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Abstract

Many problems in computer vision and augmented reality (AR) require the estimation
of the pose of objects or mobile users in real-time. While reliable solutions have been
proposed for pose estimation given correspondences and feature-based 3D tracking, fast
and fully automated initialization for tracking, i.e. estimation of the initial pose is still an
open problem. The difficulty stems from the need for fast and robust detection of known
objects in the scene. This dissertation presents a fast and automated object detection
and pose estimation system capable of working with large amounts of background clutter,
severe occlusions, and strong viewpoint and scale changes.

The thesis builds upon existing algorithms introduced in the last few years and devel-
ops various novel techniques which significantly improve both time and functional perfor-
mance for detection and pose estimation. The advances can be summarized as two main
contributions.

First, a method for a scalable, statistical and compact representation of the object
of interest is introduced based on fusion of 3D geometric and appearance information.
This is achieved during an offline learning process by a statistical analysis and evaluation
of distinctive features of the target object. This representation is then used at run-time
during the matching and pose estimation processes to limit the number of hypothesis by
incorporating both photometric and 3D geometric consistency constraints. This allows
to reduce the effect of the complexity of the 3D model on the run-time performance and
makes the method especially for large environments very powerful.

The second contribution consists of a novel sensor fusion framework for pose estimation
based on a coarse to fine strategy capable of incorporating multiple sensors, e.g. mobile
and stationary cameras. This relies on a statistical analysis, probabilistic estimation and
fusion of the uncertainties of the sensors.

Furthermore, this system is integrated into an AR tracking framework for the initial-
ization of a marker-less real-time tracking system, which proves to be fast and reliable
enough for industrial AR applications.
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Zusammenfassung

Viele Probleme in der Computer Vision und erweiterter Realität (AR) benötigen die
Berechnung der Position und Orientierung von Objekten oder mobilen Benutzern in Echt-
zeit. Während hierfür viele präzise Trackingsysteme in den letzten Jahren hinweg entwick-
elt wurden, bleibt schnelle und völlig automatisierte Initialisierung und Reinitialisierung
der Systeme noch ein offenes Problem. Die Hauptschwierigkeit is eine schnelle und ro-
buste Detektion der schon bekannten Objekte aus der Szene. Diese Dissertation stellt
ein schnelles, völlig automatisiertes und vor allem skalierbares Objekdetektionssystem
vor, welches im Stande ist, mit starken Blickwinkel- und Skalierungsänderungen, partielle
Verdeckungen und grossen Mengen von Hintergrundclutter zurecht zu kommen.

Die Arbeit baut auf bereits vorhandene Algorithmen auf, die in den letzten Jahren
eingeführt wurden, und schlägt verschiedene neue Methoden vor, die sowohl die Zeit-,
als auch die funktionelle Performance entscheidend verbessern. Die Weiterentwicklungen
beinhalten unter anderem eine skalierbare und statistische Objektrepräsentation, die auf
einer Fusion der 3-dimnsionalen Form und Erscheinungsmodelle basiert, ein Sensorfusion-
ssystem, das verschiende Sensoren integriert, und ein Tracking Management System, das
gezeigt hat, dass es für industrielle AR Anwendungen schnell und verlässlich genug ist.
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Chapter 1

Introduction

No problem is too small or too trivial if we can really do something about it.

– Richard Feynman (1918 – 1988)

1.1 Motivation

The problem addressed in this thesis is the automatic recovery of the three-dimensional
pose of an object of interest from a single image.

Tracking objects through image sequences is one of the fundamental problems in com-
puter vision, and estimating the motion and pose has been an area of research for many
years. In many recent applications ranging from Robot Navigation, Surveillance to Aug-
mented Reality real-time performance is of critical importance. Many reliable solutions
have been proposed for real-time pose estimation given correspondences [30, 113, 109, 48]
and feature-based 3D tracking [146, 43, 28]. Traditional tracking approaches make use of
a strong prior on the pose for each new frame. Imposing temporal continuity constraints
across frames increases the quality and robustness of the results. During the last years
vision based tracking systems have reached a maturity level capable of tracking complex
3D objects very accurately [60, 32, 58, 59].
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However, in practice robust object tracking in real-time is quite challenging and re-
mains an open problem. Reasons for that are manifold. First of all tracking systems
require an initialization, i.e. providing the system with the initial pose of the object or
camera. Once tracking is started, rapid motions causes image features to undergo large
motion between frames which can cause visual tracking systems to fail. Furthermore, it can
cause motion blurred images where extraction of feature correspondences may fail. The
lighting during a shot can change significantly; reflections and specularities may confuse
the tracker. Finally, complete or partial occlusions as well as large amounts of background
clutter may result in tracking failure. Once tracking fails the system must be re-initialized
in the same manner. Therefore, one of the main challenges in tracking remains automated
initialization and recovery. Systems that are initialized by hand or require the camera to
be very close to a specified position are not desirable options.

The lack of a fast, reliable and automated initialization method is one of the main
crucial problems that make many current tracking systems useless in the industry as well
as in computer aided minimally invasive surgery. This has led to increased popularity of
fiducial- or marker-based tracking system such as ARToolKit [56], or A.R.T. system [6],
where the 3D tracking task is simplified to overcome the tracking limitations by detecting
predefined artificial markers in every frame independently without constrains on camera
pose. Using markers increases robustness and reduces computational requirements. How-
ever, it requires engineering the environment, which is not accepted in many industrial
applications by the end-users and is sometimes even impossible, e.g. in outdoor environ-
ments. This has led to the development of systems in hybrid configurations involving
expensive magnetic or inertial trackers [60].

The difficulty of overcoming the vision based tracking limitations as described above
stems from the need for fast and robust detection and pose estimation of objects in the
scene from a single image without priors on the pose.

The main aim of this thesis is to study the problem of automated initialization in
particular for Augmented Reality systems. Next section gives a brief introduction into
this field. In the following sections the problem definition is given in that context and
some industrial applications are described.

1.1.1 An introduction to Augmented Reality

Augmented reality (AR) is a technology by which a user’s perception of the real world
is augmented with additional information generated from a computer model in real time
[135, 21, 9, 8]. The visual enhancements may include virtual explanatory labels, three-
dimensional rendered models, and shading and illumination changes. AR allows a user
to work with and examine real objects while receiving additional information about them
through a display. Augmented Reality can be applied in many fields including sectors of
industry, e.g. for repairing and maintenance of complex machines and facilities, visualizing
sensor or simulation data, and for interior or exterior design. Other fields of applications
include medical applications such as computer aided minimally invasive surgery.

The displays for viewing the merged virtual and real environments can be classified into
three categories: head mounted, hand held, and projective displays [9, 8]. Independent of
which display technology is used, one of the most crucial problems that remains challenging
to this day is the registration problem. The objects in the real and virtual worlds must be
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properly aligned with respect to each other, or the illusion that the two worlds coexist will
be compromised. Many applications such as industrial or medical applications demand
accurate registration. For example, if the instruction to click a button is not shown on
the right button in the machine, it would be useless. More seriously, in the needle biopsy
application [104], if the virtual object is not where the real tumor is, the surgeon will miss
the tumor and the biopsy will fail. Without accurate registration, Augmented Reality will
not be accepted in many applications.

In the case of using a head mounted display (HMD), a common approach to registration
is to mount a sensor on the user’s head. Assuming the position of the sensor relative to
the display is fixed, registration may be split into two parts: an accurate calibration of
each eye’s display relative to the sensor, and robust and accurate tracking of the sensor’s
position in the world. The tracking problem for AR is defined as the task of estimating the
6 DOF pose, i.e. three-dimensional position and orientation, of an object, e.g. the HMD,
in a given coordinate system.

A wide variety of tracking technologies have been applied to AR and are described in
recent surveys [118, 152]. Many tracking technologies have been used in AR applications.
These include mechanical, magnetic, ultrasound, inertial, vision-based and hybrid trackers.
Magnetic and ultrasound sensors have been used successfully, but confine the user to an
instrumented working volume which may be very small. Magnetic trackers are vulnerable
to distortion by metal in the environment. Ultrasound trackers suffer from noise and are
difficult to make accurate at long ranges because of variations in the ambient temperature.
Inertial trackers drift with time.

Vision based trackers such as mobile cameras on the other hand can operate without
external beacons, and video capture capability is becoming a standard feature in off-the-
shelf PCs. Consequently, the use of cameras as sensors for tracking has been the subject
of substantial research and many reliable solutions have been proposed in the literature.

1.1.2 Visual tracking for Augmented Reality

Tracking mobile users and objects is a central part of every augmented reality system.
Among many available tracking technologies the vision-based tracking systems are in many
application fields the method of choice due to their accuracy as well as flexibility and ease
of use. Many tracking techniques have been proposed that allow alignment of real and
virtual worlds in real-time using images acquired by a camera.

Some of the vision-based trackers used in AR are based on tracking of a set of predefined
patterns, artificial landmarks or fiducial markers (see Figure 1.1(a)-(c)). These markers
need to be placed in the environment and calibrated, i.e. their three dimensional positions
have to be computed. Each marker with its respective predefined pattern is then detected
in the camera images and used to estimate the pose of the camera.

The use of markers increases robustness and reduces computational requirements.
However, their use can be complicated as they require certain maintenance. For instance,
placing a marker in the workspace of the user can be intrusive and the markers may from
time to time need re-calibration. This is in particular within industrial environments not
easily accepted by the end users. Therefore, direct use of scene features for tracking in-
stead of the markers is much desirable, especially when certain parts of the workspace
do not change in time. For example, a control panel, as shown in see Figure 1.2(a), has
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(a)

(b)

(c)

Figure 1.1: Marker-based tracking systems. (a) ARToolKit [56], courtesy of M.
Billinghurst. (b) A.R.T. tracking system [6]. (c) RAMP system [123].

fixed buttons and knobs that remain the same over its lifetime. The use of these rigid
and unchanging features for tracking simplifies the preparation of the scenarios for scene
augmentation as well.

1.1.3 Marker-less tracking and the initialization problem

The marker-less tracking systems rely on natural features present on the object of interest
or in the scene, such as corner points, edges, line segments, conics, blobs or regions, cylin-
drical objects [103], etc. There have been some efforts addressing marker-less tracking in
the computer vision literature [43, 146, 23, 100, 132, 108]. The main advantages of these
marker-less tracking approaches are their accuracy and speed which is required for AR
applications. However, in practice robust object tracking in real-time is difficult and re-
mains an open problem. Reasons for that are manifold. First of all all tracking approaches
do require an initialization, i.e. providing the system with the initial pose of the object
or camera. Once tracking is started, rapid camera or object movements causes image
features to undergo large motion between frames which, can cause visual tracking systems
to fail. Furthermore, it can cause motion blurred images where extraction of feature cor-
respondences may fail. The lighting during a shot can change significantly; reflections and
specularities may confuse the tracker. Finally, complete or partial occlusions as well as
large amounts of background clutter may result in tracking failure. On the other side, the
optimization or minimization algorithm may be subject to local minimum or divergence.

Figure 1.3 shows an example of an edge-based tracker that fails due to fast movements
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(a) (b)

(c) (d)

Figure 1.2: Marker-less tracking systems. (a) Genc et al [43]. (b) Klein [58], courtesy of
T. Drummond. (c) Drummond et al [32], courtesy of T. Drummond and R. Cipolla. (d)
Vachetti et al [146], courtesy of P. Fua.

causing motion blur. Once the tracker has failed, a re-initialization is required to continue
tracking. As a consequence, a main crucial problem of the current marker-less tracking
systems is the automated initialization, i.e. providing the system automatically with the
initial pose of the user’s view or camera. This procedure needs to be done each time the
system looses track. This has led to the development of systems in hybrid configurations
involving expensive magnetic or inertial trackers [59]. However, in this thesis we address
the problem of automatic initialization based on camera images only.

The lack of a fast, reliable and automated initialization method is one of the main cru-
cial problems that make many current marker-less tracking systems useless in the industry
as well as in computer aided minimally invasive surgery. In our particular case, namely
industrial applications of augmented reality, where the user wears a head mounted camera,
this problem becomes very challenging. Due to fast head movements of user’s head while
working in a collaborative industrial environment and e.g. talking to co-workers, frequent
and fast initialization is required. The main aim of this thesis is to study the problem of
maintaining an estimate of the relative position between a monocular camera sensor and
the position of 3D objects via the use of visual information.

1.1.4 Applications

This section describes some industrial applications of AR. Other potential AR applications
that have been explored include medical applications, robot path planning, annotation,
entertainment, and military aircraft navigation and targeting. Some medical AR projects
the author has been involved in are described in appendix A.

Industrial AR

AR has been applied to a few sectors of industry mainly in order to improve manual work
progress. One of the first industrial AR applications, the AR wire bundle assembly has
been developed at Boing by David Mizell [21]. This project aimed at making the use of
prefabricated guidance board for wiring obsolete by using optical see-through HMDs and
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Figure 1.3: The initialization problem. Each time tracking is lost, e.g. due to fast camera
motion causing blurred images, the tracking system needs to be initialized again.

wearable computers instead. The largest industrial AR (IAR) consortium, ARVIKA, was
funded by Germany’s Federal Ministry of Education and Research organization, which
supported the Augmented Reality for Development, Production, and Servicing. In the
ARVIKA project many solutions for using AR in manufacturing, similar to the wire bun-
dle assembly have been proposed. But unfortunately most of them have stalled at the
prototype level, and have not found regular use in production units yet. One of the
few solutions for manufacturing that has been accepted by the end-users and installed in
real industrial setting is the intelligent welding gun (Echtler et al [34]), developed in the
PAARTI project by TU Munich for BMW within the ARVIKA consortium. The system
was designed to help welders in the automotive industry shoot studs with high precision
in the body of early automobile prototypes. The intelligent welding gun is a regular gun
with a display attachment, a few buttons for user interactions, and reflective markers to
track the gun position and orientation from stationary cameras (see Figure 1.4 (a)). While
welders operate and move the gun, the display shows three-dimensional stud locations on
the car frame relative to the current gun position. Navigational metaphors, such as notch
and bead and a compass, are used to help workers place the gun at the planned stud
positions with required precision. See [34] for more detail.

In the FixIt [33, 63] project, the objective was assisting workers in diagnosing machine
malfunctions using AR. The idea is that by overlaying virtual information of a control sys-
tem directly onto the machine while it is in operation, AR has the potential to help workers
obtain a better understanding of the reasons for malfunctions. This will be described in
more details in section D.

One of the other very promising application areas of Augmented Reality (AR) is the
design of new products, such as cars or buildings [61]. Klinker et al describe in [62]
the efforts in the project Fata Morgana to develop a proof-of-concept AR system for car
designers. Figure 1.4(b) shows a demonstration system for presenting cars on a designer’s
desk.

Another branch of industrial applications involves integrating AR into the monitoring
and control processes in industrial settings. Nassir Navab developed with his colleagues at
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(a) (b)

Figure 1.4: Industrial AR Applications. (a) The intelligent welding gun [34]. (b) Aug-
mented desktop of a car modeler [62].

Siemens a system that aims at integrating 3D models, industrial drawings, factory images,
AR visualization, computer-assisted tracking and localization, wireless communication and
data access, and speech-based interaction to provide end-to-end solutions that empower
wireless workers [106]. The system is based on an IAR software solution coined CyliCon
that has been created for as built reconstruction of industrial pipelines (see Figure 1.5 (a)).
Thereby virtual models of the areas of interest are reconstructed using AR techniques
and augmented along with industrial drawings on the views of the real scene. These so
called COP (coregistered orthographic and perspective) images [102, 5] make the design
of new calibration and 3D reconstruction algorithms possible while reducing the need for
calibration markers [105, 4]. Combining this solution with a user localization and tracking
system in large environments, provides a very reliable, user-friendly, cost-effective and
most important scalable solution for AR visualization and data access (see Figure 1.5
(b)).

Chapter 7 will discuss further IAR applications of the proposed detection and pose
estimation system.

1.2 Thesis overview

This section states the main contributions of this thesis, and gives a brief outline of the
following chapters.

1.2.1 Contributions

The main contributions of this thesis are

• A novel sensor fusion framework for pose estimation based on a coarse to fine strategy
capable of incorporating multiple sensors (Chapter 4). It is not limited in tracking
range and working environment, given a 3D model of the objects or the real scene.
This is achieved based on a statistical analysis and probabilistic estimation of the
uncertainties of the tracking sensors. The explicit representation of the error distri-
bution allows the fusion of different sensor data in order to estimate the initial pose
and improve the registration accuracy. Although the methodology presented here
is not restricted to a particular tracking technology, for this work it was applied to
an augmented reality system, using a mobile camera and several stationary tracking
sensors, and can be easily extended to the case of any additional sensor. In order to
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(a) (b)

Figure 1.5: CyliCon System [106] provides beside as-built reconstruction functionalities,
augmented reality visualization of images, drawings, and virtual models (a). Mobile aug-
mented reality allows the user to access the data through augmented views of the real
environment (b).

solve the initialization problem, we adapt, modify and integrate advanced techniques
such as plenoptic viewing, intensity-based registration, and ICP. Thereby the regis-
tration error is minimized in 3D object space rather than in 2D image. Experimental
results show how complex objects can be registered efficiently and accurately to a
single image.

• A fast, robust and automated object detection and pose estimation system which
counters problems related to the limited repeatability of the feature detectors, and
the difficulty of matching, in the presence of large amounts of background clutter,
severe occlusions and particularly challenging viewing conditions (Chapters 5 and 6).
We propose a method that conducts a statistical analysis of the appearance of object
features from all possible viewpoints in the scene and incorporates the 3D geometry
during both matching and the pose estimation processes. Thereby the appearance
information from the 3D model and real images are combined with synthesized im-
ages in order to learn the variations in the multiple view feature descriptors using
PCA. Furthermore, by analyzing the computed visibility distribution of each patch
from different viewpoints, a reliability measure for each patch is estimated. This
reliability measure is used to further constrain the classification problem. This re-
sults in a scalable representation reducing the effect of the complexity of the 3D
model on the run-time matching performance. Moreover, as required in many real-
time applications this approach can yield a reliability measure for the estimated
pose. Experimental results show how the pose of complex objects can be estimated
efficiently from a single test image (Chapter 6).

• Transfer to Industry: A final contribution of this thesis involves the transfer of
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marker-less augmented reality technology to industry. Our object detection sys-
tem has been integrated into an AR tracking framework for the initialization of a
marker-less real-time tracking system. We introduce a tracking management frame-
work designed for single and multiple object tracking which has proved to be fast
and reliable enough for industrial AR applications (Chapter 7). This was carried
out within the ARTESAS project funded by the German Ministry for Education
and Research and supervised by the DLR (German Aerospace Center). ARTESAS
aims at the exploration and evaluation of Augmented Reality base technologies for
applications in industrial service environments.

1.2.2 Organization of the thesis

The structure of the thesis is as follows. First the mathematical framework and problem
definition is given in chapter 2. In chapter 3 we discuss the related work and summarize
the state of the art. Chapter 4 introduces a sensor fusion framework for automated
initialization of marker-less tracking systems. A brief introduction to the problem of
finding corresponding features, and the basic ideas behind the scale invariant and affine
covariant features are given in chapter 5. Chapter 6 presents a method for fast and robust
object detection and pose estimation by fusing both the underlying 3D and appearance
models. In chapter 7 we discuss further experimental results and potential industrial AR
applications of the object detection system. Moreover, we describe the tools that have been
developed for the offline training process. Finally, the integration of our detection system
into an AR tracking framework is described. Thereby, we introduce a tracking management
framework designed for single as well as multiple object tracking. Conclusions, limitations
as well as future work are provided in chapter 8.

Since every chapter is relatively self-contained, it directly includes the related results,
followed by a discussion and conclusion. Thus, the reader interested in only one technique
should be able to understand it by considering a single chapter.
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Chapter 2

Mathematical Framework

There is no ”royal road” to geometry.

– Euclid (325–265 BC), to king Ptolemy I

This chapter describes the geometry of a camera and introduces the mathematical
problem definition. Throughout this thesis, we will refer to internal camera calibration
as the process of determining the internal camera geometric and optical characteristics
(internal parameters), such as the focal length and aspect ratio. The external camera
calibration or 3D pose estimation refers to determining the 3D position and orientation of
the camera frame relative to a certain world or object coordinate system (external param-
eters). Next section describes a perspective camera model. A simple camera calibration
algorithm is briefly reviewed in section 2.2. For textbooks on this topic, the reader is
referred to [48, 35, 45].

2.1 Camera geometry

A camera is a mapping between the 3D world or object space and a 2D image [48]. One of
the most common geometric camera models used in computer vision for CCD like sensors
is the pinhole model which is the subject of the next section.

11
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Figure 2.1: Pinhole camera geometry. The collinearity errors in object and image space
are denotes as dobj and dimg, respectively.

2.1.1 Pinhole camera model

Figure 2.1 illustrates the basic geometry of the pinhole camera model. We choose the
projection center of the camera as the origin of an Euclidean coordinate system called the
camera coordinate system (CCS) with the optical axis pointing in the positive z direction.
Under the pinhole camera model, an object point with the 3D coordinates (X,Y, Z)T is
mapped to the point (fX/Z, fY/Z)T on the image plane z = f where a line joining the
object point to the center of projection meets the image plane. This describes the central
projection mapping from object to image coordinates. The parameter f is the focal length
of the camera. If this parameter is known, for the sake of simplicity we consider the
normalized image plane with z = f = 1 in the camera coordinate system.

In general, points in space will be expressed in terms of a different Euclidean coordinate
frame, known as the world coordinate system (WCS). Given a set {Pi|0 < i ≤ n} of n
object points Pi = (Xi, Yi, Zi)t, in the world coordinate system, the set of corresponding
coordinates Qi = (Xi, Yi, Zi)t in the camera coordinate system, are related by a rigid
transformation

Qi = RPi + t,

where R = [r1, r2, r3]t is a 3×3 rotation matrix and t = (tx, ty, tz)t is a translation vector.
The image point pi = (ui, vi, 1)t is the perspective projection of the object point Pi to

the normalized image plane according to the following equation.

pi =
RPi + t
r3Pi + tz

. (2.1)
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R,t
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Figure 2.2: The 2D-3D pose estimation problem is to find the rigid transformation (R, t)
which leads to a best fit between the object and the image data.

This equation is called the collinearity equation and says that pi, Qi and the projection
center of the camera O are collinear.

However, another way of thinking of collinearity is that the orthogonal projection of
Qi on the projection ray of pi is equal to Qi itself. This can be formulated as

RPi + t = Fi(RPi + t), (2.2)

where Fi is a projection operator [82] and is defined as

Fi =
pipt

i

pt
ipi

=
1
‖pi‖2

 u2
i uivi ui

uivi v2
i vi

ui vi 1

 . (2.3)

We refer to (2.1) as the image space collinearity equation and (2.2) as the object space
collinearity equation. The parameters of the rigid transform (R, t) which relate the camera
orientation and position to a world coordinate system are called the external parameters
or the exterior orientation.

The 2D-3D pose estimation problem is to find the rigid transform (R, t) that best fits
the known 3D object data with the observed 2D image data (see Figure 2.2). Usually this
is achieved by minimizing some form of accumulation of errors (least squares methods)
based on one of the collinearity equations in object or image space.

An alternative representation of the pose is by a six element vector s = (tx, ty, tz,-
θ, φ, ψ)t containing the three translational parameters and three angles of rotation around
the three main axes. Equivalently quaternion representation can be used for orientation.

The line from the projection center perpendicular to the image plane is called the
principal axis, and the point where this axis meets the image plane is called the principal
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(a) (b)

Figure 2.3: Camera calibration: (a) The calibration grid. (b) Camera image where the
markers are detected using a marker detection system.

point. So far we have assumed that the origin of coordinates in image plane is at the
principal point. This may not be the case in practice. In general, a shift is needed to the
coordinates (cx, cy)T of the principal point C (see Figure 2.1).

Furthermore, we have assumed that the image coordinates are Euclidean coordinates
having equal scales in both axial directions. However, if CCD cameras are used, the pixels
might be non-square. We therefore need to take unequal scale factors in each direction
into account. Suppose mx and my are the number of pixels per unit distance in image
coordinates. Then, the transformation from the world coordinates to pixel coordinates is
obtained by multiplying 2.1 on the left by the following so called calibration matrix

K =

 fx s cx
0 fy cy
0 0 1

 , (2.4)

where fx = fmx and fy = fmy is the focal length of the camera in terms of pixel
dimensions in both directions, respectively. The parameter s is the skew parameter.

Using the notation P for the world point represented in homogeneous 4-vector (X,Y, Z, 1),
and p for the image point represented by a homogeneous 3-vector, then we can write 2.1
in a compact way as

p = MP, (2.5)

with M is the camera projection matrix

M = K[R|t]. (2.6)

2.2 Camera calibration

The problem of camera calibration is to compute the camera projection matrix, i.e. in-
trinsic and extrinsic parameters based on a number of points whose object coordinates
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in the WCS are known and whose image coordinates are measured. For this purpose we
use a single camera image taken from a calibration grid as shown in Figure 2.3(a). The
calibration grid consists of three flat planes covered by a set of coded visual markers (Huff-
man markers) whose 3D coordinates are pre-measured accurately and recorded. Given a
single image from the marker grid each marker is detected automatically using a marker
detection system. Having sufficiently many 3D-2D correspondences the camera matrix M
may be determined. The internal parameters of K can then be extracted from the matrix
M by decomposition.

2.2.1 Estimating the camera matrix

Given a number of point correspondences Pi ↔ pi between 3D points and 2D image
points, we are looking for a 3x4 camera matrix M , such that pi = MPi, ∀i. In order
to determine M different cost functions may be minimized. One solution is based on
the measurement of geometric distance in the image, and minimization of the difference
between the measured and estimated image coordinates. The geometric error in the image
is
∑

i d(pi, p̂i)2, where d represents the Euclidean distance between two point and p̂i is
the point MPi. Assuming that the measurement errors are Gaussian the solution to

minM

∑
i

d(pi,MPi)2 (2.7)

is the Maximum Likelihood estimate of M . The minimization of this non-linear error
function can be achieved with iterative techniques, such as Levenberg-Marquardt [48].
However, as a starting point for the iterative minimization an initial solution is required.
A minimal solution can be obtained by using a linear method for minimizing an algebraic
error.

For this purpose, the equation (2.5) can be written in terms of the vector cross product
as pi ×MPi = 0. This form enables a simple linear solution for M to be derived. This
can be written explicitly as

pi ×MPi =

 vim3tPi −m2TPi

m1TPi − uim3TPi

uim2TPi − vim1TPi

 (2.8)

where mjT denotes the j-th row of the matrix M . Since this matrix M has 12 entries
and ignoring the scale 11 degrees of freedom, 11 equations are required to solve for M .
Each point correspondence leads to three linearly dependent equations. Choosing the first
two yields

(
OT −PT

i viPT
i

PT
i OT −uiPT

i

) m1

m2

m3

 = 0. (2.9)

For a set of n point correspondences we obtain a 2n× 12 matrix A by stacking up the
equations (2.9) for each correspondence. This gives a linear equation system of the form
Am = 0, where m is the vector containing the 12 entries of the camera matrix M . The
camera matrix M can be obtained by minimizing the residual ||Am|| called the algebraic
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(a) (b)

Figure 2.4: Radial distortion. (a) The oroginal image with significant radial distortion.
(b) The image warped to remove the radial distortion. Note that the curved lines in (a)
which are straight on the object are now straight.

error subject to some normalization constraint, e.g. ||m|| = 1. A solution is obtained
from the unit singular vector of A corresponding to the smallest singular value. In order
to avoid numerical instability it is important to carry out some sort of data normalization.
The points in the image can be appropriately normalized by a translation so that their
centroid is at the origin, and scaled so that their RMS distance from the origin is

√
2 [48].

2.2.2 Decomposition of the camera matrix

Once the camera matrix M is estimated, it can be decomposed into the form of equation
2.6 to find the camera center, the orientation and the internal parameters of the camera.
The camera center t is the right-null-vector of Mt = 0 and can be recovered from the
SVD decomposition [48] of M . Furthermore the camera matrix can be decomposed to an
upper-triangular and orthogonal matrix to obtain the internal camera matrix K and the
rotation matrix R.

2.3 Radial distortion

In the previous section the assumption has been that the linear model based on the
collinearity constraint is an accurate model of the imaging process. However, for some
lenses this assumption does not hold. The most deviation from the linear model is the ra-
dial distortion (see Fig. 2.4(a)). In practice for wide angle cameras with short focal lengths
that we will use in our experiments (see section 7) this error becomes quite significant.
Therefore, the image measurements need to be corrected to those that would have been
obtained under an perfect undistorted linear camera model. Lens distortion takes place
during the initial projection of the world onto image plane (see equation 2.1). Suppose
(xu, yu) denote the image coordinates of a point under non-distorted pinhole projection.
The actual point (xd, yd) after the radial displacement is given by the following equation:
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xd = xu + L(r)xu

yd = yu + L(r)yu,

where r is the radial distance
√
x2

u + y2
u from the center for radial distortion, and L(r)

is a distortion function of the radius r. Normally, for the distortion function an infinite
series is required. However, Tsai [139] showed in his experiments that only two terms
are needed. Any more elaborate modeling would cause numerical instability during the
calibration process. The radial distortion is therefore modeled as

L(r) = κ1r
2 + κ2r

4, (2.10)

where κ1 and κ2 are the distortion coefficients.
In order to correct the distortion in the image the distortion parameters need to be

recovered during the camera calibration procedure. Figure 2.4(b) shows the un-distorted
image, i.e. the image after the correction of radial distortion.

2.4 Discussion

This chapter described the geometry of a single perspective camera and defined the pose
estimation problem. Furthermore, a numerical method has been described for estimating
the camera projection matrix from corresponding object and image entities. Throughout
this thesis we will assume the camera to be used is already internally calibrated. This only
needs to be done once as part of the offline procedure which will be described in the next
chapters. For this purpose, we use for our experiments the calibration grid as described in
section 2.2. The focal lengths of the cameras is supposed to be fixed and does not change
at runtime.
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Chapter 3

Related Work

Study the past if you would define the future.
– Confucius (551 BC – 479 BC)

This chapter gives an overview of the developments and the current state-of-the-art in
fast 3D object detection and tracking.

3.1 3D Object detection

For a long time the work on object detection could be divided into two streams of research,
purely geometric-based and purely appearance-based approaches. In the geometric-based
paradigm, the object of interest is represented by a 3D model of its shape [51, 78, 130].
Detection of the object in a given test image amounts to evaluating if the test image could
contain a projection of the model. During this evaluation the system tries to find the
object pose which would generate the features, e.g. edges or line segments observed in the
test image. These approaches are somewhat robust under changes in illumination since
the image brightness is discarded in favor of binary features. However, it is inherently
difficult to interpret geometric features of the test image as projections of a 3D model, in
particular within scenes with cluttered background, severe partial occlusions and strong
viewpoint and scale changes.

19
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In the appearance-based methods, the detection problem is formulated as a statistical
classification problem. Existing approaches can be placed on a continuum ranging from
purely global ones to purely local one. Global methods build an object representation by
integrating information from several training images. Then, a classifier is learned from
this set of training data. Examples for extracted information are color histograms [136] or
contours, e.g. ’shape-context’ [14] and ’shock-graphs’ [128]. The first global approaches
were proposed by Turk and Pentland [141] in the face recognition domain and later by
Murase and Nayar [96] in a more general context.

Some methods make use of statistical classification techniques such as Principal Com-
ponent Analysis (PCA) to compare the test image with a set of calibrated training images
[107]. The basic idea is to inject a set of training images taken from many different known
viewpoints into a PCA, so as to obtain a small number of eigenimages capturing most
of the appearance variation. Thus, the multi view appearance of the object of interest
becomes a low-dimensional manifold in the ’eigenspace’ spanned by the eigenimages. De-
tection is done by projecting the test image into a ’point’ in the eigenspace and finding
the closest point on the manifold that represents the pose of the closest training image.
More sophisticated methods use AdaBoost and classifiers cascade to achieve fast detection
performance [39, 149]. These approaches give very good results for recognition of instances
of generic object classes such as faces, and can handle tens of instances of the object class
in one test image. However, global representation is unfortunately very sensitive to back-
ground clutter and partial occlusions, or even poses different from those in the training
set. The main reason for the latter one is because the global object appearance varies in
a complex and unpredictable way since the object’s geometry is not considered.

By contrast to the global approaches, local approaches counter the problems caused by
clutter and occlusion by decomposing an image in a collection of relatively small elements,
called local features. Since these features are extracted based only on local information
in the image, partial occlusion does not affect features in the visible part. Therefore, as
long as enough features are found and matched the object can still be detected. Moreover,
clutter in the test image only results in additional spurious features without compromising
the ones on the object. During detection the features are extracted and matched with the
ones from the training images. To reject mismatches, the coherence of the spatial arrange-
ments of matched features can be verified in an additional stage. This can be achieved
by enforcing geometric constraints such as epipolar constraints [124] or side constraints
[72, 36]. Furthermore, a global score can be computed and used as detection criteria which
is typically based on the number of verified correspondences.

3.1.1 Local feature detectors

In order to be able to handle as wide as possible a range of viewing conditions, the feature
extraction and characterization have to be insensitive to viewpoint, scale and illumination
variations. Several kinds of local features have been proposed in the literature. While some
approaches use simple features such as corners or edge segments [114], local contour groups
[129] or small multicolored image patches [84], more sophisticated approaches rely on local
feature neighborhoods or regions, which are insensitive to viewpoint and illumination
changes [80, 92, 144, 85, 54, 73, 127, 79, 148, 91, 124].

One of the first local feature regions introduced by Schmid et al. [126] was an ’interest
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point’ (e.g. Harris corners) augmented by a description of its pixel neighborhood, called
descriptor. Both this interest point detector and descriptor are invariant under rotation.
Lindeberg showed [73] that scale-invariant point detection can be achieved by using the
local extrema of a Laplacian-of-Gaussian pyramid in scale space as interest points. Lowe
[79] approximated the laplcaian by a Difference-of-Gaussian to increase the computational
efficiency. Recently, detection under general viewpoint changes was achieved by several
authors [92, 144, 85, 54], with affine invariant region detectors. The idea is that even
though the global appearance variation of 3D objects is very complex under viewpoint
changes, it can be approximated by a simple affine transformation at the local scale because
a local feature region can be considered to be approximately planar.

The shape of each local feature is not fixed, but automatically adapts based on the
underlying image intensities so as to always cover the same physical surface. Comparison
is done using the rectified patches determined by applying the affine transformation that
makes equal the two eigenvalues of the second moment matrix. For this type of features
Mikolajczyk et al [93] suggest to use the term covariant regions rather than invariant,
since the regions found in a picture deformed by some transformation are the images
of the regions found in the original picture, deformed under the same transformation.
However, the normalized image patterns they cover and the respective feature descriptors
are typically invariant. Beside the geometric transformations, affine covariant regions do
also cope with the photometric deformations between wide baseline images. Using these
invariants as a local representation of the shape and appearance of an object provide a
bridge between the appearance-based and geometric approaches. Tuytelaars et al [143]
presented an edge- and an intensity extrema-based detector. The edge-based detector
starts from a corner point and exploits nearby edges, whereas the intensity based one
starts from intensity extremum and studies the intensity pattern along rays emanating
from this point. Affine covariant features are then constructed by fitting an ellipse to
the local structure. Matas et al [85] introduced a fast algorithm to extract Maximally
Stable Extremal Regions (MSER). A MSER is a connected component of an appropriately
thresholded image. Mikolajczyk et al [93] presented a state of the art on affine covariant
region detectors and have compared their performance. Chapter 5 gives an extensive
overview on covariant feature regions that have been used in the detection algorithms
presented in this thesis.

3.2 Wide baseline matching

Once local feature regions have been extracted correspondences can be established to
the features in the database by directly comparing the corresponding feature descrip-
tors. A feature descriptor is a characterization of the feature, which is computed from
the intensity patterns within the regions, respectively. The descriptor needs to be not
only invariant to viewpoint and illumination changes, but also has to be distinctive to
discriminate between the regions. Many different descriptors have been proposed in the
literature[127, 143, 94, 80]. Schmid et al [127] compute rotation invariant descriptors as
functions of relatively high order image derivatives. Tuytelaars et al [143] use the General-
ized Color Moments as a descriptor. David Lowe [80] have introduced the so called SIFT
descriptors that tolerates significant local deformations. Among the existing descriptors,
a comparison by Mikolajczik et al [89] showed that SIFT descriptors [80] are the most dis-
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Figure 3.1: Overview of the conventional feature-based approaches for 3D object detection
and pose estimation.

tinctive and effective. The distinctiveness is achieved by using a high-dimensional vector
representing multiple image gradient histograms in the local neighborhood for each fea-
ture point. The reader is referred to section 5.7.2 for implementation details on the SIFT
descriptor. This technique has been shown to perform quite good under severe clutter and
viewpoint changes [80]. However, the high dimensional SIFT descriptors (128-dimensional)
are computationally expensive to match even when using an efficient data structure [13].
Some approaches use dimension reduction techniques, such as PCA, in order to project
high-dimensional samples onto a low-dimensional features space. The idea of applying
PCA to SIFT feature descriptor was introduced by Ke et al. [57]. They showed that PCA
is well-suited to representing key point patches, this representation is more distinctive and
therefore improves the matching performance. Furthermore it is more robust and more
compact than the 128-dimensional SIFT descriptor.

The use of local descriptors and the matching algorithms vary slightly between different
methods for 3D object detection [127, 79, 72, 70, 146, 120, 143, 2, 52, 94]. During an offline
training stage, a database is built of interest features lying on the object whose position
on the object surface can be computed. For this purpose, usually a set of images are
used which are manually calibrated. At runtime, local features are then extracted from
the current test image and matched against the database (see Fig. 6.1). The pose is
usually estimated from those correspondences using a robust technique such as RANSAC
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to eliminate mismatches. A crucial problem that makes this approach difficult for practical
use is because of the fact that the images used for building the database and the test images
may have been taken from very different viewpoints. Therefore, in this context the wide
baseline matching problem becomes a very critical issue that needs to be addressed.

Rothganger et al. [120] introduced a 3D object modeling and recognition algorithm
for affine viewing conditions. The objects are represented as a collection of small planar
patches, their invariants, and a description of their 3D spatial relationship. The local
invariants used in their work are the affine covariant descriptions of the image brightness
pattern in the neighborhood of salient image features developed by Lindeberg and Garding
[75, 74] and by Mikolajczyk and Schmid [91]. Photometrically and geometrically consistent
matches are selected in a two step RANSAC-based pose estimation procedure. Even
though this method achieves good results for 3D object detection in difficult viewing
conditions, as the authors confirm it is too slow for real-time applications.

In [116] similar results are obtained by training the system using multiple views of
the object of interest, and storing all the SIFT features extracted from these views and
matching against all of them. However, matching is usually performed by nearest neighbor
search, which is computationally expensive as mentioned before, even when using efficient
data structures [13]. On the other side, in this framework the descriptors are predefined
and do not adapt to the specific images under consideration. In [87] first the set of image
neighborhoods of features is built by tracking them over a sequence. Then, a descriptor
for each feature is computed by applying Kernel PCA on each set, respectively.

3.2.1 Statistical classification techniques

Lepetit et al. [70] treat wide baseline matching of key points as a classification problem,
where each class corresponds to the set of all possible views of each point. If the object of
interest can be assumed to be locally planar, the system synthesizes a number of views or
image patches by warping image patches around the points under affine transformation.

Once potential matches have been established they apply a plain RANSAC method to
recover the 3D pose. Recently they introduced an approach for object pose estimation in
real-time [69], where randomized trees [3] are used as the classification technique which is
both generic and faster. The basic idea is that since the set of possible patches around an
image feature under changing perspective and lighting conditions can be seen as a class,
it is possible to train a classifier, made of randomized trees to recognize feature points
by feeding it samples of their possible appearances. Each non-terminal node of a tree
contains a test of the type: ”Is this pixel brighter than this one?” that splits the image
space. Each leaf would contain an estimate of the conditional distribution over the classes
given that a patch reaches that leaf. Thus, a feature from the test image is classified by
simply dropping it down the tree.

This procedure is quite fast since only pixel intensity comparisons need to be done.
Because of the efficiency of the randomized trees, this technique yields quite reliable clas-
sification results, even with deformable objects [111, 112]. This method assumes that a
fixed number of image features have been extracted beforehand using a single or a few
reference images and that their number does not change during training, i.e. addition and
removal of features is not possible. However, this Randomized Tree-based approach gives
very good matching results as long as the set of trained features is small (a few hundred)
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and is therefore not very scalable, e.g. for outdoor environments. On the other side key
point recognition relies solely on 2D image intensity values within small windows around
these key points without considering the underlying 3D structure.

3.3 3D tracking-by-detection

Recently wide baseline feature matching techniques have been used to perform 3D track-
ing. Özuysal et al [110] propose an approach that relies on the Randomized Tree-based
approach described in the previous section. Thereby, an a priori 3D model of the object
of interest is not required. During an automated training phase, the system learns both
geometry and appearance of a set of reliable object feature points, i.e. the system collects
or harvests a list of features that can be reliably recognized under large motions and as-
pect changes which can cause complex appearance variations. In the training process, an
ellipsoid is defined that roughly projects at the object’s location in the first frame. The
object is then required to move slowly in the consecutive frames, where feature points are
extracted within this projection and the surrounding image patches are used to train a first
classifier. This classifier is used in the following frames to match the initial features. Then,
as the set of new features increases, features that cannot be reliably detected are discarded
and at the same time new features are added to account for aspect changes. New views of
the features are used to refine the classifier and each time features are removed or added,
the classifier is updated accordingly. Once all the training images have been processed,
the model’s geometry is refined using a bundle-adjustment algorithm. Furthermore, the
same tracking and statistical classification techniques are used for both training in order
to select the most stable features, and for detection and pose computation at run-time.
Therefore, the features collected during training are those that can be effectively tracked
by the wide-baseline matching algorithm.

A SIFT-based approach was introduced by Skrypnyk and Lowe [133]. In this approach
first a database of SIFT features is built from a set of training images during an offline
training stage. For this purpose, the 3D locations of the features is computed using a
structure-from-motion algorithm. Multi-view correspondences are established using the
SIFT descriptors and the 3D coordinates of the features are estimated by a global opti-
mization after over all camera parameters as well as image point coordinates. Thereby, the
optimization procedure is initialized as proposed by Szeliski et al [137]. At runtime, SIFT
features are extracted from the current test image in the same manner as done during
training. The features are matched against the features in the database by comparing
their descriptors. This results in a set of 2D/3D correspondences from which camera pose
can be estimated using RANSAC in conjunction with the three point algorithm (see Fig-
ure 6.1). In the test image the best candidate for a SIFT feature in the database is the
nearest neighbor, in the sense of the Euclidean distance of the descriptor vectors. Due to
the high dimensionality of the search space, a k-d tree is used to speed up the matching
process. Correspondences in the search space are explored in the order of their nearest
distance. The search is stopped after a number of candidates has been considered [13]. To
decrease the number of mismatches that may result in cluttered scenes the query feature
is matched only in case the nearest neighbor is close enough in the image.

Camera pose estimation from each frame independently and from noisy data typically
results in jitter [146]. Therefore, the authors use a regularization term to smooth the
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camera motion across consecutive frames. To avoid drifting the weight of this term is
estimated iteratively. This method runs at four FPS and is therefore not fast enough for
real-time tracking as the authors confirm.

3.4 Feature-based tracking systems

A number of approaches have been proposed addressing the problem of tracking based on
natural features [43, 146, 68, 29, 119, 147, 100, 132, 23, 108]. One of the earlier markerless
model-based real-time 3D visual tracking systems was the RAPiD (Real-time Attitude and
Position Determination) system described by Harris [46]. RAPiD demonstrated real-time
tracking of models such as fighter aircraft and the terrain near a landing strip. Drummond
and Cipolla [31] employed an M-estimator to improve the robustness of a RAPiD-style edge
tracking system. Further, RAPiD’s view-sphere approach to determining control point
visibility is replaced by a real-time hidden edge removal based on graphics acceleration
hardware and a BSP-tree1 representation of the model to be tracked. This allows the
tracking of more complex structures than possible with RAPiD.

Genc et al. [43] propose a general learning-based framework for feature-based tracking
using a single camera. In a two stage process first a set of natural 3D features is learned
using an external tracking system (e.g. marker-based). In the second stage the system
uses these learned features for tracking as soon as enough stable features are acquired
in the first stage. This marker-less tracking system needs an initialization that provides
a rough estimate of the camera’s position and orientation. It makes use of an external
marker-based tracker for initialization. Once the system looses track it needs to be re-
initialized in the same way. In this case the initialization process does not need to be very
accurate and perform in real-time. The system is able to converge even with partial or
imprecise tracking information for initializing system. However, the authors confirm that
using markers for initialization is not an acceptable solution in most applications.

Vacchetti et al. [146, 68] propose an automatic initialization method that relies on a
learning stage, where a data base of key features is constructed based on a set of key frames
taken during an offline procedure. The key features consist of a 3D point on the object
model and a viewpoint invariant local descriptor based on its appearance in the images.
The initialization is done by robustly matching feature points in the initial image with
the points present in the database based on a similarity measure. A disadvantage of this
method is that these local descriptors are sensitive to scale and zooming. Therefore, the
working space is limited in tracking area that is covered by sufficiently enough key frames.
Other efforts have been undertaken for the integration of point features into edge-based
trackers [147, 119]. Vacchetti et al [147] combine edge-based tracking with earlier work on
tracking Harris feature points. It corresponds to multiple iterations of standard RAPiD
with the addition of an M-estimator, using the nearest hypothesis at each iteration. Rosten
et al [119] apply the combination of edge and point tracking to an indoor environment.
Thereby, a novel FAST algorithm is introduced for matching.

Davison [29] presented a real-time monocular vision-based SLAM (Simultaneous Lo-
calization and Mapping) implementation. This system tracks feature points using small
2D image patches and cross-correlation. Apart from four known features initialized at
start-up, the 3D positions and appearances of all other features tracked are learned on-
line.
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Klein et al [60] presented a real-time, full-3D edge tracker based on a particle filter. This
system is capable of tracking quite complex self-occluding three-dimensional structures.
The system exploits graphics hardware in a novel manner, allowing it not only to perform
hidden line removal for each particle but also to evaluate pose likelihoods directly on the
graphics card.

Satoh et al. [122] use a bird’s-eye view camera additional to the mobile camera that
constrains the pose estimation problem. Nevertheless, they don’t make use of it in the
initialization phase. The initial registration is done each time manually by moving the
mobile camera closely to a predefined initial pose.

Other approaches in computer vision literature for pose or motion estimation make
use of the ICP principle [153, 15, 151]. The problem with the ICP based algorithms
is that they converge to the closest local minimum, and are thus not appropriate for
solving large motion problems. Formulating pose estimation as a nonlinear least squares
problem, and solving it by nonlinear optimization algorithms is the classical approach
used in photogrametry [45]. Typically Gauss-Newton or Levenberg Marquardt methods
are used for this purpose [81, 122, 66]. Lowe [81] used the Gauss-Newton method for the
pose estimation problem by projecting the model into the image plane and minimizing
the registration error in image. A limitation of this method is that it is not robust to
occlusions and requires relatively small pose differences. Hager et al. [82] proposed a fast
and globally convergent pose estimation method. They formulated the pose estimation
problem as that of minimizing the collinearity error in object space rather than in the
image space. The algorithm is computationally efficient and accurate but only allows a
small number of outliers (< 20%).

3.5 Discussion

This chapter has introduced a number of different approaches to 3D object detection
and tracking. Furthermore, we gave a brief review of the feature based tracking systems
used in the field of AR. Even though the tracking-by-detection methods described in the
previous section are still too slow for real-time applications, the question arises whether
the conventional tracking methods will ever be obsolescent sometime. However, we believe
that this is unlikely to happen since treating each frame independently has its problems
as described in the case of the SIFT-based tracker in the previous section. Using temporal
continuity constraints for tracking can increase the robustness and most important the
accuracy of the results. Wide-base line matching techniques all tend to be not only less
accurate but by far much more computationally expensive. Therefore, our intention is
to combine a robust and fast detection system with a real-time tracking system. Such a
combined system has both the robustness from a detection system and the high accuracy
of a tracking system.



Chapter 4

Sensor Fusion for Pose Estimation

This chapter introduces a sensor fusion framework for automated initialization of marker-
less tracking systems [101]. It is designed to be used for indoor as well as outdoor en-
vironments. The initial positional data can be provided by stationary cameras in closed
buildings and for instance by GPS for outdoors while providing no or only rudimentary es-
timates with respect to the user orientation. The complete initialization is then achieved
by fusing the data from multiple sensors, e.g. mobile and stationary cameras or GPS.
In cases where tracking is lost for instance because of large occlusions, the initialization
procedure is started automatically. This approach can be easily extended to arbitrary
additional sensors.

Our intention is to use stationary cameras for non-precise tracking of a user’s head
and combine the tracking data with those acquired by mobile cameras. Thereby special
attention is given to the statistical analysis of the errors in sensors. Specially suitable for
this purpose are networked smart cameras. These cameras are equipped with integrated
processors and signal processor chips that can immediately process images formed on the
sensor chips. The cameras are thus autonomous, i.e. independent from a computer, and
provide their tracking results via wireless network to mobile or stationary PCs where the
AR applications are running.

This is designed to be integrated in an ubiquitous tracking environment [150], where
various tracking sensors with different modalities are used to build dynamically extensible

27
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Figure 4.1: Overview of the Algorithm.

networks of trackers with high-precision, low-latency requirements. This approach can be
extended to any kind of trackers, since the uncertainties of these individual trackers are
taken into account.

Our system requires a rough 3D model of the target object or the scene for automatic
initialization and tracking. This is not a problem in practice, since in many applications
a 3D model already exists (e.g. in automotive industry) or can be created automati-
cally or interactively by commercially available software (e.g. ImageModeler from RealViz
[117], Canoma from Metacreations [88] or Boujou from 2d3 [17]). Furthermore, technolog-
ical advances in three-dimensional scanning provide accurate devices for automatic model
building.

This chapter is organized as follows: Section 4.1 gives a general overview of our method.
In section 4.2 we describe how the error estimation and propagation is done which is used
for fusion of pose estimations in section 4.3. Sections 4.4 and 4.5 explain the details of the
two main steps of the iterative algorithm consisting of a coarse registration followed by
a refined registration, respectively. In section 4.6 the experimental results are presented.
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Discussions and conclusions are provided in section 4.7.

4.1 Overview of the approach

The initialization of the tracking system is performed as follows. First we estimate the
position of the user’s viewpoint with stationary cameras using a head tracking system and
use the image taken by the mobile camera, referred to as the initial image, to estimate the
initial orientation parameters (see section 4.4). The estimation is then refined by applying
the optimization procedure described in section 4.5. During this estimation and refinement
process particular attention is given to error propagation and statistical analysis.

To refine the pose data, we introduce a novel method for robust ICP based pose
estimation based on definition of two collinearity constraints. They are used as a quality
measurement for outliers detection and removal, therefore increasing the efficiency of the
algorithm while providing the same accuracy as the classical method introduced by Hager
et al. [82].

Using a camera for tracking, the greatest uncertainty of the pose estimate is along the
line of sight of the camera and the smallest error is perpendicular to this line (see Fig.
4.4). The reason is that a small translation of the camera parallel to image plane would
result in an easily measurable change in the image where a small translation perpendicular
to image plane generates only a small displacement and/or change of scale in the image.

In our approach the data from mobile and stationary cameras are combined in order
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to estimate the pose of the user’s view accurately. Since the pose of the user’s view is
constrained in space, using the information provided by stationary cameras, the rotational
and translational parameters are correlated.

Fig. 4.1 gives an overview of the automated initial registration approach. Fig. 4.2
and 4.3 show a respective graphical overview using one stationary camera as an external
sensor. The uncertainty ellipsoid determined by the stationary cameras is a function of
the characteristic of the external outside-in tracking system and the position of the user’s
viewpoint. Using more than one camera or even other tracking devices, only the shape of
the uncertainty ellipsoid will change and requires no further handling in our system.

The main steps of our iterative initial registration algorithm are:

1. Estimating the initial position (tx1 , ty1 , tz1)
t of the user’s viewpoint using stationary

cameras and its uncertainty as described in section 4.2 (Outside-In).

2. Estimating the initial orientation (θ1, φ1, ψ1)t by extracting edges from the initial
image and finding the best match of the extracted edges with the edges on the
nearest environment map using a similarity measure (see section 4.4) (Inside-Out).

3. Establishing correspondences between 2D edges in the initial image and 3D edges
on the 3D model and determining the relative pose s2 = (tx2 , ty2 , tz2 , θ2, φ2, ψ2)t and
its associated error distribution (see section 4.5).

4. Statistical fusion of the pose estimates s1 and s2 from outside-in and inside-out
cameras to an overall estimate s using their uncertainties 1 (see section 4.3).

5. Go back to step 2 unless one of the following termination criteria is reached:

(a) The displacement between image and model data is smaller than ε.

(b) The change in motion parameters estimated in two consecutive iterations is
smaller than ∆ε.

(c) The maximal number of iterations is reached.

The thresholds ε and ∆ε defined in the termination criteria depend on two require-
ments: First, the required precision of the initial pose for a successful feature based track-
ing system which depends on the tracking solution used, and second, the time required
for initialization which depends on the application the tracker is used for.

The system provides the uncertainty of the estimated pose in form of covariance matrix.
The next section describes how the error estimation and propagation through different
coordinate systems is done.

4.2 Error estimation and propagation

We assume that the noise in the image points is independent and its distribution is known
by a covariance matrix Λpp. Depending on the edge detection algorithm used the co-
variance matrix Σpp could be estimated based on the entries of the Hessian [131]. The
uncertainty of the pose is represented by a 6 × 6 covariance matrix Λss. It is defined as

1Note, that in our case the orientational uncertainties for s1 are very high compared to its positional
uncertainties
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Figure 4.3: The iterative initial registration approach: refined registration step using a
mobile camera (Inside-Out) and fusion of pose estimations.
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Figure 4.4: Uncertainty of the pose estimate of a camera.

Λss = E(∆s∆st), the expectation of the square of the difference between the estimated s̃
and the true values s = s̃ + ∆s.

To compute the covariance matrix Λss the nonlinear function f is linearized at the
estimated pose s̃ [49]. The Taylor series expansion gives after neglecting terms of the
second and higher order:

pi + ∆pi = f(Pi, s̃ + ∆s) ≈ f(Pi, s̃) + Ji∆s,

where Ji =
∣∣∣∂f
∂s

∣∣∣t
Pi,s̃

is the Jacobian of f evaluated at (Pi, s̃). Since pi ≈ f(Pi, s̃), we get

∆pi = Ji∆x.

Stacking all the equations for n points yields ∆P = J∆s. This equation can now be
solved for ∆s in a least squares manner as ∆s = (J tJ)−1J t∆P . The covariance matrix is
calculated by substituting ∆s:

Λss = (J tJ)−1J tΣPP((J tJ)−1J t)t. (4.1)

Since we assume that the errors in image points are not correlated we have E(∆pi∆pt
j) =

0, for i 6= j. Therefore ΣPP is a diagonal matrix containing Σpp as diagonal elements.
Using equation (4.1) the uncertainty of the pose can be estimated as a covariance matrix
in the respective camera coordinate system.

Having different coordinate systems (see Fig. 4.5), we need to transform the covariance
matrix properly to the same unit coordinate system. Propagating uncertainty in general
through different functions is described by the error propagation law [64]. Given the pose
x and its covariance matrix Λxx, let y = g(x) be the function which transforms x to y in
another coordinate system. The covariance matrix of y can then be calculated by

Λyy = JΛxxJ
t, with J =

∂g

∂x
. (4.2)

A useful representation of covariance matrices in 3D are the error ellipsoids, assuming
that the errors are jointly Gaussian. The joint probability density function (pdf) for
N -dimensional error vector x is

p(∆x) =
1√

(2π)N |Λxx|
e−

1
2
∆xtΛ−1

xx∆x.
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Figure 4.5: The coordinate systems.

If the argument of the exponent is constant, the surface of constant probability is
an ellipsoid specified by the equation ∆xtΛ−1

xx∆x = c2, for a constant c. For c = 3 the
cumulative probability of the error vector x being inside the ellipsoid is approximately
97% [49].

4.3 Fusion of pose estimations

A Kalman Filter-based fusion of pose estimates from multiple tracking systems is achieved
in the following manner (see [55] for the basic filtering technique). Let s1 and s2 be the two
pose vectors and Λs1s1 , Λs2s2 the respective covariance matrices. The combined estimate
s is obtained by weighting and averaging the covariance matrices [35, 49].

s = (Λ−1
s1s1 + Λ−1

s2s2)
−1(Λ−1

s1s1s1 + Λ−1
s2s2s2) (4.3)

Reforming this equation yields for s and its covariance matrix

s = Λs2s2(Λs1s1 + Λs2s2)
−1s1 +

Λs1s1(Λs1s1 + Λs2s2)
−1s2,

Λss = Λs2s2(Λs1s1 + Λs2s2)
−1Λs1s1 . (4.4)

Figure 4.6 shows three examples for two error ellipsoids and the resulting combined
ones.
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4.4 Coarse registration using environment maps

In computer vision Adelson and Bergen [1, 86] assigned the name plenoptic function (from
plenus, complete or full, and optic) to the pencil of rays visible from any point in space,
at any time, and over any range of wavelengths. They use this function to develop a
taxonomy for evaluating models of low-level vision. The plenoptic function is a param-
eterized function for describing everything that can be seen from the point of view of
the user. From a given point of view we can select any of the viewable rays by choosing
an azimuth and elevation angle (θ, φ). In computer graphics terminology, the plenoptic
function describes the set of all possible environment maps for a given scene.

We first define a complete sample of the plenoptic function as a full spherical map for
a given viewpoint, defined thanks to the external outside-in tracking cameras. Having a
virtual model of the environment or the target objects, the viewing space can be coarsely
sampled and a set of spherical environment maps M = {Mi|0 < i ≤ N} is generated2

(see Fig. 4.7). For the first stage of the initialization procedure the orientation of user’s
head is estimated as following. Given a set of samples M from the plenoptic function
in form of spherical environment maps, the system selects the closest environment map
Mk ∈ M. The initial view is then projected onto the spherical map Mk, and the best
match represented by three rotational parameters is estimated using a similarity measure.

Several methods have been proposed in the literature to align two 2D images [155].
We use a intensity based similarity measure known as the gradient correlation. For this
purpose four gradient images are created by horizontal and vertical Sobel templates from
the respective environment map and the initial image. The normalized cross correlation
(NCC) is calculated of both horizontal and vertical gradient images, respectively. The sim-
ilarity measure value is the average of the two NCCs. We use an efficient implementation
for fast computation of NCC [71, 45].

Since the gradient images are used for registration we only need to save the gradient
images of the environments maps. To reduce the amount of data storage needed for storing
the gradient images Laplacian pyramid can be used. In order to speed up the searching
for the highest correlation value, the same image pyramids can be used. This results
in a hierarchical iterative registration of the initial image and the respective spherical
environment map.

Due to the uncertainty in estimating user’s viewpoint from stationary cameras and
the limited sampling rate of the plenoptic function only a coarse pose estimation can be
achieved with the method described above (see Fig. 4.2). We therefor use this estimated
pose as the initial values for a second stage of the initialization, in which a 3D-2D pose
estimation method is proposed to accurately estimate the relative displacement of the
pose.

4.5 Refined 2D-3D registration

The coarse pose estimation brings the contour edges extracted in the initial frame close
to the corresponding edges in the respective environment map. The extracted contour
edges are represented as a set of discrete points. Using the 3D model of the scene, we can

2Due to the complexity of the scene and the sample rate this can be a quite time consuming procedure.
This does not affect the computational cost of the system since this can be done offline using a rendering
system.
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(a) (b) (c)

Figure 4.6: Two error ellipsoids (blue and green) and the resulting fusion of them (red).

retrieve the 3D position of the edge points on the virtual model. This section describes
how to determine the relative pose that coincides the position of those 3D edge points
on the model onto the 2D edge points in the initial image plane, i.e. registration of 3D
and 2D points. For more robustness small edges are removed by thresholding and only
dominant edges are used.

Since we have no a-priori knowledge of correspondences we use a 3D-2D registration
algorithm based on the iterative closest point (ICP) principle [153, 15]. It is composed of
three iterated steps, the first of which determines correspondence candidates between 2D
and 3D edge points. In the second step a robust technique is used to discard the outliers
by analyzing the statistics of the distances. And finally the third step estimates the 3D
rigid transformation that minimizes the displacement of matched points.

The next three sections describe each step of the algorithm.

4.5.1 Establishing correspondence candidates

Since there is no distance metric relating the 2D edge points in the initial frame to 3D
edge points on the model, there is no obvious way to directly applying the ICP principle
to the registration of 3D model edge points to 2D image edge points.

Let {p′
j |0 < j ≤ m} denote the set of extracted 2D image edge points. The correspon-

dence candidates are chosen in a way that both the 2D error distance between the back
projected model edge point and observed image points p′

j as well as the 3D distance of
the model points to the projection rays of p′

j in object space is minimized (see Fig. 2.1).
Given the estimated pose parameters R̃ and t̃, the distance between a 3D model point

R̃Pi + t̃ to the projection ray of the 2D edge point p′
j is due to object space collinearity

equation (2.2)
dobj(Pi,p′

j) = ‖Qi − FjQi‖ =
∥∥∥(I − F ′

j)(R̃Pi + t̃)
∥∥∥ , (4.5)

where F ′
j is the projection operator (see section 2.1.1) defined for the image points p′

j

F ′
j =

p′
jp

′t
j

p′t
j p′

j

.

Analogue due to the image space collinearity equation (2.1) the distance between the
2D edge point and the back projected 3D model point in the image plane is

dimg(Pi,p′
j) =

∥∥∥∥∥p′
j −

R̃Pi + t̃
r̃3Pi + t̃z

∥∥∥∥∥ . (4.6)
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Figure 4.7: A subset of the environment maps surrounding the object of interest.

The smaller dobj and dimg, the more likely (Pi,p′
j) represent a correct correspondence.

To establish correspondence candidates for every image point we take the model edge
points with the smallest distance d defined as the sum of the weighted distances in image
and object space.

d(Pi,p′
j) = αimgdimg(Pi,p′

j) + αobjdobj(Pi,p′
j).

Since the distances in image and object space are of different order they are weighted
properly using the factors αimg and αobj . For αimg = 1 and αobj = 0 only the nearest
points in the image are considered as correspondence as used in [66] whereas for αimg = 0
and αobj = 1 only the nearest point in the object space are chosen as candidates [151].
We use both distances to select the best matches for this purpose. I.e. for any 2D edge
point p′

j (0 < j ≤ m), its correspondence candidate Pcj is determined as

Pcj = argmincj∈{1,...,n} d(Pcj ,p
′
j), (4.7)

where cj are the corresponding indices of the 3D model points. The search space is
determined by the size of the model edge point set n. In order to speed up the search,
optimized K-D tree data structure can be used to accelerate the closest point search
[115, 153].

4.5.2 Estimating motion

This section describes briefly how to re-estimate the pose parameters that minimize the
displacement between the corresponding edge points.

According to the ICP principle we minimize the object space collinearity error (2.2)
by moving the model data Pcj such that at each step the displacement between pj and
Pcj is minimized.
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The basic idea is to reduce at each iteration the 3D-2D registration problem to the
3D-3D registration of points by using the 3D projection points on the respective image
rays instead of 2D image points [82, 151]. For each iteration the projection points have to
be determined again due the new pose estimates.

Formally, we seek the rigid pose parameters R and t that minimizes the following
mean-squares objective function

E(R, t) =
m∑

j=1

wj

∥∥∥(I − F ′
j)(RPcj + t)

∥∥∥2
, (4.8)

subject to the orthogonality constraint RRt = I. The wj are positive weighting factors
associated with each correspondence candidate. See next section for how to choose these
weights.

For a fixed rotation R the optimal translation t can be computed from (4.8) as

t(R) = (I − 1
m

m∑
j=1

wjF
′
j)

−1
m∑

j=1

wj(F ′
j − I)RPcj (4.9)

The estimated rotation matrix R̃ can be used as the starting point and is re-estimated
iteratively as follows. Let Rk be the kth estimate of R, t(k) = t(R(k)), and Q(k)

cj =
R(k)Pcj + t(k). The next estimate R(k+1) is determined by

Rk+1 = argminR

m∑
j=1

wj

∥∥∥RPcj + t(k) − F ′
jQ

(k)
cj

∥∥∥2
, (4.10)

subject to RtR = I. Such a constrained least squares problem can be solved for R(k+1)

in closed form using quaternions [50] or singular value decomposition (SVD) [44]. For the
SVD solution, first a sample cross-covariance matrix M between Pcj and L(k)

cj = F ′
jQ

(k)
cj

is calculated.

M =
m∑

j=1

wj(Pcj − P̄)(L(k)
cj
− L̄(k)), (4.11)

where P̄ and L̄(k) are the centroids, respectively. Let UDV t be a SVD of M , where U
and V are orthogonal matrices, and D is diagonal. Then the optimal solution to (4.10) is

R(k+1) = V U t. (4.12)

The next estimate of translation is then computed by t(k+1) = t(R(k+1)) from (4.9).
Note, that the computational complexity at each iteration k is linear in the number of
points considered. This iterative algorithm directly computes orthogonal rotation matri-
ces, it is fast and convergent due to the convergence theorem of the original ICP algorithm
[15].

4.5.3 Robust pose estimation

Due to both occlusion and inaccuracy in pose estimation, correspondence candidates
(p′

j ,Pcj ) established in the section 4.5.1 are not guaranteed to be correct. There are
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two types of outliers (wrong matches). The first is where Pcj is not the corresponding 3D
model point, while the correct correspondence exists. The second is a match where the
corresponding point is not included in the set of 3D model points.

A large number of algorithms described above have been developed to quantitatively
evaluate the 2D-2D or 3D-3D point matches [76, 77]. In this section we describe a novel
approach to evaluate the 3D-2D point matches based on a statistical model.

The equation (2.2) and (2.1) essentially describe an object space and an image space
collinearity constraint. The former means that the image point p′

j , the projection of
R̃Pcj + t̃ on p′

j and the optical center O of the camera are as collinear as possible. The
latter constraint means that the the image point p′

j , model point Pcj and projection
center are collinear. These constraints represent necessary conditions for a pair of 2D-3D
edge points to be correct. If a candidate does not satisfy any of these constraints, it
can not be a correct one. Thus, we use these constraints as a quality measurement of
correspondence candidates from which relatively good matches can be selected and used
for pose re-estimation.

Based on the point matches the means µdobj
, µdimg

and standard deviations σdobj
, σdimg

are computed. Depending on these values we reject outliers:

if (
∣∣∣dobj(p′

j ,Pcj )− µdobj

∣∣∣ > κobjσdobj
or∣∣∣dimg(p′

j ,Pcj )− µdimg

∣∣∣ > κimgσdimg
)

then wj = 0. (4.13)

where wj is a weighting factor introduced in equation (4.8). The maximum tolerance
parameters κobj and κimg represent how many percent of matches are considered as outliers
and rejected. For a parameter value of 1.0 approximately 68% of matches lying in the
interval [µ − σ, µ + σ] are taken into account and the rest is rejected as outliers. For a
value of 3.0 nearly all the matches are used for motion estimation. The maximum tolerable
distances in image and object space can be determined based on the maximal motion
expected. They can be chosen properly based on the scene depth and sampling rate of the
plenoptic function (see section 4.4). This values have an impact on the convergence of the
algorithm. If they are too small, more iterations are required for the algorithm because
many good correspondence candidates will be discarded. As a result of this procedure, a
set of refined correspondences will be obtained.

Another problem that arises with the solution described in the previous section is that
if the image points are perturbed by homogeneous Gaussian noise, the pose solution will
implicitly more heavily weight model points that are farther away from the camera, since
dobj increases with distance of the model point to the camera. Supposing that the residual
error, i.e. the distance dobj is approximately proportional to the depth and equal for all
points, the weights wj can be chosen as

wj =
1

(Z(k)
cj )2

, (4.14)

where Z(k)
cj is the depth of each model point Q(k)

cj in the camera coordinate system [82].
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Figure 4.8: The experimental setup.

4.6 Results

The registration algorithm has been tested in a real scene and the registration accuracy
was analyzed. This section presents the experimental results.

The registration algorithm has been implemented in Matlab on a 2GHz Pentium 4
CPU, with 1.0 GB RAM. The code is not optimized yet because we are in testing and
evaluation phase. The algorithms are however designed with particular attention to real-
time requirement. In our experimental setup (see Figure 4.8(a)) a FireWire (IEEE-1394)
digital camera (FireFly2 from Point Grey) was mounted on the optical see-through HMD
(Sony Glasstron). We used a 4 mm wide angle lens with a field-of-view of 68 degrees for
the experiments. The camera was internally calibrated and lens distortion was corrected
using the camera calibration toolbox [16].

For evaluation purposes we use the A.R.T. [6] outside-in infrared tracking system in
our AR lab to track the position of the user’s viewpoint. Thereby, a small retro reflective
spherical marker is attached to the mobile camera (see Fig. 4.8(b)), which was then
tracked by three ART cameras hanging in the corners of our lab. The tracking data were
sent via wireless LAN to the mobile computer with the application running. In the future
this marker-based system can be replaced by a marker-less head tracking system using
stationary smart cameras (see Fig. 4.9).

As an AR scenario, we used a control unit box provided by Siemens Automation &
Drive as the target object. We created an accurate 3D model of the box using the software
ImageModeler from RealViz [117] (see Fig. 4.10(a)). ImageModeler uses photographic
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Figure 4.9: Real time face tracking system based on the Continuously Adaptive Mean
Shift (CAMSHIFT) algorithm [18]. The two perpendicular white lines are the two main
axis of the error ellipse in the image.
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(c) Cylinderical environment map

(d) Best match of the initial image on the environment map

(e) Initial image (f) Virtual camera view

(b) 3D model(a) Control Box

(g) Gradient correlation

Figure 4.10: The coarse registration.
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Figure 4.11: The refined 2D-3D registration. Aligned model edges with the edges of the
initial image. After 25 iterations the registration accuracy is largely above the requirements
of the current feature-based tracking algorithms.
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Figure 4.12: The refined 2D-3D registration. Aligned model edges with the edges of the
initial image. After less than 30 iterations the results are accurate enough for the existing
feature-based tracking algorithms.
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Uncertainty ellipsoid 
(estimated using stationary cameras)

Uncertainty ellipsoid 
(estimated using mobile camera)

Combined uncertainty ellipsoid

Figure 4.13: Positional uncertainty and sensor fusion using the A.R.T. tracking system.
The diameter of the spherical error ellipsoid is 4cm.

images taken from the object to recover the 3D geometry and maps automatically the
original images onto the model’s surface as texture maps, resulting in a highly realistic
model.

The pose of the box in the room was determined by placing a ART-target at a fix
position on the box. The transformation between the ART marker coordinate frame and
the model frame was calculated by measuring the 3D coordinates of some points on the
box in model and marker coordinate frame respectively. From those correspondences the
transformation parameters were calculated. This step needs to be done only once when
the box is moved relative to the ART tracking cameras.

For projecting a complete plenoptic sample the most natural surface would be a unit
sphere centered about the viewing position (see section 4.4). However, the difficulty of
spherical projections is the lack of a representation that is suitable for data storage, partic-
ularly for a uniform discrete sampling [86]. We have therefore chosen to use a cylindrical
projection as the plenoptic sample representation. The advantage of a cylinder is that it
can be easily unrolled into a simple planar map.

Figure 4.10(b) shows a cylindrical environment map of the box as a sequence of images
taken from panning the virtual camera 360 degrees around the optical axis. Thereby the
internal parameters of the virtual camera are identical to the real camera used.

The viewing space in front of the virtual box was sampled automatically every 5 cm
in each space direction, resulting in a total set of 1080 environment maps, where only
the respective gradient images were stored. Figure 4.10(d) shows the initial image of size
320× 240 taken by the mobile camera after the lens distortion correction.

Using the A.R.T. outside-in tracker the position of the marker attached to the camera
was determined and the nearest environment map was selected automatically. At a range
of 1.5 m, the stated RMS (root mean square) accuracy by the manufacturer of locating a
single ART marker is 0.5 mm. Since the marker is about 3.5 cm away from the camera,
we assume the maximal positional error is about 4 cm.

In our experiments with three tracking cameras, the positional uncertainty could be
modeled with an error ellipsoid of the form of a sphere (see Fig. 4.13) since the variations
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Figure 4.14: The refined 2D-3D registration. Aligned model edges with the edges of the
initial image. After 21 iterations the registration accuracy is largely above the requirements
of the current feature-based tracking algorithms.

are not statistically significant in this study.
A coarse estimation of the orientation was then done by finding the best match of the

initial image in the respective environment map (see Figure 4.10(d)). From the position of
the best match the azimuth and elevation angle were derived. In our experiments elevation
and the rotation angle (around the optical axis of the camera) are considered to be small.
However, up to a maximum variation of ±30 degrees the correct match could be found
properly using the NCC measurement (see section 4.4).

The view of the virtual camera with the coarse orientation is shown in Fig. 4.10(f).
The final displacement is then estimated using the method described in section 4.5. For
this purpose the motion between the 2D edges in the initial image and 3D edges on the
model is estimated.

Figure 4.11 shows the procedure of the iterative registration of the 3D edges with 2D
edges and a plot of the the object space error dobj defined in (4.5), during the pose esti-
mation process. We observe a fast convergence of the algorithm during the first iterations
that slows down as it approaches its minimum. After less than 25 iterations the initial
registration result is accurate enough for the existing feature-based tracking algorithms.

The uncertainty of the final pose derived from the mobile camera was then estimated
as a covariance matrix as described in section 4.2. The maximum translational error along
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Figure 4.15: Global similarity map. Graphical visualization of the similarity values (NCC)
of a test image (taken at position (7,10,3) from the virtual box) with the set of surrounding
environment maps.

the line of sight is about 21 mm. The error ellipsoid of the overall estimation after fusion
has a major axis of 1.6 mm. Figures 4.12 and 4.14 shows the registration process of two
different initial views of the target object. This figure shows two real examples, in both
cases in less than 30 iterations initialization has been successful with an accuracy which
is largely above the requirements of the current feature-based tracking algorithms.

Figure 4.15 shows a visualization of the similarity values (NCC) of a test image taken
in front of the virtual box, with the surrounding environment maps. As expected the
location of the image is within the the area with highest similarity values. This map is
called the global similarity map. For a more robust solution capable of handling partial
occlusions and clutter background we will investigate a feature based detection framework
in chapter 6. Within that framework for each local feature a local similarity map is created
and used for classification.

4.7 Discussion

This chapter presented a sensor fusion approach for automated initialization of marker-
less tracking systems. This was achieved by analyzing and estimating the error of tracking
sensors. The uncertainty of the tracking sensors is represented by covariance matrices and
can be visualized as 3D ellipsoids. The initial pose was then estimated iteratively with a
coarse-to-fine strategy by taking the uncertainties into account. We applied the method
to an augmented reality system using mobile and stationary cameras.

The pose parameters are estimated in two estimation and refinement steps. Thereby
the second step is independent of the first one and can require several iteration steps to
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converge. This can be improved in a future work by considering the positional uncertainty
derived from the stationary cameras during the refined pose estimation step.

The pose refinement is based on minimizing the object space collinearity errors. A
more efficient and faster solution could be the minimization of both object and image
space collinearity errors simultaneously for pose estimation.

One of the contributions of this approach is its adaption, appropriate modification and
integration of advanced methods such as plenoptic viewing, NCC and ICP. The initial-
ization method is therefor fully automated. Experiments on synthetic and real data have
proven successful.
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Chapter 5

Image Correspondence and Covariant Features

Any sufficiently advanced bug is indistinguishable from a feature.

– Rich Kulawiec

The subject of this chapter is the correspondence problem and the relevant recent
techniques dedicated to it. This chapter gives a snapshot of the state of the art in image
feature detectors as well as robust and computational efficient matching techniques. These
methods have been implemented and optimized with particular attention to real-time
performance for the proposed object detection system in the next chapter. Many of the
technical terms used later will be introduced and defined in this chapter.

5.1 The correspondence problem

Given two images of the same scene or object taken from two different viewpoints as
in figures 5.1 and 5.2, a natural question is: which features do correspond between the
images? Here the word ’correspond’ means ’are on the same scene spot or the same
part on the object’1. Figures 5.1 and 5.2 show some corresponding points as ’features’.
Depending on the viewpoint and the structure of the object, not every feature needs to have

1Since the problems for scene or object are equivalent we will only use ’object’.
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Figure 5.1: Two images from different views of the same scene (Taj Mahal Hotel, Mumbai
(Bombay), India). Feature points with the same number correspond.

a corresponding feature in the other view. They might be out of the other field of view,
or occluded by other features. Furthermore, the appearance of the visible features might
be different between the two views. Sources of appearance variations beside viewpoint
changes, could be zoom, i.e. changes in focal length, illumination variations and noise
due to the imaging process. Beside points, features could be edges, line segments, small
patches or regions. This problem of finding correspondences between two views is called
the two-view correspondence problem [38].

By relaxing the assumption that both images show the same object, we can have
the question: do the images show the same object? This formulates the basic object
detection problem. The correspondence and detection problem are closely related. Finding
correspondences means detecting features of the object, and detecting many features of
the object might imply the detection of the whole object.

The object detection problem is one of the fundamental problems in computer vision.
Other common problems in computer vision related to the correspondence problem are
object tracking, stereo vision, 3D reconstruction, image/video retrieval, mosaicking, robot
navigation, etc. In this thesis we focus on the problem of object detection and propose
two novel methods in chapters 4 and 6.

5.2 Correlation techniques

In the computer vision literature many techniques have been proposed for finding two-
view correspondences. The first classic methods were based on a two step process. First,
interest points were extracted automatically in each image and in the next step only cor-
respondences of those interest points were searched for between the views. The interest
points were usually corner-like structures, e.g. Harris corner detector [47] was used for
this purpose. Other existing corner detectors have been proposed by Förstner [40], Smith
et al [134] (SUSAN detector) or recently by Rosten et al [119] (FAST detector). Each
corner was then characterized by a small window of pixels around it. The search for cor-
respondences was performed by computing the correlation between the grayscale patterns
of pair of windows with fixed size. Pairs of interest points with high correlation between
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Figure 5.2: Two images from different views of the same scene. Feature points with the
same number correspond.
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Figure 5.3: The classic ’corner + fixed window’ strategy for finding correspondences is not
suited for wide-baseline conditions.

their respective windows were matched. In case of images with small-baseline (e.g. video
sequence) this technique combined with additional search area constraints can give quite
good results.

Feature corners allow stable and accurate detection, because their neighborhood offer
two-dimensional signal variation. They are easier to localize than points on homogeneous
areas, or along straight edges. However, the problem becomes more challenging with in-
creasing viewpoint and orientation changes. The Harris corner detector is per definition
invariant to translation and in-plane rotations (see Fig. 5.4). On the other side, fixed cor-
relation windows can only be used for translation. This would only apply for features on
planes parallel to the image plane with a translation parallel to the image plane. In case of
rotation the correlation windows can not be compared directly anymore. Under the gen-
eral viewpoint changes and rotations, we observe a larger class of image transformations.
Translation along the optical axis or variations in the local length, cause the change in the
size of patches, namely scale change. Rotations about other axis can cause the patches to
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be stretched along one direction. In these cases we observe that the correlation windows
do not cover the same image content, i.e. the same physical surface.

Clearly, the ’corners + fixed window’ strategy can not cope with this class of transfor-
mations and fails when the images are taken in these wide-baseline conditions (see Figure
5.3). Next section describes how a corner or blob detector can be combined with auto-
matic scale selection to obtain a scale invariant detector. The scale invariant approach
will then be extended in section 5.5 to make it invariant to the general class of affine
transformations.

5.3 Scale invariant detectors

Many approaches have been proposed for extracting scale invariant regions. In the early
eighties Crowley [25, 26] introduced a method that searches for local extrema in the scale
space representation of an image (x,y,scale). In this approach the pyramid representation
is computed using difference-of-Gaussian filters. Feature points are identified by local
extrema in the scale space. The existing approaches mainly differ in the different ways
used to build the scale space representation. Lindeberg [74] searches for local maxima of
the scale normalized differential operator. He proposes to use the Laplacian-of-Gaussian
(LoG) and several other derivative based operators. The LoG is circularly symmetric
and detects blob-like structures. The scale space representation is built by successive
smoothing of the image with Gaussian based kernels of different sizes.

David Lowe [79] approximates the LoG with difference-of-Gaussian (DoG) filters and
also detects local extrema in the scale space pyramid. Using DoG instead of LoG signifi-
cantly accelerates the computation process. This method will be described in more detail
in the next section.

A common drawback of the DoG and LoG representation is that local maxima can
be detected close to contours or straight edges, where the signal change is only in one
direction. Clearly, the features are less stable, since their localization is more sensitive
to noise or small changes in neighboring texture. Therefore, they need to be eliminated
in a post-processing step. Another approach solving this problem, is to select the scale
for which the trace and the determinant of the Hessian matrix simultaneously assume a
local extremum. As a result, this would penalize points for which the second derivatives
detect signal changes only in one direction. This detector was introduced by Mikolajcyzk
[91] and is coined the Hessian-Laplace detector. Similarly, points can be detected by
the scale adapted Harris function and selected in scale space by the LoG operator. In
contrast to Hessian-Laplace detector that detects blob-like structures, this detector called
the Harris-Laplace detector detects corner-like structures (see Fig. 5.5(b)-(c)).

A different approach for scale selection was proposed by Kadir and Brady [53]. It
explores the idea of using local complexity as a measure of saliency. The salient scale is
selected at the entropy extremum of local intensity histograms. The method searches for
scale localized features with high entropy, with the constraint that the scale is isotropic.
However, we will not use this detector in our object detection system later on, because of
its high computation time.
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(b) Harris

(a)

Figure 5.4: (a) Test images. (b) Harris corner detector.
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Figure 5.5: Scale space and DoG [80].

5.3.1 SIFT detector

This section describes a method invented by David Lowe [80] for detecting regions which
are invariant to similarity transformations (i.e. in particular scale) and partially invariant
to photometric changes. The detector is coined Scale-Invariant Feature Transform (SIFT).
The feature detection procedure consists of two major stages. The first stage searches over
all possible scales and image locations to identify stable feature points that are invariant
to scale and orientation. This is achieved by using a continuous function of scale known
as scale space. The only possible scale-space kernel is the Gaussian function [65, 73]. The
scale space of an image I(x, y) is a function L(x, y, σ) defined as

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), with G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

, (5.1)

where G(x, y, σ) is a variable-scale Gaussian and ∗ is the convolution operation in x and
y. Lowe has proposed an efficient algorithm to detect stable interest locations in scale
space using scale-space extrema in the difference-of-Gaussian (DoG) function D(x, y, σ)
convolved with the input image:

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ), (5.2)

where k is a constant factor.
Lindeberg [73] proved that the DoG function provides a close approximation to the

scale-normalized Laplcaian of Gaussian. In experimental comparisons, Mikolajczyk et al
[90] showed that using the maximia and minima of σ2∇2G for scale selection yields the
most stable features compared to other functions (see section 5.5.1). The DoG scale space
D(x, y, σ) can be constructed very efficiently as shown in Fig. 5.5. The initial image is
incrementally convolved with Gaussians to produce a set of scale space images separated
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(c) Hessian-Laplace

(b) Harris-Laplace

(a) SIFT

Figure 5.6: Scale invariant feature detectors.
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by a constant factor k. Each octave of the scale space is divided by s, so that k = 21/s.
Adjacent Gaussian images are subtracted to produce the set of DoG images (see Fig. 5.5).
After a complete octave is processed, the Gaussian image is down-sampled by a factor of
2, and the process repeated.

Feature locations are identified by local maxima and minima of the DoG scale space
D(x, y, σ). They are found by comparing each sample point to its eight neighbors in
the current image and nine neighbors in the scale above and below. Lowe showed in
experimental comparisons that the scale space DoG function has a large number of extrema
and it would be very expensive to compute them all. But fortunately, the most stable and
useful subset can be detected with a coarse sampling of scale as low as three per octave
[80].

Once a feature point candidate has been found by comparing a pixel to its neighbors,
the next stage consists of a detailed fit to the nearby data for location, scale and ratio of
principal curvatures. Based on this information edge points and points with low contrast
which are sensitive to noise, can be rejected. Brown et al [19] developed a method for
fitting a 3D quadratic function (Taylor expansion of the DoG scale space function) to the
local sample points to determine the interpolated location of the maximum. This proved
to significantly improve the matching and stability.

Furthermore, feature locations along edges (where the DoG function has a strong
response) are eliminated in a post-processing step. This can be achieved by computing
the ratio of the principal curvatures from the Hessian matrix at the location and scale of
the feature point. The eigenvalues of the Hessian matrix are proportional to the principal
curvatures (see also section 5.5.1). Since we are only interested in the ratio, there is no
need to compute the eigenvalues explicitly. Their sum and product can be computed
from the trace and the determinant of the Hessian matrix H, respectively. Let r be
the ratio between the largest magnitude eigenvalue and the smaller one. It turns out,
that trace(H)2/Det(H) = (r + 1)2/r. Therefore, to check whether the ratio of principal
curvatures is below some threshold r we only need to check

trace(H)2

det(H)
<

(r + 1)2

r
. (5.3)

This can be computed very efficiently, and experiments show good results using a a value
of r=10 (see Fig. 5.5(a)).

One major advantage of SIFT features is their extreme computational efficiency. The
cost of extracting these features can be minimized by taking a cascade filtering approach, in
which the more expensive operations are applied only at locations that pass an initial test.
The original implementation of the SIFT detector was kindly provided by David Lowe.
To achieve an optimized version for our object detection system, we have re-implemented
the detector for the most part in C++ using Intel’s IPL Library and could obtain up to
300% speed up in time. Typical extraction times are around 300 ms for VGA images on
a Pentium 4, 2.8GHz.

Furthermore, for an automated feature evaluation system a SIFT feature tracking
system (SIFT Tracker) has been implemented. The basic idea is to start with an initial
set of SIFT features that have been extracted from the scale space in an arbitrary frame,
and track those features in the consecutive frames. Correspondences are found based
on the respective SIFT descriptors (see section 5.7.2). Moreover, the search space is
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Figure 5.7: The SIFT Tracker.

constrained both in the image as well as the scale space, i.e. the features are searched
for in the corresponding neighboring DoG images only. Figure 5.7 shows a set of frames
from a long sequence taken from an engine. The first frame shows the initial features
which are tracked through the sequence. At the end of the sequence only the most stable
and reliable features survive as shown in the last frame. This procedure is performed in
multiple keyframes within a sequence in order to cover the object of interest from different
sides. This process has been integrated into an automated evaluation system which will
be described in the next chapter.

5.4 Affine covariant regions

SIFT features described in the previous section are invariant to image scaling and rotation,
but only partially invariant to 3D camera viewpoint changes. This is illustrated in Fig.
5.8(a)-(b). As can be seen, the circle can not cover the same image content, i.e. the
same physical surface. Clearly, a circular region can not cope with the class of geometric
deformations by the change in 3D viewpoint. The shape of the region has to be adaptive
to viewpoint changes. A crucial observation is that most of the small feature regions cover
an approximately planar surface of the object. Since a region is small with respect to
the distance from the camera, perspective effects can be neglected. In this condition, two
images of a small, planar region are geometrically related by an affine transformation.
This reveals the nature of the desired feature regions: the regions that can be extracted
in an affine invariant manner. Hence, they automatically adapt their shape so as to keep
on covering the same physical surface patch in any image. These regions are called affine
invariant regions, or more precisely affine covariant regions, since the shape of the regions
changes with the image transformation and does not stay constant. In contrast to the
scale invariant regions (see previous section) in the case of affine covariant regions the
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(a) (b) (c)

Figure 5.8: Scale invariant regions vs. affine invariant regions. (a) First viewpoint and
the close-up of the image of a feature region. (b) Second viewpoint. Scale invariant
circular regions clearly do not suffice to deal with general viewpoint changes. The class of
transformations needed is affinity. (c) Second viewpoint with an anisotropic rescaling of
the original region, i.e. affinity.
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Detector # Features Time[s]
Harris Laplace 519 0.580
Hessian Laplace 1081 0.217
SIFT 801 0.195

Table 5.1: Computation time of scale invariant region detectors.

scaling can be different in each direction (see Fig. 5.8(c)).

Several region detectors have been developed in the last few years, differing in the
property they look for, and therefore in which image regions they detect. The next section
describes the main ideas behind the best known affine covariant detectors.

5.5 Affine covariant region detectors

This section gives a brief overview of the state of the art in affine covariant region detection.
These detectors can be seen as a generalization of the scale invariant detectors described
section 5.3. The object detection algorithm described in the next chapter is based on local
features and can work with any of these detectors.

One of the first methods for finding blob-like affine regions has been developed by
Lindeberg and Garding [75] in the context of shape from texture. The method explores
the properties of the second moment matrix and estimates in an iterative procedure the
affine transformation of local patterns. The features are extracted using the maxima
of a uniform scale-space representation and to iteratively modify the scale and shape of
features. However, the feature location is detected only at the initial step of the algorithm
by not affine covariant Laplacian measure. Therefore, if the pattern undergoes a significant
affine deformation, i.e. 3D viewpoint change, the spatial location of the maximum can
be slightly different. Baumberg [11] used the affine shape estimation for matching and
recognition. He extracts interest points at several scales using the Harris detector and
then adapts the shape of the point neighborhood to the local image structure using the
iterative procedure proposed by Lindeberg[75]. The affine shape is estimated for a fixed
scale and fixed location, i.e. the location and scale are not extracted in an affine covariant
way. Therefore the feature regions are not covariant to large affine transformations. Kadir
et al [54] measure the entropy of pixel intensity histograms computed for elliptical regions
to find local maxima in affine transformation space.

Schaffalitzky and Zisserman [124] extended the Harris-Lapace detector (see section
5.3) by affine normalization proposed by Baumberg [11]. A similar idea was explored by
Mikolajczyk and Schmid [90]. Section 5.5.1 describes the related methods Harris-Affine
and Hessian-Affine detectors [91, 93]. Section 5.5.2 and 5.5.3 describe two types of affine
covariant regions introduced by Tuytelaars and van Gool [143, 144], one based on a com-
bination of interest points and edges coined the edge-based region detector (EBR), and the
other one based on image intensities, referred to as intensity extrema-based region detec-
tor (IBR). Finally, section 5.5.4 describes the maximally stable extremal region detector
(MSER) developed by Matas et al. [85]. The detectors proposed by Lindeberg [75] and
Baumberg [11] have not been included since they are very similar to the Harris-/Hessian-
Affine detectors.
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Figure 5.9: Affine Normalization using the second moment matrices Miko04, Baumberg00.

5.5.1 Harris-/Hessian-Affine detector

Baumberg and Lindeberg [11, 75] introduced a region detector which follows two steps.
First, the location and scale of the regions is determined by a multi-scale Harris detector
or a detector based on the Hessian matrix. In the second step, an adaptive procedure is
applied to determine the shape of an elliptical region. Thereby, scale selection is based
on the Laplacian and the elliptical shape is determined with second moment gradient
matrix. The second moment gradient matrix describes the gradient distribution in a local
neighborhood of a point and is used both in the Harris detector and the elliptical shape
estimation:

M = µ(x, σI , σD) = σ2
Dg(σI) ∗

[
I2
x(x, σD) IxIy(x, σD)

IxIy(x, σD) I2
y (x, σD)

]
(5.4)

Ia is the image derivative computed in a direction. The local derivatives are computed
with Gaussian kernel of size determined by scale σD (differentiation scale). Then, the
derivatives in the neighborhood of the point are averaged using smoothing with a Gaussian
window of scale σI (integration scale). Stable corner points can be characterized by points
for which the signal change is significant in orthogonal directions. The two principal signal
changes in a neighborhood of a point are represented by the two eigenvalues λ1 and λ2 of
the matrix M . Therefore, image points with respective large eigenvalues can be classified
as corners. Similarly, flat regions can be characterized by small eigenvalues. Many interest
point detectors, e.g. the Harris detector [47] rely on this principle. The Harris measure of
corner response R combines the trace and the determinant of the second moment matrix
M :

R = det(M)− ktrace2(M), with (5.5)

det(M) = λ1 ∗ λ2 and trace(M) = λ1 + λ2, (5.6)

where k is an empirical constant. Local maximas of the corner response determine the
location of interest points.
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(a)  Harris-Affine

(b) Hessian-Affine

(c) MSER

Figure 5.10: Affine covariant feature detectors.
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(b) IBR

(a) EBR

Figure 5.11: Affine covariant feature detectors.
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A similar detector is the detector based on the Hessian matrix H:

H = H(x, σI , σD) = σ2
D

[
Ixx(x, σD) Ixy(x, σD)
Ixy, σD) Iyy(x, σD)

]
(5.7)

The second derivatives in the Hessian matrix H give strong responses on blobs and ridges.
Since for long structures like for edge points the second derivative in one direction is very
small, local maximas of the determinant would indicate the presence of a blob structures.
In order to deal with scale changes we would need an automatic scale selection method.
Lindeberg introduced the following approach for this purpose. The basic idea is to select
the characteristic scale of a local structure, for which a given function attains an extremum
over scales. The selected scale is characteristic in the quantitative sense, since it measures
the scale with maximum similarity between the feature detection operator and the local
image structure [74]. Therefore, the size of the regions is selected independently of image
resolution. It is related to the structure and not to the resolution at which the structure
is presented.

The experimental comparison in [90] showed, that for scale selection the Laplacian
operator gives both in Harris and Hessian detector the best results, i.e. gives the highest
percentage of correct characteristic scales to be found. When the size of the Laplacian
kernel matches with size of a blob-like structure the response attains an extremum. It also
provides good estimation of the characteristic scale for other local structures like corners,
edges, ridges and multi-junctions.

Once we have the set of initial point locations and their characteristic scales, an it-
erative procedure can be applied to recover the shape of the elliptical affine region. The
eigenvalues of the second moment matrix M are used to estimate the affine shape of the
point neighborhood. To do so, the transformation that projects the affine pattern to the
one with equal eigenvalues is computed, which is given by square root matrix M1/2. Given
two corresponding points x1 and x2 in two views, the neighborhood of these points are
normalized by the following transformations: x′

1 = M
1/2
1 x1 and x′

2 = M
1/2
2 x2, respectively.

Now, the normalized regions are related by a rotation R only: x′
2 = Rx′

1 [11, 75]. The
matrices M ′

1 and M ′
2 computed in the normalized frames are then equal to a rotation ma-

trix. The affine deformation can be determined up to a rotation factor, since the rotation
preserves the eigenvalue ratio for an image patch. However, this factor can be determined
by other methods, e.g. normalization based on the dominant gradient orientation (see
section 5.7.1).

This technique can be used to estimate the shape of the initial regions provided by the
Harris or Hessian based detector. Mikolajczyk and Schmid [91, 93] proposed an iterative
region estimation procedure consisting of the following steps:

1. Detection: detect initial region with Harris or Hessian detector and select the char-
acteristic scale

2. Shape estimation: use the second moment matrix M to estimate the shape of the
region

3. Normalization: normalize the region to a circular one

4. Verification: if for the new point the eigenvalues of M are not equal, goto step 2.
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Figure 5.12: Edge based region detector.

5.5.2 Edge-based region detector (EBR)

Tuytelaars and Van Gool [142, 144] proposed a geometry based method to detect affine
covariant regions by exploiting curved and straight edges in the image. The extraction pro-
cess starts from Harris corner points and the edges that can be found close to such a point
(using Canny edge detector [20]). By exploiting the edge geometry, the dimensionality of
the problem can be reduced: once the anchor points are found (Harris corner points) the
4D search problem over all possible affinities can be reduced to a one-dimensional problem
by exploiting the nearby edges geometry. Let p be a Harris corner point on an edge (see
Fig. 5.12). Two points p1 and p2 move away from the corner in both directions along
the edge. Their relative speed is coupled through the equality of relative affine invariant
parameters l1 and l2:

li =
∫
|det(p(1)

i (si)p− pi(si))|dsi, for i = {1, 2} (5.8)

where si is an arbitrary curve parameter, p1
i (si) is the first derivative of pi(si) with respect

to si. This condition is used as an affine covariant criterion, which prescribes that the
area between pp1 and the edge, and between pp2 and the edge remain identical. At each
position and for each value l (l is used when referring to l1 = l2), the two points p1(l) and
p2(l) with the corner p define a region Ω(l): the parallelogram spanned by the vectors
p1(l) − p and p2(l) − p. This gives a one dimensional family of parallelogram-shaped
regions as a function of l. From this family one or a few parallelograms are selected for
which some photometric quantities of the texture covered by the parallelogram go through
an extremum. See [142, 144] for more detail. The parallelograms can then be replaced by
the enclosed ellipses (see Fig. 5.12).

One of the drawbacks of this method is that the edges it relies on are often a source of
errors. Edge detected in one image, may not be detected in the other image. They might
be interrupted or connected in a different way in the other image. Tuytelaars and Van
Gool also presented an alternative method for extracting affine covariant regions, that is
directly based on the analysis of the image intensity. This method is briefly described in
the next section.
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Figure 5.13: Intensity based region detector [144].

5.5.3 Intensity-based region detector (IBR)

Tuytelaars and Van Gool [143, 144] proposed furthermore a method to detect affine co-
variant regions that start from intensity extrema (used as anchor points), and explores
the image around them in radial way, delineating regions of arbitrary shape, which are
then replaced by ellipses. For this purpose the intensity function along rays emanating
from the extremum is studied (see Fig. 5.13). Along each ray the following function fI is
evaluated:

fI(t) =
|I(t)− I0|

max

(∫ t

0
|I(t)−I0|dt

t , d

) , (5.9)

where t is the Euclidean arc length along the ray, I(t) is the intensity value at position t,
I0 is the intensity value at the extremum and d is a small number to prevent the division
by zero. The point for which the function f reaches an extremum is invariant under the
affine geometric and linear photometric transformations. This is usually the case when the
intensity suddenly increases or decreases dramatically, e.g at the border of a homogeneous
region. fI(t) is in itself invariant. However, for more robustness points where the function
reaches an extremum can be selected.

Next, all points corresponding to maxima of fI(t) along rays from the same local
extremum are linked to enclose an affine covariant region (see Fig. 5.13). This region
irregularly-shaped region is replaced by an ellipse with the same shape moments up to
the second order. To have more a distinctive texture for reliable matching, the size of the
ellipse is doubled. This ellipse fitting operation is also an affine covariant construction.

Since the elliptical regions are not centered around the original anchor points, this
procedure is robust to inaccurate localization of this point.

We implemented this approach in C++ using IPL and added the shape estimation
procedure to the feature detector library. To achieve more robustness to large scale changes
we extended this approach to a Gaussian multi-scale method with a scale space pyramid,
similar to the SIFT detector (see section 5.3.1). Thereby, anchor points can be chosen to
be either extremas of DoG or points detected by the Hessian detector (see section 5.5.1).
The regions are extracted in each level independently and returned. Figure 5.14 shows
some results of the extraction process for single anchor points.
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Figure 5.14: Intensity based region detector [144].
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5.5.4 Maximally stable extremal region detector (MSER)

Jiri matas et al [85] designed maximally stable extremal regions (MSER): connected com-
ponents of pixels which are all either brighter (bright extremal regions) or all darker (dark
extremal regions) than all the pixels on its regions boundary. The maximally stable de-
scribes the property that it is optimized in the threshold selection process, i.e. it considers
all possible global thresholding of the greylevel image, and retains regions which change
only little across a wide range of thresholds. The detected connected component of pixels
are then replaced by an ellipse in the same manner as done by Tuytelaars and Van Gool
(see section 5.5.3). The MSER detector achieves scale invariance in a natural way with-
out searching or even building a scale space. The authors present a very time-efficient
extraction procedure (near linear complexity) [85].

The set of all detected connected components C obtained by thresholding has the
following properties. First, the set is closed under continuous (affine, homography or even
projective) transformation of image coordinates, the topology is preserved pixels from a
single connected component are transformed to a single connected component. Second,
the set is closed under monotonic transformation of image intensities since it depends only
on the ordering of pixel intensities which is preserved under monotonic transformation.
This ensures that common photometric changes modeled locally as linear or affine leave
C unaffected.

In an effort to maximize distinctiveness while still handling occlusions and keep the
regions approximately planar, each region is produced in 3 differently sized versions (scaled
1x, 2x and 4x respectively). The matching algorithm then attempts to use the largest ones
first.

5.6 Complexity and computation time

The computational complexity of the algorithm for finding initial points in all the detectors
except MSER is O(n), where n is the number of pixels [93].

Harris-/Hessian-Affine: For the Harris-Affine and Hessian-Affine detectors the com-
plexity of the automatic scale selection and shape adaptation algorithm is O((m + k)p),
where p is the number of initial points, m is a number of scales in the automatic scale
selection and k is a number of iterations in the shape adaptation algorithm.

Intensity extrema-based: For the IBR region detector, the complexity of construct-
ing a region around the intensity extrema is O(p), where p is the number of intensity
extrema.

Edge-based region detector: For the EBR region detector, the complexity of con-
structing the actual region starting from the corners and edges is O(pd), where p is the
number of corners and d is the average number of edges nearby a corner.

Maximally Stable Extremal Region Detector: for the MSER detector, the com-
putational complexity of the sorting step is O(n) if the range of image values is small (e.g.
< 255), since the sort can be implemented as bin sort. The complexity of the union-find
algorithm is O(nloglogn).

Computation times for the different detectors is presented in table 5.2. The com-
putation times have all been measured on a Pentium 4, 2.8GHz PC , for the first test
image shown in Fig. 5.4(a) with 640x570 pixels. The computation time is dependent
on the number of detected regions. The number of detected regions varies depending on
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the object or scene type. However, this variety is also a virtue: the different detectors are
complementary. Some detectors respond well to structured scenes others to more textured
scenes [93]. We’ll come back to this point in chapter 6.

5.7 Feature descriptors

Once feature regions have been extracted from the images with one of the methods de-
scribed in the previous sections, the next step is to find corresponding features between
the images. This matching process follows a common scheme in most approaches. First,
the textured content of each feature region is represented with a relatively small number
of measurements, which concisely describe the region and are at the same time discrimina-
tive enough to be used for comparison to find correspondences. This set of measurements
are referred to as the descriptor. Ideally, the descriptor is invariant to affine geometric
transformations and photometric changes. Photometric changes can occur because of a)
variation in the local surface orientation with respect to the light source, and b) brightness
change of the light source itself. Furthermore, the descriptor should be ideally distinctive,
i.e. it contains the informative characteristics of a feature region, which makes it distin-
guishable from other regions.

The region detectors described in the previous sections provide circular or elliptic
regions of different size, which depend on the detection scale. In order to be able to com-
pare these regions from different views with each other, we first need a way to align them.
Therefore, first step toward computing the descriptor for a region is geometric normal-
ization: the region which in most cases is elliptical is transformed into a unite circle, i.e.
the affine transformation is removed. This process is similar to the affine normalization
described in section 5.5.1. The regions might then be related by an arbitrary rotation.
Many descriptors have been proposed in the literature which are already rotation invari-
ant. Examples are combinations of color-based moments [143], linear filter banks [124],
normalized Gaussian derivatives steered in the gradient direction [91], or spin images [67].
Another approach is to assign a consistent orientation to each region based on the local
image properties, so that the descriptor can be represented relative to this orientation
and therefore achieve invariance to image rotation. In this way, non-rotation invariant de-
scriptors can be used or just sampling pixels. Next section describes briefly an orientation
assignment that was found among a number of approaches to give the most stable results
[80].

Many different descriptors have been proposed in the literature. Mikolajczyk and
Schmid [89] have evaluated the performance of descriptors by applying them to different
region types and different image transformations. They observed that the ranking of the
descriptors is mostly independent of the region detector and that SIFT based descriptors
perform best. We will use the SIFT and PCA-SIFT descriptors for our object detection
system that will be introduced in the next chapter. Section 5.7.2 and 5.7.3 describe the
principle ideas of these descriptors.

5.7.1 Orientation assignment

After the geometric normalization step described in the previous section, the scale of the
feature region is used to select the image I with the closest scale, so that all computations
are performed in a scale invariant manner. In the case of the SIFT detector we select the
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Detector # Features Time[s]
Harris affine 515 0.691
Hessian affine 842 0.450
EBR 147 1.234
IBR 135 0.652
MSER 167 0.211

Table 5.2: Computation time of affine covariant region detectors.

closest Gaussian smoothed image (see section 5.3.1). Then, an orientation histogram is
built from the gradient orientations of all sample points within the region. Thereby, each
sample in the histogram is weighted by its gradient magnitude and by a Gaussian-weighted
circular window. The gradient magnitude m(x, y) and orientation θ(x, y) for each image
sample I(x, y) are computed by:

m(x, y) =
√

(I(x+ 1, y)− I(x− 1, y))2 + (I(x, y + 1)− I(x, y − 1))2 (5.10)

θ(x, y) = tan−1
(
I(x, y + 1)− I(x, y − 1)
I(x+ 1, y)− I(x− 1, y)

)
(5.11)

The dominant gradient orientation is given by the highest peak in the orientation
histogram [80]. For a better accuracy, a parabola is fit to the closest histogram values to
the highest peak to interpolate the peak position.

5.7.2 SIFT Descriptor

David Lowe [80] proposed one of the most efficient and powerful descriptors coined the
SIFT descriptor to describe the content of a feature region. A SIFT descriptor is created by
first sampling the gradient magnitude and orientation around the feature location. Figure
5.15(a) illustrates this procedure. Thereby, the coordinates of the gradient orientations
are rotated relative to the dominant gradient orientation (see section 5.7.1), in order to
achieve rotation invariance. For more efficiency, the magnitude and orientation values
are precomputed in the orientation assignment procedure. These are weighted with the
Gaussian window, which is indicated by the overlaid circle in Fig. 5.15(a). This gives
less emphasis to gradients that are far from the center of descriptor, since they are most
affected by the misregistration errors [80]. Figure 5.15(b) shows the respective descriptor.
The region is partitioned into an array of 2x2 blocks by creating orientation histograms
over 4x4 sample regions. Each block the orientation histogram has eight bins, illustrated
by arrows in Fig. 5.15(b), with the length of each arrow corresponding to the sum of the
gradient magnitudes near that direction. This brings robustness against local positional
shifts, since a gradient sample in the feature region can shift up to 4 sample positions ans
still contribute to the same histogram. Furthermore, in order to avoid boundary effects,
trilinear interpolation is used to distribute the value of each gradient sample into adjacent
histogram bins.

The SIFT descriptor is formed from a vector containing the values of all the histogram
entries. Lowe’s experiments showed that best results are achieved with a 4x4 array of
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Figure 5.15: SIFT descriptor. Histogram of gradient orientations [80].

histograms each of which contains 8 orientation bins. Therefore, the SIFT descriptor
vector for each feature region has 128 (4x4x8) elements. In order to reduce the effect of
illumination changes, the SIFT vector is then normalized to unit length. Moreover, the
effect of non-linear illumination changes e.g. caused by camera saturation, or 3D viewpoint
changes, can be reduced by thresholding the value in the unit SIFT feature vector to each
be no longer that c, (0 < c < 1) and then renormalizing to unit length. The threshold
value of 0.2 could be determined experimentally based on the matching results conducted
in [80].

5.7.3 PCA-SIFT Descriptor

The distinctiveness of the SIFT descriptor described in the previous section is achieved by
using a high-dimensional vector (128 dimensions) representing histograms of image gradi-
ents in the local neighborhood for each feature location. Instead of using SIFT’s smoothed
weighted histograms, Ke et al [57] applied Principal Components Analysis (PCA) to the
normalized gradient regions and proposed a PCA based version of the SIFT descriptor,
coined PCA-SIFT. Their experiments showed that the PCA-based local descriptors are
more distinctive, more robust to image deformations, and more compact than the standard
SIFT representation [57]. This results in increased accuracy and faster matching perfor-
mance, which makes it attractive in particular for fast object detection systems. We will
make use of this descriptor in the next chapter, in order to build a compact representation
of multiple-view descriptors.

PCA is a standard technique for dimensionality reduction that has been applied to
many computer vision problems, e.g. object recognition [107, 97] or face recognition [141].
Because of its simplicity, PCA remains popular despite some shortcomings, such as implicit
assumption of Gaussian distribution and the restriction to orthogonal linear combinations.

PCA-SIFT descriptor computation can be summarized in the three major steps: First,
an eigenspace is pre-computed to express the gradient values within the regions. Second,
the local image gradients are computed within each region. Third, the image gradient
vector is projected into the eigenspace to obtain a compact descriptor vector.

In order to compute the PCA projection matrix, we use a set of training images (see
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next chapter for more detail). An input vector is formed by concatenating the horizontal
and vertical gradient maps for a region. For instance the input vector of a normalized
patch of size 41x41 pixels would have 3042 (2x39x39) elements. Similarly to the original
SIFT descriptor the vector is normalized to unit magnitude, in order to minimize the
impact of illumination variations. Having a set of input vectors, PCA is applied to the
covariance matrix of these vectors. The matrix of the top n eigenvectors is then used as
the PCA projection matrix.

To compute the PCA-SIFT descriptor for a given image region, the normalized image
gradient vector is created in the same manner as before and projected into the eigen-
sapce (feature space) using the pre-computed PCA projection matrix. A good value for
the dimensionality of the feature space that has been determined empirically is n = 20.
Compared to the standard SIFT representation with 128 elements this is a more compact
representation leading to significant improvement in matching time performance. Exper-
imental results show that variations in the input vectors, mainly due to the structure of
the respective 3D model region and the distortions such as perspective effects caused by
viewpoint changes, can be reasonably modeled by low-dimensional Gaussian distributions.
Projecting the gradient vectors into the low-dimensional space seems to keep the structure
related variations while discarding the distortions caused by other effects.

Although PCA is ill-suited for representing the general class of image patches, it seems
to be very well-suited for capturing the variations in gradient image of feature regions that
have been localized in space, scale and orientation.

5.8 Matching the regions

Once the region descriptors have been computed, we can now search for correspondences.
Two regions are matched if their descriptors are very similar. Comparing descriptors,
rather than directly regions, is not only faster, but also potentially more robust, since
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descriptors often alleviate the effects of noise and misalignments. One measure of simi-
larity can be defined as the Euclidean distance between the respective descriptor vectors.
To avoid mismatches, a global threshold on distance to the closest descriptor would not
perform well, as some descriptors are much more discriminative than others. We will in-
troduce a statistical approach for this purpose in the next chapter using a set of training
images. However, Lowe [80] showed that a distance ratio test is a more effective measure
than the global thresholding method. Thereby, the distance of the closest neighbor is com-
pared to that of the second-closest neighbor. Only matches are considered in which the
nearest neighbor is less that n times the distance to the second-nearest neighbor. Matches
for which the distance ratio is greater than n are eliminated. Good results are obtained
already with with n = 0.8 [80].

Furthermore, the Mahalanobis distance can be used as a similarity measure. This
distance accounts for the different variances of the descriptor’s components, and their
mutual covariances. The covariance matrix needed to compute the Mahalanobis distance
can be estimated from a set of training images.

In order to avoid exhaustive search and computing the similarity for all pairs of de-
scriptors, an indexing mechanism can be applied [80, 124, 91]. Indexing represents the
descriptors as points in a vector space which are then organized in a data structure capable
of efficiently finding nearest neighbors. Examples for different indexing data structures
are the binary space partition trees [124], k-d trees [41] and variations of it [79, 125]. Lowe
[13, 80] uses an approximate algorithm, called the Best-Bin-First algorithm (BBF).

Among all the feature extractors and matching procedures described in this chapter,
the question arises which one of them is the most appropriate for an object detection
system in terms of functional and computational time. To answer this question a com-
parison of the extraction and matching time is needed for each feature type, since both
components are required for detection. Figure 5.16 shows how the complexity for extrac-
tion and matching relates among the different feature types: starting with the fastest one
the FAST features [119], SUSAN [134], Harris corners [47], over scale invariant features,
to the more sophisticated affine covariant features and finally the fiducial markers, such
as ARToolKit makers. As shown in Fig. 5.16, with the increasing extraction complexity
the matching complexity decreases for these features. As a matter of fact, the two factors
are inverse-proportional. We have decided to choose affine covariant features since they
provide a good trade-off between computational efficiency of the extraction and matching
processes. Furthermore, the different covariant feature detectors are evaluated in the next
chapter in terms of object detection performance.

5.9 Discussion

This chapter described the 2D-2D correspondence problem and its relation to the object
detection problem. It presented the state of the art for covariant feature detection as well
as robust and efficient matching. These techniques have been implemented and optimized
to obtain near real-time performance.

In the next chapter we will introduce a novel technique for the 2D-3D correspondence
problem between an image and a 3D object. However, the proposed system for object
detection and pose estimation can work with any of the feature detectors that has been
described in this chapter.



Chapter 6

Fusion of 3D and Appearance Models for Fast Object

detection

I shall try to correct errors when shown to be
errors, and I shall adopt new views so fast

as they shall appear to be true views.

– Abraham Lincoln (1809 - 1865)

In the previous chapter the class of covariant feature region detectors and descriptors
have been introduced. The power of using this kind of features for object detection lies
in two factors. First, local features bring tolerance to partial occlusions and cluttered
backgrounds. Second, since the extraction process and descriptors are invariant to scale
changes or affine deformations, they bring robustness for matching under large viewpoint
and illumination changes. Using covariant features this chapter presents a method for
fast and robust object detection and pose estimation by fusing both the underlying 3D
information and appearance of the features from multiple viewpoints [98, 99].

This chapter is organized as follows. After an introduction in the next section the
proposed approach is described in more detail in section 6.2. Section 6.3 presents some
experimental results followed by a performance evaluation of several feature extractors for
object detection in section 6.4.

73
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Figure 6.1: Overview of the proposed approach vs. conventional approaches.

6.1 Introduction

Computer vision literature includes many object detection approaches [37, 121, 146, 80, 87]
based on representing objects of interests by a set of local features (bags of features) which
are characterized by invariant descriptors for matching [127, 79, 148, 91, 124]. Chapter
3 gave an extensive literature review on feature based object detection methods. Local
descriptors can be computed efficiently. See chapter 5 for implementation details and
speed-up techniques. Combination of such descriptors provide robustness against partial
occlusion and cluttered backgrounds. The descriptors are ideally invariant to viewpoint
and illumination variations.

The use of local descriptors and the detection algorithms vary slightly between different
approaches in the literature. Fig. 6.1 depicts an overview of the conventional object
detection methods and the proposed approach. Most of the conventional methods make
use of techniques for wide-baseline stereo (WBS) matching solely based on 2D images
without considering any run-time requirements. Thereby, given a test image detection of
the target object is usually done in three major steps (see Fig. 6.1). First, features are
extracted independently and then matched in the second step with the features in the
database. Matching is usually performed using photometric constraints combined with or
without 2D geometry constraints [120]. Having enough 2D-3D correspondence candidates
a pose is hypothesized. Third, geometric consistency constraints are enforced and used to
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verify the hypothesized pose. If the verification does not succeed, the system goes to step
two.

Limitations of these approaches are either time and/or functional performance with the
increasing complexity of the objects or 3D/2D database. However, in many applications
where real-time object detection is required both 3D models and several training images
may be available or can be created easily during an off-line process. The key idea is to
use the underlying 3D information to limit the number of hypothesis reducing the effect
of the complexity of the 3D model on the run-time matching performance.

Our method differs in three aspects from the state of the art (see Fig. 6.1). First, for a
sufficient statistical representation we augment appearance information from real images
and 3D model with synthesized images for all those viewpoints where no real images are
available. Second, we propose a statistical analysis and evaluation of the appearance and
shape of features from all possible viewpoints in the scene combining real and synthetic
viewpoints. Third, we make use of the known 3D geometry in both matching and pose
estimation processes. We show that by fusing both appearance and geometric information
rather than using them in separate procedures we can improve both time and functional
performance. Especially for large environments this renders our method very powerful.

Our approach has two phases. In the training phase, a compact appearance and ge-
ometric representation of the target object is built. This is as an off-line process. The
second phase is an on-line process where a test image is processed for detecting the target
object using the representation built in the training phase. During training, the variations
in the descriptors of each feature are learned using principal component analysis (PCA).
Furthermore, for each feature a reliability measure is estimated by analyzing the com-
puted visibility distribution from different viewpoints. The problem of finding matches
between sets of features in the test image and on the object model is then formulated as a
classification problem which is constrained by using the reliability measure of each feature.

Using this framework we perform an evaluation study of different feature detectors
for object detection and pose estimation. Recently, Mikolajczyk et al. [93] presented a
state of the art on affine region detectors and compared their performance on a set of test
images under varying imaging conditions. The comparison showed that there does not
exist one detector that systematically outperforms the other detectors for all scene types.
The detectors are rather complementary, some are more adapted to structured scenes and
others to textures.

However, given an arbitrary scene or target object it is unclear which type of features
are more appropriate for matching and eventually whether their performance depends on
viewing direction.

It is important to use an appropriate method to automatically select the best choice of
feature detectors. In our industrial AR applications, we have the possibility of running an
off-line evaluation procedure comparing the performance of different feature detectors on
the learning set of real or synthesized images. The system will then automatically select
the best detector for each scene and eventually for each set of viewing directions. In this
chapter, we present an exhaustive evaluation of different feature detectors in conjunction
with our initialization strategy. We then present detailed results of this evaluation. This
needs to be considered as a clear demonstration of the system’s general ability of evaluating
and selecting the best feature detectors based on the defined metrics and requirements.

The evaluation of the feature detectors is performed in the context of matching and
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Figure 6.2: Overview of the proposed object detection process for real-time pose estima-
tion.

detection ability of the same scene or target object observed under different viewing con-
ditions with uncontrolled lighting. We have selected a number of state-of-the-art affine
covariant feature detectors [93, 144, 85] and compare them using the same evaluation
scenario and the same test data.

As an application, our method is intended to be used to provide robust initialization
for a frame rate feature-based pose estimator [43] where robustness and time efficiency are
very critical. In this case the initial pose recovery is sufficient to be performed under one
second.

6.2 Proposed approach

Our goal is to automatically detect objects and recover their pose for arbitrary images
(test image). The proposed object detection approach is based on two stages: A learning
stage which is done off-line and the matching stage at run-time. The entire learning and
matching processes are fully automated and unsupervised. Figure 6.2 gives an overview of
the proposed framework. Sections 6.2.1 and 6.2.2 describe the learning step in more detail.
In Sections 6.2.3 and 6.2.4 we introduce the matching and pose estimation algorithms that
enforce both photometric and geometric consistency constraints.
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6.2.1 Creating view sets based on similarity maps

In the first step of the learning stage a set of stable feature regions are selected from the
object by analyzing their detection repeatability and accuracy as well as their visibility
from different viewpoints.

Images represent a subset of the sampling of the so called plenoptic function [1]. The
plenoptic function is a parameterized function for describing everything that can be seen
from all possible viewpoints in the scene. In computer graphics terminology the plenoptic
function describes the set of all possible environment maps for a given scene. In our case,
we define a complete sample of the plenoptic function as a full spherical environment
map (see Fig. 6.3(a)). Having a set of calibrated images and the virtual model of the
target object, the viewing space is coarsely sampled at discrete viewpoints and a set of
environment maps is created. Since not all samplings can be covered by the limited number
of training images, synthesized views are created from other viewpoints using computer
graphics rendering techniques.1

Next, affine covariant features [93] are extracted from the environment maps. In our
experiments we evaluate the performance of different affine covariant detectors (see section
6.4). We also tested the scale and rotation invariant SIFT detector [80]. A hierarchical
ranking of the features can be achieved using the respective 3D structure on the model
(see Fig. 6.4).

We then select ”good” feature regions which are characterized by their detection and
descriptor performance. The evaluation of the detection and descriptor performance is
done as following. The detection performance of a feature region is measured by the
detection repeatability and accuracy. The performance of the descriptor is measured by
the matching criterion, i.e. how well the descriptor represents a scene region. This is
measured by comparing the number of corresponding regions obtained with the ground
truth and the number of correctly matched regions (see Fig. 6.5(a)-(c)).

The basic measure of accuracy and repeatability is based on the relative amount of
overlap between the detected regions in the environment maps and the respective reference
regions projected onto that environment map using the ground truth transformation [93]
(see Fig. 6.6(a)). The reference regions can be determined e.g. from the parallel views to
the corresponding feature region on the object model (model region).

An extracted feature fi is considered to correspond to a reference region f̃j , if the
overlap error, defined as the error in the image area covered by the respective regions , is
sufficiently small:

1−
Rfi
∩RHT f̃jH

Rfi
∪RHT f̃jH

< ε, (6.1)

where Rfi
represents the image region of fi and H is the homography relating the two

features. Some examples of the overlap errors are displayed in Fig. 6.6(b).
For each model region a view set is the set of its appearances in the environment

maps from all possible viewpoints (see Fig. 6.3(b)). Depending on the 3D structure of
the target object a model region may be clearly visible only from certain viewpoints in

1Due to complexity of the target object and the sampling rate this can be a time consuming procedure.
However, this does not affect the computational cost of the system at run-time since this can be done
off-line.
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Figure 6.3: (a) A subset of the environment maps surrounding the object of interest. (b)
A 2D illustration of the 3D clusters of the view sets surrounding the target object.

the scene. We create for each model feature a similarity map by comparing it with the
corresponding extracted features. As a similarity measure we use the Mahalanobis distance
between the respective SIFT descriptors. For each model region the respective similarity
map represents its visibility distribution. This analysis can also be used to remove the
repetitive features visible from the same viewpoints in order to keep the more distinctive
features for matching.

Figure 6.7 shows some results of a simulated scene with a virtual box. The faces of the
box are rendered with the texture obtained from a real tea box. Based on the similarity
maps of each model region we cluster groups of viewpoints together using the mean-shift
algorithm [24]. The clustered viewpoints for a model region mj are W (mj) = {vj,k ∈
<3|0 < k ≤ Nj}, where vj,k is a viewpoint of that region.

Figure 6.8 shows some results of a simulated scene including a box and two cylinders.
Over sixty patches are extracted automatically from each face of the box (see Fig. 6.8(b)-
(c)). The space surrounding the box was coarsely sampled and a set of 15×15 environment
maps were generated. Figure 6.9(a)-(d) show top down views of a subset of the similarity
maps of four patches selected from each side of the box. Note how the presence of an
occluding object (cylinders) is reflected in the similarity maps. The respective view sets
determined by mean shift clustering (see B) are shown in Fig. 6.9(e)-(h).

6.2.2 Learning the statistical representation

This section describes a method to incorporate multiple view descriptors of each view set
into our statistical model. We use the PCA-SIFT descriptor [57] for a more compact repre-
sentation (e.g. first 32 components). To minimize the impact of variations of illumination,
especially between the real and synthesized images, the descriptor vectors are normalized
to unit magnitude. The image gradient vectors gi,j are projected into the feature space to
a feature vector ei,j .

We suppose that the distribution of the gradient vectors is Gaussian for the carefully
selected features as described in the previous section. For each region we take k samples
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Figure 6.4: Feature selection based on the 3D structure of the target object.

from the respective environment maps so that the distribution of their feature vectors ei,j
for 0 < j ≤ K in the feature space is Gaussian. To ensure the Gaussian distribution of the
gradient vectors for each view set we apply the χ2 test for a maximal number of samples.
If the χ2 test fails after a certain number of samplings for a region, the region will be
considered as not reliable enough and will be excluded. For each input view set Vi we then
learn the covariance matrix Σi and the mean µi of the distribution.

6.2.3 Matching as a classification problem

Matching is the task to find groups of corresponding pairs between the regions extracted
from the model and test image, that are consistent with both appearance and geometric
constraints. The matching problem can be formulated as a classification problem [70].
Our goal is to construct a classifier so that the misclassification rate is low. From the test
image, the features are extracted in the same manner as in the learning stage and their
gradient image vectors are computed. The descriptors are then projected into feature
space using PCA (bold dots in Fig. 6.2). We use the Bayesian classifier to decide whether
a test descriptor belongs to a view set class or not. Let C = {C1, ..., CN} be the set of all
classes representing the view sets and let F denote the set of 2D-features F = {f1, ..., fK}
extracted from the test image. Using the Bayesian rule the a posteriori probability P (Ci|fj)
for a test feature fj that it belongs to the class Ci is calculated as

P (Ci|fj) =
p(fj |Ci)P (Ci)∑N

k=1 p(fj |Ck)P (Ck)
. (6.2)
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Figure 6.6: Feature repeatability evaluation: (a) The overlap error is defined as the relative
amount of overlap in the image area between the detected regions fi in an image and the
respective reference regions f̃j projected onto that image. (b) Examples of the overlap
errors.

We compute for each test descriptor the a posteriori probability of all classes and select
candidate matches using thresholding. Let m(fj) be the respective set of most probable
potential matches m(fj) = {Ci|P (Ci|fj) ≥ T}. The purpose of this threshold is only
to accelerate the run-time matching and not to consider matching candidates with low
probability. However this threshold is not crucial for the results of pose estimation.

6.2.4 Pose estimation using geometric inference

This section describes a method using geometric consistency to constrain the search space
for finding candidate matches. For the pose estimation a set ofN ≥ 3 matches are required.
In an iterative manner we choose the first match f ′1 ↔ C ′

1 as the pair of correspondences
with the highest confidence:

argmax fk ∈ F
Cl ∈ C

P (Cl|fk).

We define VCl
as the set of all classes of regions which should also be visible from the

viewpoints where Cl is visible

VCl
= {Ck ∈ C||Wk ∩Wl| 6= 0},

where Wj is the set of 3D-coordinates of the clustered viewpoints {vj,k|0 < k ≤ Nj} for
which the respective model region is visible (see building environment maps, Section 3.1).

Assuming the first candidate match is correct, the second match f ′2 ↔ C ′
2 is chosen

only from the respective set of visible regions. Therefore after each match selection the
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Box

(a) (b)

(c)

Figure 6.7: Experiments with simulated data. (a) A subset of of the environment maps
surrounding the target object (box). (b) The set of extracted rectified features. (c) Top-
down view of the respective similarity maps.
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Figure 6.8: Experiments with simulated data. a) The virtual model of the object. (b)
The extracted features on the model. (c) The set of rectified planar patches.
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Figure 6.9: Experiments with simulated data. (a)-(d) Top-down view of a subset of the
similarity maps. (e)-(h) The clustered view sets using mean-shift algorithm. (i) The
average of all similarity maps.
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Figure 6.10: Experiments with simulated data. (a)-(c) Some virtual test images and pose
estimation results.

search area is constrained to visibility of those regions based on previous patches. In
general the kth candidate match f ′k ↔ C ′

k, 1 < k ≤ N is selected in a deterministic manner

(f ′k, C
′
k) = argmax fk ∈ F\{f1, ..., fk−1}

Ck ∈
⋂k−1

l=1
VC′

l

P (Ck|fk).

The termination criteria is defined based on the back-projected overlap error (see
Section 3.1) in the test image. This algorithm can be implemented in different ways. One
way is a recursive implementation with an interpretation tree where the nodes are visited
in the depth-first manner. The depth is the number of required matches N for the pose
estimation method. This algorithm has a lower complexity as the results will show, than
the plain version of RANSAC or the ”exhaustive” version where all pairs of candidate
matches are examined.

6.3 Experimental Results

The proposed method has been tested in a series of experiments using virtual and real
objects. Figure 6.10 shows some pose estimation results of the simulated scene using
virtual views as test images.

The off-line learning process for real experiments uses ImageModeler from RealVizTM

[117] to obtain a 3D model.2 Our experimental setup consists of a target object and a
commonly available FireWire camera (Fire-I). The camera is internally calibrated and lens
distortions are corrected using the Tsai’s algorithm [139].

We conducted a set of experiments to analyze the functional and the timing perfor-
mance of our approach. The results were compared against a conventional approach based
solely on 2D key frames. Our approach requires an input consisting of a set of images (or
key frames) of the target object. One target object is shown in 6.11(a). The key frames
were calibrated. We used a calibration object (a known set of markers) for automatically
calibrating the views. These markers were used to compute the ground truth for evaluating

2The accuracy requirements depend on the underlying pose estimation algorithms, the object size and
the imaging device.
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(b) (c)(a)

(b)

Figure 6.11: Experiments with real data. a) The target object. (b) The reconstructed 3D
model using two images. (c) The set of most visible patches extracted on the model based
on the statistical analysis using the similarity maps.

the matching results on test frames as well. Fig. 6.11(b) and (c) show the reconstructed
3D model and the selected features on the model.

In the first experiment, we analyzed the functional performance against view point
variations for the same scene but under uncontrolled lighting. The images were taken by
a moving camera around the object. For the sake of clarity of presentation, we show a
subset of 19 test images from this sequence. All those images were calibrated as explained
above. Fig. 6.12 shows some metrics we used to compare these results. One measure of
performance is the final size of the representation (number of features in the database)
used for both methods indicated by the two straight lines. With increasing number of key
frames the size of the database in the conventional case would increase linearly with the
number of key frames. In contrast, our method keeps fewer features in the 2D-3D database
after careful implicit analysis of their planarity, visibility and detection repeatability. The
database size in our method is proportional to the scene complexity not the number of
available key frames. This is an important property for the scalability of the system for
more complex objects.

Fig. 6.12 also shows the number of extracted features and the number of correct
matches found by both methods for each of the 19 test images. It should be noted that,
near the two key frames our method obtains less correct matches compared to the conven-
tional method. This is due to the fact that our representation generalizes the extracted
features whereas the conventional methods keeps them as they are. The generalization
has the cost of missing some of the features in the images closer to the key frames. On
the other hand, the generalization helps to correctly match more features in disparate test
views.

Complexity and performance of robust pose estimation methods like RANSAC are
dependent not on the number of correct matches but the ratio between correct and false
matches. Fig. 6.13(a) shows the percentage of correct matches vs the viewing angle for
the proposed method and the conventional approach.

Although near the key frames our method obtains fewer matches, it has a higher per-
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Viewpoint angle (degrees)

# model features (keyframes)
# model features (our method)
# extracted features
# correct positives (keyframes)
# correct positives (our method)

KeyframeKeyframe

Figure 6.12: Experiments with real data. Metrics used to compare the detection results
(see text).

centage of correct positives. As a result of this and the visibility constraints used our
method needs only a few RANSAC iterations for pose estimation. This brings us to the
timing performance of the matching methods. We use a more complex matching method
than the conventional one. Therefore, each individual match costs more. However, with
increasing complexity of the target object with respect to self-occlusions our representation
becomes more efficient. Fig. 6.13(b) shows the respective maximal number of iterations
needed (logarithmic scale) for RANSAC based pose estimation with a confidence proba-
bility of 95%. Fig. 6.14 shows a visualization of the pose estimation results. We obtain up
to five folds speed-up compared to the exhaustive RANSAC method. Our non-optimized
implementation needs about 0.3 to 0.6 second compared to 2.5 seconds for the conven-
tional approach. In Figures 6.15 and 6.16 (a)-(h) more results are shown for experiments
using test images with occlusions, cluttered background and illumination changes. The
detection results are quite robust and the estimated pose is accurate enough to initialize
our real-time 3D tracker [43]. Fig. 6.17 and 6.18 show the results of two other experiments
in outdoor environments. We used each time two images to build a coarse 3D model and
applied our method to several test images.
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Figure 6.13: Experiments with real data. (a)-(b) Performance evaluation (see text).

The performance of the matching part of our system was evaluated by processing all
pairs of object model and test images, and counting the number of established matches.
Fig. 6.19 shows the ROC curve that depicts the detection rate vs false-positive rate,
while varying the detection threshold T . Compared to the keyframe-based approach the
proposed approach performs very well and achieves 97% detection with 5% false-positives.

6.4 Performance evaluation of covariant features

In the previous section we compared the results of the proposed method against a conven-
tional approach based solely on 2D key frames. We also conducted a set of experiments
to evaluate the functional and the timing performance of the proposed framework using
different feature detectors. This section presents the results of some of the state-of-the-art
feature detectors.

Five types of feature detectors are used:

• Harris-Affine detector: based on affine normalization around Harris points [93, 91,
124],
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Figure 6.14: Experiments with real data. Visualization of the pose estimation results.
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(a) (b) (c)
Figure 6.15: Pose estimation results on test images.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.16: Experiment 1: Control Box. Pose estimation results on test images.
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Figure 6.17: Experiment 2: Blair Tower. Pose estimation results on test images.

• Hessian-Affine detector: based on affine normalization around Hessian points [93,
91],

• Intensity extrema-based region detector (IBR) [144, 143],

• Edge-based region detector (EBR) [144, 143],

• Maximally stable extremal region detector (MSER) [85].

Figure 6.20(a)-(d) shows the feature regions for the detectors on a test image.
The performance analysis and comparison of these detectors was done under the fol-

lowing conditions.

• Learning for object representation: Our approach builds a representation of the ob-
ject using both the 3D and appearance models as explained in the previous sections.
The 3D model and the texture were then used to create synthesized images from
all other possible views. The most stable features and the respective view sets were
determined with different detectors and learned using the method described in Sec-
tion 3.1. For this purpose we kept the values in the first 32 dimensions given by the
PCA.

• Feature extraction: Affine covariant features are extracted as done in learning.

• Feature matching: Matching is formulated as a classification problem and solved
using the Bayesian classifiers as described in Section 6.2.3

• Pose estimation: The pose of the target object was estimated using the geometric
inference as described in Section 6.2.4.
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(c)

(e)(d)
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Figure 6.18: Experiment 3: Char Minar. (a) 3D model. (b)-(d) Pose estimation results
on test images, and with virtual objects (e).
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Figure 6.19: Performance evaluation: ROC plot.

Figure 6.21 shows some metrics we used to compare the results of different detectors.
One measure of performance is the final size of the representation (number of model
features in the database) indicated by the straight lines. The respective features are taken
into the 2D-3D database based on careful analysis of their planarity, visibility and detection
repeatability (see section 3). Fig. 6.21 also shows the number of extracted features from
the test images (test features) for each of the 19 test views.

Figure 6.22(a) and 6.22(b) depict the number of correspondences and the number of
correct positive respectively. The ranking of the detectors in Figure 6.22(a) based on the
number of matched features do not change with respect to the number of corresponding
regions on figure 6.22(b). These results are obtained by the known ground truth and
the overlap error test. In this experiment Hessian-Affine and Harris-Affine provide more
corresponding regions than the other detectors.

Complexity and performance of the robust pose estimation methods like RANSAC is
dependent not on the number of correct matches but the ratio between correct and false
matches. Fig. 6.22(c) shows the percentage of correct matches vs the viewing angle for
the different detectors used. The Hessian-Affine detector almost outperforms the Harris-
Affine and the same holds for MSER with respect to IBR and EBR. As a result of the
visibility constraints used only a few RANSAC iterations for pose estimation are needed.
This brings us to the timing performance of the matching system. Fig. 6.22(d) shows the
respective maximal number of iterations needed (logarithmic scale) for RANSAC-based
pose estimation with a confidence probability of 95%.

We obtain approximately up to five folds speed up compared to the exhaustive RANSAC
method. Our non-optimized implementation needs about 0.3 to 0.8 second for the entire
object detection and pose estimation, depending on the choice of the feature detector.

The estimated pose results for all views only differ slightly for different detectors if
enough correct correspondences are available. Starting with an initial pose estimation with
10% error, our feature-based tracking system is able to converge. Therefore the proposed
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(a) Harris-Affine (b) Hessian-Affine

(c) IBR (d) EBR

Figure 6.20: Affine covariant detectors used for experiments.

pose estimation algorithm gives higher priority to computational time requirement and
robustness than accuracy requirement.

By looking at the Figures 6.21 and 6.22(a)-(d) it is obvious that for this particular
object of interest the Hessian-Affine detector would be the best choice. However, our ob-
jective is that the system automatically selects the best feature detector (or a combination
of detectors) for each scene and eventually for each set of viewing directions based on such
an evaluation study performed as a part of the learning phase.

6.5 Discussion

This chapter addressed the problem of real-time object detection for pose estimation.
The major contribution is the integration of the known 3D geometry of the target model
during both matching and pose estimation steps. This is achieved by a statistical analysis
of the appearances distribution of model patches in the viewing space. Instead of the local
planarity assumption used in previous approaches, our proposed method is able to learn
the visibility distribution of the variations in the local descriptors considering their known
geometry.

Our approach tries to exploit all the information available in the scene in an off-line
process allowing on-line detection and pose estimation. We performed an evaluation study
comparing the performance of main covariant feature detectors proposed in the literature
in conjunction with our initialization strategy. Our method allows us to determine the
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Figure 6.21: Experiments with real data. Metrics used to compare the results.

appropriate feature detector and the set of respective features with the best functional
and time performance for a given type of scene or target object. This is necessary for
automatic initialization of feature-based tracking solutions in industrial AR. The models
of the industrial objects are usually available.

This performance evaluation is not aimed at defining the best available solution in term
of feature detection, but rather at presenting an integrated part of our off-line procedure
for selecting appropriate feature detector for each region of interest in the scene.

Our results show that the most visible and reliable features can be extracted from com-
plex object in an off-line process. The 3D model of a target of interest can be furthermore
exploited for faster object detection. As a first step toward this goal we used environment
maps generated from all different viewpoints in the scene. The amount of data storage
and the time required in the learning stage is not an issue in our industrial application.
However, the number of the required environment maps can be reduced efficiently based
on the 3D object structure and distance to the object.

The extraction of affine covariant features is currently the most computational cost
intensive component in our algorithm. Using the 3D geometry of the target object one
could reduce this complexity and increase the efficiency of the feature extraction algorithm.
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(a) (b)

(c) (d)

Figure 6.22: Experiments with real data. (a)-(d) See the text.



Chapter 7

Results and Applications

In this chapter we discuss our experimental results and potential AR applications of the
detection system. We also describe the tools that have been developed for the offline
training process. Our detection system has been integrated into an AR tracking framework
for the initialization of a marker-less real-time tracking system. We introduce a tracking
management framework designed for single as well as multiple object tracking. The chapter
concludes with discussion of some industrial AR applications.

7.1 Test objects

The object detection system has been tested on a set of different objects. The objects
have been chosen of different sizes with different textures and structures to demonstrate
the scalability and reliability of the system. Figure 7.1 depicts four objects with overlaid
3D models whose pose has been estimated using our approach described in the previous
chapter. These objects are used throughout this chapter to describe the different steps of
the training phase and to discuss the detection and tracking results.

The 3D model of each object was built by using the RealViz Image Modeler [117] and
some high resolution still images taken with a digital camera (Canon EOS20D). Figure 7.2
shows the modeling process of the toy car using eight images. To reconstruct a 3D model
first correspondences between distinctive feature points were selected in an interactive

95
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Figure 7.1: Set of objects used in our detection and pose estimation with overlaid 3D
models: A toy car, a control box, an office cubicle and an industrial coffee machine.

manner and then their 3D coordinates were estimated using triangulation followed by
bundle adjustment. Finally, a triangulated mesh was created and the texture from the
images was applied on it (see Figure 7.2).

Figure 7.3 shows some results of the 3D object detection applied to the toy car. Despite
strong viewpoint and scale changes, severe occlusions and large amounts of background
clutter, the system is in most of the cases able to recover the pose correctly. Figure 7.4
more results and three images where detection fails. Very little is visible of the toy car in
the first of them with large clutter where the system fails to detect it. Also in the case
of occlusions by similar textures in the second image the system is unable to classify the
patches correctly and fails in the pose estimation process. And since non of the affine
covariant feature extractors we use are robust against image deformations the system fails
in detecting distorted texture regions. These illustrate the limitations of our feature based
detection system. Next section describes the offline learning phase and the implementation
details in more detail.

7.2 Offline process and implementation details

The learning process requires a calibrated image sequence, both internally and externally.
In this section we describe the calibration procedure of an image sequence and explain the
learning stage in more detail.

7.2.1 Calibrating an image sequence

The camera is calibrated internally with an calibration grid consisting of a set of pre-
defined markers (see section 2.2). Using the computed undistortion parameters the images
of the entire sequence are then undistorted. Figure 7.5 shows the effect of undistortion
applied on an image from a sequence. For the external calibration we have developed a
program called MotionTracker. There are three different ways for calibration. First a set
of markers can be placed on or around the object of interest. This requires an additional
calibration of the markers. For the feature extraction and evaluation of the training process
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Figure 7.2: 3D model reconstruction of the toy car using eight images.

these markers are then removed automatically since their coordinates in the images can
be computed. Depending on the size and structure of the target object, markers can
not always be placed anywhere or be large enough to be detected in the training image
sequence without occluding important features of the object for detection later on. In this
case, MoitionTacker provides two alternative ways with some interaction for calibration
without using markers. First alternative is to select natural feature point correspondences
from the image and the 3D model. This is demonstrated in figure 7.6(a)-(b). Thereby,
a zoom window is displayed for better localization of the feature points. Having three or
more 2D-3D correspondences the pose can be computed and the model is aligned on the
image. Due to the small number of 2D-3D matches and the error in localizing points, the
alignment is not perfect. Therefore a post-processing refinement process is applied based
on using 3D-2D edges (see Fig. 7.6(c)-(d)). Second alternative way is to roughly align
the model manually using the respective motion control buttons and apply the refinement
procedure afterward. Section 4.5 described an ICP based refinement process that can be
used for this purpose. However, we use a similar algorithm that is described in section
7.3. After the pose of the first frame is computed accurately, the target object can be
tracked in the consecutive frames using the edge tracker. However, the alignment can be
corrected anytime if tracking fails. The pose of each image is then stored separately and
used for the training process described in the next section.

7.2.2 Training process for detection

Once a set of calibrated images is available, the learning process for the detection system
can be started. Figure 7.7 shows an overview of this procedure. The set of calibrated
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Figure 7.3: Detection results of the toy car in a sequence of images with strong viewpoint
and scale changes, severe occlusions and large amounts of background clutter.
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Figure 7.4: Detection results of the toy car. The last row show some cases where detection
fails due to large occlusions combined with cluttered background or large distortions of
the texture structure e.g. when seen from behind a convex glass.
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Figure 7.5: External calibration procedure for an image sequence.



7.2 Offline process and implementation details 101

(a)

(b)

(c) (d)

Figure 7.6: Calibrating an image sequence. (a)-(d) See the text.
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Figure 7.7: Overview of the learning stage for detection system.

images represent a subset of the samples of the environment maps (see section 6.2.1).
Each feature regions is evaluated with respect to its detection repeatability and descriptor
distinctiveness as described in section 6.2.1. For this purpose first the similarity maps are
computed for each feature and then the respective view set created. Figure 7.8 shows four
images taken from a long sequence with highlighted features during evaluation.

7.3 An edge-based tracking system

Our object detection system has been integrated into an AR tracking framework for the
initialization of an marker-less real-time tracking system. This section describes an edge-
based tracker developed by Tsin et al [140]. A stereo vision based tracker is described in
appendix C.

In AR systems, the tracking process itself is usually not the ultimate goal. It is
normally followed by other time-consuming processes such as 3D model rendering or other
visualization tasks, depending on the application. Thus a good tracker is required to
execute as fast as possible. Tsin et al [140] developed an edge-based tracker which is a)
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Figure 7.8: Feature evaluation. Four images taken from a long training sequence with
highlighted feature regions during the evaluation procedure.
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very fast (frame-rate up to 250 VGA frames per second, or as little as 4 milliseconds per
frame on standard computers), b) accurate (jitter-free) and c) insensitive to heavy clutters,
low contrast model edges or repetitive structures. The iterative tracking algorithm consists
of the following components:

1. Pose initialization: An initial pose of the camera is given to the tracker, either by
the detection system for the first frame or during re-initialization, or by the pose
successfully estimated from the previous frame.

2. Projection and sampling: The edge points are projected into the image and sampled.
Invisible points are ignored by conducting a visibility study for each 3D point.

3. Feature detection: Edge candidates are detected in the image. For each sampled
point, there are a list of detected edge candidates are considered.

4. Feature matching: For the sampled edge points the tentative correspondences in the
image are determined.

5. Optimization: A cost function is minimized whose global minimum corresponds to
the ground truth camera pose [140].

6. Go to 4 until convergence.

For more details the reader is referred to [140]. Figure 7.10 shows some results of the
edge-based tracking system.

In order to reconstruct 3D edges automatically an evaluation procedure is used based
on the 3D model (see Fig. 7.9). For this purpose, the calibrated training sequence is
used (see section 7.2.1). From each frame the edges are extracted using conventional edge
detectors [20]. Each edge point will then vote for an existing 3D edge in the 3D model.
Finally, the 3D edges with the highest vote rates are selected and used for tracking.

7.4 Detection and tracking management at run-time

This section introduces an AR tracking management framework based on combining the
proposed 3D object detection and the tracking system described in the previous section.
First, we describe the framework for single object detection and tracking in real-time.
This is the subject of the next subsection. In the section 7.4.2 we will then extend this
framework to multiple object tracking. The system is tested on real and its performance
assessed. Section 7.4.3 presents some experimental results. This framework proves to be
fast and reliable enough for industrial AR applications as will be shown in section 7.5.

7.4.1 A framework for single object detection and tracking

This section introduces the single object tracking manager. The behavior of the man-
agement system can be modeled with a finite state machine (FSM). A FSM is composed
of states, transitions and actions. A transition indicates a state change and is described
by a condition that would need to be fulfilled to enable the transition. An action is a
description of an activity that is to be performed at a given moment.
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Figure 7.9: 3D edge reconstruction. (a) Overview of the 3D edge reconstruction process.
(b) Triangulated model of the coffee machine and the respective 3D edge model.
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Figure 7.10: Edge Tracker. (a)-(b) Augmented views with edges being tracked. (c) Aug-
mentation with the 3D model and the relative speed between the camera and the object.
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Figure 7.11: State diagram of the single object tracking management system.

There are three major states in the FSM of our tracking manager: detection, tracking
or grabbing the current image. Figure 7.11 shows the state transition diagram of this
FSM. The system is started with grabbing the current image. Then a state change to the
detection step is performed. As long a the target object is not detected in the current
image, the next camera image is grabbed and processed. Once the object is detected the
computed pose is used to initialize the tracker. Is this initialization successful, next frame
is grabbed and tracking is continued. Once tracking fails the system switches back to the
detection process automatically. For more robustness we skip a certain number of frames
when tracking fails and try to continue tracking. If it fails in all of those frames it goes
back to the detector. This parameter depends on the performance of the tracker and its
convergence speed. Good results are obtained with our tracker for 10 up to 15 frames.
This simple FSM proves to be extremely powerful in particular for AR applications as will
be shown in the following sections.

7.4.2 A framework for multiple object detection and tracking

The tracking manager for a single object described in the previous section can be extended
to the case of multiple objects. Figure 7.12 shows the respective state diagram. In contrast
to the case of a single object, during the first initialization process, the detector tries to
detect one of the n objects in the current image. Is an object (indicated by j, j ∈ {1, ..., n}
in Fig 7.12) detected, the respective pose is used to initialize the tracker with that object.
Once that particular object can not be tracked anymore, the systems switches to the
detection procedure of that object j first, before going to the general detection process
considering all the objects in the database.

7.4.3 Results

This section presents some results of the combined detection and tracking framework both
for single as well as multiple objects. Figure 7.13 shows the results of some frames from a
sequence in a maintenance scenario with the control box. The user standing in front of the
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Figure 7.12: State diagram of the multiple object tracking management system.

box wears an HMD and a camera (PointGrey Firefly) with a wide angle objective attached
to it. During the maintenance process visual instructions and feedback are provided to
user in form of computer rendered 3D model and animations, e.g for switching or pressing
buttons. Note in the first frames that a small fraction of the object is already sufficient
for the system to detect the object and initialize the tracker. Due to frequent rapid head
motions causing blurring effect in the camera images or when the user moves away his
head and the object is not in the camera’s field of view or when complete occlusions occur
during interactions with the box, the tracking is lost but the system recovers quickly by
detecting the object again and re-initializing the racker once a small portion of the object
is clearly visible.

To demonstrate the performance of the proposed multiple object detection and tracking
framework, three independent objects of different sizes have been used: an office cubicle,
the control box and the toy car (see Fig. 7.14). Figure 7.15 shows the results of some frames
from a long sequence taken within the cubicle. The system is able to switch between the
three objects quickly and display some 3D augmentations to show the tracking results.
The longest detection time when none of the objects is visible and the system tries to
detect the three objects is about 800 to 900 ms.

7.5 AR for industrial applications

Augmented reality systems can be effectively used in applications for industrial processes
such as manufacturing, assembly, maintenance and service, quality control inspections,
etc. However, only a few cases exist where AR technology has been evaluated [27] or
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Figure 7.13: Single object detection and tracking.
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Figure 7.14: Experiments with multiple objects of different sizes. Office cubicle with the
control box and the toy car.

used in real industrial settings. In the project intelligent welding gun [34] we have been
able to set up an AR-assisted welding system for automotive use which is now being used
continously in the early technical intergration phases for new cars at BMW. Furthermore,
the author has been involved in two more projects with the goal of building an AR system
for training, service and maintenance purposes. The first project coined FixIt [63, 33] is
aimed at assisting workers in diagnosis of machine malfunctions in industrial settings and
is described in appendix D. The second project coined ARTESAS is the subject of the
next section.

7.5.1 The ARTESAS project

The project ARTESAS (Advanced Augmented Reality Technologies for Industrial Ser-
vice Applications) aims at the exploration and evaluation of Augmented Reality base
technologies for applications in industrial service environments [7]. The project is based
on the results and insights of the HMI (Human Machine Interaction) project ARVIKA.
ARTESAS is funded by the German Ministry for Education and Research (BMBF) and
supervised by the German Aerospace Center (DLR). The major focus areas of ARTE-
SAS are: (a) markerless tracking systems for industrial environments, (b) user friendly
AR devices proved under technical and ergonomical aspects, and (c) implementation and
evaluation in industrial application fields.

During the last years several vision based tracking technologies have been developed
for the mobile utilization in industrial environments. However, current tracking systems
still lack maturity and marker-less tracking is still a challenging research problem.

One of the recent scenarios is an industrial coffee machine with some moving parts.
An accurate 3D model of the rigid parts of the machine has been created and provided
to us in form of a VRML file. Figure 7.16 shows some pictures from a demonstration
of the tracking system on the coffee machine at Siemens in Nuremberg, Germany. The
user is wearing a wireless head mounted display with a camera attached to it. The entire
electronic and the batteries are integrated into a jacket. The monitor in the background in
Fig. 7.16(a) and the laptop screen in 7.16(c) display the user’s view with the augmented
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Figure 7.15: Multiple object detection and tracking.



7.5 AR for industrial applications 111

(a)

(b) (c)

Figure 7.16: The tracking system while being tested on the industrial coffee machine at
Siemens in Nuremberg, Germany. (a) The user wears a wireless head mounted display
and a camera with the electronic integrated into a jacket. The user’s augmented view is
also displayed on the monitor (a) and the laptop screen (c).

3D model. To demonstrate the robustness of the detection and tracking system, a poster
is placed behind the coffee machine and the lighting conditions changed (see Fig. 7.16(c)).
Figures 7.17, 7.18, and 7.19 show some tracking results in three sequences taken with three
different cameras in different locations with different background and lighting conditions.
The diagram in the bottom row shows the time (in milliseconds) required for processing
each frame. The green color indicates that tracking was successful while the red color
indicates that the object can not be detected, e.g. when the object is not visible. Once
the object can be detected again the tracker is triggered. The slight alignment error is
due to the radial distorted camera images. The images will be undistored in real-time in
the final system. In all cases the system has been able to detect and track the machine
reliably in real-time.
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Figure 7.17: Industrial machine sequence 1: tracking results of the coffee machine.
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Figure 7.18: Industrial machine sequence 2: tracking results of the coffee machine.
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Figure 7.19: Industrial machine sequence 3: tracking results of the coffee machine.



Chapter 8

Discussions and Conclusions

What good are computers? They can only give you answers.

– Pablo Picasso (1881 – 1973)

8.1 Summary

The main contributions of this thesis are two frameworks for fast and robust 3D object
detection and pose estimation from a single image. The frameworks rely on an offline
learning phase where the 3D object model is used to perform the required time consuming
computations so that, at run-time both speed and reliability can be achieved. The first
contribution is the formulation of a scalable sensor fusion framework capable of incor-
porating multiple tracking sensors. The initial pose parameters are estimated iteratively
with a coarse-to-fine strategy by taking the uncertainties of the sensors into account. This
approach relies on a statistical analysis, probabilistic estimation and propagation as well
as fusion of the uncertainties of the sensors. This methodology has been applied to an
augmented reality system using mobile and stationary cameras, and can be easily extended
to the case of any additional tracking sensors. Stationary cameras are used for non-precise
initial pose estimation of the user’s head. This pose data is then combined with the one
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acquired by the mobile camera to improve the registration accuracy. The pose refinement
is based on minimizing the registration error in 3D object space rather than in the 2D
image. The explicit representation of the error distributions allows the fusion of the pose
data and their uncertainties.

The second contribution is a faster and more robust object detection framework for
pose estimation based on local features. For this purpose the class of affine covariant
feature region detectors and descriptors have been introduced in chapter 5. Local features
bring tolerance to partial occlusions and cluttered backgrounds. The proposed detection
framework relies on a scalable and compact representation of the object of interest. Dur-
ing the training process the representation is built by integrating the three-dimensional
object geometry and appearance information using statistical learning techniques. For this
purpose we conduct a statistical analysis and evaluation of the appearance distribution
and shape of object features in the viewing space combining real and synthetic viewpoints.
Instead of the local planarity assumption used in conventional approaches, the proposed
method is able to learn the visibility distribution of the variations in the local multiple
view feature descriptors considering their known geometry. At run-time this representa-
tion is used during the matching and pose estimation processes to limit the number of
hypothesis by incorporating both photometric and 3D geometric consistency constraints.
Fusion of both appearance and geometric information rather than using them in separate
procedures have been shown to be very effective improving both time and functional per-
formance. Thereby, the wide-baseline problem of finding matches between sets of feature
correspondences between the actual image and object model is formulated as a classifica-
tion problem. It has been shown that using a bayesian classifier yields a powerful matching
method well adapted to object detection. Moreover, the compact object representation
allows to reduce the effect of the complexity of the 3D model on the run-time performance
and makes the method especially for large environments very powerful.

Another contribution of this thesis is a kind of exhaustive but automatic evaluation
procedure has been introduced to compare the performance of different feature detectors
in the learning process. Given an arbitrary object this method allows to determine the
best performing feature detector(s) in terms of functional and time performance. In our
industrial AR applications, this performance evaluation is aimed at presenting an inte-
grated part of the off-line procedure for selecting the appropriate feature detector(s) for
each region of interest or eventually set of viewing directions. The evaluation of the feature
detectors is performed in the context of matching and detection ability of the same object
observed under different viewing conditions with uncontrolled lighting.

A final contribution involves the transfer of an augmented reality tracking framework
to industry. The current object detection system has been integrated into an AR tracking
framework for the initialization of a marker-less real-time tracking system. The experi-
mental results have proved the system to be fast and reliable enough for industrial AR
applications.

8.2 Limitations

The feature based detection system relies on scale invariant or affine covariant feature
regions. An obvious limitation of these features is reliance on texture. Some objects such
as industrial machines or a car body are essentially textureless, yet easily recognizable (for
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(a) (b)

Figure 8.1: Support region. (a) Automated computation of Homogeneous regions with
different sizes. (b) Hessian-affine feature regions and the respective nearby support regions.

humans). Handling such objects will require image feature detectors and descriptors that
better convey shape information as opposed to appearance, yet capture an appropriate
level of viewpoint invariance.

Another limitation of the system are local appearance ambiguities. The use of a single
descriptor for matching has the drawback that it fails to consider global context to resolve
ambiguities that can occur locally when the object has multiple similar repetitive features.
The current system is able to identify the repetitive features automatically and exclude
them from the database.

The current implementation needs about 0.3 second on a 2.8 GHz Pentium IV PC.
The most computational cost intensive component in our algorithm is the extraction of
covariant features. Even though some effort was spent on optimizing the methods, there
is still scope for improvement.

The current system has been designed for detection of rigid parts of objects. Detection
of articulated or even non-rigid objects is part of the future work.

The sensor fusion framework has been shown to be robust against viewpoint and
illumination changes. However, because of the global image based matching method it
is quite sensitive to severe partial occlusions and cluttered backgrounds. Combining this
framework with the feature based approach by integrating additional tracking sensors
could improve the results significantly.

8.3 Future work

The work undertaken for the production of this thesis has revealed numerous areas in
which more research and development are required. This section identifies a number of
directions of future work.
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In the sensor fusion framework the pose parameters are estimated in two estimation
and refinement steps. Thereby the second step is independent of the first one and can
require several iteration steps to converge. This can be improved in a future work by
considering the positional uncertainty estimated using the stationary cameras during the
refined pose estimation step. The pose refinement is based on minimizing the object space
collinearity errors. A more efficient and faster solution could be the minimization of both
object and image space collinearity errors simultaneously for pose estimation.

The extraction of affine covariant features is currently the most computational cost
intensive component in our algorithm. As a future work we intend to design a fast fea-
ture extractor using the known 3D geometry of the target object in order to reduce the
complexity and increase the efficiency of the feature extraction algorithm.

The 3D model of a target of interest can be furthermore exploited for faster object
detection. As a first step toward this goal we used environment maps generated from all
different viewpoints in the scene. The amount of data storage and the time required in the
learning stage is not an issue in our current industrial application. However, the number of
the required environment maps can be reduced efficiently based on the 3D object structure
and distance to the object.

The current approach relies on textured objects. To increase the range of target
objects for our approach, we will investigate the use of additional image features such as
edges, line segments and even homogeneous regions. We believe that a framework can
be designed to find out the most informative features in any given situation and, thus,
to allow us to mix different image features in a natural way. Ideally multiple feature
detectors should be used in parallel in a hierarchical way. As an example figure 8.1 shows
how neighboring homogeneous regions can be used as characteristics. The basic idea is to
create and assign to each model feature a set of so called support regions or entities for
unique characterization in the 3D model feature database. These homogeneous regions
shown in figure 8.1(a) have been extracted during the offline process and are used at
run-time as support regions, based on the geometric transformation of nearby existing
features.

Starting with an initial set of matches at runtime a process would gradually explore the
test image, recursively looking for more and more matches from the initial ones. This can
happen in a similar way to the method in [36] but in a hierarchical way to guarantee real-
time performance. For each feature the corresponding support regions are propagated to
the test image constructing new matches based on their known geometric transformation.
The method is repeated iteratively for each new feature correspondence so that the amount
of matches grows after each iteration. Once enough reliable feature matches are found,
pose estimation is applied and the results verified.

The use of a single descriptor for matching has the drawback that it fails to resolve
ambiguities that can occur locally when the object has multiple similar repeatable fea-
tures. One possible way to tackle this problem is to consider global context: The feature
descriptor is augmented with a context vector that contains shape information from a
larger neighborhood similar to [95]. The global context scale can be made invariant since
it is a function of the feature size.

Since during feature extraction in the test image the feature region location and ori-
entation can slightly deviate from the learned features in the database, the uncertainties
of the features can be taken into account based on which a refinement process would be
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conducted. Using the uncertainties of each individual feature, an error estimation and
propagation can be performed for the respective support regions.

The challenge of a framework with multiple detectors and descriptors is to come up
with an efficient hierarchical representation of the feature detectors and descriptors to
guarantee real-time performance. This would mean that for instance the most reliable
features with lower extraction time need to be processed before the more complex ones
where eventually refinement is needed. In the case of descriptors a set of possible types
of hierarchical descriptors can be considered: a) nearby homogeneous regions, b) different
scaled versions of the model regions, c) nearby features like edges, lines, colors, d) topo-
logical arrangements of features, Barycentric neighborhood constraint, Belief propagation
techniques, e) sideness constraint: the center of a region should be on the same side of
the directed line going from the center of a second region to the center of a third region.
f) ratio of regions or region intersections as an invariant of the affine transformation, g)
ratio of lengths of line segments along rays emanating from the region’s center.

During learning several sets of support descriptors are generated for each specific model
region for different uncertainties. At run-time for each feature the set of support regions
and descriptors is selected based on the uncertainty of the estimated affinity. Ranking
inside each set of the support regions (descriptors) is based on a) their uncertainty (covari-
ance matrix), b) complexity (computational time), c) likelihood of detection (overlap error
and similarity measure) which depends on the information content, and d) the threshold
of time given

These functionalities can be implemented in form of a set of distributed agents each of
which starting with a single match tries to explore the test image and find new correspon-
dences. Furthermore, these agents can be used to form a new data format by augmenting
a CAD format where beside geometric content, visual information about reliable features
for detection as well as tracking is contained.
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Appendix A

Medical AR applications

Two medical AR applications in minimally invasive heart surgery were part of the col-
laboration project HEART (Heart surgery Enhanced by Augmented Reality Techniques)
between TU Munich and the German Heart Center in Munich. One application was the
visualization of the optimal placement of ports for minimally invasive surgery [138]. The
other application is assistance in the placement of aortic stents [10]. The first AR ap-
plication aimed at providing an efficient solution to the problems of teleoperator based
heart operations, namely the optimal port placement and intra-operative navigation in
robotically assisted minimally invasive cardiovascular surgery. Traub et al [138] developed
a novel system incorporating both port placement planning and intra-operative naviga-
tion. The optimal port placement is planned offline on a three-dimensional virtual re-
construction of the patient’s computed tomography (CT) scan. Using this planned data
an accurate in-vivo port placement is performed by superimposing virtual models of the
thorax and the teleoperator arms on their real world counterparts (see Figure A.1). The
collision detection method ensures an intersection-free planning and proper placement of
the teleoperator arms to access the volume of interest. Thus, a significant reduction of
operation time can be obtained by a precise and collision-free planning and placement of
teleoperator arms.
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Figure A.1: Medical AR Applications. Optimal port placement using AR [138].



Appendix B

Mean shift clustering

This section described the mean shift clustering algorithm that has been used in section
sec:viewSets for computing the view sets. Mean shift [22] is a simple iterative procedure
that shifts each data point to the average points in its neighborhood. The mean shift
algorithm can be generalized to make k-means like clustering algorithms to its special
case [22] .

Let S ⊂ X be a finite set in the n-dimensional Euclidean space, X. Let K be a kernel
and w : S → (0,∞) a weightfunction. The sample mean with kernel K at x ∈ X is
defined as

m(x) =

∑
s∈S

K(s− x)w(s)s∑
s∈S

K(s− x)w(s)
. (B.1)

Let T ⊂ X be a finite set (the cluster centers). The difference m(x) − x is called
mean shift in Fukunaga and Hostetler [42]. The evolution of T in the form of iterations
T ← m(T ) with m(T ) = m(t) : t ∈ T is called a mean shift algorithm. For each t ∈ T ,
there is a sequence t,m(t),m(m(t)), ..., that is called the trajectory of t. The weight w(s)
can either be fixed throughout the process or re-evaluated after each iteration. It may
also be a function of the current T . The algorithm halts when it reaches a fixed point
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(a) (b)

(c) (d)

Figure B.1: Mean Shift Clustering. (a) The initial data set. (b) Mean shift trajectories
and clustering with a truncated Gaussian Kernel (λ = 0.15), 8 iterations and 9 clusters.
(c) Mean shift process with a truncated Gaussian Kernel (λ = 0.2), 9 iterations and 5
clusters. (d) Mean shift process with a truncated Gaussian Kernel (λ = 0.25), 7 iterations
and 3 clusters.

(m(T ) = T ). When T is S, the mean shift algorithm is called a blurring process, indicating
the successive blurring of the data set, S.

The kernel we are using for computing the view sets is a truncated Gaussian kernel,
which is a Gaussian kernel e−||x||2 multiplied by a flat kernel.

Gβ
λ(x) =

{
e−β||x||2 , if ||x|| ≤ λ

0, if ||x|| > λ
(B.2)

The computational cost of an iteration of mean shift is O(n2), where n is the size of
the data set. However, it is possible to reduce the time complexity to O(nlogn), using
a better storage of the data by considering only neighboring points in the computation
of the mean. For more detail about mean shift the reader is referred to [22]. Figure B.1
shows the results of mean shift clustering using a set of points as data set. Figure B.2
and B.3 show some results of the mean shift clustering algorithm using the position of
environment maps surrounding an object of interest as data set for simulated and real
data, respectively (see also section 6.2.1).
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(a)

(b) (c) (d) (e)

Figure B.2: Mean Shift Clustering. (a) Simulated denstiy function. (b) Gaussian Kernel
(β = 0.6, λ = 2), 17 iterations and 20 clusters. (c) Gaussian Kernel (β = 0.9, λ = 5),
14 iterations and 16 clusters. (d) Gaussian Kernel (β = 0.5, λ = 4), 14 iterations and 8
clusters. (e) Gaussian Kernel (β = 0.2, λ = 4), 10 iterations and 4 clusters.

(b) (c) (d) (e)

(a)

Figure B.3: Mean Shift Clustering. (a) Similarity value distribution. (b) Gaussian Kernel
(β = 1, λ = 3), 14 iterations and 14 clusters. (c) Gaussian Kernel (β = 0.2, λ = 4),
14 iterations and 8 clusters. (d) Gaussian Kernel (β = 0.2, λ = 6), 30 iterations and 4
clusters. (e) Gaussian Kernel (β = 0.1, λ = 7), 14 iterations and 2 clusters.
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Appendix C

A simple stereo vision based tracker

This section presents a robust model-based tracker using stereo vision [100]. The combined
use of a 3D model with stereoscopic analysis allows accurate pose estimation in the presence
of partial occlusions by non rigid objects like the hands of the user. Furthermore, using a
second camera improves the stability of tracking and also simplifies the algorithm.

Introduction

Model-based visual tracking methods rely on a 3D model of the target object(s) and try
to compute a 3D pose that correctly re-projects the features (e.g. points, edges, line
segments) of a given 3D model into the 2D image. After an initialization of the system
where initial matches between 2D features and the corresponding 3D model features are
established, 2D tracking algorithms like KLT [83] are used to track the features from
frame to frame [43, 145, 12]. The resulting 2D-3D matches of every frame are used for
pose estimation using standard methods e.g. Tsais algorithm [139].

There are mainly three major problems arising when tracking 2D features. First, the
matched features may drift or even be completely wrong (outliers) when pixel-based cor-
relation techniques establish frame-to-frame correspondences. Secondly, since the camera
can move, the initial features may not be visible all the time, so new features need to be
found and tracked properly at run time. And thirdly, due occlusions e.g. caused by users
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Figure C.1: Overview of the model-based stereo tracking system.

hands, the target object may be only partially visible
To handle these problems new visible features need to be added and matched online.

Several approaches to monocular tracking [43, 145] try to detect and discard outliers
matches by using robust estimation techniques like RANSAC, which tend to be quite time
consuming. We show a tracker that incorporates stereoscopic vision with the 3D model
for this purpose. Stereoscopic analysis provides the important epipolar constraint [48].
By applying this constraint to the stereo image pair, outliers (false correspondences from
monocular tracking) can be easily detected and rejected, avoiding the more time consuming
robust estimation techniques. Using a second camera also improves the accuracy of the
tracking. Furthermore, it improves greatly the stability and simplifies the algorithm.
The requirement of an existing 3D model is, in practice, not an issue since such models
already exist in many applications or can be created using either automated techniques or
commercially available products. In this demo we used the 3D modeling program Canoma
based on single images taken from the target objects.

System overview

Two cameras are mounted side by side as a stereo camera system. We use the method
proposed by Zhang [154] to determine the intrinsic matrices of both cameras and the
relative transformation between them.

Using a few user selected 2D-3D correspondences, the model is registered with the
images. From then on, the system tracks the optical flow of salient features using the
KLT tracker [83], rejects outliers based on the epipolar constraint, and updates the pose
of the camera in every frame (see Figure C.1). A feedback loop supplies new salient
feature points in each frame to make the tracking more stable under various conditions,
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(a) (b) (c)

(a)

(c)

(b)

Figure C.2: (a) Stereo camera rig with two Sony DFW-VL 500 Firewire cameras. (b) A
test scene consisting of two planar textured planes. (c) The 3D model.

e.g. occlusions by the users hands. The algorithms are described in more detail in the
following two sections.

Stereo 3D tracking

First we detect strong corners in both images using the Shi-Tomasi algorithm [131]. The
feature points are then tracked in each camera image independently using a pyramidal
implementation of the Lucas-Kanade algorithm [83]. However the matched points may
drift or even be wrong. Therefore, the epipolar constraint is applied to reject outlier
matches. The epipolar constraint states that if a point p in the first image and a point q
in the second image correspond to the same 3D point in the real world, they must satisfy
the following equation qTFp = 0, where F is the fundamental matrix that is the algebraic
representation of the epipolar geometry between two images [48]. This equation means
that point q must pass through the epipolar line defined as Fp in the second image and
vice versa. By applying this constraint to the stereo image pair, outliers can be easily
rejected and the pose of the camera is estimated using Tsai’s algorithm [139].

Adding New Features

To ensure that there will be a sufficient number of feature correspondences for pose esti-
mation in the consecutive frames, new stable features are added based on the following
two criteria:

Texture: The feature point has rich texture information. For this purpose strong
corners are selected from the image based on [131], then back-projected to the 3D model
in order to get their 3D coordinates, considering only the interest points that are on the
object surface.

Visibility: The feature must be visible in both cameras. A feature point is visible in
both images if the respective 3D model points are close enough to each other. Adding new
features by every frame alleviates the tracker drifting problem and improves the accuracy
and stability of the tracker.
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Experimental Results

We have implemented both monocular and stereo based trackers and tested the algorithms
with several live real data. The software was developed using Microsoft Visual C++ and
OpenGL under both Windows 2000 and XP. Furthermore we use the computer vision
library OpenCV, which is distributed by Intel and is freely available online. The current
implementation runs in real-time (30-40 FPS) with a resolution of 320x240 on a Laptop
(DELL Precision 50) with 2.0 GHz Pentium 4 CPU. For user interaction a platform inde-
pendent graphical user interface was built using GLUI (see Figure C.3(a)). Using such an
interface most important parameters can be changed on-line and their effect on tracking
can be seen immediately. This interface was used to find a configuration of parameters
with the best tracking results. Due to the platform independence of the whole system,
the software can be run on other platforms (Unix, Linux, Macintosh) with little modifi-
cations. Figure C.2 (a) and (b) shows the stereo camera rig and the test scene used for
testing the tracking algorithms. To build a 3D model we used the program Canoma from
MetaCreations to reconstruct a 3D scene using several images of it. Figure C.2(c) shows
the 3D model of the target object used for experiments.

We ran the monocular and stereo tracking algorithms with several target objects.
Figure C.3(b) shows the first monocular tracking results of a sequence taken from the
outside of our AR Lab at TUM. The tracking was done using the monocular technique
by removing the epipolar constraint. In this case after a while the tracking results poor
accuracy and the model starts to drift.

In Figure C.3(c) the results of a sequence are shown using the stereo-based approach.
In this sequence a rectified texture of the facade of a building was used. No drifting can
be seen due to the strong epipolar constraint.

Last Experiment was done using a 3D model rather than a planar one. Figure C.4
shows two views of a test scene consisting of two textured surfaces and the respective
reconstructed 3D model. The scene was then augmented with several virtual objects
shown.

Conclusions

We have presented a simple but robust method for real-time 3D tracking using two cam-
eras. We showed that the rich information from the stereo cameras (or multiple cameras)
enables the tracking system to achieve a much higher level of robustness than the monocu-
lar version. Furthermore, this approach can still continue tracking and produce reasonable
results when one of the cameras is fully occluded.
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(a) (b) (c)

(a)

(c)

(b)

Figure C.3: (a) The graphical user interface of the model-based tracking system. (b)
Sheep on the loose: window view of the AR Lab at TUM and the augmented view with
virtual objects. (c) Tracking results on a sequence of images.

(a) (b) (c)

(a)

(c)

(b)

Figure C.4: Stereo tracking results: Augmented stereo images with virtual objects.
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Appendix D

The FixIt project

This section describes an AR system coined FixIt aimed at assisting workers in diagnosing
machine malfunctions in industrial settings [63, 33].

Industrial machines or robots need to be inspected and repaired by workers periodically
or on demand. One of the major problems in diagnosing the problem to be fixed is to
establish a mapping between the internal control state of the computer and the actual
physical state of the machine. To this end, the maintenance person needs to have a clear
understanding of both, as well as their expected and actual dynamic changes over time.
By overlaying virtual information of the control system directly onto the machine while
it is in operation, AR has the potential to help workers obtain a better understanding
of the reasons for malfunctions. The result is an intricate new, highly immersive net of
interactions and relationships in a man-computer-machine triangle. To this end, they
need a system that helps them diagnose problems while the system is running to identify
signaling malfunctions. We show using a Fischer Technik robot, how the current robot
state (motors on/off, switches pressed, etc.) overlaid on the respective components of the
robot so that the mechanic can see which pieces are malfunctioning or which cables are
not propagating signals correctly.

Figure D.1 depicts the schematic of the FixIt system. It consists of three major com-
ponents:

• A tracking component is required to determine the current physical state of the robot,
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as well as current pose of the camera or the viewer representing the maintenance
person.

• A control component that sends commands to the robot e.g. to move its arm or
rotate. The same commands are send to the visualization component.

• A visualization component, overlaying the control state information on to the robot,
according to the camera’s current pose.

For analyzing malfunctions, workers can request the robot from the robot application
side to perform a set of physically reachable motions, e.g. to move the tip of the robot
to certain three-dimensional positions. The control program internally divides the request
into a sequence of control commands steering the individual motors.

Since both the worker and the robot move, tracking is required both for determining
the current worker position and for determining the current physical shape of a machine
such that augmentations are actually placed correctly onto individual machine parts while
these are moving. In the case of a markerless tracking system, this means that both
the detection and tracking system need to be able to handle articulated objects and the
respective dynamics.

We have built a prototype of the FixIt system was presented on ISMAR 2003 [33].
For the demonstration we built a toy robot (welding robot) by Fischer technik that was
connected to a computer running the application (see Figure D.2(a)). For the visualization
an animated 3D model of the robot is required to account for any potential robot move-
ments. Figure D.2(b) shows a VRML model of the Fischer Technik robot. This model
was composed from a library of basic models describing individual Fisher Technik parts.
As depicted in Figure D.1 the visualization component receives input both from the robot
control component and from the tracking component. It is able to steer the animation
of the virtual model and highlight active units of the robot according to recently issued
robot control commands assisting the malfunction diagnosis state (see Figure D.2(c)).

This tool can be used to exploit the redundancy between issued control commands
and visually tracked robot positions to automatically identify and diagnose malfunctions.
In this case, there is an interesting discrepancy between the internal (virtual) state of
the machine and its real (physical) state. If due care is being taken to formalize this
discrepancy and to determine it from physical measurements (tracking data) and control
status information, it can form the basis for very powerful diagnosis for machine repair
personnel.

Yet, the discrepancy alone will not suffice. It needs to be supplemented with program
context data which indicates what the robot control program is trying to achieve while
issuing a certain sequence of robot control commands.

The formalization of such program context, as well as the standardized indication of
a program control state (for an arbitrary machine) and the visualization of discrepancies
between the virtual and real robot state are important visualization issues that need to
be addressed in order to generate authoring systems that will be suitable as augmented
debugging aides for larger sets of robots.

Within this project, we have been able to lay the ground work toward exploring these
and other exciting issues related to an online diagnosis of malfunctions of machines while
they are in operation.
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Figure D.1: Schematic of the FixIt system.

(a) (b) (c)

Figure D.2: (a) Robot. (b) 3D model. (c) Overlayed image with the control state of the
robot.
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