
Technische Universität München
Max-Planck-Institut für Plasmaphysik

Statistical Properties and Structure

of Turbulent Convection
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Prüfer der Dissertation: 1. Hon.-Prof. Dr. Sibylle Günter
2. Univ.-Prof. Dr. Katharina Krischer

Die Dissertation wurde am 3.4.2007 bei der Technischen Universität München
eingereicht und durch die Fakultät für Physik am 18.7.2007 angenommen.
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Abstract

This thesis presents extensive numerical studies of turbulent convection. It fo-
cuses on spectral properties of convection and its nonlinear dynamics. Within
the frame of the thesis, several large-scale direct numerical simulations are per-
formed. Four particular systems are investigated and discussed in the work,
namely: two- and three-dimensional hydrodynamic and magnetohydrodynamic
turbulent convection. All systems are driven by a mean horizontal temperature
gradient. The numerical code uses a standard pseudospectral scheme. Spe-
cial attention is paid to the comparison of various phenomenological theories
of turbulence and their modifications for convective flows. Structure functions,
probability density functions and intermittency effects are examined in all indi-
vidual systems as well. The existence of the Bolgiano-Obukhov regime of tur-
bulence is confirmed in the two-dimensional hydrodynamic system, whereas the
three-dimensional systems are found to operate in Kolmogorov-type regimes of
turbulence. The two-dimensional magnetohydrodynamic turbulent convection
exhibits quasi-oscillations between two different turbulent states. It is shown
that the turbulent regime of two-dimensional magnetoconvection depends on
the mutual alignment between velocity and magnetic field.
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Introduction

Convection represents, apart from conduction and radiation, a basic mechanism
of energy transport in fluids. Turbulence is a state of flow that is characterized
by chaotic and irregular variations of physical quantities, e.g. velocity, in space
and time. Both phenomena play a very important role in a number of physical
systems. Prominent examples are the solar convection zone and the liquid outer
core of the Earth. However, the fundamental role of turbulent convection can
be identified in various other systems too. The Earth’s atmosphere is heated up
near the surface, and resulting convective motions influence its global dynam-
ics. Different levels of salinity in oceanic water cause convective circulations as
well. Observations of all these systems demonstrate an interesting feature: the
presence of convection in a natural system often leads to turbulent motions. In
other words, where vigorous convection takes place, turbulence can be found
as well. This fundamental linkage between convection and turbulence can be
traced to underlying physical reasons. Convection, being the consequence of
some kind of primary instability in the system, provides a source of energy for
turbulent fluctuations. The energy injected to the system leads to increased
mixing rates and efficient transport of quantities advected by the flow. Con-
vective turbulence is usually driven by a mean temperature gradient, but other
driving mechanisms exist as well, e.g. gradients of chemical substances.

Most of the visible matter in the Universe is in a plasma state. Plasma can
be described — under the assumptions given in section 1.1 — as an electrically
conducting fluid. In this case, convection is a ubiquitous agent involved in the
generation of magnetic fields. These are dynamically important for convective
turbulence, and are able to change its properties by nonlinear back-reactions
noticeably. A well-known example is the turbulent dynamo, i.e. the generation
of a large-scale magnetic field due to the combined action of convection and
rotation. In addition, the amplification of an originally small seed magnetic
field, a process called small-scale dynamo, is observed in convective systems as
well.

Scientific research on turbulent convection consists of three main cornerstones:
theory, experiment and numerical simulation. If there is any discrepancy be-
tween them, this should be investigated further and clarified. Only if all three
parts are in mutual agreement, the phenomenon is accepted as explained. First
attempts to understand and describe convection were done by Bénard and Lord
Rayleigh, who investigated its properties in series of experiments with water
tanks that were heated from below and cooled from above ([Ray83][Ben01]
[Ray16]). Lord Rayleigh introduced a nondimensional parameter that describes
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2 INTRODUCTION

the importance of buoyancy forces for the dynamics of convective flows, the
Rayleigh number. From the theoretical point of view, convection was treated at
first in the frame of linear perturbation analysis (e.g. [Cha61] [DR81]). The crit-
ical Rayleigh number for the onset of convective instability was determined for
several basic configurations, and linear stages of the instability were analyzed.
However, linear theory was unable to explain the dynamics of the nonlinearly
saturated turbulent state of convection. The first phenomenological theory of
turbulent convection was proposed independently by Bolgiano and Obukhov in
the late 1950s ([Bol59][Obu59]). It is based on dimensional arguments developed
by Kolmogorov in the context of hydrodynamic turbulence (e.g. [Fri95][Les97]
[Pop00]). Although the Bolgiano-Obukhov phenomenology was originally aimed
at mechanically driven turbulent convection in flows with stable stratification,
it was later experimentally found that the same phenomenology applies to con-
vectively driven systems as well (e.g. [MY75][CCI93][MTM04]). Since then,
many laboratory experiments on convective turbulence have been conducted
in tanks with different shapes and different aspect ratios (e.g. [CCI93][SX01]).
They confirmed the validity of the Bolgiano-Obukhov predictions. The most fre-
quently used medium in laboratory experiments is water, but sodium, gallium
and mercury with various viscosity, thermal and electrical conductivity proper-
ties are often used as well (e.g. [Sig94][MTM04]). While a three-dimensional
hydrodynamic Rayleigh-Bénard configuration has been studied in laboratory
quite extensively, experimental investigations of quasi-two-dimensional setups
or systems with conducting fluids are rare. Such configurations are difficult
to prepare and control under laboratory conditions. Experimental research on
convection in plasma is largely restricted to observations of extraterrestrial sys-
tems, especially the solar convection zone which is also very often investigated
numerically (e.g. [PW82][SV06]). Therefore, an experimental confirmation of
the Bolgiano-Obukhov phenomenology in these systems remains yet unattain-
able. In addition, the relation between measured frequency spectra and spatial
spectra of energy has not been clarified yet. Thus the comparison between exper-
imental results measured predominantly in the frequency space and theoretical
predictions usually given in wavenumber formulation is largely limited.

Numerical simulations of convective turbulence represent a valuable tool that
provides more detailed information about examined systems compared to lab-
oratory measurements. Moreover, they permit investigations of experimentally
inaccessible configurations. In spite of a number of numerical studies, the valid-
ity of the Bolgiano-Obukhov phenomenology has been confirmed only in two-
dimensional hydrodynamic convection while three-dimensional systems exhibit
a Kolmogorov-type turbulence (e.g. [GL93][TS94][VC03]). Thus there is evi-
dent disagreement between laboratory measurements confirming the Bolgiano-
Obukhov phenomenology and numerical results indicating a Kolmogorov be-
havior. Moreover, many numerical investigations of turbulent convection con-
centrated on modeling of particular systems, e.g. the solar convection zone, and
considerably less work has been done to elucidate general physical properties
of turbulent convection. Therefore, despite an increasing interest in past years,
only a limited progress in clarifying the inherent physics of convective turbu-
lence has been achieved. Thus the primary object of the presented work is the
investigation of fundamental properties of turbulent convection, e.g. spectral
energy dynamics or universal statistical properties that should be independent
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of a particular configuration and specific boundary conditions.

More recently, several additional open questions regarding various theoretical
aspects of turbulent convection have appeared, especially: the importance of
the direction of spectral energy transfer for the Bolgiano-Obukhov regime of
turbulent convection, the existence of the Bolgiano-Obukhov regime only in
two-dimensional systems, a possible presence of a mixed regime where the tem-
perature field exhibits the Bolgiano-Obukhov behavior in a Kolmogorov-type
velocity field, the role of the orientation of a mean temperature gradient, the
impact of magnetic fields on the nonlinear dynamics of turbulent convection,
the validity of assumptions for spectral energy transfer in the Bolgiano-Obukhov
theory of turbulent convection and others.

These open questions represent an additional motivation for the investigation
presented in this work. One of the goals of this project is to test these hypotheses
and to clarify the aforementioned discrepancy between laboratory and numerical
results. The presented work might also improve the general understanding of
turbulence and the role of the natural way of driving by a mean temperature
gradient, in contrast to rather artificial energy inputs often used in numerical
studies of turbulence.

The thesis is organized as follows. Chapter 1 introduces basic concepts of con-
vective turbulence and the set of dynamical equations governing the investi-
gated systems. Chapter 2 gives a brief overview of the numerical procedure
employed to solve the equation sets, including parallelization and optimization
techniques used to obtain a maximal computational performance. Several nu-
merical tests of the code are presented as well. The following chapters are
devoted to the presentation and interpretation of obtained results. In chapters
3 and 4, two- and three-dimensional hydrodynamic convective systems are inves-
tigated, respectively. Chapters 5 and 6 present results obtained from two- and
three-dimensional magnetoconvection. The final part summarizes the thesis,
and emphasizes the most important results of this work.
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Chapter 1

Fundamentals of turbulent

convection

1.1 General considerations

This section introduces basic concepts of convection with the help of a simple
example. Consider a tank filled with fluid that is initially at rest. The entire
tank is thermally perfectly isolated from its surroundings, except at the bottom
and the upper side. The bottom plate of the tank is continuously heated, and
kept at high constant temperature. The upper plate is cooled permanently,
and kept at low constant temperature. The temperature difference between
the plates establishes a constant vertical gradient of the temperature pointing
downwards. Additionally, there is the gravitational force acting on the fluid
in the downward direction. Without any perturbations the fluid stays at rest
with a linear vertical temperature profile. The heat is transported by molecular
conduction from the hot bottom part to the cool upper part. When the power
input to the tank increases due to additional heating of the bottom plate, the
conductive energy transport rate increases as well, but the fluid remains at rest.
However, since the mean temperature gradient points in the same direction
as gravity, this setup is thermally unstable with respect to infinitesimally small
perturbations of equilibrium quantities, e.g. velocity, temperature. If the system
is perturbed and the mean temperature gradient is large enough, otherwise
the perturbations would be suppressed by thermal diffusion and viscosity, the
convective instability sets in and the fluid starts to move. Convective instability
is caused by the following fact. Fluid elements that are displaced upward and
are hotter than the surrounding fluid are less dense, so they are lighter in the
gravitational field, and rise further up. On the contrary, fluid elements that are
displaced downward and are colder than the surrounding fluid are more dense, so
they are heavier, and sink further down. At the beginning, the instability grows
exponentially, but later the growth slows down, and the instability eventually
saturates in the nonlinear regime (e.g. [MY75][DR81]). If the temperature
gradient is only slightly supercritical, movements of the fluid are slow, and
the flow can form (to some extent) regular patterns (e.g. [Cha61]). However,
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6 CHAPTER 1. FUNDAMENTALS OF TURBULENT CONVECTION

with increasing temperature difference between the plates, the motion of the
fluid becomes more vigorous and more irregular in space and time. At this
point nonlinear interactions begin to dominate the dynamics of the system,
i.e. turbulent convection starts to develop (e.g. [MY75]). Blobs of light hot
fluid detach from the bottom plate and rise up while heavy cool blobs sink.
The fluid tends to establish an almost isothermal central part, where the flow
is uniformly turbulent, separated by narrow boundary layers from the vertical
boundaries (e.g. [MY75][Les97][VC03]).

Convection in a plasma, usually called magnetoconvection, manifests itself at
macroscopic scales similarly as the convective flow in the aforementioned ex-
ample. The typical length associated with convective motions and the typical
length of turbulent eddies are much larger than any dynamic microscopic length
(e.g. the mean-free path of particles or the Debye length). For example, convec-
tive motions in the solar convection zone occur at length scales of (103–107)m,
whereas the Debye length of the solar plasma is only ≈ 10−4m. Similarly, the
typical time scale of the convective flow (the buoyancy time) and the typical
time scale of turbulent motions (the large-eddy turnover time) are much longer
than any microscopic time scale (e.g. the collisional time or the time associated
with gyro-motions). In the solar convection zone, convective motions occur at
time scales of (102–103) s, whereas the time associated with gyro-motions is only
≈ 10−10s. Therefore, convection in a plasma is usually treated in the frame of
a fluid model. The fluid model is valid for convection in other systems as well,
e.g. in the liquid outer core of the Earth or in stars.

For simplicity, the plasma is assumed consisting of singly charged ions and elec-
trons only. Moreover, the collisional time between electrons and ions is very
short compared to the typical time scale of convective motions, so electrons
and ions can be regarded as strongly coupled, and are treated together as one
electrically conducting fluid (e.g. [Mes99]). Since the mass difference between
electrons and ions is very large, the mass of the plasma can be identified with
the heavy ions; the light and fast electrons carry the electric current. Convective
motions and the local Alfvén speed are assumed to be very slow compared to the
sound speed. This implies that the plasma flow is non-relativistic and incom-
pressible. Due to the same reason the displacement current can be neglected,
and shock waves as well as hydromagnetic waves (except for Alfvén waves) are
excluded. These assumptions constitute the basis of the magnetohydrodynamic
(MHD) approximation for incompressible fluids. The MHD model is discussed
in more detail in e.g. [Bis97][Mes99].

Additionally, it is assumed that the Boussinesq approximation holds. This ap-
proximation is based on the fact that density of many common fluids is quite
insensitive to fluctuations of temperature,

δρ

ρ0
= −αθ (1.1)

where ρ0 and δρ are the equilibrium fluid density and density fluctuations,
respectively. Temperature fluctuations are denoted by the symbol θ. The coef-
ficient α is the volume (thermal) expansion coefficient, which is for many fluids
at moderate temperatures in the range (10−3–10−5)K−1. Such a range of values
α corresponds to a weak temperature stratification, i.e. the size of the system is



1.2. MATHEMATICAL FORMULATION 7

small compared to the equilibrium pressure scale height. According to the ex-
pression (1.1), moderate variations of temperature result in negligible changes of
density. A Boussinesq fluid can be therefore considered as incompressible with
one important exception: the gravitational force can amplify the differences of
density in the fluid, and the resulting buoyancy force might assume large values
compared to other forces. Fluctuations of density are therefore considered only
in the buoyancy force; in other terms they are neglected. A weak temperature
stratification justifies the application of the Boussinesq approximation for neu-
tral as well as electrically conducting fluids. More detailed derivations of the
Boussinesq approximation can be found in e.g. [MY75][DR81][Bis03].

1.2 Mathematical formulation

1.2.1 Boussinesq MHD equations

Based on the assumptions introduced in the previous section, the Boussinesq
MHD model is described by the equations of incompressible magnetohydrody-
namics, including the buoyancy force and an advection-diffusion equation for
temperature. In Gaussian units they read:

dρ

dt
= 0, (1.2)

ρ
∂V

∂t
+ ρ(V · ∇)V − 1

c
(J × B) = −∇P + ρg + µ∆V, (1.3)

∂B

∂t
−∇× (V × B) = η∆B, (1.4)

∂T

∂t
+ (V · ∇)T = κ∆T, (1.5)

∇× B =
4π

c
J, (1.6)

∇ · B = 0. (1.7)

In these equations ρ is the density, V is the velocity, B is the magnetic field, T is
the temperature, P is the thermal pressure, J is the electric current density, g is
the gravitational acceleration, and c is the speed of light. The operator d/dt =
∂/∂t+ (V · ∇) denotes the total derivative. Constants µ, η, κ are the viscosity,
the magnetic diffusivity and the thermal diffusivity, respectively. Because the
mass of the system is conserved and equation (1.2) holds, the pressure P is not
an independent variable and can be computed from the divergence of (1.3)

∆P = ∇ · [−ρ(V · ∇)V + ρg +
1

c
J × B]. (1.8)

The set of equations (1.2)–(1.7) contains physical quantities that can be divided
into mean and fluctuating parts

V = V0 + v, T = T0 + θ, B = B0 + b, P = P0 + p, J = J0 + j (1.9)

In equilibrium the fluid is at rest with a linear temperature profile in the verti-
cal direction. It is assumed that the mean magnetic field is equal to zero. The



8 CHAPTER 1. FUNDAMENTALS OF TURBULENT CONVECTION

mass of the fluid is constant, and uniformly distributed. The velocity equation
(1.3) can be expressed in terms of vorticity Ω (= ∇× V), thereby eliminating
the pressure term. The system is treated as incompressible, ρ = ρ0; density
fluctuations are allowed only in the buoyancy term. The application of these
considerations together with (1.1) finally gives the set of Boussinesq MHD equa-
tions governing the dynamics of the fluctuations in the convective system

∂ω

∂t
−∇× (v × ω +

1

cρ0
j× b) = − α∇θ × g + ν∆ω, (1.10)

∂b

∂t
−∇× (v × b) = η∆b, (1.11)

∂θ

∂t
+ (v · ∇)(T0 + θ) = κ∆θ, (1.12)

ω = ∇× v, ∇× b =
4π

c
j, (1.13)

∇ · v = ∇ · b = 0 (1.14)

where ν = µ/ρ0 is the kinematic viscosity. In the equations (1.10)–(1.14) all
equilibrium values have vanished, except for ρ0 and T0 that expresses the mean
linear temperature profile, and is therefore a function of position. These equa-
tions can be further simplified using nondimensional variables.

1.2.2 Nondimensional variables

There exist different possibilities how to normalize the equations of Boussinesq
convection. In Rayleigh-Bénard (RB) setups the normalization to the thermal
diffusion time td = L2

0/κ, where L0 denotes the size of the RB box, is used very
often, but this option is not very suitable for purposes of turbulence investi-
gations in fully periodic domains. The diffusion time plays a dynamically less
important role than the typical buoyancy time, i.e. the buoyancy time at the
temperature gradient scale L = T0/(∇T0), tb = (αg∇T0)

−1/2, that represents
the typical time scale of dynamic changes of the flow due to buoyancy forces.
In addition, the independent handling of dissipation coefficients is preferred in
turbulence studies because they allow to control the relative importance of dis-
sipative and nonlinear processes directly. Moreover, the system is supposed to
be examined in fully periodic geometry, so a normalization based on the mean
temperature gradient seems to be appropriate. All these arguments support the
following choice of nondimensional variables

t′ ≡ t

tb
, r′ ≡ r

L
, v′ ≡ v

t−1
b L

, b′ ≡ b

b0
, θ′ ≡ θ

L∇T0
. (1.15)

The quantity b0 is the magnitude of typical magnetic field fluctuations. From
now on, throughout the rest of the work, the new nondimensional variables will
be used without primes. This choice of the normalization transforms the set
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(1.10)–(1.14) to the form

∂ω

∂t
−∇× (v × ω + SB j × b) = −∇θ × g0 + ν̃∆ω, (1.16)

∂b

∂t
−∇× (v × b) = η̃∆b, (1.17)

∂θ

∂t
+ (v · ∇)θ = κ̃∆θ + vz,x, (1.18)

ω = ∇× v, ∇× b = j, (1.19)

∇ · v = ∇ · b = 0. (1.20)

The free dimensionless parameters are the dissipation coefficients ν̃, η̃, κ̃ and the
interaction parameter SB = v2

A/v
2
0 where vA = b0/

√
4πρ0 is the magnitude of

the characteristic Alfvén velocity and v0 = t−1
b L (see (1.15)). The parameter SB

determines the relative dynamical importance of velocity compared to magnetic
field, and for the rest of the work is set equal to 1. This choice implies that
magnetic field is measured in units of the characteristic Alfvén velocity. The
vector g0 is a unit vector in the direction of gravity. The dissipation coefficients
are related to several dimensionless parameters that are common in the context
of Rayleigh-Bénard convection

ν̃ =

(
Pr

Ra

)1/2

, η̃ =

(
Pr

RaPrm
2

)1/2

, κ̃ =

(
1

RaPr

)1/2

. (1.21)

Here Ra,Pr,Prm are the Rayleigh number, the Prandtl number and the magnetic
Prandtl number, respectively. They are defined as

Ra ≡ αg△TL3
0

νκ
, Pr ≡ ν

κ
, Prm ≡ ν

η
(1.22)

where △T is the temperature difference over the size of the Rayleigh-Bénard
box L0. The Rayleigh number Ra is a measure for the importance of buoyancy
in the system compared to inertial forces and dissipations. Typical values of
the Rayleigh number are e.g. in the convection zone of the Sun ≈ 1022 and in
the Earth’s outer core ≈ 107. The Rayleigh number influences scale separation
in convective systems, i.e. the ratio of the largest and dissipation scales of tur-
bulent fluctuations. Therefore, in numerical simulations it is limited by applied
resolutions given by available computational resources (e.g. [CHQ88][Bis03]).
Thus only moderate values Ra ≈ 109 are achieved in numerical simulations, al-
though in laboratory experiments the Rayleigh number is usually much higher,
up to ≈ 1017. In fully periodic geometry nominal values of the Rayleigh number
cannot be directly compared with the ones obtained from the Rayleigh-Bénard
configuration because effects of physical boundaries are not involved in the fully
periodic case, so the nominal Rayleigh number takes into account different phys-
ical processes than the Rayleigh number obtained from the Rayleigh-Bénard
setup.

The Prandtl number Pr is the ratio of kinematic viscosity to thermal diffusivity.
It can vary significantly; typical Prandtl numbers are: 10−10–10−3 in the solar
interior, 10−3–10−2 for liquid metals, ≈ 0.7 for air and similar gases, ≈ 1 for hot
fusion plasma, ≈ 10 for water and 102–104 for oils. Thermal conduction is very
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efficient in low Prandtl number systems; on the contrary, high Prandtl number
systems are viscosity dominated.

The magnetic Prandtl number Prm measures the relative importance of viscous
and Ohmic dissipation. Typical magnetic Prandtl numbers are: ≈ 10−6 in the
solar interior, ≈ 10−5 in the Earth’s liquid core, ≈ 102 for hot fusion plasma
and ≈ 1014 for the interstellar medium.

Generally, only moderate values of all governing parameters are achieved in
numerical simulations, because they determine scale separation in investigated
systems, and are therefore limited by applied resolutions.

In following studies both Prandtl numbers are kept close to 1, i.e. none of
the dissipation processes is preferred. However, Prandtl numbers in the in-
vestigated systems are not exactly unity since the primary parameters in the
equations (1.16)–(1.20) that are numerically solved are dissipation coefficients,
and Prandtl numbers are only derived quantities.

The magnetic Prandtl number can be expressed with the help of two other
dimensionless parameters that are of special relevance for turbulence

Prm =
Rem

Re
where Re ≡ L0v0

ν
and Rem ≡ L0v0

η
. (1.23)

In contrast to investigations in the Rayleigh-Bénard configuration with box
size L0, in fully periodic setups the quantities L0 and v0 are replaced by the
typical size and the typical velocity of fluctuations in the system, respectively,
as described later in section 3.1. The kinetic and magnetic Reynolds numbers,
Re and Rem, express the importance of nonlinear terms compared to kinetic
and magnetic dissipation, respectively. The Reynolds number Re determines if
a flow is laminar (low Re) or turbulent (high Re). The critical kinetic Reynolds
number is for most flows in the range 102–103.

Very low values of the magnetic Reynolds number Rem imply that magnetic
dissipation dominates a flow, whereas very high Rem mean that the magnetic
flux through a surface moving with the fluid remains almost constant. In other
words, the parameter Rem quantifies the ”frozen in” property of magnetic fields,
i.e. how much the magnetic field is dragged by the velocity field, and how much
it can slip through. It can be shown that Reynolds numbers determine the
ratio of large and dissipation scales in a flow and thereby their separation (e.g.
[Bis97][Pop00]). Turbulent flows are characterized by large Reynolds numbers.

In the following the meaning of several different terms in (1.16)–(1.20) is ex-
plained briefly (for more detailed analysis, see e.g. [Mof78][Bis97][Mes99]). The
last term on the l.h.s. of the vorticity equation (1.16) is the Lorentz force. It
represents the influence of the magnetic field on the velocity dynamics. The
Lorentz force is responsible for the energy transfer from the magnetic field to
the velocity field and vice versa, so it drives or suppresses velocity fluctuations.

The first term on the r.h.s. of the vorticity equation (1.16) is the buoyancy force.
This force is responsible for rising and sinking of fluid elements. The motion
results from the fact that the gravitational force acting on a fixed volume of the
fluid that is hot is weaker than the gravitational force acting on the same volume
of the fluid that is cold. Consequently, hot parts of the fluid rise, while cold
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parts sink. However, the fluid is incompressible, so a movement of one fluid
element simultaneously causes such motions of other fluid elements that the
incompressibility constraint remains preserved. Generally, in case of unstable
stratification, i.e. if the temperature gradient points in the same direction as
gravity, the buoyancy term provides energy for velocity fluctuations, and thereby
drives the velocity field. In case of stable stratification, buoyancy stabilizes the
system, so the onset of convection is suppressed.

The last term on the l.h.s. of the magnetic field equation (1.17) is the nonlinear
interaction between velocity and magnetic field which influences the evolution
of magnetic field fluctuations. This term is the counterpart of the Lorentz
force. However, it does not only exchange the energy between both fields, but
it redistributes this energy over different spatial scales of the magnetic field as
well (see later in section 6.3).

The equation for temperature fluctuations (1.18) consists of the advection-
diffusion part and a source term. The energy for excitation of temperature
fluctuations is provided by the source term vz,x which appears due to the mean
temperature gradient. Indices z, x denote two different orientations of the gra-
dient, vertical and horizontal, respectively. This issue will be discussed in more
detail in section 1.4.

In Ampere’s law (1.19) the displacement current is neglected in the MHD ap-
proximation, so the current density is divergence-free. The dominance of the
nonlinear terms in the set (1.16)–(1.20) leads to turbulent states of the flow.
This topic is discussed in the following section.

1.3 Turbulent regimes

Throughout this work, convective turbulence is described by statistical averages
of physical quantities. Fully periodic boundary conditions ensure that viscous
boundary layers are not present in the system, so approximate statistical ho-
mogeneity of the turbulent flow is preserved. This permits using of all points in
the computational domain for evaluations of spatial averages. However, turbu-
lent convection is not statistically isotropic because buoyancy forces act in the
vertical direction only. The question of anisotropy of convection is addressed
in chapters 4 and 6. All examined systems are evolved to an approximately
statistically stationary state, and are then followed for several typical buoyancy
times. Details of individual simulations are described in particular chapters.
The spatially averaged quantities are then averaged over the time domain as
well.

Strong nonlinear interactions between fluctuations at different spatial scales
underlie the nonlinear dynamics of turbulent flows. This applies to turbulent
convection as well. In cases where the Reynolds number is higher than the
critical value for the onset of turbulence, a large separation of spatial scales takes
place. Based on the seminal ideas of Richardson and Kolmogorov, this interval
of scales can be divided into three characteristic ranges: large, intermediate
and small scales (e.g. [Fri95][Les97]). According to this concept, large-scale
eddies contain most of the energy. Moreover, the energy is usually at large
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scales injected to the system, e.g. due to mean gradients. On the contrary, at
small scales viscous processes are dominant, so most of the energy is dissipated
there. The large separation of the largest and dissipation scales at high Reynolds
numbers leads to the existence of a wide range of intermediate scales where the
dynamics is independent of large- and small-scale processes. It is assumed that
at intermediate scales the energy is transferred from scale to scale locally in
spectral space, i.e. by interactions of eddies of a similar size. This interval of
scales is called inertial range. Since the influence of large- and small-scale effects
is negligible in the inertial range, the energy ”cascades” to smaller scales, and
is conserved during this process. The main property of the inertial range is the
absence of any typical length. This implies the existence of a self-similar scaling
at inertial-range scales (e.g. [Fri95][Les97][Pop00]).

Based on different physical processes governing the nonlinear dynamics, two phe-
nomenological theories of turbulent convection are currently available. These
differ in the role of temperature fluctuations and their influence on the system
dynamics. The relative importance of buoyancy forces and nonlinear interac-
tions can be estimated comparing the magnitudes of associated terms in the
vorticity equation (1.10)

v2

l
∼ (αg)θ. (1.24)

This expression suggests the existence of a scale-dependent buoyancy time tb ∼
(αgθ/l)−1/2. Moreover, there is a typical length scale at which these two effects
balance, the Bolgiano length LB. In contrast to the buoyancy time tb which
can be obtained directly from (1.24), the Bolgiano length LB is derived using
simple dimensional considerations (e.g. [MY75][Bis03]). The Bolgiano length is
the only possible combination of independent quantities influencing the spectral
distribution of energy, i.e. energy dissipation rates and the buoyancy parameter,
that gives the dimension of length (e.g. [MY75][Bis03]). Hence the Bolgiano
length and the Bolgiano time tB, i.e. the buoyancy time at the Bolgiano scale,
are given as

LB ∼ ε
5/4
v

(αg)3/2ε
3/4
θ

, tB ∼
(
αgθ

LB

)−1/2

(1.25)

where εv = ν̃
∫

v
ω2dV and εθ = κ̃

∫
v
(∇θ)2dV are the kinetic and the ther-

mal dissipation rate, respectively. The derivation is analogous to the applica-
tion of Kolmogorov similarity hypotheses in homogeneous turbulence (see e.g.
[Fri95][Les97]). It follows from the estimate (1.24) that the buoyancy force is
more important at scales larger than the Bolgiano length. On the contrary, the
buoyancy force influences the nonlinear dynamics negligibly at scales smaller
than the Bolgiano length. The Kolmogorov phenomenology of turbulence is
therefore expected to apply at inertial-range scales smaller than the Bolgiano
scale, whereas the Bolgiano-Obukhov phenomenology is appropriate for the in-
ertial region at scales larger than the Bolgiano scale.

1.3.1 Kolmogorov phenomenology

In the frame of the Kolmogorov phenomenology the temperature can be re-
garded as a passive scalar (e.g. [Fri95] [RBC96][Les97][War00][Bis03]). This
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means that buoyancy forces are weak, and do not influence the nonlinear dy-
namics of the flow. Their effect can be neglected at inertial and small scales. At
these scales temperature fluctuations are only passively advected by the velocity
field. However, since the mean temperature gradient dominates the dynamics
at the largest scales where nonlinear and dissipative effects are negligible, the
importance of temperature fluctuations increases towards larger spatial scales.
Temperature fluctuations therefore represent a significant source of energy at
the largest scales, which is sufficient to excite velocity fluctuations. In the sta-
tionary case, kinetic energy is transferred through the inertial range from large
to small scales with a constant energy transfer rate, i.e. a constant spectral
energy flux, ǫv. This energy is eventually dissipated by viscosity at the smallest
scales with the rate εv. This fact can be expressed using isotropic spatially
averaged velocity fluctuations at the scale l

vl ≡
√
< (v(x + l) − v(x))2 > (1.26)

and the associated nonlinear eddy-turnover time τl, τl ≡ l/vl, as

v2
l

τl
∼ v3

l

l
∼ ǫv ∼ εv ∼ const. (1.27)

The scaling law for velocity fluctuations is obtained directly from this expression.
It reads

vl ∼ ε1/3
v l1/3. (1.28)

The scaling law (1.28) can be transformed to Fourier space. This leads with help
of the relation v2

l ∼ kE(k), where k ∼ 1/l, to the famous Kolmogorov prediction
for the isotropic spectrum of kinetic energy (e.g. [Fri95][Pop00][Bis03])

Ek
k ∼ ε2/3

v k−5/3. (1.29)

The energy spectrum of temperature fluctuations, i.e. of a passive scalar in
this picture, transported by a Kolmogorov-type turbulence can be obtained by
dimensional analysis as well. It can be shown that the energy of temperature
fluctuations, also called temperature energy, is proportional to the fluctuations
of entropy (see [Lvo91]). The idea is based on the expansion of entropy into
a series in the quantity θ. The constant and the linear part do not contribute
to the entropy which can be then associated with the quadratic part of this
expansion. Thus in the following, both terms refer to the same physical quantity.
According to the Obukhov-Corrsin phenomenology (see e.g. [Les97][Bis03]), the
temperature energy is transferred with a constant spectral flux ǫθ from large to
small scales in a way similar to the cascade of kinetic energy. This picture leads
to the relation analogous to (1.27)

θ2l
τl

∼ θ2l vl

l
∼ ǫθ ∼ εθ ∼ const. (1.30)

The scaling prediction for temperature fluctuations is obtained by substitution
from (1.28). It reads

θl ∼ ε
1/2
θ ε−1/6

v l1/3. (1.31)
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This relation in Fourier space yields the scaling prediction for the isotropic
spectrum of temperature energy

Eθ
k ∼ εθε

−1/3
v k−5/3. (1.32)

This scaling is valid in the inertial-convective subrange where the temperature
field is passively advected by a developed turbulent flow, and is not influenced
by small-scale dissipative structures. More detailed discussions of passive scalar
convective turbulence can be found in chapters 4, 6.

1.3.2 Bolgiano-Obukhov phenomenology

In the Bolgiano-Obukhov (BO) phenomenology the temperature is regarded as
an active scalar (e.g. [Bol59] [Obu59][Bis03]). In this case buoyancy forces
are not negligible, but influence the spectral transfer of kinetic energy at all
scales larger than the Bolgiano scale. Temperature and velocity are strongly
coupled, i.e. the back-reaction of temperature field has a significant impact on
the velocity field dynamics. The spectral kinetic energy flux is no longer constant
in the inertial range, but the spectral entropy flux starts to play an important
role. In case of stable stratification, the turbulent heat flux vzθ extracts in the
inertial range energy from the velocity field, and thereby drives the temperature
fluctuations. Therefore, a kinetic energy spectrum steeper than the Kolmogorov
spectrum ∼ k−5/3 is expected in this case. The situation corresponds to forced
movements of fluid elements against buoyancy forces. In other words, buoyancy
forces do work against the velocity field in the inertial range. This idea was
initially suggested by Bolgiano and Obukhov for the inertial-range scaling of the
kinetic energy spectrum of mechanically forced convective turbulence in setups
with stable stratification ([Bol59][Obu59]). The same scaling behavior has been
measured later in many laboratory experiments with unstable stratification as
well. Although the exact explanation of experimentally observed inertial-range
scaling is still not available, most probably a mechanism similar to the case of
stable stratification works in case of unstable stratification as well. The spectral
kinetic energy flux at buoyancy-dominated inertial-range scales is, apart from
the factor (αg), almost fully determined by the turbulent heat flux at the same
scale. This fact can be expressed using dimensional considerations as

ǫv ∼ v3
l

l
∼ (αg)θlvl. (1.33)

The process of the entropy cascade is different from the passive scalar case.
Temperature fluctuations at particular scale interact via buoyancy with veloc-
ity eddies of the same size. These eddies are unstable, break up, and form
somewhat smaller eddies that conversely produce temperature fluctuations at
similar scales. In this way the entropy in the system cascades to small scales in
the inertial range with the flux ǫθ. In contrast to the passive case, the tempera-
ture influences the velocity field due to buoyancy forces at all scales larger than
the Bolgiano scale. It is assumed that the transfer of entropy in the inertial
range occurs locally in spectral space, and is constant. The temperature energy
is eventually dissipated at the smallest scales by thermal diffusion at the rate
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Figure 1.1: Schematic plot of two inertial subranges in the kinetic energy spec-
trum (left) and the entropy spectrum (right) of hydrodynamic convective tur-
bulence. The wavenumber kB is the mode number associated with the Bolgiano
length LB.

εθ. This process can be expressed as

θ2l
τl

∼ θ2l vl

l
∼ ǫθ ∼ εθ ∼ const. (1.34)

The combination of both expressions, (1.33) and (1.34), leads to the Bolgiano-
Obukhov inertial-range scaling prediction for kinetic energy fluctuations

v2
l ∼ (αg)4/5ε

2/5
θ l6/5 (1.35)

and for temperature energy fluctuations

θ2l ∼ (αg)−2/5ε
4/5
θ l2/5. (1.36)

Both relations can be transformed to Fourier space. This yields

Ek
k ∼ (αg)4/5ε

2/5
θ k−11/5 (1.37)

and
Eθ

k ∼ (αg)−2/5ε
4/5
θ k−7/5. (1.38)

A general spectrum of convective turbulence consisting of both, Kolmogorov and
Bolgiano-Obukhov, inertial ranges is schematically sketched in Fig 1.1. The BO
scaling and the Kolmogorov scaling appear at large and small inertial-range
scales, respectively. The wavenumber kB associated with the Bolgiano scale
determines the scale where both parts of the inertial range coincide.

According to the relation (1.25) the Bolgiano length depends on the kinetic
dissipation rate εv. This fact can be related to the inertial-range dynamics as
follows. If the spectral flux of kinetic energy at inertial-range scales decreases
(by some unspecified physical mechanism) in the cascade on its way down to
small scales, the amount of energy that has to be finally dissipated is smaller,
and the kinetic dissipation rate decreases as well. The Bolgiano length therefore
moves to smaller scales extending the inertial range with BO scaling further.

Scaling predictions for MHD systems are discussed later in the chapters dedi-
cated to the investigation of magnetoconvection.
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1.4 Horizontal temperature gradient

In numerical simulations of convection in fully periodic geometry difficulties
with obtaining a stationary turbulent state arise. They are related to a special
kind of instability, called elevator instability. This instability appears due to the
presence of fully periodic boundary conditions which allow a particular unstable
solution of the governing equations (1.16)–(1.20) ([CLT05]). For simplicity, only
hydrodynamic convection in 2D is considered. The horizontal axis and vertical
axis are denoted by x and z, respectively. In addition, the normalization to the
thermal diffusion time (cf. subsection 1.2.2 and (1.22)) is used in order to allow
for an easy comparison with other works. The governing equations read

∂ω

∂t
+ (v · ∇)ω = − RaPr

∂θ

∂x
+ Pr∆ω, (1.39)

∂θ

∂t
+ (v · ∇)θ = ∆θ + vz. (1.40)

This set of equations allows to search for a solution in the form ω = ω0e
(λt+ik·x),

θ = θ0e
(λt+ik·x) which transforms the equations into

λω0 = ikxRaPr θ0 − Pr k2ω0, (1.41)

λθ0 = − k2θ0 +
ikx

k2
ω0. (1.42)

The expression for the growth rate λ follows ([CLT05]) directly as

λ = −1

2
(Pr + 1)k2 ± 1

2

√
(Pr + 1)2k4 + 4Pr

(
Ra
k2

x

k2
− k4

)
. (1.43)

The system becomes unstable if

Ra
k2

x

k2
− k4 > 0. (1.44)

For example, for a system with box size L = 1 and with quantities independent
of z, this condition gives the critical Rayleigh number for the onset of elevator
instability Rac = (2π/L)4 = (2π)4 ≈ 1559. This implies that at Rayleigh num-
bers higher than Rac the excitation of the elevator instability is in z-periodic
setups unavoidable. The physical picture of the instability with the most unsta-
ble mode kx = 1 consists of two vertical streamers pointing up and down. This
configuration is illustrated in Fig. 1.2. The flow in these streamers is accelerated
by the gravitational force up to the point when the transition layer between the
streamers becomes unstable. Consequently, the flow becomes turbulent, and
saturates nonlinearly. Then the instability is excited again. In fact, this config-
uration corresponds to the magnification of the convective system around the
transition between rising and sinking blobs of fluid. Other unstable modes with
different kx can be excited as well, forming a similar situation with more stream-
ers in the horizontal direction. Both pictures show that the streamers extend
over the entire vertical length of the box, and thus involve Fourier modes with
kz = 0. One of possible solutions to avoid the elevator instability is to put the
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Figure 1.2: The elevator instability consisting of 2 streamers (left) and 4 stream-
ers (right). Temperature fluctuations are denoted by color (red – high values,
blue – low values). Velocity vectors are represented by arrows.

mean temperature gradient horizontally. This leads to a configuration where
∇T ⊥ g, so the instability condition takes the form

−Ra
kxkz

k2
− k4 > 0. (1.45)

This condition inhibits exciting of the instability with kz = 0 since then −k4 < 0,
i.e. the condition is not satisfied independently of the Rayleigh number. This
fact was empirically tested in the course of the work. Due to the action of a large-
scale temperature gradient, temperature fluctuations are driven predominantly
at the largest scales. Therefore, the rotation of the gradient should not modify
the dynamics of the inertial range. However, it is possible that the direct drive
of mechanical energy is absent in setups with horizontal temperature gradients
because these do not change the potential energy of the system directly, so
the flow is driven purely entropically ([LF92]). Therefore, according to [LF92]
the BO scaling should fill the entire inertial interval down to the dissipation
range. This idea coincides with one of the goals of this work: investigations of
the Bolgiano-Obukhov regime of convective turbulence. In order to avoid the
excitation of elevator instability, the mean temperature gradient is set in the
horizontal direction in all performed simulations with fully periodic boundaries.
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Chapter 2

Numerical code

The majority of available phenomenological theories of turbulence in fluids is
based on interactions between turbulent eddies of similar size l. This view
corresponds to interactions of fluctuations with similar wave numbers k ∼ 1/l.
Moreover, inhomogeneous viscous boundary layers are absent in numerical simu-
lations of convective turbulence in fully periodic boxes, in contrast to Rayleigh-
Bénard configurations with closed vertical boundaries. Approximate statisti-
cal homogeneity of convective flows is therefore preserved in fully periodic se-
tups. Both facts motivate the application of spectral (Fourier) methods to
turbulent convection. In these methods the calculation of spatial derivatives is
transformed to simple multiplications with wave vectors. Furthermore, spec-
tral methods calculate the time evolution of the governing equations directly
in Fourier space, and thereby allow for a straightforward computation of spec-
tra of various physical quantities. The drawback of spectral methods is an
occurrence of the Gibbs phenomenon in simulations of compressible flows (e.g.
[Bri74][CHQ88]). The Gibbs phenomenon manifests itself as characteristic oscil-
lations of Fourier series near steep gradients. However, the Boussinesq approxi-
mation of convective turbulence excludes the formation of shocks, i.e. disconti-
nuities of physical quantities, due to the incompressibility constraint. Spectral
methods are for incompressible flows usually more accurate than finite differ-
ence schemes (e.g. [CHQ88]). In other words, spectral methods usually require
less discretization points than finite difference schemes in order to achieve the
same accuracy.

The set of the Boussinesq equations describing convective turbulence is solved
by means of direct numerical simulations (DNS) (e.g. [CHQ88][Pop00]). The
DNS approach deals with the complete set of differential equations, and avoids
additional physical approximations. This point is of fundamental importance
for turbulence investigations because no simplification of the nonlinear terms
is employed. This is the main advantage of DNS compared to other possible
approaches. On the contrary, for instance large eddy simulations (LES) focus
on the evolution of the energy containing large-scale eddies, while physical pro-
cesses at smaller scales are approximated by an artificial viscosity model. Also

19
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other physical models of turbulence, e.g. EDQNM1, involve incomplete or phe-
nomenological descriptions of the nonlinear interactions, thereby omitting for
example intermittency effects. Direct numerical simulations therefore represent
a valuable tool for obtaining a detailed knowledge about the nonlinear dynam-
ics and cascade properties. The drawback of DNS is a large computational cost
caused by the necessity to resolve the wide range of spatial scales of turbulent
flows.

The numerical code used in this work is based on the previously developed
program package for simulations of incompressible magnetohydrodynamic tur-
bulence ([BM00]). The original program was extended by the Boussinesq ap-
proximation to account for problems of convection.

2.1 Pseudospectral scheme

The set of equations describing the model of convective turbulence (1.16)–(1.20)
is solved in Fourier space. The computational domain is a cubic box of size 2π
which is uniformly discretized with N points in each direction. This corresponds
to the Fourier wavenumber range −N

2 + 1 ≤ k ≤ N
2 − 1. All physical quantities

are approximated by truncated Fourier series

ω̂k(t) =
1

N3

∑

j

ω(xj, t)e
−ik·xj , θ̂k(t) =

1

N3

∑

j

θ(xj, t)e
−ik·xj, . . .

where xj =
2πj

N
j = 0, . . . , N − 1 for each direction. (2.1)

Here, ω̂k(t), θ̂k(t) are Fourier counterparts of real-space quantities. The mode
k = (0, 0, 0) of all physical quantities, i.e. their spatial average, is set equal to
zero. Additionally, since the original physical quantities are real-valued func-
tions, they satisfy additional relations of symmetry in Fourier space

ω̂−k(t) = ω̂
⋆
k(t), θ̂−k(t) = θ̂⋆

k(t), . . . (2.2)

where ⋆ means the complex conjugate value. Thus it is necessary to calculate
and store only one half of Fourier modes; the other half can be obtained from
the relation (2.2). This symmetry therefore allows to reduce memory require-
ments and to speed up calculations. Additionally, in Fourier space all spatial
derivations are replaced by multiplications with wave vectors.

Fourier transformations of the Boussinesq MHD equations underline the nature
of nonlinear interactions. Different Fourier modes interact only via the nonlinear
terms; in linear terms they can be treated separately. The equations (1.16)–

1EDQNM – Eddy-Damped Quasi-Normal Markovian approximation. A statistical model
of turbulence based on two-point closures for the hierarchy of moment equations assuming
that turbulence is nearly Gaussian (e.g. [Ors74][Les97]).
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(1.20) transformed in Fourier space read

(
d

dt
+ ν̃k2

)
ω̂k = ik× [v̂ × ω + ̂(ik × b) × b]k + ikθ̂k × k0

z , (2.3)

(
d

dt
+ η̃k2

)
b̂k = ik× [v̂ × b]k, (2.4)

(
d

dt
+ κ̃k2

)
θ̂k = − [v̂ · ikθ]k + (̂vz)k, (2.5)

v̂k =
ik

k2
× ω̂k (2.6)

where k0
z = (0, 0, 1) is a unit vector in the z direction. The last equation in the

set ensures that the velocity remains divergence free at all times. All equations
(2.3)–(2.6) are in algebraic form except the terms in square brackets. These
terms are convolution sums arising from the nonlinearities. Their general form
is

[̂a b]k =
∑

k=p+q

âp b̂q where |k|, |p|, |q| ≤ N

2
− 1. (2.7)

A straightforward calculation of this expression in three dimensions requires
O(N6) operations (e.g. [Bri74]). This fact is unsatisfactory, and would limit
the application of spectral methods to small Fourier data sets. However, there
is a possibility to evaluate the convolution sum (2.7) in O(N3log2N) operations

(e.g. [CHQ88]). The trick is to transform variables âp, b̂q at first back to
real space, perform the multiplication there, and finally transform the result
to Fourier space again. This is the basic idea of pseudospectral schemes (e.g.
[CHQ88]). A small inconvenience stems from the fact that the result of the
pseudospectral procedure is contaminated with a so-called aliasing error caused
by finite discretization. The technique applied to remove the aliasing error is
discussed in the next section.

2.2 Treatment of aliasing errors

The aliasing error of the pseudospectral scheme is in the code removed by a trun-
cation technique (e.g. [CHQ88]). This de-aliasing technique is based on calcu-
lations with extended Fourier fields of size M ≥ 3N/2. A Fourier variable
resulting from the pseudospectral procedure can be expressed as a sum of two
contributions (for simplicity only a one-dimensional convolution is considered)

[̂a b]k =
∑

k=p+q

âp b̂q +
∑

k±N=p+q

âp b̂q. (2.8)

The first term is the result of the convolution that is required; the other term
is the aliasing error. If the new size of Fourier fields M ≥ 3N/2 is considered
instead of the original size N , and if original Fourier variables are padded with
zeros in the extra wavenumber range M/2 − 1 ≥ |p|, |q| ≥ N/2 − 1, the second
term in the expression (2.8) vanishes, and the exact result of the convolution is
obtained. This de-aliasing procedure is sometimes called the 3/2 rule. However,
the number of operations performed in this case is higher than in the simple
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pseudospectral calculation. In one dimension the truncation technique requires
about 50% more numerical operations, in more dimensions the additional com-
putational effort is even larger. This stems from the fact that many finally
discarded modes that do not carry a physical information have to be included
and evaluated.

In order to obtain a better performance of the de-aliasing step, the scheme can
be improved further. In three dimensions it is possible to reduce the number
of extra modes introducing a spherical truncation of Fourier variables. This de-
aliasing method assumes a sphere of physical Fourier modes padded to a cubic
shape. The aliasing error due to the modes in this sphere was empirically found
to be of the order of the discretization error, and is therefore neglected. In
this way the number of additional operations in three dimensions is reduced by
≈ 70% compared to the full 3/2 de-aliasing. However, the spherical truncation is
not sufficiently accurate in two dimensions, produces significant deviations from
exact results, and therefore cannot be applied. Hence all simulations performed
in two dimensions employ the full 3/2 rule in order to remove aliasing errors.

2.3 Temporal discretization

The set of Boussinesq equations (2.3)–(2.6) is evolved in time using the leapfrog
scheme. The leapfrog scheme is a fast explicit two-step algorithm that uses
a constant time step. The scheme is implemented as second order accurate,
and is suitable for non-dissipative problems. However, the algorithm is unstable
in the presence of dissipation (e.g. [CHQ88]). An additional modification is
therefore required to avoid this property. The stability of the leapfrog scheme
can be achieved by using an integrating-factor technique which treats the linear
diffusion term exactly (e.g. [CHQ88][MP89]). The application of this technique
leads to the reformulated version of the original equations (2.3)–(2.6) (for illus-
tration purposes only the temperature equation is shown, the other equations
are modified analogously)

d

dt
(eκ̃k2tθ̂k) = eκ̃k2t

(
−[v̂ · ∇θ]k + (̂vz)k

)
. (2.9)

Here, the dissipation term is included implicitly, and does not appear explicitly
in the equation. Moreover, now the stability and accuracy properties do not
depend on the dissipation term any more, and they are given solely by the
nonlinear term (e.g. [CHQ88]). Using this modification the leapfrog scheme
can be easily applied. The scheme takes the explicit form

θ̂n+1
k = θ̂n−1

k e−κ̃k22△t + 2△te−κ̃k2△t
(
−[v̂ · ∇θ]k + (̂vz)k

)n

(2.10)

where n is a time step index and △t denotes time interval of one step. A solution
obtained with the leapfrog scheme is very often modified by temporal oscilla-
tions with the period 2△t (e.g. [CHQ88]). These arise due to the inaccurate
approximation of time derivatives, and can be avoided by temporal averaging
of the solution over every two subsequent time steps.
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The time step is chosen in agreement with the Courant-Friedrichs-Lewy (CFL)
condition

△t ≤ △x
vmax

=
π

kmaxvmax
(2.11)

where vmax is the maximal speed of propagation in the system. Since incom-
pressibility is assumed, the fast magneto-acoustic wave is excluded, and there-
fore a reasonable estimate for the maximal velocity is vmax ≈

√
Etot. For par-

ticular simulation runs, the time step is additionally adjusted to the maximal
stable value.

2.4 Initial and boundary conditions

The convective system is investigated in a fully periodic box. Fully periodic
boundary conditions inhibit the formation of viscous boundary layers appear-
ing in the often used standard Rayleigh-Bénard (RB) setup. Boundary layers
introduce inhomogeneity to the system that can influence statistical averages.
Furthermore, the Rayleigh-Bénard setup models a global system with closed ver-
tical boundaries. However, this work focuses on inherent properties of convective
turbulence, and therefore a zoom inside the central part of the Rayleigh-Bénard
box is preferred. This magnification corresponds to fully periodic geometry. In
this case, boundary layers do not influence the system, so the turbulence remains
approximately statistically homogeneous. Moreover, several authors suggest an
important role of viscous boundary layers because, according to them, the ob-
served Bolgiano-Obukhov scaling appears due to the action of blobs of fluid
(thermal plumes) detaching from these regions (e.g. [GL92]). The model inves-
tigated in this work avoids all these additional complications, and focuses only
on the bulk of convective turbulence. However, several numerical tests of the
code are performed using the RB setup with free-slip vertical boundaries. These
tests, validating the functionality of the code, are presented in the last section
of this chapter.

The initial states of the performed simulations are obtained by a multi-step
procedure. In the hydrodynamic case, the system is initialized with small ran-
dom fluctuations of the temperature field at a small resolution, typically with 32
Fourier modes in one dimension. Then the numerical evolution of the convective
instability is followed until it saturates in the nonlinear state. After that, the
system is evolved for several typical buoyancy times until it achieves an approxi-
mately statistically stationary state. At this stage the simulation is stopped; the
resolution is increased, and the dissipation coefficients are decreased. Then the
system is followed again for several typical buoyancy times during which it ad-
justs to the new parameter values. This procedure is repeated until the maximal
possible resolution given by available computational resources is reached. The
maximal resolution varies in individual simulations, and is specified in particu-
lar chapters. At this stage the system adapts to the new parameters again, and
it is then evolved for several typical buoyancy times long enough for obtaining
stationary statistical averages.

The initialization of the magnetic field is implemented in two different ways.
One possibility is to initialize the magnetic field with small random fluctuations
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at the very beginning. Then the convective instability develops, and conse-
quently the turbulent magnetic dynamo starts to operate, increasing the level
of magnetic fluctuations in the system up to the saturation level. The other pos-
sibility is to take an already established stationary hydrodynamic system and
introduce random magnetic fluctuations of the order of velocity fluctuations.
After that, the system reacts vigorously to the new conditions. However, a new
approximately stationary state is obtained after several typical buoyancy times.
In both versions the system is followed for several typical buoyancy times after
the magnetic energy saturates in order to acquire an approximately stationary
state. Both initializations generate turbulent states with identical statistical
properties.

2.5 Parallelization and optimization

The numerical code is parallelized using the MPI library ([MPIb]). This option
allows computations on large distributed memory systems as well as on shared
memory machines. The parallelization is accomplished by dividing the com-
putational box into slices in one arbitrary direction. The individual slabs are
assigned to available processors. The calculation runs independently on indi-
vidual processors, except for evaluations of the Fourier transformations. This
is the crucial point of the computation. Generally, Fourier transformation de-
mands all-to-all data exchange between processors which decreases the overall
computational performance. Two different libraries PFFT and FFTW are used
in the code for solving parallel Fourier transformation. FFTW is a public li-
brary developed at MIT ([FFT]). PFFT is a platform-dependent solution based
on the ESSL library which is provided and optimized by IBM for the POWER
architecture. Despite the Fourier transformations, the code exhibits a good
scalability with respect to the number of used processors (see Fig 2.1). The
dot-dashed line in the picture indicates ideal linear scaling. The good scaling
property is preserved when the required resolution increases. Fig. 2.2 illustrates
this property showing the relative speedup using 256 and 512 processors for
two different data loads (resolutions 5123 and 10243). Both pictures confirm
the fact that the scalability of parallel codes depends on the ratio of data load
to communication costs: the larger resolution and the less communication, the
better scaling performance.

Two options are implemented for saving of data frames. One is the platform
dependent writing of binary data which is the fastest way of doing I/O (in-
put/output) operations. The major disadvantage is the absence of a simple
way how to read/write in parallel from/to the same file on general parallel file
systems (gpfs). This drawback is overcome with the other implemented possi-
bility that uses the HDF5 format ([HDF]) and the MPI-2 standard containing
parallel I/O ([MPIa]). The HDF5 is a platform independent binary format,
and the MPI-2 contains a functionality that takes care of the synchronization
of simultaneous accesses to a file on gpfs.

The major part of the calculations (≈ 85%) consists of Fourier transformations.
The rest of the code, i.e. time evolution, run-time diagnostics, etc., has a minor
share of the computational time. It is therefore important to use the Fast Fourier
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Figure 2.1: The scaling of the code with increasing number of processors. The
dot-dashed line indicates a linear scaling. During the test the convective MHD
system on the grid 5123 is evolved for 100 time steps.

Figure 2.2: The relative speedup of the code using 256 and 512 processors.
During the test the convective MHD system with resolutions 5123 and 10243 is
evolved for 100 time steps.
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Transformation (FFT) scheme that is able to compute one three-dimensional
transformation in O(N3 logN) steps. The FFT works most efficiently with ar-
rays of size of a power of two. Thus such resolutions are preferred. Furthermore,
it is necessary to minimize the number of transformations. They are required
in the pseudospectral procedure that evaluates vector products in the equations
(2.3)–(2.6). An optimization of numerical codes usually faces the dilemma of
memory versus speed efficiency. The memory optimized version of the code re-
quires only 4 temporary arrays, but it computes 10 one-way transformations per
nonlinearity. The speed optimized version needs 5 temporary arrays, but per-
forms 9 one-way transformations per nonlinearity. The difference between these
two options seems to be small, but it becomes important when many Fourier
transformations and huge data sets are considered. Generally, a decision has to
be made according to configurations of particular supercomputers. The speed
optimized solution was chosen in the code since the size of memory was not
a limiting factor. This option consists of 18 and 36 one-way transformations in
the hydrodynamic and MHD case per cycle, respectively. The optimization is
done for the IBM Regatta system at Rechenzentrum Garching with standard
monitoring software tools. The performance of the parallel communication is
tuned using software options for the IBM Federation network switch.

2.6 Rayleigh-Bénard tests

In order to validate the functionality of the code several three-dimensional nu-
merical tests are performed. These tests are computed exceptionally in the
Rayleigh-Bénard setup since for this configuration some analytical results exist.
Free-slip boundary conditions are assumed at the upper and the lower boundary

vz = ∂zvx = ∂zvy = 0 ⇒ ωx = ωy = ∂zωz = 0. (2.12)

The system is without magnetic field, and is infinitely extended in the hori-
zontal direction. A constant mean temperature gradient is kept in the vertical
direction. This setup is convectively stable up to the critical Rayleigh number
that follows from linear theory (e.g. [Cha61][DR81])

Rac =
27

4
π4 ≈ 657, 5 and λ = 23/2L0 ≈ 2.8284L0. (2.13)

Here, λ is the horizontal wavelength of the most unstable mode, and L0 is the
vertical size of the Rayleigh-Bénard box. In the simulation with the resolution
643, the predicted value of Rac is confirmed with an error of less than 1%. The
accuracy of the obtained value depends on the resolution and the numerical
method.

At slightly supercritical Rayleigh numbers, the flow should display one of several
analytically predicted regular patterns (e.g. [Cha61]). The specific realization
depends on the values of applied parameters and the geometry of the box. In
the performed test the convective flow is established in the form of pure two-
dimensional rolls (see Fig. 2.3). Roll axes aligned in the x and the y direction
are equally probable. The rolls are slightly asymmetric. This asymmetry grows
with increasing Rayleigh number, and consequently distorts the rolls.
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Figure 2.3: Two-dimensional rolls in 3D hydrodynamic Rayleigh-Bénard con-
vection with Ra ≈ 10Rac. Left: isolines of the vertical component of the velocity
in a vertical slice through the computational box. Right: isolines of the tem-
perature in the same slice.

Figure 2.4: The structure of the temperature (red – high values, blue – low
values) in thermal convection at Ra ≈ 107 with the resolution 2562 × 128. Left:
a vertical slice through the computational box showing thermal plumes de-
taching from narrow boundary layers. Right: a horizontal slice near the lower
boundary showing the intermittent structure of plume footprints.

A further increase of the Rayleigh number leads to deformations and oscillations
of the rolls. However, they are stable up to the point where buoyancy forces
and resulting shear stresses are so strong that the regular pattern is completely
destroyed, and the flow starts to be turbulent. At this stage the flow develops
an almost isothermal layer of fluid in the central region separated by narrow
boundary layers from vertical boundaries. This situation is demonstrated on
the left hand side of Fig. 2.4 which shows the results of the simulation with
Ra ≈ 107 and the resolution 2562 × 128. The picture displays the temperature
in the vertical slice through the computational box. Blobs of fluid (thermal
plumes) detaching from narrow vertical boundary layers can be identified as
well as the almost isothermal central region.

The right hand side of Fig. 2.4 represents a horizontal slice through the tem-
perature field close to the lower boundary. This picture shows the intermittent
arrangement of thin thermal plumes. This fine network of plume footprints is
also in qualitative agreement with other works (e.g. [KH00][VY00]). The struc-
ture of footprints is not stationary, but evolves rapidly in time. Thermal plumes
are fully three-dimensional objects that are subject to all irregular motions of
the turbulent velocity field.
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Figure 2.5: The scaling of the Nusselt number Nu as a function of Ra/Rac. The
dashed line represents the fit ∼ Ra

0.34.

An important characteristics of convective flows is the Nusselt number Nu. The
Nusselt number is the dimensionless ratio of the total vertical heat flux to the
vertical heat flux caused by molecular conduction only. The expression for
Nu follows from the integration of the temperature equation (1.5) over z (e.g.
[Sig94][BTT98][CLT05])

Nu ≡ vzT − κ∂T/∂z

κ(△LT/L)
=

〈vzθ〉
κ(△LT/L)

+ 1 ≈ 〈vzθ〉
κ(△LT/L)

∣∣∣∣
Ra≫Rac

(2.14)

where △LT is the temperature difference over the distance L. The overbar
denotes an average over a horizontal plane and time. The symbol 〈·〉 denotes
an average over the volume and time. The Nusselt number is always Nu ≥ 1
where the equality implies that the vertical heat flux is caused by molecular
conduction only. At high Rayleigh numbers the vertical turbulent heat flux
increases significantly the efficiency of the vertical heat transport in the system,
so the Nusselt number is dominated by the convective part of the total vertical
heat flux. The Nusselt number measures the efficiency of the vertical heat flux
in the bulk of the flow, so it does not include the effect of boundary layers.
Near boundaries almost the whole temperature drop takes place, i.e. almost
△LT/2 over a boundary layer. The boundary layer Nu is usually much smaller.
In nondimensional units introduced in subsection 1.2.2 the Nusselt number can
be expressed as

Nu =
〈vzθ〉
κ̃

+ 1 ≈ 〈εθ〉
κ̃
. (2.15)

The second expression is a useful relation coming from the integration of the
temperature equation (1.18) multiplied by θ over the volume (e.g. [Sig94]
[CLT05]).

The Nusselt number test consists of the calculation of the Nu as a function of the
Rayleigh number. According to the scaling exponent of this function, it is possi-
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ble to distinguish three regimes of convective turbulence (there is still no general

agreement on this classification): a soft turbulence regime with Nu ∼ Ra
1/3,

a hard turbulence regime with Nu ∼ Ra
2/7 and an asymptotic regime, i.e. very

large Ra, with Nu ∼ Ra
1/2 (e.g. [Kra62][CCI93] [Sig94][BTT98][VC99][KH00]

[VY00][CLT05]). The result of the test computation with resolutions from 643

up to 2563 for Rayleigh numbers in the range 4Rac–750Rac is shown in Fig. 2.5.
The dashed line corresponds to the scaling Nu ∼ Ra

0.34 which is close to the
exponent 1/3, suggesting that the system operates in the soft turbulence regime.
It should be mentioned that the estimation of the Nusselt number as well as of
the critical Rayleigh number depends on the used resolution, i.e. they are more
accurate if the resolution increases.

The results presented in this section are used mainly as tests of the numerical
code. The examination of turbulent convection in the closed Rayleigh-Bénard
box is not the main purpose of this work. The subsequent chapters focus on
spectral and statistical properties of turbulent convection in fully periodic ge-
ometry.
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Chapter 3

2D hydrodynamic

convection

Two-dimensional hydrodynamic convection is a relatively simple system that al-
lows to test the Bolgiano-Obukhov predictions for convective turbulence. Since
a strictly two-dimensional configuration cannot be examined under laboratory
conditions, experimental research is restricted to investigations of convection in
quasi-two-dimensional setups, for instance in thin films (e.g. [MW98][ZW02]).
On the contrary, many numerical simulations have been performed in the two-
dimensional Rayleigh-Bénard configuration (e.g. [GL92][VY99]), but consider-
ably less attention has been paid to numerical studies of bulk turbulence in
the fully periodic system ([TI00][BHS01]). Much higher Rayleigh and Reynolds
numbers can be achieved in two dimensions (e.g. [VY00][Sig94]) than in three-
dimensional numerical setups. Since high Reynolds number implies a large
separation between integral and dissipation scales and thereby a broad inertial
range, better scaling properties are expected in two-dimensional simulations
compared to three-dimensional setups. Moreover, the nonlinear dynamics of
hydrodynamic convection is less complicated than that of magnetoconvection,
i.e. it does not involve effects of magnetic fields. However, there are impor-
tant differences between hydrodynamic turbulent convection in two and three
dimensions, mainly due to the inverse cascade of kinetic energy and the special
role of enstrophy in 2D.

3.1 Energy balance

In the case of 2D hydrodynamic convection with a horizontal mean temperature
gradient, the set of Boussinesq equations (1.16)–(1.20) reduces to

∂ω

∂t
+ (v · ∇)ω = − ∂θ

∂x
+ ν̃∆ω, (3.1)

31
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∂θ

∂t
+ (v · ∇)θ = κ̃∆θ + vx, (3.2)

ω = ∂zvx − ∂xvz , ∇ · v = 0. (3.3)

In these equations the horizontal axis and the vertical axis are denoted by x
and z, respectively. Neglecting buoyancy forces, i.e. the passive scalar case, and
viscosity, equation (3.1) expresses the fact that the vorticity is advected by the
velocity, i.e. a constant vorticity is associated with every fluid particle. In this
case two quadratic invariants exist

Ek =
1

2

∫

S

v2dS, (3.4)

EΩ =

∫

S

ω2dS (3.5)

where Ek is the kinetic energy per unit mass, EΩ is the enstrophy, and the
symbol S denotes the surface of the fully periodic domain. Moreover, a two-
dimensional flow is non-helical with velocity vectors always perpendicular to the
vorticity.

On the contrary, these two quadratic invariants are not conserved in 2D turbu-
lent convection where temperature is an active scalar. The total energy balance
of fluctuations yields

d

dt

∫

S

1

2
(v2 + θ2)dS =

∫

S

(vzθ + vxθ)dS −
∫

S

(ν̃ω2 + κ̃(∇θ)2)dS. (3.6)

The r.h.s. of this equation combines sources and sinks of the total energy. The
first integral consists of heat fluxes that drive the system, so it is a source of
energy. The other integral on the r.h.s. of (3.6) represents the total energy
dissipation rate, so it works as a sink of energy.

A two-dimensional hydrodynamic turbulent flow exhibits an inverse transfer of
kinetic energy, i.e. the kinetic energy cascades in the inertial range from small
to large scales in contrast to the three-dimensional case. The kinetic energy
therefore tends to condensate at the largest scales of a bounded system. In
order to inhibit this condensation that can influence the flow dynamics consid-
erably, a large-scale damping in the form β∇−2m is added to the dissipative
term on the r.h.s. of (3.1). The value of the parameter m controls the spectral
distribution of the large-scale viscosity. High values of m imply a predominant
damping of spectral modes at the largest scales, whereas low values of m cause
that the viscosity influences a larger number of spectral modes at large scales.
Values m = 3 and β = 1 are chosen for the simulation presented in this chapter.

The following sections discuss the numerical results of 2D hydrodynamic con-
vection. The simulation is performed with the resolution 40962. The dissipation
coefficients are ν̃ = 8 ·10−6 and κ̃ = 3 ·10−5. These values are chosen in order to
obtain the maximal extension of the inertial ranges of both fields. They corre-
spond to a nominal Rayleigh number Ra ≈ 4.5 · 109. The Reynolds number (see
(1.23)) based on the typical velocity v0 ≈ (Ek)1/2 and on the associated length
L0 ≈ (Ek)3/2/εv is approximately Re ≈ 7 · 104. The simulation is followed for 9
typical buoyancy times.
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Figure 3.1: The time-averaged angle-integrated kinetic energy spectrum nor-

malized by ε
2/5
θ and compensated by the scaling factor k11/5. The horizontal

dashed line indicates the BO scaling with the exponent −11/5 = −2.2.

3.2 Scaling of energy spectra

The angle-integrated kinetic energy spectrum

Ek(k) ≡
∫

∀k

Ek(k)|k=k2
x
+k2

z
dk (3.7)

obtained from the performed simulation by time-averaging over 9 typical buoy-

ancy times is depicted in Fig. 3.1. The spectrum is normalized by the factor ε
2/5
θ

appearing in the BO prediction (cf. (1.37)) and compensated by the BO scaling
factor k11/5. The horizontal dashed line in the plot indicates the BO scaling
with the exponent −11/5 = −2.2. The picture shows the BO scaling of the ki-
netic energy spectrum in a range about one decade in wavenumber, 5 . k . 50.
The entire following part of the spectrum belongs to the dissipation range. The
simulation is performed with an ordinary viscosity, i.e. no hyperviscosity is
used. The kinetic energy dissipation wavenumber (e.g. [MY75][TS94])

kk
d = ν̃−5/8ε

1/8
θ (3.8)

is found to be around kk
d ≈ 1490. The wavenumber kk

d indicates approximately
the scale where the dissipation term and the nonlinear term have a comparable
impact on the flow dynamics under the assumption of the BO scaling. The
Bolgiano scale is in this simulation around the wavenumber kB ≈ 3100, so it is
located outside of the resolved spectral region. Thus the entire inertial range of
the spectrum is dominated by buoyancy, and exhibits the BO scaling, i.e. no
transition to a small-scale Kolmogorov behavior occurs. The decrease of the
kinetic energy at k = 1 is caused by the applied large-scale damping.

Fig. 3.2 displays the time-averaged angle-integrated temperature energy spec-
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Figure 3.2: The time-averaged angle-integrated temperature energy spectrum

normalized by ε
4/5
θ and compensated by the scaling factor k7/5. The horizontal

dashed line indicates the BO scaling with the exponent −7/5 = −1.4.

trum defined analogously to (3.7) and obtained from the same run. The spec-

trum is normalized by the factor ε
4/5
θ and compensated by the scaling factor

k7/5 (cf. (1.38)). The horizontal dashed line in the plot indicates the BO scaling
with the exponent −7/5 = −1.4. The inertial range of the spectrum extends
over about one and half decade in wavenumber, 3 . k . 80, and penetrates
to scales smaller compared to the spectrum of the kinetic energy. The scaling
of entropy in the inertial region coincides approximately with the BO scaling
indicated by the horizontal dashed line.

A small deviation of the scaling exponent (< 5%) can be identified around k ≈
80 in front of the transition to the dissipation range. This departure is similar to
a bottleneck effect found in systems with hyperviscosity (cf. [BSC98][HB06]).
The bottleneck effect is caused by a higher level of dissipation compared to
that provided by simple viscosity. It should be stressed that the performed
simulation does not employ any kind of small-scale hyperviscosity. Furthermore,
this phenomenon occurs in the energy spectra of all quantities that are subject to
a direct cascade (see later). On the contrary, no such deviation can be identified
in the spectrum of the kinetic energy (Fig. 3.1) which is transported by an
inverse cascade. This property is detected in all simulations of hydrodynamic
convection analyzed in the course of the work. It is necessary to mention that
the dissipation range of the temperature energy spectrum is well resolved, i.e.
kmax/kd & 1.5 (e.g. [Pop00]), since kθ

d ≈ 653 where

kθ
d = κ̃−5/8ε

1/8
θ (3.9)

is the entropy dissipation wavenumber. Thus kmax/k
θ
d ≈ 3.1 > 1.5 which implies

that the entropy dissipation range is resolved sufficiently.

In the frame of the Bolgiano-Obukhov phenomenology, it is possible to predict
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Figure 3.3: The time-averaged compensated spectrum of the vertical heat flux
vzθ. Horizontal dashed lines indicate the predicted scaling k−9/5. Left: The
original spectrum obtained from the performed simulation. Right: The spec-
trum obtained from the same run with the thermal dissipation increased by
100%.

the scaling of the vertical heat flux vzθ ([GL93]). Since the vertical heat flux is
in the inertial range characterized by the absence of any typical length, similarly
as the kinetic energy, it is expected that the vertical heat flux exhibits inertial
range scaling. The value of the scaling exponent can be derived by dimensional
considerations ([GL93]) from equation (1.10) multiplied by θ

(vzθ)lvl

l
∼ αgθ2l ⇒ (vzθ)l ∼ αgθ2l v

−1
l l (3.10)

where (vzθ)l denotes the vertical heat flux at scale l. This relation together
with the predicted BO scaling for velocity fluctuations (1.35) and temperature
fluctuations (1.36) yields ([GL93])

(vzθ)l ∼ (αg)1/5ε
3/5
θ l4/5 ⇒ (vzθ)k ∼ (αg)1/5ε

3/5
θ k−9/5. (3.11)

The spectrum of the vertical heat flux is shown on the l.h.s. of Fig. 3.3. The
horizontal dashed line indicates the scaling with the exponent −9/5. Despite
the fact that the scaling exponent is close to the expected value, the spectrum
is in the inertial range flatter, probably due to the presence of a similar bump
as in the entropy spectrum (cf. Fig. 3.2). This suggestion is supported by the
picture on the r.h.s. of Fig. 3.3 that represents the same heat flux spectrum but
with the thermal dissipation increased by 100%. Now the bump in the spectrum
is less pronounced indicating that this effect tends to diminish with increasing
thermal dissipation.

Generally, the spectra are in good agreement with the BO predictions, although
small deviations from exact scaling exponents (< 5%) are observed. The follow-
ing section focuses on the nonlinear dynamics of the system investigating the
behavior of nonlinear terms in more detail.
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3.3 Nonlinear transport

3.3.1 Transfer functions

A transfer function is a very powerful tool to examine different properties of
spectral transport caused by nonlinear terms (e.g. [Fri95][Pop00]). It can be
obtained by considering a nonlinear energy flux, e.g. the flux of kinetic energy
ǫv ∼ v · (v · ∇)v, in Fourier space. Spectral fluxes of the kinetic energy and the
entropy summed from kmax to k result in

TEV
k =

1

2

∑

|k′|>k

∑

p,q

δk′,p+qik
′
l(
k′mk

′
n

k′2
− δm,n)v̂⋆

l (k′)v̂m(p)v̂n(q), (3.12)

T θ
k =

1

2

∑

|k′|>k

∑

p,q

δk′,p+qik
′
lθ̂

⋆(k′)v̂l(p)θ̂(q), (3.13)

where TEV
k and T θ

k denote the transfer function of the kinetic energy and the
entropy, respectively. The symbol ⋆ stands for a complex conjugate value. Both

energy fluxes, v v2

2 and v θ2

2 , can be recognized on the r.h.s. of the expressions
(3.12) and (3.13), respectively. Since the transfer functions are for simplicity
assumed to be isotropic, their particular value at some k gives the amount of
energy transferred from all modes with k′ < k to all modes with k′ ≥ k. Thus
a positive transfer function implies a direct cascade of energy to small scales.

The transfer functions TEV
k and T θ

k summed from k = 0 to kmax vanish by
the Gauss-Ostrogradsky theorem in case of periodic boundaries because the
nonlinear terms can be expressed in divergence form. This implies that the
kinetic energy flux and the entropy flux separately conserve the associated en-
ergies. Therefore, the nonlinear interactions associated with advection only
redistribute the energy over different Fourier modes within the individual fields.
On the contrary, in case of magnetoconvection, nonlinear terms exchange the
energy between velocity and magnetic fields as well.

The entropy transfer function T θ
k and the absolute value of the kinetic energy

transfer function |TEV
k | obtained from the performed simulation are depicted in

Fig. 3.4. They are normalized by the corresponding dissipation rates, εθ and

ε
3/5
θ , respectively (cf. later (3.14), (3.15)). The normalized transfer functions

are denoted by the symbol .̂ Moreover, |T̂EV
k | is compensated by k4/5 (cf. later

(3.15)). The entropy transfer function is positive at all wave numbers indicating
a direct cascade of the entropy to small scales. The normalized function is in the
inertial region almost constant approaching a value of 1. This means that the
spectral transport of temperature energy in the inertial range is not influenced
by other dynamical processes that would extract or add energy. Temperature
energy is neither gained nor lost in the cascade from large to small scales, and
is completely dissipated at the smallest scales by thermal diffusion.

On the contrary, the kinetic energy transfer function T̂EV
k is negative from k = 1

to k ≈ 400. Hence the kinetic energy in this range is subject to an inverse
cascade which is well-known from studies of 2D hydrodynamic turbulence (e.g.
[Les97][Pop00]). The nonlinear transfer remains direct in the dissipation range
from k ≈ 400 to kmax; however, the dynamics in this range is dominated by
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Figure 3.4: The entropy transfer function T̂ θ
k (solid) and the absolute value

of the kinetic energy transfer function |T̂EV
k | (dashed) which is compensated

by k4/5 (cf. (3.14), (3.15)). Both transfer functions are normalized by the

corresponding dissipation rates, εθ and ε
3/5
θ , respectively. For 1 . k . 400 the

transfer function T̂EV
k is negative whereas for k & 400 it is positive.

dissipation. Comparing the extension of the self-similar parts of both transfer
functions, the entropy cascade penetrates to smaller scales which is in agreement
with the energy spectra (cf. Fig. 3.1, Fig. 3.2). Furthermore, |T̂EV

k | is not
constant, but it exhibits a scaling with the exponent close to −4/5. This fact is
in agreement with the Bolgiano-Obukhov phenomenology because (e.g. [Lvo91])

ǫv ∼ v2
l

τl
∼ v3

l

l

(1.35)
=⇒ TEV

k ∼ (αg)6/5ε
3/5
θ k−4/5 (3.14)

where ǫv is the nonlinear kinetic energy transfer rate and τl denotes the nonlinear
eddy turnover time. On the contrary,

ǫθ ∼ θ2l
τl

∼ θ2l vl

l

(1.34)
=⇒ T θ

k ∼ const. (3.15)

as it is demonstrated in Fig. 3.4 as well.

The dependence of the spectral flux of the kinetic energy on the spatial scale
suggests the existence of a mechanism that influences the cascade dynamics (in
contrast to the constancy of T θ

k ). This process is the vertical heat flux caused
by buoyancy. The time-averaged vertical heat flux is positive over all scales
(cf. Fig. 3.3), so it injects the energy for velocity fluctuations not only at the
largest scales but at inertial-range scales as well. Therefore, velocity fluctuations
in the inertial range gain the energy by two distinct mechanisms: via the cascade
of the kinetic energy and from the vertical heat flux directly.

This fact can be used for explaining why the transfer function of the spectral
kinetic energy flux decreases faster (TEV

k ∼ k−4/5) than in Kolmogorov turbu-
lence (TEV

k ∼ const.). In the investigated system the kinetic energy is subject
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to an inverse cascade, i.e. it is transported from small to large scales. How-
ever, at each spatial scale the amount of transported energy increases by the
contribution from the vertical heat flux. The resulting spectral kinetic energy
flux is therefore not constant, but increases towards large scales. This picture
corresponds to the steeper spectrum of this flux. This is a very important fact,
especially for the comparison to three-dimensional hydrodynamic convection
(discussed later in chapter 4).

In the course of the work it was tested that the presence of the BO regime of
turbulent convection depends on the Rayleigh number. If it is small enough,
buoyancy forces do not affect the nonlinear dynamics, so the system operates
in the Kolmogorov regime of turbulent convection. Therefore, the fact that the
enstrophy is an ideal invariant in 2D, and consequently that the kinetic energy
is transported by an inverse cascade, does not necessarily lead to the presence
of the BO regime of turbulent convection; a high Rayleigh number is needed as
well. In addition, the BO regime does not inhibit cascades of kinetic energy and
enstrophy in contrast to what is suggested for 2D Rayleigh-Taylor turbulence
([Che03]).

3.3.2 Shell to shell transfer

More detailed information about turbulent cascades can be obtained by an ex-
amination of shell to shell spectral energy transfer at inertial-range scales (e.g.
[DVE01][AMP05]). In the following, energy in particular shells in Fourier space
is considered. The shells are assumed to be circular, and consist of all wave
vectors k that satisfy K − 1/2 < k ≤ K + 1/2 where K is the label of the shell.
For instance, the expression vK denotes a velocity field with all Fourier modes
equal to zero, except for modes in the shell K.

The nonlinear terms on the l.h.s. of the vorticity equation (3.1) and of the
temperature equation (3.2) contribute to the energy change of the Fourier shell
K in the form

Tvv(K) ≡
∫

S

−vK · (vP · ∇)vQdS, (3.16)

Tθθ(K) ≡
∫

S

−θK(vP · ∇)θQdS, (3.17)

respectively. Since the nonlinear terms conserve energy, the relations (3.16) and
(3.17) express the redistribution of energy due to nonlinear interactions between
different Fourier modes in the shells P , Q and K. This means that no energy
is gained or lost.

However, there exist an important difference between both expressions. In the
case of entropy change Tθθ (3.17), velocity modes in the shell P work only as
a mediator of the entropy transport because no kinetic energy is transferred
to or from the velocity field (see previous section). Thus in contrast to the
change of entropy in the shell K which originates in the shell Q, the source of
the change of kinetic energy in the shell K cannot be uniquely identified (e.g.
[Kra59][Ors74]). This fact represents a quite important difference between the
terms in (3.16) and (3.17). It is therefore reasonable to evaluate only the entropy
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Figure 3.5: The entropy transfer Tθθ between different shells in Fourier space.
The shells are chosen from the entropy inertial region, 20 . k . 80. The entropy
transport in the inertial range is essentially direct and local.

transfer Tθθ due to the shell Q mediated by the complete velocity field, i.e. all
velocity shells P . The same estimate for the kinetic energy transfer would be
incomplete and misleading.

The shell to shell entropy transfer in the performed simulation of 2D turbulent
convection is plotted in Fig. 3.5. The transfer is evaluated for the shells Q =
20, 40, 60, 80. These wave numbers belong to the inertial interval of the entropy
3 . k . 80 (cf. Fig. 3.2, Fig. 3.4). The plot shows that the entropy transport is
essentially local in spectral space. For instance, due to the interaction between
the velocity field and the entropy in the shell Q = 20, the entropy in the shell
Q = 19 is transported to the shell Q = 21. The same amount of entropy is
transferred from and to the shell Q = 20. Thus the total change of the entropy
in the shell Q = 20 is equal to zero. Despite the fact that the transport is not
strictly local, almost all of the entropy transfer due to the shell Q occurs between
shells in the range from Q− 5 to Q+ 5 (the simulation consists of 2047 shells).
Furthermore, the transport is not exactly symmetric. This feature is difficult to
interpret because the range of the modes in the shell Q (see definition above)
is not exactly symmetric as well. The structure of the transfer is similar for
all examined Q shells; only the amount of transported entropy decreases with
increasing Q. Hence the local and direct nature of the entropy cascade in 2D
turbulent convection is confirmed.

3.4 Structure functions

Structure functions are spatial two-point correlations describing the distribution
of turbulent eddies (e.g. [Fri95][Les97][Pop00][Bis03]). A knowledge of struc-
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ture functions of all orders is equivalent to the full statistical description of
a turbulent field by probability density functions of field increments. The longi-
tudinal velocity structure function of order p, Sv

p (x, l), is defined as an average
of velocity increments of moment p

Sv
p (x, l) ≡

〈[
v(x + l) − v(x) · l

l

]p〉
(3.18)

where 〈·〉 denotes time or space average. Structure functions of other fields are
defined in a similar way as two-point field increments. In turbulence that is
statistically homogeneous and isotropic, i.e. statistically translational invariant
and independent of direction, structure functions depend only on the increment
distance, Sv

p (l) = 〈[δv(l)]p〉. Turbulent convection in fully periodic geometry, i.e.
without effects of physical boundaries, can be treated as an approximately statis-
tically homogeneous turbulent flow. Moreover, since the large-scale anisotropies
caused by gravity and mean temperature gradient are partially suppressed in
the inertial range due to the efficient turbulent mixing, structure functions are
for simplicity assumed to be isotropic.

An important property of structure functions is that they exhibit a self-similar
behavior in the inertial range

Sv
p (l) = apl

ζp . (3.19)

Thus the knowledge of all scaling exponents ζp and constants ap is sufficient
to yield the full information about the statistical distribution of eddies in the
inertial range. Furthermore, the structure function of the second order is in fact
the real space counterpart of the one-dimensional Fourier energy spectrum (e.g.
[Bis03]).

The structure functions obtained from the performed simulation of 2D hydro-
dynamic convection are depicted in Fig. 3.6. Since functions of odd orders can
assume negative values, they are computed from absolute values of the field
increments in order to avoid cancellation effects in the averaging process. All
computed functions are normalized by the appropriate powers of energy

Ŝθ, v
p (l) ≡

Sθ, v
p (l)

(Eθ, k)p/2
. (3.20)

The inserts show logarithmic derivatives of the corresponding structure func-
tions, d ln(Ŝθ, v

p )/d ln(l), with horizontal dashed lines indicating the value of
the most probable scaling exponents. These are determined from the shape
of the logarithmic derivatives. Generally, the derivatives asymptotically form
a plateau at inertial-range scales. These plateaux appear in front of a fall-off
of the curves at large scales. The logarithmic derivatives approach a constant
value immediately in front of this transition from inertial to large scales. This
value indicates the most probable scaling exponent of the structure functions
at inertial-range scales. The associated fitting procedure causes measurement
errors which are estimated by the vertical extension of the plateaux.

The normalized second order velocity structure function Ŝv
2 (l) (top left) displays

a relatively large self-similar range that extends over one spatial decade from
large scales down to the dissipation range. The logarithmic derivative is smooth
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Figure 3.6: Velocity structure functions Sv
p (l) (left) and temperature structure

functions Sθ
p(l) (right) of order p = 2, 3, 4 (from top to bottom) normalized

by (Eθ, k)p/2. Inserts display logarithmic derivatives of corresponding structure
functions. Horizontal dashed lines indicate values of scaling exponents ζv, θ

p .
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with a small plateau that is indicated by the horizontal dashed line. The scaling
exponent is estimated to be ζv

2 = 1.22 ± 0.05. This value is very close to the
predicted BO exponent 1.2 (cf. (1.35)), and is therefore consistent with the BO
scaling of the kinetic energy.

The normalized second order temperature structure function Ŝθ
2(l) (top right)

corresponding to the Fourier spectrum of entropy exhibits a self-similar range
over one spatial decade as well. In spite of this fact, its logarithmic derivative
contains a small dip at large scales. However, a small plateau indicating the
most probable scaling exponent can be still identified at 0.2 . l . 0.3 leading to
ζθ
2 = 0.42 ± 0.06. This value is very close to the BO prediction 0.4 (cf. (1.36)),

and thus suggests that the system operates in the BO regime.

The other plots show normalized velocity and temperature structure functions
(left and right, resp.) of higher orders p = 3, 4 (middle and bottom). The
functions Ŝv

p (l) exhibit a clear inertial range, so the scaling exponent of higher
order functions can be easily determined from the inserts. They are ζv

3 =
1.83 ± 0.05 and ζv

4 = 2.45 ± 0.07. On the contrary, the inertial ranges of Ŝθ
p(l)

become shorter as the order p increases, and the logarithmic derivatives become
more noisy – especially the large-scale dip is more pronounced. The scaling
exponents of the temperature structure functions of orders p = 3, 4 are therefore
determined with relatively large errors as ζθ

3 = 0.54± 0.08 and ζθ
4 = 0.61± 0.1.

Generally, it is known that due to limited sets of finite samples of data, the
statistical error of calculation of structure functions increases with the order.
Thus it is more difficult to determine the correct scaling exponent for higher
order moments. However, these spurious features can be partially eliminated
using extended self-similarity (ESS). In the next section, the concept of ESS is
at first explained, and then used to determine the values of exponents of velocity
and temperature structure functions more precisely.

3.5 Intermittency

Intermittency of turbulent convection is a phenomenon that affects the ideal
inertial range scaling predicted by the Kolmogorov phenomenology (cf. (1.29),
(1.32)) and the Bolgiano-Obukhov phenomenology (cf. (1.37), (1.38)). The
original theories assume that smaller and smaller turbulent structures are space-
filling and uniformly distributed in space. On the contrary, laboratory exper-
iments and numerical simulations indicate that the distribution of small-scale
structures varies rapidly in space and time (e.g. [CLM00] [BHS01][CMM02]).
Small-scale structures are not space-filling, but they are spread irregularly in
space. This fact inevitably leads to corrections of the inertial-range scaling
predicted by both phenomenologies which assume perfect self-similarity of tur-
bulence.

A simple way how to determine deviations from the predicted scaling is to
check the behavior of higher order scaling exponents of structure functions in
the inertial region. In the nonintermittent case, they scale in the inertial range
as (for example velocity structure functions in the BO regime are considered)

Sv
p (l) ∼ 〈(δvl)

p〉 ∼ l3p/5. (3.21)
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The departure from a nonintermittent scaling can be quantified by comparing
calculated and predicted scaling exponents for individual orders p. For the
estimate of higher order exponents, extended self-similarity (ESS) is widely
used.

3.5.1 Extended self-similarity

Extended self-similarity is a property of structure functions to display an ex-
tended inertial range when they are plotted as functions of a reference structure
function of the same field (e.g. [Fri95][Bis03]). For instance, Sv

p (l) of order p
can be expressed as a function of Sv

q (l) of order q

Sv
p (l) ∼ lζ

v

p ∼
[
lζ

v

q

]ζv

p
/ζv

q ∼
(
Sv

q (l)
)ζv

p
/ζv

q . (3.22)

The most interesting observational fact is that spurious features that contam-
inate an inertial range are partially eliminated when applying ESS. Structure
functions of the same field exhibit similar features in their shape which leads to
their compensation when a high order structure function is plotted as a func-
tion of the reference structure function. Scaling exponents can be therefore more
precisely determined by applying ESS. An exponent obtained by this procedure
is in fact a scaling exponent relative to the reference exponent.

This feature can be further utilized when the reference scaling exponent is ex-
actly known, e.g. from theory. In turbulent convection there is only one exact
result rigorously derived from the original dynamical equations. It is Yaglom’s
four-thirds law that relates temperature and velocity increments in turbulent
convection (e.g. [MY75][Bis03])

〈
δvl(δθl)

2
〉

= −4

3
εθl. (3.23)

Yaglom’s law is an exact relation, and describes the behavior of entropy flux.
This relation is analogous to Kolmogorov’s four-fifths law in hydrodynamic tur-
bulence (e.g. [Fri95][Pop00]). The validity of Yaglom’s law (3.23) in the per-
formed simulation cannot be verified due to the limited resolution that leads to
a very short self-similar range of

〈
δvl(δθl)

2
〉
. However, according to the obtained

spectral scaling of the kinetic energy and the entropy (Fig. 3.1 and Fig. 3.2), it is
possible to assume that the BO scaling holds, and relate higher order structure
functions of velocity and temperature to the structure functions of the second
order.

Although ESS is not rigorously proved or derived, it has been verified in a num-
ber of experimental and numerical observations (e.g. [BM00][Bis03][CCI93]).

3.5.2 Intermittency models

The relative scaling exponents of velocity structure functions ζv
p/ζ

v
2 and tem-

perature structure functions ζθ
p/ζ

θ
2 are determined up to the order p = 9 via

ESS. Their values are summarized in Tab. 3.1. Fitting errors involved in the
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Order p ζv
p/ζ

v
2 ζθ

p/ζ
θ
2

2 1 1
3 1.48 ± 0.05 1.27 ± 0.06
4 1.94 ± 0.07 1.46 ± 0.08
5 2.39 ± 0.09 1.61 ± 0.11
6 2.82 ± 0.11 1.70 ± 0.13
7 3.23 ± 0.13 1.78 ± 0.15
8 3.65 ± 0.16 1.85 ± 0.17
9 4.10 ± 0.18 1.91 ± 0.19

Table 3.1: Relative scaling exponents of velocity and temperature structure
functions in the performed simulation of 2D turbulent convection up to the
order p = 9 obtained via ESS.

estimation of the scaling exponents are determined in an analogous way as in
the case of the structure functions (see previous section). In order to obtain
an estimate of importance of intermittency corrections to the nonintermittent
scaling of velocity fluctuations l3p/5 (cf. (1.35)), the relative scaling exponents
of the velocity field ζv

p/ζ
v
2 are plotted in Fig. 3.7 as a function of the order p.

The measured values are denoted by diamonds. The dashed line corresponds to
the nonintermittent scaling l3p/5. Crosses are results obtained from numerical
simulations of 2D turbulent convection ([BHS01], Ra ≈ 1012, Pr ≈ 1).

The computed relative scaling exponents deviate only slightly from the predicted
BO scaling l3p/5, i.e. the velocity field displays only small intermittency which
is significant only for values of orders p > 6. The calculated values coincide very
well with the numerical results from [BHS01]. This fact probably originates in
the similar setup of both simulations and the same applied boundary conditions.
The intermittent character of the velocity field is well described with the log-
Poisson model denoted by the dot-dashed line (see [Dub94]). The log-Poisson
model is a phenomenological description of intermittency based on two parame-
ters, a codimension C0 (= (dimension of the system) − (dimension of the most
intermittent structures)) and a level of intermittency β (= 1 nonintermittent,
= 0 extreme intermittent case). A general expression relating the third and
higher order moments in hydrodynamic turbulence is given as ([Dub94])

ζv
p

ζv
3

= [1 − C0(1 − β)]
p

3
+ C0

(
1 − βp/3

)
. (3.24)

This model with values C0 = 1/3 and β = 2/5 (see [BHS01]) leads to the
prediction indicated by the dot-dashed line. The numerically obtained results
coincide very well with the prediction (3.24). Thus this model seems to be
convenient for the description of the velocity field intermittency in 2D turbulent
convection. The weakly intermittent character of the velocity field is probably
a consequence of the inverse cascade of kinetic energy ([CCM04]).

The relative scaling exponents of the temperature structure functions ζθ
p/ζ

θ
2

of the performed simulation evaluated via ESS are depicted in Fig. 3.8. The
measured values are denoted by diamonds. The dashed line corresponds to
the nonintermittent BO scaling lp/5 (cf. (1.36)). Crosses are results from the
already mentioned work ([BHS01], Ra ≈ 1012, Pr ≈ 1). Triangles stand for
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Figure 3.7: Relative scaling exponents ζv
p/ζ

v
2 (diamonds) of velocity structure

functions in the performed simulation of 2D turbulent convection. The dashed
line corresponds to the nonintermittent BO scaling l3p/5. Crosses are results
from another numerical simulation of 2D turbulent convection ([BHS01]). The
dot-dashed line indicates the modified log-Poisson model for hydrodynamic tur-
bulence ([Dub94]).

Figure 3.8: Relative scaling exponents ζθ
p/ζ

θ
2 (diamonds) of temperature struc-

ture functions in the performed simulation of 2D turbulent convection. The
dashed line represents the nonintermittent scaling corresponding to lp/5. Crosses
and triangles denote results from numerical simulations of 2D turbulent convec-
tion ([BHS01] and [CMV01], resp.).



46 CHAPTER 3. 2D HYDRODYNAMIC CONVECTION

intermittency exponents obtained numerically from another simulation of 2D
turbulent convection ([CMV01], Ra ≈ 107, Pr ≈ 1). The estimated exponents
coincide well with the values given in [BHS01]. However, they differ significantly
from numerical results of [CMV01] though obtained in the similar setup as in
this work. The temperature field displays a far more intermittent character than
the velocity field. A significant deviation from the predicted scaling is observed
already for the exponent of the order p = 3. It seems that the higher order
relative exponents tend asymptotically to a value of 2. This tendency of the
computed exponents can be observed in both other numerical results as well.

The very intermittent character of the temperature field manifests itself also in
the real space structure of the field. This issue is addressed in more detail in
section 3.6.

3.5.3 Probability density functions

The complete set of moments of structure functions at particular scale l is
statistically equivalent to the probability density function of field increments at
that scale. A nonintermittent configuration of structures at scale l results in
a Gaussian probability density function (pdf). On the contrary, deviations from
the nonintermittent behavior can be identified as departures of pdfs from the
Gaussian behavior.

In order to obtain an estimate of the departure from the Gaussian distribution,
the pdfs of velocity and temperature field increments at large (l ≈ L) and small
(l ≈ 10−2L) scales are computed and plotted in Fig. 3.9. Dashed lines in all four
figures denote the corresponding Gaussian pdfs with same variances. Top pic-
tures show that the distribution of large-scale structures of both fields is almost
exactly Gaussian. This means that fluctuations at different positions separated
by a large distance are uncorrelated. In contrast to that, bottom pictures repre-
senting pdfs at small scales display large deviations from the Gaussian behavior,
i.e. intermittently distributed small-scale fluctuations with large amplitudes are
present in the flow. The computed tails of the pdfs at small scales are more
pronounced in the case of temperature than in the case of velocity indicating
more intermittent distribution of small-scale (dissipation) structures of temper-
ature compared to that of velocity. This tendency is in qualitative agreement
with the behavior of the relative scaling exponents in the previous section.

To obtain a quantitative view of the departures from the Gaussian behavior at
all scales, the flatness (kurtosis) F of the pdfs is plotted in Fig. 3.10 as a function
of scale l. The flatness is defined as the ratio of the fourth order moment to the
squared second order moment

F (l) ≡ S4(l)

(S2(l))2
, (3.25)

and gives peakedness and flatness of a pdf relative to the Gaussian distribution.
The flatness of the Gaussian pdf is exactly F = 3. High values of F characterize
pdfs with sharp peaks and flat tails, whereas low values identify pdfs with
rounded peaks and broad shoulders. Thus the flatness F is a useful measure of
intermittent features.
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Figure 3.9: Probability density functions of velocity increments pv (left) and
temperature increments pθ (right) at large (l ≈ L) and small (l ≈ 10−2L) scales
(top and bottom, resp.). Dashed lines denote the corresponding Gaussian pdfs
with the same variance.

Figure 3.10: The flatness F as a function of scale l of velocity and tempera-
ture probability density functions in the performed simulation of 2D turbulent
convection. The value F = 3 corresponds to a Gaussian distribution.
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Both flatnesses F v(l) and F θ(l) displayed in Fig. 3.10 give at large scale ap-
proximately the expected Gaussian value F ≈ 3, but at small scales the values
differ significantly. While F v(l) stays even at small scales close to the value 3,
the curve of F θ(l) deviates considerably reaching values around 30.

The computed probability density functions together with the flatness confirm
the picture of increasingly sparse fluctuations with large amplitudes when going
to small scales. Furthermore, the temperature field is more intermittent than
the velocity field. This difference is probably caused by a distinct character
of the energy cascades. While the dissipation of entropy occurs at the smallest
scales, the inverse cascade of the kinetic energy tends to establish flow structures
at the largest scales. This issue is further examined in the following section.

3.6 Real space structure

The real space configuration of the flow in 2D thermal convection is charac-
terized by rising hot and descending cold parts of fluid called thermal plumes.
A thermal plume is a coherent region of a fluid where the temperature is well
mixed, and exhibits only small variations. This region penetrates into an area
of different temperature.

Fig. 3.11 shows a characteristic snapshot of the global structure of the flow in
the performed simulation. Temperature fluctuations are denoted by color (light
– high values, dark – low values). The velocity is represented by vectors. On
the r.h.s. of the picture two blobs of fluid can be recognized, a rising hot one in
the lower part and a sinking cold one in the upper part. They move in opposite
directions which results in a circular motion, partially caused by incompressibil-
ity. Generally, hot parts of the fluid tend to move upward while cold parts move
downward. In contrast to fine structures of temperature fluctuations, the veloc-
ity field appears to be quite smooth. However, this is only a visual impression
due to macroscopic structures; the small scales exhibit disordered motions.

This fact can be seen in the structure of the vorticity field plotted in Fig. 3.12. It
displays the vorticity and the corresponding temperature field at three different
levels of resolution from macroscopic to small scales. At the largest scale the
vorticity appears quite uniformly distributed over the entire domain; however,
the zoom reveals fine details of the field. The flow consists of moving thermal
plumes. One of them can be identified in the lower right corner of the most
detailed picture. The top (head) of the plume consists of two parts dominantly
governed by opposite-sign vorticities.

The temperature field is very intermittent at many scales. Fig. 3.12 reveals
a quite important property of the temperature field, namely ramp-and-cliff
structures. Ramps are large regions of similar temperature that posses sharp
contours called cliffs; in other words ramps are separated by very narrow cliffs.
These sharp gradients of the temperature field are formed by shear motions of
the velocity field. Due to incompressibility, shearing motions in the direction
perpendicular to the local temperature gradient lead to the subsequent steeping
of this gradient. In this way the sharp contours develop. This process can be
observed in the bottom pictures of Fig. 3.12. For example, the sharp gradient
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Figure 3.11: Global structure of the flow in the performed simulation of 2D
turbulent convection with 40962 modes. Temperature fluctuations are denoted
by color (light – high values, dark – low values). The velocity is represented by
vectors.
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Temperature Vorticity

Figure 3.12: Series of zooms revealing fine structures of the temperature (left)
and the vorticity field (right) in the performed simulation of 2D turbulent con-
vection with 40962 modes. Values of both fields are denoted by color (light – high
values, dark – low values). The most detailed pictures (bottom) demonstrate
the ramp-and-cliff structure of the temperature field associated with layers of
vorticity.



3.6. REAL SPACE STRUCTURE 51

of the temperature close to the right border is associated with the narrow layer
of the increased vorticity, i.e. with the shear motion of the flow.

The ramp-and-cliff character of temperature field was originally suggested for
a passive scalar carried by a turbulent velocity field. This phenomenology seems
to be more general accounting for active scalar fields as well. Thus as was
suggested in several other works (e.g. [CCM04]), small-scale structures of the
temperature field do not exhibit a strong dependence on the particular form of
driving, e.g. by mean temperature gradient, passive advection, etc.
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Chapter 4

3D hydrodynamic

convection

Numerical simulations of 3D hydrodynamic convection in fully periodic domains
represent a possibility to test the Bolgiano-Obukhov phenomenology directly, i.e.
results of these simulations can be directly compared with theoretical predictions
as well as with experimental measurements in a bulk of convective turbulence.
Although the validity of the BO scaling predictions is verified in many labo-
ratory experiments that have been conducted in tanks of various shapes, with
different liquids and using different measuring techniques (e.g. [SX01][MTM04]
[CCI93]), up to now the BO scaling in numerical simulations of 3D turbulent
convection has not been found. This discrepancy is quite striking since the main
parameter, the Rayleigh number Ra, achieved in experiments and simulations
differs no more than by one or two orders of magnitude (simulations Ra . 109,
experiments Ra & 1011). This situation has led to subsequent theoretical inves-
tigations, e.g. a concept of thermal plume driving ([GL92]), that would explain
the observed disagreement. In addition, reliability and universality of experi-
mental results has been discussed regarding a relation between frequency and
spatial measurements, the impact of a large-scale circulation formed in labora-
tory tanks or influences caused by individual experimental setups and diagnostic
methods. Thus results of numerical simulations that could clarify the disagree-
ment are of special importance. Already performed 3D simulations provide only
little evidence of the BO regime, which is possibly detected in boundary layers
of a Rayleigh-Bénard box ([CTT02][GL91]). Several numerical works report on
a discrepancy between scaling of velocity and temperature field as well (e.g.
[VC03]). The purpose of the work presented in this chapter is to simulate the
bulk of three-dimensional convective turbulence in fully periodic geometry, far
from boundaries and without all additional modifications, e.g. hyperviscosity,
and to try to detect the BO regime directly by increasing the Rayleigh number
to the maximal possible value given by the applied resolution.

53
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4.1 Ideal invariants

A system of 3D hydrodynamic convection driven by a mean horizontal tem-
perature gradient is described by the set of dimensionless Boussinesq equations
(1.16)–(1.20) reduced to the form

∂ω

∂t
−∇× (v × ω) = −∇θ × g0 + ν̃∆ω, (4.1)

∂θ

∂t
+ (v · ∇)θ = κ̃∆θ + vx, (4.2)

∇ · v = 0, ω = ∇× v. (4.3)

The structure of the equation governing dynamics of temperature fluctuations
(4.2) is the same as in two dimensions (cf. (3.2)). On the contrary, the nonlin-
earity in the vorticity equation (4.1) contains a vortex-stretching term (ω ·∇)v
that modifies the nonlinear transport of kinetic energy. The vorticity field is
stretched in the direction parallel to velocity gradients. This process together
with incompressibility and angular momentum conservation leads to the increase
of vorticity. Hence the vortex-stretching term is responsible for the amplifica-
tion of vorticity in three-dimensional hydrodynamics. In thermal convection,
this is not the only source of vorticity since it can be generated also by temper-
ature gradients (the first term on the r.h.s. of (4.1)) in the same way as in two
dimensions, leading to the increase of vorticity at the sharp fronts of thermal
plumes. Thus enstrophy (see (3.5)) is not conserved in the limit of negligible
viscosity. Also the kinetic helicity

∫
V v · ωdV , where V is the volume of the

fully periodic domain, is not conserved in the case of 3D turbulent convection
in contrast to the non-dissipative limit of pure hydrodynamics.

Two ideal invariants can be found by neglecting dissipation effects in the set of
equations (4.1)–(4.3): the total entropy of the system and the total mechanical
energy. The conservation of the total entropy

∫
V
T 2dV , where T = T0 + θ and

T0 is the background linear temperature profile, follows from the temperature
equation (4.2) in the case of zero thermal diffusivity, remembering that the
source term of temperature fluctuations originates in the mean temperature
gradient (cf. (1.12), (1.5)). The total mechanical energy

∫
V ρ0

(
1
2v

2 + g · rT
)
dV

is in the case of zero viscosity conserved as well. The second term in this
expression represents the potential energy of the system (e.g. [Lvo91]).

The Bolgiano-Obukhov phenomenology predicts a self-similar inertial-range scal-
ing of velocity and temperature fluctuations. These expectations are based on
the conservation property characteristic for the nonlinear interactions in the
inertial range. The nonlinear interactions are the main agent responsible for
the cascade of the kinetic and temperature energy. The additional terms on
the r.h.s. of (4.1)–(4.3) represent sources of fluctuations, so they do not partic-
ipate directly in the nonlinear interactions.

Results presented in the following sections are obtained from the simulation of
the system (4.1)–(4.3) in a periodic cubic domain with the resolution 10243.
Dissipation coefficients are chosen as ν̃ = 6 · 10−4 and κ̃ = 9 · 10−4 in order to
obtain the maximal extension of both inertial ranges. The nominal Rayleigh
number of this run is Ra ≈ 2 · 107, and the Reynolds number achieved in the
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Figure 4.1: Time-averaged one-dimensional kinetic energy spectra Ek
x,y,z nor-

malized by ε
2/3
v and compensated by the factor k5/3. The horizontal dotted line

indicates Kolmogorov scaling k−5/3. The spectra exhibit the Kolmogorov scal-
ing for about one decade in wavenumber. The vertical kinetic energy spectrum
is somewhat flatter, i.e. the system displays a slight anisotropy.

simulation is Re ≈ 2 · 103. The system is evolved for approximately 6.6 typical
buoyancy times.

4.2 Energy spectra

The one-dimensional kinetic energy spectra (y,z directions analogously)

Ek
x(kx) ≡

∫

∀ky, kz

Ek(k)dkydkz (4.4)

obtained from the performed simulation by time-averaging over 6 typical buoy-

ancy times are depicted in Fig. 4.1. The spectra are normalized by ε
2/3
v (cf.

(1.29)) and compensated by the scaling factor k5/3. The horizontal dotted line
indicates Kolmogorov scaling k−5/3. The spectra display an inertial interval of
approximately one decade in wavenumber. The horizontal spectra in both di-
rections coincide well with the Kolmogorov scaling. The vertical kinetic energy
spectrum is slightly flatter in the inertial range, i.e. a small level of anisotropy
introduced by gravity penetrates through the inertial range though reduced, up
to the beginning of the dissipation range (k ≈ 25) where isotropy is restored
again. The nonlinear turbulent mixing in the inertial region reduces the large-
scale anisotropy introduced at the largest scales.

The detected Kolmogorov scaling suggests that despite the large numerical res-
olution (10243) and the relatively high Rayleigh number achieved (Ra ≈ 2 ·107),
the system operates in the Kolmogorov regime that is typical for hydrodynamic
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Figure 4.2: Time-averaged one-dimensional temperature energy spectra Eθ
x,y,z

normalized by εθε
−1/3
v and compensated by the factor k5/3. The horizontal

dotted line indicates the scaling k−5/3. The inertial interval extends over ap-
proximately one decade.

turbulence and turbulent convection with low and moderate Rayleigh numbers.
This fact is in agreement with the computed Bolgiano wavenumber that deter-
mines the scale where the transition between the Kolmogorov and the BO regime
occurs. The evaluated Bolgiano wavenumber kB ≈ 1.5 is located approximately
at the largest resolved scale.

The Bolgiano scale is given by the kinetic and the temperature dissipation rates
(cf. (1.25)). This fact explains the observed difference between scaling proper-
ties of convective systems in 2D and 3D. While the kinetic energy in 2D under-
goes an inverse cascade in the inertial range, and consequently the small-scale
energy dissipation rate is relatively low, the kinetic energy in 3D is transferred
from large to small scales, so the energy dissipation rate is much higher. The
temperature energy is in both cases subject to a direct cascade, and the thermal
dissipation rates assume in both performed simulations a similar value. There-
fore, the Bolgiano wavenumber in the 3D simulation is located at larger spatial
scales than in the 2D simulation. The dissipation range is well resolved since
kd ≈ 243 where kd is the Kolmogorov dissipation wavenumber defined as (cf.
(3.8))

kd =
( εv

ν̃3

)1/4

. (4.5)

The time-averaged one-dimensional temperature energy spectra obtained from
the same run are depicted in Fig. 4.2. The spectra are normalized by the

factor εθε
−1/3
v (cf. (1.32)) and compensated by the scaling factor k5/3. The

horizontal dotted line indicates the scaling k−5/3. The inertial interval extends
over approximately one decade. In contrast to the kinetic energy spectra shown
in Fig. 4.1, the temperature energy spectra are in the inertial interval rather
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Figure 4.3: The time-averaged spectrum of the vertical heat flux vzθ compen-
sated by the scaling factor k7/3. The spectrum is normalized by the factor

εθε
−2/3
v (cf. (4.7)). The horizontal line indicates the scaling k−7/3. The vertical

heat flux spectrum displays a similar bump as in the 2D case (Fig. 3.3).

isotropic. The detected Kolmogorov-like scaling exponent, typical for spectra
of passively advected scalars (e.g. [Les97][Bis03]), confirms that the system
operates in the Kolmogorov regime of turbulent convection.

The second half of the inertial range exhibits a small bump that deteriorates
the scaling slightly. The shape of this part is very similar to the bump in the
temperature energy spectrum of the two-dimensional run (Fig. 3.2) that dis-
plays a similar pattern. The system experiences a bottleneck-like effect at the
transition between the inertial and the dissipation range although no hypervis-
cosity is used. The same tendency can be observed in the vertical heat flux
spectrum shown in Fig. 4.3. The system is adequately resolved with the tem-
perature dissipation wavenumber kθ

d = (εv/κ̃
3)1/4 ≈ 187 (e.g. [Bis03]) which is

relatively close to the kinetic energy dissipation scale kd. This configuration is a
result of the Prandtl number Pr = ν̃/κ̃ ≈ 0.66 being close to 1. It is interesting
that a similar bump was also observed in energy spectra obtained from numer-
ical simulations that use a distinct numerical solver based on finite differences
([HB06]). Thus the presence of the bump seems to be independent of applied nu-
merical schemes. Furthermore, this effect is less pronounced in one-dimensional
spectra compared to angle-integrated spectra. Thus the bump might be either
a physical phenomenon or a generic feature caused by limited resolutions applied
in numerical simulations. The discretization onto computational grid restricts
interactions between turbulent fluctuations to limited number of spectral modes
compared to many degrees of freedom available in real turbulent flows.

In Fig. 4.3 the time-averaged spectrum of the vertical heat flux is shown. The

spectrum is compensated by the scaling factor k7/3 and normalized by εθε
−2/3
v

(see later (4.7)). The horizontal line indicates the scaling k−7/3. In this case,
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the identification of an inertial region is more difficult and unclear than in the
previous spectra. The scaling k−7/3 is only the best fit for the wavenumber
range 4 . k . 12, but it can be justified following similar arguments as in the
2D case (cf. (3.10) and [GL93]) leading to

(vzθ)l ∼ αgθ2l v
−1
l l. (4.6)

In the Kolmogorov regime of convection, this relation together with scaling
predictions for velocity and temperature fluctuations at inertial-range scales
(see (1.28), (1.31)) gives ([GL93])

(vzθ)l ∼ (αg)εθε
−2/3
v l4/3 ⇒ (vzθ)k ∼ (αg)εθε

−2/3
v k−7/3. (4.7)

It is pointed out ([GL93]) that in the Kolmogorov regime the vertical heat flux
should depend on the buoyancy factor (αg), otherwise the picture would be
inconsistent with the case (αg) → 0. The presence of the bump in the spectrum
is probably related to the same feature in the entropy spectrum (Fig. 4.2).

Another numerical work ([VC03]) also reports about similar difficulties by iden-
tification of scaling exponents of the entropy spectrum. The discrepancy of the
scaling behavior due to the presence of a bottleneck-like bump is interpreted
there as the BO scaling of entropy fluctuations k−7/5 (this exponent is close to
the Kolmogorov value −5/3, the difference is only 5/3 − 7/5 = 4/15 ≈ 0.27),
leading to a new mixed regime where velocity field and temperature field follow
Kolmogorov and Bolgiano-Obukhov predictions, respectively. In this work it is
suggested that both entropy spectra (Fig. 4.2 and in [VC03]) are well explained
by Kolmogorov scaling to which the large-scale part of the inertial interval tends.
This view is supported not only by the computed spectra of the entropy and
the vertical heat flux, but also by the estimated Bolgiano length (kB ≈ 1.5)
and other results, e.g. by measured relative exponents of structure functions
(see later in section 4.4). This interpretation keeps the picture of turbulent
convection consistent with available phenomenological predictions.

It is worth mentioning that a very similar bottleneck-like effect is also found
in one of the largest simulations of homogeneous hydrodynamic turbulence
([KIY03]). However, there the dissipation fall-off of the kinetic energy spec-
trum is only about one decade. This implies that the energy content of the
smallest eddies is around 10% of energy of inertial-range eddies. According
to the behavior of the bump in the presented simulations (cf. Fig. 3.3), it is
supposed that such a dissipation fall-off is too small. A bottleneck-like bump
in a spectrum can result in a slightly steeper slope of that spectrum at larger
inertial-range scales.

4.3 Nonlinear transport

4.3.1 Transfer functions

An analysis of the nonlinear transport of the kinetic energy and the entropy by
a computation of transfer functions can help to identify if the system indeed
operates in the Kolmogorov regime of turbulent convection or not. The kinetic
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Figure 4.4: The kinetic energy transfer function T̂EV
k (solid) and the entropy

transfer function T̂ θ
k (dashed) in the Kolmogorov regime of turbulent convection.

Both transfer functions are normalized by the corresponding dissipation rates,
εv and εθ (cf. (4.8) and (4.9)).

energy and the entropy transfer function, T̂EV
k and T̂ θ

k (cf. (3.12), (3.13)), are
depicted in Fig. 4.4. They are normalized by the corresponding dissipation
rates, εv and εθ. Both transfer functions are positive at all scales, i.e. the
kinetic energy and the entropy are transported by direct cascades from large to
small scales. In the inertial region, where neither sources nor sinks of energy are
important, both transfer functions approach the constant value of 1. This means
that the whole amount of the transported quantity is eventually dissipated by
small-scale viscosity and thermal diffusivity. This fact is in agreement with the
Kolmogorov picture because

ǫv ∼ v2
l

τl
∼ v3

l

l

(1.28)
=⇒ TEV

k ∼ const. (4.8)

and

ǫθ ∼ θ2l
τl

∼ θ2l vl

l

(1.31)
=⇒ T θ

k ∼ const. (4.9)

Both inertial ranges in the plot are very short, confirming difficulties with re-
solving inertial-range scales of the three-dimensional flow sufficiently. The dif-
ficulties with applied resolution are caused by limited computational resources
and consequently by the moderate values of the Reynolds number, Re ≈ 2 · 103,
compared to real turbulent flows, Re ≫ 103. A more detailed examination re-
veals that the kinetic energy cascade begins at larger scales than the entropy
cascade while the entropy cascade penetrates to smaller scales compared to the
kinetic energy cascade.

According to the presented results, the system operates in the Kolmogorov
regime of convection, i.e. temperature fluctuations are only passively advected
by the velocity. However, it is possible to demonstrate by simple considerations
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a few implications that would be caused by the BO regime of 3D turbulent
convection. In 3D hydrodynamic convection, the kinetic energy is subject to
a direct cascade, and is transferred from large to small scales. Additionally,
the vertical heat flux drives convective motions at many scales, i.e. it supplies
the energy to the kinetic energy cascade. This implies that the kinetic energy
flux should increase towards small scales (cf. section 3.3). This situation corre-
sponds to an increasing spectrum of the kinetic energy flux, i.e. a spectrum with
a positive exponent. However, this is a contradiction to the derived scaling of
the kinetic energy flux in the frame of the BO phenomenology (see (3.14)). The
predicted scaling (3.14) is derived only by dimensional arguments, and is verified
in 2D simulations and 3D Rayleigh-Bénard laboratory experiments. The other
possibility is that the vertical heat flux assumes negative values in the inertial
range, whereas its total amount remains positive, i.e. it still drives convective
motions. This fact leads to a setup where the vertical heat flux in the inertial
range extracts energy from the kinetic cascade, and thus has a stabilizing effect.
Also this configuration seems to be physically improbable, or at least has not
been indicated by laboratory or numerical experiments. Therefore, it is still not
clear which mechanisms cause the experimentally observed BO regime of 3D
hydrodynamic convection (cf. [Bra92][GL93]).

4.3.2 Shell to shell transfer

Similarly to the 2D case, it is possible to observe in detail if the entropy transport
occurs locally in spectral space, or is influenced by nonlocal interactions. The
detailed shell to shell entropy transfer in the inertial region is shown in Fig. 4.5.
The definition of the transfer function is analogous to the 2D case (see (3.17)).
The picture represents the spectral transfer for four different shells in Fourier
space, Q = 20, 30, 40, 50, that are chosen close to the inertial interval, 3 .

k . 30. The plot suggests that the entropy is transferred by a direct cascade
from large to small scales. The majority of the entropy is transported locally
between neighboring shells. However, contributions to the transfer due to the
shells K ≤ Q− 10 and K ≥ Q+ 10 are not as small as in the 2D case, so they
cannot be neglected. Thus nonlocal contributions to the spectral transfer of
entropy in the Kolmogorov regime of thermal convection play a minor but still
not negligible role.

A similar analysis for the kinetic energy transport would not be easy to interpret
due to the same reason as in the 2D case, i.e. it is not possible to identify source
shells uniquely in detailed nonlinear interactions of the velocity field (see section
3.3).

4.4 Structure functions

Structure functions offer a valuable insight into scaling properties of turbulent
fields. Their particular form used in this work has been already introduced in
section 3.4. Structure functions of the velocity Ŝv

p (l) and of the temperature field

Ŝθ
p(l) of orders p = 2, 3, 4 obtained from the performed simulation of 3D turbu-
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Figure 4.5: The entropy transfer Tθθ(Q,K) between different shells in Fourier
space. The shells are chosen from the entropy inertial region. The entropy in
the Q shell is redistributed during the interaction with the velocity field over
neighboringK shells. The spectral transfer of entropy in the Kolmogorov regime
of thermal convection is direct and predominantly local.

lent convection exhibit a self-similar interval at inertial-range scales. They are
depicted in Fig. 4.6. The structure functions are computed by time-averaging
over 6 typical buoyancy times. Moreover, they are normalized according to rela-
tion (3.20). The structure functions of odd orders are computed from absolute
values of increments, e.g. 〈|δv(l)|p〉. Inserts in individual figures display the
corresponding logarithmic derivatives. Horizontal dashed lines indicate values
of the most probable scaling exponents ζv, θ

p (cf. section 3.4).

The velocity structure function of second order Ŝv
2 (l) exhibits a self-similar be-

havior over about one spatial decade. Its logarithmic derivative is smooth, and
displays a wide plateau at intermediate scales. The horizontal dashed line indi-
cates the best fit to the flat part, and yields the scaling exponent ζv

2 = 0.73±0.03.
This is slightly more than the expected Kolmogorov exponent 0.66, but the es-
timated error range (cf. section 3.4) allows to exclude the BO value 1.2.

The second order temperature structure function Ŝθ
2 (l) shows a self-similar be-

havior as well. Although the extension of the plateau in the plot of the loga-
rithmic derivative is somewhat shorter, the scaling exponent can be determined
quite accurately leading to ζθ

2 = 0.6± 0.06. In contrast to ζv
2 , this value is little

bit smaller than the expected exponent 0.66. However, the value 0.66 is very
close to the estimated error range. Hence the second order structure functions
are in qualitative agreement with observed scaling of the kinetic and the tem-
perature energy, so they confirm that the investigated system operates in the
Kolmogorov regime of turbulent convection.

The scaling exponents of orders p = 3, 4 of velocity structure functions can be
evaluated as well. They are estimated as ζv

3 = 1.06 ± 0.06 and ζv
4 = 1.38 ±
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Figure 4.6: Velocity structure functions Ŝv
p (l) (left) and temperature structure

functions Ŝθ
p(l) (right) of order p = 2, 3, 4 (from top to bottom) in the Kol-

mogorov regime of 3D turbulent thermal convection. Structure functions are
normalized by appropriate powers of energies, (Ek, θ)p/2. Inserts show their log-
arithmic derivatives. Dashed lines indicate the most probable value of scaling
exponents ζv, θ

p .
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Order p ζv
p/ζ

v
2 ζθ

p/ζ
θ
2

2 1 1
3 1.46 ± 0.05 1.25 ± 0.07
4 1.91 ± 0.06 1.39 ± 0.08
5 2.29 ± 0.08 1.53 ± 0.10
6 2.68 ± 0.11 1.61 ± 0.13

Table 4.1: Relative scaling exponents of the velocity and the temperature struc-
ture functions in the performed simulation of 3D turbulent convection up to the
order p = 6 obtained via ESS.

0.08. The logarithmic derivatives of temperature structure functions despite
the considerably shorter plateaux allow to determine the scaling exponents of
Ŝθ

3 (l) and Ŝθ
4(l) as ζθ

3 = 0.73 ± 0.07 and ζθ
4 = 0.78 ± 0.1, respectively.

The comparison of higher orders scaling exponents of the velocity and the tem-
perature field suggests that the exponents ζθ

p increase slower than ζv
p , indicating

more intermittent character of the temperature field. This topic is addressed in
the following section.

4.5 Intermittency

4.5.1 Intermittency models

In order to obtain an estimate of intermittency effects in 3D convective tur-
bulence, relative scaling exponents of the structure functions up to the sixth
order are determined. The relative exponents are obtained using extended self-
similarity (ESS) introduced in subsection 3.5.1. ESS is verified to hold and helps
to determine higher order scaling exponents of the structure functions more ac-
curately. Values of the computed relative exponents are listed in Tab. 4.1.

In Fig. 4.7 the relative scaling exponents ζv
p/ζ

v
2 of the velocity structure func-

tions are plotted as a function of order p. They are denoted by diamonds.
The dashed line represents the nonintermittent scaling corresponding to the
Kolmogorov prediction lp/3 (cf. (1.28)). The exponents plotted in the picture
deviate from the nonintermittent scaling. This behavior is known from studies of
homogeneous hydrodynamic turbulence (e.g. [Fri95][Les97]). Since the convec-
tive system operates in the Kolmogorov regime, it is reasonable to assume that
the intermittency of the velocity field can be described by the hydrodynamic
She-Lévêque model (e.g. [Bis03])

ζSL
p =

p

9
+ 2

[
1 −

(
2

3

)p/3
]
. (4.10)

The prediction of the She-Lévêque model is represented in the plot by the dot-
dashed line. The plot shows that this prediction is in acceptable agreement with
the obtained values, indicating that the velocity field in 3D turbulent convection
with low and moderate Reynolds number exhibits a similar level of intermittency
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Figure 4.7: Relative scaling exponents ζv
p/ζ

v
2 (diamonds) of the velocity struc-

ture functions obtained from the simulation of 3D convective turbulence up
to the sixth order as a function of order p. The dashed line corresponds to
the nonintermittent scaling lp/3 (cf. (1.28)). The dot-dashed line indicates the
prediction of the hydrodynamic She-Lévêque model. Triangles denote measure-
ments in wind tunnel turbulence ([RBC96]).

as in homogeneous hydrodynamic turbulence despite the specific way of driving.
The mean temperature gradient does not influence the nonlinear dynamics of the
Kolmogorov regime of turbulent convection. Nonlinear interactions dominate
the cascade process, i.e. buoyancy is negligible at inertial-range scales (kB ≈
1.5). This picture is supported by the fact that the obtained exponents coincide
approximately with measurements in wind tunnel turbulence ([RBC96], Re ≈
4.5 · 105, Pr ≈ 1) denoted in the plot by triangles.

The relative scaling exponents ζθ
p/ζ

θ
2 of the temperature structure functions

are depicted in Fig. 4.8. The dashed line corresponds to the nonintermittent
passive scalar scaling lp/3 (cf. (1.31)). Crosses denote measurements of tempera-
ture fluctuations advected by a wind tunnel turbulence ([RBC96], Re ≈ 4.5 ·105,
Pr ≈ 1). Triangles refer to numerical results of randomly advected passive scalar
field ([CK98], Re ≈ 105, Pr ≈ 1). In spite of large differences between the numer-
ically obtained exponents, all of them deviate strongly from the nonintermittent
scaling. According to the estimated error ranges, the values computed in this
work suggest the largest intermittency deviations. An interesting question is
a comparison of these results with the intermittency of the active scalar in 2D
convection (Fig. 3.8 and Tab. 3.1). The relative exponents approach a value of
2 in the 2D active scalar case. The exponents obtained numerically in [CK98]
are larger than this value, whereas the exponents obtained in this work and
in the wind tunnel measurements tend to this value. However, this should be
understood only as an approximate relation between the exponents since a di-
rect comparison of both cases is problematic due to different physical processes
underlying 2D and 3D turbulent convection.
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Figure 4.8: Relative scaling exponents ζθ
p/ζ

θ
2 (diamonds) of the temperature

structure functions obtained from the simulation of 3D convective turbulence
up to the sixth order as a function of order p. The dashed line corresponds
to the nonintermittent passive scalar scaling lp/3 (cf. (1.31)). Crosses denote
temperature fluctuations measurements in wind tunnel turbulence ([RBC96]).
Triangles stand for numerical results of 3D passive scalar advection ([CK98]).

4.5.2 Probability density functions

Intermittency of 3D turbulent convection can be analyzed by comparing proba-
bility density functions (pdfs) at different scales. The upper pictures in Fig. 4.9
show pdfs of velocity and temperature increments at large scales (l ≈ L). The
curves coincide well with the corresponding Gaussian pdfs with the same vari-
ance denoted by dashed lines, except for small deviations in tails that are more
pronounced in the case of the temperature field. They are caused by the aver-
aging process. The investigated system is evolved for approximately 6.6 typical
buoyancy times which is not sufficient to eliminate all statistical fluctuations
at large scales. Convective flows exhibit fluctuations at large scales which are
related to the formation and the evolution of large-scale thermal plumes, and
therefore these flows need to be evolved longer than e.g. isotropically forced
homogeneous turbulent systems.

The small-scale (l ≈ 10−2L) probability density functions are depicted in the
bottom part of Fig. 4.9. The pdfs of both fields deviate from the Gaussian pro-
files considerably. The deformation of the tails of the pdfs is more pronounced
in the case of the temperature field. This fact is in agreement with the character
of the measured scaling exponents.

The flatness parameter (3.25) defined in section 3.5.3 is used to quantify the
deviation of the pdfs from Gaussian distribution (F = 3) at different spatial
scales. The flatness for both fields is plotted in Fig. 4.10. The values of F
are close to 3 at large scales, indicating Gaussian character of both fields, i.e.
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Figure 4.9: Probability density functions pv (left) and pθ (right) of velocity
increments and temperature increments, respectively, at large (l ≈ L) and small
(l ≈ 10−2L) scales (top and bottom, resp.) obtained from the simulation of 3D
turbulent convection. Dashed lines denote the corresponding Gaussian pdfs
with the same variance.

Figure 4.10: The flatness F as a function of scale l of velocity and temperature
probability density functions in the simulation of 3D turbulent convection. The
flatness of the pdfs of both fields approaches at large scales the Gaussian value
(F ≈ 3).
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Figure 4.11: Left: Isosurfaces of the most intense vorticity in the form of quasi-
one-dimensional filaments. Right: Three-dimensional picture of high thermal
dissipation associated with sharp transitions between regions of significantly
different temperatures. The background slice displays the structure of tempera-
ture fluctuations (light – high values, light – low values). The three-dimensional
blue isosurfaces indicate places of intensive thermal dissipation.

fluctuations at large scales are spatially uncorrelated and uniformly distributed.
The difference between both fields at small scales is evident. While the velocity
field is only slightly intermittent (F v ≈ 12), the flatness of the temperature
field is very large (F θ ≈ 27), suggesting a strongly irregular distribution of
temperature fluctuations with large amplitudes at small scales. Comparing these
curves with the flatnesses in the 2D case (cf. Fig. 3.10), the velocity field is in the
3D case more intermittent, which is caused by the direct character of the kinetic
energy cascade and larger small-scale dissipation. The active temperature field
in the 2D case exhibits approximately the same level of intermittency as the
passive temperature field in the 3D case, suggesting a robust character of the
entropy cascade, i.e. an independence on other dynamical processes, e.g. the
kinetic energy cascade.

4.5.3 Dissipative structures

The scaling of the relative exponents of the velocity field, which is in approxi-
mate agreement with the hydrodynamic She-Lévêque model (see Fig. 4.7), sug-
gests that dissipative eddies of the velocity field have a similar spatial shape
and structure as in homogeneous hydrodynamic turbulence, i.e. in real space
they are in the form of one-dimensional vortex filaments. This fact can be ver-
ified by analyzing isosurfaces of high real space vorticity which are associated
with places where intensive dissipation of kinetic energy occurs. Isosurfaces of
high vorticity in a vertical slice through the computational box are displayed
in Fig. 4.11 (left). As expected, the dissipative structures have the form of
quasi-one-dimensional filaments, which are irregularly distributed over the en-
tire volume. All presented dissipative structures are chosen as representative
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Figure 4.12: Global view of isosurfaces of high vorticity, which are associated
with places where the most intensive dissipation of kinetic energy occurs, in the
performed simulation of 3D thermal convection.

for the whole simulation run.

The relative scaling exponents of the temperature field structure functions indi-
cate a more intermittent character of the temperature than that of the velocity
field. Thus dissipative structures of entropy are expected to exhibit a different
spatial pattern. Since thermal dissipation is associated with large temperature
gradients, it occurs at the sharp transitions between individual regions of signifi-
cantly different temperatures, and appears in the form of quasi-two-dimensional
sheets. This fact can be seen in Fig. 4.11 (right) showing a zoom of several
isosurfaces of the intensive entropy dissipation together with the underlying
two-dimensional slice through the temperature field.

A global view of dissipative structures of the kinetic energy and the entropy is
displayed in Fig. 4.12 and Fig. 4.13. These pictures demonstrate the qualitative
difference between small-scale structures of the temperature and that of the
velocity field.
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Figure 4.13: Global view of isosurfaces of high thermal dissipation in the per-
formed simulation of 3D thermal convection (blue isosurfaces). Three two-
dimensional slices show the structure of temperature fluctuations (light – high
values, dark – low values).
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Chapter 5

2D magnetohydrodynamic

convection

Two-dimensional magnetohydrodynamic convection, also called magnetoconvec-
tion, is probably the simplest model, apart from shell models and other physical
approximations, that provides an opportunity to study the impact of magnetic
fields on the nonlinear dynamics of turbulent convection. Plasma dynamics in
two dimensions can be seen as an approximation to fully three-dimensional sys-
tems with strong mean magnetic fields where the turbulent dynamics is largely
restricted to two-dimensional planes perpendicular to the mean field in the third
direction. The Lorentz force influences plasma motions, and at the same time
the fluctuating velocity affects the evolution of magnetic fields. The system is
considered as periodic in all directions, so it represents magnetohydrodynamic
convection in a bulk of a turbulent flow. Surprisingly, no previous investigations
of this setup have been found in the available literature. The focus is put on
two-dimensional simulations without mean magnetic field because such a field
would introduce additional anisotropy, and therefore complicate the analysis of
buoyancy effects. Due to the absence of dynamo action in 2D magnetohydro-
dynamics (e.g. [Zel57][Cow55]) that would continuously supply energy to the
magnetic field, it is necessary to drive magnetic field fluctuations separately,
otherwise the magnetic energy would decay in time. However, if the magnetic
Reynolds number is high enough and the magnetic field is almost ”frozen” in
the velocity field (e.g. [Mof78][Mes99]), this decay is a very slow process on the
resistive time scale τD = L2/η, so the magnetic energy can be considered as
quasi-stationary on the time scale t that is longer than the typical buoyancy
time and much shorter than the resistive time, tb < t≪ τD. A two-dimensional
magnetoconvective system is a very useful numerical laboratory because re-
duced computational requirements allow to achieve high numerical resolutions
and consequently relatively high Rayleigh numbers. Thus a numerically sim-
ulated 2D magnetoconvective system could operate in a buoyancy dominated
Bolgiano-Obukhov-like regime (BO-like regime). At the same time, this system
exhibits dynamic properties similar to three-dimensional systems, e.g. the total
(kinetic and magnetic) energy is transported by a direct cascade to small scales
as well as total energy in three-dimensional systems (e.g. [Mof78][Bis97]). Hence
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physical processes involved also in 3D magnetoconvection might be detected. In
addition, one of the open questions (see Introduction), namely: the importance
of inverse cascade of energy for the formation of the BO regime of convection
(e.g. [Bra92]), can be investigated by a comparison between two-dimensional
magnetohydrodynamic and hydrodynamic systems.

5.1 Properties of 2D MHD

If the system of equations governing 3D magnetoconvection ((1.16)–(1.20)) is
reduced in one horizontal dimension, the equations can be recast into the form

∂ω

∂t
+ v · ∇ω − b · ∇j = − ∂xθ + ν̃∆ω, (5.1)

∂b

∂t
− (b · ∇)v + (v · ∇)b = η̃∆b, (5.2)

∂θ

∂t
+ (v · ∇)θ = κ̃∆θ + vz,x, (5.3)

ω = ∂zvx − ∂xvz, j = ∂zbx − ∂xbz, (5.4)

∇ · v = ∇ · b = 0 (5.5)

where x and z are the horizontal direction and the vertical direction, respec-
tively. Vorticity and current density are now scalar functions resembling the
y-component of the originally three-dimensional vector fields. The magnetic
field in 2D MHD is usually expressed in terms of one scalar function ψ that cor-
responds to the magnetic vector potential that is perpendicular to the xz-plane.
Thus instead of the equation (5.2), the following equation for the evolution of
this scalar function is used

∂ψ

∂t
+ (v · ∇)ψ = η̃∆ψ. (5.6)

The magnetic field and the current density are related to ψ, b = ∇ψ × ey and
j = −∆ψ, respectively. The expression (5.6) is an advection-diffusion equation
for an active scalar since ψ influences via the Lorentz force the time evolution
of the velocity field. It follows from the structure of (5.6) and from the absence
of any driving term that ψ decays in time, so the magnetic energy is eventually
dissipated as well. Therefore, there is no dynamo action in 2D MHD ([Zel57],
see also [Cow55]). However, it is possible to amplify the magnetic energy during
the initial phase when ψ-field is distorted by the velocity field, and may form
very steep gradients.

Analogously to 2D MHD, the ideal 2D magnetoconvective system, i.e. without
dissipative effects, conserves the mean-square magnetic potential

A =

∫

S

ψ2dS. (5.7)

The total (kinetic and magnetic) energy of the system is not constant in contrast
to ideal 2D MHD, but it is driven by the vertical heat flux that provides energy
for the excitation of velocity fluctuations

d

dt
Etot =

d

dt
(Ek + Em) =

d

dt

∫

S

1

2
(v2 + b2)dS =

∫

S

θvzdS. (5.8)
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The cross-helicity HC, which is an ideal invariant in 2D MHD, is of a special
importance in 2D magnetoconvection as it turns out later. If dissipative effects
are neglected, its time evolution is given as

d

dt
HC =

d

dt

∫

S

v · bdS =

∫

S

θbzdS. (5.9)

Hence the cross-helicity is not conserved in ideal 2D magnetoconvection, and
at the same time this is the first indication that the term θbz might play an
important role in the dynamics of turbulent convection under the influence of
magnetic fields. All three quantities are subject to a nonlinear transport in
spectral space. In 2D MHD turbulence the total energy and the cross-helicity
are transferred from large to small scales by a direct cascade, whereas the mean-
square magnetic potential is subject to an inverse cascade, and accumulates at
the largest scales of a bounded system (e.g. [KM80][BS01][Bis03]).

5.2 Elsässer fields

It is useful from the theoretical point of view to rewrite the equations governing
velocity and magnetic field in terms of the Elsässer variables (e.g. [Els50][Bis97]
[LG03])

z± = v ± b. (5.10)

The Elsässer variables are well suited for analyses of nonlinear dynamics because
the velocity and magnetic field equations in the Elsässer variables possess an
almost symmetric form

∂z±

∂t
+ z∓ · ∇z± = −∇P +

1

2
(ν̃ + η̃)∆z± +

1

2
(ν̃ − η̃)∆z∓ + θez, (5.11)

∇ · z± = 0 (5.12)

where P = p + B2/2 is the total pressure. In configurations with a mean
magnetic field, these equations without the buoyancy term θez can be solved,
and lead to exact solutions in the form of counter-propagating Alfvén waves
z− and z+ traveling in the same and in the opposite direction along the mean
field, respectively. The nonlinear dynamics in the Elsässer picture is therefore
represented by an ensemble of interacting Alfvén wave packets. It follows from
the structure of the nonlinear term that only counter-propagating wave packets
interact. In systems without mean magnetic field, it is supposed that the wave
packets propagate along a large-scale magnetic field that plays the role of a guide
field. The other important quantities can be related to the z± fields as

Etot =
1

4

∫

S

(z+2
+ z−

2
)dS, (5.13)

HC =
1

4

∫

S

(z+2 − z−
2
)dS. (5.14)
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Thus it is possible to work solely within the Elsässer framework (e.g. [Bis03]).
Both Elsässer energies

E+ =
1

2

∫

S

z+2
dS, (5.15)

E− =
1

2

∫

S

z−
2
dS (5.16)

are subject to a spectral transfer. They cascade from large to small scales where
they are eventually dissipated by viscous processes.

5.3 Iroshnikov-Kraichnan phenomenology

The Iroshnikov-Kraichnan (IK) phenomenology of magnetohydrodynamic tur-
bulence (e.g. [Iro64][Kra65][Bis97]) can be easily explained in the framework of
the Elsässer description. The essential assumptions of this phenomenology are:
a) constancy and isotropy of spectral fluxes ǫ± of the Elsässer energies which
are assumed to be comparable, E+ ≈ E−, b) interactions between Alfvén wave
packets (eddies) are of random nature. Moreover, a large number of these inter-
actions is necessary to distort an eddy and transfer the energy from one scale
to another.

Two counter-propagating Alfvén wave packets interact during the Alfvén cross-
ing time τA ≈ l/vA (for the definition of vA see subsection 1.2.2). However, since
τA ≪ τ±, where τ± ≈ l/z∓ is the dynamical time of an eddy of size l, the am-
plitudes of the Alfvén wave packets during one interaction change only slightly.
Therefore, N = (τ±/τA)2 of elementary interactions (random walk analogy) are
required to produce a significant distortion of an eddy. The nonlinear time of
the spectral transfer of E± between wave packets can be thus expressed as

τ±IK = NτA =

(
τ±
τA

)2

τA =

(
τ±
τA

)
τ±. (5.17)

The spectral energy fluxes are given as

ǫ± ∼ E±

τ±IK
∼ E+E−τA

l2
≈ E+E−

vAl
. (5.18)

The energy fluxes ǫ± are equal since the expression for them is symmetric in
E+ and E− and moreover E+ ≈ E− (see above). Both energies are transferred
with the constant transfer rates ǫ± from large to small scales where they are
eventually dissipated with the rates ε±, i.e. ǫ± = ε± = ε. Since it is assumed
that E+ ≈ E−, the scaling predictions for E± in the inertial range can be
obtained from (5.18). They read

E±(l) ∼ (εvA)1/2l1/2. (5.19)

In contrast to (5.13)–(5.16), here the energy is considered as a scale-dependent
quantity that is related to turbulent fluctuations at scale l. Because the total
energy Etot is the sum of E+ and E−, it scales in the inertial range analogously

Etot(l) = CIK(εtotvA)1/2l1/2. (5.20)
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Here εtot = ν̃
∫

S
ω2dS + η̃

∫
S
j2dS is the total energy dissipation rate. The

constant CIK was determined numerically, CIK ≈ 1.8 (e.g. [Bis03][BS01]). The
derivation of the scaling relation (5.20) in the IK phenomenology does not for-
mally depend on the dimension of the system, so it should be valid also in
the 3D case. On the contrary, results of high-resolution numerical simulations
of isotropic 3D MHD turbulence (e.g. [BM00][MB00]) suggest different scal-
ing behavior, namely Etot ∼ l2/3. However, in two dimensions the validity of
the IK phenomenology is confirmed by a number of numerical simulations (e.g.
[BW89][BS01]). A plausible explanation for the difference between scaling ex-
ponents of total energy spectra in 2D and 3D MHD turbulence is provided by
several authors (e.g. [Bol06][Gog06]).

The magnetic potential A exhibits an inertial-range scaling as well. The scal-
ing relation for A is derived assuming that the mean-square potential flux is
constant. In case of a large-scale energy input, the magnetic potential in the
inertial range scales as (see [Pou78][Bis03])

A(l) ∼ E(l)l2 ∼ l5/2. (5.21)

This relation has been verified in numerical simulations of closure equations
([Pou78]).

In the following, numerical results from a simulation of 2D magnetoconvection
are reported. The simulation is performed with the resolution 20482, and the
system is evolved for 15 typical buoyancy times. The dissipation coefficients are
set to ν̃ = η̃ = 7 · 10−4 and κ̃ = 1.3 · 10−4 which corresponds to Prm = 1 and
Pr ≈ 5.4. The nominal Rayleigh number of this run is Ra ≈ 2 · 106, and the
Reynolds numbers (see sections 1.2.2 and 3.1) achieved in the simulation are
Re = Rem ≈ 5 · 104. All spectral results presented in the following sections are
obtained from this simulation.

Furthermore, since the investigated system exhibits a behavior with many un-
expected features, one additional simulation with lower resolution is performed
to verify the long-time character of the system. This simulation is performed
with the resolution 10242. The dissipation coefficients are set to ν̃ = 1.5 · 10−3,
η̃ = 7.5 · 10−4, κ̃ = 4 · 10−4. They correspond to Prm = 2 and Pr = 3.75.
The nominal Rayleigh number is Ra ≈ 9 · 105, and both Reynolds numbers are
Re ≈ Rem ≈ 104. This system is evolved for approximately 100 typical buoyancy
times.

5.4 Quasi-oscillations between turbulent regimes

The most striking feature of the simulated 2D magnetoconvective system is the
fact that the system does not operate only in one regime of turbulence, e.g.
Iroshnikov-Kraichnan, Kolmogorov, Goldreich-Sridhar, Bolgiano-Obukhov, but
it permanently changes its state between two turbulent regimes with different
properties. This phenomenon can be described as quasi-oscillations between the
Iroshnikov-Kraichnan (IK) regime where effects of buoyancy are negligible at
inertial-range scales and the buoyancy dominated Bolgiano-Obukhov-like (BO-
like) regime where buoyancy forces dominate the inertial-range dynamics. The
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system evolves in a quasi-stationary manner with time intervals of IK turbulence
and time intervals of a buoyancy dominated BO-like turbulence.

This configuration sets in after the initial exponentially growing convective in-
stability saturates nonlinearly, and the system attains a quasi-stationary well-
developed turbulent state. At this stage the magnetic potential exhibits steep
gradients, and the levels of the magnetic and the kinetic energy are compara-
ble. During the following nonlinear evolution, the magnetic potential decays
only negligibly. The system remains in a quasi-stationary state, and performs
quasi-oscillations between two turbulent regimes. Kinetic and magnetic energy
as well as entropy remain at an approximately constant level.

5.4.1 Integral characteristics

In this section, the time evolution of total values of several important physical
quantities is presented. This gives an overview of large-scale changes of the
system, and provides an insight into the global character of the flow. These
quantities are plotted in Fig. 5.1. The left column shows the results obtained
from the simulation with the resolution 20482 whereas the right column demon-
strates the long-time evolution obtained from the run with the resolution 10242.

The uppermost figures show the total values of the kinetic energy (see (3.4)),
of the magnetic energy and of the entropy (defined analogously). The magnetic
energy is in both simulations about 20% larger than the kinetic energy. The
level of magnetic energy is governed by the magnetic Reynolds number which
determines the ”frozen in” property and thereby the amplification of the mag-
netic field by the turbulent dynamo (e.g. [MP89]). In both simulations the value
of Rem is similar (see above). The entropy, i.e. the energy of the temperature
fluctuations, remains at a low level (≈ 30% of the kinetic energy). The energies
in the simulation with the higher resolution increase slightly, but this behavior
occurs at a time scale t that is larger than the typical buoyancy time tb, t≫ tb.
Thus it has a negligible effect on the instantaneous dynamics of turbulent fluc-
tuations at inertial-range scales. In order to verify this fact, the simulation with
the resolution 10242 is performed, and its results analyzed. A decrease of the
magnetic energy (≈ 30% over 100 buoyancy times) is observed there, while the
global (and spectral) properties of the system remain the same. This decrease
is related to the diffusion of the mean-square magnetic potential, shown in the
graphs in the second row, which becomes important at longer time scales t,
t ≈ τD ≫ τb. Therefore, the magnetic potential in the high-resolution simu-
lation which is followed for approximately 15 typical buoyancy times remains
almost constant.

The plots in the third row display the time evolution of the total value of the
turbulent heat flux vzθ. The total turbulent heat flux is positive, so it drives the
velocity field and consequently magnetic field fluctuations. In both simulations
it fluctuates on the time scale of the typical buoyancy time. This fact becomes
important later when it is compared with the time scale of fluctuations of the
cross-helicity.

The lowermost figures show the evolution of the total values of the cross-helicity
HC and of the correlation coefficient defined as the normalized value of the
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BO BO BOIKIK

Figure 5.1: The time evolution of the total values of the kinetic energy, the
magnetic energy and the entropy (top), of the mean-square magnetic potential
(second row), of the vertical heat flux (third row) and of the cross-helicity and
the correlation coefficient (bottom) in the performed simulations of 2D magne-
toconvection. The left column displays the quantities obtained from the run
with the resolution 20482. The right column shows the long-time evolution of
the quantities obtained from the run with the resolution 10242. Vertical dotted
lines in the l.h.s. plot of the cross-helicity indicate time intervals of the BO
regime and the IK regime. Similar quasi-oscillations are present also in the low
resolution simulation although not explicitly indicated.
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Figure 5.2: Left: The total energy spectrum Êtot
k and the entropy spectrum Eθ

k

obtained by time-averaging over the IK phases. The total energy spectrum is
normalized by (εtotvA)1/2 and compensated by k1.5 (cf. (5.20)). The entropy
spectrum is compensated by the Kolmogorov factor k1.66. Horizontal lines indi-
cate the scaling k−1.5 and k−1.66. Right: The mean-square magnetic potential
spectrum obtained by time-averaging over the IK phases. The spectrum is nor-
malized by the same factor as the total energy and compensated by k3.5 (cf.
(5.21)).

cross-helicity HC/(EkEm)1/2. The cross-helicity is in both cases always neg-
ative. The correlation coefficient varies around 30%. The cross-helicity seems
to be of special importance in 2D magnetoconvective systems since it is found
that the changes of the spectral properties (shown later) between the IK phase
and the BO-like phase are time-correlated with the changes of the cross-helicity.
The IK regime occurs when the absolute value of the cross-helicity increases,
whereas the BO-like regime appears in time intervals when the absolute value
of the cross-helicity decreases. Time intervals of the turbulent regimes are indi-
cated by vertical dotted lines in the plot of the cross-helicity obtained from the
high resolution simulation (see Fig. 5.1). Similar quasi-oscillations are present
also in the low resolution simulation although corresponding time intervals are
not explicitly indicated in the plot. It is important to mention that in the per-
formed simulations the changes of the cross-helicity are slower than fluctuations
of other physical quantities, e.g. of the turbulent heat flux or of the energies
(see Fig. 5.1). These vary much quicker, so the quasi-oscillations are rather
insensitive to them.

As a result of two different turbulent regimes, various spectral quantities av-
eraged over the whole simulation time do not exhibit any scaling, whereas the
averaging over these two phases separately leads to a surprisingly clear spectral
scaling. Particular features of these two different regimes are discussed in the
next two subsections.

5.4.2 Iroshnikov-Kraichnan phase

The Iroshnikov-Kraichnan (IK) phase occurs approximately when the absolute
value of the cross-helicity increases as shown in the plot of the cross-helicity
in Fig. 5.1. The total energy spectrum and the entropy spectrum obtained by
time-averaging over the IK phases are depicted on the l.h.s. of Fig. 5.2. The
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total energy spectrum Êtot
k is compensated by k3/2 (cf. (5.20)) which makes

an inertial range that scales according to the IK prediction k−3/2 horizontal.
Moreover, the spectrum is normalized by the factor (εtotvA)1/2 (cf. (5.20)).
The total energy spectrum exhibits an inertial range extended over about one
decade in wavenumber 3 . k . 30. The nondimensional coefficient CIK from
the IK scaling relation (5.20) is determined as CIK ≈ 1.8. This value agrees well
with previously obtained values in 2D MHD turbulence ([BS01]).

The time-averaged entropy spectrum Eθ
k is compensated by the factor k5/3

(cf. (1.32)). The spectrum scales in the inertial range with an exponent around
-1.66. This exponent corresponds to the Obukhov-Corrsin-like scaling k−5/3

(cf. (1.32)). Since the exponent -5/3 is predicted for a passive scalar turbulence,
it is suggested that the temperature in the IK phase is passively advected by
a IK turbulent flow, so it does not significantly influence the nonlinear dynamics
of the system.

The r.h.s. of Fig. 5.2 displays the time-averaged spectrum of the mean-square
magnetic potential. The spectrum is normalized by the same factor as the total
energy, (εtotvA)1/2, and compensated by k3.5 (cf. (5.21)). The horizontal dashed
line indicates the scaling k−3.5. The scaling exponent is found close to the value
−3.5. This is in agreement with the scaling prediction k−7/2 (cf. (5.21)) derived
in the framework of MHD turbulence for configurations with a large-scale energy
input. This is also the case of turbulent convection since the vertical heat flux
drives convective motions predominantly at the largest scales.

The fact that when the absolute value of the cross-helicity increases the system
exhibits IK turbulence is confirmed by the analysis of spectral transfer functions
computed from the various nonlinear terms in (5.1)–(5.5) that dominate the tur-
bulence dynamics. Transfer functions are introduced and defined in section 3.3.

The total energy transfer function T̂ tot
k and the entropy transfer function T̂ θ

k are
depicted in Fig. 5.3. Both transfer functions are normalized by the correspond-
ing dissipation rates, εtot and εθ. The constant value of the transfer function
T̂ tot

k indicates the inertial region, where neither energy input nor energy dissi-
pation is important, so the spectral energy flux is constant. The inertial range
identified in this way occurs in the approximately same spectral region as that
of the total energy spectrum (Fig. 5.2) though slightly shorter 4 . k . 20. The
level of the normalized energy flux is considerably smaller than unity. However,
this feature is difficult to interpret since it depends on the particular selection
of time intervals of the IK regime used for time-averaging (see later remarks
in subsection 5.4.4), and therefore the level of the spectral energy flux might
be influenced by the turbulent heat flux. The total energy transfer function
T̂ tot

k is everywhere positive which means that the energy is transported by a di-
rect cascade from large to small scales. Also this fact is in agreement with the
IK phenomenology. The entropy is transferred by a direct cascade because its
transfer function T̂ θ

k is everywhere positive as well. However, in contrast to T̂ tot
k

the entropy transfer function T̂ θ
k does not exhibit any visible scaling at inter-

mediate scales. The curve is at the transition from large to intermediate scales
(k ≈ 5) strongly irregular which is probably an effect of the large-scale driving
by the mean temperature gradient.

It is possible to analyze the spectral energy flux in more detail by considering
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Figure 5.3: The total energy transfer function T̂ tot
k and the entropy transfer

function T̂ θ
k obtained from the IK phases of 2D magnetoconvective turbulence.

Both transfer functions are normalized by the corresponding dissipation rates,
εtot and εθ. Both transfer functions are positive indicating a direct cascade of
the total energy and the entropy.

the action of different nonlinear terms separately. The result of this analysis
is depicted in Fig. 5.4. The picture on the l.h.s. shows the spectrum of the
kinetic energy transfer function T̂EV

k and the spectrum of the absolute value

of the magnetic energy transfer function |T̂EM
k |. For 5 . k . 10 the spectrum

of T̂EM
k is negative. This part is denoted by the dotted line in the plot. The

transfer functions are normalized by the total dissipation rate εtot (see section
5.3). Comparing both spectra it is evident that the major contribution to the
total energy flux is caused by the nonlinear terms in the vorticity equation (5.1).
Furthermore, the spectrum of T̂EV

k exhibits a constant region at intermediate
scales. However, this feature does not imply that the kinetic energy is conserved
during the cascade transfer because the Lorentz force exchanges the energy
between the magnetic and the velocity field, i.e. it extracts and supplies the
energy from/to the kinetic energy cascade. The spectrum of the magnetic energy
transfer function |T̂EM

k | assumes at all scales values that are several orders of

magnitude smaller than that of T̂EV
k , and therefore the impact on the total

energy transfer caused by the nonlinear terms in the magnetic field equation
(5.2) is negligible.

The picture on the r.h.s. of Fig. 5.4 displays two parts of the kinetic energy
transfer function, namely |T̂ adv

k | computed from the advective term v · ∇ω and

T̂ Lor
k computed from the Lorentz term −b·∇j. The plot shows the absolute value

of T̂ adv
k because the spectrum of T̂ adv

k contains a negative part at 1 . k . 90
denoted by the dotted line which corresponds to an inverse cascade of the kinetic
energy. The same normalization as in the previous cases is used. It is evident
that the Lorentz force dominates the spectral transfer of the kinetic energy.
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Figure 5.4: Left: The kinetic T̂EV
k and the absolute value of the magnetic |T̂EM

k |
part of the total energy transfer function obtained from the IK phases. The
negative part of T̂EM

k (5 . k . 10) is denoted by the dotted line. Right: The

absolute value of the advective part |T̂ adv
k | and the Lorentz part T̂ Lor

k of the

kinetic energy spectral transfer. In the interval 1 . k . 90 the function T̂ adv
k

assumes negative values. All four transfer functions are normalized by the total
energy dissipation rate εtot.

Moreover, its contribution to the flux is approximately constant in the inertial
region. The transfer function T̂ adv

k computed from the velocity advection is at
the intermediate and large scales negative, i.e. an inverse cascade of the kinetic
energy, which is typical for 2D hydrodynamic turbulence. However, the total
transport of the kinetic energy is still direct since the Lorentz force affects the
kinetic energy transfer as well.

5.4.3 Buoyancy dominated phase

The buoyancy dominated BO-like phase occurs approximately when the ab-
solute value of the cross-helicity decreases as shown in the plot of the cross-
helicity in Fig. 5.1. The total energy spectrum Etot

k and the entropy spec-
trum Eθ

k obtained by time-averaging over the BO-like phases are depicted on
the l.h.s. of Fig. 5.5. There exist no scaling predictions for the energy spectra in
this regime of MHD turbulence, so both spectra are left without normalization.
However, they are compensated by the factor k2 since it is found that the spectra
at intermediate scales follow approximately a slope with an exponent around
-2. Despite the fact that the total energy spectrum does not exhibit a clear
scaling, it deviates significantly from the behavior predicted in the frame of the
IK phenomenology, k−3/2 (cf. (5.20)). The compensated spectrum of temper-
ature fluctuations displays a short horizontal plateau around the wavenumber
k = 10. This part of the spectrum coincides with the horizontal dashed line
that indicates a slope k−2. Although the determination of an exact value of the
exponent is difficult, the entropy spectrum in the inertial range scales also close
to k−2. The scaling exponent of the entropy spectrum differs also considerably
from the IK value -1.66 detected in the IK phases (cf. Fig. 5.2). These facts
indicate that the system operates in a different dynamical regime.

The r.h.s. picture shows the kinetic energy spectrum and the magnetic energy
spectrum plotted individually. Although kinetic and magnetic energy separately
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Figure 5.5: Left: The total energy spectrum Etot
k and the entropy spectrum Eθ

k

obtained by time-averaging over the BO-like phases. Both spectra are compen-
sated by the factor k2. Right: The spectrum of the kinetic and the magnetic
energy, Ek

k and Em
k . The kinetic energy spectrum is compensated by the BO

factor k2.2. The horizontal dashed line indicates the slope k−2.2. The magnetic
energy spectrum is compensated by the factor k1.5.

are not ideally conserved quantities, and therefore no scaling in their spectra
is a priori expected, it can be still interesting to analyze them. Both spectra
are computed by time-averaging over the BO-like phases. The kinetic energy
spectrum is compensated by the BO factor k2.2 in order to make the inertial
range that scales with the exponent -2.2 horizontal. The inertial interval of
the spectrum coincides with the horizontal dashed line that indicates the slope
k−2.2. The kinetic energy spectrum exhibits a very good scaling in the range
of wave numbers 4 . k . 40. The observed scaling exponent almost ideally
fits the value −2.2 predicted by the Bolgiano-Obukhov phenomenology for hy-
drodynamic turbulent convection (see subsection 1.3.2). On the contrary, the
magnetic energy spectrum compensated by the IK scaling factor k1.5 does not
show any visible inertial range. This is not surprising since the magnetic energy
separately is not conserved during the inertial-range transport. However, the
shape of the spectrum suggests that it does not differ considerably from the IK
case.

The spectra shown in Fig. 5.5 indicate that the system in the BO-like phase is
strongly influenced by the convective heat flux, and that buoyancy forces play
a dominant role in the nonlinear dynamics. The energy spectra in the BO-like
phases differ significantly from the energy spectra in the IK phases (cf. Fig. 5.2,
Fig. 5.5).

In order to obtain more detailed information about nonlinear processes in the
BO-like phase, several transfer functions are plotted in Fig. 5.6. The l.h.s. graph
displays the total energy transfer function T̂ tot

k and the absolute value of the

entropy transfer function |T̂ θ
k |. Both are normalized by the corresponding dis-

sipation rates, εtot and εθ. The spectrum of T̂ tot
k is compensated by the fac-

tor k0.21 to emphasize the difference of the scaling compared to the IK case
(T̂ tot

k ∼ k0 ∼ const.). Indeed, the total energy transfer function is not constant
in the inertial range, but it scales approximately with the exponent -0.21. This
value deviates significantly from both the IK prediction k0 ∼ const. and from
the Bolgiano-Obukhov prediction k−4/5 as well (cf. 3.14). So far there is no
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Figure 5.6: Left: The total energy transfer function T̂ tot
k and the absolute value

of the entropy transfer function |T̂ θ
k | in the BO-like regime. For 7 . k . 11 the

spectrum of T̂ θ
k assumes negative values. Both functions are normalized by the

corresponding dissipation rates, εtot and εθ. The transfer function T̂ tot
k is com-

pensated by k0.21. Right: The kinetic T̂EV
k and the magnetic T̂EM

k contribution
to the total spectral flux. Both functions are normalized by the dissipation rate
εtot. Moreover, T̂EV

k is compensated by k0.21.

available theory that explains the inertial-range scaling of T tot
k with such an

exponent. This issue is discussed further in the following subsection. The spec-
trum of the entropy transfer function T̂ θ

k assumes in the interval 7 . k . 11
negative values. However, it is difficult to interpret this feature since it depends
on time-averaging, and is therefore largely influenced by the particular selection
of time intervals of the BO regime (see later remarks in subsection 5.4.4).

The r.h.s. graph in Fig. 5.6 displays individual contributions to the spectral flux
of the total energy. While the normalized magnetic energy transfer function
T̂EM

k assumes at all scales smaller values than the normalized kinetic energy

transfer function T̂EV
k , and does not show any clear inertial range, the function

T̂EV
k exhibits a region that scales as k−0.21. Thus the scaling of the spectral

flux of the total energy is caused by the nonlinear interactions in the vorticity
equation (5.1). It should be kept in mind that the amount of energy is not
conserved in the individual transfers.

5.4.4 Dynamical model of quasi-oscillations

According to the results presented in the last two subsections, the simulated 2D
magnetoconvective system changes its turbulent regime in time in an oscillatory
way. The aim of this subsection is to explore the dynamics more deeply and
try to develop a dynamical model that is able to explain the observed quasi-
oscillations.

It is found and supported by the presented spectra that the changes of the tur-
bulent states are time-correlated with changes of the cross-helicity (see Fig. 5.1),
i.e. with the total time derivative of the cross-helicity. Thus it is necessary at
first to understand the cross-helicity dynamics and the source of these relatively
slow (compared to total values of other quantities, see Fig. 5.1) cross-helicity
fluctuations. The full equation governing the time evolution of cross-helicity in
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2D magnetoconvection can be derived from the equation for velocity fluctuations

∂v

∂t
+ (v · ∇)v − (b · ∇)b + ∇P = θez + ν̃∆v, (5.22)

where P = p + B2/2 is the total pressure, and the equation for magnetic field
fluctuations (5.2). The equation for the time evolution of the cross-helicity reads
(cf. (5.9))

∂HC

∂t
+

∫

S

[−v · (b · ∇)v + v · (v · ∇)b + b · (v · ∇)v−

−b · (b · ∇)b + b · ∇P ]dS =

∫

S

θbzdS − (ν̃ + η̃)

∫

S

jωdS. (5.23)

The nonlinear terms appearing in the first integral are the nonlinear terms
from the equation for magnetic field (5.2) multiplied by v and the nonlinear
terms from the equation for velocity (5.22) multiplied by b. The two terms
on the r.h.s. of (5.23) represent sources and sinks. In general, each of these
terms can be positive or negative which means that it can sometimes inject and
sometimes reduce the cross-helicity in the system. However, there is a difference
between these two terms. The second term contains partial derivatives, so it has
a larger effect at small scales, whereas the first term has a similar structure as the
hydrodynamic turbulent heat flux vzθ, so it injects the cross-helicity predomi-
nantly at large scales (cf. section 1.3.2). The nonlinear terms in the first integral
in (5.23) can be expressed in divergence form, and therefore conserve the total
amount of the cross-helicity in a volume with periodic boundaries. These terms
cause nonlinear interactions that redistribute the cross-helicity over different
spatial scales. The cross-helicity undergoes a direct cascade and is nonlinearly
transported from large to small scales where it is eventually dissipated (e.g.
[Bis03]).

The time evolution of the quantities on the r.h.s. of (5.23) in the high resolution
simulation is plotted in Fig. 5.7. The dashed line denotes the term

∫
S θbzdS.

The dot-dashed line shows the contribution of the term −(ν̃ + η̃)
∫

S jωdS. The
sum of both terms, i.e. the total time derivative of the cross-helicity, is repre-
sented by the solid line. The cross-helicity in the performed simulation is always
negative. Thus when the absolute value of the cross-helicity increases, the total
time derivative of the cross-helicity is negative. On the contrary, when the ab-
solute value of the cross-helicity decreases, the total time derivative is positive.
Therefore, the phases of the IK turbulence can be identified with negative parts
of the solid line, whereas the phases of the BO-like turbulence can be identified
with its positive parts. Time intervals associated with both turbulent regimes
are indicated by vertical dotted lines in the plot. The term

∫
S
θbzdS is al-

ways negative, so it permanently injects negative cross-helicity into the system.
Fig. 5.7 demonstrates that if the small scale dissipation −(ν̃ + η̃)

∫
S
jωdS be-

comes larger than the amount of the cross-helicity injected by the term
∫

S
θbzdS,

the system switches from the IK phase to the BO-like phase and vice versa.

Nonlinear interactions govern the dynamics at inertial-range scales. At these
scales the nonlinear terms in (5.23) represent the difference between the spectral
fluxes ǫ+ and ǫ− of the Elsässer energies E+ and E−. The effect of the dissi-
pation and the source term are negligible at inertial-range scales. The spectral
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BO BOIK IK BO

Figure 5.7: The time evolution of the total time derivative of the cross-helicity
(the solid line) and its two contributions separately:

∫
S
θbzdS (the dashed line)

and −(ν̃ + η̃)
∫

S
jωdS (the dot-dashed line) obtained from the high resolution

simulation of 2D magnetoconvection. Time intervals of the BO regime and the
IK regime are indicated by vertical dotted lines.

flux of cross-helicity ǫC ∼ vbv/l in a stationary state can be therefore expressed
in the form

ǫC ≈ ǫ+ − ǫ− (5.24)

as can be seen from (5.14) which relates the cross-helicity to the Elsässer fields.
The spectral energy fluxes ǫ+ and ǫ− are approximately equal in the IK regime.
This is one of the implicit assumptions of the IK phenomenology (see section
5.3). The nonlinear transfer of the cross-helicity is therefore strongly reduced.
On the contrary, if the Elsässer fluxes differ, the cross-helicity transport works
efficiently.

Furthermore, it is important to remember that cross-helicity can be interpreted
as the difference of Elsässer energies (cf. (5.14)). From this point of view the
Iroshnikov-Kraichnan phenomenology describes balanced MHD turbulence (for
definition see e.g. [LGS07]) since it assumes a scale-by-scale equality of Elsässer
energies and their spectral fluxes. It is known that an increasing level of cross-
helicity, i.e. an increasing difference between Elsässer energies E+ and E−,
reduces the efficiency of nonlinear MHD interactions. This process leads asymp-
totically to an Alfvénic state of MHD turbulence with perfectly aligned fields
v = ±b where nonlinear MHD interactions are completely switched off (e.g.
[Bis03][GFP82]). This is an extreme case of imbalanced MHD turbulence (for
definition see e.g. [LG03][LGS07][GLP83]). Imbalanced MHD interactions are
considered as scattering of large amplitude Alfvén packets of one Elsässer field
with counter-propagating small amplitude Alfvén packets of the other Elsässer
field. In this view, a difference between Elsässer energies modifies the nonlin-
ear time τ± ≈ l/z∓, and thereby also the time required for the deformation of
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a larger packet by a smaller one. It is noteworthy that decaying MHD turbu-
lence with a large initial alignment tends to a pure Alfvénic state (e.g. [Bis03]).
This process is called dynamic alignment, and follows from different dissipation
rates of total energy and cross-helicity. The dynamic alignment is characterized
by an increase of the correlation coefficient, i.e. by an increase of the normalized
value of the cross-helicity, HC/(EkEm)1/2 (e.g. [GLP83]).

In the following, a dynamical model that explains quasi-oscillations between the
two turbulent states in 2D magnetoconvection is proposed.

It is assumed that at the beginning the system operates in the IK regime. This
choice is not essential for the validity of the model, but only provides a conve-
nient starting point for following considerations. The IK regime implies that
energies and fluxes of Elsässer variables are approximately equal. Consequently,
the total cross-helicity is small (see (5.14)), and the nonlinear transfer of the
cross-helicity is very inefficient (nearly switched off, see (5.24)). Since almost
no cross-helicity is supplied to small scales by a direct cascade, and moreover
a qualitatively similar structure of z+ and z− in the IK regime can be ex-
pected (balanced MHD turbulence), the small-scale dissipation of cross-helicity
−(ν̃ + η̃)

∫
S jωdS is very small as can be seen also from

−(ν̃ + η̃)

∫

S

jωdS = (ν̃ + η̃)
1

4

∫

S

[(∇× z−)2 − (∇× z+)2]dS (5.25)

which is negligible in the IK regime. This fact is also supported by pinning
effect (e.g. [LG03][Bis97][GLP83]). The pinning effect which manifests itself by
equality of Elsässer energy spectra at dissipation scales is caused by the fact
that the IK nonlinear transfer time of the Elsässer energy E+ ≈ z+2

depends
on E− ≈ z−

2
and vice-versa

τ±IK =
vAl

z∓2 (5.26)

Thus the IK nonlinear time of the field with higher energy is longer than the
IK nonlinear time of the field with lower energy. Since at the dissipation scale
τD ≈ τ±IK small-scale dissipation effects influence primarily the field with longer
τIK, i.e. with higher energy, which energy is consequently more efficiently dis-
sipated. This effect remains significant until the energies of both fields are at
the dissipation scale approximately equal. The pinning effect can be seen on
the l.h.s of Fig. 5.8 that shows the Elsässer energy spectra obtained by time-
averaging over the IK phases. They are compensated by the IK factor k1.5

(cf. (5.19)). The spectra coincide already from the wavenumber k ≈ 70.

Interacting Alfvén packets are of similar amplitude in the IK regime, and non-
linear MHD interactions are dominant at inertial-range scales. Buoyancy forces
play at inertial-range scales a dynamically negligible role in the IK regime.
However, the source term

∫
S θbzdS continuously pumps negative cross-helicity

at large scales into the system. Since the dissipation of the cross-helicity is in-
efficient, and there is no other process that extracts the cross-helicity from the
system, it accumulates at large scales, and consequently the absolute value of
total cross-helicity increases. The growth of the cross-helicity breaks the bal-
ance between E+ and E−; the Elsässer energy E− becomes larger than E+. As
a consequence, amplitudes of counter-propagating Alfvén wave packets differ as
well as their Alfvén crossing times. This leads to a weakening of the nonlinear
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Figure 5.8: Spectra of E+ and E− in the IK phase (left) and in the BO-like
phase (right). All spectra are compensated by the factor k1.5. The dashed line
in the BO-like case indicates the slope k−2.

MHD interaction. Since the dissipation and large-scale effects are assumed to be
negligible at intermediate scales, only buoyancy and nonlinear forces compete
there. However, at this time the nonlinear MHD interactions are weak, so the
inertial-range dynamics is dominated by buoyancy. Therefore, the dynamics of
the system switches to the buoyancy dominated BO-like regime of turbulence.

In the BO-like regime, the spectral energy fluxes ǫ+ and ǫ− are different which
implies that the spectral flux of cross-helicity ǫC (cf. (5.24)) begins to transport
the cross-helicity efficiently. Moreover, the pinning effect is weak in the BO-like
regime because the Elsässer energies cascade on the buoyancy time scale. Thus
the difference between the spectra of E+ and E− penetrates to the smallest
scales. This fact is demonstrated on the r.h.s. of Fig. 5.8 where the Elsässer
energy spectra obtained by time-averaging over the BO-like phases are shown.
Both spectra are compensated by the factor k1.5 for comparison with the same
spectra in the IK regime shown in Fig. 5.8 on the left. The slope of the inertial
range of the spectrum of E+ in the BO-like regime is found to be roughly k−2,
and it is indicated by the dashed line. This scaling exponent deviates from
the BO value -2.2. Although there is no explanation for this deviation, it can
be caused by measurements errors that are related to the absence of a pure
BO state (see later remarks in subsection 5.4.4). In the spectrum of E− no
visible inertial range is detected. The Elsässer energy spectra are distinct even
at very small scales around the wavenumber k ≈ 400. This implies, according to
the relation (5.25), that the small-scale dissipation of the cross-helicity increases,
noteworthy, in accordance with the increase of the spectral transfer of the cross-
helicity ǫC. Since the energy E− dominates, the dissipation becomes positive.
In this way, the BO-like regime allows an efficient dissipation of the accumulated
cross-helicity. As the cross-helicity decreases, the energies E+ and E− become
comparable again, so the effect of nonlinear MHD interactions is amplified, and
the system returns into the IK regime of 2D magnetoconvective turbulence.

The proposed dynamical model is able to explain quasi-oscillations between
the IK phases and the BO-like phases in two-dimensional magnetoconvection.
All features of this model are successfully tested in the simulation with the
resolution 20482 as well as in the simulation with the resolution 10242. In the
following, several additional remarks are made in order to comment particular
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Figure 5.9: The scatter plot of transfer functions T+
k (left) and T−

k (right) of
Elsässer energy fluxes ǫ± taken in several instants of time during the BO-like
phases. All transfer functions are compensated by the Bolgiano-Obukhov factor
k4/5 predicted for hydrodynamic turbulent convection. Dashed lines indicate the
ideal BO scaling k−4/5.

aspects of the proposed model.

Remarks on the model

It is noteworthy that only nonlinear MHD interactions and buoyancy forces
dominate the dynamics at inertial-range scales, and furthermore they compete
at these scales. Therefore, although variations of the nonlinear MHD terms
seem to play a crucial role, fluctuations of the vertical heat flux can intensify or
weaken a particular turbulent regime.

Due to the dynamic development of the system, it is not possible to distinguish
time intervals of the turbulent regimes exactly. Thus values obtained by time-
averaging can be affected by errors coming from transition between the time
intervals. It is therefore difficult to determine exactly a slope of energy spectra,
especially in the BO-like phase for which no phenomenological prediction exists.
It is observed that the inertial range of the kinetic energy spectrum can be
slightly flatter than in Fig. 5.5, with a slope of k−2 instead of k−2.2. This value
would correspond to the slope of the inertial range of the E+ spectrum in the
BO-like phase (Fig. 5.8). The performed simulations do not have a sufficient
resolution to solve this uncertainty.

Although the transfer functions in the BO-like phase shown in Fig. 5.6 follow the
slope k−0.2 at inertial-range scales, it is possible that due to the aforementioned
reasons the time-averaging process could introduce errors. In fact, several par-
ticular instants of time are found when the spectra of both T+

k and T−
k exhibit

an inertial range with the scaling exponent −4/5 that would correspond to the
BO prediction (cf. (3.14)). The spectra at these particular times are depicted
in Fig. 5.9. The plot on the l.h.s. and the plot on the r.h.s. represent a scatter
plot of T+

k and T−
k in the BO-like phase, respectively. All transfer functions

are compensated by the BO factor k4/5. In contrast to T−
k , the compensated

transfer functions T+
k exhibit at intermediate scales a very extended interval of

a constant value, 5 . k . 300, that penetrates to the smallest scales. This is
in approximate agreement with the calculated spectra of E+ and E− (Fig. 5.8)
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where both curves coincide from k ≈ 300 at very small scales. At inertial-range
scales, on the contrary, the energy spectra, the transfer functions and also the
structure functions (see later) of E+ and E− differ in the BO-like regime con-
siderably. This fact can be explained by unequal impacts of buoyancy forces on
the Elsässer fields. The particular form of the buoyancy term influencing the
evolution of E+ is θz+

z = θ(vz + bz) (cf. (5.12)), whereas in the case of E− the
buoyancy term reads θz−z = θ(vz − bz). Therefore, although the turbulent heat
flux θvz affects both Elsässer fields similarly, its effect on E+ and E− can be
largely modified at locations of strong vertical magnetic fields. This effect is also
related to different amplitudes of the Elsässer fields in the BO-like regime, in
contrast to the IK regime where these amplitudes are comparable and buoyancy
effects negligible. However, all transfer functions in Fig. 5.9 are positive at all
scales, so both E+ and E− are transported by a direct cascade from large to
small scales.

The quasi-oscillations between both turbulent regimes occur approximately on
the time scale of several typical buoyancy times, i.e. on the typical dynamical
time scale. This is in agreement with the fact that the transition from the IK
regime to the BO-like regime reduces the cross-helicity, and therefore immedi-
ately weakens the newly establishing BO-like regime. Thus a time interval of the
BO-like regime is no longer than several units of the typical dynamical time.
The situation is similar for the transition from the BO-like regime to the IK
regime. Therefore, none of both turbulent regimes has enough time to establish
itself for a time interval longer than several units of the typical buoyancy time.

The proposed model represents only one plausible explanation. It is not ex-
cluded that the quasi-oscillations are caused by a different mechanism. How-
ever, the permanent growth of the total cross-helicity in the IK regime and the
depletion of the total cross-helicity in the BO-like regime should be taken into
account by any other model.

Finally, one interesting picture in DNS turbulence research obtained from the
performed high resolution simulation is presented in Fig. 5.10. It shows the
kinetic energy spectrum taken at a particular time during the transition from
the BO-like regime to the IK regime. The spectrum at intermediate scales
resembles two inertial subranges observable at the same time. A BO-like inertial
subrange with the scaling exponent -2.2 is visible at larger intermediate scales,
while smaller intermediate scales have been already adjusted to the IK dynamics,
so the spectrum at these scales resembles an inertial subrange with the scaling
exponent -1.6. Generally, inertial-range scaling begins to change always at small
scales first because their dynamical time is shorter compared to larger scales. It
is noteworthy that the calculated Bolgiano length LB given by (1.25) is about
one order of magnitude larger than the size of the computational box, so it is
located outside of the resolved spectral region. Therefore, it is supposed that
relation (1.25) valid for hydrodynamic convection is not an appropriate estimate
of the Bolgiano scale for magnetohydrodynamic systems where the impact of
magnetic fields should be taken in account as well. The slope of the IK inertial
subrange is very close to the value −1.66 rather than to the IK value −1.5.
It is unclear what kind of scaling, if any, the kinetic energy spectrum should
exhibit in MHD simulations. The IK phenomenology predicts the scaling for the
total energy spectrum since it is a conserved quantity in the ideal case, whereas
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Figure 5.10: The compensated kinetic energy spectrum Ek
k taken at a particular

time during the transition from the BO-like regime to the IK regime. The
spectrum resembles two inertial subranges observed simultaneously. The skewed
dashed line indicates the slope k−2.2 whereas the horizontal dashed line indicates
the slope k−1.66.

the kinetic energy is not. However, both subranges with different slopes are
clearly visible. This spectrum is presented only for curiosity since in numerical
simulations due to insufficient computational power it is usually difficult to
observe a clear inertial range at all, and the more so two inertial subranges at
the same time.

The proposed model does not depend on the specific realization of the driving
force that injects the cross-helicity. A similar mechanism based on amplify-
ing and weakening of nonlinear MHD interactions in two-dimensional MHD
turbulence due to some driving force might be applicable in cases where quasi-
oscillations between different turbulent regimes are observed or in cases where an
implementation of these quasi-oscillations would be useful. The two-dimensional
MHD approximation can be applied e.g. for three-dimensional MHD systems
with strong mean magnetic fields.

5.5 Structure functions

Another possibility how to determine scaling properties of individual fields is
to analyze the behavior of their structure functions at inertial-range scales (see
section 3.4, 4.4). The time-averaged second order structure functions Ŝ+

2 , Ŝ−
2

and Ŝθ
2 obtained from the performed simulation are depicted in Fig. 5.11. The

results obtained by time-averaging over the IK phases are plotted on the l.h.s.
of the figure, whereas the results obtained by time-averaging over the BO-like
phases are plotted on the r.h.s. of the same figure. Inserts in each figure
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Figure 5.11: Time-averaged second order structure functions Ŝ+
2 , Ŝ−

2 and Ŝθ
2

obtained from the IK regime (left) and from the BO-like regime (right) of 2D
turbulent magnetoconvection. All structure functions are normalized by the
corresponding energy, E+, −, θ. Inserts display the logarithmic derivatives of the
corresponding structure functions. The uppermost pictures show the structure
functions Ŝ+

2 (l) of the Elsässer field z+. In the middle, the structure functions

Ŝ−
2 (l) of the field z− are depicted. The lowermost plots show the structure

functions Ŝθ
2 (l) of the temperature field θ.
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display the logarithmic derivatives of the corresponding structure functions. All
structure functions are normalized by the corresponding energy, E+,−, θ.

The uppermost figures show the structure functions Ŝ+
2 (l) of the Elsässer field

z+. The functions Ŝ+
2 (l) in the IK case exhibits a short self-similar range at

intermediate scales, 0.7 . l . 1.5. The logarithmic derivative displays a short
plateau in front of the large-scale fall-off. The horizontal dashed line indicates
this region. The scaling exponent of this range is estimated as ζ+

2 = 0.52± 0.1.
This value is in agreement with the IK prediction for 2D MHD turbulence.

The situation in the BO-like regime is less clear. The structure function Ŝ+
2 (l)

is at intermediate scales noisy, so it does not allow to determine any self-similar
range. This is confirmed by the plot of the logarithmic derivative. No evident
plateau can be found there, and no unique scaling exponent can be associated
with it. However, a small horizontal interval located at 0.15 . l . 0.25 that
suggests a scaling exponent ζ+

2 ≈ 1 would be in agreement with the computed
spectrum of E+ in the BO-like regime (Fig. 5.8) which exhibits inertial-range
scaling k−2. Moreover, a comparison between Ŝ+

2 (l) in both regimes gives an
impression of the qualitative difference between both turbulent regimes.

The middle row displays plots of structure functions S−
2 (l) of the Elsässer field

z−. Both functions are quite similar. This holds for their logarithmic derivatives
as well. Although they do not exhibit any plateau, a sharp transition from
intermediate to large scales, especially in the BO-like regime, suggest that the
scaling exponent has in both cases a value ζ−2 ≈ 0.5. While such a exponent
is foreseen for the IK regime, the same exponent is unexpected in the BO-like
case. Moreover, the difference between S+

2 (l) and S−
2 (l) in the BO-like case is

evident. In fact, this feature can be detected throughout the obtained results,
e.g. in the spectra (Fig. 5.8) or in the transfer functions (Fig. 5.9), in both
performed simulations. It is probably related to different amplitudes of both
Elsässer fields and different impacts of buoyancy effects on these fields (see
remarks in subsection 5.4.4). Furthermore, difficulties to determine exact time
intervals of both regimes might play a role in the averaging process (see the
same remarks in 5.4.4).

The lowermost plots show the second order structure functions Sθ
2(l) of the

temperature field. Despite the fact that Sθ
2(l) in the IK case seems to exhibit

a self-similar range extended over about one decade, its logarithmic derivative
shows that this range is significantly deformed. Despite the fact that no exact
scaling exponent can be associated with it, a value close to 1 seems to be very
probable (cf. Fig. 5.2). On the contrary, the structure Sθ

2(l) in the BO-like
case shows a clearly visible self-similar range in the region 0.2 . l . 1. The
scaling exponent can be identified from the plot of the logarithmic derivate, ζθ

2 =
1.2± 0.19. Although this value is larger than that determined from the entropy
spectrum (≈ 1, see Fig. 5.5), the difference is with respect to the measurement
errors acceptable.

All higher order structure functions are largely affected by statistical noise, and
are therefore not shown here. The only exception is structure functions S+

p (l) of
z+ obtained from the IK regime. Hence they are used to evaluate intermittency
effects in the IK regime of 2D magnetoconvective turbulence.
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Order p ζ+
p /ζ

+
2

2 1
3 1.31 ± 0.04
4 1.49 ± 0.05
5 1.60 ± 0.07
6 1.68 ± 0.09
7 1.72 ± 0.12
8 1.75 ± 0.14

Table 5.1: Relative scaling exponents ζ+
p /ζ

+
2 of the structure functions S+

p (l)
in the performed simulation of 2D magnetohydrodynamic convection up to the
order p = 8. The exponents are obtained via ESS.

Generally, it is difficult to determine exact values of scaling exponents of struc-
ture functions in simulations of 2D magnetohydrodynamic convection. This
behavior is given by the dynamic character of the flow. In every time step the
instantaneous BO-like turbulent regime is influenced by the IK regime and vice
versa (see remarks in subsection 5.4.4).

5.6 Intermittency

The higher order structure functions S+
p (l) of the Elsässer field z+ in the

IK regime are used to compute intermittency corrections to the Iroshnikov-
Kraichnan scaling lp/4. The relative scaling exponents are evaluated via ex-
tended self-similarity up to the order p = 8. The values of the relative scaling
exponents are summarized in Tab. 5.1.

In Fig. 5.12 they are plotted as a function of order p. The values obtained from
the performed simulation are denoted by diamonds. The solid line indicates
the nonintermittent IK scaling lp/4 (cf. (5.19)). The dashed line shows the
prediction of the She-Lévêque model modified for IK turbulence (e.g. [PP95],
see also subsection 6.4.3)

ζIK
p =

p

8
+ 1 −

(
1

2

)p/4

. (5.27)

The dot-dashed line displays the prediction of the She-Lévêque model modified
for 3D MHD turbulence (e.g. [MB00], see also subsection 6.4.3)

ζMHD
p =

p

9
+ 1 −

(
1

3

)p/3

. (5.28)

Other depicted values are results obtained from numerical simulations of 2D
MHD turbulence: triangles and squares are relative exponents of S+

p (l) and
S−

p (l), respectively, ([PPC98], Re ≈ 4400), crosses are results of Lagrangian
averaged 2D MHD simulations ([GHM06], Re ≈ 2200, Prm = 1).

The computed exponents do not coincide with any of the presented phenomeno-
logical intermittency models. They exhibit larger deviations from the predicted
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Figure 5.12: Relative scaling exponents ζ+
p /ζ

+
2 (diamonds) of the structure func-

tions S+
p obtained from the IK regime. The solid line corresponds to the non-

intermittent IK scaling lp/4 (cf. (5.19)). The dashed line and the dot-dashed
line show predictions of She-Lévêque models (5.27) and (5.28), resp. Triangles
and squares denote relative exponents of S+

p (l) and S−
p (l), resp., obtained from

numerical simulations of 2D MHD turbulence ([PPC98]). Crosses denote results
from Lagrangian averaged 2D MHD turbulence simulations ([GHM06]).

models already at the order p = 4. No other phenomenological models for IK
turbulence are currently available. On the contrary, the values from different nu-
merical simulations display a quite similar behavior, although a small difference
between them can be detected for orders larger than p = 6.

Generally, a calculation of higher order exponents is affected by increasing sta-
tistical errors (see Tab. 5.1) since higher order structure functions are more
sensitive to statistical noise. However, with respect to the computed error bars,
the z+ field in the IK regime of 2D magnetoconvection behaves in approximate
agreement with other 2D MHD systems. This fact supports the identification
of this regime as the Iroshnikov-Kraichnan MHD turbulence.

5.7 Spatial structure

In this section the real space structure of several physical quantities in both
regimes of two-dimensional magnetoconvective turbulence is visualized in order
to allow for a comparison between them. Figures from the IK regime are taken
at t = 4. They are shown always in the left column. Figures from the BO-like
regime are taken at t = 8. They are shown always in the right column.

Fig. 5.13 displays pictures of several large-scale quantities. The uppermost plots
display the temperature field (light color – high values, dark color – low values)
together with the velocity field (black arrows) and the magnetic field (green
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IK regime BO-like regime

Figure 5.13: Top: The temperature field, the velocity field (black arrows) and
the magnetic field (green arrows). Middle: The driving term of the cross-helicity

θbz . Bottom: The normalized correlation coefficient ĤC = HC/(EkEm)1/2 to-
gether with Elsässer fields z+ (black arrows) and z− (white arrows). Magnitudes
of the scalar fields are denoted by color (light – high values, dark – low values.
Columns correspond to the quantities in the IK regime (left) and in the BO-like
regime (right).
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arrows). In hot rising blobs of the fluid both vector fields are highly aligned.
On the contrary, in cold sinking blobs the vector fields point almost exactly in
opposite directions. Furthermore, both vector fields assume the largest values
on borders of blobs close to transition regions where strong shearing motions
between individual blobs appear.

The plots in the middle display the spatial distribution of the cross-helicity
driving term θbz (cf. (5.23)). Regions with the highest amplitudes are located
in the outer parts of the blobs where the magnetic field assumes the largest
values.

In the lowermost figures the correlation coefficient ĤC = HC/(EkEm)1/2 is
depicted (light color – high values, dark color – low values) together with the
Elsässer fields z+ (black arrows) and z− (white arrows). The flow is divided
into two principal parts. Hot blobs of the fluid are dominated by the field z+

and high positive correlations, whereas cold blobs are dominated by the field
z− and high negative correlations. The system seems to be in both regimes well
ordered. The normalized correlation coefficient computed from absolute values
of the cross-helicity, < |v · b| > /(EkEm)1/2, remains quasi-stationary during
the simulation time, and fluctuates around 90%. This observation is in good
agreement with the proposed model of the quasi-oscillations since such a high
level of correlation is required to weaken the nonlinear MHD interactions in
MHD systems (e.g. [GLP83][GFP82]).

Fig. 5.14 shows spatial structures of three small-scale quantities. These are
the vorticity, the current density and the term jω. All quantities are shown
in gray scale representation (white – high values, black – low values). They
indicate places where dissipation of different fields primarily occurs. In the
uppermost pictures the vorticity field is depicted. It forms thin elongated quasi-
one-dimensional filaments close to transitions between individual blobs. There,
the most of the kinetic energy is dissipated. The plots in the middle show
the current density. The largest values of the current density are distributed
also in elongated quasi-one-dimensional filaments. They represent places where
the magnetic energy is dissipated. High current density is located at similar
places as high vorticity which is caused by strong shearing motions between
individual blobs. In contrast to that, inner part of blobs are characterized by an
almost uniform distribution of the velocity field and of the magnetic field (see
Fig. 5.13). Therefore, only a smart part of the associated energies is dissipated
there. For comparison purposes, the lowermost pictures display the product of
both fields, jω, i.e. the term that is responsible for the dissipation of cross-
helicity (cf. (5.23)).
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IK regime BO-like regime

Figure 5.14: Top: the vorticity field, i.e. locations of the kinetic energy dis-
sipation. Middle: the current density, i.e. locations of the magnetic energy
dissipation. Bottom: the term jω responsible for the cross-helicity dissipation.
All quantities are shown in gray scale representation (white – high values, black
– low values). Columns correspond to the quantities in the IK regime (left) and
in the BO-like regime (right).
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Chapter 6

3D magnetohydrodynamic

convection

Three-dimensional magnetoconvection describing fully three-dimensional con-
vective flows in plasmas exhibits a high level of complexity, especially when
compared to the previously studied cases. The velocity field experiences, apart
from inertial and buoyancy forces, the Lorentz force that affects its dynamics.
At the same time the velocity field reacts back influencing the evolution of the
magnetic field. This leads to a complicated nonlinear interplay between all three
fields, i.e. temperature, velocity and magnetic field, as well as to a continuous
exchange of energy between them. The nonlinear dynamics of such a system is
difficult to analyze, especially when a nonlocal transport of energies in spectral
space cannot be ruled out. Motions of plasma in three-dimensional magnetocon-
vection are not restricted to a two-dimensional plane as in the setup studied in
the previous chapter, so the convective flow is able to explore the third direction
dragging the magnetic field with it. Thus magnetic field become twisted and
stretched receiving energy from the velocity field. Such motions are supposed to
be responsible for an amplification of magnetic energy, a process called small-
scale turbulent dynamo. However, this work does not focus on the amplification
process itself, but investigates the resulting nonlinearly saturated turbulent state
and the effects of the driving of turbulence by mean temperature gradient.

Direct numerical simulations of three-dimensional magnetoconvection deal with
the evolution of 7 nonlinear partial differential equations in the three-dimen-
sional space. Therefore, they require an enormous computational effort that
explores limits of modern supercomputers. Since the maximal Rayleigh number
achieved in the computationally less expensive 3D hydrodynamic convection
studied in chapter 4 is approximately Ra ≈ 2 · 107, it can be expected that
the maximal Rayleigh number in a computationally more expensive simulation
of 3D magnetoconvection with the same computational resources will be lower.
However, as the interesting results of the previous chapter indicate, the nonlinear
dynamics of turbulent convection in electrically conducting fluids differ from
that of hydrodynamic convection significantly. Therefore, it is very important
to numerically analyze three-dimensional magnetoconvection and understand

99
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consequences of convective motions in plasmas.

6.1 Role of the magnetic field

6.1.1 Ideal invariants

The dynamical evolution of three-dimensional magnetoconvection is governed
by the set of equations (1.16)–(1.20) already introduced in subsection 1.2.2. In
the case of pure magnetohydrodynamics, i.e. without buoyancy effects, there
exist three ideal invariants

Etot =

∫

V

1

2
(v2 + b2)dV, (6.1)

HC =

∫

V

v · b dV, (6.2)

HM =

∫

V

a · b dV (6.3)

where Etot is the total (kinetic and magnetic) energy, HC is the cross helicity,
HM is the magnetic helicity, and a is the vector potential of magnetic field
fluctuations. The total energy and the cross-helicity are transferred by a direct
cascade from large to small scales, whereas the magnetic helicity is subject to
an inverse cascade, and is transferred in the opposite direction from small to
large scales (e.g. [Mof78][Bis97]).

Since buoyancy forces do not excite magnetic field fluctuations, but only drive
the velocity field, the driving by a mean temperature gradient does not inject
magnetic helicity into the system. Thus a value of magnetic helicity, if small
initially, stays at a negligible level, so the ideal conservation of magnetic helicity
does not constrain the evolution of the system. Despite the fact that Etot

and HC are due to the driving not ideally conserved in a magnetoconvective
system, based on the results of the previous chapter it is still reasonable to
expect that the direction of their spectral transfer in the inertial range remains
unaffected by buoyancy, i.e. direct. This assumption is verified later in the
following sections. Furthermore, since it is predicted in the frame of MHD
turbulence as well as of buoyancy dominated turbulence that the total energy
spectrum exhibits scaling in the inertial range (e.g. [MB00][MG01][Bis03]), it
is expected that the total energy spectrum preserves its scaling property also
in three-dimensional magnetoconvection. However, energy spectra of individual
fields are analyzed as well.

6.1.2 Conservative forms of the nonlinear terms

It follows from the structure of the individual equations in the set (1.16)–(1.20)
that the nonlinear dynamics, especially of the magnetic field, differs in three-
dimensional magnetoconvection considerably from the two-dimensional case. It
is therefore important from the point of view of nonlinear dynamics to recall
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the main consequence of this difference. The nonlinear terms from the equation
for velocity fluctuations (cf. (1.16), (5.22)) multiplied by v can be expressed as

v · (−(v · ∇)v + j× b) = −v · [(v · ∇)v] − 1

2
∇ · (b2v) + v · [(b · ∇)b] (6.4)

where

−v · [(v · ∇)v] = − 1

2
∇ · (v2v), (6.5)

v · [(b · ∇)b] =∇ · (v · bb) − b · [(b · ∇)v]. (6.6)

Similarly, the nonlinear term from the equation for magnetic field fluctuations
(1.17) multiplied by b can be also reformulated, and reads

b · [∇× (v × b)] = b · [(b · ∇)v] − b · [(v · ∇)b] (6.7)

where

b · [(b · ∇)v] =∇ · (v · bb) − v · [(b · ∇)b], (6.8)

−b · [(v · ∇)b] = − 1

2
∇ · (b2v). (6.9)

These relations imply an important difference with respect to the two-dimen-
sional case. During the long-term evolution, the magnetic field can gain energy
from the velocity field via the magnetic field stretching term on the l.h.s. of (6.8).
This means that the equation for the magnetic potential contains a source term,
so it cannot be expressed in the form of an advection-diffusion equation as in
the two-dimensional case (cf. (5.6)). The stretching term is necessary for the op-
eration of a turbulent magnetic dynamo. It is noteworthy that the second term
on the r.h.s. of (6.8) is identical to the term on the l.h.s. of (6.6). Therefore,
the terms that exchange energy, i.e. the terms on the l.h.s. of (6.6) and (6.8),
summed together can be expressed in a divergence form. This means that the en-
ergy is exchanged between the velocity and the magnetic field, and is conserved
during this process. Moreover, in the limit of infinite electrical conductivity the
magnetic flux through a surface moving with the fluid remains constant, i.e.
magnetic field is ”frozen” into the velocity field (e.g. [Mof78][Mes99]).

The results in the following sections are computed from a direct numerical sim-
ulation of a three-dimensional magnetoconvective system driven by a mean
horizontal temperature gradient in a cubic box with resolution 5123. Dissi-
pation coefficients of this run are ν̃ = η̃ = κ̃ = 1.5 · 10−3. They correspond
to a nominal Rayleigh number Ra ≈ 4.5 · 105. The Prandtl number and the
magnetic Prandtl number are equal to 1. Since the dissipation coefficients have
the same value, the Reynolds number and the magnetic Reynolds number are
equal, Re = Rem ≈ 870. The system is evolved for approximately 4 typical
buoyancy times. This value might seem to be small, but it is given by limited
computational resources. However, such a time interval is large enough to ob-
tain reasonable statistical averages of physical quantities at intermediate and
small scales.
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Figure 6.1: Time-averaged horizontal and vertical spectra of the total energy,
Êtot

xy and Êtot
z , respectively. The spectra are normalized by the total energy

dissipation rate ε
2/3
tot , and are compensated by the factor k1.57. The horizon-

tal dot-dashed line indicates a spectral slope k−1.57. The dotted line denotes
Iroshnikov-Kraichnan scaling k−1.5. The triple-dot-dashed line indicates Kol-
mogorov scaling k−1.66.

6.2 Spectra

6.2.1 Energy spectra

Fig. 6.1 shows time-averaged horizontal and vertical spectra of the total energy,
Êtot

xy and Êtot
z , respectively. The horizontal spectrum of the total energy is

defined as

Etot
xy (k) ≡

∫

∀k

Etot(k)|k=k2
x
+k2

y
dk. (6.10)

The vertical spectrum Etot
z is defined analogously to one-dimensional spectra

in chapter 4 (see (4.4)). Both total energy spectra are normalized by the total

energy dissipation rate ε
2/3
tot according to the predictions for a Kolmogorov-like

regime of turbulence (cf. (1.29)). The total energy dissipation rate consists
of contributions from the kinetic and the magnetic energy, εtot = εv + εm =
ν̃

∫
V
ω2dV + κ̃

∫
V
j2dV . The spectra are compensated by the factor k1.57 which

makes the inertial range of the horizontal total energy spectrum almost hori-
zontal, and thereby clearly visible. The horizontal dot-dashed line denotes the
slope k−1.57. The dotted line indicates Iroshnikov-Kraichnan scaling k−1.5. The
triple-dot-dashed line shows Kolmogorov scaling k−1.66. The spectra demon-
strates that the investigated system exhibits a high level of anisotropy between
the vertical and horizontal directions. The spectrum Êtot

z shows that in the
vertical direction nonlinear MHD interactions are largely damped by dissipa-
tion, so the associated inertial range is not observed. On the contrary, the
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Figure 6.2: Time-averaged horizontal and vertical spectra of the temperature
energy, Êθ

xy and Êθ
z , respectively. The spectra are normalized by the factor

εθε
−1/3
v , and are compensated by k1.5. The horizontal dot-dashed line indicates

a spectral slope k−1.5.

horizontal spectrum Êtot
xy exhibits an inertial range extended over about half a

decade in wavenumber 4 . k . 18. The difference between the horizontal and
the vertical spectrum penetrates to dissipation scales, and there is no tendency
to isotropy at intermediate scales due to nonlinear turbulent mixing as in the
previously studied 3D hydrodynamic convection (cf. Fig. 4.1). The scaling ex-
ponent −1.57 of the inertial range of the horizontal total energy spectrum is
between the Iroshnikov-Kraichnan value of −3/2 (cf. (5.20), the scaling indi-
cated by the dotted line in the plot) and the Kolmogorov value of −5/3 (the
scaling indicated by the triple-dot-dashed line in the plot). However, the ex-
tension of the inertial range is very short, so the uncertainty by determining
the scaling exponent is relatively large. It should be kept in mind that both
predicted scaling exponents differ only by 1/6 ≈ 0.17. Furthermore, there is
no general agreement on the inertial-range scaling of the total energy spectrum
in 3D MHD turbulence. Results of simulations of isotropic MHD turbulence
as well as solar wind measurements suggest Kolmogorov-like scaling k−5/3 (e.g.
[BM00][HBD03][MG05][BKM05]), whereas numerical simulations of anisotropic
MHD turbulence favor Iroshnikov-Kraichnan scaling k−3/2 (e.g. [MG01]). More
recently, several works have appeared that provide a consistent explanation of
this discrepancy (e.g. [Bol06][Gog06]).

A similar level of anisotropy between the vertical and horizontal directions can
be observed also in Fig. 6.2 which shows time-averaged horizontal and vertical
spectra of the temperature energy, Êθ

xy and Êθ
z , respectively. Both temper-

ature energy spectra are normalized by the factor εθε
−1/3
v according to the

passive scalar scaling (cf. (1.32)), and are compensated by the factor k1.5 which
makes the inertial range of the spectrum Êθ

xy horizontal. Also in this case the
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anisotropy prevails to the smallest scales, and the nonlinear interactions in the
vertical direction are largely damped. The scaling exponent of the inertial range
of the horizontal temperature spectrum is determined approximately as −1.5.
This value differs from the expected exponent −1.66 predicted for inertial-range
scaling of passively advected scalars (cf. (1.32)). However, there is no straight-
forward explanation of this difference available. Thus the additional analysis in
the later sections is necessary to elucidate the picture of 3D magnetoconvective
turbulence.

Although the proposed mechanism of quasi-oscillations between different tur-
bulent regimes that is described in section 5.4.4 in the previous chapter can be
applied also to the three-dimensional case, no such phenomenon is observed in
the performed simulation of 3D magnetoconvective turbulence. This fact can be
caused by several reasons. The nominal Rayleigh number of the 3D simulation
is smaller than that of the 2D simulation, Ra3D ≈ 105 < Ra2D ≈ 106, leading to
weaker buoyancy effects in the 3D simulation compared to the 2D simulation.
The 3D system evolves for only 4 typical buoyancy times compared to 15 typical
buoyancy times in the 2D case, so the quasi-oscillations might not be detected.
The nonlinear processes of MHD turbulence can differ in 3D and 2D. Probably
the most important is the fact that a sufficient alignment between velocity and
magnetic field can be more easily achieved in two dimensions than in three di-
mensions because the dynamics in 2D is restricted only to the two-dimensional
plane.

6.2.2 Individual fields

Although inertial-range scaling in MHD turbulence is predicted for the spectrum
of the total energy because the total energy is in nonlinear MHD interactions
conserved, it is interesting to study energy spectra of individual fields. In Fig. 6.3
time-averaged horizontal and vertical kinetic energy spectra, Êk

xy and Êk
z are

depicted, respectively. The spectra are normalized by the kinetic energy dissi-

pation rate ε
2/3
v (cf. (1.29)), and are compensated by the factor k1.5. The hori-

zontal dot-dashed line in the plot indicates a spectral slope k−1.5. Additionally,
time-averaged horizontal and vertical magnetic energy spectra, Êm

xy and Êm
z , re-

spectively, are plotted in Fig. 6.4. The magnetic energy spectra are normalized

by the magnetic energy dissipation rate ε
2/3
m (cf. (1.29)), and are compensated

by the factor k1.66. The horizontal dot-dashed line in the plot shows a spectral
slope k−1.66. Both plots suggest that the anisotropy influences the kinetic as
well as the magnetic part of the total energy spectrum. In contrast to the verti-
cal spectra of both energies, the horizontal spectra exhibit a short inertial range
that is extended over about half a decade in wavenumber 4 . k . 18. While the
horizontal kinetic energy spectrum displays the inertial interval with a scaling
exponent approximately -1.5 which is the Iroshnikov-Kraichnan value, a scal-
ing exponent of the inertial range of the horizontal magnetic energy spectrum
is close to the Kolmogorov value −1.66. Thus the horizontal spectra indicate
a qualitative difference in the spectral behavior of the velocity and the mag-
netic field. It is interesting that the inertial intervals of the horizontal spectra
of individual fields resemble the phenomenologically predicted scaling, namely
k−5/3 and k−3/2 (cf. (1.29) and (5.20)). However, there is no direct relation
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Figure 6.3: Time-averaged horizontal and vertical spectra of the kinetic energy,
Êk

xy and Êk
z , respectively. Both spectra are normalized by the kinetic energy

dissipation rate ε
2/3
v , and are compensated by the factor k1.5. The horizontal

dot-dashed line indicates a spectral slope k−1.5.

Figure 6.4: Time-averaged horizontal and vertical spectra of the magnetic en-
ergy, Êm

xy and Êm
z , respectively. Both spectra are normalized by the magnetic

energy dissipation rate ε
2/3
m , and are compensated by the factor k1.66. The

horizontal dot-dashed line indicates a spectral slope k−1.66.
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Figure 6.5: The time-averaged spectrum of the vertical heat flux vzθ compen-
sated by the factor k2.1. The horizontal dashed line indicates a spectral slope
k−2.1.

between the observed scaling exponents and the phenomenologically predicted
exponents since these are originally derived for the spectrum of the total energy.

The time-averaged spectrum of the vertical heat flux vzθ is plotted in Fig. 6.5.
In this case the determination of an exact scaling exponent is very difficult. The
horizontal dashed line in the figure indicates a spectral slope k−2.1 to which the
spectrum at intermediate scales, 4 . k . 18, tends. However, this inertial
interval is very short. The detected exponent −2.1 is larger than the value
predicted for the case of BO hydrodynamic convection −9/5 = −1.8 (cf. (3.11),
[GL93]), but at the same time somewhat smaller than the scaling exponent
predicted for passive scalar regime of hydrodynamic turbulence −7/3 ≈ −2.3
(cf. (4.7), [GL93]). The detected slope of the inertial range is closer to the
passive scalar scaling ∼ k−2.3, which would be in agreement with the total
energy spectra where a Kolmogorov-like scaling is observed and not a Bolgiano-
Obukhov one.

6.3 Inertial-range dynamics

6.3.1 Spectral energy transfer

To determine the direction and other spectral properties of energy and entropy
cascades in the performed simulation of 3D magnetoconvection, transfer func-
tions of individual fields are plotted in Fig. 6.6. The depicted transfer functions
are defined analogously to the expression (3.12) in chapter 3. The kinetic en-
ergy transfer function T̂EV

k and the magnetic energy transfer function T̂EM
k are

constructed from the nonlinear terms (6.4) and (6.7), respectively. The entropy
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Figure 6.6: The kinetic energy transfer function T̂EV
k (solid), the magnetic en-

ergy transfer function T̂EM
k (dashed) and the entropy transfer function T̂ θ

k (dot-
dashed) in the performed simulation of 3D magnetoconvection. All transfer
functions are normalized by the corresponding dissipation rates.

transfer function T̂ θ
k has the same structure as in the previous cases (see section

3.3). All functions are normalized by the corresponding dissipation rates.

The spectrum of T̂EM
k at intermediate scales is almost horizontal approaching

a constant value of 0.8. However, a part of this range that is located at very
large scales, i.e. k . 4, is probably significantly influenced by applied boundary
conditions. The spectra of T̂EV

k and T̂ θ
k tend to the value of 0.8 as well, but

only in the vicinity of the wavenumber k ≈ 14. Thus no inertial-range transfers
are observed there. However, the plot suggests that the energy at large scales is
transported primarily by the magnetic nonlinear terms (6.7) while the velocity
field receives energy from buoyancy, and consequently pumps it to the magnetic
field. All transfer functions are positive, i.e. the energies are subject to direct
cascades. The obtained spectra of the transfer functions suggest that the ap-
plied resolution 5123 is the lower limit for a detection of inertial ranges in the
3D magnetoconvection. Additionally, a comparison of the extension of inertial
ranges obtained from the energy spectra in the previous section and of that
obtained from the plot of the transfer functions demonstrates a quantitative
difference between both diagnostic tools.

A more detailed view of the spectral energy transport caused by the magnetic
nonlinear terms can be obtained from Fig. 6.7. It shows contributions to the
energy transport due to the individual terms on the r.h.s. of (6.7). The transfer
functions T str

k and T adv
k represent the spectral energy transport by the terms

(6.8) and (6.9), respectively. The transfer function TEM
k is their sum, so it

displays the simultaneous action of both individual terms. Both T str
k and T adv

k

assume only positive values. Therefore, the individual nonlinear terms transfer
the magnetic energy from large to small scales, i.e. by a direct cascade. However,
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Figure 6.7: Detailed view of the spectral energy transport caused by the mag-
netic nonlinear terms (6.7). Transfer functions T adv

k (the dashed line) and T str
k

(the dot-dashed line) represent contributions to the transport due to the stretch-
ing term (6.8) and the advective term (6.9), respectively. The transfer function
TEM

k is their sum showing a combined action of both individual terms.

T str
k representing effects of the stretching term (6.8) is far more dominant at

scales k . 10 than T adv
k , indicating that primarily this term processes the energy

received from the velocity field at large scales. On the contrary, T adv
k , which

represents effects of the advection of the magnetic field, dominates at scales
k & 10. Thus the energy is transported mainly by this term to the smallest
scales where it is eventually dissipated by magnetic diffusivity.

6.3.2 Detailed energy exchange

An important question concerning the spectral transport of magnetic energy is
whether this transport occurs locally in spectral space or not. In order to answer
this question, it is necessary to understand the role of the separated terms in
(6.7) participating in the transfer of magnetic energy.

The advection term b · (v ·∇)b transfers the energy only between two magnetic
Fourier modes with the third velocity Fourier mode being a mediator of this
transfer. This follows from the fact that it is possible to recast this term in
divergence form (see (6.9)), i.e. the magnetic field neither gains nor loses energy.
The advection term conserves the magnetic energy irrespective of the kinetic
energy dynamics. In other words, the kinetic energy of the system does not
change directly due to effects of this term, i.e. there is no exchange of energy
between the velocity and the magnetic field caused by this term.

The behavior of the stretching term b · (b · ∇)v is more complex. Since it is
a complementary term to the Lorentz force (see (6.8)), it participates in the
exchange of energy between the velocity and the magnetic field. It follows
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Figure 6.8: The spectral transfer of magnetic energy Tbb(Q,K) caused by the ad-
vection term between different shells in Fourier space. The interaction between
velocity and magnetic field Fourier modes in the shell Q results in the redistri-
bution of the magnetic energy over different shells K. The spectral transport
caused by the advection term is essentially direct and local.

from its structure that all three, i.e. two magnetic and one velocity, Fourier
modes are active in the spectral transfer of energy. Hence this term is capable,
apart from the energy exchange between both fields, to transport the magnetic
energy in spectral space as well. It is verified that the change of the energy in
the velocity shell K caused by the Lorentz force

∫
V

vK · (b · ∇)bdV does not
correspond to the change of the energy in the magnetic field shell K caused by
the stretching term

∫
V

bK · (b · ∇)vKdV , i.e. not only magnetic field Fourier
modes in the shell K, but also magnetic field Fourier modes in other shells,
contribute to the change of the energy in the particular velocity shell K. In
other words, the stretching term does not only exchange the energy between the
velocity and the magnetic field, but it changes the energy content of all magnetic
field Fourier modes as well. Thus an analysis that has a clear interpretation
should consider the impact of this term on the entire magnetic wavenumber
range. It is important to note that the energy originating in magnetic and
velocity Fourier modes in this term cannot be distinguished, i.e. they are from
the point of view of the nonlinear MHD interactions equivalent. Therefore,
several published results ([AMP05][MAP05]) demonstrating a possible nonlocal
spectral transfer of magnetic energy might be misleading. The overall impact
of the stretching term in the performed simulation of 3D magnetoconvective
turbulence was shown in Fig. 6.7 that displays the transfer function T str

k .

The spectral transfer of magnetic energy between different wavenumber shells
Q and K that is caused by the advection term (6.9) is plotted in Fig. 6.8. The
spectral transport is evaluated as (see section 3.3.2)

Tbb(Q,K) ≡
∫

−bK(v · ∇)bQdV. (6.11)
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Figure 6.9: The spectral transfer of entropy Tθθ(Q,K) between different shells in
Fourier space obtained from the performed simulation of 3D magnetoconvective
turbulence. The spectral transport of entropy is essentially direct and local.

The incidental shells Q = 20, 30, 40, 50 are chosen close to inertial-range scales
7 . k . 20. The picture suggests a direct cascade where the magnetic energy
is predominantly transferred from the immediately preceding wavenumber shell
K = Q−1 to the consecutive shell K = Q+1. The energy transfer to the shells
K < Q− 10 and K > Q+ 10 is negligibly small. Hence this plot confirms that
the spectral transfer of magnetic energy due to the advection term is essentially
direct and local.

The result of the same analysis of the spectral transport of entropy is shown in
Fig. 6.9. It displays a qualitatively same behavior as the previous graph. Hence
all main characteristic features of the spectral transfer of entropy are the same
as in the previous case, i.e. the transfer is essentially direct and local.

Both analyses of spectral transfer indicate that advection terms generally trans-
port a particular energy locally in spectral space from large to small scales.

6.4 Statistical results

On one hand, (one-dimensional) structure functions exhibit usually a somewhat
shorter extension of the inertial interval compared to angle-integrated energy
spectra because they use less data points than the angle-integrated spectra. On
the other hand, it is well tested that spurious oscillations and statistical noise
in inertial intervals of structure functions are largely suppressed when extended
self-similarity is used (e.g. [Bis03][CH06]). Thus relative scaling exponents of
structure functions can be better determined. In the previous chapters, ESS
applied to the individual fields has been already verified to hold also in the case
of turbulent convection.
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6.4.1 Structure functions

Structure functions computed from the performed simulation of 3D magnetocon-
vective turbulence are depicted in Fig. 6.10. The left column displays structure
functions S+

p (l) = 〈(δz+)p〉 of the Elsässer variable z+ (see section 5.2) of the or-

der p = 2, 3, 4 (from top to bottom). The structure function S+
2 (l) is a real space

counterpart of the total energy spectrum, if the level of alignment between the
velocity and the magnetic field in the system is small, S+

2 ∼ lα ↔ Etot
k ∼ k−α−1.

The right column shows structure functions Sθ
p(l) of the temperature field or-

dered analogously. Both S+
p (l) and Sθ

p(l) are normalized by the corresponding

powers of energies, (E+, θ)p/2. In order to avoid cancellation effects in calcula-
tions of structure functions of odd order, these functions are evaluated from ab-
solute values of field increments. Inserts in the figures show logarithmic deriva-
tives of the structure functions in order to reveal their slope at inertial-range
scales. Horizontal dashed lines indicate estimated values of scaling exponents
ζ+, θ
p .

The curves of the second order structure functions S+
2 (l) and Sθ

2 (l) do not show
any clear self-similar interval. The large-scale part almost continuously merges
with the dissipation range. In addition, the logarithmic derivatives display very
smooth monotonously decreasing profiles with no easily detectable plateaux.
The scaling exponent of S+

2 (l) is therefore determined with a relatively large
error, ζ+

2 = 0.57 ± 0.07. For the better readability, the horizontal dashed line
indicating a scaling exponent of ζθ

2 is omitted in the plot of the logarithmic
derivative of Sθ

2(l). However, the scaling exponent of ζθ
2 is determined as ζθ

2 =
0.51 ± 0.06. This exponent is in approximate agreement with the exponent of
the entropy spectra in Fig. 6.1.

The situation is slightly different for higher orders of the structure functions.
In the case of S+

3 (l) and S+
4 (l) the plateau in the profile of the logarithmic

derivatives is more pronounced compared to the logarithmic derivative of S+
2 (l)

leading to estimates of scaling exponents of inertial intervals ζ+
3 = 0.77 ± 0.04

and ζ+
4 = 0.91 ± 0.03. The temperature field structure functions of the third

and the fourth order and their logarithmic derivatives suggest ζθ
3 = 0.62 ± 0.03

and ζθ
4 = 0.71 ± 0.02.

Structure functions of the Elsässer field z− differ only negligibly from that of
z+ since the system exhibits only an insignificant level of alignment, and are
therefore not shown here.

6.4.2 Probability density functions

Probability density functions (pdfs) p+ of the z+ field increments and the pdf
pθ of the temperature field increments are depicted on the l.h.s. and on the r.h.s
of Fig. 6.11, respectively. The top and bottom pictures show pdfs taken at large
(l ≈ L) and small (l ≈ 10−2L) scales, respectively. In all figures the dashed line
corresponds to a Gaussian pdf with the same variance. The curve of p+ at large
scales does not coincide with the Gaussian pdf exactly showing a significant
departure in the tails. In contrast to that the pdf of temperature fluctuations,
pθ, is at large scales almost perfectly Gaussian. The observed departure of the
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Figure 6.10: Structure functions S+
p (l) of the Elsässer variable z+ (left) and

temperature structure functions Sθ
p(l) (right) of the order p = 2, 3, 4 (from top

to bottom) in the performed simulation of 3D magnetoconvective turbulence.
The structure functions are normalized by the corresponding powers of ener-
gies, (E+, θ)p/2. Inserts show logarithmic derivatives of the structure functions.
Dashed lines indicate the estimated values of scaling exponents ζ+, θ

p .
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Figure 6.11: Probability density functions p+ (left) and pθ (right) at large
(l ≈ L) and small (l ≈ 10−2L) scales (top and bottom) obtained from the
performed simulation of 3D magnetoconvective turbulence. Dashed lines de-
note the corresponding Gaussian pdfs with the same variance.

tails of p+ is probably caused by the averaging procedure since the analyzed
system is evolved for approximately 4 typical buoyancy times, and is therefore
not perfectly relaxed at the largest scales, i.e. a decorrelation time is longer than
the buoyancy time at the temperature gradient scale L. The small-scale pdfs
display the presence of non-Gaussian wings. These imply intermittency effects
in the investigated system, i.e. corrections to ideal scaling. The wings of pθ are
more pronounced than that of p+, but this feature needs to be quantitatively
better specified.

A useful tool for that is the evaluation of the flatness parameter F of the proba-
bility density functions as a function of spatial scale l (see (3.25)). The result of
this calculation is shown in Fig. 6.12. Both F+(l) and F θ(l) at large scales tend
approximately to the Gaussian value F = 3. The behavior of F+ and F θ at
small scales confirms that dissipative structures of the temperature field are in
real space more intermittent than dissipative structures of the velocity and the
magnetic field. The flatness F θ assumes at small scales values around 16 while
F+ assumes values around 12. The temperature field is less intermittent than
in the pure hydrodynamic case studied in chapter 4 (F θ ≈ 26, see Fig. 4.10).
The level of a small-scale intermittency of z+ is similar to that of the velocity
field in the simulation of 3D hydrodynamic convection (F v ≈ 12, see Fig. 4.10).
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Figure 6.12: The flatness F+(l) and F θ(l) of probability density functions p+

and pθ, respectively, as a function of l in the performed simulation of 3D mag-
netoconvective turbulence.

Order p ζ+
p /ζ

+
2 ζθ

p/ζ
θ
2

2 1 1
3 1.33 ± 0.06 1.25 ± 0.09
4 1.60 ± 0.08 1.42 ± 0.11
5 1.85 ± 0.10 1.52 ± 0.13
6 2.10 ± 0.13
7 2.35 ± 0.15

Table 6.1: Relative scaling exponents of temperature and z+ structure func-
tions calculated from the simulation of 3D magnetoconvective turbulence. The
exponents ζ+

p /ζ
+
2 up to the order p = 7 as well as the exponents ζθ

p/ζ
θ
2 up to

the order p = 5 are obtained via ESS.

6.4.3 Intermittency models

In order to investigate intermittency effects in 3D magnetoconvective turbu-
lence, relative scaling exponents of higher order structure functions are calcu-
lated. The obtained values are summarized in Tab. 6.1. The relative scaling
exponents ζθ

p/ζ
θ
2 are determined only up to the order p = 5 due to the increasing

level of statistical noise. Beyond this order fitting uncertainties are too large.

Fig. 6.13 shows the graph of the relative scaling exponents ζ+
p /ζ

+
2 of the z+ field.

The computed values are denoted by diamonds. Triangles stand for numerical
results of 3D MHD turbulence ([MB00], Rem ≈ 3000, Prm = 1). The dashed line
corresponds to the nonintermittent Kolmogorov scaling lp/3. The dotted line
and the dot-dashed line denote the Iroshnikov–Kraichnan She-Lévêque model
and the modified She-Lévêque model, respectively.
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Figure 6.13: Relative scaling exponents ζ+
p /ζ

+
2 (diamonds) of the z+ structure

functions in the simulation of 3D magnetoconvective turbulence computed up
to the seventh order as a function of order p. The dashed line corresponds to the
nonintermittent Kolmogorov scaling lp/3. The dot-dashed line is the prediction
according to the modified She-Lévêque model (6.13). The dotted line is the
prediction of the IK-She-Lévêque model (6.14). Triangles denote numerical
values obtained from simulations of 3D MHD turbulence ([MB00]).

The two latter models are based on the phenomenological log-Poison model
proposed by She and Lévêque ([SL94]) which has the general form

ζSL
p =

p

g

(
1 − 2

g

)
+ C0

[
1 −

(
1 − 2

gC0

)p/g
]

(6.12)

where C0 is a codimension of the most intermittent structures, and g is de-
termined from the underlying nonintermittent scaling law, l1/g. In MHD tur-
bulence the relation (6.12) under the assumption of the Kolmogorov scaling
lp/3 and C0 = 1 which corresponds to dissipative structures in a form of two-
dimensional sheets (e.g. [MB00]) leads to the modified She-Lévêque model

ζMHD
p =

p

9
+ 1 −

(
1

3

)p/3

. (6.13)

If instead of the Kolmogorov scaling lp/3 the nonintermittent Iroshnikov-Kraich-
nan scaling lp/4 is assumed, the generalized She-Lévêque model (6.12) yields
(e.g. [MB00])

ζIK
p =

p

8
+ 1 −

(
1

2

)p/4

. (6.14)

The relative scaling exponents ζ+
p /ζ

+
2 of the z+ structure functions shown in the

plot deviate from the nonintermittent Kolmogorov scaling lp/3 significantly. On
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Figure 6.14: Relative scaling exponents ζθ
p/ζ

θ
2 (diamonds) of the temperature

structure functions in the simulation of 3D magnetoconvective turbulence up to
the fifth order as a function of order p. The dashed line corresponds to the non-
intermittent scaling lp/3. Triangles denote temperature fluctuations measure-
ments in wind tunnel turbulence ([RBC96]). Crosses stand for the numerical
results of 3D passive scalar hydrodynamic convection obtained in chapter 4.

the contrary, the exponents coincide surprisingly well with the values obtained
from numerical simulations of 3D MHD turbulence ([MB00]). Both numerical
results are well approximated by the modified She-Lévêque formula (6.13) lead-
ing to the conclusion that the simulated system operates in the Kolmogorov
regime of MHD turbulence. This fact is supported by the relatively small nomi-
nal Rayleigh number achieved in the performed simulation, Ra ≈ 4.5 · 105. This
value corresponds to the Bolgiano length that is about one order larger than
the largest resolved scale in the simulation. Thus temperature fluctuations in
the investigated system play the role of a passive scalar. Comparing the fact
that the intermittency of the z+ field which follows the She-Lévêque prediction
(6.13) is based on the Kolmogorov scaling lp/3 with the computed energy spectra
(Fig. 6.1), it seems plausible that the system operates in the Kolmogorov regime
and not in the Iroshnikov-Kraichnan regime of MHD turbulence. However, due
to the lack of sufficient resolution it is not possible to verify this conclusion
directly.

The level of intermittency of the temperature field is shown in Fig. 6.14. It
displays values of the relative scaling exponents ζθ

p/ζ
θ
2 evaluated via ESS. The

computed values are denoted by diamonds. The dashed line corresponds to the
nonintermittent scaling of passive scalars lp/3 (cf. (1.31)). Triangles stand for re-
sults of passive temperature fluctuations in a wind tunnel turbulence ([RBC96],
Re ≈ 4.5 · 105, Pr ≈ 1). Crosses denote the result of 3D passive scalar hydro-
dynamic turbulent convection from chapter 4 (Ra ≈ 2 · 107, Re ≈ 2 · 103). The
temperature field exhibits a more intermittent character than the z+ field. The
computed values of the relative exponents ζθ

p/ζ
θ
2 are in very good agreement
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Figure 6.15: Dissipative structures represented by isosurfaces obtained from the
performed simulation of 3D magnetoconvective turbulence. Different dissipa-
tions are labeled by color: vorticity – yellow, current density – green, tempera-
ture gradient – red.

with the passive scalar intermittency of the 3D hydrodynamic convection. Fur-
thermore, the values do not differ much from the experimental measurements of
a passive scalar in the wind tunnel turbulence. The passive character of the tem-
perature field in the performed simulation of 3D magnetoconvective turbulence
is therefore supported.

6.5 Visualization of fields

In order to obtain an impression of the real space configuration of the flow,
several pictures showing the spatial structure of different important physical
quantities are presented in this section. Fig. 6.15 displays various dissipative
structures. These are represented by isosurfaces, and labeled by color: the
dissipation of the kinetic energy – vorticity (yellow), of the magnetic energy –
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current density (green), of the entropy – temperature gradient (red). All dis-
sipative structures take the form of quasi-two-dimensional sheets. This is in
agreement with the codimension C0 = (dimension of the system) − (dimension
of the most intermittent structures) = 3−2 = 1 suggested for the modified She-
Lévêque model (6.13) in the previous section. The quasi-two-dimensional sheets
occur locally close to each other, e.g. in the lower right corner. This configura-
tion is caused by the fact that all three energies are predominantly dissipated
at places of large gradients of the individual fields. These large gradients are
localized at transitions between regions of significantly different temperatures,
i.e. coherent parts of the fluid. On the contrary, inner parts of this regions are
quite smooth, and exhibit only small variations of the fields.

This interpretation is confirmed by Fig. 6.16 that displays the velocity field, the
magnetic field and the temperature field (l.h.s., from top to bottom) together
with the corresponding dissipations (r.h.s., from top to bottom) in a horizontal
slice through the system. The velocity field and the magnetic field, both pro-
jected onto the horizontal slice, are represented by lines. The magnitude of the
fields is denoted by color (light – high values, dark – low values). The plots on
the r.h.s. show structures of associated dissipations ω2, j2 and (∇θ)2. Indeed,
two large regions of significantly different temperatures in the center of the hor-
izontal cross-section can be identified, separated by a very narrow transition
region where the dissipation of all three fields is largely amplified. Especially,
the hot region can be well recognized in the lower right picture showing the mag-
nitude of the temperature energy dissipation which is amplified on the boundary
of this region. The dissipation of the kinetic and the magnetic energy exhibits
a similar structure as well.

Fig. 6.17 displays the global structure of the magnetic field represented by three
perpendicular slices. The magnitude of the magnetic field is denoted by color
(red – high values, blue – low values). The system exhibits more elongated
structures in the vertical direction than in horizontal directions. They corre-
spond to rising and sinking blobs of the fluid of different temperature with their
horizontal movements constrained by the magnetic field. Several magnetic field
lines are depicted in the center of the plot indicating the spatial configuration
of the magnetic field.
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Figure 6.16: Left: Structure of the velocity field, the magnetic field and the
temperature field (from top to bottom) in the horizontal slice through the 3D
magnetoconvective system. Vector fields are represented by lines. Magnitudes
are denoted by color (light – high values, dark – low values). Right: Structure
of the vorticity, the current density and the temperature gradient (from top to
bottom) in the same slice.
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Figure 6.17: Global structure of the magnetic field represented by three perpen-
dicular slices in the performed simulation of 3D magnetoconvective turbulence.
The magnitude of the field is denoted by color (red – high values, blue – low
values). Magnetic field structures are more elongated in the vertical direction
than in horizontal directions. Several magnetic field lines are depicted in the
center of the figure.



Conclusions

This thesis presents extensive numerical studies of turbulent convection. Within
the frame of the thesis, turbulent convection is investigated by means of several
large-scale direct numerical simulations. The main advantage of the numerical
approach is the possibility of comprehensive diagnostics since calculated turbu-
lent fields are known at all grid points of a computational box at all time steps.
A similarly detailed diagnostics is inaccessible in experimental studies. The
main disadvantage is that the computational power of present-day supercom-
puters limits maximal values of physical parameters, e.g. the Rayleigh number,
in numerical simulations to moderate levels compared to laboratory experi-
ments. Four particular systems are analyzed in the work, namely: two- and
three-dimensional hydrodynamic and magnetohydrodynamic (MHD) turbulent
convection. Due to capabilities of the supercomputer facility of the Rechen-
zentrum Garching at the Max-Planck-Institute for Plasma Physics, convective
systems are simulated for the first time with very high resolutions, e.g. the 3D
hydrodynamic convection (10243, Ra ≈ 2 · 107) or the 3D magnetoconvection
(5123, Ra ≈ 4.5 · 105). Such resolutions are necessary in order to resolve an
inertial range of a turbulent flow, and allow for a direct comparison between
different phenomenological theories of turbulence.

All four convective systems are investigated using a pseudospectral code previ-
ously developed for studies of MHD turbulence that is extended to account for
Boussinesq convection. The modified version of the code is tested by employing
a Rayleigh-Bénard setup with closed vertical boundaries. The results of the
performed tests are in good agreement with available theoretical and numerical
predictions. Furthermore, the code is optimized for use on massively parallel
supercomputers. Its very good scalability and performance are confirmed using
up to 512 processors.

Since one of the main interests of this work is to analyze statistical proper-
ties of turbulent convection, the closed vertical boundaries are after the tests
replaced by fully periodic geometry. Such a numerical setup excludes effects
caused by specific boundaries, so the approximate statistical homogeneity of
a system is preserved. This setup is therefore suitable for statistical analysis.
All investigated convective systems are driven by a horizontal temperature gra-
dient because it ensures stability of the fully periodic configuration which is
shown by linear analysis.

At first hydrodynamic turbulent convection in two dimensions is considered.
Such a system with a mean temperature gradient in the vertical direction has

121
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been previously analyzed by several authors, and therefore the influence of the
mean temperature gradient that is in the horizontal direction can be examined.
However, no qualitative difference of statistical properties of the turbulent dy-
namics is found. The nonlinear dynamics is largely affected by buoyancy forces,
so the temperature field plays a role of an active scalar. This is in agreement with
the calculated energy spectra which follow predictions of the Bolgiano-Obukhov
phenomenology. One of the basic assumptions of this phenomenology, a local
transfer of entropy in spectral space, is verified for the first time. Moreover, the
statistics of velocity increments at small scales suggest that the velocity field
is slightly intermittent, similarly as it is observed in studies of two-dimensional
hydrodynamic turbulence. This intermittency is well described by a log-Poisson
model that is known from investigations of intermittency in fully developed hy-
drodynamic turbulence. At dissipation scales the temperature field exhibits
ramp-and-cliff structures typical for passive scalar turbulence.

The next step to better understand convective turbulence in real observable
systems is to consider three-dimensional hydrodynamic convection. This con-
figuration is of a special interest since experimental and numerical studies favor
different phenomenologies of turbulent convection, namely the ones by Bolgiano-
Obukhov and Kolmogorov. The analyzed three-dimensional system is found
to operate in the Kolmogorov regime known from studies of isotropic hydro-
dynamic turbulence. This fact is in agreement with a relatively low Rayleigh
number achieved due to limited computational resources, Ra ≈ 2 ·107, compared
to laboratory experiments with Ra up to 1017. The temperature field drives ve-
locity fluctuations at the largest scales, but it does not affect the nonlinear
dynamics at inertial-range scales where the temperature is passively advected
by the velocity.

Probably the simplest model that involves the effects of magnetic fields on tur-
bulent convection is magnetoconvective turbulence in two dimensions. This con-
figuration is particularly attractive because it allows to apply higher Rayleigh
and Reynolds numbers than in the three-dimensional case. Moreover, plasma
dynamics in two dimensions can be seen as an approximation to fully three-
dimensional systems with strong mean magnetic fields where the turbulent dy-
namics is largely restricted to two-dimensional planes perpendicular to the mean
field. For such systems the results of the study of this configuration are par-
ticularly relevant. The investigated two-dimensional magnetoconvective turbu-
lence is found to exhibit a new feature, namely quasi-oscillations between the
Iroshnikov-Kraichnan regime of turbulence where buoyancy influences the non-
linear dynamics negligibly and the buoyancy dominated regime of turbulence.
The different character of the flow in the individual regimes results in differ-
ences of the observed energy spectra. A new phenomenological model of the
quasi-oscillations is proposed that is based on cross-helicity dynamics and on
the effect of dynamical alignment known from decaying 3D MHD turbulence.

Since the turbulent convection examined in the previous chapters shows a differ-
ent behavior in different setups, it is very interesting to analyze also fully three-
dimensional magnetoconvection, especially with respect to the quasi-oscillations
observed in the two-dimensional case. However, no such quasi-oscillations are
found. This fact can be caused by several reasons, for instance: a) the nonlinear
dynamics underlying MHD turbulence is still not fully understood and can be
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different in 3D and 2D, b) it is difficult to achieve a sufficient alignment between
velocity and magnetic field in three dimensions because of more degrees of free-
dom compared to the 2D case. The computed energy spectra indicate that the
investigated system is strongly anisotropic, and operates in a Kolmogorov-like
regime of MHD turbulence. This fact is given by numerical constraints since
in the performed simulation only moderate values of Rayleigh and Reynolds
numbers are achieved. By analyzing the spectral flux of magnetic energy and
entropy, it is verified that both quantities are transferred predominantly locally
in spectral space. The statistics of spatial increments of Elsässer fields suggest
that these fields are intermittent at small scales. The calculated level of in-
termittency is in good agreement with the modified She-Lévêque model that
successfully describes also the intermittency of isotropic MHD turbulence.

In the presented work, several others more specific issues are addressed:

• All nonlinear terms analyzed in the work transport energy predominantly
locally in spectral space. No nonlocal transport of energy between far-
distant Fourier modes in spectral space is detected. The validity of the
assumption of local transfer of energy is supported.

• The horizontal orientation of a mean temperature gradient does not af-
fect the nonlinear dynamics of turbulent convection significantly in the
sense that the Bolgiano-Obukhov picture remains unaffected. The gradi-
ent provides energy for velocity fluctuations predominantly at the largest
scales.

• The hypothesis about an extension of the Bolgiano-Obukhov scaling over
all scales in turbulent convection with a horizontal mean temperature
gradient ([LF92]) is not confirmed.

• A large impact of magnetic fields on the nonlinear dynamics of convection
is observed, especially in two dimensions.

• Regarding scaling contradictions between laboratory and numerical re-
sults in 3D hydrodynamic convection, it seems that the presence of the
inverse cascade of kinetic energy is not crucial for turbulent convection
to operate in the Bolgiano-Obukhov regime of turbulence. Indeed, the
buoyancy dominated regime is detected also in the investigated 2D mag-
netoconvective turbulence where due to the action of the Lorentz force the
energy is transferred from large to small scales. Furthermore, there is no
evident reason why the buoyancy term could not dominate the nonlinear
dynamics at very high Rayleigh numbers, irrespective of the orientation
of the kinetic energy cascade and the dimension of the system. However,
an additional computational effort is required to clarify this issue directly.

From all four configurations of turbulent convection investigated in the pre-
sented work, two-dimensional magnetoconvective turbulence turns out to be
the most interesting. This system is particularly attractive since it exhibits
quasi-oscillations between two turbulent regimes, so it represents a useful model
for a detailed study of the interplay between buoyancy and nonlinear forces in
convective turbulence. Additionally, the investigation of three-dimensional hy-
drodynamic convection is very important since this configuration can be ana-
lyzed not only by numerical simulations but in laboratory experiments as well.
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Consequently, the results can be directly compared. Therefore, further investi-
gations especially of two-dimensional magnetoconvection and three-dimensional
hydrodynamic convection are the most promising for the improvement of our
understanding of turbulent convection.
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[SV06] M. Schüssler and A. Vögler. Magnetoconvection in a Sunspot Um-
bra. Astrophys. J., 641:L73–L76, 2006.

[SX01] X.-D. Shang and K.-Q. Xia. Scaling of the velocity power spectra
in turbulent thermal convection. Phys. Rev. E, 64:065301, 2001.



130 BIBLIOGRAPHY

[TI00] S. Toh and M. Iima. Dynamical aspect of entropy transfer in free
convection turbulence. Phys. Rev. E, 61:2626–2639, 2000.

[TS94] S. Toh and E. Suzuki. Entropy cascade and energy inverse trans-
fer in two-dimensional convective turbulence. Phys. Rev. Lett.,
73:1501–1504, 1994.

[VC99] R. Verzicco and R. Camussi. Prandtl number effects in convective
turbulence. J. Fluid Mech., 383:55–73, 1999.

[VC03] R. Verzicco and R. Camussi. Numerical experiments on strongly
turbulent thermal convection in a slender cylindrical cell. J. Fluid

Mech., 477:19–49, 2003.

[VY99] A. P. Vincent and D. A. Yuen. Plumes and waves in two-
dimensional turbulent thermal convection. Phys. Rev. E, 60:2957–
2963, 1999.

[VY00] A. P. Vincent and D. A. Yuen. Transition to turbulent thermal
convection beyond Ra = 1010 detected in numerical simulations.
Phys. Rev. E, 61:5241–5246, 2000.

[War00] Z. Warhaft. Passive scalars in turbulent flows. Annu. Rev. Fluid

Mech., 32:203–240, 2000.

[Zel57] Ya. B. Zeldovich. The Magnetic Field in the Two-dimensional Mo-
tion of a Conducting Turbulent Liquid. Sov. Phys. JETP, 4:460–
462, 1957.

[ZW02] J. Zhang and X. L. Wu. Thermal convection in two-dimensional
soap films. In Sixth Microgravity Fluid Physics and Transport Phe-

nomena Conference: Exposition Topical Areas 1-6, vol. 2, pages
585–586, 2002.



Acknowledgments

I would like to thank Prof. Dr. S. Günter for supervising my thesis and for the
possibility to submit the thesis at the Technical University of Munich. Special
thanks to Dr. Wolf-Christian Müller for inviting me to Garching and for giving
me the opportunity to become a member of the Max-Planck Junior Research
Group ”Computational Studies of Turbulence in Magnetized Plasmas”. Thanks
to him for the exceptional long-term guidance, the invaluable everyday support
throughout my work and for answering my numerous questions. Also, I would
like to thank all other members of our group, particularly Dr. Yuriy Zaliznyak
for many useful discussions. I am deeply indebted to Dr. D. Biskamp for his
suggestions and illuminative answers. I would like to acknowledge the stimulat-
ing environment of the Garching Campus with all its institutes. Also, I express
my gratitude to the Max-Planck Society for opening the program of Junior Re-
search Groups through which I was financially supported during my work. Last
but not least, I would like to thank Prof. P. Kulhánek who motivated me to
study physics and showed me its beauty.

131


