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Kurzfassung

Die fortwahrende Tendenz hin zu immer kleiner werdenden Struktureispielsweise in der
Mikroelektronik oder in der Entwicklung miniaturisiertBauteile, stellt neue Herausforderun-
gen an die Modellbildung zur Beschreibung der Plagtizitin unterschiedlichsten Versuchen
wurde gezeigt, dass Strukturen auf gen-Skala ein Verformungsverhalten aufweisen, das sich
grundlegend von dem massiver Strukturen unterscheidet.

Eine ErkBrung fir dieses Panomen findet man wahrscheinlich in der Natur des wichtigste
der plastischen Verformung zugrunde liegenden Mecharssaem Gleiten von Versetzungen.
Die Modellierung dieserdngenskalen al@mgigen Verformung kann allerdings auf ganz unter-
schiedlichen Skalen erfolgen, welche von der Beschreibengingeordneten Atomstruktur bis
hin zu den Anatzen basierend auf Gradienten der plastischen Dehnuwiterei

Das versetzungsbasierte Kontinuumsmodell, welches Tiugesar Arbeit ist, strebt eine deter-
ministische, kontinuierliche Beschreibung déndgienskalen al@imgigen plastischen Verformung
auf der Mesoskala an. Dabei sollen die physikalischen &fagg, welche dieahgenskalen Ef-
fekte hervorrufen, béicksichtigt werden. Dies wird in erster Linie durch die EBalehung der
Eigenenergie der Versetzungen @dnleistet: Versetzungen, die in besihkten, sich plastisch
verformenden Kaalen gleiten, sind gezwungen sich auszubauchen, und tsagaufgrund ihrer
Linienspannung weniger stark zur plastischen Verformueg [Das Modell beschreibt nicht
das Gleiten einzelner Versetzungen, sondern einfachyeeitiersetzungsfelder. Lediglich eine
geringe Anzahl von Feldvariablen, wie etwa die skalare &zismgsdichte oder die Orientierung
der Versetzungen, bilden die Basis des Modellther die Theorie der Kristallplastizit kann

es die Rolle eines Konstitutivgesetzes in der Kontinuumsaei& (kleiner Verformungen) ein-
nehmen.

In den letzten Jahren wurde das versetzungsbasierte Konmtismodell erfolgreich auf eine
Reihe typischer Beispielproblemé&ngenskalen aféimgiger plastischer Verformung angewandt,
etwa die Biegung eines freien oder die einfache Scherung dingl. der Versetzungsbewe-
gung besclankten dinnen kristallinen Streifens. Doch bis heute konnten nighsoProbleme
behandelt werden, welche sich eindimensional formuliéassen.

Diese Arbeit hat zwei Schwerpunkte: zum Einen, eine roblmfgementierung dieses Mod-
ells fur zweidimensionale Probleme, welche sich im Rahmen desabérzerrungszustandes



beschreiben lassen, zu entwickeln, und zum Anderen einensdguelle f@ir Langenskalenef-
fekte in das Modell zu integrieren, dielBkspannung, welche die kurzreichweitigen Wechsel-
wirkungen zwischen Versetzungen beschreibt.

Die Modellgleichungen bilden ein System partieller Diéfietialgleichungen vom Typkonvek-
tionsdominiertes Konvektions-Diffusions Problem”. Digmnerische Umsetzung des gegé&miiv
gen Modells stellt daher eine grofRe Herausforderung dasudit man die numerischékung
des Systems auf die hénkmliche Weise, das heil3t basierend auf der Eulerschen &gsch
bung und symmetrischen Diskretisierungsverfahren, dertr8tabiliatsprobleme auf, welche
sich in stark oszillierendendsungskurveraul3ern. Daher wird eine spezielle Implementierung
gewahlt, welche auf einem einfachen, homogenen Finite Eleenietz fir den Teil der Konti-
nuumsmechanik sowie auf einem zweiten Gitter, das an die tHeslreter Gleitebenen gebunden
ist, basiert. Die Knoten des zweiten Gitters dg@ntieren die Segmente einer stellvertretenden
Versetzung der jeweiligen Gleitebene. lhre zeitliche Ecklung ist durch die Lagrangeschen
Modellgleichungen bestimmt, was eine kontinuierliche @&neilung der Segmente entsprechend
ihrer natirlichen Gleitrichtung mit sich bringt.

Was den zweiten Schwerpunkt angeht, so schlagen wir eingtidmalen Ausdruckdr die
Ruckspannung vor, welche sowohl zwischen Versetzungenrander selben wie auch zwis-
chen Versetzungen auf benachbarten Gleitebenen wirktst8li¢ eine Verallgemeinerung der
pile-up Spannung, welche oft mit dem Hall-Petch Effekt inbiedung gebracht wird, dar. Im
Gegensatz zu fiheren Vorsclédgen fir ein solches Modellifr die Rickspannung unterscheiden
wir zwischen der Rckspannung, welche zwischen den parallelen Versetzueiges einfach-
wertigen Feld wirkt, und der zwischen im Allgemeinen nichtadlelen Versetzungen aus ver-
schiedenen Feldern. Dies wird realisiert indem dié[€&r der Rckspannung in Abdingigkeit
von der relativen Orientierung der wechselwirkenden \tetsggen definiert wird.

Die Arbeit gliedert sich wie folgt. Im Anschlul3 an ein eirttzides Kapitel, welches einen
Uberblick tiber die Modellierung von Plastizit gibt, speziell der Plastizt auf derym-Skala
und damit derdngenskale@bhangigen Verformung, wird in Kapite? das klassische verset-
zungsbasierte Kontinuumsmodell vorgestellt. Die nunceesUmsetzung des Modells wird in
Kapitel 3 behandelt. Die grundlegenden Betrachtungen zuriiBining der Rckspannung in
Kapitel 4 werden in Kapiteb durch ein Anwendungsbeispiel des erweiterten Modellarerg
Der Anhang entélt eine Sammlung benutzter Symbole, eine &mfing in die gewhlte math-
ematische Notation, eine Zusammenstellung benutzteremattischer Zusammeahge, sowie
eine kurze Vorstellung der benutzen Software.



Abstract

The ongoing trend to smaller and smaller structures, fomgsa in micro-electronics or in the
engineering of miniaturised components, has posed neweaigals to the field of plasticity mod-
elling. In various experiments it has been shown, that &ires on thesm-scale exhibit a defor-
mation behaviour that is essentially different from thabolk structures.

An explanation for this phenomenon probably has to be sanghe fundamentals of plastic de-
formation, that is the motion of dislocations. However, mitidg of the size-dependent deforma-
tion can take place on very different length scales, ranffimg the individual disordered atoms
to the gradient of plastic strain approaches. The contindigiacation-based model, which is the
topic of this thesis, aims at a deterministic continuum dpson of the size-dependent plastic
deformation at the mesoscale, considering the physicatiptes that give rise to size-effects.
This is primarily realised by taking into account the diglbon self-force: dislocations that glide
in confined plastic channels have to bow out and thus, duestolihe tension, do less effectively
transport the plastic deformation. The model does not desthne glide of individual disloca-
tions, but the evolution of fields of dislocations. Only a §mamber of field variables, like the
scalar dislocation density or the dislocation orientgtiyppear in the model. Via the principles
of crystal plasticity the formulation takes over the roleagfonstitutive law in the framework of
(small-strain) continuum mechanics.

In the last years, the continuum dislocation-based modebkan successfully applied to a num-
ber of typical problems that exhibit size-dependent ptadéformation, like bending or con-
strained simple shear of a thin film. Up to now, only such peais that could be formulated in
a one-dimensional framework could be treated.

The focus of this thesis is twofold. First, the developmeha @obust implementation of the
model for two-dimensional plane strain problems is degdillhen, the extension of the model
by a second source of size-effects, namely the back stréssh @escribes the short-range inter-
action of dislocations, is introduced.

The numerical implementation of the present model poseg alallenge as it results in a sys-
tem of partial differential equations of convection-d#fon type with dominant convection. Ad-
dressing the numerical solution of the problem in the commvay, that is using the Eulerian
description and symmetric discretisation schemes, ysddere stability problems, resulting in



vi

oscillatory solution curves. Therefore a very special enpéntation was chosen, which is based
on a simple homogeneous Finite Element discretisatiorhfsmall-strain continuum mechan-
ics part and a second, slip plane based mesh. The nodes attigreclorrespond to segments of
representative dislocations residing in the respectipepdhnes. Their temporal development is
defined by the Lagrangian model equations, yielding a cantis redistribution of the segments
according to the direction of their ‘flow’.

Concerning the second objective of the thesis, a continuyressgion for the back stress that
acts both between the dislocations on one slip plane andighbwured slip planes is proposed.
It is a generalisation of the pile-up stress which is oftesoamted with the Hall-Petch effect. In
contrast to earlier propositions for such a back stress magedistinguish the back stress acting
between the parallel dislocations of one and the same sidled field and between disloca-
tions belonging to different fields, being in general nomafial. This is realised by defining the
strength of the back stress dependent on the intersectgla ahthe interacting dislocations.
The thesis is organised as follows. After an introductorgpthr, which gives a survey of the
modelling of plasticity, especially plasticity on the noscale including size-dependent defor-
mation, chapteR resumes the classical continuum dislocation-based matiel.numerical im-
plementation of the model is investigated in cha@erThe theoretical considerations on the
introduction of the back stress in chapteare supplemented by an application of the enhanced
model in chapteb. In addition to a collection of the symbols used, the appendintains the
mathematical notation, and some useful mathematicaloaktlt also gives a short introduction
to the used software.
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CHAPTER 1

Introduction

Understanding and describing the strength of crystalloliels has been a strong concern in the
scientific community for about 80 years. In the beginninghi$ period, the large discrepancy
between the measured strength of a crystalline materiattantheoretically predicted strength
posed a challenge to this field.

As a possible explanation, in 1934 for the first time the cphoé a dislocation, that is a line
defect within the crystal, was predicted based on thealetionsiderations. The existence of
dislocations was verified by Transmission Electron Micapscimages around 1950. Nowadays
it is beyond all question that dislocations carry the ptagéiformation in crystalline solidsLike
pushing a pleat along a carpet alleviates its displacerdestbcations allow for easy slipping of
crystal planes against each other.

1.1 The concept of dislocations

It is essential to understand how an arbitrary cugvin the crystal becomes a dislocation, and
how it is related to the plastic deformation of the solid. Bonplicity, assume a closed loop
described as a planar curye for technical details see secti@il Let the curve be part of a
crystal, which is considered as elastic continuum. Hebe a surface in the crystal which is
bordered bypy. This may be the planar area enclosed by the legp,or any other surface. Let
da be the normal to this surface, defined such thancircles it in the right-handed sense, figure
1.1 The curvep becomes a dislocation line by the following procedure: sgehe material to
be cut along4, and the face of the cut surface on the side of the negativaalata be displaced
by b with respect to the face of the positive normal. To preseneecontinuity of the crystal,
material of volumeb - da > 0 must be removed above the cut surface, and material volume
b - da < 0 must be added below it. The cut can now be rejoined everywiharalong the

10f course there are some more mechanisms allowing for tistiptieformation of crystalline solids, for exam-
ple twinning or grain boundary sliding. But within this tligsonly plasticity induced by dislocation glide, which is
still the most important mechanism, will be considered.

3
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Figure 1.1: Creation of a dislocation loop
enclosing the ared;,. The bordered surfacé
is displaced by the Burgers vectr

line . A dislocation with the Burgers vectdr has been created. The small tube around it is
called the dislocation core. At locations where the tangetite dislocation lin€ is parallel to

b, the dislocation is of pure screw type, where both directiare perpendicular it is pure edge.
In general, dislocations have a mixed edge-screw charadterh goes along with their innately
curved shape, see also the illustration in figiu2

z

Y

Figure 1.2: Shear of a perfect crystal to form a mixed dislocation (left); projectiommabto the glide
plane (right). The symbal indicates (the position of) an edge dislocation, $ (the position of) a screw
dislocation, respectively.

1.2 The classical modelling of plasticity

Even though the real (microscopic) mechanisms of (macpmegplastic deformation are rather
clear, the transition from the microscopic mechanisms t@eroscopic material model for plas-
tic behaviour generally poses a problem. The mesoscopiehuistussed in this thesis shows
one possibility how this transition can be performed. Hosvemost models that are currently
used to describe the plastic behaviour are phenomenolygiesed and macroscopic by nature,
see for instance Lippmand]|

Remark 1.1: There is no real consent on the actual magnitudes standing behind the terms micro-
scopic, mesoscopic and macroscopic scale. In this thesis, that is essentially residing on the mesoscopic

scale, we stick to the specification as follows:
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microscopic corresponds to the crystal lattice scale, where the consideration of single dislocations is

reasonable (~ 1 nm),

mesoscopic denotes a scale where the continuous description of dislocations and their densities makes

sense (~ 1 um),

macroscopic represents the mm-level, but will also be used in the context of a continuum mechanics

description of samples which are even smaller (~ mm).

For most plasticity applications to bulk materials, fortarsece metal forming processes, the phe-
nomenological continuum constitutive models have beegessful for many years. Adapted
yield criteria and a refined choice of internal variablesjohiroughly describe the microstruc-
tural or thermodynamic internal state of the material, éadhthe modelling even of complicated
material behaviours like cree][or shape memory effect8]. Elaborate techniques for the nu-
merical implementation have been developed to facilitalbe st and accurate simulations, see for
instance Simo & Hughed]. Typically, these models describe the material behaviound from
averaging over many grains, so that for example anisotmbpigh is related to the orientation of
the crystal lattice, cannot be simulated.

However, this is possible in the framework of the models Bagethe theory of crystal plasticity,
which reproduce the behaviour of polycrystalline matdratesolving the individual grain®].

The theory of crystal plasticity

Crystal plasticity provides an anisotropic continuum mddelthe behaviour of single crystals.
The plastic deformation is traced back to the slip systemsvioich the glide of dislocations
accounts for plastic slip, figuré.3. The respective glide planes are embedded in an elastic
continuum. Each slip system is characterised by the unmabn to its glide plane and the unit
slip directions. Assuming the small-strain framework, both quantitiescnmestant in space and
time.

\ 3
]

Figure 1.3: A typical slip system in a cubic crystal lattice. The normal to the slip plarand the unit
slip directions are indicated.
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The rate of the plastic distortigh®, cf. section2.3, is defined as:
,BP
ot

wheres4? = dv/0t is the rate of plastic slip. Considering several slip systahestotal plastic

flow LP? is the sum of the plastic distortion rates on the respeclipesgstems, labeled

Lp—27 sV @n®, (1.2)

_irson, (1.1)

Remark 1.2: In the original works on crystal plasticity by Asaro [6, 7], eq. (1.2) was introduced
phenomenologically from considerations of the plastic slip on slip planes. Based on the principles of
the continuum theory of moving dislocations, section 2.3.2, Sedldek [8] established a relation to the

continuum theory of dislocations, which substantiates the phenomenological approach.

The dislocation motion on the glide planes is driven by tispeetive resolved shear stress, given
as

70 = 50 . gp® (1.3)

whereo is the macroscopic stress tensor. In standard crystaligtgsnodels the amount of
plastic slip, respectively its rate, is determined by pmeenological constitutive relations, in-
cluding yield criteria, hardening laws etc. The continuusiatation-based model treated in this
thesis, presented in detail in chapgrrelates the plastic slip rate to the density and velocity of
continuously distributed curved dislocations by meanfief@rowan equatiori(4), cf. section
2.4.4

7P = bov. (1.4)

Today’s challenges

Today, a number of technical components are becoming snaaitk smaller, see for example
the wide spectrum of developments in the field of MEAVIBhis is continuously reviving the re-
search on the strength of materials at a small scale and oniatsd models. The description of
very small components is closely related to the descrigifanaterials with microstructure, see
also remarKk.3. In both cases the material behaviour can be cruciallymiffefrom that of bulk,
respectively homogeneous, material samples. To say itlghohe smaller the structure, the
stronger it becomes in the sense that it becomes more difftcoduse plastic deformation. One
observes this special behaviour for example in the defoomaif composites, where distances
between reinforcement particles are on time-scale, in loading of thin films on substrates, tor-
sion of thin wires, nanoindentation, or also when measuttiegfrictional resistance between
crystalline solids. ‘Thin’ here always means of the ordemaignitude ofum. Arzt [9] gives an
excellent overview of the various size effects.

2Micro-Electro-Mechanical Systems, that is the integrabbmechanical elements, sensors, actuators, and elec-
tronics on a common silicon substrate through microfatiooaechnology.
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Remark 1.3:  Actually, of course, every material has a microstructure. Relevant in the present context
is however only a microstructure that constricts the motion of dislocations, which again results in a
mesoscopically inhomogeneous distribution of the plastic deformation. Such a microstructure may
result from the grain distribution in the crystal, dislocation patterning or it may be related to the
phase morphology of the material. An example for a phase related microstructure are the lamellar
areas in pearlitic steels, made of hard and soft lamellae of several um thickness.

It is important to note that the ‘smaller is harder’ relation is valid only down to a length scale of
approximately 50 nm. This affects for example the class of ultra-fine grained materials®. Below a
critical grain size, grain boundary phenomena gain in importance, which may even soften the material
response.

Another likewise exception from the standard behaviour was observed in nanoindentation experiments.
A saturation of the dislocation density under extremely small indenters prevents the measured strength
from becoming arbitrarily high for decreasing indenter size [10].

Therefore the relation ‘smaller is harder - even smaller may be softer’ might be more appropriate.

In the next section, a rough classification of the size effecgiven. While the modelling can
be done phenomenologically, explanations for these sfteate to be sought on the dislocation
level, if not even below, on the atomistic scale. This fasegirise to numerous physically-
based models. Sectiolds3.1and1.3.2give a general survey of the most common modelling
approaches.

1.3 Plasticity on the ym-scale

The properties of samples pfn-extent or of materials with a microstructure are deteedihy
the interaction of two different length scales. The first,ahe so callec¢tharacteristic lengthis
the dimension correlated to the physical phenomenon iedoffor instance the dislocation spac-
ing or density). The second one is some microstructural dgma (for instance the thickness of
a thin film or the grain size), denoted as 8iee parametef9].

One can distinguish three main types of size effects

1. Size effects due to inherent gradients of plastic strain. ~ Size effects inum-scaled samples can
be observed when the deformation itself is inhomogenebus,ibvolving gradients of the plastic
strain. Examples of such deformations are the bending efdtanding crystalline strips, torsion
of wires or nanoindentation, figure4. The incompatible deformation requires the generation
of dislocations, the so callgdeometricallyNecessarislocations. It is generally accepted that
the GNDs can give rise to size effecid]. For a further discussion on GNDs see rem2ukand

the review article of Gao & Huand.p].

3that is materials with a uniform grain size of about 200-360and below
4 Distinction freely after a talk by E. van der Giessen at th€AWM Symposium on Plasticity at the micron scale,
Copenhagen 2006.
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Figure 1.4: Geometrically necessary dislocations in bending of a beam (left) and rmm@tion (right).
Bending: in the lower part, that is below the neutral line, there is too much nlatehiereas in the upper
part there is a lack of material. Dislocations form to compensate this incompatibiiyoiNdentation:

the simple theory of Nix & Gaol[3] assumes, that dislocation loops are injected only in the hemispherical
volume under the indenter to redistribute the squeezed material.

2. Size effects due to induced gradients of plastic strain. Even a homogeneous deformation
can induce gradients of the plastic strain, provided thimci#gion motion inside the material is
constrained by some mechanism. The constraint can be dusstactes, interfaces which are
impenetrable for dislocations (like passivation layerghe matrix/particle interfaces in some
composite structures) or grain boundaries. The disloeattauctures that develop are also re-
ferred to as GNDs1[1].

The Orowan mechanism is the best known example for a sizetdfésed on confinement and
line tension properties. Its original appearance is sktch figurel.5(a) a dislocation meet-
ing a couple of obstacles bows out between the obstacles halft@f a circular loop, which
requires a bowing stress, o« ub/d, the Orowan stress, wheyeis the shear modulus ardhe
magnitude of the Burgers vector. Hence the material’s streisgnversely proportional to the
size parameter, here the obstacle spadingut the Orowan mechanism can also be generalised
to any necessary bow out of dislocations, for example baivee impenetrable surfaces of a
passivated film or between reinforcement fibres in a compasdterial. The size effect that is
predicted by the model presented and implemented in the&rsof this thesis is based on this
mechanism.

A second common source of induced gradients is due to theatawmof dislocation pile-ups,
for example against grain boundaries. This effect is wetiviim as the basis of the Hall-Petch
relation for polycrystals, figur&.5(b) which predicts that the strength of a material is inversely
proportional to the square root of the grain size.

In the second part of this thesis, a corresponding mechanilioe introduced as an additional
source for size-dependence in the present continuum disbomcbased model by the concept of
the back stress.
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(a) Orowan mechanism (b) Hall-Petch mechanism

Figure 1.5: (a) Orowan mechanismp, « ub/d. (b) Hall-Petch mechanismip ~ % In %, ro lower
cut off radius~ b. Compare 9].

3. Size effects in absence of gradients of the plastic strain. There are experiments, where size
effects can be observed even though no gradients of plastin exist, see for example the com-
pression experiments on single crystalline, (submsized pillars, figurd.6. The size effects in
these cases are ascribed to starvation effddfs free surfaces of the sample act as an effective
sink for dislocations during plastic deformation. The desltions are likely to leave the small
samples before multiplication mechanisms can occur. Tée ¢d dislocations entails a higher
flow stress.

Continuum theories, see below, cannot be used to descrilbectgrthis kind of size effect.
However, only recently discrete dislocation dynamics $ations could successfully reproduce
the observed size effect§.

Figure 1.6: A microscopic pillar under pressure - Uchic
and co-workers observed a size effect in the response
of pillars of different diameter, even though no strain-
gradients can be present in this type of deformatiij.

The remainder of this chapter gives a survey of the most opalirrently followed modelling
approaches that account for size effects in the plastiaityhe i m-scale. The first group of
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discrete theories are able to reproduce the mechanisneglirted above. In contrast, for the
second group, the continuum approaches, these mechamem#e basis of the modelling.

1.3.1 Discrete theories

The term ‘discrete theories’ is used here as a generic tarallfihne models describingdividual
dislocations or even atoms and their mutual interactiotithAse models are mostly of academic
interest rather than in reach of a wide technical applicatidis is due to the high computational
effort and the severe size and time restrictions on the sitedlprocesses.

Discrete dislocation dynamics. . .

... with edge dislocations represented as points. A very fertile approach was proposed by van
der Giessen and Needleman in 1993][ It accounts for the glide of straight edge dislocations
piercing perpendicularly through the simulation plane #ngs being represented as point-like
objects. The driving force for the glide of these objectshis Peach-Koehler force, which is
supposed to be in equilibrium with a drag force and the Pegtress (lattice friction), thus pro-
viding an equation of motion for the dislocations. The Peokhler force itself is determined
based on the solution of a boundary value problem, that gesvihe strain and stress fields of
the considered individual dislocations. Note that the icoim part of the modelling is based on
the linear elasticity theoPywhich enables the usage of a superposition principle fostiation

of the boundary value problem. The idea is to make use of tbevRrsolutions in infinite space
and to superpose an ‘image’ solution to correct for the bamndonditions. The model accounts
also for annihilation and dislocation sources. The notiba constitutive law is not used.
Various applications of the approach have been presentibe ilast decade. Some of the latest
are the plastic flow in a composit&g, 19], crack modelling 0], size effects in thin filmsZ1,
22, constrained shearin@8], bending P4] and nanoindentatior2p]. Within these works, the
model has been compared with continuum theories regutadybelow. The size effect predicted
by this model is due to the formation of dislocation pile-@gminst impenetrable interfaces or
in an inhomogeneous stress field. Current efforts in the fietttern the introduction of line
tension effects.

... with dislocations represented as piecewise linear curves. In contrast to the model class de-
scribed in the previous paragraph, which is essentiallydwoeensional, discrete dislocation dy-
namics based on actual line defects, that is with individiiglbcations represented as piecewise
linear curves, is three-dimensional. The study of stramiéaing and pattern formation in this
framework was pioneered by Kubin et aR§. Typical simulations as presented @7-30] are
based on roughly0* dislocation segments. The most restrictive part of the risdlee computa-
tion of pair interactions: the involved computational gsass those for the consideration of the

Swhich is a reasonable assumption provided the dislocatiomis not considered
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applied stress or the line tension by far. In the last yeaesgtoup around Kubin/Devincre has
made an effort on the coupling of the three-dimensionabdaion simulations with a macro-
scopic continuum model. While the former is based on a lattiedement sizes of order several
times the magnitude of the Burgers vector, the discretisaifathe latter is much coarser - at
least by two orders of magnitude. Therefore, and in ordeet@g output of the dislocation sim-
ulation in terms of continuum variables such as the plast@rg a sophisticated homogenisation
technique has been developéd][ The resulting discrete continuum method (DCM) handles
the dislocation dynamics part as a constitutive model ferdbntinuum mechanics framework,
cf. section3.5.

In contrast to that, during the last five years scientistsasfous disciplines at the Lawrence
Livermore National Laboratory (California) made an effartthe development of a massively
parallel dislocation dynamics simulation code, named Di&#32]. Their intention is to allow
for the simulation of large dislocation population®{ to 10® segments) over quite large time
intervals (several seconds) and strain ranges (up to 3%ghwsinecessary to be representative of
bulk material. Today, the code runs on a supercomputer \ppincximately 130,000 processors.
A major cognition based on the ParaDiS simulations is theomamce of multijunctions, which
establish obstacles of very high strength, and contrilmutké total strength in the simulation.
Probably here no coupling with continuum mechanics will B&klished, as the solution of the
boundary value problem can hardly be accomplished.

Atomistic simulations

Atomistic simulations, also known as molecular dynamiesy provide an understanding of the
mechanisms on the atomic scale, that is how does a crack @lacalion nucleate, how are
twins built, what happens at grain boundaries, etc. Todayn@tic simulations are restricted to
about10® atoms, depending on the numerical approximation chosetéoatomic interactions,
which follow Newton’s equation of motion. The interactioorées are basically determined
by the Lennard-Jones pair potential. The largest probleprabably the constraint, that the
time step for the numerical procedure must be a factor 10sb@dller than the inverse Debye
frequency, that results it ~ 10~%s, thus requiringl0® time steps for the simulation of 1
ns. Therefore, thermally activated processes, which axe sl nature, cannot be a subject of
atomistic simulations. Note that in contrast to the Montel@€arethod, which stochastically
finds the thermodynamically relaxed state of a system of cubds, the molecular dynamics
approach is deterministic and restricted to short timeescahd dynamic situations, such as can
be found in fracture and plasticity.

The latest development deals with the coupling of atomsstrwlations with larger scale models
[33, 34]. These multi-scale approaches are supposed to enabléations on a feasible scale
including mechanical boundary value problems, where tbmtic part is restricted only to a
small process zone, for example the zone around a crack tip.
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1.3.2 Continuum theories
Generalised continua

Generalised continu&$, 36], also called continua with microstructure, are charaseerby hav-
ing more degrees of freedom than the classical continuurasd lhdditional degrees of freedom
can be employed to describe the microstructure of a material

The most familiar among the generalised continua are pigliab micromorphic medium due
to Mindlin and Eringen37, 38] and the Cosserat medium. The latter expands the classigal co
tinuum by additional rotational degrees of freedom. It wasgaloped by the brothers Cosserat
almost 100 years ag®9]. Recently it has been revisited by several authors to mquksgial
material classes like for example liquid crystals, granateedia, cellular solids or dislocated
crystals f10]. Actually, Cosserat media account for the influence of GNBshe hardening be-
haviour of metals. Therefore they provide another efficieay to model size effects in crystals,
see for instance the articles by Forest & $€dk [41, 42] as well as §3, 44].

Unfortunately, a connection between the values of the cheniatic lengths in generalised con-
tinua models and the actual material state is difficult talgsth {1].

An excellent review of generalised continuum crystal ptégtmodels can be found irdp).

Strain-gradient models

The geometrically necessary dislocations introducedearbtginning of sectiofi.3are the result
of gradients of the plastic sheatq]. One possible way to bring in size effects into the constitu
tive laws of plasticity is therefore to postulate, that tleedening depends on both plastic strain
and plastic strain-gradient. This is the foundation of thealled strain-gradient or second gra-
dient models, which are designed to account for the sizetsffeased on gradients of the plastic
strain. A phenomenological material length scale thatreriteese models determines the impact
the GNDs make: the smaller the length scale, the more impicttia strain-gradient effects be-
come.

A strain gradient theory with symmetric stress and basedhertlassical plasticity theories was
formulated by Aifantis§7]. The derivation of this model is not directly related to thislocation
density tensor or to the concept of GNDs, but is rather basea model of reaction-diffusion
type for the dislocation evolution. In its simplest formglstrain gradient plasticity theory in-
volves only one extra coefficient incorporating the effdath@ Laplacian of the effective shear
strain into the constitutive expression for the flow strégtantis further generalised the concept
to the gradient of internal variable approadi§]| see the review article by Foregtq]. Aifantis’
model is very well suited for addressing stability and defation patterning problemg).
However, most of the current theories rely on the fundameviek of Fleck et al. 50] who de-
veloped a strain-gradient-based constitutive law ineclgdaisymmetric stress formulation. This
approach can also be categorised in the group of generalsddthua, see below, as it corre-
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sponds to the couple stress theory which goes back to K&itgr [

Strain-gradient models are able to successfully descideeedfects, the finite width of shear
bands and also crack-tip plasticity. An open problem tog¢hesdels is the choice of internal
length scales and of higher order boundary conditions, kvbamnot be made based on a phys-
ical background. Rather, they are used as fitting parametershieve a good representation of
experimental results.

Currently there is a lot of research activity in the field obstrgradient theories. There are for
instance attempts to introduce anisotropic considersiiothe theory$2], to take into account
contributions of grain boundarie§J], or to enable the treatment of evolving interfaces between
plastic and elastic zones, which requires a special coraida of the inner boundary conditions,
for example by second order strain-gradie®4.

A field-model of crystal plasticity based on continuum dislocation mechanics

Acharya p5] proposed a phenomenological field model for the elaststp response of meso-
scopic single crystals based on the continuum mechaniantihtiously distributed dislocations.
The model, which has been further developed and generdbsduhite deformations$6, 57],
incorporates the elastic theory of dislocation distribng and internal stress exactly. Disloca-
tions are not described as lines or inherently consideresobye evolution law for the plastic
slip, but based on the dislocation density as field variahlsystem of partial differential equa-
tions is established that characterises the evolution acailibrium between the elastic stress
field related to the presence of dislocations and the strelssdue to the boundary conditions
imposed on the considered body. The clear mathematicaltsteuallows for a Finite Element
implementation of the model, which has been realised rgcEsg).

As the model goes down to the very basics that make up a diglacamamely the stress field
along the line of a defect in the lattice structure, seclidnit can be considered to be the model
for plasticity on the microscale which resides on the lowessible scale. But this high resolu-
tion also entails the problem that a transition of the moddhe macroscale is very difficult. At
the moment it is restricted to applications to individualdcations.

Statistical theories

Inspired by the statistical approach to dislocation dymamoriginally suggested by Bner (9],

a number of statistically based descriptions of dislocefields have been considered recently.
Using averaging procedures adopted from the statisticahar@cs of interacting many-particle
systems, Groma and co-workers developed a statisticaincaum description of the collective
behaviour of discrete straight parallel edge dislocat{@®s63]. The dislocations are restricted
to their slip planes, and pierce perpendicularly to the atmn plane. Since their trace is only a
point, it is reasonable to treat them as point-like partiead to apply the concepts of statistical
mechanics. Starting from the equation of motion for singddodations, the continuum model is
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derived by means of demanding statistical averaging, afidally given in terms of dislocation
correlation functions. This approach represents a cootiswounterpart to the two-dimensional
discrete dislocation dynamics of van der Giessen and Neeaiesectiorl.3.1 Absolute values
of the model parameters result from an averaging of hundrédsscrete dislocations simula-
tions. In one of the latest work$2], Groma et al. proposed to separate the statistical parts of
their model and make them collapse to a constant factoriegtére continuum part, which can
be determined once and for all by a large number of stochastialations. A future task is
to generalise the model to multiple slip arrangements.t Biteps in this direction were already
presented by Kratoclihet al. [64].

However, applying statistical methods turns out to be bynfare challenging for systems of
curved dislocations. In this case, Hochraings][defines a ‘statistical measure’ for e.g. the dis-
location density by its disability to give a complete piewf the described dislocation state in
the sense that some averaging entails a loss of informaéoessary to reconstruct the actually
connected dislocation lines.

El-Azab [66] presented one of the first concepts for the description ok curved disloca-
tions based on the methods of statistical mechanics. EmmKosevich’s idea published in the
70s [67], he introduced for each slip system a statistical measammely a distribution function
¢ in the phase space consisting of the actual location of theidered dislocation segment

its velocity v, and its orientatior®. With this approach El-Azab did pioneer work that inspires
researchers until today. But up to now, the problems that gogalvith the fact, that one has to
consider connected dislocation lines rather than a systamamnnected dislocation segments
have not been addressed, such that his approach did noteseitis of practical interest so far.
Based on an elaborate and rigorous mathematical framéwddchrainer and co-worker$?,

68, 69] very recently generalised Groma’s approach and proposgdtitical field theory for
curved dislocations. It is constructed by statistical nsed@oo, but yields a higher-order deter-
ministic density measure that allows for a reconstructibthe connected dislocation lines and
the definition of a meaningful velocity field. For details aadliscussion on this approach the
reader is referred to secti@b.

Continuum dislocation-based model

The continuum dislocation-based model was first introdune&edécek in [70]. Introducing
the line tension of dislocations, which makes a non-ndgjégcontribution to various size ef-
fects, and describing the behaviour of continuously disted dislocations by a small number of
field variables, the model aims at being both closer to plkytian the phenomenological ones
and computationally more efficient than the discrete apgres. A coupling of the dislocation-
based material model to the framework of continuum meclsasiaccomplished by means of

6Concepts from differential geometry and differential cds are extensively used, e.g. calculus on differen-
tiable manifolds, lifts (of curves), differential formsjicents, etc.
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the theory of crystal plasticity, sectidn2 This model is actually the first valuable approach that
rigorously considers the curved character of dislocatio@scontinuum way. Even though many
processes like nucleation, annihilation or climb are naitamed in the model yet, it is able to
explain various types of size effects by the mere consiaeraf the line tension, and thus based
on the Orowan mechanism, figutes(a) Up to now, the model has been mostly applied to prob-
lems that can be formulated in one dimension (1D).

Figure 1.7 shows typical results based on the continuum dislocatased model. A constant
resolved shear stress is presumed to act on a continuotibutisin of dislocations in their slip
plane. The individual dislocations are pinned at the boandathe considered intervahlong
the slip directionz. Such a situation is representative for example of the caingid glide of
dislocations in a thin strip with impenetrable interfacesra composite structure, where the
point where a dislocation meets a matrix/particle integfacts as such a boundary. The shape
of a representative dislocation ligg (=) of the considered field is shown in the left part of fig-
urel.7. The model correctly predicts that the dislocation bowsumder the effect of the shear
stress and takes a curved shape. This shape corresponésdigttibution of plastic slip. The
right part of the figure shows the orientatigrof the dislocation line, that is in this depiction the
angle enclosed by the-axis and the tangent to the curyg. The solid line corresponds to a
three times higher load compared to that applied for theathsblution. The situation changes
qualitatively when the load is further increased as therbtheing dislocation reaches the im-
penetrable boundaries. In the limit case one speaks of thieat’ bow-out or configuration. It
corresponds to a surface orientation|@f = =/2 ~ 1.57. Henceforth the dislocation cannot
bow out any stronger, but it will glide along the channel, agpng misfit dislocations at the
interfaces.

Py
9

- =~

T X

Figure 1.7: Typical qualitative results of the continuum dislocation-based model fonatrained geo-
metry and constant applied load. The left sketch shows the shape ofeseatative dislocation of the
considered field of dislocations. On the right side the correspondingtatien of the dislocation is
depicted. The solid line corresponds to a three times higher load compared &pfiied for the dashed
solution.

"The length of the interval corresponds to the size paraieerthe introduction to this section.
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1.4 Outline of the thesis

The two major purposes of this thesis are:

* the development of a robust numerical implementation @titntinuum dislocation-based
model, including the coupling with the Finite Element implentation for two-dimensional
mechanical problems that can be treated in the plane-$teairework,

 the enhancement of the model by an additional short-raingsessfield, the back stress.

The work is organised as follows: In chapg&ithe classical continuum dislocation-based model
is introduced. Staying close to the original publicatioh$Sed&Cek [8, 70], we first introduce
the description of single dislocations as parametric curvén equation of motion for single
dislocations based upon the effects of Peach-Koehler féneetension and viscous dissipation
is derived. As a motivation for the actual modelling basedimgle-valued dislocation fields,
the classical continuum theory of dislocations is discdsSéhen the Eulerian and Lagrangian
model equations for single-valued dislocation fields amévdd, and the coupling to continuum
mechanics is demonstrated. The chapter closes with a shousdion on the possible treatment
of multiple-valued dislocation fields by the present moeéijch is compared to the potentials
of the very recent approach of Hochrainer.

Chapter3 deals with the numerical implementation of the continuusiadiation-based model
for two-dimensional problems. The problems that were preBem the very beginning of a
numerical realisation of the model are reconsidered. hguwut that a convection-dominated
convection diffusion problem is faced which has to be tr@ateh special numerical techniques.
The chapter closes with a detailed presentation of the imghtation of the coupling of the
model to continuum mechanics in form of a Finite Element dodglane strain problems, and
an outlook to the intended coupling with a standard FE saoBwa

The second part of the thesis addresses the enhancemeset mbttel by an additional short-
range stress field, the back stress. This contribution adsdior the mutual interactions of
dislocations in more detail than the simple Taylor relation

Chapter4 gives a short theoretical introduction to the concept ofttaek stress, which can be
interpreted as a generalised pile-up stress. After rederiag two earlier approaches to the in-
tegration of this stress field into continuum models, we defive back stress as it will be used
in the continuum dislocation-based model and derive thenaimged equation of motion. In ad-
vance of earlier approaches, here a distinction for the Istredss acting between parallel and
non-parallel dislocations is made. The chapter is closed fwndamental investigation of the
enhanced model on the basis of a simple model problem.

The effect of the additional short-range stress field on &sellts of a previous application of
the classical model is studied in chapsetFor the reader’s convenience, the problem setting for
the standard application ‘shearing of a thin crystallimgsand the interpretation of the source-
shortening by the classical model are recapitulated. Fitla¢ influence of the new stress field
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on these results is investigated.

The thesis closes with a short resume and an outlook to ftéisies. The appendix contains a
list of the frequently used symbols in this thesis, a sumnudrynportant mathematical rela-
tions, some useful relations between the field variablegecithical notes on some of the used
software, namely ZeBuLoN, PVM and Fortran.



18

CHAPTER 1. Introduction




CHAPTER 2

Continuum dislocation-based plasticity

According to our present experience we
may trust in the fact, that nature is the
realisation of what is mathematically the
most simply imaginable.

Albert Einstein (1879-1955)

This chapter resumes the set up of the continuum dislocati@ed model introduced by Satkk

et al. in [70]. Itis the result of the coupling of a mesoscopic descriptd continuously dis-
tributed dislocations with the small strain continuum meaghs framework, which is established
by the principles of crystal plasticity.

The dislocation-related part of the model is, like every eltidg approach, due to some assump-
tions. Dislocations are supposed to be planar and bouncetoghde planes. The interaction
of dislocations on intersecting glide planes is accountedy means of the Taylor relation for
the yield stress, sectia®4.5 Dislocation generation and annihilation are not expliaihod-
elled, yet. Long range interactions are considered onliyecty by the coupling to continuum-
mechanics.

The short-range elastic fields, that are absent in the clssbntinuum theory of dislocations,
are decisive for the dislocation interactions that deteenthe size-dependent plastic response.
One of the most important interactions, especially whestpdy of small confined volumes is
considered, is the self force of curved dislocations. Itxglieitly reintroduced in the model by
means of the line-tension concept. This approach was piedédxy Kratochil and Saxlowa [71]

and has been further developed by %éek in the last years. The mutual interactions between
dislocations are not explicitly considered by the cladsivadel. These short-range interactions
come only with the standard Taylor relation for the yielakss.

This chapter is organised as follows. In the first sectioa giscription of individual dislocations
as parametric curves is set up. In secttbBan equation of motion for individual dislocations

19
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is derived. Starting with a short introduction to the elagtioperties of a dislocation, the forces
considered for a static equilibrium are introduced. ThétésPeach-Koehler force, related to the
energy of a dislocation in an applied stress fiéld;, and the dislocation self force, related to
the self energy of a dislocatioml’s, which is a consequence of its elastic energy. Assuming a
viscous dissipation energy related to the glide of dislocet 1V, finally the equation of motion
for individual dislocations can be established.

To motivate the modelling approach based on single-valugldation fields, sectiof.3 pro-
vides a short review of the classical continuum theory ofodations. Kbner’s dislocation
density tensor, the notion of (in-)compatible distortiomdahe fundamental field equation for
moving dislocations are presented. As the classical carmepides only information on the
average dislocation density, a different density measurequired to set up a meaningful model.
Therefore, in sectio@.4the notion of single-valued dislocation fields is introddicAll charac-
teristic quantities describing the dislocations beloggimthe considered field are unique func-
tions of position and time. This concept potentiates thesgmme model for the description of
continuously distributed dislocations. The section isebbwith a resume of its coupling to the
small-strain framework of continuum mechanics.

The last part of the chapter is devoted to the modelling oftipletvalued dislocation fields.
Their possible treatment by the present model is comparddet@otentials of the model re-
cently proposed by Zaiser and Hochraing,[68, 69, 72—74].

2.1 Description of a single curved dislocation

Staying close to the presentation 8{,[we introduce the description of individual dislocation
lines as parametric curves. This will be the basis for theifipation of fields of continuously
distributed dislocations in sectiéh4. For an introduction to the differential geometry of curves
the reader is referred to the textbook of do Carfrfg.[

Assume a planar dislocation line with Burgers vediot bs and unit tangen§, wheres is the
unit vector of the slip direction. Assuming the dislocatiemot purely screw, we define the unit
normal to the slip plan@ and the unit normal to the dislocation line* as

" sxE&
s x gl

Only small deformations are considered,ls8, n can be assumed constant in space and time.
A planar coordinate system in the glide plane is defined byttievectors

v=nx€& o n=£xXv. (2.1)

€, =8,€,=NnXS§. (2.2)

It can be completed to a three dimensional coordinate sylsyearthird unit vectoe, = n.

INote that the bold symbol for the unit normal to the dislocoatiine v is not related to the symbel for the
Poisson number.
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Let a dislocation line in the considered glide plane be ddfaeea parametric curve, that is for
every value of a parameterc [r;, r.] a point of the curve in the slip plane coordinate system is
defined by the mapping

Pz T

o= (7). @23)
py(r)

see figure2.1. From the mappingp, the unit tangent and normal to the dislocation line are

Y A

py(r)

Figure 2.1: A planar dislocation described as
parametric curve in the slip plane coordinate
system.

derived as

1 o (1) () — 1 —c,p’y(r)
&= '] (%(r)) o) '] <¢;(r) > ’ (2:4)

where the prime denotes the derivative with respect to thenpeter, here, and the absolute
value|¢'| represents the Euclidean norm:

@'l = \/@,* + @) (2.5)

The angley between Burgers vector resp. slip direction and the tangethiet dislocation line,
also denoted the orientation of the dislocation line, meets

/

/
siny = %, and cost = ’:0;’ ) (2.6)

Combining egs.Z.4) and @.6) alternative expressions for the unit tangent and nornesicamd:

cos v —sin )
= s UV = . 2.7
¢ (sinﬁ) ( cos v ) @7
The curvature of the planar curve.8) for an arbitrary parametrisation is defined as

o Oy — PyPa .
(94 + ¢, %)

(2.8)
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Natural parametrisation

A special choice for the parameter is the arc length of theidemed curves € [0, S|, which is
related to an arbitrary parameteby

st = [ 1¢(0)lds. 29

whereS = s(r.) is the total length of the curve. Agr) is continuous and strictly monotonic
increasing, there exists an inverse functidn). Consequently the respective differentials are
related according to

ds = |¢(r)| dr. (2.10)

The derivative of a curve given in arc length parametrisatig(s) /ds, has magnitude 1, so

de(s)
AP £. (2.112)
The local curvature is then given as
2
k(s) = ddLsgs) %fj) = r(s)v(s) (1** Frenet formula, 79)]) . (2.12)

2.2 The motion of dislocations

The motion of dislocations is the predominant source of flastg deformation of crystalline

materials. It is due to a disequilibrium of the forces that @c or between the dislocations.
In this section, only the forces as presented by &l [8, 70, 76] are considered, that is the
Peach-Koehler force in the glide plane and the dislocagdirfarce. Possibly, one may consider
the yield resistance in the sense of a third force, but adférdifrom the previous ones by its
passive character we concern it separately in se@tidrh The resulting equation of motion for
individual dislocations is based on the assumption of aouisaissipation accounting for the
dynamic equilibrium.

2.2.1 Static equilibrium of forces

Based on variational considerations on energies, we waniwéoagshort derivation of Peach-
Koehler and dislocation self forces. Both can be traced batkd elastic strain energy related
to a dislocation.

Elastic properties of a dislocation

Around a dislocation line, the crystal has undergone aiceataount of distortion, which entails
the presence of an extra strain energy in the dislocated. biddyg strain energy is composed of
an elastic part and of a part related to the dislocation cdore latter is not treated here, as it
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is not of importance in the mesoscale approach. The elastic df a mixed dislocation is the
superposition of the fields of its edge and screw parts. Falastically isotropic crystal the
elastic energy of a mixed dislocation results as,

_ K 1 LN
Wel = |:(b£)2+m|b><£|2:| In <r_0) =

4dr
pb?sin®9  pb? cos® ¥ R ub*(1 — v cos?99) R
- In(— )= In( — 2.13
[47r(1 —v) Ll " To 4(1 —v) " ro )’ (2.13)

see for instance the textbook of Hull & Bacon?[ chap. 4]. HereR is an outer cut off radius
(~ crystal size or dislocation spacing) angis the core radius~ b). Choosing realistic values
for the radii and introducing a constamt= 0.4... 1.0, an approximation of the elastic energy
results as

Wa = aub? . (2.14)

Dislocation in a stress field — the Peach-Koehler force

The Peach-Koehler force is the force acting on a dislocaliom to an applied stress fietd,
which actually interacts with its elastic strain field.

Consider a closed planar dislocation loop which borders tba 4;,, compare figurd.1L The
work spent by the applied stress when the dislocation idedda

WF:/ b-oday,. (2.15)
Ar

The argument can be understood as a farek;, brought onto an infinitesimal area element
times the amounk by which it is displaced.

Figure 2.2: Cut-out of a closed dislocation loop before (solid
line) and after (dashed) the displacementdyy. The area
incrementy’ x d¢p is indicated.

Consider now the virtual workl¥ done by the stress field when the dislocation is displaced in
its glide plane by an arbitrary, without loss of generalgrpendicular translationp, see figure
2.2 If every line elementlr of the loop is displaced, the argig changes by incremengs x d¢p

and the stress does the additional work

Te S
Wi — / b-[o( x 5p)] dr :/0 (b o) x €] - 5o ds. (2.16)
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The expressiolb - o) x & is the Peach-Koehler forc&§] per unit length.
In the case of a planar dislocation and planar displacemgnthe expression can be further
simplified yielding

Te G
OWg = / b-on (_‘P;;‘;%c + 90;5902;) dr = / (b-on)v-dpds, (2.17)
., 0

where we used eq.2(4) for v ande, = n. This expresses, that the Peach-Koehler force of
magnitudeb - on = br per unit length acts in the glide plane perpendicular to isedation
line, that is in directiornv. Here it was used that = s - on is the resolved shear stress in the
considered slip system, ed..B), andb = bs.

Dislocation self force — the line tension

The elastic strain energy® (13 results in a self energi’s carried by every dislocation. The
variation of self energy is defined as

S
SWs =6 < / Wal(e) dﬁ) : (2.18)

Applying the variational principle and assuming eitherseld dislocation loops or dislocations
which are pinned at = 0 ands = G, yields

& 2 2 -
51V :/ |:(Wel N d Wel) dcosﬁ&px N (Wel N d Wel) dsind 5@%] ds.  (2.19)
0

dv? ds dy? ds

For a detailed derivation see Satk [8, app. B]. The term in round brackets is usually abbre-
viated by7'(¥)) and is called line tension.
Static equilibrium of forces

For a dislocation in equilibrium, the virtual wofk1’ done by the stress fiel@(7) is compen-
sated by a variation in the self energ@l’s (2.19 caused by the virtual translatiogp:

SWe + 6Ws =0 (2.20)

A combination of egs.4.17) and @.19 yields the Euler-Lagrange equations of the variational
problem:

Wy dcosd

0 — (Wel+ dﬁzl) (zf —brsind, (2.21))
W\ dsind

0 — (Wel+ d?;l) S;l + b7 cosd. (2.21)

Using eq. 2.7) and the line tension, the system simplifies to

T(ﬁ)% +brv=0. (2.22)
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In view of the Frenet formula 12 this expression represents the equilibrium of Peach-koeh
and dislocation self forc&(v)« in perpendicular direction to the dislocation line:

(T(k+br)r =0. (2.23)

The dislocation self force is proportional to the curvataféhe dislocation line. This is intu-
itively clear, as a straight dislocation,= 0, minimises its elastic self energy. Fro213 we
derive the orientation dependent expression,

T(0) = %(1 —2v + 3vcos® ) In (r_]:) , (2.24)

which is frequently, also in this thesis, approximated /dhientation independent expression
T = ub®. (2.25)
The static equilibrium of forces in normal direction to thsldcation line,
Tk+br =0, (2.26)

can be used as a basis for a numerical scheme, that appregithatquasistationary or relaxed
state of a system, see secti®2.1

2.2.2 Equation of motion

A dislocation that is not in a relaxed state, that is for whikh equilibrium 2.23 does not
hold, tends to approach the equilibrium by glide. As theatiation moves, its parametrisation
becomes time dependent:

e =p(rt)= (Qf(r’ t)> : (2.27)

py(r,t)

The planar movement can, without loss of generality, berassito occur in normal direction to
the dislocation line. A movement in tangential directionuigbnot change the shape gfand
thus the character of the deformation. Therefore the viattdislocation velocityy meets
de
il wherev = |v|. (2.28)
Glide sets in as soon as the effective force exceeds théamsisbased on the yield stréss> 0,
which is assumed to be positive, for details see se&idrb

Tk + br| > b7 . (2.29)

Equation 2.29 corresponds to the yield condition in constitutive modetscontinuum plastic-
ity, see for exampleq]. Where ever the yield condition does not hold the dislocatioes not

2also denoted critical resolved shear stress, frictiorsstralip system hardness or mechanical threshold
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move, that isv = 0. For an advanced discussion on the physical meaning of tbecabeld
condition see remarR.1

The motion induced by the resolved force acting on a dislogatan be described on arbitrary
levels of abstraction. Quite a general dynamic theory olodations treats them as damped
vibrating strings, endowed with an effective mag8|[ This leads to a non-linear correlation
between the dislocation velocity and the effective stregsch however only needs to be con-
sidered for velocities close to the Rayleigh wave speed.

For the present considerations, a linearised relatiorfiisgnt. Therefore, we abide by Ghoniem
[80] who describes dislocation motion based on an associasedws dissipation. For an isother-
mal process, the variation of the Gibbs free energy due tuift®us dissipation is

&
W = —/ Bv - dpds. (2.30)
0

This is reasonable if one assumes an fcc crystal and neghéetactions of the dislocations with
localised obstacles. Then, the drag coefficient accountddotron and phonon drag. In general,
the drag coefficien3 depends o), which accounts for the anisotropy of the glide mobility:
screw segments are usually less mobile than edge segmeittsn Wis thesis,B is presumed
constant.

The principle of virtual work then provides the dynamic dduium of the energy variations:

SWr + 6Ws + 6Wg = 0. (2.31)

As the virtual displacemerdtp was allowed to be arbitrary, the local form of the equililoniof
forces in normal direction to the dislocation line resulis a

b(r—7)+ Tk if br+Tk>bT
Bv=1<0 if |br +Tr| <bF . (2.32)
b(r+7)+ Tk if br+Tk< —bf

where the yield condition2(29 was considered. Note that the yield stress always couwttera
the resolved shear stress.
The three cases of ed®.82 can also be written in the combined form

Bv=bsgn(r)(|7| —7)+ Tk if |br +Tk| > b7. (2.33)

For B = 0, that is in the case where no viscous drag force exists, hedmation corresponds to
the equilibrium of forces for the rate-independent lin2itA3, enhanced only by the yield stress.

Remark 2.1: At first glance, the yield condition (2.29 is absolutely perspicuous: a single dislocation
moves and deforms as well under an applied load 7 as under its own line tension. In this sense,
both forces are equal. But as the yield condition is used to describe the behaviour of a continuous
distribution of dislocations, see the following section, the equality of both forces may loose validity.

Imagine for example a straight dislocation in a thin crystalline strip, with its slip direction parallel to
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the strip normal. In bending, the resolved shear stress acting on the dislocation in the centre of the
strip is smaller than in the vicinity of its surface. So there might be a neutral zone around the neutral
plane of the strip, where the yield stress 7 cannot be overcome by the effective shear stress alone
(|7| < 7). In figure 2.3 two alternative conceptions of the response of dislocations to this loading case

are depicted.

Figure 2.3: lllustration of the possibly different behaviour of a single dislocation (laft) awo dislo-
cations (representative of a continuum of dislocations, right) in the reagtn in a bent thin crystalline
strip. Note that only the upper half of the bent strip is shown.

An isolated dislocation is not able to have a non-vanishing curvature at the surface of the strip and to
remain entirely straight in this neutral zone - it will bow out there under the effect of its line tension.
This argument has been applied to a continuum description of dislocations by Zaiser [73], too. But
one can also encounter, that in a group of dislocations, some of them positive, some of them negative,
dipoles may form and equilibrate the transition from the neutral zone to the region where the yield
condition is fulfilled (|7] > 7). In this way, the dislocations might arrive at remaining straight in the
neutral zone. This agrees with the notion of continuum models that would not allow for plastic strain
there, Sedlatek [81, 82]. The force required to sustain the sharp curvature at the transition point
between both zones would be raised by the high short-range stress in the dipole which is different
from the mean field stress resulting from the continuum description of dislocations, and thus not a

contradiction. Thus, in order to model such a situation, an alternative yield condition should be used:

IT| > 7. (2.34)

2.3 Classical continuum theory of dislocations

The description of the motion of single dislocations hasrgdahare in the set up of the con-
tinuum dislocation-based model. However, the transitma tontinuum description of several
dislocations is still lacking.

For almost 50 years, fields of dislocations have been desthly continuum theories. One of
the earliest approaches is due taKer B3], after whom is named the classical measure for a
continuous distribution of dislocations, &mer’s dislocation density tenser. We want to pro-
vide a better understanding for the issues that have metivhe actual method of single-valued
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dislocation fields that is used in the present continuum f@getion2.4. This section there-
fore provides a short excursion to the basic principles aad/hblacks of the classical continuum
theory of static and moving dislocations.

2.3.1 Kroner’s dislocation density tensor

Based on the description of single dislocations, that haa be@oughly discussed in the pre-
ceding sections, a first definition of &ner’s dislocation density tensor can be given.
Provided a distribution of individual dislocations, eaasdribed by its Burgers vectdf’ and
line direction¢”, the dislocation density tensor is defined as:

1 4 . .
o= S50 5 €0 ds® (2.35)

where ds”) (x) are the lengths of the individual dislocation segmentsdahapresent in a certain
volume elementAV positioned ate, for details see sectioB.1 As usual for second order
tensors, the matrix representationcofiepends on the chosen coordinate system.

The dislocation density tense@t and the scalar dislocation densitycommonly used in the
materials science,

1 .
0= Xy Z: ds'” , total length of dislocation lines per volume, (2.36)

are correlated if and only if there are dislocations of onte @rientationé and one Burgers
vectorbd in the considered volume, see also reniagk Then it is valid:

a=b of. (2.37)

A second definition otx is based upon the notion ¢h-)compatibility.

(In-)compatibility of elasto-plastic deformation

To give this definition, we need to introduce some elementh®imall-strain continuum me-
chanics, which will be required later in this thesis, too.

Consider a small volumAV := Az, Axe,Axs of a crystal. Letu(x) denote the displacement
field. The geometric situation of the deformed volume elem&nlescribed by the distortion
tensor3 = f3;; (i,7 = 1,2, 3). The distortion can be introduced both as

Bdx = du, (2.38)
which is generally valid, or as
B=Vu, (2.39)

which is true only in case of a compatible elasto-plastitodii®on. A compatible distortion is the
result of a deformation which transforms a compact bodyamtather compact, that is connected,
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body. Anincompatible distortion is the result of a deforimatvhich transforms a compact body
into a non-fitting collection of small elements (or just thieer way around). For a more detailed
explanation of (in-)compatibility the reader is referreckroner B4).

From the mathematical point of view, the distortion is cofiiga if it has a primitive, that is if
a continuous functiom exists such tha/u = 3. This is true if the integrability condition, see
for example 85], holds: a primitive for3 exists ifcurl 3 = 0.

The distortion3d is an asymmetric tensor, which, in the linear théppan be additively decom-
posed into a symmetric pattand an antisymmetric paci:

B=€e+w, Wheree—%(ﬂJrﬂT)—eT, w—%(ﬁ—ﬂT)——wT. (2.40)

€ is the tensor of material straiw, is the material rotation. For a general elasto-plastic tefo
tion within the small-strain framework, the distortion $en can be linearly decomposed into an
elastic and a plastic part,

B=p36"+p3". (2.41)
Each of the parts can again be decomposed into a strain anati@maensor,
/66 = €© + we’ /3p = €P + wP . (242)

The elastic strain tensef describes a change of the shape\df and the corresponding strain
of the lattice. The elastic rotation tensof describes a rigid rotation of the element whereby
the lattice structure, too, is rigidly rotated through theng angle. The plastic counterparts only
describe a straining/rotation of the material, while thiéida structure and orientation are not
affected by a purely plastic deformation, see ag8#.[

In the continuum theory of dislocations, one assumes thiertlien to be compatible, i.eurl 3 =

0, but this needs not hold for its elastic and plastic part w@msidered separately, i.e. in gen-
eral curl 3P # 0. Socurl 3% can be interpreted as a measure for the incompatibility of a
deformation.

From the physical viewpoint, an incompatible deformatisraounteracted by the formation of
(geometrically necessary) dislocations. It is up to thase dlefects to compensate the misfit
between incompatibly deformed small volume elements: iggds the incompatibility of a
deformation, the larger is the required number of disl@cegiin the material.

These two statements motivate the second definition for ifleaation density tensat which

we would like to speciff),

a = curl 3°. (2.43)

Sthat is equivalent to the theory of small strains
40One can also find the opposite sign convention, that is —curl 3° = curl 8°, e.g. in B4].
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As the total distortion3, also denoted material distortion, is supposed to be cabipatve find
from the identity B.3) and the linear decompositio2.41):

a= —curl g°. (2.44)

Equation 2.43), also known as thérst order (in-)compatibility lawis a fundamental field equa-
tion of the linear continuum theory of dislocations. It exgges, that a continuum can be in a
state of incompatible elastic distortion provided therestsxa tensor fieladx which guarantees
the compatibility of the material distortion. In this sengedbecomes clear, that defined like
that is a tensor describing in some sense the dislocatiositgen the material.

For the sake of completeness, let us finally discuss theramnti relation between the dislo-
cation density tensotx and Burgers vectob. In the standard theory of dislocations, see for
example Hirth & Lothe 86, the Burgers vector for a single dislocation is defined as

b= iﬁ di, (2.45)

where the line integral is to be taken in the right handedesenth respect to the tangent vector
& to the dislocation line. dl is an oriented element of the closed boundarpf an areaA

Figure 2.4: Considered scenario for the continuum definition of Burgers vector.

through which the dislocation is piercing, figu2ed, and3° is the elastic distortion caused by
the dislocation.

In the case of continuously distributed dislocations anajylying egs. £.43 and B8.10,), eq.
(2.4H transforms to

b—/Aada. (2.46)

Hereb is the resulting Burgers vector of all the (continuously ritisited) dislocations piercing
throughA. The differential representation of e@.46) is

db = ada, (2.47)

where db is the resulting Burgers vector of all the continuously distted dislocations piercing
through the infinitesimal areda.

From the definition otx in eq. .43 and the identity B.4) we find the fundamental equation
diva =0, (2.48)

which expresses the fact, that dislocations cannot endnittle crystal.
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Remark 2.2: The average over the actually present dislocations in a crystal, that is the content of
the dislocation density tensor «, is actually a measure for the geometrically necessary dislocations
(GNDs). This term was primarily used by Cottrell [87] to describe the dislocations which have to
exist due to mesoscopic gradients of the plastic deformation, section 1.3. The further development
of the concept of GNDs is often ascribed to Ashby, see [88]. It is generally accepted that the GNDs
can give rise to size effects [11]. The other population of dislocations in a crystal besides the GNDs
are the statistically stored dislocations (SSD): they are independent of the deformation state, that is
the microstructure, but are randomly introduced and distributed in the material. GNDs constitute
additional obstacles hampering the glide of the dislocations, thus yielding additional hardening. The
total scalar dislocation density is, in good approximation [88], the sum of both. In general, one cannot
decide whether an individual dislocation belongs to either the first or the second kind of dislocations.
Moreover, the definition of GNDs depends on the considered scale: in a sufficiently small-scaled
continuum theory of dislocations, that would even be able to resolve the inter-dislocation spacing, all
dislocations would be classified as geometrically necessary, and thus be represented by the dislocation

density tensor a.

2.3.2 Moving dislocations

Considering moving dislocations, we have to treat all thengefifields as functions of position
and time. As we are working in the framework of the geomelisidaear theory, an exchange of
the differentiation orderd/dx < 0/0t ) is no problem. The material distortion rate is defined
as gradient of the material velocity:

L = grad (%) = % : (2.49)

Continuity of the material deformation entails the cornelat
curl L =0. (2.50)

The linear decomposition into plastic and elastic partoisimfluenced by the time derivative,
thus

P e
L:LP+L6::%+68%. (2.51)

A density consideration of continuously distributed déslbons as in eq.2(43 is also possible

for moving dislocations. But for the dynamic case, it is nniat to define the material distortion

rate, as it should essentially depend on the dislocatiomomolMura [89-92] for example starts

his derivation with the time derivative of the definition edjon for the Burgers vectoR(46),
0b Ja
—_ [ = 2.52
ot /A ot 1% (2.52)

which determines the rate of change of the Burgers vectoitiggdirom the continuously dis-
tributed dislocations piercing through compare figur.4. This change is supposed to be due
to the dislocations flowing across the boundargf the considered area, figu2eb.
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Figure 2.5: A dislocation flowing
with velocity v across the boundary
C into the aread. It makes a contri-
bution to the total Burgers vector for
the areaA.

Considering a uniform dislocation population, that meahsassociated dislocations share a
common Burgers vector and line direction, Mura defines theeahplastic distortion as

oBP
A _ 2.
5 b® o€ xXv (2.53)
A number of elementary considerations and transformatyaid
ob
— = — / curl (b ® o€ x v)da, (2.54)
ot A

for details see Sedtek [8]. So the fundamental field equation of the linear continubeoty of
moving dislocations results as

p
88—? = —curl %ﬁt : (2.55)

2.3.3 The problem of averaging

As was demonstrated, the classical continuum theory obchgions is significantly based on
Kroners dislocation density tensor. But for the developmeatrobdel that describes the plastic
deformation at the:m-scale it is not a proper measure. Assume a voldmethat contains
two populations of dislocations of opposite sign, but ecpeallar density. Then, the total scalar
densityp will be just the sum of the densities of both groups, whiledtstocation density tensor
a will vanish, eq. 2.35. It is therefore important to be clear in one’s mind that engrala
does not describe the line directions and Burgers vectotea&al crystal dislocations, but only
of their average. Figur2.6 gives another exemplification of this fact.

For a continuum description of moving dislocations, a diatmn velocity tensor of the form
a ® v can be formally derived from Kmer’s dislocation density tensor. However such a tensor
would not be able to correctly provide the plastic slip rate average character afpropagates
into the dislocation velocity tensor. Imagine a volume etetcontaining the same number of
dislocations of Burgers vectdr oriented along and—£. For the considered volume element,
the dislocation velocity tensor vanishes, leading to askng plastic slip rate. In reality, the
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Figure 2.6: Consider a confined channel, infinitely extended idirection, on the mesoscale, see also
[7Q]. Left: circular dislocation loops, representative of the continuousilligton of loops that cause the
deformation. The calculated dislocation density tensor is the same as for liheatien distribution on
the right: representative straight edge dislocations aligned with-thés in pile-up configurations. They
constitute the ‘share’ of geometrically necessary dislocations of the diglno@nsemble on the left, see
remark2.2

Peach-Koehler forces acting on the two antiparallel datioo populations in a given stress field
point in opposite directions, such that a non-vanishing rsite results.

In the following section the concept of single-valued disition fields is introduced, which pro-
vides a basis for the continuum-dislocation based modelghret afflicted with these averaging
problems.

2.4 Single-valued dislocation fields

In contrast to a multiple-valued field, in a single-valuedidfief dislocations all field variables,
like for example the line directio§ or the orientation’, have a unique value at a positienat
time t. Such a population can for example be the result of the aperaf a single Frank-Read
source. It is assumed that in many cases of practical intanesl dislocation configuration can
be approximated by a superposition of sméatimgle-valued dislocation fields. As an example
consider again the field of dislocation loops expanding ihanael, figure2.6. It cannot be de-
scribed as a single-valued field: at positions where twodaotersect, there exist two different
orientations / line directions. However, this situatiom ¢@ split into two single-valued fields,
namely that of the lower half-loops, and that of the uppef-luaps. Such a separation will be
used in the applications presented later on, too.

In the following, all considerations are made in the extehslgo plane coordinate system intro-

SWith respect to the curve representation, secBidnat leasC? continuity of the mappingp is required.
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duced ineq.Z.2):
e, =8,€e,=nxSs,e,=n. (2.56)

Thus unit tangent and unit normal to the dislocation lineexgressed as

cos —sind
E=|sind|,v=| cos? | . (2.57)
0 0

Applying some standard mathematical conversions, a nuaibesry useful relations between
&, v andv can be found. They are collected in appendix

Equation .12 is an expression for the curvature of a single dislocatibitivis given in natural
parametrisation:

_d€
ds

RV

(2.58)

This is still valid for every dislocation in the consideredgie-valued dislocation field. Irg],
the fact that the line elemenils is an element in directiog was interpreted in the sense that in
the present contexd/ds=V,. Using egs. C.5,), (B.9) and C.4,), equation 2.58 can then be
transformed as follows:

kv = V€ = (grad§) - £ = (v ®@ grad )€ = v(grad v - §) = —vdivry, (2.59)
thus providing a direct equation for the curvature of thedfef dislocations:
k= —divr. (2.60)

The relationd/ds=V, is however not readily obvious, so we dedicate a few linetstelucida-
tion. For the gradient / divergence operations in the abquaons to make sense, the variables
to which they are applied have to be defined as functior{s af). As the considered variables
are defined along the dislocation curve ontyandy are not independent. Actually they must
be understood in the senée y)=(¢.(s), p,(s)). For an accordingly defined variable, say for
exampled (i, (s), ¢, (s)), we find in compliance with the concept of the total diffeiaht

@ 00 dp, OV dy,
ds  Oyp, ds Oy, ds

— VY £ =V, (2.61)

Considering fields of curves / dislocations, the relation= V¢ will be used.

Some of the presentations in this section are only true feraime-dimensional case, that is
where for example the shape of a representative disloceginibe described as a functipp(z)
depending on the slip direction coordinate only. The magpgincan then be defined as =

(, ¢y (7).
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2.4.1 An annotation to the physical meaning of Eulerian and Lagrangian description

In the following subsections, the evolution equations fistatation density and orientation of
the considered single-valued field will be derived. Two esgintations will be given, the Eulerian
and the Lagrangian description. In order to get a feelindheressential difference between both
approaches, a brief excursion on the physical meaning oEtherian and Lagrangian view is
prepended. It is important to note, that this distinctiotyaefers to the dislocation continuum.
In fact we are facing two continua: that of the material, vilhgalways described in the Eulerian
way, and that of the continuously distributed dislocatiofsemphasise this, sometimes the term
‘dislocation-Lagrangian’ is used, but it is to be understas equivalent to ‘Lagrangian’.

If one wants to describe the temporal evolution of a repradee dislocation line there are two
possible approaches, see also fige

»
>

xT

Figure 2.7: Eulerian and Lagrangian description of the evolution of a dislocation line ligiht gray area
is passed by the dislocation segment of initial dislocation dergiiy the time intervaldt, if considered
from the Eulerian point of view. The same segment considered the Lgigraway due to the bowing out
corresponds to a dislocation density, and passes the dark gray area in the time intedvalNote that
the vector related to the Eulerian incremént, spans the entire offset of the two curves.

Eulerian description ‘Sit down’ on a fixed positiorr, and watch in direction, how the part of
the dislocation line, which is in front of you, moves awag (ihowy, grows). Note that
due to the way dislocations move, namely always perperafitolthe dislocation line, we
still observe changing segments. In terms of the mapginge find

Y= (:L‘,gDy(ZE,t),O)T ) (2.62)
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and describe its evolution in terms of the Eulerian denesdi/0t:

dp [ o, \'
= (o, o ,o) . (2.63)

L agrangian description ‘Sit down’ on a segmenf of the dislocation ling imagine it as a
virtual particle, and watch where it goes. The direction ation is always perpendicular
to the dislocation line, and thus theposition of the segment in the coordinate system of
the slip system permanently changes and has to be trackedNdte that due to the bowing
out of the dislocation the considered segment also chatgéenigth. In the Lagrangian
description the position of a particl€ at timet is again given by the mapping, which
here results as:

P(X,1) = (@.(X, 1), 0, (X,1),0)" . (2.64)

The evolution of the dislocation segment is due to the vejaai the dislocation field at
its current positionz = ¢, which corresponds to the Lagrangian derivativedt of the
mappinge, respectively:

de (X, 1)

T v(xz,t) =v(x, t)v(x,t). (2.65)

A relation between both descriptions (Eulerian and Lageamgcan be established analytically
on the basis of differential calculus:

deoy _ oy OpydX | Oy,  Opydps
dt ot 0X dt ot Ox dt
— %— cos ¥ — tanv(—v sind) = v (2.66)
o1 = v COS n v sin =5 )

gradient to

py()

We can find the same relation graphically in view of fig@r@ where we interpret the vectors
representing the incremerdg,, etc. as vectors indicating the respective time derivatiyg,/ 0t
etc.:

d(pz v

d
ey _ doy = cos¥ + tan ¥ (v sindd) = gt

o~ ar Tty

(2.67)

2.4.2 Evolution of dislocation density and orientation - Eulerian description

Consider now a single-valued dislocation field, defined byresttig field o(x, t) and the orienta-
tion ¥(x, t) of a representative dislocation line. Combining e@s37) and .48 and using the

6X can be interpreted as the initial/referencposition of the considered particle.
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conservation of Burgers vector along dislocation lines, we @p with the solenoidality condi-
tion

divp :=divpef =0. (2.68)

It expresses that dislocations cannot begin or end witherctiistal, which is a necessary com-
patibility condition for all dislocation fields. Resolved @@mponent notation, this corresponds
to

J(ocos) N J(osin)

ox dy

Thus a coupling between the scalar dislocation denséiyd the dislocation orientatiahexists.
To find an evolution equation for the scalar dengitgnd the orientation#, we use the funda-
mental field equation for moving dislocatior3.%5. Combining it with eq. 2.37), Orowan’s
equation {.4) and the fundamental equation of crystal plasticityl], and using the constancy
of Burgers vector, it can be simplified to

—0. (2.69)

% + curl (ovm) = 0. (2.70)

This is an evolution equation for the ‘vectorial’ dislocatidensityp = o€. In view of identity
(B.5) and noting that is constant, i.ecurl n = 0, it can be further simplified to

0

a—f + grad (ov) x 1 = 0. 2.71)
On the component level this is a system of two equations ®etlolution of the scalar disloca-
tion densityo(x, t) and the orientation(x, t):

d(ocosd)  9(ov)
d(osind)  0O(ov)
o Oz’ (2.72)
which yields the evolution equations
0o _ 9(ov) . O(ov) _ I
%~ on sin v oy cost = =V, (ov) = bv,ﬁp , (2.73)
29 O(ov) dov) . . 1o
0% = as cos v + 9y sind = Ve(ov) = ngyp, (2.73)

where the last conversion is due to Orowan’s equatiod).( This shows, that the evolution
of the scalar dislocation density is determined by the dékig of the plastic slip rate in the
direction perpendicular to the dislocation lines, while #volution of the orientation depends on
the derivative of the plastic slip rate in tangential directto them. Identity B.6) provides the
relation

div (pv) = pvdive + grad (ov) - v, (2.74)
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which together with eq.2.60 enables one to recast the evolution equatii@d) in the form

of an Eulerian continuity equation

% + div (ov) = —ovk . (2.75)
The right hand side of this equation can be interpreted asrasderm for the dislocation density.
It is equal to zero for straight dislocations & 0). However, curved dislocations do not just
translate by moving, but they expand (or shrink) changimiy length so that the continuity of
the curved dislocation is guaranteed, i.e. the compattmbndition .68 is fulfilled. Together
with an initial valueg(x) = o(x,t = 0), the dislocation density is defined for all times

An explicit evolution equation for the orientatighcan be derived by eliminating the dependence
onpineq. 2.73). ldentity (B.6) applied to the continuity equatio2.68 provides

odivE +gradp-£=0 = vodiv€ + (grad (pv) — ogradv) - £ =0, (2.76)

where the product rule egB(7) was used. Thus we end up with the evolution equation for the
orientation in the form

?)_f =gradv-& —vdiv§. (2.77)

2.4.3 Evolution of dislocation density and orientation - Lagrangian description

In general, for a scalar field(x, ¢) the Lagrangian (total) time derivativé/d¢ is related to the
Eulerian (partial) time derivativg/dt through a (particle-) velocity.

da Oa

= ‘v, 2.7
Eriler +grada - v (2.78)
For a vector fieldu(x, t) the corresponding relation is
du Ou
—_— = — : 2.7
7 o + (grad w)v (2.79)

The Eulerian evolution equations for the scalar dislocatiensity 2.73,) and orientationZ.77)
thus find their Lagrangian counterpart in

d

d—? = —pgradv-v=—pV, v, (2.80)
dv

T gradv - & = Vev. (2.8%)

The Lagrangian form of the continuity equatidh {5 reads
do
dt

Equation 2.80,) represents the net rate of change of the scalar densitypdhbe tifference in the

velocity of dislocation segments flowing across the bouiedanf the considered volume element.

Since the velocity of a dislocation segment is perpendi¢ol¢ghe dislocation line direction, only

+ odive = —puk. (2.81)
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the boundaries parallel to dislocation lines make a coutiob, i.e. the derivative results in the
directionv.

Equation 2.80,) shows that the net rate of change of the local orientatiahsddcations gliding
with the velocity of magnitude depends on the gradient of the velocity magnitude along the
dislocation lines. It is the rate of rotation of an infinitesil dislocation segment of orientation
Y(x,t) caused by the difference of the velocities of its end points.

2.4.4 Formal determination of the plastic slip

One direction of the coupling of the description of singidtsed dislocation fields to continuum
mechanics is accomplished via the plastic slip figure2.8. In this paragraph the concept of
plastic slip is formally introduced.

Consider a dislocation segment of lendthio contained in the volum#&. In the time interval
dt, the segment shears off the a@a, (1" dg), see also figur@.7. This causes a shear strain
per volume equal to the magnitude of Burgers vector timeshbkared area per volume, that is
bdy, do. The differential shear of first order, corresponding toglastic slip rate that is caused
by the dislocations of a single valued dislocation field, bsamned from the integration over all
associated dislocation segments,

0P = by, / dg = bady, . (2.82)

In the presented framework, the plastic slip can thus beesged in terms of the set-off of a
representative dislocation from its initial configurafiofihis is given by the;-component of the
position vectoryp,(x,t). The plastic slip then results as

7P = boy, . (2.83)

As a consequence, the evolution equations for the plaghiasthe Eulerian and the Lagrangian
case result as

o o, W

o be ot chosﬂ ’ (2.84)
dy o dy,

i bo pral bov cos ) . (2.84)

Remark 2.3: For the simplifying assumptions which will be introduced in chapter 3, the Eulerian
evolution equation directly yields Orowan’s equation (1.4)
P 0

o0 = bcosﬁv = bov. (2.85)

Here o = p/ cos ¥ was used, which is true especially for initially straight dislocations, eq. (3.6).

’In the presented applications the straight line at positien0 is used as initial dislocation configuration.
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2.4.5 Closure of the system of equations and coupling to mechanics

The theory that has been presented in this section appleesitgle-valued dislocation field and
one slip system. The treatment of multiple-valued fieldsines some extra effort and will be
addressed in sectioh5. However, the consideration of several slip systems, eaghlpted
by a single-valued field, can be accomplished in a straightod way, cf. eq. 1.2). The
evolution of the scalar field8 ando® on each slip system, labeled hyis determined by the
respective dislocation velocity field. Provided a currgatesof a representative dislocation, from
which the curvature:) can be found according to ec.60), the velocity is determined by the
equation of motionZ.32. Remember that the resolved shear stress is given as atmwnjet
the macroscopic stress field according to eg3)( which results in general in a different value
7 for each of the considered slip systems. So the evolutiohefridividual fields has to be
calculated separately for each slip system.

In the calculation of the yield stressand the coupling to the continuum mechanics framework
is where the variables related to different slip systemseftne

The yield stress

According to the relation of Taylor-Hirsch-Bailey (in theltaving denoted Taylor relation), the
yield stress*(x, t) can in a first approximation be considered as being propwtio the square
root of the local dislocation density accumulated from Bl systems:

wherea = 0.3 + 0.1 is a constant factor. Note that together withlso7 is a nonhomogeneous
magnitude, i.e. a function of position and time, though imea@pplications of the present model
a constant reference yield stress = aub./o0 has been used in order to allow for an analytic
solution of the respective problems, cf. chagger

The Taylor relation is well established especially in theecaf forest hardening in fcc metals,
but also supposed to be valid for dipolar hardening (intevadetween dislocations of the same
slip system) in fcc crystals. It may lose validity for the madls where the lattice friction is
dominant, that is for instance in bcc metals or transitiop imetals 3]. In the classical model
the Taylor relation is the only source of short-range diatmn interactions. However we will
abate this simplification in the second part of this thegigpters4 and5.

Note that long-range dislocation interactions are incaajea through the coupling to continuum
mechanics, that is actually by the resolved shear stresaccounts both for the applied stress
and the stresses due to inhomogeneous plastic deformation.
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Coupling to mechanics in the small strain framework

In the small strain framework of elasto-plastic continuugcimanics, the deformation tensois
supposed to decompose into an elastic and a plastic part:

€=¢€"+¢€°. (2.87)
The elastic part is related to the macroscopic stress tens@ Hooke’s law,
o=Ce, (2.88)

whereC is the symmetric elastic stiffness tensor, in general afoonder tensor. A combination
of both relations and of the definition of the deformationeetson2.3.1results in

o =C((Vu) —€). (2.89)

This is a standard eigenstrain problem, where in the presesd the eigenstrai? is due to
the plastic strain of the material. Classical plasticity msdrovide the evolution of? based
on a constitutive lawd]. In the present model the constitutive law is replaced leyetolution
equations for the dislocation fields derived above. Theyidethe evolution of the plastic slip
~P on a number of distinct slip systems, which yields accordmeq. (.2):

&=L, = <Z Pl g) n@) 7 (2.90)

Symm

where(. .. )ymm denotes the symmetric part of a tensor, compare g0 The only input

required from the continuum mechanics part is the macrossiesso. It is determined from

the solution of the boundary value problethql,)-(2.91) for w which is by means of Hooke’s
law (2.89), that applies to eq2(91;), frequently phrased as

dive(x,t) = f(x,t) on Q, (2.91)
u(x,t) = g(x,t) on the Dirichlet boundary 0, , (2.9L)
V¥u(z,t) = h(x,t) on the Neumann boundaryoS2y . (2.9L)

V+ denotes the gradient in normal directioQy;, f is a given volume force, anglandh are
functions defining the prescribed boundary values of deggteent and distortion.

The complete model, that is the continuum theory of singlieted dislocation fields coupled
to continuum mechanics, is in the following denotectastinuum dislocation-based modef
plasticity on theum-scale. An organisation chart visualising the interdeleeacies and the points
of coupling is shown in figur@.8.
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initial and boundary conditions
for dislocation fields

( evolution equations for dislocation fields )

p(i)

eP o
small—strain continuum mechanics

(mechanical boundary conditions)

Figure 2.8: Organisation chart of the coupling between evolution equations for digdod#lds and the
small-strain continuum mechanics.

2.5 Multiple-valued dislocation fields

The preceding section described in detail the treatmenngfesvalued dislocation fields. This
is only a very special case, but nevertheless a reasonalnietpcstart the general numerical
implementation of the considered model, which is addregsadhapter3. However, already
some more general problems can be treated with the presemgéginentation, take for example
the multiple-valued dislocation ensemble shown in thepaft of figure2.6. In this section we
address the possible treatment of general multiple-vadistdcation fields by the present model.
The basic idea is to separate them into single-valued fi¢ldsthis separation, Seaflek et al.
[70] propose two possibilitiesi)to consider an initial configuration, where the separateambe
performed intuitively, and then to follow the single-vailigelds during evolution (special model
cases, but pragmatic and simple, see application&dn/l, 81, 82, 94)), or (ii) to separate them
in an automated way during computation (more general).

With regard to the treatment of multiple-valued fields a slsomparison to the latest approach
of Hochrainer et al. will be given.
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2.5.1 ... in the model of Sedla¢ek et al.

A concept how the presented modelling approach can be dpplimultiple-valued dislocation
fields has been discussed #0[. Basically, it has to be assumed, that the mixture of didlooa
segments of different orientations and curvatures in aidernsd volume element results from
the presence of a (finite) number of continuous single-whtlisiocation fields. In order to apply
the theory, these fields have to be separated, and indilydtetked in their time evolution. This
step may be accomplished by introducing a distribution fiency(x, ¥, x, t) that characterises
the dislocation content of a slip system in more detail ti@standard scalar dislocation density
o(x,t). The variablep(x, 9, k,t) de dv dx has the meaning of the total length of dislocation
lines on the considered slip system contained in the phaaees/olumedx dv dx at timet. The
scalar dislocation density of a slip system is then given as

o(x, 1) :/[9¢(m,ﬁ, K,t)dvdk . (2.92)

With the corresponding velocity distributianiz, 9, , t), the total plastic slip rate at positian
and timet results as

ﬁp(w,t)—//bgb(w,ﬁ,m,t)v(w,z?,m,t)d19df<;. (2.93)
Kk J U
The evolution equation2(73) and €.73) then formally read:
dg
bay = —Vulbov), (2.94)
09
bgzﬁa = Ve(bpv). (2.94)

It is important to note, that the gradients of the dislocatiensity and velocity distributions re-
quired here cannot be calculated using the standard pdeli'adatives%, a% in the phase space
for constant) andx. Instead, they have to be formed individually along the sppsed single-
valued dislocation fields, and thus at varying orientatiod aurvature. So it has to be deter-
mined, which density, orientation and curvature in the hieaurhood of a considered location
in the glide plane correspond to a specific single-valued.fiel

The first possibility for the separation as mentioned in tlieoduction to sectio.5exploits for
example symmetry properties of the considered field. It wadied to model the field of ex-
panding loops in a channel, figu2eG, which can be clearly separated into the two single-valued
fields of the upper and lower half-loops, that behave synioaly. Method (i), that is the au-
tomated separation into single-valued fields, can be aclisimeol considering the support of the
distribution functionp

supp ¢ = {(x, ¥, ,1) : ¢(x, ¥, K, 1) # 0} . (2.95)
The supports of individual single-valued fields, each suplpeing a three-dimensional volume

in the five-dimensional phase space, in most cases sepewatpare also figur2.9. By a map-
ping back to the physical space, one can determine whicheisdirect neighbourhood of a
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dislocation segment for calculating the gradients, seeabdéor an illustrative example, the
reader is referred torp.

As long as we presume that each dislocation configuratiorbearonsidered as a superposition
of single-valued dislocation fields, the presented treatmeovides a deterministic continuum
model on the physical spate

The concept of single-valued dislocation fields is not welblacable to statistical dislocation
distributions, where the individual dislocations formlyullisorganised structures. However, this
is a problem that any deterministic approach based on thincom theory of dislocations has
to face.

2.5.2 ... in the model of Hochrainer et al.

To set up an alternative approach to describe multipleeghfields of curved dislocations, Hoch-
rainer, Zaiser and co-workers very recently tackled theegadisation of Groma’s statistical the-
ory for straight edge dislocations to fields of curved dialtans. The correct treatment and
averaging of curved dislocation lines in three dimensi@ugiires elaborate mathematical con-
cepts like differential forms and currents, which are pnése in detail in 68, 74]. The resulting
statistical theory is embedded in a five-dimensional phpaesesand essentially based on a higher
order, deterministic dislocation density tensor.

The details of this very general formulation cannot be presghere. Rather attention is given to
the dislocation density measure introduced by Hochraihal. gts advantages and deficiencies.
The resulting kinematic evolution equations in the casdrgjls glide are opposed to those of
the present model of Seidlek.

As starting point for their approach, Hochrainer et al. stigated a statistical density measure
¢(x, ) similar to EI-Azab’s one §6, 95], which is built on the phase space of positions and
orientation8. It was shown §9], that its application can end up in a description of distmsa
populations of different curvature by one and the same tlerfss a consequence, any evolution
equation built on such a statistical measure cannot acdounihe change in total dislocation
line length due to expansion or shrinkage of dislocatiop$avhich is based on the curvature
[65]. In [72] they show furthermore, that another enlargement of thes@lspace by higher
order contributions, for example the curvatupe~ ¢(x, 0, k), could describe the evolution of
a dislocation configuration only if the dislocations werstrieted to conservative motion, and
if the velocity of a dislocation segment depended only ongih&tial point and not on the line
direction or curvature of the segment. These are sevengctasts, which still hold for even
higher order statistical measures.

Therefore the authors elaborated a statistical theorydo@sa higher ordedeterministiadensity

8 Note that the introduced phase space is only a tool for thara@pn of single-valued fields, not fundamental
for the actual model.

9Note that Hochrainer et al. build their theory in the thremelisional physical space, thus having not a single
angle, but two angles combined to the vectorial varidbl® define a direction/orientation of a dislocation segment
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measure§5, 68, 73]. The introduced density measure lives again on the cordigur space
formed by positions and directiongg, 8) € R? x S? =: SM. HereS? is the unit sphere that can
be represented by two angles. But additionally the desonif the dislocation lines is lifted to
the higher dimensional spacg/. The lift p of a dislocation line given as parametrised curve
p(s), compare2.l, is defined via its unit tangent vector figjd as

p:[0,6] — SM, (2.96)
s — (p(s),¢(s)).

T T

Figure 2.9: Left: Visualisation of the lift (solid, blue line) of a planar curve in thg-plane (dashed,
black line). Right: The lifts of two curves intersecting in the plane can belgldatinguished.

The lifts of curves which cross one spatial poinffif, but in different directions, can be clearly
distinguished, because they pass different pointSin'®, see figure2.9 for a visualisation in
the planar caseS(M/ = R? x S%). It is pointed out to the fact that the practical use of tifis |
namely to distinguish dislocation fields passing one spptiant, is equivalent to the separation
approach of Sedtek based on the support of the distribution function in thase space.

The generalisation of the tangent to the planar curve to getatrof its lift is given ag’(s) =
(¢'(s), 4" (s)). Note that its second component is the curvature veetes xv of the curve.
The vector fieldC representing the tangent to the considered dislocatioa ifieb' M/ therefore
corresponds to

L(x,0)=(£(0), k(. 0)), (2.97)

where by constructio§ | . From the resulting higher-order deterministic dislocatdensity
tensor the plastic distortion and other generalised melatof the continuum theory of disloca-
tions can be recovered.

ONote thatp can be interpreted as an elementS¥f/ because a unit vector iR* can be represented by two
angles, that is an element 6f.
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Remember that for the closeness of $€ek’s model all dislocation fields had to be separable
into single-valued fields, which have a unique orientatioevery spatial point. Hochrainer’s
model can now weaken this restriction: in every pointSih/, only a unique curvature of the
dislocations has to be presumed (or, as Hochrainer foresigd]: ‘dislocations with nearly the
same direction and orientation, that is those passing the salume element i§ M, must have
the same curvature’). Still itis a restriction that realagsition configurations in non-equilibrium
states will hardly ever fulfil. But if in this case some curvataveraging has to be performed,
the result is still a meaningful quantity compared to an agerof directions, see the introduction
to this chapter and figur.6. while knowledge of the correct line-direction of the calesied
dislocations is indispensable for a meaningful definitiba welocity field, it may be tolerable to
replace the actual curvature by the averaged 68k [

For a comparison to the model of Satkk, Hochrainer et al. formulate their model for dislo-
cations that are confined to their glide plané4]] which renders the configuration spage/ a
three-dimensional one, see figl®:

SM =R? x S' =R? x [0, 2], (x,0) = (z,y,0). (2.98)

This assumption provides evolution equations for the tdislbcation density measutgx, 0)
and the curvature,

% = —Div(¢-v)+ dvk, (2.99)
oK 2
% L£(L(v)) —v(k) —vK®, (2.99)

whereDiv is the divergence operator ¢h\/, v is a generalised velocity field,is the ordinary
signed scalar velocity taking effect perpendicular to tistodation line, andZ(-) stands for the
action of a vector field on a vector in the sense of a directidaavative [65]. Formally, that is
discounting the different underlying configuration spamed sign conventions and identifyig
with o, we find an equivalence of equatior’isq9 ) and .79, that was

do

ot
In both equations the curvature term accounts for the isereatotal length of dislocation lines.
But while in Sed&tek’s model the curvature is derived from the orientatioa thugeometrical
relations, eq. Z.60, and the evolution of the orientation is described, e@s74 and @.80,),
Hochrainer completes the kinematic evolution equationghigyevolution equation fok, eq.

(2.99).

= —div (pv) — pvk.

Remark 2.4: In [8], Sedlatek for completeness also provides an evolution equation for the curvature:

0 0 09 09

= V%v —wvgrads - v —v(V,09)%. (2.100)



2.5. Multiple-valued dislocation fields 47

The first two contributions to the curvature evolution are formally equivalent to those of Hochrainer,
eq. (2.99), but the last is not.

In Sedld&ek’s notation, the third term in eq. (2.99) corresponds to U(Vgﬁ)Q. Hochrainer gives a
correct and very intuitive interpretation for this term: it provides the change of curvature as found for
a circular loop of radius » = 1/k which expands (or shrinks) with velocity v. A direct confrontation
of the derivations of both equations, (2.99) and (2.100, is not possible, as they result from very
different considerations. So we take another look at the calculation SedlaZek presented in [8].

For the moment let us consider an isolated dislocation, described as parametrised curve, and not a
field of dislocations as was presumed in eq. (2.100.

To get the correct Lagrangian temporal derivative with consideration of the elongation of the curve,
we have to consider arbitrary time-independent parametrisation. In accordance with the present
simplifications we may for example use the slip direction coordinate x as parameter. Obviously correct

is the relation

d d¢ d
/i—d—s, as due to Frenet m/.—d—g—l/d—s.

Using the relation between arc length and actual parameter z,
0
ds = “p’ dz =: |¢'| dz, (2.101)
ox

this can be expressed as
19/
K=,
']
where here and in the remainder of this remark the prime denotes the derivative with respect to x as

curve parameter. The total (or Lagrangian) time derivative of « results as

e d [ 1d, . ., 1 ,d,,
de _ d _ LAy ). 2.102
e dt (!cp’\) '] dt (#) =9 \‘P’\?’w @ ?) (2.102)

The parameter x is independent of ¢, thus we can exchange the order of differentiation. From eq.

(2.695 we get the Lagrangian derivative of ¢, namely d¢/dt = vv. Further we apply the relations

o =€ ¥ = Pk, VvV = —|¢'|kE, d¥/dt = dv/ds and the bilinearity of the scalar product.
Thus the last equation simplifies to
dr 1 [(dv) p 1 (dv’ 9
B (i B — = (= ) 2.103
0 = () o = g () o (2109

Applying the relations stated in egs. (2.10]) and (2.61), this is equivalent to

d
£ — Vv + vk, (2.104)

The corresponding Eulerian evolution equation according to eq. (2.78 reads

‘Z’t’" = Viv — Vi + vk = Vv — vV, Ved + vk? | (2.105)

where again k = V¢ was used. This now coincides with Hochrainer's evolution equation (2.99).

Actually, the description of ¢ as parametrised curve is not available in applications of our model.
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Therefore we would like to understand how the evolution of k can be derived from the definition
k = Vgl As was already marked in the paragraph right before eq. (2.61), the gradient in this
formula has to be understood as a gradient on the curve, thus with respect to the coordinates

(pz(s,t),py(s,t)). Therefore we find due to the rules of the total derivative:

% (Vel) = % [cosz? aa;i + sinv ;Zj (2.106)
0 g a0 g o () om0 (o) -
=V, % + cos v (gt 88;1 + SZZ dgf + 8(2;2(;9% dgf)
+ sin® <§t§;9y + agii;i% diz gz;/ dﬁ) = ((2.804,2.65))
=V, 9 Vev+ Ve @ﬁ) + v <cos19$1n'l9 { g;g g;g} + [cos® 9 — sin? V] 822(;9%) = ((2.77)
=V, 0Vev+ Ve (Vev —wdivE) +v ( . ) = ((C.4))
= Vﬁgv—l—VZv—V@\V/yﬂ—vVgV,,ﬁ+v<...) =
= Vzv — VeVl 4+ v ( .. ) = (see the following calculation on the 2nd term)
= Vv + vk
VeV, 0 = (2.107)
= cosﬁaix (— sinz?;;; + cos 1988:;/) + sin ﬁaiy <— Sinﬁﬁagi + cos ﬁéiz/)
= cos ¥ (—smﬁg%) cos v (88;9$>2+COS1989;?;§%J si 19(;9;1 ;jy)
2 2 2
i (im0 ot 20 oo 7 o () -
- <cosﬂsin19 [— g;g + gig] + [cos® ¥ — sin® 9] 822;9%) -
— [cos219<§;9m>2+200$79$in19§;i88;9y ﬂ(;ﬁy) ] =

= () — [Cowaagi +sm19§ZJ = <) — (Ve)?

Hence it is found, that Sedldek’s derivation of the curvature evolution presented in [8] was not
correct. However, this now corrected result coincides with Hochrainer's evolution equations, revealing

conformity of both models.
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As a theoretical concept, we really appreciate Hochranmodel and recognise a number of
benefits. But concerning its applicability, that is its nuic@rimplementation, some fundamental
difficulties arise ¥3]. The dislocation line orientation is considered as an jiatelent variable
(in the model which is the topic of this thesis, only the dif@ts of the physical space are
the independent variables!). So to resolve this furtherele@f freedom, a large number of
dislocation fieldsy(x, 8) are required, which increases the numerical costs draatlgtioA
retrenchment of degrees of freedom is sought by a limitabamn edge-screw type model. For
details on this very interesting approach, the reader esmed to [/3].

Moreover, the general choice of reasonable boundary dondifor the dislocation curvature
remains unclear.
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CHAPTER 3

Numerical treatment

| have not failed. I've just found 10000
ways that won't work.

Thomas Alva Edison (1847-1931)

This chapter aims at giving insight into the numerical inmpéatation of the continuum dislo-
cation-based model for special two-dimensional applbeeti The problem class that can be
treated with the realised implementation is described @nfitst section. Then difficulties we
have faced during the development of first numerical scheaneseconsidered and analysed,
yielding a deep understanding of the model equations andldesimplementation approach.
The technical details of the two-dimensional dislocati@grangian method are presented. The
chapter closes with a brief introduction into the plannedpdimg to the Finite Element software
ZeBuLoN, which unfortunately could not be completed yet duesame impediments in the
progress of our cooperation with partners in Paris.

3.1 Simplifying assumptions

The scope for the examples and applications presenteddrsétiond part of the thesis is as
follows.

Only such mechanical loading conditions that can be trestexdplane strain framework are
considered, that implies;,, €5, ande;; equal zero, whilers; adjusts itself to fulfil balance and
to accomplishe5; = 0. Voigt notation will be used, that is vector notation for fteemaining
components of the tenso¢$Sando, see sectio.4.5 Hooke’s law is then phrased as

o11 1—v v 0 €94
21
oy =Cyve, & on | =15, v 1—v 0 € | - (3.1)
012 0 17;” 26?2

51
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As to the dislocation part of the model, we want to considdy atip systems for which the

slip directions lies in the globalz;-z, plane, and the/-direction coincides with the negative
x3-direction. Such slip systems can be characterised by thie arenclosed by the slip direction
s and ther,-direction, figure3.1, which then yields the correlations

e, = s=singe; +cospesy, (3.2)
e, = NxXs=—e;s, (3.2)
e, = m=—cospe; +singe;. (3.%)

The tangent and normal directions to the dislocation therbesexpressed in terms of the global
coordinate system:

= coste, +sinde, = cos(singpe; + cospes) —sindes, (3.3)
v = —sinde, +cosve, = —sind(sinpe; + cospey) + cosve;s. (3.3)

nxs ° €\
\/\ ‘ Py
o H i
T1 w s cos ¢ s

V

nxs s

Figure 3.1: Sketch of a possible application of the present model: a single-slip systewoims&ained
strip is drawn in the left part of the figure and is zoomed-in in the right pagty#riables describing the
dislocation field are explained in the textis the slip directiony the normal to the glide plane, and it is
valid n x s = —e3. Note that any number of slip systems can be considered, provided randdifan in
thex-x5 plane results. The slip systems are identified by the apgleclosed by the slip directianand
the zo-direction.

As an initial configuration a density of straight dislocations, represented by a straight désloc
tion positioned at the reference positign= 0, with £ = s is assumed. Moreover we presume
homogeneity of the deformation iy z3-direction, such that all field quantities become functions
of z and timet only. In this case the curvature, eq.§0), is directly related to the orientation by

J(sin¥(z,t))
Ox '
The remaining initial conditions can be phrased as:

k(x,t) =

(3.4)

YP(z,0) =0, 9(x,0)=0. (3.5)
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The dislocation density is assumed to change only due to the bowing of the existirigadis
tions. A possible production of new dislocations is not acded for. The current, local density
o(z,t) is related to the constant initial densiyof straight dislocations) by the local dislocation
orientation:

Y
o(z,t) = pETEE (3.6)

The resulting density fulfils the compatibility conditio2.68) in the form
(o cosv)
ox
One does not necessarily have to follow the evolution eqodbr o(z,¢), but can calculate
directly from the evolved orientation according t8.6), see also the recent review article of
SedEcek et al. P6]. The resulting evolution equations, that will be actualsed, and the equa-
tion of motion .32 are summarised in tab81 Here the evolution of® was specified instead
of that of p,, cf. eqgs. R.84) and @.84,). Note that this set of equations has to be completed
by suitable boundary conditions, e:g= 0 on impenetrable interfaces like passivation layers or
matrix/inclusion boundaries, a@f = 0 on free surfaces. The boundary conditibr- 0 roughly
accounts for the effect of image forces.

0. (3.7)

Lagrangian Eulerian |
dftx = —vsind
%:bévcosﬁ %zb@uzbév/cosﬁ
% = cos v’ % = cos v’ — v(cos¥)’

Table 3.1: Comparison of the Lagrangian and Eulerian model equations in slip plandicates, i.e. the
prime denote®)/0z. Each equation system has to be completed by suitable initial and boundhaty co
tions, the correct yield condition, and the equations definingandx: v = [sgn(7)(|7| — 7)b+ Tk] /B,
T=s-on,ands = J(sin?v)/0x.

In the case of the Lagrangian description, a third initialdidon is required in addition to those
in eq. B.5), namely that forp,. Remember, thap,. (X, ¢) is the function, that maps a dislocation
segmentX to itsz-coordinate at timeé. From the numerical point of viewy are discrete nodes,
that carry the information of the field quantities, and thatlabelled by their position at= 0.
Thusp,(X,0) is an array of initial positions of the nodes, that are supdds represent the
segments of a representative dislocation. For the Lagaandgscription it is therefore actually
more correct to formulate the initial condition for a set @fldcation segmentX as

0a(X,0) =X, AP(X,00=0, 9(X,00=0 VXeX. (3.8)
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3.2 Encountered problems with the Eulerian description

The standard approach for a general implementation of thteehi®to use the Eulerian equations,
which can be easily transformed into equations in globafrdioates. But both stationary and
dynamic Eulerian approach are afflicted with severe problerhey were studied iB[f] on the
basis of an application to the benchmark problem of sheasfraythin crystalline film in the
one-dimensional form, for details see sectofh In this section, the findings are summarised
and a rigorous mathematical analysis of the observed phemais performed.

3.2.1 Stationary approach

For the intended applications of the presented model, theideration of the stationary equi-
librium of the dislocation field in a given stress/deforratstate according to eq2.@3 would
be sufficient. The resulting system of algebraic and padifé¢rential equations for the single-
valued dislocation fields coupled with the stationary amntim mechanics framework, tal8e2,
can be treated straightforwardly by the Finite Element oeth

geometrical relation, cf. figR.1 tanv = dy, /0x
force equilibrium k= —[bsgn(r)(|7| —7)]/T
mech. balance equation dive = f

+ boundary conditions fou, ¢,,, ¥

Table 3.2: Summary of the equations describing the quasistatic equilibrium of the system.

A common weak form has to be set up using the method of weigtegiduals according to
Bubnov-Galerkin 98].
Using weight functionsy; = w;(z5) and integrating over the sample heidght

/OH (wl [cos p(sin ) + bsg;(T) (7| — )]+

+ walcos gy, — tan ] +- w; div a) dze =0, (3.9)

one can find the weak form of the one-dimensional problem Iplieation of the Gaussian
integral theoremB.11). Note the formulation in the global coordinate system, ls® pprime

in eq. @B.9 abbreviates)/0x,. The equations summarised in talle were transferred to
the global coordinate system usiajoxs = cos¢d/0dx. The first term in 8.9 represents
the force equilibrium for the dislocation2.23, the second term is the coupling between the
material model and the mechanics, resulting from a geooatttonsideration on the dislocation
line, figure2.1, and the third term accounts for the mechanical equilibr{@2m1;) assuming

f = 0. Note that for brevity equatiorB(9) is explicitly written for one slip system only. In
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general, for each slip system a contribution of the type effitst respectively second term must
be introduced. Choosing appropriate trial functions forbibte weight functionsy; and the
unknown functions, one arrives at a highly nonlinear systéerquations.

Consider for example a one-dimensional symmetric doulipepsbblem. For the discretisation
with C° trial functions every node of the Finite Element mesh haslsgrees of freedom, namely
the displacements, , u,, the orientation and displacement of a representativechsion of the
field on slip system 191, »{", and on slip system 212, ©\?. So for a Finite Element mesh of
N nodes, a nonlinear equation system of $izeV results, which can be solved by the Newton
method.

Implementation of linear elements leads to highly distatiery results: already for moderate
loading, the calculated solution for the plastic slip stéot form oscillations, and consequently
convergence of the Newton method fails. Using parabola functions improves the behaviour
somewhat, but not essentially. The reason for this behavsotinat not only the equilibria but
especially the second term i8.9), which couples the material and the mechanical model, are
only weakly fulfilled, thus enabling the oscillations. Itnecessary to enforce the smoothness
of the results, for example by using higher order trial fims. The application of!-Hermite
trial functions indeed produces reasonable results whieh far our benchmark problem, in
agreement with the exact solution. Note that here the numbenknowns is doubled: every
node of the mesh carries now two degrees of freedom for eable one for its value and one
for its first derivative at the node. In figuBe2 a comparison of the profiles of the plastic slip for
the double-slip shearing problem based on linear and Hernigt functions is depicted.

The crucial problems come up when the critical bowing of tistodations is approached, i.e.
v — 7 at the impenetrable interfaces. The prescription of pjisiceasonable boundary con-
ditions for the displacement, of a representative dislocation line is no longer possiBk}. [
What is actually true for a dislocation at an impenetrablerfiate is a vanishing velocity,= 0.
But for critical bow outv/ cos ¥ — “0/0’, cf. eq. 2.67), so the displacement of the considered
representative dislocation from the initial configuratadrihe interface needs not stick to 0. Re-
taining nevertheless the boundary conditiofi0) = ¢,(H) = 0 entails an incorrect shape of
the dislocation, or in more detail, a ‘bowing-back’ of theldcation line. Moreover, the compu-
tational effort for this Finite Element method for a fully éavdimensional problem with Hermite
trial functions and the number of degrees of freedom at hamdadbe very high.

3.2.2 Dynamic approach

Allowedly, the modelling of the dislocation motion basedaodrag coefficient and the Gibbs free
energy, see sectidh2.2 is too rough to predict a realistic time-dependent behavidowever,

it succeeds in giving information on the qualitative way tli€location moves, that is direction,
distribution etc. of the velocity along a representativdatiation line of the field. This answers
the purpose to calculate the development of the dislocdigdeh (not considering the real time
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T [pm]

Figure 3.2: Comparison of the stationary solution of the double-slip shearing problesepted in detail

in section5.1, calculated with linear (solid, zig-zag line) and Hermite (dashed line) triadtfons. The
exact solution, indicated by the diamond markers, coincides with the HermitigosolThe parameters
used ared = 1um, ¢ = £30 andI’ = 10~3. For the spatial discretisation 200 nodes were used. Note
that for symmetry reasons only half of the strip, thatisc (0, H/2), is depicted.

scale!) and its relaxed state in a given deformation/stiieks In the following, the dynamic
approach is to be understood in this sense, i.e. the timablarhas no physical meaning, but
is degenerated to a control parameter for the iteratioregnattion process. Considering the dy-
namic description, boundary conditions at impenetralileriaces can be naturally set up for the
dislocation velocity. A non-linear parabolic partial @fential equation system for the descrip-
tion of the dislocation fields coupled with the elliptic ptetm of continuum mechanics results.
A semi-discretisation method, namely the vertical line o€t [99], is used for the numerical
solution of the parabolic system. The basic idea is to perfardiscretisation in space approx-
imating by a Finite Difference scheme the spatial derietiin the Eulerian model equations
and in the balance equation of continuum mechanics. Thidtsas a large system of ordinary
differential equations in time, which can be treated subsaty e.g. with an implicit multi-step
integrator. In order to arrive at an equilibrium solutiom tbe dislocation behaviour due to an
applied load / strain, the time-integration is carried ontiluhe dislocation velocityy — 0.

In the MATLAB implementation of the model, cf. secti®@4.4 a stop criterion for the time-
integration has been realised using event handling. Ineageat with earlier experience severe
spurious oscillations in the course of the plastic slip o&se emerge for an increase of the ap-
plied load. In view of a two-dimensional implementatiomcamvention of this phenomenon by
choosing extremely small time steps is not an efficient smutA redistribution of the nodes
of the mesh used for the spatial discretisation yields mooensing results. Keeping the total
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number of nodes constant but pushing them closer to the loynqmtovides almost perfectly
smooth results. The quality of the differentiation nearlibbendary obviously has an extremely
big influence on the overall result.

This is characteristic of an entire class of partial diffeéi@ equations, namely that of convection-
dominated convection diffusion problems.

3.2.3 Mathematical origin of the observed phenomena

A large class of technically important partial differehgguations is formed by those of convec-
tion diffusion type, also called transport equations:

% — V- (KVu—cu)+r-u=f onT x 2 + initial & boundary cond. (3.10)

The sought solutiom depends om andz, the given mappind< and functions:, r, f depend on
x only. T x € is called the time-space-cylinder on whighs defined. Equations of this type
describe for example transport or reaction processes éké donduction in streams or electron
flow in semiconductorsd9]. Probably the most famous member of this class is the N&tiekes
equation.

The spatial discretisation must respect that informatiorthee boundary conditions as well as
possible discretisation errors are transported alongusiiees only 100, p. 54]. One conse-
guence is, that the application of explicit time integratschemes is in most cases impossible.
For a special group in this problem class, the so calleshvectionBbominatedConvection
Diffusion Equations, the numerical treatment is even more demandihgy @&re characterised
by a high global Bclet number, defined as

pe . ellocodiam() _

1K o,00 ’

(3.11)

where||c||o,.0 = max.erxa|c(t, )| for continuous:, and diam{?) is the diameter of2 [99].

The CD-CDEs exhibit a pronounced boundary layer behaviowr:stiution is very smooth in

a large domain (about 95% 6f) and shows high gradients in a narrow zone along a boundary.
They have a character very similar to that of pure advectouagons, which are stable only
under theCourantFriedrichst ewy condition restricting the ratio of temporal and spasiap
size. The CFL condition embodies, that information on theréissation mesh must not flow
faster than the real physical transpdt0]]. Especially for two-dimensional calculations, this
condition constitutes a severe drawback.

In view of these facts, the model equations at hand weretigeted P6]. Consider the Eulerian
description, tabl&.1, and assume for simplicity a constant resolved shear strasd vanishing
yield stresg™. The velocityv then results as

v= {7"6 + Tcosﬁa—ﬁ] /B. (3.12)
Ox
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Using this expression, a nonlinear partial differentiali@ipn of convection diffusion type for
the orientation’ results:

9V T(cos?)®0*)  Thsind v
5 B 9.2 + B s (3.13)

As a constant resolved shear stress was assumed, no cotgplngechanical problem is per-
formed, and the equation fof* is not of interest for the analysis. The first term on the right
hand side of eq.3.13 is diffusive, the second is convective. Multiplying theefficient of the
convective term by a lengthz < H, one arrives at a dimensionless ratio of the coefficients
of the convective and diffusive terms, which is the discastenterpart of the above introduced
Péclet number,

AxTbsind

T(cosd)? (3.14)

Pegy =

This number determines whether e8.1Q3 is locally (i.e. within a particular interval\z)
convection-dominated or diffusion-dominated.

Using order-of-magnitude estimatedr ~ 107 %m], 7 ~ 10’[Nm?], b ~ 107'°[m] and
T =~ 107?|N] yields Az7b/T = 1, so that the dislocation orientatiof(z) itself determines
the character of the transport equati@l1@. For slightly bowed-out dislocations, cf. figure
1.7, 9 = 0 everywhere, so thateg,; << 1. Equation 8.13 thus is diffusion-dominated. For
dislocations in the typical bowed-out configuratioh,— 7 /2 in the vicinity of an impenetrable
interface, figurel.7. In this case one findBeg,; >> 1, so that eq.3.13 is strongly convection-
dominated near the interface.

The general character and thus the behaviour of the parfiatehtial equations building the
continuum dislocation-based model does not change dueetadbpling to mechanics. The
mathematical explanation for the problems that have bemadfaince the very beginning of the
numerical treatment of the present model now suggestdsimamerical methods to deal with
them.

3.3 On the numerical treatment of convection-dominated transport

equations

3.3.1 Eulerian schemes for convection-dominated PDEs

In the spatially one-dimensional case, a standard appratie numerical solution of CD-
CDEs are Finite Difference methods, both in semi-, that iy eith respect tar, and in full-,
that is with respect toandz, discretisation schemes. Using backward differencesria,tbeing
somewhat careful with the spatial discretisation, e.gnaisipwind schemésand considering

1The idea of upwind schemes is to perform the numerical diffétation in the ‘right’ direction, that is consider-
ing the direction of flow, instead of just doing central finiiéerencing.
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a number of conditiorfs reasonable computations can be accomplished. But for tweven
higher dimensional problems and complicated geometrigsteFDifference methods become
very complex and inefficient.

Standard Finite Element methods suffer the same drawbacssaaghtforwardly used (central)
Finite Difference schemes: they are ‘too symmetric’, angttio not account for the streamline
direction. Therefore widely spread in the applicationg, & example 102, is the streamline-
upwind Petrov-Galerkin method (SUPQ)Y)3 104, where the idea of up-winding is transferred
to the Finite Element method. The bilinear form in the weaknfolation is supplemented by an
additional term, which introduces an extra diffusion iredtion of the convective field. Closely
related to the SUPG method is the so called Galerkin leastreg FEM (GLSFEM)105. An
application of the latter to the mechanics of dislocatioas be found in106. Even if it is not
the most accurate method, the finite volume method represaather very stable approach to
the numerical solution of CD-CDE4(7. Though based on ideas of both Finite Difference and
Finite Element methods, the finite volume method is considles a self-contained discretisation
method for partial differential equations.

Especially in the materials science applications, a nurobkyss popular methods for the treat-
ment of CD-CDEs have been advanced recently: Limkumnerd atinh&@.08 use a 4th order
viscosity regularisation for a stable treatment of theisoszale model for grains and cells; Xi-
ang et al. 109 take the line of level set method&J( for dislocation dynamics: the solution
curves (in their case dislocation lines) are representéohissections of) zero levels of higher
dimensional functions.

Except for the latter, the mentioned approaches have in @mthat they examine the change
of the solution within a fixed region of space. A fixed mesh resgh of control volumina can be
used for the implementation, which in turn simplifies conglio other physical processes. By
this characteristic, they are classifiedeEagerian methods

3.3.2 The Lagrangian concept for convection-dominated PDEs

The methods presented in secti®.1oppose théagrangianconcept, which incorporates both
Lagrange and Euler-Lagrange methods. They have in comimatthie fluid particles are tracked
along their trajectories. But before further discrimingtthe named approaches and giving some
examples, let us have a look at the original idea behind Lreggranethods.

Method of characteristics In the theory of (quasi-linear) partial differential egoat of first
order the concept of characteristics is commonly uddd][ Characteristics are the lines §i
along which the solution evolves in time. They can be imadjiag the streamlines of a flowing

2as the previously mentioned CFL-condition, but also fomepk a restriction to the cell Reynolds number, cf.

(101
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fluid. Assume the simple one-dimensional advection egoatio

ou(t, x) ou(t, x)
ot +olt, ) Ox
It has the same solution as the system of ordinary diffesieatjuations

= f(t,z). (3.15)

dt dz du

— 1. == — = f(t 3.16
which is called the characteristic system 8f1(5. The latter can be rearranged to

dx du

Note, that for a vanishing source terfithe trajectories along which the solutians constant
are described by(t).

The first step towards the Lagrangian methods in generatigsinterpretation of the convective
part of the CD-CDE by the modified method of characteristid]. Suppose a generalisation
of eq. 3.10 in the following form:

% +o(t,z,u) - Vu—-V - (K(z)Vu) = f(t,z,u). (3.18)

conve?:?ive part
In the convective part we find the Lagrangian or total derreadf u,

du  Ou
Frian +v(t,x,u) - Vu, (3.19)

compare eq. 4.78, which measures the rate of changeudbllowing the trajectories of flow
particles. The trajectories are, respectively, given astiution of

d
d—f =o(t,z,u). (3.20)

Thus (.18 can be rewritten as the convection-free PDE-system

% -V - (K(z(t)Vu) = [f(t,z(t),u), (3.21)
dz
T - v(t,z(t),u). (3.2L)

In contrast to Eulerian schemes, the Lagrangian methodsreegnly much weaker time-step
restrictions. The major drawback of the plain Lagrange wetis that it can go along with a
severe mesh distortion as the nodes of the mesh move alohgjénetories according t@3(21,).
This may cause accuracy problems in the solution process.

Therefore offsprings of the original concept have beenldgesl. Methods belonging to the class
of Euler-Lagrange methods implement the basic idea behmtdagrangian concept, but include
a special treatment of the mesh. The transport of informadiong trajectories is followed by
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a projection step][13, that transmits this information to a fixed grid. The waystprojection
is effected has a major impact on the quality of the methoactp offsprings of this class are
for example the characteristic Galerkihl{], the semi-Lagrangianlfly, the grid-free semi-
Lagrangian 116 or the free-Lagrangian method$17. The latter is for example quite close
to the plain Lagrange method, but it allows for local remeghivhen the mesh-distortion has
become too large.

3.3.3 The Lagrangian concept applied to the continuum dislocation based model

The fundamentals necessary for the application of the lragma method to the continuum dis-
location based model have already been collected in se2tibf) see also tabl8.1 Therefore,
instead of manipulating the numerical solution processrbffaal diffusion or by taking care of
upwind directions etc. in order to conciliate the Eulerigp@ach, we chose to take the line of
the Lagrangian methods to improve the numerical propeofiise model equations.

Following the procedure in sectid2.3one can show that the character of the resulting equation
for ¢ thus changes crucially. Assuming again a constant resalvedr stress and neglecting the
yield stress, the partial differential equation fbn the Lagrangian form, tabl@.1, becomes,

(3.22)

dd _ T(cosd)® 9%V N Tsindcos? (09 ?
dt B 0x? B ox )’

see also96]. The diffusive part is the same as in e§.X3, but the convective term has become
nonlinear, and its coefficient has changed. The ratio

Az sind

cos v

(3.23)

of the coefficients of the convective part (multiplied Ay) and of the diffusive part again goes

to infinity for ¥ — 7 /2 and constanf\z. But actually,Az represents the dislocation segment
spacing, i.e. the distance between the node positigiis X). Because of the dislocation-

Lagrangian description, the node positions evolve acogrthh eq. 2.64), and thusAx goes

to zero in the boundary layer. Consequently, the conveatirra is not dominant, not even for

strongly bowed out dislocations near an interface.
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Eulerian approach Lagrangian approach

0.12

0.12

D
— 0.08 P : 0.08 e
X /. )
o) /// > /
< o004 [ ) 0.04
D
0 0.25 0.5 0 0.25 05
il
2

Figure 3.3: Exact solution (thin, dashed lines) for four different applied condtausT, cf. sectiord.3,
up t099%7o, compared to the numerical solution calculated with the Eulerian method (left) itimthe
Lagrangian method (right). Please note the redistribution of the nodeshm&okehe different loads in
the Lagrangian solution, that results in a very good resolution of the mhawx the vicinity ofxz = 0.

An impressive demonstration of the performance of the pisfocation-Lagrangian method
in direct comparison to the Eulerian approach is presemtdayure 3.3. In spite of the very
rough discretisation, the Lagrangian solution providestise results. The Eulerian solution for
the plastic slip, which is based on the constant node digtab, starts oscillating already for
moderate stresses. 18€] it was shown by means of the simple example of concentrizueir
lar dislocation loops expanding in a constant stress fieddl tthe Lagrangian approach is even
favourable when the model is applied to a problem where Hgtoa boundary layer emerges.

3.4 Two-dimensional implementation of the dislocation-Lagrangian
method

The continuum dislocation-based model is to be applied tedimnensional plane strain settings.
Let us assume a rectangular sample in:the, plane with widthZ, and heightH, potentially
containing one or more elastic inclusions, but behavingifeimost part plastically, characterised
by the continuum dislocation-based model. Boundary camstirepresenting the mechanical
load and the mobility restrictions for the contained digbans, e.g. impenetrable interfaces,
have to be imposed. Periodicity in the-direction is assumed.

A short introduction to the chosen implementation of thespréed model based on the dislocation-
Lagrangian method in connection with the vertical line noethsee sectio.2.2 for two spatial
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dimensions has been presentedlihd. This chapter provides a more detailed description of the
method.

3.4.1 The basic idea

In order to simulate plane strain problems, we embed thedimensional space of the trace
of the slip plane, which was the base of all consideratiorghapter2, into a two-dimensional
coordinate system. It is quite natural to take the one dimeascoordinate system of one slip
plane and ‘blow it up’ to two dimensions by multiplicatiomat is by taking a finite number of
slip planes to construct a discretisation of a slip systeth@two-dimensional space, figuBe.
Several distinct slip planes plus the discretisation ofodation lines by nodes within the slip
planes form the two-dimensional mesh discretising onessigbem, which is not fixed due to the
use of the dislocation-Lagrangian method: the nodes reptieg the dislocation line segments
are not going to leave their slip plane, but will dynamicaéigrrange within this one-dimensional
space according to the Lagrangian equation system of gahleompare also figurg.3.

For the solution of a mechanical problem, another mesh willséed, on which the Finite Element
discretisation of the mechanical boundary value problebasged. This one will be regular and
fixed in time.

For an illustration of the setting see figudel. The root-points of the slip planes representing
the considered slip system, that is the intersection peiittsthe =, -axis, are denoted?,, i =
1,...n. Note the convention, that y, z denote the coordinates in the slip plane, andr,, x3
the global coordinates, e.Q).
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Figure 3.4: Sketch of a rectangular Finite Element mesh for the continuum mechanics taiiopsi
and the discrete representative slip planes attached to root pdjjnt¥he global system of coordinates
(z1,72) and a representative local coordinati a slip plane with the origin at?; are indicated.
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The transformation between the global and the slip planedtoate systems is

=29 +sing - x if 0<a +sing-2<L,
=20, +sing-x—L if 2% +sing-z>1L

T xll+s?n¢ x ! x12+s?n¢ x , (3.24)

ry=al;,+sing-z+L if 2, +sing-z<0,

Tog =COSQ- .

Note that the positioning of the root point§, and the consideration of periodicity in the-
direction have to be implemented differently, dependingtaninclination direction of the slip
planes. If¢p > 0, the inclination to the right yields root points startingsin = 0 but stopping
before the right boundary. i < 0, the inclination to the left yields root points startinggsitly
inside the sample and endingin = L.

The consideration of horizontal slip planes, ie= 90, makes sense only in case of the presence
of elastic particles. Otherwise, due to the periodicityditan in thez; direction, the disloca-
tion motion would not be confined, dislocations would notédn&y bow out, and ideally plastic
behaviour would result. In the case of horizontal slip paaspecial transformation and imple-
mentation is required, which has not been implemented yet.

If one introduces more than one slip system, each of them &lynweated individually. They
meet only in the calculation of the yield stress- aub, /o, wheregp is the sum of all slip system
densities,

0=, (3.25)

and when the plastic distortion tensor is calculated,

N
B =3 s @l (3.26)
i=1

compare eqgs.1(1) and @.2) and sectior2.4.5 Note that these sums are builtevery nodeof
either the variable slip plane-mesh or of the fixed mechamesh. As the variables associated
with the potentially various slip systems are in generatlydefined in these nodes, an interpola-
tion step has to precede: the values of for example given on the respective slip plane meshes
first have to be interpolated to a common mesh, favourablyrtbehanical mesh resp. the mesh
of Gauss points of the Finite Elements, in order to enablstinemation ovei. This can be con-
sidered as a homogenisation procedure transferring tbemmattion from the dislocation-related
mesh to the course mesh used for the plane strain continuwinamies problem.

3.4.2 Dealing with the variable mesh

To get a better impression on how the development of the nistigbdition within one slip plane
for quite large bowing-out of a representative dislocatmeurs look at figure3.5. It shows
the development of plastic slip during the time integrafionthe problem of shearing of a thin
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Figure 3.5: Example of the development of the node distribution in one slip plane. Showe daktic
slip for symmetric double-slip shearing of a thin film, secttof, as presented irL[L§.
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film in double-slip, comparel[l18 and sectiorb.1 The light, dashed lines indicate the course
of individual nodes (dislocation segments). As the didiocaglides, the outer nodes approach
the bottom and top of the film. This effect corresponds to thgodition of misfit dislocations
as described by Nix1[19. Note that this pronounced effect is due to the disregardhaoirt-
range interactions, that is in the classical model the dégece of the yield stress on the current
dislocation density, yielding a constamnt

Numerically, this behaviour is quite difficult to handle.dn advanced state of the computation,
the simulated dislocation line is composed of the inner sa@d® the last node that has met the
boundary. This last one is the node where one-sided FiniferBhces have to be used to ac-
complish the semi-discretisation step for the PDE systeode that got stuck at the boundary
before are no longer part of the calculation. They are nad izethe interpolation between the
two meshes any longer. As the boundary conditioa 0 holds, neither their position nor the
value of plastic slip, orientation etc. attached to thes#esas going to develop any longer. The
numerical integration of the system of ordinary differah&quations resulting from the vertical
line method, sectiof.2.2 is performed in finite time steps. Thus a node, charactéaseinner
node’ at the beginning of a time step, that is supposed to thedtoundary in this time step will
generally not meet it exactly. Different ways of how to ‘d@tthe nodes in such a case have
been investigated. Quite simple, but not very accuraterigtample the usage of a thin layer
around the respective interface, where nodes are pinnasbasas they enter. We finally chose
to formally allow nodes to ‘leave’ the sample, that is to passmpenetrable interface, but to
reset them onto the interface each time right before thaiatiah of the model equations.

A kind of characteristic array that keeps the informatiortlom state of each node is built. This
information can for example be that the node is free, pinoneghtinterface, has become redun-
dant (like previous nodes that lie on an interface) or isdesdn elastic particle, tab&3 The
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| valuein char. array | state of the node |

-2 inside an elastic particle
-1 redundant on an interface
0 first node on interface, neighboured to moving nodes
1 ‘normal’ dislocation segmerar
a free-surface node, if on the edge of the sample
2 node on ar,-periodic boundary

Table 3.3: Overview of the used characteristic values that describe the positiont®o$t@node repre-
senting a dislocation segment.

characteristic array is computed based on the geometryittwifiof the considered sample and
the current node position every time right before the modelagions are evaluated. The ini-
tial idea to only update the information instead of caldolait every time anew failed due to
the usage of an integrator with step size control for theltieguordinary differential equation
system: an incorrect information resulting from a failetiei step could not be revised in the
characteristic array.

In some calculations, a strange effect could be observeddbes did not approach the interface
uniformly, that is one by one, but were sometimes outrun leynéxt inner node (e.g. 2nd and
4th node already left the sample, while the 3rd is still ie$idigure3.6. The problem became
obvious as the interpolation routine failed due to nonesbriodes. For the test on the character
of the nodes, this effect is fatal, as well as for the behaviduhe ‘slow’ node, which departs
even more from the interface once it is outrun. The effechiy due to numerical inaccuracies,
as it is independent of the actual implementation. An extraryg to catch such exceptions has
been incorporated in the code.

Figure 3.6: Sketch of the so called 3rd node problem: actually, only the five dark nmu#se left are
of interest for the remaining calculation, the three nodes on the right leante redundant. But due to
inaccuracies, the third node counted from the right end has not yaeddhe interface.

Note that the specifications made in this section are valicnty for impenetrable surfaces of
the entire sample, but for every interface, that is alsoghlmtween plastic matrix and elastic
particles, see below. In the case of more complicated streslike for example a representative
cell of a composite structure, a number of further detailstodbe handled, the most important
of which are presented in the following section.



3.4. Two-dimensional implementation 67

3.4.3 2D-specific details to take care about

Dealing with more complicated two-dimensional structureguires taking care of some very
special details in the implementation. As an example strecthe two-dimensional projection
of the metal matrix composite treated by Groh et &8, [30] was adopted. These authors ex-
tend a representative cell of the composite structure gieadly in all three spatial directions.
A three-dimensional discrete dislocations simulationhis tell acts as constitutive part for a
Finite Element code used for calculating the material respdo tensile loading. This is the
so called discrete-continuum model (DCM), see also beloetjme3.5. A first application of
the continuum dislocation-based model to this compositesire was presented id1g. In
the following sketches, the white areas represent theieaatticles situated within a plastically
deforming matrix. The slip planes, for clarity indicated fme slip system only, are formally
introduced everywhere in the sample, but nodes within thstiel particles are accordingly la-
belled ‘-2’ within the characteristic array, see taBI&.

Care must be taken for the nodes on slip planes having intemsgmints with elastic-plastic
interfaces, figure.7(a) In order to catch the internal boundary condition cominghepe cor-
rectly, namely that dislocations are pinned at the inte;fac= 0, there must be a node lying
exactly on the interface, which in general is not the caser dffte initial uniform discretisation
of the slip planes. The developed code realises this witheprpcessing step, where the node
on the respective slip plane, which is inside the elastiigarthe closest one to the interface, is
pushed onto the interface.
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Figure 3.7: Slip planes intersecting elastic-plastic interfaces.

This may not always work in a straight forward way: slip plameirtly crossing the corner of
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an elastic particle will have to be more closely investidgati the case demonstrated in figure
3.7(b) a bisection method (indicated by the empty circles) willneeessary to find out which
boundary of the particle is cut. In the case where the slipgla inclined in the other direction,
it is possible that only one node is inside the elastic partend one has to decide onto which of
the interfaces it is to be positioned.

In order to avoid numerical inaccuracies, nodes on a periodimechanically (stress-)free
boundaryz, = 0, H, which are modelled as having orientation angle 0, are treated as Eule-
rian nodes, figur&.8. In both cases the nodes are not supposed to change theiop@sien in
the Lagrangian description - theoretically. But practicalimerics might yield @d,./dt # 0, thus
moving these nodes. It is therefore favourable to use thertam equations for these distinct
nodes.

i

—

%, [m]

0.8 1 1.2

Figure 3.8: Nodes on periodic or mechanically (stress-) free boundaries.

Implementing periodic boundary conditions in thedirection normally requires some extra ef-
fort. As indicated in figure8.9 the vertical projection from top to bottom will hardly eveeest
the root point of a slip plane. In the applications it showtbat using the value at the next slip
plane provides more reasonable results than interpol&titizge actual projection position. Ac-
tually, in this way at least a reasonable value is used. Bm®1i the case if one meets a position
close to an elastic-plastic interface, such that the twoasthat would serve for an interpolation
represent once an elastic, and once a plastic behaviowhwthalds a useless result for the pro-
jection position.

For a test on the accuracy and performance of the presentixddaodogy, the reader is referred
to [11§.
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Figure 3.9: Projection required for periodic boundary conditions:iadirection.

3.4.4 Matlab implementation

The presented numerical solution scheme was implementddMATLAB . This commercial
software for technical computing provides a high-leveblaage and development tools that al-
low for a quick development and analysis of algorithms, ni®dad applications. The M LAB
programming language supports the vector and matrix dpagathat are fundamental to engi-
neering and scientific problems and comes with a variety ofernical tools e.g. for interpolating
data or solving ordinary differential equations.

The model was implemented as described in this chapter. &y sample geometry, that is
considering varying boundary conditions for the dislomasi or different composite structures,
individual routines for building the characteristic ari@yd doing the preprocessing step of node
redistribution had to be developed. The remainder of the ¢edery general, especially with
respect to number and orientation of slip planes. Only a egatjpn with horizontal slip planes
has not been realised.

The time integration is performed by MLAB s explicit multi-step solvebde113. One-dimen-
sional interpolation is performed by meansiaterp1 with the option for piecewise cubic Her-
mite interpolands, two-dimensional interpolation interp2, respectively. The individual slip
systems and planes are organised in the data type ‘cellgchwisi similar to a ‘struct’ in the
programming language C. This allows for a collection of otgef different size, whereas for
example in a multidimensional array all elements of a certhimension need to have equal
length.

The boundary value problem of the continuum mechanics gasbived by self-made two-
dimensional linear Finite Elements on a regular rectamggiel. As to the consideration of
the plastic strain in the mechanical part, we refrained frotmoducing Gauss points. The weak
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form of the balance equation
dive =div(C(Vu —€”)) = div(C Vu) =div(CeP) (3.27)

is discretised by nodal trial functions. Thus the approximation af ande? based on their
values in the nodes of the constant regular mesh, colleotdgtivectors: ande®, is given by

u=w'n € =w'e. (3.28)
Applying the method of weighted residuals, one arrives atear relation betweei ande®:
Ku = f(€"). (3.29)

The elastic stiffness matrik is constructed only once at the beginning of the calculatibite
the right hand side vectof (€”) has to be built in each time step based on the new values of
~P — €P. Thus actually in each time step an eigenstrain problemhedo

Boundary conditions

Both the Dirichlet and the periodic boundary conditions aresidered as constraint equations
which are attended by the method of Lagrange multiplierg ddnstraint equation for a Dirichlet
boundary condition is set up very simply: if for example thgpthcement inc;-direction in a
node with coordinates; is prescribed to be some val$ethe equation is

ui(x;) = . (3.30)

Periodic boundary conditions are in general implementechésins of a master and slave princi-
ple [120, figure3.10 A representative volume element (RVE) of a periodic streets supposed
to have a boundary that can be decomposed into an active aassa@ part the displacement
at the active boundary is actually calculated while the ldisgment at the passive boundary is
‘slaved’ to the latter and to the displacement of a masteersatth that the deformed RVES fit
into each other like parts of a jigsaw puzzle. One often sp@ktying together’ the nodes of
active and passive boundary, that is imposing the constitzan the displacement of the corre-
sponding nodes differs by a fixed value, the displacementrofster node. The introduction
of a master node, which can be an extra node outside of the R@Enode which is already a
part of the RVE, is necessary to enable an overall strainettnsidered cell, which would be
prevented by tying the nodes of the corresponding bourslditectly together. In terms of the
notation in figure3.10, periodicity inz;-direction considering the western boundary as active
and the corner 2 as the master node, yields the constraiatiequ

ui(wp) = wi(Tw) +wi(2) =12, (3.31)

3in many applications, this decomposition is already a verpglicated task
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Figure 3.10: The master-slave principle for the imple-
mentation of periodic boundary conditions. In this figure,
both the western and eastern face and the northern and
southern face of the RVE are supposed to be equivalent
with respect to the periodicity. The heavy lines form the
active boundary (master faces), nodes 2 and 4 act as mas-
ter nodes.

X2

R e

T

defining the displacement of the eastern boundary. Theblaga ;, xy, are representative of
the corresponding nodal positidnsn the two faces. Note that in addition, one has to assume
that the undeformed geometry fulfils the conditiep — xy = x(2) — (1), and that vertex 1

is fixed, i.e.u;(1) =0, i = 1, 2.

To summarise, for every node on a Dirichlet boundary and &hepair of nodes on a periodic
boundary, one gets a linear constraint equation of the fgém = S, which can be combined to

a linear equation system of constraints

Cu=3S. (3.32)
This system is formally appended to the formulation of &9 in terms of potentials by means
of Lagrange multipliers\ [122 p.124]. From the stationary conditions applied to the piaé
formulation one finds the enlarged system

(& 5)6)-()
cC 0 A S

which yields the correct nodal displacements for the imgds®indary conditions.

The principle of Lagrangian multipliers, especially wheapked to the Dirichlet boundary con-
ditions, for sure is not the most economic approach: thalfimguation system that has to be
solved grows. However it is necessary to successfully atdow the periodic boundary condi-
tions, cf. remark3.1, and as the principle also works well for assuring the Diatboundary
conditions, we stick to it for the sake of uniformity.

Remark 3.1: Initially we wanted to use the penalty method [122] to enforce the constraint equations.
It works as follows: Let the value of u; be prescribed. Then the diagonal entry (i,) of the stiffness

matrix is augmented by a number such that an entry much larger than the other entries in the ith

4 In order to get ‘corresponding’ nodes, one of course haski tare for the same discretisation to be used on
both faces of the cell, respectively on active and passivathary in general. This is not a problem for our simple
geometries, but a big challenge when working on voronoi ee$tr examplel21].
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row results. The same number is added to the ith row of the right hand side vector. This yields a
numerical solution with the specified ;.

In the case of Dirichlet boundary conditions, this method works well. But when we additionally used
it to accomplish periodic boundary conditions, they were not met. We suppose that the positions
of the large entries in the stiffness matrix result in an ill-conditioned system, which cannot correctly

provide periodicity.

It turned out that the linear elements provide a satisfyingerical solution for simple geome-
tries, seel1§ and figures.2 However, they are not well applicable to, for example, cheaped
composite structures, where discontinuous solutiongi@field variables at the transition from
elastic to plastic regions have to be represented. But sadfenfrinite Elements of higher order
or for non-rectangular geometries are a technically haod fpis therefore desirable to be able
to use the present model as a material model within a starkai@ Element software. This
would allow for the simulation of elaborate mechanical peots concerning the geometry of
the sample and the boundary conditions.

3.5 Coupling with ZeBuLoN

Among the large variety of commercial FE software tools, Ze@iwas selected as the coupling
partner for the continuum dislocation-based material motleis Finite Element tool, which is
developed at Oner&cole des Mines in Paris and NorthWest Numerics, is notedhferarge
variety of provided material laws.

Nevertheless, the standard interface for adding new naddesi restricted to local material laws.
The term ‘local’ means that the material model equationsesgvaluated in each Gauss pointin-
dependently. This fact also determines the way the FE pnogedls the constitutive law, namely
once for each Gauss point, which is the most economic appraache majority of available
models.

However, there are also nonlocal material laws, among tihenthiree-dimensional DD simula-
tion, sectionl.3.], interpreted as a constitutive la®]], or the present continuum dislocation-
based model. Let us try to understand the origin of non-itycal these models: clearly, the dis-
crete dislocation segments in the DD simulation cannot ntodependently from each other, so
in order to determine an incremental change in the dislogatirangement both mutual stresses
between the segments and external stresses on the segneer@glared all at once. Moreover,
the segments are not related to the FE Gauss points, sueéhitbatogenisation process (stress on
centres of dislocation segments stress in Gauss points) has to be introduced. The continuum
dislocation based model is after all a partial differenéigliation system: the temporal develop-
ment at a certain spatial position is determined non-lgc#iiat is based on spatial derivatives.
The computational problem becomes clear with a look at thteons in table3.1: to calculate
the increment d/dt, a spatial derivative of the velocity is required, i.e. alocal information
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on the velocity. To get the velocity everywhere, the stregsust be available everywhere, that
is in all Gauss points and not only in individual Gauss poggparately. From the Lagrangian
viewpoint, see sectiop.4.], this expresses that dislocation segments cannot movpendently
of each other.

Remark 3.2:  The terms ‘local’ and ‘non-local’ constitutive law are also used in the context of multi-
scale problems. A local law in this context means, that in each Gauss point of a large structure a scale
transition is carried out, meaning that a separate problem on a (usually) much lower scale is solved
there. Only macroscopic stresses and strains are exchanged between both problems. The Gauss points
of the large structure are completely independently treated here, provided that their distance is large

enough to allow for independence of the lower scale problems.

In the present cases, however, the length scale discretised by the Finite Element mesh is the same
as the length scale of the material description, and we have a non-local constitutive law in the sense

discussed above.

ZeBuLoN developers at Onera managed to build a library th&iesha@ possible to choose the
DD simulation implemented in the code microMegas (mM) as denwl law in ZeBuLoN
[31, 123 124). This is the technical background of the DCM mentioned befdRather than
a nonlinear material problem, ZeBuLoN solves an eigenspaiblem, which enables the work-
around to the model evaluation Gauss point by Gauss pointh 8ades run ‘hand in hand’,
i.e. they run independently, but wait for some input prodidy the other one at certain sta-
tions of the computation, which is realised by a paralleluat machine (PVM), see appendix
D.2. This communication is defined in the zMDC library on ZeBuLsNide, and in the module
20gammaplas.f90 within the latest version of microMegas.details on the communication see
tableD.1. It should be possible to use this library for a coupling @& dontinuum dislocation-
based model with ZeBuLoN, ‘just’ replacing mM by a suitablglementation of the continuum
dislocation-based model.

With this objective in mind, we developed a basic Fortranlengentation of the principles pre-
sented in sectioB.4. It allows for multiple slip on arbitrarily inclined slip sgems, individually
discretised, but so far only with the standard ‘shearingtbfrastrip’ boundary conditions, that is
periodicity in ther;-direction and impenetrable interfaces for the dislocatim thez,-direction
[11§. A Finite Element discretisation for the mechanical pesh| which was implemented in
the MATLAB version of the model, was not written in Fortran, as here ZeBuls intended to
take that part. So testing of the implementation prior todbepling was restricted to a constant
stress.

The time integration of the ordinary differential equati@sulting after a discretisation of the
spatial derivatives is realised by means of the odepackr@®LSODE, se®.3, written in For-
tran77 and available at netlib.org. Even though ZeBuLoNaalyeperforms a time integration,
the time stepAt; of which is passed to the material model, it might be necgdsaise an inner
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time integration in the dislocation related part of the mptd®. This is similar to the possibility
described in 123 for the DD simulation to take smaller time steps than then#égrator. But
note that this inner integration will be performed for a dans stress state, the one present at
the beginning of the ZeBuLoN time step. Convergence to a cdwgg@ilibrium state is accom-
plished by the Newton procedure which ZeBuLoN performs tackhiga time step has been
successful.

For the interpolation between the variable slip plane meghthe Gauss points of the Finite
Element mesh, as a first try the bivariate polynomial intkxrden routine IDBVIP, provided in
the netlib package toms/526, can be used. This is certaotlpptimal, neither concerning the
computational effort nor the result, which is quite os¢dly for polynomial interpolation. More
sophisticated interpolation routines can only be devealdp®wing details about the elements
ZeBuLoN will use.

Some information on the acquisition and the basic handlfigeoused software as well as some
useful links are collected in appendix

Remark 3.3: Unfortunately, not more details or even results of the intended coupling can be pre-
sented. One and a half year before the end of this PhD thesis, the opportunity to use the zMDC library
as a tool for coupling the continuum dislocation-based model to ZeBuLoN was realised. Colleagues
at Onera and ENSMP are very motivated to provide assistance on the coupling. However, it has been
worked on a new version of mM and zMDC for quite a long time now, and no running ensemble was
available up to now. zMDC and ZeBulLoN probably would work together and allow for a coupling
of the continuum dislocation-base model, but some running test cases are required to verify all the

settings before this new challenge can be tackled.
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CHAPTER 4

Introduction of a back stress

The continuum dislocation-based model as presented in rdteptrt of this thesis took into
account only two kinds of short-range stress fields actin¢hercontinuously distributed dislo-
cations: the line tension of a dislocation, which is the vesgential ingredient of the model and
basis for the size-effect it predicts, and the mutual shenmgge interactions which are approxi-
mated by the Taylor formul&(86) for the yield stress.

However, as part of this thesis, the continuum dislocaiased model is supplemented by an-
other short-range stress field. Thiack stresgakes into account mutual interactions between
different dislocations in a more detailed way than the Tagfgproximation.

Both stress fields complement each other. It will be shown atice4.3.4that the Taylor re-
lation is especially important for high dislocation deiesit where dislocations may provide the
required amount of plastic slip already by little bow-outile the back stress gains in impor-
tance for low densities.

The chapter starts with a short consideration of the base lihind the back stress, that actually
goes back to the pile-up stress. We continue with a shorewewf the present concepts to
introduce the back stress in statistical and determingsiitinuum models. Sectigh2describes
the definition of the back stress as it will be used to enhamegtesent continuum dislocation-
based model. Advancing the previous approaches, we wilhdisish between the interactions
of parallel dislocation segments, which is sufficient whensidering single-valued fields, and
non-parallel dislocation segments, which is the genesd céhis is realised by defining the back
stress as a function of the intersection angle of the coreidéislocations. In order to verify a
reasonable choice of the back stress, we apply the enhanoéel no a simple test problem.
Results for slightly deviating definitions of the back strasscompared, the numerical character
of the enhanced model is investigated, and the impact ofdgirelation and of the back stress
as short-range stress fields are opposed. It appears thatswashsidering only one of the two
contributions can be considered as border cases for higkectegely low dislocation densities.

77
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4.1 The back stress in continuum models

The basis for the notion of the back stress is the effect gbileeup stress. Consider dislocations
emitted by one dislocation source, and thus lying in one @ime. If the leading dislocation
meets a barrier, further expansion of the loop will be préx@rand the following dislocations are
going to pile-up behind the leading dislocation. Having shene sign, they will not annihilate,
but interact elastically, such that the spacing decreases tis the front of the pile-up, see figure
4.1 If the barrier is for example a grain boundary, the descrike-up effect corresponds to the
Hall-Petch mechanism, compare figur&(b)

barrier

source

A A R

Figure 4.1: Dislocations emitted from a source and piling up against barriers: the dislocgpacing
reduces in the vicinity of the barrier, see al3a][.

The stress that acts upon a dislocation in such a pile-upgrgation due to the presence of the
other dislocations is called pile-up or back stress. It ésfundation of the size effect predicted
by the discrete dislocation dynamics model of van der Gieasel Needlemari[/].

4.1.1 Statistically based model for straight dislocations

To introduce a back stress in his statistically based mdideb2], Groma generalised the notion
of the pile-up stress: a back stress of pile-up charactergpased to act not only between dislo-
cations in one slip plane, but also between such positionete@hbouring, parallel slip planes.
In the special case of straight edge dislocations, Gromacanglorkers derived an expression
for the back stress by using rigorous statistical meth6dkg |
ubD Ox
= 21— 0)p(r) Or
The authors distinguish the total dislocation dengigyd the geometrically necessary dislocation
densitysc. The factorub/(27(1 — v)) stems from the elastic stress field between edge disloca-
tions, see for example8f]. The value of the consta® ~ 0.8 is determined from statistical
analysis of a large number of discrete dislocation dynamiicgilations of arbitrary dislocation
settings.

7 (r) (4.1)

4.1.2 Deterministic models for curved dislocations

To the author’s knowledge, today no approach exists foraoigs treatment of the mutual short-
range interactions among curved dislocations in a contmdescription. Nevertheless, recently
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some generalisations of Groma’s back stress concept wesened, eq.4(1), to be used in
continuum models for curved dislocations.

Kratochvil et al.

Kratochvl and SeddCek [125 introduced the back stress for fields of locally paralletved
dislocations. Instead of the geometrically necessarycidion density:c the density of the
well-defined single-valued dislocation fields is used. ldenrto account for the curved shape of
the dislocations, the gradient in ed. 1) is evaluated in perpendicular direction to the dislogatio
line. The factorub/(27(1 — v)) and the constand were retained. The expression for the back
stress proposed iiPq reads

Kr :ubD
_ WP g, 4.2
™= =) Y (4.2)

with an average reference dislocation dengignd the constant factdp ~ 0.8.

Zaiser et al.

Zaiser, Hochrainer et al6B, 69, 73] consider a back stress in a similar form for the more general
case of curved dislocations described in a three-dimeabkioonfiguration space, cf. section
2.5.2 They propose the definition

. D
e = ;—fb/vug(a:,é) de, (4.3)

whereg; := [ o(z,0)dd is the total dislocation density. The constdnf is considered as a
fitting parameter of order 1 in this model.

The integrandv, o(x, §) measures the interactions of dislocations of one and the saienta-
tion @ only, that is in fact parallel dislocations. Only the intalghen provides the contribution of
non-parallel dislocations to the back stress as it is et@tbaver the various orientations present
in . This means, that the back stress which acts on a dislocatione orientation depends
on the state of all the other, arbitrarily oriented dislomas in the respective position, where all
orientations have equal influence. The same amount of beegsseffects on every dislocation
ina.

4.2 The additional short-range interaction in the present model

The definition of the back stresg as it will be introduced in the present model is geared to
Kratochvl's approach, eq. 4.2). However, considering multiple-valued fields of dislaoas,

we aim at a more refined treatment of the interactions of theparallel dislocations at hand.
Suppose a multiple-valued field that is separable Mtsingle-valued fields. For an appropriate
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definition of;, we propose to choose the facfor:-= D(v) as dependent on the angié-v;; en-
closed by the line directions of the interacting singlededl fields and; in the current position,
see figuret.2 In this chapter, we denote the dislocation density of aifipexingle-valued field
by the variablep, occasionally labeled by an index?, while representing the total dislocation
density byo,, thusg, = S_~ | o). The back stress acting on dislocations of field numtier
then defined as

N

0 D(;)V i o »
T 2m(1 —v)oy ; (%ij) Vo 0. 4.4)

The gradient is calculated in perpendicular direction ®field i for which the effective back
stress is required, thatig?, as this is the direction of motion and thus the sense of {hasive
back stress acting on dislocations of fieldoo. However, for the effect which ‘the other’ fields
have on field;, this gradient is applied to their respective density. Bg #pproach we take into
account the effect of all the ‘other’ single-valued fieldensidering their relative orientations,
which may result in a different amount of back stress actimgifferent fields.

Figure 4.2: Two dislocation fields intersecting each
other. The back stress effecting on the upper half
loops is not determined by the mere sum of the den-
sity gradient of both upper and lower half loops. We
assume, that the back stress effected by dislocations
of the ‘other’ field depends on the angle enclosed by
dislocations of both fields. This angtg is in the
present model a unique function of In the de-
picted symmetric case, where the two fields combine
to the field describing expanding loops, it results as
1) = 219, compare also figurg.6.

The functional dependence féi(v)), accounting for the contribution of ‘the other’ field to the
back stress, shall be subject to the following two condgion

« Dislocations meeting almost parallél?) || £, for example dislocations of one single-
valued field, exert the maximum possible stress onto eadr.dith accordance with Kra-
tochvl, eq. @.2), we assumé)(0) = 0.8.

« Dislocations intersecting perpendiculagy’) | £, do not interact at allD (7 /2) = 0.

The second condition is reasonable only in view of the preassumptions, namely that the
interacting dislocations glide in parallel slip planes dhdt only in-plane interactions are of
interest. The perpendicularity is thus measured betwezpribjections of the dislocations onto
a representative of these planes. Generally, dislocatiereting perpendicularly in the crystal
may for example interact through intersection mechaniskesink and jog formation§g.
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In section4.3 the simple example of a multiple valued dislocation field amgidered which
results if one treats the upper and lower half loops of expandops in a channel as two single-
valued fields. In this highly symmetric case, where only tlegiom of one of the fields needs to
be explicitly calculated, the intersection angle resuitsally from the dislocation orientation as
1 = 2499, figure4.2

Remark 4.1: In the present continuum description not one isolated slip plane is considered, but
continuously distributed slip planes in a sample. Having this in mind, the interaction of non-parallel
dislocation fields residing on different slip planes may also be understood as a passing stress. This is
the attractive force encumbering the dissociation of a dipole formed by two dislocations of opposite
sign that reside on neighbouring slip planes.

Recently, KF¥ist'an and Kratochvil investigated the interactions of dislocations in a channel of a per-
sistent slip band [126]. Using a similar description for curved dislocations as in the present model,
upper and lower bounds for the passing stress of two screw dislocations were determined. To provide a
valuable model for the endurance limit found in fatigue tests also line tension effects and the internal

stress resulting from inhomogeneous plastic deformation were taken into account.

Equation of motion

The repulsive stress acting between two parallel dislonagsegments impedes the dislocation
motion, and can thus be assumed to act perpendicular tosluediion line. We generalise this
notion to the back stress, and introduce its effect as pedrpelar to the dislocation line, too.
Therefore, it can be appended to the equilibrium of for@32. We consider the back stress as
acting in any case against the resolved shear strahsis ending up with

b(r—7—|n|)+ Tk if br+Tk>b(T+|n|)
Bv=<0 it |br + Trk| < b(7 + |1]) > (4.5)
b(r+7+|n|)+ Tk if br+Tk < —=b(7+ |1
or in the abbreviated form
Bv=bsgn(r)(|7| — || = 7))+ Tk if |or +Tk| > b(7 + |1]) - (4.6)

As for the yield condition we accept Kratodhis interpretation in §4], that the back stress has
the same character as the yield stress, so that it contsilsta stress to be overcome to the right
hand side of the yield condition.

4.3 \Verification of the enhanced model

Before using the back stress in real applications of the ptesedel, we need to ascertain that a
reasonable expression for the back stress was chosen. Vinexthe simple case of expanding
loops in a channel of widtl#/, which decompose into two symmetrically evolving sing&ued
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fields, figure2.6and4.2 Each field is described by a densitysuch thap, = o) + p? = 2.
They are exposed to a constant homogeneous#oad7s = const.> 0, such that the coupling
to continuum mechanics is eliminated. The calculationsparéormed in the one-dimensional
framework, that is with all variables depending only on tlye girection coordinate:.

As the border case of a rather small dislocation density asremed, the yield stress, and with
it the short-range interactions approximated by the Tand@tion, is neglected. This allows for
analytic solutions and provides a better understandinghi®basic character of the back stress.
These assumptions will be justified in sectB.4

For this setting, the following ordinary differential edigan for the orientation) can be derived
from the static equilibrium of forces, resulting from e4.6) in the limit B — 0:

o
T — b+T Y9— =0 4.7
(T = Iml)b+Tecosd 5 =0, (4.7)
wherer = 2529 eq. 3.4), was used.

Inserting a concrete definition af, using?” = 1b? and applying the method of the separation of
variables, this differential equation can be solved attlgaghe inverse function(1J).

Remark 4.2: Neglecting both yield stress and back stress, the analytic solution for the shape of a
representative dislocation ¢, (x) in a constant stress field is found as a segment of a circle with radius
r = ub/T > H/2. The maximum allowed stress corresponds to a circular arc of radius H/2 and is
denoted the Orowan stress:

_

TOr = T (4.8)

4.3.1 Zaiser's definition of the back stress, constant D

For a first simple reference solution of our problem, we gklia&aiser’s definition of the back
stress, eq. 4.3). In the present example, only two different orientationare present, which
behave moreover equally, such that the integral collapgdsg our notation and = o/ cos ¥,
eq. 3.6), which is valid for a single-valued dislocation field withetinitial densityp of straight
dislocations, we end up with the following expression foiséds back stress:

. 0 (1 : 99
2 = —ubD, cos ¥ sin 19% (cosq‘)) = —pbD, sinv tan 19% (> 0 hereg. (4.9)

Introducing the abbreviatio® = ;bD,, the solution of eq.4.7) results as

() = — {D (log

The integration constamtis determined from the symmetry conditiof0) = H/2 as

(Vs . . _
tan (5 + Z)’ — smz?) + ubsmﬁ} /T+c. (4.10)

c=5- (4.11)

The correct interval from whicli may be taken to yield € [0, /]| depends on the applied stress
7. A closed form solution for the maximum value of the orielm@at 5 := max1}, cannot be
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found for an arbitrary choice db,, so it needs to be approached numerically.

In [73], Zaiser et al. usd), = 1, which results in a very high back stress and thus a strong
retardation of the plastic deformation. For this speciakca closed solution fat can be found,
see remarkd.3.

Alternatively we choose, consistent with Kratodtsvdefinition of the back stress, on which in
turn our refined definition is based), = D/2x(1 — v), whereD = 0.8 =const. This choice
yields, in our opinion, a more realistic amount of the backss.

The results for both values @J, are opposed in figuré.3.

Remark 4.3: Using Zaiser's choice D, = 1 ~ D = pub, and presumed ¥ € [—7/2,7/2] ~

tan(g + %) > 0, the closed solution for ¥}(x) results as:

Ix) =2 [arctan (exp [—Z(w — Z)}) — Z] , (4.12)
such that ¥ € [—4, (] with
g =2 (arctan [exp (;ﬁ))] - Z) . (4.13)

As was already observed iiA3], the plastic slip approaches a shape where a pronouncedibou
ary layer and a flat plateau region in the centre of the slimgldominate. In terms of the
orientation, this shows as a plateau in the vicinity of thdemes at a level close to/2, and an
approximately linear course in the centre. The stresssttaves for both choices db, and for
two different widthsH are depicted in figurd.5: for D, = 1, the linearr-(~?)-dependence is
hardly affected, while folD, = D/27(1 — v), D = 0.8, the stress is notably released through
the plastic deformation.

4.3.2 Refined back stress, orientation-dependent D

Equation 4.4) for the refined back stress acting on one of the two singlaeedafields reduces
for the considered one-dimensional and symmetric case to

b G, D 0
= mU)(w) + D(O))(—sinﬁ)a—i = (Qw) smﬁa—i , (4.14)
where (=4, 00y, and D) = — " (D(0) + D(v)).

(1 —v)

D(0) accounts for the interactions within one single-valuedifiahdD () for the interactions
between dislocations belonging to different fields, thuadpén general non-parallel.

Using againg = g/ cos 9, this yields the following simple expression foy depending on}
only:

= —D(¥) cosﬁsinﬂg ( ! ) = —D(v) sinﬁtanﬁ?. (4.15)

Oz \ cos? iy
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Figure 4.3: For applied constant loads= {10, 20, 30}MPa, the solutions without a back stress (cyan,
markered lines, only for the first two casesras = 20.48 MPa) are opposed to the solutions with a back
stress considered: the black solid lines on the left correspond to thesbask due to Zaiser’s formula
with D, = 1, while the magenta, dashed lines on the right represent the solutidn, fer D /2x(1 — v),

D = 0.8. The factorD/(2x(1 — v)) has crucial effect on the strength of influence of the back stress. The
depicted results are based on parameiges 10''m—2, 4 = 40GPa, b = 0.256nm andH = 1um. Note

that the symmetry of the solution was exploited and only half of the slip plane wgrsho

Remark 4.4: Note that in case D(0) = D(v)), that is D =const., we have a correspondence to
Zaiser's approach where D, := D/2r(1 — v), as then D = D, see section 4.3.1.

If we apply 7, > 0, which is for the present problem true @8/0x < 0 and? € [—7/2,7/2],
such thatsgn(sin 9 tan ) = 1, eq. @.7) expands into

%—l—D(w)sim?tam?a—ﬁ b—l—Tcosz?a—ﬁ:O. (4.16)
ox ox

As a simple functional expression fér(¢)) we now choose

2 0.8 fory =0,m,
D) = : [cos(2¢)) + 1] = (4.17)
0 fory=mn/2.

Usingy = 249, this yields

D(9) = %; 2 4 (cos(49) +1)] . (4.18)
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For this special choice db(¢)), the analytic solution to the problem of dislocations in anloe
geneous stress field, ed.16), is given as:

4 b H
o 2COS4194C082’L9+7):| +ubsin19)/7‘+—

s _sind,
5 2n(l—v)

{log(sec 9 + tan ) 5

2(9) = —(

Note that also here a suitable intervak [3, — /3] has to be determined according to the applied
stressr.

orientation dependeri®(v)) Zaiser’s back stres€), = D/27(1 — v)
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Figure 4.4: For applied constant loads= {10, 20, 30}MPa, the solutions without a back stress (cyan,
markered lines, only for the first two casesras = 20.48 MPa) are opposed to the solutions with a back
stress considered: for the solution depicted with blue solid lines on the lefgritetation dependent
factor D(y)) = Z[cos(2¢) + 1] was used; the magenta, dashed lines on the right represent the solution
for the back stress based on a constant 0.8, which is equivalent to Zaiser's back stress with =
D/27(1 — v) in figure 4.3 cf. remark4.4. The results are based on parametgrs= 10"m=2 y =
40GPa,b = 0.256nm and H = 1um. Note that for symmetry reasons, only half of the slip plane is
shown.

In figure 4.4, this result is opposed to the reference case of a constetior f&@ = 0.8, which
is equivalent to the case considered in the previous seuwttwre D, = D/2x(1 — v) was
chosen, see also figude3. It is distinct, that the plastic deformation can be moredfiely
transported by the dislocations if the back stress due ®odther’ field is assumed to be softer,
that is whenD(v)) is chosen orientation dependent. Figdrgéshows the stress-strain relation for
both possibilities for two different width& = 1 and2.5um of the channel. Assuming the back
stress being affected by another dislocation field to beesdifan the back stress among parallel
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dislocations yields a softer material response. Again anah) that the orientation dependent
back stress results in a minor retardation of the dislonatiotion.

0 0.04 0.08 0.12
(7P) Vo]

Figure 4.5: Stress-strain curves fdf = 1uym andH = 2.5um, where for both values the results with
orientation dependent (diamond markers) and constant (square s)dvkas well as for Zaiser’s choice
D, = 1 (circle markers) are shown. The thin horizontal lines correspond toléissical Orowan stress
Tor = 2ub/H. As dislocations are more slowed down using a constant fdetdhe plastic slip for a
prescribed constant load has a lower value. Pgr= 1 hardly any plastic deformation develops, and a
very steepr-(+P)-response results. The depicted results are based on parameters0''m=2, ; =
40GPa, b = 0.256nm.

4.3.3 Numerical character of the enhanced model

The introduction of the back stress has a very positive effeche behaviour of the numerical
solution of the partial differential equation system of thy@mamic approach, cf. tab&1 Large
bow-out of dislocations can be simulated using the Eulediescription without any problems
coming up. We would like to give an explanation for this olvaéibpn by means of theéelet
analysis, compare secti@?2.3 of the Eulerian evolution equation fdrbased on the velocity

v = ?b—Tgb—FTCOSﬂg—ﬁ /B. (4.19)
T

For simplicity of the Rclet analysis, we consider only one dislocation field, he= p, and
assume, corresponding to Zaiser’s approach basdd,en 1, sec.4.3.], the constant parameter
D* = ubin eq. @.14). The back stress then results in the form

b oY

T, = — V0 = —pbsinv tan e (4.20)
0 x
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After lengthy calculation, one arrives at the parabolicatopn

o/ , o 0% ) , L a0\ >
i (ub” sin” ¥ + T cos 19)@—1— [ (cos ¥ sin ¥ + tan ¥ 4 sin® ¢ tan )] Iz +

+ Thsin v (‘9_19 . (4.21)
Ox

There are now two ‘convective’ terms, onedi/dx and one in(9Y/dz)?, both with coefficients
making them highly nonlinear. Aé®let analysis in the mathematically strict sense is nagiptes
here, as the treatment of the quadratic convective termtisl@iined. However we make the
following ad-hoc consideration yielding again a dimengss measure, denotedP® quantify
the numerical character of the problem:

Po* Aﬂ?‘7_'5811119—1—ubg(cosﬁsinfz?+tan19+sin219tanz9)%|
e* = .
|H52 sin? ¥ + T cos? 19|

(4.22)

One observes the divergetin-terms in the numerator, and that all the other terms remain
bounded and of order 1. To verify whether or met vJ - 99/0x diverges for) — 7 requires a
more detailed investigation.

First of all, we note that the following relation holds:

o 0 1
tanﬁa = Cosﬁa—x <cosq9) . (4.23)

Considering the discrete approximation to the diﬁerenggk%, we estimate:

0 1 . 1 1
COSﬁﬁ_x (00819) :COMSIEA (00519) B

g L R U W 1 1
— VAL cos(¥ + AY)  cos?) VAL \cosd — Adsind + O(AY?)  cos?

1 1 1 T
= — —1)=— f — —, (4.24

Az (1—zmw@nﬁ4-O@Aﬁ%/amﬁ ) Ay oMU g, (424)
whereAd = ¥(z + Ax) — J(x).
So replacingan ¢ - 99/0x in eq. @.22 by —ﬁ and using again order of magnitude estimates
Ax ~ 107%[m], 7 ~ 107[Nm~2], b =~ 10~ °[m] and T" = ub* ~ 10~°[N], compare sec3.2.3
we find the limit

Az[1072 +107(—1/Ax — 1/Ax)|
_>

P*
¢ 10-9

:1fmﬁﬁg. (4.25)

Here we used the experience we made in calculationsoaz remains bounded and even
approaches the value 0 ds— 7, allowing for the limit

9
cossin Y — 0 ford — . (4.26)
ox 2
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This shows that even for the worst case,— 7, we have no convection dominance in the
enhanced model.

ChoosingD* = ub one actually assumes a rather high back stress, but nuinegicalations
show that the convection-dominated character of the pnoldeaccordingly reduced using the
orientation dependent factér(v) for the definition of the back stress, too.

Note that this result is based on the disregard of the yielsst Thus strictly speaking it is
significant only for small dislocation densities, a fact ethiwill be further examined in the
following section.

4.3.4 Comparison of the short-range stress concepts: Taylor relation vs. back stress

As a closing to this chapter we will compare the two consides@urces of short-range stresses
between dislocations, the Taylor relation, providing thedd/stress, and the back stress. We will
show, that the two concepts can be considered as complemdrgang dominant either for com-
paratively high respectively low initial dislocation déwes. Thus actually both of them should
be contained in the continuum dislocation-based modelderatio be reasonably close to reality.
Let us again consider the simple problem of dislocation $oexpanding in a narrow channel
of width H under the effect of a constant applied shear stresdNow both the yield stress
7 = aub,/o;, based on the current value of the evolved dislocation tgresid the back stress
T, €q. @.4), calculated with the orientation dependent fadigr)) according to eq.4.17), are
taken into account.

In figure 4.6 we oppose the yield and back stress acting in the numericaltulated relaxed
state of the loaded channel for different initial dislooatidensities. Figurd.6(a)reflects the
spatial influence of the stresses. Both back stress and yrelsissgrow in the vicinity of the
channel walls,y = 0 and1um. For a low initial dislocation density (dashed lines), enéor
exampleg, = 10'm~2, a pronounced slope of the back stress towards the wallvésles,
while the yield stress due to the Taylor relation remains ¢owalevel. In contrast we find for
the high dislocation density, = 10*m~2 hardly any back stress but a yield stress at an overall
high level. Note that the back stress is equal to zero in tmeceof the channel, where the
dislocation remains of screw type and where no (densitgelignts in perpendicular direction to
the dislocation line arise. This indicates that a continumadel that would treat the dislocation
population as completely homogeneous could not accoust hack stress at all.

In the depiction of the mean values of both stress fields indigu6(b)it is once more distinct,
that they develop contrarily with respect to the initialldcation density: while the yield stress
is dominant for high dislocation densities, it is surmouanby the back stress in the case of a
comparatively small number of dislocations gliding in thenel. In this spirit we consider
the model that neglects the influence of the back stress alidaexs#reme for high dislocation
densities. In return one might neglect the contributiomiribhe Taylor relation for small initial
dislocation densities, which affirms the approach in theiptes sections.
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Figure 4.6: Comparison of yield and back stress in the relaxed state of the loadedeth@he depicted
results are based on parameters- 30MPa, 7 = 0.4ub\/0r, H = 1um, p = 40GPa, v = 0.33 and
b = 0.256nm.

With figure4.7 we try to elucidate this observation from another perspectt shows the actual
shape of a bowed dislocation line in the relaxed state. Thabla ¢, embodies the displace-
ment of a representative dislocation of the considered fielu its initial configuration, which
was chosen as a straight line. Dislocations present in thereH reach the relaxed state when
resolved shear stress, here equivalent to the appliedardrsdiear stresg yield stressr, back
stressrn, and dislocation self forc&'x compensate each other, ed.g). In the case of a high
initial dislocation density, the yield stress is already very high at the beginning ofdexation
process, thus requiring a smaller amount of glide resp. gwut of the dislocations to provide
balance. The back stress in the present simple arrangemegiated only to the dislocation
orientationy, eq. @.19), that is the degree of bow-out of the individual dislocaipand thus
accordingly low. Reverse reasoning explains the effect femall initial dislocation density.
The curve based on = 10''m~2 is bowed out the most. The detachment of the curve from the
channel boundaries, = 0, 1um, can be identified with the formation of pile-ups againsisth
boundaries.

A substantiated affirmation of our choice for the back stoesgd be supplied by some 3D dis-
location dynamics simulations. For future calculations,oaientation dependent factd(«))
similar to eq. 4.17), but adjusted to the particular dislocation fields, willdmnsidered.
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Figure 4.7: Displacement of a representative dislocation line from its initially straight gordtion.
For small dislocation densities, dislocations have to bow out stronger im tradeach the equilibrium,

thus facing a larger amount of back stress. The depicted results a@ dagparameters = 30MPa,
7 = 0.4uby/0¢, H = 1pm, i = 40GPa, v = 0.33 andb = 0.256nm.



CHAPTER b

Application of the enhanced model

The model as presented in the first part of the thesis hasdgltezen applied to various prob-
lems: shearing of a thin crystalline stripd], see below, bending of free-standing strif4,[82],
tension of a thin film 4], plastic deformation of a simple composite structutrag, expand-
ing dislocation loops9d6], internal stresses in dislocation cell structur#®7), and a two-phase
laminate structure, for which a comparison to the Cossenatiracum $1, 42 was made. It is
not the intention of this chapter to recapitulate all theésar. the sake of completeness only, the
model problem of shearing of a thin crystalline strip, onethinost of the presented pictures are
based, is resumed. The investigations on the so-calledes@inortening, presented ihl[g), are
subsumed, and we discuss the effect of the introductioneobéitk stress on these results.

5.1 Shearing of a thin crystalline strip

Shearing of a thin crystalline strip has become the bendhprablem for the different models
of microscale plasticity. It was first posed by Shu et &3]] later addressed for example by
Cleveringa 128, Bassani 18] and Yefimov 4], and has been solved in its reduced form, see
5.1.2 with the present model in7p]. However, for the reader’'s convenience, the problem is
briefly reviewed.

5.1.1 Posing the two-dimensional problem

The simple shear of a thin crystalline strip can be modelked plane strain problem. Assume
that the deformation is homogeneous in thedirection. The normal of the strip, which has
thicknessH, coincides with thex,-direction, and a shear load is applied in thedirection, see
figure5.1

91
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Figure 5.1: The problem setting for the simple shear of a thin crystalline strip, see alse igli a
single-slip system in a constrained strip is drawn in the left part of the fegules zoomed-in in the right
part; the depicted variables have already been introduced. A sheaekpadlisplacement im; -direction
is prescribed at the top of the stripy = H. The lower boundary is fixed.

The deformation is considered as strain-driven, i.e. argdtesinl'=¢%™ is applied at the surface

x9 = H. No displacement; in the z;-direction is allowed at the bottom of the strip = 0. A
displacement:, in the x,-direction is forbidden at both top and bottom of the film. @menore

slip systems can be considered, each characterised bydleeaartlosed by the slip direction and
the z»-direction, see sectioB.1 Here we want to model symmetric double-slip, thus assuming
two slip systems withy := ¢(1) = —¢®. On each of them, initially two dislocation fields of
opposite sign are introduced, characterised by the eqdatsibuted total constant dislocation
densityo(x,) = g* and by the straight configuratiof® (z») = 0. Both fields are going to behave
symmetrically, such that only the evolution of one of thened®to be calculated, see the first
separation method presented in secRohl The strip surface is supposed to be impenetrable
for dislocations. Using the stationary approach, t&®this is in the subcritical case expressed
by the conditionsy?(0) = ~?(H) = 0 for the plastic slip. For the dynamic formulation the
conditionv(0) = v(H) = 0 accounts for the boundary conditions. These initial anchdauy
conditions complete the continuum dislocation based medeimarised in sectiors4.5 3.1
and3.2.1

A typical result for the plastic slip from a two-dimensioramputation of this problem accord-
ing to chapteBis presented in figurg.2

5.1.2 Reduction to one dimension

For the prescribed boundary conditions, we find without tfggenerality that the strip deforms
homogeneously with respect 1. Therefore, the problem can be reduced to one dimension, all
variables depending arp only. In the case of shearing under symmetric double-sBpaption,
where on both slip systems the same plastic slip resultsyi.e= 4*() = 4*()| the mechanical

1The given value ob describes the total number of dislocations on all consitistip systems. So one of the
dislocation fields on one of the two slip systems consideneatbuble-slip is characterised by the dengityi.
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Figure 5.2: Typical profile of plastic slip as resulting from the two-dimensional computatiothe
shearing problem under the assumption of symmetric double-slip wrkhLWB . Both slip systems as
introduced for the discretisation for the Lagrangian method are indicatedyith solid (magenta) lines,
and one with dashed (black) lines. The meshes overlap and partiallyeasieother.

part of the problem reduces té4q]
uf = =29 cos(2¢) with w1 (0) =0, wy(H)=TH. (5.1)

The prime denotes the derivative with respect toathelirection.
From the displacement we find the effective shear stres®islip planes:

T = —pfu] + 27P cos(2¢)] cos(2¢) . (5.2)

Analytic solution

A combination of eqs.5.1) and 6.2) shows that the shear stress is homogeneous, thatH9).

If one approximates the yield stress using the constanalimislocation density; = 7f =
auby/p, this enables one to analytically calculate the quaststdiution, table3.2, for this
special problem. Using- = 0 we find —div v = ;2-(cos ¢sin 9), which provides the solution
for the orientationy:

v T—T Teff . Teff H
= V) =— = —— V = = - (5.3
K = cos ¢(sin 1) D b = (x9) = arcsin (Mb p— ( 5 xg)) (5.3)

Given the orientation at the surfaces of the stri@,/2 < § = 9(0) = —J(H) < 0, and using
Y(H/2) =0, we find

Q/Lbsir—lHﬁcosgb s (5.4)

T=Tt +7 =
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From geometrical considerations within the slip planelg8®, we find the differential equation
for the plastic slip,
bo
2cos ¢

whereg/2 is the initial dislocation density on one slip system.

When the dislocations are critically bowed out, ile— 7 /2 at the interface, the effective shear
stress and the shape of the dislocations doesn’'t changeca@ypon increasing deformation,
but the dislocations glide in the channel. This is what wéaalpercritical configuration of the

representative dislocation. So foand, the recently derived solution usimh= —7 /2 is true:

—QMb](;OS¢ , Y(xs) = arcsin (% <§ — xz)) (5.6)

Based on the displacement, resulting as the solution to thedaoy value problem
2 2¢) bo
W = — COS( gb) 0

PP = tand, ~+P(0) =0, (5.5)

Teff = —

1= 2cos 6 tand, wuy(0)=0,u;(H)=TH, (5.7)
finally the plastic shear is given as
P _ [ _ T
Y ( rcos(20) ul) /(2 cos29) . (5.8)

This analytic solution has been used to check the qualityuoferical computations, see for
example 97, 11§|.

Remark 5.1: The numerical solution of the presented one-dimensional reduction of the shearing
problem involves the solution of the boundary value problem for the mechanical part eq. (5.1).
There are a number of elaborate techniques like for example shooting methods, collocation method
or discretisation of the problem by Finite Differences. Disregarding the boundary effects, the simplest
and most accurate solution was found by the FD method used within the Eulerian approach. Note that
FD based on the non-equidistant grid resulting from the dislocation-Lagrangian method yields a non-
constant resolved shear stress 7, figure 5.3, resulting in a slightly deviant solution for the plastic slip,
see also figure 3.3. This is due to the varying order of approximation provided by the Finite Difference
operator along the strip: for an equidistant mesh, the Taylor-expansion of the approximation error
starts with a term in h2, yielding order O(h?), whereas the error related to an approximation based
on non-equidistantly distributed nodes starts with a term h,, — h,_1, thus being of order O(h). The
exact quality of approximation in the latter case depends on the actual node distribution and thus
varies along the strip.

For high-accuracy solutions in the sub-critical region or when a back stress is considered, the Eulerian

approach is therefore favourable.

With the application of the continuum dislocation-baseddgido the shearing problem it was

observed that the model in its classical version, that isauit consideration of a back stress, can
provide an explanation for the source-shortening effeseoled in composite materials. The
following section recapitulates the results publishedLit].
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Figure 5.3: Confrontation of the resolved shear stress in the one-dimensionairghesample calculated
based on the analytic solution (diamond markers), based on FD on an &qptidiesh (black, solid line)
and on FD on a non-equidistant mesh resulting from the dislocation-Lgigramethod (magenta, dashed
lines). n = 40GPa,b = 0.256nm, o = 2 - 10"¥m=2, H = 1um, ¢ = 7/6,T = 0.26%.

5.2 Source-shortening

The work hardening behaviour of plastically non-homogeisematerials, such as composites
and two-phase alloys has been intensively studied in thensies. It has been observed that the
work hardening rate in these materials is higher than estienfiom simple theoretical models
based on the forest hardening. In this context, Asta&8} has introduced the term ‘geometri-
cally necessary dislocations’ to account for the dislacegirelated to the mesoscopic gradients
of plastic deformation in the plastically non-homogenemasterials. Being deposited in the
vicinity of the inclusions in addition to the usual ‘staitstlly stored’ ones, these dislocations
have been suggested to increase the work hardening of theosier materials. Another anal-
ysis of the work hardening in composites has been preseatedldy Brown and ClarkelR9.
These authors have suggested three contributions to thesftess: (i) the mean internal stress
in the matrix which can be estimated using the Eshelby an@kaiVori approaches, (ii) the
usual forest contribution, and (iii) the so called ‘soust®rtening’ term. The latter has been ex-
plained as the effect of the Orowan loops around the inahssieft behind by glide dislocations.
The local stresses due to the Orowan loops reduce the g#datilusion spacing by causing
the successive dislocations to stand off the fibres, thus@sing the dislocation bowing stress
above the Orowan stress. Recent three-dimensional digtiskdeation dynamics simulations of
the plastic deformation of a composite material have shdw in a plastic channel between
impenetrable inclusions, (i) dislocations of one sign acglate at each interface in the vicin-
ity of the inclusions (‘polarisation’), and (ii) the resel¢ shear stress (including the stresses of



96 CHAPTER 5. Application of the enhanced model

the individual dislocations) effectively closes up the mhel as the deformation proceed@s
This is in accord with the experiments of Prantl et 4B on fibre-reinforced aluminium, who
observed very high dislocation densities and strain graslig the vicinity of the fibres, figure
5.4. The mechanical characteristics of the composite can yedaped by models only if an in-
creased hardening is assum&87]. An unpublished length-scale independent ad-hoc modglli
of this composite confirmed, that the extraordinary higkrggth in transversal direction to the
fibres can for instance be explained by a region of increaastening surrounding the fibres.

by

P

Figure 5.4: Transmission Electron Microscope picture of the aluminium composite examirjé8ih
The fibre sections are shown as the dark circle segments in the lower<ofihe small dislocation cells
close to the fibres indicate a very high dislocation density in the vicinity of the alumifibre interfaces
compared to the interior of the matrix. (Previously unpublished figure)

The present non-local continuum dislocation-based mdbsva us to relate the above theoreti-
cal, computational and experimental results and to redenshem from a common perspective.
Consider the shearing of the thin strip first. In the calcalaipresented in secti@nl, the flow
stress has been computed from the initial reference distocdensity:7 = 7..s = auby/0. This
was only to enable the calculation of the analytic solutiblowever, due to the bowing-out of
the initially straight dislocations, the current densidgdlly grows, see equatioB.g), especially

in the vicinity of the impenetrable edges of the strip. If fl@v stress is computed according
to 7 = Teur = aub,/o, that is based on the current density, the storage of gemalgtmeces-
sary dislocations as well as the source-shortening effechecounted for by the model. This is
because in this way, the mutual short-range interactiotveds dislocations are approximately
taken into account.

The increase in dislocation densityr,) goes along with gradients of plastic strain, see the shear
strain profiles in figur®.5(a) The edge content of the originally straight screw dislmret thus
corresponds to the geometrically necessary dislocatibAstby [88], see also Nye46], which
can be computed using the continuum theory of dislocati88s This geometrically necessary
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(a) The plastic shear profile for the ‘reference’ (magertim lines),
and for the ‘current’ yield stress for different applied ahesee the
legend in subfigure (b). In the case of the ‘current’ yieless; the
dislocations stand off the interface.

—1 _,=0.15%
eff

=T =0.2% ||

---1_.,M=0.25%
eff

— T =0.3% ||

-=T1.,M=0.35%
eff

10

(b) The profile of the effective shear stres2) —7(x2) in the case of
the ‘current’ yield stress is depicted. As described® [the channels
close up during increased straining, as the absolute vdline @ffec-

tive shear stress progressively decreases in the vicifilbednterface,
up to a change in sign.

Figure 5.5: The source-shortening effect. The presented results are basedoobla-slip assumption
with parameters = +30, i = 26.3 GPa,b = 0.25 nm,v = 0.33 andg = 10m~2.

density is polarised in the sense @8], since edge dislocation content of one sign concentrates
in the vicinity of each interface. We also noted that in a lanadel (that is without an internal
length-scale), the geometrically necessary dislocatensily would collapse to a surface density
related to steps in plastic deformation at the interfacesMeighrabi [L32 and the discussion
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in [76], so there would be no source-shortening. However, in tiesgnt non-local model, the
locally varying density enters the Taylor formula for thewflstresst = 7.,.., SO the material
near the interface becomes harder, cf. the experimentaltsen [131]. The edge dislocation
content deposited along the infinitely extended interfacessponds to the Orowan loops around
finite inclusions. As it can be inferred from figubes(a) the dislocations stay off the interfaces,
so that the strip thickness is effectively reduced. Note tia profile of plastic shear is directly
related to the shape of a representative bowed-out dighocg.83. The increase in flow stress
near the interfaces also influences the profile of the effestiress-(x2) — 7(x2) that drives the
dislocation motion, see figu5(b) As the channel effectively becomes narrower, the bowing
stress necessary to sustain the dislocation motion inese@sccordingly, the source-shortening
effect is reflected in the corresponding stress-strainectivat reveals enhanced hardening, figure
5.6. In the case of the ‘reference’ flow stress the stress satugdt,.; augmented by the Orowan
stress, cf. T6]. In the case of the ‘current’ flow stress the hardening curgs, in accordance
with the source-shortening effect.

7A—curr S8 \/@ \
40 ,0—-—07-4--——0----1»
7A_ref X \/E
T
o
EZO
E
<
0 0.1 0.2 0.3 0.4
T [%)

Figure 5.6: The source-shortening effect expressed in stress-strain-clwesalculations with the ‘ref-
erence’ yield stress, the stress saturates at a shear of approxiinate)2% at a level of the ‘reference’
yield stress augmented by the Orowan stress, while for the calculationd bpse the ‘current’ yield
stress, the mean shear stress grows beyond that point, and saturdtdatemand slower.

Calculations on the composite structure introduced inse8ti4.3were performed, too, but only
for quite small deformations where the source-shortenuggtd the concentration of dislocations
at the matrix-particle interfaces has not yet a marked efiecthe results. Nevertheless, the
origin of the source-shortening effect is already evideanthe presented calculation, cf. figure
5.7. Dislocations accumulate at the boundaries to the reiefaent particles, such that the yield
stress increases accordingit@. = aub,/o. Figure 3 in P8 shows the same effect in the results
of the discrete-dislocation simulations.

The mean matrix stress, which is actually a compatibilitgst, is captured by the rigorous
continuum-mechanics framework of the model.
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Figure 5.7: Distribution of the dislocation density in the composite structure, introducedtioas.4.3

A concentration of dislocations at the interfaces between the hard angdhssies is evident: the darker
the colouring, the higher is the dislocation density. Note that the rectangutdoncement particles are
completely dislocation free.The colorbar to the right of the picture relate thespale value to the value
of the dislocation density.

5.3 The impact of the back stress on the source-shortening

In section5.2it was shown, that the classical continuum dislocatioredanodel can provide a
very simple explanation for the source-shortening effésteoved in composite structures. As
was already mentioned, this effect is normally ascribedhéofbrmation of pile-ups by Orowan
loops left behind around reinforcement particles of a casitpdoy passing dislocationd29.
These pile-ups effectively narrow the channel for subseggislocations. In terms of the present
enhanced model this means, that the back stress rathehtautrent’ yield stress is supposed
to be the primary cause for a source shortening effect.

However, the results in sectioh3.4 suggest that neither the effect represented by the Taylor
relation based on the current dislocation density, nor thribution of the pile-ups must be
ignored. Especially in the case of high dislocation deesithe effect of a local yield stress for
moderate loading even surmounts that of the back stressefighi On the other hand, for low
dislocation densities, the back stress, which in our moéepédds directly only on the dislocation
shape, not on the absolute value of the the dislocation tyeesi. @.15), is the major source of
the local hardening.

Reconsidering the case investigated in sechi@ but now taking into account the effect of the
back stress, we find that indeed both stress fields have cafipanfluence on the results.

In figure 5.8 we show parts of figur8.5 plus the corresponding results for an additional consid-
eration of the back stress. The retardation of the plasfierotion is virtually doubled in the
considered case.

Figure5.9 compares the stress-strain response for the sheared filnckhéssH = 1um for
two different initial dislocation densities according toee different approaches) ¢onsidering
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Figure 5.8: The source-shortening effect. The plastic shear profile for ther&vée’ (magenta, thin
solid lines), for only the ‘current’ yield stress considered (black, dddimes) and for both ‘current’
yield stress and back stress considered (cyan, thick solid lines) afm@d. As in completion of
figure5.5a third quantity is depicted, only three different values for the appliedrshese used, namely

I' = {0.15,0.25,0.35}%. For the considered initial dislocation density= 10'*m~2, the effects of the
Taylor-type interactions and of the back stress are comparably striwvegor€sented results are based on
parameters values = +30, u = 26.3 GPa,b = 0.25 nm, andv = 0.33. For the spatial discretisation, at
least 150 nodes were used.

the current yield stress as the only origin of the sourcetshing (square markers)j) using
the constant reference yield stress but in addition the baeks (circle markers), anii { con-
sidering both short-range stress fields (triangle markdits¢ complete disregard of short-range
interactions like in figur®.8is not investigated here, as this would result in a solutia doesn’t
show any hardening behaviour at all. In the treated loadmegtsum the underlying initial dis-
location density takes a big influence on the impact eachribotion may have. While for the
smaller value ob = 5 - 10'?m~2, the differences between the three cases are articulateanve
hardly distinguish the responses for= 5 - 10m 2.

These examples show, that neither the increase of the yiggss which is local and directly
related to an increase of the dislocation density, nor thek Is&ress, which is related only to
the dislocation shape, must be neglected when describengatrowing of channels during the
plastic deformation. Note that it is important to use a goppraximation to the real dislocation
density, as especially with respect to the short-rangednt®mns of dislocations its value has a
big effect even on the qualitative behaviour of the material
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Figure 5.9: For two different densities, the stress-strain response with and witbostderation of the
current yield stress resp. a back stress is depicted. In each triplevafs¢ihe square markered curve
represents the response with only the current yield stress considé&red curve with circle markers
is the result for a constant yield stress but a back stress taken intonaccbimally the curves with
the triangle markers stand for the solution when both contributions are wgch yields the hardest
material response. The curves for= 5 - 10"*m~2, depicted as magenta dashed lines, are virtually
indistinguishable. It shows again, that for decreasing dislocation dehsitgffect of the back stress for
moderate deformation makes a big difference to the predicted material sespdhe presented results
are based on parameters valdges- +30, p = 26.3 GPa,b = 0.25 nm, andv = 0.33. For the spatial

discretisation, at least 150 nodes were used.
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CHAPTER 6

Summary and outlook

This thesis is concerned with the continuum dislocatioselblamodel that was first presented by
SedE&cek in [70]. After a general review on the current models for plastioi thezm-scale, that
account for size effects, the set-up of the present modelr@gasned in chapte?. Two issues
were addressed in the remainder of the thesis:

(i) the numerical implementation of the continuum disloaatii@sed model for two-dimen-
sional plane-strain applications with the prospect of aptiog of the material model to
standard Finite Element software,

(i) the enhancement of the classical model by the introdudaifcan additional short-range
stress contribution, the back stress.

Implementation even for the very simple one-dimensionabfgms has revealed a difficult nu-
merical character of the material model. The investigabitthe partial differential equation sys-
tem showed that a convection-dominated convection ddfugiroblem is faced which requires
special treatment to get a stable numerical solution. Amempdenty of elaborate techniques,
the Lagrangian particle tracking method was chosen as a basbur numerical scheme. It
very naturally describes the actual ‘flow’ of dislocatiomsents as the dislocation glides, thus
accounting very well for the emerging boundary layers. Ewof the coupling to small strain
continuum mechanics, two meshes have to be organised: #teoffie as a basis for the Fi-
nite Element discretisation of the continuum mechanicblera is regular and constant in time,
while the second mesh is bound to distinct slip planes reptey) a slip system, and consists
of automatically redistributed nodes on this slip planes tBpresent the Lagrangian dislocation
segments. The MrLAB implementation for simple plane strain problems was preskim de-
tail. The aimed coupling to the Finite Element software ZeBNLcould not be completed, as
our cooperation partners had problems with the developwietite required library. However
the principles of such a coupling could be worked out andmieary work has been done and
was described in this work.
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The enhancement of the model by an additional short-ramgssstield, the back stress, yielded
reasonable and very interesting results. In advance okeeagpproaches to introduce a back
stress in deterministic continuum models the relativentagon of interacting dislocations was
considered for the actual strength of the back stress. im ofats effect on the interpretation of
the source-shortening, we consider both back stress af@jgthar relation for the yield stress as
non-negligible contributions to the short-range inteatt in our model. The enhanced model
revealed a numerically rather good-natured behaviour.skall dislocation densities it could
be shown, that the back stress counteracts the formatidreafritical boundary layer and thus
potentially simplifies the numerical implementation.

In the near future a number of issues are pending: besidedti@ing to ZeBuLoN, a detailed
investigation of the unloading/cyclic behaviour of the rabdith regard to the prediction of the
Bauschinger effect is on the list.

Moreover, we intend to incorporate an algorithm for an optiredistribution of the nodes during
the integration of the model by the Lagrangian method. Ithheen developed in the group of
Prof. M. Ben& in Prague, and is already successfully used by the grougrafotlaborator Prof.

J. Kratochwl.
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APPENDIX A

Frequently used symbols

The following tabular provides a collection of frequentlyea symbols.

Greek and fraktur symbols

S € € X" X T B o» 3

Nabla operator, for example]., &, ;)

Kroner’s dislocation density tensor

constant factor (in yield stress resp. strain energy)
distortion tensor3 = Vu

elastic and plastic part of distortion tensor

strain or deformation tensor resp. vector in Voigt notation
elastic and plastic part of strain tensor

plastic slip

dislocation line curvature

vector of Lagrangian multipliers

tangent to a lifted curve in the spasé/

elastic shear modulus

Poisson number

unit normal to dislocation line

tensor of material rotation

elastic and plastic part of rotation tensor

inclination angle characterising the slip system

(except for sectio.5, whereg is a generalised density measure)
parametric curve, describing a dislocation line
mapping defining the lift of a curve in the spagé/
scalar dislocation density (as vector oriented-direction)
constant initial dislocation density
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0 average dislocation density as referencerfor

S total length of a (dislocation) line

s arc length of a (dislocation) line

ds length of line element

o,0y,0 stress (tensor, vector in Voigt notation or scalar)
T (resolved) shear stress

Th back stress resp. pile-up stress

T yield stress

Teurr yield stress based on current dislocation density
Tref yield stress based on initial dislocation density
v dislocation line orientation

I3 unit tangent to dislocation line

Further symbols

da normal to (small) surface element

A a surface

b,b Burgers vector (vector or magnitude)

B drag coefficient

C closed curve

C elastic stiffness tensor

D coefficient in pile-up stress definition

el, es, e3 unit vectors of global coordinate system
€;,€y, €, unit vectors of slip system coordinate system
H L height and length of the considered sample/fiim
K stiffness matrix in Finite Element discretisation
L material distortion ratd, = 03/0t

dl oriented line element (of a curve f. ex.)

n slip plane normal

Pe Feclet number

s slip direction

t time

T line tension

u spatial displacements = (uy, us, us3)

V volume

v,V velocity (vector or magnitude)

v generalised velocity field (sectidh5.2

Wi, Wa ansatz or trial function for Finite Elements
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Wel
Wg

elastic strain energy of a dislocation

energy of interaction of a dislocation with a stress field
(« Peach-Koehler force)

Gibbs free energy

line energy  dislocation self force)

point in space (i.e(z,y, z) Of (1, 3, x3))

root points of discrete slip planes, secti@#4

global coordinates

coordinates of slip plane system
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APPENDIX B

Mathematical relations

Throughout the thesis, scalar variables are in normal fohtle vectors, matrices and tensors
are set boldface. The scalar product is expressed in a misimay by the- operator.
Differentials of a scalar function resp. a fieldv of one (spatial) variable, e.g:, are denoted
da/ds resp. dv/ds or, if unambiguous, abbreviated by a prime, that is e/g. The gradient
of a function / field of multiple variables, e.gz, y, z), is either explicitly written agrad () or
abbreviated using the nabla operafor= (aﬁ, 2, g). Accordingly directional derivatives, in
x y z
for example directiorg, are denoted

Vea = (Va) & = (grad (a)) - &, Ve := (V®v)é = (grad (v))€, (B.1)

where usually the position where the gradient is evaluagewbi explicitly specified. A similar
notation is used for the divergence and curl operationsgchvhare however only applicable to
fieldswv:

V.v:=div(v), Vxwv:=curl(v). (B.2)
Concerning the temporal derivatives we strictly distingletween the Eulerian (partial, i.%.)
and Lagrangian (total, i.ed/ dt) derivative. The partial derivative of a functianwith respect
to timet is sometimes abbreviated by a superposed dotge.g.

Identities

Letv(x) be a vector field ofR?, a is a scalar valued function dk®.

The following identities and ‘product rules’ hold:

curlgradv =V x (V®@wv) =0 (B.3)
diveurlv =V - (Vewv) =0 (B.4)
curl (av) = acurlv + grad (a) X v (B.5)
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div (av) = adiv v + grada - v (B.6)

grad (ab) = agradb+ bgrada (B.7)

Vectors, tensors and products
A second-order tensdF can be written as tensor product of two vectgrandgq:

T=p®q=Tue,®e =prqe; e (B.8)

The linear transformation of a vector fieddby T' can be performed as:

Tv=(p®q)v=p(qg-v) (B.9)

Note that all vector® are transformed to vectors parallelo

Stokes’ theorem

Let C' be the boundary of a surface Let furtherv(x) be a vector fieldT'(x) a second order
tensor field. Stokes theorem states:

j{vdl = /curl'v da (B.10)
c A

Tdl = /CurlT da (B.10,)
c A

Gaussian Integral theorem

Let V C R? be a compact set with piecewise smooth boundaniet the orientation of the
boundary be given by an outward normal field Consider aC! vector fieldv on an open
neighbourhood o¥/. Then it is found

/divvdV:%v-ndS. (B.11)
% S
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Some useful correlations within the slip plane coordinate system

This chapter of the appendix is a supplement to se@idnRemember the basic assumptions:
e, =8,e,=mXxX8,e,="n. (C.1)

Thus unit tangent and unit normal to the dislocation line farections of the line orientation
according to

cos v —sin ¢
E=|smd|,v=| cost | . (C.2)
0 0
Derivatives with respect to the orientatigrprovide:

o5

50 =V (C.3)
ov

o = ¢ (C3)

The divergences of line tangent and normal can be expressduatextional derivative of the
orientation:

divE = gradv-v = V, 0, (C.4)
dive = —gradd-§=—-V¢i. (C.4)

Itis also easy to see, that

gradé = v®gradd, (C.5)
divy = —£®gradd, (C.5)

and that
n-curl{ = gradv- &= —divy, (C.6)
n-curly = gradv-v =div€. (C.6)

113



114 CHAPTER C. Some useful correlations within the slip plane coordinate system




APPENDIX D

Technical notes on the used software

It is strongly recommended to realise the coupling of thetioomm dislocation-based model
with ZeBuLoN on a computer equipped with the operating sydtemx. On the utilised PC,
that is equipped with Debian-Linux, no serious problemswaity of the subsequent software
were encountered. The descriptions provided in this clndpezefore in most cases will only
apply to the usage of the software tools on Linux.

D.1 ZeBulLoN

ZeBuLoN is part of the Z-set package, which includes the Z-material constitutive model
library and the full-featured general purpose FEA solvaBdleoN. Recent activities have been
related to the development of ZeBuLoN'’s testing facilitgluding elevated temperature, fatigue
crack growth, creep and general mechanical testing cajpedil

The principal commands provided by Zset are the following:

Zmaster: graphics interface

Zrun: FE calculation

Zrun -S: Simulation on volume elements
Zrun -0: Optimisation

Zrun -pp: Batch post-processing

Zrun -m: Batch mesher

Amendments to the .bashrc

To get ZeBuLoN running, thebashrc (according to the installation path, which here was
/usr/local) has to be adjusted as follows.

#ZeBuLoN-related variables
export PATH=$PATH:/usr/local/Z8.3_Jul_15_2005:/usr/local/Z8.3_Jul_15_2005/bin
export Z7PATH=/usr/local/Z8.3_Jul_15_2005
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export Z7LICENSE=/usr/local/Z8.3_Jul_15_2005/1ib/Zebulon.zlic
source /usr/local/Z8.3_Jul_15_2005/1ib/Z7_profile

#export Z7_MAX_NB_DOF=1

export Z7_TMP_DIR=/tmp/Z7

export ZEBU_PATH=/usr/local/Zeb_mM_coupling/

Remark D.1: Bash is the shell, or command language interpreter, for the GNU operating system.
The name is an acronym for the ‘Bourne-Again SHell’, a pun on Stephen Bourne, the author of
the direct ancestor of the current Unix shell /bin/sh, which appeared in the Seventh Edition Bell
Labs Research version of Unix. A Unix shell is both a command interpreter, which provides the user
interface to the rich set of GNU utilities, and a programming language, allowing these utilitites to
be combined. When an interactive shell that is not a login shell is started, bash reads and executes
commands from /.bashrc in the respective users home directory, provided that file exists. If it is to

be read in a running shell, e.g. to updated for some modifications, one has to type
. ~/.bashrc

where the tilde refers to the user's home directory, and the leading *." is essential. This only has effect
on the shell in which it was typed! Commands in the bash are for example used to set and export
PATH variables or to define abbreviations (‘alias’) for some shell commands.

Parts of this remark were taken from the web page [133].

ZeBuLoN-mM-coupling — the zMDC-library

At Onera a library was developed that enables a coupling BuZeN with the DD-code
microMegagmM), see also sectioB.5.

The data exchanges between ZeBuLoN and mM are carried ouwtgthra parallel virtual ma-
chine, so PVM has to be installed, see below. The zMDC-libisjyst a plugin that adds some
special objects to the main code such that not all the codeadead to do some development.
Moreover, only a small share of the code has to be recompitehveomething is changed or
added in the library.

Having unpacked the zMDC.tar to sorieb_mM_coupling-directory, in theory all that has to
be done is go into the directory containing the source cotli¢h@level where a file called
‘library files’ is located), and then typgmake (or Zmake -g for debug mode), which should
generate a dynamic library called libZmdc.so (or libgZmdaespectively). Finally the library
is introduced to ZeBuLoN by defining the environment variakit€BU_PATH pointing to the
directory wherelibZmdc.so is located. In any case, if the compilation gives some erres-m
sages (always possible given the small differences betwfeeourrent version and the devel-
opment version which was worked with here), the people atr®(@&jen.roos@onera.@nd
benoit.devincre@onera)fcan be contacted.

Not all the files contained in the source directory are neddethe present purpose, because
some of them are required only for the superposition metihach is also implemented in the


http://zig.onera.fr/mm_home_page
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zMDC module.

Now, in order to see whether ZeBuLoN can load the library, gornalculation (not necessarily
dislocation-related) can be run. It has to be checked whettike very first lines of output there
is a message like

cur 3 /home/roos/Zebulon/Z8.4/External/MDC/1ibgZmdc.so Done.

If it says Done at the end of the line, the library has been successfullyaliest. Otherwise

it will say that the library could not be loaded because dsome reason, which is usually an
unresolved symbol). The main thing is that there are no enegsages associated to libZmdc.so.
To ensure this again, one may typeun -H | grep dislocation. This should provide a list
of the objects and associated keywords coming from the li&ikbrary. If it contains, for
example, something similar to

dislocation_behavior zMDC/Dislocation_behavior.c 0x0x7260d0

then it's OK.
The DD simulation is called right from within a ZeBuLoN-.infefby the key-worck*x*dislocation.
This is defined in the library (in fact, there are two lineStratic dislocation. c):

DECLARE_0BJECT (BASE_PROBLEM, PROBLEM_STATIC_MECHANICAL_DISLOCATION,dislocation)

ADD_PB_TYPE(dd,dislocation)

This means that there is a class calRROBLEM_STATIC_MECHANICAL_DISLOCATION (that de-
rives fromBASE_PROBLEM), that is associated to the keyword ‘dislocation’. The selckine says
that the command line switchdd (so : Zrun -dd + options for PVM + problem name) tells
ZeBuLoN to use the class associated to the keyword ‘dislocati



position within the what happens position within the
zMDC-library gammaplas-module
ﬁﬁtialization communication \
0 Static_dislocation.c -- open_Micromegas Z->DD 0 spawning mM
1 Static_dislocation.c -- load Z->DD 1 transfer problem name 1 nom_du_probleme
2 Static_dislocation.c -- load -- send_mesh_info Z->DD 2 transfer mesh 2 transformation_maillage
3 Static_dislocation.c -- load -- elasticity_for_dislocation Z->DD 3 transfer elasticity matrix 3 matrice_elasticite_gauss
4 Static_dislocation.c -- load Z->DD 4 send info on "new 4 redemarrage
\ calculation or restart” )

7 Static_dislocation.c -- execute -- make_increment _ 7 increment_du_temps

5 Dislocation_behavior.c -- get_strain_dislocation loop over all elements 5 increment_deformation_iteration
(called by the sequence: make_increment --
(Algorithm_mqn_dislocation.c -- convergence_loop) -- Z->DD 5 transfer increment
(Algorithm_mqn_dislocation.c -- compute_internal_reaction) -- of total deformation in

(Mcesd_std_dislocation.c -- compute_strain_for_dislocation)) Gauss points

6 Dislocation_behavior.c -- integrate loop over all elements 6 resultat_calcul
(called by the sequence: make_increment --
(Algorithm_mqn_dislocation.c -- convergence_loop) -- 7Z<-DD 6 transfer increment
(Algorithm_mqn_dislocation.c -- compute_internal_reaction) -- of plastic deformation in

(Mcesd_std_dislocation.c -- internal_reaction)) Gauss points

8 Algorithm_mqn_dislocation.c -- convergence_loop 8 poursuite_calcul

9 Static_dislocation.c -- make_increment 9 fin_calcul

7 Static_dislocation.c -- execute -- make_increment 7 increment_du_temps

Table D.1: Chart of the communication between ZeBuLoN and microMegas respedietontinuum dislocation-based model.
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Acquisition and useful links

ZeBuLoN can be downloaded from the Northwestern Numericsdpage.

Commercial ZeBuLoN: http://www.nwnumerics.com/
Home page of microMegas: http://zig.onera.fr/mmhomepage/

This is also where a lot of documentation and examples caauredf

A free license for education and research can be obtained tihe Ecole des Mines de Paris,
where a big part of the software is developed.

For licensing purposes contact efgrida.azzouz@ensmp.dr samuel.forest@ensmp.f6ome
information about the architecture of the Linux PC on whi@BHrLoN is going to be installed
is required for generating the license:

* the hostname (result of the UNIX commahdstname)
* the hostid (result of the UNIX commaribstid).

A license file ‘Zebulon.License’ is then to be copied in theedtory$Z7PATH/1ib/ to get the
license decoder working.

After installation, it should be checked if ZeBuLoN princligavorks. Tests for the different
modules are irbZ7PATH/TESTS. Having checked the access rights to the test files or having
copied them to a local directory, a quick test can be run dsvist

me@pc:$ cd $Z7PATH/TESTS/Static_test/INP
me@pc:$ Zrun aube (run FE calculation)

me@pc:$ Zmaster aube (graphics visualization of mesh/results)

zMDC is not yet part of the official ZeBuLoN distribution. Fher information on the current
status can be provided layjen.roos@onera.tr benoit.devincre@onera.fr

D.2 PVM

PVM (Parallel Virtual Machine) is a software package thaines a heterogeneous collection
of Unix and/or Windows computers hooked together by a ndtimibe used as a single large
parallel computer. Thus large computational problems @asdived more cost effectively by
using the aggregate power and memory of many computers. iie @apability, it can be used
on one machine as a message passing interface solely, tioamianage the exchange of data
between two programs running simultaneously but depenfdormg time to time on the other’s
results.

In this sense it will be used to pass data between ZeBuLoN anBdltran program that imple-
ments the time integration of the continuum dislocatioedshmodel.


http://www.nwnumerics.com/
http://zig.onera.fr/mm_home_page/
mailto:farida.azzouz@ensmp.fr
mailto:samuel.forest@ensmp.fr
mailto:arjen.roos@onera.fr
mailto:benoit.devincre@onera.fr
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Remark D.2: Actually PVM is not providing the most modern message passing interface, but rather
MPI is, so to say, the state of the art. The reason why PVM was chosen by the developers anyway is
that the spawn command was supposed to be used in order to launch the DD simulation mM, which
was not possible with MPI at that time. The latest version of MPI enables this proceeding, but it is
said to be somewhat delicate to use. After all, the capabilities of PVM are by far sufficient for the

present application.

Amendments to the .bashrc

To get PVM running, the bashrc has to be adjusted as follows.

#PVM related variables

export PVM_RO0T=/usr/1lib/pvm3

export PVM_ARCH=LINUX

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PVM_ROOT/1ib/LINUX:$PVM_ROOT/libfpvm/LINUX
export PVM_DPATH=$PVM_ROOT/1lib/pvmd

export PATH=$PATH:/$PVM_ROOT/bin/:$PVM_ROOT/1ib/

PVM and Fortran 90

To enable working with Fortran90 codes, the header filer/include/fpvm3.h has to be
adjusted. The compiler cannot work when Fortran77 and &0 style is mixed within ore
file. One possibility is to create a new one calf=dpvm3.h, where the old comment signg’

are replaced by the modern ‘I".

The compile command for a filee110 . £90 using PVM and thus including90pvm3. h then is:

gfortran -g -o hello.o hello.f90 -L/usr/lib/ -I/usr/include -1lpvm3 -1£90pvm3

Remark D.3: The /usr/include directory is a standard place for putting header-files. Probably a
direct debian installation of the PVM-package will put the header-files right there (and the libraries
to /usr/1lib). There is a simple command that provides the location of a specific file. The location

of fpvm3.h can be found by typing in a shell:

root@pc:$ updatedb
me@pc:$ locate fpvm3.h

The first command needs super user / root rights and might take some time to be executed.

PVM and Matlab

Initially, the coupling between ZeBuLoN and the continuurslatation-based model was sup-
posed to be established based onarMaB implementation of the latter. For crucial changes on
the code of the continuum dislocation-based model, thiddvprovide the fastest way to check

INote that the parses inserts the content of the header fiteinger routine where it is included.
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out the interface to ZeBuLoN. As on the ZeBuLoN side, use of P¥¢Nixed, communication

with MATLAB using PVM is required, too. Indeed, a toolbox fomM.AB has been developed
by Javier Ferandez Baldomer at the University of Granade (Spain) somesaegr. However, it

does not work with the latest version ofAVLAB at the moment.

PVM and ZeBulLoN

In ZeBuLoN, there exists a special wrapper around PVM regpmy¢taround an alternative to it,
MPI, which unifies the calling sequences. The wrapffelINTERFACE takes care of the actual
calls, so that the programmer only has to program for the pgamstead of for two different
interfaces. The one that is actually running depends ondh@mand line switches used when
running a parallel calculation with ZeBuLoN:

Zrun -PP -s MPI pvm3, or
Zrun -PP -s MPI mpi,

where in the present case thiieP (which stands for Parallel Problem) should be replaceéday
(for dislocation dynamics).

PVM in a nutshell

In this section, a brief collection of the required settifigs PVM and some basic commands
that are used in the present application is provided. Befamaing any simulation, the ‘virtual
machine’ has to be defined. PVM is launched by typpea in a shell. Enteringddd ma-
chinenamé, PVM is informed that, apart from the machine on which it lnast been launched,
processes will be run on (at least) one more machine, caigchinename Instead of adding
several machines every time PVM is launched, a host file camritien, where all machines are
listed, and which is loaded at startup. Information on theent virtual machine is displayed by
typing conf in the PVM environment. Typings gives a list of processes running on the virtual
machine,quit exits from the PVM environment, but leaves PVM running in baekground,
such that processes can still communicate. In order toyredp PVM, the commanhtalt has

to be entered. Another useful commandéset, that Kills all running PVM processes and resets
the virtual machine.

For the intended application, only very basic commands see:uSpawning of processes, that is
launching a program via PVM; identifying the PVM-procesbggheir respective IDs; packing,
sending, receiving and unpacking information. ZeBuLoN wsesapper, such that no matter if
PVM or MPI is used for the message passing, the commandsesathe. The ‘other’ partner of
the communication, e.g. represented by the implementati@0gammaplas.£90 within mM,
uses the standard Fortran commands for PVM. A collectiotn@fcommands is given in table
D.2. Details on the arguments and how to call the functions cdouloed in the PVM books and
references, see below.
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| Z-wrapper | Fortran | Effect |
mpi—gettid | pvmfmytid | getonesown ID
mpi—spawn | pvmfspawn | launch a child process
pvmfparent | get parent’s ID
mpi—initsend | pvmfinitsend| initialize buffer
mpi—pack pvmfpack adding numbers/strings to the current buffer
mpi—send pvmfsend send the buffer
mpi—recv pvmfrecv receive a buffer
mpi—unpack | pvmfunpack | get content out of the received buffer

Table D.2: Short review of the PVM commands used in the present application, both iartheage of
the ZeBuLoN wrapper and as used in Fortran code.

A log-file/protocol of the PVM session is maintained/itimp/pvml . <uid>. This is also where
the standard output of child processes is directed to. Ther@ndtail -f /tmp/pvml.<uid>
allows for tracking the content of this file. It works likess but remains uptodate as the file is
changing.

Acquisition and useful links

PVM at netlib.org :
official website of PVM:
online book: http://www.netlib.org/pvm3/book/
PVM toolbox for MATLAB and Octavehttp://atc.ugr.es/javier-bin/pvmiténg

http://www.netlib.org/pvm3/
http://www.epm.ornl.gov/pvm/

D.3 Fortran

The name ForTran is derived from ‘Formula Translator’, wihpoints out to the original inten-
tion that led to its development: the input of scientific foras to a machine was supposed to
be crucially simplified. This goal was perfectly reachedttiam is the mother of all algorithmi-
cally based scientific programming languages. In the la=idies, Fortran has been continuously
improved and standardised. The elements of the language aeatinuously advanced, where
backward compatibility was guaranteed all over the yeansusTFortran90/95 is nowadays a
very modern and structured language, which however st@lbls one to (re)use the code imple-
mented in the old-fashioned Fortran77 style.

Thus, a lot of veritable code exists, especially for elatraimerical procedures, see for ex-
amplenetlib.org Another advantage for numerical issues is Fortran’s nmagthieal structure,
enabling for example a quite intuitive handling of (multrdinsional) arrays. In this sense, it
is somewhat close to the thinking in MATLAB. This was a crug@alnt militating in favour of
Fortran90 as programming language for the implementatidimeocontinuum dislocation-based
model.

A collection of free books and tutorials on Fortran is givehdv.


http://www.netlib.org/pvm3/
http://www.epm.ornl.gov/pvm/
http://www.netlib.org/pvm3/book/
http://atc.ugr.es/javier-bin/pvmtb_eng
http://www.netlib.org
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Precompilation of fixed subroutines

Most Fortran utils come as source code in either F77 (endmnd or .for) or F90 (ending on
.f90). Usually a modern compiler can deal with both kinds ofl€. To use the subroutines
defined in such utils, like for example the integrators irglin odepack or the gnufor-util, one
possibility is to compile all the files which include subrimgis that are used at once, e.g. for the
ode-solvers

gfortran -o main.o main.f90 opkdmain.f opkdal.f opkda2.f

But in the case of very extended utils, or such which cause ahgpier to print out a lot of
warnings due to their old-fashioned style, compilatiorefuite long - every time changes are
made in the main code.

Therefore it is favourable to ‘pre-compile’ the object cadéhe utils, the source of which usually
is not going to be changed anyway, and just use the resulbjegfile when compiling the main
code. As a subroutine in general cannot be compiled staomteathe compiler has to be called
with the option-shared.

gfortran -shared -o opkd.o opkdmain.f opkdal.f opkda2.f

The object fileopkd. o in the example now contains the binaries for all three sofiltes that
have been compiled. With the object file situated in the wagldirectory, that is where the main
file is situated, and in the standard library directgiy b, it can be used from now on using the
compilation command

gfortran -o main.o main.f90 opkd.o

Remark D.4: The user may find a different, maybe more elegant way, to use shared library objects.

Another point were shared compilation is necessary is fadutes defined in separate files. A
file parameters.£90 containing thenodule parameters is compiled first by

gfortran -shared -o parameters.o parameters.f90
Henceforth it can be used in the compilation of the main pogr
gfortran -o main.o main.f90 parameters.f90,

wheremain.f90 contains the lineise parameters.

Acquisition and useful links

A Fortran compiler comes along with the Linux installatiart@matically. Hergfortran was
used, which is part of the gcc-package. It is also possibjetohe intel fortran compiler for free
- probably also for Windows.
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online book on Fotran90/95: http://www.rz.uni-bayreuth.de/lehre/fortran90/vorlesung/
odepack at netlib.org: http://www.netlib.org/ode/

bivariate interpol. at netlib.org:  http://www.netlib.org/toms/526

a short tutorial: http://www.cisl.ucar.edu/tcg/consweb/Fortran90/F90Tutorial/


http://www.rz.uni-bayreuth.de/lehre/fortran90/vorlesung/
http://www.netlib.org/ode/
http://www.netlib.org/toms/526
http://www.cisl.ucar.edu/tcg/consweb/Fortran90/F90Tutorial/tutorial.html
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Disclaimer

As the author considered it helpful for the reader, severpéHinks have been included in this
thesis.

The author is not responsible for any contents linked orrreftto in this work - unless he has full
knowledge of illegal contents and would be able to preveawikitors of his site from viewing
those pages. If any damage occurs by the use of informatesepted there, only the author of
the respective pages might be liable, not the one who hasditkthese pages.
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