
Institut für Informatik

der Technischen Universität München

RBSLA:
Rule-Based Service Level

Agreements

Knowledge Representation for Automated

e-Contract, SLA and Policy Management

Adrian Paschke

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Torsten Grust
Prüfer der Dissertation: 1. Univ.-Prof. Dr. Martin Bichler

2. Univ.-Prof. Bernd Brügge, Ph.D.

Die Dissertation wurde am 26.06.2007 bei der Technischen Universität
München eingereicht und durch die Fakultät für Informatik am 25.10.2007
angenommen.

ii

Acknowledgements

First, I would like to thank my referees Prof. Dr. Martin Bichler and Prof.
Dr. Bernd Brügge. Prof. Bichler gave me the opportunity to work on this
exciting subject under his supervision. He generously supported my RBSLA
project and gave me the encouragement and the freedom I needed to complete
the maturing of the ideas to a practical relevant project.

A big "thank you" goes to Alexander Kozlenkov from the City University Lon-
don (now Betfair Ltd.) and to Dr. Jens Dietrich from the Massey University
in New Zeeland for countless invaluable discussions and constructive comments.
They tirelessly motivated and inspired me through all the stages of this disser-
tation. It is an honor to collaborate with them in the precious spirit of open
source development and extreme programming. I am grateful for the time and
energy they devoted to the supervision of this work and even happier to have
them as friends.

Special thanks go to Prof. Dr. Harold Boley who invited me as a guest
researcher at the National Research Council in Canada and who gave me the
unique opportunity to contribute my RBSLA work to the RuleML standardiza-
tion initiative as a Steering Committee member and as a Co-Chair of Reaction
RuleML. He also made it possible for me, as a non W3C member, to present
parts of my works in terms use cases to the newly formed W3C Rule Interchange
Format working group. I would like to thank him, Michael Kifer, Said Tabet,
Mike Dean and the other RuleML and Reaction RuleML standardization mem-
bers for their constructive comments and feedback during our weekly telephone
conferences and face to face meetings and it is an honor to work together with
them.

Further thanks go to Prof. Dr. Gerd Wagner who invited me as a guest
researcher to his group at the Technical University Brandenburg and to Prof.
Dr. Hoelldobler from the TU Dresden with whom I had fruitful discussion
about Situation Calculus vs. Event Calculus during the ICCL Summer School
"Logic-based Knowledge Representation" in Dresden.

Further thanks go to all my colleagues at the institute and in particular the
Internet Based Information Systems (IBIS) group for providing an excellent
working environment. I would also like to thank all industry partners and
collaborators such as Siemens SBS, Siemens AG, IBM, HP, Wacker Chemie,
Lufthansa, BMW, O2, Deutsche Telekom for giving an insight into IT service
centers and IT service management practices, for providing valuable material
such as real world SLAs and for giving feedback on the practical and industrial
relevance and usability of my project.

Special thanks go to my family, my wife Aira and my daughter Aureelia as
well as my parents and sisters, for their love, understanding and encouragement.
They have been a constant source of joy and strength during the ups and downs
of the last years and I know that it was really a hard to time for them.

iii

iv

Abstract

The emergence of service oriented computing (SOC) together with novel busi-
ness models such as On-Demand or Utility Computing leverage an open en-
vironment based upon loosely coupled and distributed services and dynamic
service provider and service consumer relationships. Dynamic service supply
chains (a.k.a. business services networks) based upon service-oriented and event-
driven architectures (SOAs and EDAs) and technology standards such as Web
Services, Grid Computing and the Semantic Web ease the outsourcing of com-
plex IT infrastructure to IT service providers. IT service providers must be able
to ful�l their policy and service-quality commitments based upon Service Level
Agreements (SLAs) with their service customers. They need to manage, execute
and maintain thousands of contracts for di�erent customers and di�erent types
of services while facing rapidly changing business and system environments, a
wide range of domain knowledge due to diverse organizational boundaries, huge
amounts of scattered data managed in possibly distributed heterogeneous data
sources and a great variety of more or less cooperative entities (human or au-
tomated agents) involved during the contracts life cycles. Moreover, they have
to accommodate high requirements regarding correctness, robustness and trace-
ability of drawn results and triggered reactions from the service contracts in
order to establish trust and ful�l legal compliance rules.

While past research in service oriented computing has focused on the fairly
static functional description and the operators of services - including publi-
cation, discovery, selection, binding and composition of basic services - the top
layer in the SOA pyramid providing support for IT service management (ITSM)
and in particular IT Service Level Management based upon SLAs describing
non-functional service properties such as quality of service (QoS) and business
policies has not been as thoroughly explored. I argue that the prevailing IT
service level management tools and the actual SLA and contract languages such
as WSLA, WS-Agreement or WS-Policy which mainly focus on the syntacti-
cal description of electronic contracts and policies using XML markup are not
suitable to solve this task. The complexity of contractual logic in SLAs in an
open, dynamic service oriented environment such as the Semantic Web requires
new forms of knowledge representation and new technical solutions with a high
degree of agility and �exibility in order to e�ciently engineer, manage and con-
tinuously monitor and enforce large amounts of complex and distributed IT
service contracts.

I propose a declarative rule-based approach for SLA representation and service
level management (SLM) of IT services, where sophisticated logical knowledge
representation (KR) concepts and arti�cial intelligence (AI) techniques are used
to describe the contracts in a generic way. Using rules for SLA representation
has several advantages:

1. reasoning with rules is based on a semantics of formal logic - a variation
of �rst order predicate logic - enabling automated rule chaining by reso-
lution and variable uni�cation, which alleviates the burden of having to

v

implement extensive control �ows as in imperative programming and al-
lows for easy extensibility without a�ecting the underlying mechanisms
and architectures,

2. it allows for a compact and comprehensible human and machine-oriented
representation and high levels of automation and �exibility to adapt to
rapidly changing requirements, and

3. it is relatively easy for the end user to write rules and hence rapidly engi-
neer and maintain SLAs.

The basic idea is, that business practitioners employ rules - which might be
prede�ned as templates by experts - to describe their SLAs, the responsibility
to interpret and execute these contracts and to decide on how to do this is
delegated to a standard interpreter - a rule engine. Along with providing the
possibility to describe complex contract structures as modular rule sets which
can be collaboratively engineered, maintained and interchanged in an open dis-
tributed environment and which can be automatically executed and enforced by
a rule engine, my formal-logical rule based approach provides means to:

• integrate external systems, data sources and domain-speci�c Semantic
Web ontologies into rule executions,

• dynamically change and update the rule-based SLA speci�cations at run-
time, and

• automatically verify, and validate consistency and correctness of the rule
sets.

The proposed research is on the interplay of common software engineering
(SE) providing well-established methodologies, imperative programming and
database solutions, on the one hand and arti�cial intelligence and knowledge
representation following the declarative rule based programming paradigm, on
the other. A third important research dimension is added due to the inherent
business-driven character of the SLA domain, the indispensable compliance of
contracts with legal regulations and the deep impact on all operational, tactical
and strategic IT service management (ITSM) processes. The objective for the
proposed research is to adapt the values, principles and practices in the ad-
dressed �elds and bring together the di�erent requirements within one practical
framework. Although, rule based systems have been investigated comprehen-
sively in the realms of declarative logic programming and expert systems over
the last decades and some development on specialized problems already exists in
the domain of contract and policy management a comprehensive and coherent
KR for rule-based SLA and policy representation is missing. This dissertation
aims to identify and implement adequate knowledge representation concepts
from the area of arti�cial intelligence (AI) and knowledge representation (KR).
A particular interest is in the investigation and combination of adequate �rst
order logic subsets such as description logics as basis for Semantic Web ontology
languages and expressive non-monotonic logic programming techniques and log-
ical formalisms such as defeasible logic, deontic logic, temporal event and action

vi

logics, transaction and update logics as a means for deriving formal declarative
contract speci�cations. In particular, the goal of this dissertation is to develop
a practical SLA management framework that

1. includes an expressive, e�cient and coherent KR for declaratively formal-
izing modular contract structures and integrating external domain-speci�c
(Semantic Web) vocabularies and external systems, data and functionali-
ties;

2. aids in collaborative development, veri�cation, maintenance, interchange
and execution of contracts in open distributed environments such as the
Semantic Web by a superimposed declarative rule based SLA markup
and interchange language and translations from this language into the
execution KR in the target environment;

3. provides a stable, e�cient and highly scalable infrastructure for distributed
rule-based contract management, rule interchange and rule-based complex
event processing

4. SLM support via tool based contract engineering, management and run-
time visualization, alerting and explanation in service dashboard views;

5. provides integration in and interoperation with standard enterprise appli-
cation architectures and distributed web architectures

The primary contribution of this dissertation is a declarative, compact and
highly expressive KR proposal, the ContractLog KR, consisting of selected ade-
quate formalisms for SLA representation and a rule based Service Level Agree-
ment markup language, called RBSLA, used to serialize SLAs in a interchange-
able format in XML. The approach has a clear logical semantics, is computa-
tionally e�cient for larger SLAs and data sets, reliable and traceable even in
case of incomplete or contradicting knowledge, provides support for validation
and veri�cation of contractual speci�cations, is �exible in a way that allows to
quickly alter the SLA speci�cation, supports declarative programming (not just
syntactical speci�cation) of arbitrary functionalities and decision procedures,
provides means for serialization and interchange based on the superimposed
RBSLA mark-up language and enables reuse and integration of external on-
tologies, data, systems and object-oriented procedures through hybrid semantic
and object-oriented integration techniques and enterprise service technologies,
e.g. an Enterprise Service Bus. Compared to traditional contract management
approaches my rule-based approach has the following major advantages:

1. contract rules are externalized and easily shared among multiple applica-
tions and domains (avoiding vendor lock-in and facilitating modularization
and information hiding);

2. encourages reuse, shortens development time and safeguards the engineer-
ing process;

3. changes can be made faster and with less risk; lowers cost incurred in the
modi�cation of contractual business logic;

vii

4. it provides are more human way to represent SLAs while at the same time
enabling machine-interpretation and automated execution;

5. results and reactions are highly reliable, traceable and veri�able;

6. integrates and interoperates with enterprise application architectures and
distributed service-oriented web technologies;

While most recent key developments in research on logic-based knowledge
representation have been of the more theoretical sort, in this dissertation I fol-
low a constructivistic, SE-oriented methodology and adopt the Design Science
Research approach as described by Hevner et al. [HMPR04]. With my new al-
ternative design artefact I try to overcome real-world problems which are of high
relevance and importance for IT service provider such as insu�cient automation
of IT service level management based on SLAs, slow change cycles of contractual
agreements in rapidly changing, highly-distributed and loosely coupled service
oriented environments with business models such as on-demand computing or
utility computing and several new regulations and compliance rules (Sarbanes
Oxley, Basel II). This substantial system development e�ort made it clear that
moving a KR idea into real practice is not just a matter of designing a new KR
theory and investigation of theoretical results, but needs signi�cant research to
seriously implement adequate logics in a coherent framework even after the ba-
sic theory is in place. It turns out that there is a long and di�cult road to travel
from the pristine clarity of an initial logical formalism to a practical system that
really works. To evaluate the adequacy, utility and practicality of the proposed
rule based SLM approach and the implementations I use established method-
ologies in SE, KR and LP reaching from requirements and adequacy analysis,
theoretical worst-case analysis, experimental performance benchmark tests and
simulations as well as use case implementations in proof-of-concept settings and
contributions to open-source projects (Prova, Mandarax) and standardization
initiatives (RuleML, Reaction RuleML, W3C Rule Interchange Format RIF Use
Cases).

viii

Contents

1 Introduction 1
1.1 Motivation and Problem Statement 1
1.2 Requirements and Research Issues 2
1.3 Proposed Approach and Research Methodology 6
1.4 Main Contributions . 9
1.5 Thesis Organization . 14

2 IT Service Level Management 16
2.1 IT Service Management . 16

2.1.1 ITIL . 17
2.1.2 BS15000 . 19

2.2 Service Oriented Computing . 19
2.3 Service Level Management and Service Level Agreements 22
2.4 Use Case Example . 26
2.5 Related Works . 28

2.5.1 Commercial SLA/SLM Tools 28
2.5.2 SLA XML Markup Language 28
2.5.3 Policy Languages and Ontology-based Languages 30
2.5.4 Semantic Web Services Languages 31
2.5.5 Formalization Approaches 32
2.5.6 Logic Based SLA Languages 32

3 Knowledge Representation 34
3.1 Rule Based Knowledge Representation 34

3.1.1 Forward Chaining Rule Systems 34
3.1.2 Backward Chaining Rule Systems 35
3.1.3 Discussion Backward Chaining vs. Forward-Chaining in

SLA Representation . 35
3.2 First-Order Logic . 36

3.2.1 Syntax . 36
3.2.2 Interpretations and Models 39

3.3 Logic Programming . 41
3.3.1 Syntax of Logic Programs 42
3.3.2 Semantics of Logic Programs 43

3.3.2.1 Substitution and Uni�cation 44
3.3.2.2 Minimal Herbrand Model 45
3.3.2.3 SLD Resolution 48
3.3.2.4 Theory of Logic Programming with Negation . . 49

3.4 Description Logics and Semantic Web Ontology Languages 55

ix

Contents

3.4.1 Description Logics . 56
3.4.1.1 Syntax of SHIF(D) and SHOIN(D) 56
3.4.1.2 Semantics of SHIF(D) and SHOIN(D) 57

3.4.2 Semantic Web Ontology Languages 59
3.4.2.1 Semantic Web and Ontologies 59
3.4.2.2 Resource Description Framework (RDF) and Schema

(RDFS) . 61
3.4.2.3 Web Ontology Language (OWL) 63

3.5 KR Event / Action Logics and Active Database Technologies . . 64
3.5.1 Overview . 66

3.5.1.1 Active Databases and ECA Rule Systems 66
3.5.1.2 Production Rule Systems 66
3.5.1.3 Event Noti�cation Systems, Complex Event Pro-

cessing Systems and Reaction Rule Interchange
Languages . 68

3.5.1.4 Temporal KR Event / Action / Transition and
Update Logic Systems 69

3.5.2 Basic Concepts in Event and Action Processing 70
3.6 Requirements for a Logic Rule Based SLA Language 71

4 The ContractLog KR 76
4.1 Core Syntax and Semantic of the ContractLog KR 78

4.1.1 Syntax of ContractLog . 78
4.1.2 Declarative Semantics of ContractLog 79
4.1.3 Procedural Semantic of ContractLog 89

4.2 Typed Logic . 94
4.2.1 Types in Logic Programming 95
4.2.2 Description Logic Type System 98
4.2.3 Syntax of Typed ContractLog 101

4.2.3.1 Java-typed ContractLog Syntax 103
4.2.3.2 DL-typed ContractLog Syntax 106

4.2.4 Semantics of Typed ContractLog 111
4.2.4.1 Declarative Semantics: Multi-Sorted Logic . . . 111
4.2.4.2 Operational Semantics: Hybrid Polymorphic Order-

Sorted Uni�cation 115
4.2.5 Summary . 120

4.3 Meta-data Annotated Labelled Logic 121
4.3.1 Syntax of Meta-Data Annotated ContractLog LPs 122
4.3.2 Semantics of Meta-Data Annotated Labelled Logic Pro-

grams with Scoped Reasoning 124
4.3.3 Summary and Related Work 128

4.4 Integrity Preserving, Preferenced, Defeasible Logic 129
4.4.1 Basic Concepts and History of Defeasible Logics 130
4.4.2 Integrity Constraints . 131

4.4.2.1 Syntax of Integrity Constraints 133
4.4.2.2 Semantics of Integrity Constraints 133

4.4.3 Extended Prioritized Defeasible Logic 136

x

Contents

4.4.3.1 Syntax of Prioritized Defeasible Logic Programs 136
4.4.3.2 Proof-Theoretic Semantics 138

4.4.4 Defeasible Metaprogram 140
4.4.5 Summary . 142

4.5 Transactional Module-based Update Logic 143
4.5.1 Syntax of Update Primitives 144
4.5.2 Semantics of Updates . 145
4.5.3 Transactional Updates with Integrity Tests 146

4.5.3.1 Syntax of Transactional Updates 146
4.5.3.2 Model-Theoretic Semantics of Transactional Up-

dates . 147
4.5.3.3 Proof-Theoretic Semantics of Transactional Up-

dates . 148
4.5.4 Summary . 150

4.6 Temporal Event/Action Logic . 150
4.6.1 History and Basic Concepts of Event Calculus 151
4.6.2 Syntax of the Event Calculus Logic 152
4.6.3 Semantics of the Event Calculus Logic 154
4.6.4 Summary . 157

4.7 Reactive Behavioral Logic . 158
4.7.1 Syntax of ECA-LP . 158
4.7.2 Declarative Semantics of ECA-LP 161
4.7.3 Operational Semantics of ECA-LP 162
4.7.4 Complex Event / Action Processing 164
4.7.5 Event Noti�cation / Communication Reaction Rules . . . 168
4.7.6 Summary . 172

4.8 Deontic Logic . 173
4.8.1 History and Basics in Deontic Logic 174
4.8.2 Syntax of Event Calculus based Deontic Logic 175
4.8.3 Semantics of Event Calculus based Deontic Logic 176
4.8.4 Summary . 178

4.9 Test Logic . 178
4.9.1 Concepts and Related Work 180
4.9.2 Syntax of Test Cases for LPs 183
4.9.3 Semantics of Test Cases 186
4.9.4 Declarative Test Coverage Measurement 186
4.9.5 Summary . 190

4.10 Summary and Discussion . 192

5 Rule Based Service Level Agreement Markup Language (RBSLA) 193
5.1 Rule Markup and Rule Interchange Languages 193
5.2 RuleML: The Rule Markup Language Initiative and Language . . 194
5.3 RBSLA: Rule Based Service Level Agreement Markup Language 196

5.3.1 Design Goals . 197
5.3.2 Reaction RuleML: A Rule Markup Language for Reaction

Rules . 198
5.3.3 RBSLA Deontic Layer . 205

xi

Contents

5.3.4 RBSLA Defeasible Layer 206
5.4 Discussion and Conclusion . 207

6 Rule Based Service Level Management (RBSLM) Prototype 209
6.1 Architecture . 209
6.2 ContractLog Rule Engine . 211

6.2.1 Inference Engine . 211
6.2.2 ECA Interpreter . 212
6.2.3 OWL2PRova API . 213
6.2.4 Translator Services . 215

6.3 RBSLM Tool . 216
6.3.1 Contract Manager . 217
6.3.2 Mediator . 220
6.3.3 Service Dashboard . 221

6.4 Enterprise Service Bus . 227
6.5 Discussion and Conclusion . 231

7 Evaluation 233
7.1 Theoretical Worst Case Complexity and Expressiveness 233
7.2 Experimental Results . 239
7.3 Use Case Revisited - Adequacy / Expressiveness 241
7.4 Discussion . 245

8 Conclusion 251
8.1 Thesis Summary . 252
8.2 Practical Implications and Future Work 257
8.3 Closing Remarks . 261

A Glossary 262

B Variables and Functions 266

C Rule Benchmarks 270

D Appendix RuleML 274

E Appendix Categorization of SLA Metrics 276

F RBSLM Usability Testing Questionnaire 280

G Bibliography 286

xii

List of Figures

2.1 ITIL Service Management Processes [Sal04] 17
2.2 BS15000 Service Management Processes [Sal04] 19
2.3 Extended Service Oriented Architecture [PG03] 21
2.4 SLA Life Cycle . 23
2.5 Hierarchical Contract Structure 25

3.1 Classes of LPs . 42
3.2 Syntax and semantics of SHOIN(D) [HPS04] 58
3.3 Semantic Web Stack [BL03] . 60
3.4 Alternative Semantic Web Architectures [BL05, HPPS+05] 60
3.5 RDFS entailment rules [Hay04] 63
3.6 Translation from OWL-DL to SHOIN(D) [HPS04] 64

4.1 Forward-directed Execution Model of Reaction Rules 163
4.2 Parallel Processing of Reaction Rules with Threads 163

5.1 RBSLA Layers and Modularization 196
5.2 Scope of Reaction RuleML . 199
5.3 Structure of Reaction RuleML 0.1 199
5.4 WSLA Domain Vocabulary . 207

6.1 Architecture of Rule Based Service Level Management Tool . . . 210
6.2 Layers of the RBSLM Tool . 210
6.3 RBSLM Service Components . 211
6.4 Distributed RBSLM Services with ESB 212
6.5 Class Diagram of the ContractLog Inference Engine 213
6.6 Class Diagram of the ECA interpreter 214
6.7 The OWL2Prova API . 214
6.8 Class Diagram of the OWL2Prova API 215
6.9 Class Diagram of the OWL2Prova API 216
6.10 Contract Manager User Interface 220
6.11 UML State Diagram for the Mediator 221
6.12 Class Diagram of the Mediator 222
6.13 Class Diagram of the Service Dashboard Views 223
6.14 Di�erent Views in the Service Dashboard 224
6.15 Service Dashboard Project Explorer 224
6.16 Class Diagram of the Defeasible Test Interface 225
6.17 Sequence Diagram for Integrity Testing and Defeasible Con�ict

Resolution . 226
6.18 Integrity Test Interface . 227

xiii

List of Figures

6.19 Mule Manager Architecture [Mul06] 228
6.20 Integration of Mule into RBSLM 229
6.21 Classes for Integration of Mule into RBSLM 231
6.22 Employing RBSLM for IT Service Level Management 232

7.1 Performance Evaluation . 240
7.2 Contract tracking . 246

D.1 RuleML Family . 275

E.1 Hardware Performance Metrics 276
E.2 Software Performance Metrics . 277
E.3 Network Performance Metrics . 277
E.4 Storage Performance Metrics . 277
E.5 Help Desk Performance Metrics 278
E.6 Categorization according to ITIL Process Metrics 278
E.7 Categorization according to Measurability 278
E.8 Three-dimensional categorization scheme for SLA metrics 279

xiv

List of Tables

2.1 The ITIL processes . 18
2.2 SLA categorization . 25
2.3 Categorization of SLA contents 26
2.4 Monitoring schedules . 26
2.5 Bonus malus price policy . 27
2.6 Escalation levels with role models and associated rights and obli-

gations . 27

3.1 Semantics for LP Classes (adapted from [Dix95b]) 52

4.1 Table (Overview ContractLog KR) 77

C.1 Size of Derivation Rules Benchmarks) 271
C.2 Size of Event Calculus Benchmarks) 272
C.3 Size of ECA Benchmarks) . 273
C.4 Benchmark Test Suite) . 273

xv

1 Introduction

1.1 Motivation and Problem Statement

Outsourcing of complex IT infrastructure and applications to IT service providers
has become increasingly popular [Dav03] and led to much recent development
in open, dynamic and distributed systems such as the semantic web, grid com-
puting systems, or pervasive computing environments and multi-agent systems.
Flexibility in dynamically composing new business processes and integrating
heterogenous information systems (HIS) enabling ad-hoc cooperations is one
of the main aims of the recent service oriented computing (SOC) paradigm
which uses (semantic) web services on top of the Semantic Web. This service-
orientation enables novel business models such as on demand computing or
utility computing which charge resource usage on a per-use basis. In this open
service-oriented scenario based upon loosely coupled and distributed services
and dynamic service provider and service consumer relationships, service level
agreements (SLAs) de�ning the (business) policies and performance criteria an
IT service provider promises to meet while delivering a service are of vital impor-
tance with a deep impact on the operational, strategic and organizational pro-
cesses in the enterprizes and the reliability and trust relationships across multiple
partners. SLAs are fundamental for any kind of service supply chain and assume
a central position in popular IT service management standards such as IT Infras-
tructure Library (ITIL) (www.itil.co.uk) and BS15000 (www.bs15000.org.uk).
A well-de�ned and e�ective SLA correctly ful�ls the expectations of all partici-
pants and de�nes the quality attributes and guarantees that a service is required
to process. It provides metrics for measuring the performance of the agreed upon
Service Level Objectives (SLOs) and de�nes the rules used to monitor service
execution and detect violations of SLOs. It typically also sets out the reme-
dial actions and any penalties that will take e�ect if performance falls below
the promised service levels. During the monitoring and enforcement phase the
SLA rules will be used to detect violations to the promised service levels and to
derive consequential activities in terms of actions, rights and obligations. They
play a key role in metering, accounting and reporting of IT services and provide
data for further re�nement of SLAs and for optimizing IT service management
(ITSM) on an operational, tactical and strategic level.

In practice, in the upcoming service oriented landscape IT service providers
need to manage, execute and maintain thousands of often short-termed SLAs
which are possibly scattered among business partners, organizations or depart-
ments and which are individualized for di�erent customers and di�erent types
of services. Manually maintaining and executing large numbers of interlinked

1

1 Introduction

and modular service contracts which are just de�ned in natural language as
in the traditional long running outsourcing and application service providing
(ASP) models becomes impossible. Commercial IT service level management
(SLM) tools such as IBM Tivoli, HP OpenView, CA Unicenter, BMC Patrol, or
Microsoft Application Center typically store selected Quality of Service (QoS)
parameters such as availability or response time directly as parameters in the
application code or database tiers. This approach is restricted to simple, static
SLA rules which are often hard-coded in classical imperative programming lan-
guages and replicated by di�erent applications. To dynamically change the
SLAs from time to time in order to meet new requirements of the business
partner, adapt to a changed environment or just to keep a service alive would
force an administrator to change the application code in a time consuming and
costly imperative programming style. Even when the tool o�ers possibilities
to customize parameters that can be adapted by non-programmers, situations
can be easily found where this kind of limited parameter customization is not
powerful enough to keep step with the requirements and changes in modern IT
service centered environments. Existing declarative SLA speci�cation languages
such as WSLA [DDK+04], WSOL [TPP+03] or WS-Agreement [ACD+05] are
pure syntactical serialization languages de�ning a mark-up syntax without a
precise logical semantics. They need specialized procedural interpreters, have a
restricted expressiveness to describe complex decision and contractual logic in
terms of rules using only plain material truth implication and provide no capa-
bilities to declaratively implement new functionalities and decision procedures.
Moreover, due to their lack of a precise mathematically grounded semantics ver-
i�cation and validation of the correctness of the SLA speci�cations as well as
predictability, robustness and traceability of results at runtime is not warranted.

In a nutshell, the current technology and tools in IT Service Level Man-
agement and SLA representation are not powerful enough to satisfy the re-
quirements of modern service oriented environments and novel service centered
business models. Accordingly, a more sophisticated declarative knowledge rep-
resentation (KR) for representing IT service contracts is needed with a high
degree of automation, agility, �exibility and a precise formal semantics. In the
following section I will further elaborate on the general requirements for such a
KR and an associated IT service level management solution.

1.2 Requirements and Research Issues

Requirements for a practical IT service level management (SLM) tool and a
declarative SLA representation language arise from the interplay of common
software engineering (SE) for developing a system in an open distributed envi-
ronment, on the one hand and from knowledge representation of di�erent types
of knowledge such as domain models/ontologies, extensional data from various
data sources or contractual rules, on the other. A third research dimension is
added due to the inherent business-driven character of the SLA domain, the
indispensable compliance of contracts with legal regulations and the deep im-

2

1 Introduction

pact on all operational, tactical and strategic IT service management (ITSM)
processes.

From a software-engineering point of view, the functional requirements for a
SLM system capture what the system must do, which can be summarized as
providing support for IT service management according to the ITIL ITSM pro-
cesses, in particular ITIL's service level management (see section 2.1.1), i.e., the
establishment of services with appropriate service levels, the implementation of
SLAs and the continual identi�cation, monitoring, enforcing and reviewing of
the optimally agreed service levels of IT services as required by the business.
Beside these functional properties the non-functional requirements of the sys-
tem are of high importance. A distinction can be made between requirements
wrt to the development-time qualities which in�uence the e�orts and costs IT
service provider have to implement SLAs with new service levels, and require-
ments wrt run-time qualities which describe the observable quality properties
of the functional requirements during run-time. [Ben97]. The following SE
development-time requirements are the most important ones:

• individualizability/customizability: ability to make adaptations and dif-
ferentiations of contracts (individual SLAs) e.g., �rst, second or third de-
gree price discrimination policies, local (regional) or system speci�c dif-
ferences or domain speci�c adaptations (using di�erent terminologies/on-
tologies);

• composability: ability to compose contract hierarchies from sub-contracts
which are composed from modules (rule sets) and further submodules;

• interoperability: ability to cooperate with existing external tools, data
sources and functionalities

• declarative implementability, modi�ability and evolvability: ability to declar-
atively implement, add or modify (unspeci�ed) future functionality;

• reusability and interchangeability: ability to interchange and (re)-use con-
tracts and contract modules in di�erent target environments and by dif-
ferent entities (collaborative humans, agents, services);

The important SE run-time qualities are:

• active adaptability, reactivity and user-de�ned con�gurability: ability to
actively react and adapt to changed situations and occurred events and
passively (re-)con�gure / react according to user queries;

• usability: ability for the users (humans or machines) to easily use the SLA
speci�cations and tools wrt to the environment (i.e., in an open distributed
environment);

• understandability and explanation: ability of the users (humans or ma-
chines) to easily understand produced results;

• e�ciency: equated with performance;

3

1 Introduction

• scalability: ability of the SLA system consisting of monitored contracts
and external tools, data and users to grow in size while maintaining all
other properties and qualities, in particular, e�ciency;

• correctness: absolute ability to derive the correct conclusions and reactions
from a contract wrt the functional requirements;

• robustness: "reasonable" behavior in unforeseen circumstances and in-
complete knowledge;

• safety: fault and con�ict tolerance, information hiding (need-to-know prin-
ciple) etc.;

• veri�ability and validation: ability to analyze the correctness;

From the KR point of view (in Arti�cial Intelligence) the realization of a
knowledge based system involves two primary requirements. The �rst require-
ment involves precisely characterizing the type of knowledge to be speci�ed (in a
knowledge base) and clearly de�ning the reasoning services including inferences
the system needs to provide. The second requirement consists of providing a
powerful development environment which makes the interaction of the user (hu-
man or machine) with the system more e�ective. That is, KR focusses on the
design of formalisms that are adequate for expressing knowledge and reason-
ing in a particular domain. Adequacy criteria [MH69] can be used to derive
the requirements and assess the usability of a particular KR formalism for SLA
representation:

• epistemological adequacy: ability to represent all relevant knowledge;

• heuristical adequacy: ability to execute all inferences with limited re-
sources;

• algorithmic adequacy: complexity and e�ciency;

• logic-formal adequacy: soundness, completeness and decidability;

• psychological adequacy: fault-tolerance wrt contradictions, possible fail-
ures and incomplete knowledge with an intuitive meaning, understandable
and traceable by humans;

• ergonomically adequacy: ability to easily and e�ciently use the KR lan-
guage;

According to these general adequacy criteria, a KR language should be us-
able to both human and machines. This typically requires to build syntactical
language variants with a human-readable syntax and a machine-readable and
interpretable syntax and semantics, which can be mapped to each other. As it
has been often discussed in literature expressiveness in a KR language trades
o� against computational complexity [LB87]. The SLA domain faces a huge
amount of intensional and extensional knowledge which demands for a com-
plete inference system, which should be worst-case tractable, but at the same

4

1 Introduction

time needs high expressiveness to represent di�erent kinds of knowledge (onto-
logical, relational, object-oriented etc.) and allow sophisticated reasoning in an
open and distributed domain such as the Semantic Web. To ensure qualities
such as correctness and veri�ability, which are crucial requirements in order to
ful�l legal regulations and compliance rules and establish trust with the service
consumers, a precise semantics with a mathematical basis is of vital importance.

The KR language should be clear, compact, precise and easily adaptable. It
should ful�l typical criteria for good language design [Cod71] such asminimality,
symmetry and orthogonality :

• Minimality means that the language provides only a small set of needed
language constructs, i.e., the same meaning cannot be expressed by dif-
ferent language constructs.

• Symmetry is ful�lled if the same language construct always expresses the
same semantics regardless of the context it is used in.

• Orthogonality permits every meaningful combination of a language con-
structs to be applicable.

An important property which refers to the development-time SE qualities is
the extensibility of the language and the interoperability with other representa-
tion formats. A completely prede�ned speci�cation language with no means to
declaratively program new functionalities and data structures is only of limited
use in the SLA domain due to the frequently changing requirements and the
dynamism of the domain (see section 1.1 and section 2.5).

From a business-oriented point of view requirements can be postulated ac-
cording to short-term business goals relating to the operational management
and active decision making process and long-term business goals relating to
strategic and organizational decisions. While run-time qualities have to do with
the conformity with the execution environment and the direct value they pro-
vide for the users, the development-time qualities refer to the cost savings in
the development and maintenance phase, thus creating long-term business value
e.g., due to a more maintainable and �exible SLM architecture. One of the most
important requirement businesses do have nowadays is to overcome the restrict-
ing nature of slow IT change cycles and change their business rules including
the contractual agreements in order to adapt to a rapidly changing business
environment.

The central research question which follows from this general discussion of
requirements and adequacy/quality criteria for a �exible SLM solution and SLA
KR is:

Which kind of knowledge representation is adequate for an e�cient, �exible
and distributed design, management, monitoring and enforcement of SLAs?

Three important research issues arise for the KR:

1. representation problem: design an adequate knowledge representation to
describe the problem and the answers

5

1 Introduction

2. search problem: e�ciently derive answers from the given knowledge by
the KR inference formalisms, e.g., goal-driven without visiting solutions
twice

3. inference problem: use complete or incomplete knowledge for inferencing;
allow to withdraw conclusion or not; automatically resolve con�icts; allow
external open knowledge or not; allow constructive quanti�cations such as
temporal or priority based quanti�cations

1.3 Proposed Approach and Research Methodology

In [PSG06] I have analyzed a large number of text-only real-world IT service
contracts. An SLA typically consists of (1) a static part consisting of e.g., the
involved parties, the contract validity period, the functional service de�nitions
and (2) a more or less dynamic part with the QoS de�nitions stated in terms
of SLA rules specifying service level guarantees and appropriated actions to be
taken if a contract violation has been detected according to measured perfor-
mance values. Various types of complex rules can be found which need to be
represented, monitored and enforced by IT service providers such as graduate
rules, dependent rules, reactive rules, normative rules, default rules, exception
rules. To represent rules there are di�erent possibilities, e.g., if-then constructs
in procedural programming languages such as Java or C/C++ (with control
�ow), decision tables/trees, truth-functional constructs based on material im-
plication, implications with constraints (e.g., OCL), triggers and e�ectors (e.g.,
SQL trigger) or logical knowledge representation (KR) approaches based on sub-
sets of �rst order predicate logic such as logic programming (LP) techniques.

In this dissertation I propose a declarative rule-based KR framework for SLA
and policy representation and management. I will show the use of logic pro-
gramming as an appropriate declarative rule language for SLA representation
enabling declarative programming of SLA rules and making inferences with
these rules. Whereas, existing approaches to SLA representation are based on
procedural or simple implicational truth logic, I draw on logic programming
(LP) and related FOL based knowledge representation (KR) concepts which I
combine in a hybrid way with existing object-oriented programming techniques
in order to exploit the bene�ts of both worlds. This representation approach
follows the declarative "separation of concerns" principle, i.e., the contractual
logic is decoupled from the application or database domain and represented in
terms of explicit rules which accordingly can be much easier maintained, adapt-
ed/updated and managed:

"Expressing information in declarative sentences is far more modular than
expressing it in segments of computer programs or in tables. Sentences can be
true in a much wider context than speci�c programs can be used. The supplier of
a fact does not have to understand much about how the receiver functions or how
or whether the receiver will use it. The same fact can be used for many purposes,
because the logical consequences of collections of facts can be available." [McC59]

6

1 Introduction

The main advantages of using logic programming for SLA rule representation
are:

• Natural and widely-accepted for representing and automated reasoning
with rules

• Theoretically well-understood and uncontroversial for several logic classes
with mature theory and technology

• Compact and declarative representation, no need to implement control
�ow as in imperative languages

• Operational reading and declarative reading with well-de�ned semantics
(e.g., well-founded semantics, stable model semantics)

• Rich KR expressiveness and automated inference power (rule chaining
via resolution + uni�cation, variables, quanti�cation, (non-monotonic)
negation, closed world assumption)

• Traceability and veri�ability due to well-de�ned logical semantics

• E�cient complexity results (polynomial data complexity under common
restrictions)

• Highly �exible and adaptable enabling combination with other �rst order
logic based formalisms such as ontologies (description logics) and practical
extensions, e.g., type systems, procedural attachments.

• Widely implemented and deployed, e.g., Prolog derivatives, deductive
databases, rule engines

Logic programming allows for a compact representation of SLA rules and for
automated rule chaining by resolution and variable uni�cation, which alleviates
the burden of having to implement extensive control �ows as in imperative pro-
gramming languages and allows for easy extensibility in a declarative program-
ming style. Moreover, the declarative semantics as a subset of classical �rst-
order logic ensures correctness and traceability of produced results. However,
further expressive logical formalisms than standard Horn clauses are needed for
adequate, automated SLA management. Di�erent types of rules such as deriva-
tion rules, integrity constraints, and reaction rules are needed in combination
with modalities and rule quali�cations in order to express deontic assignments,
rule priorities, scopes, dynamic modular updates and non-monotonic features
such as default and explicit negations.

To deal with the practical requirements in IT SLM a SLA rule language should
also pay special attention to existing enterprise applications, IT management
solutions, tools and implementations such as SQL based databases/data ware-
houses, EJBs, ESBs, Web Services or system and network management tools.
Their optimized and specialized functionalities should be directly integrated
into the SLA rules' execution by calling their procedural APIs or exchanging
messages with their communication interfaces via common message protocols

7

1 Introduction

such as JMS or SOAP. Accordingly, a SLA language should adopt practical lan-
guage constructs such as procedural attachments and integrate external object-
centered type systems as well as Semantic Web ontologies / meta data vocab-
ularies used in the modern Internet. It should take account of the distributed
environment and provide sophisticated management support for bundling rules
to rule sets, managing and maintaining them during runtime as modules in-
cluding updates and enabling interchange and translation into di�erent target
formats (execution syntax, mark-up syntax, human-oriented syntax). This also
amount for a stable and highly scalable middleware to manage distributed con-
tract rule bases and communicate and interchange complex event requests and
answers between the systems using a common interchange format and typical
transport protocols (e.g. HTTP, JMS, SOAP).

My work follows a constructivist, SE-oriented methodology where I adopt the
Design Science Research approach, as described in Hevner et al. [HMPR04].
To satisfy the requirements I propose a highly expressive, e�cient and general
KR framework, called ContractLog, and a rule based XML markup language,
called RBSLA, as a new design artifact combining adequate KR concepts and
selected logical formalisms which uses extended logic programs [LW92] as its
basis. Based on meta-programming techniques the KR implements adequate
logical formalisms such as integrity constraints, event / action logics, deontic
logic or defeasible rules. Essential non-classical inference features for external in-
formation processing and constructing views on external data (e.g., SQL queries
on relational data), integration of external vocabularies (e.g., Semantic Web on-
tologies) or procedural code (Java objects and methods) are crucial, practical
extensions of the underlying rule language and rule engine. For the distributed
management and interchange RBSLA is used as an XML-based interchange for-
mat and an enterprise service bus (ESB) is used as communication middleware
between the RBSLM (Rule-Based Service Level Management) services and ex-
ternal components. Event messages are transported by the ESB based on a
broad spectrum of selectable transport protocols such as HTTP, JMS, Web
Service protocols (SOAP) or agent communication languages (JADE). With
my alternative rule-based approach, exploiting logic programming in a hybrid
combination with object-oriented, relational and ontological concepts, I provide
new levels of �exibility and automation which are not available in the current
technologies and tools in the SLA domain. I try to overcome real-world prob-
lems which are of high relevance and importance for SLA representation such as
rapidly changing, highly-distributed and loosely coupled service oriented envi-
ronments, slow contractual change cycles, and support for new business models
(on-demand, utility computing) as well as several new regulations and laws with
compliance rules (Sarbanes Oxley, Basel II etc.).

While most research on logic-based knowledge representation have been of
the more theoretical sort, this dissertation is more on the application-oriented
utilization and implementation of selected logical formalisms for SLA represen-
tation. My practical system development e�ort made it clear that moving a KR
idea into real practice is not just a matter of designing a new KR theory and
investigation of theoretical results, but needs signi�cant research to seriously

8

1 Introduction

implement adequate logics in a coherent LP framework. It turns out that there
is a long and di�cult road to travel from the pristine clarity of an initial logical
formalism to a practical system that really works. To evaluate the adequacy of
my rule-based approach, in particular wrt to expressiveness and computational
e�ciency, I use established methodologies in SE, KR and LP such as theoretical
worst-case analysis, experimental performance benchmark tests and real-world
SLA simulations as well as use cases implementations in proof-of-concept set-
tings which have been submitted to open-source projects (Mandarax, Prova,
RBSLA) and standardization initiatives (RuleML, W3C Rule Interchange For-
mat RIF Use Cases). Anticipating the results: the rule-based approach ful�ls
both primary demands of Design Science, namely relevance and rigor and there
is large evidence that the core research question, whether KR techniques with
logic programming on their basis can be used to adequately represent and auto-
mate SLAs, can be answered positively. In accordance with my constructivistic,
implementation oriented design science approach, the focus in this dissertation is
more on the implementation, utilization and practical analysis of di�erent sorts
of logics for the representation and enforcement of various SLA rules, since a
comprehensive and pure theoretical logical proof of such a complex KR combin-
ing so many logical formalisms is practically hardly feasible and the theoretical
results would be still questionable from the point of view of the real-world ap-
plication domain.

1.4 Main Contributions

This dissertation contributes with a declarative, compact, e�cient and highly
expressive KR proposal, called ContractLog, for formalizing SLA speci�cations,
which has the following main features:

• a con�gurable distributed and web-based inference service
(1) built on top of an enterprise service bus (Mule [Mul06]) used as a scal-
able, highly distributable object broker and communication middleware,
(2) integrated into a derivation rule engine, called Prova [KPS06], with
selectable semantics variants reaching from standard SLDNF resolution
and di�erent variants to evaluations of well-founded semantics for gener-
alized and extended LPs based on sound and complete linear resolution
semantics with (sub-)goal memoization, loop-prevention and highly e�-
cient memory structures.

• a testing methodology for logic programming adopting SE extreme pro-
gramming techniques to verify and validate the correctness of ContractLog
based SLA formalizations.

• a typed logic with a polymorphic order-sorted typed uni�cation as op-
erational semantics supporting Semantic Web ontology languages such
as RDFS or OWL and Java class hierarchies with expressive procedural
attachments (dynamic Java object instantiations and variable bindings
enabling calls to externa boolean and object-valued Java methods).

9

1 Introduction

• an active Event-Condition-Action rule interpreter which combines reactive
rules and derivation rules and supports parallel execution of extended ECA
rules, (transactional) ID-based updates and active rules, sensing and trig-
gering of external functions/systems via procedural attachments and com-
plex interval-based event /action processing via an event calculus based
event/action algebra.

• an interval-based Event Calculus variant with support for temporal rea-
soning about transient and non-transient events and their e�ects on the
(dynamic) knowledge systems.

• a temporal deontic logic for deriving role-based, temporal norms such as
permissions, prohibitions, obligations as well as exceptions and (contrary-
to-duty) violations

• support for integrity constraints and ID-based knowledge updates which
enables scoped reasoning, transactional updates with validation against
constraints and ID-based (bulk) updates of new knowledge, (external)
modules, i.e., revision/updating and modularity of ID based rule sets.

• support for rule interchange via attached test cases, meta test suits for
veri�cation of inference engines and expressive integrity constraints

• defeasible reasoning on prioritized logic programs in combination with
integrity constraints to handle un-known and con�icting knowledge and
de�ne default, exceptional, priority relations between rules and complete
rule sets (modules) in order to overcome rule con�icts.

• a meta data annotated labelled logic to annotate rules with meta data such
as rule names, module names, Dublin Core annotations etc. and bundle
rules and facts to modules (rule / clause sets) which are managed by their
module IDs and which can be used to explicitly close open environments
such as the Semantic Web for scoped reasoning on parts of the distributed
knowledge.

• a rich library of useful predicate functions for mathematical, date, time
and interval based functions and operators.

The ContractLog KR is mainly written as a collection of LP scripts imple-
menting the respective formalisms and meta programs, which can be easily
imported on a per-need basis to the knowledge base and transferred to di�erent
rule systems. Remarkably, the carefully selected and implemented formalisms
in the ContractLog KR, although primarily designed for SLA representation,
also qualify to be an appropriate tool for declaratively implementing Semantic
Web applications in general.

The second major contribution of this dissertation is a declarative Rule Based
SLA (RBSLA) mark-up language provided as modular XML schema and a
EBNF syntax description. It is implemented as an extension to the emerging
Semantic Web rule standard, the Rule Markup Language (RuleML) [WTB03]
in order to address interoperability with other rule languages and tool support.

10

1 Introduction

That is, in contrast to existing XML markup languages in the SLA domain
such as WSLA [DDK+04], WSOL [TPP+03], WS-Agreement [ACD+05], RB-
SLA is not a pure syntactical speci�cation language with prede�ned language
constructs, but is a declarative rule-based programming language with an oper-
ational and declarative logic based semantics for formalizing and implementing
arbitrary contract related functionalities and speci�cations. This declarative
implementation oriented design provides maximum �exibility and extensibility
for SLA representation enabling the use of di�erent contract vocabularies writ-
ten as Semantic Web ontologies such as WSMO [RKL+05], WS-Policy Ontology
[PKH05, VAG05], OWL-S [OS03] or KAoS [JCJ+03] or other ontologies such as
OWL time [PH04]. The external vocabularies can be integrated into the logi-
cal SLA rules as external type systems, giving them a domain-speci�c meaning.
RBSLA adds additional modelling power and expressiveness to RuleML to spec-
ify higher-level policies and SLAs. In a nutshell, it adds the following features
to RuleML:

• typed logic constructs with "webized" external types (e.g., OWL ontolo-
gies) and input / output modes

• labelled logic constructs with rule sets and module object ids and meta
data annotations

• meta-data scoped queries/goals

• procedural attachments, i.e., calls to external procedural functions

• integration of external data sources / facts and imports of external mod-
ules (external URI-based rule bases)

• Reaction RuleML: a sublanguage for reactive rules with complex events
and action language constructs, complex event/action processing with in-
terval based event / action algebra constructs and state changes a la event
calculus

• ID-based update primitives and module support with "need-to-know prin-
ciple"

• deontic norm constructs for describing normative rules

• defeasible rules and rule / module priorities

• various formula for computations, equalities, aggregation, lists etc.

• syntax for test cases and integrity constraints for veri�cation, validation
and integrity testing of rule bases (V&V&I)

The RBSLA language simpli�es machine-processing and interchanging SLAs
/ policies by means of an interchangeable mark-up language for serializing SLA
/ policy rules and facilitates the reuse of existing XML tools and ontological
webized ontologies. It provides means for optimizing/refactoring and validation
of rule sets during the transformation into an executable rule language, e.g.,
into the ContractLog KR via a XSLT based transformations.

11

1 Introduction

Based on ContractLog and RBSLA I have implemented a rule based Service
Level Management (RBSLM) tool which contributes with

• integration of Prova [KPS06] as execution environment for rule-based
SLAs

• integration of the Mule ESB [Mul06] as a scalable, highly distributable
object broker and communication middleware to manage, integrate and
seamlessly handle the interactions between distributed rule-based SLM
services using disparate transport and messaging technologies

• a graphical user interface (GUI) for collaborative and role-centred devel-
oping and deploying SLAs for IT services in distributed environments such
as the Semantic Web.

In summary the major advantages of my rule-based approach to SLA repre-
sentation, management and enforcement are:

• it allows to continuously adapt SLAs to a rapidly changing business envi-
ronment, and overcomes the restricting nature of slow change cycles

• it lowers the cost incurred in the modi�cation of contractual / business
logic

• it shortens development time of SLA speci�cations and safeguards the
engineering process

• rules are externalized and easily shared among multiple applications and
contractual partners

• changes can be made faster and with less risk

• it provides a more human way to describe, manage and maintain formal-
ized SLAs as compared to implicit procedural implementations

• it provides highly correct, reliable and traceable results derived by generic
inference engines with logical semantics based on a solid mathematical
basis

• it allows to declaratively program highly sophisticated SLA logic and busi-
ness management policies and provides means to integrate external func-
tionalities and ontologies

Some of the material and contributions presented in this dissertation have
been published and presented elsewhere. Selected refereed publications are:

• Paschke, A., Kozlenkov, A., Boley, H.: A Homogenous Reaction Rules
Language for Complex Event Processing, International Workshop on Event
Drive Architecture for Complex Event Process (EDA-PS 2007) at VLDB'07,
Vienna, Austria, 2007.

• Paschke, A. and Bichler, M.: Knowledge Representation Concepts for
Automated SLA Management, Int. Journal of Decision Support Systems
(DSS), submitted June 2006, revised January 2007.

12

1 Introduction

• Paschke, A.: Reaction RuleML Tutorial, Int. Conf. of Rule Markup Lan-
guages (RuleML'06), Athens, Georgia, USA, 2006, available at: http://2006
.ruleml.org/slides/reaction-ruleml.pdf.

• Paschke, A., Dietrich, J., Giurca, A., Wagner, G., Lukichev, S.: On Self-
Validating Rule Bases, Int. Semantic Web Enabled Software Engineering
Workshop (SWESE'06 at ISWC'06), Athens, Georgia, USA.

• Paschke, A.: A Typed Hybrid Description Logic Programming Language
with Polymorphic Order-Sorted DL-Typed Uni�cation for Semantic Web
Type Systems, OWL-2006 (OWLED'06), Athens, Georgia, USA, 2006.

• Paschke, A.: Veri�cation, Validation and Integrity of Distributed and In-
terchanged Rule Based Policies and Contracts in the Semantic Web, Int.
Semantic Web and Policy Workshop (SWPW at ISWC 06), Athens, Geor-
gia, USA, 2006.

• Paschke, A.: ECA-RuleML/ECA-LP: A Homogeneous Event-Condition-
Action Logic Programming Language, Int. Conf. of Rule Markup Lan-
guages (RuleML'06), Athens, Georgia, USA, 2006.

• Paschke, A.: The Mandarax RDF / RDFS/ OWL / DLP Module - Inte-
gration of Semantic Web Data into the Rule Engine Manadarax. Interna-
tional Workshop on Rule-Based Modeling and Simulation of Interacting
Systems and Agents (AORML), Cottbus, Germany, Feb. 2006.

• Paschke, A.: The Rule Based Service Level Agreement Project (RBSLA).
International Workshop on Rule-Based Modelling and Simulation of In-
teracting Systems and Agents (AORML), Cottbus, Germany, Feb. 2006.

• Paschke, A.: RBSLA - A declarative Rule-based Service Level Agree-
ment Language based on RuleML, International Conference on Intelligent
Agents, Web Technology and Internet Commerce (IAWTIC 2005), Vienna,
Austria, 2005.

• Paschke, A., Bichler, M., Dietrich, J.: ContractLog: An Approach to Rule
Based Monitoring and Execution of Service Level Agreements, Interna-
tional Conference on Rules and Rule Markup Languages for the Semantic
Web (RuleML 2005), Galway, Ireland, 2005.

• Paschke, A., Dietrich, J., Kuhla, K.: A Logic Based SLA Management
Framework, Semantic Web and Policy Workshop (SWPW), 4th Semantic
Web Conference (ISWC 2005), Galway, Ireland, 2005.

• Jens Dietrich and Adrian Paschke, On the Test-Driven Development and
Validation of Business Rules, 4th International Conference on Information
Systems Technology and its Applications (ISTA 2005), New Zealand, May
2005.

• Paschke, A., Bichler, M.: SLA Representation, Management and Enforce-
ment - Combining Event Calculus, Deontic Logic, Horn Logic and Event

13

1 Introduction

Condition Action Rules, E-Technology, E-Commerce, E-Service Confer-
ence (EEE05), Hong Kong, 2005

For a complete list of all publications of the RBSLA project see:

http://ibis.in.tum.de/research/projects/rbsla/index.php#infos

The RBSLA project is hosted at Sourceforge:

main page: http://ibis.in.tum.de/projects/rbsla/index.php

download: https://sourceforge.net/projects/rbsla

Parts of my work in the RBSLA project have been contributed to other open
source projects and standardization initiatives:

1. Sourceforge Prova - The Prova Rule Engine with ContractLog and RB-
SLA: http://www.prova.ws/

2. Sourceforge Mandarax - Mandarax RDF/OWL API 1.1 and Mandarax
Event Calculus EC 1.0: http://sourceforge.net/project/show�les.php?
group_id=50817

3. Reaction RuleML - The Reaction Rules Markup Language is evolved from
the RBSLA langauge: http://ibis.in.tum.de/research/ReactionRuleML/

4. RuleML - Various contributions to RuleML: validators, translators (XSLT),
GUI-based editors, language extensions etc.

5. W3C Rule Markup Language Initiative(RIF): Use Cases for the W3C RIF
WG: http://www.w3.org/2005/rules/wg/wiki/Use_Cases

1.5 Thesis Organization

The remainder of this dissertation is organized as follows:

Chapter 2 gives an insight into IT Service Management (ITSM) and relevant
ITSM standard such as ITIL. It provides the relevant background in Service
Oriented Computing (SOC) and IT Service Level Management and analyzes
di�erent types of service contracts, presents the main component parts and
de�nes the relevant terminologies in order to reach a common understanding.
A use case based on real-world industrial SLAs is introduced and related work
is discussed.

Chapter 3 recalls the basics in rule-based knowledge representation based
on �rst order logic and in particular the two relevant subsets, namely logic
programming extended with non-monotonic features and description logics. It
also gives an overview on knowledge representation in the context of reactive
rule and event/action processing and de�nes relevant concepts in this domain.

14

http://ibis.in.tum.de/research/projects/rbsla/index.php#infos
http://ibis.in.tum.de/projects/rbsla/index.php
https://sourceforge.net/projects/rbsla

1 Introduction

Finally, it further details the requirements for a declarative, logic-based contract
representation language.

Chapter 4 elaborates on the ContractLog KR which is an expressive and
computational e�cient KR framework consisting of selected, adequate logical
knowledge representation concepts for the formalization and automated execu-
tion of electronic contracts such as SLAs or higher-level policies. It combines
selected logical formalisms which are mainly implemented on the basis of declar-
ative logic programs and meta programming techniques.

Chapter 5 describes the superimposed Rule Based Service Level Agreement
language (RBSLA) which is a mark-up language to serialize rule-based policy-
and contract speci�cations such as SLAs in XML. It is implemented as an exten-
sion to the emerging XML-based Rule Markup language (RuleML v. 0.91) and
Reaction RuleML (Reaction RuleML v. 0.1) in order to address interoperability
with other rule languages, XML-based persistent serialization and tool support.

Chapter 6 introduces the superimposed rule-based service level management
tool (RBSLM) which serves as a proof-of-concept implementation for my rule-
based SLA management approach. The RBSLM tool divides into the contract
manager and the service dashboard. The contract manager is an engineering
tool for SLA rule bases written either in RBSLA or directly as ContractLog
scripts. IT provides support by means of template repositories and test suites
for di�erent roles such as business practitioners and domain experts. The service
dash board is a runtime environment to monitor, execute and visualize service
contracts. ContractLog/Prova is used for the distributed inference services (rule
engine) and Mule as ESB middleware infrastructure.

Chapter 7 presents theoretical and experimental evaluations and illustrates
the rule-based formalization of SLAs rules in the ContractLog KR based on
a real-world use case example. It discusses adequacy of the design artifacts,
namely the ContractLog KR, the RBSLA markup language, for SLA represen-
tation, management and enforcement, and the RBSLM prototype.

Chapter 8 concludes with a summary of the dissertation and a discussion of
practical implications.

15

2 IT Service Level Management

This chapter gives an insight into IT Service Management and the relevant
concepts, practices and technologies in Service Oriented Computing and IT
Service Level Management. It categorizes di�erent types of IT service contracts,
presents the main component parts and de�nes the goals in order to reach a
common understanding. An use case is presented and related work is discussed.

2.1 IT Service Management

IT Service Management (ITSM) describes the change of information technol-
ogy (IT) towards service and customer orientation. IT Service Management is
commonly de�ned [You04] as:

De�nition 1 (IT Service Management) a set of processes that cooperate
to ensure the quality of IT services, according to the levels of service agreed to
by the customer. It is superimposed on management domains such as systems
management, network management, systems development, and on many process
domains like change management, asset management and problem management.

Software producers often subsume di�erent extensions to the IT infrastruc-
ture and system management by a service layer under the term ITSM. [BDF+04]
According to [HP03, Pet03] ITSM should be distinguished from IT infrastruc-
ture management (ITIM) and IT business value management (IT Governance
[Gre04]):

De�nition 2 (IT Infrastructure Management, IT Service Management
and IT Governance)

IT infrastructure management (ITIM) focuses on optimizing the management
of the infrastructure, i.e., the devices it contains and the data it creates.

IT service management (ITSM) focuses on planning and e�cient and e�ective
delivering of IT services and products while meeting availability, performance,
and security requirements. Of importance are the management, monitoring and
enforcement of service-level agreements, both internally and externally, to meet
agreed-upon quality and cost targets.

16

2 IT Service Level Management

Figure 2.1: ITIL Service Management Processes [Sal04]

IT Governance [Gre04] (a.k.a. IT business value management related to strate-
gic alignment) is an integral part of enterprise governance and consists of the
leadership and organizational structures and processes that ensure that the or-
ganization's IT sustains and extends the organization's strategy and objectives.

In this dissertation, I mainly focus on ITSM. But, remarkably, ITIM appli-
cations such as system and network management tools typically provide mea-
surement and monitoring results which are aggregated to service level states
which underpin ITSM and SLA enforcement. IT Governance then draws on the
results from ITSM and in particular from IT Service Level Management (see
ITIL section 2.1.1) and SLA monitoring and enforcement.

[Sal04] reviews di�erent open and industrial frameworks for IT governance
(CobiT [ITG98]) and IT management (ITIL [itS04a],HP ITSM [HP03], Mi-
crosoft MOF [Mic02]. At present, especially the de-facto standard ITIL together
with the newly released standard BS 15000 receives great attention of IT man-
agement. In this dissertation I will mainly focus my attention on a particular
process of the ITIL Service Delivery domain, namely Service Level Management.

2.1.1 ITIL

The Information Technology Infrastructure Library (ITIL) [OGC00a] is a doc-
umentation of IT management concepts, processes and methods supported and
provided by the international IT-Service-Management-Forum [ITS04b] as a se-
ries of books. It is organized into the business perspective, application manage-
ment, service delivery, service support, and infrastructure management supple-
mented with security management, as shown in �gure 2.1 [Sal04].

17

2 IT Service Level Management

The core of the frameworks is the IT Service Management (ITSM) which is
concerned with the management and monitoring of IT services [Ker98]. ITIL
describes ITSM as a set of strategic, tactical and operational practices, pro-
cesses and methods. ITIL's ITSM is divided into the domains Service Support
[OGC00b] and Service Delivery [OGC01]. Service Support is divided into Inci-
dent Mgt., Problem Mgt., Change Mgt., Release Mgt., and Con�guration Mgt.
Service Delivery is divided into Service Level Mgt., Financial Mgt., IT-Service
Continuity Mgt., Capacity Mgt., Availability Mgt. Table 2.1 gives a high level
overview.

Table 2.1: The ITIL processes

Description Position Task

Service Desk Function Group of specialists, inquiry -, treatment of dis-
turbances

Incident Manage-
ment

Process Support user, problem acceptance, assistance,
monitoring service level

Problem Manage-
ment

Process Treatment of losses, cause identifying, recom-
mendations at Change Mgmt., improvement of
productive resources use

Con�guration
Management

Process Process control of the inventory (components
hard -, software....)

Change Manage-
ment

Process Change process

SLM Process Formulate and enforce SLA

Release Manage-
ment

Process Storage of authorized software, release in pro-
ductive environment, distribution to remote
bases, implementation to start-up

Capacity Man-
agement

Process Correct and cost-related-justi�able IT capacity
provision analysis, prognosis; Capacity plans

Availability Man-
agement

Process Optimization IT resources use, foreseeing and
calculation of losses, safety guidelines to monitor
SLAs, Security, Serviceability, Reliability, Main-
tainability, Resilience

Service-
Continuity-
Management

Process Re-establishment of services, replacement in case
of failure

Financial Man-
agement

Process Process investment strategy, de�nition that-
achievement-aims, those-brought achievement to
measurement

In section 2.3 I will focus on Service Level Management which is of highly
practical relevance for all other processes such as Availability Mgt. or Incident

18

2 IT Service Level Management

Figure 2.2: BS15000 Service Management Processes [Sal04]

Mgt. in ITIL. For a detailed description of the other domains and processes see
e.g., [HC02, OGC00b, OGC01].

2.1.2 BS15000

With BS 15000 a standard which implements the particular IT service manage-
ment processes of ITIL exists. BS1500 was published in November 2000 by the
British Standards Institutes (BSI) [BSI02]. It addresses the e�ective manage-
ment and implementation of IT service by an integrated process approach and
de�nes high level requirements for an ITSM system that also includes policies.
The IT processes are organized into �ve categories as presented in �gure 2.2
[Sal04].

BS15000 gives recommendations for planning, implementing, monitoring and
reviewing/continous improve service management. BS15000 in cooperation with
ITIL will be integrated into the ISO-9000 standard.

2.2 Service Oriented Computing

The computing paradigm that utilizes services for developing applications in
open distributed environments such as the Web is known as Service Oriented
Computing (SOC). The vision is to build large scale service supply chains (a.k.a.
business services networks) which enable enterprizes to de�ne and execute web
services based transactions and business processes across multiple business enti-
ties and domain boundaries using standardized (web) protocols. This idea is not
completely new, but evolves from earlier approaches such as multi-agent systems
(MAS), heterogenous information systems (HIS), enterprise application integra-
tion (EAI) and technologies such J2EE, DCOM or Corba. But, web services,

19

2 IT Service Level Management

which emerged in the last time as the prevailing technology for implementing
IT services on the web, have received a great commitment from industry and
research. In the following I will introduce the major web services related ter-
minology and concepts; although, it should be noted that the work presented
in this dissertation is not restricted to web services but applies to IT services
and contracts / policies for IT services in general. For details I refer to the
overwhelming amount of literature about service-oriented computing and web
services. Most web service related speci�cations are standardized at OASIS and
the W3C.

According to [SOA06] the term service-oriented architecture (SOA) expresses
a perspective of software architecture that de�nes the use of loosely coupled
software services to support the requirements of the business processes and soft-
ware users. In an SOA environment, resources on a network are made available
as independent services that can be accessed without knowledge of their un-
derlying platform implementation. A SOA is not tied to a speci�c technology.
It may be implemented using a wide range of technologies, including REST,
RPC, DCOM, CORBA or Web Services. Web services can be used to imple-
ment a Service Oriented Architecture. Service Component Architecture (SCA)
is a set of speci�cations which describe a model for building applications and
systems using a Service-Oriented Architecture. Service Component Architec-
tures (SCAs) extend and complement this approaches to implementing services.
That is, SCA builds on open standards such as Web services. The W3C de�nes
a Web service as [Web04]

De�nition 3 (Web Service) A Web service is a software system designed to
support interoperable machine-to-machine interaction over a network. It has an
interface described in a machine-processable format (speci�cally WSDL). Other
systems interact with the Web service in a manner prescribed by its description
using SOAP-messages, typically conveyed using HTTP with an XML serializa-
tion in conjunction with other Web-related standards.

The W3C Web service de�nition encompasses many di�erent systems, but in
common usage the term refers to those services that use SOAP-formatted XML
envelopes and have their interfaces described by WSDL:

• SOAP: An XML-based, extensible message envelope format, with "bind-
ings" to underlying protocols (e.g., HTTP, SMTP and XMPP).

• WSDL: An XML format that allows service interfaces to be described,
along with the details of their bindings to speci�c protocols. Typically
used to generate server and client code, and for con�guration.

• UDDI: A protocol for publishing and discovering metadata about Web
services, to enable applications to �nd Web services, either at design time
or runtime.

20

2 IT Service Level Management

Figure 2.3: Extended Service Oriented Architecture [PG03]

Recently semantic web services (SWS) which provide an approach for repre-
senting the functionality of Web Services with the help of Semantic Web ontolo-
gies and BPEL (business process execution language) for web service choreog-
raphy attracts much attention from industry and research (see section 2.5).

OASIS (the Organization for the Advancement of Structured Information
Standards) de�nes SOA as the following [Or06]:

De�nition 4 (Service Oriented Architecture) A paradigm for organizing
and utilizing distributed capabilities that may be under the control of di�erent
ownership domains. It provides a uniform means to o�er, discover, interact
with and use capabilities to produce desired e�ects consistent with measurable
preconditions and expectations.

An extended SOA for SOC has been proposed in [PG03] - see �gure 2.3

While large parts of the description / basic operators and the composition
layer have been already standardized and provide rich tool support the man-
agement layer in this extended SOA still comprises a lot of open challenges
and research questions. In this dissertation I contribute to this layer with an
adequate representation and management artifact for service contracts such as
Service Level Agreements or policies. SLAs are crucial in all phases of the service
life cycle:

21

2 IT Service Level Management

1. design and search/negotiation phase, where SLAs contribute e.g., to �nd /
negotiate appropriate services in the open Web which provide acceptable
service levels and quality of service (QoS) guarantees;

2. in the monitoring and enforcement phase where they are used monitor the
service levels at runtime, enforce the agreed rights and obligations and
provision the service resources according to the measured values and the
agreed prices and penalties (or bonuses)

3. in the analysis phase where the SLAs and the services are rede�ned and
renegotiated according to the results in the monitoring and enforcement
phase. This process of design / implementation, monitoring/enforcement
and rede�nition of SLA is often subsumed as Service Level Management
or SLA Management.

2.3 Service Level Management and Service Level
Agreements

According to ITIL Service Level Management (SLM) ensures continual identi-
�cation, monitoring and reviewing of the optimally agreed service levels of IT
services as required by the business. That is, SLM deals with de�ning, monitor-
ing and enforcing of Service Level Agreements (SLAs). SLM is central in ITIL
Service Delivery and an essential precondition for all other processes in ITIL.
The high level activities of the SLM process are [Sup01]: establish services/-
functions with service levels which can be measured and monitored, implement
SLAs, manage/monitor/enforce ongoing processes, review periodically, contin-
uously re�ne and optimize the service levels. SLM has close connections to the
operational processes in ITIL such as incident or problem management.

De�nition 5 (Service Level Agreement) A SLA is a contract that docu-
ments the goals and responsibilities, the service level indicators (SLIs), the ser-
vice level objectives (SLOs), and the applicable rewards and penalties.

A SLA is an essential component of the legal contract between a service con-
sumer and the provider. They help to assure the total system costs and improve
relationships and establish trust between the service providers and consumers.

De�nition 6 (Service Level Indicators, Service Level Objectives and
Guarantees) Service Level Indicators (SLIs) (a.k.a. key performance indica-
tors) clearly and consistently indicate the performance of a service.
Service Level Objectives (SLO) de�ned in terms of SLA rules represent the
promises and guarantees wrt graduated high/low SLI ranges, e.g., average avail-
ability range [low: 95% , high: 99%, median: 97%], so that it can be evaluated
whether the measured SLIs resp. SLA metrics exceed, meet or fall below the
de�ned service levels at a certain time point or in a certain validity period.

22

2 IT Service Level Management

Figure 2.4: SLA Life Cycle

SLOs and guarantees can be informally represented as if-then rules expressing
graduations, complex policies and conditional guarantees, e.g., conditional rights
and obligation: "If the average service availability during on month is below 95%
then the service provider is obliged to pay a penalty of 20%.".

De�nition 7 (SLA metrics) SLA metrics are used to measure the perfor-
mance and quality characteristics of the service on an operational, infrastruc-
ture level. They are either retrieved directly from the managed and monitored
resources such as middleware, servers or instrumented applications or are cre-
ated by aggregating such direct metrics into higher level composite metrics.

Typical examples of direct metrics are e.g., the MIB variables of the IETF
Structure of Management Information (SMI) [MIB04] such as number of invo-
cations, system uptime, outage period or technical network performance metrics
such as loss, delay, utilization etc. which are collected via measurement direc-
tives such as management interfaces, protocol messages, URIs etc. Composite
metrics use a speci�c function averaging one or more metrics over a speci�c
amount of time, e.g., average availability, or breaking them down according to
certain criteria, e.g., maximum response time, minimum throughput, top 5%
etc.

In an industrial study with close to three dozen IT service providers from
small-and medium-sized enterprises to big companies I have analyzed nearly
�fty state-of-the-art SLAs currently used throughout the industry in the areas
of IT outsourcing, Application Service Provision-ing (ASP), Hardware Hosting,
IT Service Suppliers. Appendix E shows the develop categorization scheme for
IT metrics. [PSG06]

According to the Hurwitz Group [SMJ00] the life cycle of a SLA is de�ned as
shown in �gure 2.4.

The rule-based SLA representation approach proposed in this dissertation
contributes in all phases of the SLA life cycle. Remarkably, due to the formal-
ized, machine-readable and semantically understandable representation SLAs

23

2 IT Service Level Management

can be directly used in automated service discovery and negotiation (see e.g.,
[Pas05d] for an overview of di�erent coordination and negotiation mechanisms).
However, a particular focus is on the runtime management, maintenance and en-
forcement phase, because here (from the view of a service provider) the cost sav-
ings due to the automation of SLAs and the �exibility wrt to dynamic changes
will be highest, since it is well-known in software projects that maintenance
makes up to 40% of the overall costs and is often much higher than the devel-
opment costs.

The objectives of SLAs are manifold. In a nutshell the substantial goals are:
[Pas04b]

• Veri�able, objective agreements

• Know risk distribution

• Trust and reduction of opportunistic behavior

• Fixed rights and obligations

• Support of short and long term planning and further SLM processes

• Decision Support: Quality signal (e.g., assessment of new market partici-
pants)

• Guaranteed quality of service

According to their intended purpose, their scope of application or their ver-
satility SLAs can be grouped into di�erent (contract) categories - see table 2.2.

A particular service contract might belong to more than one category, e.g.,
an Operation Level Agreement (OLA) might also be an individual in-house
agreement. Several service contracts can be organized in a unitized structure
according to a taxonomical hierarchy - see �gure 2.5.

Service Level Agreements come in several varieties and comprise di�erent
technical, organizational or legal components. Table 2.3 lists some typical con-
tents.

Although the characteristics and clauses may di�er considerably among dif-
ferent contracts, they all include more or less static parts such as the involved
parties, the contract validity period, the service de�nitions but also dynamic
parts which are more likely to change, such as the QoS de�nitions stated as
SLA rules specifying service level objectives and guarantees e.g., in terms of
appropriated actions to be taken if a contract violation has been detected. The
representation of the static part of an SLA is straightforward. From the point

24

2 IT Service Level Management

Table 2.2: SLA categorization

Intended Purpose

Basic Agreement de�nes the general framework for the contractual rela-
tionship and is the basis for all subsequent SLAs.

Service Agreement Subsumes all components which apply to several sub-
ordinated SLAs.

Service Level Agree-
ment

Normal Service Level Agreement

Operation Level Agree-
ment (OLA)

A contract with internal operational partners, which
are needed to ful�l a superior SLA.

Underpinning Contract
(UC)

A contract with external operational partner, which
are needed to ful�l a superior SLA.

Scope of Application (according to [Binder2001])

Internal Agreement Rather an informal agreement than a legal contract
In-House Agreement Between internal department or divisions
External Agreement Between the service provider and an external service

consumer
Multi-tiered Agreement Including third parties up to a multitude of parties

Versatility (according to [Binder2001])

Standard Agreement Standard contract without special agreements
Extensible Agreement Standard contract with additional speci�c agreements
Individual Agreement Customized, individual agreements
Flexible Agreement Mixture of standard and individual contract

Figure 2.5: Hierarchical Contract Structure

25

2 IT Service Level Management

of view of a rule-based contract logic they can be easily represented as facts
managed e.g., in the knowledge base or an external database or a Semantic
Web ontology which can be integrated into the rule execution at runtime. In
this dissertation I focus on the dynamic part of an SLA - the SLA rules - which
imposes high requirements regarding �exibility, expressiveness, veri�ability and
traceability, interoperability and automation on the representation language.

2.4 Use Case Example

In order to better illustrate the requirements of SLA management I will de-
scribe an use case derived from real-world SLA examples from an industry part-
ner. The SLA de�nes three monitoring schedules, "Prime", "Standard" and
"Maintenance" as shown in table 2.4

During prime time the average availability has a low value of 98%, a median
of 99% and a high value of 100% and a response time which must be below 4
seconds. The service metrics are calculated via a ping every 10 seconds. During
standard time the average availability is {high:99%;low:95%;median:97%} and

Table 2.3: Categorization of SLA contents

Technical Components Organizational Compo-
nents

Legal Components

- Service Description - Liability and liability
limitations

- Obligations to co-
operate

- Service Objects - Level of escalation - Legal responsibilities
- SLA/QoS Parameter - Maintenance / Service

periods
- Proprietary rights

- Metrics - Monitoring and Re-
porting

- Modes of invoicing and
payment

- Actions - Change Management
...

Table 2.4: Monitoring schedules

Schedule Time Availability Response Time

Prime 8 a.m. - 18 p.m. 98%[99%]100%; pinged
every 10 sec.

4 sec.; pinged ev-
ery 10s

Standard 18 p.m. - 8 a.m. 95%[97%]99%; pinged
every min.

10[14]16 sec.;
pinged every min.

Maintenance 0 a.m. - 4 a.m.* 20%[50%]80%; pinged
every 10 min

No monitoring

26

2 IT Service Level Management

response time {high:10sec.;low:16sec.;median:14sec.} monitored via a ping every
minute. Maintenance is permitted to take place between midnight and 4 a.m.
During this period the average availability is {high:80%; low:20%; median:50%}
monitored every 10 minutes. Response time will not be monitored in this case.

Further the SLA de�nes a "bonus-malus" policy as shown in table 2.5.

Table 2.5: Bonus malus price policy

Price Base Malus Bonus
Prime pprime pprime + pprime ∗ xbonus% pprime − pprime ∗ xmalus%
Standard pstandard pstandard + pstandard ∗

xbonus%
pstandard − pstandard ∗
xmalus%

Maintenance pmaintenance pmaintenance +
pmaintenance ∗ xbonus%

pmaintenance −
pmaintenance ∗ xmalus%

Incident
Penalty

pincidentn

According to the monitoring schedules a di�erentiated base price is de�ned if
the service levels are met. If the service levels are exceeded (median to high) a
dependent bonus is added and if they fall below the agreed upon service levels
(median to low) a discount is deducted. The bonus and malus are de�ned as a
percentage value of the base price. If a service level is missed, i.e., the actual
value falls below the low service level (<low) an additional penalty has to be
paid which increases exponentially with the number of incidents during the
accounting period.

In case of outages/incidents the SLA de�nes two escalation levels - see table
2.6

Table 2.6: Escalation levels with role models and associated rights and
obligations

Level Role Time-to-Repair (TTR) Rights/Obligations
1 Process

Manager
10 Min. Start / Stop Service

2 Quality
Manager

Max. Time-to-Repair
(MTTR)

Change Service Levels

Each escalation level de�nes clear responsibilities in terms of associated roles
which have certain rights and are obliged to do certain remedial actions in case
of incidents which initiate the respective escalation level. In the SLAs' escalation
level 1 the process manager is obliged to restart an unavailable service within
10 minutes. Accordingly, she has the right (permission) to start and stop the

27

2 IT Service Level Management

service. If she fails to do so, escalation level 2 is triggered and the quality
manager is informed. The quality manager has more rights, e.g., the right
(permission) to adapt/change the SLA management systems respectively the
service levels. The quality manager might discuss the time needed to repair
with the process manager and extend it up to a maximum time to repair level
(change request). In case of very critical incidents the system might directly
proceed to escalation level 2 and skip level 1.

2.5 Related Works

2.5.1 Commercial SLA/SLM Tools

The tendency in commercial SLA/SLM tools such as IBM Tivoli SLA, HP
OpenView, CA Unicenter, BMC Patrol, Remedy Service Management is to allow
standardized speci�cations of QoS parameters (e.g., availability, response time)
with high/low bounds. Typically, these parameters are directly encoded in the
application code or database tier, which makes it hard to dynamically extend the
SLA logic and describe more complex conditions than simple bounds. Hence,
this approach is restricted to more or less standardized, static rules with only
a limited set of parameters which can be changed at runtime. More complex
conditionals where parameters depend upon other parameters or conditional
contract states are not expressible. For instance, a high response time level may
be necessary during prime time, a lower availability might be necessary under
higher server loads or at least response time must be high when availability
falls below a certain value. Due to the implicit procedural encoding of the
SLA logic into the application code the SLAs are hard to manage, maintain
and adapt to new requirements, since this would require heavy time and cost
intensive refactorings of the application code and database schemas. Often the
SLM tools are only simple extensions to system- and network management tools
which allow monitoring of agreed subsystems such as the network or the help
desk. Integrated benchmarks with respect to the natural language de�ned SLA
are only possible by manually joining measured values using e.g., Excel tables.
Obviously this process is fault-prone, in�exible, time-consuming and costly.

2.5.2 SLA XML Markup Language

There are several XML based mark-up approaches towards syntactical speci�-
cation and management languages for SLAs such as the IBM Web Service Level
Agreements (WSLA) [DDK+04], the HP Web Service Management Language
(WSML) [SAM01], the Web Service O�ering Language (WSOL) [TPP+03],
SLAng [LSE03], WS-QoS [TGN+03] or the WS-Agreement language [ACD+05].
These languages include syntactical XML mark-up de�nitions of the involved
parties (signatory and supporting parties), references to the operational service
descriptions (e.g., WSDL), the SLA parameters to be monitored and the met-
rics and algorithms used to compute SLA parameters from raw metrics collected

28

2 IT Service Level Management

by measurement directives from external sources. They allow the speci�cation
of QoS guarantees, constraints imposed on SLA parameters and compensating
activities in case these constraints are violated. Typically, these constraints and
activities are expressed in terms of implicational clauses with simple Boolean-
valued evaluation functions and explicit connectives such as And, OR. As a
result, these rules have only a very limited expressiveness which is restricted
to truth/false implications without e.g., rule chaining, variable backtracking or
non-monotonic reasoning inferences, as in logic based rule languages. They are
to some extend comparable to strictly ordered hierarchical if-then rules in a
procedural language. But in fact, they are much less expressive, because they
are missing almost any required programming language feature such as data
abstraction, modularity, recursion, complex object structures etc. A formal se-
mantics of logical rule inference is completely missing. Hence, these syntactical
languages can not express more than simple qualifying conditions in the sense
of material truth implications. For instance, a rule set "if given p and if p
then q and if q then r" is only expressible as a nested truth implication rule
(p ⊇ q) ⊇ r), but not as an automatically chained global rule set as in LP rule
languages. Obviously, this approach is not modular and large, sophisticated rule
sets can not be expressed. Moreover, these languages are not based on a logi-
cal semantics but are purely syntactic formalization approaches. In particular,
semantics for temporal, deontic, athletic or state/situative quanti�cations are
missing. For instance, WS-Agreement de�nes an agreement life-cycle which in-
cludes the creation, termination and monitoring of agreement states. However,
the notion of a state in WS-Agreement is restricted to a prede�ned syntactical
set of states such as "not ready", "ready", "running", "�nished". A semantical
event and time-based state model and capabilities to de�ne and reason over
arbitrary states and state transitions as e�ects of occurred events or actions,
as e.g., in action languages, is missing. The WS-Agreement speci�cation does
not contemplate the possibility of changing an agreement wrt to contract state
tracking at runtime.

In summary, although, these languages are syntactically rich, i.e., de�ne a
great variety of SLA related constructs, they need an extra procedural inter-
preter which must be adapted each time new expressiveness and functionalities
are introduced into the XML language. For instance, Cremona [LDK04] is a
purely procedural implementation framework for the creation and monitoring
of interfaces of the WS-Agreement speci�cation. In short, these markup lan-
guages are purely syntactic, they are not generic and �exible and they typically
lack a precise formal logical semantics which has several drawbacks, e.g., wrt
veri�cation and validation of correctness and semantical con�ict detection and
resolution. They can be used only to describe more or less "standardized" SLAs
which refer to the provided vocabulary of the language but they are not useable
to declaratively program individual SLAs with a precise semantical interpreta-
tion enabling reasoning and semantics interpretation in standardized inference
engines. In short, the main contribution of these syntactical approaches is:
to provide a vocabulary syntax to de�ne terms which refer to non-functional
properties of (Web) services.

29

2 IT Service Level Management

2.5.3 Policy Languages and Ontology-based Languages

In the area of policy speci�cations there are several proposals which address the
de�nition of policies such as WS-Policy [HK03], KAoS [JCJ+03], Rei [Rei02,
KFJ05] or Ponder [DDLS01]. WS-Policy [HK03] is a general policy framework
which provide a basic XML grammar for expressing the capabilities, require-
ments, and general characteristics of entities in a XML Web service-based sys-
tems. The details of special policy aspects are intended to be de�ned in special-
ized sublanguages. Although, there exists several extensions to WS-Policy such
as GlueQoS [WTM+04] or WS-Security Policy [LDa02] the approach mainly
focuses on the syntactic mark-up description of policy information and hence is
limited in its ability to express rich semantic meaning. Parsia et al. [PKH05]
present and OWL based representation of WS-Policy.

Ponder [DDLS01] is a declarative object-oriented language that supports the
speci�cation of several types of management and security policies for distributed
object systems. It provides structuring techniques for policies to manage the
complexity of policy administration in large enterprise information systems. It
distinguishes obligation and authorization policies and allows for con�ict de-
tection between deontic norms. Constraints are speci�ed via a subset of OCL
(Object Constraint Language). Roughly, in OCL "p implies q" means that the
truth-functional proposition "if p then q" is true if either "p" is false or "q" is
true in every instantiation of the model to which the constraint applies. This
kind of implication is di�erent from logical implication which means that an
implication is always true if the prerequisite propositions are true under every
possible interpretation, i.e., "p implies q" means "q" is true, if "p" is true under
every possible interpretation. Moreover, OCL constraints can not explicitly ex-
press (athletic) modalities or non-monotonic rules. Since Ponder speci�cations
are compiled into Java classes and are represented as Java objects at runtime,
dynamic changes to the policy at runtime are not possible.

Rei [Rei02, KFJ05] is a policy language based in OWL-Lite (although origi-
nally in version 1.0 it was based on �rst-order logic) that allows policies (mainly
trust and privacy policies) to be speci�ed as constraints over allowable and ob-
ligated actions on resources in the environment. Rei also includes logic-like
variables giving it the �exibility to specify relations like role value maps that
are not directly possible in OWL. Recently the authors discuss the combination
of OWL ontologies and SWRL rules [KFJ05].

KAoS [JCJ+03] uses OWL (former DAML) as basis for representing and rea-
soning about policies within Web Services, Grid Computing and Multi-Agent
Systems (MAS). It exploits ontologies written in the Semantic Web ontology lan-
guage OWL for reasoning about domain speci�c models describing actors and
their positive or negative authorizations and obligations together with properties
such as site of enforcement, priority or update time stamps. It allows updates to
the policy models during runtime and provides means to detect con�icts between
policies using the subsumption mechanisms between ontology classes. However,
a pure OWL approach encounters some di�culties with regard to the de�nition

30

2 IT Service Level Management

of e.g., non-monotonic reasoning needed e.g., to express defaults or negation-as-
failure or parametric constraints, which are assigned a value only at deployment
or run time. To compensate some of the limitations in the expressiveness of
OWL role-value maps are added to later work of KAoS.

In summary these policy related approaches mainly focus on typical opera-
tional policies such as access control or security issues and only require/consider
a very limited set of logical formalisms - mostly standard deontic norm reason-
ing to express access rights and obligations. In particular, they are missing
expressive rules such as reactive rules, defeasible rules, normative rules with full
temporal deontic logic capable of handling violations and exceptions such as
contrary-to-duty obligations.

2.5.4 Semantic Web Services Languages

Closely related to the ontology-based approaches in the policy domain are se-
mantic web services (SWS). Among these approaches are OWL-S [OS03] (for-
mer DAML-S), WSDL-S [SVSM03], WSMF [FB02], SWSF [SWS05], WSMO
[WSM05b], Meteor-S MWSAF [MS03]. These approaches semantically anno-
tate service descriptions with additional meta data and concepts from ontolo-
gies which describe the functional and non-functional properties of a service in a
machine-understandable format. These semantic annotations enrich the service
by mapping e.g., the standard WSDL description of a service with ontologies
which provide a common understanding of the properties of a Web Service and
hence form the basis for automatically searching and negotiating web services
in the Semantic Web. Since all these approaches use ontologies, in particular
OWL-based representations, similar limitations wrt expressiveness for general
SLA representations apply as discusses above for the ontology-based policy lan-
guages.

Another approach towards SWS are UDDI extensions such as UX [CLTSBS03]
or UDDIe [SRAAW03]; two approaches which deal with extending the function-
ality of UDDI by introducing an additional server of broker which provides QoS
service data. UX [CLTSBS03] is an architecture providing QoS-aware and cross
organizational support for UDDI. The main idea is to rate services with rep-
utation measured through QoS feedback in form of client reports containing
response time, reliability, cost, time stamp and report number. The collected
reports are used to predict the services' future performance. A similar approach
based on consumer ratings is proposed by [DSGF03]. UDDIe [SRAAW03] is im-
plemented in the context of the G-QoSM framework for grid service discovery
and extends UDDI. It enables service providers to associate their services with
QoS properties such as bandwidth, CPU or memory requirements. It provides
search functionalities which allow quanti�cations over the stated QoS values
such as "equalto", "lessthan" or "greaterthan". In summary, these approaches
focus on service discovery using additional meta data about QoS related prop-
erties of the service. The meta data values are provided as simple name value
pairs and there is no support for descriptions of SLAs.

31

2 IT Service Level Management

2.5.5 Formalization Approaches

There have been some proposals on using Petri-nets [MJSSW03] or Finite State
Machines [Das00] to describe contracts as process �ows. A predictive QoS model
for work�ows involving QoS properties is proposed in [CSM+04]. Other ap-
proaches propose contractual agreements formats and infrastructure to facilitate
interaction and work�ow-based coordination between parties, e.g., tpaML/BPF
[DDK+01] and CrossFlow [[HFGL01]. In short, these approaches are best suited
for contracts which follow a pre-de�ned protocol sequence.

In the context of the ODP Enterprise Language a model for the representation
of contractual obligations has been proposed [ISO99] along with other work on
the formalization of contractual obligations and rights [MM01]. The approach
enables representation of contracts a deontic constraints. However, these deontic
constraints are not based on a logical semantics as in deontic logic, but exploit
a temporal veri�cation of deontic consistency via a visual mechanism based on
the concept of a role window [MM01]. In [MGL+04] a contract monitoring
facility based on a model for expressing behavior and policies in a representa-
tion language called Business Contract Language BCL is presented. Bhoj et al.
[BSC98] describes a contract to be de�ned by a triple (P,M,A), where P is a set
of properties, A is the set of assertions and M is the set of methods available
on the contract. In [AB01] Abrahams de�nes the E-Commerce Application De-
velopment and Execution Environment (EDEE) - an approach for representing
contracts using occurrences.

2.5.6 Logic Based SLA Languages

Only little work has been done in using rules and in particular LP-based ap-
proaches for representing SLAs and QoS policies. Chomicki et al. [CLN00]
describe a declarative policy description language "PDL" in which policies are
represented as event-condition-action (ECA) rules which are translated into non-
recursive Horn logic programs. The approach supports action constraints which
are used to de�ne, detect and resolve con�icting actions, but mainly focuses
on event action sequences. In [KBGH06] an approach towards web service dis-
covery and composition using constraint logic programming (CLP) is proposed.
The services are described using the USDL (Universal Service-Semantics De-
scription Language), a language for formally describing the semantics of Web
services. Farrell et al. [FSS+04] developed the Contract Tracking XML language
(CTXML) with a computational model based on the Event Calculus in order
to facilitate the automated tracking of the contract state de�ned as contract
norms that hold between contract parties. However, their approach is restricted
to the core classical event calculus and does not deal with e.g., time intervals,
complex events which occur over an interval, (re)active rules such as ECA rules
or other rule types such as derivation rules or integrity constraints.

Several recent works in particular in the SWS domain integrate rules into
their ontology models in order to overcome expressiveness restrictions of Se-

32

2 IT Service Level Management

mantic Web ontology languages such as OWL (which are semantically based on
description logics). Among these approaches are e.g., WSML [WSM05a], SWSF
[SWS05], Rei [KFJ05] or the approach of [VAG05] who presented a policy match-
ing approach extending a WS-Policy-based OWL ontology with SWRL rules. In
contrast to my heterogeneous approach of combining rules (logic programming)
with ontologies (description logics) (see section 4.2.2) SWRL and most other
works are homogeneous approaches with relatively high complexity bounds for
the ontology reasoning part (due to the fact that standard rule engines are not
optimized for DL reasoning). Moreover, in these works rules are primarily used
in speci�c contexts in order to overcome certain restrictions of the core OWL
representation, but a comprehensive and coherent use of rules as in my approach
is missing.

The work of Grosof et al. [GLC99], the Semantic Web Enabling Technology
(SWEET) toolkit [SWE05] comprises the CommonRules syntax and also enables
business rules to be represented in RuleML. Whilst their approach deals with
contracts in a broader range namely e-commerce contracts and mainly supports
rule priorities via Generalized Courteous Logic Programs (GCLP) [Gro99] and
to some extend procedural attachments, my approach is focused on the speci�cs
of Service Level Management. In contrast to SWEET, ContractLog incorporates
additional logical concepts which are needed for adequate SLA representation
such as contract states, explicit rights and obligations (deontic norms) supple-
mented with violations and exceptions of norms, integrity constraints, event
processing facilities with active sensing, monitoring and triggering of actions in
terms of ECA rules, full support for di�erent type systems (e.g., Java, Semantic
Web) and procedural attachments in order to integrate existing business object
implementations, and SLA-speci�c contract vocabularies.

33

3 Knowledge Representation

Knowledge representation (KR) focuses on methods for describing the world in
terms of high-level, abstracted models which can be used to build intelligent
applications, i.e., it provides methods to �nd implicit consequences of explicitly
represented knowledge. Approaches can be roughly divided into logic based for-
malisms, usually a variant of �rst-order predicate calculus and non-logic based
formalisms such as semantic networks, frames or (early) production rule sys-
tems. Non-logic based approaches, which are often based on ad hoc data struc-
tures and graphical representations, typically lack a precise formal semantics
which makes it hard to verify the correctness of drawn consequences. On the
other hand, logic based approaches use the powerful and general semantics of
�rst-order logic (FOL) (typically a decidable subset of FOL) which allows a
precise characterization of the meaning of a world by expressing it as a knowl-
edge base of statements in a language which has a truth theory. While the
syntax may di�er, the semantics of FOL KBs is typically given in a Tarski-style
semantics.

3.1 Rule Based Knowledge Representation

Rule based systems have been investigated comprehensively in the realms of
declarative programming and expert systems over the last two decades. Using
(inference) rules has several advantages: reasoning with rules is based on a
semantics of formal logic, usually a variation of �rst order predicate logic, and
it is relatively easy for the end user to write rules. The basic idea is that users
employ rules to express what they want, the responsibility to interpret this
and to decide on how to do it is delegated to an interpreter (e.g., an inference
engine or a just in time rule compiler). Traditionally, rule-based systems have
been supported by two types of inferencing algorithms: forward-chaining and
backward-chaining.

3.1.1 Forward Chaining Rule Systems

Forward chaining is one of the two main methods of reasoning when using "if-
then" style inference rules in arti�cial intelligence. Forward chaining is data-
driven. The inference engine makes inferences based on rules from given data. It
starts with the available data and uses inference rules to extract more data until
an optimal goal is reached. An inference engine using forward chaining searches
the inference rules until it �nds one where the if clause is known to be true.

34

3 Knowledge Representation

When found it can conclude, or infer, the then clause, resulting in the addition
of new information to its KB. The most common form of forward chaining is
the Rete algorithm. In a nutshell, this algorithm keeps the derivation structure
in memory and propagates changes in the fact and rule base. There are many
forward-chaining implementations in the area of deductive databases and many
well-known forward-reasoning engines for production rules ("if condition then
action" rules) such as ILOG's commercial rule system or popular open source
solutions such as CLIPS or Jess which are based on the RETE algorithm.

3.1.2 Backward Chaining Rule Systems

The other main reasoning method for "if ... then ..." rules is backward-chaining
which is typically used in logic programming, where the rules are called deriva-
tion rules. Backward chaining starts with a list of goals (hypothesis) and works
backwards to see if there are data available that will support any of these goals.
Accordingly, backward chaining is goal-driven. An inference engine using back-
ward chaining would search the inference rules until it �nds one which has a
then clause that matches a desired goal. If the if clause of that inference rule
is not known to be true, then it is added to the list of goals. The common
deductive computational model of logic programming uses backward-reasoning
(goal-driven) resolution to instantiate the program clauses via goals and uses
uni�cation to determine the program clauses to be selected and the variables to
be substituted by terms. The uni�cation algorithm supports backtracking usu-
ally according to depth-�rst recursive backward-chaining, but forward-chaining
bottom-up approaches are also possible.

3.1.3 Discussion Backward Chaining vs. Forward-Chaining in SLA
Representation

Forward-chaining, e.g based on the Rete algorithm in production rules, can be
very e�ective, e.g., if you just want to �nd out what new facts are true or
when you have a small set of initial facts and when there tends to be lots of
di�erent rules which allow you to draw the same conclusion. However, I argue
that production rule systems are not suitable in SLA representation and that
backward-chaining in the sense of logic programming quali�es to be the better
choice:

• In forward-reasoning additional software must propagate changes to the
memory-based fact base which leads to a lot of redundancy and di�culties,
e.g., a relational database normally does not propagate changes and for
real-time access the fact base and the database must be synchronized.

• In the SLA domain large set of initial facts are provided which are likely
to change. Using forward chaining, lots of rules would be eligible to
�re in any cycle and a lot of irrelevant conclusions are drawn, while in
backward-reasoning the knowledge base can be temporarily populated

35

3 Knowledge Representation

with the needed facts from external systems to answer a particular goal at
query time which can be discarded from the memory afterwards. In fact,
forward-reasoning on the Web is well-suited only for closed scopes, e.g.,
�ring rules when certain events occur.

• The open-distributed environments such as the web are usually based on
a pull-model and most implementations of push-architectures (the push
model relates to active event processing) are basically pull-concepts, i.e.�
the push functionality is simulated via frequently issuing queries, e.g., a
mail client which queries the mailbox every second for new mails. There-
fore, a goal-driven backward-reasoning system perfectly �ts to those ar-
chitectures.

• Forward-reasoning production rules have an operational semantics but no
clear logical semantics and a restricted expressiveness, e.g., no recursion,
disjunctions in the sense of "else" are dangerous in forward-reasoning and
non-monotonic features such as default negation in unstrati�ed production
rule systems are not clear.

In this dissertation I defend the adequacy of goal-driven logic programming
techniques for SLA representation and show how required KR formalisms can be
expressed in terms of backward-chaining derivation rules. Since in SLA repre-
sentation there is also a need for reactive rules with forward-driven operational
semantics, I will show in section 4.7 how complex reaction rules can be imple-
mented as a common add-on to backward-chaining rule engines enabling a tight
combination of derivation rules and reaction rules. For a list of advantages of
using logic programming in SLA representation see section 1.3.

3.2 First-Order Logic

This section recalls the de�nition of a �rst order logic (FOL) language and
classical FOL models (structures) under Tarski semantics that I adopt from
[Llo87, LMR92, Fit96]. Both interrelated concepts play a central role in logic
and form a general basis in this dissertation that allows me to cover a wide range
of logical formalisms for rule-based contract representation in the ContractLog
KR (see chapter 4).

3.2.1 Syntax

This subsection de�nes the syntax of a �rst order language according to [Llo87,
LMR92, Fit96].

De�nition 8 (Signature) S is a signature if S is a four-tuple 〈P , F , arity, c〉
where:

1. P is a �nite sequence of predicate symbols 〈P1, .., Pn〉.

36

3 Knowledge Representation

2. F is a �nite sequence of function symbols 〈F1, .., Fm〉

3. For each Pi respectively each Fj, arity(Pi) resp. arity(Fj) is a non-zero
natural number denoting the arity of Pi resp. Fi.

4. c = 〈c1, .., co〉 is a �nite or in�nite sequence of constant symbols.

A signature is called function-free if F = ∅.

De�nition 9 (Alphabet) An alphabet Σ consists of the following class of sym-
bols:

1. A signature S = 〈P , F , arity, c〉.

2. A collection of variables V which will be denoted by identi�ers starting
with a capital letter like U ,V ,X

3. Logical connectives / operators: ¬. (negation), ∧ (conjunction), ∨ (dis-
junction), → (implication), ≡ (syntactical equivalent), = (equivalence), ⊥
(bottom), > (top).

4. Quanti�er: ∀ (forall), ∃ (exists).

5. Parentheses and punctation symbols: "(", ")", ",".

De�nition 10 (Terms) A term is de�ned inductively as follows:

1. A variable is a term.

2. A constant in c is a term.

3. If f is a function symbol with arity n and t1, .., tn are terms, then f(t1, .., tn).

Function symbols are written in pre�x notation whereby a function always
precedes its terms. However, throughout the dissertation I sometimes write
terms composed of both pre�x and in�xed symbols, e.g., (f(2) − f(1)/f(1)).
There are standard ways of dealing with this issues which I will not discuss in
this dissertation.

De�nition 11 (Atom) Let p be a predicate symbol with arity n ∈ ℵ. Let
t1, .., tn be terms, then p(t1, .., tn) is an atomic formula of terms. A ground
atom is a atomic formulae without variables.

De�nition 12 (Well-formed Formula) A (well-formed) formula is de�ned
as follows:

1. An atom is a formula.

37

3 Knowledge Representation

2. If H and G are formula then
- ¬H is a formula (negation)
- (H ∧G) is a formula (conjunction)
- (H ∨G) is a formula (disjunction)
- (H → G) is a formula (implication)
- (H ≡ G) is a formula (equivalence)

3. If H is a formula and X is a variable, then (∀XH) and (∃XH) ar for-
mulas.

The following precedences are de�ned:

1. ¬, ∀, ∃

2. ∧, ∨

3. →, ≡

De�nition 13 (First-Order Language) A FOL language is de�ned over an
alphabet Σ where the signature S my vary from language to language. It consists
of the set of all formulas that can be constructed according to the de�nitions
of well-founded formulas using the symbols of Σ. A FOL language is called
function-free if the signature is function-free.

Thus, a language in addition to a signature also contains the logical symbols
and a list of variables. The notion "�rst-order" refers to the fact that quanti�-
cation is over individuals rather than classes (or functions).

De�nition 14 (Scope of Variables) Let X be a variable and H be a formula.
The scope of ∀X in ∀XH and of ∃X in ∃XH is H. Combinations of ∀X and
∃X bind every occurrence of X in their scope. Any occurrences of variables that
are not bound are called free.

De�nition 15 (Open and Closed Formula) A formula is open if it has free
variables. A formula is closed if it has no free variables.

De�nition 16 (Literal) A literal L is an atom or the negation of an atom.

De�nition 17 (Complement) Let L be a literal. The complement −L of L is
de�ned as follows:

−L :=
{
¬A if L ≡ A
A if L ≡ ¬A

, where A is an atom.

De�nition 18 (Theory) A FOL theory Φ or FOL knowledge base is a set of
formulae in a FOL language Σ: Φ ⊆ Σ. The signature S of Φ is obtained from
all the constant, function and predicate symbols which occur in Φ.

38

3 Knowledge Representation

Every �nite FOL knowledge base (FOL KB) is equivalent to the conjunction
of its elements, i.e., it might be equivalently written as a conjunction of formulas.

3.2.2 Interpretations and Models

This subsection is concerned with attributing meaning (or truth values) to
sentences (well-formed formulae) in a FOL language. The de�nitions follow
[Llo87, LMR92, Fit96]. Informally, the sentences are mapped to some state-
ments about a chosen domain through a process known as interpretation. An
interpretation which gives the value true to a sentence is said to satisfy the
sentence. Such an interpretation is called a model for the sentence and an
interpretation which does not satisfy a sentence is called a counter-model.

De�nition 19 (Interpretation / Structure) Let S = 〈P , F , arity, c〉 be a

signature. I is called an interpretation (or a structure) for S if I = 〈|M |, P I ,
F
I
, cI〉 consists of:

1. a non-empty set |M | called the universe of I or the domain of the inter-
pretation. The members of |M | are called individuals of I.

2. P
I = 〈P I1 , .., P Ik 〉 associates with each predicate Pi in S of arity n =

arity(Pi) an n-ary relation P Ii on |M |, i.e., P Ii ⊆ |M |n, where |M |n
denotes the collection of all n-tuples from |M |.

3. F
I = 〈F I1 , .., F Il 〉 is an interpretation for each function symbol Fj of arity

m, where F Ij is an m-place function F
I
j : |M |m → |M |, i.e., F Ij is de�ned

on the set of m-tuples of individuals |M |m with values in |M |.

4. cI = 〈cI |c = constant〉 is an interpretation for the constants of S: c ∈ S,
where cI is an individual of M : cI ∈ |M |.

De�nition 20 (Assignment)

1. Variable Assignment: Let Σ be a FOL language with X its set of variables,
and I an interpretation for Σ. An assignment is a function σ from X into
the universe of Σ.

2. Term Assignment: Let I be an interpretation of a FOL language Σ with
domain |M | and variable assignment σ. The term assignment wrt σ of the
term in Σ is de�ned as:
- Each variable is given its assignment according to σ.
- Each constant is given its assignment according to I.
- If t′1, .., t

′
n are the term assignments of t1, .., tn and f ′ is the assignment

of the function symbols f with arity n, then f ′(t′1, .., t
′
n) ∈ |M | is the term

assignment of f(t1, .., tn).

That is, given an assignment σ, any variable term of the language that is in
the domain of σ is given a constant value in |M |.

39

3 Knowledge Representation

De�nition 21 (Truth Values) Let I be an interpretation of a FOL language
Σ with domain |M | and σ be a variable assignment. A formula F ∈ Σ can be
given a truth value "false" or "true" as follows:

1. If the formula is an atom p(t1, .., tn) then the truth value is obtained by
calculating the value of p′(t′1, .., t

′
n) where p′ is the mapping assigned to p

by I and t′1, .., t
′
n are the term assignments of t1, ..tn wrt I and X.

2. The truth values of the following formulas is given by the following table:
F G ¬F F ∧G F ∨G F → G F = G

true true false true true true true
true false false false true false false
false true true false true true false
false false true false false true true

3. If ∃XF , then the truth value of the formula is true if there exists c ∈ |M |
such that the formula F has truth value "true" wrt I and σ(X/c); otherwise
it is false.

4. If the formula has the form ∀XF , then the truth value of the formula is
true if, for all c ∈ |M | F is "true" wrt I and σ(X/c); otherwise, its truth
value is false.

De�nition 22 (Satisfaction) If F is a formula and σ is an assignment to the
interpretation I of a FOL language Σ, then the relation I |= F [σ] means that
F is true in I when there is a substitute for each free variable X of F with the
value of σ(X). The inductive requirements of "|=" are:

1. For any atomic formula of the form p(t1, ..tn)[σ] i� 〈tσ1 , .., tσn〉 ∈ pI .

2. I |= ¬F [σ] i� it is not the case that I |= F [σ]

3. I |= (F ∧ G)[σ] i� both I |= F [σ] and I |= G[σ]. Similarly, for the other
statements.

4. I |= ∃XF [σ] i� there exists some assignment σ′ such that
- for every variable Y di�erent from X σ′(Y) = σ(Y)
- σ′(X) is de�ned and I |= F [σ′]

5. I |= ∀XF [σ] i� for any assignment σ′, if σ′(X) is de�ned and σ′ is equal
to σ on each variable di�erent from X, then I |= F [σ′]

Accordingly, a formula F is satis�ed by an interpretation I (F is true in I:
I |= F) i� I |=σ F for all variable assignments σ. F is valid i� I |= F for
every interpretation I.

The satisfaction relation |= goes back to A. Tarski and is a major achievement
in logic.

40

3 Knowledge Representation

De�nition 23 (Model) Let I be an interpretation of a FOL language Σ. Then
I is a model of a closed formula F , if F is true wrt I. Further, I is a model of
a set F of closed formulas, if I is a model of each formula of F . I is a model
of an FOL KB Φ i� I |= F for every formula F ∈ Φ: I |= Φ.

De�nition 24 (Logical Consequence, Entailment, Logical Implication)
A formula F ∈ Σ is a logical consequence of a FOL KB Φ written as Φ |= F ,
i.e., Φ entails F i� for all models I ∈ Σ for which I |= Φ also I |= F . For a
�xed FOL language (and signature) Σ let Φ and Ψ be two sets of sentences (two
KBs), then Φ → Ψ means that for every interpretation I of Σ, if I is a model
for Φ then it is also a model for Ψ.
Φ → Ψ is also meaningful when Φ and Ψ are sets of formulas with variables,
i.e., for every interpretation I of Σ and every assignment σ in I, if I[σ] satis�es
every formula in Φ then it also satis�es every formula in Ψ.

3.3 Logic Programming

Full �rst-order logic is not suitable as a declarative programming language due
to the following reasons:

• unrestricted FOL is in general undecidable

• �nding (most general) uni�er and solving formula is highly complex

• large search domains, which must be restricted using complex control
structures

• danger of implementation incompleteness

• the results are not always unique

Hence, logic programming is based on a subset of FOL which deals with a
speci�c class of well-formed formulas, so called statement clauses which consist
of an antecedent part and a consequent. The declarative meaning for such
clauses is that the consequent part is true, if the antecedents are true. The
procedural meaning is, that the consequent is proven by reducing it to a set
of sub-goals given by the antecedent part. The most common form of logic
programming is based on Horn Logic where clauses in normal form only have
one positive literal which is the consequent. Such programs are called de�nite
LPs or Horn LPs. The semantics of de�nite Logic Programs (LPs) is based on
minimal Herbrand models. Although Horn LPs are expressive enough to model
hard problems the formulation is neither easy nor elegant. Hence, extensions to
de�nite LPs like di�erent forms of negations have been proposed. In this section
I introduce relevant terms, concepts, syntax and semantics of di�erent classes
of logic programs (LPs) derived from [Llo87, LMR92, Fit96].

41

3 Knowledge Representation

Figure 3.1: Classes of LPs

3.3.1 Syntax of Logic Programs

De�nition 25 (Clause) A clause is a formula such as ∀X(L1∨ ..∨Lm) where
each Li is a literal and X = {X1, .., Xn} are all the variables occurring in
L1 ∨ .. ∨ Lm.

Throughout this thesis I will refer to di�erent classes of clauses such as: propo-
sitional clauses, Datalog clauses, de�nite Horn clauses, normal clauses, extended
clauses, positive clauses, positive-disjunctive clauses, disjunctive clauses, and ex-
tended disjunctive clauses. Associated with each type of clause is a class of logic
programs: propositional LP, Datalog LP, de�nite LP, strati�ed LP, normal LP
(aka general LP), extended LP, disjunctive LP and combinations of classes, with
an increasing expressiveness as illustrated in �gure 3.1 for several classes of LPs.
Each class can be propositional (without terms), Datalog (without functions)
or with terms and variables.

These LPs are de�ned as follows:

De�nition 26 (Logic Programs and Rules) Given a FOL language Σ, a
(disjunctive extended) logic program P consists of logical rules (or program
clause) of the form

A1, .., Ak ← B1, .., Bm, notC1, .., notCn

or equivalently

∀X(A1 ∨ .. ∨Ak ← B1 ∧ .. ∧Bm ∧ notC1 ∧ .. ∧ notCn)

which is a convenient notation for a FOL clause where all variables Xi ∈ X
occurring in the literals Ai, Bj, Ck are universally quanti�ed ∀X1..∀Xs, the
commas in the antecedent denote conjunction and the commas in the consequent

42

3 Knowledge Representation

denote disjunction, and not denotes negation by default, rather than classical
negation. For short a rule is denoted in set notation as:

A← B ∧ notC

where A = A1 ∨ .. ∨ Ak, B = B1 ∧ .. ∧ Bm, C = notC1 ∧ .. ∧ notCn. Note
that C is a disjunction and according to De Morgan's law notC is taken to
be a conjunction. The A is called the rule head which consists of the set of
head literals and B and C is called the rule body which consists of the set of
body literals. Note that this set notation is legitime because the conjunction is
commutative.

A rule is called:

• a fact if m = n = 0, i.e., A← ∅

• a query (or goal) if k = 0, i.e., ← B∧C. A query or goal is called atomic
if it consists of a single literal B1, i.e., m = 1 and n = 0.

• a propositional rule if the arity of all predicates is 0, i.e., all literals are
propositional ones. If all rules in a program P are propositional the P is
called a propositional LP.

• a Datalog rule if it contains no functions, i.e., is function-free and no
predicate symbol of the input schema appears in the rule head. A Datalog
LP (aka deductive database) is a function-free LP.

• a de�nite or positive rule (or Horn clause), if all literals are atoms, n = 0
and k = 1, i.e., it neither contains negation nor disjunction. The corre-
sponding LP is called positive or de�nite LP (or Horn Program).

• positive-disjunctive rule, if all literals are atoms and n = 0, i.e., it does
not contain negation. The corresponding LP is called positive-disjunctive
LP.

• normal rule, if all literals are atoms and k = 1, i.e., it does not contain
disjunction. The corresponding program is called a normal LP.

• extended rule, if Ai, Bi and Ci are literals, i.e., are atoms or explicitly
negated atoms . The corresponding programm is called an extended LP.

• disjunctive rule, if k > 1, i.e., it does contain a disjunction. The corre-
sponding program is called a disjunctive LP.

• range-restricted if all variable symbols occurring in the head also occur in
the positive body.

• ground if no variables occur in it.

3.3.2 Semantics of Logic Programs

Proof-theoretically the semantics of a logic program P is de�ned as a set of liter-
als that is (syntactically) derivable from P using a particular derivation mecha-

43

3 Knowledge Representation

nism such as SLDNF resolution. Model-theoretically, a semantics for a logic pro-
gram P is concerned with attributing meaning (truth values) to clauses (rules).
The properties of soundness and completeness establish a relation between the
notions of syntactic (`) and semantic (|=) entailment in logic programming. In
this subsection I will review several approaches to de�ne proof-theoretic and
model-theoretic semantics for di�erent types of logic programs which are rele-
vant in the context of the ContractLog KR which will be introduced in chapter
4.

3.3.2.1 Substitution and Uni�cation

I �rst introduce the concepts of substitution and uni�cation from [Llo87] which
are at the heart of proof-theoretic semantics of non-ground LPs.

De�nition 27 (Substitution) A substitution θ in a language Σ is a �nite set
of the form {X1/t1, .., Xn/tn}, where each Xi is a variable in Σ, each ti is a
term in Σ distinct from Xi and the variables X1, .., Xn are pairwise distinct.
Each element Xi/ti is called a binding for Xi. θ is called a ground substitution
if the ti are all ground terms. θ is called a variable-pure substitution if the ti
are all variables.

De�nition 28 (Expression) An expression E is either a term, a literal or a
conjunction or disjunction of literals.

De�nition 29 (Instance) Let θ = {X1/t1, .., Xn/tn} be a substitution and E
be an expression then Eθ is the instance of E by θ is the expression obtained
from E by simultaneously replacing each occurrence of the variable Xi in E by
the term ti for i = 1, .., n. if Eθ is ground then Eθ is called a ground instance
of E.

De�nition 30 (Variant) Let E and D be expressions. E and D are variants
if there exists substitutions θ and σ such that E = Dθ and D = Eσ.

De�nition 31 (Renaming Substitution) Let E be an expression and X be
the set of variables occurring in E. A renaming substitution for E is a variable-
pure substitution {X1/Y1, .., Xn/Yn} such that {X1, .., Xn} ⊆ X, the Yi are
pairwise distinct and (X \ {X1, .., Xn}) ∩ {Y1, .., Yn} = ∅.

De�nition 32 (Composition) Let θ = {X1/s1, .., Xm/sm} and
σ = {Y1/t1, .., Yn/tn} be substitutions. The composition θσ of θ and σ is the
substitution obtained from the set

{X1/s1σ, ..,Xm/smσ, Y1/t1, .., Yn/tn}

by deleting any binding Xi/siσ for which Xi = siσ and deleting any binding
Yj/tj for which Yj ∈ {X1, .., Xm}.

44

3 Knowledge Representation

De�nition 33 (Most General Uni�er (MGU)) Let E be a �nite set of ex-
pressions. A substitution θ is called a uni�er for E if Eθ is a singleton. An
uni�er for E is called most general uni�er (mgu) for E if for each uni�er σ of
E there exists a substitution γ such that σ = θγ. E is called uni�able if there
exists a uni�er for E.

Note that a mgu for a set of expressions is unique modulo renaming if there
exists a mgu at all.

3.3.2.2 Minimal Herbrand Model

For themodel-theoretic semantics I �rst introduce the minimal or least Herbrand
model semantics which is considered as the natural interpretation of a de�nite
LP. I then extend the minimal Herbrand semantics for other subclasses of LPs
and described other (declarative) semantics as well as their proof-theoretic coun-
terparts for logic programming.

De�nition 34 (Herbrand Universe) The Herbrand universe of a program P
de�ned over the alphabet Σ, denoted UP , is the set of all ground terms which
can be formed out of the constants and function symbols of the signature S of
Σ.

De�nition 35 (Herbrand Base) The Herbrand base of a program P , denoted
BP , is the set of all ground atomic literals which can be formed by using the
predicate symbols in the signature S of Σ with the ground terms in UP as argu-
ments.

De�nition 36 (Herbrand Instantiation aka Grounding) The Herbrand
instantiation ground(P) of P consists of all ground instances of all rules in P
wrt to the Herbrand universe UP which can be obtained as follows: The ground
instantiation of a rule r is the collection of all formulae r[X1/t1, .., Xn/tn] with
X1, .., Xn denoting the variables which occur in r and t1, .., tn ranging over all
terms in UP .

De�nition 37 (Herbrand Interpretation) The Herbrand interpretation IHerb

of P is a consistent subset of BP . The interpretation is given as follows:

1. The domain of the interpretation is the Herbrand universe UP .

2. Constants are assigned themselves in UP .

3. IF f is a function in P with arity n then the mapping f ′ : UnP 7→ UP
assigned to f is de�ned by f ′(t1, ..tn) := f(t1, .., tn).

45

3 Knowledge Representation

Note that, since the assignment to constant and function symbols is �xed for
Herbrand interpretations, it is possible to identify a Herbrand interpretation
with a subset of the Herbrand base. For any Herbrand interpretation, the
corresponding subset of the Herbrand base is the set of all ground atoms which
are true wrt the interpretation.

De�nition 38 (Herbrand Model) Let P be a positive / de�nite program. A
Herbrand interpretation IHerb of P is a model of P , denoted as MHerb, i� for
every rule H ← B1, .., Bn ∈ ground(P) the following holds: If B1, .., Bn ∈ IHerb
then H ∈ IHerb.

The Herbrand model MHerb satis�es the unique name assumption, i.e., for
any two distinct ground terms in BP , their interpretations are distinct as well.

De�nition 39 (Unique Name Assumption and Domain Closure As-
sumption) Let Σ be a given language. The unique name assumption (UNA)
restricts the model MHerb, where syntactically di�erent ground terms t1, t2 are
interpreted as non-identical elements: tM

Herb

1 6= tM
Herb

2 .
The domain closure assumption (DCA) is a restriction to those models MHerb

where for any element a in MHerb there is a term t that represents this element:
a = tM

Herb
.

Model-theoretically the intended meaning of a LP is that a formula should be
true if it is a logical consequence of the program, i.e., it is true in all models of
the program. For de�nite LPs this intention leads to a semantics that coincides
with the intuition because of the model intersection property.

De�nition 40 (Model Intersection Property) Let M
Herb

be the set of all
Herbrand models of a program P .The intersection of all Herbrand models⋂
M

Herb(P) of a de�nite LP P is also a Herbrand model of P .

Note that since every de�nite LP P has BP as an Herbrand model, the set of

all Herbrand models for P is always non-empty:
⋂
M

Herb(P) 6= ∅.

De�nition 41 (Minimal Herbrand Model) Let P be a de�nite LP then the
minimal or least Herbrand model MHerb

P of P is the intersection of all Herbrand
models for P .

The constructive computational characterization of the minimal Herbrand
model of a de�nite LP P is based on the least �xpoint of the immediate con-
sequence operator of P . A detailed description of the theory of lattices and
�xpoints can be found in [Llo87], I recall some relevant de�nitions.

46

3 Knowledge Representation

De�nition 42 (Immediate Consequence Operator) Let P be a de�nite LP.
Let IHerb ⊆ BP be a set of atoms. The set of immediate consequences of IHerb

wrt P is de�ned as follows:

TP (IHerb) := {A | there is A← B ∈ ground(P) with B ⊆ IHerb}.

De�nition 43 (Monotonic Mapping) Let T : P (U) → P (U) be a mapping
then T is monotonic if T (X) ⊆ T (Y), whenever X ⊆ Y .

De�nition 44 (Ordinal Power of T) Let T : P (U)→ P (U) be a monotonic
mapping then:
T ↑ 0 = ∅
T ↑ a = T (T ↑ (a− 1)) if a is a successor ordinal
T ↑ a =

⋃
(T ↑ b|b < a) if a is a limit ordinal

De�nition 45 (Fixpoint of operators) An operator T is a function T :
P (U) → P (U), where P (U) denotes the powerset of a countable set U . A
set X ⊆ U is called a �xpoint of the operator T : P (U)→ P (U) i� T (X) = X

De�nition 46 (Least Fixpoint) Let T : P (U) → P (U) be a mapping. An
element e ∈ P (U) is called a least �xpoint lfp(T) i� e is a �xpoint of T and for
all �xpoints f of T it is that e ⊆ f .

According to the Fixpoint Theorem of Knaster and Tarski (see [KM97b] for
more details) each monotonic operator T has a least �xpoint lfp(T), which is
the limit of the sequence T 0 = ∅, T i+1 = T (T i) for i ≥ 0. It appears that for
each set P of clauses lfp(T) coincides with the unique least Herbrand model
of P , where a model MHerb is smaller than a model NHerb, if MHerb ⊂ NHerb

[EK76].

De�nition 47 (Fixpoints of Monotonic Mappings) Let T be a monotonic
mapping. Then T has a least �xpoint lfp(T). For every ordinal a, T ↑ a ⊆
lfp(T). Moreover, there exists an ordinal b such that c ≥ b implies T ↑ c =
lfp(T).

If the operator TP is not only monotonic but also continuous, then a least
�xpoint of TP is always reached not later than at the �rst limit ordinal (see
[Llo87]). By Kleene's theorem (see [Doe94]) lfp(P) = T∞(∅), where T i is
inductively de�ned by T 0 = ∅, T i+1 = T (T i) for i ≥ 0.

Theorem 1 (Fixpoint Characterization of the Minimal Herbrand Model)
Let P be a de�nite LP then MHerb

P = lfp(TP) = TP ↑ ω.

In summary, the semantics of LPs is now de�ned as follows:

47

3 Knowledge Representation

De�nition 48 (Herbrand Semantics of Logic Programs) Let the ground-
ing of a clause r in a language Σ be denoted as ground(r,Σ) where ground(r,Σ)
is the set of all clauses obtained from r by all possible substitutions of elements
of UΣ for the variables in r. For any de�nite LP P

ground(P,Σ) =
⋃
r∈P ground(r,Σ)

The operator TP : 2BP → 2BP associates with P is de�ned by TP = Tground(P),
where ground(P) denotes ground(P,Σ(P)), and accordingly:

SEMHerb(P) = MHerb
ground(P).

Generating ground(P) is often a very complex task, since, even in case of
function-free languages, it is in general exponential in the size of P (see section
7.1 for complexity results). Moreover, it is not always necessary to compute
MHerb
ground(P) in order to determine whether P |= A for some particular atom A.

In practice, various proof-theoretic strategies of deriving atoms from a LP have
been proposed. These strategies are based on variants of Robinson's famous
Resolution Principle [Rob65]. The major variant is SLD-resolution [KK71].

3.3.2.3 SLD Resolution

In a nutshell, in SLD a goal is a conjunction of atoms. A substitution θ is
a function that maps variables to terms. Asking a query Q?, where Q? may
contain variables, to a program P means asking for all possible substitutions
θ of the variables in Q? such that Qθ follows from P , i.e., θ is the answer to
Q. In other words, SLD resolution repeatedly transforms the initial goal by
applying the resolution rule to an atom Qi from the query/goal and a rule from
P , unifying Qi with the head H of the rule, i.e., it tries to �nd a substitution
θ such that Hθ = Qiθ. The typical selection rule is to choose always the �rst
atom in the query. This step is repeated until all goals are resolved and the
empty goal is obtained.

Example 1 (Linear resolution computation step)

¬Q1, ..,¬Qn ¬A1, ..,¬Am, H
|

θ = unify(Q1,¬H)

For a more precise account see [Apt90, Llo87] and [Lei97] for resolution on
normal clauses. The task to �nd substitutions θ such that Qθ is derivable
from the program P as well as MHerb

P is closely related to SLD. The following
properties are equivalent:

Theorem 2 (Soundness and Completeness of SLD)

48

3 Knowledge Representation

• P |= ∀Qθ, i.e ∀Qθ is true in all models of P ,

• MHerb
P |= ∀Qθ,

• SLD computes an answer τ that subsumes θ wrt Q, i.e., ∃σ : Qτσ = Qθ.

Since SLD resolution is a top-down approach which starts with the query, the
main feature of it is, that it automatically ensures, that it only considers those
rules that are relevant for the query to be answered (see also section 3.1.3 for a
discussion of backward vs. forward reasoning). Rules that are not at all related
are simply not considered in the course of the proof. Note that there are also
several bottom up approaches for computing the least Herbrand model MHerb

P

from below. However, the bottom-up approach has two serious shortcomings:

1. The "goal-orientedness" from top-down approaches is lost, i.e the whole
MHerb
P has to be computed even for those facts that have nothing to do

with the query.

2. In any step facts that are already computed before are recomputed again.

Partial solutions have been proposed, e.g., semi-naive bottom-up evaluation
[Ull89, Bry90b] or Magic Sets techniques [BR91]. However, as discussed in
section 3.1 top-down semantics are more appropriate in SLA representation
and I mainly focus on backward-reasoning logic programming techniques in this
dissertation (except for the active forward-directed processing of reactive rules
- see section 4.7).

3.3.2.4 Theory of Logic Programming with Negation

As I will discuss in section 3.6 de�nite LPs are not expressive enough for
SLA representation since they e.g., exclude negative information and (non-
monotonic) default statements such as "normally a implies c, unless something
abnormal holds". Such statements and the computation of default negation
where the main motivation for alternative formulations of non-monotonic rea-
soning by circumscription [McC80], default reasoning [Rei80] or autoepistemic
reasoning [Mar91]. Independently of these work in non-monotonic reasoning
the proof-theory for negation-as-�nite-failure (NAF), the well-known SLDNF
resolution (SLD+NAF), originated from SLD resolution. In short, negation-as-
�nite-failure can be characterized as: A (default) negated literal ∼ L succeeds, if
L �nitely fails. See [Llo87, Apt90] for the formal de�nition of SLDNF resolution
and NAF. The implementation is typically given as a cut-fail test:

not([P|Args]) :-

derive([P|Args]), % derive P(Args)

!, % cut

fail(). % fail

not([P|Args]). % positive answer

49

3 Knowledge Representation

The corresponding model-theoretic semantics is de�ne by Clark's completion
(COMP) [Cla78] who's idea was to interpret "←" in rules as "↔" in the classical
sense.

De�nition 49 (Clark's Completion COMP) Clark's completion semantics
COMP for a program P is given by the set of all classical models M(comp(P))
of the completion theory comp(P).

See Clark's Equational Theory for more details. COMP gives two rules for
inferring negative information:

• Infer ¬A i� BP \M(comp(P)) |= ¬A

• Infer ¬A i� M(comp(P)) |= ¬A

But, (two-valued) COMP is incomplete and does not characterize the tran-
sitive closure correctly. In [Prz90a] various problems with loops in COMP
where discussed. Therefore, Fitting [Fit85] introduce a three-valued formula-
tion comp3(P) of the two-valued COMP. It was shown by Kunen [Kun87] that
SLDNF is sound and complete wrt COMP3 for propositional LPs and correct
but not complete in the predicate logic case [She88].
SLDNF-resolution su�ers from problems with loops and �oundering and its im-
plementation is only a simple test, i.e., no variable bindings are produced. See
[She91] for a discussion of unsolvable problems related to SLDNF. Much work
has been done to de�ne restriction properties (on the dependency graph whose
vertices are the predicate symbols from a program P) for which SLDNF is com-
plete. I brie�y review the important ones:

• strati�ed: no predicate depends negatively on itself

• strict: there are no dependencies that are both even and odd

• call-consistent: no predicate depends oddly on itself.

• hierarchical: no form of recursion is allowed

• allowedness: at least every variable occurring in a clause must occur in at
least one positive literal of the body

Strati�ed LPs for which the rules do not have recursion through negation have
been de�ned by [ABW88]. The predicates of strati�ed LPs can be placed into
strata so that one can compute over the strata. The model-theoretic seman-
tics, the supported Herbrand model M supp

P , is de�ned by declaring M supp
P as the

intended model among all minimal Herbrand models of comp(P) which could
be obtained by iterating over the strata. Przymusinski [Prz88] showed that the
selected model was the so-called perfect model. The semantics of de�nite and
strati�ed LPs lead to the unique minimal model semantics which is generally
accepted to be the semantics for these classes of LPs. However, this is not the
case for more expressive LPs. Here are several possible ways to determine the
semantics and various approaches based on extensions of the 2-valued classical

50

3 Knowledge Representation

logic to three-valued logics have been proposed, e.g., Fitting [Fit85] or Kunen
[Kun87] semantics which are based on Kleene's strong three-valued logics, or the
well founded semantics (WFS) [VGRS91] which is an extension of the prefect
model semantics. Another approach is based on the tradition of non-monotonic
reasoning in which the de�nition of entailment is based on the notion of beliefs.
The stable model semantics (STABLE) [GL88] is based on this approach. For
a discussion of the relationships between non-monotonic theories and logic pro-
gramming see [Min93]. In the following I will brie�y review the (declarative)
semantics and theory of more expressive types of LPs. A lot of di�erent seman-
tics have been de�ned in the past. Table 3.1 gives an incomplete overview. I do
not want to present all semantics or discuss there merits and shortcomings in
the context of SLA representation. Instead, I will mainly focus on well-founded
semantics (WFS) which is the declarative semantics of choice in this disserta-
tion. However, since the proposed ContractLog KR for representing SLAs is
intended to be general and applicable to several semantics I also brie�y review
stable model semantics (STABLE) for normal LPs and its extension answer set
semantics (ASS) for extended LPs; two other prominent semantics in declarative
logic programming.

Stable Model Semantics The Gelfond-Lifschitz transformation PM [GL88] of
a normal LP P wrt to its interpretation I is obtained from the ground instance
ground(P) of P as follows:

De�nition 50 (Gelfond-Lifschitz transform) Let P be a program andM ⊆
BP . The Gelfond-Lifschitz transform PM of P (aka reduct of P) wrt M is
de�ned by PM = rM |r ∈ ground(P). It is obtained from ground(P) by:

1. Replace in every ground rule A ← B ∧ notC ∈ ground(P) the negative
body by its truth value wrt M .

2. Deleting each rule r in P with B−(r) ∩M 6= ∅ where B− denotes the set
of negated atoms in the body of the rule r.

Based on PM the concepts of stable models [GL88] and partial stable models
[Prz91] have been de�ned:

De�nition 51 (Stable Model) An interpretation I of a normal LP P is a
stable model MStable of P if I is a minimal model of PM :

SEMStable(P) =
⋂
MStable∈SEMStable(P)(M

Stable ∪ neg(BP \MStable))

De�nition 52 (Partial Stable Model) A partial Herbrand interpretation is
called a partial stable model of P if it is a partial minimal model of PM .

51

3 Knowledge Representation

Table 3.1: Semantics for LP Classes (adapted from [Dix95b])

Class Semantics Ref.
De�nite LPs Least Herbrand model: Mp [ABW88]
Strati�ed
LPs

Supported Herbrand model: Msupp
p [ABW88]

Normal LPs Clark's Completion: COMP [Cla78]
3-valued Completion: COMP3 [Kun87, Fit85]
Well-founded Semantics: WFS [VGRS91]

WFS+ and WFS
′

[Dix92]
WFSC [Sch92]
Strong Well-founded Semantics: WFSE [CK91]
Stable Model Semantics: STABLE [GL88]
Generalized WFS: GWFS [BLM90]
STABLE+ [Dix95a]
STABLEC [Sch92]
STABLErel [Dix92]
Pereira's O − SEM [PAA92]
Partial Model Semantics: PARTIAL [SZ91]
Regular Semantics: REG− SEM [YY90]
Preferred Semantics: PREFERRED [Dun91]

Extended
LPs

Extended Well-founded Semantics: WFSS [HY91]

Answer Set Semantics: ASS [GL90, GL91]
Extended Well-founded Semantics: WFSX [PA92]

General Dis-
junctive

Disjunctive WFS: DWFS [BD97]

Generalized Disjunctive WFS: GDWFS [BLM92]
Disjunctive Stable: DSTABLE [Prz91]

Strati�ed
Disjunctive

Perfect model PERFECT [Prz88]

Weakly Perfect: WPERFECT [PP88]
Generalized Closed World Assumption: GCWA

Positive Dis-
junctive

Weak generalized closed world assumption:
WGCWA

[RLM89]

52

3 Knowledge Representation

It can be shown that stable models are always partial models and that every
strati�ed LP P has a unique stable model where strati�ed and stable semantics
coincide.

Answer Set Semantics Gelfond and Lifschitz [GL90, GL91] have extended the
concept of stable models to extended and disjunctive LPs based on the notion
of answer sets. The proposed answer-set semantics is de�ned as follows:

De�nition 53 (Answer Set Semantics) Let P be an extended (disjunctive)
LP. P is transformed to a (explicit) negation-free program P ′ by replacing all
negative literals ¬A by positive literals A′ over new predicate symbols. Every
stable model MStable of P ′ de�nes and answer set of P , which is a set of literals:

L = A ∈ BP |MStable(A) = t ∪ ¬A ∈ ¬BP |MStable(A′) = t

If L does not contain complementary pairs A,¬A of literals, then the answer
set is L else it is BP ∪ ¬BP is the set of all ground literals.

Associated with SEMStable are two entailment relations:

De�nition 54 (Cautious Entailment) An extended LP P cautiously entails
a ground atomic formula a i� a ∈ I for every answer set MStable of P .

De�nition 55 (Brave Entailment) An extended program P bravely entails a
ground atomic formula a i� a ∈ I for some answer set MStable of P

Well-founded Semantics There exists several de�nitions to well-founded se-
mantics (WFS), e.g., [VGRS91, Fit90, BS91, Prz90b]. Van Gelder, Ross and
Schilpf [VGRS91] were the �rst to extend the work of Apt et al. [ABW88] to the
class of normal logic programs. The well-founded semantics (WFS) of Gelder
et al. is a three-valued logic: true, false and unknown. WFS is an extension of
the prefect model semantics, in contrast to Fitting and Jacob's semantics which
is based on Kleene's strong three valued logic. For instance, WFS (as well as
prefect model semantics) assigns the truth value "false" to a clause p← p while
Fitting and Jacob assign "unknown". I follow the de�nition from [VGRS91]:

De�nition 56 (Partial Interpretation) Let P be a normal LP. A partial
interpretation I is a set of ground literals such that for no atom A both A and
not A are contained in I, i.e., pos(I)∩neg(I) = ∅ and whose atoms are contained
in BP of P , i.e., pos(I) ∪ neg(I) ⊆ BP . I is a total interpretation, if I is a
partial interpretation and for every atom A ∈ BP it contains A or not A, i.e.,
pos(I) ∪ neg(I) = BP .

53

3 Knowledge Representation

De�nition 57 (Unfounded Set) Let P be a normal LP. Let I be a partial
interpretation. Let α ⊆ BP be a set of ground atoms. α is an unfounded set
of P wrt I, if for every atom A ∈ α and every ground rule instance A ← β ∈
ground(P) at least one of the following conditions holds:

1. at least one body literal L ∈ β is false in I.

2. at least one positive body literal B ∈ β is contained in α.

De�nition 58 (Greatest Unfounded Set) Let P be a normal LP. Let I be a
partial interpretation. The greatest unfounded set of P wrt I is the union of all
unfounded sets of P wrt I.

De�nition 59 (Pos. and Neg. Immediate Consequences) For a ground
normal LP P and a partial interpretation I ⊆ BP the following monotonic
transformation operators are de�ned:

• TP (I) := A ∈ BP |∃(A← β) ∈ ground(P) : β ⊆ I

• UP (I) := the greatest unfounded set of P wrt I

• WP (I) := TP (I)∪ ∼ UP (I)

Lemma 1 TP , UP and WP are monotonic operators.

Theorem 3 Let P be a normal LP. For every countable ordinal α, WP ↑ α is
a partial model of P .

De�nition 60 (Well-founded Model) The least �xpoint of WP is the well-
founded (partial) model of P denoted W ∗P . The least �xpoint can be computed as
follows, lfp(WP) = W∞P (∅)3. If lfp(WP) ⊆ BP is a total interpretation of P
then lfp(WP) is a well-founded model. An atom A ∈ BP is well-founded (resp.
unfounded) wrt P i� A (resp. ¬A) is in lfp(WP).

WFS is de�ned for the grounding of an arbitrary normal LP: ground(P),
i.e., it de�nes a mapping SEMWFS , which assigns to every normal LP P a set
SEMWFS(P) of (partial) models of P such that SEMWFS(P) =
SEMWFS(ground(P)) (i.e., SEMWFS is instantiation invariant).

De�nition 61 (Well-founded Semantics) The Well-founded semantics (WFS)
assigns to every normal LP P the well-founded partial model W ∗P of P :

SEMWFS(P) := {W ∗P }.

De�nition 62 (Entailment) A normal LP P entails a ground atom a under
WFS, denoted by P |= a, if it is true in SEMWFS(P).

54

3 Knowledge Representation

WFS can be considered an approximation of stable models, i.e., if a program
has stable models, then if an atom is true resp. false wrt the WFS then it is true
resp. false wrt STABLE. [Prz90b] Moreover, for weakly strati�ed LPs [PP90]
WFS coincides with STABLE. However, there are three important distinction
between STABLE and WFS:

1. WFS is a three-valued semantics, whereas STABLE is two-valued.

2. every normal LP has exactly one WFS model, whereas every normal LP
has zero or more stable models.

3. Irrelevant clauses (tautologies) lead to the non existence of stable models,
e.g., p← ¬p has no stable model.

There have been also several proposal for extending WFS by classical negation
leading to a well-founded semantics for extended LPs - see e.g., [Dun91, Dun93,
BG94, Lif96, PA92, Bre96].

Existing procedural semantics for the computation of the well-founded model
can be divided into two groups: (1) bottom-up approaches such as the alternat-
ing �xpoint approach [VG89, VG93, LT01], the magic set approach [Ros94,
KSS95, Mor96, SS97] and transformation based (aka residual program) ap-
proaches [Bry90a, DK89, BD98, BDZ01] and (2) top down approaches such
as non-tabling based approaches such as Global SLS resolution [Prz89a, Ros92]
or or tabling-based approaches such as extensions to OLDT resolution [TS86],
e.g., WELL [BL90], XOLDTNF [CW92] or the approach of Bol and Degerst-
edt [BD93], SLT resolution [SYY02] or the well-known SLG resolution [CSW95]
(another prominent extension of OLDT). There are also some proof procedures
for well-founded semantics for extended logic programs (WFSX) such as [Teu93]
or SLX resolution [ADP94].

3.4 Description Logics and Semantic Web Ontology
Languages

Description Logics [NBB+02] are notations that are designed to make it eas-
ier to describe conceptual de�nitions and properties of categories and enable
reasoning with them. They are a family of KR formalisms for describing onto-
logical knowledge, and play an important role for building the Semantic Web
[W3C01, BL99, BLHL01, FWHH02]. In this section I describe the relevant no-
tions and concepts of Description Logics and their relationships to ontologies (a
formally speci�ed vocabulary) and the Semantic Web. I �rst introduce Descrip-
tion Logics and then show how they can be used as ontology languages for the
Semantic Web.

In the context of electronic contract representation, in particular contracts for
IT services provided on the Semantic Web, such as Web Services, Grid Services
or Internet ASP applications, ontology languages are useful to describe meta
data vocabularies and semantic domain descriptions. That is, ontologies are

55

3 Knowledge Representation

used as contract vocabularies to �exibly enrich the core rule syntax with domain-
speci�c terminologies and given the language constructs a precise meaning by
the description logics semantics.

3.4.1 Description Logics

Description Logics (DLs) [NBB+02] are a family of KR languages that can be
used to represent the conceptual knowledge of a domain and model the relations
between conceptual objects. They have been proved useful in a wide range
of applications such as databases [CGL98, CLN98], con�guration [MW98] and
ontology engineering.

A description logic (DL) is a subset of �rst order logic (with equality) where
expressions are built from unary predicates (referred to as concepts) and binary
relations (called roles) using the concept and role constructors provided by the
particular DL and the logical constructs such as conjunction (∧), negation (¬),
existential restriction (∃R.C), value restriction (∀R.C) or number restriction
(≥ nR). The naming scheme for DLs, extends the basic AL family with sym-
bols [NBB+02] denoting e.g., additional concept constructors, role constructor
or restrictions on role interpretations, i.e., it distinguishes typographically be-
tween certain expressive extensions. ALC comprises conjunction, disjunction,
negation, existential and universal quanti�cation. Extended with transitive roles
it becomes ALCR+ which is abbreviated with S. SIN extends S (i.e., ALCR+)
with number restrictions and inverse roles. SHIQ extends S with role hier-
archies, inverse roles and quali�ed number restrictions and SHOIN introduces
nominals and unquali�ed number restrictions.

3.4.1.1 Syntax of SHIF(D) and SHOIN(D)

In this subsection I recall the elements of the DLs SHIF(D) and SHOIN(D) from
[HPS04] which are the DLs underlying the Semantic Web languages OWL Lite
and OWL DL. I start with the DL SHOIN(D).

De�nition 63 (Datatype Theory) In description logics, a datatype theory D
is a mapping from a set of datatypes to a set of values, the domain of D, plus
a mapping from data values to their denotation which must be one of the set of
values.

Given a datatype theory D, let A, RA, RD and I be nonempty �nite and
pairwise disjoint sets of atomic concepts, abstract roles, datatype roles and
individuals. R−A denotes the set of all inverses R− of abstract roles R ∈ RA.

De�nition 64 (Roles, Concepts, Axioms) A role in SHOIN(D) is an ele-
ment of R ∪R−. The set of SHOIN(D) roles is RA ∪R−A ∪RD.
The set of concepts in SHOIN(D) is the smallest set that can be built using the

56

3 Knowledge Representation

constructors in �gure 3.2 which are taken from [HPS04].
Axioms (see �g. 3.2) in SHOIN(D) allow the expression of relations between
concepts, roles and individuals.

Due to di�erent reasoning tasks (T-Box reasoning and A-Box reasoning) and
their optimized implementation, axioms are partitioned into terminological ax-
ioms which de�ne properties of concepts and roles and assertional axioms which
de�ne assertions on individuals. [GL96, NBB+02]

De�nition 65 (Knowledge Base) A knowledge base Ψ in SHOIN(D) is a
�nite set of SHOIN(D) axioms.

A description logic knowledge bases (DL KB) might be separated into a ter-
minology (T-box model) in which the set of concepts and roles are de�ned and
assertions on individual objects (A-box model).

SHIF(D) is the restriction of SHOIN(D) which excludes the oneOf constructor
and limits the atleast and atmost constructors to 0 and 1.

3.4.1.2 Semantics of SHIF(D) and SHOIN(D)

The semantics of SHOIN(D) is de�ned in analogy to the semantics of �rst-order
logic according to [HPS04].

De�nition 66 (Interpretation and Satisfaction) An interpretation of a
Description Logic such as SHOIN(D) is a pair I = 〈4, •I〉 where 4 is a
nonempty set, called the (abstract) domain, and •I is a mapping, called the
interpretation function, which assigns to each atomic concept from A a subset
of 4, to each individual o ∈ I an element of 4 and to each atomic role from
R a subset of 4x4. An interpretation I satis�es a SHOIN(D) axiom F , or I
is a model of F , i.e., I |= F , under the conditions given in �g. 3.2. I satis�es
a KB Ψ i� it satis�es each axiom in Ψ, i.e., I is a model of Ψ: I |= Ψ. Ψ is
satis�able (unsatis�able) i� there exists (does not exist) a model of Ψ. A concept
C is satis�able wrt to Ψ i� there is a model I of Ψ with CI 6= ∅. A concept C
is subsumed by a concept D wrt Ψ i� CI v DI in every model I of Ψ. Two
concepts are said to be equivalent wrt Ψ i� they subsume each other wrt Ψ. A
KB Ψ1 entails a KB Ψ2 i� every model of Ψ1 is also a model of Ψ2.

DL-reasoner provide their users various inference capabilities that deduce im-
plicit knowledge from the explicitly represented terminology and assertions:

• Concept Subsumption inference determines subclass relationships such as
concept C is subsumed by D i� all instances of C are necessarily instances
of D wrt to a knowledge base Ψ if CI ⊆ DI for every model I of Ψ. Con-
cept subsumption can be reduced to concept satis�ability, i.e., a concept
C is satis�able wrt a DL KB Ψ if there exists a model I of Ψ such that
CI is nonempty.

57

3 Knowledge Representation

Figure 3.2: Syntax and semantics of SHOIN(D) [HPS04]

58

3 Knowledge Representation

• Instance inference determines instance relationships such as the individual
a is an instance of concept C i� a is always interpreted as an element of
C, i.e., aI ∈ CI fore every model I of a KB Ψ.

• Consistency inference determines whether a knowledge base (T + A box)
is non-contradictory. Knowledge base satis�ability, i.e., a DL KB Ψ is
satis�able if there is an interpretation of Ψ which is a model of Ψ.

As shown in [BDS93, NBB+02, HPS04] the inference problem of concept
satis�ability, concept subsumption and instance checking can be reduced to a
check of knowledge base (un)satis�ability.

3.4.2 Semantic Web Ontology Languages

The goal of this subsection is to sketch on a more or less informal level what
the Semantic Web is and why it needs ontologies based on description logics (in
combination with rules).

3.4.2.1 Semantic Web and Ontologies

The Semantic Web [W3C01, BL99, BLHL01, FWHH02] renews the idea of het-
erogenous information systems [PH02], hierarchical data storage and the dis-
tributed network database model and uses XML and RDF as core languages. It
aims for machine-understandable Web resources, whose additional background
knowledge can be shared and processed by automated tools, e.g., to answer
search queries and by human users, e.g., to get additional meta information.
Emerging Semantic Web standards such as the resource description framework
(RDF) [Hay04, KC04] and ontology languages such as RDFS [BG04b] and OWL
(web ontology language) [MH04] make creating a syntactic format specifying
background knowledge / meta data for information resources possible. They
are powerful KR languages to represent knowledge in a machine understand-
able fashion based on a simple data model using linked resources. While RDF
is a simple language to express binary relationships between resources identi-
�ed by URIs, OWL can be used to de�ne vocabularies (ontologies) which are
then used to describe resources. Standard vocabularies such as Dublin Core
(http://dublincore.org/) which have been given a RDF syntax can be used
to attach meta data to Web resources. The biggest advantages of using semantic
web ontology mark-up languages such as RDFS or OWL to represent knowledge
are their automated reasoning capabilities about ontologies due to the formal
semantics and their openness: once a consensus has been reached about the vo-
cabulary used to represent resources using URIs, new knowledge can be easily
added by adding new statements about these resources, i.e., the Semantic Web
as a mesh of information can take advantage of the formal semantics and open
world assumption [PSHH04] of these expressive languages.

The architecture of the Semantic Web was thought by as a hierarchy of lan-
guages. Figure 3.3 illustrates the well-known "Semantic Web Stack" [BL03].

59

http://dublincore.org/

3 Knowledge Representation

Figure 3.3: Semantic Web Stack [BL03]

Figure 3.4: Alternative Semantic Web Architectures [BL05, HPPS+05]

Currently, the ontology layer with OWL is the highest layer of su�cient matu-
rity in the Semantic Web stack, but increasing interest in industry and academia
in more sophisticated KR technologies and automated reasoning capabilities led
to much recent development towards the integration of rules and ontologies,
in order to evolve the Rules and Logic layer. It has been recently argued that
extending the Semantic Web with rules might lead to a stack where rules and on-
tologies sit side by side on top of a layer labelled as the "DLP bit of OWL/Rules"
[BL05] (DLP = description logic programs) or two towers in the Semantic Web
stack [HPPS+05] - see �gure 3.4.

In section 4.2 I will further elaborate on the combination of ontologies and
rules and introduce my approach of a hybrid DL-typed rule language in the
ContractLog KR.

The term ontology originates from philosophy, where it is a theory about the
nature of existence. Ontology in arti�cial-intelligence (AI) literature contains

60

3 Knowledge Representation

many de�nitions, which are often contradicting. According to Gruber [Gru93]
an ontology is: "A explicit formal speci�cation of the terms in the domain and
relations among them". For the purpose of this dissertation I state more pre-
cisely:

De�nition 67 (Ontology) An ontology (aka domain vocabulary) is a formal
explicit description of concepts in a domain of discourse consisting of classes
(aka concepts), properties (aka roles or slots) describing features and attributes
of the concepts and restrictions on properties (aka role restrictions or facets).
The classes which describe concepts in the domain are often speci�ed as tax-
onomies with transitive parent-subclass relationships. An ontology together with
a set of individual instances of classes (aka individuals) constitutes a (ontolog-
ical) knowledge base.

Ontologies are typically used to de�ne common vocabularies for domains
which need shared information, as for example in the domain of distributed
contract speci�cations in open environments such as the (Semantic) Web. The
major advantages are [Pas05d]:

• To share a common understanding about the domain

• To enable reuse of domain knowledge

• The make domain assumption explicit

• To separate domain knowledge from the operational knowledge

• To analyze domain knowledge

This, obviously, requires a well-designed, well-de�ned and Web-compatible
ontology language with support for reasoning tools. Therefore, the Semantic
Web generally builds on syntaxes which use URIs to represent data, usually
in triples based structures based on the RDF syntax (or XML/RDF syntax),
and expressive ontology languages such as RDFS or OWL which are used to
de�ne ontologies/vocabularies. In the following two subsections I will summarize
relevant parts of the material from [Hay04, KC04, BG04b, MH04].

3.4.2.2 Resource Description Framework (RDF) and Schema (RDFS)

De�nition 68 (URI References, Blank Nodes, Literals) A URI is simply
a Web identi�er. Let U denote the set of URI references, B denote the set
of blank nodes (i.e., existentially quanti�ed variables) and L denote the set of
literals (i.e., data values such as strings or integers), where L is the union of the
set Lp of plain literals and the set of Lt typed literals. A typed literal consists
of a lexical form s and a datatype URI t written as s : t, i.e., s has type t. The
sets U , B, Lp and Lt are pairwise disjoint. A vocabulary is a subset of U ∪ L.
T denotes the set of all RDF terms, i.e., T = U ∪B ∪ L.

61

3 Knowledge Representation

De�nition 69 (RDF Graph, statements, instances) An RDF graph, or
simply a graph, is a set of RDF triples. A subgraph of an RDF graph is a
subset of the triples in the graph. A ground RDF graph is one with no blank
nodes. The elements s (subject), p (property) and o (object) of a RDF graph are
called RDF statements or RDF triples of the form (spo). RDF graphs require
properties to be URI references. The set of RDF terms T of a RDF graph G is
T (G) = π1(G)∪π2(G)∪π3(G) where πi is a projection mapping. The set of blank
nodes of a RDF graph G is denoted by bl(G) = T (G) ∩B. The vocabulary of a
RDF graph G is the set V (G) = T (G)∩(U ∪L). Two RDF graphs G and G′ are
equivalent if there is a bijection f: T (G) → T (G′) such that f(bl(G)) ⊆ bl(G′)
and f(v) = v for each v ∈ V (G) and spo ∈ G i� f(s)f(p)f(o) ∈ G. An instance
i of a RDF graph G is the graph Gi obtained from G by replacing the blank nodes
v in G by M(v), where M is a mapping from a set of blank nodes to some set
of literals, blank nodes and URI references.

De�nition 70 (Interpretation) A (simple) interpretation I of a vocabulary
V is a 6-tuple I = 〈Ri, PI , EI , SI , LI , LVI〉, where RI is a nonempty set of
resources, PI is the set of properties, LVI is the set of literal values, EI :=
PI → P(RIxRI), SI := V ∩U → RI ∪ PI and LI := V ∩Lt → RI , where P(X)
is the power set of a set X. An interpretation I denotes a function with domain
V such that:

• I(l))l ∈ LVI for l ∈ Lp ∩ V .

• I(l) = LI(l) for l ∈ Lt ∩ V .

• I(a) = SI(a) for a ∈ U ∩ V .

De�nition 71 (Satisfaction) Let E = (spo) a ground triples and I an inter-
pretation for a vocabulary V then I satis�es E if (spo) ∈ V , I(p) ∈ PI and
(I(s), I(o)) ∈ EI(I(p)). If G is a ground RDF graph, then I satis�es G if I
satis�es each triple E ∈ G. If a function A(v) is de�ned for v ∈ B, then a
function IA is de�ned that extend I by using A to interpret blank nodes in the
domain of A and IA(v) = A(v). I satis�es G if IA satis�ed G for some func-
tion A : bl(G) → RI , i.e., IA(o) ∈ PI and (IA(s), IA(o)) ∈ EI(IA(p)) for each
(spo) ∈ G. I satis�es S, where S is a set of RDF graphs, if I satis�es M(S).

De�nition 72 (Entailment) I satis�es E if I(E) = true, and a set S of RDF
graphs (simply) entails a graph E if every interpretation which satis�es every
member of S also satis�es E.

Figure 3.5 lists the entailment rules for RDFS entailment de�ned in [Hay04]
(pre�xes are omitted).

62

3 Knowledge Representation

Figure 3.5: RDFS entailment rules [Hay04]

3.4.2.3 Web Ontology Language (OWL)

The Web Ontology Langauge (OWL) [MH04, PSHH04] is a W3C recommen-
dation standard for the ontology layer of the Semantic Web. It consists of
three sublanguages: OWL Lite, OWL DL and OWL Full. The logic foundation
of OWL Lite and OWL DL are the expressive description logics (DL) SHIF(D)
(for OWL Lite) and SHOIN(D) (for OWL DL) [HPS04] (see section 3.4.1) which
have been given a RDF / XML syntax (there are also other syntaxes such as
N3). As pointed out in [BHS03, NBB+02] due to the research and process of
description logics and DL system in the last decades DLs now provide enough
expressiveness while staying decidable and hence qualify as adequate ontology
languages for ontologies for the Semantic Web. OWL is de�ned as an extension
to RDF in the form of vocabulary entailment (see previous section), i.e., the
syntax of OWL is the syntax of RDF and the semantics of OWL is an exten-
sion of the semantics of RDF. Although there are di�erences between OWL and
description logics (OWL is based on RDF and hence on RDF graphs and RDF
objects/classes), it is possible to de�ne an abstract syntax which is close to de-
scription logics and de�ne a direct model-theoretic semantics (in addition to the
RDF-compatible semantics) [PSHH04], which is fairly standard by description
logics. I have already outlined the main concepts of DL semantics and RDF
semantics. For the speci�c details of the OWL semantics I refer to the OWL
documentation [PSHH04]. As it has been shown in [HPS04] OWL DL (resp.
OWL Lite) entailment can be translated into SHOIN(D) (resp. SHIF(D)) unsat-

63

3 Knowledge Representation

Figure 3.6: Translation from OWL-DL to SHOIN(D) [HPS04]

is�ability. The basic process works as follows: (1) An entailment between OWL
DL ontologies is translated into an entailment between SHOIN+(D) knowledge
bases, where "+" denotes concept existence axioms. (2) SHOIN+(D) entailment
is transformed into unsatis�ability of SHOIN(D) KBs. Figure 3.6 taken from
[HPS04] shows the translation from OWL-DL classes and names to SHOIN(D).

3.5 KR Event / Action Logics and Active Database
Technologies

Event-driven applications based on reactive rules and in particular ECA rules
which trigger actions as a response to the detection of events have been exten-
sively studied during the 1990s. Stemming from the early days of programming
language where system events were used for interruption and exception han-
dling, active event-driven rules have received great attention in di�erent areas
such as active databases [WC96, Pat99] which started in the late 1980s, real-
time applications and system and network management tools which emerged in
the early 1990s as well as publish-subscribe systems [BCV03] which appeared

64

3 Knowledge Representation

in the late 1990s. Recently, there has been an increased interest in industry and
academia in event-driven mechanisms, complex event processing, event stream-
ing and high-level Event-Driven Architectures (EDA). (Pro-)active real-time or
just-in-time reactions to complex events are a key factor in upcoming agile and
�exible IT service infrastructures, distributed loosely coupled service oriented
environments or new business models such as On-Demand or Utility computing.
Industry trends such as Real-Time Enterprise (RTE), Complex Event Process-
ing (CEP), Business Activity Management (BAM) or Business Performance
Management (BPM) and closely related areas such as Service Level Manage-
ment (SLM) with monitoring and enforcing Service Level Agreements (SLAs)
are business drivers for this renewed interest. Another strong demand for event
processing functionalities comes from the web community, in particular in the
area of Semantic Web and Rule Markup Languages (e.g., RuleML, Reaction
RuleML, RIF).

Active databases in their attempt to combine techniques from expert systems
and databases to support automatic triggering of rules in response to events
and to monitor state changes in database systems have intensively explored and
developed the ECA paradigm and event algebras to compute complex events.
In a nutshell, this paradigm states that an ECA rule autonomously reacts to
actively or passively detected simple or complex events by evaluating a condition
or a set of conditions and by executing a reaction whenever the event happens
and the condition(s) is true: "On Event if Condition do Action".

A di�erent approach to events and actions - the so called KR event/action
logics - which has for the most part proceeded separately has the origin in the
area of arti�cial intelligence (AI), knowledge representation (KR) and logic pro-
gramming (LP). Here the focus is on the development of axioms to formalize the
notions of actions/events and causality, where events/actions are characterized
in terms of necessary and su�cient conditions for their occurrences. Instead of
detecting the events as they occur in active databases at a single point in time,
the KR approach to events focuses on the inferences that can be made from the
fact that certain events are known to have occurred or are planned to happen
in future.

This leads to di�erent views and terminologies on event/actions de�nitions
and event/action processing in these domains, including also event communi-
cation aspects such as event noti�cations in push, pull or publish/subscribe
style. Reaction rules are a key factor in active enforcement and automated
management and maintenance of service contracts and reasoning on the e�ects
of happened events and actions on the contract states based on a precise, ver-
i�able and traceable semantics is crucial in SLA representation. I �rst give
an overview on the various approaches in this orthogonal domain of knowledge
representation in this section and then introduce relevant terms and concepts.

65

3 Knowledge Representation

3.5.1 Overview

These subsections give an overview of event / action /state processing and
reaction rules approaches and systems in di�erent domains.

3.5.1.1 Active Databases and ECA Rule Systems

Active databases are an important research topic due to the fact that they
�nd many applications in real world systems and many commercial databases
systems have been extended to allow the user expressing active rules whose
execution can update the database and trigger the further execution of active
rules leading to a cascading sequence of updates (often modelled in terms of
execution programs). Several active database systems have been developed,
e.g., ACCOOD [Eri93], Chimera [MPC96], ADL [Beh95], COMPOSE [GJS92],
NAOS [CC96], HiPac [DBC96]. These systems mainly treat event detection
and processing purely procedural and often focus on speci�c aspects. In this
spirit of procedural ECA formalisms are also systems such as AMIT [AO04],
RuleCore [Rul06] or JEDI [CNF98]. Several papers discuss formal aspects of
active databases on a more general level - see e.g., [PCFW95] for an overview.
Several event algebras have been developed, e.g., Snoop [CKAK94], SAMOS
[GD93], ODE [GJS92]. The object database ODE [GJS92] implements event-
detection mechanism using �nite state automata. SAMOS [GD93] combines
active and object-oriented features in a single framework using colored Petri
nets. Associated with primitive event types are a number of parameter-value
pairs by which events of that kind are detected. SAMOS does not allow si-
multaneous atomic events. Snoop [CKAK94] is an event speci�cation language
which de�nes di�erent restriction policies that can be applied to the operators
of the algebra. Complex events are strictly ordered and cannot occur simulta-
neously. The detection mechanism is based on trees corresponding to the event
expressions, where primitive event occurrences are inserted at the leaves and
propagated upwards in the trees as they cause more complex events to occur.

There has been a lot of research and development concerning knowledge up-
dates in active rules (execution models) in the area of active databases and
several techniques based on syntactic (e.g., triggering graphs [AWH94] or ac-
tivation graphs [BW94]) and semantics analysis (e.g., [BCRS97], [Wid92]) of
rules have been proposed to ensure termination of active rules (no cycles be-
tween rules) and con�uence of update programs (always one unique minimal
outcome). The combination of deductive and active rules has been also investi-
gated in di�erent approaches manly based on the simulation of active rules by
means of deductive rules [LLM98, Zan93, DKSW03].

3.5.1.2 Production Rule Systems

The treatment of active rules in active databases is to some extend similar to
the forward-chaining production rules system paradigm in arti�cial intelligence

66

3 Knowledge Representation

(AI) research [HR85]. In fact, triggers, active rules and integrity constraints,
which are common in active DBMS, are often implemented in a similar fashion
to forward-chaining production rules where the changes in the conditions due to
update actions such as "assert" or "retract" on the internal database are con-
sidered as implicit events leading to further update actions and to a sequence
of "�ring" production rules, i.e.: "if Condition then Action". There are many
forward-chaining implementations in the area of deductive databases and many
well-known forward-reasoning engines for production rules such as ILOG's com-
mercial jRules system, Fair Isaac/Blaze Advisor, CA Aion, Haley, ESI Logist or
popular open source solutions such as OPS5, CLIPS or Jess which are based on
the RETE algorithm. In a nutshell, this algorithm keeps the derivation structure
in memory and propagates changes in the fact and rule base. This algorithm
can be very e�ective, e.g., if you just want to �nd out what new facts are true
or when you have a small set of initial facts and when there tend to be lots of
di�erent rules which allow you to draw the same conclusion. This might be also
one reason why production rules have become very popular as a widely used
technique to implement large expert systems in the 1980s for diverse domains
such as troubleshooting in telecommunication networks or computer con�gura-
tion systems.

Classical production rule systems and most database implementations of pro-
duction rules [DE88, SLR93, WF90] typically have an operational or execution
semantics de�ned for them, but lack a precise theoretical foundation and do not
have a formal semantics. Although production rules might simulate derivation
rules via asserting a conclusion as consequence of the proved condition, i.e., "if
Condition then assert Conclusion", the classical production rule languages such
as OPS5 are less expressive since they lack a clear declarative semantics and
recursion, su�er from termination and con�uence problems of their execution
sequences and typically do not support expressive non-monotonic features such
as classical or negation-as-�nite failure or preferences, which makes it sometimes
hard to express certain real life problems in a natural and simple way.

However, several extensions to this core production systems paradigm have
been made which introduce e.g., negations (classical and negation-as-�nite fail-
ure) [DM02] and provide declarative semantics for certain subclasses of produc-
tion rules systems such as strati�ed production rules. It has been shown that
strati�ed production systems have a declarative semantics de�ned by their cor-
responding logic program (LP) into which they can be transformed [Ras92] and
that the well-founded, stable or preferred semantics for production rule systems
coincide in the class of strati�ed production systems [DM02]. Strati�cation
can be implemented on top of classical production rules in from of priority as-
signments between rules or by means of transformations into the corresponding
classical ones. The strict de�nition of strati�cation for production rule systems
has been further relaxed in [RL96] which de�nes an execution semantics for
update rule programs based upon a monotonic �xpoint operator and a declara-
tive semantics via transformation of the update program into a normal LP with
stable model semantics.

67

3 Knowledge Representation

Closely related are also logical update languages such as transaction logics
and in particular serial Horn programs, where the serial Horn rule body is a
sequential execution of actions in combination with standard Horn pre-/post
conditions. [BK95] These serial rules can be processed top-down or bottom-
up and hence are closely related to the production rules style of "condition →
update action". Several approaches in the active database domain also draw
on transformations of active rules into LP derivation rules, in order to exploit
the formal declarative semantics of LPs to overcome con�uence and termina-
tion problems of active rule execution sequences [BL96, Zan95, FG98]. The
combination of deductive and active rules has been also investigated in di�erent
approaches mainly based on the simulation of active rules by means of deduc-
tive rules. [LLM98, Zan93] Moreover, there are approaches which directly build
reactive rules on top of LP derivation rules such as the Event-Condition-Action
Logic Programming language (ECA-LP) which enables a homogeneous repre-
sentation of ECA rules and derivation rules [Pas06b].

3.5.1.3 Event Noti�cation Systems, Complex Event Processing Systems
and Reaction Rule Interchange Languages

Recently, a strong demand for complex event/action processing functionalities
comes from industry (enterprise architectures, descission support systems and
information management systems) and the web community, in particular in the
area of Semantic Web and Rule Markup and the upcoming W3C Rule Inter-
change Language (e.g., RuleML [BT00], Reaction RuleML [PKB+06] or RIF
[RIF05]). In distributed environments such as the (Semantic) Web with inde-
pendent agent / system nodes and open or closed domain boundaries complex
event processing is often done using event noti�cation and communication mech-
anisms based on middleware products such as an enterprise service bus. Sys-
tems either communicate events in terms of messages according to a prede�ned
or negotiated communication/coordination protocol [Pas06e] and possibly using
a particular transport language such as Java Messaging Service (JMS), FIPA
Agent Communication Language (FIPA-ACL), Common Base Event (CBE)
[Ogl03] or the Web Services Simple Object Access Protocol (SOAP) or they sub-
scribe to publishing event noti�cation servers which actively distribute events
(push) to the subscribed and listening agents. Typically the interest here is in
the particular and complex event sequence or event processing work�ow which
possibly follows a certain communication or work�ow-like coordination protocol,
rather than in single event occurrences which trigger immediate reactions as in
the active database trigger or ECA rules. As a result reactive rules are typi-
cally local to a particular context, e.g. within a particular conversation. That
is, the communicated events contribute to the detection of a complex (local)
event situation which triggers a local reaction within a context (a conversa-
tion waiting for at least three sequential answers or requests). Complex event
processing and event noti�cation closely relates to the the domain of work�ow
and choreography as e.g. speci�ed by the business process execution language
(BPEL).

68

3 Knowledge Representation

3.5.1.4 Temporal KR Event / Action / Transition and Update Logic
Systems

A fourth dimension to events and actions which has for the most part proceeded
separately has the origin in the area of knowledge representation (KR) and logic
programming (LP) with close relations to the formalisms of process and tran-
sition logics. Here the focus is on the development of axioms to formalize the
notions of actions resp. events and causality, where events are characterized
in terms of necessary and su�cient conditions for their occurrences and where
events/actions have an e�ect on the actual knowledge states, i.e., they transit
states into other states and initiate / terminate changeable properties called
�uents. Instead of detecting the events as they occur as in the active database
domain, the KR approach to events/actions focuses on the inferences that can
be made from the fact that certain events are known to have occurred or are
planned to happen in future. This has led to di�erent views and terminologies
on event/action de�nition and event processing in the temporal event/action
logics domain. Reasoning about events, actions and change is a fundamen-
tal area of research in AI since the events/actions are pervasive aspects of the
world in which agents operate enabling retrospective reasoning but also perspec-
tive planning. A huge number of formalisms for deductive but also abductive
reasoning about events, actions and change have been developed. The com-
mon denominator to all this formalisms and systems is the notion of states
aka �uents [San89b] which are changed or transit due to occurred or planned
events/actions. Among them are the event calculus [KS86] and variants such
as the interval-based Event Calculus (see section 4.7.4), the situation calculus
[MH69, Rei01], features and �uents [San89b], various (temporal) action lan-
guages [GL93, FN71, GL98, GL99, DGKK98], �uent calculi [HS90, Thi99] and
versatile event logics [BG04a]. Most of these formalisms have been developed in
relative isolation and the relationships between them have only been partially
studied, e.g., between situation calculus and event calculus or temporal action
logics (TAL) which has its origins in the features and �uents framework and the
event calculus.

Related and also based on the notion of (complex) events, actions and states
with abstract models for state transitions and parallel execution processes are
various process algebras like TCC [SRG96], CSS [Mil89] or CSP [Hoa85], (la-
belled) transition logics (LTL) and (action) computation tree logics (ACTL)
[MKB00, MKB03]. Related are also update languages [LHL95, Zan93, NK88,
AV91, LAP01, ABLP02, EFST01, Lei03, Pas06b, Pas05a] and transaction log-
ics [BK95] which address updates of logic programs where the updates can be
considered as actions which transit the initial program (knowledge state/base)
to a new extended or reduced state hence leading to a sequence of evolved
knowledge states. Many of these update languages also try to provide meaning
to such dynamic logic programs (DLPs). However, unlike ECA languages and
event noti�cation/messaging systems approaches these languages typically do
not provide complex event / action processing features and exclude external
calls with side e�ects via event noti�cations or procedural calls.

69

3 Knowledge Representation

3.5.2 Basic Concepts in Event and Action Processing

De�nition 73 (Atomic Events) A raw event (aka atomic or primitive event)
is de�ned as an instantaneous (occurs in a speci�c point in time), signi�cant
(relates to a context), atomic occurrence (it cannot be further dismantled and
happens completely or not at all): occurs(e, t), i.e., event e occurs at time point
t.

I distinguish between event instances (simply called events) which occur and
event type pattern de�nitions.

De�nition 74 (Event Type Pattern De�nition and Event Instance) An
event type pattern de�nition (or simply event de�nition or event type) describes
the structure of an (atomic or complex) event, i.e., it describes its detection con-
dition(s). A concrete instantiation of a type pattern is a speci�c event instance,
which is derived (detected) from the detection conditions de�ned within the rules
body.

An event instance can be, e.g., a particular fact becoming true, an external
event in an monitored system, a communicated event message within a conver-
sation, a state transition from one state to another such as knowledge updates,
transactions (e.g., begin, commit, abort, rollback), temporal events (e.g., at 6
p.m., every 10 minutes), etc. Typically, events occur in a context that is often
relevant to the execution of the other parts of the reaction rules, i.e., event
processing is done within a context.

De�nition 75 (Event Context) A context can have di�erent characteristics
such as:

• Temporal characteristic designates information with a temporal perspec-
tive, e.g., service availability within one month or within 60 minutes from
X.

• Spatial characteristic designates information with a location perspective,
e.g., message reached end-point.

• State characteristic designates information with a state perspective, e.g.,
low average response time.

• Semantic characteristic designates information about a speci�c object or
entity, e.g., persons that belong to the same role or messages that belongs
to same conversation.

To capture the local context of an event, variables are used, i.e., the context
information is bound to variables which can be reused in the subsequent parts of
a reaction rule, e.g., in the action part.

70

3 Knowledge Representation

De�nition 76 (Complex Events and Event Algebra) A complex event type
(i.e., the detection condition of a complex event) is built from occurred atomic
or other complex event instances according to the operators of an event algebra.
The included events are called components while the resulting complex event is
the parent event. The �rst event instance contributing to the detection of a
complex event is called initiator, where the last is the terminator; all others are
called interiors.

De�nition 77 (Event Processing) Event processing describes the process of
selecting and composing complex events from raw events (event derivation), situ-
ation detection (detecting transitions in the universe that requires reaction either
"reactive" or "proactive") and triggering actions as a consequence of the detected
situation (complex event + conditional context).

Examples for situations are: "If more than three outages occur then alert"
or "If a department D is retracted from the database than retract all associated
employees E". Events can be processed in real time without persistence (short-
term) or processed in retrospect as a computation of persistent earlier events
(long-term), but also in aggregated from, i.e., new (raw) events are directly
added to the aggregation which is persistent. According to the ECA paradigm
event processing can be conditional, i.e., certain conditions must hold before an
action is triggered. Event processing can be done either actively (pull-model),
i.e., based on actively monitoring the environment and, upon the detection of an
event, trigger a reaction, or passively (push-model), i.e., the event occurrences
are detected by an external component and pushed to the event system for
further processing.

3.6 Requirements for a Logic Rule Based SLA
Language

After having introduced relevant basic concepts and terminologies in the various
domains of knowledge representation which will be applied in this dissertation,
I will now elaborate on the top-level requirements for a declarative, logic-based
rule language for representing SLAs. This section continues on a more detailed
level the discussion of the general requirements for SLA representation and
management, as presented in section 1.2.

Di�erent kinds of rules and facts: A logic SLA language should allow
to coherently represent derivation rules, reaction rules, integrity rules, deontic
rules in a homogeneous syntax.

• Derivation rules are sentences of knowledge that are derived from other
knowledge by an inference or mathematical calculation.

• Reaction rules are behavioral rules which react on occurred events or
changed conditions by executing actions.

71

3 Knowledge Representation

• Integrity rules (or constraints) are assertions which express conditions that
must be always satis�ed.

• Deontic rules describe rights and obligations of roles in the context of
evolving states (situations triggered by events/actions) and state transi-
tions.

• Facts might describe various kinds of information such as events (even-
t/action messages, event occurences), (object-oriented) object instances,
class individuals (of ontology classes), norms, constraints, states (�uents),
conditions of the various forms, actions, data (e.g., relational, XML) etc,
which might be quali�ed, e.g., by priorities, temporally etc.

Support interoperation with (webized) descriptive speci�cations: A
SLA language should be able to refer to external Semantic Web ontologies by
means of URIs in order to use the taxonomical vocabularies as type systems and
the individual models as external constants/objects. Domain-independent SLA
rules can be given a domain-dependent meaning (with a precise semantics) and
accordingly rules can be much easier interchanged and managed/maintained in
a distributed environment. The core SLA rule language stays compact and can
be easily extended with di�erent domain-speci�c vocabularies on a "per-need-
basis".

Support for practical procedural language constructs such as con-
structive queries over external data sources, expressive procedural attachments
and external type systems which allow calling external functionalities and using
external objects and data during rule execution. Many SLA rules refer to or
describe measurement functions and SLA metrics over data stored in some kind
of external database which can be anything from log �les to web sources or
relational databases and data warehouses. The rule language must allow the di-
rect integration of these secondary data storages as facts into the rules in order
to reduce redundancy and high memory consumption. It should also support
outsourcing of expensive (pre-)processing of data to external system, e.g., con-
structing SQL aggregation queries (views) on the database server, and commu-
nication of data such as event messages, queries to (web) service to respective
middleware products such as an ESB. Procedural attachments are procedure
calls on external computational models of a standard programming language,
e.g., directly on Java methods. Therefore, procedural attachments are a crucial
extension of the pure logic inferences used in logic programming. They allow
a combination of the bene�ts of declarative (rule-based) and procedural lan-
guages, e.g., to delegate computation-intensive tasks to optimized Java code or
to invoke procedure calls on Java methods which can not be expressed in pure
logic. In a rule-based SLA language they are also vital to integrate existing
tools such as system- and network management tools, web services or data ware
houses. Procedural attachments should be supplemented with a typed logic
with external type systems such as Java or Semantic Web ontologies in order to
support SE principles such as data abstraction or modularization in declarative
SLA programming and capture the rule engineer's intended meaning of a SLA.

72

3 Knowledge Representation

Provide e�cient operational semantics and declarative semantics: A
declarative reading of SLA logic language with a well-de�ned and well-understood
declarative semantics for LPs with negations, such as well-founded semantics,
is needed to ensure correctness of the evaluations of the truth-valued formulas.
The operational semantics of a SLA rule language should support automated
rule chaining based on backward reasoning in order to cope with masses of fre-
quently changing data and enable reuse of rule de�nitions in di�erent contexts.
External functionalities such as procedural code, description logic reasoning or
data queries should be integrated into the semantics in a hybrid way in order to
exploit highly e�cient and optimized external reasoners. Linearity, termination
properties and polynomial (data) complexity are important to program restricted
parts of the SLA logic in a more procedural and optimized way, ensure linear ex-
ecution for e.g., reactive rules with a (simulated) forward-directed operational
semantics and handle large temporarily populated fact bases. A declarative
model-theoretic semantics in addition to the forward-directed operational se-
mantics of reaction rules should be imposed on the query-based processing of
reaction rules such as ECA rules which �re truth-valued event and condition
queries and trigger boolean-valued procedural actions. The operational seman-
tics for reaction rules should support complex event and action processing in a
tight combination with the other rule types enabling situated reactions.

Support for 3-valued logic with non-monotonic default and mono-
tonic explicit negation and open and closed world reasoning (resp.
scoped reasoning with scoped negation) with reasonable structural
properties: Like in natural language (i.e., SLAs de�ned in natural language)
a logic-based SLA language needs non-monotonic default negation to express
closed world assumptions and default (assumed) negation and monotonic ex-
plicit negation (explicit falsity) in order to distinguish complete (e.g., from closed
database sources) from incomplete knowledge (e.g., from open possible unavail-
able web sources or systems), handle inconsistent theories and express default
rules and strict rules. See [BG94] for examples that need explicit negation in
logic programming. In the SLA domain where contracts are concluded and man-
aged in an open distributed environment such as the Semantic Web an assumed
unde�ned truth value is important since reasoning can be time-consuming and
error-prone, e.g., due to long-running response times of (Internet) queries or
communication failures. The inference process can proceed with an assumed
unde�ned truth value and later be updated to true or false, when more data
is available. The semantics should satisfy reasonable structural properties as
de�ned by [KLM90, Dix92] such as cumulative monotony (cautious monotony
and cut), which refers to the usability of intermediate lemmas, and rationality,
which (in a sceptical semantics) is a stronger form of cautious monotony and
refers to the ability to add the negation of non-provable conclusions. To pre-
serve these properties for extended LPs with non-monotonic default negation in
open distributed knowledge bases, a kind of scoped reasoning, which partially
closes o� parts of the open distributed knowledge base, is needed, e.g., to ensure
that answers to queries in the context of default negation are not forced to be
withdrawn when new knowledge is added.

73

3 Knowledge Representation

Allow facts and rules to be bundled to possible distributed modules
and quali�ed by meta-data labels and priorities: IT service contracts in-
clude rules on di�erent contractual levels such as general conditions, agreements
on service properties, agreements on service usage, operational/measurement
rules on IT infrastructure level, (business) policies etc. Moreover, the agree-
ments, policies and rule sets are typically managed in a distributed way and
are scattered over domain boundaries. To support such a distributed knowledge
base rules should be bundled to rule sets, so called modules, which have their
own unique identi�ers and which might be written and managed as stand alone
script �les provided on the Web using URIs and which might be imported by
other modules leading to a hierarchy of nested modules (rule/fact sets). Rules
(as well as modules) should be labelled by additional meta data such as rule
names/identi�ers, authoring information such as Dublin Core meta data, tem-
poral quali�cations, e.g., validity times and priority values, de�ning priorities
between rules and complete modules in order to handle arbitrary (user-de�ned)
con�icts between competing rules and de�ne alternatives on individual and/or
group level and exceptional rules and rule sets.

Support for integrity rules to de�ne arbitrary con�icts and sup-
port for priority de�nitions between rules and modules to address
consistency and coherence according to user preferences: In SLA rules
con�icts might occur not just between simultaneous positive and negative con-
clusions, but also between arbitrary user-de�ned and domain-speci�c con�icting
conclusions, e.g., a simultaneously concluded discount of 5% and 10% might
be a con�ict in certain situations. Expressive integrity constraints (integrity
rules) are an appropriate way to represent all sorts of domain-speci�c con�icts.
(User-de�ned) preferences written as priority relations between rules or rule sets
(modules) should be used to address consistency and coherence wrt to the vi-
olated integrity constraints, i.e., the semantics should decide whether and how
it is possible to (defeasibly) derive the expected conclusions wrt to the de�ned
integrity constraints and preference de�nitions.

Support for transactional dynamic updates and evolvability of the
knowledge base: The dynamic character of the SLA domain where con-
tracts and in particular SLA rules need to be adapted to changing requirements
amounts for declarative mechanisms to maintain and evolve the SLA speci�ca-
tions, i.e., to dynamically update the intensional KB (rules) and extensional KB
(facts), add and remove rules and complete modules and transit the knowledge
state to an evolved knowledge state leading to a sequence of state transitions
which might be possibly rolled-back in a transactional style if (integrity) con-
straints are missed.

Support for veri�cation, validation and integrity testing: Measure-
ment of the quality, anomaly freeness and well-formedness of the rule sets used
to formalize SLAs is an important need for the acceptance by the contract part-
ners, in particular when rules are subject to change and have di�erent informa-
tion sources. Basically this means using veri�cation, validation and integrity
preserving techniques and providing means to solve rule con�icts which occur

74

3 Knowledge Representation

in di�erent situations, in particular if modular revisioning/updating is allowed,
i.e., new behavior can be speci�ed by simply adding rules without the need to
modify or delete previous rules. Veri�cation and validation is also vital for col-
laborative engineering of larger rule sets (contracts) and interchanging rule bases
in di�erent execution environments (e.g., di�erent inference services provided on
the Semantic Web).

Support for normative reasoning on deontic rules: The main aim
for concluding a contract is to arrange the normative relationships relating to
permissions, obligations, prohibitions and other normative modalities between
contract partners. These contract norms must be personalized based e.g., on
role models de�ned in relational database schemas or Semantic Web taxonomies
and must be quali�ed in an extensible way, e.g., temporal, i.e., a norm holds
in a certain state which is initiated and terminated by certain events/actions.
A SLA language should allow deontic reasoning with sophisticated temporal
deontic rules.

Support for engineering and rendering: Real usage of a representa-
tion language which is usable by others than its inventors immediately makes
rigorous demands on the syntax and the engineering support: comprehension,
readability and usability of the language by users, compact representation, ex-
changeability with other formats, explanation of results, means for serialization
of rules, tool support in writing and parsing rules etc. are vital for the accep-
tance and usability of the language. To address all these needs for di�erent user
roles (human users, automated agents and machine tools, execution environ-
ments) several syntactical layers of the language are required. In particular, a
controlled natural language syntax for human consumption, a (Semantic) Web
standard based language (e.g., XML based) enabling machine-interpretation,
processing and translation into multiple execution syntaxes of standard rule en-
gines. A visual layer might be useful, but is not a necessity. Using open Web
based standards (e.g., RuleML) to develop a general and abstracted rule markup
language facilitates these tasks.

This list of requirements describes only the top level of critical success factors
and many other requirements can be derived from them following a critical
success factor analysis methodology. All these requirements have to be satis�ed
and integrated into a single framework. It is crucial to �nd the right tradeo�
between generality and expressiveness and strictly (classical) logical semantics
and practical integration of non-classical inference features and practical rule
concepts such as procedural attachments. In the following two chapters I will
further expand on these requirements and introduce the ContractLog KR and
the Rule Based Service Level Agreement (RBSLA) markup language as my
solution to tackle these requirements in an adequate and coherent framework.

75

4 The ContractLog KR

ContractLog is an expressive and computational e�cient KR framework con-
sisting of selected, adequate logical knowledge representation concepts for the
formalization and automated execution of electronic contracts such as SLAs or
higher-level policies. It combines selected logical formalisms which are imple-
mented on the basis of declarative logic programs and meta programming tech-
niques. Meta-programming and meta interpreters have their roots in the original
von Neumann computer architecture where program and data are treated in a
uniform way. Meta interpreters are a popular technique in logic programming
[BK82] for representing knowledge, in particular, knowledge in the domains
containing logic programs as objects of discourse. Logic programs represent-
ing such knowledge are called meta-programs (aka meta interpreters) and their
design is referred to as meta-programming. The ContractLog KR combines
declarative programming of SLA rules as logic programs with technologies from
the Semantic Web domain and object-oriented programming in Java. By ex-
pressive procedural attachments external Java functionalities, tools and data
can be dynamically integrated into declarative rule executions by dynamically
calling Java APIs and binding dynamically instantiated Java objects to logical
variables at runtime. The methods and attributes of these bound objects can be
used in the reasoning chains enabling, e.g., external data integration by JDBC
or interface calls to existing system and network management tools or web ser-
vices. A particular contribution of the ContractLog KR is its combination and
implementation of adequate logics for the representation of electronic contracts.
The combination of these logical formalisms qualify the ContractLog KR as an
adequate, declarative tool for rule-based contract management and representa-
tion. It is worth noting that most of my implementations in the ContractLog
KR are also applicable and useful in other domains than rule-based electronic
contracts.

In the following section, I describe the core syntax and semantics of the Con-
tractLog KR. I then elaborate on further advanced KR concepts and logical
formalisms, which are additionally required to adequately formalize typical SLA
and policy rules. These formalisms have been carefully selected wrt common
adequacy criteria in KR in order to ful�l the requirements stated in section 3.6
and section 1.2. Table 4.1 gives an overview on the main logics implemented in
the ContractLog KR and their contributions to SLA representation.

76

4 The ContractLog KR

Table 4.1: Table (Overview ContractLog KR)
Logic Formalism Usage / Contribution
Extended Logic Pro-
grams (section 4.1)

Derivation Rules and
extended LPs

Deductive reasoning with SLA rules with de-
fault and explicit negation.

Typed Logic (section
4.2)

Object-oriented Typed
Logic and Procedural
Attachments

Typed terms restrict the search space and en-
able object-oriented software engineering prin-
ciples in declarative rule-based programming.
Procedural attachments integrate object ori-
ented programming into declarative rules.

Meta-Data Annotated
Labelled Logic (section
4.3)

Meta-Data Labels such
as (object) IDs or
Dublin Core Annota-
tions

Labelled rule sets (modules) can be used for
scoped reasoning on explicitly closed parts of
the knowledge in open environments such as
the Semantic Web. The labels such as rule
object ids or module ids form the basis for a
e�cient and distributed management of rules
enabling dynamic updates and (defeasible pri-
ority reasoning with rule preferences).

Description Logics
(section 4.2.2)

Semantic Web Ontol-
ogy Languages such as
RDFS or OWL

Semantic Web ontologies are used to de�ne ex-
ternal hybrid DL-Types and semantic domain
descriptions (e.g. contract vocabularies) in
order to give domain-independently described
rules a domain-dependent meaning. Facili-
tates rule interchange and enhances the ex-
pressiveness of the SLA representation lan-
guage in a �exible way, i.e., di�erent ontolo-
gies/vocabularies can be integrated.

(Re)active Logic (sec-
tion 4.7)

Extended Event-
Condition-Action
Rules (ECA) with
ID-based Updates,
Rollbacks, Complex
Events/Actions, Active
Rules

Supports active event detection/event process-
ing and event-triggered reactions by reaction
rules.

Temporal Event/Ac-
tion Logic (section
4.6)

Event Calculus Temporal reasoning about dynamic systems,
e.g., interval-based complex event de�nitions
(event algebra) or e�ects of events on the con-
tract state; contract state tracking; reasoning
about events/actions and their e�ects

Deontic Logic (section
4.8)

Deontic Logic with
norm violations and
exceptions

Rights and obligations formalized as de-
ontic contract norms with norm violations
(contrary-to-duty obligations) and exceptions
(conditional. defeasible obligations) stated as
temporal normative deontic rules.

Integrity Preserving,
Preferenced, Defea-
sible Logic (section
4.4)

Defeasible Logic and
Integrity Constraints

Used to express default rules and priority re-
lations of rules. Facilitates con�ict detection
and resolution as well as revision/updating
and modularity of rules with preferences or
rules and modules in terms of defeasible or-
dered LPs (OLPs with priorities between rules
and rule sets (modules)).

Test Logic (section 4.9) Declarative Test-
driven Veri�cation and
Validation of Rule
Bases

Validation and Veri�cation of SLA speci�ca-
tions against prede�ned SLA requirements in
terms of rule-based test cases and test suits.
Helps to safeguard the engineering, dynamic
update and interchange process of SLAs.

77

4 The ContractLog KR

4.1 Core Syntax and Semantic of the ContractLog KR

The expressive power of de�nite Horn programs is too limited for adequately
representing complex service contracts in open distributed environments (see
section 3.6 for a discussion of the requirements). Accordingly, a ContractLog
LP is an extended LP (ELP) [LW92], i.e., a LP with monotonic explicit negation
and non-monotonic default negation. An ELP is a set of clauses of the from
H ← B, where H is a literal over L called the head of the rule, and B is a set
of literals over L called the body of the rule. A literal Bi ∈ B, which might be
default negated (∼ Bi), is either an atom or the negation ¬ of an atom, where ∼
denotes default negation written as not(...) and ¬ is denoted as explicit negation
written as neg(...). Roughly, default negation means, everything that can not
be proven as true is assumed to be false. A rule is called a fact if it only consists
of the rule head H. An atom is a n-ary formula containing terms p(a,X, f(...)),
where p is the predicate name. A term is either a constant a, a variable X or a
n-ary complex term/function f(...). A goal/query G is a headless clause de�ning
a conjunction of literals (positive or negative atoms) L1 ∧ .. ∧ Li where each Li
is called a subgoal. A query is embedded in the built-in function : −solve(...)
or : −eval(...).

4.1.1 Syntax of ContractLog

Syntactically, the ContractLog KR uses an extended ISO Prolog related script-
ing syntax (ISO Prolog ISO/IEC 13211-1:1995) called Prova (http://www.
prova.ws/ [KPS06]) to write ContractLog programs as stand-alone scripts. I
give the syntax in EBNF notation, i.e., alternatives are separated by vertical
bars (|); zero to one occurrences are written in square brackets ([]) and zero to
many occurrences in braces ({}). The EBNF syntax already comprises meta
data labels, defeasible rules, typed terms, java-based procedural attachments,
arithmetic relations and negations. I will describe these expressive extensions
provided by the ContractLog KR in the subsequent sections of this chapter:

prova ::= {statements}, end of file;

meta data ::= "properties", "(", {property value pair}, ")";

property value pair ::= lowercase word, "(", (constant | individual), ")";

statements ::= ([meta data, "::"], statement), {statements};

statement ::= (fact | rule | query), end of statement;

fact ::= (literal | defeasible literal);

rule ::= (literal | defeasible literal), ":-", body literals;

query ::= ":-", ("eval" | "solve"), "(", (literal | naf literal | defeasible literal), ")";

literal ::= atom | neg atom;

naf literal ::= "not", "(", (literal | defeasible literal), ")";

defeasible literal ::= "defeasible", "(", literal, ")";

body literals ::= (literal | defeasible literal | naf literal | arithmetic relation |

java call | cut), {",", body literals};

atom ::= relation;

neg atom ::= "neg", "(", relation, ")";

relation ::= predicate symbol, "(", terms, {"|", argument tail}, ")";

argument tail ::= variable;

predicate symbol ::= lowercase word | uppercase word;

java call ::= functional java call | predicate java call | constructor java call;

78

http://www.prova.ws/
http://www.prova.ws/

4 The ContractLog KR

functional java call ::= left term, "=", predicate java call;

predicate java call ::= static java call | instance java call;

static java call ::= qualified java class,".",method name,"(", terms,")";

instance java call ::= variable, ".", method name, "(", terms, ")";

constructor java call ::= left term,"=",qualified java class,"(",terms,")";

terms ::= {term, {",", terms}};

term := left term | (func, "(", terms, ")");

left term ::= variable | constant | individual | prova list;

func ::= variable | constant;

variable ::= uppercase word | java typed variable | dl typed variable;

constant ::= lowercase word | ('"', string, '"') ;

individual ::= namespace prefix, "_", dl class, ":", dl instance;

java typed variable ::= qualified java class, ".", uppercase word;

dl typed variable ::= uppercase word, ":", dl type;

dl type ::= namespace prefix, "_", dl class;

namespace prefix ::= lowercase word;

dl class ::= word;

dl instance ::= word;

prova list ::= "[]" | ("[", head, {"|", tail}, "]");

arithmetic relation ::= left term, binary operator, term;

binary operator ::= "=" | "<>" | ">" | "<" | ">=" | "<=";

head ::= term;

tail ::= variable;

uppercase word ::= ["A"-"Z","_"], {lowercase word};

lowercase word ::= ["a"-"z","_"], {word};

word ::= ["a"-"Z",0-9]+;

cut ::= "!";

end of statement ::= "." newline;

4.1.2 Declarative Semantics of ContractLog

ContractLog is intended to be a general KR framework which is applicable to
various rule languages and declarative LP semantics such as well-founded se-
mantics (WFS), stable model semantics (STABLE) or completion semantics
(COMP) (with its procedural counterpart SLDNF resolution which su�ers from
the well-known drawbacks of possible loops, �oundering and allowendness re-
striction for variables in negation-as-�nite-failure tests). The ContractLog KR
to an large extend avoids a strong commitment to one particular LP semantics
used to interpret the formalisms of the KR and allows for direct implementations
respectively transformations on top of existing rule engines. However, in order
to fully exploit the expressiveness of the ContractLog KR the model-theoretic
semantics SEM(P) of a ContractLog LP P should be a subset of the 3-valued
Herbrand-models with an unknown truth value and two forms of negation (see
requirements in section 3.6). I adopt a sceptical viewpoint [GLV91] where the
set of all atoms or default atoms of a program P are true in all canonical models
SEM scept(P), in contrast to a credulous entailment relation, where the set of
all atoms or default atoms are true in at least one model of SEM cred(P). Since
negation is used the existence of a least model as in de�nite LPs is not longer
guaranteed and it might be that the LP has several minimal models. Several
semantics for assigning models to LPs with negation have been proposed (see
section 3.3.2.4). The two broadly accepted semantics for normal LPs are the
well-founded semantics and stable model semantics respectively extended WFS
and answer set semantics (ASS) for extended LPs. The semantics of choice for
ContractLog programs is WFS for the following reasons:

79

4 The ContractLog KR

• WFS is generally accepted as a robust and natural semantics for logic
programs

• it assigns a unique (partial) model to every program (with unrestricted
negation-as-failure)

• it has polynomial worst-case data complexity for computing the well-
founded model of a given intensional knowledge base, i.e., a set of rules
is polynomial in the size of the extensional knowledge base (the facts); in
contrast to STABLE which is NP-complete even for propositional normal
LPs [Mar91]

• it has an unde�ned truth-value

• it satis�es reasonable structural properties such as rationality and cumu-
lative monotony (cautious monotony and cut) [Dix95b]

• it coincides with two-valued STABLE for de�nite, acyclic and strati�ed
LPs and coincides with the least three-valued STABLE for normal LPs
[Prz90b]

By de�nition SEMWFS only contains a single model for a particular knowl-
edge state of a program P : SEMWFS(P) = M . The well-founded semantics
(WFS) of Van Gelder et al. [VGRS91] is a 3-valued semantics with three possible
truth values: true (t), false (f) and unknown (u). In short, WFS assigns value
"unknown" to an atom A, if it is de�ned by unrestricted negation. I refer to
section 3.3.2.4 and [VGRS91, Prz89a, Prz90b] for a de�nition of WFS for normal
LPs. Several authors extended WFS for normal LPs to extended WFS for LPs
with two negations and a sceptical entailment relation that refrains from drawing
conclusions, whenever there is a potential con�ict [BG94, Lif96, PA92, Bre96].
However, a consensus in logic programming research which one is the most
adequate extension of WFS for extended LPs is still missing. I now de�ne a de-
feasible well-founded semantics for extended logic programs, calledWFSXDefL,
as semantics of choice for ContractLog LPs.

The extended defeasible well-founded semantics WFSXDefL of ContractLog
extends the well-founded semantics for extended logic programs (WFSX) [PA92]
with integrity constraints and defeasible reasoning to handle arbitrary con�icts
in programs, e.g., inconsistency between a simultaneously concluded literal and
its negation. Basically, WFSX follows from WFS for normal LPs as de�ned by
Van Gelder et al. [VGRS91] plus a coherence principle which implements the
intuition that explicit negation implies default negation: ¬L⇒∼ L. Note that
coherence in WFSX has a di�erent meaning than in non-monotonic defeasible
logic (see section 4.4.3), where it states that no literal should be simultaneously
provable and unprovable. I �rst recall the de�nition of WFSX from [ADP95].

De�nition 78 (Extended Herbrand Base) The extended Herbrand base B(P)
of an extended LP P is the set of all objective literals of P . An objective literal
L is either an atom A or its explicit negation ¬A. ¬L is the complement of the

80

4 The ContractLog KR

literal L such that ¬¬A = A. ∼ L is called a default literal, where ∼ denotes
default negation.

De�nition 79 ((Pseudo-)Interpretation) A pseudo-interpretation of a pro-
gram P is a set T∪ ∼ F where T and F are subsets of B(P). An interpretation
I is a pseudo-interpretation where the sets T and F are disjoint. Objective lit-
erals in T are said to be true in I, objective literals in F are said to be false by
default in I, and in B(P)−I unde�ned in I. If T ∪F = B(P) the interpretation
is two-valued otherwise it is three-valued (as in WFS).

De�nition 80 (Coherence Operator) Let I = T∪ ∼ F be a set of literals
such that T does not contain any pair A,¬A. The coherence operator coh is
de�ned as:

coh(I) = I∪ ∼ {¬L|L ∈ T}

De�nition 81 (Seminormal version of a program) The seminormal ver-
sion of a program P is the program P , obtained from P by replacing every rule
H ← B in P by the rule H ← B,∼ ¬H, where H is the head literal and B is
the body (set of literals) of the rule.

In the following Γ(E), where E is a set of expressions, is used to denote ΓP (E),
and ΓE(E) to denote TPE

(E). See [GL90] for a de�nition of the operator Γ.

Theorem 4 (Well-founded Model) Let P be a program whose least �xpoint
of ΓΓE is T . The well-founded model W ∗P of P is the pseudo-interpretation
I = T∪ ∼ (B(P) − ΓET). If W ∗P is an interpretation, then P is called non-
contradictively, andW ∗P is the well-founded model of P . W ∗P is iteratively de�ned
by the following sequence Iα, where δ is a limit ordinal:
I0 = ∅
Iα+1 = ΓΓEIα for successor ordinal α+ 1
Iδ =

⋃
α<δ Iα for limit ordinal δ

There exists a smallest ordinal δ0 such that Iδ0 is the least �xpoint of ΓΓE, and
W ∗P = Iδ0∪ ∼ (B(P)− ΓEIδ0).

De�nition 82 (WFSX semantics) The Well-founded semantics for extended
LPs (WFSX) assigns to every non-contradicting extended LP P the well-founded
model W ∗P of P :

SEMWFSX(P) := {W ∗P }.

The following theorem which has been proven in [Alf93] states that WFSX is
sound wrt to the answer-set semantics (ASS) of [GL90].

81

4 The ContractLog KR

Theorem 5 (WFSX is sound wrt to ASS) Let P be an non-contradicting
extended LP with at least one answer-set, i.e., it has partial stable models. Then
for any objective literal L, if L ∈W ∗P then L belongs to all answer-sets of P ; if
∼ L ∈W ∗P then L does not belong to any answer-set of P .

Since in ContractLog explicit negation is allowed in the head of rules con�icts
between simultaneous positive and negative conclusions might occur. Hence, an
important question is whether and how it should be possible to derive con�icts,
i.e., how consistency and coherence (here in terms of provable/unprovable liter-
als) are addressed by the semantics. WFSX [Alf93] de�nes a program transfor-
mation to the seminormal version. Using a monotone operator the seminormal
version of a program in WFSX guarantees that a literal L is not considered a
potential conclusion whenever the complementary (con�icting) literal is already
known to be true. However, in the contract or legal reasoning domain con�icts
might occur not just between positive and negative conclusions, but also be-
tween arbitrary literals and derived answers (see section 3.6 and section 4.4).
For instance, a con�ict might occur if two di�erent penalty levels or discount
level can be concluded at the same time. Hence, more expressive mechanisms
to represent and solve arbitrary con�icts are needed than simply building the
seminormal version of a program and proving the default falsity of the comple-
mentary head literal of each rule. To provide these levels of expressiveness in
ContractLog I introduce a defeasible logic variant in terms of a meta program-
ming approach for defeasible reasoning on top of extended LPs. The defeasible
logic extension enables user-de�ned integrity rules to describe arbitrary con�icts
and defeasibly solves con�icts wrt to de�ned integrity constraints by superiority
de�nitions between rules and complete rule sets (aka modules), i.e., it preserves
coherence and consistency for extended LPs wrt integrity constraints by defea-
sible reasoning. The main advantages of using defeasible logic, as opposed to
other non-monotonic approaches such as default logic or circumscription are:

• defeasible logic is computationally e�cient, i.e., the computation of defea-
sible conclusions is polynomial, and highly e�cient implementations exist
[ABMR00]

• defeasible logic is directly sceptical and has built-in preference handling
facilities

• it can be implemented as a meta program in logic programming providing
more �exibility to decompose defeasible theories into di�erent rule lan-
guages, use di�erent rule engines and implement optimized variants with
e.g., dynamic (rule-based) preference adaption and explicit negation-as-
failure of defeasible literals in rule bodies

• defeasible logic has a proof-theory and a model-theoretic semantics [Mah02]

The detailed description and discussion of the integrity based defeasible logic
approach of ContractLog will follow in section 4.4. Here I will introduce the
basic concepts and the core defeasible semantics WFSXDefL of ContractLog's

82

4 The ContractLog KR

extended well-founded defeasible logic which follows from the well-founded se-
mantics of Van Gelder, Ross and Schlipf [VGRS91], its extension in WFSX
[PA92] and the WFS semantics decomposition of defeasible logic of Maher et
al. [MG99].

De�nition 83 (Defeasible Theory with Integrity Constraints) A defea-
sible theory Φ consists of a set of facts Fa, a set of rules R, a set of integrity
constraints IC and a superiority relation > on R.

De�nition 84 (Mutual Exclusive Complements) Let Φ be a defeasible the-
ory. Let L be a set of mutual exclusive literals de�ned in an xor integrity con-
straint ICXor, i.e., the literals are not allowed to be simultaneously concluded
from Φ. Then −L denotes a complement of the literal L ∈ L if −L ∈ L \ {L}.

For instance, if L = {A,¬A}, i.e., the atoms A and ¬A are de�ned as mutual
exclusive then A is a complement of ¬A and vice versa. The defeasible meta
program of ContractLog de�nes a general consistency which states that positive
and negative conclusions are mutual exclusive, i.e., ICXor = {L,¬L}:

% positive and negative conclusions are mutual exclusive

integrity(xor([P|Args],neg([P|Args]))).

That is, a literal L and its negation ¬L are mutual exclusive.

De�nition 85 (Conclusions) A conclusion of a defeasible theory Φ is a tagged
literal and can have one of the following forms:

• +4L, i.e., it is proved that L is strictly provable in Φ, i.e., using only
facts and strict rules.

• −4L, i.e., it is proved that L is not strictly provable in Φ.

• +∂L, i.e., it is proved that L is defeasibly provable in Φ.

• −∂L, i.e., it is proved that L is not defeasibly provable in Φ.

Defeaters are omitted in ContractLog. The defeasible logic implemented in
ContractLog uses expressive integrity constraints to de�ne (arbitrary) con�icts
and uses superiority relations between rules and rule sets to solve con�icts.
Strictly provability involves only strict rules and facts, whereas defeasible prov-
ability involves defeasible and possibly strict knowledge.

% strict knowledge is also defeasible derivable

defeasible([P|Args]) :- derive([P|Args]).

83

4 The ContractLog KR

The tagged conclusions are meta-theoretical statements about provability.
They do not appear directly in the defeasible theory, i.e., the tagged literals can
not be used in rules. Hence, there is no way to directly express in defeasible logic
that a literal should fail to be proved. But, since in ContractLog the inference
rules of the defeasible logic are represented as a defeasible meta program and
hence exploit the logic programming semantics for LPs with negation, it is
possible to state explicitly in terms of default negation that the prove of a literal
should fail. I introduce the operator ∼ into the defeasible logic language to state
that it should be proved that a (body) literal can not be proved. That is, a goal
∼ L in an extended defeasible theory Φ is strictly resp. defeasibly provable, if
it is proved that the literal L can not be proved strictly resp. defeasibly.

De�nition 86 (Extended Defeasible Logic)

• ← L: it should be proved that L can be strictly proved, i.e., Φ ` +4L

• ←∼ L: it should be proved that L can not be strictly proved, i.e., Φ ` −4L

• ⇐ L: it should be proved that L can be defeasibly proved, i.e., Φ ` +∂L

• ⇐∼ L: it should be proved that L can not be defeasibly proved, i.e., Φ `
−∂L

Note, the di�erence between ∼ and ¬. For instance, a goal ← ¬A means
that it should be proved that the negated atom ¬A can be strictly proved, i.e.,
Φ ` +4¬A and a goal ⇐ ¬A, means that it should be proved that ¬A can
be defeasibly proved, i.e., Φ ` +∂¬A. In contrast, a goal ←∼ A means that
it should be proved that A can be strictly proved, i.e., Φ ` +4A and a goal
⇐∼ A means that it should be proved that A can not be defeasibly proved,
i.e., Φ ` −∂A. The implementation is given by the following mapping from the
goals of an extended defeasible theory Φ into the goals of the meta program
representation P (Φ):

• ← A maps to a goal A

• ← ¬A maps to a goal neg(A)

• ←∼ A maps to a goal not(A)

• ⇐ A maps to a goal defeasible(A)

• ⇐∼ A maps to a goal not(defeasible(A)

• ⇐ ¬A maps to a goal defeasible(neg(A))

The following de�nition of the well-founded defeasible logic goes back to the
semantics decomposition of defeasible logic of Maher et al. [MG99].

De�nition 87 (Extension) An extension Ex is a 4-tuples of sets of tagged
literals: 〈+4,−4,+∂,−∂〉.

84

4 The ContractLog KR

De�nition 88 (Unfounded Set A set L of literals is strictly unfounded (4-
unfounded) wrt an extension Ex and strict inference (4) if for every literal L
in L, and for every strict rule B → L either holds:

• B ∩ −4Ex 6= ∅, or

• B ∩ L 6= ∅

A set L of literals is defeasibly unfounded (∂-unfounded) wrt an extension
Ex and defeasible inference (∂) if for every literal L ∈ L, and for every rule
r1 : B(r1) ↪→ L in Φ, where r1 is the rule name, B(r1) the body of the rule r1
and ↪→ is unspeci�ed (i.e., might be strict (←) or defeasible (⇐)) it either holds
that:

• B(r1) ∩ −∂Ex 6= ∅, or

• B(r1) ∩ L 6= ∅, or

• there is a rule r2 : B(r2) ↪→ ¬L in Φ such that B(r2) ⊆ +∂Ex and for
every rule r3 : B(r3) ↪→ L in Φ either B(r3) ∩ −∂Ex 6= ∅ or r3 ≯ r2.

The union of the 4-unfounded and ∂-unfounded sets is closed.

De�nition 89 (Greatest Unfounded Set) Let Φ be a defeasible theory. The

greatest 4-unfounded set of Φ wrt an extension Ex, denoted by U4Φ (Ex), is the
union of all 4-unfounded sets of Φ wrt Ex and the greatest ∂-unfounded set of
Φ wrt Ex, denoted by U∂Φ(Ex), is the union of all ∂-unfounded sets of Φ.

De�nition 90 (Consequence Operators) Let R be the set of rules in Φ
(which is mapped to P (Φ)), Rs be the set of all strict rules in R, Rd be the
set of defeasible rules in R and Rsd be the set of strict and defeasible rules in
R. R[L] denotes the set of rules in R with head L. The following monotonic
transformation operators are de�ned wrt I:

• TΦ(I) = (+4′,−4′,+∂′,−∂′) where
+4′ = Fa ∪ {L|∃r ∈ Rs[L]B(r) ⊆ +4}
−4′ = −4∪ ({L|∀r ∈ Rs[L]B(r) ∩ −4 6= ∅} − Fa)
+∂′ = +4∪{L|∃r ∈ Rsd[L]B(r) ⊆ +∂,−L ∈ −4 and ∀s ∈ R[−L] either
B(s) ∩ −∂ 6= ∅, or ∃t ∈ R[L] such that B(t) ⊆ +∂ and t > s}
−∂′ = {L ∈ −4|∀r ∈ Rsd[L]B(r) ∩ −∂ 6= ∅ or −L ∈ +4 or ∃s ∈ R[−L]
such that B(s) ⊆ +∂ and ∀t ∈ R[L] either B(t) ∩ −∂ 6= ∅ or t ≯ s}

• UΦ(I) = (∅, U4Φ (I), ∅, U∂Φ(I)))

• WΦ(I) = TΦ(I)∪¬UΦ(I) where ¬UΦ(I) is obtained from UΦ(I) by taking
the complement of each atom in UΦ(I)

The bottom-up de�nition of TΦ(I) allows to transfer the declarative computa-
tional model of defeasible logic to the bottom-up characterizations of the WFS.

85

4 The ContractLog KR

For more details on the bottom-up de�nition see [AM02]. Note that, due to
the general consistency constraint in ContractLog, as de�ned above, the com-
plement −L by default consists of its negation ¬L. However, further arbitrary
and mutual exclusive literals might be de�ned in terms of integrity rules as com-
plements of L. The approach, due to the meta program representation, is not
restricted to propositional theories, but allows de�ning complements in a wider
sense, e.g., ICXor = discount(Customer, 5), discount(Customer, 10), i.e., both
atoms are mutual exclusive and complements to each other. A more detailed
discussion of the preferenced defeasible integrity logic will follow in section 4.4.3.

Lemma 2 TΦ(Ex), UΦ(Ex) and WΦ(Ex) are monotonic.

Theorem 6 Let Iα be the elements of the increasing Kleene sequence starting
from ⊥ = (∅, ∅, ∅, ∅) which has a limit WFSXDefL = (+4WF ,−4WF ,
+∂WF ,−∂WF). Then WFSXDefL de�nes the conclusions of the Well-Founded
Defeasible Logic theory Φ as follows:

• Φ `WFSXDefL
+4L i� L ∈ +4WFSXDefL

• Φ `WFSXDefL
−4L i� L ∈ −4WFSXDefL

• Φ `WFSXDefL
+∂L i� L ∈ +∂WFSXDefL

• Φ `WFSXDefL
−∂L i� L ∈ −∂WFSXDefL

The proof can be given by induction on the length of derivation in the one
direction and the number of iterations of the consequence operator in the other.
A more detailed de�nition of the proof-theory and the implementation of the
inference rules as a meta program is given in section 4.4.

I adopt the coherence principle of WFSX into the WFSXDefL semantics for
well-founded defeasible theories.

De�nition 91 (Coherence principle)

• 4¬L→ −4L

• ∂¬L⇒ −∂L

The coherence principle for strict reasoning is inherited from the WFSX se-
mantics. The coherence principle for defeasible reasoning is implemented by the
following inference rule in the meta program P (Φ):

% defeasible(neg(...)) implies not(defeasible(...))

not(defeasible([P|Args])) :- defeasible(neg([P|Args])).

86

4 The ContractLog KR

Note, the di�erence between the coherence principle adopted from WFSX and
the coherency de�nition of a defeasible logic [Bil90], which states that no literal
is simultaneously provable and unprovable, i.e., an extension 〈+4,−4,+∂,−∂〉
is coherent if +4∩−4 = ∅ and +∂ ∩−∂ = ∅. In order to ensure coherency for
the extended well-founded defeasible logic its extension must be consistent, i.e.,
L ∈ +∂ then −L ∈ −∂. As de�ned above (in terms of an integrity constraint in
the meta program) the default complement of a positive literal is its negation.
Hence, to guarantee consistency I implement a general priority relation between
positive/negative con�icting defeasible rules, such that the rule with the nega-
tive conclusion is preferred (overrides the "positive" rule if both are concluded
simultaneously).

% negative information by default overrides positive information

overrides(neg([P|Args]), [P|Args]).

Proposition 1 Extended Well-founded Defeasible Logic is coherent and consis-
tent in the defeasible case.

Proof 1 If +∂L and +∂ − L then +∂ − L overrides +∂L (consistency). If
−L = ¬L then +∂¬L implies −∂ (coherence principle) and −∂ ∩ +∂L = ∅
(coherence).

Note, that further priority rules are needed to preserve consistency wrt to
other, arbitrary integrity constraints.

The following theorem shows completeness of the well-founded defeasible logic
wrt to the WFSXDefL interpretation of its meta program P (Φ).

Theorem 7

• Φ `WFSXDefL
+4A i� P (Φ) |=WFSX A

• Φ `WFSXDefL
+4¬A i� P (Φ) |=WFSX neg(A)

• Φ `WFSXDefL
−4A i� P (Φ) |=WFSX not(A)

• Φ `WFSXDefL
+∂A i� P (Φ) |=WFSX defeasible(A)

• Φ `WFSXDefL
+∂¬A i� P (Φ) |=WFSX defeasible(neg(A))

• Φ `WFSXDefL
−∂A i� P (Φ) |=WFSX not(defeasible(A))

The proof can be given by induction on the length of derivations P in Φ. A
defeasible theory Φ without defeasible rules coincides with an extended LP, i.e.,
the meta program P (Φ) conforms to the conventional extended LP P since I
do not introduce any new meta predicates for strict knowledge, i.e., a predi-
cate is de�ned in the predicate symbols of the signature without the use of any
meta functions. The coherence principle is adopted from WFSX. Accordingly,

87

4 The ContractLog KR

well-founded defeasible logic in the strict case is complete wrt the WFSX inter-
pretation of its meta program. In the defeasible case the extended well-founded
defeasible logic in ContractLog solves con�icts between positive and negative in-
formation (as well as other user de�ned integrity-based con�icts) by the use of
the defeasible inference rules and the priority relations de�ned between knowl-
edge.

To illustrate the correspondence and di�erence between WFSX semantics and
WFSXDefL consider the following propositional example from [BG94]:

Example 2

a←∼ b
b←∼ a
¬a

In WFSX ¬a is obtained from the seminormal version of the program and then
by coherence principle b is true. In WFSXDefL the con�ict between a and
¬a is solved by translating the rules into defeasible rules: a ⇐∼ b and ¬a ⇐.
Then ¬a is derived due to prioritization by defeasible reasoning as described
above and by coherence principle b is concluded. However, WFSX is weaker
than WFSXDefL since it derives less literals and is less expressive since it does
not support the de�nition of arbitrary con�icts and priorities between rules and
rule sets. For instance, consider the following program from [Ant02].

Example 3

p⇐
¬p⇐
q ⇐
¬q ⇐ p

The corresponding seminormal version in WFSX is:

p←∼ ¬p
¬p←∼ p
q ←∼ ¬q
¬q ⇐ p,∼ q

In WFSXDefL q is provable because the rule with head ¬q is not applica-
ble since ¬p is provable according to the priority rule in WFSXDefL which
de�nes that negative rules override complementary positive rules. In WFSX q
is not entailed as can be concluded from the seminormal form.

Note that it has been argued in [Bre01], that defeasible logic is in general
di�erent from well-founded semantics, the latter being able to draw more con-
clusions due to:

88

4 The ContractLog KR

1. the lack of loop checking in defeasible logic,

2. the ambivalent role of strict rules which might become defeasible rules

3. the preference handling which only considers con�icts between positive
and negative con�icts.

However, the author compares conventional defeasible logic (as de�ned by
Nute [Nut94]) with a direct translation into the seminormal form of an ex-
tended logic program. As it was illustrated in the example above such a direct
translation must fail, whereas in the case of a translation of a defeasible theory
Φ into the well-founded defeasible meta program P (Φ), the sceptical conclusions
of P (Φ) under WFSX correspond to the conclusions of the defeasible theory Φ.
The well-founded defeasible logic handles loops due to the reconstruction in the
extended well-founded semantics. Moreover, the extend well-founded defeasible
logic allows expressive integrity constraints and preferences between rules and
rules sets (modules), akin to ordered logic programing (OLP) [BLR96]) where
components (sets of rules) can be prioritized against each other. In contrast to
OLP, which handles only negation as failure and prede�ned preferences of com-
ponents by inheritance hierarchies, ContractLog supports two kinds of negation
and explicit preferences represented in terms of superiority clauses which might
be conditional or be adapted dynamically by knowledge updates. If a program
does not contain explicit negation and defeasible rules the semantics coincides
with the well-founded semantics for normal LPs.

In summary, the declarative semantics WFSXDefL de�nes the meaning of
a ContractLog LP by specifying the intended model among all models of the
program. The coherence principle from WFSX establishes a relation between
default and explicit negation. The defeasible logic extension of the extended
well-founded semantics automatically solves (user-de�ned) integrity con�icts,
such as inconsistency between positive and negative conclusions. Since the de-
feasible inference rules in ContractLog are given in terms of a meta program a
strong commitment to a particular LP semantics can be avoided. Hence, inter-
pretations of ContractLog LPs with other semantics, e.g., answer set semantics,
are possible, although well-founded semantics due to its computational, struc-
tural and expressive properties, as discussed above, quali�es to be the semantics
of choice for ContractLog. In the next section I will introduce a linear top-down
procedural semantics, called SLE resolution (Linear resolution for Extended
LPs with Selection rule) to compute the well-founded model for extended LPs.
I have implemented the approach in the RBSLA/ContractLog inference engine,
which is integrated into the Prova project since version 2.0 [KPS06]. I will fo-
cus on top-down approaches - see section 3.3.2.4 for references on bottom-up
semantics.

4.1.3 Procedural Semantic of ContractLog

The well-known 2-valued top-down SLDNF (Prolog) resolution [Cla78], a resolu-
tion based method derived from SLD resolution [KK71, AE82], as a procedural

89

4 The ContractLog KR

semantics for LPs has many advantages. Due to its linear derivations it can
be implemented using e�cient stack-based memory structures, it supports very
useful sequential operators such as cut, denoted by !, or assert/retract and the
negation-as-�nite failure test is computationally quite e�cient. Nevertheless, it
is a too weak procedural semantics for unrestricted LPs with negations. It does
not support goal memoization and su�ers from well-known problems such as re-
dundant computations of identical calls, non-terminating loops or �oundering.
It is not complete for LPs with negation or in�nite functions. Moreover, it can
not answer free variables in negative subgoals since the negation as �nite failure
rules is only a simple test. For more information on SLDNF-resolution I refer
to [Llo87, AB94]. For typical unsolvable problems related to SLDNF see e.g.
[She91].

SLG resolution [CW93, CSW95] is the most prominent tabling based top-
down method for computing the well-founded semantics for normal LPs. SLG
resolution overcomes in�nite loops and redundant computations by tabling. The
basic idea of tabling, as implemented e.g., in ODLT resolution [TS86], is to an-
swer calls (goals) with the memorized answers from earlier identical goals which
are stored in a table. However, SLG resolution is a non-linear approach. SLG is
based on program transformations using six basic transformation rules, instead
of the tree-based approach of SLDNF. It distinguishes between solution nodes,
which derive child nodes using the clauses from the program and look-up nodes,
which produce child nodes using the memorized answers in the tables. Since all
variant subgoals derive answers from the same solution node, SLG resolution
essentially generates a search graph instead of a search tree and jumps back and
forth between lookup and solution nodes, i.e., it is non-linear. Special delaying
literals are used for temporarily unde�ned negative literals and a dependency
graph is maintained to identify negative loops. Calls to look-up nodes will be
suspended until all answers are collected in the table, in contrast to the linear
SLD style where a new goal is always generated by linearly extending the latest
goal. It is up to this non-linearity of SLG that tabled calls are not allowed to
occur in the scope of sequential operators such as cut.

Global-SLS resolution [Prz89a, Prz89b, Ros92] for WFS is a procedural se-
mantics which directly extends SLDNF-resolution and hence preserves the lin-
earity property of SLDNF. In contrast to SLDNF-trees, SLS-trees treat in�nite
derivations as failed and recursions through negation as unde�ned. However,
it assumes a positivistic computation rule that selects all positive literals be-
fore negative ones and inherits the problem of redundant computations from
SLDNF. Moreover, a query fails if the SLS-trees for the goal either end at a fail-
ure leave or are in�nite, which makes Global-SLS computationally ine�ective
[Ros92]. To avoid redundant computations in SLS a tabling approach called
tabulated SLS resolution [Bol98] was proposed. But the approach, like SLG, is
based on non-linear tabling.

SLX resolution [ADP94] is a procedural semantics for extended LPs which is
sound and theoretically complete wrt WFSX semantics. As in SLS resolution it
uses a failure rule to solve the problems of in�nite positive recursions and dis-

90

4 The ContractLog KR

tinguishes two kinds of derivations for proving verity (SLX-T tree) and proving
non-falsity (SLX-TU tree) in the well-founded model in order to fail or succeed
literals involved in recursion through negation. Thus, SLX does not consider a
temporal unde�ned status as the other top-down approaches for WFS do, but
implements the following derivations: if a goal L is to be unde�ned wrt WFS
it must be failed, if it occurs in a SLX-T derivation and refuted if it occurs in
a SLX-TU derivation. To ful�ll the coherence requirement of WFSX a default
negated literal 6 L is removed from a goal if there is no SLX-TU refutation for L
or if there is one SLX-T refutation for ¬L. In short, SLX is very close to SLDNF
resolution. As already pointed out by the authors [ADP94, ADP95] it is only
theoretically complete, does not guarantee termination since it lacks loop detec-
tion mechanisms, is in general not e�ective and makes redundant computations
since tabling is not supported. Its implementation is given as a meta program
in Prolog.

I will now introduce SLE resolution (Linear resolution with Selection function
for Extended WFS), which I implemented in the RBSLA/ContractLog inference
engine to compute extended WFS. It extends linear SLDNF with goal memoiza-
tion based on linear tabling and loop cutting. In short, it resolves in�nite loops
and redundant computations by tabling without violating the linearity property
of SLD style resolutions. The main advantages are:

• linear tabling to resolve in�nite loops and redundant computations while
preserving the linearity of derivations, enabling tabled predicates within
the scope of sequential operators such as cuts and procedural attachments
to external methods.

• e�cient memory structures in trampoline style in order to overcome stack-
over�ows for very large derivation trees (large knowledge bases)

• extended key indexing to e�ectively query complex literals, e.g., defea-
sible meta literals or explicitly negated literals (faster access to KB and
narrower search space)

• provides an unde�ned truth value as in WFS and a temporarily unde-
�ned truth value, which enables long running, distributed derivations in
(open) distributed knowledge bases (such as in the Semantic Web) to be
temporarily unde�ned

• terminating and sound and complete wrt to the extended well-founded
defeasible logic semantics WFSXDefL

• its time complexity is comparable with SLG resolution, which has poly-
nomial time data complexity for well-founded negation

• downward compatible with SLDNF resolution, i.e., the tabling cache is
highly �exible and supports automated or user-de�ned management of
its size and validity of tables in local and global derivations; it can be
completely turned of which reduces SLE resolution to SLDNF

91

4 The ContractLog KR

SLE resolution is based on four truth values: t (true), f (false), u (unde�ned)
and u′ (temporarily unde�ned) with t = ¬f , ¬f = t, ¬u = u and ¬u′ = u and a
truth ordering ¬f > t > u > u′. u′ will be used if the truth value of a subgoal is
temporarily undecided. SLE resolution follows SLDNF, where derivation trees
are constructed by resolution. For more information on the notion of trees for
describing the search space of top-down proof procedures see e.g. [Llo87]. In
SLE a node in a tree is de�ned by Ni : Gi, where Ni is the node name and Gi is
the �rst goal labelling the node. Tables are used to store intermediate results. In
contrast to SLG resolution, there is no distinction between lookup and solution
nodes in SLE. The algorithm, always, �rst tries to answer the call (goal) with the
memorized answers in the tables. If there are no answers available in a table the
call is resolved against program clauses which are selected in the same top-down
order as in SLDNF. This avoids redundant computations. To preserve the order
the answers stored in a table are used in a FIFO (�rst-in-�rst-out) style, i.e., the
�rst memorized answer is �rst used to answer the call. In case of loops the two
main issues in top-down procedural semantics for WFS are solutions to in�nite
positive recursions (positive loops) and in�nite recursion through negation by
default (negative loops).

SLE resolution instantiates the program clauses by goals (calls) in a similar
way as in SLD resolution leading to speci�c instances of these clauses, i.e., a
goal G is uni�ed with the heads of appropriate program clauses H ← B, where
B is the set of body literals, leading to instances of the clauses (H ← B)′ if there
exists a substitution θ = {X1/t1, .., Xn/tn} which assigns terms ti to variablesXi

such that (H ← B)′ = (H ← B)θ. The instance body Bθ is the goal reduction
(sub goal) for further derivation leading to more speci�c instances. Repeating
this process leads to a SLD tree. During this process SLE resolution memorizes
intermediate answers for a (tabled) goal (tabled goal memoization) and reuses
them to answer variants of calls. This avoids redundant computations.

If the selected call (subgoal) is a variant (child call) of some former call (par-
ent call), i.e., the resolution process is in a positive loop, SLE �rst uses all
answers in the table to resolve the child call. After all tabled answers are used
it proceeds with the remaining not yet resolved clauses of the latest parent call
to resolve the child call. That is, the child call takes over the remaining task
of the parent call and completes the set of answers in the tables, so that no
answers are missed from clauses which apply after the looping clause. When all
answers are computed the table is marked with a completion �ag to indicate
the completeness of the table wrt a call (goal).

In case of a negative loop the variant call (subgoal) will be memorized as
temporarily unde�ned in a table. The resolution process proceeds with the
remaining clauses which need to be resolved and the temporarily unde�ned
value will be replaced later by the derived true, false or unde�ned value and
the computed answer substitutions. This guarantees correctness of the answer.
Again a completion �ag will be set, when all outstanding clauses have been
resolved. Due to the coherence principle default negated calls are also variant
calls of explicit negated calls.

92

4 The ContractLog KR

As a result, SLE resolution cuts positive and negative loops by the use of
goal memoization and allows to postpone results of temporarily unknown calls
in negative loops until all answers are collected. The linearity property of SLD-
style resolutions is preserved in SLE since �rst all tabled answers are used in a
FIFO style and then the remaining clauses are applied in their occurrence order.
This linearity is crucial to support strictly sequential operators such as cuts in
order to impose a more procedural reading on certain parts of the program.
This allows implementing "if-then-else"-style rule pairs which are often needed
in contracts to de�ne alternatives. And, it allows to situationally prune the
search space leading to signi�cant computational savings. Moreover, it is also
necessary for serial updates and procedural attachments in rules which must
apply in a prede�ned order. Due to the linearity, the underlying algorithm of
SLE resolution can be implemented by an extension of standard abstract ma-
chines such as Prolog's ATOAM or WAM, enabling e�cient stack-based memory
structures.

Remarkably, in my reference implementation of the ContractLog/RBSLA in-
ference engine I use some form of trampoline for the implementation of the
SLE resolution algorithm instead of Prologs' standard stack-based recursion. A
trampoline is a piece of code that repeatedly calls inner functions by an outer
loop. All functions are entered by the trampoline, i.e., by the outer loop. When
a function has to call another function, instead of calling it recursively it re-
turns the continuation of the function to be called, the arguments to be used,
and so on, to the outer loop. This ensures that the stack does not grow and
iteration can continue inde�nitely. The sub-goals derived by uni�cation in the
proof function are passed by an e�cient stack (not the system stack) to the
outer trampoline. As a result, the resolution process will never run into the
typical stack-over�ows for large problem sizes which lead to deeply nested and
recursively expanded SLD derivation trees.

In comparison to existing top-down tabling methods for goal memoization the
ContractLog approach has the following properties:

• Tabled resolutions supporting goal memoization such as SLG are non-
linear approaches which cannot be implemented using an e�cient stack-
based memory structure.

• Unlike SLG-resolution and other existing tabling methods, the Contract-
Log memoization does not distinguish between look-up nodes and goal
answers. All nodes will be expanded by applying �rst the existing mem-
orized answers; if no answer can be found in the tables the goal will be
expanded in standard linear SLD-style using clauses from the knowledge
base.

• Because of the linearity for query evaluation e�cient sequential Prolog-
style operators such as cuts, procedural attachments with external side
e�ects and serial update rules can be still supported and used, e.g., in
order to implement e�cient "if-then-else" rule representations or program
parts with a more procedural meaning.

93

4 The ContractLog KR

In the following sections of this chapter I further elaborate on the ContractLog
KR and subsequently extend the core syntax and semantics with further logical
formalisms which are needed to adequately represent and execute rule-based
SLAs or policies.

4.2 Typed Logic

Traditional logic programming languages such as most Prolog derivatives are
typically purely based on the untyped theory of predicate calculus with un-
typed logical objects (untyped terms). That is, the logical reasoning algorithms
apply pure syntactical reasoning and use �at untyped logical objects (terms) in
their rule descriptions. From the engineering perspective of a rule-based SLA
speci�cation this is a serious restriction which lacks major SE principles such
as data abstraction or modularization. Such principles become important when
rule applications grow larger and more complex, are engineered and maintained
by di�erent people and are managed and interchanged in a distributed environ-
ment over domain-boundaries. To support such SE principles in declarative SLA
programming and capture the rule engineer's intended meaning of a contract,
types and typed objects play an important role.

SLA rules are typically de�ned over external business objects and business/-
contract vocabularies. Types are an appropriate way to integrate such domain
speci�c ontologies into dynamic domain-independent SLA rules. As a result,
such typed rules are much easier to interchange and semantically interpret be-
tween domain-boundaries in distributed environments such as the (Semantic)
Web, where the domain vocabularies are expressed as ontologies written in ex-
pressive ontology languages such as RDF(S) or OWL. From a descriptive point
of view types attach additional information, which can be used as type con-
straints for selecting speci�c goals, i.e., they constrain the level of generality in
queries, lead to much smaller search spaces and improve the execution e�ciency
of query answering.

Moreover, SLM tools and SLA rules do not simply operate on a static in-
ternal fact base, but access a great variety of external systems such as system
and network management tools, data warehouses / data bases, EJBs, Web Ser-
vices. It is desirable for any practical rule-based SLA system to enable dynamic
access to these external data sources and programming interfaces in order to
reuse the existing procedural and highly optimized functionalities for certain
tasks in the inference process of deriving answers from rules. For instance, al-
though it is possible to use a LP inference engine for reasoning with numbers
and mathematical computations e.g., based on a formalization of the Peano ax-
ioms of arithmetic [Lan51], this will never be computationally e�cient (since
here reasoning is done in an in�nite domain which needs to be recursively ex-
panded). Hence, such computations, e.g., adding two numbers and using the
resulting sum in the further derivation process, should be dynamically shifted
to e�cient external procedural code during run-time, e.g., a Java method which

94

4 The ContractLog KR

implements an add functionality. List computations, aggregations and other
complex selection functions are other examples. If the data (facts) are stored
in an external relational database highly-optimized SQL queries can be used to
temporarily select the needed data, populate the fact base of the rule system,
answer the query, and discard the facts from memory afterwards (possibly with
some intermediate caching in order to speed up query answering for recurring
queries). In fact, as discussed in section 3.1.3 this temporary use of facts during
query time, is one of the major advantages of backward-reasoning rule systems.

In the following I will describe the typed logic with procedural attachments
provided by ContractLog. I �rst review the history of types in logic program-
ming languages and describe basic concepts. Then I introduce two external type
systems which are supported in the ContractLog KR, namely Java class hierar-
chies with support for highly expressive procedural attachments and Description
Logic (DL) Semantic Web ontologies. Based on the heterogeneous integration,
which exploits the optimized reasoning algorithms of external DL reasoners for
ontology reasoning, I will elaborate on a hybrid DL-typed polymorphic uni�ca-
tion as a semantics for a DL-typed logic programming language. Finally, I will
conclude this section with a discussion of the hybrid typed logic.

4.2.1 Types in Logic Programming

De�nition 92 (Type System) A type system [Car97] is responsible for as-
signing types to variables and expressions. It uses the type expressions for static
type checking at compile time and/or dynamic type checking at runtime.

Type systems typically de�ne a type relation of the form t : T , denoting that
the term t is of type T . The primary purpose of a type system is to prevent
typing errors which violate the intended semantics of a rule or function in a LP.
That is, a type system is used to ensure robustness of a LP. By ensuring that the
structure is well-de�ned types enable a more disciplined and regular engineering
process and facilitate modularity and partial speci�cation of the intended use
of the logical functions and their arguments in a logic program. It has been
demonstrated that types play an important role to capture the programmer's
intended meaning of a logic program, see e.g. [Nai92] and that they can be used
to dramatically reduce the rule search space - see e.g., Schubert's Steamroller
Problem which illustrates this advantage [Sti86].

The theory of types in LP has been studied in several works and many dif-
ferent approaches for the introduction of types into logic programming have
been proposed reaching from many-sorted or order-sorted systems with sub-
typing to ad-hoc and parametric polymorphic typing and combinations such
as parametric polymorphic order-sorted type systems. Most of the works on
type systems and their properties are based on the theory of λ-calculus [Bar88]
which gives some fundamentals for reasoning about types in functional lan-
guages and which has been generalized to di�erent programming languages such
as object-oriented or declarative logic programming languages. Based on this

95

4 The ContractLog KR

theory one of the most well-known type systems is the Hindley-Milner type
system [Mil78]. Di�erent forms of type declarations have been proposed such
as declarations which use a rather general constraint language [HS88], logi-
cal formulas [XW88, Nai92], regular sets [Mis84, MR85, HJ92, DZ92a, AE93],
equational speci�cations [Han92] or typed terms over a order-sorted structure
[MO84, LR91, SNGM89, HT92, Han91] (see e.g. [Pfe92] for an overview).

In general, the works can be classi�ed into two di�erent views on types in logic
programming, namely descriptive types and prescriptive types [Red88] (aka ex-
plicit and implicit types or syntactic and semantic typing). Early work on
types in logic programming mainly concentrate on descriptive type systems,
e.g. [DZ92b, Mis84, HCC94, Zob87] which attach type information with pro-
grams without changing the language used and without a�ecting the meaning
of logic programs. These descriptive approaches are seeking to approximate
the structure of a program for use by an optimizing compiler at compile time.
For instance, Mycroft and O'Keefe [MO84] demonstrated that the polymorphic
type discipline of Milner [Mil78] can be represented in pure Prolog, where the
type declarations for variables occur outside of the clauses and do not change
the semantics of the pure Prolog program. Dietrich and Hagl's [DH88] extend
this approach with input/output mode declarations and subsorts. In contrast,
prescriptive type systems, e.g., Gödel [HL94], Typed Prolog [LR91], λ-Prolog
[MN86, MNFS91], consider types as properties of the formulas one wants to give
a meaning to, i.e., they use a typed logic for programming leading to languages
with higher expressiveness. The purpose is to identify ill-typed programs, so
that the actual semantics of a program satis�es the intended semantics of the
rule engineer. Lakshman and Reddy have rede�ned the Mycroft-O'Keefe type
discipline as Typed Prolog [LR91] which adopts the prescriptive view and gives a
semantics to the typed logic programs. Several other works follow this approach
of de�ning semantics for prescriptive typed LPs, e.g. [HJ92, HT92, LR91].

These semantics approaches, to which also my ContractLog work contributes,
base logic programming with types on typed logics that use sorts (type de�ni-
tions). Following the terminology of abstract data types [GTW78, EM85] in
many-sorted type systems sorts are de�ned by their constructors, i.e., the con-
stituent elements of a sort. The sorts are used to de�ne the number of arguments
and their types for every predicate in a logic program. In the many-sorted case
sorts are not allowed to have subsort relations between them and accordingly
type checking can be done statically at compile time, e.g., realized by a prepro-
cessor without any extensions to the underlying unsorted predicate logic.

In the order-sorted approach subsort hierarchies are supported typically by
the use of a order-sorted uni�cation (typed uni�cation) in order to incorporate
some form of subtyping polymorphism for untyped variables which assume the
type of a uni�ed typed term at runtime. A �rst order-sorted logic was given
by Oberschelp [Obe62] and an order-sorted algebra was developed by Goguen
et al. [GM87, Smo89] which forms the basis for the language Eqlog [GM86].
An extended order-sorted algebra with error-handling was proposed by Gogolla
[Gog86]. Several other order-sorted approaches have been described using order-

96

4 The ContractLog KR

sorted uni�cation [Wal87, HV87].

Di�erent forms of polymorphism such as generic polymorphism (see e.g., ML
programming language [Mil78]), ad-hoc polymorphism or parametric polymor-
phism haven been introduced into logic programming. For a discussion of the
di�erences between parametric and ad-hoc polymorphism see e.g. [Str00]. In
the context of polymorphism terms (variables) are authorized to change their
types dynamically at runtime, which makes static compile-time analysis insu�-
cient in general. If the type system permits ad-hoc polymorphism, the uni�ers
for terms are determined by their types and the procedures (logical functions)
being invoked are dependent on this information, i.e., the types a�ect the ques-
tion of uni�ability in an intrinsic way and the computation process must use
some form of typed uni�cation procedure to ensure type correctness also during
runtime. The types are needed to determine the existence of uni�ers and hence
also the applicability of clauses. An interesting aspect of this typed semantics
is that it enables overloading of clauses leading to di�erent functional variants
which are selected dynamically at runtime according to the types of the queries.
As a result, the speci�c inferences that are performed and the correct answers
to queries are directly related to the types of the terms in the program clauses
and the answers to queries not only display the bindings of variables, but also
their types. Typed uni�cation has been studied for order-sorted and polymor-
phic type systems, see e.g., Typed Prolog [LR91], Protos-L [BB89], λ-Prolog
extensions [KNW93].

Order-sorted uni�cation extends the usual term uni�cation with additional
dynamic type checking. In a nutshell, the basic idea of sorted uni�cation of two
typed variables is to �nd the greatest lower bound (glb) of their types based
on the type hierarchy with subtype relationships, failing if it does not exist. In
other words, the uni�cation algorithm tries to �nd the glb of two sort restrictions
yielding a variable whose sort restriction is the greatest common subsort of
the two sorts of the uni�ed terms in the given sort hierarchy. This typing
approach provides higher levels of abstractions and allows ad-hoc polymorphism
wrt coercion, i.e., automatic type conversion between subtypes, and overloading,
i.e., de�ning multiple functions (rules with the same head but di�erent types)
taking di�erent types, where the uni�cation algorithm automatically does the
type conversion and calls the right function (uni�es a (sub-)goal with the right
rule head).

Parametric polymorphic types allow to parameterize a structured sort over
some other sort, i.e., types and predicates can be written generically so that
they can deal equally with any object without depending on their types, in con-
trast to the many-sorted case, where for each predicate variant having a di�erent
type a sort de�nition must be given explicitly. Typically, parametric polymor-
phism still maintains full static type-safety on a syntactic level. But, there
are approaches with a semantic notion of polymorphic types, e.g., order-sorted
parametric polymorphic typed logics which have to take the type information
into account at runtime and hence require an extended uni�cation algorithm
with type inferencing, as in the order sorted case. These polymorphic type

97

4 The ContractLog KR

systems being very complicated artifacts both theoretically and computational
wise and have been primarily designed for use in the context of higher-order
logic programming. The emphasis in these higher-order type languages has
been on describing conditions under which the computationally expensive type
analysis can be avoided at runtime which often amounts to banishing ad hoc
polymorphism and applying several restrictions to function symbols which must
be type preserving. Recent works on types for LPs have concentrated on im-
plementation techniques for e�ciently checking or inferring types at runtime, in
particular polymorphic types, e.g., by means of abstract interpretations [Lu98]
or constraint solving techniques [DGdlBS99].

4.2.2 Description Logic Type System

Until recently, the use of Semantic Web ontology languages such as OWL [MH04]
or RDFS [BG04b] has been limited primarily to de�ne meta data vocabularies
and add semantic machine-readable meta data toWeb pages enabling automated
processing of Web contents. But, Semantic Web ontologies also qualify to rep-
resent agreement related vocabularies as plug-able webized type systems. They
can be used to de�ne domain-speci�c vocabularies, e.g., WSMO [WSM05b], WS-
Policy OWL ontology [PKH05, VAG05], OWL-S [OS03] or KAoS [JCJ+03] or
other ontologies such as OWL time [PH04], which can be dynamically integrated
into domain-independent contract rules giving the rule terms a domain speci�c
meaning. Both, description logics [NBB+02] which form the logical basis of Se-
mantic Web serialization languages such as OWL (see section 3.4.2) and (Horn)
LPs (if restricted to function-free Datalog LPs or normal/extended LPs with �-
nite functions) are decidable fragments of �rst order logic, however for the most
part with orthogonal expressive power. Whereas OWL is basically restricted to
unary resp. binary axioms, but e.g., provides classical/strong negation under
open world assumption (OWA) and existentially as well as universally quanti-
�ed variables, Datalog LPs allow n-ary axioms and non-monotonic negations,
but are restricted to universal quanti�cations and are therefore not able to rea-
son about unknown individuals. Clearly, both approaches can bene�t from a
combination and several integration approaches have been proposed recently.

The works on combining rules and ontologies can be basically classi�ed into
two basic approaches: homogeneous and heterogeneous integrations [Pas05g].
Starting from the early Krypthon language [BGL85] among the heterogeneous
approaches, which hybridly use DL reasoning techniques and tools in com-
bination with rule languages and rule engines are e.g., CARIN [LR96], Life
[AKP91], Al-log [DLNS91], non-monotonic dl-programs [ELST04] and r-hybrid
KBs [Ric05]. Among the homogeneous approaches which combine the rule com-
ponent and the DL component in one homogeneous framework sharing the com-
bined language symbols are e.g., DLP [GHVD03], KAON2 [MSS05] or SWRL
[HPSB+04]. Both integration approaches have pros and cons and di�erent in-
tegration strategies such as reductions or �xpoint iterations are applied with
di�erent restrictions to ensure decidability. These restrictions reach from the

98

4 The ContractLog KR

intersection of DLs and Horn rules [GHVD03] to leaving full syntactic freedom
for the DL component, but restricting the rules to DL-safe rules [MSS05], where
DL variables must also occur in a non DL-atom in the rule body, or role-safe
rules [LR96], where at least one variable in a binary DL-query in the body of a
hybrid rule must also appear in a non-DL atom in the body of the rule which
never appears in the consequent of any rule in the program or to tree-shaped
rules [HVNV05]. Furthermore, they can be distinguished according to their in-
formation �ow which might be uni-directional or bi-directional. For instance, in
homogeneous approaches bi-directional information �ows between the rules and
the ontology part are naturally supported and new DL constructs introduced in
the rule heads can be directly used in the integrated ontology inferences, e.g.,
with the restriction that the variables also appear in the rule body (safeness
condition). However, in these approaches the DL reasoning is typically solved
completely by the rule engine and bene�ts of existing tableau based algorithms
in DL reasoners are lost. On the other hand, heterogenous approaches, bene�t
from the hybrid use of both reasoning concepts exploiting the advantages of
both (using LP reasoning and tableaux based DL reasoning), but bi-directional
information �ow and fresh DL constructs in rule heads are much more di�cult
to implement. In summary, the question whether the Semantic Web should
adopt an homogeneous or heterogenous view is still very much at the beginning
and needs more investigation.

In ContractLog I have implemented support for both homogeneous and het-
erogeneous integration approaches, in the so called OWL2Prova API of the
ContractLog KR. In the context of term typing using ontologies or object class
hierarchies as order-sorted type systems, I apply a hybrid prescriptive typing
approach, implemented on top of the OWL2Prova API, which exploits highly
optimized external DL reasoner for type checking by means of subsumption
checking and instance inference permitting also equivalence reasoning or inner
anonymous existentials. In contrast to homogenous approaches such as SWRL
[HPSB+04], which is based on the union of OWL-DL and Datalog, or DLP
[GHVD03], which is based on the intersection of restricted OWL and Data-
log, my heterogeneous approach has the advantage that is does not need any
non-standard homogenous reasoning services. Instead, it may reuse existing
implementations exploiting e.g., highly optimized external DL reasoner for DL
reasoning tasks and a rule engine for the rule reasoning tasks.

In most hybrid approaches, which combine ontologies and rules, the inter-
action between the subsystems is solved by additional constraints in the body
of (Datalog) rules, which restrict the values of variables and constants in the
constraint clauses to range over the instances of the externally speci�ed DL
concepts. Although this constraint solution to some extent ensures expressive-
ness in the sense that it allows to reuse the binary relations (classes and object
properties) de�ned in the external ontology, it has some serious drawbacks in
the context of term typing, since this approach leaves the usual operational se-
mantics of resolution and uni�cation unchanged. Hence, the constraints apply
only in the body of a rule according to the selection function of the LP inference
algorithm which typically selects the "left-most" uni�ed literal as next subgoal.

99

4 The ContractLog KR

As a result, according to the standard depth-�rst strategy the type constraints
are used relatively late in the derivation process. In particular, they do not
apply directly during the uni�cation between (sub)goals and rule heads, which
leads to large and needless search spaces (failed search trees) and might lead
to unintended results, since there is no way to directly verify and exclude the
uni�cation of typed free (sub)goals and typed rule heads which do not match
according to their type de�nitions. Moreover, fresh typed constant terms, i.e.,
new DL instances of a particular DL type (class), can not be introduced directly
in rule heads since this would require special semantics and formalizations, e.g.,
with conjunctive rule heads consisting of a literal which de�nes the individual
and another literal which de�nes its type (or Lloyd-Topor transformations). For
instance, a rule with a variable X of type C in the rule head, would need an
extra constraint, e.g., type(X,C) in the body: p(X) ← q(X), type(X,C). Ob-
viously, such a constraint rule is dependent on the order of the body atoms:
if type(X,C) is before q(X) the variable X might not be bound to a ground
individual and hence can not be veri�ed; on the other hand, if it is after q(X)
it does not directly constrain the subgoal q(X), which might be possibly very
deep including many variable bindings which are not of type C.

In contrast to these constraint approaches or approaches which apply explicit
additional DL-queries/atoms in the rules' body for querying the type system,
I have implemented a hybrid typed logic in ContractLog where dynamic type
checking for prescriptively typed term is directly integrated into the uni�ca-
tion process, i.e., directly implemented within the operational semantics, rather
than indirectly through the resolution-based inference mechanism solving the
additional constraint/query terms in the body of rules. The interaction during
typed uni�cation between the rule component and the DL type system is based
on entailment. As a result, the hybrid typed method provides a built-in techni-
cal separation between the inferences in the rule component and the type checks
in the DL type system (resp. Java type system) which results in:

• in more e�cient computations, since the type restrictions directly apply
during the uni�cation of typed terms

• higher �exibility with minimal interfaces (based on entailment) between
rules component and the type system

• robustly decidable combinations, even in case where the rule language is
far more expressive than Datalog and no safeness restrictions apply

• enhanced language expressiveness, e.g., ad-hoc polymorphism with over-
loading is possible, type casting during order-sorted uni�cation, data ab-
straction and modularization

• existing highly optimized implementations can be reused, e.g., external
DL reasoner for type checking

• rules can be more intuitively modelled and easily combined and inter-
changed

100

4 The ContractLog KR

In the following two subsections I will describe the syntax and semantics of the
typed logic of the ContractLog KR. In particular I will elaborate on hybrid de-
scription logic programs (hybrid DLPs), namely description logic Semantic Web
type systems (DL type systems with DL-types) which are used for term typing
of LP rules based on a polymorphic, order-sorted, hybrid DL-typed uni�cation
as operational semantics for hybrid DLPs.

4.2.3 Syntax of Typed ContractLog

ContractLog assumes not just a single universe of discourse, but several domains,
so called sorts (types). I �rst describe the basic extension of the language for
extended LPs towards a multi-sorted logic, i.e., the extension of the signature
and the variables of the alphabet with sorts (aka types).

De�nition 93 (Multi-sorted Signature) A multi-sorted signature S is de-
�ned as a tuple 〈T , P , F , arity, c, sort〉 where T = {T1, .., Tn} is a set of sort/-
type symbols called sorts. The function sort associates with each predicate, func-
tion or constant its sorts:

• if c is a constant, then sort(c) returns the type T of c.

• if p is a predicate of arity k, then sort(p) is a k-tuple of sorts sort(p) =
(T1, .., Tk) where each term ti of p is of some type Tj, i.e., ti : Tj.

• if f is a function of arity k, then sort(f) is a k+1-tuple of sorts sort(f) =
(T1, .., Tk, Tk+1) where (T1, .., Tk) de�nes the sorts of the domain of f and
Tk+1 de�nes the sorts of the range of f

I de�ne the following three basic types of sorts

1. primitive sorts are given as a �xed set of primitive data types such as
integer, string, etc.

2. function sorts are complex sorts constructed from primitive sorts (or other
complex sorts) T1 × ...× Tn → Tn+1

3. Boolean sorts are (predicate) statement of the form T1 × ...× Tn

Additionally, each variable Xj in the language with a multi-sorted signature
is associated with a speci�c sort: sort(Xj) = Ti, which I abbreviate as Xj : Ti
(note: sorts must not be distinct for variables). The intuitive meaning is that
a predicate or function holds only if each of its terms is of the respective sort
given by sort. A binary equality predicate = exists in the language. I write
t1 = t2 instead of = (t1, t2) to denote that two terms are equal, e.g., 1 = 1.

De�nition 94 (Multi-sorted Logic) A multi-sorted logic associates which
each term, predicate and function a particular sort:

101

4 The ContractLog KR

1. Any constant or variable t is a term and its sort T is given by sort(t)

2. Let f(t1, .., tn) be a function then it is a term of sort Tn+1 if sort(f) =
〈T1, .., Tn, Tn+1〉, i.e., f takes argument of sort T1, .., Tn and returns argu-
ments in sort Tn+1.

I now extend the language to consider external sort/type alphabets. The
combined signatures of the rule language and the external type languages form
the basis for combined hybrid knowledge bases and the integration of external
type systems into the rule system.

De�nition 95 (Type alphabet) A type alphabet T is a �nite set of monomor-
phic sort/type symbols built over the distinct set of terminological class concepts
of a (external type) language.

Informally, a typed ContractLog LP consists of an extended LP with typed
terms and a set of external (order-sorted) type systems in which the types (sorts)
are de�ned over their type alphabets. An external type system might possibly
de�ne a complete knowledge base with types/sorts (classes) and individuals
associated with these types (instances of the classes). Restricted built-in and
procedural attachment predicates or functions which construct or return indi-
viduals of a certain type (boolean or object-valued) are also considered to be
part of the external type system(s), i.e., part of the external signature. The
combined signature is then the union of the two (or more) signatures, i.e., the
combination of the signature of the rule component and the signatures of the
external type systems / knowledge bases combining their type alphabets, their
functions and predicates and their individuals.

De�nition 96 (Combined Signature) A combined signature S is the union
of all its constituent �nite signatures: S = 〈S1 ∪ .. ∪ Sn〉

Based on this de�nition of a combined signature I now describe the concrete
syntax of typed ContractLog. Using equalities ContractLog implements a notion
of default inequality for the combined set of individuals/constants which leads
to a less restrictive unique name assumption:

De�nition 97 (Default Unique Name Assumption) Two ground terms are
assumed to be unequal, unless equality between the terms can be derived.

The type systems considered in ContractLog are order-sorted (i.e., with sub-
type relations):

De�nition 98 (Order-sorted Type System) A �nite order-sorted type sys-
tem TS comes with a partial order ≤, i.e., TS under ≤ has a greatest lower
bound glb(T1, T2) for any two types T1 and T2 having a lower bound at all.
Since TS is �nite also a least upper bound lub(T1, T2) exists for any two types
T1 and T2 having an upper bound at all.

102

4 The ContractLog KR

Currently, ContractLog provides support for two external order-sorted type
systems, one is Java (implemented in Prova [KS04]) and the other one are
Semantic Web ontologies (de�ned in OWL or RDFS) respectively Description
Logic KBs. In the following two subsections I de�ne the syntax of typed Con-
tractLog for both external type systems. I have chosen a prescriptive typing
approach, where types are direct properties of the logical formulas, i.e., are
directly attached to terms in a type relation t : T , denoting that a term t has
a type T . This has several advantages for the semantics as I will discuss later.
The EBNF syntax for the typed ContractLog language has been already given
in section 4.1.1.

4.2.3.1 Java-typed ContractLog Syntax

The combined multi-sorted signature SJava uses the fully quali�ed order-sorted
Java class hierarchy as type symbols. In order to type a variable with a Java
type the fully quali�ed name of the Java class to which the variable should
belong must be speci�ed as a pre�x separated from the variable by a dot ".".

Example 4

java.lang.Integer.X variable X is of type Integer

java.util.Calendar.T variable T is of type Calendar

java.sql.Types.STRUCT.S variable S is of SQL type Struct

Java objects, as instances of Java classes, can be dynamically constructed by
calling their constructors or static methods using highly-expressive procedural
attachments. The returned objects, might then be used as individuals/constants
that are bound by an equality relation (denoting typed uni�cation equality) to
appropriate variables, i.e., the variables must be of the same type or of a super
type of the Java object (see type uni�cation).

Procedural Attachments A procedural attachment is a function that is im-
plemented by an external procedure (i.e., a Java method). They are used to
dynamically call external procedural methods during runtime, i.e., they enable
the (re)use of procedural code and allow dynamic access to external data sources
and tools using their programming interfaces (APIs). Hence, in particular in
the SLA domain, they are a crucial extension to traditional logic programming,
combining the bene�ts of object-oriented languages (Java) with declarative rule
based programming, e.g., in order to externalize mathematical computations
such as aggregations to highly optimized procedural code in Java or use query
languages such as SQL by JDBC to select and aggregate facts from external
data sources.

De�nition 99 (Procedural Attachments) A procedural attachment is a func-
tion or predicate whose implementation is given by an external procedure. Two
types of procedural attachments are distinguished:

103

4 The ContractLog KR

• Boolean-valued attachments (or predicate attachments) which call
methods which return a Boolean value, i.e., which are of Boolean sort
(type).

• Object-valued attachments (or functional attachments) which are
treated as functions that take arguments and return one or more objects,
i.e., which are of a function sort.

Functional Java attachments have a left-hand side with which the results (the
returned object(s)) of the call are uni�ed by a uni�cation equality relation =,
e.g., C = java.util.Calendar.getInstance(). If the left-hand side is a free (unas-
signed) variable the latter stores the result of the invocation. If the left-hand side
is a bound variable or a list pattern the uni�cation can succeed or fail accord-
ing to the typed uni�cation (see semantics) and consequently the call itself can
succeed or fail. List structures are used on the left-hand side to allow matching
of sets of constructed/returned objects to speci�ed list patterns. A predicate
attachment is assumed to be a test in such a way that the call succeeds only if a
true Boolean variable is returned. Static, instance and constructor calls are sup-
ported in both predicate and functional attachments depending on their return
type. Constructor calls follow the Java syntax with the fully quali�ed name of
the class and the constructor arguments, e.g., X = java.lang.Long(123). Static
method calls require fully quali�ed class names to appear before the name of the
static method followed by arguments, e.g., Z = java.lang.Math.min(X,Y). In-
stance methods are mapped to concrete classes dynamically based on the type
of the variable, i.e., the method of a previously bound Java object is called.
They require a variable before the name of an instance method followed by the
arguments, e.g., S = X.toString().

Example 5

add(java.lang.Integer.In1,java.lang.Integer.In2,Result):-

Result = java.lang.Integer.In1 + java.lang.Integer.In2.

add(In1, In2,Result):-

I1 = java.lang.Integer(In1),

I2 = java.lang.Integer(In2),

X = I1+I2,

Result = X.toString().

The �rst rule takes two Integer variables In1 and In2 as input and returns
the result which is bound to the untyped variable Result. Accordingly, a query
add(1, 1, Result)? succeeds with an Integer object 2 bound to the Result vari-
able, while a query add(”abc”, ”def”, Result)? will fail. The second rule takes
the untyped variables In1 and In2 as input arguments and �rst tries to con-
struct Integer objects from the inputs by a constructor call java.lang.Integer,
then adds the two constructed Integer objects and returns the results which is
transformed back to a String value. Accordingly, a query add(”1”, ”1”, Result)?

104

4 The ContractLog KR

with String number representations as inputs will succeed. Primitive datatypes
such as Strings and Integers are directly supported, e.g., a constant 1 is auto-
matically interpreted of the primitive sort/type Integer and a constant abc or
”abc” is of type String.

It is important to note, that Java objects can be bound to variables and their
methods can be dynamically used as procedural attachment functions anywhere
during the reasoning process, i.e., in other rules. This enables a tight and highly
expressive integration of external object oriented functions into declarative rules'
execution.

Built-Ins

De�nition 100 (Built-in Predicates or Functions) Built-in predicates or
functions are special restricted predicate resp. function symbols in the language
for concrete domains, e.g., integers or strings, that may occur in the body of a
rules.

Examples are +, =, assert, bound etc. For a complete overview of all built-ins
see the ContractLog/Prova documentation [KP06].

Input/Output Mode Declarations Procedural attachments and built-ins as
well as unrestricted functions may compromise the safety of rules, since they
may yield to in�nite relations. To ensure safety I require that each variable
occurring as an argument of a procedural attachment, built-in predicate/func-
tion or recursive function must be previously bound. That is, variables are only
allowed to occur in the universal closure of a closed functional or procedural
formula. To represent this restriction for functions and attachments, I de�ne
modes in addition to types in ContractLog. That is, I extend the combined
signature S with mode declarations (mode functions) of the form +,−, ? and a
function mode that associates with each k-ary predicate or function the mode
declaration mi of its argument terms mode(p) = (m1, ..,mk) where each mode
de�nition mi is of some declaration +,−, ?.

De�nition 101 (Modes) Modes are states of instantiation of a predicate /
function described by mode declarations +,-,?, i.e., declarations of the intended
input-output constellations of the predicate / function terms with the following
syntax and semantics:

• "+" The term is intended to be input

• "−" The term is intended to be output

• "?" The term is unde�ned/arbitrary (input or output)

105

4 The ContractLog KR

To syntactically represent modes in ContractLog I use the special built-in
predicates bound(V ariable) to state that the variable must be bound to a ground
value, i.e., is intended to be an input variable, or free(V ariable) to state that
the variable must be free, i.e., is intended to be an output variable. Most
standard Prolog interpreters provide such built-in predicates.

Example 6

add(In1,In2,Result):-

bound(In1),

bound(In2),

free(Result),

Result = In1 + In2.

In the example In1 and In2 are input variables and Result is the out-
put variable, i.e., the mode declaration is add(+,+,−). Accordingly, a query
add(1, 1, Result)? will succeed with 2 as its output whereas a query add(In,
2, Result)? will fail if the variable In is a free variable, which is desirable for
the predicate function add, because for such a query the number of potential
answers would be in�nite.

4.2.3.2 DL-typed ContractLog Syntax

The second sort of type systems supported by ContractLog are webized Semantic
Web ontologies de�ned in RDFS or OWL (OWL Lite or OWL DL). That is,
the combined signature SDL consisting of the �nite signature S of the rule
component and the �nite signature(s) Si of the ontology language(s). Note
that the ContractLog approach is general and can be extended to di�erent DL
languages de�ning DL KBs as type systems. Hence, in the following I use the
term DL also for Semantic Web ontology languages and DL knowledge bases.
For the reason of understandability, I assume only one external type system in
the following.

The type alphabet TS is a �nite set of monomorphic type symbols built over
the distinct set of terminological atomic concepts T in a Semantic Web ontology
language ΣDL, i.e., de�ned by the atomic classes in the T-Box model. Note,
that restricting types to atomic concepts is not a real restriction, because for
any complex concept such as (T1uT2) or (T1tT2) one may introduce an atomic
concept T3 in the T-Box and use T3 as atomic type instead of the complex
concept. This approach is also reasonable from a practical point of view since
dynamic type checking must be computationally e�cient in order to be usable
in an order-sorted typed logic with possible very large rule derivation trees and
many typed uni�cation steps, i.e., fast type checks are crucial during typed term
uni�cation. I assume that the type alphabet is �xed (but arbitrary), i.e., no new
terminological concepts can be introduced in the T-Box by the rules at runtime.
This ensure completeness of the domain and enables static type checking on

106

4 The ContractLog KR

the used DL-types in ContractLog LPs at compile time (during parsing the LP
script).

The set of constants/individuals c is built over the set of individual names in
ΣDL, but I do not �x the constant names and allow arbitrary fresh constants
(individuals) (under default UNA) to be introduced in the head of rules and facts
of the rule base. The precise syntax of DL-typed terms is de�ned as follows:

De�nition 102 (DL-typed Terms) A DL-type is a terminological concept/-
class de�ned in the DL-type system (T-Box model) possibly pre�xed by a URI
namespace abbreviation separated by _, i.e., "namespace_Type". A typed term
is denoted by the relation T : t for typed variable terms and T : t for typed con-
stant terms, i.e., ns_a : ns_C denoting that individual ns_a is of type ns_C
or X : ns_C, i.e., variable X is of type ns_C.

The type ontologies are typically provided on the Web under an unique URL
and types and individuals are represented as resources having an webized URI.
Namespaces can be used to avoid name con�icts and namespace abbreviations
facilitate are more readable language. Note, that fresh individuals which are
introduced in rules or facts apply locally within the scope of the predicate/func-
tion and rules in which they are de�ned, i.e., within a local reasoning chain; in
contrast to the individuals de�ned in the A-box model of the type system which
apply globally as individuals of a class.

Example 7

% Import external type systems

import("http//../dl_typing/businessVocabulary1.owl").

import("http//../dl_typing/businessVocabulary2.owl").

import("http//../dl_typing/mathVocabulary.owl").

import("http//../dl_typing/currencyVocabulary.owl").

reasoner("dl"). % configure reasoner (OWL-DL=Pellet)

% Rule-based Discount Policy

discount(X:businessVoc1_Customer, math_Percentage:10) :-

gold(X: businessVoc1_Customer).

discount(X: businessVoc1_Customer, math_Percentage:5) :-

silver(X: businessVoc1_Customer).

discount(X: businessVoc1_Customer, math_Percentage:2) :-

bronze(X: businessVoc1_Customer).

% Note that these rules use a different vocabulary

107

4 The ContractLog KR

% if the types "Client" and "Customer" are equal

% both typed rule sets unify

% Class equivalence between both "types"

% is defined in the second OWL-DL ontology

gold(X:businessVoc2_Client) :-

spending(X:businessVoc2_Client, S:currency_Dollar),

S:currency_Dollar > currency_Dollar:1000.

silver(X:businessVoc2_Client) :-

spending(X:businessVoc2_Client, S:currency_Dollar),

S:currency_Dollar > currency_Dollar:500.

bronze(X:businessVoc2_Client) :-

spending(X:businessVoc2_Client, S:currency_Dollar),

S:currency_Dollar > currency_Dollar:100.

% Facts

spending(businessVoc1_Customer:Adrian, currency_Dollar:1000).

spending(businessVoc1_Customer:Aira, currency_Dollar:200).

% Query

:-solve(discount(X:businessVoc_Client, Y:math_Percentage)).

The example shows term typing with "plug-able" (imports of) Semantic Web
type vocabularies. Remarkably, businessV ocabulary1 de�nes a type Customer
which is de�ned to be equal to the type Client in businessV ocabulary2 (not
shown here). Hence, both types unify and the �rst three rules unify with the
second three rules of the discount policy and the de�ned facts. The user can use
both types interchangeable to de�ne queries on the hybrid KB, i.e., the domain-
speci�c vocabulary of choice can be used. This leads to a very �exible and
compact language design where rules can be given a domain-speci�c meaning
with a precise semantics by using external domain-speci�c vocabularies as type
systems for terms.

Free DL-typed variables are allowed in facts. They act as free instance queries
on the ontology layer, i.e., they query all individuals of the given type and bind
them to the typed variable. In addition ContractLog provides a special query
predicate which can be used in the body of rules to interact with the ontol-
ogy component and explicitly expressed queries, such as concept membership,
role membership or concept inclusion on the DL knowledge base. The special
query predicate rdf (implemented in owl.prova library) is used to query external
ontologies written in RDF(S) or OWL (OWL Lite or OWL DL).

Example 8

108

4 The ContractLog KR

% Bind all individuals of type "Wine" to the variable "Subject"

% using the owl ontology WineProjectOWL.owl and the "rdfs" reasoner

rdf("./examples/function_tests/owl/testdata/WineProjectOWL.owl",

"rdfs",Subject,"rdf_type","http://www.ontologies.com/wine.owl#Wine")

% Use the transitive reasoner and namespace abbreviations

rdf("./rules/function_tests/owl/testdata/WineProjectOWL.owl",

"transitive",Subject,"rdfs_subClassOf","default_Wine")

The �rst argument speci�es the URL of the external ontology. The second
argument speci�es the external reasoner which is used to infer the ontology
model and answer the query. Note, that this hybrid method using an external
reasoner to answer queries provides a technical separation between the inferences
in the Description Logic part which is solved by an optimized external DL
reasoner and the Logic Programming component which is solved by the rule
engine. As a result, the combined approach is robustly decidable, even in case
where the rule language is far more expressive than Datalog. Moreover, the
triple-based query language also supports queries to plain RDF data sources,
e.g., Dublin Core meta data. The following prede�ned reasoner are supported:

• "" | "empty" | null = no reasoner

• default = OWL reasoner

• transitive = transitive reasoner

• rdfs = RDFS rule reasoner

• owl = OWL reasoner

• daml = DAML reasoner

• dl = OWL-DL reasoner

• swrl = SWRL reasoner

• rdfs_full = rdfs full reasoner

• rdfs_simple = rdfs simple reasoner

• owl_mini = owl mini reasoner

• owl_micro = owl micro reasoner

User-de�ned reasoners can be easily con�gured and used. By default, the
selected reasoner is used to query the external models on the �y, i.e., to dy-
namically answer the queries using the external reasoner. But, ContractLog
also supports a pre-processing mode. Here the reasoners are used to pre-infer
the ontology model, i.e., build an inferred RDF triple model where the logical
DL entailments such as transitive subclasses are already resolved at compila-
tion time. Queries then operate on the inferred model which is much faster,

109

4 The ContractLog KR

but with the drawback that updates of the ontology model require a complete
recompilation of the inferred model.

Example 9

:-eval(owl2prova(

transitive, % reasoner

[predicate,subject,object], % converter pattern

"wine.owl", % input file

"wine.prova")). % inferred output file

Special converters can be used to translate the ontology model into a homo-
geneous LP representation, i.e., in LP facts and homogeneous DLP inference
rules. In this homogenous integration mode queries to the DLP component are
directly answered by the rule engine using the DL meta inference rules and the
translated DL facts. The following prede�ned converters are supported by the
OWL2Prova API of the ContractLog KR:

• simple = simple converter

• dlp = homogeneous DLP (Description Logic Programs) with instance
equivalence

• defeasible = defeasible converter

The simple converter allows arbitrary translation patterns to be speci�ed by
the user, e.g., [”predicate”, ”subject”, ”object”] or [”rdf”, ”subject”, ”predicate”,
”object”]. The terms predicate,subject and object are restricted key words in
the user-de�ned translation patterns which give the position of the subject, ob-
ject and property of the input RDF triple in the LP output fact. The �rst term
in the pattern always becomes the predicate name of the output fact.

Example 10
Translation pattern is [”predicate”, ”subject”, ”object”]
RDF input triple is: rbsla : User, rdfs : subClassOf, rbsla : Customer
LP output fact is: rdfs_subClassOf(rbsla_User, rbsla_Customer)

Translation Pattern is: [”rdf”, ”subject”, ”predicate”, ”object”]
RDF input triple is: rbsla : User, rdfs : subClassOf, rbsla : Customer
LP output fact is: rdf(rbsla_User, rdfs_subClassOf, rbsla_Customer)

In the example, according to the �rst translation pattern, the property of
the RDF triple becomes the predicate name of the output fact and subject
and object become the terms within the binary fact. In the second translation
pattern the predicate name is rdf and subject, property and object of the RDF
triple become the terms of the RDF fact.

110

4 The ContractLog KR

The dlp converter follows the homogeneous integration approach as described
in [GHVD03]. It translates RDFS and OWL ontologies into homogeneous DLPs.
For instance:

Example 11
RDFS examples and translation into DLP:

C v D, i.e., class C is subclass of class D: C(X)← D(X).
Q v P , i.e., Q is a subproperty of P : P (X,Y)← Q(X,Y).
T v ∀P.C, i.e., the range of property P is class C: C(Y)← P (X,Y).
T v ∀P−.C, i.e., the domain of property P is class C: C(X)← P (X,Y).
a : C, i.e., the individual a is an instance of class C: C(a).
< a, b >: P , i.e., the individual a is related to the individual b by the property
P : P (a, b)

OWL examples:

C ≡ D, i.e., class C is equivalent to class D: C(X) : −D(X).D(X) : −C(X).
P ≡ Q, i.e., the property P has the same extension as the property Q: P (X,Y) :
−Q(X,Y).
P+ v P , i.e., the property P is transitive: P (X,Z) : −P (X,Y), P (Y, Z)

To overcome restrictions of the homogeneous DLP approach I have imple-
mented several extensions in the DLP converter. For example, I de�ne an in-
stance mapping to represent equivalent (owl:sameAs) individuals with an unique
ID (also for unde�ned individuals). This allows representing individual equiv-
alence and unde�ned individuals which are missing in the homogeneous DLP
fragment as de�ned by [GHVD03].

4.2.4 Semantics of Typed ContractLog

4.2.4.1 Declarative Semantics: Multi-Sorted Logic

As discussed in section 3.3.2.2 the semantics of a LP P is typically de�ned wrt
to the closed Herbrand universe U(P). I now extend the domain of discourse
towards a combined knowledge base de�ned over a combined signature where
individuals and types (sorts) from one or more type systems outside of the �xed
domain of the rule component are taken into account. The semantics of the
combined KB based on an extended Herbrand base is then de�ned wrt to the
combined signature.

De�nition 103 (Combined Knowledge Base) The combined knowledge base
of a typed ContractLog LP KB = 〈Φ,Ψ〉 consists of a �nite set of (order-sorted)
type systems / type knowledge bases Ψ = {Ψ1∩ ..∩Ψn} and a typed ContractLog
KB Φ.

111

4 The ContractLog KR

The combined signature is the union of all constituent signatures, i.e., each
interpretation of a ContractLog LP has the set of ground terms of the combined
signature as its �xed universe.

De�nition 104 (Extended Herbrand Base) Let KB = 〈Φ,Ψ〉 be a typed
combined ContractLog LP P . The extended Herbrand base of P , denoted B(P),
is the set of all ground literals which can be formed by using the predicate symbols
in the combined signature with the ground typed terms in the combined universe
U(P), which is the set of all ground typed terms which can be formed out of the
constants, type and function symbols of the combined signature.

The grounding of the combined KB is computed wrt the composite signature.

De�nition 105 (Grounding) Let P be a typed (combined) ContractLog LP
and c its set of constant symbols in the combined signature. The grounding
ground(P) consists of all ground instances of all rules in P w.r.t to the combined
multi-sorted signature which can be obtained as follows:

• The ground instantiation of a rule r is the collection of all formulae r[X1 :
T1/t1, .., Xn : Tn/tn] with X1, .., Xn denoting the variables and T1, .., Tn
the types of the variables (which must not necessarily be disjoint) which
occur in r and t1, .., tn ranging over all constants in c wrt to their types.

• For every explicit query/goal Q[X1 : T1, .., Xm : Tm] to the type system,
being either a fact with one or more free typed variables X1 : T1, .., Xm : Tm
or a special query atom rdf(...) with variables as arguments in the triple-
like query, the grounding ground(Q) is an instantiation of all variables
with constants (individuals) in c according to their types.

The interpretation I of a typed program P then is a subset of the extended
Herbrand base B(P).

De�nition 106 (Multi-sorted Interpretation) Let KB = 〈Φ,Ψ〉 be a com-
bined KB and c its set of constant symbols. An interpretation I for a multi-sorted
combined signature S consists of

1. a universe |M | = T I1 ∪T I2 ∪ ..∪T In , which is the union of the types (sorts),
and

2. the predicates, function symbols and constansts/individuals c in the com-
bined signature, which are interpreted in accordance with their types.

The assignment function σ from the set of variable X of P into the combined
universe U(P) must respect the sorts/types of the variables (in order-sorted type
systems also subtypes). That is, if Xi is a variable of type T , then σ(X) ∈ T I .
In general, if φ is a typed predicate or function in Φ and σ an assignment to the
interpretation I, then I |= φ[σ], i.e., φ is true in I when each variable X of φ is

112

4 The ContractLog KR

substituted by the values σ(X) wrt to its type. Since the assignment to constant
and function symbols is �xed and the domain of discourse corresponds one-to-
one with the constants c in the combined signature U(P), it is possible to identify
an interpretation I with a subset of the extended Herbrand base: I ⊆ B(P).

The assignment function is then given as a query from the rule component
to the type system, so that there is a separation between the inferences in
a type system and the rule component. Moreover, explicit queries to a type
system (Java or Semantic Web) de�ned in the body of a rule, e.g., procedural
attachments, built-ins or ontology queries (special rdf query or free DL-typed
facts) are based on this hybrid query mechanism. The query interaction between
the rules and the type system is based on entailment. I now de�ne the notion
of model for a typed ContractLog LP

De�nition 107 (Model) Let KB = 〈Φ,Ψ〉 be a combined KB of a typed Con-
tractLog LP P .
An interpretation I is a model of an untyped ground atom A ∈ KB or I satis�es
A, denoted I |= A i� A ∈ I.
I is a model for a ground typed atom A : T ∈ KB, or I satis�es A : T , denoted
I |= A : T , i� A : T ∈ I and for every typed term ti : Tj in A the type query
Tj = sort(ti), denoting the type check "is ti of type Ti", is entailed in KB, i.e.,
KB |= Ti = sort(ti) (in an order sorted type system subtypes are considered,
i.e., ti is of the same or a subtype of Tj).
I is an interpretation of an ground explicit query/goal Q to the type system Ψ
if Ψ |= Q.
I is a model of a ground rule r : H ← B i� I |= H(r) whenever I |= B(r). I is
a model a typed program P (resp. a combined knowledge base KB), denoted by
I |= P , if I |= r for all r ∈ ground(P).

Note, that the de�nition considers the combined KB KB, i.e., fresh typed
individuals/constants are allowed to be introduced in the head of rules. To
support WFS as default semantics for negated queries to external type systems
in ContractLog, i.e., the negated type query ∼ Q succeeds, if the query fails, i.e.,
Ψ 2 Q, I extend the de�nition of unfounded sets with additional query atoms
to the external type systems (knowledge bases).

De�nition 108 (Unfounded Set) Let P be a typed LP (combined KB). Let
I be a partial interpretation. Let A ⊆ BP be a set of ground atoms. α is
an unfounded set of P wrt I, if for every atom A ∈ α and every ground rule
r ∈ ground(P) with a �nite sequence of ground standard literals and type query
atoms (querying the type system) in B(r) at least one of the following conditions
holds:

1. at least one standard body literal L ∈ B(r) is false in I.

2. at least one standard positive body literal L ∈ B(r) is contained in α.

113

4 The ContractLog KR

3. at least one type query atom Q ∈ B(r) is false in I ∪ ¬α.

4. at least one negative type query atom ∼ Q ∈ B(r) is true in I

Remark 1 Note, that the structures in Java type systems are usually not con-
sidered as interpretations in the strict model-theoretic de�nition, but are compos-
ite structures involving several di�erent structures whose elements have a certain
inner composition. However, transformations of composite structures into their
�at model theoretic presentations is in the majority of cases possible. From a
practical point of view, it is convenient to neglect the inner composition of the
elements of the universe of a structure. These elements are just considered as
"abstract" points devoid of any inherent meaning. Note that this does not hold
for procedural functions and predicates (boolean-valued attachments / built-ins)
de�ned on them.

This structural mapping between objects from their interpretations in the
Java universe to their interpretation in the rule system ignoring �ner-grained
di�erences that might arise from the respective de�nitions is given by the fol-
lowing isomorphism.

De�nition 109 (Isomorphism) Let I1, I2 be two interpretations of the com-
bined signature S = {T1, .., Tn}, then f∼= : |M1| → |M2| is an isomorphism of
I1 and I2 if f∼= is a one-to-one mapping from the universe |M1| of I1 onto the
universe |M2| of I2 such that:

1. For every type Ti, t ∈ T I1i , i� f∼=(t) ∈ T I2i
2. For every constant c, f∼=(cI1) ∼= cI2

3. For every n-ary predicate symbol p with n-tuple t1, .., tn ∈ |M1|, 〈t1, .., tn〉 ∈
pI1 i� 〈f∼=(t1), .., f∼=(tn)〉 ∈ pI2

4. For every n-ary function symbol f with n-tuple t1, .., tn,∈ |M1|,
f∼=(f I1(t1, .., tn)) ∼= f I2(f∼=(t1), .., f∼=(tn))

For instance, in ContractLog an isomorphism between Boolean Java objects
and their model-theoretic truth value is de�ned, which makes it possible to treat
boolean-valued procedural attachments as body atoms in rules and establish an
entailment relation as de�ned above between the Java type system and the
model-theoretic semantics of the typed logic of the rule component. Other
examples are String objects which are treated as standard constants in rules, i.e.,
they map with the untyped theory of logic programming. Primitive datatype
values, from the ontology resp. XML domain (XSD datatypes) can be mapped
similarly.

114

4 The ContractLog KR

4.2.4.2 Operational Semantics: Hybrid Polymorphic Order-Sorted
Uni�cation

In the following I de�ne the operational semantics of typed ContractLog LPs.
In contrast to other hybrid approaches which apply additional constraint atoms
as type guards in the rule body and leave the usual machinery of resolution and
uni�cation unchanged, the operational semantics for prescriptive types in Con-
tractLog's typed logic is implemented by an order-sorted uni�cation. Here the
speci�c computations that are performed in this typed language are intimately
related to the types attached to the atomic term symbols. The order-sorted
uni�cation yields the term of the two sorts (types) in the given sort hierarchy.
This ensures that type checks apply directly during typed uni�cation of terms
at runtime enabling ad-hoc polymorphism of variables leading e.g., to di�erent
optimized rule variants and early constrained search trees. Thus, the order-
sorted mechanism provides higher level of abstraction, providing more compact
and complete solutions and avoiding possibly expensive backtracking.

The standard untyped uni�cation algorithm in logic programming serves as
a tool for the resolution principle (see section 3.3.2.1. For a survey on uni�-
cation theory see, e.g. [BS01, Sie89]. In the following I �rst de�ne the rules
for untyped uni�cation in terms of equation-solving transformations [MM82]
for elimination (El), decomposition (De), variable binding (Bi) and orientation
(Or). The judgements beneath the horizontal line is the conclusion of the rule
and the judgements below the line are the premises of the rule. The computa-
tion starts with a set of equations Eq = {(t1 = t′1), .., (tn = t′n)} representing
the terms to be uni�ed, and to transform Eq into the solved set of equations
Eq′ using the following four transformation rules El,De,Bi and Or:

1. (El) Eq ` (X=X)
Eq , where X is a variable

2. (De) Eq ` (f(t1,..,tn)=f(t
′
1,..,t

′
n))

Eq `{(t1=t
′
1),..,(tn=t′n)}

, where f is a predicate or function

3. (Bi) Eq ` (X=t)
θ(Eq)` (X=t) , where X is a variable, t is a constant or variable term,

and X occurs in Eq but not in t, and where θ = {X/t}

4. (Or) Eq ` (t=X)
Eq ` (X=t) , where X is a variable and t is not a variable

The computation starts with a set of equations Eq = {t1 = t
′
1, ..., tn = t

′
n}

where {ti/t
′
i} describes the pairs of uni�able terms. Using the four rules Eq

is transformed into a set of equations Eq
′

= {Xi = ti|i ∈ {1, .., n}} where Xi

are distinct variables which do not occur elsewhere in Eq
′
. Uni�cation fails, if

there is an equation (f(t1, .., tn) = f
′
(t
′
1, .., t

′
m)) ∈ Eq with f 6= f

′
or if there

is an equation (X = t) ∈ Eq such that X ∈ t and X = t. Eq
′
is solved if

Eq
′

= {(Xi/ti)|(Xi = ti) ∈ Eq
′
and Xi ∈ Eq}, then θ = {X1/t1, .., Xn/tn} is

the mgu of Eq.

I now extend this basic set of uni�cation rules to a hybrid polymorphic order-
sorted DL-typed uni�cation. I restrict type checking to �nding the lower bound

115

4 The ContractLog KR

of two types (T1, T2) under the partial order ≤ of the order-sorted type model
with an upper bound > and a lower bound ⊥ ≡ empty and replace the type of a
term with the more speci�c type concept. Therefore, I de�ne a lower operation,
which is applied during typed uni�cation, as follows:

lower(T1, T2) = (T2/T1)→ T1, if T1 ≤ T2

lower(T1, T2) = (T1/T2)→ T2, if T1 > T2

lower(T1,>) = (>/T1)→ T1

lower(>, T2) = (>/T2)→ T2, where > = untyped
lower(T1, T2) = ⊥, otherwise, where ⊥ = empty type.

Note that, the operation lower requires at most two queries to the external
type system to compute the lower bound of two types having a lower bound at
all.

To enable polymorphic typing of variables during typed uni�cation, where a
variable may change its type dynamically, I add the sort function sort(t) = T
to the set of equations Eq, which gives the set SR = {t1 : T1, .., tn : Tn} of
type restrictions, denoting that the term ti (currently) has type Ti. That is, for
every equation ti = t′i ∈ Eq it must also be that sort(ti) ≤ sort(t′i), i.e., Ti ≤ T ′i
under the sorted order of types ≤. The modi�ed and extended type rules for
order-sorted uni�cation are as follows:

1. (El) SR,Eq ` (X=X)
SR,Eq

2. (De) SR,Eq ` (f(t1,..,tn)=f(t
′
1,..,t

′
n))

SR,Eq `{(t1=t
′
1),..,(tn=t′n)}

3. (Bi′) SR,(X:T),Eq ` (X=t)
SR′,θ(Eq)` (X=t) , where X is a variable, t is a variable or non-

variable term, and where θ = {X/t} and SR, (X : T) reduces to SR′

using the auxiliary type rules ElSR, ElSR
′
and BiSR

4. (Or) SR,Eq ` (t=X)
SR,Eq ` (X=t) , where X is a variable and t is not a variable

The auxiliary rules for polymorphic uni�cation of types are:

1. (ElSR) SR` f(t1,..,tn):T2

SR , if sort(f) = T1 and T1 ≤ T2

2. (ElSR
′
) SR` f(t1,..,tn):>

SR

3. (BiSR) SR`X:T1=X:T2
SR`X:lower(T1,T2)

The typed uni�cation fails if:

• there is an equation f(t1, .., tn) = g(t
′
1, .., t

′
m) in Eq with f 6= g or

• there is an equation X = t in Eq such that X = t and X ∈ t (occurs) or

• there is an equation X = t in Eq such that X : T1 and t : T2, where t is a
constant term and T2 > T1 or

• there is an equation X = Y in Eq such that X : T1 and Y : T2 and
lower(T1, T2) =⊥, where X and Y are variable terms.

116

4 The ContractLog KR

Otherwise, Eq
′
is solved if Eq

′
= {(Xi/ti)|(Xi = ti) ∈ Eq

′
and sort(Xi) ≤

sort(ti) and Xi ∈ Eq}, then θ = {X1/t1, .., Xn/tn} is the mgu of Eq.

In contrast to the unsorted uni�cation, Bi′ now involves ad-hoc polymorphic
uni�cation of order-sorted types with a subtype resp. equivalence test T1 ≤ T2

and a computation of the lower bound of two types lower(T1, T2) in the auxiliary
rules, possibly assigning the more speci�c type (i.e., the lower type) to a variable.
The variables may change their type during uni�cation according to the rule
BiSR and the lower operation. ElSR

′
is introduced to reduce uni�cation to

special cases of the binding rule Bi in the untyped case without type checking,
i.e., to e�ciently process untyped variables X : >. That is, the order-sorted
uni�cation coincides with the untyped uni�cation, if the underlying program
does not contain typed terms. To ensure decidability I require that there are
no in�nite function de�nitions such as f(f(f(...))) and hence introduce the
following restriction for typed uni�cation: θ = {X/f(t1, .., tn)} if X 3 f , i.e.,
the variable X is not allowed to occur in the function f with which it is uni�ed.
Furthermore, I restrict the uni�cation algorithm to only well-typed terms, i.e.,
the type of the argument ti in f(t1, .., tn) must be a subtype of the type Ti for
f : T1 × .. × Tn → T , where T is the target type of the function. I de�ne the
type of predicates, terms and lists to be untyped by default denoted by >. As
a result untyped complex terms or lists can be uni�ed only with other untyped
variables. Informally the polymorphic order-sorted uni�cation rules state:

• Untyped Uni�cation: Ordinary untyped uni�cation without type checking

• Untyped-Typed Uni�cation:The untyped query variable assumes the type
of the typed target

• Variable-Variable Uni�cation:
(1) If the query variable is of the same type as the target variable or
belongs to a subtype of the target variable, the query variable retains its
type (according to lower), i.e., the target variable is replaced by the query
variable.
(2) If the query variable belongs to a super-type of the target variable,
the query variable assumes the type of the target variable (according to
lower), i.e., the query variable is replaced by the target variable.
(3) If the query and the target variable are not assignable (lower = ⊥)
the uni�cation fails

• Variable-Constant Term Uni�cation:
(1) If a variable is uni�ed with a constant of its super-type, the uni�cation
fails.
(2) If the type of the constant is the same or a sub-type of the variable, it
succeeds and the variable becomes instantiated.

• Constant-Constant Term Uni�cation: Both constants are equal and the
type of the query constant is equal to the type of the target constant.

Complex terms such as lists are untyped by default and hence are only
allowed to be uni�ed with untyped variables.

117

4 The ContractLog KR

After having de�ned the general semantics for order-sorted typed uni�cation,
I will now discuss its implementation for the two type systems in ContractLog:
Java and Description Logics.

Typed Uni�cation for Java Type Systems The object-oriented type system
of Java is essentially a �rst-order static type system in the sense that is does not
allow dynamic type parameterizations. As an object-oriented language it sup-
ports subtyping polymorphism using inheritance (aka subclassing) and ad-hoc
polymorphism with overloading and coercion (casting) as a kind of automatic
type conversion. Although, since Java 1.5 generics are supported [Bra04], the
primary approach to polymorphism in Java is still, declaring generic data struc-
tures and functions of type Object (the class from which all other classes inherit)
and explicitly downcast from Object to a more speci�c type. Type safety will
be then checked at runtime. Following this approach untyped variables in Con-
tractLog are implicitly declared to be of type Object and can assume a speci�c
type when bound to a ground (Java) object at runtime. Although, this adds
some ambiguity in the sense that such untyped variables can not be statically
type checked at compile time (instead they must be dynamically veri�ed by the
typed uni�cation), I argue that in the context of a declarative SLA scripting lan-
guage the bene�ts in expressiveness in terms of dynamic typing prevail and the
ambiguity can be e�ciently handled by the implicit backtracking mechanism of
the rule interpreter. The rule interpreter uses the declared types, assuming the
root type Object if no information is given (∼= >) and tries to unify the terms.
To explicitly test subclass and instance relations, as needed for the uni�cation
of typed terms, Java provides the operators isInstance and isAssignableFrom.
This operators are used in the lower operation of the typed uni�cation algo-
rithm, i.e., the uni�cation algorithm externalizes the computation of the lower
bound of two Java types to the Java runtime.

Typing errors due to not-de�ned or ill-de�ned quali�ed class names (types)
are checked during compile time, i.e., during parsing the ContractLog script.
complementary to the traditional descriptive usage of the Java type system for
static type checking at compile-time in a compiled language, its usage in an inter-
preted and typed logical language such as ContractLog with a typed uni�cation
enables dynamic ad-hoc polymorphic typing of variables. Instances (objects)
of particular types are dynamically constructed by procedural attachments and
bound to appropriate variables as described in section 4.2.3.1. The operational
semantics for such procedural calls is provided by the core Mandarax inference
system [Die04] and has been further extended in Prova [KS04, KPS06] with
dynamic instantiation based on Java Re�ection.

Typed Uni�cation for DL Type Systems A DL resp. Semantic Web type sys-
tem consists of a T-Box de�ning the order-sorted types and their relations and
a possible empty A-Box de�ning global individuals of the de�ned types. The
T-Box typically has a partial order ≤. ContractLog assumes owl : Resource as
common maximum class under the partial order of any DL type system. I de�ne

118

4 The ContractLog KR

owl : Resource to be > (i.e., ∼= untyped) and owl : Nothing to be the minimum
lower bound ⊥ (i.e., empty). Note that both type systems, Java and DL, coin-
cide in the untyped framework which can be downcasted from java.lang.Object
or owl : Resource. The DL type checks, applied as hybrid queries to the DL
ontology type system(s) during the uni�cation process, are primarily concerned
with Instantiation, i.e., querying whether an individual is an instance of a class
or deriving all individuals for a particular class, and Subsumption, i.e., deciding
whether a class is subsumed by another class (is a subclass of). Equivalence
inferences which check if two classes or individuals are equal (or disjoint) and
hence can be uni�ed is another important task which is provided by expressive
DL ontology languages, e.g., OWL-DL (SHOIN(D)). The typed uni�cation rules
take into account, that the type system is de�ned by one or more DL ontologies
and that subtype tests by subsumption are constrained by the expressiveness of
the DL query language. For instance, in OWL there is no way to express the
concept of a most general superclass or a most speci�c type. Although, it is
possible to compute such statements by applying iterative subsumption queries,
such an approach will impose greater computational burdens for dynamic type
checking. Therefore, in ContractLog I restrict type checking to �nding the lower
bound of two types (T1, T2) under ≤ in the lower operation of the typed uni-
�cation and replace the type of a term with the more speci�c type concept in
the uni�cation rules. The operation lower requires at most two subsumption
queries to the external DL reasoner to compute the lower bound under the
partial order ≤. If the type system consists of more than one DL ontology, the
ontologies are merged into a combined ontology. The common super class under
which all ontologies are subsumed is the concept "Resource". Hence, the partial
order ≤ also holds for the combined ontology with owlResource ∼= > under the
assumption that no cycles are introduced. Cross links between the component
ontologies might be de�ned, e.g., by relating classes with owl : equivalentClass
or owl : disjointWith. Note that this may introduce con�icts between ter-
minological de�nitions which need con�ict resolution strategies, e.g., based on
defeasible reasoning.

Remark 2 Note the di�erence between my order-sorted typing approach and
hybrid integration approaches which apply additional DL atoms resp. DL con-
straints to query the DL ontology component such as e.g., dl-programs [ELST04]
or Carin [LR96]. In my prescriptive approach the type checks in terms of DL-
queries to the DL component apply during the typed uni�cation process and
constrain the uni�cation of terms. The operational semantics provides a "built-
in" technical separation between the rule inferences and the DL inferences which
directly applies during typed term uni�cation and results in �exible formalisms
that are robustly decidable, even in the case where the rule language is far more
expressive than Datalog. This particular combination cannot be seen neither as
a super- or subset of homogeneous approaches such as SWRL nor as related to
existing hybrid approaches which apply DL constraints resp. DL query atoms in
the body of rules, since the semantics is completely di�erent. In ContractLog it
is based on a prescriptive typing approach with a order-sorted typed uni�cation
as operational semantics.

119

4 The ContractLog KR

4.2.5 Summary

The main motivation for introducing Semantic Web or Java based types into
declarative logic programs comes from Software Engineering, where principles
such as data abstraction, modularization and consistency checks are vital for the
development and maintenance of large rule bases. Distributed system engineer-
ing and collaboration, where domain-independent rules need to be interchanged
and given a domain-dependent meaning based upon one or more common vo-
cabularies in their target environments is an other matter. The possibility to use
arbitrary Semantic Web ontologies and object-oriented domain models in declar-
ative logic programming gives a highly �exible, extensible and syntactically rich
language design with a precise semantics. Semantic Web counterparts of com-
mon syntactic speci�cation languages for SLAs and policies such as WS-Policy,
WSLA or WS-Agreement and other domain-speci�c ontologies, e.g., OWL Time,
can be easily used as type systems giving the rule terms a domain-speci�c mean-
ing. This syntactic and semantics combination which allows e�cient declarative
programming, in contrast to simple syntactic speci�cation of agreements, is vi-
tal for the automated discovery, management and monitoring/enforcement of
electronic contracts/agreements/policies for (Semantic Web) services. From a
computational point of view, the use of order-sorted types can drastically re-
duce the search space, hence increasing the runtime e�ciency and the expres-
sive power, e.g., enabling overloading of rule variants. The tight combination
of declarative and object-oriented programming by rich Java-based procedural
attachments facilitates integration of existing procedural functionalities, tools
and external data sources into rule executions at runtime. In this section I have
presented a hybrid approach which provides a technical separation with minimal
interfaces between the rule and type components leading to a robust, �exible
and expressive typed logic with support for external Java and DL type systems,
Java-based procedural attachments, modes and built-ins. The implementation
follows a prescriptive typing approach and incorporates type information di-
rectly into the names of symbols in the rule language. The interaction between
the rules and the type system is based on entailment in a multi-sorted logic. As
an operational semantics a typed uni�cation is applied which permits dynamic
type checking, ad-hoc polymorphism, i.e., variables might change their types
(coercion), and overloading, i.e., overloading of rules by using di�erent types in
their rule heads, leading to variants of the same rule.

In summary, the main contributions of the typed logic extension are:

• a compact, �exible prescriptive typed rule language with typed terms

• �exible, hybrid integration of external vocabularies as order-sorted type
systems

• integration of external systems (by Java API) and object-oriented func-
tionalities by highly expressive procedural attachments and built-ins

• integration of external reasoners and procedural functionalities for dy-
namic type checking by an ad-hoc polymorphic order-sorted typed uni�-

120

4 The ContractLog KR

cation

4.3 Meta-data Annotated Labelled Logic

As discussed in section 2.3 typical electronic contracts consist of a hierarchy of
possibly distributed, interlinked and collaboratively engineered and maintained
subcontracts reaching from general terms and conditions to customer speci�c
SLAs and internal Operational Level Agreements (OLAs) and Underpinning
Contracts (UCs). Moreover, information from various independent data sources,
e.g., data bases, data ware houses, Semantic Web ontologies, system manage-
ment and network management tools, are dynamically integrated as extensional
knowledge (fact base) into the contract rule executions at runtime.

To capture this distributed, Web-based, open structure, enable scoped queries
on explicitly closed parts of the formalized open and distributed contract knowl-
edge, and support principles of information hiding and modularization I have
extended the ContractLog KR to a general meta-data annotated labelled logic
with scoped reasoning. Meta-data such as rule labels, module labels or Dublin
Core annotations (e.g., author, date etc.) can be attached to rules and facts.
These additional meta-data annotations become in particular interesting when
the knowledge base consists of several (possibly distributed) rule sets, so called
modules, which might be collaboratively engineered, interchanged and dynam-
ically imported from di�erent external sources accessible by their Web-based
URIs. The meta-data might be used to infer additional knowledge, e.g., for
automated discovery and matchmaking, the dynamic management of the dis-
tributed KB with support for dynamic updates/imports by ID-based labels (see
section 4.5) or scoped reasoning on explicitly closed parts of the KB by scoped
queries, e.g., "all rules from a particular author" or "all facts with time stamps
after a certain date/time". In an open contract environment provided on the
(Semantic) Web where the knowledge is inherently incomplete the meta data
annotations can be used to restrict problematic non-monotonic features such as
negation-as-failure, which amounts for a CWA, to an explicitly closed scope of
the open KB. As a result scoped goals are only evaluated wrt an explicitly closed
scope which ensures complete information and hence provides sound answers for
the scoped queries. Another important application domain is rule interchange.
Additional meta data about the semantics of a program, module or single rule
can be given, which can be used in the target environment to decide whether the
execution will be correct. Di�erent optimized variants might be implemented
for well-known semantics and the meta data might be used to select the cor-
rect variant wrt the semantics of the target execution environment. Moreover,
"scoping" leads to much smaller search spaces and allows an explicit manage-
ment of the level of generality of queries/goals. In the following I introduce an
extension of the ContractLog/Prova rule language with meta-data annotation
labels and discuss the semantics of this new meta-data annotated, labelled logic
for distributed logic programs.

121

4 The ContractLog KR

4.3.1 Syntax of Meta-Data Annotated ContractLog LPs

In analogy to the multi-sorted extension of the last section, the meta-data ex-
tension of the ContractLog language is de�ned over a combined signature S
which is the union of the signature of the rule component and the signatures of
the used meta data vocabularies (e.g. Dublin Core).

De�nition 110 (Combined Signature with Meta-data Annotations) The
combined meta data annotated signature S is de�ned as a tuple 〈T , P , F , arity, c,
sort〉 where P is the union of the predicate symbols de�ne in the signature of
the core rule language and the meta data predicate symbols (names) de�ned in
the signature(s) of the meta data vocabularie(s) and c is the union of constant
symbols de�ned in the rule signature and in the meta data signature(s) (values).

In order to keep the complexity of meta data reasoning at a minimum, the ar-
ity of meta data predicates is restricted to unary predicates, i.e., to typical meta
data property-value pairs property(value) such as dc_creator(”AdrianPaschke”)
(although the underlying mechanisms could handle more expressive meta data
annotations with n-ary relations). Moreover, variables are not allowed in the
meta data labels, i.e., the meta data atoms must be ground. To explicitly an-
notate clauses in a labelled logic program (LLP) P with an additional set of
meta-data labels I introduce a general n-ary metadata function into the Con-
tractLog language. The function metadata is a partial injective labelling func-
tion that assigns a set of meta data annotations m (property-value pairs) to a
clause cl in P , i.e., m : cl. It is syntactically de�ned separated from a clause
(rule/fact/query) by "::":

metadata(L1, .., Ln) :: H ← B

where Li are a �nite set of unary positive literals (positive meta data literals)
which denote an arbitrary meta data property(value) pair, e.g., label(rule1).
That is, I write in implicit form metadata(L1, .., Ln) :: H ← B to express
that metadata(H ← B) = L1, .., Ln. The explicit metadata() annotation is
optional, i.e., a program P without meta data annotated clauses coincides with a
standard unlabelled LP. Akin to object oriented programming (OOP), clauses in
ContractLog are treated as objects having an unique object id (oid) which might
be user-de�ned, i.e., explicitly de�ned by a label in the meta data annotations
metadata(label(< oid >), ...) :: H ← B or system-de�ned i.e., all rules are
automatically "labelled" with an auto-incremented oid (an increasing natural
number) provided by the system at compile time. Rules and facts might be
bundled to clause sets, so called modules, which also have an object id, the
module oid. By default the module oid is the URI of the ContractLog script
which de�nes the module. But the module oid might also be user-de�ned (see
update functions in section 4.5). The oids are used to manage the knowledge in
the (distributed) knowledge base, e.g., to import a rule set from an URI which is
then used as the module oid or remove a module from the KB by its oid. Beside
oids arbitrary other semantic annotations such as Dublin Core data might be
speci�ed in the metadata label.

122

4 The ContractLog KR

Example 12

metadata(label(r1), dc:author("provider"), dc:date(2006-11-12))::

p(X):-q(X).

metadata(label(f1))::q(1).

The example shows a rule with rule label r1 and two additional Dublin Core
annotations dc : author(”provider1”) and dc : date(2006− 11− 12) and a fact
with fact label f1. Since there is no explicitly user-de�ned module oid in the
meta-data labels, the default module oid for both clauses is the URI of the script
in which they are de�ned.

The meta annotation of rules and rule sets (modules) enables (meta) reasoning
with the semantic annotations. It forms the basis for many expressive function-
alities of the ContractLog KR such as superiority relations between rules and
modules or oid based knowledge updates. Moreover, the meta data can act as
an explicit scope for constructive queries (creating a view) on the knowledge
base. For instance, the meta data annotations might be used to constrain the
level of generality of a scoped goal to a particular module, i.e., to consider only
the set of rules and facts which belong to the speci�ed module.

De�nition 111 (Scoped Literal) A scoped literal is of the form L : C where
L is a positive or negative atom and C is the scope de�nition which is a set of
one or more meta data constraints.

Scoped literals are only allowed in the body of a rule. Scoped literals might
be default negated ∼ L : C. Syntactically, the following built-in predicates are
used in ContractLog to query the meta data annotations and de�ne the scope
of literals for metadata-based scoped reasoning on explicitly speci�ed parts of
the KB:

% scoped literal

partial(<literal>,<meta data value>)

% query meta data value

metadata(<literal>,<Variable>,<meta data property>)

% constrain scoped goal literal

metadata(<literal>,<meta data value>,<meta data property>)

Example 13

metadata(label(rule1), src("http://rbsla.de/module1"))::

p1(X):-partial(q(X),http://rbsla.de/module1).

metadata(label(rule2), src(http://rbsla.de/module2))::

p2(X):-partial(q(X),http://rbsla.de/module2).

metadata(label(fact1), src(http://rbsla.de/module1))::

123

4 The ContractLog KR

q(1).

metadata(label(fact2), src(http://rbsla.de/module2))::

q(2).

:-solve(partial(p1(X),http://rbsla.de/module1).

:-solve(partial(p2(X),http://rbsla.de/module2)).

:-solve(metadata(p1(X),RuleOID,label).

:-solve(metadata(p2(X),RuleOID,label).

The example shows scoped reasoning on explicitly closed parts of the KB.
The �rst query has the user-de�ned scope http : //rbsla.de/module1. The URI
is the object id (oid) which is used as module label. Accordingly, the answer
here is X = 1. The second query has the scope http : //rbsla.de/module2 and
accordingly the answer is X = 2. The third and fourth queries return the rule
oid of both rules which is bound to the variable RuleOID, i.e., RuleOID =
rule1 and RuleOID = rule2, i.e., they de�ne queries on the set of meta data
annotations.

Example 14

metadata(label(loop),semantics(WFS))::a():-b(),a().

The example shows the annotation of a rule with additional meta data about
its intended semantics. This additional information can be used to avoid un-
intended and incorrect executions. For instance, standard SLDNF resolution
would run into a loop in the above example.

4.3.2 Semantics of Meta-Data Annotated Labelled Logic
Programs with Scoped Reasoning

In the context of an open environment such as the Semantic Web with dis-
tributed data sources and distributed programs (LP scripts) which are dynam-
ically imported as modules, the KB is typically not closed. As a result, queries
and intermediate goals inherently depend on incomplete information. For in-
stance, new knowledge is discovered, programs/modules change or are no longer
accessible due to lost Internet connection. Hence, it is impossible to �nd sound
answers to default negated queries due to the inherent non-monotonicity of de-
fault negation where soundness depends on the assumption of a closed world
and complete information. To overcome these problems scoped literals are used
in ContractLog which apply only in their de�ned scope. Accordingly, if a de-
fault negated query/goal depends only on scoped literals the KB is explicitly
closed for this query and newly added knowledge does not a�ect already drawn
answers. In the following I de�ne the semantics of meta-data annotated labelled
logic programs (LLPs) in ContractLog and discuss how the concept of scoped

124

4 The ContractLog KR

reasoning and explicit (partial) closure of an open knowledge base helps to pre-
serve well-known abstract properties of general non-monotonic inference such
as rationality, cut and cautious monotonicity [KLM90].

Informally, scoped literals allow to explicitly close the domain of discourse to
certain parts of the KB.

De�nition 112 (Metadata-based Scope) Let KB be a combined KB consist-
ing of a set of submodules KB = {KB1∪ ..∪KBk}. The scope KB′ of a scoped
literal L : C is the set of clauses KB′ = {m′1 : cl1, ..,m′n : cln} ∈ KB, i.e.,
KB′ = {cl(m′1), .., cl(m′n)} where for all clauses cli(m′i) ∈ KB′ its set of meta
data annotations m′i satisfy the meta data constraints C of the scoped literal L,
i.e., m′i |= C.

Accordingly, a scope (aka view) is constructed by one or more meta data con-
straints, e.g., a module oid src(< URI >) or Dublin Core values dc_author(...),
dc_date(...).

De�nition 113 (Closure) Let KB be a combined KB. The closure of KB,
denoted Cl(KB), is de�ned by KB plus all KBs which are in the scope of any
literal in KB.

A scoped literal L : C is closed if each rule in KB which uni�es with the literal
L is also closed, i.e., its body literals are closed in Cl(KB).

Intuitively, this means that the closure of a program depends on the scopes
of the literals in the bodies of its rules. Obviously, if one of the subsequently
used goal literals in a proof attempt is open, i.e., without a scope, the closure
expands to the open KB.

Without being speci�c to a particular semantics, since ContractLog is basi-
cally intended to be interpretable with di�erent semantics, the semantics for
LLPs is de�ned as follows:

De�nition 114 (Scoped Semantics) Given any (sceptical) semantics SEM scept

and a scoped KB KB, where all default negated literals are scoped and hence the
closure is Cl(KB), the truth value of a scoped literal L : C wrt SEM scept(KB),
i.e., SEM scept(KB) |= L, depends on the partial interpretation formed from the
clauses of KB wrt the scope de�nition C, i.e., SEM(partial(KB,C)) |= L.

A simple transformation of all default negated atoms into scoped atoms using
the parent module oid as scope maps a program into a scoped program.

I now show that a scope program with meta data-based scopes, in particular
scopes de�ned by modules, can be used to preserve typical structural properties
of general non-monotonic inference such as rationality, cut and cautious mono-
tonicity [KLM90]. Kraus et al. [KLM90] proposed several structural properties
to compare non-monotonic theories. The following structural properties are
from [KLM90]:

125

4 The ContractLog KR

• Right Weak : α→ β and γ ` α ⇒ γ ` α, where α,β,γ are sets of atoms.

• Re�exivity : α ` α

• And : α ` β and α ` γ ⇒ α ` β ∧ γ

• Or : α ` γ and β ` γ ⇒ α ∨ β ` γ

• Left Log. Equiv.: |= α↔ β and α ` γ ⇒ β ` γ

• Cautious Monotony : α ` β and α ` γ ⇒ α ∧ β ` γ

• Cut : α ` β and α ∧ β ` γ ⇒ α ` γ

• Rationality : not α ` ¬β and α ` γ ⇒ α ∧ β ` γ

• Negation Rat.: α ` β ⇒ α ∧ γ ` β or α ∧ ¬γ ` β

• Disj. Rat.: α ∨ β ` γ ⇒ α ` γ or β ` γ

In contrast, to the general entailment relation of Kraus et al. [KLM90] the
sceptical entailment relation ` used in ContractLog is de�ned between possible
in�nite sets of atoms and literals ` ⊆ 2Atoms × 2Literals and is not de�ned on
the whole set of formulae as in the general setting of non-monotonic reasoning.
Hence, Right Weak, Re�exivity, And and Left Logical Equivalence are always
satis�ed in any sceptical semantics such as WFS and the interesting properties
in the context of distributed LPs with scoped non-monotonic reasoning in terms
of default negation are Cautious Monotony and Cut which are combined to
Cumulative Monotony : "If α ` β then: α ` γ i� α∧β ` γ" and Rationality : "not
α ` ¬β and α ` γ ⇒ α∧β ` γ". Cumulative Monotony states that a formula β
derived from α can be used as a lemma and does not a�ect the set of formulae
derivable from α alone. This condition in the context of distributed KBs and
knowledge updates is important since intermediate lemmas are of no use if it
does not hold, i.e., answers to queries and computed subgoals possibly need
to be retracted if new information is added in the form of additional modules
(rule/fact sets). Rationality is in any sceptical semantics a stronger form of
Cautious Monotony since α ` β ⇒ not α ` ¬β.

• Cumulative Monotony : If α ⊆ β ⊆ SEM scept

KB
(α), then SEM scept

KB
(α) =

SEM scept

KB
(β), where α and β are sets of atoms and SEM scept

KB
is an arbi-

trary sceptical semantics for the program KB which is a set of program
modules KB = KB1 ∪ .. ∪KBk .

• Rationality : If α ⊆ β, β∩{A : SEM scept
P (α) |= ¬A} = ∅, then SEM scept

KB
(α)

⊆ SEM scept

KB
(β)

The following example shows that in the un-scoped case of modular knowledge
bases consisting of imported distributed LPs or dynamically added modules
(see section 4.5 for dynamic updates) cumulative monotony and rationality for
typical LP semantics do not hold. For the reason of simplicity the example is
given as a propositional LP, but it turns out that similar results are achieved
for other logic classes such as normal or extended LPs.

126

4 The ContractLog KR

Example 15

http://rbsla.de/LP1: p

b <- not a, p

http://rbsla.de/LP2: p <- a

a <- not b

The example de�nes two programs provided at the URLs http : //rbsla.de/LP1
and http : //rbsla.de/LP2 (the URLs are used by default as the oids of the pro-
grams), which I abbreviate as LP1 and LP2 in the following. The �rst program
derives the answers p and b and the second program derives p and a under typical
LP semantics such as COMP (with SLDNF resolution and negation-as-�nite-
failure rule), STABLE or WFS. However, if both programs are combined in
a (distributed) knowledge base KB = LP1 ∪ LP2, e.g., by importing LP1 to
LP2 or vice versa, these conclusions for the combined KB are no longer valid.
Since the answers of the two-valued COMP agrees with the mechanisms of
SLDNF "a : − not b. b : − not a, p." presents a loop (see e.g. [She91]) and the
completion of the combined LP is incomplete. STABLE, due to the fact "p"
and the rule "b : − not a, p.", does no longer derive a and WFS neither derives
b nor a for the combined KB. Accordingly, as can be seen from this example,
although all three semantics ful�l cut, cumulative monotony and rationality are
not ful�lled. I now re�ne the example and explicitly close the negated atoms
with a scope which applies on the module in which they occur. For the reason
of readability, I use L : C instead of the built-in partial(L,C) to denote that
the scoped literal L has scope C.

http://rbsla.de/LP1: p

b <- not a:LP1, p

http://rbsla.de/LP2: p <- a

a <- not b:LP2

Now, due to the scoped negation as failure (not a : LP1 and not b : LP2),
SLDNF does not run into a loop for the combined KB and STABLE implies b,
p and a as well asWFS, i.e., cumulative monotony is preserved in all semantics.

The operational semantics for scopes in the ContractLog reference implemen-
tation is based on the treatment of clauses and clause sets as objects, i.e., clauses
(facts, rules) and clause sets (modules), as in object-oriented programming, are
managed as objects in the KB, each having an unique object id and a set of
meta data properties. The meta data are used to preselect the objects (clauses)
from the knowledge base , akin to a constructive view as in relational database
systems where a SQL "where" clause can be used to constrain the set of selected
data.

127

4 The ContractLog KR

4.3.3 Summary and Related Work

The usual close world assumption [Rei82] of logic programming, stating that an
atom that does not appear in the KB is assumed to be false, is only applicable
when the KB is closed and contains the complete knowledge of the domain of
discourse. This assumption is inherently inappropriate in the SLA domain since
here the rule bases and data sources are typically scattered in an open domain
such as the Semantic Web, where new knowledge might become available or
unavailable.

To overcome this closed world problem in open domains an open world as-
sumption (OWA) has been proposed in some works, where a KB is interpreted
as the conjunction of all literals in the KB, e.g., in [MLF02]. In [AADW05] a
combination of open-worlds and closed-world reasoning based on partial logic
[HJW99] has been proposed.

Local closed world assumption (LCWA) has been proposed as another possible
solution, e.g., in [EGW97, DLS00, CCDA+05, HA02]. The approach of LCWA
is to syntactically state that a goal G is locally closed wrt to a knowledge base,
i.e., state that every ground clause that uni�es with G either follows from a
partial KB which is closed wrt G or does not follow from KB: LCWA(G) =
(KB |= Gθ) ∨ (KB |= ¬Gθ) for all ground substitutions θ. Circumscription
[McC80] has been propose as a possible selection function [DLS00] which selects
those models which satisfy the locally closed KB and that are minimal wrt the
goal G for which KB is complete.

A third way to distinguish di�erent levels of knowledge which has been used by
several approaches is to label the predicates with additional information about
its class, e.g "sound", "complete", "exact" as proposed e.g., in [Gra02, CDGL02]
or "objective", "open", "closed" as proposed by [DAAW06].

Recently, scoped negation-as-failure [KBBF05] has been termed in the Se-
mantic Web for non-monotonic negation which applies in the context of a mod-
ule, where the module identi�er, which is typically an URI, is used to de�ne
the closed scope of a (negated) query. Flora-2 [YKZ03], which exploits F-Logic
[KLW95], a frame-based representation of FOL used for ontology reasoning, and
TRIPLE [SD02], a LP engine for RDF reasoning, are two systems which support
the concept of a module and allow a form of module-base scoped negation as
failure.

My approach in ContractLog generalizes the idea of scoped reasoning towards
meta-data annotated Labelled Logic Programs where program clause might be
labelled by arbitrary meta data sets over which arbitrary scopes (views) can
be constructed. That is, the meta data annotations of rules and facts are used
to explicitly de�ne scopes in which the (negated) knowledge is complete and
cumulative monotony and rationality is preserved (under WFS). Accordingly,
already given answers from a closed scope are never forced to be retracted if
new knowledge becomes available in the open environment. To some extend this
approach is comparable to constructive views in relational databases where a

128

4 The ContractLog KR

close world assumption is made for the set di�erence operation of the relational
algebra.

From a computational point of view my constructive, meta-data based scoping
approach signi�cantly decreases complexity of computing semantics, since it
allows to reduce the open distributed KB to explicitly closed subparts with a
smaller Herbrand base. For instance, a scope constructed by a fact set which is
provided at a certain URL src(http : //...) or facts which are not older than a
certain date dc_date(...).

In distributed SLA management the additionally provided meta data annota-
tions are used for the dynamic management of contract structures and contract
speci�cations enabling �exible oid-based updates (see section 4.5). In partic-
ular, modules which bundle rule and/or fact sets, facilitates large rule bases
to be put together from components which can be developed, compiled, tested
and managed separately. This modularization enforces typical SE principles
such as the principle of information hiding and data abstraction. It is vital in
rule-based contract representation, where Service Level Agreements (SLAs) are
typically de�ned as distributed, hierarchical structures with e.g., general terms
and conditions, master agreements, several SLAs and underpinning contracts or
operational agreements (see section 2.3).

In the context of rule interchange additional meta data about the intended
semantics of the target execution environment can be given, possibly permitting
semantics variants of rules and rule sets. Moreover, in the negotiation and
discovery phase of agreements the meta data can be used to give additional
information enabling more exact searches with higher precision of the answers.

In summary, the meta data labelled logic extension of ContractLog

• is intuitive to use, �exible and extensible in the way of using meta data
vocabularies

• can be implemented with the existing technologies of standard LP infer-
ence engines and Semantic Web technologies

• addresses the need of distributed contract management in open environ-
ments such as the Semantic Web

The utilization is many-fold reaching from modularized engineering, meta-
data enriched discovery, e�cient scoped querying with scoped closed world
assumption, rule interchange to dynamic management and maintenance with
oid-based knowledge updates.

4.4 Integrity Preserving, Preferenced, Defeasible Logic

Rules in SLAs might overlap and contradict each other, in particular if contracts
grow larger and more complex and are authored, maintained and updated by
di�erent people. A typical con�ict which might arise in the context of extended

129

4 The ContractLog KR

LPs, as used in ContractLog, are contradictions between simultaneously con-
cluded positive and negative information, i.e., KB ` A and KB ` ¬A, an atom
and its negation (its complement) follow from the KB. However, as discussed in
section 4.1.2, from an application point of view con�icts might also occur be-
tween arbitrary conclusion, not just between positive and negative information.

Example 16

r1 :: discount(Customer, 10) :-

spending(Customer, Value, last year), Value > 1000.

r2 :: discount(Customer, 5) :-

spending(Customer, Value, last year), Value > 500.

In the example, a customer might apply for a discount of 10% as well as a
discount of 5%, if the spending of the last year is more than 1000. From an appli-
cations point of view only the higher discount should be drawn and hence both
conclusions are in a con�ict, if they can be concluded simultaneously. Moreover,
in many rule-based SLA speci�cations certain parts of the rule based decision
logic should be static and not subjected to changes at run time or it must be
assured that updates do not change the intended behavior and do not lead to
anomalies or con�icts. A common way to represent such constraints and de�ne
the conditions of con�icts in dynamic systems are integrity constraints (IC). ICs
are a way to formulate consistency (or inconsistency) criteria and they are used
to verify the consistency of a dynamic KB which is updated during runtime. In
case these integrity constraints are violated, default reasoning formalisms and
preferences between rules can be used to resolve the con�icts. In this section I
will further elaborate on the defeasible logic based approach for con�ict resolu-
tion in the ContractLog KR (see also section 4.1.2). I �rst review the history
and basic concepts of defeasible reasoning. I then introduce ICs into Contract-
Log. Based on this extension and the labelled logic introduced in the previous
section, I re�ne the syntax and semantics of prioritized defeasible reasoning in
ContractLog.

4.4.1 Basic Concepts and History of Defeasible Logics

The roots of defeasible logic (DefL) lie in inheritance networks. [HTT87] Based
on these concept, Nute's defeasible logic [Nut94] has been designed as a non-
monotonic reasoning formalism for logic programming using defaults, called
defeasible rules which allow defeasible reasoning, where the conclusion of a rule
might be overturned by the e�ect of another rule with higher priority. That
is, it seeks to resolve con�icts by "defeating" and by explicitly expressed su-
periority relations between rules. Defeasible logic di�ers between strict rules
and defeasible rules (since defeaters, which prevent conclusion, are not used in
ContractLog I omit them here):

• Facts are strict ("standard" facts), i.e., indisputable

130

4 The ContractLog KR

• Strict rules: "Standard" rules (derivation rules) with rule label: r :: H ←
B

• Defeasible rules are rules that can be defeated by contrary rules: r :: H ⇐
B

• Priority relations are used to de�ne priorities among rules to represent that
one rule may override the conclusion of another (defeasible) rule: r1 > r2

DefLs have been studied in terms of proof theory [ABGM01], denotational
semantics [Mah00], model-theoretic semantics [Mah02] and computational com-
plexity [Mah01]. In contrast to other non-monotonic approaches such as Reiters
default logic [Rei80] which is based on a possible worlds semantics, defeasible
logic adopts a sceptical reasoning approach to default reasoning in the sense that
con�icts are resolved by explicit superiority relations and con�icting rules do not
�re. The main advantage of DefL, compared to other nonmontonic reasoning ap-
proaches such as circumscription [McC80], default logic [Rei80] or autoepistemic
logic [Moo85], are its low computational complexity [Mah01] and the enhanced
expressiveness allowing reasoning with incomplete and contradictionary infor-
mation in standard LP interpreters. Di�erent DefL variants have been proposed,
reaching from simple defeasible implementations that deal with con�icts between
positive and negative conclusions [Nut94, ABGM01] with ambiguity blocking or
ambiguity propagation to generalized courteous logic programs (GCLP) [Gro99]
which use an additional "mutex" (from mutual exclusive) to de�ne and han-
dle arbitrary mutual exclusive literals. Several meta programming approaches
have been proposed to execute a defeasible theory in a logic program without
[ABGM00, AM02] and with negation-as-failure [AMB00, ABGM01, MG99]. In
ContractLog I follow the meta programming approach and generalize it with
the concept of (scoped) default negation, integrity constraints and oid-based
labelled logic in order to de�ne arbitrary con�icts in terms of integrity rules and
priorities between labelled rules and complete rule sets for con�ict resolution.

4.4.2 Integrity Constraints

ICs are a way to formulate consistency (or inconsistency) criteria of a rule based
system and they can be used to verify the consistency of a dynamic KB which
is updated during runtime (see section 4.5).

De�nition 115 (Integrity Constraints)

• An integrity constraint on a LP is de�ned as a set of conditions that the
constrained KB must always satisfy, in order to be considered as a consis-
tent model of the intended model.

• Satisfaction of an integrity constraint is the ful�llment to the conditions
imposed by the constraint

• Violation of an integrity constraint is the fact of not giving strict ful�llment
to the conditions imposed by the constraint

131

4 The ContractLog KR

• Satisfaction resp. violation of a program P wrt the set of integrity con-
straints IC := {IC1, .., ICn} de�ned in P is the satisfaction of each
ICi ∈ IC wrt to the actual knowledge state of P .

Note, that integrity constraints are closely related to the notion of test cases
for LPs in the ContractLog KR which will be discussed in section 4.9. In fact,
test cases can be seen as more expressive integrity constraints.

In the context of knowledge updates, which I will describe in the section 4.5
con�icts might naturally arise, in particular when the rule program grows larger
and updates are done by di�erent people/systems. Let me �rst de�ne what I
mean by a con�ict:

De�nition 116 (Con�ict)

• direct logical con�ict: a rule r1 and a rule r2 are con�icting i� the head
of the head of the rule with label r1 is the complement of the head of the
rule r2 and both can be derived simultaneously

• indirect logical con�ict: a rule r1 and a rules r2 are con�icting with respect
to a set of rules R i� the application of one rule defeats the other or vice
versa

• domain-speci�c con�ict: a rule r1 and a rule r2 are con�icting with respect
to a particular application domain, if both apply in the same situation/-
context

While the �rst two con�icts denote a con�ict from a logical point of view, the
last type of con�ict is application speci�c. For example, two rules de�ning either
a discount of 5% or are discount of 10% might be con�icting if both discounts
can be derived at the same time. The �rst type of con�ict arises if a positive
and a negative atom (explicitly negated) can be derived at the same time. To
describe the second type of con�ict consider the following program:

Example 17

a <- not b

b <- not a

Here the heads of both rules are not complementary, but the both rules defeat
each other (using e.g., WFS) due to the negation. Such con�icts are much harder
to detect and typically occur indirectly, based on the existence of other rules.
Integrity constraints can be used to de�ne conditions which denote a logic or
application speci�c con�ict.

132

4 The ContractLog KR

4.4.2.1 Syntax of Integrity Constraints

Integrity constraints in ContractLog are de�ned by a restricted n-ary function
symbol integrity in the rule language: integrity(< operator >,< conditions >
). In ContractLog I distinguish four types of integrity constraints:

• Not-constraints which express that none (akin to strong negation) of the
stated conclusions should be drawn: integrity(not(L1, .., Ln).

• Xor-constraints which express that the stated conclusions are mutual ex-
clusive, i.e., should not be drawn at the same time: integrity(xor(L1, .., Ln)).

• Or-constraints which express that at least one of the stated conclusions
must be drawn: integrity(or(L1, .., Ln)).

• And-constraints which express that all of the stated conclusion must drawn:
integrity(and(L1, .., Ln)).

An IC might be also expressed conditionally as a integrity rule, e.g.,

integrity(xor(p(), q())) : −a(), b().

That is, the integrity rule states that p() and q() are mutual exclusive, denot-
ing a con�ict if both can be derived at the same time. The integrity constraint
applies if the body literals (conditions) a() and b() hold.

Example 18

integrity(xor(discount(Customer,5),discount(Customer,10))).

integrity(not(discount(Customer,100))).

integrity(and(discount(Customer,Discount),price(Customer,Price))).

The example de�nes three integrity constraints. The �rst constraint states
that a customer might be given a discount of 5 percent or a discount of 10
percent, but not both at the same time. The second constraints states that a
customer never gets a discount of 100 percent and the last constraint states that
all customers who get a discount must pay a certain base price (on which the
discount applies).

4.4.2.2 Semantics of Integrity Constraints

The semantics for integrity constraints is directly inherited from the semantics of
logic programs. Integrity constraints are meta level statements which are de�ned
as constraints on the set of possible models and describe the model(s) which
should be considered as con�icting. Roughly speaking, the set of constraints
de�ned in an integrity constraint are interpreted as a top query, i.e., as a rule
without a head, whereas the operator function and, or, xor not de�nes the
quanti�cation and connective of the subgoals (the constraints) as follows:

133

4 The ContractLog KR

De�nition 117 (Integrity Validation Semantic) Let KBl be the actual
knowledge base (the actual program state) and ICm be an integrity constraint
de�ning a set of constraints C = {C1, .., Cn} connected by an operator and, or,
xor or not. Then ICm is satis�ed if KBl |= ICm which is de�ned for the four
types of operators as follows:

• ICm = and(C1, .., Cn): KBl |= ICm if ∀ i ∈ 1, .., n : KBl |= Ci

• ICm = not(C1, .., Cn): KBl |= ICm if @ i ∈ 1, .., n : KBl |= Ci

• ICm = or(C1, .., Cn): KBl |= ICm if ∃ i ∈ 1, .., n : KBl |= Ci

• ICm = xor(C1, .., Cn): KBl |= ICm if ∃ j ∈ 1, .., n : KBl |= Cj and @
k ∈ 1, .., n : KBl |= Ck with Cj 6= Ck and Cj ∈ C, Ck ∈ C,

where a constraint literal Ci is a positive or negative (explicit negated) n-ary
atom which might contain variables; ∼ is used in the usual sense of default
negation, i.e., if a constraint literal can not be proven true, it is assumed to be
false.

That is, the knowledge base KB entails an integrity constraint ICm under
WFS, denoted by KBl |= ICm, if ICm is true in SEMWFS(KBl).

Provability of an integrity constraint IC inKBl, denotedKBl ` IC is de�ned
as a standard LP deduction. That is to prove IC = {C1, .., Cn} in KBl proofs
for the constituent constraints must be established by standard deduction wrt
the integrity operators:

• and: KBl ` IC if ∀ i ∈ 1, .., n : KBl ` Ci

• not: KBl ` IC if @ i ∈ 1, .., n : KBl ` Ci

• or: KBl ` IC if ∃ i ∈ 1, .., n,KBl ` Ci

• xor: KBl ` IC if ∃ j ∈ 1, .., n : KBl ` Cj and @ k ∈ 1, .., n : KBl ` Ck
with Cj 6= Ck and Cj , Ck ∈ C

To proof integrity constraints according to the semantics de�ned above I have
implemented a LP meta program in the ContractLog KR which meta interprets
the de�ned integrity constraints. The meta program implements two main test
axioms:

• testIntegrity() tests the integrity of the actual program state, i.e., it
proves all integrity constrains in the knowledge base using them as goals
constraining on the facts and rules in the KB.

• testIntegrity(Literal) tests the integrity of the literal, i.e., it makes a
hypothetical test and proves if the stated literal, which is actually not in
the KB, would violate any integrity constraint in the KB.

The �rst integrity test is useful to verify and validate the integrity of the actual
knowledge state wrt to the integrity constraints de�ned in the program. The

134

4 The ContractLog KR

second integrity test is useful to hypothetically test an intended knowledge base
update, e.g., test whether the literal, which might be the head of a rule which
should be added, would violate the integrity of the program. If the hypothetical
test succeeds, i.e., all integrity constraint are satis�ed wrt to the new literal, the
rule can be safely added.

Example 19

neg(discount("Adrian",X)). %fact

integrity(xor(discount(Customer,X), neg(discount(Customer,X))).

testIntegrity(discount("Adrian",X))? %query test integrity

The example de�nes a con�ict between a granted discount and no discount.
A hypothetical test for giving a discount to the customer Adrian is made, which
would violate integrity, since the fact de�nes that Adrian gets no discount.

For the reason of space, I only show the meta rule specifying the structure of
integrity validation for the xor operator in the hypothetical validation:

% test XOR (mutex) integrity constraints

testIntegrity(Literal):-

integrity([xor|Mutex]),

delete(Literal,Mutex,NMutex),

member([H|T],NMutex),

derive([H|T]),!,fail().

% All tests passed - succeed.

testIntegrity().

The meta inference rule, iterates over all integrity constraints, with a xor
operator and uses a list structure Mutex for the de�ned constraints in each
integrity clause. It deletes the (hypothetical) literal Literal from the list creating
a new list NMutex or fails and backtracks to then next integrity constraint, if
the literal is not contained in the list. If the literal is contained, it iterates
over all remaining constraint literals in the new list (member([H|T], NMutex))
and tries to derive any of these con�icting literals, failing if one can be derived
otherwise it succeeds. Note, that I use a "cut-fail" implementation here, which
raises a failure immediately when a violation is detected and hence is highly
e�cient, but imposes a linear processing (which is supported by the semantics
of ContractLog - see section 4.1.3). If the underlying procedural semantics of the
rule engine is non-linear, then default negation can be used, i.e., the integrity
constraints succeeds if none of the con�icting literals ∼ L fails, which requires
to prove all literals without the possibility to cut and fail immediately when a
con�ict has been detected. The implementation of the meta inference rules for
the other integrity operators work similarly, e.g., for the and operator:

135

4 The ContractLog KR

% test And integrity constraints

testIntegrity():-

integrity([and|AndConstraints]),

member(M,AndConstraints),

not(M),!,fail().

The meta inference rule iterates over all constraints and immediately fails if
one can not be derived. For the implementation of the other inference rules see
the integrity script of the ContractLog distribution.

The following theorem now establishes a correspondence between the inter-
pretation of the integrity meta program and the satisfaction consequences for
integrity validation of a knowledge base KB containing integrity constraints.

Theorem 8 Let KB be a knowledge state and IC a set of integrity constraints
in KB. Then KB |= IC i� KB |= testIntegrity()

4.4.3 Extended Prioritized Defeasible Logic

Based on integrity constraints, which indicate logical and domain-speci�c con-
�icts, the defeasible logic extension of ContractLog is used to resolve these
con�icts. In the following I will detail syntax and semantics of the prioritized
defeasible logic.

4.4.3.1 Syntax of Prioritized Defeasible Logic Programs

The rules and facts of a defeasible theory ΦDefL = 〈Fa,R,>〉, where Fa is a
�nite set of facts, R a �nite set of rules and > an acyclic superiority relation
on R, are de�ned over a signature Σ as de�ned in the previous sections. A rule
r : B(r) ↪→ H(r) consist of a rule label r which is a set of meta data annota-
tions, a body B(r) which is a set of literals, a head H(r) which is the conclusion
literal and an arrow ↪→ which is a place holder for the defeasible arrow ⇒ and
strict arrow → and a priority relation > on r, i.e., r1 > r2 which states that a
rule with label r1 is preferred to a rule with label r2. Recall from section 4.3
that in ContractLog the labelling function metadata assigns a set of meta data
annotations as a label with a rule. To be usable in the context of defeasible
reasoning the relation > must be acyclic, i.e., the transitive closure must be
irre�exive. In contrast to the standard formulations of defeasible logics, which
only support priority de�nitions between rules, the priority relation > in Con-
tractLog is de�ned as a general transitive and anti-symmetric relation between
rules and between rule sets, so called modules. To unambiguously de�ne the
superiority between two rules or rule sets their rule labels resp. their module
labels, i.e., their unique object ids (oid), are used. Intuitively, the intended
meaning of prioritized modules is, that all rules that are de�ned in a supe-
rior module are considered strictly stronger than the set of rules in the lower

136

4 The ContractLog KR

module. Therewith, it becomes possible to de�ne on a global level di�erent
superiority policies for complete modules (rule sets) such as prefer more speci�c
knowledge over general knowledge or prefer more recently added knowledge over
older knowledge in order to settle con�icts between rules in di�erent modules.
The local preferences de�ned as superiority relations between rules within a
module de�ne a partial order between rules within the global preferences be-
tween modules. For instance, if a module P part1 consists of two prioritized rules
r1 < r2 and another module M2 consists of the prioritized rules r3 < r4 and
both modules are prioritized by P part1 < P part2 then r1 < r2 < r3 < r4. That
is, the local priorities between rules and the global priorities between modules
de�ne a prioritized program with a partial, transitive and anti-symmetric order
≤ between the rules.

De�nition 118 (Prioritized Logic Program) A prioritized logic program
(PLP) P is a �nite partially-ordered set of rule sets, called modules P part, where
≤ represents a transitive and acyclic partial order de�ned between the modules.
Each module P parti ∈ P can be further decomposed to smaller prioritized modules
with a set of two rules order by ≤ as the smallest unit. If no explicit superiority
relation is de�ned between two rules r1 and r2 in a module then they have equal
priority, i.e., r1 = r2. The same applies to priorities between modules.

A defeasible theory ΦDefL is mapped to a meta program P (ΦDefL) in logic
programming form in ContractLog as follows:

1. Each priority relation r1 > r2 where ri is an unique rule resp. module meta
data label (typically the rule resp. module object identi�er) is stated as:
overrides(r1, r2).

2. Each defeasible rule r : H ⇐ B is translated into the following set of meta
rules:

metadata(label(r))::defeasible(H) :- % defeasible rule head

testIntegrity(H), % strictly overtuned ?

defeasible(B), % body holds defeasible?

not(defeated(R,H)). % not defeasible defeated?

% auxiliary rule used in inference rules

neg(blocked(defeasible(H))):- testIntegrity(H), defeasible(B).

% auxiliary rules used in meta program for reasoning

body(defeasible(H)) :- defeasible(B).

Example 20

% Let D be a defeasible theory consisting of the following rules

%

% discount5: discount(X,5) <= defeasible(status(X,silver))

% discount10: discount(X,10) <= defeasible(status(X,gold))

137

4 The ContractLog KR

% overrides("discount10","discount5")

% integrity(xor(discount(X,5),discount(X,10)))

%

% D is mapped to the following meta program P(D)

metadata(label(discount5))::defeasible(discount(X,5)):-

testIntegrity(discount(X,5)),

defeasible(status(X,"silver")),

not(defeated("discount5",discount(X,5))).

neg(blocked(defeasible(discount(X,5)))):-

testIntegrity(discount(X,5)), defeasible(status(X,"silver")).

body(defeasible(discount(X,5))):- defeasible(status(X,"silver")).

metadata(label(discount10))::defeasible(discount(X,10)):-

testIntegrity(discount(X,10)),

defeasible(status(X,"gold")),

not(defeated("discount10",discount(X,10))).

neg(blocked(defeasible(discount(X,10)))):-

testIntegrity(discount(X,10)), defeasible(status(X,"gold")).

body(defeasible(discount(X,10))) :- defeasible(status(X,"gold")).

overrides("discount10","discount5").

integrity(xor(discount(X,5),discount(X,10))).

The example shows the meta program mapped from a defeasible theory con-
sisting of two defeasible rules where the heads are in con�ict according to the
given "xor" integrity constraint. The second rule "discount10" has higher pri-
ority than the �rst rule "discount5".

4.4.3.2 Proof-Theoretic Semantics

In section 4.1.2 I have discussed defeasible well-founded semantics as default
semantics for extended ContractLog LPs. In this section I detail the proof theo-
retic semantics which extends the proof theory de�ned in [Bil93] and [ABGM01]
with arbitrary con�icts stated in terms of integrity constraints and local and
global priorities between local rules and global rule sets (modules). A conclu-
sion of a defeasible theory ΦDefL is a tagged literal Lt of the form +4L, −4L,
+∂L, −∂L, where 4 means strictly provable, ∂ means defeasible provable and
4 and ∂ may have positive or negative polarity. Provability in defeasible logic
is based on a �nite derivation sequence of tagged literals satisfying conditions
which correspond to inference rules for each of the four kinds of conclusions that
specify how a derivation may be extended. The extended inference rules are as
follows:

Let R be the set of rules in ΦDefL, Rs be the set of all strict rules in R, Rd be
the set of defeasible rules in R and Rsd be the set of strict and defeasible rules

138

4 The ContractLog KR

in R. R[L] denotes the set of rules in R with consequent L (in their head). −L
denotes arbitrary con�icting literals to L wrt the integrity constraints in which
L is de�ned. A derivation is a �nite sequence Lt = {Lt(1), .., Lt(n)} of tagged
literals satisfying the following conditions, where Lt(1..i) denotes the initial part
of Lt of lenght i:

• +4: If Lt(i + 1) = +4L then either L ∈ F or ∃r ∈ Rs[L]∀Lb ∈ B(r) :
+4Lb ∈ Lt(1, .., i)

• −4: If Lt(i + 1) = −4L then either L 3 F and ∀r ∈ Rs[L]∃Lb ∈ B(r) :
−4Lb ∈ Lt(1, .., i)

• +∂: If Lt(i+ 1) = +∂L the either

1. +4 ∈ Lt(1, .., i) or

2. (3.1) ∃r ∈ Rsd[L]∀Lb ∈ B(r) : +∂Lb ∈ Lt(1, ..i) and

(3.2) −4− L ∈ Lt(1, .., i) and

(3.3) ∀s ∈ R[−L] either

(3.3.1) ∃Lb ∈ B(s) : −∂Lb ∈ Lt(1, .., i) or

(3.3.2) ∃t ∈ Rsd[L] and ∀Lb ∈ B(t) : +∂Lb ∈ Lt(1, ..i) and
t > s

• −∂: If Lt(i+ 1) = −∂L the either

1. −4 ∈ Lt(1, .., i) or

2. (4.1) ∀r ∈ Rsd[L]∃Lb ∈ B(r) : −∂Lb ∈ Lt(1, ..i) or

(4.2) +4− L ∈ Lt(1, .., i) or

(4.3) ∃s ∈ R[−L] such that

(4.3.1) ∀Lb ∈ B(s) : +∂Lb ∈ Lt(1, .., i) and

(4.3.2) ∀t ∈ Rsd[L] either ∃Lb ∈ B(t) : −∂Lb ∈ Lt(1, ..i) or
t ≯ s

That means, a conclusion L is strictly derivable +4L when there is a proof
for L using only facts and strict rules. To prove that L is not strictly provable
−4L, L must not be a fact and for every rule r with head L at least on body
literal Lb of r must not be strictly provable −4Lb, i.e., r must be inapplicable.
L is defeasible provable +∂L if either (1) L is already strictly provable, or (2)
there is a strict or defeasible rule with head L which is applicable, i.e., the body
is defeasibly provable +∂Lb, with Lb ∈ B(r) (3.1) and no con�icting literal −L
is strictly provable −4 − L (3.2) and all rules s with a con�icting literal −L
in their heads with attack r (2.3) either are inapplicable since their bodies fail
−∂Lb with Lb ∈ B(s) or there is a rule t with head L which is applicable +∂Lb
with Lb ∈ B(t) and t is superior to s, i.e., each attacker s is overtuned by a
stronger rule t. To prove that L is not defeasibly provable −∂L, �rst L must
not be strictly provable −4L (1) and not defeasible provable (2), which means

139

4 The ContractLog KR

that either all rules r with head L are inapplicable (2.1) or a con�icting literal
−L is strictly provable (2.2) or there is a rule applicable attacker rule s which
is superior to all applicable rules t with head L. In other words a literal L is
(defeasibly) derivable when:

• L is a fact, or

• there is an applicable strict or defeasible rule with head L and either (1)
all rules with con�icting heads −L, so called attackers, are discarded or
(2) all attackers are weaker than an applicable rule for L.

Likewise, for −∂ and −4 the conditions are negated. The semantically non-
trivial di�erence to the original formulation of the proof-theory given in [Bil93,
ABGM01] is, that ContractLog considers:

1. arbitrary con�icting attackers wrt de�ned integrity constraints in contrast
to pure negative/positive complements, and

2. global superiorities between rule sets (modules / scopes) in addition to the
local priorities between rules, i.e., prioritized defeasible logic programs.

This generalization and extension is very useful to de�ne general superiority
rules such as "prefer positive knowledge over negative knowledge":
overrides([P |Args], neg([P |Args])) and derive context dependent preferences
dynamically, e.g., overrides(...) : −.... In the following subsection I present the
metaprogram which implements the proof inference rules in ContractLog in a
LP.

4.4.4 Defeasible Metaprogram

The inference rules for defeasible reasoning in ContractLog are implemented as a
meta program specifying the structure of defeasible reasoning. This meta imple-
mentation of the defeasible inferences allows applying di�erent semantics such
as WFS or STABLE to the syntactic meta formulation of a defeasible theory. It
also provides more expressiveness adding e.g., both explicit and default (proof)
failure in terms of default negations and explicit negations as described in sec-
tion 4.1.2. Since I do not introduce any meta constructs for strict knowledge
in ContractLog the inference rules for strict provability are given by classical
derivation and need no extra meta program representation. The meta inference
rules de�ning the predicates corresponding to +/− ∂ are as follows:

% strict knowledge is also defeasible derivable

defeasible([P|Args]) :- bound(P), derive([P|Args]).

% a defeasible rule is blocked if it is not neg blocked

blocked(defeasible([P|Args])):-

bound(P), not(neg(blocked(defeasible([P|Args])))).

140

4 The ContractLog KR

% defeated rules defined by either rule oid (=rule label/name)

% or rule's head literal

defeated(OID, Literal):-

% test XOR (mutex) integrity constraints

integrity([xor|Mutex]), % all mutex integrities

delete(Literal,Mutex,NMutex), % list with opposers

member(Opposer,NMutex), % all opposers

neg(blocked(defeasible(Opposer))), % opposer not blocked

not(neg(overruled(OID,Literal,Opposer))), % overruled by opposer

!.

% consider superiority between head literals of local rules

neg(overruled(OID,Literal,Opposer)):-

overrides(Literal, Opposer),!.

% consider superiority between rule labels (rule names)

neg(overruled(OID,Literal,Opposer)):-

metadata(defeasible(Opposer),OpposerID,label),

overrides(OID,OpposerID),!.

% consider superiority between rule sets (modules)

neg(overruled(OID,Literal,Opposer)):-

metadata(defeasible(Literal),ModuleID,src),

metadata(defeasible(Opposer),OpposerModuleID,src),

overrides(ModuleID,OpposerModuleID), % defeated

!.

As discussed in the syntax section 4.4.3.1, each defeasible rule r is translated
into its meta programming format:

metadata(label(r))::defeasible(H) :- % defeasible rule head

testIntegrity(H), % strictly overtuned ?

defeasible(B), % body holds defeasible?

not(defeated(r,H)). % not defeasible defeated?

% auxiliary rule used in inference rules

neg(blocked(defeasible(H))):- testIntegrity(H), defeasible(B).

% auxiliary rules used in meta program for reasoning

body(defeasible(H)) :- defeasible(B).

The defeasible rule r : defeasible(H) with headH is provable if it does not vi-
olate the integrity of any strict knowledge testIntegrity(H) and all prerequisites
in the body B defeasibly hold defeasible(B), i.e., r is applicable, and it is not
defeated by any other defeasible rule not(defeated(r,H)). The defeasible meta
inference rules prove if the defeasible rule r with the head H is not defeated by
testing if the rule defeasibly violates the integrity of the logic program according
to the de�ned integrity constraints. For each integrity constraint where H is a
member the defeasible integrity test meta program executed the following steps:

141

4 The ContractLog KR

1. Test whether all mutual exclusive con�icting literals of H are blocked, i.e.,
can not be derived using the neg(blocked(...)) auxiliary rules:
neg(blocked(defeasible(Opposer))).

2. If a con�icting literal is not blocked, test whether it is overridden by the
defeasible rule using the head literal H or the local rule label r or the
global module label to which r belongs to, i.e., has higher priority than
the opposer: overrides(Literal, Opposer) or overrides(Rule,Opposer) or
overrides(RuleModuleOID,OpposerModuleOID). If a con�icting de-
feasible rule, i.e., a rule which is de�ned to be con�icting in an integrity
constraint, is not blocked and is of higher priority than the defeasible rule
r, r is defeated and will not be concluded.

Theorem 7 in section 4.1.2 relates the meta program formalization to the
defeasible proof theory.

4.4.5 Summary

In contrast to most non-monotonic logic approaches such as prioritized circum-
scription, hierarchic autoepistemic logic, prioritized default logic which represent
preference information in an "external" manner expressed outside of the logical
language, ContractLog implements a homogeneous meta programming approach
where priorities and defeasible rules in combination with integrity constraints
and other rule types are formalized as LPs. The main advantages of this meta
programming approach for integrity and defeasible reasoning are:

• homogeneous representation of integrity constraints and defeasible theo-
ries as LPs

• easy to extend and combine with other logic programming formalisms,
e.g., default negation

• interpretation with di�erent LP semantics possible

In summary, the main contributions of the integrity preserving, preferenced,
defeasible logic extension of ContractLog are:

• expressive integrity constraints resp. conditional integrity rules to de�ne
logical and arbitrary application-speci�c con�icts

• integrity test axioms to test the actual or hypothetical KB states (program
states)

• conditional superiority relations between rules and modules (resp. scopes)

• defeasible reasoning and con�ict handling wrt arbitrary con�icts stated in
terms of integrity constraints and the priority de�nitions

In particular, the possibility to prioritize complete rule sets and the �exibility
to de�ne con�icts not just between positive and negative conclusions as in stan-
dard defeasible logic, but also between arbitrary con�icting literals is crucial

142

4 The ContractLog KR

in the contract domain, e.g., to represent typical legal principles such as "lex
posterior" or "lex superior" for resolving legal con�icts or to de�ne contract
hierarchies with alternatives and exceptional policies.

4.5 Transactional Module-based Update Logic

In order to adapt SLAs dynamically to changing requirements and allow dy-
namic modelling of the contract behavior, updates of the extensional fact knowl-
edge but also of the intensional rules play an important role. Knowledge updates
at runtime are not included by the standard (Horn) semantics of logic programs.
Typical update primitives such as "assert" and "retract" provided by LP lan-
guages such as Prolog are constraint to updates of the extensional fact base
and the semantics for updates does not o�er a declarative understanding. In
particular it gives no answers how update primitives should interact with other
logical operators and how a sequence of updates can be logically treated. For
instance, if a query triggering a sequence of updates fails, the side e�ects of
"assert" and "retract" can not be rolled back in a transactional style. Various
languages have been proposed for specifying updates of LPs leading to dynamic
LPs (aka evolving LPs), e.g. [LHL95, Zan93, NK88, AV91, LAP01, ABLP02,
EFST01, Lei03, Pas06b, Pas05a] and transaction logics, e.g. [BK95], which try
to provide a declarative meaning to dynamic LPs.

In ContractLog I follow the general approach of dynamic LPs where updates
are considered as special actions which transit the initial program (the actual
knowledge base resp. knowledge state) to a new extended or reduced state.
While the standard semantics of updates based on dynamic logics supports se-
quential composition of update sequences it fails short for complex transactional
bulk updates where updates of rule sets and/or fact sets are constructed and
executed as complex update actions (update sequences). Updates in Contract-
Log are based on the meta data annotated labelled logic which allows to bundle
clause sets to modules having a unique module oid (object id). Each update
asserting new knowledge to the KB is treated as a new (sub-)module which has
a unique ID (key), the module ID, with which it is asserted into the KB. That
is, the updates which are executed during rule derivations lead to a transition
resp. a sequence of transitions of the actual knowledge state to an extended or
reduced state. In the transactional mode updates in failed derivation trees are
rolled-back to the state of the last back-tracking point by inverting the update
primitives of the remembered transition sequence. The main advantages of this
approach are:

• updates of the extensional and intensional knowledge are supported in-
cluding bulk updates and imports of external modules

• updates are applied as subgoals in the body of rules in combination with
standard goals

• the updates are treated as goals which have both a truth value and an

143

4 The ContractLog KR

e�ect on the state of the knowledge base which enables a model theoretic
interpretation and a SLD-style proof-theoretic treatment of transactional
update execution, where in case of failed proof trees updates are rolled-
back

• the treatment of updates as modules with an unique oid makes it easy to
add or remove knowledge from the knowledge base

• in the absence of updates the program reduces to a standard LP

4.5.1 Syntax of Update Primitives

In ContractLog the set of function symbols F in the signature is extended with
three special update functions add, remove and transaction and two auxiliary
functions commit and rollback. These update primitives are more expressive
than the simple assert/retract primitives found in typical Prolog interpreters
and allow transactional as well as bulk updates of knowledge including updat-
ing of facts and rules. They enable arbitrary knowledge updates, e.g., adding
(add) /removing (remove) rules or complete rule sets including the integration of
knowledge from external sources and transactional update (transaction) which
are rolled back if the execution fails. Transactions might be explicit committed
or rolledback. Each update has a unique ID with which it is asserted into the
KB as a module.

Example 21

add("./examples/test/test.prova") % add an external script

add("http://rbsla.com/ContractLog/datetime.prova") % from URL

add(id1,"r(1):-f(1). f(1).")% add rule "r(1):-f(1)." and fact "f(1)."

add(id2,"r(X):-f(X).") % add rule "r(X):-f(X)."

p(X,Y) :- % object/variable place holders _N: _0=X ; _1=Y.

add(id3,"r(_0):-f(_0), g(_0). f(_0). g(_1).",[X,Y]).

remove(id1) % remove all updates with id

remove("./examples/test/test.prova") % remove external update

The examples show di�erent variants of updates with external modules im-
ported from their URIs, user-de�ned updates asserting rules and facts and up-
dates with previously bound variables from other goals which are integrated into
the updates using place holders _X.

Remarkably, updates to the KB are handled as modules, i.e., as (smaller) logic
programs which might contain further updates and imports of other modules,
leading to nested updates with hierarchical submodules. This concept facili-
tates the required modular and distributed representation and management of
contracts as sets of LP scripts provided at URLs on the (Semantic) Web. The
scripts can be dynamically added and removed from the knowledge base using
their module object ids (typically the URL or the user de�ned label).

144

4 The ContractLog KR

4.5.2 Semantics of Updates

The semantics of updates in ContractLog is based on the notion of knowledge
states and transitions from one state to another.

De�nition 119 (Knowledge State) A knowledge state represents a knowledge
base KBk, where k ∈ ℵ, consisting of a �nite extensional database (EDB) of
facts and a �nite intensional database (IDB) of rules.

Note that according to the labelled, modularized logic in ContractLog a state,
i.e., a knowledge base KBk, might consist of several EDBs and IDBs which are
bundled to possibly further nested submodules, each having an unique ID (the
module oid). Intuitively, a state represents the union of all clauses stored in all
modules in the combined knowledge base. An update is then a transition which
adds or removes facts and/or rules from/to the EDB and/or IDB and changes
the knowledge base. That is, the KB transits from the initial state KB1 to a
new state KB2. I de�ne the following notion of positive (add) and negative
(remove) transition:

De�nition 120 (Positive Update Transition) A positive update transition,
or simply positive update, to a knowledge state KBk is de�ned as a �nite set
Uposoid := {rN : H ← B, factM : A←} with A an atom denoting a fact, H ← B a
rule, N = 0, .., n and M = 0, ..m and oid being the update oid which is also used
as module oid to manage the knowledge as a new module in the KB. Applying
Uposoid to KBk leads to the extended state KBk+1 = {KBk ∪ Uposoid }. Applying
several positive updates as an increasing �nite sequence Uposoidj

with j = 0, .., k
and Uposoid0

:= ∅ to KB0 leads to a state KBk = {KB0∪Uposoid0
∪Uposoid1

∪ ...∪Uposoidk
}.

That is a stateKBk is decomposable in the previous knowledge state k−1 plus
the update: KBk = {KBk−1 ∪ Uposk }. I de�ne KB0 = {∅ ∪ Uposoid0

} and Uposoid0
=

{KB : the set of rules and facts de�ned in the program P}, i.e., loading/parsing
the program P from a LP script is the �rst update. Likewise, I de�ne a negative
update transition as follows:

De�nition 121 (Negative Update Transition) A negative update transi-
tion, or for short a negative update, to a knowledge state KBk is a �nite set
Unegoid := {rN : H ← B, factM : A←} with A ∈ KBk, H ← B ∈ P , N = 0, .., n
and M = 0, ..m, which is removed from KBk, leading to the reduced program
KBk+1 = {KBk \ Unegoid }.

Applying arbitrary sequences of positive and negative updates leads to a se-
quence of KB states KB0, ..,KBk where each state KBi is de�ned by either
KBi = KBi−1 ∪ Uposoidi

or KBi = KBi−1 \ Unegoidi
. In other words, KBi, i.e., the

set of all clauses in the KB at a particular knowledge state i, is decomposable in

145

4 The ContractLog KR

the previous knowledge state plus/minus an update, whereas the previous state
consists of the state i−2 plus/minus an update and so on. Hence, each particu-
lar knowledge state can be decomposed in the initial state KB0 and a sequence
of updates. Although an update might insert more than one rule or fact, i.e.,
insert or remove a complete module, it nevertheless is treated as an elementary
update, a so called bulk update, which transits the current knowledge state to

the next state in an elementary transition: 〈KBi, Upos/negoid ,KBk+1〉. Intuitively,
one might think of it as a complex update action which performs all inserts resp.
removes simultaneously.

Elementary updates have both a truth value and a side e�ect on the knowledge
base. All goals after an update apply on the extended resp. reduced transition
state, i.e., the truth value of a goal G depends on the actual knowledge state
KBi, denoted by KBi |= G, where KBi is the current state of the last up-
date transition. For instance, a query "q(X), add(u1, ”p(_0).”, [X]), p(Y)" will
succeed and return all values which are bound to X in the goal q(X) for the
variable Y due to the serial update and the subsequent goal p(Y). Note that
in the non-transactional style updates in (serial) rules are not rolled-back to
the original state if the derivation fails and the system backtracks. Typically
this "weak" non-transactional semantics is intended when external script are
imported or new rule sets are added as modules in an atomic action. That
is, independently, of whether the particular derivation in which the update is
performed fails from some reason the update transition to the next knowledge
state subsists and is not rolled back in case of failures.

4.5.3 Transactional Updates with Integrity Tests

Transactional updates in ContractLog are inspired by the serial Horn version of
transaction logics (TR) [BK95] which allows programming of update transac-
tions using rule de�nitions. In contrast to TR, ContractLog makes no distinc-
tion between a transaction base which speci�es the de�ned transactions and a
database which is a set of logical formulae. In ContractLog there is no seperation
between standard rules consisting of only classical literals and serial "update"
rules consisting of a mixture of classical and update literals. Moreover, update
literals are prohibited in the rules' heads, since sequences of active rules, i.e.,
rules where update actions trigger other updates, are represented as reactive
rules in ContractLog (see section 4.7).

In the following I will describe syntax and semantics of transactional updates
which adopts a notion of executional entailment from TR, where the truth of a
query or goal is de�ned on sequences of state transitions.

4.5.3.1 Syntax of Transactional Updates

De�nition 122 (Transactional Update) A transactional update is an up-
date, possibly consisting of several atomic updates, which must be executed com-
pletely or not at all. In case a transactional update fails, i.e., it is only partially

146

4 The ContractLog KR

executed or violates integrity wrt to integrity constraints, it will be rolled back
otherwise it will be committed. Formally, a transactional update is de�ned as
follows:

U transoid := U
pos/neg
oid1

, .., U
pos/neg
oidn

&IC

, where IC = {IC1, .., ICm} is a possibly empty set of integrity constraints which
must hold after the update has been executed. In case an integrity constraint is
violated the update is rolled back.

Syntactically, a transactional update is represented in ContractLog by the
special function transaction which takes positive or negative updates and op-
tionally tests on integrity constraints (or test cases) as arguments.

Example 22

transaction(remove(...)) % transactional remove

transaction(add(...)) % transactional update

% transaction update with explicit test case test.

transaction(add(...),"testcase1.prova")

commit(id5) % commit transaction with ID id5

rollback(id5) % rollback transaction with ID id5.

The major di�erence to the non-transactional updates is in the semantics of
transactional updates which is de�ned by executional entailment on transition
sequences.

4.5.3.2 Model-Theoretic Semantics of Transactional Updates

The semantics of transactional updates is built on the concept of sequences of
state transitions, called execution paths.

De�nition 123 (Execution Path) An execution path π is a sequence of state

transitions π = 〈KB0, U
pos/neg
oid1

〉 → 〈KB1, U
pos/neg
oid2

〉 → ... → 〈KBn, ∅〉, where
KBi is a knowledge state and U

pos/neg
oidi+1

a positive or negative update which tran-
sits KBi to the next state KBi+1.

I abbreviate the notation of an execution path of length k as a �nite and arbi-
trary sequence of state identi�ers (given by the update oids): 〈KB1, ...,KBk〉.
As in transaction logics the truths of update goals in ContractLog rules are
de�ned on execution paths. Thus, in case of updates in rules the answer to
a query is not determined by the current knowledge base alone, but depends
on the entire execution paths. An execution path in ContractLog is de�ned

147

4 The ContractLog KR

on sequences of KB states. Free queries with variables are supported that non-
deterministically execute along any one of many possible paths returning a set of
answers. Intuitively, the execution corresponds to truth on paths. Accordingly,
only execution paths which return a non-empty answer are considered and their
executed transactional updates are committed, whereas paths with empty an-
swer sets are backtracked and the processed transactional updates within such
paths are rolled back to the state of the last backtracking point. A query fails if
the answer set is empty for every possible path. The logical account of transac-
tional execution (derivation with transactional updates) is given by the concept
of executional entailment adapted from TR.

De�nition 124 (Executional Entailment) Let KB0 be an initial KB state
and Q be a query which might contain free variables X1, .., Xn then KB0, π |= Q,
i.e., Q is true in KB0, i� there exists a path π = 〈KB0, ..,KBk〉 which returns
a non-empty answer for all variables in Q. Q fails if it returns an empty answer
set for every possible execution path π.

That is, a query involves a mapping from sequences of KB states to sets of
tuples of ground terms in each state. In case of free queries with variables
several execution paths are considered to produce answers for the query Q, then
the �nal state KB which becomes the new knowledge base (state) is the union
of all �nal states of valid execution paths πi which entail Q. Queries which
do not involve any updates, i.e., which do not consider serial update rules but
only LP rules with standard atoms without any side e�ects on the KB, have an
execution path with length k = 0. In this case, a goal Q is entailed ifKB,π |= Q
and π = {KB}, i.e., there is not state transition and accordingly executional
entailment reduces to standard LP entailment KB |= Q.

4.5.3.3 Proof-Theoretic Semantics of Transactional Updates

The procedural semantics of transactional updates in ContractLog naturally
originates from the common top-down SLD-style proof procedures of logic pro-
gramming, i.e., SLD(NF) and variants such as the SLE resolution described
in section 4.1.3. Obviously, the linearity of these resolutions is an important
property in the context of transactional updates which are processed on serial
execution paths. The following inference system describes a natural extension
of the uni�cation based, top-down, linear systems with transactional updates.
As discussed in the previous section an inference is successful, if it �nds an
execution path for the query Q, i.e., a sequence of state transitions such that
KBi, π |= Q where i is the actual state of the KB. The inference system is given
by the following inference rules and one axiom which are adapted from TR:

De�nition 125 (Transactional Inference Rules)

• Axiom: KB,π ` ()

148

4 The ContractLog KR

• Serial Modus Ponens: Let H ← B be a rule in KB, with B being a
mixed serial body with transactional update literals and normal literals and
(Lb, rest) be a conjunction of (serial) goal literals. If Lb and H unify
with the mgu θ and X being a set of universally quanti�ed variables, then
KB,π`(∀X)(B,rest)θ

KB,π`(∀X)(Lb,rest)

• Querying: If Lbθ and restθ share no variables and KB |= (∀X)Lbθ, then
KB,π`(∀X)restθ

KB,π`(∀X)(Lb,rest)

• Elementary Updates: If Lbθ and restθ share no variables and KB2 |=
(∀X)Lbθ, then

KB2,π`(∀X)restθ

KB1,π`(∀X)(Lb,rest)

The inference system takes expression of the form KB,π ` B as input, mean-
ing that the query or update formed by the instantiated body goals can be
executed on the path π starting at the initial/actual state KB. If the upper
sequent of the inference rules can be inferred, then the lower sequent can also be
inferred. The axiom of the inference system formalizes an empty goal which al-
ways succeeds and has no side e�ect. The �rst inference rule says that if (B, rest)
succeeds from KB,π and Lb is de�ned by π then (Lb, rest) also succeeds from
KB,π. The second inference rule says if rest succeeds from KB,π and Lb is
true at the actual state KB, then Lb, rest also succeeds from KB,π. Inference
rule three says if Lb updates the knowledge state from KB1 to KB2 and rest
succeeds from KB2 then (Lb, rest) succeeds from KB1. The inference system
executes serial rules in backward-reasoning SLD-style by constructing execu-
tional deductions based on execution paths which transit the knowledge state
according to the sequentially processed updates mixed with standard queries in
the rule bodies. In the presence of variables several deductions might fail and
their update transitions must be rolled back to the state of the last backtracking
point in the resolution process. To achieve this the sequence of state transitions
is remembered on each execution path. As discussed each update has a unique
id and is inserted as a module resp. submodule of another module in the com-
bined KB. A roll back to the previous state before the update means to apply
the complement update function on the added or removed modules:

De�nition 126 (Rollback of Update) A transactional update is rolled back
by inverting the update primitive:
KBi = KBi+1 \ U transoid i� KBi+1 = KBi ∪ U transoid

KBi = KBi+1 ∪ U transoid i� exists KBi+1 = KBi \ U transoid

Note, that due to the module concept in ContractLog only the transition
sequence consisting of the update state oids and the update primitive needs to
be remembered to rollback a sequence of transactional updates.

149

4 The ContractLog KR

4.5.4 Summary

Dynamic updates of the extensional facts as well as the intensional rules are
crucial in the SLA domain in order to adapt the contracts to changing require-
ments such as new service levels or renegotiated policies, rights and obligations.
Moreover, in a distributed environment the contract structure typically consists
of scattered contract modules, data sources and domain-speci�c vocabularies
which are dynamically imported and added to the combined KB. The ability to
perform bulk updates and imports on rule sets and apply conditional updates
and transactional update sequences during serial rule execution is one important
part of the behavioral and reactive logic of active rule-based SLA monitoring
and enforcement.

The declarative semantics of updates is directly build on top of the labelled
logic and module concept of the ContractLog KR which allows to treat updates
in serial rule executions as transition sequences of knowledge states. Updates
have both a truth value and a side e�ect on the knowledge base. The proof
theory is an extension of the standard SLD-style resolution (SLE resolution)
with serial processing of goal and update literals which is essential for the non-
deterministic treatment of transactional updates. The operational semantics of
transactional updates supports rollbacks of transition sequences of failed update
transactions with possible subtransactions along their execution paths. Integrity
constraints or more expressive test cases can be used to safeguard the outcome
(the e�ect) of transactional updates on the knowledge system.

4.6 Temporal Event/Action Logic

Updates, as described in the previous section, are a special case of actions which
materialize state changes in the knowledge base. This kind of (transactional)
update logic is important to e�ciently and actually manage, maintain and adapt
distributed rule bases. However, it is mainly aimed for performing updates to the
KB and it is not intended for reasoning about events, actions and their temporal
e�ects on changeable properties of the knowledge systems, so called �uents. This
expressiveness to describe sophisticated relationships between di�erent states in
work�ow-like settings with transitions as e�ects of events/actions is provided by
event / action logics. The ability to formally reason about the e�ects of events or
actions on changeable states is vital in SLA monitoring and enforcement in order
to track the contract states and derive the respective contractual consequences
in each state. Typical examples are rights and obligations which hold in certain
states or penalties which have to be payed for the duration of e.g., unavailability
states. A particular advantage of event/action logics is their characterization in
classical logic and their representation as logic programs. Hence, the formalisms
are based on a clear logical semantics which is crucial when results need to be
traceable and veri�able, as in the contract domain where agreements are legal
entities. In section 3.5.1.4 I have discussed di�erent event/action logics. The
event calculus [KS86] is a well understood event/action logic formalism which

150

4 The ContractLog KR

due to its linear treatment of time and its rich expressive power to specify and
reason about event/actions and their e�ects quali�es as an adequate formalism
for SLA representation.

In this section I introduce the core syntax and semantics of the event calculus
formalism implemented in the ContractLog KR. It forms the basis for other
formalisms of the KR such as the deontic logic or the complex event/action
algebra, which will be described later. I �rst present the history and basic
concepts of the event calculus and then the syntax and semantics.

4.6.1 History and Basic Concepts of Event Calculus

In this section I will recall the basic concepts in the event calculus (EC). For
an overview on event and action logic formalisms see section 3.5.1.4. Kowalski
and Sergot�s EC [KS86] is a formalism for temporal reasoning about events and
their e�ects on a logic programming system as a computation of earlier events
(long-term "historical" perspective). It de�nes a model of change in which
events happen at time-points and initiate and/or terminate time-intervals over
which some properties (time-varying �uents) of the world hold. Time-points
are unique points in time at which events take place instantaneously. The basic
idea is to state that �uents are true at particular time-points if they have been
initiated by an event at some earlier time-point and not terminated by another
event in the meantime. Similarly, a �uent is false at a particular time-point, if
it has been previously terminated and not initiated in the meantime. That is,
the EC embodies a notion of default persistence according to which �uents are
assumed to persist until an event occurs which terminates them. This principle
follows the axiom of inertia �rst proposed by McCarthy and Hayes which says:
"Things normally tend to stay the same" [MH69]. A central feature of the EC
is that it establishes or assumes a narrative time structure which is independent
of any event occurrences. The time structure is usually assumed or stated to be
linear although the underlying ideas can equally be applied to other temporal
notions, e.g., branching structures, i.e., event occurrences can be provided with
di�erent temporal quali�cations. Variants range from the normal structures
with absolute times and total ordering to loose ones with only relative times
and partial ordering. Given a history of events (set of event occurrences), the
EC is able to infer the set of maximal validity intervals (MVIs) over which the
�uents initiated and/or terminated by the events maximally hold. Therefore, a
central feature of the Event Calculus, in comparison to other event/action logics
such as Situation Calculus, is that an explicit linear time-structure, which is
independent of any events, is assumed.

In ContractLog I apply absolute times with total ordering which can be eas-
ily represented and computed using prede�ned predicates and functions for date
and time values of the ContractLog library. The granularity of time is applica-
tion dependent. It may be a second or a minute in some contexts and a day in
others. In the EC action occurrences are often special event types, i.e., the EC

151

4 The ContractLog KR

deals with actions and events interchangeably. The core axioms of the classical
EC are:

happens(Ev,Ti) event Ev happens at time point Ti

initiates(Ev,Fl,Ti) event Ev initiates fluent Fl for all time>Ti

terminates(Ev,Fl,Ti) event Ev terminates fluent Fl for all time>Ti

holdsAt(Fl,Ti) fluent Fl holds at time point Ti

The Event Calculus was originally formulated as a logic program in [KS86] and
many alternative logic program formulations and extensions which also formal-
ize non-deterministic actions, concurrent actions, actions with delayed e�ects,
gradual changes, actions with duration, continuous change, and non-inertial �u-
ents have been subsequently proposed, see e.g. [Sha90, DMB92, Kow92, SK95,
KM97a, Sha97a, Sha97b, KMT99]. The EC has also been formulated in modal
logic, see e.g. [CCM96].

4.6.2 Syntax of the Event Calculus Logic

A classical logic axiomatizations of the EC has been given in [MS99]. In contrast,
ContractLog exploits extended logic programs to axiomatizes EC domains as
meta programs in logic programming form. The axioms describe when events
/ actions occur (transient view), happens (non-transient view) or are planned
to happen (future view) within the EC time structure and which properties
(�uents) are initiated and/or terminated by these events/actions under various
circumstances.

De�nition 127 (Event Calculus Language) The EC signature in ContractLog
is a multi-sorted signature with equality, with a sort Ev for events resp. actions,
a sort Fl for �uents, and a sort Ti for timepoints. The EC language ΣEC is a
tuple 〈Ev, F l, T i,≤〉 where ≤ is a partial ordering de�ned over the non-empty
set Ti of time points, Ev is a non-empty set of events/actions and Fl is a non-
empty set of �uents. Timepoints, events/actions and �uents are n-ary functional
literals L or ¬L which might be rei�ed.

The calculus for event/actions and their e�ect is implemented as a meta
program in LP format. The main EC axioms to axiomatizes an Event Calculus
domain in ContractLog are:

occurs(Ev,Ti): event Ev occurs at time interval Ti:=[Ti1,Ti2]

happens(Ev,Ti): event Ev happens at time point Ti

planned(Ev,Ti): event Ev is panned to happen at time point Ti

initially(Fl): fluent Fl holds initially

initiates(Ev,Fl,Ti): event Ev initiates fluent Fl for all time>Ti

152

4 The ContractLog KR

terminates(Ev,Fl,Ti): event Ev terminates fluent Fl for all time>Ti

holdsAt(Fl,Ti): fluent Fl holds at time point Ti

holdsInterval([Ev1,Ev2],[Ti1,Ti2]): holds between interval

holdsInterval([Ev1,Ev2],[Ti1,Ti2],[<Terminators>]): with terminators

trajectory(Fluent,Ti1,Parameter,Ti2, X): trajectory

valueAt(Parameter,Ti): gives quantitative value at given

time

countMVI(Fluent,Number): counts the number of MVIs

mvi(Fluent,Timespan): computes all validity intervals

overallMVI(Fluent,Timespan): computes the overall mvi

Example 23

initiates(e1,maintenance,Ti).

terminates(e2,maintenance,Ti).

happens(e1,t1). happens(e2,t5).

:-solve(holdsAt(maintenance,t3))

:-solve(holdsAt(maintenance,t7))

The example states that an event e1 initiates a �uent maintenance and an
event e2 terminates the �uent. The event e1 happens at timepoint t1 and the
event e2 happens at timepoint t5. Accordingly the �rst query succeeds, i.e., the
�uent state maintenance holds at timepoint t3, since maintenance is initiated
at timepoint t1 and not terminated in between. The second query on timepoint
t7 fails since maintenance is terminated at timepoint t5.

The implementation of the EC meta program is fully declarative and untyped.
That is the terms used within the EC axioms might be constant, variable or
complex (functional). In particular �uents and event/actions might be rei�ed
statements formalized as functions. For instance, events, �uents or time points
can be represented as complex logical functions, constant String values, external
Java objects or XML based or relational database serializations.

Example 24

happens(e1,datetime(2005,11,23,10,30,0)).

initiates(e1,permit(S,O,A), Ti).

terminates(e2, permit(S,O,A), Ti).

The example shows the use of complex terms in the EC. It de�nes a permission
for a subject S to perform the action A on the object O which will be initiated

153

4 The ContractLog KR

by the event e1 and terminated by the event e2. An event e1 happens at the
timepoint datetime(2005, 11, 23, 10, 30, 0). This rei�ed treatment of complex
terms quali�es the EC as a general inference system for various domains which
need to reason about complex actions and events and their e�ects on complex
states (see section 4.7.4 and section 4.8).

4.6.3 Semantics of the Event Calculus Logic

Circumscription [McC80] has been used by Shanahan [Sha97a] as a semantics in
the EC, in particular as semantic for negation-as-failure and the frame problem.
In ContractLog the semantics is based on a meta programming formalization
which is represented as an extended LP. This enables a homogenous repre-
sentation of EC axiomatizations as standard LPs in combination with the other
formalisms of the ContractLog KR. Informally the declarative semantics is given
by interpretations which map pairs of �uents and timepoints to truth values.

De�nition 128 (Event Calculus Interpretation) An interpretation is a map-
ping I : Ti xF l 7→ {true, false}.

De�nition 129 (Event Calculus Satisfaction) An interpretation I satis�es
a �uent Fl at timepoint Ti if I(Fl, T i) = true and I(¬Fl, T i) = false.

De�nition 130 (Instantiation and Termination) Let ΣEC be an EC lan-
guage, DEC be a domain description (an EC program) in ΣEC and I be an
interpretation of ΣEC . Then a �uent Fl is instantiated at time point Ti1 in
I i� there is an event Ev1 such that there is a statement in DEC of the form
happens(Ev1, T i1) and a statement in DEC of the form initiates(Ev1, F l, T i).
A �uent Fl is terminated at time point Ti2 in I i� there is an event Ev2 such
that there is a statement in DEC of the form happens(Ev2, T i2) and a statement
in DEC of the form terminates(Ev2, F l, T i).

An interpretation quali�es as a model for a given domain description, if:

De�nition 131 (Event Calculus Model) Let ΣEC be an EC language, DEC

be a domain description in ΣEC . An interpretation I of ΣEC is a model of DEC

i� ∀Fl ∈ Fl and Ti1 ≤ Ti2 ≤ Ti3 the following holds:

1. If Fl has not been instantiated or terminated at Ti2 in I wrt DEC then
I(Fl, T i1) = I(Fl, T i3)

2. If Fl is initiated at Ti1 in I wrt DEC , and not terminated at Ti2 the
I(Fl, T i3) = true

3. If Fl is terminated at Ti1 in I wrt DEC and not initiated at Ti2 then
I(Fl, T i3) = false

154

4 The ContractLog KR

The three conditions de�ne the persistence of �uents as time progresses. That
is, only events/actions have an e�ect on the changeable �uents (condition 1) and
the truth value of a �uent persists until it has been explicitly changed by another
event/action (condition 2 and 3). A domain description is consistent if it has a
model. I now de�ne entailment wrt to a meta program domain description:

De�nition 132 (Event Calculus Entailment) Let DEC be an EC domain
description. A �uent Fl holds at a timepoint Ti wrt to DEC , written DEC |=
holdsAt(Fl, T i), i� for every interpretation I of DEC , I(Fl, T i) = true. DEC |=
neg(holdsAt(Fl, T i)) i� I(Fl, T i) = false.

The inference calculus for the EC logic is implemented as a meta program in
ContractLog. The core inference rules are:

%----------------

% Optimized version with cut to answer bound queries holdsAt(f,t)?

% ==> true/false

%----------------

holdsAt(Fluent,Time):-

bound(Fluent),

bound(Time), % Ti must be input / bound

not(derivedFluent(Fluent)), % compute only non derived fluents

initiates(AnEvent, Fluent, Time),

happens(AnEvent, Before),

less(Before, Time),

notclipped(Before, Fluent, Time), % assumes closed world

!.

%----------------

% Optimized version to answer free queries holdsAt(Fl,t)?

% ==> All Fluents which hold at t

%----------------

holdsAt(Fluent,Time):-

bound(Time), % Ti must be input / bound

happens(AnEvent, Before),

less(Before, Time),

initiates(AnEvent, Fluent, Before),

not(derivedFluent(Fluent)), % compute only non derived fluents

notclipped(Before, Fluent, Time). % assumes closed world

The basic calculus in ContractLog implements optimized variants for free and
ground queries on the validity of �uents at time points: holdsAt ⊆ Fl × Ti,
where Fl a terms of sort �uent and Ti are terms of sort time. The �rst inference
rule implements the variant for ground queries, i.e., holdsAt(+,+), and the
second inference rule is used for free queries, i.e., holdsAt(−,+). For the rest

155

4 The ContractLog KR

of this subsection I focus on various extensions to the basic formulation of the
EC adopted from [MS99]. Due to lack of space I can only highlight some of
the EC features which I have implemented in the ContractLog KR. I focus on
the most interesting ones in the context of SLA representation and event/action
processing.

For some domains, it is appropriate to categorize �uents into normal �uents
(aka frame �uents), which hold over intervals of time with non-zero duration (as
described above) and derived �uents (aka non-frame �uents) which represent in-
direct e�ects (e.g. state constraints). Therefore, I exclude derived �uents from
the principle of default persistence and direct event initiation by introducing
a new predicate derived ⊆ Fl : derived(fluent) which states that the �uent
is a derived �uent. Derived �uents hold if an other (normal) �uent holds, i.e.,
holdsAt(f2, T i)← holdsAt(f1, T i) and derived(f2).
This frame concept can be further extended to a fully dynamic management
of frames in order to express that particular �uents have a default persistence
during some intervals but not during special other intervals. That is, in certain
states the default persistence of a �uent is disabled, so that the truth value of
the �uent can �uctuate until the frame principle is reinitiated. To achieve this
I introduce a new predicate releases ⊆ Ev × Fl × Ti : releases(e, f, t) which
expresses that if an event e occurs at time point t it will disable the default per-
sistence of �uent f until the axioms initiates or terminates reinitiate its default
persistence. According to this a �uent can have four di�erent truth values: per-
sistently true, persistently false, free true and free false. To describe these states
explicitly, I introduce a new predicate releasedAt ⊆ Fl × Ti : releasedAt(f, t)
and add two auxiliary predicates released ⊆ Ti × Fl × Ti: released(t1, f, t2)
which means that �uent f is released from persistence between t1 and t2 and
persistent ⊆ Ti × Fl × Ti : persistent(t1, f, t2) which means a �uent is not
released between t1 and t2.
To describe delayed e�ects of events in the EC we use a �exible approach
based on trajectories and parameters [Sha90] I distinguish between the already
introduced "normal" �uents and parameters which are non-persistent �uents
representing an arbitrarily-valued function of time. I introduce the predicate
trajectory ⊆ Fl×Ti×Fl×Ti×C: trajectory(f, t1, p, t2, v), which states that
if �uent f is initiated at time t1 and continues to hold until time t2 then the
parameter p has a value of v at time t2. I translate this into Event Calculus
terms by a special extra axiom valueAt ⊆ Fl×Ti×C : valueAt(p, t2, x) which
states that parameter p has value x at time t2. Applications of parameters are
manifold. They can be used to represent continuous change, simple mathemati-
cal functions based on time or delayed e�ects such as time based countdowns or
deadlines, e.g., to state that an event e2 happens if the countdown parameter
reaches the value 0 while the decrease function is de�ned by a trajectory.

Example 25

trajectory(serverIsDown, Before, serverDownDuration, After, X):-

math_sub(After,Before,X).

156

4 The ContractLog KR

:-solve(valueAt(serverDownDuration,datetime(2006,1,1,13,34,10),Ti)).

The example de�nes a parameter serverDownDuration which computes the
down time of a server as trajectory function over the �uent (state) serverIsDown.
The query asks for the value of the parameter at the stated time point. This
concept of parameters might be further extended to a more general approach
using further axioms which explicitly utilize the mathematical de�nitions of con-
tinuity and di�erentiability of real-valued functions of time (cf. [San89b]) and
might be further extended with a axiomatization of the peano axioms to reason
of numbers. However, in ContractLog I do not follow this approach, because
complexity of reasoning in these domain has very high complexity bounds and
the (business) logical component is minimal. Hence, I shift such computations
to highly-optimized procedural languages (Java) by procedural attachment (see
section 4.2.3.1).
Further extensions, such as hypothetical reasoning with future events, which
are implemented in ContractLog, can not described in detail in this disser-
tation. In short, the basic idea is to distinguish between happened events
(happens(e, t)) and future believed events (planned(e, t)). This can be very ef-
fective in the context of hypothetical planning (e.g., to become proactive [PB05])
which can be viewed as the deduction of sentences of the form plan→ goal, e.g.,
plan{planned(x1, t1), planned(x2, t2), ...} and goal{holdsAt} where by deduc-
tion theorem, Theory |= [Plan→ Goal] and [Theory∧Plan] |= Goal, planning
can be done in terms of abduction, i.e., �nding plans to add to the theory so
that the goal is entailed.

4.6.4 Summary

Temporal reasoning on the e�ects of events and actions on changeable proper-
ties, so called �uents, is crucial to specify and track contract states and their
relations in work�ow-like settings. In this section I have described the core syn-
tax and semantics of the event calculus implemented in the ContractLog KR.
It provides a precise formal de�nition and declarative semantics and hence pro-
duces traceable and veri�able results. The formalization of the EC is given as a
LP meta program which allows interpretation with di�erent LP semantics and
execution in standard LP inference engines. Hence, the EC logic in ContractLog
provides adequate expressive power to specify sophisticated relations between
events/actions and contract states and produces veri�able and traceable results.
On the other hand, the EC logic in ContractLog is inherently goal-driven and
provides no means to actively monitor occurred events and react to them. In
the next two sections I will further extend and exploit the event calculus in the
domain of active reaction rules and in the domain of deontic reasoning with
deontic norms stated as �uents.

157

4 The ContractLog KR

4.7 Reactive Behavioral Logic

In SLA execution and enforcement event-driven reactive functionalities are an
obvious necessity. SLA rules often describe (re)active behavioral logic, e.g., "if
the service becomes unavailable (event) and it is not maintenance time (condi-
tional state) then send a noti�cation to the system administrator, create a trouble
ticket and trigger escalation level one (complex action)". Such rules typically
follow the Event-Condition-Action (ECA) paradigm which has been developed
and intensively explored in the active database domain (see section 3.5.1.1). In
a nutshell, this paradigm states that an ECA rule autonomously and actively
reacts to occurring events by evaluating a condition or a set of conditions and
by executing a reaction whenever the event happens and the condition is true:
"on Event and Condition do Action". In ContractLog I have implemented a
tight integration of extended global ECA rules into logic programming in order
to represent reaction rules in a homogenous syntax and knowledge base in com-
bination with derivation rules and facts and use the backward-reasoning rule
engine also as execution environment for reactive rules. A particular advantage
of this approach is, that arbitrary complex functionalities of reaction rules can
be implemented in terms of derivation rules in combination with the expressive
other formalisms of the ContractLog KR.

Furthermore, ContractLog's reaction rule component intergrates the Prova
Agent Architecture (Prova AA [KPS06, KS04]). The AA language includes
constructs allowing for sending messages via tyical transport protocols such as
JMS and allows for specifying message-oriented reaction rules for processing
incoming evemt messages. In contrast to the global ECA rules which apply
in a global context to detected (complex) events, the AA reaction rules apply
local to a conversation / conversation set or process work�ow, enabling typical
process �ows with splits and joins. That is, complex event processing is based
on event messages which are interchanged between the enpoint nodes of the
communication network (an ESB). I will detail the implementation in chapter 5
which describes the RBSLM tool. The ContractLog KR works on top of Prova
AA reaction rules. Both global ECA rules and local messaging reaction rules
are needed for distributed SLA management and enforcement and they form the
basis for the integration of the ContractLog KR into languages such as BPEL
and architectures such as EDAs, CEP and BAM systems. In the following sub-
sections I will �rst describe the syntax and semantics of the ECA-LP extension
of ContractLog which introduces global ECA rules and then describe the com-
bination with AA reaction rules where event processing is done in a push mode
using event noti�cation and communication mechanisms.

4.7.1 Syntax of ECA-LP

The Event-Condition-Action logic programming (ECA-LP) [Pas05a] extension
of the ContractLog language represents an extended ECA rule as a 6-ary truth-
valued function eca(Ti, Ev,Co,Ac, Po,EL), where Ti (time), Ev (event), Co

158

4 The ContractLog KR

(condition), Ac (action), Po (post condition), EL(se) are complex term argu-
ments. A complex term is a logical function of the form c(C1, .., Cn) with a
bound number of arguments (terms) which might be constant, variable or again
complex. That is, reactive rules are integrated as special functions into the
(combined) signature S of ContractLog returning a truth value and taking ar-
guments which are de�ned over the language of ContractLog. Boolean-valued
procedural attachments, as de�ned in section 4.2.3.1, are also supported in ECA
rules and can be directly used instead of a complex term. While the Ev, Co
and Ac parts of an ECA rule comply with the typical de�nitions of standard
ECA rules, the Ti, Po and EL part are extensions to standard ECA rules:

• The time part (Ti) of an ECA rule de�nes a pre-condition (an explicitly
stated temporal event) which speci�es a speci�c point in time at which
the ECA rule should be processed by the ECA processor, either absolutely
(e.g., "at 1 o'clock on the 1st of May 2006), relatively (e.g., 1 minute after
event X was detected) or periodically (e.g., "every 10 seconds").

• The post-condition (Po) is evaluated after the action. It might be used to
prevent backtracking from di�erent variable bindings carrying the context
information from the event or condition part by setting a cut. Or, it might
be used to apply veri�cation and validation tests using integrity (action)
constraints or test cases which must be satis�ed after the action execution.

• The else part (EL) de�nes an alternative action which is execute alterna-
tively in case the ECA rule can not be applied, e.g., to specify a default
action or trigger some failure handling (re-)action.

ECA parts might be left out (i.e., always true) stated with "_", e.g.,
eca(time(...), event(...),_, action(...),_,_) or omitted, e.g.,
eca(e(...), c(...), a(...)). This leads to speci�c types of reactive rules, e.g. pro-
duction rules
(CA: eca(condition(), action())) or extended ECA rules with post condition
(ECAP: eca(event(), condition(), action(), postcondition())) or reactive rules
in if-then-else style (EAA: eca(event(...), action(...), else(...)). During interpre-
tation the smaller rule variants are expanded to the full 6-ary ECA rule syntax,
where the omitted parts are automatically stated as true with "_".

The complex terms are interpreted as queries/goals on derivation rules which
are used to implement the respective functionality of each of the ECA rules'
parts. That is, the full expressiveness of derivation rules in extended LPs with
logical connectives, variables, �nite functions, (non-monotonic) default and ex-
plicit negation as well as linear sequential operators such as "cuts", serial up-
dates and procedural attachments can be used to describe complex behavioral
reaction logic in term of derivation rules which is actively queried from the re-
active ECA rules. As a result the ECA rules' syntax stays compact, reuses the
extended logic programming language and the implemented global derivation
rules can be reused several times in di�erent ECA rules, leading to a compact
homogenous KB.

159

4 The ContractLog KR

Example 26 Every 10 seconds it is checked (time) whether there is a service
request by a customer (event). If there is a service request a list of all currently
unloaded servers is created (condition) and the service is loaded to the �rst server
(ac-tion). In case this action fails, the system will backtrack and try to load
the service to the next server in the list. Otherwise it succeeds and further
backtracking is prevented (post-condition cut) . If no unloaded server can be
found, the else action is triggered, sending a noti�cation to the customer.

eca(

every10Sec(), % time

detect(request(Customer, Service),T), % event

find(Server), % condition

load(Server, Service), % action

!, % postcondition

notify(Customer, "Service request temporarily rejected").

).

% time

every10Sec() :- sysTime(T), interval(timespan(0,0,0,10),T).

% event

detect(request(Customer, Service),T):-

occurs(request(Customer,Service),T),

consume(request(Customer,Service)).

% condition

find(Server) :- sysTime(T), holdsAt(status(Server, unloaded),T).

% action

load(Server, Service) :-

sysTime(T),

rbsla.utils.WebService.load(Server,Service),

add(key(Server), "happens(loading(_0),_1).",[Server, T]).

% alternative action

notify(Customer, Message):-

sendMessage(Customer, Message).

The state of each server might be managed by an EC formalization:

terminates(loading(Server),status(Server,unloaded),T).

initiates(unloading(Server),status(Server,unloaded),T).

The example includes possible backtracking to di�erent variable bindings. In
the condition part all server which are in the state unloaded are bound to the

160

4 The ContractLog KR

variable Server. If the action which tries to load a server with the service
succeeds further backtracking is prevented by the post-conditional cut. If no
unloaded server can be found for the customer request, the "else" action is
executed which noti�es the customer.

4.7.2 Declarative Semantics of ECA-LP

The declarative semantics of ECA rules in ContractLog LPs is directly built on
top of the semantics of the underlying rule/inference system. ECA rules are
de�ned globally and unordered in the KB; homogeneously in combination with
other rule types. In order to integrate the (re)active behavior of ECA rules
into goal-driven backward-reasoning the goals de�ned by the complex terms
(truth valued functions) in the ECA rules are actively used to query the KB
and evaluate the derivation rules which implemented the functionality of the
ECA rules' parts.

De�nition 133 (Reaction Rule) A reaction rules is an extended ECA rule
which is interpreted as a conjunction of (sub)goals (the complex terms) which
must be processed in a left-to-right order starting with the goal denoting the time
part, in order to capture the forward-directed operational semantics of an ECA
rule: ECAi? = Ti ∧ Ev ∧ ((Co ∧ Ac ∧ Po) ∨ EL), where ECA? is the top
goal/query which consists of the subgoal Ti,Ev,Co,Ac,Po, EL. An ECA rule
succeeds, i.e., is entailed in the KB, if the subgoals succeed:

SEM(KB) |= ECAi i� SEM(KB) |= (∀X)(Ti∧Ev∧((Co∧Ac∧Po)∨EL)),
where X is a set of variables.

The semantics for the respective parts of an ECA rule is de�ned by the seman-
tics of the ContractLog formalisms. In subsection 4.7.4 I will elaborate on the
complex event/action processing capabilities of ContractLog which allow com-
plex events and actions in reaction rules. Note, that the "else action" EL is an
alternative to the normal action sequence leading to an "if-then-else" rule style
represented as a disjunction. The post-condition acts as a constraint on the KB
state after the action has been performed. In particular, actions with e�ects on
the KB such as knowledge updates (as described in section 4.5) which transit
the actual KB state to the next state can be tested by integrity constraints as
described in section 4.4.2. In case the integrity tests fail transactional knowledge
updates are rolled back by the semantics of the transaction logic in ContractLog.
In case of external actions compensating actions can be called, if the external
system provides respective API methods which support transactions. That is
the action part of a reaction rule only succeeds if the (pre)condition before the
action and the postcondition after the actions are true. Formally:

∀X(Co ∧Ac ∧ Po)

161

4 The ContractLog KR

4.7.3 Operational Semantics of ECA-LP

In order to integrate the (re)active behavior of ECA rules into goal-driven
backward-reasoning the goals de�ned by the complex terms in the ECA rules
are meta-interpreted by an additional ECA interpreter. The interpreter imple-
ments the forward-directed operational semantics of the ECA paradigm. The
ECA interpreter provides a general Wrapper interface which can be specialized
to a particular query API of an arbitrary backward-reasoning inference engine.
That means, the ECA meta interpreter is used as a general add-on attached to
a LP system extending it with reasoning and processing features for reactive
rules. The task of processing an ECA rule by querying the respective deriva-
tion rules using the de�ned complex terms in an ECA rule as queries on the
KB is solved by a Daemon (implemented within the ECA interpreter). The
daemon is a kind of adapter that frequently issues queries on the ECA rules in
order to simulate the active behavior in passive goal-driven LP systems. Proof-
theoretically it applies the ECA subgoals of a top query formed by an ECA rule
one after the other on the KB (the actual KB state) using the inference rules
of the underlying backward-reasoning inference engine to deductively prove the
syntactic drivability from the clauses in the KB. The process is as follows:

1. it queries (repeatedly - in order to capture updates to reactive rules) the
KB and derives all ECA rules represented in the KB by the universal
query eca(Ti,Ev,Co,Ac, Po,EL)?,

2. it adds the derived ECA rules to its internal active KB, which is a kind
of volatile storage for reactive rules and temporal event data, and

3. �nally, it processes the ECA rules sequentially or in parallel depending on
the con�guration using a thread pool.

The forward-directed execution of ECA paradigm is given by the strictly
positional order of the terms in the ECA rules. That is, �rst the time part is
queried/evaluated by the ECA processor (daemon), when it succeeds then the
event part is evaluated, then the condition and so on. The computed (ground)
substitutions θ of the variables for each subgoal in a rule ECAi are uni�ed by the
ECA interpreter with their variable variants in the subsequent subgoals of the
top ECA query. The interpreter also implements the common LP backtracking
mechanism to backtrack from di�erent variable bindings. Figure 4.1 illustrates
this process.

In order to enable parallel processing of ECA rules the ECA processor imple-
ments a thread pool where each ECA rule is executed in a separated thread, if
its time part succeeds (see �gure 4.2).

Variables and negation in ECA rules are supported as described in section
4.1.2. For example, the ECA processor enables variable binding to ground
knowledge derived from the queried derivation rules and facts of the KB, knowl-
edge transfer from one ECA part to another by variable uni�cation and back-
tracking to di�erent variable bindings as in logic programming. This is in partic-
ular useful to interchange context information, e.g., between the event and the

162

4 The ContractLog KR

Figure 4.1: Forward-directed Execution Model of Reaction Rules

Figure 4.2: Parallel Processing of Reaction Rules with Threads

action or the condition and the action part. It is worth noting, that the imple-
mentation of the ECA interpreter is designed to be general and to be applicable
to di�erent derivation mechanisms such as variants of linear SLDNF-resolution.
However, depending on the con�guration of the ECA interpreter for a particular
logic class (de�nite, strati�ed, normal, extended, disjunctive LP) and depending
on the procedural semantics of the underlying inference engine, e.g., standard
SLDNF with negation-as-�nite-failure test rule (Naf), query answering might
become undecidable (due to in�nite functions), non-terminating (due to loops)
or �oundering (due to free variables in Naf tests). Hence, depending on the
underlying logic this amounts for con�guring the ECA interpreter with special
safety conditions such as Datalog restriction or "allowedness" restriction where
variables in default negated literals are not allowed.

The homogeneous combination of reaction rules and derivation rules within
the same representation language paves the way to (re-)use various other useful
logical formalisms in active rules, such as procedural attachments, defeasible
rules with rule priorities for con�ict resolution, transactional update actions,
event/action logics for temporal event calculations and complex event/action
reasoning and it relates ECA rules to other rule types such as integrity con-
straints or normative rules. As a result, the high expressive power and the clear
logical semantics of these formalisms is also adopted for reaction rules. In par-
ticular, representation and processing of complex events and actions and active
rules, which are rules which actively trigger other reaction rules leading to non-
deterministic execution sequences, bene�ts from this logical treatment, as I will
describe in the next section.

163

4 The ContractLog KR

4.7.4 Complex Event / Action Processing

Events resp. actions in reactive ECA rules are typically not atomic but are
complex consisting of several atomic events or actions which must occur in
the de�ned order and quantity in order to detect complex events resp. execute
complex actions. This topic has been extensively studied in the context of active
databases and event algebras, which provide the operators to de�ne complex
event types (see section 3.5.1.1 for an overview). Typical event algebras in the
active database domain de�ne the following operations or variants of them:

• Sequence operator (;): the speci�ed event instances have to occur in the
order determined by this operator

• Disjunction operator (∨): at least one of the speci�ed instances has to
occur

• Conjunction operator (∧): the speci�ed event instances can occur in any
order, where the detection time is the timestamp of the latest occurred
event

• Simultaneous operator (=): the speci�ed instances have to occur simulta-
neously

• Negation operator (¬): the speci�ed instance(s) are not allowed to occur
in a given interval

• Quanti�cation (Any): the complex event occurs when n events of the
speci�ed type have occurred

• Aperiodic Event Operator (Ap): The aperiodic operator Ap allows one to
express the occurrence of an event Ev2 within the interval de�ned by two
other events Ev1 and Ev3: Ap(Ev2, Ev1, Ev3)

• Periodic Event Operator (Per): The periodic operator Per is an event
type which occurs every t time-steps in between Ev1 and Ev2

The detection time of a complex event is typically the occurrence time of its
terminating event (according to the de�ned selection and consumption policy for
events). This leads to inconsistencies and irregularities in typical event algebras,
such as Snoop [CKAK94], SAMOS [GD93] as I will illustrate now:

1. Consider the following event type Ap(A,B,C) de�ned by the aperiodic
operator Ap in Snoop, i.e., the complex event is detected when A occurs
between B and C. An event instance sequence (EIS) {acbb} will trigger
two events of this type, according to the type speci�c instance sequence
Ap(A,B,C) = {{a, b}, {a, b}}, even though the event instances of B occur
outside of the detection interval de�ned by a and c.

2. The sequence B; (A;C) in Snoop is detected if A occurs �rst, and then B
followed by C, i.e., EIS = {a, b, c}, because the complex event (A;C) is
detected with associated detection time of the terminator c and accord-
ingly the event b occurs before the detected complex event (A;C). But

164

4 The ContractLog KR

the intended result is that only EIS = b, a, c should lead to the detection
of the complex event B; (A;C) since the correct event type pattern for
EIS = a, b, c should be A; (B;C).

3. Consider the event type (A;B)[A,C] in SAMOS, i.e., the event of type A
sequentially followed by B in between A and C causes the complex event
to be detected. For an EISaabbbc one may expect (under a strict inter-
pretation) that it does detect one or at least two complex events, because
the sequence (a; b) occurs once (or twice) in the interval determined by a
and c. However, the event detection algorithm used in SAMOS detects
three events of this type, because it combines all occurrences of a and
b in between [A,C] regardless of the sequence operator and occurrence
intervals of [A,B] in between [A,C]. Although this might be acceptable
in some domains, under a strict interpretation it violates the semantics
of the sequence operator and the usual event consumption, where events
do not contribute to several event detections but are consumed after they
have contributed to a complex event.

4. Given the event type (A;B) ACCOD (Active Object Oriented Database
System) causes the recognition of six complex events from the EIS: {aaabb}.
While this may be acceptable, or even desirable, in some applications,
strictly speaking, if the events unify with the detection interval that is
already progressing, i.e., which is initiated by a, multiple repeated occur-
rences of a should be ignored during the monitoring interval [a, b].

All these problems arise from the fact that complex events, in the active
database sense, are simply detected and treated as if they occur at an atomic
instant, i.e., at a certain time point, and not in the KR event/action logics
sense, where complex events occur over an extended interval and where the
information about how far into the past their occurrence interval (maximum
validity interval) reaches is derived. To overcome such unintended semantics
and provide veri�able and traceable complex event computations (resp. complex
actions) based on a logical calculi I have implemented an interval-based Event
Calculus (EC) variant in the ContractLog KR and re�ned the typical database
event algebra operators based on it. In the interval-based Event Calculus all
events are regarded to occur over a time interval, i.e., an event interval [e1, e2]
occurs during the time interval [t1, t2] where t1 is the occurrence time of the
initiator event e1 and t2 is the occurrence time of the terminator event e2.
An atomic event occurs in the interval [t, t], where t is the occurrence time
of the atomic event. The basic holdsAt axiom used for temporal reasoning
about �uents is rede�ned to the axiom holdInterval ⊆ Ev × Ev × Ti × Ti :
holdsInterval([Ev1, Ev2], [Ti1, T i2]) to capture the semantics of event intervals
which hold between a time interval:

holdsInterval([Ev1,Ev2],[Ti11,Ti22]):-

event([Ev1],[Ti11,Ti12]), event([Ev2],[Ti21,Ti22]),

[Ti11,Ti12]<=[Ti21,Ti22], not(broken(Ti12,[Ev1,Ev2],Ti21).

165

4 The ContractLog KR

The event function event is a meta function to translate instantaneous event
occurrences into interval-based events: event([Ev], [Ti, T i]) : −occurs(Ev, T i).
It is also used in the event algebra meta program to compute complex events
from occurred raw events according to their event type de�nitions. The broken
function tests whether the event interval is not broken between the initiator
event and the terminator event by any terminating other event.

Based on this interval-based event logics formalism, I now rede�ne the typical
(SNOOP) event algebra operators and treat complex events resp. actions as
occurring over an interval rather than in terms of their instantaneous detection
times. In short, the basic idea is to split the occurrence interval of a complex
event into smaller intervals in which all required component events occur, which
leads to the de�nition of event type patterns in terms of interval-based event
detection conditions, e.g., the sequence operator (;) is formalized as follows:

Example 27

(A;B;C): detect(e,[Ti1,Ti3]) :-

holdsInterval([a,b],[Ti1,Ti2],[a,b,c]),

holdsInterval([b,c],[Ti2,Ti3],[a,b,c]),

[Ti1,Ti2]<=[Ti2,Ti3].

Using the holdsInterval axioms the typical event algebra operators are for-
malized in terms of the interval-based EC formulation as follows: "

• Sequence operator (;): (A;B;C)

detect(e,[T1,T3]) :-

holdsInterval([a,b],[T1,T2],[a,b,c]),

holdsInterval([b,c],[T2,T3],[a,b,c]), [T1,T2]<=[T2,T3].

• Disjunction operator (∨): (A ∨B)

detect(e,[T1,T2]) :-

holdsInterval([a],[T1,T2]).

detect(e,[T1,T2]) :-

holdsInterval([b],[T1,T2]).

• Mutual exclusive operator (xor): (AxorB)

detect(e,[T1,T2]) :-

holdsInterval([a],[T1,T2]),

not(holdsInterval([b],[T3,T4]).

detect(e,[T1,T2]) :-

holdsInterval([b],[T1,T2]),

not(holdsInterval([a],[T3,T4]).

• Conjunction operator (∧): (A ∧B)

166

4 The ContractLog KR

detect(e,[T1,T2]):-

holdsInterval([a],[T11,T12]),

holdsInterval([b],[T21,T22]), min([T11,T12,T21,T22],T1),

max([T11,T12,T21,T22],T2).

• Simultaneous operator (=): (A = B)

detect(e,[T1,T2]) :-

holdsInterval([a],[T1,T2]),

holdsInterval([b],[T1,T2]).

• Negation operator (¬): (¬B[A,C])

detect(e,[T1,T2]) :-

holdsInterval([a,c],[T1,T2],[b]).

• Quanti�cation (Any): (Any(n,A))

detect(e,[T1,T2]):-findall([T1,T2],

holdsInterval([a],[T1,T2],List), modulo(List, n, [T1,T2]).

It is possible to de�ne the any operator as a conjunction of all events. How-
ever, this results in long event expressions. Therefore, I use the second-
order predicate "�ndall", which derives all occurrence intervals of a and
collects them in a list, which is the type speci�c event instance sequence
(EIS) of all events of type A. The modulo predicate iterates over the com-
plete list and returns all elements where size of the list modulo n is null,
i.e., size mod n = 0.

• Aperiodic Event Operator (Ap): Ap(A, [B,C])

detect(e,[T1,T2]):-

holdsInterval([b,c],[T11,T12],[b,c]),

event([a],[T1,T2]), between([T1,T2],[T11,T12]).

• Periodic Event Operator (Per): Per(A, t, , C)
The periodic event operator can be e�ciently represented as an reaction
rule which de�nes a periodic time interval function t which is valid during
the occurrence interval of [a,c].

In order to make de�nitions of complex events/actions in terms of event alge-
bra operators more comfortable and remove the burden of de�ning all interval
conditions for a particular complex event type, as described above, I have imple-
mented a meta program which implements an interval-based EC event/action
algebra in terms of typical event operators with the following axioms:

• Sequence: sequence(E1, E2, .., En)

• Disjunction: or(E1, E2, .., En)

• Mutual exclusive: xor(E1, E2, .., En)

• Conjunction: and(E1, E2, .., En)

167

4 The ContractLog KR

• Simultaneous: concurrent(E1, E2, .., En)

• Negation: neg([ET1, .., ETn], [E1, E2])

• Quanti�cation: any(n,E)

• Aperiodic: aperiodic(E, [E1, E2]

In order to reuse detected complex events in rules, e.g., in reaction rules or
other complex events, they need to be remembered until they are consumed,
i.e., the contributing component events of a detected complex event should be
consumed after detection of a complex event. This can be achieved by the
previously described ID-based update primitives (see section 4.5, which allow
adding or removing knowledge from the KB. I use these update primitives to
add detected event occurrences as new transient facts to the KB and consume
events which have contributed to the detection of the complex event by removing
them from the KB.

Example 28

detect(e,Ti):-

event(sequence(a,b),Ti), % detection condition for the event e

add(eis(e), "occurs(e,_0).", [Ti]), % add e with key eis(e)

consume(eis(a)), consume(eis(b)). % consume all a and b events

In the example, if the detection conditions for the complex event e are ful�lled,
the occurrence of the detected event e is added to the KB with the key eis(e)
(eis = event instance sequence). Then all events that belong to the type speci�c
event instance sequences of type a and type b are consumed using their ids eis(a)
resp. eis(b). Di�erent consumption policies are supported such as "remove all
events which belong to a particular type speci�c eis" or "remove the �rst resp.
the last event in the eis". If no consume predicate is speci�ed in a detection rule,
the events are reused for the detection of other complex events several times.

4.7.5 Event Noti�cation / Communication Reaction Rules

The ECA rules of ECA-LP apply in a global context, i.e. apply on detected
(complex) events (detected by complex event queries on the derivation rule base
as described in the previous section). Such global ECA rules are best suited to
represent reation rules which actively detect internal and external events in a
global context. For instance, actively monitor an external system or service
for availability and trigger a reaction whenever the system/service becomes un-
available. In a distributed environment with independent system nodes which
communicate with each other relative to a certain context (e.g. a work�ow/con-
versation protocol state), event processing is often done using event noti�cation
and communication mechanisms. Systems either communicate events accord-
ing to a prede�ned or negotiated communication/coordination protocol or they

168

4 The ContractLog KR

subscribe to speci�c event types with a server. In the latter case, the server mon-
itors its environment and upon detecting an atomic or complex event (situation),
noti�es the concerned clients. Complex events may correspond to pre-de�ned
protocols or be based on event algebras including time restricted sequences and
conjunctions/disjunctions, which permits events like A occurs more than t time
after B to be expressed.

The Prova Agent Architecture (AA) [KPS06, KS04] implements a derivation
rule related language that includes constructs for sending messages via various
communication protocols and for specifying reaction rules for processing in-
bound messages. The ContractLog KR integrates Prova AA in order to provide
event messaging reaction rules in addition to global ECA-style reaction rules.
The AA reaction rules do not require separate threads for handling multiple
conversation situations simultaneously. In the following I will �rst describe the
main syntax constructs and features of AA and then give an example for the
intergration of AA into ContractLog.

Prova-AA provides three main constructs for enabling agent communication:
sendMsg predicates, reaction rcvMsg rules, and rcvMsg or rcvMult inline reac-
tions [KPS06]:

sendMsg(XID,Protocol,Agent,Performative,Payload |Context)

rcvMsg(XID,Protocol,From,queryref,Paylod|Context)

rcvMult(XID,Protocol,From,queryref,Paylod|Context)

where XID is the conversation identi�er (conversation-id) of the conversation
to which the message will belong. Protocol de�nes the communication protocol.
More than 30 protocols such as JMS, HTTP, SOAP, Jade are supported by the
underlying ESB [Mul06]. Agent denotes the target of the message. Performative
describes the pragmatic context in which the message is send. A standard
nomenclature of performatives is FIPA Agents Communication Language ACL.
Payload represents the message content sent in the message envelope. It can be
a speci�c query or answer or a complex rule base (set of rules).

Example 29

% Upload a rule base read from File to the host

% at address Remote via Prova-JMS

upload_mobile_code(Remote,File) :-

% Opening a file returns an instance

% of java.io.BufferedReader in Reader

fopen(File,Reader),

Writer = java.io.StringWriter(),

copy(Reader,Writer),

Text = Writer.toString(),

% SB will encapsulate the whole content of File

SB = StringBuffer(Text),

sendMsg(XID,jms,Remote,eval,consult(SB)).

169

4 The ContractLog KR

The example [KPS06] shows a AA reaction rule that sends a rule base from
an external File to the agent service Remote using JMS as transport protocol.
The corresponding receiving reaction rule could be:

rcvMsg{XID,jms,Sender,eval,[Predicate|Args]):-

derive([Predicate|Args]).

This rule receives all incoming JMS based messages with the pragmatic con-
text eval and derives the message content. The list notation [Predicate|Args]
will match with abitrary n-ary predicate functions, i.e., it denotes a kind of
restricted second order notation since the variable Predicate is always bound,
but matches to all predicates in the signature of the language with an abitrary
number of arguments Args).

I will now illustrate the combination of active global ECA and passive mes-
saging reaction rules by a typical use case found in industry:

Example 30

A Manager node is responsible for holding housekeeping information about
various servers playing di�erent roles. When a server fails to send a heartbeat
for a speci�ed amount of time, the Manager assumes that the server failed and
coop-erates with the Agent component running on an unloaded node to resurrect
it. An AA reaction rule for receiving and updating the latest heartbeat in event
noti�cation style is:

rcvMsg(XID,Protocol,FromIP,inform,heartbeat(Role,RemoteTime)) :-

time(LocalTime)

update(key(FromIP,Role),"heartbeats(_0, _1, _2, _3).",

[FromIP, Role, RemoteTime, LocalTime]).

The rule responds to a message pattern matching the one speci�ed in the
rcvMsg arguments. XID is the conversation-id of the incoming message; inform
is the performative representing the pragmatic context of the message, in this
case, a one-way information passed between parties; heartbeat(...) is the payload
of the message. The body of the rule enquires about the current local time and
updates the record containing the latest heartbeat from the controller. This rule
follows a push pattern where the event is pushed towards the rule systems and
the latter reacts. A pull-based global ECA rule that is activated every second
by the rule engine and for each server that fails to have sent heartbeats within
the last second will detect server failures and respond to it by initiating failover
to the �rst available unloaded server. The accompanying derivation rules detect
and respond are used for speci�c purpose of detecting the failure and organising
the response.

170

4 The ContractLog KR

eca(

every('1S') ,

detect(controller_failure(IP,Role,'1S')) ,

respond(controller_failure(IP,Role,'1S'))) .

every('1S'):-

sysTime(T),

interval(timespan(0,0,0,1),T).

detect(controller_failure(IP,Role,Timeout)) :-

sysTime(LocalTimeNow),

heartbeats(IP,Role,RemoteTime,LocalTime),

LocalTimeNow-LocalTime > Timeout.

respond(controller_failure(IP,Role,Timeout)) :-

sysTime(LocalTime),

first(holdsAt(status(Server,unloaded),LocalTime)),

add(key(Server),

"happens(loading(_0),_1).",[Server, Local-Time]),

sendMsg(XID,loopback,self,initiate,failover(Role,IP,Server)).

The ECA logic involves possible backtracking so that all failed components
will be resurrected. The state of each server is managed via an event calculus
formulation:

initiates(loading(Server),status(Server,loaded),T).

terminates(unloading(Server),status(Server,loaded),T).

initiates(unloading(Server),status(Server,unloaded),T).

terminates(loading(Server),status(Server, loaded),T).

The actual state of each server is derived from the happened loading and
unloading events and used in the ECA rule to detect the �rst server which is in
state unloaded. This EC based formalization can be easily extended, e.g. with
new states such as a maintenance state which terminates an unloaded state, but
is not allowed in case a server is already loaded:

initiates(maintaining(Server),status(Server,maintenance),T):-

not(holdsAt(status(Server,loaded),T)).

terminates(maintaining(Server),status(Server,unloaded),T).

As it can be already seen from this examples further, higher-level decision
logic and process oriented logic relating to state machines- or work�ow-like
logic might be easily implemented using a combination of global active and
passive messaging reaction rules. In summary, the messaging style AA reaction
rules complement the global ECA rules and the Event Calculus complex event
algebra.

171

4 The ContractLog KR

4.7.6 Summary

I have described a general extension of the ContractLog KR for the interpreta-
tion and execution of extended global active ECA rules in arbitrary backward
reasoning rule engines and combined it with passive messaging reaction rules.
Reaction rules of the various types can be represented in a homogenous KB in
combination with other rule types. The logic of each integral part is decoupled
from the reaction rule and represented in terms of derivation rules, leading to a
compact global representation which facilitates modularization and reuse. The
high expressiveness and declarative semantics of LPs and LP based formalisms
are reused to describe complex behavioral reaction logic and typical process and
work�ow semantics such as pi-calculus, petri-nets or state machines can be im-
plemented using AA reaction rules. Model-theoretically an ECA reaction rule
is interpreted as a conjunctive query (with the alternative action as disjunction)
which succeeds if each subgoal is entailed in the KB. An AA reaction rule applies
event queries and LP based pattern matching (uni�cation of complex functions
and terms) on event messages which trigger the reactive behaviour. Variables
for transporting the event/action data, Boolean-valued procedural attachments,
built-ins as described in section 4.2.3.1 and serial transactional updates as de-
scribed in section 4.5 which return a true/false value are directly supported
in reaction rules. This allows to actively call external systems and their API
methods, e.g., to implement push or pull models for events from external sources
such as event noti�cation systems, databases, network or system management
tools and to trigger external API methods as actions. The operational semantics
provides means to execute global ECA reaction rules sequentially or in parallel
in di�erent threads or wait passively for incoming event messages which match
with the de�ned conversation state, pragmatic context and event pattern in case
of AA reaction rules. The semantics implements the standard LP backtracking
mechanisms for variable bindings within the forward-directed operational se-
mantics of the ECA interpreter with support for cuts in the post condition part.
Furthermore, the (pre-)condition and post condition part in global ECA rules
can be used to apply action constraints and integrity constraints with rollbacks
of transactional updates as described in section 4.5.

Standard reaction rules and complex event processing techniques as used in
active database or production rule systems are mainly intended for immediate
reactions on atomic or complex events which are de�ned by means of a complex
event algebra. Typical active database systems only provide an operational
semantics, but lack a declarative semantics which often leads to unintended
results. The tight integration of reaction rules into logic programming in Con-
tractLog and Prova AA allows to unify the major approaches for complex event
processing and reaction rules, namely global ECA rules from active databases,
event noti�cation and messaging reaction rules from distributed complex event
processing and event/action logics from the KR domain. In particular, I have
developed an event algebra based on an interval-based Event Calculus variant
which bases complex event and action processing on a precise declarative se-
mantics producing highly reliable and veri�able results.

172

4 The ContractLog KR

In summary the main bene�ts of this integration of reaction rules into logic
programming are:

• based on a precise, declarative logic-based semantics

• highly expressive and computationally e�cient

• reaction rules might be represented and used in combination with other
rule types, such as derivation rules (e.g., business rules) or integrity con-
straints, within the same framework of logic programming

• might be easily combined and extended with other logical formalisms (e.g.,
defeasible/default for con�ict handling) to build reliable high-level decision
logics upon.

• the inference engine is used as generic interpreter to detect complex events
and enable immediate but also delayed and inferred complex reactions and
e�ects

• the ECA interpreter works as an add-on for arbitrary backward-reasoning
engines

• the integration of messaging reaction rules provides means to communi-
cate events and apply local reactions according to certain process and
coordination protocols (e.g. with mappings to BPEL speci�cations)

4.8 Deontic Logic

One of the main objectives of a SLA is to de�ne and reason with the norma-
tive relationships relating to permissions, obligations and prohibitions between
contract partners, i.e., to de�ne the rights and obligations each role has in each
particular state of the contract. Deontic Logic (DNL) studies the logic of nor-
mative concepts such as obligation (O), permission (P) and prohibition (F).
Adding deontic logic is therefore a useful concept for SLM tools, in particular
wrt traceability and veri�ability of derived contract norms (rights and obliga-
tions). Unfortunately, standard deontic logic (SDL) [FH71] o�ers only very a
static picture of the relationships between co-existing norms and does not take
into account the e�ects of events on the given norms, temporal notions and
dependencies between norms, e.g., violations of norms or exceptions. Another
limitation is the inability to express personalized norms, i.e., explicitly de�ne the
subject and object a certain norm pertains to. In this section I integrate deontic
logic into the event calculus such that deontic norms are modelled as changeable
�uents which are initiated or terminated by events. The main advantages are:

• rei�ed �uents can be used to represent complex norms

• complex (temporal) relations between norms and e�ects of events/actions
such as violations or exceptions of norms can be naturally represented

173

4 The ContractLog KR

• the event calculus is used to compute all norms which hold at a particular
time point wrt the sequence of happened events/actions

• retrospective and prospective reasoning on norms is possible

I �rst review the history and basic concepts of deontic logic. Then I describe
the syntax and the semantics of the EC based deontic logic.

4.8.1 History and Basics in Deontic Logic

Deontic Logic (DNL) studies the logic of obligation, permission and prohibition.
A �rst theory of normative concepts was given by Mally [Mal26], but most ap-
plications of DNL such as standard deontic logic (SDL) [FH71] are derived from
the work of Wright [Wri51]. Several computational tractable inference mech-
anisms for DNL have been proposed, e.g. [Bel87, McC83] The basic operator
in SDL is O, which reads as "it is obligatory that". O is a mapping of a well-
formed formula A into another well-formed formula OA. The other operators
P (permission) and F (forbid) are de�ned in terms of O as PA ≡ ¬O¬A resp.
FA ≡ O¬A, i.e., A is permitted if ¬A is not obligatory and A is forbidden if
¬A is obligatory. The axioms of SDL are:

1. If A is a theorem, then so is OA

2. All classical tautologies

3. O(A→ B)→ (OA→ OB)

4. OA→ PA

5. If A and A→ B are theorems, then so is B (modus ponens)

Usually SDL is given a Kripke style modal semantics, de�ned by accessibility
relations between possible worlds, e.g. [Han65, Mak86, Aqu87, AS96]. But,
among others, Horty [Hor93] and McCarthy [McC92] have proposed nonmono-
tonic logic and defeasible obligations (aka prima facie obligations) as a theoret-
ical formalism for deontic reasoning, which can handle some of the paradoxes of
SDL, i.e., set of sentences that derive sentences with a counterintuitive reading
[Cas81]. One source for such problems are violated obligations which lead to so
called contrary-to-duty obligations (CTDO), i.e., secondary obligations which
arise in case primary obligations are violated [Hag01, CJ02, Lew74]: A1 → OA2,
where A1 is the condition which violates the primary obligation O¬A1 and trig-
gers the CTDO OA2. In SLAs such situations typically arise. For instance, an
obligation to restart a service in a certain time frame is violated and initiates
a secondary CTDO to pay a penalty for this violation. In SDL, both norms
the primary obligation and the CTDO hold which might lead to contradictions
between the two obligations, e.g., both OA and O¬A can be derived which leads
to inconsistency in SDL. Well-known examples of paradoxes wrt CDTOs and
conditional norms are e.g., Forrester's gentle murderer paradox, the Reykjavic
paradox or the Chrisholm paradox.

174

4 The ContractLog KR

Besides these paradoxes which are speci�c to violations another source are de-
feasible obligations which are subject to exceptions, where defeasible obligations
are overtuned by more speci�c ones in case of exceptions: normally OA1 holds
but in case of Ev the exceptional norm Ev → OA2 holds, which again can lead
to contradictions and hence inconsistency in SDL. As discussed in the beginning
exceptional situations which lead to di�erent norms are also quite common in
the SLA domain. Many systems and intuitions to the di�erent problems of SDL
have been proposed, but a generally accepted solution for all paradoxes is still
missing. In ContractLog I deal with the violation and exception problem by
combining deontic logic with the temporal event calculus. That is, norms are
considered as changeable states which are initiated or terminated by events (i.e.,
action events). In case a violation or exception event happens the primary norm
is terminated and the secondary reparations or exceptional norm is initiated.
Hence, there is never a situation where both con�icting norms are valid.

Another problem of SDL in the context of contract representation is that it
o�ers only a static picture of the relationships between co-existing norms and
does not take into account the e�ects of events on the given norms. That is
norms are not considered as changeable states which are initiated or terminated
by action events. Moreover, in SDL it is impossible to express personalized
statements. In the SLA domain deontic norms refer to an explicit concept of
an agent, e.g., the service provider or the service consumer. These limitations
make it di�cult to satisfy the needs of practical contract management. In the
event calculus norms are formalized as changeable complex functions which can
take arguments.

4.8.2 Syntax of Event Calculus based Deontic Logic

In ContractLog I extended the general concepts of SDL and integrated it into
the event calculus in order to model the e�ects of events/actions on personalized
deontic norms. A deontic norm in ContractLog consists of the normative con-
cept (norm), the subject (Subj) to which the norm pertains, the object (Obj)
on which the action is performed and the action (Ac) itself. A deontic norm is
represented as a rei�ed EC �uent of the form: norm(Subj,Obj,Ac). Accord-
ingly, norms in ContractLog are modelled as rei�ed complex functions which
may be negated, may contain variables and typed terms such as object-oriented
composite structures or DL classes, e.g., roles from a role model described as a
Semantic Web ontology.

Example 31

initiates(unavailable(Server), escl(1),Ti).

terminates(available(Server), escl(1),Ti).

initiates(maintaining(Server),status(Server,maintenance),Ti).

terminates(maintaining(Server),escl(1),Ti).

derived(oblige(processManager, Service, restart(Service))).

175

4 The ContractLog KR

holdsAt(oblige(processManager, Service, restart(Service)),Ti):-

holdsAt(escl(1),Ti).

In the example escalation level 1 is initiated resp. terminated, when a service
becomes unavailable resp. available, e.g., happens(unavailable(s1), t1). The
deontic obligation for the process manager to restart the service is de�ned as
a derived �uent, i.e., it holds whenever the state escl(1) holds. If the process
manager is permitted to start maintenance (e.g., between 0 a.m. and 4 a.m. - not
shown here) the second and third rule state that the event maintaining(Server)
will initiate maintenance and terminate escalation level 1.

4.8.3 Semantics of Event Calculus based Deontic Logic

The declarative semantics of the deontic logic implementation in ContractLog
is directly inherited from the semantics of the EC formalization 4.6.3.

De�nition 134 (Deontic Norm Satisfaction) Let N be a deontic norm.
An EC interpretation I satis�es a deontic norm N (�uent) at timepoint Ti if
I(N,T i) = true and I(¬N,T i) = false.

De�nition 135 (Deontic Norm Entailment) Let DDNL be a DNL domain
description. A norm N holds at a timepoint Ti wrt to DDNL, written DDNL |=
holdsAt(N,T i), i� for every interpretation I of DDNL, I(N,T i) = true and
I(¬N,T i) = false. DDNL |= neg(holdsAt(N,T i)) i� I(N,T i) = false and
I(¬N,T i) = true.

In addition to the EC meta inference rules (see section 4.6) the typical SDL
axioms are de�ned as an EC meta axiomatization, e.g., OA⇒ PA:
holdsAt(permit(S,O,A), T) : −holdsAt(oblige(S,O,A), T).

The EC formalization by default implies a positive authorization policy where
by default everything is forbidden naturally unless it is explicitily initiated by
a happened event/action. But negative authorizations where a norm holds ini-
tially (initially(N,T i)) can be also formulated, i.e., everything is permitted
until the prohibition is explicitly terminated by an event.

Conditional deontic rules such as A1 ⇒ OA2 are naturally captured by the
domain axiomatization of the EC.

Example 32

happens(A1,t1).

initiates(A1,oblige(S,O,A2),T).

176

4 The ContractLog KR

In the example the event A1 initiates the obligation for A2. As discussed
conditional deontic rules in SDL might lead to inconsistencies and paradoxes.
Due to the temporal event logic in ContractLog most of these con�icts in SDL
such as situations where a violated primary obligation and a secondary CTD
obligation are true at the same time can be avoided by terminating the vio-
lated primary obligation so that only the consequences of the violation (CTD
obligation) are in e�ect.

Example 33 (¬A1 ∧OA1)⇒ OA2

happens(violation,T) :-

happens(neg(a1),T), holdsAt(oblige(s,o,a1),T).

initiates(violation, oblige(s,o,neg(a1)),T).

terminates(violation, oblige(s,o,a1),T).

In the example a violation is derived if the action a1 is obliged but in fact
neg(a1) happens. The violation event then terminates the primary obligation
for a1 and initiates the secondary CTD obligation for neg(a1). Hence, there is
never a situation where both obligations hold at the same time point and the
valid sceme of SDL ¬(OA ∧O¬A) is preserved.

Other problematic examples in SDL are defeasible prima facie obligations
which are subject to exceptions and might lead to contradictions for example
between OA and the exceptional obligation O¬A which holds in a execptional
situation. Again the temporal treatment of deontic norms as changebale �uents
can be used to overcome this inconsistency and establish the exceptional norm
in case of the exceptional situation.

Example 34

happens(Ex,t1).

terminates(Ex,oblige(s,o,a),T).

initiates(Ex,oblige(s,o,neg(a)),T).

In the example the exceptional event Ex terminates the general obligations
and initiates the conditional more speci�c obligation till the exceptional situa-
tion is terminated by another event (not shown in the example).

Note that there are known time-less paradoxes in SDL such as Forrester's gen-
tle murder paradox which can not be solved by the temporal EC-based treatment
as described above. In this case defeasible deontic rules with de�ned priorities
between con�icting norms as described in section 4.4.3 can be used. That is the
notion of implication is weakened in such a way that the counterintuitive norms
are no longer derived. However, such time-less paradoxes rarely occur in service
contracts, since usually the rights and obligations are de�ned in a time-based
and situational context.

177

4 The ContractLog KR

4.8.4 Summary

In this section I have embedded deontic logic into the temporal event calculus
formalism of the ContractLog KR. The treatment of deontic norms as rei�ed
�uents allows expressing complex norms with possibly nested and typed ar-
guments, e.g., in order to use external role models which are represented as
Semantic Web ontologies. The EC formalization provides a sound and complete
declarative semantics for deontic reasoning where norms are true or false at a
particular time point according to the happened events/actions which have an
e�ect on the norm. As a consequence, the produced results are highly reliable
and traceable which is crucial in the domain of legal reasoning and contract
enforcement. Moreover, the particular contract state and the right and obliga-
tions in each state can be derived in retrospective for each time point or even in
prospective, which makes possible proactive planning with future events. This
KR treatment of events/actions and their e�ects on changeable norms is dif-
ferent from the active processing of events and actions in reaction rules, where
occurred events trigger actions are consumed afterwards, i.e., their information
for later use, e.g., in accounting, is lost. The temporal treatment of deontic
norms in the EC helps to overcome typical paradoxes of SDL and allows spec-
ifying complex, conditional deontic rules with possibly concurrent state transi-
tions between norms. It is possible to de�ne reparational norms which apply
in exceptional situations or CDT obligations which apply as secondary norms
of violated primary obligations. Typical examples in the SLA domain are e.g.,
obligations to restart a service in a certain time frame or to provide an extra
service during an exceptional campaign of a customer. With this exact contract
state tracking during monitoring of SLAs becomse possible.

4.9 Test Logic

Rule-based policy and contract systems need to be studied in terms of their soft-
ware engineering properties. The domain imposes some speci�c needs on the
engineering and life-cycle management of formalized policy / contract speci�ca-
tions: The contract/policy rules must be necessarily modelled evolutionary, in a
close collaboration between domain experts, rule engineers and practitioners and
the statements are not of static nature and need to be continuously adapted to
changing needs. The future growth of policies or contract speci�cations, where
rules are often managed in a distributed way and are interchanged between do-
main boundaries, will be seriously obstructed if developers and providers do not
�rmly face the problem of quality, predictability, reliability and usability also
w.r.t. understandability of the results produced by their rule-based policy/con-
tract systems and programs. Furthermore, the derived conclusions and results
need to be highly reliable and traceable to count even in the legal sense. This
amounts for veri�cation, validation and integrity testing (V&V&I) techniques,
which are much simpler than the rule based speci�cations itself, but nevertheless
adequate (expressive enough) to approximate their intended semantics, deter-

178

4 The ContractLog KR

mine the reliability of the produced results, ensure the correct execution in a
target inference environment and safeguard the life cycle of possibly distributed
and unitized rules in rule-based policy projects which are likely to change fre-
quently. In other words, V&V&I of rule bases is vital to assure that the LP
used to represent a contract or policy, performs the tasks which it was designed
for.

Di�erent approaches and methodologies to V&V of rule-based systems have
been proposed in the literature such as model checking, code inspection or struc-
tural debugging. Simple operational debugging approaches which instrument
the policy/contract rules and explore its execution trace place a huge cogni-
tive load on the user, who needs to analyze each step of the conclusion process
and needs to understand the structure of the rule system under test. On the
other hand, typical heavy-weight V&V methodologies in SE such as waterfall-
based approaches are often not suitable for rule-based systems, because they
induce high costs of change and do not facilitate evolutionary modelling of rule-
based policies with collaborations of di�erent roles such as domain experts,
system developers and knowledge engineers. Moreover, they can not check the
dynamic behaviors and the interaction between dynamically updated and in-
terchanged policies/contracts and target execution environments at runtime.
Model-checking techniques and methods based e.g., on algebraic-, graph- or
Petri-net-based interpretations are computationally very costly, inapplicable for
expressive policy/contract rule languages and presuppose a deep understanding
of both domains, i.e., of the the testing language / models and of of the rule lan-
guage and the rule inferences. Although test-driven XP techniques and similar
approaches to agile SE have been very successful in recent years and are widely
used among mainstream software developers, its values, principles and practices
have not been transferred into the rule-based policy and contract representation
community yet

In this section, I adopt a successful methodology of XP, namely test cases
(TCs), to verify and validate correctness, reliability and adequacy of rule-based
policy and contract speci�cations. Accordingly, the term V&V&I is used as
a rough synonym for "evaluation and testing". Both processes guarantee that
the rule program provides the intended answers, but also imply other goals
such as assurance of security, maintenance and service of the rule-based sys-
tem. It is well understood in the SE community that test-driven development
improves the quality and predictability of software releases and I argue that
TCs and integrity constraints also have a huge potential to be a successful tool
for declarative V&V of rule-based policy and contract systems. TCs in combi-
nation with other SE methodologies such as test coverage measurement which
is used to quantify the completeness of TCs as a part of the feedback loop in
the development process and rule base re�nements (a.k.a. refactorings) [DP05]
which optimize the existing rule code (e.g., remove inconsistencies, redundancy
or missing knowledge without breaking its functionality) qualify for typically
frequently changing requirements and models of rule-based policies and con-
tracts. Since, the test-driven approach focuses on the behavioral aspects and
the drawn conclusions instead of the structure of the rule base and the causes

179

4 The ContractLog KR

of faults, it is independent of the complexity of the rules and the system under
test. Due to this inherent simplicity TCs, which provide an abstracted black-box
view on the rules, better support di�erent roles such as domain experts or busi-
ness practitioneers which are involved during the engineering and enforcement
process and give contract engineers an expressive but nevertheless easy to use
testing language. In open distributed environment TCs can be used to ensure
correct execution of interchanged speci�cations in target execution environments
by validating the interchanged rules with the attached TCs. The presence of
test cases safeguards the life cycle of rules, e.g., enabling V&V at design time
but also dynamic testing of (transactional) self-updates of the knowledge base,
where test cases are used as highly expressive integrity constraints.

In this section I show that test cases can be represented homogeneously as
LPs in the ContractLog KR. The major advantage is, that test cases and test
suites can be managed, maintained and executed within the same rule based
environment, based on a well de�ned LP semantics. I further describe, how
the concept of test coverage from XP can be adapted to logic programming, in
order to quantify the quality of test cases for V&V of LPs. Test coverage gives
feedback and hints on how to optimize and re�ne the test cases and the rule
code in an iterative process.

4.9.1 Concepts and Related Work

There are many de�nitions of V&V in the SE literature. In the context of
rule-based policies/contracts V&V is de�ned as follows:

De�nition 136 (Veri�cation and Validation)

1. Veri�cation ensures the logical correctness of a LP. Akin to traditional SE
a distinction between structurally �awed or logically �awed rule bases can
be made with structural checks for redundancy or relevance and semantic
checks for consistency, soundness and completeness.

2. As discussed by Gonzales [GB00] validation is concerned with the cor-
rectness of a rule-based system in a particular environment/situation and
domain.

During runtime certain parts of the rule based decision logic should be static
and not subjected to changes or it must be assured that updates do not change
this part of the intended behavior of the policy/contract. A common way to
represent such constraints are ICs as discussed in section 4.4.2. Roughly, if
validation is interpreted as: "Are we building the right product?" and veri�cation
as: "Are we building the product right?" then integrity might be loosely de�ned
as: "Are we keeping the product right?", leading to the pattern: V&V&I.
Hence, ICs are a way to formulate consistency (or inconsistency) criteria of a
dynamically updated knowledge base (KB). Another distinction which can be
made is between errors and anomalies:

180

4 The ContractLog KR

De�nition 137 (Errors and Anomalies)

• Errors represent problems which directly e�ect the execution of rules. The
simplest source of errors are typographical mistakes which can be solved by
a verifying parser. More complex problems arise in case of large rule bases
incorporating several people during design and maintenance and in case of
the dynamic alteration of the rule base by adding, changing or re�ning the
knowledge which might easily lead to incompleteness and contradictions.

• Anomalies are considered as symptoms of genuine errors, i.e., they may
not necessarily represent problems in themselves.

Much work has been done to establish and classify the nature of errors and
anomalies that may be present in rule bases, see e.g., the taxonomy of anomalies
from Preece and Shinghal [PS94]. I brie�y review the notions that are commonly
used in the literature [AHPV98, Pre01], which range from semantic checks for
consistency and completeness to structural checks for redundancy, relevance and
reachability:

1. Consistency : No con�icting conclusions can be made from a set of valid
input data. The common de�nition of consistency is that two rules or
inferences are inconsistent if they succeed at the same knowledge state,
but have con�icting results. Several special cases of inconsistent rules are
considered in literature such as:

• self-contradicting rules and self-contradicting rule chains, e.g., p∧q →
¬p

• contradicting rules and contradicting rule chains, e.g., p∧ q → s and
p ∧ q → ¬s

Note that the �rst two cases of self-contradiction are not consistent in a
semantic sense and can equally be seen as redundant rules, since they can
be never concluded.

2. Correctness/Soundness: No invalid conclusions can be inferred from valid
input data, i.e., a rule base is correct when it holds for any complete model
M , that the inferred output from valid inputs by the rule base are true in
M . This is closely related to soundness which checks that the intended
outputs indeed follows from the valid input. Note, that in case of partial
models with only partial information this means that all possible partial
models need to be veri�ed instead of only the complete models. However,
for monotonic inferences these notions coincide and a rule base which is
sound is also consistent.

3. Completeness: No valid input information fails to produce the intended
output conclusions, i.e., completeness relates to gaps (incomplete knowl-
edge) in the knowledge base. The iterative process of building large rule
bases where rules are tested, added, changed and re�ned obviously can

181

4 The ContractLog KR

leave gaps such as missing rules in the knowledge base. This usually re-
sults in intended derivations which are not possible. Typical sources of
incompleteness are missing facts or rules which prevent intended conclu-
sions to be drawn. But there are also other sources. A KB having too
many rules and too many input facts negatively in�uences performance
and may lead to incompleteness due to termination problems or memory
over�ows. Hence, super�uous rules and non-terminating rule chains can
be also considered as completeness problems, e.g.,:

• Unused rules and facts, which are never used in any rule/query deriva-
tion (backward reasoning) or which are unreachable or dead-ends
(forward reasoning).

• Redundant rules such as identical rules or rule chains, e.g., p → q
and p→ q.

• Subsumed rules, a special case of redundant rules, where two rules
have the same rule head but one rule contains more prerequisites
(conditions) in the body, e.g., p ∧ q → r and p→ r.

• Self-contradicting rules, such as p ∧ q ∧ ¬p → r or simply p → ¬p,
which can never succeed.

• Loops in rules of rule chains, e.g., p ∧ q → q or tautologies such as
p→ p.

Veri�cation and Validation (V&V) of knowledge based systems (KBS) and in
particular rule based systems such as logic programs with Prolog interpreters
have received much attention from the mid '80s to the early '90s, see e.g.
[AHPV98]. Criteria for veri�cation and validation range from e.g., structural
checks for relevance, redundancy and reachability to semantics tests for com-
pleteness and consistency. For a survey see [Pre01]. Several veri�cation and
validation methods have been proposed, such as:

• Methods based on operational debugging [Byr80] by instrumenting the
rule base and exploring the execution trace using break points in the rule
program (e.g., between the expand and branch steps of the debugging
algorithm using trance and spy commands in Prolog). However, these
methods presuppose a deep understanding of the inference processes by
the user to detect the inconsistencies.

• Tabular methods, e.g. [VSB84], which pairwise compare the rules of the
rule base to detect relationships among premises and conclusions. Com-
paring only pairs of rules excludes detection of inconsistencies in rule
chains with several rules.

• Methods based on Graphs, e.g. [NK80, RSYS97], using formal graph the-
ory to detect inconsistencies by simulating the execution of the system for
every possible initial fact base, which might be very costly.

182

4 The ContractLog KR

• Methods based on Petri Nets, e.g. [HCYY99] which model the rule base as
a Petri net and test the complete models starting with all possible initial
states, which is very costly.

• Methods based on declarative debugging [Sha82] which build an abstract
model representing the execution trace and elicit feedback from an oracle
(e.g., the user) to navigate through the model till the inconsistency/error
is reached.

• Methods based on algebraic interpretation, e.g. [LRLLM99] transform
a KB into an algebraic structure, e.g., a boolean algebra which is then
used to verify the KB. This approach can not be applied to expressive
rule bases with variables, object-valued functions or meta predicates and
non-monotonic negations.

While these approaches mainly focus on monotonic reasoning, there are also
some approaches on verifying non-monotonic rule bases such as [Ant97] which
analyzes rule bases expressed in default logic or [WL97] which tests rule bases
with production rules. For further details concerning inconsistency checking
techniques see e.g. [CBC93]. Much research has been directed at the automated
re�nement of rule bases, e.g. [BLR97, CS90], and on the automatic generation
of test cases, e.g. [CCS90]. For an overview on rule base debugging tools see e.g.
[Pla03]. Test coverage for imperative programs has been intensively investigated
in the past decades [ZHM97], but there are only a few attempts addressing test
coverage measurement for test cases of backward-reasoning rule based programs
[Den91, LBSB92, Jac96] or forward-reasoning production rule systems [AJ98].

4.9.2 Syntax of Test Cases for LPs

In SE the general idea of TCs is to prede�ne the intended output of a program
or method and compare the intended results with the derived results. If both
match, the TC is said to capture the intended behavior of the program/method.
Although there is no 100% guarantee that the TCs de�ned for V&V of a pro-
gram exclude every unintended results of the program, they are an easy way to
approximate correctness and other SE-related quality goals (in particular when
the TCs and the program are re�ned in an evolutionary, iterative process with
a feedback loop). In analogy to TCs in SE I de�ne a TC as follows:

De�nition 138 (Test Case) A test case TC := {As, Te} for a LP P consists
of:

1. a set of possibly empty input assertions As being the set of temporarily
asserted test input facts (and meta test rules). The assertions are used
to temporarily setup the test environment. They can be e.g., used to de-
�ne test facts, result values of (external) functions, events and actions for
testing reactive rules or additional meta test rules.

2. a set of one or more tests Te. Each test Tei consists of:

183

4 The ContractLog KR

• a test query Q, where Q ∈ H(P) and H(P) is the set of literals in
the head of rules (since only rules need to be tested)

• a result l being either "true", "false" or "unknown" label.

• an intended answer set θ of expected variable bindings for the vari-
ables of the test query Q. For ground test queries θ := ∅.

A test case TC is then formally written as TC = As ∪ {Q => l : θ}.
TC = {Q => l : θ} if a TC has no assertions.

For instance, a TC TC = {p(X) => true : {X/a,X/b,X/b}, q(Y) => false}
de�nes a TC with two test queries p(X) and q(Y). The query p(X)? is intended
to succeed and return three answers a,b and c for the free variable X. The query
q(Y) should fail. In case we are only interested in the existential success of a
test query we shorten the notation of a TC to TC = {Q => l}.

TCs in the ContractLog KR are homogeneously integrated into the Con-
tractLog KR as meta programming implementation. A TC script consists of
(1) a unique ID denoted by the function testcase(ID), (2) optional input as-
sertions such as input facts and test rules which are added temporarily to the
KB as partial modules by expressive ID-based update functions, (3) a positive
meta test rule de�ning the test queries and variable bindings testSuccess(Test
Name,Optional Message for Junit), (4) a negative test rule testFailure(Test
Name,Message) and (5) a runTest rule.

Example 35

% testcase oid

testcase("./examples/tc1.test").

% assertions by ID-based updates adding one rule and two facts

:-solve(add("tc1.test","a(X):-b(X). b(1). b(2).")).

% positive test with success message for JUnit report

testSuccess("test1","succeeded"):-

testcase(./examples/tc1.test),testQuery(a(1)).

% negative test with failure message for Junit report

testFailure("test1","can not derive a"):-

not(testSuccess("test1",Message)).

% define the active tests - used by meta program

runTest("./examples/tc1.test"):-testSuccess("test 1",Message).

The main axioms of the test logic implemented in the ContractLog KR (test-
case.prova) are:

test() test all test cases in the knowledge base

test(OID/URL) test the test case with the ID <OID>

or load and test test case from URL

184

4 The ContractLog KR

loadTestCase(TestCaseOID) load a test case temporarily to knowledge base

runTestCase(TestCaseOID) run the test case and execute all tests

unloadTestCase(TestCaseOID) Unload a test case from the knowledge base

Predicates/Functions to de�ne tests within test cases are:

testQuery(Literal) test the literal (= rule head or fact)

testNotQuery(Literal) negatively test the literal with default negation

testNegQuery(Literal) negatively test the literal with explicit negation

testNumberOfResults(Literal, Number) test number of results derived for the literal

testNumberOfResults(Literal, Var, Number) test number of results for the variable

in the literal

testNumberOfResultsMore(Literal,Number) test number of results for the

literal > given value

testNumberOfResultsLess(Literal,Number) test number of results for the

literal < given value

testNumberOfResultsMore(Literal,Var,Number) test number of results for the variable

in the literal > given value

testNumberOfResultsLess(Literal,Var,Number) test number of results for the variable

in the literal < given value

testResult(QueryLiteral,ResultLiteral) test if the second literal is an answer of

the query literal

testResults(Literal,Var,[<BindingList>]) test if the list of binding results

can be derived

testResultsOrder(Literal,Var,[<BindingList>]) test if the list of ordered

binding results can be derived

testQueryTime(Literal, MaxTime) test if the literal can be derived with

< time in milliseconds

testNotQueryTime(Literal, MaxTime) test if the literal can be derived

negatively by default

in less than the stated time in milliseconds

testNegQueryTime(Literal, MaxTime) test if the literal can be derived strongly negative

in less than the stated time in milliseconds

getQueryTime(Literal, Time) get the query time for the literal

getNotQueryTime(Literal,Time) get the default negated query time for the literal

getNegQueryTime(Literal,Time) get the explicitly negated query time for the literal

Example 36

% test success of query p(X)?

testQuery(p(X))

% test success of query neg(p(X))? (explicitly negated p(X))

testNegQuery(p(X))

% test if ten bindings for the variable X can be derived

testNumberOfResults(p(X),X,10))

% test if p(a) is an answer to the query p(X)?

testResult(p(X),p(a))

% test if a, b and c are result bindings for the variable X

testResults(p(X),X,[a,b,c])

% test if a, b and c are answer bindings in exactly this order

testResultsOrder(p(X),X,[a,b,c])

testResultsOrder(p(X),X,[a,a,a,b,c,c])

% test if the query p(X)? can be derived in less than 1 second

testQueryTime(p(X),1000)

% get the time to answer the query p(X); output is the variable T

185

4 The ContractLog KR

getQueryTime(p(X),T)

% nested test

testQueryTime(testResults(p(X),X,[a,b]))

4.9.3 Semantics of Test Cases

Semantically, TCs are highly expressive integrity contraints.

De�nition 139 (Test Case Semantics) Let KBl be the actual knowledge
base (the actual program state) and TC be a test case. Then TC is satis�ed wrt
KBl if KBl ∪UposTC(As)

|= TC where Upos
TC(As)

is the temporarily added set of test

assertions.

A TC is temporarily loaded to the KB for testing purposes, using the ID-based
update functions for dynamic LPs (see section 4.5). Provability of a TC in KBl,
denoted KBl ` TC is de�ned as a standard proof of the tests Te wrt to the
intended answers θ and the result label l. The proof-theoretic inference rules are
axiomatize as a LP meta program. The TC meta program implements various
functions, e.g., to de�ne positive and negative test queries (testQuery, testNot-
Query, testNegQuery), expected answer sets (variable bindings: testResults) and
quanti�cations on the expected number of result (testNumberOfResults).

From a operational point of view, to become widely accepted and useable
to a broad community of policy engineers and practitioners existing expertise
and tools in traditional SE and �exible information system (IS) development
should be adapted to the declarative test-driven programming approach. Well-
known test frameworks like JUnit facilitate a tight integration of tests into
code and allow for automated testing and reporting in existing IDEs such as
eclipse by automated Ant tasks. The ContractLog KR implements support for
JUnit based testing and test coverage reporting where TCs can be managed in
test suites (represented as LP scripts) and automatically run by a JUnit Ant
task. The ContractLog distribution comes with a set of functional-, regression-
, performance- and meta-TCs for the V&V of the inference implementations,
semantics and meta programs of the ContractLog KR.

4.9.4 Declarative Test Coverage Measurement

Test coverage is an essential part of the feedback loop in the test-driven engi-
neering process. The coverage feedback highlights aspects of the formalized poli-
cy/contract speci�cation which may not be adequately tested and which require
additional testing. This loop will continue until coverage of the intended models
of the formalized policy speci�cation meets an adequate approximation level by
the TC resp. test suites (TS) which bundle several TCs. Moreover, test coverage
measurements helps to avoid atrophy of TSs when the rule-based speci�cations

186

4 The ContractLog KR

are evolutionary extended. Measuring coverage helps to keep the tests up to a
required level if new rules are added or existing rules are removed/changed.

However, conventional testing methods for imperative programming languages
rely on the control �ow graph as an abstract model of the program or the ex-
plicitly de�ned data �ow and use coverage measures such as branch or path
coverage. In contrast, the proof-theoretic semantics of LPs is based on reso-
lution with uni�cation and backtracking, where no explicit control �ow exists
and goals are used in a refutation attempt to specialize the rules in the declara-
tive LP by unifying them with the rule heads. Based upon this central concept
of uni�cation a test covers a logic program P , if the test queries (goals) lead
to a least general specialization of each rule in P , such that the full scope of
terms (arguments) of each literal in each rule is investigated by the set of test
queries. That is, the instantiation of the rules in P with the test goals should
be as general as possible. Finding general information from speci�c goals is a
task approached by inductive logic programming (ILP) techniques. ILP allows
inductively deriving general information from speci�c knowledge and comput-
ing the least general generalization (lgg), i.e., the most speci�c clause (e.g.,
wrt theta subsumption) covering two input clauses. A lgg is the generalization
that keeps an generalized term t (or clause) as special as possible so that ev-
ery other generalization would increase the number of possible instances of t in
comparison to the possible instances of the lgg. E�cient algorithms based on
syntactical anti-uni�cation with θ-subsumption ordering for the computation of
the (relative) lgg(s) exist and several implementations have been proposed in
ILP systems such as GOLEM, or FOIL. θ-subsumption introduces a syntactic
notion of generality: A rule (clause) r (resp. a term t) θ-subsumes another rule
r′, if there exists a substitution θ, such that r ⊆ r′, i.e., a rule r is as least as
general as the rule r′ (r ≤ r′), if r θ-subsumes r′ resp. is more general than
r′ (r < r′) if r ≤ r′ and r′ � r. (see e.g. [Plo70]). In order to determine
the level of coverage the specializations of the rules in the LP under test are
computed by specializing the rules with the test queries by standard uni�ca-
tion. Then by generalizing these specializations under θ-subsumption ordering,
i.e., computing the lggs of all successful specializations, a reconstruction of the
original LP is attempted. The number of successful "recoverings" then give the
level of test coverage, i.e., the level determines those statements (rules) in a LP
that have been executed/investigated through a test run and those which have
not. In particular, if the complete LP can be reconstructed by generalization of
the specialization then the test fully covers the LP. Formally we express this as
follows:

De�nition 140 (Test Coverage) Let T be a test with a set of test goals
{G1, .., Gn} for a program P , then T is a cover for a rule ri ∈ P , if the
lgg(r′i) ' ri under θ − subsumption, where ' is a variant equivalence rela-
tion denoting variants of clauses/terms and the r′i are the specializations of ri
by the goals Gj. It is a cover for a program P , if T is a cover for each rule
ri ∈ P . With this de�nition it can be determined whether a test covers a LP or
not. The coverage measure for a LP P is then given by the number of covered

187

4 The ContractLog KR

rules ri divided by the number k of all rules in P :

coverP (T) : −
∑k

i=1 coverri (T)

k

For instance, consider the following simpli�ed business policy P :

Example 37

discount(Customer, 10%) :- gold(Customer).

gold(Customer) :- spending(Customer, Value) , Value > 3000.

spending('Moor',5000).

spending('Do',4000). %facts

Let T = {discount(′Moor′, 10%)? => true, discount(′Do′, 10%)? => true be a
test with two test queries. The set of directly derived specializations by applying
this tests on P are:

discount('Moor',10%) :- gold('Moor').

discount('Do',10%) :- gold('Do').

The computed lggs of this specializations are:

discount(Customer,10%) :- gold(Customer).

Accordingly, the coverage of P is 50%. We extend T with the additional test
goals: {gold(′Moor′)? => true, gold(′Do′)? => true)?}. This leads to two new
specializations:

gold('Moor') :- spending('Moor',Value) , Value > 3000.

gold('Do') :- spending('Do',Value) , Value > 3000.

The additional lggs are then:

gold(Customer) :- spending(Customer, Value) , Value > 3000.

T now covers P , i.e., coverage = 100%.

The coverage measure determines how much of the information represented
by the rules is already investigated by the actual tests. The actual lggs give
feedback how to extend the set of test goals in order to increase the coverage
level. Moreover, repeatedly measuring the test coverage each time when the rule
base becomes updated (e.g., when new rules are added) keeps the test suites (set
of TCs) up to acceptable testing standards and one can be con�dent that there
will be only minimal problems during runtime of the LP because the rules do

188

4 The ContractLog KR

not only pass their tests but they are also well tested. In contrast to other com-
putations of the lggs such as implication (i.e., a stronger ordering relationship),
which becomes undecidable if functions are used, θ-subsumption has nice com-
putational properties and it works for simple terms as well as for complex terms
with or without negation, e.g., p() : −q(f(a)) is a specialization of p : −q(X).
Although it must be noted that the resulting clause under generalization with
θ-subsumption ordering may turn out to be redundant, i.e., it is possible �nd
an equivalent one which is described more shortly, this redundancy can be re-
duced and since we are only generalizing the specializations on the top level this
reduction is computationally adequate. Thus, θ-subsumption and least general
generalization qualify to be the right framework of generality in the application
of my test coverage notion.

The de�ned coverage measure is based on the central concept of uni�cation
and uses ILP techniques for the generalization of the derived specializations of
the rule base. It is worth noting, that the measure might be applied also in the
context of forward-directed reaction rules, since in the ContractLog KR reaction
rules are homogeneously represented together with derivation rules. To compute
the least general generalizations (lgg) I have adapted Plotkin's least general gen-
eralization and extended it in ContractLog to a full meta inference engine which
allows computing the substitution sets of terms and clauses (rules/facts/goals),
apply the substitutions to compute the specialisations (the rule instances), gen-
eralize clauses/terms and compute the lgg, the coverage level and give coverage
feedback (e.g., the covered clauses, not covered clauses, the coverage level etc.).
The following axioms are provided by the test logic meta program:

Specialization

% compute and return the substitution

substitution(Term1,Term2,Subst)

substiute(Clause,ClauseInstance,Subst)

substiute(Term,TermInstance,Subst)

% specialize, i.e., unify and return the specialization

specializations(Goal,Clause,Instances)

specialize(Goal,InputLP,OutputLP)

Generalization

% compute the lgg

lgg (Clause1,Clause2,LGG)

lgg (Term1,Term2,LGG)

% compute all lggs

lggs (Clause,LP,LGGs)

% generalize an input LP

189

4 The ContractLog KR

generalize(InputLP,OutputLP)

Cover / Coverage

% return the covered clause from both LPs

cover(LP1,LP2,CoveredClause)

% compute the test coverage

coverage(Goal,LP,CoveredClauses,NotCoveredClauses,CoverageLevel)

The specialization and generalization axioms might be used as a complete
meta inference system which implements a standard top-down derivation on a
meta level.

Here are some examples to illustrate the use of the inductive logic / meta
inference functions implemented in the ContractLog KR:

Example 38

% compute the substitution set for the two complex terms

:-solve(substitution(f(g(A),B),f(g(h(a)),i(b)),Subst)).

% substitute a complex term with the substitution set

% {(A / h(a)),(B / h(b))}

:-solve(substitute(f(g(A),A),Instance,

[[A,["h","a"]],[B,["h","b"]]])).

% compute the lgg = f(X, g(Y,Z), c).

:-solve(lgg(f(a, g(b, h(X)), c), f(d, g(j(X), a), c),LGG)).

% Generalize a LP

% and return the generalized LP (set of general rules)

:-solve(generalize([

[p(a),q(a)],

[p(a),q(a),r(a)],

[p(b),q(b)],

[p(c),q(c)],

[r(a)],[q(a)],[q(b)],[q(c)]],

Generalization)).

A special built-in predicate metaLP (LP) automatically translates the inter-
nal rules/facts of the knowledge base into the list representation format and
binds it to the variable LP .

4.9.5 Summary

The majority of V&V approaches for rule-based systems rely on debugging the
derivation trees and giving explanations (e.g., by spy and trace commands) or

190

4 The ContractLog KR

transforming the program into other more abstract representation structures
such as graphs, petri nets or algebraic structures which are then analyzed for
inconsistencies. Typically, the de�nition of an inconsistency, error or anomaly is
then given in the language used for analyzing the LP, i.e., the V&V information
is not expressed in the same representation language as the rules. This is in
strong contrast to the way people would like to engineer, manage and maintain
rule-based contracts and policies. Di�erent skills for writing the formalized
speci�cations and for analyzing them are needed as well as di�erent systems for
reasoning with rules and for V&V. Moreover, the used V&V methodologies (e.g.,
model checking or graph theory) are typically much more complicated than the
rule-based programs. In fact, it turns out that even writing rule-based systems
that are useful in practice is already of signi�cant complexity, e.g., due to non-
monotonic features or di�erent negations, and that simple methods are needed
to safeguard the engineering and maintenance process w.r.t. V&V&I. Therefore,
what policy engineers and practitioners would like to have is an "easy-to-use"
approach that allows representing rules and tests in the same homogeneous
representation language, so that they can be engineered, executed, maintained
and interchanged together using the same underlying syntax, semantics and
execution/inference environment.

In this section, I have transfered a development methodology of XP, namely
test-driven development with test cases, as a tool for declarative veri�cation
and validation of LP-based rule speci�cations, which is suitable for typically
frequently changing requirements and models of rule-based SLM projects. Test
cases for rule based policies are particular well-suited when policies/contracts
grow larger and more complex and are maintained, possibly distributed and
interchanged, by di�erent people. In this section I have adopted the test-driven
techniques developed in the Software Engineering community to the declarative
rule based programming approach for engineering high level policies such as
SLAs. I have elaborated on an approach using logic programming as a common
basis and have extended this test-driven approach with the notion of declarative
test coverage.

Clearly, test cases and test-driven development is not a replacement for good
programming practices and rule code review. However, the presence of test cases
helps to safeguard the life cycle of policy/contract rules, e.g., enabling V&V at
design/development time but also dynamic testing at runtime. In general, the
test-driven approach follows the well-known 80-20 rule, i.e., increasing the ap-
proximation level of the intended semantics of a rule set (a.k.a. test coverage) by
�nding new adequate test cases becomes more and more di�cult with new tests
incrementally delivering less and less. Hence, under a cost-bene�t perspective
one has to make a break-even point and apply a not too defensive development
strategy to reach practical levels of rule engineering and testing in larger rule
based policy or contract projects.

191

4 The ContractLog KR

4.10 Summary and Discussion

In this chapter I have described syntax and semantics of the ContractLog KR
formalisms and illustrated their features with several examples. The formalisms
have been carefully selected and implemented on the basis of KR adequacy crite-
ria to ful�l the practical real-world requirements of the domain, in particular wrt
the expressiveness needed to ful�ll the requirements for a SLA representation
language (as discussed in section 3.6), and wrt adequate computational com-
plexity. A detailed discussion of these adequacy criteria will follow in chapter
7.

I have implemented the ContractLog formalisms on the basis of declarative
logic programs and meta programming techniques as stand-alone LP scripts
which can be individually imported according to the needed expressiveness for
a particular SLA domain. The formal semantics basically quali�es the Con-
tractLog KR to be applicable to di�erent LP execution environments and LP
semantics. However, as discussed in section 3.6 there is also a need for non-
standard and new language constructs in order to e.g., integrate external system
components, merit object-oriented programing with declarative programing and
manage distributed "webized" rule bases in an open web-based environment. I
have given these practical language constructs a formal semantics which how-
ever is non-standard in terms of typical LP and FOL semantics. Hence, the
procedural semantics of standard LP rule engines need to be extended to adopt
these practical constructs. I have payed special attention in ContractLog to this
trade-o� and described the non-classical (non-monotonic) formal and procedu-
ral semantics of these formalisms in order to allow mappings of these important
and intuitive extensions to standard rule engines (e.g. Prolog interpreters), e.g.
via wrapper interfaces as in the case of the ECA interpreter for global ECA
rules (see section 4.7).

In summary the ContractLog formalisms allow to adequately express and im-
plement business and contract rules found in SLAs and policies. Without strictly
following classical FOL and their theoretical issues such as decidability, which
prevent the implementation of a practically usable rule language, the Contract-
Log formalisms provide a non-classical formal semantics which produces highly
veri�able, traceable and reliable results. The KR merits the bene�ts of declar-
ative rule-based logic programming and state-of art object-oriented, relational
and Semantic Web technologies. As a result, the KR provides rich interfaces
to external data sources and systems, and provides the necessary �exibility and
openness to integrate external (business) domain vocabularies into the rule spec-
i�cations. As such, the integration and interoperation of ContractLog in and
with existing technologies, systems and tools such as Semantic Web languages,
work�ow systems, web services (WSDL, BPEL), business process and business
acitivity management systems becomes possible by their application program-
ming interfaces and their close semantic relations to certain formalisms of the
ContractLog KR.

192

5 Rule Based Service Level
Agreement Markup Language
(RBSLA)

The ContractLog KR provides a declarative rule language based on logic pro-
gramming (LP) providing a clean separation of concerns by explicitly expressing
contractual logic in a formal interpretable and executable fashion with a high
degree of �exibility. But, real usage of a formal rule-based representation lan-
guage which is usable by others than its inventors immediately makes rigorous
demands on the syntax: declarative machine-readable syntax, comprehension,
usability of the language by human users and machines, compact representation,
exchangeability with other formats, means for serialization and persistence, tool
support in writing and parsing rules (veri�cation/validation) etc. In this section
I introduce a declarative Rule-based Service Level Agreement language (RB-
SLA) which addresses these requirements. Therefore, it adapts and extends the
emerging Semantic Web rule standard RuleML to the needs of the SLA domain
in order to facilitate interoperability with other rule languages and XML-based
tool support.

5.1 Rule Markup and Rule Interchange Languages

Recently, there have been many e�orts aiming on rule interchange and building
a general, practical, and deployable rule markup standard for the (Semantic)
Web. This includes several important general standardization or standards-
proposing e�orts including RuleML [BT00], W3C RIF [RIF05], SWRL (DAML
Rules) [HPSB+04], Metalog [MS98], and others. Several markup approaches
have been proposed with a more or less specialized purposes, e.g., in the do-
mains of production rules (SRML [TK01], PRR [TWS+04]), reaction rules /
ECA rules (Reaction RuleML [PKB+06] (former ECA-RuleML), Active XML
[ABM+02], Active Rules for XML [BCP01], the ECA language for XML pro-
posed by Bailey et.al [BPW02], RDFTL for RDF [PPW04], XChange [BP05]),
business rules (BRML [BRM02], SBVR [SBV06]), Semantic Web Service and
policies (WS-Policy [HK03], SWSL [SWS04], WSML [WSM05a]) and other ar-
eas as well. There have been also several SLA related markup language proposals
such as the widely known Web Service Level Agreements (WSLA) [DDK+04]
and comparable approaches such as the SLA language (SLAng [LSE03]), the
Web Services O�ering Language (WSOL [WSO05]) or the WS-Agreement pro-
posal [ACD+05].

193

5 Rule Based Service Level Agreement Markup Language (RBSLA)

As discusses in section 2.5 these SLA markup languages are more or less pure
syntactical speci�cations languages with very limited expressiveness to represent
sophisticated and dynamic rule sets and complex conditionals. The semantics of
these languages is not based on a mathematical (model) theory and derivations
are not based on a resolution based proof theory as in my RBSLA/ContractLog
approach but uses pure procedural logic for interpretation of truth-functional
constructions expressing only simple material implication rules. In particu-
lar, they do not provide means for declarative programming new functionalities
which are automatically interpreted by standard rule engines and lack required
expressive features such as non-monotonic default negation, default reasoning
with exceptions and priorities to cope with con�icts in open domain setting
or event, action, state based processing and reasoning capabilities. Although,
syntactically rich they are only suitable for more or less standardized static
SLA speci�cations but not for highly dynamic, individualized and frequently
changing service contracts in modern service oriented computing settings and
ITSM models which need to be tightly integrated and interact with many other
functionalities, processes and decision logics captured, e.g., in terms of business
rules, integrity rules or policies, data base models or procedural implementa-
tions. Due to the missing declarative programming features and the lack of a
precise formal semantics extensions of these languages become di�cult requiring
time-consuming and costly reimplementations of the non-standard procedural
interpreters. Moreover, traceability, veri�ability and correctness of produced
results can not be ensured.

On the other hand, general rule markup languages (GRML) [Wag02] provide
this required expressiveness, act as a "lingua franca" to exchange rules and are
based on a semantics of formal logic, usually a variation of �rst order predicate
logic, where the responsibility to interpret the rules and to decide on how to
do it is delegated to a standard interpreter (a rule engine). Accordingly, one
of my design goals for the RBSLA language is to stay as close as possible to
the current quasi-standard, the Rule Markup language (RuleML [BT00]), and
reuse the existing language constructs as much as possible. That is, RBSLA is
implemented on top of RuleML extending it with additional modelling power
for serializing/programming arbitrary SLA rules.

5.2 RuleML: The Rule Markup Language Initiative
and Language

The Rule Markup Language (RuleML) [WTB03] is a markup language devel-
oped to express both forward (bottom-up) and backward (top-down) rules in
XML for deduction, rewriting, and further inferential-transformational tasks.
It is de�ned by the Rule Markup Initiative [BT00], an open network of in-
dividuals and groups from both industry and academia that was formed to
develop a canonical Web language for rules using XML markup and transfor-
mations from and to other rule standards/systems. It develops a modular,
hierarchical speci�cation for di�erent types of rules comprising reaction rules

194

5 Rule Based Service Level Agreement Markup Language (RBSLA)

(Reaction RuleML [PKB+06]), derivation rules, facts, queries and integrity con-
straints (consistency-maintenance rules) as well as transformations via XSLT
and ANTLR from and to other rule standards/systems. [WTB03] It is expected
that RuleML will be the declarative method to describe rules on the Web and
distributed systems. Certain parts of RuleML have most recently contributed
to the W3C RIF Core [RIF05]. RuleML allows the deployment, execution,
and exchange of rules between di�erent major commercial and non-commercial
rules systems like e.g. Jess, Prova, JDrew or Mandarax via XSLT transforma-
tions. RuleML is not intended to be executed directly, but transformed into
the target language of an underlying rule-based systems (e.g. Prova) and then
executed there. It addresses machine-readability, interoperability with other
rule languages and (XML) tool support. Since the object oriented RuleML (OO
RuleML) speci�cation 0.85 [Bol03] it adds further concepts from the object-
oriented knowledge representation domain namely user-level roles, URI ground-
ing and RDF term typing and o�ers �rst ideas to prioritize rules with quanti-
tative or qualitative priorities.

For the rest of this section I will brie�y summarize the key components of the
RuleML language and then introduce the RBSLA language and the Reaction
RuleML sublanguage [PKB+06] (former ECA-RuleML [Pas05c]) which extends
RuleML with additional language constructs for representing reaction rules and
SLA/policy rules. An overview of the current RuleML structure can be found
in appendix D. Here, I focus on the RuleML horn logic layer extended with
negations and equality which is chosen as the basis for the Reaction RuleML
and the RBSLA language. The building blocks are: [WTB03]

• Predicates (atoms) are n-ary relations de�ned as an <Atom> element
in RuleML. The main terms within an atom are variables <Var> to be
instantiated by ground values when the rules are applied, individual con-
stants <Ind>, data values <Data> and complex terms <Cterm>.

• Derivation Rules (<Implies>) consist of a body part (<body>) with one
or more conditions (atoms) connected via <And> or <Or> and possibly
negated by <Neg> which represents classical negation or <Naf> which
represents negation as failure and a conclusion (<head>) which is derived
from existing other rules or facts applied in a forward or backward manner.

• Facts are deemed to be always true and are stated as atoms: <Atom>

• Queries <Queries> can either be proven backward as top-down goals
or forward via bottom-up processing. Several goals might be connected
within a query and negated.

Besides facts, derivation rules and queries RuleML de�nes further rule types
such as integrity constraints and transformation rules [WTB03].

195

5 Rule Based Service Level Agreement Markup Language (RBSLA)

Figure 5.1: RBSLA Layers and Modularization

5.3 RBSLA: Rule Based Service Level Agreement
Markup Language

The Rule Based Service Level Agreement language (RBSLA) [Pas04a] is a
mark-up language to serialize rule-based policy- and contract speci�cations such
as SLAs in XML. It is implemented as an extension to the emerging XML-
based Rule Markup language (RuleML) [BT00] and Reaction RuleML (Reac-
tion RuleML) [PKB+06] in order to address interoperability with other rule
languages and tool support - see �gure 5.1.

It adds additional modelling power and expressiveness to RuleML to declar-
atively implement higher-level policies and SLAs. In a nutshell, it adds the
following features to RuleML:

• expressive procedural attachments on external procedural code integrated
into complex functions

• integration of external data sources / facts and imports of external unitized
modules

• Reaction RuleML (former ECA-RuleML): reaction rules with events and
action language constructs

• ID-based update primitives and module support with "need-to-know prin-
ciple"

• complex event processing and state changes (�uents) a la event calculus

196

5 Rule Based Service Level Agreement Markup Language (RBSLA)

• complex interval based event / action algebra constructs

• deontic norms for normative reasoning

• defeasible rules and rule priorities

• test cases and expressive integrity constraints for veri�cation, validation
and integrity testing (V&V&I)

• typed logic with Semantic Web ontology or object-oriented types and input
/ output modes

In the following subsections, I will �rst outline the design goals of RBSLA
and then describe its sub-languages, namely Reaction RuleML [PKB+06] and
the deontic and defeasible layer of RBSLA.

5.3.1 Design Goals

RBSLA is designed to ful�l typical criteria for good language design [Cod71]
such as minimality, symmetry and orthogonality. With minimality I mean that
RBSLA provides only a small set of needed language constructs in addition to
the existing constructs in RuleML, i.e., the same meaning cannot be expressed
by di�erent language constructs. Symmetry is ful�lled in so far as the same
language constructs always expresses the same semantics regardless of the con-
text they are used in. Orthogonality permits every meaningful combination of
a language constructs to be applicable. Moreover, RBSLA satis�es typical KR
adequacy criteria such as epistemological adequacy: "A representation is called
epistemologically adequate for a person or a machine if it can be used practi-
cally to express the facts that one actually has about the aspects of the world."
[MH69]. This compact design is congruent with the primary intention of RB-
SLA (and ContractLog) which is to enable declarative programming of SLA
related functionalities for the speci�cation of �exible SLA rules, i.e. providing
maximum �exibility and extensibility for SLA representation which is di�erent
to the syntactical speci�cation approaches of WS-Agreement or WSLA.

Basic requirements which are addressed by RBSLA are, e.g., declarative
machine-readable and machine-interpretable syntax, comprehension, usability
of the language by human users and automated agents, compact representation,
interchangeability with other formats, means for serialization and persistence,
tool support in writing and parsing rules as well as veri�cation etc.

RBSLA follows the modularization design principle of RuleML which itself
adopts from XHTML [XHT06] and de�nes new constructs within separated
modules which are added to the RuleML family as additional layers on top of
the hornlog layer of RuleML. The layers are not organized around complexity,
but add di�erent modelling expressiveness to the RuleML core for the represen-
tation of contractual logic and behavioral event/(re)action logic. The layered
and uniform design makes it easier to learn the language and to understand the
relationship between the di�erent features and it provides certain guidance to

197

5 Rule Based Service Level Agreement Markup Language (RBSLA)

users who might be interested only in a particular subset of the features and
do not need support for the full expressiveness of RBSLA. The modularization
allows for easy extension of RBSLAs representation capabilities, using the ex-
tensibility of XML Schema (e.g. rede�nes of XML Schema group de�nitions),
without breaking the core RBSLA language standard. This development path
provides a stable, useful, and implementable language design for SLA developers
to manage the rapid pace of change on the Semantic Web and modern IT service
management. Apart from that modules facilitate the practical and extensible
development of RBSLA via bundling them to layers which can be developed,
compiled, tested and managed separately. The modularization also enforce the
principle of information hiding and can provide a basis for data abstraction.

The possibility to integrate external (contract) vocabularies such as Semantic
Web ontologies into the logical RBSLA rules in order to give them domain-
speci�c meaning provides easy extensibility, interchange and rich expressive-
ness. Arbitrary existing Semantic Web ontologies such as WSMO [WSM05b],
WS-Policy OWL ontology [PKH05, VAG05], OWL-S [OS03] or KAoS [JCJ+03]
or other ontologies such as OWL time [PH04] can be used to type rule terms in
RBSLA; hence, providing the same syntactical expressiveness as languages such
as WSLA or WS Agreement, but in contrast to these approaches with formal
logic-based semantics supporting veri�cation, this uses interpretation and infer-
ence reasoning using standard semantic web technologies and rule interpreters.

RBSLA is not intended to be executed directly, but its various sublanguages
can be transformed into target execution languages of underlying rule-based
systems. XSLT stylesheets are provided that transform RBSLA (sublanguages)
into executable rule scripts for execution in the targeted computation environ-
ments. The reference execution model is the ContractLog KR and the Prova
rule engine as execution environment, but translations into other execution lan-
guages are also possible.

5.3.2 Reaction RuleML: A Rule Markup Language for Reaction
Rules

Reaction RuleML [PKB+06, Pas06d, Pas06c, PKH06] is a general, practical,
compact and user-friendly XML-serialized language for the family of reaction
rules. It incorporates di�erent kinds of production, action, reaction, and KR
temporal/event/action logic rules into the native RuleML syntax using a system
of step-wise extensions. In particular, the approach covers di�erent kinds of
reaction rules from various domains such as active-database ECA rules and
triggers, forward-directed production rules, backward-reasoning temporal-KR
event/action/process logics, event noti�cation and messaging and active update,
transition and transaction logics. The current version Reaction RuleML 0.1
[PKB+06] directly evolves from ECA-RuleML [Pas05c, Pas06b, Pas05b, Pas06a]
a sublanguage of the former RBSLA versions [Pas04a, Pas05f]. Figure 5.2 shows
the scope of Reaction RuleML and �gure 5.3 shows the structure of Reaction
RuleML 0.1.

198

5 Rule Based Service Level Agreement Markup Language (RBSLA)

Figure 5.2: Scope of Reaction RuleML

Figure 5.3: Structure of Reaction RuleML 0.1

199

5 Rule Based Service Level Agreement Markup Language (RBSLA)

Hornlog2rr Layer The hornlog2eca layer acts as an intermediate between
RuleML and the Reaction RuleML language. It rede�nes several RuleML con-
structs and makes several extensions to the RuleML horn logic layer such as
transactional (@safety) update primitives (< Assert >/< Retract >) on the
level of atoms in rules (< Implies >) to integrate external modules and ad-
d/remove knowledge or type (@type) and mode (@mode) declarations to de�ne
webized (Semantic Web ontology) or procedural (Java) types and input/output
de�nitions.

Modes are states of instantiation of the predicate described by mode dec-
larations, i.e. declarations of the intended input-output constellations of the
predicate terms with the following semantics:

• "+" The term is intended to be input

• "−" The term is intended to be output

• "?" The term is unde�ned/arbitrary (input or output)

Modes are frequently used in inductive logic programming (ILP) to reduce the
space of clauses actually searched, i.e. to narrow the hypothesis space of program
clauses structured e.g. by theta-subsumption generality ordering (re�nement
graph). They re�ect the data �ow of a rule set. In Reaction RuleML I de�ne
modes with an optional attribute @mode which is added to terms, e.g. <
V armode = ”− ” > X < /V ar >, i.e. the variable X is an output variable. By
default the mode is unde�ned ”?”.

Types in Reaction RuleML can be assigned to terms using a @type attribute.
Reaction RuleML supports primitive built-in data types such as String, Integer
and XML Schema built-in data types such as xs : dateT ime as well as external
type de�nitions such as Java class hierarchies (fully quali�ed Java class names),
e.g. type = ”java.lang.Integer” or Semantic Web taxonomies based on RDFS
or OWL, e.g. type = ”rbsla : Provider”, where rbsla is the namespace pre�x
and Provider is the concept class.

Another important extension to RuleML are procedural attachments. Pro-
cedural attachments are in particular relevant for actively accessing / moni-
tor external systems and detecting events in a pull mode. They allow receiv-
ing/integrating external information, a�ecting the outside world or delegating
computation-intensive tasks to optimized procedural code (e.g. Java methods).
Hence, they are a crucial extension of the pure logical inferences used in logic
programming.

Example 39

...

<Atom>

<oid> <!-- class/object -->

<Ind uri="java://rbsla.utils.TroubleTicketSystem"/>

200

5 Rule Based Service Level Agreement Markup Language (RBSLA)

</oid>

<Rel in="effect"> <!-- method -->

processTicket

</Rel>

<Var type="event:EventType1" mode="+">

TroubleTicket

</Var> <!-- parameter -->

</Atom>

...

The example show a boolean-valued procedural attachment calling the method
processT icket of the Java class rbsla.utils.T roubleT icketSystem with the val-
ued of the bound (mode = ” + ”) variable TroubleT icket of type "event :
EventType1" as argument. Object-valued procedural attachments, i.e. calls to
methods/constructors which return an object or a set of objects can be bound
to variables using equalities

Example 40

<Equals>

<Var type="java.lang.Integer">X</Var>

<Expr>

<oid><Ind uri="java://java.lang.Integer"/></oid>

<Fun in="effect">parseInt</Fun>

<Ind>1</Ind>

</Expr>

</Equals>

The example calls the method parseInt of the class java.lang.Integer with
the argument 1 and binds the returned Java Integer object from the exter-
nal function call with side e�ect (in = effect) to the variable, i.e. X =
java.lang.Integer.parseInt(”1”). Note, that the bound (external) objects can
be used anywhere in the rules to call their methods, e.g.:

Example 41

...

<Expr>

<oid><Var type="java.lang.Integer">X</Var</oid>

<Fun in="effect">toString</Rel>

</Expr> ...

In this example the method "toString" of a object of type java.lang.Integer
which was previously bound to the variable X is called.

201

5 Rule Based Service Level Agreement Markup Language (RBSLA)

ID based update primitives, allow dynamically adding or removing internal
and external knowledge and evolve the knowledge system at runtime. Reaction
RuleML reuses the KQML like primitives of RuleML, which are de�ned on
the top level, as update actions within rules. That is the update primitives are
de�ned on the level of atoms and can be used within rules. An attribute @safty
states whether the update should be performed in transactional mode, i.e. it
might be rolled back in case of failures. External knowledge �les which should
be asserted can be referenced within the oid tag.

Example 42

<Assert>

<And>

<oid>

<Ind uri="http://ibis.in.tum.de/research/

projects/rbsla/math.rbsla"/>

</oid>

</And>

</Assert>

<Assert safety="transactional">

<And>

<oid><Ind>update1</Ind></oid>

<Atom><Rel>f</Rel></Atom>

<Implies>

<Atom><Rel>f</Rel></Atom>

<Atom><Rel>p</Rel></Atom>

</Implies>

</And>

</Assert>

The example shows two updates of the KB. The �rst one imports an external
rule set from an RBSLA script and the second one asserts a set of clauses as a
module with the user-de�ned module ID "update1" to the KB.

The RR Layer (Reaction Rules layer) de�nes the syntax for reaction rules
and their component parts. I have de�ned one general < Reaction > tag to
describe di�erent kinds (@kind) of production, action, reaction, and KR tem-
poral/event/action logic rules. Di�erent execution styles (@exec) for processing
the reaction rules such as active, where the reaction rules actively pull or de-
tect the events possibly clocked by a monitoring/validity time function, passive,
where the reaction rules passively wait (listen) on matching event instances, e.g.
incoming event messages, which match with the de�ne event de�nition patterns,
and reasoning, where the focus is on the formalization of events and actions
and reasoning on their e�ects on changeable knowledge states (�uents). Reac-
tion rules can be speci�ed on a global level in a tight combination with other

202

5 Rule Based Service Level Agreement Markup Language (RBSLA)

rule types such as derivation rules or integrity constraints or locally, i.e. nested
within other derivation or reaction rules. There are di�erent evaluation styles
(@eval) for reaction rules such as strong and weak interpretation which are
used to manage the "justi�cation lifecycle" of local reaction rules in the deriva-
tion process of the outer rules. Reaction RuleML supports procedural calls on
external procedures with side e�ects and enables expressive transactional OID-
based updates on the extensional and intensional knowledge base, i.e. on facts
and rules. Sophisticated post-conditional veri�cation, validation and integrity
tests (V&V&I) using integrity constraints or test cases can be applied as post-
conditional tests, which possibly might lead to roll-backs of the update actions.
Complex events and actions can be expressed in terms of complex event / ac-
tion algebra operators and di�erent selection and consumption policies can be
con�gured.

The basic constructs of Reaction RuleML 0.1 are:

• < Reaction > - General reaction rule construct

• @exec = ”active|passive|reasoning”; default = ”passive” - Attribute
denoting "active", "passive" or "reasoning" execution style

• @kind - Attribute denoting the kind of the reaction rule, i.e. its combi-
nation of constituent parts, e.g. "eca", "ca", "ecap"

• @eval - Attribute denoting the interpretation of a rule: "strong|weak"

• < event >,< body >,< action >,< postcond >, < alternative > - role
tags; may be omitted when they can be uniquely reconstructed from po-
sitions

• < Message > - de�nes an inbound or outbound message

• @mode = inbound|outbound - Attribute de�ning the type of a message

• @directive = [directive, e.g. FIPA ACL]

• < Assert > | < Retract > - Performatives for internal knowledge updates

The basic content models are given in EBNF notation, i.e. alternatives are
separated by vertical bars (|); zero to one occurrences are written in square
brackets ([]) and zero to many occurrences in braces ({}):

Reaction ::= [oid,] [event,] [body,] [action] [,postcond]

[,alternative]

event ::= Naf | Neg | Atom | Message | Reaction

body ::= Naf | Neg | Atom | And | Or

action ::= Atom | Assert |Retract | Message

postcond ::= Naf | Neg | Atom | And | Or

alternative ::= Atom | Assert | Retract

203

5 Rule Based Service Level Agreement Markup Language (RBSLA)

The KR Layer (Knowledge Representation layer) de�nes the syntax for KR
even / action logics such as Event Calculus or Fluent Calculus and extends the
RR layer with state processing constructs:

state ::= Ind | Var | Expr

Initiates ::= [oid,] state | Ind | Var | Expr

Terminates ::= [oid,] state | Ind | Var | Expr

Example 43

<Reaction kind="ea" exec="reasoning">

<event>

<Atom>

<Rel>happens</Rel>

<Ind>startMaintenance</Ind>

<Var>T</Var>

</Atom>

</event>

<action>

<Initiates>

<state>

<Ind>maintenance</Ind>

</state>

</Initiates>

</action>

</Reaction>

The example shows a trigger rule (EA rule) with reasoning evaluation style:
an initiating event "startMaintenance" initiates a state "maintenance".

Events (and actions) might be complex:

Example 44

<Sequence>

<Concurrent>

<Ind>a</Ind>

<Ind>b</Ind>

</Concurrent>

<Ind>c</Ind>

</Sequence>

The example de�nes a complex event sequence(concurrent(a, b), c).

204

5 Rule Based Service Level Agreement Markup Language (RBSLA)

5.3.3 RBSLA Deontic Layer

The further layers of RBSLA are decoupled from Reaction RuleML by the
rr2rbsla layer. In this layer to support distributed management and rule in-
terchange I have added test cases into the RuleML syntax. The markup serial-
ization syntax for test suites and test cases includes the following constructs

assertions ::= And

test ::= Test | Query

message ::= Ind | Var

TestSuite ::= [oid,] content | And

TestCase ::= [oid,] {test | Test,}, [assertions | And]

Test ::= [oid,] [message | Ind | Var,] test | Query,

[answer | Substitutions]

Substitutions ::= {Var, Ind | Expr}

Example 45

<TestCase @semantics="semantics:STABLE"

class="class:Propositional">

<Test @semantics="semantics:WFS" @label="true">

<Ind>Test 1</Ind><Ind>Test 1 failed</Ind>

<Query>

<And>

<Atom><Rel>p</Rel></Atom>

<Naf><Atom><Rel>q</Rel></Atom></Naf>

...

</TestCase>

The example shows a test case with the test: test1 : {p => true, not q =>
true}.

The deontic layer de�nes the syntax for describing deontic norms. To en-
able an extensible design of deontic norms, e.g. to add other modalities, the
norms are no longer introduced as extra constructs (as described in RBSLA 0.1
[Pas05f]) but the attribute @in is extended with the value modal.

in ::= yes | no | effect | modal

Example 46

<Atom>

<Rel in="modal">believe</Rel>

<Expr> ... A ... </Expr>

</Atom>

205

5 Rule Based Service Level Agreement Markup Language (RBSLA)

The example shows the de�nition of a believe modality ♦A, i.e. A is believed
to be true (is possible true).

An optional role tag norm is added as alternative to the role tag state in order
to enable the de�nition of time-based (deontic) norms as described in section
4.8.

Example 47

<Initiates>

<norm>

<Expr in="modal">

<Fun>oblige</Fun>

<Var>Subject</Var>

<Var>Object</Var>

<Expr><Fun in="effect">...</Fun></Expr>

</Expr>

</norm>

</Initiates>

The example de�nes an obligation norm which is initiated as a norm "state".

5.3.4 RBSLA Defeasible Layer

In order to deal with con�icts (e.g. positive and negative contradictions) and
rules of precedence (rule priorities), as described in section 4.4, RBSLA supports
in the defeasible layer defeasible rules "body ⇒ head" in addition to strict rules
(derivation rules of the form "head→ body"). To distinguish both rule types the
attribute @variety is used in < Implies >. The variety attribute is restricted
to the values "strict" and "defeasible". An < Overrides > element de�nes the
priority of rules or rule sets / modules.

Example 48

<Overrides>

<Ind>rule1</Ind>

<Ind>rule2</Ind>

</Overrides>

The example de�nes that the rule with object id "rule1" has higher priority
than "rule2”.

206

5 Rule Based Service Level Agreement Markup Language (RBSLA)

Figure 5.4: WSLA Domain Vocabulary

5.4 Discussion and Conclusion

RBSLA simpli�es writing and interchanging SLAs and policies by means of
a XML-based mark-up language (platform independent model PIM). It pro-
vides means for optimizing/refactoring and validation of rule sets during the
transformation into an executable rule language (platform-speci�c model PSM),
e.g., into ContractLog by XSLT based transformation services (see RBSLA
project). Remarkably, the RBSLA approach in contrast to existing XML lan-
guages in the SLA domain such as WSLA, WSOL, WS-Agreement, is not
just a pure syntactical speci�cation language with prede�ned language con-
structs, but is a declarative rule-based programming language with an opera-
tional and a declarative logic-based semantics for formalizing and implementing
arbitrary contract-related functionalities and speci�cations. This declarative
implementation-oriented design provides maximum �exibility and extensibility
for SLA representation including the use of di�erent contract vocabularies rep-
resented as Semantic Web ontologies such as WSMO, WS-Policy OWL ontology
or KAoS and other ontologies such as OWL time, which can be integrated as
external webized type systems into the logical SLA rules, giving them a domain-
speci�c meaning. For instance, �gure 5.4 shows the domain vocabulary of WSLA
[DDK+04].

The vocabulary might be used as a type system for RBSLA rules.

Example 49

207

5 Rule Based Service Level Agreement Markup Language (RBSLA)

<Initiates>

<Expr in="modal" type="wsla:Obligations">

<Fun>oblige</Fun>

<Var type="wsla:SignatoryParty">Subject</Var>

<Var type="wsla:serviceObject">Object</Var>

<Expr type="wsla:ServiceLevelObjective">

...

</Expr>

</Expr>

</Initiates>

The example initiates an obligation of type wsla : Obligations for a subject
of type wsla : SignatoryParty and an object of type wsla : serviceObject to
ful�l a wsla : ServiceLevelObjective.

Example 50

<Atom>

<Rel>datetime</Rel>

<Ind type="owlTime:Year">2005</Ind>

<Ind type="owlTime:Month">11</Ind>

<Ind type="owlTime:Day">23</Ind>

<Ind type="owlTime:Hour">10</Ind>

<Ind type="owlTime:Minute">30</Ind>

<Ind type="owlTime:Second">0</Ind>

</Atom>

The example uses the OWL Time ontology [PH04] as type system to describe
the datetime fact datetime(2005, 11, 23, 10, 30, 0).

208

6 Rule Based Service Level
Management (RBSLM) Prototype

6.1 Architecture

Based on the described ContractLog concepts and the RBSLA language, I have
implemented the rule based service level management (RBSLM) prototype as a
proof of concept implementation. Figure 6.1 shows the general architecture and
components of the prototype.

The open-source, backward-reasoning ContractLog rule engine which extends
Mandarax (1) (http://mandarax.sourceforge.net/) and Prova [KPS06] serves as
inference engine for the LP contract rules. The rules are represented on the basis
of the ContractLog framework (2) and are imported into the internal KB of the
rule engine using the Prova scripting language [KPS06]. The high-level declar-
ative RBSLA mark-up language (see chapter 5) is used for rule interchange,
serialization, tool based editing and veri�cation of rules. XSLT based mappings
provided as web-based services transform RBSLA into executable ContractLog
rules. A graphical user interface (UI) - the Contract Manager (4) - is used to
write, edit and maintain the SLAs which are managed as RBSLA projects. The
projects are either persistently stored in the contract base (3) or are imported
from distributed web resources. The repository (5) contains typical rule tem-
plates and prede�ned domain speci�c objects, built-in metrics and contract vo-
cabularies (ontologies) which can be reused in the SLA speci�cations and loaded
together with the projects. During the enforcement and monitoring of the SLAs
external data sources, network and system management tools, IT services and
business objects (e.g. EJBs) can be integrated (6) (via expressive procedural
attachments). Event messages can be communicated between distributed RB-
SLA entities (rule nodes) and external components using Mule [Mul06] as an
enterprise service bus. Finally, the Service Dash Board (7) acts as a runtime
environment that visualizes the monitoring results and supports further SLM
processes, e.g., reports on violated service levels or metering and accounting
functions. Figure 6.2 illustrates the layers of the rule-based approach. Figure
6.3 shows the existing and the newly implemented components of the RBSLM
prototype.

Several RBSLM instances might be deployed as distributed web-based ser-
vices (see �gure 6.4). Each service instance runs a ContractLog/Prova rule en-
gine which dynamically imports the distributed RBSLA projects and rule-based
SLAs from the web or from the local storage in which the RBSLA projects are

209

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.1: Architecture of Rule Based Service Level Management Tool

Figure 6.2: Layers of the RBSLM Tool

210

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.3: RBSLM Service Components

managed. An ESB is used as object broker and asynchronous messaging mid-
dleware for the RBSLM services. Di�erent transport protocols such as JMS,
HTTP or SOAP (Rest) can be used to transport rule sets, queries and answers
as payload of event messages between the internal inference services or external
systems and applications. RBSLA is used as common rule interchange format.

In the following sections I will detail the implementation of the RBSLM com-
ponents.

6.2 ContractLog Rule Engine

In this section I describe the implementation of the ContractLog Rule Engine.

6.2.1 Inference Engine

I have implemented the ContractLog rule engine as an extension of the Prova
rule engine and language [KS04] which is loosely based on Mandarax, a Java-
based open source backward reasoning derivation rule engine [DH04, Die04].
The ContractLog resolution engine implements the procedural semantics (SLE
resolution - see section 4.1.3). The resolution algorithm is written as a Tram-
poline in order to prevent stack over�ows in case of large SLD(NF) trees, which
typically occur in recursive implementations of SLD variants of Robinson's res-
olution algorithm. The knowledge (rules, facts, queries, rule sets/modules) are

211

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.4: Distributed RBSLM Services with ESB

managed as objects with an unique object id, an extended key for indexing
and a set of meta data properties (meta annotations) in highly e�cient data
structures. A cache is used to store memorized goals and their answers for later
reuse in SLE resolution. The ContractLog inference service is user-con�gurable
enabling, e.g., the selection of di�erent SLE variants which possibly reduce to
standard SLDNF resolution, and the con�guration of the cache size and memo-
rization time cached results. Figure 6.5 shows relevant classes and interfaces of
the ContractLog inference engine; with the core classes implementing:

• ResolutionInferenceEngine6: the inference engine

• RBSLAKnowledgeBase: the knowledge base with extended clause sets
(ExtendedClauseSet)

• RBSLARobinsonUni�cationAlgorithm: the typed uni�cation algorithm

• Cache: the linear tabling cache storing goals (CachedGoal)

6.2.2 ECA Interpreter

Figure 6.6 shows the relevant parts of the class diagram of the ECA interpreter
which is decoupled from the rule engine via a general wrapper interface (it might
be implemented for di�erent rule engines):

212

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.5: Class Diagram of the ContractLog Inference Engine

• KnowledgeBaseWrapper: a general wrapper interface used to decouple the
ECA interpreter from arbitrary rule engines

• ActiveKnowledgeBase: provides methods to manage (add, remove) reac-
tion rules and event data

• ActiveKnowledgeTask: abstract class for the de�nition of tasks to be
solved in the ActiveKnowledgeBase

• ActiveRule: represents a reaction rule

• Event, Condition, Action: interface for the parts of ECA rules with eval-
uation / execution functions

• Daemon, DaemonMultiThreading: The daemon continuously evaluates
the reaction rules by querying the active event base and the derivation
rule base; according to the de�ned monitoring schedules and possibly using
multiple threads

• EventConditionActionExecutor: Implements the forward directed opera-
tional semantics of the ECA paradigm

6.2.3 OWL2PRova API

The OWL2Prova API implements the heterogenous (uses external DL reason-
ers) and homogenous integration (translation into LP facts and rules) of external
Semantic Web vocabularies which might be used as type systems or fact data
(property relations) (see section 4.2.3.2). Figure 6.7 illustrates the general archi-
tecture for the heterogenous integration exploiting external DL reasoners such
as Pellet and Jena.

Figure 6.8 shows relevant parts of the class diagram:

213

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.6: Class Diagram of the ECA interpreter

Figure 6.7: The OWL2Prova API

214

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.8: Class Diagram of the OWL2Prova API

• OWL2Prova: is responsible for the control �ow of all integration processes.
Triggers the homogenous converters or the heterogenous rdf triple queries
which are passed to a speci�ed external DL reasoner.

• Converter: interface for converter implementations which translate on-
tologies into a speci�c LP representation format, e.g. a user-de�ne forma
(SimpleConverter) or homogenous description logic programs [GHVD03]
(DLPConverter)

• ConverterRegistry: A registry to register converters

• ProvaModel: stores the (translated) ontology model

• CachedModel: a con�gurable cache implementation which memorizes pre-
viously answered queries to the ontology model

• NameSpaceList: de�nes default namespaces and stores the name spaces
of the queried ontology models

• DLP Package: includes di�erent converters to translate ontologies into
homogenous DLPs

• Defeasible Package: includes di�erent converters to translate ontologies
into defeasible homogenous DLPs

6.2.4 Translator Services

The translator services of RBSLA/ContractLog translate the platform speci�c
execution rule language Prova/ContractLog into the platform-independent rule
interchange format RBSLA and vice versa. For the translation of RBSLA XSLT
stylesheets are used. For the serialization of Prova/ContractLog into RBSLA an
ANTLR grammar and respective parser and "lexer" implementations are used

215

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.9: Class Diagram of the OWL2Prova API

to parse and transform Prova scripts into an abstract syntax tree (AST) which
then is transformed into the XML representation.

The bi-directional translators are provided as internal built-ins integrated
into ContractLog's update functions, but also as online services for automated
consumption (HTTP requests, SOAP RPCs) or human consumption via web
forms. Figure 6.9 illustrates four di�erent distribution scenarios.

6.3 RBSLM Tool

The RBSLA tool implements an UI and project management system for the
collaborative engineering, project-speci�c management and runtime execution

216

6 Rule Based Service Level Management (RBSLM) Prototype

of distributed (web-based) SLA contracts. The tool is provided in the RBSLA
project as a stand-alone version and as a web-based version (download by Java
Web Start). It splits into two basic components, the contract manager (CM) and
the service dashboard (SD), which are coupled by a mediator implementation.
The mediator is responsible for the management of RSLA projects.

The implementation follows a Model View Controller (MVC) pattern which
is additionally extended with an Observer pattern to monitor changes in the
resources of the model. The View is implemented by the CM UI and SD UI.
The mediator implements the Controller and provides the API to load and save
the project-speci�c Model.

6.3.1 Contract Manager

The CM provides a graphical editor and management UI for RBSLA projects.
Its main features are:

• provides a complete engineering, management and testing UI for central-
ized (local) or decentralized RBSLA projects

• wizard for writing free-hand rules, XML-tree wizard or template-driven
wizard

• project-centered management of di�erent project-speci�c rule languages,
domain vocabularies and knowledge repositories

• abstraction from the platform-speci�c execution syntaxes into platform-
independent rule interchange and serialization syntaxes

• support for di�erent roles such as domain experts, rule engineers and pro-
grammers, business practitioners

• visual support for engineering, testing, maintaining, updating and execut-
ing/querying the rule base

• means to de�ne a domain-speci�c, human-oriented natural rule language
(by named templates implemented by domain experts and rule program-
mers) which allows non-technical business practitioners to easily de�ne
rule-based SLA speci�cations

• decoupling from the underlying execution environment, such that di�erent
possibly web-based inference services (rule engines) can be used

• a local persistence layer (provided by the mediator) storing the project
components or at least web references to it

• import and export features to import and extract parts of RBSLA projects
and deploy them on the Internet

Each RBSLA project consists of:

• project meta data

217

6 Rule Based Service Level Management (RBSLM) Prototype

• the domain speci�c platform independent XML rule interchange syntax
(e.g. a XML syntax such as RuleML, Reaction RuleML, RBSLA) which
is modelled as an abstract syntax

• domain vocabularies / ontologies / type systems

• translators to transform the platform independent rule syntax into the
platform speci�c execution syntax and vice versa (e.g. XSLT-based, pro-
grammatic translator, ANTLR)

• API references to an underlying execution environment / inference service
for querying the rule base

• a rule base consisting of several possibly further nested named and meta-
annotated rule modules (representing e.g. contracts) which include rules
and facts of the various kinds together with queries.

• a repository of prede�ned knowledge templates, i.e. partially �lled and
reusable rule structures which have been given human-oriented name in
natural-language

• test suites which consists of sets of test cases for testing certain function-
alities and properties of the rule base and its modules

• runtime views (used in the runtime environment)

That is, a RBSLA project stores all domain-speci�c knowledge including,
e.g., the underlying PIM rule interchange syntax, the template based natural
language syntax and the domain-speci�c vocabularies. This quali�es the Con-
tract Manager to be a project-speci�c management and engineering tool and to
be a general graphical rule editor for various rule languages and rule engines by
specifying:

1. an abstract syntax model for the used XML rule interchange and serial-
ization language

2. translators from and into the execution rule syntax

3. a wrapper implementation wrapping the API of an underlying rule engine
or a web client for remote procedure calls on a web-based inference service

An user-de�ned natural language representation of the rule language can be
implemented by named templates which describe partially pre-de�ned knowl-
edge pieces such as rule templates, fact templates, built-in templates. These
templates form the basic language constructs for a human-oriented rule lan-
guage.

Example 51

"if status of customer is __

then customer gets discount of ___ ."

218

6 Rule Based Service Level Management (RBSLM) Prototype

<Implies>

<head>

<Atom>

<Rel>discount</Rel>

<Var>Customer</Var>

<Ind> </Ind>

</Atom>

</head>

<body>

<Atom>

<Rel>status</Rel>

<Var>Customer</Var>

<Ind> </Ind>

</Atom>

</body>

</Implies>

"status of __ is __."

<Atom>

<Rel>status</Rel>

<Ind> </Ind>

<Ind> <Ind>

</Atom>

The example �rst shows the template and then the XML description. The �rst
template de�nes a discount rule which has an empty �ller for the discount value
and the customer status. That is, business practitioners might customize the
rule, possibly several times with di�erent discount value and customer status
levels. The second template denotes facts about the customer status. The
binary "status" template can be completed to di�erent atoms which can be
used as facts or within rules.

This template-driven repository approach supports di�erent types of users:
the business practitioner, the rule and system engineers/programers and the
domain experts.

• The domain experts together with the rule programmers which have a
background in logic are responsible for the implementation of the domain
and SLA project models. That is, they �ll the repository with domain
speci�c measurement, monitoring and computing functions, interface im-
plementations to existing databases or system tools, references to existing
business objects as well as rule templates, test cases and other domain
speci�c concepts (e.g. vocabularies). Additionally, they specify test cases
together with certain test data to be used for veri�cation and validation

219

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.10: Contract Manager User Interface

of contract rules in order to ensure the correct usage and a high-quality
of the SLA rule sets.

• The business practitioners make use of the prede�ned templates to write
and maintain the contract rules. They do not need to know any imple-
mentation details of functions, objects or interfaces nor do they need to
have a complete overview of all the rules in the contract system; mean-
ing they do not know what their e�ect is on existing rules when a rule is
added or changed. The test cases safeguard the authoring of rules and al-
low validation of complete rule sets and contracts to detect anomalies like
inconsistencies, incompleteness or redundancies referring to the intended
goals.

The left picture in �gure 6.10 shows the rule wizard to add new knowledge to
the KB. The right picture shows the XML tree views to create and edit a rule.
The graphical implementation uses Java Swing.

6.3.2 Mediator

The mediator is responsible for the internal management of RBSLA projects and
for the control and communication with the inference and translator services.
Although the control �ow will be initiated by the UIs, the mediator implements
the Controller for managing a project, e.g., loading and saving the project re-
sources. Since the complete model is project-speci�c new models might be
loaded by the mediator. The complete project management is executed by the
mediator. Observed changes in the project are communicated to the registered
observers of the UI views, which are then updated accordingly. To manage the
project states, such as "project loaded/saved/changed", the mediator applies a
State pattern. Figure 6.11 describes the UML state diagram for the four medi-
ator states. This work�ow is used to control the user work�ow, e.g., the user
is requested to save the project before it is closed in case the project has been
changed.

Figure 6.12 shows the class diagram of the mediator implementation.

220

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.11: UML State Diagram for the Mediator

• Mediator: provides the API methods to manage a project

• Project: abstract class for a project which manages the project resources

• ProjectRBSLA: abstract RBSLA project class; (currently) implemented
either as semi-structured XML documents (ProjectXML) or as Prova
scripts (ProjectProva)

• Resource: abstract class for object project resources (ResourceObject)
or text resources (ResourceText); All resources implement load and save
methods and an Observer interface which informs the project observer in
case of changes in the resource model

• MediatorState: abstract class for the State pattern to control the project
states

6.3.3 Service Dashboard

The Service Dashboard acts as runtime environment for the SLA. It visualizes
the monitoring information and SLA metrics. Di�erent and adaptable visual-
ization views are provided and new user-de�ned views can be easily plugged into
the framework in order to satisfy the needs of di�erent users. For instance, a
service administrator needs more detailed technical and textual views showing,
e.g., low-level QoS metrics of the monitored services, whereas the SLA quality

221

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.12: Class Diagram of the Mediator

222

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.13: Class Diagram of the Service Dashboard Views

manager or the CEO will need more high-level business-oriented views for BAM
and BPM such as graphical SLA score cards or incident reports. Figure 6.13
shows the core class diagram of the extensible view implementation.

• Viewer: interface for view implementations following the Observer pattern

• DefaultTextViewer, GraphicTrueFalseViewer, GraphicTimeSeriesViewer ...:
Implemented views using e.g. the jFree chart library

Figure 6.14 gives an impression of di�erent views and their con�guration
properties in the SD.

Beside these tracking, monitoring and reporting views the SD visualizes and
explains the inference results such as the derivation trees and allows to explore
the active project and its resources. This gives a better understanding of the
derived results and the dynamic changes of the SLA project during execution
and enforcement phase, hence increasing trust and helps, in addition to the
test-case based approach, to �nd failures in the rule-based SLA speci�cation by
visually debugging the execution traces. Figure 6.15 shows some example views
of the SD project explorer interface.

The SD provides also specialized user interfaces for the particular formalisms
of the ContractLog KR such as the defeasible logic and the integrity test logic,
e.g., in order to �nd integrity violations by performing integrity tests and auto-
matically solve con�icts through transformation of con�icting rules into defea-
sible prioritized rules. Figure 6.16 shows the class diagram of the defeasible test
interface of the SD.

Figure 6.17 describes the sequence diagram for performing integrity tests and
solving con�icts via defeasible transformation and prioritization.

223

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.14: Di�erent Views in the Service Dashboard

Figure 6.15: Service Dashboard Project Explorer

224

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.16: Class Diagram of the Defeasible Test Interface

225

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.17: Sequence Diagram for Integrity Testing and Defeasible Con�ict
Resolution

226

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.18: Integrity Test Interface

Figure 6.18 shows the user interface for the integrity tests and defeasible
prioritization.

6.4 Enterprise Service Bus

The RBSLM tool is build on top of Prova's support for Mule [Mul06] as an ESB
in order to seamlessly handle interactions with other applications and systems
using disparate CEP technologies, transports and protocols. The ESB also al-
lows to deploy several Prova/ContractLog rule engines as a highly distributable
inference services installed as web-based endpoints in the Mule object broker and
supports the Reaction RuleML based communication between them. That is,
beside the direct ad-hoc communication with external business component via
their (web) service APIs which are called by procedural attachments from the
ContractLog rules, the ESB provides a highly scalable and �exible application
messaging framework to communicate synchronously but also asynchronously
with external systems and internal RBSLA components. In this section I de-
scribe the integration of Mule into the RBSLM tool and its usage to deploy RB-
SLA/RBSLM/ContractLog as basis for enterprise application techniques such
as SOA, SCA, CEP, EDA or BAM.

Mule is a messaging platform based on ideas from ESB architectures, but
goes beyond the typical de�nition of an ESB as a transit system for carrying
data between applications by providing a distributable object broker to manage
all sorts of service components. Figure 6.19 shows the architecture of the mule
manager which is the central component in Mule.

The model encapsulates and manages the runtime behavior of a Mule server
instance. The transport provider enables Mule components to send and receive
information over a particular protocol, repository messaging or other technol-
ogy. Mule supports a great variety of transport protocols such as JMS, HTTP,
SOAP, TCP. Autonomous components such as JavaBeans or components from

227

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.19: Mule Manager Architecture [Mul06]

other frameworks are managed within the object broker and con�gured to ex-
change inbound and outbound event messages through registered routers to the
components' endpoint addresses. The properties and payload of the event mes-
sages will be used and/or manipulated by one or more components. The three
processing modes of Mule are [Mul06]:

• Asynchronously: many events can be processed by the same component
at a time in di�erent threads. When the Mule server is running asyn-
chronously instances of a component run in di�erent threads all accepting
incoming events, though the event will only be processed by one instance
of the component.

• Synchronously: when a UMO Component receives an event in this mode
the whole request is executed in a single thread

• Request-Response: this allows for a UMO Component to make a speci�c
request for an event and wait for a speci�ed time to get a response back

The object broker follows the Staged Event Driven Architecture (SEDA) pat-
tern [WCB01]. The basic approach of SEDA is to decomposes a complex, event-
driven application into a set of stages connected by queues. This design decou-
ples event and thread scheduling from application logic and avoids the high
overhead associated with thread-based concurrency models. That is, SEDA
supports massive concurrency demands on web-based services and provides a
highly scalable approach for asynchronous communication.

The integration of Mule into RBSLM extends Provas' AA capabilities to send
and receive messages [KPS06]. Figure 6.20 shows a simpli�ed breakdown of the
integration of Mule and RBSLM.

228

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.20: Integration of Mule into RBSLM

Several instances of RBSLM services which at their core run a Prova/Con-
tractLog rule engine are installed as Mule components which listen at con�gured
endpoints, e.g., JMS message endpoints, HTTP ports, SOAP server/client ad-
dresses or JDBC addresses. RBSLA/Reaction RuleML is used as a common
platform independent rule interchange format between the Prova/ContractLog
rule engine (and possible other rule execution environments/engines). The RB-
SLA translator services (see �gure 6.4) are used to translate inbound and out-
bound event messages from RBSLA/Reaction RuleML into Prova/ContractLog
syntax and vice versa. Similar translation services can be installed for the
communication with other rule engines and external systems. The payload
of a transported event message reaches from queries and answers to complete
rule and fact bases which are interchanged between the services and applica-
tions. That is, possible distributed scenarios for RBSLM might follow con-
versational query-answer paradigm (including semantic and pragmatic context
information) up to interchange of executable rule code which is uploaded to
available web-based inference services. The example below shows an outbound
Reaction RuleML message for the ESB from client1@labbichler1 with a query
ping(service1@labbichler1) as payload.

Example 52

<RuleML xmlns="http://www.ruleml.org/0.91/xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ruleml.org/0.91/xsd

http://ibis.in.tum.de/research/ReactionRuleML/0.1/rr.xsd">

229

6 Rule Based Service Level Management (RBSLM) Prototype

<Message mode='outbound' directive='query'>

<oid>

<Ind>converstation1234</Ind>

</oid>

<protocol>

<Ind>esb</Ind>

</protocol>

<sender>

<Ind>client1@labbichler1</Ind>

</sender>

<content>

<Atom>

<Rel>ping</Rel>

<Ind>service1@labbichler1</Ind>

</Atom>

</content>

</Message> </RuleML>

The large variety of transport protocols provided by Mule can be used to
transport the RBSLA/Reaction RuleML messages to the registered endpoints
or external objects. Usually JMS is used for the internal communication between
distributed RBSLM service instances, while HTTP and SOAP is used to access
external web services. The usual processing style is asynchronous using SEDA
event queues. However, sometimes synchronous communication is needed. For
instance, to handle communication with external synchronous HTTP clients
such as Web browsers where requests, e.g. by a Web from, are send through a
synchronous channel. In this case the implemented synchronous bridge compo-
nent dispatches the requests into the asynchronous messaging framework and
collects all answers from the internal service nodes, while keeping the syn-
chronous channel with the external application open. After all asynchronous
answers have been collected they are send back to the still connected external
application.

Diagram 6.21 shows the core implementation classes of the Mule integration.

• ESBMangers: wraps the Mule Manager and provides methods to start
and stop the ESB service

• ProvaUMOImpl: implementation for ContractLog/Prova instances as Mule
UMO components

• SyncUMOImpl: implementation of the synchronous bridge between syn-
chronous and asynchronous messaging framework

• RuleML2ProvaTranslator: translator implementation for translating RB-
SLA/RuleML into Prova execution language (uses XSLT)

230

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.21: Classes for Integration of Mule into RBSLM

• Prova2RuleMLTranslator: translator implementation for translating Prova
into RBSLA/RuleML (based on ANTLR)

6.5 Discussion and Conclusion

In this chapter I have described the RBSLM reference implementation of the
RBSLA project, which serves as a proof-of-concept implementation on the one
hand, but also addresses industrial requirements to integrate the RBSLA ap-
proach into the existing enterprise service landscape and common industrial
technologies and make it really usable for humans and machines.

The RBSLM user interface, consisting of the contract manager and the ser-
vice dashboard, is mainly intended for the engineering, management, mainte-
nance and execution of RBSLA projects . The tool is project-centered which
allows con�guring it to particular IT service management domains and provides
adaptable support for di�erent roles which are involved during the life-cycle of a
RBSLA project. I loosely followed the Logical User-Centered Interactive Design
(LUCID) methodology developed by Cognetics, Corporation [Cog05] which is
a methodology for user-centered UI design with the central components "ease-
of-understanding" and "ease-of-use". For instance, the adaptable and highly
con�gurable views of the SD which are stored as project resources and the sup-
port for di�erent roles (e.g. experts implement easy to use and understand
template language and aggregating views for practitioners and decision makers)
are intended to ful�l these two goals.

The RBSLM translator services allow to transform the rule-based SLA spec-
i�cations from the PSM format (Prova/ContractLog) into an interchangeable
XML-based PIM format (RBSLA/RuleML). The integration of these webized
XML RBSLA documents into existing service description languages such as
WSDL is straightforward by simply referencing their URI/URL. That is, RB-
SLA templates or completed speci�cations can be applied to describe the con-

231

6 Rule Based Service Level Management (RBSLM) Prototype

Figure 6.22: Employing RBSLM for IT Service Level Management

tractual rights and obligations and non-functional quality properties of e.g. web
services, extending them beside their syntactic description with a precise and
clear semantic description (which leads to Semantic Web Services).

Finally, the integration of an ESB messaging middleware enhances RBSLM to
a highly distributable service-oriented and event-driven architecture. As such,
RBSLM services and ContractLog/Prova inference services can be integrated
and interoperate with the existing enterprise service tools such systems and
network management tools, data warehouses and work�ow/BPM tools. By
the capability of ContractLog to perform rule-based complex event processing
and complex rule reactions typical work�ow and process patterns can be im-
plemented, which quali�es it to work in combination or as an alternative to
languages such as BPEL.

In summary, RBSLM provides the technical infrastructure and tools for rule-
based IT SLM processes as speci�ed in ITIL and BS1500 and underpins enter-
prise management models such as business activity management. Figure 6.22
outlines the processes of using RBSLM for IT SLM.

232

7 Evaluation

ContractLog provides compact, declarative knowledge representation for con-
tractual agreements based on logic programming. This enables high levels of
�exibility and easy maintenance as compared to traditional SLA approaches.
Generic rule engines allow for an e�cient execution of SLAs. In the following,
I evaluate the KR approach by means of theoretical analysis, experiments and
on an example derived from common industry use cases. Since the Contract-
Log KR is a huge logical framework incorporating many logical formalisms with
many expressive variants, which can be used in combination with each other, a
pure theoretical analysis would be not su�cient in order to meet the practical
design goal and the real-world application of rules in the SLA domain. The use
of real test programs and use cases with real data provides insights that are not
to be found through theoretical analysis. Accordingly, the main focus in this
chapter is on the experimental evaluation and the demonstration of adequacy
by means of a use case.

7.1 Theoretical Worst Case Complexity and
Expressiveness

I �rst introduce the necessary terminology: A relation r(t) on the set of ground
terms of a LP language is de�nable under |= (sceptical) semantics if there exists a
program P and predicate symbol p(t) in the language such that for every ground
term t, P |= r(t) or P |= ¬r(t). As usual in Datalog, I further distinguish a
database of facts (EDB) and a set of input rules (IDB) for inferring additional
information. More precisely, the predicate symbols in a LP language are divided
into a set of extensional relations and a set of intensional relations. The facts
EDB are formed from the extensional predicates and ground terms, while the
rule heads are formed from the intensional predicates.

De�nition 141 (Data and Program Complexity) The worst case complex-
ity is given by the complexity of checking whether EDB ∪ IDB |= A for a
variable rule base (IDB), ground atoms A, and extensional facts (EDB). Fix-
ing the intensional relations leads to data complexity which is the complexity of
checking whether the ground atoms A are entailed by IDB ∪ EDB for a �xed
set of intensional predicates and a variable set of extensional predicates, i.e.,
a �xed rule base IDB and a variable input fact base EDB. Data complexity
can be viewed as a function of the size of EDB. The program complexity is the

233

7 Evaluation

complexity of checking IDB∪EDB |= A for variable rule base IDB and ground
atoms A over a �xed extensional database EDB.

Complexity of Logic Programs As discussed in section 3.3.2 there are multiple
di�erent semantics for logic programs. In general, the formalisms implemented
within the ContractLog KR are designed to be usable in di�erent LP environ-
ment having di�erent semantics such as extended well-founded semantics or
stable model semantics resp. answer set semantics. Accordingly, the general
complexity depends on the LP class (e.g., LP without variables (i.e., proposi-
tional) LP without functions (i.e., Datalog), LP with functions, LP with strong
negation (i.e., extended LP), LP with disjunction (i.e., disjunctive LP)) and
its semantics (e.g., completion semantics, strati�ed semantics, well-founded se-
mantics, stable model semantics, answer set) used to interpret the ContractLog
KR. Logic programming has been proven to have e�cient complexity results
under certain expressive restrictions such as for normal LPs with �nite func-
tions, Datalog restriction, bounded number of variables, which are commonly
met in practical SLA formalizations. The following theorem 9 extracted from
[DV97] gives a brief review of complexity results derived for major LP classes
and semantics.

Theorem 9 The decision problem for propositional LPs (with negation) is:

(a) P-complete (O(n)) under strati�ed semantics
(b) co-NP complete for COMP
(c) co-NP complete for STABLE
(d) P-complete (O(n2) resp. O(n) for acyclic LPs) under WFS

Datalog is:

(e) data complete in co-NP under STABLE and program complete in co-NEXPTIME
(f)data complete in P under WFS and program complete in DEXPTIME under
WFS
(g) data-complete in P and program complete in DEXPTIME for strati�ed Dat-
alog

Normal LP with functions are:

(h) r.e.-complete for full LP but NEXPTIME complete for non-recursive LPs
(i)
∏1

1-complete for full LPs under WFS and STABLE

Proof 2 see (a) [DG84], (b) [KP87], (c) [Mar91], (d) [VGRS91, VG89], (e)
[Mar91, Sch95], (f) [VGRS91, VG89], (g) [ABW88], (h) [Tae77, DV97], (i)
[Sch95]

234

7 Evaluation

The formalisms and meta programs in the ContractLog KR are in general
interpretable by di�erent LP semantics. Since the semantics of choice in the
ContractLog inference engine is WFS complexity is polynomial [VGRS91]. Note
that for typical mathematical functions and equalities the hybrid ContractLog
KR uses external procedural implementations (Java code) which are called by
procedural attachments. The resulting values (objects) are bound to variables
and used in the further refutation attempt based on resolution and uni�cation.
For a survey of uni�cation algorithms see [BS01].

Theorem 10 The general uni�cation problem is P-complete under logspace re-
ductions.

Proof 3 see e.g., [DKM84]

The typed logic with a typed uni�cation in ContractLog extends the decision
problem of deciding whether two terms are uni�able to sub-type checking and
computing the greatest lower bound under the type order. The resolution algo-
rithm in ContractLog computes the most general uni�er of two terms and the
greatest lower bound of the types of these terms. I use an e�cient representa-
tion of terms within the KB data structures with extended key indexing which
improves the basic Robinson algorithm to almost linear time (see section 4.1.3
and section 4.2.4.2). For a survey of complexity results for description logics, in
case of external Semantic Web type systems, see [Zol05].

ECA Processor Algorithm

Algorithm 1 Operational semantics of ECA processor:

1. The ECA processor collects all reaction rules (represented as facts) from
the KB via a query eca(T,E,C,A, P,EL)?

2. Then it processes each constituent term in each reaction rule according to
the forward directed ECA paradigm.

Theorem 11 The forward directed execution of reaction rules within the ECA
processor takes linear time O(n) where n is the number of reaction rules.

Proof 4 (sketch)

• step (1) is P − complete under logspace reductions: All reaction rules
are represented as ground positive facts in the KB. Hence, the complexity
EDB∪IDB |= eca(T,E,C,A, P,EL) is equivalent to the data complexity
for a variable input database EDB and a �xed normal program P , where
the set of reaction rules ECA = {eca1, ..ecan} ⊆ EDB. The problem of
query answering with ground facts (without rules) reduces to the problem
of unifying the query with the facts (here the reaction rules) which is P-
complete under logspace reductions (see proof 3) and O(n) in ContractLog
for all facts in EDB.

235

7 Evaluation

• step (2) takes O(n) time since operationally selecting an empty thread and
processing the constituent parts takes the same amount of time for each
rule.

Note the time to evaluate the reaction rule parts is neglected here since the
evaluation time of the reaction rules' is dependent on their underlying imple-
mentation, i.e., depends on the semantics of the underlying LP used to de�ne
functionalities in terms of derivation rules.

Event Calculus Algorithm

Algorithm 2 Query answering in the Event Calculus (holdsAt)

1. �rst all occurred events have to queried by happens(Ei, T1)?

2. then all events Ei which happened before the queried time T need to be
selected: T1 < T

3. then all events Ei which initiate the queried �uent need to be selected:
initiates(Ei, F, T1)

4. and �nally it needs to be checked whether there exists another event Et
which terminates the �uent between T1 and T : notclipped(T1, F luent, T)

Theorem 12 In the case of absolute times and total ordering of events the
worst case data complexity of query answering whether a �uent holds or not at
a given time point has linear complexity O(n) where n is the number of events.

Proof 5 (sketch) The general complexity of the EC is the complexity of checking
whether a certain �uent holds holdsAt(Fluent, t) based on the happened events
and the de�ned EC inference rules initiating respectively terminating this �uent.
Hence, the cost is measured by data complexity for a �xed set of initiates/termi-
nates rules and a variable set of happens facts as the number of accesses to the
knowledge base to unify the happens facts during the refutation attempt. The
complexity is given as a function of the number n of occurred events.

• step (1) takes linear time O(n) and has O(n) output size. The query
uni�es directly with the happens facts and succeeds n times as much events
are recorded in the KB. Hence, the complexity reduces to the uni�cation
problem and has cost O(n) (see proof 3).

• since I impose absolute times and total orderings of events in the Contract-
Log meta program step (2) is a simple date comparison function (solved
by procedural code) which has constant cost.

• step (3) takes O(n), since the initiates resp. terminates are typically rep-
resented as facts which a queried by a bound query (i.e., reduces to the
uni�cation problem - see proof 3.

236

7 Evaluation

• step (4) again needs to query all events n which cost O(n) to derive Et
and compare the occurrence dates and the termination rules with constant
costs.

Accordingly, the overall complexity is linear O(n) by the number of events n
in the EDB.

Note: Performance of query answering in the EC can be signi�cantly increased
by reducing the number of events. One way to achieve this is to use typed events
so that a query on a particular �uent only needs to consider events of a particular
type and not all recorded events (based on typed uni�cation - see complexity
of uni�cation). Another way is to use external databases which populate the
KB with the recorded events at query time. Here pre-selections can be applied,
using highly optimized query languages such as SQL (via where clause) to select
a limited subset of all occurred events, e.g., all event which occurred in the last
month, the last hour, before the time t etc., so that reasoning is done over a
much smaller number of events.

Defeasible Logic

Theorem 13 Propositional Defeasible Logic has been proven to have linear
complexity.

Proof 6 [Mah01]

In ContractLog I do not constrain on propositional defeasible logic but al-
low variables. The defeasible rules and supporting auxiliary rules are meta
interpreted, i.e., a defeasible theory ΦDefl is translated into a LP (ΦDefl) meta
program as described in section 4.4.4. A defeasible rule is translated into a
derivation rule testing all body literals defeasibly and testing the strict integrity
as well as the defeasible integrity (not defeated). Furthermore two auxiliary
rules are built which are used in the defeasible meta program to decide whether
a rule holds, i.e., all body literals can be derived defeasible, and the rule is not
de�nitely blocked. In summary the transformation of a defeasible theory into
a LP increases the size of rules by 3 per defeasible rule and the size of literals
per rule by 6 + 3k where k is the number of body literals in a defeasible rule.
The transformation is done in a pre-processing step during translation from RB-
SLA to ContractLog. The deduction of strict rules in extended LPs, which are
represented in the classical sense as "plain" derivation rules without any meta
predicates, needs no proofs of opposers, in contrast to defeasible provability.
The inference rules to compute conclusions of the input theory and show that
a query is provable defeasibly is done by the meta program described in section
4.4.4. The basic steps are:

Algorithm 3 Defeasible Meta Program

237

7 Evaluation

1. check whether the conclusion H, the head literal of a defeasible rule, will
violate the integrity of any strict knowledge (testIntegerity(H)) (hypo-
thetical test). The meta program iterates over all integrity constraints in
the KB and tries to derive any mutual exclusively strict rule which strictly
overturns the defeasible conclusion L.

2. Each body literal Lb in the body of each defeasible rule with head H needs
to be checked defeasibly by using it as a subgoal (defeasible(Lb)).

3. Defeasible "attacker" must be considered (not(defeated(r,H))).

• The meta program proves that defeated(r,H) can not be derived,
i.e., similar to strict integrity test as described in step 1, it iterates
over all integrity constraints where H is a member and tries to �nd
any not blocked defeasible opposer (i.e., strongly negated) using the
supporting auxiliary rules (neg(blocked(defeasible(Opposer) : −...).
If no opposer can be found the conclusion H is not defeated.

• If there is an unblocked opposer it proves whether the opposer is over-
ruled or not using the priority de�nitions for modules and single rules.

Discussion:

1. Step (1) tries to derive strictly (i.e., in the classical sense) all other in-
tegrity goals (queries on the rule heads of other strict rules / facts) in the
de�ned integrity constraints where H is a member. Hence, the cost of
this step is dependent on the complexity of deriving all other strict goals.
Accordingly the complexity is given by theorem 9, that is data-complete
in P under WFS with or data complete in co − NP for STABLE with
Datalog restriction.

2. Step (2) has the complexity of defeasible provability for each Lb as dis-
cussed for H, i.e., again step 1 to step 3.

3. Step (3) �rst starts a proof attempt on all mutual exclusive defeasible
opposers by

• (a) It uses the supporting auxiliary meta rules
(neg(blocked(defeasible(Opposer) : −...). which starts a strict in-
tegrity test for the opposer as de�ned in step 1 (i.e., cost of step 1) and
proves all opposers' body literals defeasibly, i.e., has cost of defeasible
provability for each body goal (again step 1 to step 3). If an opposer
can be derived, i.e., the mutual exclusive literal is not(neg(blocked()),
the meta program tests whether the opposer is overridden by H.

• (b) The meta program tries to derive and overrides facts whereH, the
label of the rule with head H or the module id where H is a member
overrides the opposer resp. the opposers' rule label or module id.
This is solved by query on the facts with uni�cation complexity, i.e.,
O(n).

238

7 Evaluation

In summary, the described meta algorithm to defeasibly prove a goal includes
several queries on the KB which are strongly dependent on the complexity of
deriving strict knowledge as de�ned in theorem 9.

7.2 Experimental Results

To experimentally analyze the performance of the ContractLogs' formalisms wrt
query answering in di�erent logic classes (e.g., propositional, Datalog, normal)
I adapt a benchmark test suite for defeasible theories [ABMR00] to the Con-
tractLog KR and extend it to evaluate di�erent inference properties, rule types
and logic program classes. The experiments are designed to test di�erent per-
formance/scalability aspects of the inference engine and the logical formalisms.
I run the performance tests on an Intel Pentium 1.2 GHz PC with 512 MB
RAM using Windows XP. I use di�erent benchmark tests to measure the time
required for proofs, i.e., I test performance (time in CPU seconds to answer a
query) and scalability (size of test in number of literals). Various metrics such
as number of facts, number of rules, overall size of literals, indicating the size of
complexity of a particular benchmark test might be used to estimate the time
for query answering and memory consumption.

The �rst group of benchmarks evaluates di�erent inference aspects of the
ContractLog KR such as rule chaining, recursion, and uni�cation. In the chains
test a chain of n rules and one fact at its end is queried. In the dag test a
directed-acyclic tree of depth n is spanned by the rules in which every literal
occurs recursively k times. In the tree test a fact is at the root of a k-branching
tree of depth n in which every literal occurs once. Each test class is performed
for propositional LPs without variables and Datalog LPs with one variable. The
tests further distinguish strict LPs, i.e., normal LPs with only strict (normal)
derivation rules and defeasible LPs with defeasible derivation rules and compare
inference for both classes with goal memoization and without goal memoization.
I use the total number of literals as a measure of problem size, which is much
larger for the defeasible theories due to the meta program transformations, as
described in section 4.4.4. The second and third group of experiments test
the ECA processor for (re)active rule processing and complex event processing
based on Event Calculus formulations. For more detailed description of the
benchmark test suite see appendix C. Figure 7.1 shows a summary of selected
performance results in CPU seconds.

Each experiment was performed several times (10 experiments per benchmark
test) and �gure 7.1 shows the average results with a range of ±10% for the
measured values in the series of tests. The table shows the computation time
to �nd an answer for a query.

Due to the needed variable uni�cations and variable substitutions in the
derivation trees, the Datalog tests are in general more expensive than the propo-
sitional tests and goal memoization adds small extra costs to rule derivations.

239

7 Evaluation

Figure 7.1: Performance Evaluation

In the chains test, where subgoals are never reused, the experiments with memo-
ization are slower than without memoization due to the caching overhead. How-
ever, the advantages of goal memoization can be seen in the tree and dag tests
which (recursively) reuse subgoals. Here goal memoization leads to much higher
performance and scalability (large problem sizes can be solved). As expected,
the defeasible experiments are slower, due to the much larger problem sizes
and the meta program interpretations which need several KB subgoal queries.
Goal memoization reduces duplication of work, e.g., to test strict integrity of
defeasible rules. The reaction rule experiments distinguish between update time
for querying the KB for ECA rules and processing time for executing the ECA
rules. The experiments reveal an increase in time linear in the problem size. The
event calculus tests also show linear time increase in the problem size, which
here is the number of occurred events stated as happens facts which initiate
resp. terminate a �uent.

In summary, the experiments reveal high performance of the ContractLog
formalisms even for larger problem sizes with thousands of rules and more than
10,000 literals, which suggests the approach also for industrial-size applications.
I have formalized typical real-world SLAs from di�erent industries in Contract-
Log within several dozens up to hundreds of rules and much smaller literal sizes
(see for example the RIF / RuleML use cases) which can be e�ciently executed
and monitored within milliseconds. Moreover, the hybrid approach in Contract-
Log allows outsourcing lower-level computations and operational functionalities
to procedural code and specialized external systems.

240

7 Evaluation

7.3 Use Case Revisited - Adequacy / Expressiveness

In this section, I illustrate the adequacy of the rule-based SLA representation
approach, in particular with respect to expressiveness of the ContractLog KR, by
means of a use case example derived from common industry SLAs. I revive the
example SLA described in section 2.4 and present a formalization of a selected
subset in ContractLog, namely the monitoring schedules, the escalation levels
and the associated roles, as well as the following SLA rules:

Example 53 "The service availability will be measured every tschedule according
to the actual schedule by a ping on the service. If the service is unavailable and
is not maintained then escalation level 1 is triggered and the process manager is
informed. Between 0-4 a.m. the process manager is permitted to start servicing
which terminates any escalation level. The process manager is obliged to restart
the service within time-to-repair, if the service is unavailable. If the process
manager fails to restore the service in time-to-repair (violation of obligation),
escalation level 2 is triggered and the chief quality manager is informed. The
chief quality manager is permitted to extend the time-to-repair interval up to a
de�ned maximum value in order to enable the process manager to restart the
service within this new time-to-repair. If the process manager fails to restart
the service within a maximum time-to-repair escalation level 3 is triggered and
the control committee is informed. In escalation level 3 the service consumer is
permitted to cancel the contract."

For the reason of understandability I present an untyped formalization, but
appropriate external domain vocabularies/ontologies might be used as type sys-
tems for term typing of the rules in order to give them an additional semantic
meaning. Use cases and examples demonstrating this integration of external
domain vocabularies can be found in the RBSLA distribution.

The formalization in ContractLog is as follows:

% service definition

service(http://ibis.in.tum.de/staff/paschke/rbsla/index.htm).

% role model and escalation levels

initially(escl_lvl(0)). % initially escalation level 0

% if escalation level 1 then process_manager

role(process_manager) :- holdsAt(escl_lvl(1),T).

% if escalation level 2 then chief quality manager

role(chief_quality_manager) :- holdsAt(escl_lvl(2),T).

% if escalation level 3 then control committee

role(control_committee) :- holdsAt(escl_lvl(3),T).

% time schedules standard, prime, maintenance and monitoring intervals

% before 8 and after 18 every minute

schedule(standard, Service):- systime(datetime(Y,M,D,H,Min,S)),

241

7 Evaluation

less(datetime(Y,M,D,H,Min,S), datetime(Y,M,D,8,0,0)),

interval(timespan(0,0,1,0), datetime(Y,M,D,H,Min,S)),

service(Service), not(maintenance(Service)). % not maintenance

schedule(standard, Service):- systime(datetime(Y,M,D,H,Min,S)),

more(datetime(Y,M,D,H,Min,S), datetime(Y,M,D,18,0,0)),

interval(timespan(0,0,1,0), datetime(Y,M,D,H,Min,S)),

service(Service), not(maintenance(Service)). % not maintenance

% between 8 and 18 every 10 seconds

schedule(prime, Service):- sysTime(datetime(Y,M,D,H,Min,S)),

lessequ(datetime(Y,M,D,H,Min,S),datetime(Y,M,D,18,0,0)),

moreequ(datetime(Y,M,D,H,Min,S),datetime(Y,M,D,8,0,0)),

interval(timespan(0,0,0,10), datetime(Y,M,D,H,Min,S)) ,

service(Service).

% between 0 and 4 if maintenance every 10 minutes

schedule(maintenance, Service) :-

sysTime(datetime(Y,M,D,H,Min,S)),

lessequ(datetime(Y,M,D,H,Min,S),datetime(Y,M,D,4,0,0)),

interval(timespan(0,0,10,0), datetime(Y,M,D,H,Min,S)) ,

service(Service), maintenance(Service). % servicing

% initiate maintenance if permitted

initiates(startServicing(S),maintenance(S),T).

terminates(stopServicing(S), maintenance(S),T). % terminate maintenance

happens(startServicing(Service),T):-

happens(requestServicing(Role,Service),T),

holdsAt(permit(Role,Service, startServicing(Service)),T).

% ECA rule: "If the ping on the service fails and not maintenance then

% trigger escalation level 1 and notify process manager, else if

% ping succeeds and service is down then update with restart

% information and inform responsible role about restart".

eca(

schedule(T,S),

not(available(S)),

not(maintenance(S)),

escalate(S),_,

restart(S)). % ECA rule

available(S) :- WebService.ping(S). % ping service

maintenance(S) :- sysTime(T), holdsAt(maintenance(S),T).

escalate(S) :- sysTime(T), not(holdsAt(unavailable(S),T)),

add("outages","happens(outage(_0),_1).",[S,T]),% add event

role(R), notify (R, unavailable(S)). % notify

restart(S) :- sysTime(T), holdsAt(unavailable(S),T),

add("outages","happens(restart(_0),_1).",[S,T]),% add event

role(R), notify(R,restart(S)). % update + notify

% initiate unavailable state if outage event happens

initiates(outage(S),unavailable(S),T).

terminates(restart(S),unavailable(S),T).

242

7 Evaluation

% initiate escalation level 1 if outage event happens

terminates(outage(S),escl_lvl(0),T).

initiates(outage(S),escl_lvl(1),T).

% terminate escalation level 1/2/3 if restart event happens

initiates(restart(S),escl_lvl(0),T).

terminates(restart(S),escl_lvl(1),T).

terminates(restart(S),escl_lvl(2),T).

terminates(restart(S),escl_lvl(3), T).

% terminate escalation level 1/2/3 if servicing is started

initiates(startServicing(S),escl_lvl(0),T).

terminates(startServicing(S), escl_lvl(1),T).

terminates(startServicing(S), escl_lvl(2),T).

terminates(startServicing(S),escl_lvl(3),T).

% permit process manager to start servicing between 0-4 a.m.

holdsAt(permit(process_manager,Service, startServicing(Service)),

datetime(Y,M,D,H,Min,S)):-

lessequ(datetime(Y,M,D,H,Min,S),datetime(Y,M,D,4,0,0)).

% else forbid process manager to start servicing.

holdsAt(forbid(process_manager,Service, startServicing(Service)),

datetime(Y,M,D,H,Min,S)):-

more(datetime(Y,M,D,H,Min,S),datetime(Y,M,D,4,0,0))..

% derive obligation to start the service if service unavailable

% oblige process manager

derived(oblige(process_manager, Service , restart(Service))).

holdsAt(oblige(process_manager, Service , restart(Service)), T) :-

holdsAt(unavailable(Service),T).

% define time-to-repair deadline and trigger escalation level 2

% if deadline is elapsed

time_to_repair(tdeadline). % relative time to repair value

trajectory(escl_lvl(1),T1,deadline,T2,(T2 - T1)) . % deadline function

derivedEvent(elapsed).

happens(elapsed,T) :- time_to_repair(TTR),

valueAt(deadline,T, TTR).

terminates(elapsed, escl_lvl(1),T).% terminate escalation level 1

initiates(elapsed, escl_lvl(2),T). % initiate escalation level 2

% trigger escalation level 3 if (updated)

%time-to-repair is > max time-to-repair

happens(exceeded,T) :- happens(elapsed,T1), T=T1+ ttrmax.

terminates(exceeded,escl_lvl(2),T). initiates(exceeded,

escl_lvl(3),T).

% service consumer is permitted to cancel the contract in escl_lvl3

derived(permit(service_consumer, contract , cancel)).

holdsAt(permit(service_consumer, contract , cancel), T) :-

holdsAt(escl_lvl(3),T).

243

7 Evaluation

The following example demonstrates the integration of external domain on-
tologies.

Example 54

schedule(standard, Service:wsla_ServiceObject):-

systime(datetime(Y:owlTime_Year,M:owlTime_Month,D:owlTime_Day,

H:owlTime_Hour,Min:owlTime_Minute,S:owlTime_Second)),

less(

datetime(Y:owlTime_Year,M:owlTime_Month,D:owlTime_Day,

H:owlTime_Hour,Min:owlTime_Minute,S:owlTime_Second),

datetime(Y:owlTime_Year,M:owlTime_Month,D:owlTime_Day,

owlTime_Hour:8,owlTime_Minute:0,owlTime_Second:0)),

interval(timespan(

owlTime_Day:0,owlTime_Hour:0,owlTime_Minute:1,owlTime_Second:0),

datetime(datetime(Y:owlTime_Year,M:owlTime_Month,D:owlTime_Day,

H:owlTime_Hour,Min:owlTime_Minute,S:owlTime_Second)),

service(Service:wsla_ServiceObject),

not(maintenance(Service:wsla_ServiceObject)). % not maintenance

The respective typed RBSLA serialization of this rule is as follows:

Example 55

<Implies>

<head>

<Atom>

<op><Rel>schedule</Rel></op>

<Ind>standard</Ind>

<Var type="wsla:ServiceObject">Service</Var>

</Atom>

</head>

<body>

<And>

<Atom>

<op><Rel>systime</Rel></op>

<Expr>

<Fun in="no">datetime</Var>

<Var type="owlTime:Year">Y</Var>

<Var type="owlTime:Month">M</Var>

<Var type="owlTime:Day">D</Var>

<Var type="owlTime:Hour">H</Var>

<Var type="owlTime:Minute">Min</Var>

<Var type="owlTime:Second">S</Var>

</Expr>

</Atom>

244

7 Evaluation

...

<Atom>

<op><Rel>service</Rel></op>

<Var type="wsla:ServiceObject">Service</Var>

<Atom>

<Naf>

<Atom>

<op><Rel>maintenance</Rel></op>

<Var type="wsla:ServiceObject">Service</Var>

</Atom>

</Naf>

</And>

</body>

</Implies>

By simple queries, the actual escalation level and the rights and obligations
each role has in a particular state can be derived from the rule base. And, the
maximum validity interval (MVI) for each contract state, e.g., the maximum
outage time, can be computed. The MVIs can be used to compute service
levels such as the average availability. The ECA processor of the ContractLog
framework actively monitors the reaction rules. Every tcheck according to the
actual schedule it pings the service via a procedural attachment, triggers the
next escalation level if the service is unavailable and informs the corresponding
role. To illustrate this process, I assume that the service becomes unavailable at
time t1. Accordingly, escalation level 1 is triggered and the process manager has
time-to-repair t2. After t2 escalation level 2 is triggered and the chief quality
manager adapts the time-to-repair to t3 and then to t4 until the maximum
threshold max. time-to-repair is reached at time point t4. After t4 the SLA is
violated and escalation level 3 is initiated which permits the service consumer
to terminate the contract. By querying the rule engine, this status information
can be dynamically derived at each point in time and used to feed periodical
reports, enforce rights and obligations or visualize monitoring results on quality
aspects in the Service Dashboard. Figure 7.2 shows this process in a dashboard
view.

7.4 Discussion

Since this dissertation is on the interplay of several programming paradigms and
research disciplines I discuss adequacy of my RBSLA approach using established
criteria in these �elds.

Knowledge Representation Adequacy Criteria The presented rule based SLA
representation approach and the implemented logical formalisms in the Con-
tractLog framework ful�l typical KR adequacy criteria as stated in section 1.2:

245

7 Evaluation

Figure 7.2: Contract tracking

• A proof for epistemological adequacy wrt expressiveness is given by the ex-
amples in this dissertation. In particular the use case example in section
7.3, and the various examples and use cases provided by the RBLSA/-
ContractLog distribution demonstrate adequate expressiveness for SLA
representation.

• Due to the hybrid approach in ContractLog which calls highly optimized
external object-oriented code and query languages such as SQL to solve
certain tasks the bene�ts of both worlds can be combined and the infer-
ences can run with limited resources. Scalability for large problem sizes
has been experimentally demonstrated in section 7.2.

• The formalisms of the ContractLog KR have been carefully selected and
implemented to ful�l algorithmic and logical-formal adequacy in real-world
settings of the SLA domain. The worst-case complexity of the main for-
malisms has been discussed in section 7.1 and an experimental proof has
been given in section 7.2.

• The complete approach has been designed and developed for the practical
application in the SLA domain. It addresses machine-interpretability and
automated execution by means of a precise formal semantics and addresses
human-consumption wrt psychological adequacy and ergonomically ade-
quacy by means of successful methodologies such as test-driven develop-
ment from SE, Semantic Web, XML and Object-Oriented technologies and
tool support.

Moreover the ContractLog language as well as the RBSLA language ful�l cri-
teria of good language design ([Cod71]) such as minimality (lean set of needed
constructs), symmetry (the same language construct always expresses the same
semantics regardless of the context it is used) and orthogonality (permits ev-
ery meaningful combination of a language constructs to be applicable). Hence
they can be considered as clear, precise and easy adaptable SLA representation
languages which haven been proven to be adequate for the formalization and
declarative programming of SLA speci�cations. The extensible design which
allows using arbitrary external Semantic Web ontologies ensures syntactical ex-
pressiveness based on a clear formal semantics.

246

7 Evaluation

Software Engineering Criteria ContractLogs adopts several SE methodolo-
gies and techniques. The hybrid integration approach facilitates interoperabil-
ity with existing external tools, data sources and object-oriented functionali-
ties. The declarative rule-based representation supports a separation of con-
cerns and aims at easy implementations and modi�cations. The support for
unitized modular rule sets in ContractLog facilitates large SLA speci�cations to
be put together from components which can be developed, compiled and tested
separately and managed and communicated within a distributed environment.
The approach enforces the "principle of information hiding" and facilitates typ-
ical SE related non-functional requirements such as correctness or robustness
via meta rules, i.e., rules which monitor the QoS properties of the RBSLM tool.

The RBSLA XML layer supports interchangeability in open environments.
Moreover, on the XML level it becomes straightforward to combine the SLA
formalizations with standard Web service technologies such as WSDL and Se-
mantic Web technologies. The test logic adopts from SE the test-driven ap-
proach for veri�cation and validation of rule bases.

Remarkably, I followed the ideas of agile SE and agile IT project management
in the development and management of the RBSLA project. In particular, I ap-
plied SCRUM project management techniques and XP techniques such as test-
driven development. The RBSLA distribution comes with a set of di�erent test
suites for veri�cation, validation and integrity testing of the project implementa-
tions reaching from regression tests, functional tests to performance/scalability
and inference tests, test coverage analysis and dependency management through
Maven2 Java project management as well as Ant and Maven2 project life cycle
management including automated deployment tasks for web deployment and
SNAPSHOT / distribution releases. The code implementation follows a clear
object-oriented approach and applies well-known SE Design Patterns [GHJV94].

Information Systems Design Science Perspective Contrary to numerous em-
pirically oriented studies in IS research of the last years and pure theoreti-
cal works in logics, the presented approach follows a constructivist, software
engineering-oriented methodology and presents a proof-of-concept implementa-
tion. It adopts the Design Science Research approach as described in Hevner et
al. [HMPR04] and propose a new design artifact which de�nes an expressive,
declarative, logic-based KR for representation and automation of SLAs based
on logic programming techniques and further adequate logical formalisms. The
implemented and evaluated IT artifact provides solutions for identi�ed prob-
lems in the SLA domain. With my approach I provide new levels of �exibility
and automation which are not available within the current procedural tech-
niques and tools. My rule-based approach overcome real-world problems which
are of high relevance and importance in SLA representation, management and
enforcement such as rapidly changing business environment, slow IT-change cy-
cles and highly-distributed loosely coupled service oriented environments. I base
my work on the key developments in research on KR and LP which have been
mostly of the more theoretical sort. I draw on these results to develop my prac-

247

7 Evaluation

tical ContractLog KR. With the RBSLA markup language which stays close
to the emerging Semantic Web rule standard RuleML I address technological
real-world business needs concerning the use of my approach in practical Web-
based applications. As a result the work presented in this dissertation ful�ls
both primary demands of Design Science, namely relevance and rigor.

Usability Study During the analysis phase of the RBSLA project, where I have
spoken with several IT service providers I have collected users' needs and us-
ability requirements for an SLM tool. Feedback has been also provided from the
open-source community to which my RBSLA approach has contributed (Man-
darax, Prova, RBSLA), standardization initiatives (RuleML, Reaction RuleML,
W3C RIF) and through my work as a technical consultant for industrial part-
ners. However, to quantify the usability of the developed front-end in a more
structured way, I have conducted an usability study for the RBSLM tool with
12 participants from the above mentioned groups. The goal was to determine
the usability of the tool from a users' perspective and answer questions relating
in particular to the two primary goals of the LUCID methodology (see section
6.5), namely "easy-to-use" and "easy-to-understand". The questionnaire had
the following categories

1. Related Experience: experience of the user with rule languages in general
and RuleML in particular

2. Overall Reactions: on the tool

3. View: understandability and usefulness of the provided menus, wizards
and views

4. Learning: learning to operate and apply the tool

5. Capabilities: assess the capabilities

6. Features: assess the features

The complete questionnaire can be found in appendix F. The averaged overall
reactions of the participants were:

terrible/wonderful 5.2
frustrating/satisfying 3.7
dull/stimulating 5.8
di�cult/easy 4.7
inadequate power / adequate power 5.4
rigid/�exible 6.8

In a nutshell, the RBSLM tool was quanti�ed as useful and adequate. How-
ever, the primary LUCID goals are only partially ful�lled. In particular users
with less experience in RuleML found it di�cult to use and learn the tool. The
reason might be, that all users regardless of their related experience where asked
to use the tool without any speci�c task and starting with an empty project. As
a result users without experience in RuleML where forced to use features and

248

7 Evaluation

ful�ll tasks which are normally intended for experienced domain experts and
rule programmers. That is, a more �ne grained usability study with appropri-
ate preloaded projects and di�erent tasks for di�erent user groups needs to be
done as a future step.

SLA-speci�c Implications As it can be seen from the use case example in sec-
tion 7.3, the declarative rule based approach allows a compact representation
of modularized SLA rules, which would not be possible in standard imperative
programming languages. To encapsulate the QoS monitoring and decision mak-
ing logic of the use case in Java, a large object oriented program with several
Java classes and multiple methods to model all subtle nuances would be needed.
The entire control �ow must be speci�ed, i.e., the exact order and number of
steps and decisions needs to be translated in the procedural code. Obviously,
this does not always scale and maintenance and management of the knowledge
structures becomes increasingly di�cult, especially when the SLA logic is likely
to change frequently.

This is backed up by the high Capers Jones language levels [Jon96] for declara-
tive LP languages. The Capers Jones level identi�es the number of source lines
of code which are necessary in a given language to implement a single func-
tion point. The higher the language level, the fewer lines of code it takes to
implement a function point, and thus presumably it is an indicator of the pro-
ductivity levels achievable using the language. In contrast to if-then structures
in Java, which form a hierarchical tree, logical rules assemble something more
like a complex net, with dozens or even thousands of interconnected global rule
nodes. Hence, the declarative approach naturally supports reuse of rules by
global visibility. While in Java the if-then statements need to be processed from
the beginning to the end exactly in the prede�ned order, in the declarative ap-
proach the derivation net can be queried at any node and the inference engine
solves the task of �nding all speci�c knowledge out of the general rules which
assert general information about a SLA decision making problem.

The declarative approach provides much �exibility when adapting SLA rules
to changes, for example, when new discounting policies are added. This ability
to dynamically and quickly alter the SLA logic at runtime without any ex-
tensions to the generic inference engine is a key advantage of the declarative
approach, which otherwise would require reimplementation of the procedural
application code resp. database schemas and perhaps larger service execution
outages for redeployment. Hence, by representing the SLA monitoring and en-
forcement logic on a more abstract rule-based level and separating it form the
low-level procedural aspects of service runtime environment, much more pow-
erful SLA speci�cations can be written and maintenance and management of
large numbers of complex individualized SLAs becomes much easier. The clear
mathematical basis of the selected logical formalisms ensures correctness and
traceability of derived results, which is crucial in the SLA domain in order to
provide reliable and provable reactions and results, e.g., computed penalties
used in accounting. Furthermore, it enables easier validation and veri�cation

249

7 Evaluation

of the SLA speci�cations and therefore ensures consistency (due to sound and
complete logical semantics) and integrity (integrity constraints / test cases) as
well automated con�ict resolution (via defeasible refutation).

250

8 Conclusion

Logic programming has been a very popular paradigm in the late 1980's and
one of the most successful representatives of declarative programming in gen-
eral. Although, logic programming is based on solid and well-understood the-
oretical concepts and has been proven to be very useful for rapid prototyping
and describing problems on a high abstraction level, its application in commer-
cial software has been limited throughout the past years. However, service level
management and electronic contract management appear to be particularly suit-
able to logic programming. IT service providers need to manage large amounts
of SLAs with complex contractual rules. These rules describe various decision
and business logic and reach from deeply nested conditional clauses, reactive
or even proactive behavior to normative statements and integrity de�nitions.
They are typically not of static nature and have to be continuously adapted
to changing needs. Furthermore, the conclusions and results need to be highly
reliable and traceable to count even in the legal sense of a contract. There is
demand for a declarative knowledge representation language which is

• e�cient even for larger SLA speci�cations

• reliable and traceable even in case of incomplete or contradicting knowl-
edge

• �exible in a way that allows to quickly alter the behavior of the SLA
system

• supports declarative programming of arbitrary functionalities and decision
procedures

Logic programs have several advantages over imperative languages such as
Java, or database solutions. However, given the linguistic richness of real-world
IT contracts and the dynamics of the SLA domain, it is clear that any speci�c
pure logical account of SLA rules, such as pure classical de�nite Horn clauses,
are too limited and not able to capture the entire contractual logic with e.g.,
a normative account. General logic programs need to be extended by multiple
knowledge representation concepts and commercial system management tools
to allow to formalize the inherent complexity of SLAs and provide the necessary
basis for service level management.

251

8 Conclusion

8.1 Thesis Summary

In this dissertation, I have implemented a coherent framework of integrated
rule-based knowledge representation concepts to axiomatize and automatically
enforce large amounts of SLAs based on generic derivation rule engines. In con-
trast to conventional procedural implementations as in commercial SLM tools
the declarative, rule-based (programming) approach in ContractLog provides
high levels of extensibility and allows for a greater degree of �exibility in de�n-
ing contractual agreements. My aim was to select and investigate adequate
knowledge representation concepts from the area of AI and KR which satisfy
the practical requirements of this domain and combine them in an useful way
with conventional techniques from the object-oriented and relational programing
domain. A particular interest was the investigation of expressive logic program-
ming techniques and logical formalisms such as defeasible logic, deontic logic,
temporal event/action logics, transaction and update logics, description logics.
Following a design science research approach I have tackled the prescriptive
design problem which is in engineering an assemblage of adequate components
which improve SLA representation, monitoring and enforcement. I presented the
ContractLog KR as logical core, the RBSLA markup language as serialization,
and interchange language and the RBSLM tool as engineering and service dash-
board tool, which provide a more e�ective, �exible and more e�cient solution to
service level management than existing approaches. To defend and demonstrate
the quality of this rule-based solution I have applied established methodolo-
gies in SE, KR and LP. A particular focus was the experimental analysis of
the comprehensive ContractLog KR in simulations and with test case-based
black-box tests and coverage analysis of the derivation and execution chains.
The evaluation was in particular with respect to complexity and expressiveness
and illustrates that this particular combination of KR concepts allows an e�-
cient and scalable implementation of rule-based service level management tools.
Multiple contributions from ContractLog and RBSLA have been made to open
source projects (RBSLA, Mandarax, Prova), the new W3C Rule Interchange
Format and the Reaction RuleML initiative, giving evidence for the usability of
the rule-based approach. Recapitulating, the thematic structure and main line
of arguments in this dissertation were:

Chapter 1 described the research problem addressed in this dissertation. It
discussed the requirements for a practical IT service level management (SLM)
tool and a declarative SLA representation language. The research problem
was on the interplay of software engineering (SE) and logical KR formalisms.
Based on these requirements a rule-based solution was introduced and design
science research was chosen as a set of analytical techniques and perspectives
for performing research in IT service level management. The advantages of the
proposed rule-based approach were discussed.

Chapter 2 introduces relevant concepts, technologies and standards in IT
SLM. A detailed use case example which was extracted from real-world SLAs
illustrated the speci�c needs of the domain. Related work reaching from com-

252

8 Conclusion

mercial tools to Semantic Web and logic based approaches was discussed.

Chapter 3 focused on relevant basics in knowledge representation, in particu-
lar in the domain of logic programming, Semantic Web technologies and reactive
systems. With this background the requirements for a rule based SLA language
stated in the introduction were further re�ned.

Chapter 4 described the ContractLog KR as logical core and introduced the
logical formalisms and rule types needed for the adequate representation and au-
tomated execution of SLAs / policies. The syntax and semantics were discussed,
including descriptive model-theoretic and procedural proof-theoretic de�nitions
and implementations of the formalisms. Examples were used to illustrate their
features and usage. The approach relies on meta programming and allows inter-
pretation with di�erent semantics and rule languages (by syntax transformations
via RBSLA and XSLT). Moreover, the formalisms and variants are encapsulated
as stand-alone scripts which can be imported as modules. This approach allows
a �exible management of the well-known trade-o� between expressiveness and
computational e�ciency. Therefore, the ContractLog KR is an useful tool in
many domains, in particular in the context of the Semantic Web and Web-based
distributed and service-oriented systems. Nevertheless, to optimize ContractLog
for the practical requirements of the speci�c tasks in the SLA/policy domain,
some features such as the hybrid typed logic or the labelled meta-data annotated
module concept have been implemented as extensions of the logical inference
mechanisms. Although these features have no direct formalization in �rst order
logic, I argue that the bene�ts for a practical rule-based system, which needs to
cope with large problem sizes and which needs to e�ciently interoperate with
existing systems and data sources, prevail. The hybrid design which allows the
integration of external vocabulary types, methods and data into rule execution
combines the bene�ts of declarative and procedural (object-oriented) program-
ming and helps to overcome typical problems of declarative programming, e.g.,
wrt to computational e�ciency of certain tasks. This is the basis for a tight
integration of the rule-based approach into the existing applications and man-
agement tools in the IT service domain, e.g., databases and data warehouses,
communication middleware, system and network management tools, ERP sys-
tems. The rich capabilities for declarative programming of complex contract
decision and behavioral logic ensure epistemologically adequacy, wrt �exibility
and extensibility. The ability to integrate external Semantic Web vocabularies,
data types and object oriented class hierarchies as type systems provides syntac-
tical expressiveness and facilities rule interchange between domain boundaries.

Chapter 5 addressed requirements of the distributed, Web-based IT service
domain, i.e., serialization and interchange of distributed contracts and policies
as XML based rule bases. The developed RBSLA language is build on top of
the emerging rule markup language (RuleML). Several contributions have been
made to RuleML and the W3C RIF standard. The reactive event/action part
of the RBSLA language has become the basis for the Reaction RuleML sub-
language of RuleML. The language follows the design principle of RuleML and
de�nes new constructs within separated modules which are added to the RuleML

253

8 Conclusion

family as additional layers. The layers are not organized around complexity but
add di�erent modelling expressiveness to the RuleML core for the representation
of behavioral (re)action and KR event/action logic. The language ful�ls typical
criteria for good language design such as minimality, symmetry and orthogonal-
ity. It is as a full declarative programming and interchange format for contract
speci�cations. The formal semantics is based on the ContractLog KR. Syntac-
tic expressive power as in existing markup proposals such as WS-Agreement or
WSLA is provided by the typed logic that allows to reuse arbitrary webized
vocabularies (ontologies) as external order-sorted type systems for term typing
of rules. Due to this syntactic and semantic heritage the RBSLA approach
also quali�es for other phases of the service life cycle such as semantic service
discovery by means of SLA o�erings written in RBSLA.

Chapter 6 described the superimposed RBSLM prototype. This prototype
serves as a proof-of-concept implementation. The RBSLM tool provides sup-
port for engineering and managing service contracts including test-suites and
template-based repositories to safeguard the authoring process of SLA speci�-
cations. It also provides a service dashboard for runtime execution of SLAs,
which can be used as tool for further SLM processes. As messaging middle-
ware and distributed object broker the Mule ESB is integrated into the RBSLM
implementation.

Chapter 7 evaluated the proposed approach. Since the ContractLog KR is
comprehensive including many di�erent formalisms which are used in combina-
tion with each other a pure formal analysis of the complete KR is not feasible
and misses important practical aspects. Therefore, I focused the theoretical
analysis on the core formalisms. They were analyzed in isolation in order to
asymptotically quantify the complexity of reasoning with ContractLog. The
major analysis was done by experimental simulations measuring the time to de-
rive answers and the scalability for di�erent problem sizes and di�erent settings
of expressiveness. The results give an insight into the computational obstacles
of the KR framework and allow quantifying the quality and feasibility of the
implementation of the selected logical formalisms for SLA representation. The
results proved scalability and e�ciency for large rule bases in practical real-
world settings. Expressiveness and practical applicability for the task of SLA
representation are demonstrate by a comprehensive use case. More use case im-
plementations are provided in the ContractLog distribution and by submissions
to open source projects such as Mandarax, Prova and the W3C RIF initiative.

Among others, I have shown the following results:

• Automated SLA and policy representation, monitoring and enforcement is
a business problem that is relevant and important. The proposed declar-
ative rule-based approach is one possible technology-based solution which
quali�es for the frequently changing requirements of contract management
in open, distributed, service-oriented environments

• Several requirements for an adequate rule-based representation language
and rule-based service level management tools, which come from di�erent

254

8 Conclusion

domains, have been identi�ed by a thorough analysis of the problem do-
main. Among the critical goals are �exibility, extensibility by means of
(declarative) programming and scalability/e�ciency. Logic programming
has been selected as the basis and common "denominator" to solve these
core problems.

• A hybrid approach which tightly combines declarative and object-oriented
programming is proposed in order to reach an optimal design which pro-
vides adequate solutions for the representation, inference and search prob-
lem and which �ts nicely into the existing techniques, methods and sys-
tem environments in the SLA domain. The homogenous language design
which includes practical language constructs, which do not have a formal
semantics based on classical �rst-order logic, such as Java object quali�-
cations and calls to external functions, operational systems, data sources
and terminological descriptions, are vital to produce feasible results in the
automated execution, monitoring and enforcement phase and deal with
practical problems. In particular, shifting computational intensive tasks
such as mathematical computations, aggregations etc. to highly optimized
imperative languages such as SQL or Java further increases the e�ciency
of our ContractLog KR. I have paid special attention to �nd the right
trade-o� between e�cient practical language constructs without a clear
formal semantics and logical formalisms with a declarative model-theoretic
semantics.

• Syntax and semantics of RBSLA, ContractLog and its constituent for-
malisms are presented as part of the system design. A formal characteri-
zation of the formalisms wrt model-theory and proof-theory is given. The
underlying inference infrastructure, e.g., the ContractLog inference engine
and the ECA interpreter, as well as the superimposed RBSLM tool follows
a design pattern based architectural style.

• The ContractLog KR and the RBSLA language follow a modular design
where the logical formalisms and the language constructs are implemented
as separated semi-independent components. That is, the meta programs
are implemented as stand-alone LP scripts which can be imported as mod-
ules and the RBSLA XML Schema design bundles constructs which belong
together to modules which are organized as layers. As a result, the expres-
sive power needed to represent a particular SLA which is in tradeo� to
the complexity can be con�gured on a per-need-basis and integrated un-
der the intellectual control of a human engineer. This decomposition also
facilitates extension (with further modules) and veri�cation and valida-
tion via test suites provided for each component. An abstraction from the
operational level of the inference system, the formal ContractLog KR, the
interchangeable RBSLA markup language to the RBSLM user-interface
which provides a RBSLA editor and a repository with prede�ned tem-
plates and test cases, provides a mechanism to abstract from the technical
details and make the approach more user-friendly.

• The implementation and engineering methodology follows a test-driven ap-

255

8 Conclusion

proach stemming from XP with clear iterations between implementation
and evaluation. The developed test suites comprise functional-, regression-
, performance- and meta test cases for the veri�cation and validation of
the inference implementations, semantics and meta programs of the Con-
tractLog KR. The implementation of the RBSLM approach in a business
environment has been shown with proof-of-concept scenarios, open-source
projects and contributions to standardization initiatives. The quality and
e�cacy of the approach has been evaluated analytically, experimentally
by simulations and by functional testing by means of test cases. The de-
veloped test logic also provides means for declarative coverage testing and
the semantics allows analysis of the derivation trees.

• The RBSLA approach integrates and interoperates with standard enter-
prise application architectures and distributed web architectures

In summary, the essential advantages of my approach are:

• Contract rules are separated from the service management application.
This allows easier maintenance and management and facilitates contract
arrangements which are adaptable to meet changes to service require-
ments dynamically with the indispensable minimum of service execution
disruption at runtime, even possibly permitting coexistence of di�erenti-
ated contract variants in a distributed environment.

• Rules can be automatically linked (=rule chaining), bundled to modules
and executed by rule engines in order to enforce complex business policies
and individual contractual agreements.

• Declarative semantics provide highly reliable, traceable and veri�able re-
sults, enable shared understanding and interoperability of rules. The rules
are easily modi�able, exchangeable and executable between partners al-
lowing de�nition of rule sets on di�erent levels such as general laws, com-
pliance rules, business rules, event processing rules, normative rules.

• External domain vocabularies can be integrated into rule descriptions pro-
viding rich and extensible syntax to the declarative programming power
of the RBSLA language

• Test-driven validation and veri�cation methods can be applied to deter-
mine the correctness and completeness of contract speci�cations. Large
rule sets can be automatically checked for consistency. Additionally, ex-
planatory reasoning chains provide means for debugging and explanation.

• Contract norms (i.e. rights and obligations can be tracked and enforced
on a state-oriented event/action logic and contract/norm violations and
exceptions can be (proactively) detected and treated via automated mon-
itoring processes in reactive rules.

• Existing tools and applications, secondary data storages and (business)
object implementations might be (re)used by an intelligent combination

256

8 Conclusion

of declarative logic based and procedural imperative programming, e.g.,
reusing EJBs, system and management tools or data warehouses.

Apart from this speci�c contribution to SLA representation and management,
I have made several contributions to the used KR formalisms and LP techniques
and described several solutions and extensions to problems. As a result, the
ContractLog KR also quali�es as an useful tool in other rule-based application
domains, in particular in the area of the Semantic Web.

8.2 Practical Implications and Future Work

The research described in this dissertation was stimulated by the need to design
and implement an industrially usable system which ful�ls the various real-world
requirements of the SLA domain, e.g.,: a �exible and extensible architectural de-
sign and implementation, needs of human users and machines, needs of speci�c
SLM applications and interaction with other components. In this dissertation I
have restricted myself mainly to the technical design and implementation of the
KR formalisms and the inference and KB operations on the platform-speci�c
execution level and the development of the RBSLA language and RBSLM pro-
totype on the platform-independent level. I have done signi�cant work relating
to software system development, to move such a large KR design artifact, as the
ContractLog KR, into real use.

Even if the setting is not a commercial one, as soon as a system is put to
use in practical real-world settings and released to open source communities
and standardization initiatives, a di�erence in the worlds between specialized
and small examples and theoretical considerations in research papers and the
details of practical and sizable rule-based application systems becomes evident.
Although a formal speci�cation including algorithmic speci�cation and com-
putational asymptotic worst-case analysis of the inferences of a KR system is
important to precisely clarify the consequences and the properties of the logical
formalisms, it is only one part of the work. Because of the complexities and hid-
den details of real-world problems the presence of a theoretical formal account
is no guarantee for the adequacy in a practical system. For instance, a formal
semantics published in a theoretical KR paper may have all the properties one
may desire, be formally tractable and yet not provide the intended answers. Or
it may be too di�cult to e�ciently implement the inference algorithms or use
them in a practical system. Even if a theoretical formalism at the �rst glance
appears to meet the needs, it might not be useful in the interplay with other
formalisms or might not provide means to extend it, e.g., in order to overcome
�aws and gaps which are subtly hidden in the original logic and become only
apparent in the practical use.

My experience gained with implementing and using all the logical formalisms
and inference algorithms of the ContractLog KR in the context of a real-world
application was that practical implementation and real use is a vital comple-
ment to the often too idealistic and delimitated theoretical work on KR theory.

257

8 Conclusion

The practical e�ort can substantially clarify the impact of a logical formalism
in real-world settings and can help to detect problems in the formal speci�ca-
tion. The resulting concrete implementation clearly reveals its true value for the
application domain, it is clearer and more elegant, substantial parts of it have
been validated by use and the results are not only theoretically interesting, but
are important since they arose out of a real problem. Moreover, the feedback
from practice to theory, in particular in the combination of logical formalisms,
can lead to new perspectives, new lines of research and new cognitions on the
expressiveness of language constructs, the formal semantics and the complexity
of inference algorithms. Many of the contributions of the ContractLog KR to
the core logical formalisms as described in chapter 4 arose from this fruitful
interplay.

However, designing and implementing a formal KR system practically right is
an extremely di�cult task which is not just a small matter of programming. Sig-
ni�cant research is still necessary even after the basic theory is in place and many
compromises wrt trade-o�s and changes of the original logics are needed, e.g.,
in adopting practical language constructs without a standard formal semantics
(but with a non-standard one). While there is a risk that these concessions to
procedural implementation, which allows externalizing tasks to highly optimized
built-ins, query languages or object-oriented code, might destroy the bene�ts of
the formal semantics of the overall KR, it turned out to be a crucial means
to get around limitations in the logical formalisms which otherwise need to be
extended to the expressive power of full �rst-order logic or even second-order
logic and hence would no longer be computationally e�cient for the applica-
tion domain. The reality of a rule-based SLM system which certainly never
runs in isolation, but interacts with various external components demands for
functionalities such as e�cient object-oriented and relational SQL-style retrieval
methods that are common in modern information systems.

In fact, in my opinion the hybrid representation approach in ContractLog
which exploits declarative rule-based programming in combination with object-
oriented procedural programming and support for advanced ontological con-
structs achieves a much more intuitive and reasonable formal semantics for the
core parts of the KR than approaches which strictly follow classical �rst-order
logic and ignore non-classical inference features and practical rule concepts. For
instance, typical objects used in computer science are usually composite struc-
tures involving several di�erent structures whose elements have a hierarchical
inner composition, as opposed to model-theoretic �rst order structures whose
elements have no further composition and are treated uniformly on the basis
of truth valuation. By assuming not just a single universe of discourse, but
multi-sorted domains in a single structure and by isomorphically abstracting
from the inner composition of the elements of the universe, it becomes pos-
sible to treat complex objects such as Java objects or ontological individuals
as constants in the combined signature of the language(s). As a result, it be-
comes possible to provide a model-theoretic logical account for transactional KB
updates actions, active event-based reactions or external functions (side-e�ects
are neglected). The resulting KR accommodates various formalisms based on

258

8 Conclusion

non-standard logics with forms of, e.g., temporal, defeasible and event based
reasoning, and combines them with speci�c features for, e.g., constructing open
and closed views and managing and updating the KB in terms of modules in-
cluding imports of external LP scripts and transactional updates which might
be rolled back.

My substantial system development e�ort made it clear that usability and
e�cacy of the proposed approach not only depends on the expressiveness, formal
account and theoretical clarity of the used logical formalisms, but also strongly
depends on how simply the new KR artifact can be integrated into an existing
environment, how e�ciently it can interact with external components and react
to changes in the external environment, how easy it is for the user to learn, apply
and understand it and how much support for safely engineering and maintaining
a rule base are given. I have addressed this issues on various levels:

(1) At the platform-speci�c level comprehension and usability of the Con-
tractLog/Prova execution syntax is ensured by the high recognition level due
to its close relations to the well-known ISO Prolog standard, the homogeneous
representation of di�erent rule types based on a combined syntax and the pre-
scriptive typing approach which allows the natural quali�cations of order-sorted
distributed KBs and ontological conceptualizations by their URIs and external
Java class, object and method/�eld representations by their class path names.
The rich library of built-in and meta functions provided by Prova and Contract-
Log, e.g., to process mathematical aggregations, process lists or data structures
such as date/time values, query relational databases by SQL, process XML data
sources or to communicate between distributed knowledge system in multi-agent
settings via communication protocols such as Jade or JMS simpli�es the inte-
gration, management and maintenance of the rule-based systems in distributed
Web-based environments. In particular, it becomes straightforward to com-
bine the rule-based approach with existing web service technologies such as
XML-based SOAP communication or WSDL service descriptions by calling the
respective Java APIs such as Apache Axis during rule execution (e.g., in reac-
tive rules). Moreover, Prova makes it easy to handle errors produced during
the generation and reasoning with complex Java objects by providing reason-
able built-ins exploiting Java's error-reporting and error-handling capabilities.
Although I have done a lot of work to implement useful libraries and func-
tionalities in ContractLog e.g., for processing lists, date/time/interval values or
mathematical computations and aggregations, due to the reason of space I could
not address them explicitly in this dissertation. Moreover, many of these de-
velopment and operational execution features are relatively low-level and relate
to implementation details, which are not necessarily interesting from a research
perspective, although these speci�c features might be absolutely vital for the
acceptance and usability of the approach in practice.

(2) At the platform-independent level I have developed the RBSLA language,
which addresses serialization into XML and rule interchange and management
in distributed web-based environments. In contrast to other SLA markup or
Semantic Web Services proposals, my central goal for RBSLA was to produce a

259

8 Conclusion

compact declarative rule-based programming language with an extensible and
open design. Minimality, orthogonality and symmetry of the language con-
structs and a modular layered architecture were the primary design principles.
This small and minimal design of the RBSLA core has an important advantage
in practical settings, such as maintainability, portability and comprehensibility.
On the other hand, the rich programming capabilities of the rule-based approach
allows to declaratively implement arbitrary functionalities and the open design
of RBSLA allows the integration of external ontological Semantic Web domain
models. As a result, the core RBSLA language stays clear and compact, while
arbitrary syntactical expressiveness is provided by external domain vocabularies
which can be developed and maintained in separation. Moreover, the serializa-
tion in XML and the ability to reference external sources by their URIs makes
it easy to combine the rule based SLA speci�cation with typical web service
descriptions in WSDL.

(3) Finally, on the problem domain and user interface level the RBSLM tool
serves as development and runtime environment which provides visual rendering
and GUI based management and visual performance and execution monitoring
by means of adaptable service dashboard views. My intention was to support
di�erent roles which are involved during the life cycle of SLAs and policies
such as domain experts and rule engineers which design and provide prede�ned
rule templates, interface functions, test suites or domain conceptualizations in
a repository and business practitioners and quality managers which reuse the
prede�ned templates and models to build their SLA speci�cations and maintain
and monitor the contracts during runtime by graphical dashboard views which
can be adapted to the speci�c needs of the user, e.g., the customer or the system
administrator. From a pragmatic, practical point of view this user-oriented tool
support is very important to improve usability and it is clear that users will
not adopt and stick to the rule-based approach if the abstraction of the user
interface from the logical formalisms and the programming interfaces is not
understandable and easy to use for the di�erent (end) users.

In sum, when designing a KR artifact paying only attention to theoretical
issues such as computational complexity, decidability or compactness is no guar-
antor for the success and adequacy of the approach and practical factors rang-
ing from implementation tradeo�s and system engineering features like testing,
modular management and maintenance or interchangeability and interoperabil-
ity to concern of di�erent users including learnability and e�ciently usability
of the KR language(s) can not be ignored. In my work I have considered and
contributed to both sides.

In this dissertation I have mainly concentrated on the monitoring and en-
forcement phase of service contracts, since obviously this phase has the most
elaborated requirements on the knowledge representation, whereas other phases
such as the discovery or analysis phase only need smaller subsets of the full
expressive power. Future work in the RBSLA project might consider other
phases. SLA o�erings speci�ed in RBSLA in addition to the technical WSDL
description of a web service need no extra language constructs and the formal

260

8 Conclusion

semantics provided by the ContractLog KR and the description logic/Semantic
Web domain vocabularies quali�es my approach directly as a highly expressive
Semantic Web Service and policy language.

Another dimension of future work is the further integration of the rule-based
SLA/SLM component into ITSM frameworks. Basically an integration is pos-
sible on three di�erent levels: operationally, tactically and strategically. As
discussed the technical interfaces to communicate and integrate external func-
tionalities as well as to derive and query results from the rule system or actively
trigger reactions in external systems exists and are already demonstrated and
used in the use cases and examples provided in the RBSLA project. This forms
the technical basis to close the loop between the di�erent components of a service
level management solution, which includes e.g.,

• complete SLA life cycle management: all elements in the life cycle from
de�nition, con�guration, enforcement and assessment are connected, inte-
grated and working together.

• coordinated approach: all involved management tools work together in a
coordinated manner.

• integration: �exibility and scalability to continually grow and adapt to
changes in the dynamic service-delivery and business policies

• decision on di�erent levels: individual infrastructure elements are linked
to the business perspective enabling e.g., business impact analysis or ag-
gregated balanced score cards.

8.3 Closing Remarks

In this dissertation I tackled the manifold challenges in IT SLM and SLA man-
agement which are posed by the highly complex, dynamic, scalable and open
enterprise service architectures and environments such as the Semantic Web.
The essence of my work is on the practical combination and on the interplay
of successful methodologies, techniques and technologies from di�erent �elds. I
have formalized, implemented and evaluated the proposed concepts within open-
source projects (e.g. Prova, Mandarax, RBSLA), research collaborations (e.g.
Rewerse R2ML) and industrial use case studies. Multiple contributions from my
RBSLA project have been made to the standardization initiatives RuleML, the
new W3C Rule Interchange Format and Reaction RuleML which I co-chair. Be-
side the further standardization of Reaction RuleML with ContractLog/Prova
as a reference implementation, further investigations will address the combina-
tion of RBSLA/RBSLM with the macro-level of IT service management, Busi-
ness Activity Management and Business Process Management. Here, the devel-
oped enterprise integration patterns for complex event processing and rule-based
work�ows in the RBSLM prototype serve as a technical foundation.

261

262

A Glossary

A Glossary

AA agent architecture
ACL agent communication language
ACTL action computation tree logic
AI arti�cial intelligence
ASP application service providing
ASS answer set semantics
AST abstract syntax tree
BAM business activity management
BPM business performance management
BPEL business process execution language
BSI british standards institutes
CBE common base event
CEP complex event processing
CTDO contrary to duty obligations
CLP constraint logic programming
CM contract manager
COMP completion semantics
DC Dublin Core
DCA domain closure assumption
DefL defeasible logic
DL description logic
DLP description logic programs
DNL deontic logic
EAI enterprize application integration
EC event calculus
ECA event condition action
EDA event-driven architecture
EDB extensional database
EIS event instance sequence
ELP extended LP
ESB enterprise service bus
FOL �rst-order logic
GCLP generalized courteous logic programs
GUI graphical user interface
HIS heterogenous information systems
IC integrity constraint
IDB intensional database
ILP inductive logic programming
IT information technology
ITIL information technology infrastructure library
ITIM IT infrastructure management
ITSM IT service management
JMS java messaging service
KB knowledge base
KBS knowledge base system
KR knowledge representation

263

A Glossary

LFP least �x point
LP logic program
LLP labelled logic program
LTL labelled transition logic
LUCID Logical User-Centered Interactive Design
MAS multi-agent system
MGU most general uni�er
MVC model view controller
MVI maximum validity interval
NAF negation as failure
OASIS organization for the advancement of structured infor-

mation standards
OCL object constraint language
OID object identi�er
OLA operation level agreement
OLP ordered logic program
OO object oriented
OWA open world assumption
OWL web ontology language
PIM platform independent model
PLP prioritized logic program
PSM platform speci�c model
QoS quality of service
RBSLA rule based service level agreement
RBSLM rule based service level management
RDF resource description framework
RDFS RDF schema
RIF rule interchange format
RTE real-time enterprise
RuleML rule markup language
SDL standard deontic logic
SE software engineering
SEM semantics
SLA service level agreement
SLE linear resolution with selection function for extended

WFS
SLI service level indicators
SLM service level management
SLO service level objectives (SLOs)
SMI structure of management information
SCA service component architecture
SD service dashboard
SEDA staged event driven architecture
SOA service-oriented architecture
SOAP simple object access protocol
SOC service oriented computing (SOC)
STABLE stable model semantics
SWS semantic web services (SWS)
TAL temporal action logic

264

A Glossary

TC test case
TR transaction logics
TS test suite
UC underpinning contract
UI user interface
UNA unique name assumption
USDL universal service-semantics description language
V&V validation and veri�cation
V&V&I validation, veri�cation and integrity testing
WFS well-founded semantics
WFSX WFS for extended LPs
WSDL web service description language
XP extreme programming

265

266

B Variables and Functions

B Variables and Functions

A atom
Ac action
arity arity function
As assertion

As set of assertions
B body of rule
BP Herbrand base

B(P) extended Herbrand base
c constant
c �nite or in�nite sequence of constant symbols
C constraint

C set of constraints or scope
cl clause
Cl closure
coh coherence operator
Co condition
D domain description
DEC domain description
E expression
Eq set of equations
Ex extension

E �nite set of expressions
Ev event

Ev set of events
f function
f∼= isomorphic function
F formula

F �nite sequence of function symbols
Fa fact

Fa set of facts
Fl �uent

Fl set of �uents
G goal
ground(P) Herbrand instantiation / grounding
H head of rule
I Interpretation
IHerb Herbrand Interpretation
IC integrity constraint

IC set of integrity constraints
KB knowledge base
KBi knowledge base state

KB combined knowledge base
l label
L literal

267

B Variables and Functions

Lt tagged literal
Lb body literal
Lh head literal
lfp least �x point
lgg least general generalization
m meta data annotation label
M (classical) model

M set of all (classical) models
MHerb Herbrand model
MStable Stable model

M
Herb(P) set of all Herbrand models of a program P

MHerb
P minimal/least Herbrand model
|M | domain or universe of an interpretation
N deontic norm
O obligation
p predicate symbole

P �nite sequence of predicate symbols
P logic program
P part partial program / module
PM Gelfond-Lifschitz transformation / reduct
Po post condition
Q query
r rule

R set of rules

Rs set of strict rules

Rd set of defeasible rules

Rsd set of defeasible and strict rules
S signature

S combined signature
SR set of sort restrictions
t term
t �nite sequence of terms
T sort / type

T �nite sequence of sorts / types respectively type alphabet
TC test case
Te test

Te set of tests
Ti time point

Ti set of time points
TS type system
Uoid update
Uposoid positive update
Unegoid negative update
UP Herbrand universe

U(P) combined universe
W ∗P well-founded (partial) model

268

B Variables and Functions

X variable

X �nite set of variables
θ substitution
SEM semantics
σ variable/term assignment
Σ alphabet/language
ΣDL DL language
ΣEC EC language
Φ knowledge base or theory
Ψ DL knowledge base
π execution path

269

C Rule Benchmarks

Scalable Derivation Rules Benchmark Tests (adapted from [ABMR00])

Rule Chaining (chains): In chains(n,p,v) p ∗ a0(x1, .., xv) facts are at the end
of a chain of n rules ai(X1, .., Xv) : −ai−1(X1, .., Xv) with v variables in each
atom, where p > 0, v >= 0 and n > 0. A query an(X1, .., Xv)? will use all n
rules and all p facts. If v = 0 the test is propositional, i.e. it has no variables, if
v > 0, i.e. it has v variables, the test is a (function-free) datalog program. Fur-
ther variants with functions and negations (default / explicit) might be de�ned.

chains(n, p, v) =


an(X1, .., Xv) : −an−1(X1, .., Xv)

...
a1(X1, .., Xv) : −a1(X1, .., Xv)

a0(x1, .., xv)....a0(x1, .., xv).%facts

Loop (loop): loop(n,p,v) consists of n rules a(i+1)modn(X1, .., Xv) : −ai(X1, .., Xv).
with v variables and p facts.

loop(n, p, v) =



an(X1, .., Xv) : −an−1(X1, .., Xv)
...

a1(X1, .., Xv) : −a0(X1, .., Xv)

a0(x1, .., xv) : −an(X1, .., Xv).%loop

a0(x1, .., xv).%facts

Recursion (dag): In Directed Acyclic Graph dag(n,k,v) a0(X1, .., Xv) with v vari-
ables Xv is at the root of a k-branching graph of rules of depth n in which every
literal occurs k times and has k facts at the ground. A query a0(X1, .., Xv)? will
(recursively) use every rule and all facts.

dag(n, k, v) =


a0(X1, .., Xv) : −a1(X1, .., Xv), a2(X1, .., Xv), ..., ak(X1, .., Xv).
a1(X1, .., Xv) : −a2(X1, .., Xv), a3(X1, .., Xv), ..., ak+1(X1, .., Xv).

...
ank(X1, .., Xv) : −ank+1(X1, .., Xv), ank+2(X1, .., Xv), ..., ank+k(X1, .., Xv).

ank+1(x1, .., xv).ank+2(x1, .., xv)....ank+k(x1, .., xv).

Tree (tree): In tree(n,k,v) a0(X1, .., Xv) is at the root of a k-branching tree of
depth n in which every literal occurs once and which has v variables. tree(n, k, v) =
rule(a0, n, k, v) where v >= 0 is the number of variables, a0 is the start literal,
n > 0 and k > 0 and a1, a2, ..., ak are new unique literals in each step n−1 until
n = 0. A query a0(X1, .., Xv)? will use every rule and all facts.

270

C Rule Benchmarks

rules(a, n, k, v) =


a(X1, .., Xv) : −a1(X1, .., Xv), a2(X1, .., Xv), .., ak(X1, .., Xv).

rules(a1, n− 1, k, v)
rules(a2, n− 1, k, v)

...
rules(ak, n− 1, k, v)

and : rules(a, 0, k) = a(X1, .., Xv).%facts

Table C.1: Size of Derivation Rules Benchmarks)

Theory Facts Rules Size (Literals)
chains(n,p,v)

strict p n 2n+ p
defeasible p+ 2n 3n 11n+ p
loop(n,p,v)

strict p n+ 1 2(n+ 1) + p
defeasible p+ 2(n+ 1) 3(n+ 1) 11(n+ 1) + p
dag(n,k,v)

strict k nk + 1 nk2 + nk + k
defeasible k + 2n 3n+ 3 3nk2 + 8nk + k
tree(n,k,v)

strict kn
∑n−1

i=0 (k + 1)
∑n−1

i=0 +kn

defeasible kn 3
∑n−1

i=0 (3k + 8)
∑n−1

i=0 +kn

Scalable Event Calculus Tests

HoldsAt: echoldsAt(n) there is a pair of initates/terminates rules initiating /
terminating a property (�uent) f by means of n alternating events e1, e2 (hap-
pens facts). A query holdsAt(f, tn)? will use the two EC rules and all happens
facts.

echoldsAt(n) = holdsAt(f, tn) =


initiates(e1, f, T).
terminates(e2, f, T).
happens(e1, t0).

...
happens(e2, tn).

ValueAt: ecvalueAt(n) there is a pair of initates/terminates rules initiating / ter-
minating a property (�uent) f by means of n alternating events e1, e2 (happens
facts). The event e1 starts a parameter p which computes the validity interval
(trajectory counter) of the �uent f until e2 occurs. A query valueAt(f, tn)? will
use the two EC rules, all happens facts and the trajectory to compute the validity
interval p of the �uent f .

echoldsAt(n) = holdsAt(f, tn) =



trajectory(f, T1, p, T2, (T2 − T1)).
initiates(e1, f, T).
terminates(e2, f, T).
happens(e1, t0).

...
happens(e2, tn).

Scalable ECA Tests

271

C Rule Benchmarks

Plain ECA: ecaplain(n) consists of n ECA rules eca(_,_,_,_,_,), where the
ECA parts have no functionality, i.e. are empty and always true, which leads
to a full execution of the ECA rule. The rules are processed sequentially by the
ECA processor. A variant eca∗plain(n) uses multi-threading and processes the
rules in parallel. The ECA daemon �rst queries the KB for new ECA rules via
a query eca(T,E,C,A, P,El)? and populates the active KB with them. Then it
evaluates the ECA rule one after another. Accordingly, update time for querying
the KB and collecting new/updated ECA rules and processing time for executing
all ECA rules must be distinguished.

ecaplain(n) =


eca1 : eca(_,_,_,_,_,_).
eca2 : eca(_,_,_,_,_,_).

...
ecan : eca(_,_,_,_,_,_).

LP ECA: ecaLP (n, v) consists of n ECA rules (TECAP rules) eca(t(X1, .., Xv)
,e(X1, .., Xv), c(X1, .., Xv), a(X1, .., Xv), p(X1, .., Xv)), where the ECA parts
are complex terms with v variables. Each part is evaluated with a query on a LP
fact t(x1, .., xv)., e(x1, .., xv), ..., p(x1, .., xv). The test distinguishes update time
and processing time. A variant eca∗LP (n, v) uses multi-threading and processes
the rules in parallel.

ecaLP (n, v) =

{
eca1 : eca(t(X1, .., Xv), e(X1, .., Xv), c(X1, .., Xv), a(X1, .., Xv), p(X1, .., Xv)).
ecan : eca(t(X1, .., Xv), e(X1, .., Xv), c(X1, .., Xv), a(X1, .., Xv), p(X1, .., Xv)).

t(x1, .., xv). e(x1, .., xv). c(x1, .., xv). a(x1, .., xv). p(x1, .., xv).

Procedural ECA: ecaProcedural(n) consists of n ECA rules

eca(

rbsla.utils.Test.test(),

rbsla.utils.Test.test(),

rbsla.utils.Test.test(),

rbsla.utils.Test.test(),

rbsla.utils.Test.test(),

rbsla.utils.Test.test())

where each ECA part is a procedural attachment on a boolean valued test
of the class rbsla.utils.Test which returns true, i.e. the complete ECA rule is
executed. The test distinguishes update time and processing time. A variant
eca∗Procedural(n, v) uses multi-threading and processes the rules in parallel.

Table C.2: Size of Event Calculus Benchmarks)

Theory Facts Rules Size (Literals)
echoldsAt(n) n+ 2 0 n+ 2
ecvalueAt(n) n+ 3 0 n+ 3

272

C Rule Benchmarks

CA Rules Benchmark Programs

Table C.3: Size of ECA Benchmarks)

Theory Facts Rules Size (Literals)
ecaplain(n) n 0 n
ecaLP (n, v) n+ 5 0 n+ 5

ecaProcedural(n) n 0 n

Table C.4: Benchmark Test Suite)

Name Description Size (Rules)
Manners Finds a seating arrangement for dinner guests 8
Waltz Waltz line labelling for simple scenes 33
ARP Route planner for a robotic air vehicle 118

273

D Appendix RuleML

274

D Appendix RuleML

Figure D.1: RuleML Family

275

E Appendix Categorization of SLA
Metrics

Figure E.1: Hardware Performance Metrics

276

E Appendix Categorization of SLA Metrics

Figure E.2: Software Performance Metrics

Figure E.3: Network Performance Metrics

Figure E.4: Storage Performance Metrics

277

E Appendix Categorization of SLA Metrics

Figure E.5: Help Desk Performance Metrics

Figure E.6: Categorization according to ITIL Process Metrics

Figure E.7: Categorization according to Measurability

278

E Appendix Categorization of SLA Metrics

Figure E.8: Three-dimensional categorization scheme for SLA metrics

279

F RBSLM Usability Testing
Questionnaire

RBSLM Usability Testing Questionnaire

I. Personal Information (Optional) Name:

Sex: Female Male

Age:

II. Related Experience

no experience extensive use

SLA / SLM 1 2 3 4 5 6 7

XML 1 2 3 4 5 6 7

Rule Languages and/or Rule Engines 1 2 3 4 5 6 7

RuleML 1 2 3 4 5 6 7

III. Overall Reactions:

terrible wonderful

1 2 3 4 5 6 7

frustrating satisfying

1 2 3 4 5 6 7

dull stimulating

1 2 3 4 5 6 7

difficult easy

1 2 3 4 5 6 7

280

F RBSLM Usability Testing Questionnaire

inadequate power adequate power

1 2 3 4 5 6 7

rigid flexible

1 2 3 4 5 6 7

IV. View

1.) Characters on the computer screen

hard to read easy to read

1 2 3 4 5 ; 6 7

1.1) Image of the characters

fuzzy sharp

1 2 3 4 5 ; 6 7

1.2) Character font

barely legible very legible

1 2 3 4 5 ; 6 7

2.)Flexible/Adaptable views were helpful

never always

1 2 3 4 5 ; 6 7

2.1) Amount of information displayed on screen

inadequate adequate

1 2 3 4 5 ; 6 7

2.2) Arrangement of information that can be displayed

illogical logical

1 2 3 4 5 ; 6 7

2.3) Size of Input and output text areas.

too small large enough

1 2 3 4 5 ; 6 7

3.) Menus and Wizards where easy to use and understand

difficult easy

281

F RBSLM Usability Testing Questionnaire

1 2 3 4 5 ; 6 7

V. Learning

1.) Learning to operate the system

difficult easy

1 2 3 4 5 ; 6 7

2.) Exploration of features by trial and error

discouraging encouraging

1 2 3 4 5 ; 6 7

2.1) Exploration of features

risky safe

1 2 3 4 5 ; 6 7

2.2) Discovering new features

difficult easy

1 2 3 4 5 ; 6 7

3.) Tasks can be performed in a straightforward manner

never always

1 2 3 4 5 ; 6 7

3.1) Number of steps per task

too many just right

1 2 3 4 5 ; 6 7

3.2) Steps to complete a task follow a logical sequence

never always

1 2 3 4 5 ; 6 7

3.3) Needed sequence of steps for completion

unclear clear

1 2 3 4 5 ; 6 7

VI. Capabilities

282

F RBSLM Usability Testing Questionnaire

1.) Tool performance

too slow too fast

1 2 3 4 5 ; 6 7

1.1) Response time for most operations

too slow fast enough

1 2 3 4 5 ; 6 7

1.2) Answers / results are displayed

too slow fast enough

1 2 3 4 5 ; 6 7

2.) The Tool is reliable

never always

1 2 3 4 5 ; 6 7

2.1) Systems failures occur

frequently seldom

1 2 3 4 5 ; 6 7

2.2) System warns you about potential problems

never always

1 2 3 4 5 ; 6 7

3.) Correcting your mistakes

difficult easy

1 2 3 4 5 ; 6 7

3.1) Correcting errors

complex simple

1 2 3 4 5 ; 6 7

3.2) Ability to undo operations

inadequate adequate

1 2 3 4 5 ; 6 7

4.) Ease of operation depends on your level of experience

283

F RBSLM Usability Testing Questionnaire

never always

1 2 3 4 5 ; 6 7

4.1) You can accomplish tasks knowing very little

with difficulty easily

1 2 3 4 5 ; 6 7

4.2) You can use features

with difficulty easily

1 2 3 4 5 ; 6 7

VII. Features

1.) Project Management Features

hard to use easy to use

1 2 3 4 5 ; 6 7

hard to understand easy to understand

1 2 3 4 5 ; 6 7

2.) Contract Manager Query Tab

hard to use easy to use

1 2 3 4 5 ; 6 7

hard to understand easy to understand

1 2 3 4 5 ; 6 7

3.) Contract Manager Test Suite Tab

hard to use easy to use

1 2 3 4 5 ; 6 7

hard to understand easy to understand

1 2 3 4 5 ; 6 7

4.) Knowledge Base Explorer

hard to use easy to use

1 2 3 4 5 ; 6 7

hard to understand easy to understand

284

F RBSLM Usability Testing Questionnaire

1 2 3 4 5 ; 6 7

5.) View Creator

hard to use easy to use

1 2 3 4 5 ; 6 7

hard to understand easy to understand

1 2 3 4 5 ; 6 7

6.)Integrity Test and Defeasible Converter

hard to use easy to use

1 2 3 4 5 ; 6 7

hard to understand easy to understand

1 2 3 4 5 ; 6 7

VIII. Other comments

285

G Bibliography

[AADW05] A. Analyti, G. Antoniou, C. Damasio, and G. Wagner. Stable
model theory for extended rdf ontologies. In Proceedings of Int.
Semantic Web Conf., 2005.

[AB94] K. Apt and H. Blair. Logic programming and negation: A survey.
J. of Logic Programming, 19(20):9�71, 1994.

[AB01] A. S. Abrahams and J. M. Bacon. Representing and enforc-
ing e-commerce contracts using occurrences. In 4th International
Conference on Electronic Commerce Research (ICECR4), Dallas
Texas, 2001.

[ABGM00] G. Antoniou, D. Billington, G. Governatori, and M. J. Maher. A
�exible framework for defeasible logic. In AAAI-2000, Menlo Park,
CA, 2000. MIT Press.

[ABGM01] G. Antoniou, D. Billington, G. Governatori, and M.J. Maher. Rep-
resentation results for defeasible logic. ACM Transactions on Com-
putational Logic, 2:255�287, 2001.

[ABLP02] J.J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving
logic programs. In JELIA'02, 2002.

[ABM+02] S. Abiteboul, O. Benjelloun, I. Manolsecu, T. Milo, and R. Weber.
Active xml: Peer-to-peer data and web services integration. In
VLDB, 2002.

[ABMR00] G. Antoniou, D. Billington, M.J. Maher, and A. Rock. E�cient
defeasible reasoning systems. In Australian Workshop on Compu-
tational Logic, 2000.

[ABW88] K. Apt, H. Blair, and A. Walker. Towards a theory of declara-
tive knowledge. In J. Minker, editor, Foundations of Deductive
Databases, pages 89�148. Morgan Kaufmann, 1988.

[ACD+05] A. Andrieux, C. Czajkowski, A. Dan, K. Keahey, H. Ludwig,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Webservices agree-
ment speci�cation (ws-agreement), http://www.gridforum.org/,
accessed nov. 2005, 2005.

[ADP94] J. Alferes, C. Damasio, and L. M. Pereira. Slx: a top-down
derivation procedure for programs with explicit negation. In
M. Bruynooghe, editor, International Logic Programming Symp,
pages 424�439, 1994.

286

G Bibliography

[ADP95] J. J. Alferes, C. Damasio, and L. M. Pereira. A logic programming
system for non-monotonic reasoning. J. of Automated Reasoning,
14(1):93�147, 1995.

[AE82] K. Apt and M. H. Emden. Contributions to the theory of logic
programming. J. of ACM, 29(3):841�862, 1982.

[AE93] K. Apt and S. Etalle. On the uni�cation free prolog programs. In
Mathematical Foundations of Computer Science, pages 1�19. 1993.

[AH93] A. Abecker and P. Hanschke. Taxlog: A �exible architecture for
logic programming with structured types and constraints. In Con-
straint Processing: Proceedings of the International Workshop at
CSAM'93, St. Petersburg, 1993.

[AHPV98] G. Antoniou, F.v. Harmelen, R. Plant, and J. Vanthienen. Veri�-
cation and validation of knowledge-based systems - report on two
1997 events. AI Magazine, 19(3):123�126, 1998.

[AJ98] G. Antoniou and O. Jack. Testing production system programs.
In Proceedings of the Ninth International Symposium on Software
Reliability Engineering, 1998.

[AKP91] H. Ait-Kaci and A. Podelski. Towards the meaning of life. In Int.
Symposium on Programming Language Implementation and Logic
Programming, pages 255�274. Springer, 1991.

[Alf93] J. Alferes. Semantics of Logic Programs with Explict Negation.
PhD Thesis. Univ. Nova de Lisboa, 1993.

[AM02] G. Antoniou and M.J. Maher. Embedding defeasible logic into
logic programs. In ICLP 2002, 2002.

[AMB00] G. Antoniou, M. J. Maher, and D. Billington. Defeasible logic
versus logic programming without negation as failure. Journal of
Logic Programming, 41(1):45�57, 2000.

[Ant97] G. Antoniou. Veri�cation and correctness issues for nonmono-
tonic knowledge bases. International Journal of Intelligent Sys-
tems, 12(10):725�738, 1997.

[Ant02] G. Antoniou. Relating defeasible logic to extended logic programs.
In SETN '02: Proceedings of the Second Hellenic Conference on
AI, pages 54�64. Springer, 2002.

[AO04] A. Adi and E. Opher. Amit - the situation manager. VLDB
Journal, 13(2), 2004.

[Apt90] K. Apt. Logic programming. In J.v. Leeuwen, editor, Handbook
of Theoretical Computer Science, volume volume B, chapter 10,
pages 493�574. Elsevier Science, 1990.

[Aqu87] L. Aquivst. Introduction to Deontic Logic and Theory of Normative
Systems. Bibliopolis, Napoli, 1987.

287

G Bibliography

[AS96] J. Andrew and M. Sergot. A formal characterisation of institu-
tionalised power. Journal of the IGPL, 4(3):427�443, 1996.

[AV91] S. Abiteboul and V. Vianu. Datalog extensions for database
queries and updates. Journal of Computer and System Science,
43:62�124, 1991.

[AWH94] A. Aiken, J. Widom, and J.M. Hellerstein. Behaviour of database
production rules: termination, con�uence and observable deter-
minism. In Int. Conf. on Management of Data, pages 59�68. ACM,
1994.

[Bar88] H. P. Barendregt. Introduction to lambda calculus. In Proceedings
of Workshop on Implementation of Functional Languages, Goete-
borg, 1988. Programming Methodology Group.

[BB89] C. Beierle and S. Boettcher. Protos-l: Towards a knowledge base
programming language. IWBS Report 89, 1989.

[BBCC02] A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active xquery. In
Int. Conf. on Data Engineering (ICDE), pages 403�418, 2002.

[BCP01] A. Bonifati, S. Ceri, and S. Paraboschi. Pushing reactive services
to xml repositories using active rules. In WWW 2001, 2001.

[BCRS97] J. Baley, L. Crnogorac, K. Ramamoharanao, and H. Sondergaard.
Abstract interpretation of active rules and its use in termination
analysis. In Int. Conf. on Database Theory, pages 188�202, 1997.

[BCV03] R. Baldoni, M. Contenti, and A. Virgillito. The evolution of pub-
lish/subscribe communication systems. In Future Directions in
Distributed Computing, pages 137�141, 2003.

[BD93] R. Bol and L. Degerstedt. Tabulated resolution for well founded
semantics. In Intl. Logic Programming Symposium, 1993.

[BD97] S. Brass and J. Dix. Characterizations of the disjunctive well-
founded semantics: Con�uent calculi and iterated gcwa. Journal
of Automated Reasoning, 1997.

[BD98] S. Brass and J. Dix. Characterizations of the disjunctive well-
founded semantics. Journal of Logic Programming, 34(2):67�109,
1998.

[BDF+04] M. Bichler, N. Diernhofer, F. Fay, C. Koenig, A. MacWilliams,
A. Paschke, T. Setzer, and G. Voelk. Dynamic value webs for it-
services - it-service technologies and management,. Siemens sbs /
tum research study 10/2004, IBIS, Technical University Munich,
2004.

[BDS93] M. Buchheit, F.M. Donini, and A. Schaerf. Decidable reasoning in
terminological knowledge representation systems. J. of Arti�cial
Intelligence Research, pages 109�138, 1993.

288

G Bibliography

[BDZ01] S. Brass, J. Dix, and U. Zukowski. Transformation based bottom-
up computation of the well-founded model. Theory and Practice
of Logic Programming, 1(5):497�538, 2001.

[Beh95] H. Behrends. A description of event based activities in database re-
lated information systems, report 3/1995. Technical report, Univ.
of Oldenburg, 1995.

[Bel87] M. Belzer. Legal reasoning in 3-d. In 1st Int. Conf. on Arti�cial
Intelligence and Law, New York, 1987. ACM Press.

[Ben97] D. Bennet. Designing Hard Software: The Essential Tasks.
Prentice-Hall, 1997.

[BG94] C. Baral and M. Gelfond. Logic programming and knowledge rep-
resentation. J. of Logic Programming, 19, 20:73�148, 1994.

[BG04a] B. Bennett and A. P. Galton. A unifying semantics for time and
events. Arti�cial Intelligence, 153(1-2):13�48, 2004.

[BG04b] D. Brickley and R.V. Guha. Rdf vocabulary description lan-
guage 1.0: Rdf schema, http://www.w3.org/tr/rdf-schema/, ac-
cessed june 2005, 2004.

[BGL85] R.J. Brachman, P.V. Gilbert, and H.J. Levesque. An essential
hybrid reasoning system: Knowledge and symbol level accounts
for krypton. In Int. Conf. on Arti�cial Inelligence, 1985.

[BHS03] F. Baader, I. Horrocks, and U. Sattler. Description logics as on-
tology languages for the semantic web. lecture notes in arti�cial
intelligence. In Lecture Notes in Arti�cial Intelligence. Springer,
2003.

[Bil90] D. Billington. Logic is stable. J. of Experimental and Theoretical
Arti�cial Intelligence, 2(1990):151�177, 1990.

[Bil93] D. Billington. Defeasible logic is stable. Journal of Logic and
Computation, 3:370�400, 1993.

[Bin01] U. Binder. Ehevertrag fuer it dienstleistungen. Infoweek, 34(4),
2001.

[BK82] K.A. Bowen and R.A. Kowalski. Amalgamating language and
meta-language in logic programming. Journal of Logic program-
ming, pages 153�172, 1982.

[BK95] A.J. Bonner and M. Kifer. Transaction logic programming (or a
logic of declarative and procedural knowledge). Technical report
csri-323, University of Toronto, Nov. 1995 1995.

[BL90] N. Bidoit and P. Legay. Well!: An evaluation procedure for all
logic programs. In Int. Conf. on Database Theory, pages 335�348,
1990.

289

G Bibliography

[BL96] C. Baral and J. Lobo. Formal characterization of active databases.
In Int. Workshop on Logic in Databases, pages 175�195, 1996.

[BL99] T. Berners-Lee. Weaving the web, 1999.

[BL03] T. Berners-Lee. Www past and future.
http://www.w3.org/2003/talks/0922-rsoc-tbl/, accessed jan.
2005, 2003.

[BL05] T. Berners-Lee. Web for real people,
http://www.w3.org/2005/talks/0511-keynote-tbl, accessed
jan. 2006, 2005.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web.
Scienti�c American, 284(5):34�43, 2001.

[BLM90] C. Baral, J. Lobo, and J. Minker. Generalized well-founded se-
mantics for logic programs. In M. E. Stickel, editor, International
Conference on Automated Deduction. Springer, 1990.

[BLM92] C. Baral, J. Lobo, and J. Minker. Generalized disjunctive well-
founded semantics for logic programs. Annals of Math and Arti�-
cial Intelligence, 11(5):89�132, 1992.

[BLR96] F. Buccafurri, N. Leone, and P. Rullo. Stable models and their
computation for logic programming with inheritance and true
negation. The Journal of Logic Programming, 27(1):5�43, 1996.

[BLR97] F. Bouali, S. Loiseau, and M-C. Rousset. Veri�cation and revision
of rule bases. Proceedings EUROVAV 97 Katholieke Universiteit
Leuven, Leuven, Belgium, pages 253�264, 1997.

[Bol98] R. Bol. Tabulated resolution for the well-founded semantics. Jour-
nal of Logic Programming, 34(2):67�109, 1998.

[Bol03] H. Boley. Object-oriented ruleml: User-level roles, uri-grounded
clauses, and order-sorted terms. In International workshop on rules
and rule markup languages for the semantic web, Sanibel Island
FL, USA, 2003.

[BP05] F. Bry and P.L. Patranjan. Reactivity on the web: Paradigms
and applications of the language xchange. In ACM Symp. Applied
Computing, 2005.

[BPW02] J. Bailey, A. Poulovassilis, and P.T. Wood. An event-condition-
action language for xml. In WWW 2002, 2002.

[BR91] C. Beeri and R. Ramakrishnan. On the power of magic. The
Journal of Logic Programming, 10:255�299, 1991.

[Bra04] G. Bracha. Generics in the java programming language;
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf, accessed
jan. 2005, 2004.

290

G Bibliography

[Bre96] G. Brewka. Well-founded semantics for extended logic programs
with dynamic preferences. Journal of Arti�cial Intelligence Re-
search, 4:19�36, 1996.

[Bre01] G. Brewka. On the relationship between defeasible logic and well-
founded semantics. In Proc. LPNMR-2001, pages 121�132, 2001.

[BRM02] BRML. Ibm brml: Business rules markup language,
http://xml.coverpages.org/brml.html, accessed jan. 2004, 2002.

[Bry90a] F. Bry. Negation in logic programming: A formalization in con-
structive logic. In Information Systems and Arti�cial Intelligence:
Integration Aspects, volume LNCS Nr. 474, pages 30�46. Springer,
1990.

[Bry90b] F. Bry. Query evaluation in recursive databases: bottom-up and
top-down reconciled. Data and Knowlege Engineering, 5:289�312,
1990.

[BS91] C. Baral and V. S. Subrahmanian. Dualities between alternative
semantics for logic programming and non-monotonic reasoning. In
Int. Workshop of Logic Programming and Non-Monotonic Reason-
ing, pages 69�86. MIT Press, 1991.

[BS01] F. Baader and W. Snyder. Uni�cation theory. handbook of auto-
mated reasoning. pages 445�532. 2001.

[BSC98] P. Bhoj, S. Singal, and S. Chutani. Sla management in federate
environments. Technical Report HPL-98-203, HP Internet Systems
and Applications Laboratory, December 1998 1998.

[BSI02] BSI. IT Service Management, Part 1: Speci�cation for service
management. 2002.

[BT00] H. Boley and S. Tabet. Ruleml: The ruleml standardization ini-
tiative, http://www.ruleml.org/, 2000.

[BW94] E. Baralis and J. Widom. An algebraic approach to rule analysis
by means of triggering and activation graphs. In VLDB 94, pages
475�486, 1994.

[Byr80] L. Byrd. Understanding the control �ow of prolog programs. In
Proceedings of Workshop on Logic Programming, 1980.

[Car97] L. Cardelli. Type Systems. The Computer Science and Engineering
Handbook. CRC Press, 1997.

[Cas81] H. N. Castaneda. The paradoxes of deontic logic: the solution to
all of them in one fell swoop. In R. Hilpinen, editor, New Studies
in Deontic Logic, pages 37�85. Reidl, Dordrecht, 1981.

[CBC93] F.P. Coenen and T. Bench-Capon. Maintenance of Knowledge-
Based Systems: Theory, Techniques and Tools. Academic Press,
London, 1993.

291

G Bibliography

[CC96] C. Collet and T. Coupaye. Composite events in naos. In Proceed-
ings of Dexa'06, Zuerich, Switzerland, 1996.

[CCDA+05] A. Cortes-Calabuig, M. Denecker, O. Arieli, B. Van Nu�elen, and
M. Bruynooghe. On the local closed-world assumption of data-
sources. In LPNMR 2005, volume LNAI 3662, pages 145�157.
Springer, 2005.

[CCM96] I. Cervesato, L. Chittaro, and A. Montanari. A general modal
framework for the event calculus and its skeptical and credulous
variants. In ECAI'96, 1996.

[CCS90] C.L. Chang, J.B. Combs, and R.A. Stachowitz. A report on the ex-
pert systems validation associate (eva). Journal of Expert Systems
with Applications, 1(3):219�230, 1990.

[CDGL02] D. Calvanese, G. De Giacomo, and M. Lenzerini. Description logics
for information integration. In Computational Logic: Logic Pro-
gramming and Beyond - Essays in Honour of Robert A. Kowalski
(Part II), volume LNCS 2408. 2002.

[CGL98] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decid-
ability of query containment under constraints. In PODS'98, pages
149�158, 1998.

[CJ02] J. Carmo and A. J.I. Jones. Deontic logic and contrary to duties.
In Handbook of Philosophical Logic, volume 2nd Edition, volume
8, pages 265�343. Kluwer, 2002.

[CK91] J. Chen and S. Kundu. The strong semantics for logic programs. In
Proceedings of the 6th Int. Symp. on Methodologies for Intelligent
Systems, Charlotte, NC, 1991.

[CKAK94] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S. K. Kim.
Composite events for active databases: Semantics contexts and
detection. In VLDB 94, pages 606�617, 1994.

[Cla78] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker,
editors, Logic and Data-Bases, pages 293�322. New York, 1978.

[CLN98] D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for
conceptual data modelling. In J. Chomicki and G. Saake, edi-
tors, Logics for Databases and Information Systems, pages 229�
264. Kluwer Academic Press, 1998.

[CLN00] J. Chomicki, J. Lobo, and S. Naqvi. A logic programming ap-
proach to con�ict resolution in policy management. In Principles
of Knowledge Representation and Reasoning, San Francisco, 2000.
Morgan Kaufmann.

[CLTSBS03] Z. Chen, C. Liang-Tien, B. Silverajan, and L. Bu-Sung. Ux - an
architecture providing qos-aware and federated support for uddi.

292

G Bibliography

In Int. Conf. onf Web Services (ICWS'03), Las Vegas, Nevada,
USA, 2003.

[CNF98] G. Cugola, E. D. Nitto, and A. Fuggeta. Exploiting an event-
based infrastructure to develop complex distributed systems. In
Int. Conf. on Software Engineering, 1998.

[Cod71] E. Codd. Alpha: A data base sublanguage founded on the rela-
tional calculus of the database relational model. In ACM SIG-
FIDET Workshop on Data Description, Access and Control, San
Diego, CA., 1971.

[Cog05] Cognetics. The lucid framework,
http://www.cognetics.com/lucid/index.html, accessed oct.
2005. 2005.

[CS90] S. Craw and D. Sleeman. Automating the re�nement of kbs. Pro-
ceedings ECAI'90, 1990.

[CSM+04] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut. Quality
of service for work�ows and web service processes. Journal of Web
Semantics, 1:281�308, 2004.

[CSW95] W. Chen, T. Swift, and D.S. Warren. E�cient top-down compu-
tation of queries under the well-founded semantics. J. of Logic
Programming, 24(3):161�199, 1995.

[CW92] W. Chen and D.S. Warren. A goal-oriented approach to computing
well-founded semantics. In Intl. Conf. and Symposium on Logic
Programming, 1992.

[CW93] W. Chen and D.S. Warren. Query evaluation under the well-
founded semantics. Proceedings of Symp. on the Principles of
Database Systems, 1993.

[DAAW06] C. Damasio, A. Analyti, G. Antoniou, and G. Wagner. Supporting
open and closed world reasoning on the web. 2006.

[Das00] A. Daskalopulu. Modelling legal contracts as processes. In 11th Int.
Conf. and Work. on Databases and Expert Systems Applications,
2000.

[Dav03] D. Davison. On-demand outsourcing - outsourcing and service
provider strategies, service management strategies. Technical Re-
port Delta 2416, Meta Group Delta, August 2003 2003.

[DBC96] U. Dayal, A. Buchmann, and S. Chakravarty. The hipac project. In
J. Widom and S. Ceri, editors, Active Database Systems. Morgan
Kaufmann, 1996.

[DDK+01] A. Dan, D. Dias, R. Kearney, T. Lau, T. Nguyen, F. Parr,
M. Sachs, and H. Shaikh. Business-to-business integration with
tpaml and a b2b protocol framework. IBM Systems Journal of
Arti�cial Intelligence, 40(1), 2001.

293

G Bibliography

[DDK+04] A. Dan, D. Davis, R. Kearney, R. King, A. Keller, D. Kuebler,
H. Ludwig, M. Polan, M. Spreitzer, and A. Youssef. Web services
on demand: Wsla-driven automated management. IBM Systems
Journal, Special Issue on Utility Computing, 43(1):136�158, 2004.

[DDLS01] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder
policy speci�cation language. In Work. on Policies for Distributed
Systems and Networks (Policy'01), Bristol, UK, 2001.

[DE88] L. M. L. Declambre and J. N. Etheredge. A self-controlling inter-
preter for the relational production language. In ACM Sigmod Int.
Conf. on the Management of Data, 1988.

[Den91] R. Denney. Test-case generation from prolog-based speci�cations.
IEEE Software, 8(2):49�57, 1991.

[DG84] W. Dowling and H. Gallier. Linear time algorithms for testing
the satis�abiltiy of propositional horn formulae. Journal of Logic
Programming, 1:267�284, 1984.

[DGdlBS99] B. Demoen, M. Garcia de la Banda, and P. J. Stuckey. Type
constraint solving for parametric and ad-hoc polymorphism. In In
Procs. of the 22nd Australian Comp. Sci. Conf., pages 217�228,
1999.

[DGKK98] P. Doherty, J. Gustafsson, L. Karlsson, and J. Kvarnstroem.
Tal: Temporal action logics language speci�cation and tutorial.
Linkoeping Electronic Articles in Computer and Information Sci-
ence, 3(015), 1998.

[DH88] R. Dietrich and A. F. Hagl. A polymorphic type system with sub-
types for prolog. In Proceedings of the 2nd European Symposium
on Programming, pages 79�93. Springer-Verlag, 1988.

[DH04] J. Dietrich and J. Hiller. Mandarax 3.1,
http://mandarax.sourceforge.net/, accessed oct. 2004, 2004.

[Die04] J. Dietrich. A rule-based system for ecommerce applications. In
Proceedings of KES 2004, volume LNAI 3213 p 455, 2004.

[Dix92] J. Dix. A framework for representing and characterizing seman-
tics of logic programs. In B. Nebel, C. Rich, and W. Swartout,
editors, Principles of Knowledge Representation and Reasoning:
Proceedings of the Third International Conference (KR'92), pages
591�602, San Mateo, CA, 1992. Morgan Kaufmann.

[Dix95a] J. Dix. A classi�cation-theory of semantics of normal logic
programs: Ii. weak properties. Fundamenta Informaticae,
XXII(3):257�288, 1995.

[Dix95b] J. Dix. Semantics of logic programs: Their intuitions and formal
properties. an overview. In A. Fuhrmann and H. Rott, editors,

294

G Bibliography

Essays on Logic in Philosophy and Arti�cial Intelligence, pages
241�327. DeGruyter, 1995.

[DK89] P. M. Dung and K. Kanchansut. A natural semantics of logic
programs with negation. In 9th Conf. on Foundations of Software
Technology and Theoretical Computer Science, pages 70�80, 1989.

[DKM84] C. Dwork, P. Kanellakis, and J. Mitchell. On the sequential nature
of uni�cation. J. Logic Programming, 1:35�50, 1984.

[DKSW03] J. Dietrich, A. Kozlenkov, M. Schroeder, and G. Wagner. Rule-
based agents for the semantic web. Journal on Electronic Com-
merce Research Applications, 2003.

[DLNS91] F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. A hybrid
system with datalog and concept languages. Trends in Arti�cial
Intelligence, LNAI 549:88�97, 1991.

[DLS00] P. Doherty, T. Lukasiewicz, and A. Szalas. E�cient reasoning
using the local closed-world assumption. In Proceedings of 9th
AIMSA, volume LNCS 2407, pages 49�58, 2000.

[DM94] J. Dix and M. Mueller. Partial evaluation and relevance for approx-
imations of the stable semantics. In 8th Int. Symp. on Methodolo-
gies for Intelligent Systems, pages 511�520, Charlotte, NC, 1994.
Springer.

[DM02] P. M. Dung and P. Mancaralle. Production systems with negation
as failure. IEEE Transactions onf Knowledge and Data Engineer-
ing, 14(2), 2002.

[DMB92] M. Denecker, L. Missiaen, and M. Bruynooghe. Temporal reason-
ing with abductive event calculus. In ECAI'92, Vienna, Austria,
1992.

[Doe94] K. Doets. From Logic to Logic Programming. MIT Press, Came-
bridge, MA, USA, 1994.

[DP05] J. Dietrich and A. Paschke. On the test-driven development and
validation of business rules. In ISTA05, Massey, New Zealand,
2005.

[DSGF03] V. Deora, J. Shao, W. A. Gray, and J. Fiddian. A qualitiy of
service management framework based on user expectations. In
Service-Oriented Computing (ICSOC'03). Springer, 2003.

[Dun91] P. M. Dung. Negation as hypotheses: An abductive foundation
for logic programming. In 8th Int. Conf. on Logic Programming,
Paris, 1991. MIT Press.

[Dun93] P. M. Dung. An argumentation semantics for logic programming
with explicit negation. In 10th Logic Programming Conf. MIT
Press, 1993.

295

G Bibliography

[DV97] E. Dantsin and A. Voronkov. Complexity of query answering in
logic databases with complex data. In Proceedings of LFCS'97.
Springer LNCS, 1997.

[DZ92a] P. W. Dart and J. Zobel. E�cient run-time type checking of typed
logic programs. J. Log. Program., 14(1-2):31�69, 1992.

[DZ92b] P. W. Dart and J. Zobel. A regular type language for logic pro-
grams. In Types in Logic Programming, pages 157�187. 1992.

[EFST01] T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. A framework
for declarative update speci�cation in logic programs. In IJCAI,
2001.

[EGW97] O. Etzioni, K. Golden, and D. Weld. Sound and e�cient closed-
world reasoning for planning. Arti�cal Intelligence, 89(1-2):113�
148, 1997.

[EK76] M. H. Emden and R. Kowalski. The semantics of predicate logic
as a programming language. JACM, 23:733�742, 1976.

[ELST04] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Com-
bining answer set programming with description logics for the se-
mantic web. In KR-2004, 2004.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation 1:
Equations and Initial Semantics. Springer, 1985.

[Eri93] J. Erikson. CEDE: Composite Event Detector in An Active
Database. PhD Thesis. University of Skoevde, 1993.

[FB02] D. Fensel and C. Bussler. The web service modeling framework
(wsmf). White paper, Virje Universiteit Amsterdam, 2002.

[FG98] S. Flesca and S. Greco. Declarative semantics for active rules. In
Int. Conf. on Database and Expert Systems Applications, volume
1460, pages 871 � 880. Springer LNCS, 1998.

[FH71] D. Follesdal and R. Hilpinen. Deontic Logic: An introduction.
Deontic Logic: Introductory and Systematic Readings. D. Reidel
Publishing, 1971.

[Fit85] M. Fitting. A kripke-kleene semantics of logic programs. Journal
of Logic Programming, 4:295�312, 1985.

[Fit90] M. Fitting. Well-founded semantics, generalized. In Int. Sympo-
sium of Logic Programming, pages 71�84, San Diego, 1990. MIT
Press.

[Fit96] M. Fitting. First-Order Logic and Automated Theorem Proving,
volume Second Edition. Springer, 1996.

[FN71] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the
application of theorem proving to problem solving. Arti�cial In-
telligence, (2):189�208, 1971.

296

G Bibliography

[FSS+04] A. Farrell, M. Sergot, M. Salle, C. Bartolini, D. Trastour, and
A. Christodoulou. Performance monitoring of service level agree-
ments for utility computing using event calculus. In First IEEE
Int. Workshop on Electronic Contracting, San Diego, CA, 2004.

[FWHH02] D. Fensel, W. Wahlster, Liebermanm H., and J. Hendler. Spin-
ning the Semantic Web: Bridging the World Wide Web to Its Full
Potential. MIT Press, 2002.

[GB00] A.J. Gonzales and V. Barr. Validation and veri�cation of intelli-
gent systems. Journal of Experimental and Theoretical AI, 2000.

[GD93] S. Gatziu and K. Dittrich. Event in an active object-oriented
database system. In Int. Conf. on Rules in Database Systems,
Edinburgh, 1993.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J Vlissides. Design Patterns:
Elements of Reusable Object Oriented Software. Addison-Wesley,
1994.

[GHVD03] B.N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description
logic programs: Combining logic programs with description logic.
In International World Wide Web Conference. ACM, 2003.

[GJS92] N. Gehani, H. V. Jagadish, and O. Shmueli. Event speci�cation in
an active object-oriented database. In Int. Conf. on Management
of Data, pages 81�90, San Diego, 1992.

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic
programming. In R. Kowalski and K. Bowen, editors, 5th Confer-
ence on Logic Programming, pages 1070�1080, 1988.

[GL90] M. Gelfond and V. Lifschitz. Logic programs with classical nega-
tion. In ICLP'90, pages 579�597. MIT Press, 1990.

[GL91] M. Gelfond and V. Lifschitz. Classical negation in logic programs
and disjunctive databases. New Generation Computing, 9:365�385,
1991.

[GL93] M. Gelfond and V. Lifschitz. Representing action and change by
logic programs. Journal of Logic Programming, 17(2-4):301�321,
1993.

[GL96] G. De Giacomo and M. Lenzerini. Tbox and abox reasoning in
expressive description logics. In KR'96: Principles of Knowledge
Represenation and Reasoning, pages 316�327, San Francisco, Cal-
ifornia, 1996. Morgan Kaufmann.

[GL98] E. Giunchiglia and V. Lifschitz. An action language based on
causal explanation: Preliminary report. In Conf. on Innovative
Applications of Arti�cial Intelligence, pages 623�630, Menlo Park,
CA, 1998. AAAI Press.

297

G Bibliography

[GL99] E. Giunchiglia and V. Lifschitz. Action languages, temporal action
logics and the situation calculus. Linkoeping Electronic Articles in
Computer and Information Science, 4(040), 1999.

[GLC99] B.N. Grosof, Y. Labrou, and H.Y. Chan. A declarative approach
to business rules in contracts: Courteous logic programms in xml.
In M.P. Wellman, editor, Conf. on Electronic Commerce (EC-99),
Denver UK, 1999. ACM Press.

[GLV91] D. Gabbay, E. Laenens, and D. Vermeir. Creulous vs. sceptical
semantics for ordered logic programs. In Int. Conf. on Principles of
Knowledge Representation and Reasioning, pages 208�218, 1991.

[GM86] J. A. Goguen and J. Meseguer. Eqlog: Equality, types and generic
modules for logic programming. In D. DeGroot and G. Lindstrom,
editors, Functional and Logic Programming, pages 295�263. Pren-
tice Hall, 1986.

[GM87] J. A. Goguen and J. Meseguer. Order-sorted algebra i: Partial
and overloaded operators, errors and inheritance. Technical report,
Computer Science Laboratory, SRI International, 1987.

[Gog86] M. Gogolla. Ueber partiell geordnete Sortenmengen und deren
Anwendung zur Fehlerbehandlung in abstrakten Datentypen. PhD
Thesis. Technische Universitaet Braunschweig, Germany, 1986.

[Gra02] G. Grahne. Information integration and incomplete information.
IEEE Data Engineering Bulleting, 25(3):46�52, 2002.

[Gre04] W.Van Grembergen. Strategies for information technology gover-
nance� 2004.

[Gro99] B. N. Grosof. A courteous compiler from generalized courteous
logic programs to ordinary logic progams. Supplementary update
follow-on to ibm research report rc 21472., IBM T.J. Watson Re-
search Center, 1999.

[Gru93] T.R. Gruber. A translation approach to portable ontology speci-
�cation. Knowledge Acquisition, 5:199�220, 1993.

[GTW78] J. A. Goguen, J. W. Thatcher, and E. W. Wagner. An Initial
Algebra Approach to the Speci�cation, Correctness and Implemen-
tation of Abstract Data Types., volume Vol. IV of Current Trends
on Programming Methodology. Prentice-Hall Int.� 1978.

[HA02] J. He�in and H. M. Avila. Lcw-based agent planning for the se-
mantic web. Ontologies and the Semantic Web, WS-02-11:63�70,
2002.

[Hag01] J. Hage. Contrary to duty obligations - a study in legal ontology.
In Jurix 2001, Amsterdam, 2001.

[Han65] W. H. Hanson. Semantics for deontic logic. Loguique et Analyse,
31:177�190, 1965.

298

G Bibliography

[Han91] M. Hanus. Horn clause programs with polymorphic types: Seman-
tics and resolution. Theor. Comput. Sci., 89(1):63�106, 1991.

[Han92] M. Hanus. Logic programming with type speci�cations. In Types
in Logic Programming, pages 91�140. 1992.

[Hay04] P. Hayes. Rdf semantics, http://www.w3.org/tr/2004/rec-rdf-mt-
20040210, accessed dec. 2005, 2004.

[HC02] L. Hendriks and M. Carr. Itil: best practice in it service man-
agement. In J. Bon, editor, The guide to IT Service Management,
pages 131�150. Addison-Wesley, London, 2002.

[HCC94] P. Hentenryck, A. Cortesi, and B. Charlier. Type analysis of pro-
log using type graphs. In Conference on Programming Language
Design and Implementation, pages 337�348, 1994.

[HCYY99] X. He, W.C. Chu, H. Yang, and S.J.H. Yang. A new approach
to verify rule based systems using petri nets. In Int. Conf. on
Computer Software and Applications, pages 462�467, Alamitos,
CA, USA, 1999.

[HFGL01] Y. Ho�ner, S. Field, P. Grefen, and H. Ludwig. Contract-driven
creation and operation of virtual enterprises. Computer Networks,
Elsevier Science, 37:111 � 136, 2001.

[HJ92] N. Heintze and J. Ja�ar. Semantic types for logic programs. In
Types in Logic Programming, pages 141�155. 1992.

[HJW99] H. Herre, J. Jaspars, and G. Wagner. Partial Logics with Two
Kinds of Negation as a Foundation of Knowledge-Based Reasoning.
What is Negation? Kluwer Academic Publishers, 1999.

[HK03] M. Hondo and C. Kaler. Web services policy framework (wspolicy),
ftp://www6.software.ibm.com/software/developer/library/ws-
policy.pdf, 2003.

[HL94] P. M. Hill and J.W. Lloyd. The Goedel Programming Language.
MIT Press, 1994.

[HMPR04] A. Hevner, S. March, J. Park, and S. Ram. Design science in
information systems research. MIS Quarterly, 28(1):75�101, 2004.

[Hoa85] C. A. R. Hoare. Communication and Concurrency. Prentice Hall,
1985.

[Hor93] J. F. Horty. Nonmonotonic techniques in the formalization of com-
monsense normative reasoning. In Proc. Workshop on Nonmono-
tonic Reasoning, pages 74�84, 1993.

[HP03] HP. Hp it service management (itsm) - transforming it organiza-
tions into service providers. White paper, 2003.

299

G Bibliography

[HPPS+05] I. Horrocks, B. Parsia, P. Patel-Schneider, J. Hendler, F. Francois,
and S. Soliman. Semantic web architecture : Stack or two tow-
ers? In PPSWR 2005 : principles and practice of semantic web
reasoning, Dagstuhl Castle , Germany, 2005.

[HPS04] I. Horrocks and P. Patel-Schneider. Reducing owl entailment to
description logic satis�ability. J. Web Sem., 1(4):345�357, 2004.

[HPSB+04] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
and M. Dean. Swrl: A semantic web rule language combining owl
and ruleml, http://www.w3.org/submission/swrl/, accessed jan.
2006, 2004.

[HR85] F. Hayes-Roth. Rule based systems. ACM Computing Surveys,
28(9), 1985.

[HS88] M. Hohfeld and G. Smolka. De�nite Relations over Constraint
Languages, LILOG Report, LR-53. IWBS, IBM Deutschland,
1988.

[HS90] S. Hoelldobler and J. Schneeberger. A new deductive approach to
planning. New Generation Computing, 8(3):225�244, 1990.

[HT92] P. M. Hill and R. W. Topor. A semantics for typed logic programs.
In Types in Logic Programming, pages 1�62. 1992.

[HTT87] J. F. Horty, R. H. Thomason, and D. S. Touretzky. A skepti-
cal theory of inheritance in nonmonotonic semantic networks. In
AAAI'87, Menlo Park, CA, 1987. AAAI Press.

[HV87] M. Huber and I. Varsek. Extended prolog for order-sorted res-
olution. In Symposium of Logic Programming, pages 34�45, San
Francisco, 1987.

[HVNV05] S. Heymans, D. Van Niewenborgh, and D. Vermeier. Nonmono-
tonic ontological and rule-based reasoning with extended con-
ceptual logic programs. In European Semantic Web Conference
(ESWC2005), Heraklion, Greece, 2005. Springer.

[HY91] Y. Hu and L. Y. Yuan. Extended well-founded model semantics for
general logic programs. in koichi furukawa, editor,. In Int. Conf.
on Logic Programming, pages 412�425, Paris, 1991.

[ISO99] ISO. Iso/iec jtc 1/sc 7. information technology - open distributed
processing - reference model -enterprise language: Iso/iec 15414 |
itu-t ecommendation x.911,. committee draft. 8. july 1999. Tech-
nical report, 1999.

[ITG98] ITGI. Control Objectives for Information and related Technology
(CobiT), volume 3rd edition. 1998.

[itS04a] itSMF. IT Service Management, an introduction. 2004.

300

G Bibliography

[ITS04b] ITSMF. It service management forum: What is the itsmf?,
http://www.itsmf.com/about/whatis.asp, accessed jan. 2005,
2004.

[Jac96] O. Jack. Software Testing for Conventional and Logic Program-
ming. vol. 10 of Programming Complex Systems. Walter de
Gruyter und Co., Berlin, New York, 1996.

[JCJ+03] M. Jonson, P. Chang, R. Je�ers, J. Bradshaw, and et al. Kaos
semantic policy and domain services: An application of daml to
web services-based grid architectures. In AAMAS'03, Melbourne,
Australia, 2003.

[Jon96] C. Jones. Capers jones language level,
http://www.theadvisors.com/langcomparison.htm, accessed
nov. 2004, 1996.

[KBBF05] M. Kifer, J. de Bruijn, H. Boley, and D. Fensel. A realistic ar-
chitecture for the semantic web. In Proc. of RuleML 2005, pages
17�29, 2005.

[KBGH06] S Kona, A. Bansal, G. Gupta, and T. Hite. E�cient web ser-
vice discovery and composition using constraint logic program-
ming. In ICLP'06 Workshop Workshop on Applications of Logic
Programming in the Semantic Web and Semantic Web Services
(ALPSWS2006), Seattle, WA, 2006.

[KC04] G. Klyne and J. Caroll. Resource description framework (rdf):
Concepts and abstract syntax, http://www.w3.org/tr/2004/rec-
rdf-concepts-20040210, accessed nov. 2005, 2004.

[Ker98] G. M. Kern. A framework for service management of information
systems. Mid. American journal of business, 13(1):49�57, 1998.

[KFJ05] L. Kagal, T. Finin, and A. Joshi. Declarative policies for describing
web service capabilities and constraints. In W3C Workshop on
Constraints and Capabilities for Web Services, 2005.

[KK71] R. Kowalski and D. Kuehner. Linear resolution with selection
function. Arti�cal Intelligence, 2:227�260, 1971.

[KLM90] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning,
preferential models and cumulative logics. Arti�cial Intelligence
11(1980), 44(1-2):167�207, 1990.

[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-
oriented and frame-based languages. JACM, 42(4), 1995.

[KM97a] A. Kakas and R. Miller. A simple declarative language for describ-
ing narratives with actions. JLP (special issue), 31(1-3):157�200,
1997.

[KM97b] M. A. Khamsi and D. Misane. Fixed point theorems in logic pro-
gramming. Ann. Math. Artif. Intell., 21(2-4):231�243, 1997.

301

G Bibliography

[KMT99] A. Kakas, R. Miller, and F. Toni. An argumentation framework
for reasoning about actions and change. In LPNMR'99, 1999.

[KNW93] K. Kwon, G. Nadathur, and D. S. Wilson. Implementing polymor-
phic typing in a logic programming language. Duke�tr�1993�24,
1993.

[Kow92] R. Kowalski. Database updates in the event calculus. Journal of
Logic Programming, 12:121�146, 1992.

[KP87] P. Kolaitis and C. Papadimitriou. Why not negation by �xpoint?
In Prod. of PODS-87, pages 231�239, 1987.

[KP06] A. Kozlenkov and A. Paschke. Prova 2.0 user documentation,
http://www.prova.ws/, accessed oct. 2006. Technical report, 2006.

[KPS06] A. Kozlenkov, A. Paschke, and M. Schroeder. Prova,
http://prova.ws, accessed jan. 2006. 2006.

[KS86] R. A. Kowalski and M. J. Sergot. A logic-based calculus of events.
New Generation Computing, 4:67�95, 1986.

[KS04] A. Kozlenkov and M. Schroeder. Prova: Rule-based java-scripting
for a bioinformatics semantic web. Proceedings International
Workshop on Data Integration in the Life Sciences, 2004.

[KSS95] D. B. Kemp, D. Srivastava, and P. J. Stuckey. Bottom-up eval-
uation and query optimization of well-founded models. Theor.
Comput. Sci., 146:145�184, 1995.

[Kun87] K. Kunen. Negation in logic programming. Journal of Logic Pro-
gramming, 4:289�308, 1987.

[Lan51] E. Landau. Foundations of analysis. pages 1�18. Chelsea, 1951.

[LAP01] J.A. Leite, J.J. Alferes, and L.M. Pereira. On the use of multi-
dimensional dynamic logic programming to represent societal
agents' viewpoints. In EPIA01, volume LNAI 2258, pages 276�
289, 2001.

[LB87] H. J. Levesque and R. J. Brachman. Expressiveness and tractabil-
ity in knowledge representation and reasoning. Computational In-
telligence journal, 3:78�93, 1987.

[LBSB92] G. Luo, G. Bochmann, B. Sarikaya, and M. Boyer. Control-�ow
based testing of prolog programs. In Int. Symp. on Software Reli-
ability Enginnering, pages 104�113, 1992.

[LDa02] G. Libera-Dell and et. al. Web services security policy language
(ws-securitypolicy), 2002.

[LDK04] H. Ludwig, A. Dan, and R. Kearney. Cremona: An architecture
and library for creation and monitoring of ws-agreements. In IC-
SOC'04, New York, 2004.

302

G Bibliography

[Lei97] A. Leitsch. The Resolution Calculus. Springer, 1997.

[Lei03] J. A. Leite. Evolving knowledge bases. Frontiers in Arti�cial
Intelligence and Applications, 81, 2003.

[Lew74] D. Lewis. Semantic analyses for dydic deontic logic. In Logical
Theory and Semantic Analysis, pages 59�104. Reidel, Dordrecht,
1974.

[LHL95] B. Ludaescher, U. Hamann, and G. Lausen. A logical framework
for active rules. In Int. Conf. on Management of Data, Pune,
India, 1995.

[Lif96] V. Lifschitz. Foundations of declarative logic programming. Prin-
ciples of Knowledge Representation. CSLI publishers, 1996.

[LLM98] G. Lausen, B. Ludascher, and W. May. On logical foundations of
active databases. Logics for Databases and Information Systems,
pages 389�422, 1998.

[Llo87] J. W. Lloyd. Foundations of logic programming; (2nd extended
ed.). Springer-Verlag New York, Inc., New York, NY, USA, 1987.

[LMR92] J. Lobo, J. Minker, and A. Rajasekar. Foundations of disjunctive
logic programming. MIT Press, 1992.

[LR91] T. L. Lakshman and U. S. Reddy. Typed prolog: A semantic
reconstruction of the mycroft-o'keefe type system. In Proceedings
of ISLP, San Diego, California, USA, 1991.

[LR96] A. Levy and M-C. Rousset. A representation language combin-
ing horn rules and description logics. In European Conference on
Arti�cial Intelligence (ECAI-96), 1996.

[LRLLM99] L.M. Laita, E. Roanes-Lozano, L. de Ledema, and V. Maojo. Com-
puter algebra based veri�cation and knowledge extraction in rbs
application to medical �tness criteria. In EUROVAD'99, 1999.

[LSE03] D. D. Lamanna, J. Skene, and W. Emmerich. Slang: A lan-
guage for de�ning service level agreements. InWorkshop on Future
Trends of Distributed Computing Systems (FTDCS'03), San Juan,
Puerto Rico, 2003.

[LT01] Z. Lonc and M. Truszcynski. On the problem of computing the
well-founded semantics. Theory and Practice of Logic Program-
ming, 1(5):591�609, 2001.

[Lu98] L. Lu. Polymorphic type analysis in logic programs by abstract
intepretation. Journal of Logic Programming, 36(1):1�54, 1998.

[LW92] V. Lifschitz and T. Woo. Answer sets in general non-monotonic
reasioning (preliminary report). In Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR'92). Morgan-
Kaufman, 1992.

303

G Bibliography

[Mah00] M. J. Maher. A denotational semantics of defeasible logic. In Com-
putational Logic, volume LNCS 1861, pages 209�222. Springer,
2000.

[Mah01] M. J. Maher. Propositional defeasible logic has linear complexity.
Theory and Practice of Logic Programming, 1(6):691 � 711, 2001.

[Mah02] M.J. Maher. A model-theoretic semantics for defeasible logic.
In H. Decker, J. Villadsen, and T. Waragai, editors, ICLP2002
Workshop on Paraconsistent Computational Logic, pages 67�80,
Roskilde, Denmark, 2002. Datalogiske Skrifter, vol. 95. Roskilde
University,.

[Mak86] D. Makinson. On the formal representation of rights relations.
Journal of Philosophical Logic, 15:403�425, 1986.

[Mal26] E. Mally. Grundgesetze des Sollens. Elemente der Logik des Wil-
lens. Leuschner and Lubensky, Graz, 1926.

[Mar91] V.W. Marek. Autoepistemic logic. Journal of the ACM, 38(3):588�
619, 1991.

[MBL+06] J. Mei, H. Boley, J. Li, V. C. Bhavsar, and Z. Lin. Datalogdl:
Datalog rules parameterized by description logics. In Canadian
Semantic Web Working Symposium, Quebeck, Canada, 2006.

[McC59] J. McCarthy. Programs with common sense. In Conference on the
Mechanization of Thought Processes, pages 75�91, London, 1959.

[McC80] J. McCarthy. Circumscription - a form of non-monotonic reason-
ing. Journal of Arti�cial Intelligence, 13(1-2):27�39, 1980.

[McC83] J. McCarthy. Permissions and obligations. In Int. Conf. on Ar-
ti�cal Intelligence, pages 287�294, Karlsruhe, 1983. Morgan Kauf-
mann.

[McC92] J. McCarthy. Defeasible deontic reasoning. In 4th Int. Workshop
on Nonmonotonic Reasoning, Plymouth, 1992.

[MG99] M.J. Maher and G. Governatori. A semantic decomposition of
defeasible logics. In In Proc. AAAI/IAAI-1999, pages 299�305,
1999.

[MGL+04] Z. Milosevic, S. Gibson, P.F. Linigton, J. Cole, and S. Kulkarni.
On desing and implementation of a contract monitoring facility.
In 1st IEEE Int. Workshop on Electronic Contracting, San Diego,
CA, 2004.

[MH69] J. McCarthy and P. Hayes. Some philosophical problems from the
standpoint of arti�cial intelligence. Machine Intelligence, 4:463�
502, 1969.

304

G Bibliography

[MH04] D. L. McGuinness and F. v. Harmelen. Owl web ontology lan-
guage, http://www.w3.org/tr/owl-features/, accessed june 2005,
2004.

[MIB04] MIB. Ietf sim/mib, http://snmp.cs.utwente.nl/ietf/ rfcs/rfcby-
module.html, accessed, nov. 2005, 2004.

[Mic02] Microsoft. Microsoft Operations Framework Executive Overview.
2002.

[Mil78] R. Milner. A theory of type polymorphism in programming. J.
Comput. Syst. Sci., 17(3):348�375, 1978.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Min93] J. Minker. An overview of nonmonotonic reasoning and logic pro-
gramming. Journal of Logic Programming, 17(2-4):95�126, 1993.

[Mis84] P. Mishra. Towards a theory of types in prolog, 1984.

[MJSSW03] C. Molina-Jimenez, S. Shrivastava, E. Solaiman, and J. Warne.
Contract representation for run-time monitoring and enforcement.
In IEEE Int. Conf. on E-Commerce (CEC),, Newport Beach,
USA, 2003.

[MKB00] R. Meolic, T. Kapus, and Z. Brezonic. Veri�cation of concurent
systems using actl. In IASTED Int. Conf. on Applied Informatics
(AI'00), pages 663�669, Anaheim, Calgary, 2000. IASTED/ACTA
Press.

[MKB03] R. Meolic, T. Kapus, and Z. Brezonic. An action computation
tree logic with unless operator. In Proc. of South-East European
Workshop on Formal Methods (SEEFM'03), pages 100�114, Thes-
saloniki, Greece, 2003.

[MLF02] T. Millstein, A. Levy, and M. Friedman. Query containment for
data integration systems. In Proc. 21st PODS, pages 67�75, 2002.

[MM82] A. Martelli and U. Montanari. An e�cient uni�cation algorithm.
ACM Trans. Programming Lnaguages and Systems, 4:258�282,
1982.

[MM01] O. Marjanovic and Z. Milosevic. Towards formal modeling of e-
contracts. In Enterprise Distributed Object Computing Conference
(EDOC '01), Seattle, WA, USA, 2001.

[MN86] D. Miller and G. Nadathur. Higher-order logic programming. In
Proceedings of the Third International Logic Programming Confer-
ence, pages 448�462, 1986.

[MNFS91] D. Miller, G. Nadathur, Pfenning F., and A. Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and
Applied Logic, 51:125 � 157, 1991.

305

G Bibliography

[MO84] A. Mycroft and R. A. O'Keefe. A polymorphic type system for
prolog. Artif. Intell., 23(3):295�307, 1984.

[Moo85] R. Moore. Semantical considerations on nonmonotonic logic. Artif.
Intell., 25(1):75�94, 1985.

[Mor96] S. Morishita. An extension of van gelder's alternating �xpoint
to magic programs. Journal of Computer and System Sciences,
52:506�521, 1996.

[MPC96] R. Meo, G. Psaila, and S. Ceri. Composite events in chimera. In
EDBT, Avingnon, France, 1996.

[MR85] P. Mishra and U. S. Reddy. Declaration-free type checking.
In Proceedings of 12th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 7�21, New Orleans,
Louisiana, United States, 1985.

[MS98] M. Marchiori and J. Saarela. Metalog: Query + metadata + logic
= metalog, http://www.w3.org/tands/ql/ql98/pp/metalog.html,
1998.

[MS99] R. Miller and M. Shanahan. The event calculus in classical logic -
alternative axiomatisations. Electronic Transactions on Arti�cial
Intelligence, 3:77�105, 1999.

[MS03] Meteor-S. Meteor-s semantic web service annotation frame-
work (mwsaf) , http://lsdis.cs.uga.edu/projects/meteor-s/, ac-
cessed nov. 2006, 2003.

[MSS05] B. Motik, U. Sattler, and R. Studer. Query answering for owl-dl
with rules. Journal of Web Semantics, 3(1):41�60, 2005.

[Mul06] Mule. Mule enterprise service bus,
http://mule.codehaus.org/display/mule/home, 2006.

[MW98] D. McGuinness and J. R. Wright. An industrial strength descrip-
tion logic-based con�guration platform. In IEEE Intelligent Sys-
tems, pages 69�77, 1998.

[Nai92] L. Naish. Types and the Intended Meaning of Logic Programs. In:
Types in Logic Programming. MIT Press, 1992.

[NBB+02] D. Nardi, R.J. Brachman, F. Baader, W. Nutt, F.M. Donini,
U. Sattler, D. Calvanese, R. Molitor, G. De Giacomo, R. Kuesters,
F. Wolter, D. L. McGuinness, P. F. Patel-Schneider, R. Moeller,
V. Haarslev, I. Horrocks, A. Borgida, C. Welty, A. Rector, E. Fran-
coni, M. Lenzerini, and R. Rosati. The Description Logic Hand-
book: Theory, Implementation and Applications. Cambridge Uni-
versity Press, 2002.

[NK80] D.L. Nazareth and M.H. Kennedy. Static and dynamic veri�cation,
validation and testing: The evolution of a discipline. In AAA'90

306

G Bibliography

on Knowledge-based Systems, Validation Veri�cation and Testing,
Boston, 1980.

[NK88] S. Naqvi and R. Krishnamurthy. Database updates in logic pro-
gramming. In ACM Symposium on Principles of Database Sys-
tems, pages 251�262, New York, 1988. ACM.

[Nut94] D. Nute. Defeasible logic. In D.M. Gabbay, C.J. Hogger, and J.A.
Robinson, editors, Handbook of Logic in Arti�cial Intelligence and
Logic Programming Vol. 3. Oxford University Press, 1994.

[Obe62] A. Oberschelp. Untersuchungen zur mehrsortigen quantorenlogik.
Math. Ann., 145:297�333, 1962.

[OGC00a] OGC. O�ce of Government Commerce: IT Infrastructure Library.
The Stationary O�ce, London, 2000.

[OGC00b] OGC. O�ce of Government Commerce: Service Support. The
Stationary O�ce, London, 2000.

[OGC01] OGC. O�ce of Government Commerce: Service Delivery. The
Stationary O�ce, London, 2001.

[Ogl03] et. al. Ogle, D. The common base event, ibm report. Technical
report, IBM, 2003.

[Or06] OASIS-refmod. Oasis soa reference model, http://www.oasis-
open.org/committees/download.php/19679/soa-rm-cs.pdf, ac-
cessed nov 2006, 2006.

[OS03] OWL-S. http://www.daml.org/services/owl-s, accessed feb. 2005,
2003.

[PA92] L. M. Pereira and J. J. Alferes. Well founded semantics for logic
programs with explicit negation. Proceedings of ECAI'92, 1992.

[PAA92] L.M. Pereira, J.J. Alferes, and J.N. Aparicio. Adding closed world
assumptions to well founded semantics. In Fifth Generation Com-
puter Systems, pages 562�569, 1992.

[Pas04a] A. Paschke. Rbsla: Rule based service level agreement markup lan-
guage, http://ibis.in.tum.de/projects/rbsla/index.php, accessed
jan. 2006, 2004.

[Pas04b] A. Paschke. Rule based sla management - a rule based approach on
automated it service management (in german language). Working
paper, IBIS, TUM, Technical Report, 6/2004, 06/2004 2004.

[Pas05a] A. Paschke. Eca-lp: A homogeneous event-condition-action
logic programming language. Technical report, Internet-
based Information Systems, Technical University Munich,
http://ibis.in.tum.de/research/projects/rbsla/, November, 2005.

307

G Bibliography

[Pas05b] A. Paschke. Eca-ruleml: An approach combining eca rules with
interval-based event logics. Working paper, IBIS, TUM, Technical
Report, 11/2005 2005.

[Pas05c] A. Paschke. Eca-ruleml: An event-condition-action rule
markup language, http://ibis.in.tum.de/research/projects/eca-
ruleml/, 2005.

[Pas05d] A. Paschke. Npl: Negotiation pattern language. Technical report,
01/2005, IBIS, TUM, 2005.

[Pas05e] A. Paschke. Owl2prova: Homogeneous and heteroge-
neous integration of description logics into logic programming,
http://prova.ws/forum/viewtopic.php?t=152, accessed dec. 2005,
2005.

[Pas05f] A. Paschke. Rbsla - a declarative rule-based service level agreement
language based on ruleml. In International Conference on Intel-
ligent Agents, Web Technology and Internet Commerce (IAWTIC
2005), Vienna, Austria, 2005.

[Pas05g] A. Paschke. Typed hybrid description logic programs with order-
sorted semantic web type systems based on owl and rdfs. Working
paper, IBIS, TUM, Technical Report, 12/2005 2005.

[Pas06a] A. Paschke. Eca-ruleml 0.2: A homogeneous event-
condition-action logic programming language for ruleml,
http://ibis.in.tum.de/research/reactionruleml/0.1/docs/reaction-
ruleml-talk-2006-9-06.pdf, 2006.

[Pas06b] A. Paschke. Eca-ruleml/eca-lp: A homogeneous event-condition-
action logic programming language, http://2006.ruleml.org. In Int.
Conf. of Rule Markup Languages (RuleML'06), Athens, Georgia,
USA, 2006.

[Pas06c] A. Paschke. Reaction ruleml,
http://ibis.in.tum.de/research/reactionruleml/ events/reac-
tionrulemlevent06.htm, accessed, nov. 2006. In Special Event
on Reaction RuleML at ISWC'06/RuleML'06, Athens, Georgia,
USA, 2006.

[Pas06d] A. Paschke. Reaction ruleml part of tutorial bridging research and
practice - making real-world application of ontologies and rules,
http://2006.ruleml.org/. In Int. Conf. on Rule Markup Languages
(RuleML'06), Athens, GA, USA, 2006.

[Pas06e] Kiss C. Al-Hunaty S. Paschke, A. Npl: Negotiation pattern lan-
guage - a design pattern language for decentralized (agent) co-
ordination and negotiation protocols. In R. Banda, editor, E-
Negotiation - An Introduction. ICFAI University Press, ISBN 81-
314-0448-X, 2006.

308

G Bibliography

[Pat99] N.W. Paton. Active Rules in Database Systems. Monographs in
Computer Science. Springer, 1999.

[PB05] A. Paschke and M. Bichler. Sla representation, management and
enforcement - combining event calculus, deontic logic, horn logic
and event condition action rules. In EEE05, Hong Kong, China,
2005.

[PCFW95] N. Paton, J. Campin, A. Fernandes, and M. Williams. Formal
speci�cation of active database functionality: A survey. In 2nd
Int. Workshop RIDS-95, Athens, Greece, 1995.

[Pet03] R. Peterson. Integration strategies and tactics for information
technology governance. In W.Van Grembergen, editor, Strategies
for Information Technology Governance. Idea Group Publishing,
2003.

[Pfe92] F. Pfenning. Types in Logic Programming. The MIT Press, 1992.

[PG03] M. P. Papazoglou and D. Georgakopoulos. Service-oriented com-
puting. Communications of the ACM, 46(10):25�28, 2003.

[PH02] A. Paschke and W. Huemmer. Xml - hoeherwertige mechanismen.
In L Schlesinger, W. Huemmer, and A. Bauer, editors, Heterogene
Informationssysteme, volume Band 25. FAU, Erlangen, 2002.

[PH04] F. Pan and J. Hobbs. Owl time, http://www.isi.edu/ pan/owl-
time.html, accessed jan. 2006, 2004.

[PKB+06] A. Paschke, A. Kozlenkov, H. Boley, M. Kifer,
S. Tabet, M. Dean, and K. Barrett. Reaction ruleml,
http://ibis.in.tum.de/research/reactionruleml/, 2006.

[PKH05] B. Parsia, V. Kolovski, and J. Hendler. Expressing ws-policies in
owl. In Policy Management for the Web Workshop, 2005.

[PKH06] A. Paschke, A. Kozlenkov, and B. Harold.
Reaction ruleml consensual presentation,
http://ibis.in.tum.de/research/reactionruleml/docs/rrcp.pdf,
accessed nov. 2006. White paper, 2006.

[Pla03] R.T. Plant. Tools for validation and veri�cation of knowledge-
based systems 1985-1995, internet source, 2003.

[Plo70] G.D. Plotkin. A note on inductive generalization. Machine Intel-
ligence, 5, 1970.

[PP88] H. Przymusinska and T.C. Przymusinski. Weakly perfect seman-
tics for logic programs. In 5th International Conference and Sym-
posium on Logic Programming, pages 1106�1121, 1988.

[PP90] H. Przymusinska and T.C. Przymusinski. Weakly strati�ed logic
programs. Fundamenta Informaticae, 13:51�65, 1990.

309

G Bibliography

[PPW04] G. Papamarkos, A. Poulovassilism, and P.T. Wood. Rdftl: An
event-condition-action rule language for rdf. In Hellenic Data
Management Symposium (HDMS04), 2004.

[Pre01] A.D. Preece. Evaluating veri�cation and validation methods in
knowledge engineering. University of Aberdeen, 2001.

[Prz88] T.C. Przymusinski. Perfect model semantics. In 5th Int. Conf. and
Symp. on Logic Pro- gramming, pages 1081�1096, Cambridge, Ma,
1988. MIT Press.

[Prz89a] T.C. Przymusinski. Every logic program has a natural strati�ca-
tion and an iterated �xed point model. Proceedings of ACM Symp.
on Principles of Database Systems, pages 11�21, 1989.

[Prz89b] T.C. Przymusinski. On the declarative and procedural semantics of
logic programs. Journal of Automated Reasonig, 5:167�205, 1989.

[Prz90a] T.C. Przymusinski. Non-monotonic reasoning vs. logic program-
ming: A new perspective. In D. Partridge and Y. Wilks, editors,
The Foundations of Arti�cal Intelligence - A Sourcebook. Came-
bridge University Press, London, 1990.

[Prz90b] T.C. Przymusinski. The well-founded semantics coincides with the
three-valued stable semantics. Fundamenta Informaticae, 13:445�
463, 1990.

[Prz91] T.C. Przymusinski. Stable semantics for disjunctive programs.
New Generation Computing, 9:401�424, 1991.

[PS94] A.D. Preece and R. Shinghal. Foundations and applications of
knowledge base veri�cation. Int. J. of Intelligent Systems, 9:683�
701, 1994.

[PSG06] A. Paschke and E. Schnappinger-Gerull. A categorization
scheme for sla metrics. In Multi-Conference Information Systems
(MKWI06), Passau, Germany, 2006.

[PSHH04] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. Owl web ontology
language semantics and abstract syntax. w3c recommendation 10
february 2004. http://www.w3.org/tr/owl-semantics/., 2004.

[Ras92] L. Raschid. A semantics for a class of strati�ed production sys-
tem programs. Technical report, Univ. of Maryland Institute for
Advanced Computer Studies-UMIACS-TR-91-114.1, 1992.

[Red88] U. S. Reddy. Notions of polymorphism for predicate logic pro-
grams. In Proc of the 5th International Symposium on Logic Pro-
gramming, 1988.

[Rei80] R. Reiter. A logic for default reasoning. Journal of Arti�cial
Intelligence, 13:81�132, 1980.

310

G Bibliography

[Rei82] R. Reiter. Towards a logical reconstruction of relational database
theory. In On Conceptual Modelling, Perspectives from Arti�cial
Intelligence, Databases, and Programming Languages, pages 191�
233, 1982.

[Rei01] R. Reiter. Knowledge in Action: Logical Foundations for Specifying
and Implementing Dynamic Systems. MIT Press, Camebridge,
2001.

[Rei02] Rei. Rei, http://rei.umbc.edu/, accessed jan. 2004, 2002.

[Ric05] R. Riccardo. On the decidability and complexity of integrating
ontologies and rules. Journal of Web Semantics, 3(1), 2005.

[RIF05] RIF. W3c rif: Rule interchange formant,
http://www.w3.org/2005/rules/, accessed oct. 2005, 2005.

[RKL+05] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stoll-
berg, A. Polleres, C. Feier, C. Bussler, and D. Fensel. Web service
modeling ontology. Applied Ontology, 1(1):77�106, 2005.

[RL96] L. Raschid and J. Lobo. Semantics for update rule programs
and implementation in a relational database management system.
ACM Transactions on Database Systems, 22(4):526�571, 1996.

[RLM89] A. Rajasekar, J. Lobo, and J. Minker. Weak generalized closed
world assumption. Journal of Automated Reasonig, 5(3):293�307,
1989.

[Rob65] J. Robinson. A machine-oriented logic based on the resolution-
principle. JACM, 12(1):23�41, 1965.

[Ros92] K. Ross. A procedural semantics for well-founded negation in logic
programs. Journal of Logic Programming, 13(1):1�22, 1992.

[Ros94] K. Ross. Modular strati�cation and magic sets for datalog pro-
grams with negation. Journal of the ACM, 41(6):1216�1266, 1994.

[RSYS97] M. Ramaswamy, S. Sarjar, and C. Ye Sho. Using directed hyper-
graphs to verify rule-based expert systems. IEEE TKDE, 9(2):221�
237, 1997.

[Rul06] RuleCore. Rulecore, http://www.rulecore.com, accessed august.
2006, 2006.

[Sal04] M. Salle. It service management and it governance: Review, com-
parative analysis and their impact on utility computing. Technical
report hpl-2004-98, HP Labs, 2004.

[SAM01] A. Sahai, Durante. A., and V. Machiraju. Towards automated sla
management for web services. Research report hpl-2001-310, HP
Labs Palo Alto, 2001.

311

G Bibliography

[San89a] E. Sandewall. Combining logic and di�erential equations for de-
scribing real world systems. In KR89. Morgan Kaufman, 1989.

[San89b] E. Sandewall. Features and Fluents: The Representation of Knowl-
edge about Dynamic Systems, volume 1. Oxford University Press,
Oxford, 1989.

[SBV06] SBVR. Omg sbvr: Semantics of business vocabulary and business
rules, http://www.omg.org/docs/dtc/06-03-02.pdf, accessed oct.
2006, 2006.

[Sch92] J. Schlipf. Formalizing a logic for logic programming. Annals of
Mathematics and Arti�cial Intelligence,, 5:279�302, 1992.

[Sch95] J. Schlipf. The expressive powers of logic programming semantics.
J. Computer and System Sciences, 51(1):64�86, 1995.

[SD02] M. Sintek and S. Decker. Triple - a query, inference and transfor-
mation language for the semantic web. In ISWC'02, pages 364�378.
Springer, 2002.

[Sha82] E.Y. Shapiro. Algorithmic program debugging. MIT Press, 1982.

[Sha90] M. Shanahan. Representing continous change in the event calculus.
In ECAI'90, 1990.

[Sha97a] M. Shanahan. Solving the Frame Problem. MIT Press, London,
1997.

[Sha97b] M.P. Shanahan. Event calculus planning revisited. In 4th European
Conference on Planning (ECP97), volume 1348, pages 390�402.
Springer LNAI, 1997.

[She88] J.C. Shepherdson. Negation in logic programming. In J. Minker,
editor, Foundations of Deductive Databases, pages 19�88. Morgan
Kaufmann, 1988.

[She91] J.C. Shepherdson. Unsolvable problems for sldnf resolution. J. of
Logic Programming, pages 19�22, 1991.

[Sie89] J. Siekmann. Uni�cation theory. J. of Symbolic Computation,
7:207�274, 1989.

[SK95] F. Sadri and R. Kowalski. Variants of the event calculus. In Int.
Conf. on Logic Programming, Kanagawa, Japan, 1995.

[SLR93] T. Sellis, C.C. Lin, and L. Raschid. Coupling production systems
and database systems. In ACM Sigmond Int. Conf. on the Man-
agement of Data, 1993.

[SMJ00] R. Sturm, W. Morris, and M. Jander. Foundations of Service Level
Management. SAMS, Indianapolis, 2000.

[Smo89] G. Smolka. Logic Programming over Polymorphically Order-Sorted
Types, PhD Thesis. 1989.

312

G Bibliography

[SNGM89] G. Smolka, W. Nutt, J. A. Goguen, and J. Meseguer. Order sorted
equational computation. In H. Ait-Kaci and M. Nivat, editors,
Resolution of Equations in Algebraic Structures. Academic Press,
New York, 1989.

[SOA06] SOA. Service oriented architecture, wikipedia,
http://en.wikipedia.org/wiki/service-oriented_architecture,
accessed oct. 2006, 2006.

[SRAAW03] A. ShaikhAli, O. F. Rana, R. Al-Ali, and D. W. Walker. Ud-
die: An extended registry for web services. In Symposium on
Applications and the Internet Workshops (SAINT'03 Workshops),
Orlando, Florida, 2003.

[SRG96] V. A. Saraswat, Jagadeesan R., and V. Gupta. Timed default
concurrency constraint programming. Journal of Symbolic Com-
putation, 22(5/6), 1996.

[SS97] P. J. Stuckey and S. Sudarsham. Well-founded ordered search:
Goal-directed bottom-up evaluation of well-founded models. The
Journal of Logic Programming, 32(3):171�205, 1997.

[Sti86] M. E. Stickel. Schubert's steamroller problem: Formulations and
solutions. Journal of Automated Reasoning, 2:89�101, 1986.

[Str93] K. Stroetman. A completeness result for sldnf resolution. The
Journal of Logic Programming, 15(21):337�357, 1993.

[Str00] C. Strachey. Fundamental concepts in programming languages.
Higher Order Symbol. Comput., 13(1-2):11�49, 2000.

[Sup01] J. Suppan. Service Level Management: Die Koenigsdiziplin des
System-Managements. Das Netzwerk Insider Jahrbuch. Dr. Sup-
pan International Institute, 2001.

[SVSM03] K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding
semantics to web services standards. In ICWS'03, 2003.

[SWE05] SWEET. Sweetrules: http://sweetrules.projects.semwebcentral.org/,
accessed jan. 2006, 2005.

[SWS04] SWSL. Swsl: Semantic web services language,
http://www.daml.org/services/swsl/, accessed oct. 2005, 2004.

[SWS05] SWSF. Semantic web services framework (swsf),
http://www.daml.org/services/swsf/1.0/overview/, accessed
july 2006, 2005.

[SYY02] Y.-D. Shen, L.-Y. Yuan, and J.-H. You. Slt-resolution for the well-
founded semantics. Journal of Automated Reasoning, 28(1):53�97,
2002.

[SZ91] D Sacca and C. Zaniolo. Partial models and three-valued models in
logic programs with negation. In Workshop of Logic Programming

313

G Bibliography

and Non-Monotonic Reasoning, pages 87�104, Washington D.C,
1991. MIT Press.

[Tae77] S.A. Taernlund. Horn clause computability. BIT, 17:215�216,
1977.

[Teu93] F. Teusink. A proof procedure for extended logic programs. In
ILPS'93, MIT Press, 1993.

[TGN+03] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Jchiller. A
concept for qos integration in web services. In Int. Web Services
Quality Worksop (WQW'03), Rome, Italy, 2003.

[Thi99] M. Thielscher. From situation calculus to �uent calculus: State
update axioms as a solution to the inferential frame problem. Ar-
ti�cial Intelligence, 111:277�299, 1999.

[TK01] M. Thorpe and C. Ke. Simple rule markup language (srml)
- a general xml rule representation for forward-chaining rules,
http://xml.coverpages.org/srml.html, accessed june 2005, 2001.

[TPP+03] V. Tosic, B Pagurek, K. Patel, B. Esfandiari, and W. Ma. Man-
agement applications of the web service o�erings language (wsol).
In 15th Int. Conf. on Advanced Information Systems Engineering
(CaiSE03), Velden, Austria, 2003.

[TS86] H. Tamaki and T. Sato. Old resolution with tabulation. In 3rd
Int. Conf. on Logic Programming, pages 84�98, London, 1986.

[TWS+04] S. Tabet, G. Wagner, S. Spreeuwenberg, P. Vincent,
G. Jacques, C. de Sainte Marie, J. Pellant, J. Frank,
and J. Durand. Omg prr: Production rule representation,
http://www.w3.org/2004/12/rules-ws/paper/53/, accessed oct.
2005, 2004.

[Ull89] J. D. Ullman. Principles of Database and Knowlegebase Systems.
Vol. 2. Computer Science Press, Rockville, 1989.

[VAG05] K. Verma, R. Akkiraju, and R. Goodwin. Semantic matching of
web service policies. In SDWP '05 Workshop, 2005.

[VG89] A. Van Gelder. The alternating �xpoint of logic programs with
negation. In 8th ACM SIGACT-SIGMOND-SIGART Symposium
on Principles of Database Systems, pages 1�10, 1989.

[VG93] A. Van Gelder. The alternating �xpoint of logic programs with
negation. Journal of Computer and System Sciences, 47(1):185�
221, 1993.

[VGRS91] A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semantics
for general logic programs. JACM, 38(3):620�650, 1991.

[VSB84] W. VanMelle, H. Shortli�e, and G. Buchanan. Emycin: A knowl-
edge engineer's tool for constructing rule-based expert systems.

314

G Bibliography

In Rule Based Expert Systems, pages p.301�313. Addison-Wesley,
1984.

[W3C01] W3C. The semantic web, http://www.w3.org/2001/sw/, accessed
oct. 2006, 2001.

[Wag02] G. Wagner. How to design a general rule markup language. In
XML Technologien fuer das Semantic Web - XSW 2002, Proceed-
ings zum Workshop, pages 19�37, 2002.

[Wal87] C. Walther. A Many-Sorted Calculus Based on Resolution and
Paramodulation. Research Notes in Arti�cial Intelligence. Pitman
London and Morgan Kaufman, Los Altos, CA, 1987.

[WC96] J. Widom and S. Ceri. Active Database Systems: Triggers and
Rules For Advanced Database Processing. Morgan Kaufmann,
1996.

[WCB01] M. Welsh, D. Culler, and E. Brewer. Seda: An architecture for
wellconditioned, scalable internet services. In Proceedings of Eigh-
teeth Symposium on Operating Systems (SOSP-18), Chateau Lake
Louise, Canada, 2001.

[Web04] WebService. Web service architecture,
http://www.w3.org/tr/2004/note-ws-arch-20040211/, accessed
dec. 2005, 2004.

[WF90] J. Widom and S.J. Finkelstein. Set-oriented production rules in
relational database systems. In ACM Sigmond Int. Conf. on the
Management of Data, 1990.

[Wid92] J. Widom. A denotational semantics for starbust production rule
language. SIGMOD record, 21(3):4�9, 1992.

[WL97] C.H. Wu and S.J. Le. Knowledge veri�cation with an enhanced
high-level petri-net model. Journal of IEEE Expert, pages 73�80,
1997.

[Wri51] G.H. Wright. Deontic logic. Mind, 60:1�15, 1951.

[WSM05a] WSML. Web services modelling language,
http://www.wsmo.org/wsml/, 2005.

[WSM05b] WSMO. Web services modelling ontology, http://www.wsmo.org/,
accessed nov. 2006, 2005.

[WSO05] WSOL. Wsol: Web services o�ering language,
http://�ash.lakeheadu.ca/ vtosic/wsolpublications.html, ac-
cessed nov. 2005, 2005.

[WTB03] G. Wagner, S. Tabet, and H. Boley. Mof-ruleml: The abstract
syntax of ruleml as a mof model. In OMG Meeting, Boston, 2003.

315

G Bibliography

[WTM+04] E. Wohlstadter, S. Tai, T. Mikalsen, I. Rouvello, and P. Devanbu.
Glueqos: Middleware to sweeten quality-of-service policy interac-
tions. In ICSE 2004, pages 189�199, 2004.

[XHT06] XHTML. Xhtml modularization, http://www.w3.org/tr/2006/pr-
xhtml-modularization-20060213/, accessed june 2006, 2006.

[XW88] J. Xu and D.S. Warren. A type inference system for prolog. In
Proceedings of ICLP SLP'88, pages 604�619, 1988.

[YKZ03] G. Yang, M. Kifer, and C. Zhao. Flora-2: A rule-based knowledge
representation and inference infrastructure for the semantic web.
In Proceedings of ODBASE'03, pages 671�688, 2003.

[You04] C.M. Young. An introduction to it service management. Research
note, com-10-8287, Gartner, 2004.

[YY90] L.H. You and L. Y. Yuan. Three-valued formalization of logic
programming: is it needed. In Proceedings of 9th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 172�182. ACM Press, 1990.

[Zan93] C. Zaniolo. A uni�ed semantics for active databases. In Springer,
editor, Int. Workshop on Rules in Database Systems, pages 271�
287, Edinburgh, U.K., 1993.

[Zan95] C. Zaniolo. Active database rules with transaction-conscious
stable-model semantics. In Int. Conf. on Deductive and Object-
Oriented Databases, pages 55�72, 1995.

[ZHM97] H. Zhu, P. A. Hall, and J. H. May. Software unit test coverage
and adequacy. ACM Comput. Surv., 29(4):366�427, 1997.

[Zob87] J. Zobel. Derivation of polymorphic types for prolog programs. In
Proceedings of ICLP, pages 817�838, 1987.

[Zol05] E. Zolin. Complexity of reasoning in description logics,
http://www.cs.man.ac.uk/ ezolin/logic/complexity.html, accessed
dec. 2005, 2005.

316

	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Requirements and Research Issues
	1.3 Proposed Approach and Research Methodology
	1.4 Main Contributions
	1.5 Thesis Organization

	2 IT Service Level Management
	2.1 IT Service Management
	2.1.1 ITIL
	2.1.2 BS15000

	2.2 Service Oriented Computing
	2.3 Service Level Management and Service Level Agreements
	2.4 Use Case Example
	2.5 Related Works
	2.5.1 Commercial SLA/SLM Tools
	2.5.2 SLA XML Markup Language
	2.5.3 Policy Languages and Ontology-based Languages
	2.5.4 Semantic Web Services Languages
	2.5.5 Formalization Approaches
	2.5.6 Logic Based SLA Languages

	3 Knowledge Representation
	3.1 Rule Based Knowledge Representation
	3.1.1 Forward Chaining Rule Systems
	3.1.2 Backward Chaining Rule Systems
	3.1.3 Discussion Backward Chaining vs. Forward-Chaining in SLA Representation

	3.2 First-Order Logic
	3.2.1 Syntax
	3.2.2 Interpretations and Models

	3.3 Logic Programming
	3.3.1 Syntax of Logic Programs
	3.3.2 Semantics of Logic Programs
	3.3.2.1 Substitution and Unification
	3.3.2.2 Minimal Herbrand Model
	3.3.2.3 SLD Resolution
	3.3.2.4 Theory of Logic Programming with Negation

	3.4 Description Logics and Semantic Web Ontology Languages
	3.4.1 Description Logics
	3.4.1.1 Syntax of SHIF(D) and SHOIN(D)
	3.4.1.2 Semantics of SHIF(D) and SHOIN(D)

	3.4.2 Semantic Web Ontology Languages
	3.4.2.1 Semantic Web and Ontologies
	3.4.2.2 Resource Description Framework (RDF) and Schema (RDFS)
	3.4.2.3 Web Ontology Language (OWL)

	3.5 KR Event / Action Logics and Active Database Technologies
	3.5.1 Overview
	3.5.1.1 Active Databases and ECA Rule Systems
	3.5.1.2 Production Rule Systems
	3.5.1.3 Event Notification Systems, Complex Event Processing Systems and Reaction Rule Interchange Languages
	3.5.1.4 Temporal KR Event / Action / Transition and Update Logic Systems

	3.5.2 Basic Concepts in Event and Action Processing

	3.6 Requirements for a Logic Rule Based SLA Language

	4 The ContractLog KR
	4.1 Core Syntax and Semantic of the ContractLog KR
	4.1.1 Syntax of ContractLog
	4.1.2 Declarative Semantics of ContractLog
	4.1.3 Procedural Semantic of ContractLog

	4.2 Typed Logic
	4.2.1 Types in Logic Programming
	4.2.2 Description Logic Type System
	4.2.3 Syntax of Typed ContractLog
	4.2.3.1 Java-typed ContractLog Syntax
	4.2.3.2 DL-typed ContractLog Syntax

	4.2.4 Semantics of Typed ContractLog
	4.2.4.1 Declarative Semantics: Multi-Sorted Logic
	4.2.4.2 Operational Semantics: Hybrid Polymorphic Order-Sorted Unification

	4.2.5 Summary

	4.3 Meta-data Annotated Labelled Logic
	4.3.1 Syntax of Meta-Data Annotated ContractLog LPs
	4.3.2 Semantics of Meta-Data Annotated Labelled Logic Programs with Scoped Reasoning
	4.3.3 Summary and Related Work

	4.4 Integrity Preserving, Preferenced, Defeasible Logic
	4.4.1 Basic Concepts and History of Defeasible Logics
	4.4.2 Integrity Constraints
	4.4.2.1 Syntax of Integrity Constraints
	4.4.2.2 Semantics of Integrity Constraints

	4.4.3 Extended Prioritized Defeasible Logic
	4.4.3.1 Syntax of Prioritized Defeasible Logic Programs
	4.4.3.2 Proof-Theoretic Semantics

	4.4.4 Defeasible Metaprogram
	4.4.5 Summary

	4.5 Transactional Module-based Update Logic
	4.5.1 Syntax of Update Primitives
	4.5.2 Semantics of Updates
	4.5.3 Transactional Updates with Integrity Tests
	4.5.3.1 Syntax of Transactional Updates
	4.5.3.2 Model-Theoretic Semantics of Transactional Updates
	4.5.3.3 Proof-Theoretic Semantics of Transactional Updates

	4.5.4 Summary

	4.6 Temporal Event/Action Logic
	4.6.1 History and Basic Concepts of Event Calculus
	4.6.2 Syntax of the Event Calculus Logic
	4.6.3 Semantics of the Event Calculus Logic
	4.6.4 Summary

	4.7 Reactive Behavioral Logic
	4.7.1 Syntax of ECA-LP
	4.7.2 Declarative Semantics of ECA-LP
	4.7.3 Operational Semantics of ECA-LP
	4.7.4 Complex Event / Action Processing
	4.7.5 Event Notification / Communication Reaction Rules
	4.7.6 Summary

	4.8 Deontic Logic
	4.8.1 History and Basics in Deontic Logic
	4.8.2 Syntax of Event Calculus based Deontic Logic
	4.8.3 Semantics of Event Calculus based Deontic Logic
	4.8.4 Summary

	4.9 Test Logic
	4.9.1 Concepts and Related Work
	4.9.2 Syntax of Test Cases for LPs
	4.9.3 Semantics of Test Cases
	4.9.4 Declarative Test Coverage Measurement
	4.9.5 Summary

	4.10 Summary and Discussion

	5 Rule Based Service Level Agreement Markup Language (RBSLA)
	5.1 Rule Markup and Rule Interchange Languages
	5.2 RuleML: The Rule Markup Language Initiative and Language
	5.3 RBSLA: Rule Based Service Level Agreement Markup Language
	5.3.1 Design Goals
	5.3.2 Reaction RuleML: A Rule Markup Language for Reaction Rules
	5.3.3 RBSLA Deontic Layer
	5.3.4 RBSLA Defeasible Layer

	5.4 Discussion and Conclusion

	6 Rule Based Service Level Management (RBSLM) Prototype
	6.1 Architecture
	6.2 ContractLog Rule Engine
	6.2.1 Inference Engine
	6.2.2 ECA Interpreter
	6.2.3 OWL2PRova API
	6.2.4 Translator Services

	6.3 RBSLM Tool
	6.3.1 Contract Manager
	6.3.2 Mediator
	6.3.3 Service Dashboard

	6.4 Enterprise Service Bus
	6.5 Discussion and Conclusion

	7 Evaluation
	7.1 Theoretical Worst Case Complexity and Expressiveness
	7.2 Experimental Results
	7.3 Use Case Revisited - Adequacy / Expressiveness
	7.4 Discussion

	8 Conclusion
	8.1 Thesis Summary
	8.2 Practical Implications and Future Work
	8.3 Closing Remarks

	A Glossary
	B Variables and Functions
	C Rule Benchmarks
	D Appendix RuleML
	E Appendix Categorization of SLA Metrics
	F RBSLM Usability Testing Questionnaire
	G Bibliography

