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Abstract

This thesis describes experiments with diatomic molecules associated from ultra-
cold 8Rb atoms using magnetically-induced Feshbach resonances. The associa-
tion method is based on a slow magnetic-field ramp across a Feshbach resonance
which converts atom pairs into bound molecules. This constitutes a form of super-
chemistry: The reaction is reversible and coherent. No latent heat is released, and
as a consequence, the Feshbach molecules are about as cold as the atoms from which
they are associated.

The first experiment introduced in this thesis, characterizes the broadest of the
known Feshbach resonances in 8’Rb. To that end, the mean-field driven expansion
of an atomic Bose-Einstein condensate near resonance is studied and the scattering
length as a function of magnetic field is extracted. The position and magnetic-
field width of the Feshbach resonance are determined to be 1007.4 G and 200 mG,
respectively.

Subsequently, this Feshbach resonance is used to associate ultracold molecules
from a Bose-Einstein condensate of 3"Rb atoms. The molecules are detected by
a Stern-Gerlach method. This yields the magnetic moment of the molecules as a
function of magnetic field. Due to an avoided crossing between two bound states, the
magnetic moment changes sign at 1001.7 G. As a consequence, an applied magnetic-
field gradient creates a 1D harmonic trap for the molecules. The corresponding
harmonic oscillation is observed.

Next, we study the dissociation of the molecules by magnetic-field ramps that
are linear in time. From the kinetic energy released in the dissociation process, the
magnetic-field widths of four Feshbach resonances are determined. The method is
largely insensitive to magnetic-field noise and is applicable to very narrow Feshbach
resonances.

Using fast magnetic-field pulses instead of linear ramps, mono-energetic pairs
of atoms are created. For Feshbach resonances with an s-wave bound state, the
outgoing wavefunction is spherically symmetric. However, at a Feshbach resonance
near 632 G which is caused by a d-wave bound state, we populate outgoing s and d
waves. The measured dissociation rate shows a significant increase due to a d-wave
shape resonance. The position and the width of the shape resonance are extracted
from the data. For understanding our experimental observations, new theory is
developed.

Finally, the thesis reports on an experiment in which we prepare a quantum
state with one molecule at each site of an optical lattice. Our technique relies on
the creation of an atomic Mott insulator with exactly two atoms at each lattice
site at the core of the cloud. A magnetic-field ramp across the Feshbach resonance
at 1007.4 G associates the atom pairs to molecules. The method does not depend
on the interaction properties of the molecules and is therefore applicable to many
systems.



Zusammenfassung

Die vorliegende Arbeit beschreibt Experimente mit zweiatomigen Molekiilen, welche
mittels magnetisch-induzierter Feshbach-Resonanzen aus ultrakalten 8"Rb-Atomen
assoziiert werden. Dabei konvertiert eine langsame Magnetfelrampe iiber eine Fesh-
bach-Resonanz hinweg ein Atompaar in ein gebundenes Molekiil. Bei dem Prozess
handelt es sich um eine Art Superchemie: die Reaktion lauft reversibel und kohérent
ab. Es wird keine latente Warme freigesetzt, so dass die Feshbach-Molekiile so kalt
sind wie die anfanglich vorhandenen Atome.

Das erste der hier beschriebenen Experimente charakterisiert die breiteste der
bekannten Feshbach-Resonanzen in 8'Rb. Dazu wird die Expansion eines atomaren
Bose-Einstein-Kondensates nahe der Resonanz untersucht und die Streulédnge als
Funktion des Magnetfeldes extrahiert. Die so bestimmte Position liegt bei 1007.4 G,
die gemessene Breite betragt 200 mG.

Anschlieend wird diese Feshbach-Resonanz zur Assoziation von ultrakalten Mole-
kiilen aus einem Bose-Einstein-Kondensat benutzt. Der Nachweis der Molekiile er-
folgt mit Hilfe einer Stern-Gerlach-Methode. Diese liefert das magnetische Mo-
ment der Molekiile, welches aufgrund einer vermiedenen Kreuzung zwischen zwei
Molekiilzustanden bei einem Magnetfeld von 1001.7 G das Vorzeichen wechselt.
Durch Anlegen eines Magnetfeldgradienten entsteht deshalb eine eindimensionale
harmonische Falle fiir die Molekiile. Die entprechende harmonische Oszillation der
Molekiilwolke wird im Experiment beobachtet.

In einem nachsten Experiment wird die Dissoziation der Feshbach-Molekiile
durch lineare Magnetfeldrampen untersucht. Aus der freigesetzten kinetischen En-
ergie wird die Breite von vier verschiedenen Feshbach-Resonanzen bestimmt. Die
Methode ist weitgehend unempfindlich gegen Magnetfeldrauschen und kann deshalb
auch fiir sehr schmale Resonanzen verwendet werden.

Werden statt linearer Rampen schnelle Magnetfeldpulse zur Dissoziation verwen-
det, entstehen mono-energetische Atompaare. Im Fall von Feshbach-Resonanzen mit
einem gebundenen s-Wellenzustand ist die Wellenfunktion der Atompaare sphéarisch
symmetrisch. Verwendet man hingegen eine Feshbach-Resonanz bei 632 G mit einem
gebundenen d-Wellenzustand, werden zusatzlich auslaufende d-Wellen bevolkert.
Die Dissoziationsrate der Molekiile zeigt eine signifikante Erhohung aufgrund einer
sogenannten Form-Resonanz (shape resonance). Position und Breite der Form-
Resonanz ergeben sich aus den Daten. Ein neu entwickeltes theoretisches Model
erklart die experimentellen Beobachtungen.

Im letzten hier beschriebenen Experiment wird ein Quantenzustand mit einem
Molekiil an jedem Gitterplatz eines optischen Gitters erzeugt. Die Technik basiert
auf der Erzeugung eines atomaren Mott-Isolators mit genau zwei Atomen an je-
dem Gitterplatz im Zentrum der Wolke. Eine Magnetfeldrampe tiber die Feshbach-
Resonanz bei 1007.4 G assoziiert anschliefend die Atome zu Molekiilen. Die Meth-
ode hangt nicht von den Stofleigenschaften der Molekiile ab und ist deshalb in vielen
Systemen anwendbar.
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Chapter 1

Introduction

This introductory chapter puts the present work into the context of the field of ul-
tracold quantum gases. After some general remarks on Bose-Einstein condensation
and the early years of research on these fascinating quantum objects, the develop-
ments in recent years are presented, with special emphasis on Feshbach resonances
and ultracold molecules. The introduction ends with a discussion of the contents
and the relevance of this thesis work.

1.1 Ultracold quantum gases

The field of ultracold quantum gases emerged in 1995 when three groups indepen-
dently realized Bose-Einstein condensation in dilute atomic vapors of 8"Rb [1], "Li
[2] and #*Na [3]. A series of spectacular experiments followed that revealed the
fascinating nature of these Bose-Einstein condensates (BECs).

Bose-Einstein condensation is a quantum statistical effect. It occurs in an ideal
gas of indistinguishable bosons at extremely low temperatures when the thermal
de-Broglie wavelength of the particles becomes comparable to the inter-particle dis-
tance. Below a critical temperature, the wavefunctions of the particles start to
overlap and a macroscopic number of particles condenses into the single-particle
ground-state of the system. A macroscopic matter wave forms.

The first prediction of Bose-Einstein condensation dates back to the year 1925
when A. Einstein wrote his seminal paper [4] based on the findings in a paper by
N. Bose [5]. In the following decades, the connection between superfluidity in liquid
“He and the occurrence of Bose-Einstein condensation could be established [6, 7].
To some degree, superconductivity in metals could also be linked to Bose-Einstein
condensation. However, in all the systems studied before 1995, the interactions
between particles made a quantitative comparison with the ideal-gas theory difficult.

In contrast, condensation of dilute gases comes very close to the ideal-gas case.
This allows a theoretical description from first principles. Interactions between
the atoms due to elastic collisions are treated in a mean-field approach, where
interaction-induced correlations between the particles are neglected.



2 CHAPTER 1. INTRODUCTION

Today, close to a hundred experiments worldwide routinely produce Bose-Einstein
condensates [8]. Many properties of dilute Bose-condensed gases are well understood
by now, thus opening up several avenues for further research. The status of the field
about four years ago is summarized in two excellent textbooks [9, 10]. Part of the
more recent developments will be discussed in detail in Secs. 1.2 and 1.3.

One trend in fundamental research on ultracold quantum gases is the engineer-
ing of more complicated quantum systems. During the past few years, researchers
have developed a range of experimental tools to control external and internal de-
grees of freedom of the atoms in real time. Optical lattices, i.e. artificial crystals
of light created by interfering laser beams, are an important example [11]. Quan-
tum gases in optical lattices resemble solid-state systems, but have the advantage
of experimentally adjustable parameters. Hence, the hope is to engineer artifi-
cial condensed-matter systems in order to simulate open questions from solid-state
physics [12].

Besides studying Bose-condensed gases, there is a strong motivation for inves-
tigating the properties of fermionic quantum gases. This field was pioneered by
Debbie Jin at JILA in Boulder, Colorado. Her group applied and adapted the
techniques of laser cooling and evaporative cooling known from the experiments on
Bose-Einstein condensation to a gas of fermionic “°K atoms. In 1999, the group
reached the regime of quantum degeneracy [13]. Since then, the number of groups
studying fermionic quantum gases and also mixtures between bosons and fermions
has grown continuously [8].

1.2 Feshbach resonances

Collisions between particles are crucial for the physics of ultracold quantum gases.
The creation of a degenerate quantum gas by evaporative cooling relies on a fa-
vorable ratio between elastic and inelastic collisional cross sections. Furthermore,
elastic interactions determine the static and dynamic properties of dilute Bose-
Einstein condensates. Hence, controlling the elastic interactions between atoms
could open the door to exciting experiments and is certainly an experimenter’s
dream. Magnetically-tunable Feshbach resonances offer this possibility.

A Feshbach resonance is a scattering resonance, which occurs if two colliding
particles couple resonantly to a bound state. The concept of a Feshbach resonance
was first introduced in the context of nuclear physics [14, 15]. There a Feshbach
resonance is probed by tuning the energy of the colliding particles. In ultracold
gases, however, the collision energy is fixed. Here the resonance condition can be
met by inducing a relative energy shift between free and bound state with an external
static magnetic field. Magnetic tuning of collisional properties for cold gases was
initially discussed in terms of inelastic collisions and trap loss [16, 17]. In 1993, the
group of Boudewijn Verhaar in Eindhoven proposed to change the elastic scattering
properties by means of a magnetically tunable Feshbach resonance [18].
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A few years later in 1998, four groups independently observed Feshbach reso-
nances in »*Na, ¥Rb, and 33Cs [19-22]. While clearly demonstrating the desired
influence on elastic collisions, the experiments also revealed the simultaneous en-
hancement of inelastic processes near a Feshbach resonance. This was seen as a
serious limitation for future experiments and, as a consequence, dampened the in-
terest in Feshbach resonances. Among the few people still working on Feshbach
resonances at that time was Carl Wieman. His group performed a series of impor-
tant experiments using a Feshbach resonance in 8Rb. They employed the Feshbach
resonance to produce a stable Bose-Einstein condensate of ®Rb [23]. Furthermore,
they induced a controlled collapse of the condensate and carried out a detailed study
of the collapse dynamics [24]. By using a Ramsey scheme, the group demonstrated
the coherent coupling of the free atomic state to the molecular bound state involved
in the Feshbach resonance [25]. This experiment attracted much interest in the
community since it was an important step towards the creation of a molecular BEC
as first suggested by Timmermans et al. [26, 27].

Meanwhile, several experiments working with fermionic gases had entered the
quantum degenerate regime and turned their attention to realizing a superfluid of
fermionic atom pairs. The critical temperature for pairing and superfluidity depends
on the interaction strength between the atoms. Feshbach resonances were therefore
suggested as a means to bring the critical temperature into an experimentally ac-
cessible regime [28-30].

This prospect and the hope of creating a molecular BEC motivated a number
of groups to implement the technique of magnetically-tunable Feshbach resonances
in their experiments. In 2002, Feshbach resonances were reported for “°K [31], °Li
[32, 33], "Li [34-36] and also for ' Rb [37]. Since then, the number of groups using
Feshbach resonances has constantly grown. Today Feshbach resonances are a well-
established and widely-used tool in experiments on ultracold quantum gases.

Alternative methods for inducing Feshbach resonances were also put forward.
Proposals suggested to replace the static magnetic field with a radio-frequency field
[38], a static electric field [39] or a light field [40]. In the case of light, these resonances
are called optically induced Feshbach resonances and experiments demonstrated
their feasibility [41-43]. However, due to the big success of magnetically-induced
Feshbach resonances, these alternatives have not yet attracted as much attention.

1.3 Ultracold molecules

Recent years have witnessed an increasing interest in ultracold molecules. Compared
to atoms, molecules have the additional degrees of freedom of rotation and vibration.
Moreover, molecules can have a permanent electric dipole moment. These polar
molecules are good candidates for high-precision measurements such as the search for
an electric dipole moment of the electron [44]. Here, ultracold temperatures would
lead to an increase in precision. In addition, the long-range dipole-dipole interaction
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would offer the exciting chance to probe new physical regimes in ultracold quantum
gases (see e.g. Refs. [45, 46]).

Due to the complicated internal structure of the molecules, laser-cooling strate-
gies developed for alkali atoms do not work in the case of molecules. Hence, al-
ternative cooling methods are needed. Pioneering work was done using cryogenic
methods (buffer gas cooling) [47] and a Stark decelerator [48]. Today, more and
more methods are proposed and put into practice (see Ref. [49]). However, there
is still quite a long way to go in order to reach quantum degeneracy with these
methods.

A complementary approach to the cooling methods is the association of molecules
from ultracold atoms. The Julienne group first pointed out that a slow magnetic-
field ramp across a Feshbach resonance in the right direction would take population
into a bound molecular state [50]. This association technique constitutes a form
of super-chemistry, where the temporal evolution of the reaction is under complete
experimental control. The reaction is fully reversible and adiabatic, i.e. no latent
heat is released. Hence, an adiabatic ramp should convert an atomic condensate
into a molecular condensate.

In 2003, several groups adapted the ramping technique to associate ultracold
molecules from “°K [51], ¥3Cs [52], 3" Rb [53], °Li [54, 55], and **Na [56]. Two
groups reported the successful creation of molecules based on a slightly different
technique. They relied on the formation of dimers by three-body recombination
close to the pole of a Feshbach resonance [57, 58]. This is remarkable insofar as
under normal conditions, i.e. far from the pole of the Feshbach resonance, three-
body recombination leads to undesired loss of atoms.

None of the experiments starting from an atomic BEC managed to produce a
BEC of molecules. The reason was the short lifetime of the Feshbach molecules due
to inelastic collisions. Measurements in the bosonic systems **Na, 33Cs, and ®"Rb
revealed loss-rate coefficients on the order of 10~ %cm?3s™! [59-61]. Far away from the
Feshbach resonance, fast loss was also observed in the fermionic systems 5Li and 4°K.
However, close to the pole of the Feshbach resonance, inelastic molecule collisions
are suppressed by several orders of magnitude [54, 57, 62], which was a big surprise.
An explanation on the basis of the Pauli exclusion principle was suggested [63].

In November 2003, the groups of Rudi Grimm, Debbie Jin and Wolfgang Ketterle
demonstrated Bose-Einstein condensation of molecules [57, 58, 64]. In early 2004,
the same groups observed condensation of fermionic atom pairs on the Fermi side of
the Feshbach resonance [65-67]. The proof for superfluidity of the condensed pairs
was given by the Ketterle group in a spectacular experiment in 2005, in which they
demonstrated the creation of vortices [68].

Meanwhile, groups starting from bosonic atoms carried out a range of different
experiments with Feshbach molecules. The association process was investigated
systematically [69], one- and two-body decay of the molecules was studied [59—
61, 70]. Moreover, several groups looked into molecule dissociation by fast magnetic-
field ramps [59, 71]. An alternative method for the production of Feshbach molecules
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was demonstrated [72]. Experiments on coherent molecular optics were performed
[73]. Feshbach molecules were associated at the sites of a three-dimensional optical
lattice leading to a considerable increase of the molecule lifetime [74-76]. Very
recently, the coherent Raman transfer of Feshbach molecules to the next lower-lying
bound state was reported [77].

At the end of this section, another - much older - association technique should be
mentioned. Before the potential of Feshbach resonances was realized, photoassocia-
tion was the standard method for associating molecules from ultracold atoms [78].
One problem in photoassociation is the spontaneous scattering of photons, which
leads to heating. As a consequence, no molecular BEC could be created that way
yet.

1.4 This thesis

The experiments described in this thesis were carried out in an apparatus for Bose-
Einstein condensation of ’Rb. During the construction of the apparatus, special
emphasis was put on a high-flux source of atoms [79] and the stability of the mag-
netic trap [80]. As a result, the apparatus produces large Bose-Einstein condensates
with high reproducibility and a large repetition rate. In addition, ultra-stable ho-
mogeneous magnetic fields of up to 1260 G can be created [80]. This enabled the
detection of 42 Feshbach resonances, prior to this thesis work [37]. Most of these
resonances are too narrow for further applications. The broadest resonance by far is
located at ~ 1007.4 G and has a magnetic-field width of 200 mG. This is rather nar-
row in comparison to typical resonance widths in other alkali atoms. Nevertheless,
this particular resonance served as an excellent starting point for the experiments
described in this thesis.

An experiment that we performed in the beginning of this PhD work was a mea-
surement of the elastic scattering properties near the 1007-G resonance (Chap. 3).
Thereby, we demonstrated the controlled variation of the s-wave scattering length
by a significant amount. This was an important result, since most BEC experiments
work with 8"Rb. At the same time, the measurement revealed the excellent stability
and the high resolution of our magnetic field, a prerequisite for further experiments.

Shortly after, we produced ultracold molecules at the 1007-G resonance using
slow magnetic-field ramps (Chap. 4). This was one of the first experiments on
ultracold chemistry with Feshbach resonances. Unfortunately, the molecules are
short lived due to collisional decay and as a consequence no molecular BEC could
be obtained in our system.

Next, we turned our attention to the investigation of molecule dissociation by fast
magnetic-field ramps. From the kinetic energy released in the dissociation process,
the magnetic-field width of the corresponding Feshbach resonance was determined,
even in the case of very narrow resonances (Chap. 4). By using a magnetic-field
pulse with rectangular shape, we also created a spherical wave of mono-energetic
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atom pairs.

A similar technique allowed us to populate higher partial waves near a d-wave
Feshbach resonance at 632 G. From the measured molecule dissociation rate, spectro-
scopic information on a d-wave shape resonance was extracted. Our newly developed
theory connects the dissociation experiment to a scattering gedanken experiment,
which can be solved by a coupled-channels calculation. Chapter 5 introduces both
experiment and theory.

During the last year of this thesis work, a three-dimensional optical lattice was
implemented. Using our expertise on Feshbach molecules, we were the first group
worldwide to create a Mott-like state of molecules, i.e. a quantum state with exactly
one molecule per lattice site. Chapter 6 describes the corresponding experiment.
The thesis ends with an Outlook (Chap. 7).



Chapter 2

Experimental setup

Starting point for all the measurements presented in this thesis is a BEC of "Rb
atoms. This chapter briefly describes the procedure for obtaining a BEC and load-
ing it into an optical dipole trap (Sec. 2.1 and Sec. 2.2). A detailed description of
the apparatus and its optimization can be found in [79-81]. A technical challenge is
the creation of very stable, high magnetic fields on the order of a thousand Gauss,
a prerequisite for experiments with Feshbach resonances in 8"Rb. Sec. 2.3 briefly
describes how such fields are created in our system. More technical details can be
found in [80, 82]. The rest of the chapter (Sec. 2.4) is devoted to the implementa-
tion and characterization of a three-dimensional optical lattice, which opens up the
possibility to perform a new class of experiments [12] with our system.

2.1 Creation of a BEC

The onset of BEC in a gas of indistinguishable bosons is determined by the condition
9, 10]
n\p 2 2.612 (2.1)

where n is the spatial density and Agg = h/v/2mmkpT the thermal de-Broglie wave-
length of the particles. Starting from a Rb vapor at room temperature, 19 orders of
magnitude in phase-space density must be bridged to reach the BEC phase transi-
tion. This “phase-space odyssey” is illustrated in Fig. 2.1. First, laser-cooling and
trapping techniques like magneto-optical trapping and polarization-gradient cooling
[83] are employed. BEC is then reached by evaporative cooling of the magnetically
trapped atom cloud [79, 84]. We will now discuss the technical realization of the
different stages in our experiment.

2.1.1 Double-MOT system

A scheme of the vacuum system is shown in Fig. 2.2. The apparatus consists of
two chambers connected by a differential pumping stage. Each of the chambers

7
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Figure 2.1: Phase-space odyssey. The journey through phase space starts with laser-
cooling and trapping techniques. The BEC phase transition is then reached by evaporative
cooling.

houses a magneto-optical trap (MOT). The upper MOT serves as an atom source
and is optimized for fast loading. It operates at a Rb vapor pressure of ~ 1078 mbar
with high loading rates of up to ~ 5 x 10'° s7!. The atoms are transferred to the
lower MOT by a short near-resonant laser pulse. The single-shot transfer efficiency is
~ 15%. After 2 s of loading time with 15 transfer shots, typically ~ 6 x 10? atoms are
collected in the lower MOT. After a short MOT compression phase and subsequent
polarization gradient cooling, ~ 4 x 10° atoms at temperatures of 40-50 uK are left.
The background pressure in the lower part of the apparatus is ~ 107! mbar. This
ensures a low collision rate with background-gas atoms and therefore long lifetimes
in the magnetic trap, a prerequisite for reaching the BEC transition.

Fig. 2.3 shows the atomic transitions addressed in the experiment. The MOT
beams have a standard o*-o~ configuration. Their frequencies are slightly red-
detuned from the cycling transition 5512 f = 2 < 5P f = 3. An additional
repumping laser resonantly drives the transition 55/, f =1 < 5P3/5 f = 2.

All the light addressing the 55/, f = 2 state is derived from a single titanium-
sapphire laser (Coherent MBR110) with an output power of 1.3 W. The repumping
light is provided by a separate diode laser (Toptica DL100) with up to 150 mW of
output power. Both lasers are stabilized on atomic transitions using Doppler-free
saturation spectroscopy in combination with a Pound-Drever-Hall locking scheme [85].
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Figure 2.2: Double-MOT system. The vacuum system houses an upper vapor-cell MOT
and a lower science MOT in a glass cell. The magnetic trap and the optical dipole trap
are also indicated.

2.1.2 Magnetic trap

After polarization gradient cooling and before the transfer to the magnetic trap, the
atomic cloud is spin-polarized by optical pumping. Low-field seeking and therefore
magnetically-trappable states are | f,ms) = |2,2), |2,1), and |1, —1). The last one is
used in the experiment. For optical pumping, a o -polarized and a (much weaker)
m-polarized beam resonantly drive the transition 551/, f = 2 «» 5P3/, f = 2. This
transfers roughly 50% of the population into the desired state. Attempts to improve
this fraction with another o™-polarized laser beam resonant with the transition
5512 | =1 < 5P35 f = 1 were unsuccessful.

Fig. 2.4 sketches the coil configuration of the magnetic trap. The coils generate a
loffe-Pritchard field configuration [86]. Four linear rods (the “bars”) with alternat-
ing current directions generate a two-dimensional quadrupole field, which provides
radial confinement. The field of two “pinch” coils confines the atoms along the trap
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Figure 2.3: Level scheme of 8'Rb including hyperfine splitting. Labeled transitions are
used in the experiment.

axis. However, the strong center field generated by the pinch coils lowers the radial
confinement of the trap. To counteract this, a homogeneous field created by a pair
of compensation coils is added in order to reduce the center field to a small value By.
The finite value B, is necessary to suppress Majorana spin flips to non-trappable
Zeeman states [87]. The offset-field stability of the magnetic trap is excellent, with
a noise value of < 1 mG (rms over 1 hour) [80].

Close to the center, the potential is harmonic in all three dimensions. It is
characterized by the radial and axial trap frequencies, w, and w,, which can be
adjusted independently of each other. For efficient loading of the magnetic trap, the
trap center position is matched to the position of the atomic cloud after molasses
cooling. The trap frequencies are chosen to be w, = w, = 27 x 8.5 Hz. Together
with fast switch-on times of ~ 1 ms, this ensures that the phase-space distribution
of the atomic cloud is not significantly altered in the loading process.

2.1.3 Evaporative cooling

The final step for reaching the phase transition to BEC is forced evaporative cooling.
The idea is simple: the hottest atoms are selectively removed from the sample.
The remaining atoms collide elastically and re-thermalize. As a consequence, the
overall temperature decreases. Although atoms are removed from the trap during
evaporative cooling, the density in the trap center increases. In combination with
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Figure 2.4: Coil configuration of the Ioffe-Pritchard trap. The bars generate a 2D
quadrupole field for radial confinement. Along the trap axis, the pinch coils provide
harmonic confinement. The compensation coils reduce the magnetic field in the trap
center to a small offset field By.

the decreasing temperature this means an increase in phase-space density.

In practice, evaporative cooling is implemented by applying a radio-frequency
(RF) field to the magnetically trapped cloud. Since the atomic Zeeman energy de-
pends on position, the RF field locally induces transitions to non-trappable Zeeman
states, wherever the resonance condition hvgrp = mygrupB(r) is satisfied. gy de-
notes the Landé factor of the hyperfine state with quantum number f and pp Bohr’s
magneton.

Atoms with a large kinetic energy sample regions of high magnetic field, whereas
atoms with a small kinetic energy stay close to the trap center. Hence, a frequency
ramp from high to low frequencies continuously removes the hottest atoms from the
trap. In the experiment, vrp is swept from 50 MHz to ~ 2 MHz within 5 s.

For efficient evaporative cooling, the atom cloud is compressed in the magnetic
trap before the cooling process. This increases the density and therefore the collision
rate. The trap frequencies of the compressed trap are w, = 27 x 14 Hz and w, =
2m x 108 Hz.

A large fraction of the initial atom cloud is lost during the evaporative cooling.
Still, the decrease in temperature and simultaneous increase in peak density bring
the system across the phase transition to Bose-Einstein condensation. Typically, a
BEC of ~ 2 x 10° atoms in the state |f,m) = |1, —1) is produced. The remaining
thermal fraction has a temperature of some hundred nK.
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2.1.4 Detection

Absorption imaging is used for the detection of the atomic density distribution [79].
A near-resonant laser beam propagates along the imaging axis (y axis in Fig. 2.4).
The atom cloud absorbs part of the light and casts a shadow in the beam, which
is imaged onto a CCD camera. The light is near-resonant with a closed-cycling
transition of the atoms, so that one atom can scatter many photons and thus create
a large signal. An analogous technique could in principle be applied to molecules,
too. But the absence of closed-cycling transitions in molecules would lead to a very
small signal.

From the recorded two-dimensional intensity distribution I;(z,z), the atomic
column density n(x, z) = [ n(r) dy can be extracted according to Beer’s law. For an
incident intensity Iy(z, z) well below the saturation intensity of the atomic transition

one obtains (0.2)
1 Io(z, 2
n(x7 Z) O abs " It(xa Z) 7

(2.2)

where o, is the cross section for the absorption of a photon by an atom.

Before imaging, the atomic cloud is released from the magnetic trap or the dipole
trap and is allowed to fall and expand freely for 2-20 ms (time-of-flight method). For
a cloud in the collision-less regime, where the interaction energy between atoms is
negligible, the cloud expands freely and the spatial distribution after a long expan-
sion time reflects the initial in-trap momentum distribution. This is typically the
case for a purely thermal cloud. For high enough densities, as for example realized
in a BEC, the interaction energy between atoms due to elastic collisions plays a
crucial role and affects the expansion dynamics [10, 88, 89].

Absorption imaging is a destructive detection method. After an image has been
taken, a new experimental cycle is started. Hence for reliable quantitative mea-
surements, a good reproducibility and a high repetition rate of the apparatus are
desirable. With the ultrastable magnetic trap and an overall cycle time of ~ 15 s,
these conditions are well satisfied for our system.

2.1.5 Phase transition

The onset of BEC is marked by a characteristic change in the atomic density dis-
tribution. For a thermal cloud above the critical temperature T, for condensation,
the in-trap distribution is to a good approximation Gaussian in position and mo-
mentum. As a consequence, the thermal cloud expands isotropically with Gaussian
envelope [Fig. 2.5(a)].

Just below T, a significant number of particles occupies the ground state of the
trapping potential. A cold and dense core appears in the center of the atomic cloud
resulting in a typical bimodal density distribution [Fig. 2.5(b)].

Well below T, a large fraction of atoms is condensed and the condensate peak
is very pronounced. [Fig. 2.5(c)]. For a harmonic potential, the condensate density
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Figure 2.5: Absorption images of an expanding atom cloud taken 20 ms after the release
from the magnetic trap. The corresponding integrated density profiles n(z) = [ n(x, z)dz
are also shown. (a) Slightly above T, the atomic cloud is purely thermal. (b) Slightly
below the critical temperature, a small condensate peak can be identified. Ny denotes
the number of condensate atoms. (c) Well below T¢, a large fraction of the atoms is
condensed, resulting in the characteristic parabolic density distribution of a harmonically
trapped condensate.

distribution is parabolic. During expansion, the parabolic shape of the cloud is pre-
served but its aspect ratio is inverted [10, 88, 89]. Chap. 3.3.1 discusses the BEC
expansion dynamics in more detail.

2.2 Optical dipole trap

The Feshbach resonances studied in this thesis occur for atoms in the hyperfine state
|f,mg) = |1,+1). This state cannot be held in a magnetic trap. Hence, an optical
dipole trap is used. In this section, the concept of dipole trapping is explained and
the technical realization in the experiment is discussed. For a comprehensive review
of dipole trapping the reader is referred to [90].
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2.2.1 Optical dipole potential

When an atom is exposed to laser light, the oscillating electric field E induces an
oscillating electric dipole moment

d=aWw)E, (2.3)

where «a(w) is the frequency-dependent complex polarizability of the atom. The
potential energy of the induced dipole moment d in the external field E is given by

Viaip = —% (d-E), = —=—— Re(a)! , (2.4)

where (---), denotes the time average over rapidly oscillating terms. Hence, the
dipole potential Vg, is proportional to the intensity of the light field / and to the
real part of the polarizability Re(a), which describes the component of d oscillating
in phase with E. In addition, the oscillating dipole d absorbs (and subsequently
re-emits) power due to its out-of-phase component. The resulting photon scattering
rate turns out to be proportional to the imaginary part of a(w) and to the laser
intensity.

The polarizability a(w) can be calculated in the classical Lorentz model. This
treatment turns out to give fairly accurate results in special cases. A more detailed
description treats the atom as a quantum-mechanical two-level system. The classical
light field leads to a shift Vy;, in the ground-state energy of the atom, the AC-Stark
shift [83, 90].

Treating the atom as a two-level system, simple formulas for the dipole potential
Viip and the photon scattering rate I'y. can be derived [90]

3mc*T 1 1 3mc®Ty, I(r)
Vi (1) = — e I(r) ~ 2 A0 25
aip(T) 2w (wo —w * wo + w) (x) 2wl A (25)
32, (w\® [ 1 1Ly’ 3wl I(r)
[se(r) = 22y et I(r) ~ P 2.6
(x) 2hw <w0) (wo mpri wo + w) (x) 2hwi A2 (2:6)

A = w — wqy denotes the detuning of the angular frequency w of the light with
respect to the atomic resonance wy. I'y, is the spontaneous decay rate of the excited
state of the atom. For 8"Rb, the spontaneous emission rate is I'y, = 27 X 6 MHz.
The above formulas are valid for a detuning which is large compared to the fine-
structure splitting. The approximations on the right-hand side of Egs. (2.5) and
(2.6) are appropriate if wyg — w < wg + w. In this case, the Bloch-Siegert shift [91]
is negligible.

Egs. (2.5) and (2.6) reveal the basic principles of dipole trapping. The sign
of A determines the sign of Vy,: in a red-detuned beam (A < 0) atoms will be
attracted to regions of maximum intensity. At a given potential depth, the photon
scattering rate and the corresponding heating rate can be minimized by choosing
large detuning and high intensity.
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2.2.2 Technical realization

A Gaussian laser beam of power P and waist w, has an intensity profile [92]

2P
AP e

[(r,2) = Tw?(z)

, (2.7)

where w(2) = wg\/1 + (z/2r)? is the 1/e? radius of the intensity and zp = mw3/\
the Rayleigh-length. A is the wavelength of the laser light. A red-detuned Gaussian
beam forms a cylindrically symmetric atom trap. Close to the center, the trap-
ping potential is approximately harmonic with radial and longitudinal angular trap

frequencies
4V 2V
wr =4/ 02 and w, = «/—g ) (2.8)
mwg mzy

where m is the mass of an atom. The trap depth V can be calculated using Eq. (2.5).
For a single-beam trap, the confinement along z is weak compared to the radial
direction, i.e. w, < w,. In order to have similar confinement in all directions, a
crossed dipole trap consisting of two intersecting Gaussian laser beams is used.

In most of the experiments presented here, the light for the dipole trap is provided
by a single Nd:YAG laser (Innolight Mephisto 2000). It delivers up to 2 W of output
power in single-frequency operation at a wavelength of 1064 nm. The two beams
forming the crossed dipole trap have mutually orthogonal linear polarization to
minimize interference effects. One beam propagates along the magnetic-trap axis,
while the second beam propagates orthogonally to the first beam and subtends an
angle of 25° with the horizontal plane. Depending on the particular experiment,
beam waists and powers were adjusted. Typical numbers are 50 um for the waists
and 50 to 100 mW for the laser power per beam. Exact numbers are given when
presenting experimental results. The trap frequencies (w,, wy,,w,) were measured by
parametric heating [93, 94]. In our setup, the geometric mean of the trap frequencies
w = (wywyw, )/ is typically on the order of 27 x 100 Hz.

The dipole trap is loaded from the magnetic trap and can typically hold a BEC
of up to ~ 5 x 10° atoms. In order to prevent spin flips to other Zeeman states in
the dipole trap, a weak magnetic guiding field of ~ 1 G parallel to the center field
of the magnetic trap is applied.

2.3 Magnetic fields

For the Feshbach resonances in 8"Rb, the ratio of magnetic field width to resonance
position is on the order of 10~ or smaller. As a consequence, the magnetic fields for
addressing the Feshbach resonances must be stabilized very accurately. At the same
time, fast magnetic-field ramps close to resonance are necessary for the experiments
on molecule creation and dissociation.
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Two separate pairs of coils create the magnetic field. The compensation coils of
the magnetic trap serve as a first pair of coils. They produce a strong homogeneous
background field. Four power supplies (Agilent 6690A) drive the coils at a total
current of up to 1760 A. Sophisticated servo electronics keep the magnetic-field
noise caused by current fluctuations below 4 mG (rms). The field magnitude is
calibrated using microwave spectroscopy: from the measured frequency of microwave
transitions between hyperfine levels, the magnetic field at the location of the atoms
can be inferred using the Breit-Rabi formula [95]. The direction of the field is chosen
such that it is opposite to the center field of the magnetic trap and the weak guiding
field in the dipole trap. Atoms which were in the state |f,ms) = |1,—1) in the
dipole trap are transferred to the desired state |1, +1) with nearly 100% efficiency
by rapidly switching on the strong field (typically in ~ 2 ms).

Two additional coils create a magnetic field of a few Gauss, which is added to
the strong background field. The coils are made of thin copper wire and have six
windings each. Their diameter is small compared to the diameter of the compensa-
tion coils. This minimizes mutual inductance effects between the two pairs of coils.
Due to their small self-inductance of a few pH, the additional coils allow fast and
accurate ramps, with ramp speeds of up to 1 G/us. The servo loop for these coils
is so fast that its step response has a settling time of ~ 1 us.

2.4 Optical lattice

An optical lattice is a regular array of dipole traps formed by standing-wave light
fields (see e.g. Ref. [96]). The periodic lattice potential leads to a situation similar
to that of crystal lattices in condensed matter systems, resulting e.g. in a band struc-
ture of the lattice energy levels. However, in contrast to condensed-matter systems
most parameters of the optical lattice are freely adjustable and can be changed in
real time. In this section, the theoretical basics of optical lattices are introduced
(Sec. 2.4.1 and 2.4.2). For the three-dimensional optical lattice implemented in our
apparatus, details of the setup and the characterization are given (Sec. 2.4.3 and
2.4.4).

2.4.1 Periodic lattice potentials

Retro-reflecting a Gaussian laser beam is the easiest way to create a periodic array
of dipole traps (see Fig. 2.6). The intensity distribution of such a one-dimensional
standing wave is given by

8P
O ey

I(r) = 9. cos? (kiai2) - (2.9)

Tw?(2)
Kiat = 27/ Aot is the modulus of the wave vector. The dipole potential on the beam
axis can be written as

V(2) = —Vig cos®(kjar2) (2.10)
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Figure 2.6: A retro-reflected Gaussian beam forms a standing wave pattern.

The lattice depth V4 can be calculated from Eq. (2.5). For simplicity, the Bloch-
Siegert shift is neglected in the following. A convenient and widely used energy
unit for lattice experiments is the atomic recoil energy E,.. = h*k?,/2m, the kinetic
energy transferred to an atom at rest due to the momentum kick by an absorbed or
emitted lattice photon. In terms of recoil energy the lattice depth then reads

Vi, 2 3P
lat _ _ 3"2“3 38—2—. (2.11)
E, .. Rk, wi wg A

Multidimensional periodic dipole potentials can be formed by superimposing
several one-dimensional standing waves. In general, the overall potential is not
simply the sum of the single-beam potentials. Additional terms due to interference
effects between the beams have to be taken into account. As an example, consider
two beams propagating along the y and z axis with linear polarization vectors e,
and e, and a (generally time-dependent) relative phase ¢. The resulting interference
term is proportional to

2e,, - e, cos ¢ cos(kiqy) cos(kige2) - (2.12)

Depending on the relative phase and the polarizations of the two beams, checkerboard-
like lattice structures can be realized [97]. However, in order to create simple cubic
lattices as in our experiment, the interference term must be minimized. In practice,
we eliminate it by choosing the polarizations to be orthogonal and by detuning the
frequencies of the two beams with respect to each other, typically by some tens of
MHz, so that the relative phase varies rapidly and the interference term averages to
zero on the time scale of the atomic motion (typically some tens of kHz).

The resulting 3D simple cubic lattice structure of the potential landscape is
sketched in Fig. 2.7. The three standing waves with Gaussian envelope intersect at
right angles and thereby form the lattice potential

_gu?is? e _pri4y?
V(r) = —Viu |e Wi cosQ(klatx)—i-e w0y cosz(klaty)—Fe wg, COSQ(klatZ)

(2.13)
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Figure 2.7: 3D simple cubic lattice. At the intersection of three mutually orthogonal
standing light waves, a potential landscape with simple cubic lattice structure of its minima
forms. Each sphere represents a potential minimum.

Here, we have chosen the lattice depths in all three standing waves to be equal which
is also the case in the experiment. wy,, wo,, wo. are the beam waists of the three
lattice beams. Usually, the beam diameters are large compared to the size of the
atomic cloud loaded into the optical lattice. As a consequence, the most relevant
characteristics of the 3D lattice potential can be described by the pseudo-potential

V(r) = —Vig [cos? (ki) + cos® (kiary) + cos” (kiae2)] — % (wia? + wly® + wiz?) .
(2.14)
Here, the confinement due to the Gaussian lattice beam shapes is approximated by
a harmonic confinement with effective angular trap frequencies

4Vi, 1 1 . .
w2 = Hat (_2 + _2) , Wy, w, by cyclic permutation. (2.15)
m \wg, wg,

Each individual lattice site forms an approximately harmonic potential close to
its center, with an angular trapping frequency

[ Viak?
Wit = || 2 at (2.16)
m

The periodic structure of the optical lattice potential V' (r) leads to energy bands
just like for crystal structures in condensed matter systems. Since the 3D potential
is created by three independent standing waves, the problem is fully separable and

2.4.2 Band structure
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Figure 2.8: Band structure of a one-dimensional optical lattice. The graphs correspond
to lattice depths of Vigy = 0,4,and 12F,.. (from left to right). With increasing lattice
depth, the band gaps increase and the bands flatten.

it suffices to solve the one-dimensional Schrodinger equation
R,
[—%az + V(x)] vi(z) = EM . (2.17)

Here, hq is the quasi-momentum and n labels the different solutions of Eq. (2.17)
corresponding to the different lattice “bands”. According to Bloch’s theorem the
wavefunction can be written as [98]

\Ifg”) (z) = "% (™ (z) | (2.18)

q

where u,(ln) has the same periodicity, \u;/2 = 7/kiat, as the periodic lattice potential

V(z). Hence, we can write the wavefunction ol (x) as a Fourier sum

U (z) = cgellrtaski (2.19)

q
s

The Fourier decomposition of V' (z) is easily written down
1 , .
V(z) = —Vig cos? (kimz) = _VWZ (2 + 2kl 672lklatx) _ (2.20)

By inserting Egs. (2.19) and (2.20) into Eq. (2.17), one arrives at the following
equation which is satisfied for each Fourier component separately
h2 Wat ‘/lat Wat

%(q + 25klat)2 - E(gn) - 9 Cs — TCS_H — TCS_l =0. (221)
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The periodicity of the problem implies that the solutions for all ¢ = ¢ +
72kt (r € Z) are identical. Hence, it is sufficient to solve Eq. (2.21) inside the
first Brillouin zone, i.e. for —k;,; < q < kj,;. The Fourier coefficients ¢, decrease
quadratically with the modulus of s. Hence, the Fourier series can be truncated at
some point and one obtains a finite set of linear equations for the ¢;,. The energy
eigenvalues are then obtained by setting the determinant of its matrix representation
to zero. Fig. 2.8 shows calculated band structures for different lattice depths.

2.4.3 Setup of the optical lattice

The light for the three beams forming the optical lattice is provided by a titanium-
sapphire laser (Coherent MBR110), which delivers up to 1.9 W of output power at
a wavelength of 830 nm. The laser is frequency-stabilized onto an internal reference
cavity, which results in a measured rms line width on the order of 100 kHz (measured
on a time scale of 10 ms at a bandwidth of 50 kHz).

The setup of one lattice beam is schematically shown in Fig. 2.9. The light from
the titanium-sapphire laser is split into three beams of typically 450 mW each. The
power in each beam is controlled separately with acousto-optic modulators (AOMs)
and mechanical shutters. To eliminate any interference effects between the beams
(see Sec. 2.4.1), the AOM frequencies are detuned with respect to each other by
40-200 MHz. Three separate optical fibers guide the beams to the experiment.

The beams on the x axis (along the magnetic trap axis) and the y axis (along
the imaging axis) intersect at right angles. The beam along the z axis (vertical)
propagates at an angle of 4° with respect to the normal to the z-y plane. Each beam
is linearly polarized and the polarizations are chosen orthogonal to each other. Due
to the limited optical access, the lattice beams have to be overlapped with the MOT
beams using dichroic mirrors. The lattice beams are focussed down to a waist of
wo = 135 pum at the location of the atoms. The Rayleigh length is zr = 6.9 cm.
After leaving the glass cell, the beams are collimated again and retro-reflected. All
focussing lenses are mounted on 2D translation stages, which allow for alignment
perpendicular to the direction of beam propagation.

In the glass cell, the power per lattice beam is up to 200 mW. Due to reflections
off the glass cell and losses in optical components, the retro-reflected beams only
deliver 60-80% of that power. The Gaussian envelope of the lattice beams creates
an additional harmonic confinement. For equal lattice depths Vj,; in each standing
wave and perfectly aligned beams, the corresponding trap frequencies are given by

w/27 = 13Hz X \/Viat/ Erec (2.22)

in all directions, according to Eq. (2.15).

Coarse alignment of the lattice is done using near-resonant laser light, which
is sent through the same fibres as the lattice light. This ensures excellent spatial
overlap between lattice light and near-resonant light. By blasting away the atoms
trapped in the dipole trap with the near-resonant laser light, the optical elements
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Figure 2.9: Lattice beam setup. Part of the light from the titanium-sapphire laser (Ti:Sa)
is divided off using polarization optics (halfwave-plate and polarizing beam splitter) and
guided to the experiment through an optical fiber. The focussing lenses for the lattice are
mounted on 2D translation stages. Due to limited optical access, the lattice beam has
to be overlapped with a MOT beam on a dichroic mirror. Behind the glass cell, another
dichroic mirror separates the lattice beam from the MOT beams. The lattice beam is
collimated and retroreflected. A feedback loop consisting of an acousto-optic modulator
(AOM), a servo, and a photodiode (PD) controls the beam power.

for the lattice light can be adjusted on a coarse level. For fine-alignment, one lattice
beam at a time is combined with one dipole trap beam thus forming a crossed dipole
trap. At the same time, the retro-reflected beam is blocked. The atom number in
this crossed dipole trap serves as a criterion for aligning the lattice beam. Next,
the retro-reflected lattice beam is coupled back into the optical fiber. The resulting
standing wave is further optimized by using the calibration method described in the
next section.

2.4.4 Lattice calibration

In order to interpret any experimental results correctly, the depth of the optical
lattice has to be calibrated very carefully. The calibration method should thereby
be rather quick and easy-to-use, since the optical lattice requires regular re-alignment
and re-calibration due to thermal drifts of the optical components. We adapted the
following technique from Ref. [99]: the atoms are released from the optical dipole
trap and one lattice beam is pulsed on for a short time. Starting from an atomic
cloud at rest, this will create atomic diffraction peaks in time-of-flight images. The
population of these peaks reveals the lattice depth.
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To understand this process, we note that the 1D lattice potential — V), cosQ(klatx)
= —Viat(2 + e 2R  e2ikia®) /4 couples the state |p = 0) to the higher-momentum
states |£2hk;q), | £4hkia), ete. For low enough lattice depths, coupling to |+4hk;,,)
and higher momenta can be neglected. Using a matrix representation with respect to
the momentum state basis {|—2hkiu), |0), |[+2hkia)}, a straightforward calculation
shows that the coupling leads to Rabi oscillations of the population in the states
|£2hk1,:) according to [100]

Q
[(+2hk0 [T ()| o sin® ( ;att) o 1 — cos (Qart)

2/ V2
with O = 42 + % : (2.23)

where W(t) is the wave function of the system and €, is the Rabi frequency. A
measurement of this population as a function of the lattice pulse duration thus yields
Vzat~

With this method, Vj,; is measured for each standing wave separately. Due to
imperfect alignment of the beams, the actual lattice depth Vj,; is typically a fac-
tor of ~ 1.5 less than expected from the parameters of the laser beams. Fig. 2.10
shows experimental results for the lattice beam along the magnetic-trap axis (x-
axis). Choosing an appropriate time-of-flight, the population in the momentum
components |£2hk;,,) is clearly visible in the absorption images as diffraction peaks.
Besides the discrete diffraction peaks, some of the absorption images show s-wave
scattering spheres. They arise due to elastic scattering between atoms in different
momentum components [101-103]. Since they appear as non-interfering incoher-
ent background, such scattering spheres can possibly tamper quantitative measure-
ments, e.g. when determining the contrast of a diffraction pattern. However, the
scattering spheres can be used to characterize the strength of the standing wave
along the imaging axis (y-axis). There, the higher momentum components |+2Ak)
are not resolved due to the line-of-sight integration by the detection beam. In con-
trast, the scattering spheres are clearly visible (Fig. 2.10c¢) and their population also
oscillates as a function of pulse duration.

2.4.5 Loading the optical lattice

The BEC is initially trapped in the dipole trap and is loaded into the optical lattice
by slowly ramping up the lattice beam powers. The loading must be performed
adiabatically in order to populate the ground state of the lattice. Adiabaticity must
be ensured with respect to two different processes.

First, population transfer from the lowest Bloch band to higher bands must be
avoided. This is a single-atom problem. The adiabaticity criterion is [104]

n,qld/dt|0, )| < |E@ — E\|/h 2.24
n 0
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Figure 2.10: Lattice calibration. (a) Immediately after release from the dipole trap, the
lattice beam along the magnetic trap axis is pulsed on for a short time. The time-of flight
images show diffraction peaks corresponding to the momentum components |+2/k;.).
The population in the diffraction peaks oscillates as a function of pulse duration Ar. For
the sequence shown, A7 increases in steps of 5 us from left to right. In some pictures,
s-wave scattering spheres are visible. (b) Number of diffracted atoms as a function of pulse
duration for the same lattice parameters as in (a). The dots (e) are experimental data.
The fit (line) to the data gives a Rabi frequency €244 of ~ 27 x 22 kHz, which corresponds
to a lattice depth of ~ 7E,.. (c) Along the imaging axis, the diffraction peaks at +2hk;,;
are not visible due to the line-of-sight integration by the detection laser. Instead, the
s-wave scattering spheres are quite pronounced and can be used for lattice calibration.

where |n, q) is the Bloch state in the n-th band with quasi momentum ¢ and EW

is the energy of this state. For Vi, < FE,.., the spacing between the two lowest
bands Ef)) — E(()O) ~ 4F,.. remains finite for ¢ ~ 0 . In this case, the adiabaticity
criterion can be written as (d/dt) Vigt/Eree < 32v/2E e/l ~ 9 x 10°s~! [104]. For
deeper lattice potentials, the band spacing increases and the adiabaticity criterion
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is fulfilled more easily.

Second, adiabaticity with respect to excitations of the many-body state must be
ensured. When the lattice potential is ramped up, the atoms are confined in the
lattice sites more strongly and the mean density increases. This causes a larger atom-
atom interaction energy. In order to avoid excitations, which lead to a dephasing of
the sample, the chemical potential must remain flat. This leads to a redistribution
of the atoms for increasing lattice depth. In deep lattice potentials, atom transport
is suppressed and the lattice ramp speed must be sufficiently slow to allow for the
redistribution. The need for redistribution is partly compensated by the increased
harmonic confinement due to the lattice beams at increasing beam powers. The
actual dynamics of the sample depends on the detailed experimental conditions and
is difficult to quantify. The aspect of many-body adiabaticity will become important
in the context of the Mott-insulator phase transition discussed in Chap. 6.



Chapter 3

Atomic scattering near a Feshbach
resonance

Magnetically tunable Feshbach resonances offer the possibility to modify and con-
trol the scattering properties of ultracold gases in real time. The first part of this
chapter presents basic concepts of low-temperature scattering theory and leads up
to a discussion of the physics underlying Feshbach resonances. The theoretical intro-
duction is complemented by the presentation of experimental results in the second
part of the chapter. By analyzing the mean-field driven expansion of a Bose-Einstein
condensate near a Feshbach resonance in 8"Rb, the variation of the scattering length
a is demonstrated. The results presented here are published in [105].

3.1 Cold collisions

Starting from a time-independent formulation of binary scattering, this section in-
troduces the concept of partial waves and shows that for typical temperatures in
ultracold gases the scattering is completely described by a single parameter, the
s-wave scattering length. The importance of the scattering length for the static and
dynamic properties of a Bose-Einstein condensate is briefly discussed. The reader
interested in more details of scattering theory is referred to the literature [106-110].

3.1.1 General remarks

The problem of scattering two particles off one another can be separated into center-
of-mass and relative coordinates. The center-of-mass motion is trivial. The problem
in the relative motion is equivalent to that of one particle with the reduced mass
Myeq scattering off a potential V(r).

Scattering theory is usually formulated as a time-independent process with an
incoming plane wave with wavevector k pointing along the z-direction and energy
E = h?k*/(2myeq). The corresponding time-independent Schrodinger equation is

25
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given by

V2 sl o®my = Bo® .
—5— H V)| (1) = By (r) (3.1)

Myed
An appropriate boundary condition for Eq. (3.1) is based on the following argument:
Well outside the range of the potential V', the scattering wavefunction @Dl(:r) consists
of two parts. The first corresponds to the incoming plane wave, the second is
created by the scattering process and falls off radially like a spherical wave. Hence,
the wavefunction has the asymptotic form

eikr

B @)= f(0, ) — (3.2)

where 7,9, are spherical coordinates. f(v, ) is the scattering amplitude, which is
related to the experimentally accessible differential cross section

da_
aQ

Here, d§2 = sinvdddy is the differential solid angle. The total cross section o is
obtained by integration of the differential cross section over the full solid angle. The
task in scattering theory is to determine f(1J,¢) for a given potential V (r).

@0l (3.3)

3.1.2 Partial waves

For treating cold collisions theoretically, it is very convenient to switch to an an-
gular momentum basis, i.e. to express the problem in terms of spherical harmonics
Yim, (¥, ), where [ labels the angular momentum with projection m; along the z-axis.

The decomposition of the wavefunction wl(:r) (r) then reads

¢1(<+) (7“, 797 90) = Z ulir) Yzml (797 90) > (34)

l7ml

The expansion coefficients are written as u;/r with the radial wavefunctions wu,(r).
Inserting Eq. (3.4) into Eq. (3.1) for the special case of a spherically symmetric
potential yields a differential equation for the radial part u;(r)

a2 R+ 1)

2Myeq A2 21y eqt?

+V(T)} w(r) = Ew(r) . (3.5)

Besides the scattering potential V' (r), this equation contains a repulsive centrifugal
term Vientr = B21(1 4+ 1) /(2m,eqr?), which vanishes only for [ = 0.

Well outside the range of the scattering potential (r — o) each radial wavefunc-
tion wu(r) is a superposition of an incoming oc e~**" and an outgoing wave o e¥*",
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Since we assume a spherically symmetric potential, the particle flux is conserved
for each partial wave separately, i.e. the amplitudes of the incoming and outgoing
wave must be the same in magnitude. Hence, the effect of the scattering potential
is reduced to a relative phase factor, written as e*%, where §; is real and defined
only modulo 7

w(r) == (=1)Fle ™ — 2o (3.6)

Inserting Eq. (3.6) into Eq. (3.4) gives an asymptotic formula for @Zzl(:r) (r). This
is to be compared to the boundary condition (3.2), also expanded in the angular
momentum basis. As a result, one can extract an expression for the scattering
amplitude f in terms of partial-wave phase shifts §;

£() = %Z\/47r(2l+1)ei5l §in(6)Yio(¥) . (3.7)

Thus, the scattering problem is now reduced to determining the phase shift §; for
each partial wave. The corresponding total cross section is given by

oo An 0o .
o= Zal = EZ(2l+1)Sm2 g . (3.8)
=0 1=0

When determining cross sections, special attention must be paid in the case of
indistinguishable particles. The corresponding two-particle wave function has to be
properly symmetrized. Since we are dealing with bosons in our experiment, we will
restrict the discussion to the scattering of identical bosons. Here, the cross sections
double for the even partial waves and vanish for the odd ones [109]

8w .
Tboson = 75 Z (20 + 1)sin®6; . (3.9)

l even

It is important to notice, that for given k, there is a maximum total cross section of
(21 4+ 1)87 /k? for each partial wave, which is called the unitarity limit.

3.1.3 Low-energy scattering

Typical temperatures reached in experiments with ultracold atoms are well below
100 uK. In this regime, only the s wave, i.e. the partial wave with [ = 0, is im-
portant. This greatly simplifies the description of the scattering process since the
only quantity to be determined in Eq. (3.7) is the phase shift §y. Qualitatively,
this can be understood by observing that for sufficiently low energies the centrifugal
barrier Ve, in Eq. (3.5) prevents partial waves with { # 0 from penetrating into
the region of the scattering potential V. The higher partial waves do not probe the



28 CHAPTER 3. ATOMIC SCATTERING NEAR A FESHBACH RESONANCE

scattering length a/R

10 15 20 25 30
potential depth V/V;

Figure 3.1: Scattering length a as a function of potential depth V4 for a three-dimensional
square-well potential. V; = w2h?/ (8mredR2) is the potential depth at which the first
bound state develops. R is the potential radius. a has a pole whenever a new bound state
is supported by the potential.

actual scattering potential. For 8’Rb, the d wave contributes significantly around a
temperature of 250K due to a shape resonance behind the centrifugal barrier [111].
Below this temperature, only the s wave is important. The d-wave shape resonance
will be discussed in detail in Chap. 5.

For a quantitative analysis, the long-range behavior of the scattering potential
plays an essential role. If the potential decreases faster than =2 at large distances,
the s-wave phase shift will be proportional to the wavevector k in the limit of van-
ishing energy, i.e. dyp < k for k — 0, and all higher partial-wave phase shifts will
vanish even faster [106]. As a consequence, o becomes constant for sufficiently low
energies and the scattering is isotropic. This holds for two ground-state atoms which
experience a typical Van-der-Waals potential oc =6 at large distances.

The low energy behavior of the scattering phase dy motivates the definition of
the s-wave scattering length:

4= _lim tan dg (k) 7
k—0 k

(3.10)

With this definition the total cross section for bosons in the limit & — 0 can be
written as

o = 8ma® . (3.11)
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For a purely repulsive potential a is positive [106]. However, for an attractive
potential the situation is more complex. This point can be clarified by the simple
example of a three-dimensional square-well potential

vy =4 0 Tt (3.12)
0 r> R.

where Vy > 0 is the potential depth and R is the potential radius. The solution of
the Schrodinger equation in the s-wave limit is

sin(k'r), k' = /) 2eedlBHV0) o g
up(r) = (Kr) i (3.13)

- csin(kr +&o) , k = /22 ¢ > R,

As a boundary condition, uy and dug/dr have to be matched at r = R, thus de-
termining ¢ and §yg. From the resulting dy, the scattering length is calculated using
Eq. (3.10)

a=R-— %tan(k:’R) . (3.14)
This expression is plotted in Fig. 3.1 as a function of V4. Interestingly, there are poles
in (V). Their positions are given by V; = V(25 — 1)?, where V; = 72h?/ (8mycaR?)
and j is a positive integer. It can be shown that these are exactly the potential
depths for which an additional bound state at £ = 0 develops. Similar poles in a
caused by the presence of bound states near £ = 0 are important when describing
Feshbach resonances.

3.1.4 Mean-field description of a BEC

Low-energy scattering plays a key role in describing interactions in cold atomic gases.
Typically, these gases are dilute, i.e. interactions are dominated by binary elastic
collisions. A dilute system is characterized by a gas parameter na® < 1, where n is
the density and a the s-wave scattering length.

In second quantization, the Hamiltonian describing N pairwise interacting bosons
confined in an external trapping potential V},,, can be written as follows [9, 10]

H = /d% Pt(r (—h—2v2 + Virap(r )) W(r)

- (3.15)
2 /dgrd?’r’\lﬁ( )\IJT( VWine(r — YU (r)U(r) .

The bosonic field operator \il(r) annihilates a particle at position r. The Hamiltonian
Eq. (3.15) can be simplified by replacing V;,; with an effective contact potential
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[109, 112]. For s-wave collisions this is appropriate, since the details of the atomic
interaction potential at short radii are not probed.

If interactions between particles are not too strong, which is usually the case
for a dilute Bose-condensed gas, a mean field can be introduced. In the mean-
field approach, the condensate contribution to the field operator is separated out.
This was first suggested by Bogoliubov in 1947 [113]. The condensate part of the
field operator is replaced by its expectation value 9(r,t) = (¥(r,t)). Note, that
the condensate wavefunction (r,t) is normalized such that [ d*r[¢(r)|? equals the
number of particles in the BEC. Neglecting the non-condensed part of the bosonic
field operator, one arrives at the Gross-Pitaevskii (GP) equation for the condensate
wavefunction [9, 10, 114, 115]

(_ h*V? 4rha

Vra
2m T p(r)+ m

\w<r,t>|2) o) = Lo . @0)

This non-linear Schrodinger equation successfully describes a whole range of phe-
nomena in dilute Bose-Einstein condensates, such as collective modes [116] or vor-
tices [117].

The non-linear term proportional to the s-wave scattering length a and the
atomic density |¢(r)|2 represents interactions on a mean-field level. For positive
a, the interaction is effectively repulsive and the condensate is stable. However, for
negative a the interaction is effectively attractive. In this case, the condensate can
only be stable for a small number of atoms. Above a critical atom number, the
condensate becomes unstable and collapses [118]. As the next section will show,
Feshbach resonances are a means to change the scattering length and thereby access
the different regimes of repulsion and attraction.

3.2 Feshbach resonances

By taking into account different internal states of the colliding atoms, the scattering
problem becomes more complex. One consequence is the occurrence of Feshbach res-
onances. This section discusses the basic principles underlying Feshbach resonances
and introduces the relevant interaction mechanisms. The reader interested in a de-
tailed mathematical treatment of resonance scattering is referred to the literature
26, 106, 119-122].

3.2.1 Principle

In many scattering experiments, the particles have internal degrees of freedom, such
as spin. Alkali atoms, for example, have a rich hyperfine structure. In a collision,
each hyperfine state results in a different interaction potential. These potentials are
referred to as scattering channels.

A Feshbach resonance occurs when two atoms undergoing a binary collision cou-
ple to a bound state of a different scattering channel. The situation is depicted in
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Figure 3.2: Principle of a Feshbach resonance. Due to the inter-channel coupling, atoms
in the open channel can populate a bound state in the closed channel at small internuclear
distances. When the energy difference between bound state and open-channel threshold,
AFE, goes to zero, the population in the bound state is resonantly enhanced. A Feshbach
resonance occurs.

Fig. 3.2. The discussion is restricted to two channels with different threshold ener-
gies. Possible other channels corresponding to other atomic hyperfine states are not
drawn. The atoms enter in the lower channel (open channel) with a kinetic energy
very close to the dissociation threshold of that channel. The energy difference be-
tween the channels is much larger than the kinetic energy. Hence, the upper channel
is energetically closed, i.e. atoms cannot leave the interaction region in the closed
channel due to energy conservation.

If the energy of the atoms in the entrance channel is close to the energy of a bound
state in the closed channel, the atoms can temporarily populate this bound state,
provided the interaction Hamiltonian can flip spins, i.e. couple the two channels.
If the two energies are degenerate, the population in the bound state is resonantly
enhanced and a Feshbach resonance occurs.

3.2.2 Magnetically-induced Feshbach resonances

The open and closed channels involved in a Feshbach resonance typically have dif-
ferent spins, resulting in different magnetic moments of the two states. Hence, an
external magnetic field induces a differential Zeeman shift between the two scatter-
ing potentials. This opens up the possibility to tune the system into resonance. The
situation is sketched in Fig. 3.3(a). Shown are the energies of the open-channel dis-
sociation threshold and of the closed-channel bound state as a function of magnetic
field. The Feshbach resonance occurs at the magnetic field value B,..; where the two
states cross. In the vicinity of the resonance, the energy difference AE between the
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Figure 3.3: Magnetically tunable Feshbach resonance. (a) The energies of the open-
channel threshold and the closed-channel bound state as a function of magnetic field. The
Feshbach resonance occurs where the two levels cross. Above threshold, the bound state
is only quasi-bound due to the coupling to the continuum. (b) At the Feshbach resonance,
the s-wave scattering length a has a pole. The position of the pole By is shifted with
respect to the crossing of the uncoupled states at B.s. The width AB corresponds to the
difference in magnetic field between the zero-crossing and the pole of a.

two states varies linearly with magnetic field
AE = Ap(B — Byes) - (3.17)

Here, Ap denotes the difference in magnetic moments between the two states.

The coupling between the free atom-pair state and the molecular bound state
modifies the scattering properties of the unbound atoms. The scattering length
acquires a resonant contribution in the vicinity of the Feshbach resonance. Near
resonance, the magnetic-field dependence of the scattering length is given by [120]

AB
a = ap, 1_B—BO , (3.18)

where a;, is the background scattering length far away from the Feshbach resonance.
AB is the magnetic-field width of the Feshbach resonance. Hence, due to the cou-
pling to the closed-channel bound state the scattering length a has a pole at By,
which is illustrated in Fig. 3.3(b). This is analogous to the situation described for
the simple square-well potential in Sec. 3.1.3, where a bound state near threshold
caused a pole in a. Note, that the pole position By is different from the value of
the magnetic field B,.s, where the (uncoupled) molecular state crosses the dissocia-
tion threshold of the open channel. For the 1007-G resonance in 8"Rb discussed in
Sec. 3.3, the resonance shift is By — B,s & —60 mG [122].
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3.2.3 Interaction Hamiltonian and selection rules

This section introduces the different interaction mechanisms for two ground-state al-
kali atoms. These interactions are able to flip spins and can therefore cause Feshbach
resonances.

At large radius, the spins of two colliding ground-state alkali atoms are specified
in terms of the hyperfine quantum numbers | fi, m ) and |f2, my2) of the two atoms.
Together with [, m;, E' one obtains a complete set of quantum numbers. The atomic
hyperfine spins can be added, yielding the total spin F = f; +f5. The corresponding
quantum numbers are F, mp.

At shorter radius, the exchange interaction V., is the dominant term in the
interaction Hamiltonian, so that the spins of the valence electrons are coupled to
a total electronic spin S. The corresponding singlet (S = 0) and triplet (S = 1)
potentials differ drastically. Hence, the hyperfine quantum numbers fi,my1, fa, myo
are not good quantum numbers at short radius. When writing V., as a matrix
in the hyperfine basis, it therefore has large off-diagonal elements, which means
that transitions between different hyperfine states are possible. V_, is spherically
symmetric and thus conserves [, m;. For incoming s waves, V., can therefore cause
Feshbach resonances only if the molecular state is an s-wave state. Since V., creates
only forces internal to the system, the total angular momentum 1+ F is conserved.
Since m; is conserved, mp is conserved, too.

In addition, there are much weaker terms in the interaction Hamiltonian. The
strongest of these terms is the spin-spin interaction Vi, which is the sum of the
magnetic dipole-dipole interaction of the valence electrons and the second-order
spin-orbit interaction for the valence electrons. Vi, can change [, m; because it is
not invariant under spatial rotations. It causes transitions according to the selection
rules Al = 0 or £2 and |Amy| < 2. For incoming s waves, Vs can therefore cause
Feshbach resonances for d-wave molecular states. Since V, is much weaker than V,,,
the resulting inter-channel coupling is typically also much weaker. Hence, Feshbach
resonances caused by Vs are usually much narrower than those caused by V,,. Since
Vs creates only internal forces, the total angular momentum 14-F is again conserved.

Even weaker terms in the Hamiltonian can cause other narrow Feshbach reso-
nances, such as in 33Cs near 20 Gauss, where an incoming s wave is coupled to
a g-wave molecular state [123]. Al is always even for the Feshbach resonances in
atomic collisions, because the interaction Hamiltonian conserves parity. The only
fundamental interaction that does not conserve parity is the weak interaction, but
that is negligible here.

When an external magnetic field B is applied, the total angular momentum 1+ F
is no longer conserved, because the external field creates external forces. We consider
only the case where B points along the z axis, so that rotational symmetry around
the z axis implies the conservation of m; + mp. Note that if the magnetic field is
strong, f1, fo are no longer good quantum numbers at large radius.
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3.2.4 Inelastic collisions

The increase in elastic collision rate near a Feshbach resonance is accompanied by a
drastic enhancement of inelastic processes, which lead to atom loss and heating of
the atom cloud. Two different inelastic processes are distinguished:

e Inelastic two-body processes will occur if the entrance channel in the colli-
sion is not the ground-state of the system. In this case, the atoms can undergo
a transition to a lower-lying collision channel. The difference in internal energy
between the two states is released as relative kinetic energy of the atom pair.
Typically, this energy is enough for the atoms to leave the trap. However, since
the Feshbach resonances used in our experiment involve the internal ground
state of 8"Rb, two-body loss processes do not occur.

e In a three-body recombination event, three atoms collide, two of them
form a weakly-bound molecule and the binding energy is released as relative
kinetic energy of the collision partners which typically expels the molecule as
well as the third atom from the trap. The third collision partner is needed for
the formation of a molecule in order to conserve energy and momentum. The
process is density dependent and can be expressed in terms of a rate equation
for the atom loss as

dn(r)
dt

where K33 is the three-body loss coefficient and n(r) the atomic density. Near a
Feshbach resonance three-body recombination is resonantly enhanced, leading
to an increase of K3 by several orders of magnitude [19, 21, 124].

— —K3n3(r) , (3.19)

3.3 The 1007-G Feshbach resonance

This section presents measurements on the variation of the scattering length near the
broadest Feshbach resonance in 8’Rb. To this end, the mean-field driven expansion
of a BEC is investigated as a function of magnetic field. Similar methods were used
before by other groups for different alkali atoms [19, 21, 23, 125].

3.3.1 Expansion of a BEC near 1007 G

The basic idea behind our method for determining the scattering length is as follows:
Let us consider a BEC trapped in an external potential. For typical atom numbers in
the experiment, the kinetic-energy term in the Gross-Pitaevskii equation Eq. (3.16)
can be neglected (Thomas-Fermi limit). Therefore, in equilibrium the non-linear
interaction term oc alt|? balances the external trapping potential. But if the trap is
switched off suddenly, the condensate expands driven by the non-linear interaction
term. Thereby, a large positive scattering length results in a fast expansion. From
the expansion dynamics of a condensate, information on the scattering length can
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Figure 3.4: BEC expansion near the 1007-G Feshbach resonance. Shown is the half-width
of a BEC as a function of expansion time for different values of the s-wave scattering length
a. The expansion at different magnetic fields corresponding to different scattering lengths
takes place within 6 ms after release from the dipole trap. The larger the scattering length,
the faster the expansion and the larger the final size of the BEC. For expansion times longer
than 10 ms, all the mean-field energy has been released and the width increases linearly
with time.

therefore be extracted. Fig. 3.4 shows experimentally obtained expansion curves for
different scattering lengths in the vicinity of the Feshbach resonance at 1007 G.

The experimental sequence for obtaining the data is as follows: A BEC is pre-
pared in the crossed optical dipole trap as described in Chap. 2. For this particular
measurement, the waists and powers of the dipole-trap beams are 33 ym and 38 mW
for the horizontal beam, and 77 pym and 115 mW for the second beam. The horizon-
tal beam creates an estimated trap depth in the horizontal plane of ~ kg x 3 uK. In
the vertical direction, the trap barely supports the atoms against gravity with a trap
depth of ~ kg x 0.8 uK. In a coordinate system, where the x axis is the symmetry
axis of the magnetic trap and where gravity points along z, the trap frequencies are
(Wgy wy, w,) = 2mx (50,170,120) Hz. The last two frequencies differ due to the grav-
itational sag. Typically, the atom numbers in the BEC and in the thermal fraction
are 10° each. The peak density in the BEC is ~ 2 x 10* cm™3.

After loading of the dipole trap, the 1000-G field is switched on and held a few G
above or below the Feshbach resonance for typically 500 ms. During this time,
thermal drifts due to the ~12 kW heat load dissipated in the magnetic-field coils
have some time to settle. Next, the optical trap is switched off and simultaneously
B is jumped to a value very close to or right at the Feshbach resonance. After
holding B at its final value for 6 ms, B is switched off completely. The jump to the
final field value actually takes ~ 0.5 ms, the complete turn-off ~ 1 ms. Note, that
for this particular experiment, the small pair of coils for fast switching described in
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Figure 3.5: Vertical half width (e) and atom number (o) of the expanded BEC as a
function of magnetic field B. Data points in the left (right) half of the figure were obtained
by jumping towards the Feshbach resonance from smaller (larger) B, and for an expansion
time of 18 ms (23 ms). B was jumped to its final value at the moment of release of the
atoms from the trap. B was held there for 6 ms and then switched off. The vertical line
at 1007.60 G indicates the onset of instability of the BEC due to negative values of a.

Chap. 2.3 was not yet available.

After a certain time-of-flight, an absorption image of the expanded cloud is taken.
The atom number and size of the BEC and of the surrounding thermal cloud are
determined from a two-dimensional fit. The magnetic field was calibrated using
microwave spectroscopy in the vicinity of the Feshbach resonance with an accuracy
of 0.03 G.

Figure 3.5 shows the size and atom number of the expanded BEC measured
with the timing sequence described above. Instead of monitoring the complete
expansion curve for each magnetic field value, it is sufficient to determine the final
size and atom number after a time-of-flight of about 20 ms in order to extract a. As
expected, the final condensate width increases (decreases) as the Feshbach resonance
is approached from below (above). Additionally, the atom number is reduced as one
approaches the resonance from either side due to an increase in inelastic processes.
No BEC is left between 1007.37 G and 1007.53 G. The separation of adjacent data
points in Fig. 3.5 is 13 mG, which is slightly larger than the estimated magnetic
field resolution due to the measured current noise.

As one gets very close to the Feshbach resonance from either side, the upward
(downward) trend in the width is reversed. On the low-field side of the resonance,
this is a trivial consequence of the decrease in atom number, because a lower-density
BEC releases less mean-field energy that drives the expansion. On the high-field side
of the resonance, however, the effect is presumably related to the instability of the
BEC in a regime of negative a discussed in Sec. 3.1.4.
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3.3.2 Extracting the scattering length

In order to extract a from the measured size of the expanded BEC, the expansion
process must be modeled. To this end, the model presented in Ref. [88] is extended
to include a possible time dependence of a during the expansion. For the time being,
the observed change in atom number is ignored. This effect will be incorporated in
the analysis later on.

Initially, the BEC is confined in a harmonic potential with trap frequencies
(Wg, wy,w,). In the Thomas-Fermi approximation to the Gross-Pitaevskii equation
Eq. (3.16), the initial density distribution n(r) is an inverted parabola

n(r)::7u,[1——j§: <€%;)2] (3.20)

and n(r) = 0 if the above expression is negative. Here, ng = 15 N/(87 W, W, W) is
the peak density. The half widths along the coordinate axes r; are

1 K2 /3
Wi (0) = o (15 e WayW, G; N) , (3.21)

where m is the atomic mass, N the atom number in the BEC, and a; the initial
scattering length before release. At time ¢t = 0, the trap is switched off, and a
possible time dependence a(t) may begin.

According to Ref. [88], the BEC profile stays a parabola during the expansion.
Its widths are scaled by the parameters

~ Wi(t)
— WR(0)

Ak(t) (3.22)

The evolution of the scaling parameters )\ is described by the following set of coupled
differential equations [88]

1 2
Yk (3.23)

Ay =
TN A

The initial conditions are A\z(0) = 1 and \4(0) = 0. It is straightforward to show
that a time-dependence of a modifies this equation to

(3.24)

a(t) appears in Eq. (3.24), because the expansion is driven by the mean-field energy
which is proportional to a(t). a; appears in Eq. (3.24), because a; determines the
initial widths Wy (0) with respect to which the )\ are defined.
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As mentioned earlier, jumping a from its initial to its final value a; takes
~ 0.5 ms. This delay is included in the model as follows

a(t) _ {af 0.5ms <t < 6ms (3.25)

a; = Qpg otherwise .

Here, ay, is the background value of the scattering length far away from the reso-
nance and ¢t = 0 is defined by the turn-off of the optical trap. The fact that a is
switched back to ans at t = 6 ms has little effect, since for the parameters of the
experiment almost all mean-field energy is released during the first 6 ms (except for
very small values of ay).

The atom loss shown in Fig. 3.5 must also be included in the model. For
density-independent losses this is easy to do. In this case, the shape of the BEC
remains parabolic during the expansion. With a time-dependent atom number N (),
Eq. (3.24) is then modified to

a@)N({) 1w}

Additionally, in Eq. (3.21), N is replaced by the initial value N;. Since the dominant
loss mechanism is actually likely to be density-dependent, this approximation will
only be reasonable if a small fraction of the atoms is lost.

It is clear from Eq. (3.26) that the time dependence of the atom number is
crucial. By varying the hold time at the final magnetic field from 1 to 6 ms, we
experimentally checked for such a time dependence at B = 1007.35 G (last non-
vanishing data point on the low-field side in Fig. 3.5), but found none: The final
atom number was independent of the hold time over this range. It is hence obvious
that the loss does not occur continuously during the total hold time. Instead, the
loss occurs during the first 1 ms of hold time.

The origin of this loss is not totally clear. On the one hand, three-body recom-
bination is drastically enhanced near resonance. In a later experiment, an increase
in K3 by four orders of magnitude near resonance was confirmed [126]. But, one
expects three-body loss to be more or less a continuous process. A possible reason,
why three-body losses would only be noticeable on time-scales shorter than 1 ms,
could be a drastic decrease in density due to the fast losses and possibly also due
to the fast expansion of the cloud. On the other hand, experiments by a group
working with ®®Rb have revealed counterintuitive loss behavior near a Feshbach res-
onance which they attributed to the coherent formation of molecules [25, 127]. This
mechanism could possibly also play a role in our experiment. However, a detailed
understanding of all the loss mechanisms is difficult and not required for determining
the scattering length a.

For further analysis, it is assumed that the atom loss occurs instantaneously at
the same time as the change in a

Ay =

(3.26)

Nf 0.bms <t

N(t) = {Ni otherwise . (3.27)
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Figure 3.6: Scattering length as a function of magnetic field. The solid line is a fit to the
experimental data (e). The best fit yields AB = 0.20 G for the width and Byes = 1007.40 G
for the position of the resonance. Some experimental data points (o) were not included in
the fit, because they lie in the regime of negative a where the BEC is unstable.

For processing the data, the initial atom number /N; and the background value of
the scattering length apg are needed. NN; was determined from the overall absorption
in a measurement far away from the Feshbach resonance. In order to determine apg,
the size of an expanded BEC far away from the Feshbach resonance was measured.
Using Eqgs. (3.21)-(3.24) with a(t) = a; = ang, the background scattering length can
be extracted, yielding aps = 108 ag, where ag is the Bohr radius. Within the uncer-
tainties in the calibration of the experiment, this is consistent with the theoretical
value ap, = 100.54a, for the state |1,+1) [128]. For further data processing, the
theoretical value was used.

Given N; and apg, W,(0) is calculated using Eq. (3.21), and thus the measured
expanded widths W, (t) can be converted into A,(t) according to Eq. (3.22). For
every data point, the observed final atom number N; in the BEC was then used
to numerically solve the coupled differential equations (3.26) for the experimentally
applied sequence Egs. (3.25), (3.27). In the calculation, a; was varied until the
experimentally observed width was matched.

With this method, the data shown in Fig. 3.5 were processed to extract the
scattering length. The resulting data are displayed in Fig. 3.6 together with a fit
to the theoretical expectation Eq. (3.18). Some data points (o in Fig. 3.6) are
not included in the fit for the following reason: Approaching the resonance from
above in Fig. 3.5, one can see that the size of the expanded BEC decreases as
expected, until at 1007.60 G (vertical line in Fig. 3.5) this trend is reversed. At the
same field, significant atom loss abruptly sets in. We interpret this as the onset of
instability of the BEC in a regime of negative scattering length [24, 118, 129-132].
This interpretation is further supported by the fact that the extracted value of a
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shown in Fig. 3.6 reaches zero at this field. For the parameters of our experiment,
the critical scattering length for instability [131, 133] is @es &~ —1072 apg which is
very close to zero. Hence, we conclude that the zero crossing of a is located at
Bies + AB = 1007.60 G and we use only one free parameter AB in our fit.

The fit in Fig. 3.6 agrees well with the experimental data. The best-fit value is
AB = 0.20 G, resulting in B, = 1007.40 G. These values are close to the theoretical
predictions AB™MeeY = 0.17 G and B = 1008.5 G [37]. B is also near the
peak of the atom loss at 1007.34 G measured previously [37].

The method to determine a as described here differs slightly from the methods
previously used in other experiments [19, 23, 124]. There, the final magnetic field was
applied while the BEC was still in the trap and the system had time to equilibrate
before the BEC was released from the trap. No matter if the expansion time is
almost zero [23] or long [19, 124] (in which case B was still on during the initial
expansion), the observed BEC size W yields a oc W°. With the method used here
a o< W2. This is due to the fact that the initial BEC peak density n; is independent
of B. Hence, the mean-field energy (o< n;a) is converted into kinetic energy, so
that the final velocity (and thus W) is proportional to a'/2. Therefore, noise in the
determination of W is not amplified as much when extracting a.

Although the variation of the s-wave scattering length was demonstrated over
quite a large range - an increase by a factor of ~ 7 and a decrease by about a factor
of ~ 20 compared to ay, - the drastically enhanced inelastic losses near resonance
pose a severe problem for future experiments relying on the tuning of the scattering
length. This is at least true for the low-field side of the resonance. On the high-field
side, the loss only sets in around the zero-crossing of the scattering length. Hence,
for experiments relying on minimizing elastic interactions, the Feshbach resonance
at 1007.4 G might be suitable.



Chapter 4

Feshbach molecules

The coupling to the molecular bound state near a Feshbach resonance leads to a pole
in the s-wave scattering length. This was demonstrated in the previous chapter. The
present chapter deals with another consequence of the inter-channel coupling: An
adiabatic magnetic-field ramp across a Feshbach resonance can transfer population
from the free atomic pair state into the molecular bound state. This corresponds to
a controlled chemical reaction with no latent heat released. In principle, an atomic
BEC could be converted into a molecular BEC using this technique.

The chapter starts with a brief introduction into the theoretical concepts under-
lying molecule association by Feshbach resonances. Next, experimental results on
molecule creation from a BEC by a magnetic-field ramp across the 1007-G Feshbach
resonance in 8"Rb are presented [53]. The rest of the chapter is devoted to the
dissociation of Feshbach molecules by reversing the magnetic-field ramp. From the
energy released in the dissociation process, the width of the corresponding Feshbach
resonance can be inferred. The technique is surprisingly insensitive to magnetic-
field noise. This allowed us to measure the widths of several very narrow Feshbach
resonances in 8'Rb [71].

4.1 Molecule Association

Molecule association is easiest to understand for two trapped atoms. Section 4.1.1
deals with this situation. Next, we turn our attention to molecule association in a
BEC. A simple mean-field model is introduced in Sec. 4.1.2. In Secs. 4.1.3 - 4.1.5
experimental results on molecule creation in a BEC are presented.

4.1.1 Two atoms in a trap

In a confining trap, the continuum of atom-pair states |z/11((+)> above threshold in
the open channel is replaced by a ladder of discrete energy levels, as illustrated in
Fig. 4.1. Solid (dashed) lines represent energy eigenstates in the presence (absence)
of coupling. Note, that the zero of energy is chosen to coincide with the energy of
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energy

B,  magnetic field

Figure 4.1: Association of a molecule in a trap. The solid lines represent the energy
levels of two trapped atoms which couple to a molecular bound state near a Feshbach
resonance. The dashed lines are the energies in the absence of inter-channel coupling.
B,¢s denotes the crossing of the lowest (uncoupled) atom-pair state with the (uncoupled)
molecular state. The lowest atom-pair state is adiabatically connected to the molecular
bound state. Hence, an adiabatic magnetic-field ramp with dB/dt < 0 (represented by
the arrow) transfers an atom pair into a bound molecule. The reverse ramp dissociates
the molecule back into the atom pair.

the open-channel dissociation threshold. Hence, the two-atom states are flat in this
graph, while the molecular state has a positive slope (Ap > 0).

In order to create molecules, an atom pair is initially prepared in the lowest
trap state at magnetic fields well above resonance B > B,.;. The lowest trap
state is adiabatically connected to the molecular bound state on the low-field side
of the Feshbach resonance. Hence, an adiabatic ramp across resonance to B <
B,.s transfers the unbound atom pair into a bound molecule which is indicated
by the arrow in Fig. 4.1. The adiabatic ramp can be reversed, which dissociates
the molecule back into an open-channel atom pair. The situation is different if an
atom pair is initially prepared in the lowest trap state at magnetic fields B < Bi.s.
Here, an adiabatic upward ramp takes the atom pair into a higher-lying trap state.
This adds energy to the system. Note that the ramping scheme for associating and
dissociating molecules is also applicable in free space.

In general, the calculation of the energy eigenvalues is nontrivial. The situation
simplifies considerably, if the splitting between the trap levels is large compared to
the atom-molecule coupling. In this case, only the lowest (uncoupled) atom-pair
state, denoted by |¢,), and the (uncoupled) molecular state |¢,,) have to be taken
into account. In a matrix representation with respect to the basis {|¢4), |¢m)}, the
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corresponding Hamiltonian is given by

w=(g0g £ ) -

The energy of the atom-pair state was set to zero, while the time-dependent energy
of the molecular state is given by F,,(t) = Au(B(t) — Byes). The coupling matrix
element is written in terms of an angular frequency as

h$2
T = <¢a|H|¢m> . (42>

We will now show that {2y can be related to parameters of the scattering problem
with an incoming plane wave. To this end, we consider an interatomic potential with
a finite range R and investigate the low-energy limit k — 0 of the scattering problem.
Here, f — —ay, with ap, from Eq. (3.10). Hence, Eq. (3.2) becomes

¢(()+)(r) —C (—% +1+ O(k:r)) for R<r . (4.3)

Here, C is a constant that is determined by normalization of the wavefunction. If
the quantization volume V fulfills V' > R3, then the contribution of the region
r < R to the value of C' becomes negligible. Hence, C' might depend on a;, but is
independent of all other properties of the interatomic potential. Obviously, (()+) is

proportional to C', so that

W HpSy = 0L 4.4
(Om|Hlibg) 7 (4.4)
For low enough energy, ¢ is independent of k. For the scattering state with

an incoming plane wave, |C]? = 1/V and we recover Eq. (23) from Ref. [27] with
la| = |g|/v/2. Combining Eqs. (25) and (42) of that reference, we obtain

_ gl (4.5)
2A,uUb§ ’
where 2
TR™Qyp,
Ubg == Tg . (46)

This relates g to parameters of the Feshbach resonance that are already known.
We now discuss the special case of two atoms in a harmonic trap. Experimentally,
such a situation can for example be realized with atoms in an optical lattice as will
be described in Chap. 6. In the case of a harmonic trap, Eqs. (4.3) and (4.4) are
also applicable with |@,) corresponding to |¢§+)>. The condition Eq. (4.3) is only
useful if the significant values of k fulfill kR < 1, otherwise the term O(kr) would
not be negligible. With k ~ 1/ay,, where ay, = \/h/mw is the harmonic oscillator
length, this implies a clear separation of length scales in the problem: R < a,.
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The problem of two atoms in a harmonic trap fulfilling the condition Eq. (4.3) was
solved in Ref. [112]. The result for the ground state is

o = ( ! )
\/27Tah0

We neglect the terms of order O(ay,/an,) and use Eq. (4.4). Hence,

2
1404902 1 0 (%) ] . (4.7)

Aho Qho

Ao | ( 1 )3
— = ABApUy, . 4.8
9 /_27Taho HUpg ( )

The energy levels of Eq. (4.1) form an avoided crossing as a function of magnetic
field. It is therefore possible to adiabatically transfer an atom pair to the molecular
state by ramping the magnetic field slowly from above to below resonance. For a
linear ramp with constant ramp speed, the transition probability to the molecu-
lar state in such a two-level system is described analytically by the Landau-Zener
formula [134]

Q?%abi
d
45 A
where hA is the energy difference between the uncoupled states and Qgp,; the angular

Rabi frequency. Hence with A = E,,,/h and Qg = Qo from Eq. (4.8), we obtain

2 h
- Lot
™may,,

This is almost identical to the result of Ref. [135] where a different approximation was
used. For small ramp speeds, Eqs. (4.9) and (4.10) predict a transition probability
close to 1. The validity of the Landau-Zener model was verified in recent experiments
on molecule creation in an optical lattice [74, 136].

Prz=1—e?M1z  with Tpy= : (4.9)

abgAB

dB
dt

(4.10)

4.1.2 Molecule association in a BEC

We now turn our attention to molecule association in a Bose-Einstein conden-
sate. Due to the complex many-body nature of the system, a detailed theoreti-
cal description is difficult [122, 137-139]. Here, we focus on a simple mean-field
model [26, 27, 50, 140].

The model is based on a Hamiltonian in second quantization describing the
atom-molecule coupling near a Feshbach resonance (see e.g. Eq. (1) in Ref. [138]).
Neglecting correlations between particles and assuming that the molecules form a
BEC, a set of coupled Gross-Pitaevskii equations can be derived [27]

L = b+ Uit + 9 t6m (4.11)

d g
Zh%wm — md]m + 5%% . (412)
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Figure 4.2: Molecule conversion efficiency as a function of inverse ramp speed. The
numerical solution (e) of Eqgs. (4.11) and (4.12) was determined for a linear ramp across
the Feshbach resonance at 1007.4 G and a homogeneous atomic density of ng = 10 cm™3.
Usg is neglected in the calculation. The solid line is the corresponding prediction from the
Landau-Zener model Eq. (4.9).

Here, 1, and 1, denote the atomic and molecular condensate wavefunction, respec-
tively. H, and H,, are the single-particle Hamiltonians for an atom and a molecule,
respectively. We consider a homogeneous system, where they reduce to H, = 0 and
H,, = E,,. Finally, g and Uy, are given by Eqgs. (4.5) and (4.6).

For a homogeneous system, 1, and v, do not depend on position and the total
density

n = [Ya(t)]* + 2/ (1) (4.13)
is a constant of motion. For the following discussion we assume that the system is
initially prepared as a pure atomic BEC and we neglect Us,,. The scaling @m = Y2
makes it obvious that the coupled equations (4.11) and (4.12) resemble those of a
standard two-level system with a detuning A = E,,,/h and a time-dependent Rabi
frequency
Qrapi(t) = V290 (t) /B . (4.14)

As before, we are interested in linear magnetic-field ramps across the Feshbach
resonance. For slow ramps, the mean-field model predicts the formation of a large
molecular BEC, as illustrated in Fig. 4.2. For comparison, the solid line shows the
prediction from the Landau-Zener model Eq. (4.9) assuming a time-independent
Rabi frequency Qrepi = % 2n,, where n, is the initial atomic density. For small
molecule fractions, the Landau-Zener model agrees well with the mean-field predic-
tion. This is plausible, since the Landau-Zener model is based on a constant Rabi
frequency, corresponding to a small depletion of the atomic condensate.

A more sophisticated model developed by the Kohler group [122] takes a variety
of additional effects into account, such as pair correlations, the mean-field energy
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in the atomic BEC, a harmonic trap, excitation of collective modes during the
magnetic-field ramp in the atomic and the molecular BEC, etc. The only processes
not incorporated in the model are inelastic collisions. For the Feshbach resonance
at 1007.4 G in ®Rb and realistic experimental parameters, the model predicts a
molecule-conversion efficiency near 80% for ramp speeds slower than 1 G/ms. For
linear magnetic-field ramps, the predictions of this model are fairly similar to the
predictions of the simple mean-field model.

4.1.3 Observation of molecules

We performed an experiment on molecule association in a BEC using a linear
magnetic-field ramp across the 1007-G Feshbach resonance in 8’ Rb. The experiment
starts with a BEC of ' Rb atoms prepared in the crossed dipole trap (see Chap. 2).
As before, the BEC and the thermal cloud typically contain 10° atoms each, leading
to a peak density of 2 x 10 em ™2 at trap frequencies of 27 x (50,170, 120) Hz. The
atoms populate the spin state |f,ms) = |1,+1), in which the Feshbach resonance
at 1007.4 G occurs. Next, a homogeneous magnetic field of ~ 1008 G is applied.
During the turn-on of this field, the system crosses the Feshbach resonance at such
a large ramp speed (~ 40 G/ms) that the resonance has little effect on the atoms.

Next, the dipole trap is switched off and the rest of the experimental sequence
takes place with the particles in free flight. This reduces inelastic loss processes as
will be explained in more detail in Sec. 4.1.4. The magnetic field is now ramped
slowly at typically 1 G/ms from above to below the Feshbach resonance in order to
create molecules. Subsequently, the field is held at a certain value B,y for 3 ms.
During this time, a magnetic-field gradient of 23 G/cm is applied. This Stern-
Gerlach field accelerates atoms and molecules differently because of their different
magnetic moments. Hence, atomic and molecular cloud separate in space. Then, the
gradient field is turned off, and the magnetic field is ramped back slowly to ~ 1008 G
(also typically at 1 G/ms). This dissociates molecules back into free atoms. Next,
the magnetic field is turned off completely, again crossing the resonance so rapidly
that this has little effect. The atoms fly freely for another 3 ms allowing the two
clouds to separate even further. Finally, an absorption image is taken with laser
light that is near-resonant with an atomic transition. Atoms that were converted
into molecules but never converted back into free atoms are not seen by the detection
laser.

Experimental results for Bj,q = 1005.2 G are shown in Fig. 4.3, where two
clearly separated atom clouds are visible. With the Stern-Gerlach field applied, the
magnetic field decreases from left to right in this figure. Therefore, the cloud on
the left/right in Fig. 4.3 must have been in a high/low-field seeking state during
application of the Stern-Gerlach field. Hence, the right cloud shows atoms that
were converted into low-field seeking molecules during the first crossing of the Fesh-
bach resonance and converted back when ramping back. The left cloud, however,
consisted of high-field seeking atoms throughout the whole experiment. The spatial
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Figure 4.3: Stern-Gerlach detection of molecules. The cloud on the right consists of
atoms that were temporarily converted into molecules. The molecules were separated
from the non-converted atoms (left cloud) by a Stern-Gerlach field. For imaging, the
molecules were dissociated back into free atoms.

separation of the clouds unambiguously shows that molecules are created, without
the need to directly image the molecules.

4.1.4 Molecule-creation efficiency

It is obvious from Fig. 4.3 that the molecule-creation efficiency in the experiment
is low. In addition, a large fraction of the initial atom number is missing after
the association and dissociation. This missing fraction is probably due to inelastic
atom-molecule and molecule-molecule collisions. Since Feshbach molecules are in a
highly-excited internal ro-vibrational state, they can decay to lower-lying vibrational
levels during a collision with an atom or another molecule. The difference in binding
energy is released as kinetic energy in the relative motion of the molecule and its
collision partner. This energy is typically much larger than the trap depth so that
both particles involved in the collision are lost from the trap.

In a measurement with slightly different dipole-trap parameters (see Sec. 4.2.2),
we checked for a dependence of the creation efficiency on ramp speed. Results of
this measurement are presented in Fig. 4.4. The plot shows the number of atoms
converted into molecules and subsequently detected by the Stern-Gerlach technique
(o). We also determined the number of atoms in the remnant BEC (after association
and dissociation) and subtracted it from the number of atoms in the initial BEC
(before association). This difference (o) is also plotted in Fig. 4.4. Note, that the
density in the thermal cloud is so low, in particular after expansion, that only very
few molecules are associated from the thermal cloud. Hence, the number of atoms in
the thermal cloud is hardly affected by the association ramp. With decreasing speed
of the molecule-creation ramp, the number of molecules first increases as expected,
and then saturates for slow ramps with inverse ramp speeds above ~ 0.5 G/ms. For
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Figure 4.4: Atom numbers as a function of inverse speed of the association ramp. The
number of atoms that were temporarily converted into molecules and detected after Stern-
Gerlach separation (o) depends hardly on ramp speed. In contrast, the difference () be-
tween the atom numbers in the initial BEC and the remnant BEC resembles the prediction
in Fig. 4.2. The difference between the two data sets shows the large fraction of missing
atoms for slow ramps. The solid line indicates the initial atom number.

slow ramps, there is a large fraction of missing atoms.

The inelastic collision rates that cause the large missing fraction are density
dependent. If a given molecule creation efficiency is desired, high densities allow
for fast association, so that there is only little time during which loss can occur.
However, at high density the loss rates are fast. Hence, it is not obvious whether
the observed number of molecules will be optimized for small or large density. The
experiment shows that if the conversion to molecules is performed just before the
release from the trap, the observed number of molecules is reduced by a factor of
~ 2. This might be an indication that the inelastic collision rates dominate for
the high densities in the trap. In the experiment, the cloud is therefore allowed
to expand after turning off the dipole trap. After an expansion time of typically 1
to 7 ms, the molecules are associated. This expansion is estimated to reduce the
atomic density by a factor between 2 and 90 as compared to the in-trap situation.
However, a strong dependence of the observed molecule number on density was not
found in this regime.

Inelastic atom-molecule and molecule-molecule collisions are characterized by
rate coefficients K,,, and K,,,,, respectively. Typically, for molecules made from
bosonic atoms K, and K,,, are on the order of 107'° cm?s~! [59-61]. K, and
K can be incorporated into the mean-field model Egs. (4.11) and (4.12). This
approach was followed in Ref. [27, 141, 142]. In addition, the mean-field driven
expansion of the BEC can be included in numerical simulations [141].

Analytic solutions to this general model are not known. In order to simplify the
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Figure 4.5: Parameter n from Eq. (4.17) as a function of average BEC density. The solid
line is a linear fit to the experimental data (e). The slope of the fit agrees reasonably well
with the prediction from Eqs. (4.14) and (4.16).

discussion, we now focus on the limit of fast ramps, where analytic expressions can
be obtained as explained in the following. For fast ramps, only few molecules are
created so that the loss is dominated by K,,,, which we assume to be independent of
magnetic field. In addition, the atomic density n, hardly varies with time, resulting
in a time-independent loss-rate coefficient for molecules I' = K,,,n,. Furthermore,
we assume that the ramp is so fast that the loss during the relevant creation processes
is negligible. The relevant creation processes occur for |A| < |Qpga|, so that the
ramp speed must meet the condition |4 A| > T'|Qpqy|. In this regime, the evolution
of the molecular density can be approximated by a quasi-instantaneous creation at
t = 0, followed by an exponential decay

2n,,(t)  w
anﬁt 9

2
QRabi
d
A

et fort > 0. (4.15)

Here, we made use of the fact that the atom number hardly changes with time, so
that Qg becomes time-independent, and the Landau-Zener formula can be used.
In addition, we expanded the exponential in the Landau-Zener formula for fast
ramps. Finally, n?" is the initial atomic density.

The corresponding evolution of the atomic density results from the following
consideration: During the quasi-instantaneous association, the total density is con-
served, so that n,(0) +2n,,(0) = n*. The following decay removes one atom along
with each molecule, so that %na = %nm. Hence,

% (3
4N

ng(t) _m

—e) for t >0 . (4.16)

B nzm‘t 4
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In the experiment, the Stern-Gerlach method separates the atomic and molecular
clouds. The typical duration of the separation process is ~ 1 ms. After the sepa-
ration, the decay caused by K, comes to an end. Eqgs. (4.15) and (4.16) illustrate
that a long time ¢ between molecule creation and the end of the Stern-Gerlach sepa-

ration can reduce the molecule number drastically, whereas 1 — Z“—(t) is fairly robust

init
and changes by a factor of no more than 3/2. ’

We experimentally studied the dependence of the conversion efficiency on ramp
speed and on initial atomic density. In order to vary the ramp speed, we scanned
the duration of the magnetic field ramp, leaving the initial and final magnetic-field
values constant. Varying the ramp speed therefore also varies the time span between
creation and Stern-Gerlach separation. A quantitative understanding of n,, as a
function of ramp speed is difficult because of the losses. An analysis of 1 — ’;;,SZ) ,
however, is much easier due to its relative robustness against loss. Equation (4.(116)
predicts that this quantity depends linearly on inverse ramp speed. We confirmed

this experimentally (see e.g. Fig. 4.4) and define a pre-factor n by

o ad (§> o (4.17)

ninit dt

Measured values of 1 are shown in Fig. 4.5. The atomic density was varied by
scanning the expansion time between release from the trap and the time, where the
association ramp crosses the pole of the Feshbach resonance. Since the system is in-
homogeneous, we plot 7 as a function of the average density (n,) = (1/N) [ n2(r)d’r,
where N is the total atom number before association and we assume that the BEC
has the shape of a Thomas-Fermi parabola. Based on the observation that the miss-
ing fraction of atoms is large, we assume I't > 1 for the analysis. Equations (4.14)
and (4.16) predict that n depends linearly on atomic density. The line in Fig. 4.5
shows a linear fit to the data. The slope of the fit agrees with the expectation within
10% which is surprising given the simplicity of the model and the uncertainty in
atom-number calibration.

Note that in principle the dissociation ramp could add energy to the remnant
BEC and thus heat atoms out of the remnant BEC, as discussed in Refs. [50, 124,
140]. The data shown in Fig. 4.5 were taken with sufficient time of flight between
association and dissociation so that the density during dissociation is low enough
that this heating is negligible.

While the above discussion shows that the decrease in atom number for fast
ramps can be modeled fairly easily, the molecule creation efficiency depends more
strongly on the loss processes and a quantitative model is beyond the scope of this
thesis. Experimentally we find a maximum creation efficiency of ~ 10%. To this end,
the final magnetic field of the molecule creation ramp must be optimized. The best
end point of the ramp turns out to be close to the pole of the Feshbach resonance,
as expected for fast losses. A similar idea was used to optimize the molecule number

in Ref. [123].
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Figure 4.6: Molecular magnetic moment. (a) Energy as a function of magnetic field.
The binding energy of the highest-lying bound state in the open-channel (A) with respect
to the dissociation threshold is A x 24 MHz, independent of magnetic field. The energy
of the bound state supported by the closed-channel (B) crosses both these lines. The
bound state in channel A is crossed at 1001.7 G, leading to an avoided crossing with a
splitting of h x 13 MHz. The dissociation threshold A is crossed around 1007 G causing the
Feshbach resonance. (b) Derivative dE/dB of the upper branch of the avoided crossing.
Experimental data for the molecules (o) are compared with the prediction from theory
(solid line) that contains no free fit parameters.

4.1.5 Magnetic moment and 1D trapping

While the molecule-conversion efficiency is rather low in the experiment, the absolute
number of molecules is large enough to perform further experiments and thereby
investigate the properties of the Feshbach molecules. This section discusses such an
experiment.

From the displacement of the clouds induced by the Stern-Gerlach field the
magnetic moment of the particles can be extracted. The displacement is proportional
to the force F = —(dE/dB)V|B| exerted by the Stern-Gerlach field. Here, F is the
energy of the atomic and molecular state, respectively. dE/dB is related to the
magnetic moment p of the particles. For the atoms, the extracted experimental
value of dF/dB is independent of Bj,q and agrees well with the expectation from
the Breit-Rabi formula [95].

For the molecules, however, Fig. 4.6(b) displays a pronounced dependence of
dE/dB on Byjgg. This magnetic-field dependence is due to the presence of the



52 CHAPTER 4. FESHBACH MOLECULES

N

Figure 4.7: Molecule oscillation. According to Fig. 4.6, the molecules are 1001.7-G

seekers. With a magnetic field gradient applied in the vertical direction, the molecules
oscillate around a point in space where the magnetic field equals 1001.7 G. Note that
gravity points to the right in the above pictures. The images were recorded for a series of
different durations of the Stern-Gerlach field, ranging from 0 to 18 ms (left to right). The
observed oscillation frequency of 56 Hz agrees well with the theoretical expectation. The
anisotropic expansion of the molecular cloud is due to the fact that the one-dimensional
trapping potential prevents the cloud from expanding in the horizontal direction. The
atomic cloud is simply accelerated on a parabola. The size of each image is 1.7 x 0.24 mm.

highest-lying bound state in the open channel. Theoretical results for the energy of
this state are shown in Fig. 4.6(a) [143]. At a field value of 1001.7 G, this bound
state (A) crosses the bound state in the closed channel (B) that is populated when
ramping across the Feshbach resonance. Due to the exchange interaction, this is an
avoided crossing, in which the molecules adiabatically follow the upper branch. The
experimentally observed values of dE/d B agree well with the theoretical expectation.
Both are shown in Fig. 4.6(b).

When a molecule passes through the upper branch of the avoided crossing, its
vibrational quantum number changes from -5 to -1 (counting from threshold). Cor-
respondingly, the size of the molecule, i.e. the outer turning point of the vibrational
state of the nuclei, changes by a factor of ~ 3.

The reversal of the sign of dE/dB visible in Fig. 4.6(b) makes the molecules
1001.7-G seekers, instead of the usual high- or low-field seekers. As a consequence,
the molecules can be trapped by applying an inhomogeneous magnetic field. In
the presence of a magnetic-field gradient, the quadratic dependence of E(B) in
Fig. 4.6(a) creates a harmonic confinement for the molecules. The resulting harmonic
oscillation is shown in Fig. 4.7 for a magnetic-field gradient of 100 G/cm with the
molecules initially prepared at 1003.2 G. This corresponds to a one-dimensional trap
for molecules. In principle, such a trap could work in three dimensions.

Note that the trap here is very different from a standard magnetic trap, where
usually low-field seeking particles are trapped at a minimum of |B| (see Sec. 2.1.2).



4.2. MOLECULE DISSOCIATION 53

Here, the molecules are trapped at a specific value of |B|, which is not a minimum
of the field configuration.

4.2 Molecule Dissociation

Up to now, molecule dissociation merely served as a tool for molecule detection.
Slow dissociation ramps transfer the population back into unbound atom-pair states.
Ideally, this does not add energy to the system. But what happens if the dissociation
ramp is fast? This section gives an answer to this question and introduces an
experiment in which non-adiabatic dissociation ramps are used to determine the
width of four Feshbach resonances in 8"Rb.

4.2.1 Dissociation by fast ramps

The case of two atoms in a trap (Fig. 4.1) gives us a good idea about the effect of
fast ramps: a fast ramp takes part of the population in the molecular bound state
diabatically across resonance. At each avoided crossing with a trap state, part of
the population ends up in that unbound atom-pair state. The faster the ramp, the
more population is dragged to higher trap states. Hence, a faster ramp adds more
energy to the system.

In free space, the situation is similar. Here, the molecular state couples to a con-
tinuum of states above the open-channel dissociation threshold. At fixed magnetic
field, this leads to an exponential decay of the molecular state into unbound atom
pairs. The difference in energy between the molecular state and the open-channel
threshold, £ = Au(B — B,es), is released as kinetic energy in the relative motion of
the atom pair. Since total momentum is conserved during dissociation, each atom
carries away a kinetic energy of Ej;, = E/2, and the atoms have precisely opposite
momentum vectors. The rate I',,,(E), at which a molecule decays into an atom pair,
is determined through Fermi’s golden rule [50, 144]

Do(E) = (¢ HIYSY)PD(E) . (4.18)

27T|
h
As before, (¢,,|H |¢(()+)) is the matrix element for atom-molecule coupling, D(F) is
the density of plane-wave atom-pair states, which is given by

D(E) = % (%)3/2 VE | (4.19)

Here, a box-quantization model is assumed with V' denoting the box volume. Using
Eq. (4.4) with |C]* = 1/V and Eq. (4.5), the molecular decay rate can be expressed
as

L (E) (4.20)

_ 2|ABAp| (m ajy o 1/2
B h h?
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We consider a magnetic-field ramp that is linear in time. The molecule fraction
fm decaying at a particular energy E is given by [59, 141, 145]

_ 4|AB|  [mai,
dB
3|42 h?

fm(E) = exp B3R (4.21)

The mean kinetic energy of a single atom after dissociation is then given by [59, 141]

2/3
1 (5\ (3n|2] | w2
Epin) ==T | = dt 4.22
(Bran) = 5 (3) <4|AB| maz, ’ (4.22)

where T is the Euler gamma function with I'(3) &~ 0.903. Eq. (4.22) offers the
possibility to determine the width AB of a Feshbach resonance from a measurement
of (Ejin), because ap,g is typically known with better accuracy than AB. And unlike
our previous method of measuring AB introduced in Sec. 3.3, the method suggested
by Eq. (4.22) does not depend on knowledge of the initial atomic density distribution.

The probability density g for the velocity v of the dissociated atoms is calculated
from Eq. (4.21), yielding

3 3 v[® 3
g(v)d’v = ol exp —F d’v (4.23)

where (Fin,) = %vﬁf (g) In time-of-flight, this velocity distribution is converted
into a position distribution.

In the experiment, the velocity distribution of the molecules before dissociation
has a finite width. The result is an offset energy Fj in Eq. (4.22), but the shape of
the velocity distribution Eq. (4.23) is hardly affected, because Ej is small, typically
a few hundred nK compared to dissociation energies of a few uK.

A fit of Eq. (4.23) to absorption images would be cumbersome, because no ana-
lytic solution is known for the integral in Eq. (4.23) along one or two coordinate axes.
Instead, a two-dimensional Gaussian fit is used to extract (Ej;,) from the images.
In order to analyze the error made by this simplification, Eq. (4.23) is numerically
integrated along one coordinate axis for a specific value of (E};,). The best-fit value
(Eyin) of a corresponding two-dimensional Gaussian fit turns out to be a factor of
~ 1.18 larger than the true value (Ej;,). The kinetic energies in the data analysis
are corrected by this factor.

4.2.2 Determining resonance widths

Before performing the experiment, we slightly changed the dipole trap. Previously,
an undesired reflection of the horizontal beam from an uncoated inside surface of the
science cell caused a weak standing wave. This created a one-dimensional optical
lattice with a well-depth of ~ kg x 0.6 pK, which exceeds typical values of kgT
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Byes (G) AByi (mG) ABy, (nG) ABge (mG)
632 1.3(2) 15 -
685 6.2(6) 10 -
912 1.3(2) 1.3 -
1007 210(20) 170(30) 200(30)

Table 4.1: Positions B,.s and widths AB of the Feshbach resonances. ABy; is the
best-fit value obtained from the data in Fig. 4.8. ABy;, is the theoretical prediction from
Ref. [71]. ABgcat is the result of the scattering-length measurement presented in Sec. 3.3.

and of the chemical potential. The small diffraction peaks visible in Fig. 4.3 are a
signature of the weak lattice. Now, the horizontal beam is tilted by a few degrees
with respect to the glass surface, thus eliminating the standing wave. This improves
the trap loading substantially, because atoms from the wings of the trap are now free
to move to the central region. As a consequence, a BEC of typically 6 x 10° atoms
can now be held in the crossed dipole trap, with a small thermal fraction of less
than 1 x 10° atoms. With the measured trap frequencies of 27 x (80,110, 170) Hz,
this results in a BEC peak density of about 5 x 10 ecm™3. As before, ultracold
molecules are created by ramping the magnetic field slowly downward through a
Feshbach resonances. Again, this is done in free flight, about 2 ms after the release
from the dipole trap. The fraction of the population that is converted into and
detected as molecules is ~ 10% for the broad resonances at 685 G and 1007 G, and
only ~ 3% for the narrower resonances at 632 G and 912 G. No molecules could
be detected for even narrower resonances with a predicted width of ~ 0.2 mG. For
such narrow resonances, the magnetic-field noise is most likely an issue during the
creation ramp. After the molecule creation, the Stern-Gerlach field separates the
molecules from the remaining atoms. Next, the magnetic field is ramped upward
through the Feshbach resonance at variable ramp speed to dissociate the molecules.
Then the atoms are allowed to fly freely for up to 11 ms, before an absorption image
is taken. The mean kinetic energy is extracted from the images as described above.

Experimental results as a function of ramp speed are shown in Fig. 4.8 for the 4
broadest Feshbach resonances of the state |1, +1). Solid lines show fits of Eq. (4.22)
to the data, with the width of the resonance AB and the offset energy Fy as free
fit parameters. The best-fit values are shown in Tab. 4.1, using the theory value
ap, = 100.5 Bohr radii for the state |1, +1) from Ref. [105]. The measured widths
agree well with the theoretical predictions and with a previously measured value,
both also shown in Tab. 4.1. The good agreement shows that molecule dissociation
is a reliable method to determine AB.

It is surprising that a width as small as AB = 1.3 mG can be measured with our
setup, because the magnetic-field noise is most likely larger than this value. The
observed linewidths of microwave transitions measured with 50 ms long pulses sets
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Figure 4.8: Mean kinetic energy per atom as a function of the speed of the dissociation
ramp. Parts (a), (b), (c), and (d) were measured for the Feshbach resonances at 632 G,
685 G, 912 G, and 1007 G, respectively. The solid lines show fits of Eq. (4.22) to the data.
The best-fit values are shown in Tab. 4.1.

an experimental upper bound on magnetic-field noise of 4 mG (rms). An attempt
to directly measure the magnetic-field dependence of the scattering length a(B) for
the 632 G or 912 G resonance would therefore most likely suffer strongly from the
magnetic-field noise.
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Figure 4.9: (a) (Quasi-)Mono-energetic spherical wave of atoms, created by dissociation
of molecules when jumping the magnetic field across the Feshbach resonance. The atoms
fly apart on the surface of a hollow sphere. The absorption-imaging beam integrates the
three-dimensional density profile along one direction. The observed two-dimensional image
therefore shows a ring, with a non-zero density in the center. The image was averaged
over ~ 100 experimental shots. (b) Line profile across the center of the image. The dip in
the center is clearly visible.

There are presumably two reasons, why such a small AB can be measured any-
way with the method presented. First, the dissociation process is pretty fast, e.g.,
'y, ~ 10 kHz for £ = kg x 5 uK at the 912 G resonance. Therefore, low-frequency
magnetic-field noise merely shifts the exact time of dissociation but has no effect
on the actual ramp speed during the rather short decay time. Second, by choosing
fast enough ramp speeds, the experiment is operated in a regime where the relevant
decay happens at magnetic fields that are pretty far away from B,.s. A typical decay
energy of £ = kg x5 uK corresponds to B — B,..s ~ 25 mG for the 912 G resonance.
Here, the magnetic-field noise has little effect on the molecule-decay rate due to the
V'E scaling (see Eq. (4.20)). Detailed calculations on the influence of magnetic-
field noise on the dissociation of Feshbach molecules confirm the robustness of the
method [146].

4.2.3 Mono-energetic atom pairs

If the magnetic-field is jumped across the Feshbach resonance as fast as possible to a
final value By and held there, hardly any molecules decay during the jump. Instead,
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they all decay at By, thus creating atoms with a fixed amount of kinetic energy.
Hence, the atoms fly apart on the surface of a hollow sphere during the subsequent
free flight. In fact, the shell of the sphere is expected to have a finite width that is
determined by the decay rate hl',,.

We performed such an experiment by jumping the magnetic field across the Fesh-
bach resonance at 685 G after creating molecules. In the experiment, the jump is in
fact a very fast field-ramp with a slope of ~ 0.1 G/us. The laser beam for absorp-
tion imaging of the dissociated atom pairs integrates the density distribution of the
hollow sphere along its propagation direction. In the two-dimensional absorption
image, the result is a ring structure, with a non-zero density in the center. Such an
image is shown in Fig. 4.9(a).

The initial momentum spread of the molecules leads to a further broadening of
the atomic density distribution around the ring. However, the contrast is still good
enough to see a clear dip in the center of the line profile in Fig. 4.9(b). The data were
taken with 5.5 ms time-of-flight after the dissociation and with By — B,¢s ~ 40 mG
corresponding to I',, ~ 20 kHz.

Technically, the creation of a sharp corner between the magnetic-field jump and
the plateau at By is difficult. The experimental requirements concerning the sharp-
ness of this corner are more stringent with broader resonances because of the faster
molecule-decay rates. Presumably, this prevented us from observing a dip as in
Fig. 4.9(b) at the 1007 G resonance. There, the bandwidth of the servo that con-
trols our magnetic field is not sufficient.

The scheme with the jump in the magnetic field can be generalized by using an
arbitrary shape of the dissociation ramp. That way, the time and energy dependence
of the outgoing atomic wavefunction can be tailored at will.



Chapter 5

Dissociation into s and d waves

At the end of the previous chapter, a rapid change of the magnetic field led to
non-adiabatic molecule dissociation, thus adding a significant amount of energy to
the outgoing atoms. The question arises, if higher partial waves corresponding to
higher kinetic energies can be populated with the same method. Feshbach resonances
caused by s-wave bound states couple predominantly to the s-wave continuum due
to the exchange interaction. Hence, they do not lead to a noticeable population
of higher partial waves. In contrast, a bound state with e.g. d-wave character, in
combination with a fast magnetic-field ramp might populate an outgoing d wave.
For such a scenario, a series of questions arises:

e If a d wave is created, will there still be an s-wave component?

e Do the different partial waves form a coherent superposition or an incoherent
mixture?

e What determines the branching ratio and the phase?

e How fast is the dissociation process?

The answers are nontrivial. This subject has not been studied before, neither in
experiment nor in theory. Section 5.1) introduces a corresponding experiment that
we performed [147]. For understanding our observations we developed new theory
[148] which is summarized in Sec. 5.2.

5.1 Experiment

The section starts with a discussion of a measurement of the molecule-dissociation
rate as a function of magnetic field near a d-wave Feshbach resonance (Sec. 5.1.1).
The measured dissociation rate shows a resonant enhancement due to a d-wave
shape resonance, which is introduced in Sec. 5.1.2. Time-of-flight images reveal
the angular distribution of the dissociated atom pairs (Sec. 5.1.3). The images are
analyzed using computed tomography, which is explained in Sec. 5.1.4.

59
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Figure 5.1: Time-resolved molecule decay near the 632-G Feshbach resonance. The
measured number of dissociated atoms is shown as a function of hold time tp,4 at B —
Byes = 0.97 G. An exponential fit (solid line) yields a decay rate of I' = 310 kHz.

5.1.1 Dissociation rate

In the experiment, we use a Feshbach resonance at B,.; &~ 632 G which is caused
by a d-wave bound state and has a measured width of 1.3 mG (see Tab. 4.1). The
experimental sequence begins with the creation of molecules in free flight by a slow
magnetic-field ramp across the resonance. Unconverted atoms are spatially sepa-
rated from the molecules using the Stern-Gerlach technique, described in Sec. 4.1.3.
Next, the molecules are dissociated back into unbound atom pairs by jumping the
magnetic field to a value B > B, and holding it there for a variable time t,,;4. Dur-
ing theq, population in the molecular state decays exponentially with a rate I'(B),
which depends on the value of B. After t5,4, the magnetic field is switched off
rapidly, which stops the dissociation process. After 0.85 ms time of flight (counting
from the dissociation), an absorption image is taken. Molecules that did not decay
during %54 are invisible in the image.

The number of dissociated atoms is extracted for a series of images at different
values of t;,q for B, as shown in Fig. 5.1. An exponential fit yields the dissociation
rate I'(B). Repeating this procedure for different values of B gives the dissociation
rate shown in Fig. 5.2. The data exhibit a clear resonance structure near 1.3 G,
where the dissociation rate reaches values of up to ~ 1 MHz.

Experimentally, such high dissociation rates are difficult to measure. The servo
used to control B must create slopes on the order of 1 G/us and have a settling time
of ~ 1 us. Designing such a servo is technically challenging. Moreover, with the high
ramp-speeds of 1 G/us, eddy currents become an issue. In the experiment, the eddy
currents were determined by investigating molecule dissociation near the dissociation
threshold. There, the eddy currents lead to a delay in the onset of decay. Systematic
measurements of this delay show that a step-like change of B creates eddy currents
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Figure 5.2: Molecule dissociation rate I'" as a function of magnetic field B with respect
to the position of the Feshbach resonance B,.s. The experimental data for the total rate
(circles) clearly show a resonant enhancement near 1.3 G, which is due to a d-wave shape
resonance (see Sec. 5.1.2). The dashed (dotted) line shows the prediction for the total
(s-wave) dissociation rate from a coupled-channels calculation. The s-wave dissociation is
not affected by the shape resonance. The solid line is a Lorentzian fit to the data according
to the simple model in Eq. (5.1).

that initially cancel ~ 15% of the step height and exponentially ring down with a
1/e-time of ~ 25us. The eddy currents were accounted for in the data analysis.

5.1.2 d-wave shape resonance

The resonant enhancement of the dissociation rate near 1.3 G in Fig. 5.2 is due to
a d-wave shape resonance in the open channel. Fig. 5.3 illustrates the situation.
The shape resonance is caused by a quasi-bound state which is localized behind
the d-wave centrifugal barrier. Unlike a true bound state, the energy of this shape-
resonance state lies above the threshold of the open channel. As a consequence, any
population in the shape-resonance state quickly decays into the d-wave continuum
by tunneling through the centrifugal barrier.

In the dissociation experiment, the shape-resonance state mediates the decay
into the d wave. This can be understood as follows: For magnetic-field values
slightly above B,.s, the energy of the molecular state lies just above the open-
channel threshold. Here, the molecular state preferentially decays into the s-wave
continuum. Decay into the d wave is suppressed due to the centrifugal barrier. The
situation changes when the energy of the molecular state matches the energy of the
shape-resonance state. Then population is transferred from the molecular state to
the shape-resonance state. From there, the population rapidly decays into d-wave
atom pairs by tunneling through the centrifugal barrier. The coupling between
the two states is strong due to the good spatial overlap between the two short-
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Figure 5.3: Scheme of the d-wave shape resonance. In 3"Rb, the d-wave centrifugal
barrier of the open-channel potential supports a quasi-bound state, the shape-resonance
state. It lies ~ 250 puK above the dissociation threshold. Any population in the shape-
resonance state decays rapidly within ~ 60 ns into the d-wave continuum by tunneling
through the centrifugal barrier. Note that the energies in the graph are not to scale.

ranged (quasi-)bound states. This explains the significant increase in the measured
dissociation rate near 1.3 G.

The two-step dissociation process mediated by the shape-resonance state can be
described by a simple analytic model. In the first step, the interaction Hamiltonian
H transfers population from the molecular state |¢,,) to the shape-resonance state
|@shape)- This is described by a generalized Rabi frequency Q = (2/Rh) [{@shape| H |pm,) |-
In the second step, the population tunnels with a rate I'spape from |[pgpepe) into the
continuum of unbound atom pair states. One can show that for 2 < I'gpepe the
molecular state decays exponentially with a rate [149]

Epape — En(B)\?|
1 + 2 shape m( )
thhape

QQ

Fshape

I'(B) = : (5.1)

where Egpqpe and E,, are the energies of the shape-resonance state and the molecular
state, respectively. E,, depends on B, while I'spape, Espape, and €2 in this simple
model do not. For the magnetic-field range considered here, E,, = Au(B — B,.s).

In the experiment, Ay is deduced from the kinetic energy released during disso-
ciation. This energy is extracted from time-of-flight images of the dissociated atom
pairs (see Sec. 5.1.3). With this method, we obtain Ay = kg x 230(18) uK/G.
Alternatively, the Stern-Gerlach method from Sec. 4.1.5 could be used.

['(B) in Eq. (5.1) is a Lorentzian, which is fit to the data in Fig. 5.2. Using
the above value for Ay, the best-fit parameters are Egpape = kp X 312(25) uK,
Lshape = 15(3) MHz, and Q = 27 x 0.61(7) MHz. Hence, energy and lifetime of the
shape resonance as well as the Rabi frequency can be extracted from experimental
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Figure 5.4: Time-of-flight absorption images of unbound atoms obtained by molecule
dissociation. The images were taken at different values of B — B,.s, but at the same
expansion time of 0.85 ms after dissociation. The magnetic field is vertical in the images.
The interference between the s and d partial wave undergoes a change in relative phase
and amplitude. At 0.1 G, the dissociation is mostly s wave, producing a circle. For higher
magnetic fields, both partial waves are populated. From 0.2 to 0.6 G, the atom emission
along B is suppressed, whereas between 1.0 and 1.4 G the opposite relative phase in the
interference suppresses emission perpendicular to B. At 0.7 and 0.9 G, the relative phase
is such that neither component is strongly suppressed. The typical radius reached by the
atoms during the constant time of flight increases with increasing B, thus indicating an
increase of the kinetic energy released in the dissociation.

data without making any reference to the coupled-channels calculation that will be
discussed in Sec. 5.2. Note that previously, the shape resonance in 8’Rb was seen in
a photoassociation experiment [111] and in scattering experiments [150-152]. Here,
we probe the shape resonance by molecule dissociation.

5.1.3 Interference between s and d waves

Figure 5.4 shows time-of-flight images of the dissociated atoms for different values
of the magnetic field. The images exhibit spatial interference patterns where only
the two partial waves with rotational quantum numbers (I,m;) = (0,0) and (2,0)
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Figure 5.5: Predicted interference patterns. The images are calculated by integrating
the modulus squared of the wavefunction Eq. (5.2) along the y axis. The various images
represent different values of the branching ratio into the d wave, (s, and of the relative
phase, d,¢;. A relative phase near 0 (7) suppresses emission parallel (perpendicular) to the
magnetic field B. The arrow indicates the path for a magnetic-field scan predicted by the
coupled-channels calculation in Sec. 5.2.
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Hence, the interference pattern can be described by the following wavefunction

wdecay< - g r, t (\/@1/00 - el et \/EHO ) ) (52)

where Y, (U, ¢) are spherical harmonics. The real numbers (3 and d,,; characterize
the amplitudes of the partial waves and their relative phase, and g(r, t) is the radial

!This can be explained based on the following arguments: The interaction Hamiltonian con-
serves parity so that Al is even. Moreover, due to rotational symmetry around the z axis (along
B), mi+my1+mys is conserved, where the magnetic quantum numbers of the atoms are m 1, myso.
These are +1 each, before and after the interaction. Hence m; is identical before and after the
interaction. Since the incoming wave in the association is an s wave, all outgoing partial waves
must have m; = 0 and even [. Finally, partial waves with [ > 2 are negligible in the low-energy
range considered here.
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Figure 5.6: Analyzing interference patterns. (a) Absorption image at B = 1.2 G. (b)
Reconstructed 3D distribution in cylindrical coordinates obtained by computed tomogra-
phy. For further processing, the image is divided into 20 angular bins Av. Note, that only
a small radial region Ar is used for further data analysis. (c) The angular distribution
W (9) is extracted. A fit with a parabola yields the branching ratio into the d wave (2
and the relative phase d,¢; as fit parameters.

part of the wavefunction. g(r,t) is normalized such that Gy + f2 = 1, which implies
that (; is the branching ratio for the decay into the [-th partial wave. In the
experiment, the modulus squared of the wavefunction Eq. (5.2) is observed.

Figure 5.5 shows a prediction for interference patterns based on Eq. (5.2). In the
calculation, the radial distribution was assumed to be a Gaussian centered around
some finite radius 7y which is identical for all the images. Some of the experimentally
observed images in Fig. 5.4 strongly resemble the theoretical images in Fig. 5.5.
General features, such as a change in the preferred emission direction can be found
in both the experimental and the theoretical pictures. The curved arrow in Fig. 5.5
indicates the path that is expected to be followed in the experiment. It was obtained
from the coupled-channels calculation in Sec. 5.2.

5.1.4 Branching ratio and relative phase

In order to go beyond the qualitative comparison between Figs. 5.4 and 5.5, we now
extract the branching ratio and the relative phase from the images in Fig. 5.4. To this
end, we first reconstruct the 3D density distribution using computed tomography
[153]. The method is well-known from medical imaging and was adapted before
to clouds of cold atoms by two other groups [151, 154]. Due to the cylindrical
symmetry around the z axis (magnetic-field axis), the radial density distribution
can be reconstructed in cylindrical coordinates from [151]

w(p2) = = [ it 2okl (5.3)
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Figure 5.7: Parameters extracted from the spatial interference patterns. (a) Branching
ratio for decay into the d wave. Again, the d-wave shape resonance is clearly visible.
(b) Partial-wave phases and relative phase. The solid, dashed, and dotted lines show the
theoretical prediction for the relative phase 8, = (51279 — 589 , the s-wave phase 589 , and

the d-wave phase 535’ , respectively. Experimental data (circles) agree well with the theory
(solid line) in (a) and (b).

Here, p = /2?2 + y? is the radial coordinate, and .J, is the zeroth-order Bessel
function. n(k,, z) is the 1D Fourier transform of the 2D density distribution n(z, z)
along the = direction

n(ky, 2z) = / dre™*n(z, 2) . (5.4)
Parts (a) and (b) of Fig. 5.6 show a 2D absorption image and the corresponding
reconstructed 3D density distribution n(p, z), respectively.

Next, the 3D density is sorted into 20 angular bins to obtain the probability
W (9) for finding an atom at angle ¢. In order to improve the signal-to-noise ratio,
we consider only a small radial region Ar for further data processing. The resulting
angular distribution W (¥) is shown in Fig. 5.6(c). Note that W (¢) is plotted as a
function of u(¥) = Y5(?9)/Yoe. The reason for this becomes clear when rewriting
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the modulus squared of the wavefunction Eq. (5.2) as

|¢decay(19)|2 - |g(7", t>|2|Yb0|2 (50 —2 V ﬁQﬁO COs 57’61 U(’l9) + ﬁQ u2(19)> y (55)

with By = 1 — (5. Hence, using a parabola as the fit function to the angular
distribution W (#) yields the fit parameters 5 and d,.

These are shown in Fig. 5.7. The branching ratio clearly shows the enhanced
decay into the d wave due to the shape resonance. In addition, the relative phase
has an inflection point, a signature of a (scattering) resonance [148]. Note, that for
B35 close to 0 or 100%, the fit cannot reliably determine the relative phase d,.;.

5.2 Theoretical analysis

The key to a theoretical description of the dissociation process lies in the observa-
tion that the dissociation is “half a collision”. In a full collision, two atoms come
together and then separate again. In the association and dissociation using Fesh-
bach resonances, the experimenter can “freeze” the population in the middle, after
the atoms came together. He can even choose, how much time is spent between
association and dissociation. Still, the association and dissociation can be regarded
as the first and second half of one collision. The concept of a half collision proved
useful in other contexts before (see e.g. Refs. [155-158]). Unfortunately, the models
developed there are not directly applicable here. We therefore had to develop our
own model, in order to link the dissociation experiment quantitatively to scattering
theory. The key ideas are summarized here. For more details see Ref. [148].

5.2.1 Scattering gedanken experiment

In the following, we consider a gedanken experiment with a colliding atom pair with
kinetic energy E in the relative motion in the presence of a magnetic field B near
the 632 G Feshbach resonance.

For treating multi-channel scattering, it is very convenient to introduce the S-
matrix (or scattering matrix) [107, 119]. The S matrix can be defined by formulating
the boundary condition for multi-partial-wave scattering as

e—zkr el

Yoo(9) — o i S Yio(9) - (5.6)

P 122 (1)

r

Here, I’ denotes the incoming partial wave. The outgoing partial waves [ have
complex amplitudes Sy, which constitute the S-matrix. In the above expression,
m; = 0 for all outgoing partial waves, as is the case in the experiment. Note that the
above boundary condition is different from the one in Sec. 3.1.1, where an incoming
plane wave and an outgoing spherical wave were considered.
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Figure 5.8: Combination of a shape resonance and a Feshbach resonance for scattering
of 8'Rb in state |1,+1). The partial-wave cross sections for the s wave (dotted line) and
the d wave (solid line) are shown. The magnetic field B is held at different values above the
zero-energy resonance position By.s ~ 632 G. The Feshbach resonance is much narrower
than the shape resonance. By changing B, the position of the Feshbach resonance can be
tuned through the shape resonance.

Since the number of particles is conserved, the S-matrix is unitary. In addition,
realistic Hamiltonians in atomic physics are invariant under time reversal, which im-
plies that the S matrix is symmetric. The scattering amplitude f(¢) (see Sec. 3.1.2)
can be expressed in terms of the S-matrix as

F0) = 5 S VATGE 5 1) (S — ) Yio(9) (5.7)

1,I'=0

Typically, the S-matrix has only few non-zero elements due to symmetry. For a
spherically symmetric potential, the S-matrix is diagonal and is given by Sj; = %%,
where the scattering phases §; have been introduced before in Sec. 3.1.2. In this
case, Eq. (5.7) reduces to Eq. (3.7).

A coupled-channels calculation [121, 159] yields the S-matrix elements Sy, with
[,I' = 0,2 as a function of collision energy E and magnetic field B near the Feshbach
resonance at B,.., = 632 G. From that, the scattering cross section o(F, B) can be
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determined. Figure 5.8 shows calculated s and d-wave cross sections as a function
of collision energy for an incoming plane wave and for three different magnetic-
field values B — B,.s. The most prominent feature is the broad shape resonance in
the d-wave channel. Its position does not depend on magnetic field. In contrast,
the energy at which the much narrower Feshbach resonance occurs changes with
magnetic field. Therefore, the Feshbach resonance can be tuned through the shape
resonance.

According to the theory of multi-channel scattering resonances, near resonance
the S-matrix elements are expected to follow an analytic behavior of the form [107,
119, 148]

Sw(E, B) = o’ @+ @] (5, i (B) : (5.8)
E — E,,(B) + $hT'(E)

Here, 5lbg (E) denotes the background scattering phase for the [-th partial wave,
where background means for magnetic fields far away from the Feshbach resonance.
Note that the shape resonance is contained in the background phase 512’9 (E) of the
d wave. I'(E) is the total decay rate of the molecular state. The energy of the
molecular state E,,(B) was introduced before (see Eq. (3.17)). As we will see in
Sec. 5.2.2, the I';; can be interpreted as the decay rate into the [-th partial wave.
For the S-matrix to be unitary and symmetric, the I';; must all be real and satisfy
the relations

oo = £vTool'22 (5.9)
F - FOO + FQQ . (510)

The correct sign in the first expression has to be determined from the coupled-
channels calculation. In our case, we find a minus sign. Eq. (5.10) expresses the
fact, that the total decay rate I' is the sum of the partial decay rates.

Next, for any given E, we fit Eq. (5.8) for variable B to the S-matrix elements
obtained from our coupled-channels calculation [148]. The fits match the S-matrix
extremely well as shown in Fig. 5.9. The open-channel physics, including the shape
resonance, is independent of B and is therefore included in the energy-dependent fit
parameters 0, (E) and Ty (E). Furthermore, the combination of the fits for different
energies yields Ap = kp x 224 uK/G.

As mentioned earlier, the kinetic energy E of the atom pairs after dissociation
is E = E,,(B). Therefore the energy-dependent fit-parameters 6/Y(E) and I'y (E)
for the gedanken experiment become magnetic-field dependent parameters in the
dissociation experiment, 6/Y(B) and Ty, (B). The link between scattering and decay
is discussed in the following.

5.2.2 Link between scattering and decay

The link between the scattering gedanken experiment and the dissociation experi-
ment can be established from evaluating the different terms in the asymptotic form
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Figure 5.9: Fitting to the S-matrix elements. The theoretically expected Breit-Wigner
form Eq. (5.8) is fitted to the results of a coupled-channels calculation (o). Modulus
squared (a) and phase (b) of the S-matrix elements are plotted as a function of magnetic
field for a fixed energy of kp x 255 pK. The fit curves (solid lines) agree so well with the
numerical data that they are hardly visible in the plot.

of the regular scattering wavefunction

—ikr zk'r

lO

1/6

) = (-1)

ZS;;@S 0(9), (5.11)

ll’

where we assume in the gedanken experiment that only one partial wave [’ is pop-
ulated initially. Here, the S-matrix is split into a background part and a resonant
part Sll’ = Slbl‘(,] + ﬁ?s with Slbl‘? = 6216?9511/.

Hence, the scattering wavefunction consists of three parts: an incoming wave, an
outgoing background wave, and an outgoing resonant wave. The resonant part is due
to particles that make the transition to the molecular state and subsequently decay
back into the open channel. The Stern-Gerlach separation removes all incoming flux
and along with it the background scattered wave. These two terms therefore need
to be removed from the scattering state Eq. (5.11) in order to describe the decay
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wavefunction '
ikr

r—oo € res
wdecay(r) —_— = r ZS”/ 10(79) . (512)

l

Inserting the resonant part of the S-matrix Eq. (5.8) and Eq. (5.9) into Eq. (5.12)
and setting I’ = 0, yields the following expression for the decay wavefunction

Vdecay(r) = §(r, E) (x/@%o—e“”l\/@éo(ﬂﬁ . (5.13)

g(r, E) is the radial wavefunction and is related to g(r,t) in Eq. (5.2) through a
Fourier transform. Furthermore, the relative phase of the decaying partial waves is
abbreviated as

Ot = 027 — 807 (5.14)

and the branching ratio into the [-th partial wave as
Bi(B) =Tu(B)/T(B) . (5.15)

The last expression implies that I';;(B) represents the partial decay rate into the
[-th partial wave.

The theoretical results for the decay rate, branching ratio, and the phases were
already shown in Fig. 5.2 and Fig. 5.7. The good agreement between theory and
experiment without any free fit parameters supports our model.

Finally, the parameters of the simple model Eq. (5.1) can be extracted from the
full theory. The d-wave decay rate I'sy = I' — I'yg is the difference between the total
and the s-wave decay rate, both shown in Fig. 5.2. The maximum of I'y; is located
at 1.28 G corresponding to Fgpepe = kp % 287 pK. The value and the curvature of
[y(B) at the maximum correspond to I'spepe = 17 MHz and = 27 x 0.61 MHz.
These numbers agree well with the values obtained by fitting the simple model
Eq. (5.1) to the experimental data.
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Chapter 6

A Mott-like state of molecules

As was pointed out in Chap. 4, the Feshbach molecules associated from bosonic
atoms strongly suffer from inelastic collisions with other particles. This makes fur-
ther experiments difficult. A solution to this problem is offered by placing the
molecules one-by-one at the sites of a three-dimensional optical lattice. This iso-
lates the molecules from each other and therefore suppresses inelastic collisions as
demonstrated in a recent experiment [74].

But molecules in optical lattices are interesting for more than just this reason.
During the past few years, quantum gases in optical lattices have attracted a great
deal of interest [12]. They resemble solid-state systems but with parameters that
can be controlled in realtime. Hence, open problems from solid-state physics might
be accessed with lattice systems. A famous example in the case of atoms is the
realization of the quantum phase transition from a superfluid to a Mott-insulator
state [103], which also plays a prominent role in the present chapter. Molecules, in
particular polar ones, offer the prospect to access a new class of solid-state Hamil-
tonians [160-162]. Moreover, certain schemes for quantum information processing
suggest to use molecules in optical lattices as qubits [163, 164].

Here, we present a first step towards these goals, namely the realization of a Mott-
like state of molecules [76, 165]. The experiment starts with an atomic Mott insulator
with exactly two atoms per lattice site. Next, the atoms are associated to molecules
using a Feshbach resonance. The resulting quantum state resembles a Mott insulator
state, insofar as it has exactly one molecule per lattice site. Before turning our
attention to this experiment in Sec. 6.3, we discuss the physics underlying the atomic
Mott insulator in Sec. 6.1 and demonstrate its experimental realization in Sec. 6.2.

6.1 Atomic Mott insulator

This section introduces the Bose-Hubbard Hamiltonian describing bosonic atoms in
optical lattices [166]. The ratio of interaction energy to tunneling energy determines
whether the ground state of that Hamiltonian is a superfluid or an insulator. Both

73
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regimes are treated separately. The discussion is restricted to the concepts relevant
for our experiment. More details can be found in the literature [97, 166-168].

6.1.1 Bose-Hubbard model

For describing atoms in optical lattices, it is convenient to work in a basis of Wannier
functions [98]

Wy, (r —1;) 1/2267“11" U (6.1)

N is a normalization constant and the \Ifsln) (r) are Bloch waves generalized to
three dimensions (compare Sec. 2.4.2). The Wannier functions represent particles
that are maximally localized at lattice sites r;. If the energies involved in the dy-
namics of the system are much smaller than the band gap between the two lowest
bands, only Wannier functions of the lowest band (n = 0) need to be considered.

In Sec. 3.1.4, a Hamiltonian in second quantization was introduced to describe
a many-body system of bosons with binary interactions. In the lattice, the corre-
sponding bosonic field operator T is expanded in the basis of Wannier functions as

U(r) =) aw(r—r) , (6.2)
where the operator a; annihilates a boson on the ¢-th lattice site. Inserting ex-
pansion Eq. (6.2) into the Hamiltonian Eq. (3.15) finally yields the Bose-Hubbard
Hamiltonian [166, 167]

H= Z Vi —J Y ala;+ ) %Un (i —1) . (6.3)

<i,5>

Here, n; = dzdi is the operator for the particle number at site i.

The first term in the Bose-Hubbard Hamiltonian Eq. (6.3) originates from the
external confinement of the particles, which causes an energy offset ¢; at the i-th
lattice site. It also includes the chemical potential p. In the following we will first
neglect the external confinement and discuss a homogeneous system with €; = 0 for
all 1.

The second term describes the tunneling of atoms between neighboring lattice
sites. Note that the summation is carried out only over nearest neighbors. The
tunneling rate J between sites ¢ and j is given by

1= [@rue-r) (G0 ) wir-x) . 6

where Vj.:(r) denotes the optical-lattice potential introduced in Sec. 2.13. J is
related to the energy width of the lowest band through [168]

J = (maX(E(O)) mln(E 0 )) /4. (6.5)

q
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In the limit Vjo; > E,.., J can be approximated as [169]

4 Vier \ /4 Via
J = ﬁErec <#) exp (—2 El t) . (6.6)

The third term in Eq. (6.3) specifies the on-site interaction energy due to binary
collisions: each of the n atoms at one lattice site has n — 1 other atoms to interact
with. The interaction strength is

B Amh?a
om

U d*r Jw(r)|* . (6.7)

As before, a denotes the s-wave scattering length. In the limit V},; > FE,.., the Wan-
nier functions can be approximated by a Gaussian with a spatial extent determined
by the harmonic oscillator length ay,. In this case, U is given by [169]

dmhi? 1 Ve )
T~a lat
U= """k [ —/ =% 6.8
m et (27r ET60> ’ (6.8)

where ki = 27/ \jq; is the modulus of the wavevector of the lattice light.

In Fig. 6.1, the on-site interaction energy U, the tunneling energy J and the
ratio U/J are plotted as a function of Vj,;/F, .. The plots were obtained from a
numerical calculation with parameters that match our experimental situation [170].
In addition, approximate results according to Egs. (6.6) and (6.8) are shown. When
increasing the lattice depth, the tunneling barrier height increases and J decreases
exponentially. At the same time, U increases slightly due to the increased confine-
ment at the lattice site. Therefore, tuning the lattice beam powers and thereby
tuning the lattice depth makes it possible to adjust the ratio U/J over a wide range.

Quantum phase transition U/J determines the ground-state properties of the
Bose-Hubbard Hamiltonian. For small U/J, the system shows superfluid transport,
whereas for large U/.J, transport is suppressed and the system is in the so-called
Mott-insulator regime. The two regimes are connected by a phase transition, which
occurs for some critical value of the ratio U/J. The transition is a so-called quantum
phase transition that occurs at 7' = 0. In contrast, phase transitions in classical
systems occur at finite temperatures.

The critical value, at which the quantum phase transition occurs, is given by
(U/J)erit = 2-5.8, where z is the number of nearest neighbors in the lattice [167,
171-173]. For a cubic lattice with z = 6 this results in (U/J)i = 34.8. From
Fig. 6.1, the critical lattice depth for the transition to the Mott insulator state in a
3D optical lattice can be read off as (Vj4) 12F, ..

LN
crit
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Figure 6.1: Relevant parameters for atoms in an optical lattice. (a) The interaction
energy U changes only slightly with increasing lattice depth. (b) Simultaneously, the
tunneling parameter J decreases exponentially. (¢) As a consequence, the ratio U/J can
be adjusted over several orders of magnitude by tuning the lattice depth Vj,. The solid
lines are the results from numerical calculations [170], while the dashed lines were obtained
using the approximate relations Egs. (6.6) and (6.8).

6.1.2 Superfluid ground state
For U/J < 1, the tunneling term

—J Y ala (6.9)

dominates the Bose-Hubbard Hamiltonian. In order to understand the consequences,
it is very instructive to consider a single atom in a double-well potential first. This
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Figure 6.2: Atom-number distribution for the superfluid ground state. (a) At each
lattice site, the atom-number distribution follows a Poissonian distribution p(n), which is
plotted here for a mean atom number i = 2. (b) The wave function on each lattice site
is a coherent superposition of different atom-number states. Therefore, a snapshot of the
atom distribution would yield a random result for each site.

problem is a standard textbook example in quantum mechanics (see e.g. [108]).
Here, the tunneling energy FE; is minimized if the atom is delocalized over both
wells in a symmetric superposition

0,) = % (ﬁ + a;) 0y,  Ey= (U] - J(ala + aba)|W,) = —J . (6.10)
For an atom localized in one potential well, E; = 0, for an antisymmetric superpo-
sition E; =+ J.

Generalized to an arbitrary number M of potential wells, the atom will tend to
delocalize over all wells in order to minimize E;. In the absence of interactions (U =
0), the many-body ground state for N atoms is a product of identical delocalized
single-particle states

1 L "
Wsp) = <\/—M ;@) 0) . (6.11)

For each lattice site, the many-body state |Wgg) is a superposition of different atom-
number (Fock) states. A snapshot of the atom-distribution in the lattice would
therefore reveal a random atom number per site with an underlying Poissonian
distribution. This is illustrated in Fig. 6.2.

Since it is a product over identical single-particle states, the many-body state
Eq. (6.11) can be described by a macroscopic wavefunction. Hence, there is a well-
defined phase across the lattice and the system is superfluid.

Momentum distribution An important, experimentally accessible property of
an atomic sample is its momentum distribution. The momentum distribution is
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Figure 6.3: (a) Spatial and (b) momentum distribution of a single-particle state in an
optical lattice. The periodic lattice potential leads to regularly-spaced satellite peaks in
the momentum distribution. The width of the Gaussian envelope of these satellite peaks
is determined by the width of the spatial distribution at a single lattice site. The width of
the peaks in momentum space is inversely proportional to the overall spatial extent r of
the state. The momentum distribution is detected in the experiment by a time-of-flight
method.

related to the spatial distribution by a Fourier transform. For atoms in an opti-
cal lattice, the position and momentum distribution of a single-particle state are
sketched in Fig. 6.3. The periodicity Aj.;/2 of the lattice potential leads to satellite
peaks in the momentum distribution separated by 2hk;,;. A simple cubic lattice in
position space results in a simple cubic lattice in momentum space. The envelope
of the satellite peaks in momentum space is determined by the width of the atom
distribution at a single lattice site (see Fig. 6.3). In contrast, the overall spatial ex-
tent 7 of the atom cloud due to an additional external confinement (see Sec. 6.1.4),
sets the scale ~ h/r for the width of a peak in momentum space.

As explained in Sec. 2.1.4, the in-trap momentum distribution of the atoms is
mapped into a detectable spatial distribution using a time-of-flight method. The
atoms are released from the lattice and allowed to expand freely before an absorption
image is taken. For many atoms in a lattice, the 3D density distribution n(x) after
a time of flight ¢ is described by

n(x) = (%)3 (k)2 S(K) . (6.12)
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Figure 6.4: Atom-number distribution in the Mott insulator (MI) ground state. (a) The
atom-number distribution per site p(n) is discrete in the MI state, shown here for n = 2.
(b) The corresponding spatial distribution with n = 2 is shown. It is an ideal starting
point to associate Feshbach molecules and thereby create a state with exactly one molecule
per site (see Sec. 6.3).

The momentum vector k is determined by hk = mx/t. w is the Fourier transform
of the single-site Wannier function and the structure factor S is given by

Sk) = e*rmialay) (6.13)
2y}

The structure factor contains the first-order correlation function <&3dj>, which is a
measure for the phase coherence in the system. For the superfluid state Eq. (6.11),
the first-order correlation function decreases slowly for increasing spacing |r; — r;|
between lattice sites and approaches a finite value at large distances [9, 10, 169].
This long-range phase coherence results in narrow peaks in the interference pattern.
The formation of narrow interference peaks can also be understood from the
observation that the superfluid many-body state of Eq. (6.11) is a product state
of identical single-particle states. Therefore, the interference pattern is that of this
particular single-particle state. Experimental diffraction patterns are presented in

Sec. 6.2.

6.1.3 Mott insulator ground state

In the other limiting case, where U/J > 1, the interaction term
..

dominates the Bose-Hubbard Hamiltonian. The above expression is minimized when
the atom number is the same at each site. This distribution is shown in Fig. 6.4.
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Moving an atom to a neighboring lattice site increases the interaction energy by an
amount U, which corresponds to the first excited state of the system. Therefore,
atom transport in the lattice is suppressed and the excitation spectrum has a gap,
which is a signature of an insulator.

The many-body ground state of the Mott-insulating system is a product of local
Fock states with n atoms per lattice site

(W) = H \/% @h"|o) . (6.15)

According to the Heisenberg uncertainty principle, a well-defined atom number
leads to a maximum phase uncertainty for each lattice site. Hence, there is no
macroscopic phase coherence in the system. The atom-atom interactions dominate
the behavior of the system and a representation by a macroscopic wave function
is not possible. Such a system is called strongly correlated and cannot be treated
within the framework of the Gross-Pitaevskii equation [114, 115] or Bogoliubov’s
theory of weakly interacting bosons [113].

The absence of long-range phase coherence in the MI state implies the absence
of diffraction peaks in the corresponding momentum distribution. With the wave-
function for the MI state Eq. (6.15), the structure factor Eq. (6.13) reduces to a
constant. Hence, we expect the time-of-flight images to show a broad atom distri-
bution without any diffraction peaks.

In a homogeneous system (¢; = 0) with a fixed atom number N and fixed number
of lattice sites M, only the fraction of atoms n- M that fit into the commensurate
lattice filling with n atoms per site will enter the Mott insulator state. The rest of
the atoms will form a superfluid fraction on top of the Mott insulator. This situation
is different in the case of an inhomogeneous system, which is treated next.

6.1.4 Inhomogeneous case

In the experiment, the atoms typically experience an external harmonic confinement
due to the dipole trap and in addition due to the Gaussian shapes of the lattice
beams. In a deep lattice, where J < U, the atoms will be distributed among the
lattice sites such that n; is the greatest integer that fulfills the inequality

1

The situation is illustrated in Fig. 6.5. The external confinement leads to a posi-
tion dependent atom distribution. For U/J = oo, shells of Mott insulator regions
with constant n will form. The atom number per site in the shells decreases with
increasing e;.

In the case of T" = 0 and J — 0, the atom distribution in a 3D lattice with
external harmonic confinement can be calculated as follows: The external confine-
ment due to the lattice is modeled by the pseudo-potential of Eq. (2.14). Steps in
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Figure 6.5: Sketch of the lattice filling with external harmonic confinement for J — 0.
Note that the energy per atom in each lattice site is shown. The energy levels represent
different atom numbers n in each lattice site. Atoms fill the lattice sites up to a constant
chemical potential p per atom. In 3D, the system consists of shells of constant atom
number per lattice site.

the lattice-filling n occur at radial distances, where ¢; + U(n — 1)/2 = p for some
integer n. Along the coordinate axis j this happens at radii

o= 2w =1 [2 (- L) 617

On the surface of such a shell % > ; wfx? is constant. Rewritten in scaled variables

i= Ly, (6.18)
with © = (wywyw,)'3, the shells are spherical. Note that the corresponding volume

element is unchanged under this transformation. By rewriting Eq. (6.17) in the
scaled variables, setting r,, = ; ,, and multiplying by k., we obtain

UErec 2,“
KiatTn = \/2 22 <1 + Yl n) ) (6.19)

As r, must be real, there is a maximum value for n:

Nmae = 1+ | 57] (6.20)

where |x] is the largest integer n with n < z.
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density

N/ N

Figure 6.6: Shell structure of the inhomogeneous Mott insulator for J — 0. (a) Fraction
of atoms at lattice sites occupied with n atoms each as a function of N/Np. (b) Cor-
responding 3D surface plot of the atomic density in a 2D lattice for a maximum atom
number per site of ny,.; = 3. Inspired by such plots, the shell structure of the Mott
insulator is often referred to as a ”wedding cake”.

Let S, = >, npn, be the number of lattice sites occupied with n atoms each. The
spacing of the lattice sites is A\jgt/2 = m/kjat, S0 that the average number of lattice
sites per volume is (ki /7). In the case of many lattice sites per shell, a continuum
approximation for S,, can be introduced as

i ko \> 4 Ko\
sn:/ dr 4mr? (ﬂ) =§(ri—ri+1)( “) . (6.21)

Prtl ™ ™

Hence, the total number of atoms is given by

Nmaz 4 Nmax

N = nsS, = — n ((k:latrn)3 — (klatrnH)S) , (6.22)

which can be rewritten as

Nmazx 2/,L 3/2
N = Ny <1+F—n) (6.23)

8v/2 (UEWC)?’/Q

3n2 \ hPw?

n=1

Ny = (6.24)

Ny is a normalization factor. In the experiment, p is not known, but N/Ny is. pu
can then be determined from Eq. (6.23) by inversion. The interaction energy U is
calculated according to Eq. (6.8).
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The number of atoms at sites with n atoms each is

3/2 3/2
N N anax (1 4 zUH . m)3/2

m=1

The result is plotted in Fig. 6.6 (a) as a function of N/N,. Note, that the maximum
value for Ny /N is 53%. This value is reached at the point where n,,,, is just above
three.

The atomic density distribution in an optical lattice is sometimes illustrated as
a 3D surface plot for a two-dimensional cut through the 3D lattice structure. For
the case of a Mott insulator in the limit J — 0, i.e. U/J — oo, such a plot is
shown in Fig. 6.6 (b). For obvious reasons, the distribution shown is often referred
to as “wedding cake” distribution. Recently, two groups independently resolved the

spatial shell structure of the inhomogeneous Mott insulator in their experiments
(174, 175).

Finite U/J Up to now, the inhomogeneous case was discussed for U/J = oo and
T = 0. There, the atoms arrange in shells of constant n. For finite U/J, these Mott
insulator shells are separated by shells of atoms in the superfluid state, and the sharp
steps in the atom density distribution soften. Around the steps, a gain in tunneling
energy makes energy levels in neighboring sites accessible that would lie above p in
the case of U/J = oo. In these regions, the superfluid state is energetically more
favorable than the Mott insulator state. For “wedding cake” illustrations in the case

of finite U/.J see Ref. [97].

6.2 Quantum phase transition near 1007 G

Here we report the experimental realization of the quantum phase transition from
a superfluid to a Mott insulator state for ’Rb atoms in an optical lattice. Similar
results were previously reported in Refs. [97, 103]. The novelty of our experiment
lies in the fact that we produce the atomic Mott insulator at high magnetic fields
close to the Feshbach resonance at 1007.4 G. This is a prerequisite for creating a
state with one molecule per lattice site as described in Sec. 6.3.

6.2.1 Experimental sequence

The experimental sequence for creating an atomic Mott insulator near 1007.4 G is
as follows: First, a BEC is created in the magnetic trap, and then transferred to the
dipole trap. Next, the magnetic field is switched on and set to a value of ~ 1006 G.
The magnetic field produces a slight gradient which leads to a shift in the position of
the trap minimum and pulls some atoms out of the dipole trap. Therefore, we allow
the system to reach equilibrium again within a few hundred ms. After that wait
time, the dipole trap contains an almost pure BEC with about 10° atoms and no



84 CHAPTER 6. A MOTT-LIKE STATE OF MOLECULES

(a) )

Figure 6.7: Transition from the superfluid to the Mott insulator state at 1006 G. In
the experiment, the lattice depth is ramped up slowly to a final value and then switched
off abruptly. After a certain time-of-flight, an absorption image is taken. Such images
are shown in parts (a)-(d) for lattice depths of Vj,; = 0,5,12, and 24E,.... For low lattice
depths, the system is in the superfluid state. Diffraction peaks are clearly visible around
the central cloud. As the lattice depth is increased the contrast of the pattern gradually
decreases. It smears out almost completely around Vjq; ~ 12E,., which marks the onset
of the Mott insulator regime. Deep in the Mott insulator regime, a broad structure-less
atom cloud is found.

o
o

optical depth

o

discernable thermal fraction. Subsequently, the power of the lattice light is ramped
up to a value corresponding to the desired lattice depth V.

The functional form of the lattice-light ramp was adapted from Ref. [97]. We
use an exponential ramp with a duration of 80 ms and a time constant 7 = 20 ms.
After a typical holdtime in the lattice of 20 ms, the atom distribution is analyzed
by time-of-flight absorption imaging. To this end, the magnetic field, the lattice
potential and the dipole-trap light are switched off simultaneously and the cloud is
allowed to expand freely for t.,, = 12 ms before an image is taken.

We repeated the above sequence for different final lattice depths Vj,;. Absorption
images of this measurement are shown in Fig. 6.7. For low lattice depths diffrac-
tion peaks are clearly visible around the central cloud. When the lattice depth is
increased further, the strength of the diffraction peaks gradually decreases and the
central peak broadens. Around V), ~ 12F,.. the interference pattern smears out
almost completely and for even deeper lattice potentials, only a broad atom cloud
without any structure is visible.

The vanishing of the interference pattern around the critical lattice depth of
Viat ~ 12FE,... marks the quantum phase transition to the Mott insulator state. The
diffraction pattern thereby vanishes due to the vanishing phase coherence between
the lattice sites in the Mott phase (see Sec. 6.1.3). In contrast, the sharp diffraction
peaks for low lattice depths are a signature of the long-range phase coherence in the
superfluid phase (see Sec. 6.1.2).
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Figure 6.8: Restored phase coherence. After holding the atoms deep in the Mott insulator
regime at Vi, = 24F,. for 20 ms, the lattice depth is ramped down linearly to 4E,..
within 10 ms, before switching off the lattice. The diffraction peaks reappear, indicating
the transition back to the superfluid state.

6.2.2 Restoring phase coherence

The loss of diffraction peaks in the Mott phase could have several origins. In princi-
ple, technical noise could lead to irreversible processes, such as heating or dephasing.
This can be tested by melting the Mott insulator, i.e. by ramping the lattice depth
back down to well below the transition point. If the quantum phase transition is re-
versible, the diffraction pattern will reappear. We performed such a measurement for
the parameters of Fig. 6.7. First, the lattice depth was ramped up to Vi, = 24FE, ..
and held there for 20 ms. Next, the lattice depth was ramped back down linearly
t0 Vigt = 4F,.. within 10 ms, before switching the lattice off abruptly. As expected,
the diffraction pattern reappears, as can be seen in Fig. 6.8. This proves that the
vanishing of the diffraction peaks in Fig. 6.7 is caused by the transition to the Mott
insulator state, not by heating or dephasing. The restoration of phase coherence will
be the main experimental signature when creating a Mott-like state of molecules (see

Sec. 6.3).

A quantity of interest is the timescale on which phase coherence in the lattice is
restored. Since phase coherence is restored by atoms tunneling between lattice sites,
the tunneling time is expected to play a role. In order to test this, the duration of
the back-ramp was varied in the experiment. The width of the central peak in the
time-of-flight images served as a measure for the phase coherence [97].

The results are plotted in Fig. 6.9. The parameters of this measurement are
similar to those of Fig. 6.8, except that the final lattice depth is now V,; = 4.8FE,..
The lattice ramp-down time was varied from 0 to 10 ms. An exponential fit to
the data yields a time constant of 7 ~ 0.8 ms, which coincides with the tunneling
time at the final lattice depth of Vj,; = 4.8F,.. (see Fig. 6.1). Phase coherence is
almost completely restored in ~ 2 ms. Longer ramp times do not change the width
significantly. Hence, it only takes a few tunneling events for restoring a macroscopic
phase across the lattice (see also Ref. [97]).
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Figure 6.9: Timescale for restoring phase coherence. The width of the central peak of the
time-of-flight images gives a measure for the phase coherence. Phase coherence is restored
in ~ 2 ms.

6.3 A Mott-like state of molecules

This section reports the creation of a quantum state with exactly one molecule per
lattice site. In principle, such a state could be created by inducing a quantum phase
transition from a molecular superfluid to a molecular Mott insulator. This is fea-
sible, if the molecule-molecule interactions are predominantly elastic and repulsive.
However, many molecular species, and in particular the Feshbach molecules made
from bosonic atoms, do not have such convenient interaction properties. Hence,
alternative strategies are needed. This section demonstrates a technique that does
not rely on the molecule-molecule interaction properties. Instead, we associate the
molecules from an atomic Mott insulator with a core of doubly occupied lattice sites.
Several previous experiments associated molecules in optical lattices [74, 75, 176—
178], but none of them demonstrated the production of a quantum state with one
molecule per lattice site.

6.3.1 External confinement

For creating molecules in the optical lattice, we want to start with a Mott insulator
that has a maximum fraction of atoms on doubly occupied sites. Lattice sites with
more than two atoms are undesirable, because any Feshbach molecule created on
a lattice site with n > 3 is bound to collide inelastically with the other particles
(atoms or molecules) on that lattice site. This leads to fast loss of the molecule and
its collision partner.

Fig. 6.6a predicts a maximum fraction of doubly occupied sites for an overall
atom number N ~ 4 Ny. According to Eq. (6.24), Ny depends on the overall external
confinement due to the dipole trap and the lattice beams. For the dipole-trap
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Figure 6.10: Scheme of the Mott-like state of molecules. In the core of the cloud, each
lattice site is occupied by exactly one molecule (shown in green). In the surrounding shell,
each site is occupied by exactly one atom (shown in red). The atoms can be removed with
a blast laser.

setup used in previous experiments and typical lattice parameters, we estimate Ny
to be around 5 — 6 x 103. Experimentally, such low atom numbers have several
disadvantages. We find that creating pure condensates with ~ 2—3 x 10* is difficult.
Moreover, such low atoms numbers (and even lower molecule numbers) are harder
to detect reliably.

As a consequence, we redesigned our dipole trap in order to reduce the external
confinement. Now the trap light is provided by two different lasers. The additional
laser is a multi-frequency fiber laser with a central wavelength of 1050 nm and a
linewidth of ~ 1 nm. The corresponding beam has an elliptically shaped focus with
waists of 60 ym and 700 um. The strong confinement in one direction holds the
atoms against gravity. Typically, we work at a power of 2.1 W, resulting in an
angular trap frequency of 27 x 110 Hz along gravity. In the other two directions, the
fiber laser does not provide enough confinement. Here, we use the single-frequency
Nd:YAG laser from previous experiments. The two different laser beams intersect at
right angles to form a crossed dipole trap. The Nd:YAG-laser beam has a spherically
symmetric focus with a waist of 140 pm. At a power of 170 mW, the measured
trap frequency is 27w x 20 Hz. Thus, the mean trap frequency is now reduced to
Waip = 2m x 35 Hz and Ny increases significantly. For Vi, = 24E,.. and a ~ 1.14a,,
(corresponding to B ~ 1006 G), Ny is close to ~ 2.5 x 10
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6.3.2 Molecules in the optical lattice

The experimental sequence for creating a Mott-like state of molecules starts with
the creation of an atomic Mott insulator at 1006 G as described in Sec. 6.2.1. To
that end, about 10° atoms are loaded into the optical lattice and the lattice depth is
ramped up to Vi = 24F,... At this lattice depth, the atomic tunneling amplitude
is J = 2mwh x 4 Hz (see Fig. 6.1).

The experiment shows that the dipole-trap light from the fiber laser at 1050 nm
causes fast loss of the Feshbach molecules, presumably due to photodissociation.
Before associating molecules, we therefore reduce the power of the dipole-trap light
slowly to zero. Once the trap light is off, we jump the magnetic field to a value of
1008.8 G. About 2 ms later, the magnetic field is slowly (at 2 G/ms) ramped down
across the Feshbach resonance at 1007.4 G to a final value of B = 1006.6 G.

At lattice sites with a filling of n = 1, the magnetic-field ramp has no effect.
At sites with n > 1, atom pairs are associated to molecules. As explained before,
molecules formed on sites with n > 2 can collide inelastically with other atoms or
molecules at the same lattice site, leading to fast loss of the molecule and its collision
partner. The association ramp lasts long enough to essentially empty all sites with
n > 2 atoms. Typically, we lose about 10% of the overall atom number during the
association ramp. This might be due to the fact that we work close to the point
where the n = 3 core starts to form. On the other hand, the lost atoms might also
come from the superfluid regions in between the Mott insulator shells.

For lattice sites with n = 2 atoms, the association efficiency is well above 80%, as
predicted by the Landau-Zener formula Eq. (4.9). The maximum fraction of atoms
that is converted into molecules (measured as the atom number reappearing after
dissociation) is found to be 47(3)%, which is close to the theoretical limit of 53%
discussed in Sec. 6.1.4. The resulting Mott-like state of molecules with one molecule
per site is sketched in Fig. 6.10.

The mobility of atoms and molecules in the lattice differ significantly. The molec-
ular tunneling amplitude is obtained as follows: The polarizability of a Feshbach
molecule is approximately twice as large as that for one atom. Hence, the molecules
experience a lattice depth of 2V},;. Moreover, the molecules have twice the mass of
a single atom and therefore their recoil energy is half the atomic recoil energy. At
a lattice depth of Vj,; = 24F,.. for atoms, the tunneling amplitude for molecules is
calculated to be J,,, = 2wh x 0.3 mHz. This is negligible compared to the holdtime
between molecule association and dissociation. Hence, the positions of the molecules
are effectively frozen.

In order to show that the molecular part of the sample actually is in a Mott-
like state, the molecules are first dissociated back into atom pairs by slowly (at
1.5 G/ms) ramping the magnetic field back across the Feshbach resonance. This
brings the system back into the atomic Mott insulator state with shells with n =1
and n = 2. Next, the atomic Mott insulator is melted by slowly (within 10 ms)
ramping down the lattice from Vj,; = 24F,.. to Vs = 4F,... Finally, the optical
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Figure 6.11: Atomic Mott-insulator and Mott-like state of molecules. (a) An atomic
Mott insulator is melted by reducing the lattice depth slowly. The system returns to
the superfluid phase and phase coherence is restored. This phase coherence is probed
by quickly switching off the lattice and observing an atomic interference pattern in time
of flight. (b) After association of molecules, only lattice sites occupied by n = 1 atoms
contribute to the signal after lattice-ramp down. (c) After association and dissociation
of molecules, the satellite peaks of the melted system are much stronger than in (b),
thus proving that the molecular part of the cloud is in a Mott-like state with n = 1.
(d) Pure molecular n = 1 state. Same as (c) but between association and dissociation,
remaining atoms were removed with blast light. For the pictures in (a)-(d), visibilities
of 0.93(2), 0.80(5), 0.86(1), and 0.61(2) are obtained, calculated from squares with areas
corresponding to atomic momenta of 0.22hk x 0.22hk (see Sec. 6.3.4).

lattice is quickly switched off (together with the dipole trap and the magnetic field),
and after some time of flight an absorption image is taken.

Results are shown in Fig. 6.11. Part (a) is identical to Fig. 6.8. No associa-
tion (or dissociation) ramp was applied. The fact that phase coherence is restored
demonstrates that an atomic Mott insulator is realized at 1008.8 G. Part (b) shows
the pattern obtained if molecules are associated but not dissociated, so that they
remain invisible in the detection. Hence, the signal comes only from sites with a
single atom. Part (c) was obtained for the full sequence with association and disso-
ciation of molecules. Obviously, the satellite peaks regain considerable population
compared to (b), which proves that after dissociation, an atomic Mott insulator is
recovered. Hence, the molecule association and dissociation must have been coher-
ent and adiabatic. Combined with the freezing of the molecular positions and the
fact that the association starts from an atomic Mott insulator with a core of doubly
occupied lattice sites, this implies that the molecular part of the cloud must have
been in a quantum state with one molecule per lattice site.

6.3.3 Pure molecular system

The Mott-like state of molecules sketched in Fig. 6.10 is a mixed system consisting
of the molecular n = 1 core surrounded by the atomic n = 1 shell. The remaining
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atoms can be removed from the lattice using a blast technique [56, 74]. We adapted
the scheme from Ref. [74] to produce a pure molecular sample. A microwave field and
a light field are applied simultaneously for a few ms, immediately after associating
the molecules. The microwave field has a frequency of 9126 MHz and drives the
transition between levels that are adiabatically connected to |f,mf) = |1,+1) and
|2, 4+2) at small magnetic field. Due to the small linewidth, the microwave selectively
addresses only the atoms and not the molecules. The light pulse is resonant with
the closed cycling transition |2,42) < |3,+3). At B ~ 1006 G, the corresponding
transition frequency is ~ 1400 MHz blue detuned from the value at zero magnetic
field. Atoms that absorb a microwave photon are subsequently blasted out of the
lattice by the light. We find that the molecule numbers before and after the blast
are identical within the experimental uncertainty of 5%.

In order to show that the pure molecular sample is in a Mott-like state, the
molecules are dissociated, the lattice is ramped down to Vj,; = 1.2F,... within 30 ms,
ramped back up to V; = 6FE,.. within 5 ms, and finally switched off. The result
is shown in Fig. 6.11(d). Again, an interference pattern is visible. The interference
peaks are not as pronounced as in part (c¢). This might be due to the fact that the
state after blasting away the atoms and dissociating the molecules into atom pairs
is not the ground state of the system. The additional energy presumably shows up
as an increase in temperature when ramping down the lattice.

The special ramp scheme for restoring phase coherence in the case of the purified
system is needed due to the following reason. Consider the state consisting only of
the n = 2 Mott insulator core. If one of the atoms at a doubly occupied site tunneled
to an empty neighboring lattice site, an energy U would be released. But there is
no reservoir that could absorb this energy so that the tunneling is suppressed, as
observed in a recent experiment [177]. In order to restore phase coherence when
melting the pure n = 2 Mott insulator core, the atoms must tunnel to neighboring
lattice sites. Therefore, a strong reduction of U is required. This can be achieved
by ramping the lattice down to a point much below Vj,; = 4E,.. (or by reducing
the scattering length). But at such a low lattice depth, the sudden switch-off of
the lattice does not produce noticeable satellite peaks. To observe such peaks, the
lattice therefore must be ramped back up before switching it off.

6.3.4 Visibility
The height of the satellite peaks can be quantified using the visibility

Y= Mmaz — Mmin (6.26)
Nmax + Nmin

As in Ref. [179], we measure the maximum density n,,,, at the first lateral peak
of the time-of-flight interference pattern. The minimum density 7n,,;, is determined
under 45° off at the same distance from the central peak. For spherically symmetric
Wannier functions, the visibility only depends on the structure factor Eq. (6.13).



6.3. A MOTT-LIKE STATE OF MOLECULES 91

0.30 |

0.25 [

visibility

0.20 [

o5 v v
0 50 100 150 200

hold time (ms)

Figure 6.12: Lifetime of the pure Mott-like state of molecules. The visibility of the
satellite peaks in measurements similar to Fig. 6.11 (d) decays as a function of the hold time
between molecule association and dissociation. The visibility was calculated from squares
(as shown in the inset) with areas corresponding to atomic momenta of 1.0hk x 1.0hk.
The line shows an exponential fit which yields a 1/e-lifetime of 93(22) ms.

This can be seen by inserting expression Eq. (6.12) into the above definition of the
visibility. We average n,,q, and n,,;, over a square as illustrated in the inset of
Fig. 6.12. In order to compensate for asymmetries due to technical noise, we take
all four pairs of maxima and minima for the data analysis .

Figure 6.12 shows the decay of the visibility as a function of the hold time be-
tween molecule association and dissociation. These data were obtained from mea-
surements as in Fig. 6.11(d), except that after dissociation the lattice was ramped
down to Vj; = 2.8F,.. within 10 ms and ramped back up to Vi, = 5.5E,.. within
4 ms. The observed lifetime of the visibility is sufficient for many applications. For
comparison, the measured lifetime of the molecule number is 160(20) ms, similar
to Ref. [74]. This sets an upper limit on the lifetime of the visibility, because the
sites at which molecules are lost are randomly distributed across the lattice, thus
gradually destroying the Mott-like state. The fact that the visibility does not settle
to zero might be partly due to the fact that the Wannier function for small lattice
depth is not spherically symmetric. Hence, the Fourier transform of the Wannier
function does not cancel in the above definition of the visibility, as would be the case
otherwise (see expression Eq. (6.12)). The non-zero visibility at long times might
also be partly due to non-removed atoms because of imperfections of the blast laser
(15% of the total signal at zero hold time).

6.3.5 Excitation spectrum

An interesting property of a Mott insulator state is a gap in the excitation spectrum
which is due to the interaction between particles. Here we probe the excitation
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Figure 6.13: Atomic excitation spectrum. The full width at half maximum of the central
interference peak is shown as a function of the frequency at which the lattice depth is
modulated. The results in parts (a)-(c) correspond to the conditions of Fig. 6.11 (a)-(c).
First, the usual lattice ramp-down is interrupted at Vj,s = 15FE,... Next, the power of
one lattice beam is modulated for 11 ms with a peak-to-peak amplitude of 50%. Finally,
the lattice ramp-down continues as usual. Resonances are visible at 1.6 and 3.2 kHz. The
lines are a guide to the eye.

spectrum by amplitude modulation of one of the lattice beams [180]. The modulation
with frequency v,,,q creates sidebands on the lattice light. Therefore, an atom can
absorb a lattice photon at the carrier frequency and emit it into the red sideband,
which adds energy to the system. For an n = 1 Mott insulator, this will only happen
if hyoq ~ U. In this case, an atom can tunnel to an already occupied neighboring
lattice site. The extra energy shows up in a broadening of the interference peaks,
when the lattice light is ramped back down into the superfluid regime. An alternative
strategy to the modulation method is the application of a magnetic-field gradient [97,
103].

Figure 6.13 shows excitation spectra of the atomic system at a lattice depth of
Vit = 15E,.. In Fig. 6.13(a), the spectrum was recorded before the association
of molecules (corresponding to the situation in Fig. 6.11(a)). Clear resonances at
energies U and 2U are visible, which is an additional proof that the system initially
is an atomic Mott insulator. Figure 6.13(b) shows a spectrum after molecule associ-
ation. Here, the signal at 2U has essentially disappeared, because the signal at 2U is
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Figure 6.14: Excitation spectrum of the pure Mott-like state of molecules. Parameters
are chosen similar to Fig. 6.11(d). The lattice is ramped down from Vi, = 24F,. to
Viet = 3.6 E,¢. within 20 ms. Next, the power of one lattice beam is modulated for 10 ms
with a peak-to-peak amplitude of 20%. Then the lattice is switched off. Parts (a) and (b)
show a narrow resonance at 21 kHz and a broad resonance around 33 kHz. The lines are
a guide to the eye. These resonances are not related to the molecular on-site interaction
matrix element U,,. Instead, both resonances can be explained as band excitation, when
considering the one-dimensional band structure for molecules at this lattice depth, which
is shown in part (c). The zero of energy in (c) is chosen at the bottom of the lowest band.
Arrows indicate the band excitations.

created by processes that require lattice sites with n > 2 atoms [97]. But these are
absent after the molecule-association ramp. After dissociating the molecules back
into atom pairs, the peak at 2U reappears (Fig. 6.13(c)). The spectrum is similar
to the first one Fig. 6.13(a), except for some heating. However, the resonances at
U and 2U are clearly visible in Fig. 6.13(c). This supports the previous conclusion
that the system after the association-dissociation ramp is again an atomic Mott
insulator.

We also measured excitation spectra at various lattice depths for the Mott-
like state of molecules after removing the atoms, corresponding to Fig. 6.11(d).
These spectra show no resonances related to the molecular on-site interaction matrix
element U,,. An example is shown in Fig. 6.14. The lattice depth chosen here is a
factor of approximately 4 lower than in Fig. 6.14. Hence, the tunneling amplitude
for the molecules J,, = 27mh x 12 Hz in Fig. 6.14 is comparable to the tunneling
amplitude for atoms J = 27h x 21 Hz in Fig. 6.13. The search for resonances
related to U, is hampered by the fact that the value of U,, is unknown. Furthermore,
from the measured rate-coefficient for inelastic molecule-molecule collisions [61], we
estimate a lifetime of 16 us for two molecules at one lattice site at a lattice depth
of Vit = 15E,... This leads to an estimated resonance width of I' = 27k x 10 kHz.
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A possible resonance would therefore be too broad and consequently too shallow to
be observed.

We took data in a broad parameter range, but could not find any resonances
related to U,,. We only observed band-excitation resonances, as in Fig. 6.14. Both
resonances in Fig. 6.14 can be explained as band excitation. We took data in deeper
lattices. Here, the broad resonance splits into two narrower resonances, which both
follow the energy of a band excitation as a function of lattice depth. The molecule
loss at the band-excitation resonance is caused by the fact that the tunneling am-
plitude in higher bands is much higher than in the lowest band. Hence, a molecule
in a higher band can easily tunnel to a neighboring site. If this site was already
occupied by another molecule, then an inelastic collision will lead to fast loss.

The data in Fig. 6.14 do not show any signature of the first band-excitation
resonance at 11 kHz. This is because of the parity of the states involved. To
illustrated this, we consider the states with quasi-momentum ¢ = 0. These states
have even/odd parity for even/odd band number. Therefore transitions between
even and odd bands are suppressed.

In the experiment, the molecule decay rate I' is much larger than the tunneling
matrix element J,,,, so that the effective tunneling rate between neighboring lattice
sites is 4.J2 /(hT) [149]. Hence we expect fast on-site decay I to suppress the mobility
in the many-body system. This might result in an insulator-like behavior without

a gap.



Chapter 7
Outlook

The association of ultracold molecules with Feshbach resonances was a real break-
through in the field of ultracold quantum gases (see Chap. 1). Many groups per-
formed experiments based on this technique. Our group pioneered the work on
Feshbach molecules in 8"Rb. The experiments described in this thesis reveal many
interesting aspects of Feshbach molecules and serve as a good starting point for
future investigations.

The preparation of a Mott-like state of molecules in Chap. 6 prompts the question
what the transport properties of the system are. As discussed in Sec. 6.3.5, the
inelastic interaction properties of the molecules should suppress transport in the
many-body system, somewhat analogous to the suppression of tunneling by elastic
interactions in the atomic Mott insulator. Experimental studies of this effect are
presently under way in our laboratory.

The Mott-like state of molecules offers another very interesting prospect. Raman
transitions induced with laser light could drive the molecules to the internal ground
state. Next, the optical lattice could be ramped down and a BEC of molecules in the
internal ground-state might be formed [181]. Currently, several groups worldwide
working with Feshbach molecules aim for the realization of this scheme.

The Feshbach-association technique was recently extended to heteronuclear mole-
cules [182, 183]. If transferred to the internal ground state, they can have a large per-
manent electric dipole moment. A quantum degenerate gas of these polar molecules
is expected to show new behavior due to the long-range nature of the dipole-dipole
interaction (see e.g. Refs. [45, 46]). Polar molecules in optical lattices are promising
candidates for quantum simulations and quantum information schemes [160-164].
While heteronuclear ground-state molecules have already been produced from laser-
cooled atomic samples [184, 185], the production of a quantum degenerate gas of
polar molecules is a challenging goal. Polar molecules and their applications are
likely to be one of the hot topics for many years to come.

Binary collisions and the association of dimers are well understood by now.
In contrast, the complexity of collisions involving more than two particles makes
a theoretical description considerably more difficult. The study of magnetic-field

95
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dependent three-atom, atom-dimer, and dimer-dimer collisions might lead to new
insights. An intriguing effect is the occurrence of a three-body bound state in a
system of three interacting particles. Evidence for this long-standing prediction
by Efimov was reported in a recent experiment on three-body loss resonances in
cesium [186]. The same group also observed dimer-dimer loss resonances [60]. In
both cases, the loss resonances are presumably caused by a bound state crossing
the corresponding threshold. Hence, like in the case of dimer association, a slow
magnetic-field ramp might create trimers or even tetramers. In analogy to the
situation described in Chap. 6, an optical lattice might help to control the initial
parameters and to suppress inelastic decay of the trimers/tetramers [187]. The
study of molecules with more than two atoms is an interesting topic. Physical
insight gained here might be relevant for other fields such as nuclear physics or
cluster physics.
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