference in three dimensions concerns the morphology of the downflows between these
bubbles. In two dimensions the downflows must extend over the full longitudinal range, due to
the assumed axisymmetry, i.e. they are in general two-dimensional, sheet-like structures. In
particular downflows near the equator can be considered as accretion disks and only downflows
at the poles are funnel-like (or one-dimensional – in the sense we used two-dimensional for sheet).
In three dimensions the sheet-like character of the downflows is retained – at least initially and
for a certain radial range. Without the restriction of axisymmetry, a network of sheet-like
downflows forms between the rising bubbles. This network can be seen nicely in Figs. 5.3 to
5.6 (in particular for t = 60 ms and t = 80 ms), which display the angular distributions of the
maximum and minimum post-shock velocity. In these figures one can also observe that in the
regions where several of the thin sheets intersect, somewhat thicker accretion funnels form, in
which the flow becomes faster. As the velocity in the downflows is approximately the free-fall
velocity,

√

2GM/r, the larger (negative) values indicate that these accretion funnels are able
to reach down to lower radii than the sheet-like downflows, which initially occupy the same
radial range as the rising bubbles. This means there is a transition from funnel-like downflow-
structures at low radii to sheet-like structures further outward. During the merging of bubbles
the accretion funnels become thicker and reach the neutron star surface, whereas the sheet-like
downflow regions remain at larger radii (above 100 km). While the thickness of these sheet-like
downflows is similar in two and three dimensions, there are significant differences at smaller
radii. At t = 75 ms the angular diameter of the lower ends of the downflows in models B123-a
and B123-b is about 10◦–20◦, similar to the polar downflows in two-dimensional simulations. In
contrast to this, the downflows not located directly at the poles in two-dimensional simulations
are only a few degrees thick near their lower ends.

The thinness of the downflows at low radii in two-dimensional simulations is a result of the
axisymmetry. Due to the latter the downflows are forced to extend over the full longitudinal
range, whereas in the latitudinal direction there is no such restriction. For lower radii this differ-
ence becomes more important: The matter streaming towards the neutron star is compressed,
because the pressure in the matter surrounding the downflow increases strongly. In particular
for r < 200 km the pressure gradient becomes very steep (when the composition of the sur-
rounding medium changes from alpha particles to free nucleons) and the solid angle occupied
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Figure 5.3: Maximum radial velocity vmax(θ, φ) := max{vr(r, θ, φ) | r ∈ [Rib, Rob]} at several times
for model B123-a. At t = 40ms numerous small, buoyant bubbles have formed and quickly merge to
larger structures. At t = 75ms there are about 15 . . . 20 rising bubbles left with angular diameters of
about 20 . . . 30◦. In the subsequent evolution structures merge much slower and become more complex,
so that individual bubbles cannot be distinguished any more. After t ≈ 400ms a large area with high
velocities develops around θ = 0◦, φ = 0◦, whereas in the opposite hemisphere the expansion of the ejecta
is hampered by downflows. At t = 1 s the situation is dominated by a single downflow wrapped around
the northern cone (θ = 22.5◦).
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Figure 5.4: Minimum radial velocity vmin(θ, φ) := min{vr(r, θ, φ) | r ∈ [Rib, Rs(θ, φ)]} in the post-shock
region at several times for model B123-a. As the velocity in the downflow regions is of order of the free-fall
velocity −

√

2GM/r, the areas with the highest absolute value of the velocity are found at the lowest radii.
The bright-coloured downflow regions between the rising bubbles are initially two-dimensional, wall-like
structures. At the intersections of these walls one-dimensional accretion funnels develop, which obtain
larger velocities and reach down deeper than the walls. The merging of convective structures leaves only
a few of these accretion funnels, and a large downflow-free area forms. For t > 0.5 s one large downflow
at low latitudes dominates this model.
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Figure 5.5: Like Fig. 5.3, but for model B123-b. In the first 300ms there are no obvious differences
compared to model B123-a, except that due to the higher resolution slightly more small-scale structures
are visible in model B123-b. However, in the subsequent evolution the latter is not developing a large
downflow-free area with high velocities as it is present in model B123-a.
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Figure 5.6: Like Fig. 5.4, but for model B123-b. At t = 0.5 s there is one strong downflow at φ ≈ −40◦,
θ ≈ 90◦ and two much weaker ones at φ ≈ −90◦, θ ≈ 110◦ and φ ≈ 160◦, θ ≈ 60◦. These three downflows
occupy only a small solid angle at low radii (r < 100 km), but are connected to a large structure at higher
radii, which extends over a significant fraction of the full numerical grid.



100 CHAPTER 5. THREE-DIMENSIONAL EFFECTS

by the downflows is significantly reduced. This reduction can only occur in latitudinal direction
and results in extremely thin downflows. If the downflows occupy the same solid angle in two
and three dimensions (which is approximatively the case, see below), then the downflows in
three-dimensional simulations will in general be thinner in longitudinal direction – they are not
forced to extend over the full 2π – and therefore thicker in azimuthal direction.

To quantify this difference, one has also to consider that one downflow in a two-dimensional
simulation will correspond to N downflows in a three-dimensional simulation, analogously to
the number ratio N : N 2 of the buoyant bubbles. Assuming we find in a two-dimensional
simulation at a certain radius a downflow with mass flux Ṁ and solid angle ∆Ω, then we should
find in the corresponding three-dimensional calculation N downflows with mass fluxes Ṁ/N
and solid angles ∆Ω/N . Near the equator the solid angles can be written as ∆Ω ≈ ∆θ2d · π
and ∆Ω/N ≈ ∆θ3d · ∆φ3d, where ∆θ is the azimuthal and ∆φ the longitudinal thickness of the
downflow. For the funnel-like downflows in three dimensions ∆φ3d ≈ ∆θ3d, which yields

∆θ3d =
√

2π ∆θ2D/N (5.2)

For t = 75 ms we find N ≈ 5 and ∆θ2d ≈ 3◦, and equation 5.2 yields ∆θ3d ≈ 14◦. The thickness
of the funnel-like downflows in the three-dimensional models (see figures 5.4 and 5.6) is in the
same range as this prediction.

The thicker downflows in three-dimensional simulations may be the reason for the almost iden-
tical behaviour of the global quantities for models B123-a and B123-b (Fig. 5.1): In contrast to
the thin downflows in two-dimensional models, the thicker downflows in three dimensions could
be resolved accurately enough already with an angular resolution of 3◦, so that an increase of
the resolution to 2◦ will have little effect. However, to demonstrate that the three-dimensional
models are really nearly numerically converged certainly more than two models are required, and
it is not clear if this resolution is sufficient for later stages of the evolution. Even if the three-
dimensional models are nearly converged, another interesting question remains to be answered:
Why are these models delayed, compared to the two-dimensional models which we also regard
as nearly converged? A possible explanation is the different convective growth rate for polar
and non-polar bubbles in the two-dimensional simulations. It has already been discussed that
two-dimensional models with fast-growing polar bubbles explode earlier than two-dimensional
models, which do not contain the poles. This is, because the variation of the growth rate with
the azimuthal angle leads to a faster excitation of low modes and an earlier shock deformation.
While in three dimensions the non-linear growth rate should be comparable to the polar growth
rate in two dimensions, the dependence on the azimuthal angle is missing – the growth rate near
the poles should be the same as near the equator. Also the additional excitation of low modes is
therefore missing in the three-dimensional models. However, like for the two-dimensional simu-
lations this does not mean that the models cannot become highly anisotropic – there is plenty
of time before the onset of the explosion to develop global modes.

5.2.3 Neutrino-driven outflows

Up to the onset of the explosion, the energetics of the two- and three-dimensional simulations are
very similar. The lateral kinetic energy in the gain region Egain

kin,lat (and the associated convective
velocity vconv, see Figure 5.1) is slightly lower for the three-dimensional models, compared to the
model 2D sets with 2◦ and 3◦ angular resolution. However, much more important for the total
energetics is the potential recombination energy of the matter in the gain region. This energy,
which is about 5 MeV per nucleon (see Section B) is converted to internal and kinetic energy
after explosion has set in and yields about half of the total explosion energy after one second
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Figure 5.7: Left panel: Time evolution of the wind power, measured at 200 km. For t ∈ [0.4 s, 0.6 s]
the power is about 0.25 · 1051 erg/s higher for the three-dimensional than for the two-dimensional models
with high resolution. For t > 0.6 s this difference vanishes. Right panel: Evolution of the total energy
(including recombination energy) per nucleon in the wind at 200 km. On average the energy is only
slightly higher for the three-dimensional models in [0.4 s, 0.6 s]. This can not explain the difference in the
wind powers, which must therefore be caused mainly by different mass fluxes in the wind.

(for the “standard” boundary contraction). The mass of the gain layer in the three-dimensional
models is comparable to those of the 2D model sets 180-2 and 170-2 (Fig. 5.1). The contribution
of the recombination energy to the total explosion energy should therefore be almost the same
in two and three dimensions.

The other main contributor to the explosion energy is the neutrino driven wind. Between
t ≈ 400 ms and t ≈ 600 ms the increase of explosion energy due to the wind is significantly
larger in the three-dimensional models. Compared to the 2D models of set 170-2, which have
a similar explosion time scale, the three-dimensional models gain about 0.05 · 1051 erg more
explosion energy in this period. This is due to the wind power, which is about 0.3 · 1051 erg/s
(i.e. about 30%) higher for these models for 0.4 s < t < 0.6 s (Fig. 5.7, left panel). As the
total energy per nucleon in the wind is similar for the two- and the three-dimensional models
(Fig. 5.7, right panel), a higher mass flux in the wind is required to explain the higher wind
power of the three-dimensional models. Indeed the wind mass flux is about 0.02 M�/s larger in
the latter (Fig. 5.8, left panel). As furthermore the mass flux in the downflow is slightly weaker
(Fig. 5.8, right panel) the accretion of mass onto the neutron star must proceed slower in three
dimensions to explain the higher mass flux in the wind. In fact the neutron star mass in the
three-dimensional models is increasing slower than in the two-dimensional models for t > 0.4 s.
For t > 0.7 s the neutron star mass even declines in the three-dimensional models, whereas in
two dimensions on average the neutron stars still gain mass (Fig. 5.1).

What is strengthening the wind mass flux in three dimensions, or what is hampering the wind
in two dimensions? The solid angle occupied by the wind is similar in two and three dimensions,
i.e. in three dimensions there is not more area available from which a wind could emanate
(Fig. 5.9, left panel). However, in two dimensions there is an obstacle for the wind, which is
much weaker in three dimensions: The turbulent layer above the neutron star surface that is
formed by decelerated and deflected downflow matter. In two dimensions large vortices form at
the “impact sites” of downflows and spread around the neutron star. At t = 0.5 s a significant
fraction of the region between 30 km and 90 km is filled with these vortices, in which velocities
of more than 109 cm/s are reached. The additional outward and inward going mass flux caused
by the vortices is comparable to the mass fluxes in the downflow and in the wind (Fig. 5.9, right
panel). In three dimensions the turbulent flow above the neutron star surface is much weaker
and the large vortices are absent (Fig. 5.11).
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Figure 5.8: Time evolution of the positive (outward, left panel) and negative (inward, right panel) mass
flux at 200 km. In t ∈ [0.4 s, 0.6 s] the wind mass flux is about 0.02M�/s larger for the three-dimensional
models than for the two-dimensional models with high resolution. In three dimensions the mass flux in
the downflows is weaker by 0.01 . . . 0.02M�/s for late times.

Figure 5.9: Left panel: Radial profile of the solid angle occupied by matter moving with vr > 108 cm/s,
time averaged over [0.4 s, 0.6 s]. Right panel: Radial profile of the positive (outward) and negative (inward)
mass flux, time averaged over [0.4 s, 0.6 s]. The enhanced mass fluxes in the two-dimensional models
for r < 100 km are caused by vortices above the neutron star surface, which are not present in three
dimensions. For larger radii the inward mass flux is somewhat weaker and the outward mass flux somewhat
stronger in the three-dimensional models.

Figure 5.10: Radial profiles of the neutrino source term (per nucleon, left panel) and the neutrino
luminosity (right panel), averaged over [0.4 s, 0.6 s]. The cooling is stronger for the two-dimensional
models, which results in larger luminosities in the heating region, which starts at r ≈ 50 km.
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Figure 5.11: Velocity distributions at t = 500ms for the two-dimensional models B12-1 and B12-5
(upper row) and two φ = const-slices from the three-dimensional model B123-b. The matter from the
two downflows in model B12-1 forms a layer of vortices extending over the whole neutron star surface. In
other models like B12-5 there are no clearly discernible vortices, but there is also a turbulent layer with
large velocities covering a large fraction of the neutron star surface. In the three-dimensional simulations
we find fast, turbulent flows only around the ‘impact sites’ of downflows (lower left panel), whereas in
most regions above the neutron star surface the velocities remain low (lower right panel).

In two dimensions the vortices interfere with the formation of the wind: The gain radius, where
neutrino heating becomes stronger than neutrino cooling, is located at 40–60 km – in the same
region as the vortices. Thus a part of the matter that would in a spherical situation cross the gain
radius and would become part of a neutrino-driven wind, becomes trapped in the vortices. In
the outward moving parts of the vortices additional mass is transported into the region of strong
neutrino heating, a process which by itself would be beneficial. However, after having gained
internal energy in the heating region, this mass is brought back into the cooling region by the
downward moving parts of the vortices and looses the internal energy by neutrino emission again.
Thus the turbulent layer above the neutron star surface hampers the transfer of matter into the
wind, thereby reducing the wind power. On average matter stays longer in the cooling region,
which results in larger cooling rates per nucleon and therefore higher luminosities (Fig. 5.10) in
the two-dimensional models, which also lead to somewhat higher heating rates outside of the
gain radius. However, the wind power suffers more from the reduced mass flux than it gains
from the slightly higher heating rate in the gain region. The differences in the wind power vanish
after t ≈ 0.6 s, when most of the downflows in the two-dimensional simulations are blown away,
so that also the turbulent layers disappear.

For the models considered in this chapter the weakening influence of the turbulent layer on the
wind power is not very important for the total energetics – it is a 10–15% effect. This could be
different for a faster contraction of the inner boundary, where the neutrino-driven wind accounts
for most of the explosion energy and downflows and wind coexist for a longer time. In this case
the difference in the explosion energies of two- and three-dimensional models may become larger.
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5.2.4 Global anisotropy and neutron star kicks

As in two dimensions, the convective overturn in the three-dimensional models is dominated by
increasingly large structures and the number of bubbles and downflows decreases (Fig. 5.12).
This leads to a global anisotropy of the mass and the momentum distributions, a strongly
non-spherical shock and an acceleration of the neutron star. The degree of anisotropy is varying
strongly from model to model for the two-dimensional simulations. This suggests that we cannot
make definite statements about the anisotropy in three dimensions based on only two models.
However, compared to the two-dimensional models there are some generic differences that we
will discuss in the following.

Downflow structure

In most of the two-dimensional models only one downflow is left about 100 ms after the onset
of the explosion. This is also the case in the three-dimensional simulations: Both models have
developed a single, massive downflow at this time, which evolves only slowly afterwards. In
model B123-a this dominating downflow is located at θ ≈ 50◦, φ ≈ −120◦ for t = 500 ms and
moves slowly towards the northern grid boundary (θ = 22.5◦). After t ≈ 800 ms the downflow
starts to wrap around the grid boundary. A second, weaker downflow near the southern grid
boundary is still reaching down to the neutron star at t = 400 ms, but is blown away slowly in the
subsequent evolution (Fig. 5.4). In model B123-b the dominating downflow forms at φ ≈ −30◦

near the equator and stays near this location until we stop the simulation at t = 550 ms (Fig. 5.6).
Additional, weaker downflows are also present in this model (e.g. at t = 500 ms near θ = 120◦,
φ = −90◦), which merge with the main downflow soon. Although both models show these
transient additional downflows there is one downflow that clearly dominates for r < 107 km.

However, for larger radii the regions with negative radial velocity become more and more ex-
tended and include areas far away (in θ, φ) from the impact site of the dominating downflow.
This upper part of the downflow originates from the network of sheet-like downflow regions that
forms soon after the onset of convection. Due to the merging of convective structures only a few
of these sheets are left after the onset of the explosion. They occupy a large solid angle and show
a complex substructure. The neutrino driven wind emanating from the vicinity of the neutron
star is stopped at the lower boundary of these dense downflow sheets in a reverse shock. In the
low-density regions outside of the downflows the wind is able to expand and accelerate further,
reaching velocities of several 109cm/s. These high-velocity areas correspond to the bright regions
in Figures 5.3 and 5.5, whereas the darker areas coincide with the downflow regions. In Model
B123-a at t = 500 ms the downflows near the northern and the southern grid boundaries are
connected with a broad region, in which the velocities stay rather low. However, around θ = 90◦,
φ = 0◦ a large downflow-free area with lower density develops, in which velocities of more than
2 ·109cm/s are reached (Fig. 5.3). This area is present until the end of the simulation. In Model
B123-b the downflow regions at larger radii are distributed more evenly than for Model B123-a
and there are no large downflow-free areas. At t = 500 ms there is a high-velocity region around
θ = 40◦, φ = 40◦, but this area occupies only a small fraction of the full solid angle.

Although the details of the downflow structure of the three-dimensional models are different,
they share a common property that is not present in the two-dimensional models: The upper part
of the downflow is distributed over a large area, even though the lower end is strongly localised.
This is illustrated in Figures 5.14 and 5.13, which show the radial velocity at several radii. At
r > 200 km areas with negative velocity can be found for almost every given longitude or every
given latitude. In contrast to this, the angular position of the upper part of the downflow in two-
dimensional simulations is more strongly correlated with the angular position of the lower end of
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Figure 5.12: Snapshots of model B123-b showing the evolution from small-scale convection to global
anisotropy. Displayed is the situation after 50, 75, 100, 200, 300 and 500ms (from top left to bottom
right panel). The outermost, bluish surface is the supernova shock, the solid bright surface is the interface
between the rising high-entropy matter and the lower-entropy post-shock matter, and the dark gray shape
is the neutron star surface. A octant is cut out to show the entropy distribution of the neutrino-heated
matter – red means high, blue means low entropy.
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Figure 5.13: Like Figure 5.14, but for Model B123-a at t = 550ms. Most of the infalling matter is
located at φ ≈ 180◦ and θ < 90◦. However, there is also infalling matter near θ ≈ 150◦, which together
results only in a weak acceleration of the neutron star in z-direction. On the other hand, the hemisphere
−90◦ < φ < 90◦ contains for all radii much less of the dense, infalling matter than the other hemisphere.
This leads to a considerable acceleration of the neutron star into the negative x-direction (φ = 180◦).

the downflow, e.g. cases where the upper part of the downflow extends far into the hemisphere
not containing the lower end of the downflow are rare. From the two three-dimensional models
one can not assess, if this is really a generic feature. However, there is an argument in favour of
a more extended distribution of downflow regions: In three dimensions the downflow is no forced
to extend from φ = 0◦ to φ = 360◦ any more. As the solid angle occupied by the downflow
regions is similar in two and three dimensions, these regions will tend to be distributed over a
broader area in azimuthal direction and over a narrower area in longitudinal direction.

Shock shape

Together with the mass and the momentum distribution also the shock surface develops a global
anisotropy. The shape of the supernova shock is greatly affected by the neutrino-driven wind
and the regions, which are occupied by downflows. Above these regions, and in particular
above the main downflow, the shock expansion is slower, whereas in the downflow-free areas
the neutrino-driven wind is able to push the shock further out. In two dimension this results in
shock morphologies, which are in most cases rather simple: Most of the models develop a single
downflow. If this downflow is located near one of the poles, there is a single bubble centred
around the opposite pole. This results in a still nearly spherical shock surface, which however
is shifted substantially along the symmetry axis. If the downflow is near the equator, there are
two bubbles around the poles and the shock surface becomes prolate, with a shock minimum
above the downflow. In three dimensions we find more complex shock morphologies: Both of our
three-dimensional simulations show a clear global minimum of the shock radius, which is located
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Figure 5.14: Radial velocity distribution of Model B123-b at t = 500ms on shells with radius 70, 100,
200 and 500 km. For r = 70 km most of the matter with negative velocity is concentrated near φ = −30◦,
θ = 90◦. This looks similar to the single downflow situation we see in many two-dimensional models.
However, for larger radii the regions with negative velocity become more and more extended and include
areas far away from φ = −30◦, θ = 90◦. For r ≥ 200 km one can find downflow areas for almost every
given latitude or longitude. These areas are distributed over the sphere in a way that results only in a
small total gravitational acceleration of the neutron star caused by the dense, infalling matter.

above the main downflow, and a global maximum located above the largest downflow-free area.
However, there is no obvious relation between the positions these extrema (e.g. they are not
located on opposite sides of the explosion). Furthermore, there are several other local maxima
of the shock radius, which makes the shock shape quite complex (see Figures 5.15 and 5.16).
The shock is deformed quite strongly already at the onset of the explosion. In the subsequent
evolution the anisotropy increases slowly and the ratio of maximum to minimum shock radius
reaches values of 1.5 (Models B123-b at t = 550 ms) to 1.8 (Models B123-a at t = 1 s). It should
be noted that Kifonidis et al. (2006) showed for two-dimensional models that shock deformations
of this magnitude are sufficient to trigger the growth of a strong Richtmyer-Meshkov instability
at the He/H interface that results in a large-scale mixing of the ejecta, a feature that is required
to explain observations of SN1987A.

Neutron star velocity

Due to the momentum transfer by downflows, the varying pressure around the neutron star
and the gravitational pull of the anisotropic mass distribution, the neutron star is accelerated.
This process has been discussed for the two-dimensional models in Section 3.2.2. It proceeds
essentially in the same way also in three dimensions models. Before we will compare the resulting
neutron star velocities, we have to discuss some complications for the determination of neutron
star velocities in the three-dimensional case.
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Figure 5.15: Angular distribution of the shock radius in units of the average shock radius Rs(θ, φ)/〈Rs〉
of Model B123-a for several times. Initially the deviations of the shock surface from a sphere are only
small, and the position and number of local extrema changes rapidly. After the onset of the explosion
the anisotropy becomes stronger and the shape of the shock evolves only slowly. Over the dominating
downflow near at low θ and φ ≈ −160◦ the shock radius is 30% smaller than the average value, whereas
over the low-density region around θ ≈ 60◦ and φ ≈ 30◦ the shock is pushed out 30% further. Several
other local shock maxima are still present at the end of the simulation.
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Figure 5.16: Like Fig. 5.15, but for Model B123-b. In this case the shock radius minimum (20% below
the average value) develops above the main downflow near θ ≈ 90◦ and φ ≈ −90◦ and the shock is pushed
out by almost 30% at low latitudes around φ ≈ 60◦.

As in the two-dimensional simulations, we calculate the neutron star velocity by making use of
total momentum conservation, i.e. the fact that the momentum of the neutron star should be
equal to the (negative) momentum of the surrounding matter. While this works very well in
two dimensions, it gives only approximate values for the setup we use in the three-dimensional
simulations. As discussed in Section 2.3, the integrated momentum on the grid is not strictly
conserved in this case, because momentum is created when matter is diverted by the reflecting
boundaries at θ = θmin and θ = θmax. However, we expect the momentum created at these
boundaries to be small, compared to the integrated momentum on the grid: We replace only
a small part of the total volume by the conical boundaries, so the explosion should be hardly
restricted by these boundaries. And furthermore, after the onset of the explosion (when the
major part of the momentum is built up) the flow is mostly radial, i.e. parallel to the boundaries,
and will therefore barely generate momentum.

Apart from this boundary problem, our use of a one-dimensional gravitational potential for a
three-dimensional calculation is also a possible source of artificially created momentum. In this
approximation the gravitational mass distribution is assumed to be spherical symmetric, and
hence it differs from the inertial mass distribution. This can lead to the same problems as
discussed in Section 3.2.2. Yet, the largest component of the gravitational potential is caused
by the point mass and the nearly spherical part of the neutron star between Rib and Rns.
Therefore the gravitational potential should not deviate much from spherical symmetry. In the
most anisotropic two-dimensional simulation from Table 5.2, Model B12, the angular variation
of the gravitational potential is not more than about one percent. Thus it appears unlikely that
the three-dimensional models are strongly affected by this problem.
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Figure 5.17: Neutron star acceleration (upper row) and velocity evolution (lower row) for the three-
dimensional models. Prior to the explosion (indicated by the vertical dashed line) the absolute value
and the direction of the acceleration vary strongly and do not lead to a significant neutron star velocity
in both models. In the subsequent evolution the anisotropic, one-sided downflow distribution in model
B123-a leads to considerable acceleration in negative x-direction. While B123-b becomes also anisotropic
and is dominated by low modes, the downflow regions are distributed in a way that does not result in a
strong acceleration (see Figure 5.14).

Of course a quantitative estimate of the artificially created momentum and its influence on the
neutron star velocity would be preferable. Therefore we compute as in the two-dimensional
case (see Sect. 3.1) in a post-processing step the acceleration of the neutron star using only
the mass and momentum distribution on the numerical grid and assuming Newtonian gravity
(see Eq. 3.26). The neutron star acceleration calculated this way is independent of all potential
sources of artificial momentum mentioned above – neither the gravitational potential nor the
boundaries enter the calculation. If the integration over this acceleration yields the same neu-
tron star velocity as the one calculated from the total momentum, the generation of artificial
momentum must be negligible.

Unfortunately, the data available for post-processing was too sparse in time to allow a precise
calculation of the right side of Eq. (3.26). In particular the pressure was available only every
10 ms, which is not sufficient to perform a reasonable integration of this strongly varying quantity.
However, for two-dimensional simulations the pressure term is small compared to the other terms
in the phase, when the bulk of the total momentum is created (t > 500 ms). Thus it seems
justified to omit the pressure term and compare the integral over the resulting acceleration,
with the neutron star velocity computed from the total momentum. This comparison is shown
for Model B123-a in Figure 5.18 (only for the x-direction, along which the strongest acceleration
occurs). The similarity of the absolute values and the time dependence of the two curves show
that the contribution of artificially created momentum to the neutron star velocity computed
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Figure 5.18: Time evolution of the x-component of the neutron star velocity for Model B123-a. The
black curve is computed from the total momentum, the blue curve is the integral over the estimated
neutron star acceleration. A fraction of the former may be caused by artificially created momentum,
whereas the latter is computed directly from the mass and momentum distribution on the numerical grid
and thus gives only the “physically” generated neutron star velocity. The similarity of the absolute values
and the time dependence of the two curves show that the contribution of artificially created momentum
to the neutron star velocity computed from the total momentum must be small. For 250ms < t < 450ms
the agreement is not good, which is probably caused by the fact that we neglect anisotropic pressure
effects in the calculation of the neutron star acceleration. However, most of the total momentum is
produced only afterwards.

from the total momentum must be small. In the following we will therefore assume that the
effects of artificially created momentum are negligible in our simulations.

In Fig. 5.17 we show the evolution of the neutron star acceleration and velocity for the three-
dimensional models. The basic behaviour of Model B123-a is similar to most of the two-
dimensional simulations: After the onset of convection the neutron star is accelerated strongly,
but in rapidly changing directions, so that the total velocity fluctuates around zero. When the
explosion has started the direction of the acceleration varies less strongly and finally remains
roughly constant, while its absolute value is decreasing. After one second Model B123-a reaches
a neutron star velocity of 113.5 km/s while the acceleration has become very small. For Model
B123-b the amplitude of the acceleration is even somewhat higher than for Model B123-a, but
its direction keeps on varying rapidly even after the explosion has set in and thus the neutron
star has acquires a velocity of only 15.4 km/s until the end of the simulation at t = 550 ms .

Recalling that in two dimensions we have obtained neutron star velocities in excess of 1000 km/s
these values may seem disappointingly small. However, for most of the two-dimensional models
we do not find values of this magnitude either. Only four of the 39 two-dimensional models
have neutron stars which are moving faster than 300 km/s. In fact the anisotropy parameter
αgas (which is directly connected to the neutron star velocity, see Eq. 3.16) for model B123-a
evolves quite similar to the average αgas of the 2D model sets 180-1 and 180-2, and becomes
somewhat smaller only in the last 200 ms (Fig. 5.19). In this sense Model B123-a is of “average”
anisotropy, compared to the two-dimensional models. The αgas of Model B123-b, on the other
hand, stays well below the two-dimensional average, but there are several 2D models with even
weaker anisotropy.
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Figure 5.19: Evolution of the anisotropy parameter αgas for the models listed in table 5.2. The right
panel shows the evolution of αgas for each individual model, whereas the in left panel the average αgas

for sets of models with the same resolution and grid size are displayed. For t < 750ms the anisotropy
parameter of Model B123-a evolves similar as the one of the 180-2 model set, but decreases afterwards
and ends up at 11%. For Model B123-b αgas stays rather low – however this simulation was already
stopped at t = 550ms. From the right panel it is evident that the variation of αgas within each model
group is large.

Very slow neutron stars are not unusual in two dimensions, owing to two reasons: Either there
are two or more downflows dragging the neutron star in different directions, or a single downflow
is located near the equator, which does not result in an acceleration due to the symmetry of
the resulting matter distribution with respect to the equator. For models B123-a and B123-b
both reasons do not apply: A single downflow dominates in both models, whose location should
not influence the absolute value of the acceleration. Thus one could expect that the three-
dimensional models would develop faster moving neutron stars. Why is this not the case? The
reason is the mass distribution at intermediate radii (r = 100 . . . 1000 km). The gravitational
acceleration of the neutron star is mainly caused by the anisotropic mass distribution (dense
downflow regions and less dense outflowing matter) within several 100 km. As already discussed
above, the location of the downflow regions at intermediate radii is in three dimensions not as
strongly correlated with the position of the lower end of the downflow as in two-dimensions. In
two dimensions in general the gravitational acceleration of the neutron star due to the matter
at these radii is even stronger and pointing roughly in the same direction as the gravitational
acceleration caused by the matter within r = 100 km. In the three-dimensional models the
downflow regions at intermediate radii are distributed over the whole sphere, which results in
only a weak gravitational acceleration. In model B123-b the downflow regions are distributed
so evenly (Fig. 5.14) that the neutron star is barely accelerated. Model B123-a develops a large
downflow-free region (Fig. 5.13), which leads to a significant acceleration. Yet, the acceleration
is not as strong as in typical two-dimensional models with a single, polar downflow (like Model
B12).

It appears that the scatter of neutron star velocities for simulations started from different random
seeds (see Sect. 3.2.5) is caused by different mechanisms in 2D and 3D: In 2D the number and
position of downflows is decisive for the kick and depends chaotically on the initial conditions.
In 3D the global anisotropy at intermediate radii is important for the kick, which probably
also depends sensitively on the initial perturbations. Whatever the reason for the scatter is, of
importance is that there is a scatter also in 3D, as the different outcomes of Models B123-a and
B123-b show. This makes us optimistic that it is possible to produce faster neutron stars just by
repeating the 3D simulations with different initial perturbations. On the other hand this means
also, that many simulations are needed to clarify, whether there is any systematic difference in
the magnitude of neutron star velocities between the two- and three-dimensional case.
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Table 5.2: Several characterising quantities for the rotating 3D Model R103F and six two-dimensional
models with the same boundary conditions. The gain layer mass Mgain is given for t = texp. Explosion
energy, Eexp, neutron star mass, Mns, and radius, Rns, as well as the anisotropy parameter αgas are given
for t = 0.4 s. The neutron star acceleration value, ans, was averaged over the time span [0.2 s, 0.4 s]. For
the neutron star velocity, |vns|, we give values at t = 0.4 s and at the end of the simulation, t = tsim.

Model θ0 ∆θ tsim texp Eexp Mns |vns(0.4 s)| |vns(tsim)| |ans| αgas

[◦] [◦] [s] [s] [B] [M�] [km/s] [km/s] [km/s2]

R103F 0 4 0.4 0.136 0.60 1.402 75.6 75.6 288.0 0.05

R10F-l1 0 4 0.7 0.157 0.53 1.418 65.7 219.1 300.5 0.06
R10F-l2 0 4 0.7 0.157 0.59 1.416 146.6 264.5 724.1 0.13
R10F-l3 0 4 0.6 0.146 0.64 1.417 139.9 184.8 631.1 0.11

R10F-h1 0 0.5 0.8 0.134 0.68 1.402 79.9 107.2 339.9 0.06
R10F-h2 0 0.5 0.7 0.123 0.66 1.405 72.0 82.9 194.5 0.05
R10F-h3 0 0.5 0.7 0.125 0.67 1.399 228.7 457.6 980.7 0.17

5.3 A rotating model

For the three-dimensional rotating Model R103F we have not as many 2D models available
for comparison as in case of the non-rotating models. Instead of discussing the evolution of
global quantities in 2D and 3D, as well as the implications of different grid resolutions like for
the non-rotating models (which should be similar), we will therefore focus on the most obvious
difference between rotating 2D and 3D models and its influence on the explosions anisotropy and
the neutron star acceleration: The downflows above the poles of the neutron star that we find in
all of our rotating 2D models are absent in 3D. In fact, the strongest neutrino-heated outflows
of matter are located above the poles in 3D. This fundamental difference becomes obvious in
Fig. 5.20, where we compare the evolution of the entropy distribution in the φ = 0–slice of the
3D model to a high-resolution 2D model. Two-dimensional models with lower angular resolution
do not look qualitatively different, which shows that the absence of the downflows in 3D is not
caused by insufficient resolution. The most important quantities for the rotating 2D and 3D
simulations are listed in Tab. 5.3.

5.3.1 Missing polar downflows

In Chapter 3 we discussed the morphology of rotating two-dimensional models, for which we used
the “standard” (slow) boundary contraction. An important finding was that two-dimensional
rotating models develop downflows above both neutron star poles. These polar downflows remain
stable for several 100 ms, until they are finally blown away by the neutrino-driven wind. The
long-lasting downflows hamper the shock expansion near the poles and lead to a more spherical
or even oblate shock shape, in contrast to the prolate shocks that non-rotating models develop.
For the more rapid boundary contraction assumed for the two-dimensional models listed in
Tab. 5.3, we find essentially the same behaviour: About 100 ms after core bounce, two polar
downflows form and remain stable for 300–400 ms.

As discussed in Sect. 3.4, the reason for the stabilisation is the formation of a positive gradient
dj2

z/dx, where jz is the specific angular momentum (which has only a component parallel to
the symmetry axis in two-dimensional simulations) and x is the distance to the axis of rotation.
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Figure 5.20: Entropy distribution in the φ = 0 plane for the three-dimensional Model R103F and the
two-dimensional high-resolution Model R10F-h1 for several times. Note the long-lasting polar downflows
in the two-dimensional model, which are absent in three dimensions. At t = 400ms these downflows have
been blown away by the neutrino-driven wind also in the 2D model.
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Figure 5.21: Specific angular momentum jz at the equator above the shock (“preshock”) and minimum
and maximum values of jz below the shock (“postshock”). The angular momentum of the matter crossing
the oblique (non-spherical) shock is modified strongly – a part of the postshock matter rotates even
retrograde.

Figure 5.22: Specific angular momentum (z-component) in the equatorial plane of Model R103F for
two times. The black line marks the shock, the arrows indicate the local direction of the flow. The
obliqueness of the shock leads to a strong variation of the lateral postshock velocity. A part of the flow is
even moving against the direction of the progenitor rotation and thus also negative values of the angular
momentum are found.

In axisymmetry, the specific angular momentum of a fluid element remains constant and in
particular is not modified when it crosses a shock. Owing to the “shellular” rotation (i.e. the
angular velocity Ω is constant on r = const shells) and the angular velocity profile (Ω ∝ r−3/2

outside the iron core) assumed for the progenitor model we use (see Müller et al. 2004, for a
detailed description), the specific angular momentum jz = r2 sin(θ)Ω(r) of the matter crossing
the shock near the equator increases with time and is always higher than the one of the matter
falling through the shock near the poles. Therefore polar low-jz downflows, which are affected by
comparably low centrifugal forces, are surrounded by matter with higher jz that feels a stronger
centrifugal force away from the axis. This situation is stable.

However, the stabilisation does not work any more in three dimensions: The specific angular
momentum is not conserved, because now forces can act also in φ-direction. In particular, when
a fluid element crosses the non-spherical supernova shock, its specific angular momentum can
be strongly modified. At t ≈ 80 ms the deformation of the shock has become sufficiently strong
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Figure 5.23: Distribution of the z-component of the specific angular momentum for the three-
dimensional Model R103F and the two-dimensional Model R10F-l1 at t = 300ms. In two dimensions jz

on average increases with distance to the axis of rotation. In the polar downflows jz is lower than in the
convection region. In three dimensions no such clear trends are visible.

to even change the sign of jz for a part of the matter, which is therefore moving against the
direction of rotation (Figs. 5.21, 5.22). Under such circumstances a stabilising jz-gradient can
not be maintained (Fig. 5.23).

5.3.2 Anisotropic, neutrino-driven outflows

The missing stabilisation explains why there are no long-lasting downflows at the poles in Model
R103F. But why are there no polar downflows at all and the shock expands even faster in the
polar regions? It is not completely clear whether this is a generic feature resulting from our
progenitor model and the boundary conditions we apply, or just a morphology that develops by
chance for the initial perturbations chosen for Model R103F. However, the fact that there are
no downflows in the polar regions is quite striking and we see a possible explanation for this
behaviour in the angular variation of the neutrino heating rate, which in turn results from the
rotational deformation of the neutron star.

The neutron star accretes matter with increasingly high specific angular momentum and con-
tracts at the same time. Therefore the neutron star spins up to rotation periods of several
milliseconds and attains an oblate deformation due to the strong centrifugal forces. Once the
accretion of mass and angular momentum has become negligible and the inner boundary con-
tracts only slowly, the angular momentum of the neutron star does not increase further and the
deformation, e.g. measured by the ratio of the equatorial to the polar neutrino sphere radius,
Re

ν/R
p
ν , remains constant (Fig. 5.24). This is the case at t ≈ 200 ms, when the neutron star

has acquired an angular momentum Lns ≈ 3.5 × 1048g cm2/s and Re
ν/R

p
ν is about 1.3. Similar

values are found in a Boltzmann simulation of the same progenitor including the full neutron
star (R. Buras, personal communication). Thus it appears that the deformation of the neutron
star is not strongly influenced by excluding the innermost 1.1 M� from the simulation.

Due to the centrifugal forces, the shapes of surfaces of constant density and surfaces of constant
temperature are different in the rotating neutron star (see, e.g., Tassoul 1978). In particular,
the temperature at the neutrino-spheres (which can be approximated by density-isosurfaces)
varies with the polar angle. At the poles the temperature at the neutrino-spheres is up to 20
percent higher than at the equator (Fig. 5.25, left panel). As the neutrinos are decoupling from
the matter in the region around the neutrino-spheres, this variation of the matter temperature
leads also to a variation in the mean neutrino energies, which are about 2–3 MeV higher at the
poles than at the equator (Fig. 5.25, right panel). In contrast to this and in agreement with
Boltzmann simulations (R. Buras, personal communication), the luminosities show only a weak
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Figure 5.24: Evolution of the neutron star mass, Mns, and the ratio of the equatorial to the polar
neutrino sphere radius, Re

ν/Rp
ν (left panel), as well as the angular momentum of the neutron star (right

panel) for Model R103F. Once the neutron star does not gain mass and angular momentum any more
and the contraction has become slow, the deformation of the neutrino sphere remains roughly constant.

Figure 5.25: Left panel: Luminosity at the neutrino-sphere and at r = 500 km and neutrino-sphere
temperature as a function of the polar angle for Model R103F at t = 300ms. All quantities are normalised
to the value at the equator. The luminosity is slightly higher at the poles, but at r = 500 km this variation
has almost vanished. The matter temperature at the neutrino-sphere, however, varies significantly and is
about 20 percent higher at the poles than near the equator. Right panel: Radial profiles of the neutrino
energy deposition rate Qν (per nucleon), the matter temperature T and the mean electron neutrino energy
〈ενe

〉 in Model R103F at the north pole and at the equator, respectively (t = 300ms). The vertical lines
mark the positions of the electron neutrino sphere.

Figure 5.26: Neutrino energy deposition rate (per nucleon) (left) and matter temperature distribution
(right) for Model R103F at t = 300ms. The solid black lines are density contours, the dashed line is the
electron neutrino sphere.
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angular dependence at the neutrino-spheres (less than 5 percent) which is not visible any more
at a radius of 500 km (Fig. 5.25, left panel).

As the neutrino heating rate is proportional to 〈ε2
ν〉 (Janka 2001), the 20 percent higher neutrino

energies at the poles can explain that, for large radii (r > 100 km), the heating rate is about 50
percent higher near the poles than at the equator (Fig. 5.25, right panel). For smaller radii, this
asymmetry is even more extreme, because the steeper temperature gradient at the poles results
in a smaller gain radius and thus a higher neutrino energy density Eν ∝ Lν/r

2 at the radius of
maximum heating (Fig. 5.26).

It seems likely that the enhanced heating at the poles disfavours downflows in this region and,
on the contrary, leads to faster expansion of the ejecta there. The higher polar heating rates
are also present in the two-dimensional models. However, for the latter the stabilisation of
polar downflows due to the positive gradient of j2

z seems to be more important. Only after the
polar downflows have been blown away by the neutrino-driven wind, the stronger polar heating
becomes obvious in 2D. Such a situation is visible in the lowermost right panel of Fig. 5.20,
which shows higher entropies above the poles of a 2D model, which are caused by stronger
neutrino heating. Also two-dimensional Boltzmann simulations of the same progenitor show
polar downflows and enhanced polar heating rates, which makes us optimistic that these results
are not strongly affected by our simplified transport or by the use of an inner boundary.

5.3.3 Explosion anisotropy and downflow distribution

Once the neutron star has become significantly deformed by centrifugal forces, the higher neu-
trino heating rates above the neutron star poles prevent downflows from forming and lead to a
faster expansion of the ejecta in these regions. For t & 150 ms the downflows are therefore mostly
located near the equator – within 45◦ polar angle distance to the poles downflows occur seldom
and only for short phases (Fig. 5.27). This leads to a slower shock expansion near the equatorial
plane and consequently the shock develops a prolate deformation. The ratio of maximum to
minimum shock radius reaches values of up to 1.6 (Fig. 5.29). This anisotropy of the explosion
with the mainly equatorial accretion and the preferred polar expansion is visible in Fig. 5.28,
where we show the situation at the end of the simulation.

The prolate deformation of the shock is in contrast to the nearly spherical shocks of the rotating
2D models discussed in Sect. 3.4. This is partly due to the polar downflows that hamper the shock
expansion in 2D, but probably also due to the fact that for the rotating models of Chapter 3 the
slower, “standard” boundary contraction was assumed, so that the centrifugal forces remained
lower and the neutrino heating was less anisotropic than for the 2D models discussed in this
section. The latter do indeed also develop a prolate deformation.

Before the fast expansion of the shock that sets in at about t = 150 ms, the downflows and the
associated minima in the shock surface circle around the rotation axis with a rotation period
that is of the order of 100 ms (Fig. 5.31). A mean value for the rotation period can be estimated
as

〈τrot〉 ≈ 2π
〈Rs〉2
〈jz〉

, (5.3)

using the average value of the specific angular momentum behind the shock, 〈jz〉, and the average
shock radius, 〈Rs〉. When the shock accelerates after the onset of the explosion, 〈jz〉 increases
only slowly because in the initial model jz ∝ √

r (at the equator, see Sect. 3.1.1). Consequently
the rotation period becomes large and the minima of the shock radius, to which the downflows
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Figure 5.27: Like 5.4, but for Model R103F. Note that the downflows are located preferably near the
equatorial plane.
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Figure 5.28: Several isosurfaces for Model R103F at t = 400ms, looking onto the xy-plane (top panel),
the xz-plane (middle panel) and the yz-plane (bottom panel). The outermost, bluish surface is the shock
(vr = 0), the yellow surface encloses the neutrino-heated rising matter, the red isosurface marks the
fastest ejecta (vr > 109 cm/s) and the blue one encloses downflow regions with vr < −3 × 108 cm/s.
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Figure 5.29: Shock radius of Model R103F for several times (in Mollweide equal area projection).
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Figure 5.30: Equatorial shock radius (normalised to the average equatorial shock radius) as a function
of longitude and time for Model R103F. The local extrema of R(φ, θ = π/2) move on average with the
angular velocity of the matter crossing the shock. For t & 150ms the corresponding rotation period
becomes larger than one second and the shock radius extrema essentially remain at the same longitude.

Figure 5.31: Evolution of the rotation period before and after the shock (minimal value), at the neutron
star surface and the average rotation period of the neutron star. The postshock rotation period increases
strongly, once the explosion has set in.

are “attached”, remain essentially at the same longitude (Fig. 5.31). At t ≈ 250 ms there is only
one such radius minimum left, which is located near the equator at φ = 45◦–90◦ (Fig. 5.30).

5.3.4 Neutron star kick

In Fig. 5.32 (left panel) we show the evolution of the neutron star velocity components, vns
i , of

Model R103F, as well as the absolute value. These quantities have been obtained making use of
total momentum conservation in the same way as for the non-rotating models. A comparison of
the measured acceleration components (i.e. the time derivatives of the vns

i ) with the “predicted
values” (according to Eq. 3.26) is shown in Fig. 5.33. Considering that again the time resolu-
tion of the pressure data was too sparse to compute the corresponding acceleration precisely,
the measured and predicted values agree reasonably well and therefore it is unlikely that the
measured neutron star velocity is significantly affected by errors resulting from the boundary
conditions (see Sect. 2.3).

The neutron star is strongly accelerated quite early, starting at t ≈ 70 ms, but only some time
after the onset of the explosion the direction of acceleration evolves so slowly that a significant
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Figure 5.32: Left panel: Neutron star velocity components and absolute velocity for Model R103F. The
acceleration in y-direction (i.e. in the equatorial plane) dominates. Right panel: Neutron star velocity
evolution for all models discussed in this section. The three-dimensional model is accelerated similarly
strong as the two-dimensional models.

Figure 5.33: Neutron star acceleration components for Model R103F. The gray lines are estimates for
the acceleration from post-processing.

neutron star velocity can be built up. Between t = 200 ms and t = 400 ms the average neutron
star acceleration is about 290 km/s2 and at the end of the simulation vns ≈ 75 km/s. These
values are in the range of the 2D models, whose average velocity at t = 0.4 s is about 120 km/s.
Three of the six 2D models have neutron star velocities smaller than 80 km/s at this time. If
the scatter of neutron star velocities due to the chaotic dependence on initial perturbations (see
Sect. 3.2.5) is similar in 2D and 3D (and we have so far no hints that it is very different) it
should be possible to obtain final velocities of more than 500 km/s (which can be expected for
Model R10F-h3, see Tab. 5.3) by repeating the 3D simulation sufficiently often using different
random seeds.

Furthermore, although a rapid boundary contraction as used in Model R103F seems to increase
the average neutron star kick significantly (see Sect. 3.5.3), rotation has the opposite effect. The
rotating models of Chapter 3 attain neutron star velocities that are on average a factor of two
lower than those of the non-rotating models. If this result holds true also in three dimensions,
higher neutron star velocities can be expected for rotation rates lower, and probably more
realistic, than those used for Model R103F.

While the absolute values for the acceleration are similar in two and three dimensions, the
acceleration directions are different. In two dimensions the neutron star can move only along
the symmetry axis, i.e. ~vns has only a z-component. This velocity component builds up due to
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the asymmetry of the mass distributions of the northern and the southern hemisphere. This effect
is also present in Model R103F: The shock expansion in the southern hemisphere is somewhat
faster and consequently the neutron star is attracted more strongly by the ejecta in the northern
hemisphere, which leads to a positive z-component of the neutron star velocity. However, the
largest component of ~vns is vns

y , i.e. the acceleration is roughly perpendicular to the axis of
rotation, into positive y-direction.

This is because one downflow region near the equatorial plane is sufficiently massive to dominate
the gravitational attraction of the neutron star in this plane. This downflow is connected to the
pronounced minimum of the shock radius at φ = 45◦–90◦ (Fig. 5.30). In the main acceleration
phase (t > 200 ms) most of the time this downflow does not reach the neutron star surface but is
dissolved already at r ≈ 100 km or even further out. In this case the lower end of the downflow,
which has the strongest influence on the direction into which the neutron star is accelerated, is
not far (in longitudinal direction) from the shock minimum. Therefore the neutron star will be
mainly accelerated towards this minimum. However, there are two phases (around t ≈ 250 ms
and t ≈ 340 ms) in which the acceleration breaks down and the neutron star velocity does not
increase further (see Fig. 5.32). At these times the lower end of the downflow comes closer
to the neutron star and centrifugal forces (caused by the angular momentum of the accreting
matter) force it to a different longitude than the shock minimum. Consequently the neutron
star acceleration is not parallel to the velocity any more. These two situations are visible in
Fig. 5.34.

5.3.5 Spin-kick alignment?

Does rotation lead to an alignment of the kick direction with the rotation axis (the so called
“spin-kick alignment”)? Recent studies of observational constraints on neutron star kicks for
isolated pulsars and for neutron stars in binary systems come to the conclusion that this is the
case, but only for a part of the neutron star population (Wang et al. 2006). The interpretation of
observations is still ambiguous (Johnston et al. 2005), though. There are well-studied examples
of pulsars with spin-kick alignment like the Crab pulsar, but on the other hand it has also been
clearly shown, that the pulsar in Cas A is moving perpendicular to the symmetry axis of the
remnant (which is interpreted as the rotation axis). The observational answer to this question
is thus still somewhat unclear — both alignment and misalignment seem to be possible.

What can we predict for the hydrodynamic kick mechanism active in our models? This question
cannot be conclusively answered on the basis of two-dimensional axisymmetric simulations,
because in this case the neutron star kick is always along the rotation axis due to the assumed
symmetry of the calculations. Therefore we are left with only one simulation, Model R013F.
In this simulation the neutron star kick is approximately perpendicular to the axis of rotation.
However, for a number of reasons this does not allow the conclusion that in general spin-kick
misalignment is expected for our kick mechanism.

Firstly, a hemispherical asymmetry that leads to acceleration in spin-direction is present in
Model R103F, but weaker than the acceleration perpendicular to the rotation axis. It is unclear,
whether this is a generic feature, or if the component parallel to the spin could also dominate.
Secondly, the perpendicular component could be overestimated by the fact, that most of the
time the downflow does not reach the neutron star surface. It has to be tested, if this is caused
by the low angular grid resolution we used. And finally, the progenitor rotation profile and the
neutron star contraction adopted for Model R103F may both be too extreme. It is possible that
for a weaker influence of centrifugal forces, the emission anisotropy is not strong enough to clear
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Figure 5.34: Entropy distribution around the equatorial plane (averaged over θ ∈ [−30◦, 30◦]) of Model
R103F for several times. The blue arrow indicates the velocity and the green arrow the acceleration vector
of the neutron star. In general, the neutron star is accelerated towards the most massive downflow that
originates from the minimum of the shock radius (gray line), which is most of the time at φ = 45◦–90◦.
Only when the downflow comes near to the neutron star surface (visible in the t = 250ms and t = 340ms
panels) the direction of acceleration changes significantly.
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the polar regions from downflows, but sufficient to define a preferred axis that guides growing
instabilities. Also this could lead to spin-kick alignment.

In conclusion, at the moment we can only state that final answers, concerning the alignment of
spin and kicks require more 3D models — to improve statistics and to cover a wider range of
parameters.



6
Summary and conclusions

The aim of this work was to investigate the growth of hydrodynamic instabilities in the neutrino-
heated postshock layer of core-collapse supernovae and the importance of such instabilities for
the development of explosion anisotropies and the acceleration of neutron stars.

In core-collapse supernovae a shock wave is launched in the collapsed iron core of a massive star
and stalls at a radius of 100–200 km. In the neutrino-driven explosion scenario the stalled shock
is thought to be revived by the absorption of a small fraction of the neutrinos streaming out of the
hot, nascent neutron star at the centre. This neutrino-heating of the postshock layer is stronger
for smaller radii, which results in a radial entropy profile that is unstable to convection. Indeed
it has been confirmed in several studies that convective overturn develops below the stalled
supernova shock (Herant et al. 1994; Burrows et al. 1995; Janka & Müller 1996). However, it
has also been proposed that the stalled shock wave itself may be subject to different, global
instabilities. For instance, Houck & Chevalier (1992) predicted unstable oscillations of the shock
for sufficiently large shock radii, and Thompson (2000) proposed that the shock may develop a
global Rayleigh-Taylor mode.

We investigated the nature of such hydrodynamic instabilities and their influence on the stalled
shock phase and the subsequent explosion by means of two- and three-dimensional hydrodynamic
simulations. For these simulations we relied on the viability of the neutrino-driven explosion
mechanism. Because the latter is still an open question (see Buras et al. 2006a,b), we triggered
the explosions in our simulations by replacing the contracting core of the nascent neutron star by
an inner boundary of the computational grid, where we assumed suitable neutrino luminosities
from the neutron star core. A systematic variation in these core luminosities, which control the
intensity of neutrino heating, allowed us to investigate the growth of hydrodynamic instabilities
for different explosion time scales and energies.

We started the simulations shortly after the formation of the shock wave from spherical symmet-
ric initial models. Low-amplitude small-scale perturbations which we imposed onto these initial
models at the start of the simulations grew by hydrodynamic instabilities to high-amplitude,
large-scale anisotropies. This nonlinear growth to large scales is an example for spontaneous,
global symmetry breaking. Due to the stochastic nature of this process the final morphology of
the explosion depend in a chaotic way on the initial perturbations.

127
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Apart from features typical for a convective overturn (like rising Rayleigh-Taylor “mushrooms”,
narrow downdrafts and vortex structures) we found indications for an oscillatory instability of the
shock wave in our simulations, which affected only the lowest modes. The nature of these dipole
or quadrupole oscillations in our numerical models was more closely investigated in collaboration
with a French group that studies the linearised problem in order to determine the stability
properties of stationary accretion flows. Applying such complementary approaches proved to be
very helpful for the understanding of the growth of perturbations taking place in the postshock
layer and resulted in the discovery of a new instability mechanism different from convection (see
Chapter 4). In this mechanism, the so-called “advective-acoustic cycle”, perturbations caused
by disturbances of the shock surface are advected downwards with the accretion flow, which
is decelerated near the neutron star surface. The deceleration of perturbations triggers sound
waves, which travel outward against the subsonic accretion flow and collide with the shock,
thereby creating new shock disturbances. Such a process can lead to an amplifying feedback loop
for perturbations. Similar phenomena are known from other fields, e.g., the “rumble instability”
encountered in jet engines or the“impinging shear flow instability”that makes tea kettles whistle,
but they had not been recognised before to be of relevance in the supernova core. A competing
US group proposed an alternative, purely acoustic mechanism based on a standing pressure
wave to explain the anisotropy of supernova explosion. By analysing the scaling behaviour of
the oscillation periods in our simulations this hypothesis could be disproven.

Furthermore, the results of these simulations led us to the conclusion, that the “advective-
acoustic cycle” is in fact the main mechanism creating anisotropy and that convection is not
required to explain the dominance of low modes. In most of the 80 two-dimensional (i.e.,
assuming axisymmetry) models we computed for this study, the shock and the postshock flow
developed a pronounced dipole or quadrupole anisotropy (l = 1 or l = 2 in terms of an expansion
in spherical harmonics Y m

l ) before the onset of the explosion. In the subsequent evolution the
expanding shock retained its non-spherical shape. The postshock flow was dominated by one
or two downdrafts that allowed for further accretion of matter onto the neutron star, until they
were blown away several 100 ms after the explosion by the neutrino-driven wind forming above
the neutron star surface (see Chapter 3). Kifonidis et al. (2006) performed long-term simulations
using the results of our simulations (which encompass the first second of post-bounce evolution)
as initial models and found that the anisotropy present after one second is retained and triggers
a large-scale mixing of the outer layers of the progenitor star some hours later.

In our highly anisotropic explosions the ejected mass attains a large net linear momentum. As
the total momentum of the system must be conserved, this requires that the neutron star takes
up the same amount of momentum in the opposite direction and is therefore accelerated to high
velocities. The acceleration of the neutron star, which occurs on a time scale of several seconds,
was found to be mediated mainly by gravitational forces that are caused by the anisotropic mass
distribution of the ejecta. As long as accretion funnels reach down to the neutron star surface,
also hydrodynamic forces (e.g. due to the transfer of momentum to the neutron star by the
accreting matter) play a significant role. Near the lower ends of the accretion downdrafts the
kinetic energy of the accreted matter is converted to internal energy in a strong shock and is
partly radiated away in the form of neutrinos. In principle, this anisotropic neutrino emission
could also lead to an acceleration of the neutron star, but it was found that this effect is weak
and can be neglected in most of the models. The highest neutron star velocities are obtained
for dipole (i.e. l = 1) dominated, almost “one-sided” explosions, in which the shock expansion in
one hemisphere proceeds much faster than in the other. In one of these cases the neutron star
reached a velocity of about 1200 km/s. In explosions dominated by l = 2 or higher modes, the
acceleration is weaker.

The biggest shortcoming of the simulations discussed so far is their two-dimensionality, i.e. the
fact, that the flow in our simulations was restricted by the assumption of axisymmetry. Due to
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the enormous computational cost of full three-dimensional simulations, it was not possible to
perform parameter studies with a large number of models in 3D. However, we were able to run
three 3D simulations (discussed in Chapter 5), which, however, are still limited in terms of grid
resolution, grid size and the simulated time span. Nevertheless, these simulations provided first
insights in three-dimensional effects. The most important conclusion we could draw from the
outcome of these simulations is that the formation of low-mode anisotropies in our 2D models
was not a result of the restriction of the flow by the assumption of axisymmetry. Also the 3D
models develop dominant low-modes asymmetry.

However, several properties of the flow structure in 3D are fundamentally different from the 2D
case. For instance, the downdrafts, in which matter is accreted onto the neutron star become
extremely thin in 2D but are much wider in 3D. Furthermore, a turbulent layer above the neutron
star that hampers the formation of the neutrino-driven wind in 2D models is much weaker in
3D. The most striking differences are found for rotating models: In 2D the regions above the
poles of the neutron star are preferred locations for accretion funnels, whereas in 3D we find
the strongest outflows of matter to occur in these regions, because the anisotropic heating by
neutrinos emitted from the rotationally deformed neutron star is maximal there.

The values of the neutron star acceleration in the 3D models after the onset of the explosion
turned out to be in the same range as in the 2D models. This makes us optimistic that very high
neutron star velocities can also be reached in 3D, although at the time we had to stop the 3D
runs the velocities are still rather low. It is probably only a matter of statistics to obtain a very
high neutron star velocity also in a 3D model. Due to the stochastic dependence on the initial
perturbations, a large number of 3D models will be needed to quantify the differences between
2D and 3D models and to determine the neutron star velocity distribution in three dimensions.

The kick velocity distribution of our two-dimensional models contains two populations: a high-
velocity component (with an average kick velocity of ∼ 500 km/s) in which the l = 1 dipole mode
of the ejecta was dominant, and a low-velocity component (with an maximum kick velocity of
∼ 200 km/s) in which mainly higher modes determined the morphology. Neutron star velocity
distributions that have been deduced from observations might indeed show such a bimodality
(Cordes & Chernoff 1998; Fryer et al. 1998; Arzoumanian et al. 2002; Brisken et al. 2003), but
this issue is observationally still controversial (Hansen & Phinney 1997; Hobbs et al. 2005).
Although the presence or absence of a pronounced dipole mode in the ejecta distribution would
offer a natural and suggestive way to obtain a bimodality in the context of our hydrodynamic
kick mechanism, we refrain from claiming that our result strongly supports the existence of such
a bimodality in the observed distribution of pulsar velocities. A wider range of progenitor stars
and 3D effects have to be included before such claims can be made. Furthermore, it has to be
considered that in contrast to the kick velocities obtained from simulations, measured pulsar
velocities may contain a contribution that results from the angular momentum conservation
during the break-up of binary star systems in which one of the stars explodes as a supernova.

The proposed hydrodynamic kick mechanism, however, leads also to an unambiguous prediction:
The measured neutron star velocity should be directed opposite to the momentum of the gaseous
supernova ejecta. This is different from many theories that explain pulsar kicks by anisotropic
neutrino emission from the nascent neutron star. In that case the direction of the acceleration can
be independent of ejecta asymmetries. Recent observations show that the momenta of the ejecta
and the pulsar in several supernova remnants seem to be compatible with the hydrodynamic
kick mechanism (see, e.g. Winkler & Petre 2006). Future detailed studies of supernova remnants
will show whether this is the case in general.

Another encouraging results provides further support for our studies: The long-time supernova
simulations of Kifonidis et al. (2006), which were started from our models, show a large-scale
overturn of the outer layers of the progenitor star, seeded and triggered by the core anisotropies
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found in our simulations, that can explain the velocity distribution of radioactive elements
determined from spectra of Supernova 1987A. This was not possible when the simulations were
started from less anisotropic early explosion models (Kifonidis et al. 2003).

The models presented in this work are the first to develop simultaneously neutron star masses,
explosion energies, and neutron star velocities that lie in the ranges known from observations,
without relying on special assumptions about the initial conditions (such as extreme pertur-
bations and anisotropies present in the collapsing progenitor star, extreme rotation rates, or
magnetic fields in the progenitor star). In view of these results, a consistent picture of the
processes taking place after core bounce seems to emerge. The early anisotropy of supernova in-
ferred from the polarised light emitted during the explosion, the large-scale mixing of radioactive
elements into the hydrogen layer of the progenitor star (observed in the spectra of Supernova
1987A), the anisotropies of supernova remnants, and the extreme velocities of neutron stars
can all be traced back to one common origin — delayed, neutrino-driven explosions, in which
hydrodynamic instabilities grow to pronounced global modes.

Yet, more work has to be done to consolidate this picture. Apart from the obvious need to confirm
the viability of the delayed, convectively supported explosion mechanism, more simulations of
the kind presented in this work should be performed. Given the significant differences of the
fluid dynamics in 2D and 2D discussed above, these simulations should be performed in three
dimensions. In addition, it would be interesting to use more progenitor stars with different
masses and different rotation rates and to run also long-term simulations. This will allow for
new and more reliable predictions (e.g. concerning the distribution function of the kick velocities
or a possible alignment of rotation axis and kick direction) that can be tested with future
observations. Work is underway to extend this study and will hopefully yield further exciting
results.
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A
Neutrino transport

A.1 Transport equation

We start from the equation of radiation transport in spherical symmetry

1

c

∂

∂t
I + µ

∂

∂r
I +

1 − µ2

r

∂

∂µ
I = S, (A.1)

where I = I(t, r, ε, µ) is the specific intensity, S = S(t, r, ε, µ) is the source function, ε is the
neutrino energy, µ = cos θ and θ is the angle between radiation propagation and radial direction.
Solid angle integration yields the zeroth angular moment equation,

1

c

∂

∂t
J +

1

r2

∂

∂r
(r2H) = S(0) ≡ 1

2

∫ +1

−1
dµ S (A.2)

with {J, H}(t, r, ε) := 1
2

∫ +1
−1 dµ µ{0,1}I(t, r, ε, µ). Integration over energy leads to

∂

∂t
E +

1

r2

∂

∂r
(r2F ) = Q+ − Q− (A.3)

with {E, F}(t, r) := 4π
∫∞
0 dε {J/c, H}(t, r, ε) being energy density and energy flux, respec-

tively. The source term has been split in an emission rate Q+ and an absorption rate Q− = κacE,
which is proportional to the energy density. The flux factor is defined as the ratio of flux to
energy density,

f(r, t) := F (r, t) / cE(r, t). (A.4)

In neutrino transport simulations solving the full Boltzmann equation (see e.g. Buras et al.
2003, 2006a,b) this quantity shows only little short-time variability during most phases of the
supernova evolution. Therefore ∂f/∂t = 0 is an acceptably good approximation. With L :=
4πr2F = 4πr2fcE one can now rewrite Eq. (A.3) as

∂

∂t
L + ceff

∂

∂r
L = 4π r2 ceff {Q+ − Q−}, (A.5)
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tn-1

tn

ri-1 ri

A

B

r

t

Figure A.1: The solution at (ri, tn) is computed from the data at a point (r?, t?) located on the same
characteristic line. Depending on the grid spacing, ∆r, the time step, ∆t, and the effective speed of
neutrino propagation, ceff , either point A or point B must be used. The solution there can be obtained
by interpolation in time or space, respectively.

where an effective speed of neutrino propagation has been introduced as ceff := cf . Provided
ceff were known, the solution of Eq. (A.5) requires considerably less effort than the numerical
integration of Eq. (A.1). For vanishing source terms Q+ and Q− the neutrino energy or number
density is just advected along characteristics r(t) = r0 + ceff t. Although ceff depends through
f(r, t) on the solution of the transport problem (Eq. A.4), neutrino transport calculations in
the neutrino-decoupling layer of forming neutron stars reveal that it can be well fitted by a r-
dependent function which depends on the steepness of the density profile (see Janka 1990, 1991b).
Assuming further that the (medium-dependent) coefficients Q+ and κ̃ ≡ κa/f = 4πr2Q−/L are
constant between two points (r, t) and (r?, t?), which are connected by a characteristic line, i.e.,

r? = r − ceff (t − t?), (A.6)

Eq. (A.5) can be integrated analytically to yield

L(r, t) = L(r?, t?) e−κ̃ceff (t−t?)

+
4πQ+

κ̃3

{

[1 − e−κ̃ceff (t−t?)] [1 + (κ̃r? − 1)2]

+κ̃ceff (t − t?)[2κ̃r? + κ̃ceff (t − t?) − 2]
}

, (A.7)

where L(r, t) and L(r?, t?) are the luminosity values at both ends of the characteristic line.

We use Eq. (A.7) to construct a numerical scheme to solve Eq. (A.5) in the general case: We
assume that the luminosity is known at the cell interfaces of a one-dimensional radial grid for a
time tn−1, and that the cell-averaged values of the quantities needed to compute the emission
rate Q+ and absorption coefficient κ̃ are also known for that time. As a further simplification
we do not allow neutrinos to propagate in negative radial direction (actually this is granted by
defining a non-negative function for the flux factor, see Sect. A.2). Then the luminosities at
tn = tn−1 + ∆t for each zone interface (starting at the innermost zone) can be computed using
Eq. (A.7). In doing so we have to distinguish between two cases (see Fig. A.1): If ceff∆t > ∆r,
we can use point A as the starting point of the integration, (r?, t?) = (ri−1, tA). The luminosity
at this point is derived from a linear interpolation between L(ri−1, t

n−1) and L(ri−1, t
n) (which is

already known, as we are integrating outwards). If ceff∆t ≤ ∆r, we use point B, the luminosity
at this point being given by a linear interpolation between L(ri−1, t

n−1) and L(ri, t
n−1).

For time integration we use a predictor-corrector method: The transport routine is called two
times. In the first (predictor) step the luminosities, emission rates and absorption coefficients
of the last time step [Ln−1, Qn−1, κn−1] are used to compute preliminary values (Q̃n, κ̃n) for the
neutrino-medium coupling at the next time level. In the second (corrector) step the final values
[Ln, Qn, κn] are calculated using [Ln−1, 1

2(Qn−1 + Q̃n), 1
2(κn−1 + κ̃n)] as input.
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Equation (A.5) is solved not only for the energy luminosity L = Le, but also for the number
luminosity Ln = 4πr2Fn = 4πr2fcn (n is the particle density and f is assumed to be the same
flux factor as for the energy transport). Furthermore the equation has to be integrated for
three neutrino types, νe, ν̄e, and νx (the latter denoting νµ, ν̄µ, ντ , and ν̄τ , which are treated
identically). In the following we will use indices ν ∈ {νe, ν̄e, νx} and α ∈ {e, n} to distinguish
between these different cases.

In the 2D case the neutrino transport is assumed to proceed only radially, i.e. lateral components
of the neutrino flux are ignored and Eq. (A.5) is integrated independently on different radial
“rays”, i.e. in radial direction for every lateral zone of the polar coordinate grid. Total luminosi-
ties of the star are obtained by summing up the flux densities L/4πr2 for all angular cells (at a
given radius r), appropriately weighting them with the corresponding surface elements.

A.2 Neutrino distribution function

To calculate the source terms in Eq. (A.5) or (A.7) we have to make an assumption about the
neutrino energy spectrum, i.e. about the energy dependency of the specific intensity, which for
particle energy and particle number is linked with the particle distribution function fD,ν in the
following way:

Iν,{n,e}(t, r, ε, µ) =

(

ε{2,3}

(hc)3

)

c fD,ν(t, r, ε, µ), (A.8)

where the exponent of 2 applies for number transport and the exponent of 3 for energy transport,
corresponding to the indices n and e, respectively, of Iν . We assume that fD,ν can be written as
product of a Fermi-Dirac distribution function,

fFD(x, η) =
1

1 + exp(x − η)
, (A.9)

and an angle-dependent function gν ,

fD,ν(r, t, ε, µ) = gν(r, t, µ) fFD

(

ε

kBTν(r, t)
, ην(r, t)

)

, (A.10)

where in general the spectral temperature and degeneracy parameter, Tν and ην , are different
from the matter temperature and equilibrium degeneracy parameter.

Furthermore we assume that ην is just a function of the optical depth τν :

ην(τν) = ηeq,ν (1 − e−τν ) + η0,ν e−τν , (A.11)

where ηeq,ν is the equilibrium degeneracy parameter and η0,ν is a chosen value as typically found
in detailed transport calculations for τν → 0. The values for the different neutrino types are (cf.
Janka 1991b; Janka & Hillebrandt 1989; Myra & Burrows 1990; Keil et al. 2003):

ηeq,νe = (µe + µp − µn)/kBT, η0,νe ≡ 3,
ηeq,ν̄e = −ηeq,νe , η0,ν̄e ≡ 2,
ηeq,νx = 0, η0,νx ≡ 0.

(A.12)
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With ην defined, Tν can now be calculated from the local average neutrino energy, which is
computed from Le,ν and Ln,ν as

〈εν〉 = Le,ν/Ln,ν = Eν(r, t)/nν(r, t)

=

∫∞
0 dε

∫ +1
−1 dµ Ie,ν(r, t, ε, µ)

∫∞
0 dε

∫ +1
−1 dµ In,ν(r, t, ε, µ)

= kBTν F3(ην)/F2(ην) (A.13)

with the Fermi integrals defined by

Fn(η) ≡
∫ ∞

0
dx xn fFD(x, η) (A.14)

Thus the energy-dependent part of fD,ν is fully defined. The angle-dependent part is related to
the flux factor by

fν = Fν/cEν =

∫ +1
−1 dµ µIν
∫ +1
−1 dµ Iν

=

∫ +1
−1 dµ µgν(µ)
∫ +1
−1 dµ gν(µ)

= 〈µν〉. (A.15)

To solve Eq. (A.5) only fν is needed, not the angle-dependent function gν(µ). Far outside of
the neutrinosphere, fν is approaching the vacuum solution. The latter can be derived under
the assumption that neutrinos are emitted isotropically from the sharp surface of a sphere with
radius Rν , which is located at a distance r from the observer. In this case the flux factor is

fν,vac = 1
2

[

1 +
√

1 − (Rν/r)2
]

. (A.16)

fν,vac approaches 1 for r → ∞ (free streaming limit) and fν,vac = 1/2 at the neutrinosphere.
In a more realistic situation the neutrinosphere is not a sharp surface but a layer with finite
thickness in which neutrinos gradually decouple from the stellar medium. In detailed transport
calculations fν(Rν) is therefore found to be about 1/4. (see e.g. Janka & Hillebrandt 1989; Janka
1990). How fast fν approaches fν,vac (with declining optical depth) depends on the steepness
of the density gradient at the neutrinosphere (Janka 1990). Inside the neutrinosphere detailed
transport calculations show that the flux factor behaves roughly like fν ∝ τm

ν with m < 0.

Taking all this into account, the following function constitutes a good approximation for the
flux factors from detailed transport calculations (Janka 1991b, 1990):

fν(τν) =











1
2 [1 + D]

1 + (1 + D)(1 − D2)(n−1)/2 , if τν < τν,1,

1/4 (τν/τν,1)
m, if τν > τν,1.

(A.17)

Here D =
√

1 − (Rν/r)2, the neutrinosphere radius is defined by τν(Rν) = τν,1 and we adopt
τν,1 = 1.1. The power-law index m is chosen such that fν(10) = 1/25, and n is defined by a
local power-law fit of the density profile around the neutrinosphere, ρ(r) ∝ r−n. A higher value
of n therefore means a steeper density gradient.

A.3 Optical depth

Knowledge of the optical depth is necessary to evaluate Eqs. (A.11) and (A.17). For this pur-
pose it is sufficient to compute τν approximately by considering only the most relevant neutrino
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processes and assuming that the neutrino spectrum is given by the spectrum for local thermo-
dynamic equilibrium. This means that instead of Eq. (A.10) we use

f eq
D,ν(εν , r) = fFD

(

εν

kBT (r)
, ηeq,ν(r)

)

(A.18)

with ηeq,ν and T instead of ην and Tν .

The “transport optical depth” is defined as the integral

τt,ν(r) =

∫ ∞

r
dr′〈κt,ν〉(r′) (A.19)

of the energy-averaged “transport opacity” (i.e. the opacity which is relevant for momentum
transfer), 〈κt,ν〉(r) (see, e.g., Straumann 1989; Burrows & Thompson 2004). In the following, all
neutrino interactions included in evaluating the opacity are calculated without final-state lepton
blocking, unless otherwise stated.

The most important opacity-producing reactions are scattering off nucleons (n,p) and nuclei
(Zj , Aj), where j = 1, 2, . . . denotes the considered nuclear species, and absorption by neutrons
and protons in case of νe and ν̄e, respectively. Thus one can write

〈κt,ν〉 = 〈κa
ν〉 +

∑

i∈{n,p,Aj}

〈κs,i
t,ν〉. (A.20)

Here the (neutrino-flavour independent) scattering opacities are to lowest order in neutrino
energy over nucleon rest mass (i.e., without effects of nucleon recoil, thermal motions, and
weak-magnetism corrections):

〈κs,p
t,ν〉 =

1

6

[

5

4
α2 + (CV − 1)2

]

σ0

(mec2)2
〈ε2ν〉 np, (A.21)

〈κs,n
t,ν〉 =

5α2 + 1

24

σ0

(mec2)2
〈ε2ν〉 nn, (A.22)

〈κs,Aj

t,ν 〉 =
1

6
A2

j [CA − 1 +
Zj

Aj
(2 − CA − CV )]2

× σ0

(mec2)2
〈ε2ν〉 nAj

, (A.23)

for scattering off protons, neutrons, and nuclei with number densities np, nn, and nAj
, respec-

tively (see, e.g., Freedman et al. 1977; Straumann 1989; Burrows & Thompson 2004). The
absorption opacities for νe and ν̄e are

〈κa
νe
〉 =

1

4
(3α2 + 1)

σ0

(mec2)2
nn

×
(

〈ε2νe
〉 + 2∆〈ενe〉 + ∆2

)

Θ(〈ενe〉), (A.24)

〈κa
ν̄e
〉 =

1

4
(3α2 + 1)

σ0

(mec2)2
np

×
(

〈ε2ν̄e
〉? + 2∆〈εν̄e〉? + ∆2〈ε0ν̄e

〉?
)

. (A.25)

(see Tubbs & Schramm 1975; Bruenn 1985).

Here σ0 = 4G2
Fm2

e~
2/πc2 = 1.76 × 10−44 cm2 (with the Fermi coupling constant GF), ∆ =

1.2935 MeV is the rest mass difference of neutrons and protons, α = 1.254, CA = 1
2 , CV =

1
2 + 2 sin2 θW, and sin2 θW = 0.23.
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In deriving Eqs. (A.21) – (A.25) (as well as for all rates and source terms given below) the
electron and positron rest masses are ignored (mec

2 � εν) and nucleons and nuclei are assumed
to have infinite rest masses (mn,p,Aj

c2 � εν) and to be nondegenerate. For electrons, phase
space blocking is included in Eq. (A.25) by the factor

Θ(〈εν〉) = 1 − fFD

(〈εν〉 + ∆

kBT
, ηe−

)

, (A.26)

which accounts for the fact that a significant fraction of the possible final electron states may
be occupied. Phase space blocking can be neglected in κa

ν̄e
(Eq. A.25), because the positrons are

non-degenerate.

The neutrino energy moments are (generalising Eq. A.13) given by

〈εn
ν 〉 = (kBTν)

n F2+n(ην)

F2(ην)
, (A.27)

〈εn
ν 〉? = (kBTν)

n F2+n(ην − ∆/kBTν)

F2(ην)
, (A.28)

and for evaluating Eqs. (A.21)–(A.25) to compute τt,ν (Eq. A.19) for use in Eq. (A.17), we take
ην = ηeq,ν and Tν = T .

In contrast, Eq. (A.11) is evaluated with the “effective optical depth for equilibration”,

τν(r) =

∫ ∞

r
dr′〈κeff,ν〉(r′), (A.29)

where the effective opacity is defined as

〈κeff,ν〉 =
√

〈κa
ν〉 × 〈κa

ν + κs
t,ν〉. (A.30)

Here the spectrally averaged absorption opacity, 〈κa
ν〉, is taken to include neutrino-pair annihi-

lation to e±-pairs (Eq. 2.18), which is assumed to be the most important reaction for producing
νxν̄x pairs. Both 〈κa

ν〉 and 〈κa
ν + κs

t,ν〉 are evaluated for the “true” (not the local equilibrium)
neutrino spectrum (i.e. for the spectral temperature Tν and the spectral degeneracy ην instead
of T and ηeq,ν) by employing the source terms from the neutrino transport solution of the last
time step.

A.4 Source terms

Solving Eq. (A.7) requires the knowledge of the emission rates, Q+
νi

, and absorption coefficients,
κ̃ν = κa

ν/fν , which appear in this equation. Since Eq. (A.7) is used to determine the number
fluxes, Ln,ν , and luminosities, Le,ν , of all neutrinos and antineutrinos ν ∈ {νe, ν̄e, νx}, the source
terms need to be calculated for the neutrino number, as well as energy. In the following, all
these neutrino source terms are derived without taking into account final-state lepton blocking,
unless otherwise stated. As in Eq. (A.30), κa

ν is defined to include the contributions from the
β-processes, Eqs. (2.16) and (2.17) for νe and ν̄e, as well as those of e+e− pair annihilation
(Eq. 2.18). The absorption coefficient κa

ν can be computed from the corresponding neutrino
absorption rate by

κa
ν = Q−

ν 4πr2fν/Lν = (Qa
ν + Qann

νν̄ ) 4πr2fν/Lν . (A.31)
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For the number transport the neutrino absorption and emission rates (in units of number per
cm3 per second) by charged-current β-reactions between leptons and nucleons can be written
with our approximations for the neutrino distribution function and the appropriate statistical
weights for the leptons as follows:

Ra
νe

= σc
Le,νe nn

4πr2cfνe

〈ε2νe
〉 + 2∆〈ενe〉 + ∆2

〈ενe〉
Θ(〈ενe〉), (A.32)

Ra
ν̄e

= σc
Le,ν̄e np

4πr2cfν̄e

〈ε2ν̄e
〉? + 2∆〈εν̄e〉? + ∆2〈ε0ν̄e

〉?
〈εν̄e〉

, (A.33)

Re
νe

=
1

2
σc np ne− [〈ε2e−〉? + 2∆〈εe−〉? + ∆2〈ε0e−〉?], (A.34)

Re
ν̄e

=
1

2
σc nn ne+ [〈ε2e+〉 + 2∆〈εe+〉 + ∆2], (A.35)

where σ = 1
4(3α2 + 1)σ0/(mec

2)2 and the electron (positron) number density is

ne∓ =
8π

(hc)3
(kB)3F2(±ηe−) . (A.36)

The electron and positron energy moments are given by

〈εn
e 〉 =(kBT )n F2+n(ηe)

F2(ηe)
, (A.37)

〈εn
e 〉? =(kBT )n F2+n(ηe − ∆/kBT )

F2(ηe)
. (A.38)

The annihilation and production rates of neutrino number in e+e− pair reactions are given
by (adapted from Schinder et al. 1987; see also Janka 1991a and Janka 1991b, and references
therein):

Rann
ν =

σ0c

(4πr2c)2
Ln,νLn,ν̄

〈εν〉〈εν̄〉

{

2

9

Φ(fν , χν)

fνfν̄

C2
Aν + C2

Vν

(mec2)2
〈εν〉〈εν̄〉

+
1

6

1 − fνfν̄

fνfν̄
(2C2

Vν − C2
Aν)

}

, (A.39)

Rprod
ν =

1

18

σ0c

(mec2)2
ne−ne+

{

(C2
Aν + C2

Vν)〈εe−〉〈εe+〉

+
3

4
(mec

2)2(2C2
Vν − C2

Aν)

}

. (A.40)

These rates hold for neutrinos ν or antineutrinos ν̄ of all flavours. In Eq. (A.31), Ra
ν and Rann

ν

have to be used instead of Qa
ν and Qann

ν for computing the absorption coefficient for the number
transport. In Eq. (A.39), Φ(fν , χν) is a geometrical factor,

Φ(fν , χν) =
3

4

[

1 − 2fνfν̄ + χνχν̄ +
1

2
(1 − χν)(1 − χν̄)

]

, (A.41)

where we express the variable Eddington factor χν in terms of the flux factor fν (Eq. A.4)
using a statistical form, which was derived by Minerbo (1978) on grounds of maximum entropy
considerations (for photons or nondegenerate neutrinos, as assumed here):

χν = 〈µ2
ν〉 =

1

3
+

0.01932 fν + 0.2694 f2
ν

1 − 0.5953 fν + 0.02625 f2
ν

. (A.42)
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The weak coupling constants in Eqs. (A.39) and (A.40) are given by

CAν =

{

+1
2 for ν ∈ {νe, ν̄e},

−1
2 for ν ∈ {νµ, ν̄µ, ντ , ν̄τ},

(A.43)

CVν =

{

+1
2 + 2 sin2 θW for ν ∈ {νe, ν̄e},

−1
2 + 2 sin2 θW for ν ∈ {νµ, ν̄µ, ντ , ν̄τ}.

(A.44)

The source term which describes the rate of change per unit of volume in the evolution equation
of the electron lepton number of the stellar medium is

QN = Ẏe nb = (Ra
νe
−Re

νe
) − (Ra

ν̄e
−Re

ν̄e
). (A.45)

The source terms which account for the absorption and emission of energy through νe and ν̄e

are computed in analogy to Eqs. (A.32) – (A.35) as

Qa
νe

= σc
Le,νe nn

4πr2cfνe

〈ε3νe
〉 + 2∆〈ε2

νe
〉 + ∆2〈ενe〉

〈ενe〉
Θ(〈ενe〉), (A.46)

Qa
ν̄e

= σc
Le,ν̄e np

4πr2cfν̄e

×〈ε3ν̄e
〉? + 3∆〈ε2

ν̄e
〉? + 3∆2〈εν̄e〉? + ∆3〈ε0ν̄e

〉?
〈εν̄e〉

, (A.47)

Qe
νe

=
σc

2
np ne−

[

〈ε3e−〉? + 2∆〈ε2
e−〉? + ∆2〈εe−〉?

]

, (A.48)

Qe
ν̄e

=
σc

2
nn ne+

[

〈ε3e+〉 + 3∆〈ε2
e+〉 + 3∆2〈εe+〉 + ∆3

]

. (A.49)

The annihilation or production of energy in neutrinos (ν) by e+e− pair reactions is given as
(Janka 1991a)

Qann
ν =

σ0c

(4πr2c)2
Le,νLe,ν̄

〈εν〉〈εν̄〉

{

2

9

Φ(fν , χν)

fνfν̄

C2
Aν + C2

Vν

(mec2)2
〈ε2ν〉〈εν̄〉

+
1

6

1 − fνfν̄

fνfν̄
(2C2

Vν − C2
Aν)〈ε2

ν〉
}

, (A.50)

Qprod
ν =

1

36

σ0c

(mec2)2
ne−ne+

×
{

[〈ε2e−〉〈εe+〉 + 〈ε2
e+〉〈εe−〉] (C2

Aν + C2
Vν)

+
3

4
(mec

2)2[〈εe−〉 + 〈εe+〉] (2C2
Vν − C2

Aν)

}

. (A.51)

For annihilation of antineutrino (ν̄) energy, 〈ε2
ν〉 has to be replaced by 〈ε2

ν̄〉 and 〈εν〉 has to be
exchanged with 〈εν̄〉 in Eq. (A.50), while the production of ν and ν̄ was assumed to be symmetric
and both rates are given by Eq. (A.51).

Also in scattering processes energy can be exchanged between neutrinos and the stellar medium.
For scattering off e− or e+, using the rates of Tubbs & Schramm (1975), and ignoring electron
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Table A.1: Weak coupling constants for ν and ν̄ scattering off e+ or e− (cf. Eq. A.52). Cx
3 stands for

Cx
3 = (CA − 1)2 − (CV − 1)2, CA = 1

2
, CV = 1

2
+ 2 sin2 θW, and νx can be νµ or ντ .

C1 C2 C3

νee
− (CV + CA)2 (CV − CA)2 C2

A − C2
V

νee
+ (CV − CA)2 (CV + CA)2 C2

A − C2
V

ν̄ee
− (CV − CA)2 (CV + CA)2 C2

A − C2
V

ν̄ee
+ (CV + CA)2 (CV − CA)2 C2

A − C2
V

νxe− (CV + CA − 2)2 (CV − CA)2 Cx
3

νxe+ (CV − CA)2 (CV + CA − 2)2 Cx
3

ν̄xe− (CV − CA)2 (CV + CA − 2)2 Cx
3

ν̄xe+ (CV + CA − 2)2 (CV − CA)2 Cx
3

phase space blocking in the final reaction channels, the following spectrally averaged expression
for the energy transfer rate per unit of volume can be derived (see Janka 1991b):

Qνe =
1

12
(C1 +

1

6
C2)

σ0c

(mec2)2
ne

Le,ν

4πr2cfν〈εν〉
{

[

〈ε2ν〉(〈εe〉 +
3

4
mec

2) − 〈εν〉〈ε2
e〉
]

+
3

8

C3

C1 + 1
3C2

(mec
2)2
[

〈εν〉 −
〈ε2e〉
〈εe〉

]

}

, (A.52)

where e can be e+ or e− and ν stands for neutrinos or antineutrinos of all flavours and the
constants C1, C2, C3 for the different combinations are listed in Table A.1. The term 3mec

2/4
in the bracket results from a merge of the rate expressions for the limits of relativistic and
non-relativistic electrons. In the latter case the neutrino-electron scattering cross section is
proportional to εν/(mec

2) for εν � mec
2 (cf. Sehgal 1974).

Every transfer by neutrino-nucleon scattering, which is only “nearly conservative”, is taken into
account following Tubbs (1979). The corresponding rate is (see Janka 1991b):

QνN =
1

4

σ0c

(mec2)2
CNEN

nN

mNc2
{〈ε4

ν〉 − 6T 〈ε3
ν〉}

× Le,ν

4πr2cfν〈εν〉
(A.53)

with

CNEN =

{

2
3 [(CV − 1)2 + 5

4α2] for N = p,
1
6(1 + 5α2) for N = n.

The symbol ν stands again for neutrinos and antineutrinos of all flavours. Also scattering con-
tributions are included in the energy generation rate Q+ and absorption coefficient κ̃ used in
Eq. (A.7). Considering scattering as an absorption process followed immediately by an emission
process, we add the net energy exchange rates Qνe− , Qνe+ , Qνp and Qνn to Q−

ν (used for com-
puting κ̃ν in Eq. A.7) when the rates are positive (i.e. in case of energy transfer from neutrinos to
the stellar gas), and the absolute values of Qνe− , Qνe+ , Qνp and Qνn to Q+

ν otherwise. The total
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neutrino energy source term to be used in the gas energy equation including the contributions
from νe and ν̄e absorption and emission, νν̄ pair production, and all scattering reactions is

QE =
∑

ν ∈{νe,ν̄e}

(Qa
ν − Qe

ν) +
∑

ν ∈{νe,νµ,ντ}

(

Qann
νν̄ − Qprod

νν̄

)

+
∑

ν ∈{νe,νµ,ντ ,ν̄e,ν̄µ,ν̄τ}

(

Qs
νe+ + Qs

νe− + Qs
νp + Qs

νn

)

, (A.54)

where Qann
νν̄ = Qann

ν + Qann
ν̄ and Qprod

νν̄ = Qprod
ν + Qprod

ν̄ .

In practise, however, the lepton number source term QN as well as the energy source term for
the hydrodynamics part of the code is not computed from Eq. (A.45) and (A.54), respectively,
but from the luminosity change between points (ri, tn) and (r?, t?) (cf. Fig. A.1). The source
terms Q̃i

N and Q̃i
E for a grid cell i at time level tn are then given by

Q̃i
N =

Ldiff
n (ri, tn) − Ldiff

n (r?, t?)

∆Vi
, (A.55)

Q̃i
E =

Ltot
e (ri, tn) − Ltot

e (r?, t?)

∆Vi
, (A.56)

where ∆Vi = 4π
3 (r3

i − r?3) is the part of the cell volume crossed by the characteristic line
between (ri, tn) and (r?, t?), Ltot

e is the sum of the luminosities of neutrinos and antineutrinos
of all flavours, and Ldiff is the difference between the νe and ν̄e number fluxes, Lνe,n − Lν̄e,n.
Equations (A.55) and (A.56) work well as a description of the neutrino sources in the gas
equations only, if the neutrino fluxes do not exhibit a large degree of variability on the radial
and temporal scales of the r-t cells. This, however, is reasonably well fulfilled in the context
considered in this work.

Finally, the outgoing neutrino fluxes transfer also momentum to the stellar fluid. To account for
this, we include a momentum source term QM which enters the Euler equation of the hydrody-
namics solver. It is sufficient to include only the most important reactions, by which neutrinos
transfer momentum, i.e. νe and ν̄e absorption on n and p, respectively, and the scattering pro-
cesses of ν and ν̄ of all flavours off nucleons and nuclei (pair processes and electron/positron
scattering can be safely ignored). For a neutrino or antineutrino ν, the corresponding rate (in
units of erg/cm4) is

Qν
M =

Le,ν

4πr2c





〈κa
νεν〉
〈εν〉

+
∑

i∈{p,n,Aj}

〈κs,i
t,νεν〉
〈εν〉



 , (A.57)

where the first term in the sum is relevant only for νe and ν̄e. The energy averages of the
scattering transport opacities, κs,i

t,ν , and of the absorption opacities, κa
ν , all weighted by the
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neutrino energy, are given by

〈κs,p
t,νεν〉 =

1

6

[

5

4
α2 + (CV − 1)2

]

σ0

(mec2)2
〈ε3ν〉np, (A.58)

〈κs,n
t,νεν〉 =

5α2 + 1

24

σ0

(mec2)2
〈ε3ν〉nn, (A.59)

〈κs,Aj

t,ν εν〉 =
1

6
A2

j

[

CA − 1 +
Zj

Aj
(2 − CA − CV)

]

σ0

(mec2)2
〈ε3ν〉nAj

, (A.60)

〈κa
νe

ενe〉 =
1

4
(3α2 + 1)

σ0

(mec2)2
(A.61)

×
(

〈ε3νe
〉 + 2∆〈ε2

νe
〉 + ∆2〈ενe〉

)

Θ(〈ενe〉),

〈κa
ν̄e

εν̄e〉 =
1

4
(3α2 + 1)

σ0

(mec2)2
(A.62)

×
(

〈ε3ν̄e
〉? + 3∆〈ε2

ν̄e
〉? + 3∆2〈εν̄e〉? + ∆3〈ε0ν̄e

〉?
)

.

The energy moments 〈εn
ν 〉 and 〈εn

ν 〉? are given in Eqs. (A.27) and (A.28). They are calculated
using the nonequilibrium neutrino spectral parameters Tν and ην . The momentum source term
in the equation of gas motion then reads

QM =
∑

ν ∈{νe,νµ,ντ ,ν̄e,ν̄µ,ν̄τ}

Qν
M (A.63)

It was not included in the simulations presented in this work, but will be taken into account in
future calculations.

The implementation of the source terms Q̃N, Q̃E, and QM into the framework of our PPM
hydrodynamics code was discussed in detail by Rampp & Janka (2002) and Buras et al. (2006a).

We finish by pointing out that the approximative neutrino transport scheme developed here
employs two basic assumptions, which are radical simplifications of the true situation:

1. In deriving Eq. (A.7) from the transport equation we assumed that the flux factor f(r, t)
is a known function, although it is actually dependent on the solution of the transport
problem (see Eq. A.4). Equation (A.7) certainly has the advantage of analytic simplicity,
but also has a severe disadvantage: The source terms can be very large and the numerical
use requires a very fine grid zoning at high optical depths. The cell size should fulfill the
constraint that the optical depth of the cell stays around unity or less. Moreover, the
implementation of the source terms in (A.7) and the medium sources (Eqs. A.55, A.56)
is not symmetric and the numerical scheme does not strictly conserve the total lepton
number and total energy of neutrinos plus gas.

2. For treating the spectral dependence, we made the assumption that the neutrino phase
space distribution function can be factorised into a product of an angle-dependent function
gν and an energy-dependent term, which we assume to be of Fermi-Dirac shape. This cer-
tainly constrains the spectral shape, but the factorisation also implies that the flux-factor
is assumed not to be an energy-dependent quantity. This in turn means that the mean en-
ergy of the neutrinos flux, 〈εν〉flux ≡ Le,ν(r, t)/Ln,ν(r, t) is identical with the mean energy
of the local neutrino density, 〈εν〉local ≡ Eν(r, t)/nν(r, t). This is certainly a problematic
simplification in view of the fact that the neutrino interactions with the stellar medium
are strongly energy-dependent.
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Nevertheless, the described neutrino transport treatment represents a practical approximation
which is able to reproduce basic features of more detailed transport solutions and yields agree-
ment with those even beyond the purely qualitative level.



B
Explosion energy

The explosion energy of neutrino-driven supernovae consists of two major contributions. The
first is the recombination energy of the matter in the gain layer at the onset of the explosion.
This matter consists of free nucleons and alpha particles at the time the explosion starts. Almost
all of this mass (except for some fraction in the downflows, which is accreted onto the neutron
star) ends up in a dense shell behind the expanding shock. As the shock propagates outward,
the temperature in this expanding shell decreases and the matter recombines to α-particles and
later to nuclei.

Figure B.1 displays the available recombination energy of the matter in the gain layer at the
time of the explosion,

Egain
rec (texp) =

∫

gain layer
εrec(r, texp) dV . (B.1)

Here εrec(r, t) denotes the density of recombination energy available when matter consists of
nucleons, α-particles and some mass fraction of heavy nuclei,

εrec(r, t) = Bh nmax
h (r, t) − (Bα nα(r, t) + Bh nh(r, t)) , (B.2)

Figure B.1: Available recombination energy, Egain
rec , as a function of the mass in the gain layer, ∆Mgain,

at the time of explosion for the models of Tables 3.1–3.3. The slope of this approximately linear relation
corresponds to about 5 MeV per baryon (dotted line).

149
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Figure B.2: Explosion energy after the recombination of the ejecta, Eexp(trec), as a function of the
available recombination energy in the gain layer at the onset of the explosion, Egain

rec (texp), for the models
of Tables 3.1–3.3. For low explosion energies the two quantities agree well.

with Bh and Bα being the binding energies of a representative heavy nucleus (Zh, Ah = Nh+Zh)
from the iron group (as assumed in our equation of state) and of α-particles, respectively,
and nmax

h = min( ntot
p /Zh, ntot

n /Nh ) and nh are the maximum and current number densities,
respectively, of this heavy nucleus when ntot

p and ntot
n are the total (bound+free) number densities

of protons and neutrons.

Figure B.1 shows that for all models of Tables 3.1–3.3 Egain
rec (texp) ≈ Ngain

b (texp) × 5 MeV, when

Ngain
b is the total number of baryons in the gain layer. This means that due to the partial

assembly of free n and p in α-particles at the time of explosion, about 5 MeV (instead of >
8 MeV) remain available for being released by recombination during the subsequent expansion
and cooling.

This recombination is essentially complete when the shock has reached a radius of 3000 km (re-
combination to α-particles happens even much earlier). We denote this time by trec. Figure B.2
demonstrates that the explosion energy at time trec, Eexp(trec), roughly equals the available re-

combination energy, Egain
rec (texp), at the onset of the explosion. This means that neutrino heating

essentially has the effect of lifting the total energy of mass elements in the gain layer close to
zero (i.e., εtot = εkin + εint + εgrav ≈ 0) and thus makes this matter unbound and enables its
expansion in the gravitational potential of the forming neutron star. The excess energy of this
matter at time trec, i.e. Eexp(trec), is provided by the recombination of nucleons to α-particles
and finally to iron-group nuclei. Only in case of higher explosion energies, Eexp(trec) is clearly

larger than Egain
rec (texp) (Fig. B.2). In this case neutrino heating in the gain layer is stronger and

the heating time scale of the matter there shorter than the expansion time scale when the shock
begins to accelerate outwards. Therefore neutrinos are able to deposit “excess energy” in the
ejecta before this matter has moved out of the region of strong heating.

The second contribution to the explosion energy comes from the neutrino-driven baryonic wind
which sets in after the surroundings of the nascent neutron star have been cleaned from the
initially heated gas. Indeed this wind is an important energy source at “late” times. To demon-
strate this, we compare the time derivative of the explosion energy, dEexp/dt, with the wind
power, Lwind, and the net energy loss/gain rate Lshock at the shock (Fig. B.3). The curve for
dEexp/dt in Fig. B.3 is calculated as the numerical derivative of the energy integral

Eexp(t) =

∫

V +

εtot(r, t)dV , (B.3)

where the integration is performed over the volume V +, in which the total energy εtot(r, t) is
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Figure B.3: Evolution of the time derivative of the explosion energy (dEexp/dt, thick solid) for Model
B18. Also shown are the wind power at a radius of 200 km (Lwind, dotted), the energy loss/gain rate at
the shock by PdV work and swept-up matter (Lshock, dashed), and the sum of the latter two quantities
(Lwind+shock, thin solid). Lwind+shock agrees well with dEexp/dt for t > trec (right of the vertical line).

positive (see also Eq. 3.8). For t > trec this volume fills the region between an inner boundary
at r ≈ 200 km and the shock (except for some parts of the accretion downflows, where εtot may
still be negative).

The explosion energy is subject to changes by PdV -work performed at, and by energy fluxes
through the boundaries of V +, in particular by the wind, whose power is given by the surface
integral

Lwind =

∮

r=200 km
(εtot + εrec + P) max(vr, 0) dS. (B.4)

This expression takes into account the total energy (εtot = ρetot with etot defined by Eq. 3.9) of
the wind material streaming through the inner boundary radius into V +, the energy that will
be set free at larger radii by recombination (Eq. B.1), as well as the work performed by pressure
forces. Here we have neglected effects due to downflows by omitting contributions to the surface
integral from zones with negative radial velocity.

The change of the explosion energy due to energy flow through the outer boundary of V + (i.e.,
the shock), is given by the net energy loss/gain rate

Lshock =

∮

r=Rs(θ)+
[(εtot + εrec + P) vr + (εtot + εrec) Ṙs] dS. (B.5)

The integration has to be performed over a surface located slightly upstream of the shock.
Compared to Eq. (B.4) an additional term arises here from the motion of the shock, which
propagates with a local velocity Ṙs(θ).

Figure B.3 shows that these two terms explain the evolution of dEexp/dt for t > trec, i.e.

dEexp/dt ≈ Lwind + Lshock (B.6)

holds at late times, and the thin and thick solid lines in Fig. B.3 almost coincide. Note also that
Lwind � |Lshock|. This is true for all our models, and therefore the increase of the explosion
energy after about 0.5 s post bounce is (almost exclusively) associated with the time-integrated
wind power (see Fig. B.4).

The relative importance of the two major constituents of the explosion energy that we have
discussed here, i.e., the nuclear recombination energy of the matter in the gain layer and the
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Figure B.4: Relation between the increase of the explosion energy between t = 0.5 s and t = 1 s,

∆Et>0.5 s
exp , and the integrated wind power during this time interval, ∆Et>0.5 s

wind , for the models of Tables 3.1–
3.3.

Figure B.5: Ratio of the recombination contribution to the total explosion energy 1 s after core bounce,
Egain

rec (texp)/Eexp(1 s), as a function of Eexp(1 s) for the models of Tables 3.1–3.3. For low-energy models
the recombination contribution dominates, whereas for higher explosion energies the wind contribution
becomes more important.

integrated power of the neutrino-driven wind, varies with the explosion energy. In our “standard
boundary contraction” models the fraction of the explosion energy provided by recombination
drops from about 70% for the low-energy models to about 30% for the model with Eexp(1 s) ≈
1.5×1051 erg (Fig. B.5). This fraction declines because the wind power is proportional to a higher
power of the luminosity (Lwind ∝ Lα

ν with α ≈ 3; Thompson et al. 2001) and although the mass
in the gain layer at the onset of the explosion scales linearly with the boundary luminosity
(Fig. 3.11).

For the “rapid boundary contraction” cases the wind contribution is even more important, e.g.
for Model W12F-c Egain

rec (texp)/Eexp(1 s) ≈ 0.2, i.e. about 80% of the explosion energy are
generated by the neutrino-driven wind. For a fixed boundary luminosity the wind power is
higher in this case than for the “standard boundary contraction”, because Lwind increases with
decreasing neutron star radius (see e.g. Thompson et al. 2001). However, ∆Mgain(texp), and thus

also Egain
rec (texp), are similar for models with “standard” and “rapid” boundary contraction and

the same Lib. This is so because two effects compensate each other roughly: On the one hand
the density at a given radius r in the gain layer is lower for a faster contraction (ρr(r, trexp) <
ρs(r, tsexp), where r and s denote the rapid and standard contraction cases, respectively), but on
the other hand also the gain radius is smaller and thus located in a region of higher density,
ρr(Rr

g, t
r
exp) > ρs(Rs

g, t
s
exp).
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At t = 1 s, when we stopped most of our simulations, the explosion energy is still increasing
(see, e.g., Fig. 3.20). Yet, with the subsequent drop of the core luminosity (we assume a t−3/2

behaviour at t > tL, see Eq. 2.27) also the wind power, which is proportional to Lα
ν (see above),

must decline strongly. Therefore the explosion energy will grow only moderately. In case of the
long-time simulation B18-lt it rose from 1.14 × 1051 erg at t = 1 s to 1.43 × 1051 erg at t = 2 s,
and reached 1.46 × 1051 erg by the end of the simulation at t = 3.6 s.
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C
Hydrodynamics in an accelerated frame of

reference

In an inertial frame of reference the hydrodynamic equations are given by

∂ρ

∂t
+ ∇ · (ρ~v) = 0, (C.1)

ρ

(

∂~v

∂t
+ (~v · ∇)~v

)

+ ∇P = ρ~g, (C.2)

∂ρE

∂t
+ ~∇ · ((ρ E + P) ~v) = ~v · ρ~g, (C.3)

where ρ is the density, ~v is the velocity, P is the pressure, ~g is the gravitational acceleration and
E = ε + v2/2 is the sum of internal energy, ε, and kinetic energy, εkin, per unit mass.

Let AF be a frame of reference that coincides with an inertial frame IF at time t = 0 and
accelerates with a constant rate a in z-direction, ~a = a~ez. The Cartesian coordinates of both
frames are then related by

(x′, y′, z′, t′) = (x, y, z − at2/2, t) (C.4)

(primed quantities are used for the accelerated frame), which implies that

∂z′(x, y, z, t)/∂t = −at and ∂z(x′, y′, z′, t′)/∂t′ = at. (C.5)

For density, pressure, velocity, kinetic energy and gravitational acceleration the following rela-
tions hold:

ρ′(x′, y′, z′, t) = ρ(x, y, z, t),

P ′(x′, y′, z′, t) = P(x, y, z, t),

~v′(x′, y′, z′, t) = ~v(x, y, z, t) − at~ez

ε′kin(x
′, y′, z′, t) = εkin(x, y, z, t) − v2

z/2 + (vz − at)2/2,

~g′(x′, y′, z′, t) = ~g(x, y, z, t) − a~ez. (C.6)
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156 APPENDIX C. HYDRODYNAMICS IN AN ACCELERATED FRAME OF REFERENCE

From relations (C.4)–(C.6), it is easy to see that the equation of mass conservation (C.1) does
not change in the accelerated frame. The momentum equation in this frame is

ρ′
(

∂~v′

∂t
+ (~v′ · ~∇′)~v′

)

+ ~∇′P ′ − ρ~g′ = −atρ

(

∂vx

∂z
~ex +

∂vy

∂z
~ey

)

.

Note that in contrast to Eq. (C.2) there is now an additional term on the right hand side,
which affects the momentum components perpendicular to the direction of acceleration. Thus
for instance the x-component of the time derivative of the velocity is

∂v′x
∂t

= −
(

v′x
∂v′x
∂x′

+ v′y
∂v′x
∂y′

+ v′z
∂v′x
∂z′

)

− 1

ρ′
∂P ′

∂x′
+ g′x − at

∂vx

∂z
, (C.7)

where the additional (rightmost) term is negligible compared to v ′
z (∂v′x/∂z′), as long as |at| �

|vz|.
Similarly, it can be shown that the additional terms arising in the energy equation (C.3) for an
accelerated frame of reference are of order t2 and can also be neglected, as long as |at| � |vz|
holds.

Within a typical time step ∆t of a supernova simulation (of order 10−6 s) the condition |a∆t| �
|vz| is satisfied, because the maximum neutron star accelerations are of O(108 cm/s2), and hence
|a∆t| = O(100 cm/s), which is much smaller than the relevant velocities in the simulations,
which are of O(106cm/s). Thus a solution of the inertial frame hydrodynamics equations with
the simple replacement ~g → ~g′ = ~g − ~a should yield an excellent approximation to the solution
of the hydrodynamic equations in the accelerated frame.

Unfortunately, in the present problem the neutron star acceleration, and hence the instantaneous
acceleration of the frame, ~a(t), is not known a priori, because it is coupled to the solution of
the hydrodynamic problem during a considered time step. Therefore we need to make use of an
operator-splitting approach, in which we first ignore the acceleration of the frame of reference and
simply solve the inertial frame hydrodynamics equations (just using the gravitational acceleration
~g). We can then compute the current value of ~a(t), which is assumed to be constant over the time
step, using momentum conservation: The sum of the momenta of the neutron star core, ~Pcore, and
the matter on the numerical grid, ~Pgrid, is conserved and initially zero, so that ∆ ~Pcore = −∆~Pgrid.
We can then use the relation

~a(tn) = −
~Pgrid(t

n) − ~Pgrid(t
n−1)

Mcore ∆t
(C.8)

to determine the acceleration in this time step. Finally we take the effects of the global acceler-
ation of our frame into account in a second step, by adding

−~a(tn) ∆t ≡ −∆~vn
core (C.9)

to the hydrodynamic velocity in each zone of the grid, in essence performing a Galilei transfor-
mation to an instantaneous inertial frame in which the neutron star is again at rest.



Danksagungen

Dank gebührt an erster Stelle meiner Mutter, meinem Bruder und dessen Freundin, die aus so
manchem Wochenende einen gesellschaftlichen und kulinarischen Höhepunkt machten und mich
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