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Abstract

Covariant density functional theory is used to analyse the response to the E1 and M1
electromagnetic transition operators in superfluid deformed nuclei in the framework of
self-consistent Hartree-Bogoliubov theory and relativistic quasiparticle random phase
(RQRPA) approximation. The fully self-consistent RHB+RQRPA equations are posed
for the case of axial symmetry and for three different kinds of energy functionals, and
solved with the help of a new parallel code. Special care is taken in order to validate the
proper decoupling of spurious modes. Results of the first multipole magnetic operator
(M1) response in light and heavy deformed nuclei are presented and analysed; in par-
ticular, the scissors mode and spin excitations. Qualitative agreement with experiment
is obtained for the position of the scissors mode, and its structure as a rotation of the
deformed neutron density against the deformed proton density reproduced. In addition
to the scissors mode, a soft M1 mode with strong orbital character is found in heavy
nuclei at relatively low energies. From the analysis of the proton and neutron transition
densities in the intrinsic frame, and from the structure of the RQRPA amplitudes, it is
concluded that this mode corresponds to a collective rotation of the deformed neutron
skin against the deformed proton-neutron core. The response in light and heavy nuclei
to the electric dipole operator (E1) is also given consideration. The position of the
Giant Dipole Resonance is well reproduced within the RHB+RQRPA framework in
axial symmetry. The effects of superfluidity and deformation on the Pygmy Dipole
Resonance are closely examined. Excellent agreement with recent experimental results
is found.
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“Writing in English is the most ingenious torture ever
devised for sins committed in previous lives.”

— Jame Joyce, 1882-1941
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Chapter 1

Introduction

“I am frequently astonished that it so often results in

correct predictions of experimental results.”

— Murray Gell-Mann, 1929 -

Ever since Ernest Rutherford first proposed the existence of the atomic nucleus in 1911,

considerable theoretical and experimental effort has been put into the understanding of

its basic structure and properties. Early models, like the liquid drop model which was

historically the first to be proposed, treated the nucleus as a matter continuum. It was

not until the discovery of the proton in 1918, and then later of the neutron, 1932, that

nuclear physics took its current shape as a fully fledged many-body quantum system of

strongly correlated particles. Since then it has always played an outstanding role in the

development of many-body theories and has been at the forefront of new experimental

techniques.

As one of the most active research areas from the beginning of the twentieth century,

Nuclear Physics has always required a strong link between experiments and theory.

Early experimental techniques allowed only the study of nuclei on or close to the β-

stability line and where limited to energy scales considerably smaller than the nucleon

mass. Thus, the nucleus has traditionally and successfully been described as a collection

of non-relativistic nucleons interacting through an instantaneous two-body potential,

with the dynamics given by the Schrödinger equation. However, recent advances in

experimental techniques allow for the production and study of exotic nuclei close to

the drip lines. Major experimental facilities e.g. NCSL, ORNL and ANL (USA),
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2 Introduction

GSI (Germany), GANIL (France), RIKEN(Japan), CERN (Europe), Dubna (Russia),

TRIUMF (Canada) have continually pushed the limits of our comprehension of the

nuclear system.

Although intimately related, three main areas of investigation of the strong interaction

may be distinguished: heavy ion collisions at relativistic energies that probe the nature

of quark-gluon confinement and the assumptions of the underlying QCD. Electron

and Muon scattering experiments probe the quark-gluon structure of hadrons and of

nuclei. And, finally, experiments at lower energies with beams of stable and unstable

nuclei, using Radioactive Nuclear Beams (RNB) facilities probe the structure and the

dynamics of nuclei on and far the stability line. In particular, the study of exotic

nuclei with RNB techniques encompasses new aspects of nucleonic matter: limits of

nuclear existence, halo phenomena, nuclei with extreme isospin, the nature of pairing

correlations, shell structure and magic numbers.

On the theoretical front, it is well established nowadays that QCD is the underlying

fundamental theory of strong interactions. However, the link between QCD and a

bare nucleon-nucleon force remains one of the long-term goals of nuclear theory. The

difficulty of describing quantitatively the structure and interaction of nucleons in terms

of QCD is due to its non-perturbative character at low energies. Even though, to date,

only a qualitative understanding has been possible, efforts that take the underlying

symmetries of QCD as a basis and exploit separation of scales using EFT look very

promising [53], and are already bearing fruit. Other new approaches take advantage of

the relatively low energy dynamics of the nucleus to extract a universal potential that

cuts out the high momentum part of the interaction [19].

Understanding the underlying mechanisms for effects such as neutron skins, halos, shell

closures far from the stability valley and exotic collective excitation phenomena is a

fundamental step in the theoretical efforts to achieve a consistent and unified model

of the atomic nucleus. For very light nuclei, a bare interaction complemented with a

phenomenological three body force solved in the framework of Quantum Monte Carlo

Methods provides an exact solution for the few-body problem. However, the complexity

of these no-core shell model calculations renders the method unfeasible for nuclei with

masses greater than A = 16.

Another approach, using a shell model calculation based on configuration mixing, al-

ready has been very successful in describing microscopically the nucleus for many years.

Including explicit correlations between nucleons, usually only in a restricted space of

valence nucleons, realistic modern shell model potentials are able to predict many nu-

clear properties, from bulk quantities to excited states. However, since the model space

expands quickly with the number of particles, its application is restricted to light and

to medium mass nuclei.
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For the study of heavier nuclei alternative methods have been developed, usually in

the form of self-consistent mean field theories. Their starting point is the supposition

that, in first order, the nucleons can be considered as independent particles moving in

an average field generated by the other nucleons. Phenomenological in nature, their

success in describing bulk nuclear properties all across the nuclear chart make them a

very good tool for the study of nuclear phenomena. Their roots lie in Density Func-

tional Theory: formulated as effective energy density functionals whose parameters are

adjusted to well known properties of a few selected nuclei, they can be applied univer-

sally to calculate properties of all nuclei. The best known of such functionals are the

Skyrme [158] and Gogny [58] functionals, developed over the last decades to achieve a

high level of precision in the description and prediction of experimental data.

On the same level, models based on Relativistic Density Functional Theory also offer

a very interesting tool for the study of nuclear structure phenomena. Later we shall

show, models based on Relativistic Density Functional Theory are at least as successful

as their non-relativistic counterparts, and provide several advantages compared to a

non-relativistic theory. They are, however, not devoid of problems; usually the actual

implementation is more troublesome. It starts at a more fundamental level, including

spin properties in a very natural way, and classifying different physical quantities by

their behaviour under Lorentz transformations. The appearance of a scalar S and

vector V fields is a direct consequence of relativity, that leads, for example, to a new

mechanism for saturation via the difference between the scalar and vector densities.

The absolute size of the scalar field and the time-like component of the vector field

characterise the essential features of nuclear systems, i.e. the shell structure: their

difference determines the weak nuclear mean field in which nucleons move and their

sum the strong spin-orbit term. Another effect that can only be explained with a

relativistic description is the pseudospin symmetry in nuclear spectra, known for nearly

forty years, which comes about from the fact that both fields, S and V , are almost

equal in absolute value.

Relativistic Density Functional Theory, as applied in Nuclear Physics, originates from

the basic concepts of the Walecka model [140, 121], first proposed by Teller [73, 74, 46].

The theory is based on the following assumptions: i) nucleons are treated as point par-

ticles, ii) relativity is fully taken into account and iii) nucleons move as independent

particles in the corresponding mean fields. The nucleon dynamics are described by

Dirac equations containing a mass operator including meson fields with different spin,

parity and isospin properties. In almost all implementations for nuclear matter and

finite nuclei, RDFT is used in the no-sea approximation: the contribution from the

Dirac sea of states with negative energies is neglected when calculating densities and

currents. In practical applications, a very simple combination of fields appeared to be

sufficient: isoscalar scalar field describing the long range attraction, a isoscalar vector

field that simulates the short range repulsion, a isovector vector field that takes into

3



4 Introduction

account the nuclear interaction isospin dependence, plus the photon fields carrying the

electromagnetic interaction. In lowest order, the fluctuations for these effective meson

fields are not taken into account (i.e. the fields are not quantized), leading to a semi

classical theory, and are minimally coupled with the nucleons by local vertices. How-

ever, it was soon realized that a density dependence (i.e. in-medium aware interaction)

was crucial if quantitative agreement with experimental data was to be achieved. Sev-

eral different models have been proposed to include an effective density dependence.

Historically the first was the non-linear model, proposed by Boguta and Bodmer [22],

in which the density dependence is included via non-linear self-interactions between

the scalar mesons. Another model was introduced by Brookmann and Toki [146], that

includes the density dependence explicitly in the coupling constants. Point coupling

functionals, the last to come, were first introduced by Büervenich and Madland [33].

They combine two- three- and four-body contact interactions together with derivative

terms and can be considered an expansion of the finite range propagators of the original

RMF model.

In non-closed shell nuclei, pairing correlations play a very important role. The BCS

approximation has always been a very popular scheme to treat correlations due to its

simplicity. However, it breaks down in nuclei close to the drip lines, where levels in

the continuum may be occupied. This problem can be avoided using the RHB model

[20, 21], which includes an explicit pairing channel. The most successful of RMF models

use the non-relativistic Gogny interaction in the pairing channel, as has been shown

that there is practically no mixing between small and large components of the Dirac

spinors [141, 142, 104]. Since this force has a finite range, it provides a natural cutoff,

avoiding one of the most important problems that plague BCS and other schemes

involving artificial pairing windows.

In particular, RHB theory has been successfully applied to the study of many ground

state properties in nuclei, and shows a high degree of accuracy in the reproduction of

experimental data: masses and radii, shape coexistence [91, 90, 167], halos [82, 117],

Λ-hypernuclei [84, 164], neutron and proton rich nuclei [162, 10, 86, 85, 88, 87, 156,

89, 80, 15, 104, 168, 111, 122, 149, 143], rotational bands and nuclear magnetism

[8, 44, 136, 135, 2, 3, 5, 6], superdeformations [4, 131, 7, 148, 100], etc.

The excitation phenomena in nuclei, in particular giant resonances and low-lying exci-

tations, have raised significant interest in recent years. New experimental techniques

allow the study of exotic nuclei that lie very far away from the valley of stability.

Collective modes of excitation, such as giant resonances, have been one of the most

active topics in nuclear physics. Their properties, in particular their width and posi-

tion, reflect the underlying collective dynamics of protons and neutrons and provide

a very valuable insight into the nuclear interaction. Two basic categories of giant

resonances are distinguished: electric and magnetic, corresponding respectively to ex-
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citations that involve and do not involve the spin degrees of freedom. The magnetic

multipole resonances are excited by relatively small set of scattering processes, while

electric resonances can be excited by a variety of different techniques, especially by

inelastic scattering of α particles, protons, photons, etc.

The low amplitude limit of the Time Dependent Relativistic Mean Field (TDRMF),

the Relativistic Random Phase Approximation (RRPA), is the natural extension of the

self-consistent relativistic approach to describe collective states [132]. Even though the

majority of nuclei are deformed, most self-consistent studies of the excitation response

of nuclei have been performed within spherical constraints, even when applied to axial

or triaxially deformed systems. There are many non self-consistent studies which take

deformation explicitly into account. The complexity involved and the computational

costs of solving the microscopic equations for collective excited states, however, have

delayed the appearance of fully self-consistent deformed calculations. Nevertheless,

very important and still open questions grant the quest for better and more accurate

models a relevance that is not possible to ignore. Spherical beyond-RPA studies, like

the phonon coupling and angular momentum projection models, relativistic [96] and

non-relativistic [153], try to understand and reproduce the width of the giant reso-

nances, as well as to establish the origin and properties of collective nuclear motion.

In the same spirit, deformed self consistent models are a logical extension to the

plethora of tools available in the field of nuclear structure. Questions like the isospin

dependence of the nuclear interaction lead unfailingly to focus on the realm of de-

formed nuclei, where it is undeniably necessary the proper treatment of the underlying

intrinsic symmetry. Concrete examples would be e.g. the existence and evolution of

low lying soft collective modes, the dynamics of giant resonance splitting or the nature

of magnetic spin excitations.

Deeply linked with nuclear structure, the origin of the element abundances, and the

processes leading to the formation of matter in the universe, would benefit greatly

from more accurate predictions for the reactions involved. The most prospective paths

for the formation of heavy nuclei are the s-process (slow neutron capture), r-process

(rapid neutron capture), and rp-process (rapid proton capture). It is presumed that

these rapid processes run in environments with high isospin asymmetry, and that the

subsequent β-decays are slower than the captures, resulting in the production of ele-

ments heavier than iron. Complex nuclear reaction networks used in the study of these

phenomena need the input from nuclear structure theory calculations. Therefore, it

is very desirable to be able to calculate more accurate decay rates that would help to

elucidate the origin and observed abundances of chemical elements. Deformed mean

field calculations of nuclear excitations, if shown up to the task, can provide a very

valuable input that could be the missing quantitative leap forward.

5



6 Introduction

In this work we present the development and first results of the application of the

Relativistic Quasiparticle Random Phase Approximation to axially deformed nuclei.

The RQRPA equations are formulated in the canonical basis of the RHB model for the

ground state, and solved in its matrix representation. As a first approximation, pairing

correlations are included using a monopole pairing force whose strength is adjusted to

gaps calculated from experimental even-odd mass differences. The framework is fully

self-consistent, the same interaction is used for the ground state and excited states

calculations; i.e., no new parameters are introduced at the RPA level to adjust the

interaction.

As a first application of the developed RHB+RQRPA in axial symmetry framework,

we analyze the results of sample calculations of multipole electromagnetic transitions in

light and heavy nuclei. In particular, the scissors mode, excited by the first multipole

magnetic transition operator, is studied in two representative deformed nuclei, 20Ne

and 156Gd. As examples of E1 excitations, the Giant Dipole Resonance and Pygmy

Dipole Resonance have also been studied, first in the isotope chain from 20Ne to 26Ne,

and in a representative deformed heavy nucleus, 100Mo.

This work is organized as follows. The second chapter introduces briefly the formalism

behind Density Functional Theory, and discusses the extensions required for the proper

description of the wide range of phenomena found in nuclei. The next chapter will

introduce the relativistic extension of Density Functional Theory as it is applied in

nuclear physics, with BCS as a first approximation to pairing. Chapter 4 introduces

the general Relativistic Quasiparticle Random Phase Approximation formalism as the

small amplitude limit of the Time Dependent Density Functional Theory. The next

chapter particularises for the case of axial symmetry and discusses the implications

of the reduced symmetry compared to that of the spherical case. Test cases and a

brief discussion about the numerical implementation can also be found in this chapter.

Some illustrative calculations in light, medium and heavy nuclei for the M1 and E1

transition modes are presented in the next two chapters, 6 and 7. Finally, the last

chapter is dedicated to the conclusions and a brief outlook of future applications and

improvements.
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Chapter 2

Density Functional Theory. A brief

introduction.

“Prediction is very difficult, especially if it’s about the

future.”

— Niels Bohr, 1885-1962

Density Functional Theory (DFT) is a quantum mechanical method used in many areas

of physics to investigate many-body systems. DFT is among the most popular and

versatile methods available in condensed matter physics, computational chemistry, and,

of course, nuclear physics. Novel applications relevant to fields traditionally considered

more distant from quantum mechanics like biology and mineralogy are beginning to

appear.

DFT owes this versatility to the generality of its fundamental concepts and the flexibil-

ity with which it can be implemented, despite being based on quite a rigid conceptual

framework. Traditional methods in many body quantum theory, in particular Hartree

Fock (HF) theory and its descendants, are based on complicated many-particle wave

functions. DFT promotes the local particle density ρ(r) from just one among many

observables to the status of a key variable, on which the calculation of all other observ-

able can be based. In principle, it is a simpler quantity to deal with both conceptually

and practically.

Although Density Functional Theory has its conceptual roots in the Thomas-Fermi

7



8 Density Functional Theory. A brief introduction.

model, it was not put on a firm theoretical footing until the Hohenberg-Kohn (HK)

theorems [67]. In the original article it was shown that knowledge of the local ground

state density ρ(r) implies knowledge of the ground state wave function and hence of

all other ground state observables. Even though DFT was originally a ground state

theory, it has also been successfully extended to the time-dependent domain, and used

to determine excited states [32]. Although the sequence ρ(r) → Ψ(r1, · · · , rN) → Ô
describes the conceptual structure of DFT, it does not represent what is done in actual

applications, which typically proceeded along rather different lines and does not make

explicit use of many-body wave functions.

2.1 Density Functional Theory (DFT) formalism

For a many-body system the ground state expectation value for the Hamiltonian is the

ground state energy

E = 〈Ψ0|Ĥ|Ψ0〉 = 〈Ψ0|T̂ + Û + V̂ |Ψ0〉 (2.1)

where, in the customary decomposition of Ĥ, T̂ is the kinetic energy term, Û is the

term corresponding to the interaction between particles and V̂ is an external potential.

For a given wave function Ψ one can calculate the local single particle density as

ρ(r) =

∫
d3r2 · · ·

∫
d3rNΨ?(r, r2, · · · , rN)Ψ(r, r2, · · · , rN) (2.2)

At the heart of DFT is the HK theorem, that states for ground states the previous

relation can be inverted: given a ground state density ρ(r), it is possible, in principle,

to calculate the corresponding ground state wave function Ψ0. This means that Ψ0 is a

functional of ρ(r), and consequently, all ground state observables are functional of ρ(r)

too. The crucial fact which makes this possible is that the ground state wavefunction

Ψ0 must not only reproduce the correct ground state density, but also minimizes the

energy. For a given ground state density this can be written as

Eu,0 = min
Ψ→ρ0

〈Ψ|T̂ + V̂ + Û |Ψ〉 (2.3)

where Eu,0 denotes the ground state energy in the external potential U(r). For an

arbitrary density, a general functional can be defined

Eu[ρ] = min
Ψ→ρ

〈Ψ|T̂ + V̂ + Û |Ψ〉 (2.4)

8



2.1 Density Functional Theory (DFT) formalism 9

It is conceptually useful to write the total energy functional in the following form

Eu[ρ] = min
Ψ→ρ

〈Ψ|T̂ + V̂ |Ψ〉+

∫
d3rρ(r)u(r) := F [ρ] + U [ρ] (2.5)

where the internal energy functional F [ρ] = minΨ→ρ 〈Ψ|T̂ + V̂ |Ψ〉 is independent of

the external potential v(r), and thus only determined by the structure of the operators

T̂ and V̂ . This universality of the internal energy functional allows one to define the

ground state wave function Ψ0 as that antisymmetric N-particle function such that it

delivers the minimum of F [ρ] and reproduces ρ0. If the ground state is non degenerate,

this double requirement uniquely determines Ψ0 in terms of ρ0 without having to specify

u(r) explicitly. The last three equations constitute the constrained-search proof of

the HK theorem [95, 93]. The original proof by Hohenberg and Kohn proceeded by

assuming that Ψ0 was not uniquely determined by ρ0 and showed that this produced

a contradiction to the variational principle. Since 1964, the HK theorem has been

throughly scrutinized, and several alternative proofs have been found. Thus, assuming

knowledge of the energy density functional E[ρ] for a given system, its minimization

yields the ground state density, and thus all other possible ground state observables.

However, if the ground state is degenerate a unique functional Ψ[ρ] does not exist, but

by definition these wave functions all yield the same energy so the functional Eu[ρ] still

exists, and a universal functional F [ρ] can still be defined [45]. This, however, is not

a major difficulty since the explicit wave function is not needed in actual applications

of DFT. Another conceptual problem with HK theorem is representability, that has

two sides. The first is the so called N-representability, i.e., given an arbitrary function

ρ(r), whether it is a density arising from an antisymmetric N-body wave function

Ψ(r1, · · · , rN). The second is the u-representability, i.e., given a function that can be

written as (2.2), whether does it correspond to the ground state density for a given

potential u(r). The problem of N-representability has been solved, and it can be

shown that any non-negative function can be written in terms of some antisymmetric

Ψ(r1, · · · , rN) in the form (2.2) [56, 60]. The v-representability problem is still an

ongoing investigation, although some results regarding it can be found in [37, 155, 92].

Using this very briefly outlined formalism, in theory it should be possible to calculate all

observables, since the HK theorem guarantees that they are all functionals of the local

density. In practice, however, one does not know how to do this explicitly. Moreover,

explicit expressions for T [ρ] and V [ρ] are generally not known, and one has to rely

on different approximations. The simplest of such approximations would be the local

density approximation LDA, that restricts the form of the density functionals to

F [ρ(r)] :=

∫
d3rρ(r)f(ρ(r)) (2.6)

9



10 Density Functional Theory. A brief introduction.

The LDA approximation exploits the knowledge of the density at point r, but any real

system is spatially inhomogeneous, i.e., it has a spatially varying density ρ(r). A first

attempt to include information on the rate of change of the density were the so-called

Gradient Expansion Approximations (GEA). In this class of approximation one tries

to systematically calculate gradient corrections of the form |∇ρ(r)|, ∇2ρ(r), etc., to

the LDA. In practice, the inclusion of low-order gradient corrections almost never

improves the LDA and often worsens it. A more general form of approximation is the

Generalized Gradient Approximation (GGA) [115], that replaces the expansion with

more general functions of ρ(r) and ∇ρ(r)

FGGA[ρ] =

∫
d3rf(ρ(r),∇ρ(r)) (2.7)

Although the use of the Generalized Gradient Approximation has lead to major im-

provements as compared to the Local Density Approximation, it is often not good

enough for accurate calculations. In the quest for more accurate functionals, many

beyond-GGA schemes have been developed. In chemistry and atomic physics, were the

interaction is known, functionals with phenomenological parameters and even admix-

tures with HF exchange terms have been very successfully applied. Another beyond-

GGA development is the emergence of the so called meta-GGAs, which, in addition to

the density and its derivatives, depend also on more general forms of densities, like the

kinetic energy density [113, 13, 150].

DFT, implemented within the scope of these approximations, has been very popular for

calculations in solid state physics since the 1970’s. In many cases the DFT gives quite

satisfactory results, in comparison to experimental data at relatively low computational

costs when compared to other ways of solving the quantum mechanical many-body

problem. It can be shown that the density dependent Hartree and Hartree Fock [158]

methods traditionally used in nuclear physics calculations can be linked to DFT in

a very natural way, leading to a unified description of the different models under a

common theory.

2.1.1 The Kohn-Sham approach

Density functional theory can be implemented in many ways. The direct minimization

of the energy functional is not normally the most efficient way amongst them; for

example, to date, no functional has been able to reproduce shell effects, a phenomenon

with a single-particle origin. A far more widely used is the Kohn-Sham approach, that

does not exclusively work in terms of the particle density, but brings a special kind

of wave-function, single-particle orbitals, back into the game. As a consequence the

10



2.1 Density Functional Theory (DFT) formalism 11

DFT then looks formally like a single-particle theory, although many-body effects are

still included via the so-called exchange-correlation functional. However, the Thomas-

Fermi approximation for T [ρ] is not very good. A more accurate scheme for treating

the kinetic energy functional of interacting particles is based on decomposing it into

one part that represents the kinetic energy of non-interacting particles of density ρ,

Ts[ρ], and another one that represents the remainder, Tc[ρ]

T [ρ] = Ts[ρ] + Tc[ρ] (2.8)

Ts is not known exactly as a functional of ρ, and using the LDA leads one back to

the Thomas-Fermi approximation [34], but it is easily expressed in terms of the single-

particle orbitals φi(r) of a fictitious non-interacting system with density ρ as

Ts[ρ] = − ~2

2m

∑ ∫
d3rφ?

i (r)∇2φi(r) (2.9)

because, for non-interacting particles, the total kinetic energy is just the sum of the

individual kinetic energies. Since the φi(r) are all functionals of ρ, this expression

for Ts is an explicit orbital functional but an implicit density functional, i.e., Ts[ρ] =

Ts[{φi[ρ]}], where the notation indicates that Ts depends on the full set of occupied

orbitals φi, each of which is a functional of ρ. The exact functional can be written now

E[ρ] = T [ρ] + V [ρ] + U [ρ] = Ts[{φi[ρ]}] + VH [ρ] + Exc[ρ] + U [ρ] (2.10)

where by definition Exc contains the differences T − Ts and V − VH , where VH is

the Hartree energy or classical part of the interaction. Exc is the so called exchange-

correlation functional. It is the sum of the energy due to the Pauli principle (exchange)

and the energy due to correlations. This equation is formally exact, but of course Exc is

unknown — although the HK theorem guarantees that it is a density functional. Since

Ts is written now as an orbital functional it cannot be directly minimized with respect

to ρ. The scheme suggested by Kohn and Sham [77] for performing the minimization

starts by writing the functional derivative in the form

δE[ρ]

δρ(r)
= 0 =

δTs[ρ]

δρ(r)
+
δVH [ρ]

δρ(r)
+
δU [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
(2.11)

and realizing that for a system of non interacting particles moving in an external

potential us(r) the minimization would look like

δEs[ρ]

δρ(r)
= 0 =

δTs[ρ]

δρ(r)
+ us(r) (2.12)

Comparing the last two equations, both minimizations have the same solution ρs(r) ≡

11



12 Density Functional Theory. A brief introduction.

ρ(r) if us(r) is chosen to be

us(r) =
δVH [ρ]

δρ(r)
+
δU [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
(2.13)

In particular, the equations of motion for this auxiliary system yield orbitals that

reproduce the density ρ(r) of the original system

ρ(r) ≡ ρs(r) =
A∑

i=1

φi(r)φ
†
i (r) (2.14)

Consequently, one can calculate the density of the interacting (many-body) system

by solving the equations of a non-interacting (single-body) system in the potential

us(r). The question of whether such a potential always exists in the mathematical

sense is called the non-interacting u-representability problem. As yet it is not known

if interacting ensemble-representable densities may be noninteracting pure-state rep-

resentable (i.e. represented by a single determinant), which would be convenient, but

is not necessary, for KS calculations. Usually the KS equations are solved by a self-

consistency cycle, i.e., given an appropriate initial density guess the potentials are

calculated and used to find a new density, and the process repeated until convergence

has been achieved. It should be clear that the energy eigenvalues for the orbitals are a

completely artificial objects. It is only the density that has a strict physical meaning

in the KS equations. The KS eigenvalues, on the other hand, in general bear only a

semiquantitative resemblance to the true energy spectrum, but in no account should

they be trusted. An exception is the highest occupied KS eigenvalue, that can be rig-

orously related to the first ionization energy [114, 9, 94], although this is only strictly

true for the exact functional and holds only approximately in all other cases.

2.2 Nuclear physics and Density Functional Theory ex-

tensions

Even though since its inception DFT has been very successfully applied to many-body

problems in solid state physics and chemistry, two major handicaps somewhat delayed

its adoption into mainstream nuclear physics to the beginning of the 70’s. To date, no

functional in the Local Density Approximation or Generalized Gradient Approximation

has been found which is able to reproduce shell effects, which appears as a major glitch

since the correct prediction of the magic numbers is an essential part of any microscopic

nuclear theory. It was soon realized, however, that the KS approach to the minimization

of the energy functional gives qualitatively the desired shell effects, since it basically

12



2.2 Nuclear physics and Density Functional Theory extensions 13

leads to a HF-like Schrödinger equation. Many years earlier, with the introduction of a

very strong spin-orbit force, DFT was extended to explicitly include the spin degrees of

freedom, giving birth to the spin-DFT. However, some of the strongest DFT theorems

have not been proved rigorously for spin-DFT and are only known to hold qualitatively.

In the non-relativistic approach, to introduce the spin degree of freedom, the density

is replaced by a density matrix ρss′ with s = 1, 2, and in the relativistic approach by a

spinor density matrix ρss′ , s = 1, · · · , 4. The advantage of using a relativistic theory is

the natural appearance of the spin-orbit force term without any additional parameter

or assumptions.

In addition to the spin, isospin plays a very important role in nuclear physics; the nat-

ural extension to the energy functional is to let it depend on the neutron and proton

densities separately. This introduces a major complication over the case of condensed

matter physics, where the electromagnetic interaction depends only on the charge den-

sity. In fact, in the search for an energy density functional able to quantitatively

describe ground-state nuclear properties, many of such additional explicit density de-

pendences have been identified. For example, the standard Skyrme [158] density func-

tional depends on the neutron proton density, and in addition on the kinetic energy

density τ and the spin density and currents J , and their derivatives. Because it is not

possible to know a priori whether this extensions play an important role, and although

there is a sound physical justification behind all these additions, the procedure is a trial

and error quest to find better functionals.

On the relativistic side the standard procedure is to write an interaction Lagrangian

with the desired degrees of freedom, and from there to derive an energy density func-

tional as the basis for the minimization. For finite nuclei, this minimization procedure

is always based on the KS approach, as will be briefly outlined in the next chapter.

However, such a density functional is not enough to quantitatively describe nuclei. For

example, nuclear superfluidity cannot be explained without particle-particle correla-

tions. Thus, the inclusion of an abnormal density, which takes into account the effects

of open-shells, is of the utmost importance; without it, the description of nuclei would

be only of a very qualitative nature.

In the next chapter we will follow this path, first obtaining a density functional based

on a relativistic Lagrangian which includes the minimum set of interactions able to

reproduce basic nuclear features. To obtain quantitative agreement with experimental

data, however, one needs to introduce an explicit density dependence in the interaction.

This can be achieved using two different approaches: with the explicit inclusion of field

non-linearities, or, alternatively, with density dependent field-nucleon couplings. We

will present both methods, and then extend the density functional to include particle-

particle correlations.

13
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Chapter 3

Relativistic Density Functional Theory

and the nuclear many-body problem.

“Before I came here I was confused about this subject.

Having listened to your lecture I am still confused. But

on a higher level.”

— Enrico Fermi, 1901-1954

DFT was first applied to atomic systems, were in principle the interaction is known

(the electromagnetic interaction). The picture in nuclear physics is not so encouraging

because one major obstacle plagues a straightforward application of DFT, namely that

the exact nuclear force has still, and despite almost half a century of study, not been

completely determined.

The current trend in nuclear physics DFT is to use a purely phenomenological force,

analogous to the approach used in the atomic physics case so successfully. As many

symmetries as possible are included in a model functional that depends on as few

parameters as possible. One then adjusts these parameters to bulk properties of nuclear

matter and a few selected finite nuclei. The parameters set thus obtained can then

be used over the whole nuclear chart, and the quantitative agreement with available

experimental data is quite remarkable [158, 165, 58].

Historically known as Relativistic Mean Field (RMF) theory, Lorentz-invariant den-

sity functionals have been used to successfully describe many properties of nuclei.

15



16 Relativistic Density Functional Theory and the nuclear many-body problem.

Starting with a fully covariant effective Lagrangian, an energy density functional is

constructed, and the Kohn-Sham theory applied to derive Hartree-like single-particle

equations whose self-consistent solution give the ground-state density. The actual con-

struction of the energy density functional is based on the Walecka model, which includes

the minimal set of degrees of freedom to qualitatively reproduce basic nuclear proper-

ties such as saturation. Quantitative agreement with experiment is then achieved by

extending the basic functional with explicit density dependences and pairing correla-

tions.

3.1 Relativistic Mean Field (RMF) theory

In the Walecka model [165] and its extensions, nucleons are described as Dirac point

particles that interact by the exchange of virtual mesons (or, in the case of point cou-

pling models, contact terms). The energy functional that describes the dynamics of

the nuclear system is derived from a fully covariant effective Lagrangian. The meson

degrees of freedom are chosen as the minimum set of interactions required to properly

describe the nuclear system properties, and are characterized by their characteristic

quantum attributes: parity, spin and isospin. The meson masses and their coupling

constants to the nucleons thus parametrize the actual interaction. The model used

throughout this work is the simple (σ,ω,ρ,γ) model [121, 139]. An scalar-isoscalar field

σ mediates the medium-range attraction between nucleons. It is an effective field whose

origin lies in many complex effects, for example two-pion resonances and QCD combi-

nations of quark-antiquark pairs and gluons. A vector-isoscalar field ω is introduced to

model the short range repulsion. And finally the isospin dependence of the nuclear force

is taken into account by a vector-isovector field ρ. In principle one should also include

one-pion exchange in the formulation of the Lagrangian, as it is the basic ingredient

of the nuclear force. However it does not enter at the classical Hartree-level because

it leads to a parity-breaking field, which has not been observed in nuclei. However, as

already stated, two-pion exchange is included in a phenomenological way within the

σ field. The electromagnetic interaction is also taken into account by including the

photon field γ, generated by the vector potential Aµ. The effective Lagrangian density

can thus be written

L = LN + Lm + Lint (3.1)

where LN refers to the free nucleon propagation

LN = ψ(iγµ∂µ −m)ψ (3.2)

16



3.1 Relativistic Mean Field (RMF) theory 17

Lm is the Lagrangian for the free meson and electromagnetic fields,

Lm =
1

2
∂µσ∂

µσ − 1

2
m2

σσ
2 − 1

4
ΩµνΩ

µν

+
1

2
m2

ωωµω
µ − 1

4
~Rµν

~Rµν +
1

2
m2

ρρµρ
µ − 1

4
FµνF

µν (3.3)

where the field tensors are defined as

Ωµν = ∂µων − ∂νωµ (3.4)

~Rµν = ∂µ~ρν − ∂ν~ρµ (3.5)

Fµν = ∂µAν − ∂νAµ (3.6)

where the arrows indicate isovectors. And finally Lint is the nucleon-meson coupling

interaction, which is restricted in this simple model to minimal linear coupling.

Lint = −ψ̄Γσσψ − ψ̄Γµ
ωωµψ − ψ̄Γµ

ρ~ρµψ − ψ̄Γµ
eAµψ (3.7)

where the vertexes Γ read

Γσ = gσ, Γµ
ω = gωγ

µ, Γµ
ρ = gρ~τγ

µ, Γµ
e = e

1− τ3
2

γµ (3.8)

with the nucleon-meson couplings gσ, gω, gρ and e. The Hamiltonian density can be

derived from the Lagrangian density as the (0,0) component of the energy-momentum

tensor

H = T 00 =
∂L
∂q̇j

q̇j − L (3.9)

leading the to the energy functional

E =

∫
Hd3r (3.10)

Following the Kohn-Sham approach of section (2.1.1), one can express the relativistic

energy density E as a functional of the single particle density

ρ̂(r, r′, t) =
A∑

i=1

|ψi(r, t)〉〈ψi(r
′, t)| (3.11)

and the meson fields φ = (σ,ω,ρ,γ), leading to the standard relativistic energy density

functional ERMF

ERMF [ρ̂, φ] = Tr[(−iα∇ + βm)ρ]± 1

2

∫
d3r

[
(∂µφm)2 +m2

m

]
+ Tr[(Γmφm)ρ] (3.12)

where summation over the mesons is implied, the trace operation involves summation

over Dirac indices and an integral over the whole space and Γm describes the meson-

17



18 Relativistic Density Functional Theory and the nuclear many-body problem.

nucleon interaction. At the mean field level the meson are treated as classical fields.

The nucleons, described by a Slater determinant |Φ〉 of single-particle wave functions,

move independently in these classical meson fields. One can thus apply the classical

time-dependent variational principle

δ

∫ t2

t1

dt{〈Φ|i∂t|Φ〉 − E[ρ, φm]} = 0 (3.13)

that leads to the equations of motion

i∂tρ = [h[ρ, φ], ρ] (3.14)[
∂µ∂µ +m2

m

]
φm = ±Tr [Γmρ] (3.15)

where the single particle effective Dirac Hamiltonian h is the functional derivative of

the energy with respect to the single particle density

h[ρ, φm] =
δE[ρ, φm]

δρ
(3.16)

Using the explicit expansion for the density (3.11) in terms of single particle wave

functions the equations of motion (3.14) and (3.15) can be cast into the standard form

[γµ(i∂µ + Vµ) +m+ S]ψ = 0 (3.17)[
� +m2

m

]
φm = ±

∑
i

ψ̄iΓmψi (3.18)

where the scalar S and vector Vµ potentials are defined by

S = Σs

V = Σv
0 + Σtv

0 + eA0 (3.19)

with the self-energies for the meson fields given by

Σs = −gσσ (3.20)

Σv
0 = gωω

0 (3.21)

Σtv
0 = gρτ3ρ

0
3 (3.22)

It is customary to define a set of densities and currents that act as the sources for the

different meson fields in their respective equations (3.18), and label them accordingly.

Thus, the source for the σ meson would be the scalar density, for the ω meson the
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3.1 Relativistic Mean Field (RMF) theory 19

vector current, and so on:

scalar− isoscalar ρs =
A∑
i

ψ̄ψ

vector− isoscalar jµ =
A∑
i

ψ̄γµψ

vector− isovector ~jµ =
A∑
i

ψ̄γµ~τψ

electromagnetic jµ
c =

A∑
i

ψ̄
1

2
(1 + τ3)γ

µψ (3.23)

In order to describe the ground state properties of nuclei, one has to look for stationary

solutions of the equations of motion (3.14) and (3.15).

[h[ρ, φm], ρ] = 0 (3.24)

[
−∆ +m2

m

]
φm = ±

∑
i

ψ̄iΓmψi (3.25)

The source densities and currents then retain only the time-like components

scalar− isoscalar ρs =
A∑
i

ψ̄ψ

vector− isoscalar ρv =
A∑
i

ψ̄γ0ψ

vector− isovector ρtv =
A∑
i

ψ̄γ0τ3ψ

electromagnetic ρc =
A∑
i

ψ̄
1

2
(1 + τ3)ψ (3.26)

and the nucleon wave functions are then the eigenvectors of the stationary Dirac equa-

tion,

[−iα∇ + V0 + β(m+ S)]ψk = εkψk (3.27)

which yields the single particle energies εk as eigenvalues. Because we are restricting

ourselves to the study of even-even nuclei, we have taken advantage of the fact that

in that case there are no net currents, and the corresponding spatial components of

the vector potential V vanish. Equation (3.27) together with equations (3.25) pose a

self-consistent problem. Starting with an initial guess for the potentials S and V , one

solves the Dirac equation (3.27) for ψk, which in turn are used to calculate the source
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20 Relativistic Density Functional Theory and the nuclear many-body problem.

terms in the meson equations (3.25). Solving for the fields, new scalar S and vector V

are obtained, and the cycle repeated until convergence has been achieved. With the

resulting density ρ and fields φ, the total energy of the system can be calculated using

(3.12), as well as other bulk properties of the nucleus, like radii. The total binding

energy thus obtained has to be corrected by the microscopic estimate for the energy of

the center-of-mass motion

Ecm = −〈P
2
cm〉

2Am
(3.28)

where Pcm is the total momentum of a nucleus with A nucleons [16]. It should also

be noted that in the calculation of the sources for the meson equations (3.25) only

positive energy spinors are included in the summation. This is the so-called no-sea

approximation. In a fully relativistic description also the negative energy states from

the Dirac sea would have to be included. However, this would lead to divergent terms

which can only be removed by a proper renormalization procedure. However, then

one obtains a set of equations that can only be solved numerically [61] for finite nuclei,

although an analytical solution for infinite nuclear matter can be found [38]. Numerical

studies have shown that effects due to vacuum polarization can be as large as 20%-30%.

Their inclusion requires a readjustment of the parameter set for the effective Lagrangian

that leads to approximately the same results as if they were neglected [68, 166, 172],

i.e. they are taken into account in the parameters in a global fashion. Therefore the

no-sea approximation is used in almost all practical applications of relativistic Density

Functional Theory. It will have, however, serious consequences in the application of

the Random Phase Approximation for the calculation of excited states.

3.2 Density dependence

Even in the earliest applications of the simple Walecka model, it was realized, that this

simple linear interaction density functional did not provide a quantitative description of

complex nuclear systems. An effective density dependence must be introduced, which

gave birth to the different density-dependent relativistic energy density functionals.

Two basic procedures have been used to that purpose. Historically the first was the

introduction of non-linear self-interaction terms in the meson part of the Lagrangian.

These functionals will be labeled from now on as Non Linear Meson Exchange func-

tionals, or NLME for short. The other approach is to include the density dependence

in the meson-nucleon couplings, retaining linearity in the Lagrangian. These will be

referred to as Density Dependent Meson Exchange (DDME) functionals. In addition,

and latest to be developed, expansion of the meson propagator into zero-range cou-

plings and gradient correction terms results in point coupling functionals. These will

be referred as Density Dependent Point Coupling (DDPC) functionals.
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3.2 Density dependence 21

3.2.1 Meson exchange with non-linear σ-meson self-interaction

(NLME functionals)

First introduced by Boguta and Bodmer [22], the quadratic σ-potential 1
2
m2

σσ
2 in (3.3)

is replaced with a quartic potential

1

2
m2

σσ
2 → Uσ(σ) =

1

2
m2

σσ
2 +

g2

3
σ3 +

g3

4
σ4 (3.29)

that includes the non-linear σ self-interactions in a phenomenological fashion with

two additional parameters g2 and g3. The only practical difference with the linear

relativistic density functional is that an additional term appears in the σ field equation,

and becomes, in the time independent case,

[−∆ + U ′
σ(σ)]φ = ρs (3.30)

with

U ′
σ(σ) = m2

σ + g2σ
2 + g3σ

3 (3.31)

which renders it unsolvable analytically and one has to resort to numerical techniques

[130]. The adjustment of the non-linear parameters g2 and g3 to surface properties

of finite nuclei gives, in many practical cases, a negative value for the parameter g3,

leading to an unstable theory. However, in the limit of moderate densities, as found in

normal nuclei, the σ field is small, and the potential U(σ) attractive, which results in

a reasonable solution [22, 130].

This particular form of the non-linear potential has become standard in realistic ap-

plications of relativistic Density Functional Theory to nuclei, although additional non-

linear interaction terms, both in the isoscalar and isovector channels, have been consid-

ered [161]. The problem with the inclusion of additional interaction terms is, however,

that the empirical data set of bulk and single-particle properties of finite nuclei can only

determine six or seven parameters in the general expansion of the effective Lagrangian

in powers of the fields and their derivatives [161].

There are eight free parameters in the non-linear σ-meson density functional: the meson

masses mσ, mω, mρ, and their coupling constants.gσ, g2, g3, gω, and gρ. The mass of

the ρ meson is fixed to the experimental value, i.e.

mρ = 763.0 MeV (3.32)

while for the proton and neutron nuclear masses the average value of empirical masses

is taken to be

m = 939.0 MeV (3.33)
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22 Relativistic Density Functional Theory and the nuclear many-body problem.

NL3
m 939.0 MeV
mσ 508.194 MeV
mω 782.501 MeV
gσ 10.217
gω 12.868
gρ 4.474
g2 -10.431 fm−1

g3 -28.885

Table 3.1: NL3 parameter set for the non-linear σ-meson energy density
functional [83].

This reduces the number of free parameters of the model to seven, which are fitted to

experimental ground state properties. In the present investigation the NL3 parameter

set (see Table 3.1) will be used as representative of the non-linear σ-meson relativistic

energy density functionals. It has been used extensively to study the nuclear structure

phenomena from light to super-heavy elements, both in stable and exotic nuclei. Special

care was taken to fit the parameters not only to ground state properties of stable nuclei,

but also of 132Sn and 214Pb to obtain an improved isospin dependence of the interaction

for unstable nuclei [83].

3.2.2 Meson exchange with density dependant couplings constants

(DDME functionals)

The limitations of the standard non-linear σ-meson effective interactions presented in

the previous section are well known, even for nuclei close to the stability line. They

are more pronounced in the isovector channel, which is poorly constrained by the

available experimental data. It is also well known that they predict an equation of

state of neutron matter that is very different from the standard microscopic many-

body neutron matter equation of state of Friedman and Pandharipande [52].

In order to overcome the limitations of the standard non-linear functionals, several

solutions have been proposed. One, already commented in the previous section, is

to include additional self-interaction terms in the isovector and isoscalar channels.

Another possibility is to formulate an effective theory with medium dependent meson-

nucleon couplings. In such a theory the couplings gσ, gω and gρ are assumed to be

vertex functions of Lorentz scalar bilinear forms of the nucleon operators. In most
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applications they depend on the vector density

ρv =
√
jµjµ, with jµ = ψ̄γµψ (3.34)

The other obvious choice would be the scalar density, but it has been shown, however,

that the vector density dependence gives better results for finite nuclei [54], and pro-

vides a more natural relation to the microscopic self-energies of Dirac-Brueckner theory

[66]. The basic interaction Lagrangian is thus (3.7) where now the nucleon-meson cou-

plings exhibit a dependence on the vector density (3.34). This dependence produces a

vector rearrangement self-energy Σv,R
µ that has to be added to the vector potential V

Σv,R
µ =

jµ
ρv

(
∂gσ

∂ρv

ψ̄ψσ +
∂gω

∂ρv

ψ̄γνψων +
∂gρ

∂ρv

ψ̄γν~τψ~ρν

)
(3.35)

which reduces in the stationary case to

Σv,R
0 =

∂gσ

∂ρv

ρsσ +
∂gω

∂ρv

ρvω
0 +

∂gρ

∂ρv

ρtvρ
0
3 (3.36)

with the densities defined in (3.26). Thus the scalar S and vector V potentials in the

Dirac equation read

S = Σs

V = Σv
0 + Σtv

0 + eA0 + Σv,R
0 (3.37)

Even though the density dependence of the nucleon-meson couplings can, in principle,

be obtained from microscopic Dirac Brueckner (DB) calculations [66, 43], only qual-

itative agreement is found when calculating ground-state properties of finite nuclei.

A better approach [154] is to choose an ansatz that encloses the different DB results

but leaves the parameters of the density dependence free to be fitted to properties of

nuclear matter and finite nuclei. The most often used functional form for the σ and ω

mesons is

gi(ρv) = gi(ρsat)f(xi) for i = σ, ω (3.38)

where

f(xi) = ai
1 + bi(x+ di)

2

1 + ci(x+ di)2
(3.39)

is a function of xi = ρi/ρsat, and ρsat denotes the saturation density of symmetric

nuclear matter. Not all parameters in (3.39) are independent. From (3.38) it is fairly

obvious that

fi(1) = 1 (3.40)
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DD-ME2
mσ 555.1238 MeV
mω 783.0000 MeV
mρ 763.0000 MeV

gσ(ρsat) 10.5396
gω(ρsat) 13.0189
gρ(ρsat) 3.6836
aσ 1.3881
bσ 1.0943
cσ 1.7057
dσ 0.4421
aω 1.3892
bω 0.9240
cω 1.4620
dω 0.4775
aρ 0.5647

Table 3.2: DD-ME2 parameter set for the density dependent meson exchange
relativistic energy functional [81, 103].

Also, in reference [54] the following restrictions are imposed

f ′′σ (1) = f ′′ω(1) (3.41)

f ′′i (0) = 0 (3.42)

in order to keep the number of parameters of the density dependence down to three.

The last condition also guarantees that the rearrangement contribution becomes finite

at zero density. In the parametrizations used in the present investigation (Table 3.2),

bσ, dσ and bω were chosen as the independent parameters of (3.39), plus the two values

for the couplings at saturation density, gσ(ρsat) and gω(ρsat), making a total of five

parameters for the isoscalar channel. The functional form for the ρ-meson coupling is

taken from DB calculations of asymmetric nuclear matter [43].

gρ(ρ) = gρ(ρsat)e
−aρ(x−1) (3.43)

That adds two more parameters, gρ(ρsat) and aρ, in the isovector channel. The ω and

ρ meson masses are the standard bare masses mω = 783 MeV and mρ = 763 MeV,

while the σ meson mass is a free parameter. It adds up to eight parameters in total.

Compared to the standard non-linear σ model, one more parameter is included in the

isovector channel, and a better description of isovector properties of nuclear matter

and finite nuclei is obtained [103].

24



3.2 Density dependence 25

3.2.3 Point coupling with density dependant couplings constants

(DDPC functionals)

Similar to the finite range relativistic density functional approach, the DDPC function-

als consider an effective Lagrangian for nuclear mean-field calculations at the Hartree

level with the no-sea approximation. Instead of modeling the interaction by the ex-

change of mesons, in DDPC the model consists in four-, six- and eight-fermion point

couplings (contact interactions) together with derivative terms representing, respec-

tively, two-, three- and four-body forces and the finite ranges of the corresponding

mesonic interactions. In many applications, however, the three- and four-body forces

can be modeled by density dependent two-body coupling constants whose dependence

is polynomial. In fact, DDPC functionals are closely related to finite range relativistic

functionals. Expanding the finite range meson propagators into a zero-range coupling

plus gradient corrections we can link both. For example, for the σ-meson

−g2
σ

−∆ +m2
σ

ρs ≈
−g2

σ

m2
σ

ρs +
−g4

σ

m4
σ

∆ρs (3.44)

It is usual practice to define a new set of coupling constants G and δ such that

Gm =
g2

m

m2
m

δm =
g4

m

m4
m

(3.45)

In general the Lagrangian for these point coupling models can be written as

L = LN + Lint + Lem (3.46)

where, naturally, the mesons are missing. The Lagrangian for the free nucleons LN

remains the same as (3.2), and the interaction Lagrangian Lint has the form

Lint = −1

2
Gs

(
ψ̄ψ

) (
ψ̄ψ

)
− 1

2
Gv

(
ψ̄γµψ

) (
ψ̄γµψ

)
−1

2
Gts

(
ψ̄~τψ

)
·
(
ψ̄~τψ

)
− 1

2
Gtv

(
ψ̄γµ~τψ

)
·
(
ψ̄γµ~τψ

)
−1

2
δs

(
∂νψ̄ψ

) (
∂νψ̄ψ

)
− 1

2
δv

(
∂νψ̄γµψ

) (
∂νψ̄γµψ

)
−1

2
δts

(
∂νψ̄~τψ

)
·
(
∂νψ̄~τψ

)
− 1

2
δtv

(
∂νψ̄γµ~τψ

)
·
(
∂νψ̄γµ~τψ

)
(3.47)

Finally, the electromagnetic interaction

Lem = −ψ̄Γµ
eAµψ −

1

4
FµνF

µν (3.48)
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with Γµ
e defined in (3.8). In most applications [12, 71], the coupling constants G ex-

hibit a polynomial density dependence, but unlike in the DDME functionals, each one

depends on its density (3.26)

Gi(ρi) = αi + βiρi + γiρ
2
i , i = s, v, ts, tv (3.49)

The scalar S and vector V potentials for the Dirac equation are

S = Σs + Σts

V = Σv
0 + Σtv

0 + eA0 (3.50)

with the self energies

Σs = αsρs + βsρ
2
s + γsρ

3
s + δs∆ρs (3.51)

Σv = αvρv + βvρ
2
v + γvρ

3
v + δv∆ρv (3.52)

Σts = αtsρts + βtsρ
2
ts + γtsρ

3
ts + δts∆ρts (3.53)

Σtv = αtvρtv + βtvρ
2
tv + γtvρ

3
tv + δtv∆ρtv (3.54)

(3.55)

The total number of possible parameters is thus sixteen, but the most common parametriza-

tions (see Table 3.3) use a number comparable to the DDME models, ranging from nine

to eleven. However, the real world performance of this type of functionals is inferior

when compared to the excellent predictive power of the NLME and DDME functionals.

This is partly due to their recent development and the lack of good parametrizations.

However, the simplicity of the DDPC functionals, and the reduced numerical com-

plexity required in the actual implementation, mark them as very good candidates for

future development.

3.3 Relativistic Hartree Bogoliubov (RHB) theory

In nuclei with open shells the Relativistic Mean Field picture of independent nucleons

moving in an average potential is no longer a sufficient picture. In many cases, the gap

in the single-particle energy spectrum prevents the independent particle picture from

breaking down. In particular, doubly closed shell nuclei have a large energy gap and for

them the Mean Field solution is especially good, since it takes a lot of energy to scatter

particles out of their orbitals. However, for the rest of nuclei, the MF solution may

have a small energy gap and completely lack such stability. In many of those cases,

allowing the Mean Field solution to deform restores the energy gap. Even then that

is generally not enough to sustain the independent particle picture. The static field

used in the MF description corresponds to the low multipoles of an expansion of the
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PC-F1
αs -3.83577 ·10−4 MeV−2

βs 7.68567 ·10−11 MeV−5

γs -2.90443 ·10−17 MeV−8

δs -4.1853 ·10−10 MeV−4

αv 2.59333 ·10−4 MeV−2

γv -3.879 ·10−18 MeV−8

δv -1.1921 ·10−10 MeV−4

αts -.-
δts -.-
αtv 3.4677 ·10−5 MeV−2

αtv -4.2 ·10−11 MeV−4

Table 3.3: PC-F1 parameter sets for the density dependent point coupling
functional [33].

two-body force, and so the inclusion of deformations is an attempt to take into account

as much as possible from the two-body interaction. In competition with the effect of

the long range field forces, the short range forces try to scatter particles out of their

independent-particle orbitals. These short range correlations are totally neglected in

the pure Mean Field approach. In general, the pairing correlations are accounted for

in the quasi particle picture by the introduction of an additional field, i.e. the pairing

potential. They cannot be included in the classical Lagrangian because at that level

it does not contain terms of the form ψ†ψ†. In order to include pairing correlations

in a microscopic way, the meson fields need to be quantized, so as to gain one meson

exchange two-body forces [79]. One can, however, follow a phenomenological approach

and introduce a generalized density R [157]

R =

(
ρ κ

−κ? 1− ρ?

)
(3.56)

where ρ is the single-particle density and κ is the pair density, defined as

ρij = 〈Φ|c†jci|Φ〉
κij = 〈Φ|cjci|Φ〉 (3.57)

such that the ground state of a nucleus |Φ〉 can be represented as a vacuum with respect

to the operators

αk |Φ〉 = 0 (3.58)

The most general form for α such that its associated single particle density is non-zero

is

α†k =
∑

k

Umkc
†
m + Vmkcm (3.59)
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where Umk and Vmk are the so called Hartree-Bogoliubov coefficients, and determine

the single particle density matrix

ρij =
∑

k

V ∗
ikVjk (3.60)

and the pairing density

κij =
∑

k

U∗
ikVjk (3.61)

In a DFT approach, one can extend the energy functional and make it depend also on

the pairing density

E[ρ, κ, φ] = ERMF [ρ, φ] + Epair[κ] (3.62)

where ERMF is one of the functionals introduced in the preceding sections. In addition,

the pairing energy density Epair is also included. It can be written in a general form

as

Epair[κ] =
1

4
Tr[κV ppκ] (3.63)

The equations of motion (3.14) and (3.15) now depend on the generalized density R

i∂tR = [H(R, φ),R] (3.64)

where H is the generalized single-particle field, i.e. the Hartree-Bogoliubov effective

Hamiltonian

H =
δE

δR
=

(
hD −m− λ ∆

−∆∗ −hD +m− λ

)
(3.65)

The Relativistic Hartree Bogoliubov effective Hamiltonian contains now two average

potentials: the self-consistent mean field hD, which encloses all the long range particle-

hole correlations, and the pairing field ∆, which includes the short range particle-

particle correlations. The former results from the variation of the energy functional

with respect to the normal density ρ, and the later from the variation with respect to

the abnormal density κ

hD =
δE

δρ
∆ =

δE

δκ
(3.66)

The ground state is obtained from the static limit of (3.64), i.e. the Hartree-Bogoliubov

equations (
hD −m− λ ∆

−∆∗ −hD +m− λ

) (
Uk

Vk

)
= Ek

(
Uk

Vk

)
(3.67)

When the pairing force is diagonal in the Hartree basis defined by hD, the general

Bogoliubov-Valatin transformation (3.59) simplifies to

α†k = uka
†
k − vka

†
k̄

(3.68)
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with the usual normalization condition

u2
k + v2

k = 1 (3.69)

In general, when the off-diagonal elements of the pairing interaction, in the Hartree

basis, are small when compared to the diagonal ones, they can be neglected at each

iteration step in the self-consistent process, leading to the BCS approximation and

the simplification of the Bogoliubov-Valatin transformation. In that case, the HFB

equation decouples into a set of two independent equations, one for the self-consistent

mean field hD which is identical to the usual RMF one but with an additional Lagrange

parameter λ to preserve the number of particles, and the so called gap equation

∆kk̄ = −1

2

∑
k>0

V ph

kk̄k′k̄′

∆k′k̄′√
(εk − λ)2 + ∆2

kk̄

(3.70)

that together with the particle number constraint,

2
∑
k>0

v2
k = N (3.71)

the Dirac equation (3.27) and the meson equations (3.25) define the self-consistent

stationary problem. The coefficients for the Bogoliubov-Valatin transformation u and

v can be readily calculated from the last two equations and read

u2
k =

1

2

1 +
εk − λ√

(εk − λ)2 + ∆2
kk̄


v2

k =
1

2

1− εk − λ√
(εk − λ)2 + ∆2

kk̄

 (3.72)

with the quasi-particle energies Ek defined by

Ek =
√

(εk − λ)2 + ∆2
kk̄

(3.73)
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The source densities for the meson equations have to be modified accordingly to take

into account each single-particle occupation factor vi in the following way

ρs =
∑

i

v2
i ψ̄ψ

jµ =
∑

i

v2
i ψ̄γµψ

~jµ =
∑

i

v2
i ψ̄γ

µ~τψ

jµ
c =

∑
i

v2
i ψ̄

1

2
(1 + τ3)γ

µψ (3.74)

The effective pairing force V pp in its simplest form, and the approach taken in this

investigation, is to use a monopole pairing force. This corresponds to a truncation to

first order in the multipole expansion of the short range correlations, keeping only the

J = 0 term. While this is often a good approximation for the description of nuclei close

to the valley of β-stability, it does not provide a correct description for the scattering

of nucleon pairs from bound states to the energy continuum [70]. This effect becomes

more important as the Fermi level comes closer to the particle continuum in nuclei close

to the drip lines. Nevertheless, as a first approximation to the problem it suffices as it

lays the ground work for a more complete description that can be implemented later

on. Thus, restricting to a monopole pairing force, the interaction V pp can be written

as

V pp = −G δīiδjj̄ (3.75)

where the bar refers to time reversed states and G is the pairing constant, which is

different for neutrons and protons. Because the monopole V pp is diagonal in the Hartree

basis defined by hD, this leads to a BCS-like pairing theory. This special ansatz for

V pp modifies the gap equation to

G

2

∑
k>0

1√
(εk − λ)2 + ∆2

= 1 (3.76)

where the gap parameter ∆ is the same for all the levels in the basis space and the

pairing constants G specify the strength of the pairing interaction. This pairing scheme

has the advantage of being extremely simple. However, it has the undesired property of

depending on the configuration basis chosen to solve the static equations. In particular,

equation (3.76) is unbound in the sense that all the levels in the basis contribute to the

pairing energy, not only those close to the Fermi energy. Thus, in order to make the

pairing energy non-divergent, it is important to introduce a cutoff factor that restricts

the sum in (3.76) to the vicinity of the Fermi surface. The approach taken in the
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present investigation includes a smooth cutoff having a Fermi shape [78]

f 2
i =

1

1 + e(εi−λ−∆ε)/µ
(3.77)

The values for the parameters are fixed throughout this investigation to µ = 0.5 MeV

and ∆ε = 10 MeV. In reference [78] it was shown that the final results do not de-

pend crucially on the actual values chosen for these parameters as long as they were

reasonable. The gap equation and the occupation probabilities have to be modified

accordingly

1 =
G

2

∑
k>0

fk√
(εk − λ)2 + fk∆2

(3.78)

v2
k =

1

2

1− εk − λ√
(εk − λ)2 + fk∆2

kk̄

 (3.79)

Throughout this investigation the strength constants G of the pairing monopole in-

teraction have been adjusted in all cases using a simple three point formula to the

experimental pairing gaps [133].

As a final remark, it is worth remembering that, according to the theorem of Bloch and

Messiah [18], any RHB wave function can be written either in the quasiparticle basis

as a product of independent quasiparticle states, or in the canonical basis as a highly

correlated BCS-state. The canonical basis can be uniquely determined imposing that it

diagonalizes simultaneously the density and the single-particle Hamiltonian hD. Thus,

even if the RHB equation formally reduces to a BCS-like relativistic mean-field theory

in the canonical basis, it is not an approximation. It is important to stress this fact, as

in the next chapter we will develop the Quasiparticle Random Phase Approximation on

top of the canonical basis, which is formally identical to a BCS-like theory. However, the

Relativistic Quasiparticle Random Phase Approximation presented in this document

is a full Hartree-Bogoliubov theory as long as one works in the canonical basis.
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Chapter 4

Relativistic Quasiparticle Random

Phase Approximation (RQRPA)

“The optimist thinks this is the best of all possible

worlds. The pessimist fears it is true.”

— J. Robert Oppenheimer, 1904-1967

The nuclear excitation spectra have played a crucial role in our understanding of the

structure of nuclei. Unlike the situation in atomic physics, it was soon realised that the

response of the nuclear system to external stimuli could not be fully explained in the

simple framework of shell model single particle excitations. It was argued that many of

the missing features observed in experimental nuclear spectra could only be explained

by assuming a “coherent” participation by many nucleons, in a similar fashion to the

shape vibrations in the nuclear liquid-drop model. Amongst nuclear excitations, those

which represent the collective motion of many nucleons have given us the most valuable

insight into general gross properties of the nuclear system.

The best known example is the Giant Dipole Resonance, which has been observed

throughout the whole periodic table and represents the vibration of neutrons against

protons. Over the years many more of such collective excitations have been proposed,

identified and analysed, ranging from vibrations of the local density like the breathing

modes (which involves variations of the density over the whole nuclear volume) or

surface quadrupole modes, to spin excitations (spin waves), changes in the nuclear

charge (e.g. analog resonances) that correspond to polarization waves in the nucleus,
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or isospin flip processes (e.g. Gamov-Teller resonances).

On the theoretical front, many theories have been proposed for the study of nuclear

excitations. In the context of mean field theories, the obvious path to follow is to

extend the formalism to the time-dependent domain. In modern terms, this implies

the formulation of the Time Dependent Density Functional Theory. In particular,

the small amplitude limit of the TDDFT, the Random Phase Approximation, is the

simplest theory of excited states of the nucleus which takes into account the highly

correlated nature of nucleons in the many-body system which represents the nucleus.

Conceptually, the Random Phase Approximation in the context of the nuclear many-

body system is the application of the harmonic approximation to the time-dependent

many-body problem. Technically it involves the expansion, to linear order, of the time-

dependent density that describes the evolution of the nucleus around the ground state

density, and the subsequent decomposition of the approximate system in its normal

modes. Amongst the many nice formal properties, one of the biggest advantages of

the RPA is that it guarantees current conservation. In particular, it automatically re-

stores the symmetries that were spontaneously broken in the mean field approximation,

separating the Goldstone modes out at the correct zero energy.

In addition, the RPA is the simplest theory of excited states of the nucleus which admits

the possibility that the ground state is not of purely independent particle character but

may contain correlations, associated with vibrational zero-point motions. In the time-

dependent picture, the wave-function of the system Φ(t) stays always a product state,

a quasiparticle vacuum. However, the quasiparticle operators α†(t) now depend on

time. Expanding the time-dependent quasiparticles in terms of the static ground-state

quasiparticle operators α†, for completeness one has to admit α†α† terms as well as αα

terms. Thus, it is obvious the implicit assumption that the true ground state is not

simply a quasiparticle vacuum, and therefore the resulting bosons are of the form

B† =
∑
kk′

Xkk′α
†
kα

†
k′ + Ykk′αkαk′ (4.1)

and the correlated RPA ground state is defined as the vacuum with respect to these

bosons

|RPA〉 = e
P

kk′ Zkk′B
†
kB†

k′ |HB〉 (4.2)

Therefore, it cannot be a simple product state of quasiparticle operators, but it must

contain complicated linear combinations of quasiparticle pairs. When the RPA ground

state is calculated in the mean-field or HB approximations, this results in the usually

known as “quasi-boson approximation” [31, 30]. The name comes from the fact that it

is equivalent to neglecting the Pauli principle [133].
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In particular, in this chapter the relativistic extension of the QRPA, the Relativistic

Quasiparticle Random Phase Approximation (RQRPA) will be derived. It can be

shown [132] that it corresponds to the small amplitude limit of the Time Dependent

Relativistic Mean Field (TDRMF). From the point of view of the argument presented

in last paragraph, it is clear that, for mathematical consistency and completeness in the

expansion of the time-dependent quasiparticle operators, if the no-sea approximation

is used in the ground-state calculation, it has to be considered as well at the RPA level.

This means that the Dirac sea of negative energy states is also taken into account when

constructing the configuration space, i.e. in addition to the configurations built from

two quasiparticle states of positive energy, one has to consider also pairs formed from

the fully or partially occupied states of positive energy and the empty negative energy

states from the Dirac sea.

4.1 Matrix equation of the RQRPA

In the previous chapter, the ground state of a nucleus was characterized by the solution

of the static RHB equations. For the study of excitation phenomena, knowledge of

the time-dependent density ρ(t) is necessary. It will be assumed that the generalized

density at any time corresponds to a Slater determinant (i.e., R2 = R). It can be

shown then that it obeys the following equation of motion

i∂tR = [H[R],R] (4.3)

Considering only small oscillations around the ground state density R0, the generalized

time-dependant density, up to linear order, can be written as

R(t) = R0 + δR(t) (4.4)

where R0 is the ground state generalized density. Substituting the expansion in the

equation of motion (4.3) and retaining terms to linear order we obtain

i∂tR = [H0, δR] +

[
δH
δR

δR,R0

]
(4.5)

Considering only small harmonic oscillations around the ground state with eigen-

frequencies Ων and admixtures δR, the time dependent transition density R(t) reads

δR(t) =
∑

ν

δR(ν)e−iΩνt + δR(ν)†eiΩνt (4.6)

35



36 Relativistic Quasiparticle Random Phase Approximation (RQRPA)

Since R(t) is a projector at all times, R2 = R must hold, which to linear order implies

R0δR+ δRR0 = δR (4.7)

In the quasiparticle basis R0 is diagonal having the following form

R =

(
0 0

0 1

)
(4.8)

so it follows that δR takes the form

δR =

(
0 X
Y 0

)
(4.9)

Taking advantage of

H(R0) =

(
Ek 0

0 −Ek

)
(4.10)

and substituting the expression for the transition density (4.6), and considering (4.8)

and (4.9), we may write the QRPA equation in its matrix form(
A B

−B∗ −A∗

) (
X (ν)

Y(ν)

)
= Ω(ν)

(
X (ν)

Y(ν)

)
(4.11)

where the X (ν) refers to the forward amplitude transition density corresponding to

−iΩνt, and Y(ν) to the backward amplitude iΩνt, and are defined as

X (ν)
kk′ = 〈0|αkαk′|ν〉
Y(ν)

kk′ = 〈0|α†k′α
†
k|ν〉 (4.12)

The forward amplitude is thus associated with the creation of two quasiparticles, and

the backwards amplitude is then associated with the destruction of a pair of quasi-

particles. For two different RPA excited states ν and ν ′, the following orthogonality

relation holds ∑
kk′

X (ν)∗
kk′ X

(ν′)
kk′ − Y

(ν)∗
kk′ Y

(ν′)
kk′ = δνν′ (4.13)

and that can be used to normalize the vector (X (ν),Y(ν)). The transition probabilities

between the excited state |ν〉 and the ground state |0〉, for a one body operator Ô
within the RPA approximation, are thus given by

〈0|Ô|ν〉 = Tr
(
OX (ν) +O∗Y(ν)

)
(4.14)
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In a finite quasiparticle configuration space, and for k < k′ and l < l′, the QRPA

matrices A and B read

Akk′,ll′ = (Ek + Ek′)δkkδk′l′ + v̂kk′ll′

Bkk′,ll′ = v̂kk′l′l (4.15)

where

v̂kl′k′l =
δ2E

δR?
kk′δRll′

(4.16)

is the so-called residual interaction. The evaluation of these matrices is greatly sim-

plified in the canonical basis, where the quasiparticle transformation reduces to the

BCS case. When time-reversal invariance holds,each single particle state has a cor-

responding conjugate (denoted by the bar), and the matrix elements may be written

as

Akk′,ll′ = (Ek + Ek′)δklδk′l′ +
1

2
V pp

kl′k′l(ξ
+
kk′ξ

+
ll′ + ξ−kk′ξ

−
ll′)

+
1

2
V ph

kl̄′k̄′l
(η+

kk′η
+
ll′ + η−kk′η

−
ll′)

− 1

2
V ph

kl̄k̄′l′
(η+

kk′η
+
ll′ − η−kk′η

−
ll′) (4.17)

and

Bkk′,ll′ =
1

2
V pp

kinj(ξ
+
kk′ξ

+
ll′ + ξ−kk′ξ

−
ll′)

+
1

2
V ph

klk̄′ l̄′
(η+

kk′η
+
ll′ + η−kk′η

−
ll′)

− 1

2
V ph

kl′k̄′ l̄
(η+

kk′η
+
ll′ − η−kk′η

−
ll′) (4.18)

where

ξ±kk′ = ukvk′ ± vkuk′

η±kk′ = ukuk′ ∓ vkvk′ (4.19)

are the single particle occupation factors. The ph matrix elements V ph
kl′k′l are the second

derivatives of the energy functional with respect the single particle density

V ph
kl′k′l = 〈kk′| δ2E

δρ̂kk′δρ̂l′l
|ll′〉 (4.20)

and similarly, the pp matrix elements V̄ pp
minj are given by the second derivative of the

energy functional, but this time with respect to the abnormal density κ̂

V pp
kl′k′l = 〈kk′| δ2E

δκ̂klδκ̂k′l′
|ll′〉 (4.21)
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38 Relativistic Quasiparticle Random Phase Approximation (RQRPA)

Finally, the transition matrix elements for a one-body external operator Ô in the

canonical basis reads

〈0|Ô|ν〉 =
∑
kk′

(
Ok′kX (ν)

kk′ +O∗
kk′Y

(ν)
kk′

)
(ukvk′ + τvkuk′) (4.22)

where τ = ±1 depending on the time reversal properties of the operator Ô: τ = 1 if it

is positive under time reversal, and τ = −1 otherwise. In the case of vanishing pairing

correlations, one recovers the RPA theory where

Akk′,ll′ = (εk − εk′)δklδk′l′ + V ph
kl′k′l (4.23)

and

Bkk′,ll′ = V ph
klk′l′ (4.24)

and with the transition matrix elements

〈0|Ô|ν〉 =
∑
mi

(
OimX (ν)

mi +O∗
miY

(ν)
mi

)
(4.25)

4.2 The residual interaction

As seen in the previous chapter, the RHB ground state solutions are characterized by

the generalized density R, and in the case of meson exchange functionals also by the

meson fields φ, which are treated as independent variables connected by the equations

of motion. In order to describe small oscillations self-consistently the meson degrees of

freedom have to be eliminated from the energy functional so the set of equations (4.20)

and (4.21) are closed, i.e., the residual interaction has to be expressed as a functional

of the generalized density R only. In the case of point coupling functionals this step is,

evidently, non-existent as there are no explicit mesons, and the residual interaction can

be immediately derived using (4.20). On the other hand, the elimination of the meson

fields is possible only in the limit of small amplitudes. In this case, and restricting the

discussion for now to the Walecka model, we can expand the density and fields around

their stationary values

φ = φ(0) + δφ

R = R(0) + δR (4.26)

where δR and δφ are small deviations from the ground state values R(0) and φ(0).

Substituting this expansion in the Klein-Gordon equations (3.15) and retaining only

first order in δρ [
∂µ∂

µ +m2
m)

]
δφm = ±gmδρm (4.27)
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4.2 The residual interaction 39

Neglecting retardations effects (i.e. neglecting ∂2
t ) we find for the linearized equations

of motion for the mesons [
−∇+m2

m)
]
δφm = ±gmδρm (4.28)

This approximation is meaningful at low energies, where the large meson masses assure

us that the corresponding meson exchange forces are of short range and therefore

retardation effects can be neglected. A formal solution for (4.28) can be written as

δφm = ±
∫
d3r′gmGm(r, r′)δρm (4.29)

which allows us to express the residual interaction v̂ph in the general form

v̂ph
mnij =

δ2E

δρ̂miδρ̂jn

=
∑

m=σ,ω,ρ,γ

Γ′mGm(r, r′)Γm (4.30)

where the m refers to a specific meson field (summation implied), the propagator

G(r, r′) is in principle the same for each type of meson field except for the mass,

and the Γm reflect the different covariant structures of the fields as defined in (3.8).

For example, for the Walecka model we can write the residual interaction as a sum

over the contributions coming from the different meson fields and the electromagnetic

interaction

v̂ph = v̂σ + v̂ω + v̂ρ + v̂γ (4.31)

where each one of the terms may be written as

v̂ph(1, 2) = −gγ(1)G(r1, r2)γ
(2) (4.32)

In particular, they read

• σ meson field

v̂ph
σ (r, r′) = −g2

σGσ(r, r′) (4.33)

• ω meson field

v̂ph
ω (r, r′) = g2

ωγ
µGω(r, r′)γ′µ (4.34)

• ρ meson field

v̂ph
ρ (r, r′) = g2

ργ
µ~τGρ(r, r

′)γ′µ~τ
′ (4.35)

• photon field

v̂ph
γ (r, r′) =

e2

4
γµ(1− τ3)Gγ(r, r

′)γ′µ(1− τ ′3) (4.36)
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40 Relativistic Quasiparticle Random Phase Approximation (RQRPA)

where Gm are the meson propagators, solution of

(−∆ +m2
m)Gm = δ(r− r′) (4.37)

which in this simple model adopt a Yukawa form

Gm(r, r′) =
e−mm|r−r′|

4π|r− r′|
(4.38)

where, in the case of the photon, clearly, the mass is zero.

For the non-linear σ density functional, the Klein-Gordon equation for the σ field

cannot be solved analytically, and one has to resort to numerical techniques. A general

overview of the procedure involved, and the particularization to axial symmetry, can

be found in Appendix A.

In the case of meson exchange energy functionals with density dependent couplings, the

residual two-body interaction carries a number of rearrangement terms, due precisely

to the meson-nucleon coupling density dependence. These rearrangement terms are

essential for a fully self consistent RQRPA implementation. Only when their contri-

butions are included in the matrix elements of the residual interaction it is possible to

reproduce reasonably well the excitation energy of giant multipole resonances. Without

rearrangement terms one finds discrepancies of several MeV between the experimental

excitation energies and the RQRPA peak energies, when calculated with relativistic

effective interactions adjusted to ground state properties of spherical nuclei. A very

similar effect is observed in RQRPA calculations based on effective interactions with

non linear meson interactions when the contribution of the non linear terms is not

included in the matrix elements of the residual interaction [99]. All the corresponding

formulas for the residual two-body interaction for these energy functionals can be found

in the Appendix A.

Finally, the procedure for the derivation of the residual interaction in the case of point

coupling models follows closely that of the Walecka model. Expanding the densities

around their ground state value, and keeping only the first order, the residual interac-

tion matrix elements can be easily derived. For the details and formulas please refer

to the Appendix A.
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Chapter 5

RMF+RPA in Axial symmetry

“The idea is to try to give all the information to help

others to judge the value of your contribution; not just

the information that leads to judgment in one particular

direction or another.”

— Richard P. Feynman, 1918-1988

The phenomenon of nuclear deformation has a long and interesting history. As early as

1924 it was suggested by Pauli [112] that the hyperfine structure of atomic and molec-

ular energy levels resulted from the electromagnetic interaction with non-spherical

atomic nuclei. The experimental evidence was given ten years later by Schüler and

Schmidt [138]. The fact that nuclei need not be spherical was then emphasized by

Niels Bohr in his classic paper on the nuclear liquid-drop model [28] in which he in-

troduced the concept of nuclear shape vibrations. If a quantum-mechanical system is

deformed, its spatial density is anisotropic, so it is possible to define its orientation as

a whole, and this naturally leads to the presence of collective rotational modes.

In 1950, Rainwater [119] observed that the experimentally measured large quadrupole

moments of nuclei could be explained in terms of the deformed shell model i.e., the

extension of the spherical shell model to the case of the deformed average potential.

In this picture, the deformed field was a direct consequence of single-particle mo-

tion in anisotropic orbits. In a following paper [26], Age Bohr formulated the basis

of the particle-rotor model, and introduced the concept of the intrinsic (body-fixed)

nuclear system defined by means of shape deformations, and regarded nuclear shape
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42 RMF+RPA in Axial symmetry

and orientation as dynamical variables. The basic microscopic mechanism leading to

the existence of nuclear deformations was proposed by A. Bohr [27], stating that the

strong coupling of nuclear surface oscillations to the motion of individual nucleons is

the reason to the observed static deformations in nuclei.

The idea was not new, and in fact it was proposed a decade earlier by Jahn and Teller

[72] in the context of molecular collective motion. As early as 1927 Born and Oppen-

heimer [29] successfully described molecular motion by assuming that the fast electrons

were strongly coupled to the equilibrium position of the comparatively slow and much

heavier atoms. However, this picture breaks down when the electronic subsystem has

degenerate energy states. Jahn and Teller proved that in such cases the configuration

of atoms can develop a stable symmetry-breaking configuration, provided the coupling

between degenerate electronic excitations and collective motion is sufficiently strong.

This phenomenon is usually referred to as spontaneous symmetry breaking or the Jahn-

Teller effect [48]. Thus, in such a symmetry-breaking system it is possible to define

an intrinsic deformed frame of reference, determined by the instantaneous position of

the slow degrees of freedom. The mean-field solutions referring to the intrinsic system

are then characterized by self-consistent symmetries. The ground-state is no longer a

unique absolute minimum on the energy surface, rather there exist a continuous set of

degenerate ground-states with different orientations. In the molecular case the orien-

tation, i.e. the collective degrees of freedom, are well defined by the positions of the

atoms.

However, in contrast to the molecular case, it is not clear a priori what the slow degrees

of freedom are in the nuclear system: the choice of proper nuclear collective coordinates

is a long-standing problem (see for example Ref. [133]). Nowadays, the deformation

mechanism in nuclei is well understood [133]; for sufficiently high level density in the

vicinity of the Fermi surface, or for sufficiently strong residual interaction, the first 2+

excited state (a quadrupole surface phonon) comes down to zero energy (it “freezes

out”), effectively creating a condensate of quadrupole phonons that give rise to a static

deformation of the mean-field ground state.

In order to calculate excitations in these deformed nuclei the RPA theory outlined in

the previous section can be used. One has to remember, however, that these excitations

are intrinsic in as much as they are relative to the local deformed ground-state, and

do not have good angular momentum. Nevertheless, the application of the RPA to

the intrinsic excitations of deformed nuclei is formally completely analogous to that

for spherical nuclei. The only difference comes from the fact that the configuration

space used is composed of single particle orbitals without good angular momentum.

For this reason it is not possible to use the angular momentum coupled representation

to reduce the dimensions of the RPA matrix. However, in the case of axial symmetry

reductions are possible which comply with the constraints imposed by the projection
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5.1 Density Functional Theory in deformed nuclei 43

of the angular momentum projection on the symmetry axis.

A direct consequence of the artificial separation between intrinsic and rotational excited

states (the later referred to the collective degrees of freedom) is that one has to be

careful comparing the results of calculations with experiment; allowance must be made

for the rotational motion in relating intrinsic excitation energies and matrix elements

to the observable quantities. Of particular importance are experimental observables,

such as transition densities, BEL-values or multipole moments, which refer to the

laboratory system frame of reference, and thus cannot be calculated simply in the

intrinsic system using deformed wave functions. One has first to transform these wave

functions to the laboratory frame by angular momentum projection, i.e. only matrix

elements calculated with projected wavefunctions can be compared with experimental

results.

5.1 Density Functional Theory in deformed nuclei

Let us suppose that there exist a symmetry operator O such that the energy density

functional is invariant under the symmetry transformations eiαO, i.e. for a transformed

density ρ̃

ρ̃ = e−iαO ρ eiαO (5.1)

we have

E[ρ̃] = E
[
e−iαO ρ eiαO]

= E[ρ] (5.2)

Examples of such a symmetry in even-even nuclear systems would be rotational and

translational symmetries and the third component of isospin (i.e. the charge). If the

density has the same symmetry, i.e. ρ̃ = ρ, we can restrict the set of variational

densities to those with this symmetry. However, such a symmetric solution is not

necessarily at the minimum in the energy surface defined by E[ρ], that is, the best

solution. Because of the non-linearity of the variational equation (3.24) it is possible

spontaneous symmetry breaking solutions, i.e., the energy density is invariant under

O-transformations but the density is not ρ̃ 6= ρ.

Rotations are one of such continuous symmetry transformations. Nuclei with one closed

shell are special in the sense that one can always write their ground state wavefunc-

tion as a rotationally invariant Slater determinant. On the other hand, most nuclei

throughout the periodic table have both open shells, and thus their respective deter-

minantal single particle densities cannot be invariant under rotations. However, since

each single-particle orbital is separately invariant under rotations about the z-axis, it

follows that all nuclei have an axially symmetric variational solution of (3.24). But,
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44 RMF+RPA in Axial symmetry

even though such a solution exists, it does not necessarily have to be the lowest in en-

ergy. So, as was remarked in the introduction, the existence of a deformed wavefunction

which minimises the energy is the direct consequence of the variational procedure, in

particular the requirement for it to be a Slater determinant of single particle orbitals.

Conversely, although it is always possible to find a solution to the variational problem

with good angular momentum, in general neither the single particle orbitals nor the

many particle determinant need to preserve rotational symmetry, and it does not follow

that the spherical solution is the best, and frequently it is not.

The present investigation is restricted to nuclei that can be adequately described by

an axially symmetric variational wave function, and so the projection of the angular

momentum on the symmetry axis is a conserved quantity. It is therefore convenient to

use cylindrical coordinates (r⊥, θ, z), were, as usual, the symmetry axis is labeled as

the z-axis. The single-particle Dirac spinors, solution of (3.27), are then characterized

by the angular momentum projection Ω, the parity π and the isospin projection t.

Their general form is

ϕi(r) =
1√
2π


f+

i (r⊥, z)e
i(Ωi−1/2)φ

f−i (r⊥, z)e
i(Ωi+1/2)φ

ig+
i (r⊥, z)e

i(Ωi−1/2)φ

ig−i (r⊥, z)e
i(Ωi+1/2)φ

χti(t) (5.3)

For even-even nuclei, for each solution ψi with positive Ωi there exists a time-reversed

one with the same energy, denoted by a bar, ī := {εi, −Ωi, πi}. The time reversal

operator takes the usual form iσyK̂, where K̂ is the complex conjugation.

iσyK̂ϕi =
1√
2π


f−i (r, z)ei(−Ωi+1/2)φ

−f+
i (r, z)ei(−Ωi−1/2)φ

−ig−i (r, z)ei(−Ωi+1/2)φ

ig+
i (r, z)ei(−Ωi−1/2)φ

χti(t) (5.4)

It is clear from (5.3, 5.4) and (3.26, 3.25) that the densities and meson fields do not

depend on the azimuthal coordinate φ, and are thus axially symmetric

ρ := ρ(r⊥, z) φ := φ(r⊥, z) (5.5)
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5.2 Configuration space for the RPA and QRPA equations 45

5.2 Configuration space for the RPA and QRPA equa-

tions

Because the angular momentum projection operator Jz and the parity operator Π

commute with the effective Dirac Hamiltonian (3.16)[
ĥ, Jz

]
= 0[

ĥ,Π
]

= 0 (5.6)

that is, they leave the configuration space basis set {ϕi} invariant

Jz{ϕi} = {ϕi}
Π{ϕi} = {ϕi} (5.7)

and they also commute with the residual interaction (4.16)

[v̂, Jz] = 0

[v̂,Π] = 0 (5.8)

it follows that the total angular momentum projection and parity are conserved both

in the ground-state and at the RPA level. Or more explicitly, in order for the matrix

elements (4.16) of the residual interaction to be non-zero, the following two selection

rules must hold

Ωm + Ωi = Ωn + Ωj

πmπi = πnπj (5.9)

We can thus define particle-hole excitations with good angular momentum projection

K that automatically satisfy (5.9) as

Q+
ν,K =

∑
mi

X (ν,K)
mi a†maī −

∑
mi

Y(ν,K)
mi a†iam̄ (5.10)

and similarly for quasi-particle excitations

Q+
ν,K =

∑
kk′

X (ν,K)
kk′ α†kα

†
k′ −

∑
kk′

Y(ν,K)
kk′ αk̄αk̄′ (5.11)

where the bar indicates the conjugate state such that Ωi = −Ωī and K = Ωm + Ωi is

the excited state total angular momentum projection. With these definitions for the

coupled excited states it is easily shown that the RPA equation (4.11) is block-diagonal

in parity and in angular momentum projection. So it makes perfect sense to label the
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46 RMF+RPA in Axial symmetry

different excitation modes as

Kπ = 0±, 1±, 2±, · · · (5.12)

where

Kπ = (Ωm + Ωi)
(πmπi) (5.13)

For even-even nuclei, as we have seen before, one can define the conjugation operation

as time reversal, and thus for each level i := {εi, Ωi, πi} there exists a degenerate time

reversed one ī := {εi, −Ωi, πi}. One has to be careful handling time reversal symmetry

in the case of coupling to K = 0, where for each pair of the form (5.13) there exists

the time reversed one

Kπ = (Ωm̄ + Ωī)
(πmπi) (5.14)

with the same energy that also satisfies (5.9), and has to be considered explicitly

when calculating the matrix elements. In particular, and depending on the Dirac basis

chosen, in this case (K = 0), some of the Dirac spatial components of the matrix

elements vanish identically.

5.3 Evaluation of the residual interaction matrix ele-

ments

As we have seen in Section 4.2, the residual interaction can be derived from the energy

functional as its second functional derivative

v̂ph
mnij =

δ2E

δρ̂miδρ̂jn

=
∑

m=σ,ω,ρ,γ

ΓmGm(r, r′)Γ′m (5.15)

In the case of the non-linear and density dependent energy functionals, the propagator

takes a Yukawa form, and the integral to be calculated is four dimensional in the

axial symmetry case. For a linear interaction, however, the propagator in momentum

space is diagonal, i.e. ∆(k,k′) ≡ ∆(k), so in principle it should be possible to express

the interaction in momentum space and take advantage in the implementation of this

reduction in dimensions (from four to two) for the calculation of the integrals. Taking

the Fourier transform of the residual interaction we obtain

V ph
minj =

∑
m=σ,ω,ρ,γ

∫
d3k

(2π)3
Qµ

mi(k)∆m(k)Qnj,µ(−k) (5.16)

with the propagator

∆m(k) =
1

k2 +m2
(5.17)
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5.3 Evaluation of the residual interaction matrix elements 47

and the single-particle matrix elements

Qµ
mi(k) =

∫
d3rϕ̄m(r)Γµ(r)ϕi(r)e

−ikr (5.18)

where Γ(r) ≡ Γ is independent of the coordinate r in the case of linear interactions

in the non-linear density functionals, and depends on it via the coupling constant g in

the case of density dependent interactions.

However, for the point coupling models the propagator in coordinate space G is in

fact a function of the δ distribution, and finally only a two dimensional integration

is needed for the actual calculation of its matrix elements. It is very clear then that

there is no advantage in going to a Fourier space, so the actual implementation for

point coupling models is in fact in coordinate space. The general procedure for the

calculation of matrix elements for linear density functionals is outlined in the next

section. The required extensions and particular cases, arising from the non-linearities

in the case of Non Linear Meson Exchange density functionals, and from the explicit

density dependence in Density Dependent Meson Exchange and Density Dependent

Point Coupling functionals, are given in Appendix A.

5.3.1 Matrix elements for linear density functionals

The starting point in the actual evaluation of the residual interaction matrix elements

for linear functionals is Equation (5.16). In the case of axial symmetry, the computation

of the required single particle matrix elements (5.18) is best accomplished in cylindrical

coordinates. The momentum coordinates involved would be then k = (kx, ky, kz) =

(k⊥ cosχ, k⊥ sinχ, kz), and the dot product ikr

ikr = k⊥r cos(χ− φ) + kzz (5.19)

Each single particle matrix element Qµ
mi(k) (5.18) therefore can be written as

Qµ
mi(k⊥, χ, kz) =

∫
dφ

2π
rdr dz ϕm(r, z, φ) Γµ ϕi(r, z, φ) eikzz+ik⊥r cos(φ−χ) (5.20)

Furthermore, it is very easily shown that in the Dirac basis, defined by

{γ0, γ+ =
−1√

2
(γ1 + iγ2), γ− =

1√
2
(γ1 − iγ2), γ3} (5.21)

for each µ, the factor ϕm(r, z, φ) Γµ ϕi(r, z, φ) can be expressed as

ϕm(r, z, φ) Γµ ϕi(r, z, φ) =
1

2π
αµ

mi F
µ
mi(r, z) e

inµ
miφ (5.22)
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48 RMF+RPA in Axial symmetry

where nµ
mi is an integer of the form nµ

mi = −Ωm +Ωi±{0, 1}, αµ
mi = {±1,±i} is a phase

and F µ
mi(r, z) is a real function that does not depend on the azimuthal angle. Dropping

the µ and super index for F , α and n, the single particle matrix element (5.18) can be

expressed in this particular Dirac basis as

Qmi(k) = α

∫∫∫
rdr dz

dφ

2π
Fmi(r, z) e

inφ eikzz eik⊥r cos(φ−χ) (5.23)

Carrying the analytical calculations as far as possible (see Appendix A)

Qmi(k) = inα einχ

∫∫
rdr dz Fmi(r, z) Jn(k⊥r) e

ikzz (5.24)

in which Jn is a Bessel function of the first kind. Naturally, the phase α, the function

F and the integer n all depend on the particular µ being considered. Expressions for

all cases are given in Appendix A. The case of energy functionals with explicit density

dependent meson-nucleon couplings is quite analogous to that of the linear functionals.

However, now one has to take into account that the vertex operator Γ depends on

the coordinates via the coupling constant. The final expression for the single particle

matrix element is thus

Qmi,m(k) = inα einχ

∫∫
rdr dz Fmi,m(r, z) Jn(k⊥r) e

ikzz (5.25)

5.3.2 Multipole strength and sum rules

Experimental nuclear spectra show excitations as finite width resonances which cannot

be described in the lowest order of the RPA, which is only able to specify the position

and strength of the transition, not their widths. Higher order correlations, included for

example in the phonon coupling model [96] or in two particle two hole RPA [75], are

needed in order to be able to describe transition widths. To overcome this problem,

we shall adopt the philosophy of averaging the RPA strength distributions for a given

multipole operator with a Lorentzian function of the form

R(E) =
∑

ν

BT ((E/M)J,K, ων)
1

π

Γ/2

(E − ων)2 + (Γ/2)2
(5.26)

resulting in a continuous strength function which can be compared with observations.

The reduced transition probabilities BT are given by the reduced matrix elements

electric BT (EJ,K, ων) =
1

2

∣∣∣〈ν||Q̂IK ||0〉
∣∣∣2

magnetic BT (MJ,K, ων) =
1

2

∣∣∣〈ν||M̂IK ||0〉
∣∣∣2 (5.27)
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5.3 Evaluation of the residual interaction matrix elements 49

The Lorentzian (5.26) function is defined in such a way that it gives the same EWSR

as calculated with the discrete response.

SEW (E) =
∑

ν

EνB
T ((E/M)J,K, ων) =

∫
ER(E)dE (5.28)

In the present work the EWSR is evaluated in the interval below 30MeV excitation

energy. The knowledge of the sum rules is of special interest, since it represents a useful

test of the models describing the collective excitations [133]. The energy weighted sum

(5.28) for a transition operator Ô can be represented in a double commutator form

SEW (E) = 〈φ|[Ô, [H, Ô]]|φ〉 (5.29)

If only contributions from the kinetic energy term are taken into account,

SEW (E) =
~

2m

(2λ+ 1)2

4π
Z〈r2λ−2〉 (5.30)

These classical values for the sum rules are only approximate estimates. In practical

calculations they may be enlarged by an enhancement factor due to the nucleon-nucleon

interaction of the nuclear Hamiltonian. Sum rules also offer the possibility of a consis-

tent definition of the excitation energies of giant resonances, via the energy moments

of discrete transition strength distribution

mk =
∑

ν

Ek
νB

T ((E/M)J,K, ων) (5.31)

In the case k = 1 this equation defines the energy weighted sum rule (5.28). If the

strength distribution of a particular excitation mode has a well pronounced and sym-

metric resonance shape, its energy is well described by the centroid energy

Ē =
m1

m0

(5.32)

Alternatively, mean energies are defined as

Ēk =

√
mk

mk−2

(5.33)

where the difference between the values Ē1 and Ē3 can be used as an indication of

how much the strength distribution corresponding to and excitation mode is actually

fragmented. If the multipole response is characterized by a single dominant peak, the

two moments are equal, i.e. Ē1 = Ē3. In the relativistic approach, due to the no-sea

approximation, the sum in (5.31) runs not only over the positive excitation energies,

but also includes transitions to the empty states in the Dirac sea. They contribute
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50 RMF+RPA in Axial symmetry

with negative terms to the sum, and as it was pointed out in [116, 144, 102], for the

EWSR the double commutator (5.29) vanishes. It means that in RRPA the ordinary

particle hole contributions are approximately canceled by the response of the vacuum

due to excitations in the Dirac sea∑
ν

EνB
T ((E/M)J,K, ων) ≈ 0 (5.34)

5.3.3 Transition strength angular momentum projection

Transition probabilities are the physical quantities that have most sensitivity to the

approximations made to the wave functions. For instance, transition probabilities have

selection rules that cannot be reproduced unless the wave functions are eigenstates of

J2 and Jz. It is important then in the case of a deformed intrinsic mean field state to

project on to good angular momentum. Wave functions |ΨIM〉 eigenstates of J2 and

Jz with eigenvalues I(I + 1) and M respectively can be built out of a given deformed

mean field state |Φ〉 by applying the angular momentum projector

|ψIM〉 =
∑
K

gI
KP̂

I
MK |Φ〉 (5.35)

where the angular momentum projector operator P̂ I
MK is given by [47]

P̂ I
MK =

2I + 1

8π2

∫
dΩDI?

MK(Ω)R̂(Ω) (5.36)

where Ω represents the set of Euler angles (α, β,γ), DI
MK(Ω) are the well-known Wigner

functions [39] and R̂(Ω) = e−iαĴze−iβĴye−iγĴz is the rotation operator. Taking into

account the transformation law for the multipole operators Q̂λµ under rotations

R̂(Ω)Q̂λµR̂
†(Ω) =

∑
ν

Dλ
νµ(Ω)Q̂λν (5.37)

The matrix element of a multipole operator between two states with good angular

momentum is given by

〈ΨIf Mf
|Q̂λµ|ΨIiMi

〉 =
〈IiMiλµ|IfMf〉√

2If + 1
〈If ||Q̂λ||Ii〉 (5.38)
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with the reduced matrix element defined by

〈If ||Q̂λ||Ii〉 =
(2Ii + 1)(2If + 1)

8π2
(−)Ii−λ

∑
Ki,Kf ,ν,µ′

(−)Kfg
If ?
Kf
gIi

Ki

×
(
Ii λ If
ν µ′ −Kf

) ∫
dΩDIi?

νKi
(Ω) 〈φf |Q̂λµ′R̂(Ω)|φi〉 (5.39)

In the case of axial symmetry, it further reduces to

〈If ||Q̂λ||Ii〉 = (2Ii + 1)(2If + 1)(−)Ii−λ 1 + (−)Ii

2

∑
µ′

(
Ii λ If
−µ′ µ′ 0

)

×
∫ π

2

0

dβ sin(β)dIi?
−µ′0(β) 〈φf |Q̂λµ′e

−iβĴy |φi〉 (5.40)

To evaluate the overlap integrals in the last equation we restrict to the first order in a

Kamlah [133] expansion

〈φf |Q̂λµ′e
−iβĴy |φi〉 = 〈φf |Q̂λµ′|φi〉 〈φf |e−iβĴy |φf〉 (5.41)

In the case of very large deformations we obtain the so called needle approximation

[159, 171]

〈φf |Q̂λµ′e
−iβĴy |φi〉 ' 〈φf |Q̂λµ′|φi〉 δµ′0 (5.42)

which gives the final formula used in the E1 and M1 transition strength calculation

〈If ||Q̂λ||Ii〉 = (2Ii + 1)(2If + 1)(−)Ii−λ (−)Ii+1 − 1

2
√

3
〈φf |Q̂λµ′|φi〉 (5.43)

5.4 Transition densities

Let us now consider the baryon four-current operator in coordinate space

ĵµ(r) =
∑

i

γµδ(r− ri) (5.44)

with single-particle matrix elements in the Dirac basis

jµ
kk′ = ϕk(r)γ

µϕk′(r) (5.45)

which can be written as

ĵµ(r) =
∑
kk′

jµ
kk′a

†
kak′ (5.46)
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52 RMF+RPA in Axial symmetry

In order to calculate its RPA transition probability for a particular excitation mode ν,

we use equation (4.22), which results in

δjµ(r) =
∑
mi

(jµ
imX

(ν)
mi + jµ

mi
∗Y(ν)

mi )(umvi + vmui) (5.47)

Thus, the total time dependent baryon four-current for a given excitation mode ν with

energy ων is

jµ(r, t) = jµ
0 (r) + δjµ(r)e−iωνt + δjµ(r)∗eiωνt (5.48)

In particular, the baryon density ρ(r, t) = j0(r, t) can be written as

ρ(r, t) = ρ0(r) + δρ(r)e−iωνt + δρ(r)∗eiωνt (5.49)

Throughout the rest of this document, all instances of intrinsic transition densities

refer to the baryon intrinsic transition density in coordinate space, δρ(r), as defined by

the zero component of equation (5.47), which is not necessarily the density used in the

definition of the density functionals. In a fully classical system the baryon transition

density would describe the actual movement of particles. However, in a quantum

mechanical system they have to be regarded as a measure of the contribution of the

different excited states that conform to the evolution of a time-dependent wavepacket

composed of all possible excitation modes. How close these transition densities can be

interpreted in the classical sense depends on the actual transition strength exhausted

by each excitation mode ν. Nevertheless, they provide an intuitive understanding of

the nature of the excitation modes, and will be used in qualitative discussions about

them.

The particularization of (5.47) to axial symmetry gives, as a result, intrinsic transition

densities with the following formal decomposition

δρ(r) = δρ(r⊥, z)e
−iKφ (5.50)

where K is the angular momentum projection of the excitation mode under study.

Substituting this last expression in equation (5.49) and taking advantage of the fact

that δρ(r⊥, z)
∗ = δρ(r⊥, z) we arrive at

ρ(r⊥, z, φ, t) = ρ0(r⊥, z) + 2δρ(r⊥, z) cos (Kφ+ ωνt) (5.51)

The two dimensional quantities δρ(r⊥, z) will be plotted when discussing intrinsic tran-

sition densities, and no further reference to the phase expressed by the cosine will be

made. In particular, and because the excitation modes have good parity π, only the

positive z semiplane will be included. To interpret these plots, it is useful to keep

in mind that δρ(r⊥, z) has to be considered together with equation (5.51) in order to

obtain the full three dimensional geometrical picture.

52



5.5 Broken symmetries and spurious (Goldstone) modes 53

To be able to compare with experimental transition densities measured in the lab-

oratory frame of reference, it is interesting to project the two dimensional intrinsic

transition densities δρ(r⊥, z) on to good angular momentum. In order to do so, we

expand the current operator (5.46) using the set of spherical harmonics {Yλµ(Ω)} as

basis

ĵµ(r) =
∑

λ≥K,kk′

jµ
λ,kk′(r)YλK a†kak′ (5.52)

where

jµ
λ,kk′(r) =

∫
dΩ jµ

kk′(r)Y
∗
λK(Ω) (5.53)

and apply the expression (5.43) to obtain that, for a particular angular momentum

λ ≥ K, the projected transition density reads

δρ(r) = δρλ(r)Yλ,K(Ω) (5.54)

with the radial projected transition density

δλρ(r) =

∫
dΩ δρ(r⊥, z)YλK(Ω) (5.55)

Even though this last equation only holds approximately, we will see that the results

for well deformed nuclei are excellent. Transition density patterns for, for example, the

Giant and Pygmy Dipole Resonances, are in agreement with those found experimentally

and in other theoretical RPA studies in spherical symmetry.

5.5 Broken symmetries and spurious (Goldstone) modes

Coming back to the symmetry transformations (5.1), let us consider the case of a

broken symmetry, i.e. ρ̃ 6= ρ. The property ρ2 = ρ holds for arbitrary values of α.

This means that for ρ being a stationary (i.e. self-consistent) solution the variational

equation (3.24), ρ̃ must also be such a solution[
ĥ [ρ̃, φ] , ρ̃

]
= 0. (5.56)

Considering only small values of α we obtain, in first order and for a specific δρ, for

the transformation

ρ̃ = ρ+ δαρ = ρ− iα [O, ρ] (5.57)
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54 RMF+RPA in Axial symmetry

with δαρ = −iα [O, ρ], which only has ph-matrix elements proportional Omi and Oim

δαρmi = −iαOmi

δαρim = +iαOim

the pp- and hh-matrix elements vanish. Substituting in (5.56), we gain, to first order

in α

0 =
[
ĥ [ρ, φ] , δαρ

]
+

[
δĥ [ρ, φ]

δρ
δαρ, ρ

]
(5.58)

which is exactly the RPA equation (4.11) with an excitation energy Ω = 0. It shows

that there is a spurious solution (Goldstone mode) with vanishing energy with the wave

functions

Xmi = Omi and Ymi = Oim = O∗
mi. (5.59)

corresponding to the symmetry transformation generated by O. Of course, in the case

where the density is invariant under the symmetry transformation, i.e. ρ̃ = ρ, equation

(5.56) provides no new information. It is thus apparent that the RPA equation (4.11)

has such a solution only for the case of a broken symmetry.

One such broken symmetry is always associated with the center-of-mass motion. This

is because any wave function based in any sense on an independent particle picture

(barring the case of a slater determinant of plane waves) is inevitably localized in space,

and does not, therefore, conserve the total momentum as a good quantum number.

The same applies when considering deformed wave functions. For example, an axially

deformed mean field ground state defines a characteristic direction in space, namely

the symmetry axis, and rotations around it leave the density unchanged. However, any

rotation around an axis perpendicular to it produces a different density, even though

the energy remains the same (the interaction is rotationally invariant), and thus it

appears as a spurious excitation at the RPA level. A similar argument can be used to

show that another spurious excitation is associated with the particle number violation

in the Quasiparticle Random Phase Approximation.

In principle, and for purposes of nuclear spectroscopy, this should not be significant,

since it is concerned only with the intrinsic structure of the nucleus. In practice, one

should be able to distinguish this spurious excitations from the true excitations of

the nucleus, as the physical states tend to be mixed together with spurious response,

leading to seriously over estimated strength distributions. It was Thouless (1961)

who observed that, to the extent that the RPA is executed exactly, it separates out

the spurious excitations exactly and with exactly zero energy. Oddly enough, this

very nice property of the RPA is usually not present in higher order approximations.

In normal practice, however, because of numerical inaccuracies, truncation of the ph

configuration space and inconsistencies among the ground state and RPA equations, the
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5.6 Decoupling of spurious modes and spherical symmetry 55

spurious states are located at energies somewhat higher than zero. There are several

approaches to overcome this problem, usually involving the adjustment with a free

parameter of the residual interaction until the spurious modes are properly decoupled

or the extraction a posteriori of the spurious components from the physical states. In

this investigation a fully self-consistent implementation of the RPA is used, and thus

as long as numerical inaccuracies are kept to a minimum, the spurious modes should

decouple without further complications. In fact, they provide a very accurate test

of the actual implementation, and will be used as a tool to check and optimize the

numerical parameters of the calculations in the next section.

5.6 Decoupling of spurious modes and spherical sym-

metry

The spurious modes offer a very precise check on the numerical implementation. Be-

cause the block-wise structure of the RPA matrix, they are expected to appear only

when specific symmetry constraints are met. The scope of the present investigation

is restricted to E1 and M1 excitations, which involves the diagonalization of the RPA

matrix for Kπ = 0−, 0+, 1− and 1+. The expected appearance of spurious modes can

be summarised as

• A rotational spurious mode for Kπ = 1+, associated with rotations of the nucleus

as a whole around a perpendicular of the symmetry axis. Its generator is the

angular momentum operator Ĵ.

• A translational spurious mode for Kπ = 0−, 1−, associated with the translation

of the nucleus as a whole. Its generator is the linear momentum operator P̂.

• A pairing spurious mode for Kπ = 0+, which is related with the particle number

conservation. Its generator is the number operator N̂ .

As stated in section 5.5, in theory these spurious modes should decouple at exactly

zero energy. However, this is not the case in actual calculations due to several fac-

tors. The RQRPA for axial symmetry implementation presented in this work is fully

self consistent, i.e., the same interaction is used both in the ground state and in the

excitations calculation, so in principle the only factors influencing the position of the

spurious modes are of numerical nature.

In fact, the position of the spurious modes is so sensitive to differences in the interaction

between the ground state and the RPA, that their sole appearance is a very strong hint
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Figure 5.1: Dependence of the Kπ = 1+ rotational spurious mode on the co-
ordinate and momentum mesh size for the non-linear model NL3 parametriza-
tion. For a coordinate and momentum mesh size of (41x41) and (31x31),
respectively, the accuracy limit of the diagonalization procedure is achieved.
The logarithmic scale in the z-axis is used to enhance the readability of the
graph. The lowest z value corresponds to a value of 0.05MeV.

of the formal correctness of the implementation. Regretfully, the opposite is not true:

due to numerical inaccuracies, a correct implementation does not guarantee the proper

decoupling of the spurious modes. It is very interesting, thus, to study the dependence

of the spurious modes on the numerical parameters which control the precision of the

calculations. As an additional benefit, optimal values for these parameters can be

found.

There are nine numerical parameters in total that can be categorized in two groups.

The first group controls the precision of the numerical integrations. In this category

are the number of coordinate and momentum lattice points and the maximum momen-

tum for which the integration takes place. The second group deals with the size of

the configuration space, and includes the particle and anti particle energy cutoff, and

the particle hole cutoff. Since it is unfeasible to study this nine-dimensional surface
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Figure 5.2: Spurious Kπ = 1+ rotational mode dependence on the maximum
interaction momentum while keeping the number of mesh points constant.
Good numerical results for a momentum mesh size of (31x31) can be achieved
with a maximum momentum in the interval 5 < kmax < 9.

in detail, when studying the dependence of the spurious modes on one, or a set of,

parameters, those not under scrutiny were fixed to the maximum precision possible.

This means, in particular, that the full ph configuration space is taken if not otherwise

stated, and that the maximum momentum is fixed to 8 fm−1, well above the Fermi

momentum of the nucleus.

In figure 5.1 the position of the rotational spurious mode in 20Ne is plotted against

the number of points in the coordinate and momentum lattices. For a relatively low

number of points a plateau is reached where further improvement of the accuracy

cannot be achieved. The optimal number of evaluation points for the integrations

is therefore around 41x41, which allows for very precise calculations. Furthermore,

additional tests show that the overall precision in the determination of the energy of

excited states of the code is capped out at 0.01MeV, which is surprisingly good. In

general, it was observed that, if the position of the spurious mode is below 1MeV, the

strength function of the rest of the spectrum is mostly unaffected. The spectrum in

the low energy region, below 5MeV, is, however, more sensitive to admixtures coming

from the spurious modes; as a rule of thumb, the confidence limit in the position of the

spurious mode, for a proper decoupling, has been consistently found around 0.5MeV.
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Figure 5.3: Translational spurious mode dependence on the configuration
space size.

Figure 5.2 depicts the position of the rotational spurious mode for 20Ne against the

maximum momentum of the expansion used for the calculation of the single particle

matrix elements. The flat region between 5 and 9 fm−1 hints that a maximum mo-

mentum of 5 fm−1 provides enough precision for the proper spurious mode decoupling.

The increase in the position of the spurious mode for momentum values larger than

9 fm−1 is an artifact due to the number of points for the momentum lattice being fixed

at 31x31, while the maximum momentum is increased. Figures 5.1 and 5.2 show that

convergence to a stable solution is achieved with a relatively low number of points for

the coordinate and momentum integration meshes. This is important because, for a

2-dimensional problem such the one we want to solve numerically, the total number

of points of the numerical integration lattices, and therefore program running time,

increases quadratically with the number of points in each direction.

Figures 5.3 and 5.4 show the dependence of the translational and rotational spurious

modes, respectively, on the configuration space size for 20Ne calculated with the NL3

parameter set. In the translational case of two curves are plotted, one for the Kπ = 0−

mode and one for the Kπ = 1− mode. It is interesting to note that, even if the spurious

mode can be brought very close to zero, it requires the inclusion of almost all the

possible qp-pairs in the configuration space. In this specific case, 20Ne, that amounts
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Figure 5.4: Rotational spurious mode dependence on the configuration space
size.

to roughly five thousand pairs. The situation improves greatly in heavier nuclei, where

usually 5% percent of all possible qp-pairs are enough to decouple the spurious modes

at energies around 0.5MeV. To give an idea of the problem-size involved in real-world

practical calculations, for the calculation of the response of 156Gd to the M1 operator

(see Chapter 6), 15 thousand qp-pairs were enough for the decoupling of the spurious

mode at an energy of 0.15MeV. And, for the study of the Giant Dipole Resonance

and Pygmy Dipole Resonance in 100Mo (see Chapter 7), a calculation with around 14

thousand pairs brings down the translational spurious mode to energies very close to

0.3MeV.

Since for the static calculation the ground-state wavefunctions are expanded in an

harmonic oscillator basis, the configuration space where the RPA is solved does not

spawn the whole Hilbert space. How good is this expansion depends on the number

of major oscillator shells used. All results and calculations will be influenced by this

approximation. In particular, the proper decoupling of the translational spurious mode

is very sensitive. In Figure 5.5 the translational spurious mode is plotted versus the

number of oscillator shells used in the ground state calculation for the DDME energy

functional. Already with only 12 harmonic oscillator shells is enough to achieve a

precision in the spurious mode of around 0.1MeV. In all practical cases presented
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Figure 5.5: Translational spurious mode dependence on the configuration
space size for the DD-ME2 interaction.

in the present study the number of oscillator shells was chosen between 12 and 16,

depending on the desired final precision and the availability of computer resources. It

has to be stressed that convergence was throughly checked for all the results discussed.

It is interesting to note that, due to the sparseness of the lattice for the computation

of the integrals, the procedure for the solution of the non-linear Klein Gordon equation

introduces inaccuracies that are reflected in the position of the spurious modes, but

not in the rest of the spectrum. Specifying the same numerical parameters, for the

same nucleus, usually the spurious mode lies somewhat closer to zero for the DDME

and DDPC energy functionals than with the NLME energy functional. However, the

difference is minimal, and, in general, the most accurate calculations when comparing

with experimental data are achieved using the already quite veteran NL3 parameter

set.

Perhaps more important that the position of the spurious modes is their actual admix-

ture with the real physical states. For the same reasons the spurious mode does not

appear at exactly zero energy, the physical states are not completely orthogonal (in the

sense of Equation (4.13)) to it, and thus producing unreal results and overestimated

strength distributions. As another confirmation of the validity of the implementation
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Figure 5.6: Response in 20Ne to the operator J+1, generator of rotations
around a perpendicular of the symmetry axis. Almost 100% of the strength
is exhausted by the spurious mode (0.08MeV for 20Ne, 0.15MeV for 156Gd),
minimizing its admixture with the real physical states.

and its accuracy, when the spurious mode is located below 1MeV, the RPA orthogo-

nality relation is preserved with a precision of 10−10 between different states and the

actual norm of the spurious state is over 103 smaller than the next smallest norm.

As an example of the low expected admixture of spurious components with physical

states, Figures 5.6 and 5.7 shows the response to the rotational spurious generator, the

operator J+1 which represents rotations around a perpendicular of the symmetry axis.

Almost 100% of the strength is exhausted by the spurious modes, located at 0.08MeV

for 20Ne and 0.15MeV for 156Gd.

There is still another test that can be devised in order to check the consistency of the

whole framework, namely the conservation of spherical symmetry. Even though all the

formulas are particularized to the case of axial symmetry, the interaction is rotationally

invariant, so they should still be valid when a spherical ground-state is taken as basis

for the RPA configuration space, i.e., they should preserve spherical symmetry.

In Figures 5.8 and 5.9 is plotted the E1 excitation strength for the spherical nuclei 16O

and 142Nd. Since the E1 operator is a rank-one tensor, it has three possible angular

momentum projections, K = −1, 0, 1, that have to be calculated separately. The
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Figure 5.7: Same as Figure 5.6 for 156Gd. The spurious mode is located at
0.15MeV.

response for the modes with K = −1 and K = 1 are identical and correspond to

vibrations perpendicular to the symmetry axis, i.e. one can calculate only one of them

and double its contribution. The K = 0 mode corresponds to vibrations along the

symmetry axis. If the nucleus is prolate, like 20Ne, the response for in the K = 0 mode

should lie at lower energies than the K = 1 mode, as the potential is flatter in the

direction of the symmetry axis. However, if the nucleus is spherical, like 16O and 142Nd,

there is no distinction between the K = 0 and K = 1 modes, and their corresponding

excitation strength should lie at exactly the same energies. From Figures 5.8 and 5.9

we can attest that, in fact, the procedure for the solution of the RPA equation in axial

symmetry indeed preserves rotational symmetry to a high degree of accuracy.

In summary, we have shown, with the results concerning the decoupling of the spurious

modes and the preservation of spherical symmetry, that the computer implementation

indeed solves the equations posed by the self-consistent RHB+RQRPA framework in

axial symmetry. We have also ascertained that a high degree of accuracy can be

achieved in real calculations, as well as validated the good reproduction of formal and

mathematical aspects of the RPA theory. In the next two chapter we shall study the

response of different deformed nuclei to the action of the M1 and E1 operators. With

confidence in the numerical implementation, we shall relegate the numerics and concen-

trate in physical aspects and comparison of the results with the available experimental
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Figure 5.8: Kπ = 0− and Kπ = 1− response to the E1 transition operator
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data.
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Chapter 6

M1 transitions in deformed nuclei

“The most exciting phrase to hear in science, the one

that heralds new discoveries, is not ’Eureka!’ but ’That’s

funny...’.”

— Isaac Asimov, 1920-1992

The discovery of low-lying M1 excitations, known as scissors mode, was made by Richter

and collaborators in 156Gd in Darmstadt through a high-resolution inelastic electron

scattering experiment [25]. The search for such a mode was stimulated by the predic-

tion, made within the Two Rotor Model [98, 64, 147], of a collective M1 mode promoted

by a rotational oscillation of proton versus neutron densities. In fact, the name “scissors

mode” was indeed suggested by such a geometrical picture. An excitation of similar

nature was also predicted by other models [69, 1, 63].

The discovery led to a renaissance of low-energy nuclear spectroscopy in the mid-80’s,

and the mode has been detected in most of the deformed nuclei ranging from the fp-

shell to rare-earth and actinide regions. The mode has been well characterized, and

it is well established that it is fragmented into several closely packed M1 transitions.

In even-even nuclei the total magnetic dipole excitation strength of the scissors mode

is closely correlated to the strength of the 2+
1 state [69, 1, 63] and, thus, depends

quadratically on the nuclear deformation parameter [125, 126, 127, 129, 160].

A byproduct of the systematic study of the “scissors mode” was the discovery of spin

excitations. Inelastic proton scattering experiments on 154Sm and other deformed nu-
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clei [50] found a sizable and strongly fragmented M1 spin strength distributed over

an energy range of 4MeV to 12MeV. The experimental discovery stimulated the pro-

liferation of theoretical investigations, were most of the microscopic studies [65] were

carried out in the RPA or TDA approximation.

Even though the Two Rotor Model is too simple to fully explain the low-lying strength

found in M1 transitions, it will be outlined as to give an intuitive picture where to

base the interpretation of the following results. In the next section basic facts about

the experimentally found nature of the M1 will be presented. Then the deformed

QRPA framework outlined in the previous chapters will be applied to the study of

M1 transitions in several sample nuclei. Results for light and heavy nuclei, calculated

with the different relativistic density functionals, will be presented and compared with

available experimental data.

6.1 The Two Rotor Model (TRM)

In principle, the angular momentum carried by the nucleus does not produce any

intrinsic excitation. This reflects the spherical symmetry of the nuclear interaction just

as its translational invariance forbids the occurrence of an isoscalar collective E1 mode.

One can, however, extend further the analogy with dipole translations and assume

that protons and neutrons have two distinct deformed densities that are free to rotate

separately about a common axis (perpendicular to their symmetry axis in the case of

axial deformation). Because of their mutual interaction, they may undergo a rotational

oscillation giving rise to an intrinsic M1 excitation. Because the excitation mechanism

is similar to that of the Giant Dipole Resonance, it was named Giant Angular Dipole

(GAD). This is the underlying idea of the TRM [98], which represents the rotational

counterpart of the semi classical picture of the E1 giant resonance [57, 145]. One can

readily write a Hamiltonian for such a model as

HTR =
1

2Jp

J2
p +

1

2Jn

J2
n + V (θ) (6.1)

where Jp and Jn are the proton and neutron moments of inertia and Jp and Jn are

their angular momenta. Expressed in terms of the total and relative momenta

J = Jp + Jn S = Jp − Jn (6.2)

and neglecting a Coriolis-like term, the Hamiltonian decouples into a rotational and

an intrinsic part. For small values of θ, the intrinsic part assumes the form of a two-
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dimensional harmonic oscillator Hamiltonian

Hint =
1

2Jsc

(S2
1 + S2

2) +
1

2
Cθ(θ

2
1 + θ2

1) (6.3)

where θk (k = 1, 2) play the role of coordinates in the intrinsic frame of reference and

Sk (k = 1, 2) that of their conjugate momenta. The TRM Hamiltonian parameters

are thus Jsc and Cθ, that correspond to the effective moment of inertia and the spring

oscillator constant, respectively. The energy eigenvalues of this simple Hamiltonian are

ωn,K = ω(2n+K + 1) (6.4)

The scissors mode corresponds to the first excited level, with quantum numbers n =

0 and K = 1, that defines a positive parity band of intrinsic excitation energy ω.

Decomposing in a rotational and intrinsic parts following the TRM, one obtains for

the M1 intrinsic strength the expression

M(M1, µ) =
3

16π
Jscω(gp − gn)2µ2

N (6.5)

6.2 Nature of low-lying M1 excitations

A level with the properties of the Jπ = 1+, Kπ = 1+ state predicted by the TRM was

discovered in a high resolution (e, e′) experiment on 156Gd [25]. It was detected by

scattering at backwards angles, where transverse magnetic transitions are dominant.

The analysis of the experimental data soon revealed that the simple picture of two fluids

rotating against each other of the TRM was not able to explain the full spectrum.

The discrepancy was linked to the absence of spin contributions in the TRM [23,

124]. Further (γ, γ′) experiments [17] confirmed the existence of this strongly excited

state. Subsequent experiments were able to confirm the existence of the mode in

three regions of the nuclear table, i.e., the deformed rare-earth nuclei, the fp-shell

nuclei and the actinides. Its absence in (p, p′) reactions provided a strong evidence

in favour of the orbital nature of the mode, while joint (e, e′) and (γ, γ′) experiments

[24] showed that the mode is fragmented into several peaks closely packed around a

prominent one with a total strength B(M1) ↑≈ 3µ2
N that grows quadratically with the

deformation parameter [173] and is proportional to the strength of the E2 transition

to the lowest 2+ state [120]. The main features extracted from several review articles

on the experimental status can be summarized as:

• The M1 strength is fragmented and distributed around an energy centroid, which

has an approximate value of 3MeV in rare-earth nuclei.
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• The transition is mainly promoted by the convection current. The orbital re-

sponse is typically an order of magnitude bigger than the spin one.

• The integrated M1 strength depends quadratically on the deformation parameter

and is strictly correlated with the strength of the E2 transition to the lowest 2+

state.

While consistent with the observed properties of the mode on a qualitative round, the

TRM is unable to predict either the exact position of the energy centroid nor the size

of the total strength.

6.3 M1 transition in the RQRPA

The goal of QRPA and RQRPA calculations for the scissors mode is very clear, and

can be summarized in the following points. They should i) account for the collective

properties of the mode such as the quadratic deformation dependence of the total M1

strength, ii) put on display the microscopic structure of the M1 states so as to enable

one to decide about the true nature of the mode, and iii) test the ability of the different

density functionals to reproduce the energy distribution of the M1 strength.

Concerning the first point, calculations carried out by different groups using not self-

consistent interactions have already reproduced fairly well the deformation law [59, 118,

62]. The crucial role of pairing correlations in enforcing such a law was particularly

stressed, so it is not clear whether with the simple BCS approximation used in the

present approach is good enough.

As mentioned before, the experimental systematic study of the scissors mode has led

to the discovery of spin excitations [51, 128]. These have been detected in 154Sm and
156Gd in the energy range of 5-11MeV and have very peculiar properties. The profile

of the spectrum exhibits two distinct bumps. These transition have been studied with

relatively good success in the TDA [41, 42] as well as in RPA [169, 170, 101, 118].

There is however no conclusive answer to the interpretation of the observed two-peak

structure. It is indeed not clear whether these two peaks correspond to different proton

and neutron excitations or are of isovector and isoscalar nature. RPA calculations

have been carried out to describe the M1 excitations not only in rare earth nuclei,

but also in actinides [49, 107], in medium-light [106] and medium nuclei [105]. On the

whole, the results are satisfactory. An unsolved problem remains however. The energy

distribution of the M1 strength is not well reproduced. This suggests that maybe the

RPA space should be enlarged so as to allow for higher configurations. In the present
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study this configuration space has been taken as large as possible within the limits of

the hardware used. Convergence of the results has been throughly checked. Because the

approach is fully self-consistent, many problems that plague other theoretical studies

like admixtures with spurious modes, are avoided. In particular, no further parameters

need to be adjusted. The same interaction used in the ground state is used for the

excited states calculation. However, as happens with other low-lying excitations, the

scissors mode and spin excitations are very sensitive to the single particle structure

around the Fermi energy. It is a known problem of the self consistent approaches

in general, and of the relativistic approach in particular, to the nuclear many-body

problem, that the effective mass is too low [161] as to be able to reproduce well the single

particle structure. The coupling to collective surface vibrations plays an important role

and is not taken into account on the RPA level.

6.3.1 Matrix elements of the M1 excitation mode

The M1 operator is defined as [133]

M̂1µ = µN (gss + gll) · (∇rY1µ(θ, φ)) (6.6)

with gs the gyromagnetic factor for protons and neutrons and gl = 0, 1 for neutrons and

protons respectively. The angular momentum operator l acts only on the coordinates

of the wave function and not on the spherical harmonic Y1µ. The matrix element that

connects an initial state |i〉 and a final state 〈m| is

〈m|M̂1µ|i〉 = µNδΩm−Ωi,µ
1√
2

√
3

4π

∫
rdrdzFµ(r, z) (6.7)

where Fµ(r, z) is a function that depends on the upper and lower components of the

Dirac spinor. Its full expression for the case of axial symmetry can be found in the

Appendix B.

6.3.2 Scissors mode in 20Ne

As a first application of the RHB+RQRPA framework we have undertaken a model

study of the first multipole magnetic excitations in 20Ne. This nucleus offers several

advantages. Its ground state is well deformed and exhibits a prolate shape in the RHB

model, with a quadrupole deformation parameter β ≈ 0.5. Another advantage is the

reduced number of nucleons to take into account in the calculations, which translates

in fast running times and thus in the possibility of detailed analysis. With the optimal
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number of oscillator shells for a full precision ground state calculation, the number of

qp pairs never exceeds five thousand. Furthermore, because the number of protons and

neutrons is the same, switching off the electromagnetic interaction should give similar

results for both protons and neutrons. Using this technique, very detailed checks can

be carried out on the isospin part of the interaction, and its consistency can be further

established. Finally, the absence of pairing correlations simplifies both the handling

of numerical factors that influence the results and their interpretation. These reasons

make 20Ne the ideal theoretical playground where to introduce the concepts that will

later be used in the study of more complex systems.

Figure 6.1 shows the response in 20Ne to the M1 magnetic dipole operator that has

been previously defined. Results for two parameter sets corresponding to two func-

tionals are presented one above the other for easy comparison. The non-linear meson

exchange functional using the NL3 parameter set will be used as a reference in all

further calculations. Its maturity and proven performance make it the perfect choice.

In order not to clutter the document with excessive details and many plots, we will

present results only for one of the other two functionals to compare their performance.

In this case we have chosen the DDPC functional, even though there is no available

parameter set that can match the performance of the best forces for the other two

functionals. Nevertheless, it is interesting to see how well it does.

In both cases the calculations were performed with the maximum precision allowed

by the current implementation of the computer code. The number of pairs is around

five thousand. Optimal numerical parameters were chosen with the aid of the study

presented in the last chapter. The rotational spurious mode is well separated, situated

for both functionals below 0.1MeV, i.e. no admixture with the vibrational response is

observed. The total M1 response is depicted in Figure 6.1, as well as the orbital lM1

and spin sM1 contributions

lM1 = µNgss (6.8)

sM1 = µNgll (6.9)

Only one prominent peak is found around 6MeV. In the case of the NL3 parameter

set its exact position is 5.7MeV. For the point coupling functional with the PC-F1

parameter set, it is slightly shifted to a higher energy, 5.9MeV. Calculations performed

with the three functionals best parameter sets (NL3, DD-ME2 and PC-F1) show good

agreement, with an energy dispersion of less than half an MeV in the position of the

main peak. Regrettably, there is no experimental data available for the magnetic

response in this nucleus. Theoretical studies using large scale shell model calculations

[36] predict a low lying orbital mode around 11MeV for 20Ne, in disagreement with

the results presented in this study. However, other calculations [97] performed in 22Ne,
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Figure 6.1: M1 Excitation strength for 20Ne, using the NL3 parameter set
on the upper plot and PC-F1 on the lower plot. A very well developed peak
can be seen around 5.8MeV in both cases. Its structure is composed mostly
of spin flip transitions.
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with the same shell model interaction, exhibit two dominant low lying peaks around 5-

6MeV. The orbital character of these two modes is less than 25% of the total response.

This is in better agreement with results found within our RHB+RQRPA calculations,

where fragmented strength with similar characteristics is found in the same energy

region.

Regarding the contributions from the orbital and spin components of the M1 operator

to the total response strength, it can be observed in Figure 6.1 that there are two

differentiated energy regions. Around the main excitation peak at 6MeV there is an

enhancement of the response due to the addition of the orbital and spin contributions.

In contrast, in the energy region above 6.5MeV it is the opposite, both contributions

cancel. This feature of the M1 strength distribution is much more evident when study-

ing heavier nuclei and will be discussed in detail in the next section in Gadolinium

isotopes,

From the figure it can also gathered that the main contribution to the total response

strength comes from spin excitations. The supposed orbital character of the low lying

spectra in the M1 transitions is eclipsed by the preponderance of spin flip strength,

three times larger than the orbital response. Again, this comes in disagreement with

the cited theoretical calculations, which predict a much bigger orbital contribution to

the total strength. However, low lying collective transitions in such a light nucleus

as 20Ne cannot be expected to be exceptionally well described by the RHB+RQRPA

theory. In few nucleon systems, the single particle structure around the Fermi surface

is of the utmost importance in the calculation of low-lying excitations. As such, the

results produced in a self-consistent mean field calculation are not so reliable. A better

description would require a proper account of excitations to the continuum above the

coulomb barrier and probably for higher order correlations at the time dependent mean

field level. The situation improves in heavier nuclei, were mean field theories were

designed to yield good results at low computational costs. However, as will be shown

in the next section on the study of Gadolinium isotopes, quantitative comparison of

M1 excitation energies with experimental data still needs considerable improvement.

Nevertheless, it is still interesting to delve further into the study of the properties of

the main excitation peak. Many of the general features will also be present in heavier

nuclei, and a clear idea of what to expect is useful. The study of the structure of the

excitation peaks can be carried out in detail attending to their single particle structure.

The contribution Cqph from a particular proton or neutron qph configuration to a RPA

state is determined by

Cqph = (|X ν
ph|2 − |Yν

ph|2)η−ph (6.10)

where the occupation factor η− is defined in Equation (4.19). X ν and Yν are the

RQRPA amplitudes associated with a particular RQRPA excitation energy. Table 6.1
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Peak at 5.7MeV, NL3 parameter set ∆E (MeV)

proton 49.1% −1
2

+
([220] 93%) → +3

2

+
([211] 94%) 5.15

neutron 48.9% −1
2

+
([220] 94%) → +3

2

+
([211] 95%) 5.22

proton 1% +1
2

+
([220] 93%) → +1

2

+
([211] 64%) 9.73

neutron 0.9% +1
2

+
([220] 94%) → +1

2

+
([211] 70%) 10.17

Peak at 5.9MeV, NL3 parameter set ∆E (MeV)

proton 49.0% −1
2

+
([220] 93%) → +3

2

+
([211] 94%) 5.31

neutron 48.9% −1
2

+
([220] 94%) → +3

2

+
([211] 95%) 5.42

proton 0.9% +1
2

+
([220] 93%) → +1

2

+
([211] 64%) 9.68

neutron 0.9% +1
2

+
([220] 94%) → +1

2

+
([211] 70%) 10.13

Table 6.1: ph structure for the 5.7MeV and 5.9MeV M1 transition mode
in 20Ne for NL3 and PC-F1 parameter sets, respectively. The second col-
umn refers to the normalization of the RPA amplitudes. The level quantum
numbers in the third column are ±Ωπ, where ±Ω is the angular momentum
projection over the symmetry axis and π is the parity. In parenthesis are
the quantum numbers of the oscillator state which contributes most to the
mean field single particle level, with its corresponding percentage. The ef-
fect of coulomb interaction can be seen as the small differences in the mixing
percentages for protons and neutrons. A calculation with the electromagnetic
interaction switched off gives as a result a perfect isospin symmetry, with no
differences observable within the accuracy of the computed results.

outlines the single particle decomposition of the dominant M1 peaks observed in Figure

6.1. For both density functionals all the strength of the excitation mode is provided by

a single particle transition within the sd-shell, from the last level in the Fermi sea to

the first consecutive unoccupied level. The low collectivity indicates that, within the

RHB+RQRPA model, the spectrum of the M1 operator in 20Ne is of single particle

character.

It is difficult to form a mental image of the nature of the excitation with only the

aid of Table 6.1. For that purpose, it is always useful to plot the neutron and proton

transition densities and compare them. Figure 6.2 shows a color plot of the transition

densities at an excitation energy of 5.7MeV, for the case of the NLME functional. The

color is used to indicate the value of the function, with blue for negative values and

red for positive ones. Zones with the same color for both protons and neutrons are

indicative of in-phase vibration, while regions where the color is different mean they

are out-of-phase. In this case, there is only one region where the transition densities

are non-zero and shows that it corresponds to an isovector transition mode, where

the neutrons (left) vibrate in opposition to protons (right), i.e., the typical excitation
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Figure 6.2: Color plot of the two dimensional transition densities for the M1
Kπ = 1+ peak at 5.7MeV, as calculated with the NL3 parameter set. The left
panel corresponds to the neutron transition density, while the right panel to
the proton density. The color scale is the same for both plots; negative values
appear in blue and positive ones in red. Solid contour lines depict positive
values and dashed ones negative values. Even though the excited states have
a well-defined parity, for clarity, the z-axis range has been extended to include
also negative values. The well known scissors mode excitation pattern can be
clearly recognized (refer to Equation (5.51)).
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Figure 6.3: Radial part of the projected (to J = 1, M = 1) transition densi-
ties of the peaks at 5.7MeV and 5.9MeV for, respectively left and right, NL3
and PC-F1 parameters sets. The prominent isovector nature of the excitation
is well reflected by the graphs.

pattern of the scissors mode.

In such a simple case as the one found in 20Ne the interpretation of the two dimen-

sional color plot for the transition densities is very clear. They represent the intrinsic

transition densities, referred to the intrinsic frame of reference, where only the total

angular momentum projection on the symmetry axis is well defined. In that regards,

they are expected to contain admixtures from all possible angular momenta. However,

the transition operator (M1 in this specific case) restricts to its own total angular mo-

mentum the major contributions from the transition densities to the total response

strength. It is therefore very advisable to project out the weaker-contributing angular

parts from the densities to obtain the actual transition density that would be observed

in the laboratory frame of reference. For the M1 operator that means retaining only

the contributions coming from J = 1 angular momentum, with the help of equation

(5.55). In Figure 6.3 the radial part of such a projected transition density is plotted

for the main peaks in the 20Ne M1 response. The isoscalar and isovector transition

densities are defined as

δρIS = δρn + δρp

δρIV = δρn − δρp (6.11)

and are a direct measure of how neutrons and protons vibrate in-phase or out-of-phase,

respectively. The almost nonexistent isoscalar transition density is a clear indicative of

the pure isovector nature the mode at 6MeV for the M1 operator in 20Ne. In simple

geometrical terms it can be interpreted as a rotation of neutrons against protons around

the perpendicular of the axis of symmetry. Furthermore, details in Figure 6.2 show
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that two distinct regions can be distinguished. They are separated at around 2 fm

from the origin, where the direction of rotation for protons and neutrons changes. The

traditional qualitative picture given to this particular excitation mode is to consider the

neutrons and protons densities as the blades of a scissor, and represent their movement

as the one it makes when operated. In addition, one has to take into account the angular

momentum inherent in a K = 1 excitation: it could be regarded as the movement made

by a scissors when in operation, and at the same time rotating around its longitudinal

symmetry axis. However, the picture we find is a little different. The sole appearance

of two regions (as depicted in Figure 6.3) is a strong hint that the simple picture of

the proton density rotating against the neutron density as rigid rotors (as in the TRM

model) does not reflect reality. In the next section, with the study of the M1 response

in 156Gd, we shall see how the scissors mode looks like in a heavy nucleus, and how it

can be interpreted in geometrical terms.

6.3.3 Scissors mode in 156Gd

Even though the study of the scissors mode in light nuclei, like for example 20Ne, is a

very good academic exercise to become familiar with the techniques and main physical

features, it is in heavy nuclei where the true character of a collective orbital mode like

the low lying M1 response can be fully investigated. In particular, as a starting point for

the study of M1 excitations in heavy nuclei within the RHB+RQRPA framework, we

have chosen 156Gd, the nucleus where it was first experimentally observed the scissors

mode [25]. In that experiment, it was shown the existence of a low lying M1 collective

mode with an excitation energy of 3.075MeV and heavy fragmentation, that consumed

approximately 3µ2
N of the total energy weighted sum rule.

RHB calculations of 156Gd predict a normally deformed prolate nucleus with a quadrupole

deformation parameter of β = 0.3, in agreement with experimental data. Its open shell

character requires the inclusion of pairing correlations at the mean field level, and,

for consistency, in the RPA interaction. However, the realistic calculation of collective

excitations in such a heavy nucleus, with pairing correlations, is both a challenge and

a very good performance test on the future practical applications of the framework

presented in this document. With a very large configuration space, drastic cutoffs in

the numerical parameters where needed in order to make the computations feasible.

The particle energy cutoff was taken at 65MeV, the antiparticle one at -1650MeV. The

quasiparticle cutoff parameter was fixed at 0.1 . These restrictions limit the number

of quasiparticles to a little more than fourteen thousand. The pairing strength con-

stants for neutrons and protons were adjusted to reproduce the experimental energy

gap (∆n = 1.2 MeV, ∆p = 1.3 MeV), as calculated with a simple three point formula

from even-odd mass differences [133]. With these numerical parameters the position of
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the rotational spurious mode is around 0.15MeV. Full convergence of the results was

observed already within ten thousand qp pairs even if the separation of the spurious

mode was not perfect.

Figure 6.4 shows the transition strength of the M1 transition operator in 156Gd for

two different functionals, the NLME with the NL3 parameter set on the upper plot

and the DDME with the DD-ME2 parameter set on the lower plot. In the calculated

spectrum there are two main different regions that can be distinguished. Below 5MeV,

the response has a strong orbital component that adds up with the spin excitation

strength to give the total M1 strength. On the other hand, in the energy interval

5-10MeV, the orbital response contribution is much weaker in comparison with the

spin-flip contribution to the total strength. In addition, it is worth to note that in this

energy region the orbital and spin contributions cancel each other.

Both models perform equally well in predicting the position of the scissors mode, with

a very similar overall shape for the M1 operator response. The experimental data

point is the position of the main scissors peak found in [25]. Heavy fragmentation

is observed around a mean energy of 3MeV, in good agreement with the conclusions

of reference [25]. Even though the folded response (with a Lorentzian with a folding

parameter of Γ = 0.2 MeV) for both models is remarkably similar, several differences

appear in the fine grained structure. In the case of the DD-ME2 parameter set the

main contribution to the 2.5-3MeV peak comes from only one RPA excitation mode,

located at 2.75MeV. The orbital contribution to the strength is roughly double than

of the spin one. On the other hand, for the NL3 parameter set two different RPA

excitation modes, located at 2.6MeV and 2.61MeV, contribute to the overall response

in the vicinity of the 2.5-3MeV peak.

This discrepancy has its origin in numerical inaccuracies connected with the trunca-

tion of the qp configuration space. The effect of slightly different pairing interaction

constants and the number of qp pairs used in the different calculations influence the

final precision. These inaccuracies occur mostly in the low lying energy region where

the level configuration near the Fermi energy is of great importance. However, attend-

ing to the single particle structure of the split RPA modes for the NL3 parameter set

(see Table 6.2), one can easily conclude that they are fragmented parts of the same

resonance. Both modes are composed of the same four main single particle transitions,

being those with under 1% total contribution what differences them, and explains their

slight energy deviation.

In Table 6.2 we present the single particle structure of the RPA excitation modes

corresponding to the lowest lying orbital peak. For both models more than 75% percent

of the strength of the mode is made up from three transitions, i.e., the collectivity is not

very high. Most of that strength is provided by neutron excitations, while the protons
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Figure 6.4: M1 excitation strength for 156Gd (upper NL3, lower DD-ME2).
The orbital response dominates in the low lying region at 2-5MeV. On the
other hand, in the energy interval 5-10MeV the spin flip excitations pro-
vide most of the response. The experimental value for the scissors mode
is 3.075MeV. Two peaks with a strong orbital contributions are candidates
to be labeled as the classical scissors mode, situated at 2.6MeV and 4MeV,
respectively.
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NL3 parameter set, M1 in 156Gd

2.6MeV ∆E (MeV)

neutron 45% −3
2

+
([651] 72%) → +5

2

+
([642] 82%) 2.66

proton 30% −5
2

+
([413] 94%) → +7

2

+
([404] 95%) 3.32

neutron 3% −3
2

−
([532] 84%) → +5

2

−
([523] 90%) 3.79

neutron 3% −1
2

+
([660] 55%) → +3

2

+
([651] 72%) 2.90

2.62MeV ∆E (MeV)

neutron 65% −3
2

+
([651] 72%) → +5

2

+
([642] 82%) 2.66

proton 20% −5
2

+
([413] 94%) → +7

2

+
([404] 95%) 3.32

neutron 1% −3
2

−
([532] 84%) → +5

2

−
([523] 90%) 3.79

neutron 1% −1
2

+
([660] 55%) → +3

2

+
([651] 72%) 2.90

DD-ME2 parameter set, M1 in 156Gd

2.75MeV ∆E (MeV)

proton 56% −5
2

+
([413] 94%) → +7

2

+
([404] 96%) 3.43

neutron 20% −3
2

+
([651] 73%) → +5

2

+
([642] 83%) 3.14

neutron 7% −1
2

+
([660] 56%) → +3

2

+
([651] 73%) 3.25

neutron 3% −9
2

−
([514] 96%) → +11

2

−
([505] 98%) 4.74

proton 2% −3
2

−
([541] 78%) → +5

2

−
([532] 87%) 3.83

Table 6.2: ph structure of the lower dominant RPA excitation modes with
orbital character in the M1 response for 156Gd, for the NL3 and the DD-ME2
parameter sets.

play a relatively minor role. It is not very striking that all contributions come from

the first transitions allowed by symmetry constrains from a level below the chemical

potential to one just above. The orbital response is pushed up in energy by the influence

of pairing correlations. We have performed test calculations in samarium isotopes that

show clearly that, as the pairing constants are increased the position of the peaks with

strong orbital component shift upwards. When the BCS pairing constants are taken

to reproduce the experimental pairing gaps, the positions for the orbital response is

roughly fixed with two strong peaks at ∼ 2.5 MeV and ∼ 4 MeV, regardless of the

model interaction used. Even though a more detailed study would be necessary to

draw a general conclusion, this fact strongly hints that the overall invariance of the

position of the scissors mode is a direct consequence of the pairing interaction. Even

though our feeling is that the BCS approximation is good enough in this specific case, it

would be very interesting to be able to compare with a more elaborate pairing scheme.

The quantum numbers of the major oscillator contributor to the components of a ex-

citation peak provide detailed structure information. These oscillator levels are char-
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acterized by quantum numbers nz, nρ and Λ, where Λ is the projection of the orbital

angular momentum on to the symmetry axis. With

N = nz + 2nρ (6.12)

being the major quantum number. For axial symmetry Λ is a good quantum number.

The same is true for the spin component sz and the z-component jz of the total angular

momentum, which has the eigenvalue

Ω = Λ +ms = Λ± 1

2
(6.13)

Thus, it is usual to characterize the eigenstates of the harmonic oscillator Hamiltonian

in axial symmetry by the set of quantum numbers

Ωπ[NnzΛ] (6.14)

where π is the parity of the states ( π = (−1)N ). In the notation used throughout this

document we have added the sign of the total angular momentum projection as it is

relevant for the formation of qp pairs with a good total angular momentum projection

K = Ωk + Ωk′ with a definite sign.

±Ωπ[NnzΛ] (6.15)

In the case of both peaks for the NL3 parameter set, the three most relevant single

particle contributions share a common pattern in the change of the representative

oscillator quantum numbers, i.e., for them it holds that ∆nz = −1 and ∆Λ = +1. Thus

there is no change of the spin projection over the symmetry axis. That means that the

projection of the orbital angular momentum has to increase by one unit and confirms

the strong orbital character of the peak. The major single-particle spin-flip contribution

has a share of only 3%. Those single-particle components with less than 3% percent

contribution generally are between levels that change the spin projection quantum

number, i.e. ∆ms = 1. A similar situation is found for the DD-ME2 parameter set,

where for the five major single-particle contributions it holds that ∆nz = −1 and

∆Λ = +1. However, protons play a much more important role as their share is larger

than 50% of the total strength. The first spin-flip contribution, as with the NL3 case,

is below 1% of the total strength.

However, more informative, and perhaps better suited for geometrical interpretation

than the single particle structure, are the total intrinsic transition densities. In Figures

6.5 and 6.6 we plot the intrinsic two dimensional transition densities for the RPA

excitation modes contributing to the lowest lying peak with strong orbital component

in their respective functionals. Even though the detailed structure is different, the
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Figure 6.5: 156Gd low lying orbital mode transition density, for the NL3
parameter set. Only one of the two excitation modes at ∼ 2.6 MeV are plotted,
as they show they same structure (see text for explanation). Both are similar
to that calculated with the DD-ME2 parameter set (see Fig. 6.6).

total transition density main features are strikingly similar for both models. It is of

particular interest the overall coincidence that can be observed in the shape for the

split peak in the NL3 calculation, giving weight to their interpretation as the same

excitation.

Attending to the different regions delimited by the contour lines, it is easily seen that

in most of them the actual proton neutron vibration is in phase. What differs is their

absolute value, not the sign of the result. In the regions where there is a high value
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Figure 6.6: 156Gd orbital mode at 2.75MeV transition density for the DD-
ME2 parameter set. It is almost identical to the one obtained with the NL3
parameter set (see Fig. 6.5).

for the neutron transition density, protons tend to share the same phase, but with

a considerably different absolute value. It is evident from the plots that the greater

transition probability occurs at the outer edges of the nucleus, near the surface. The

core stays relatively unperturbed. It is very clear, however, that it does not correspond

to the scissors mode excitation pattern; there is almost no isovector component, and

certainly the protons do not rotate against the neutrons. We must therefore conclude

that this is another kind of collective mode, maybe the isoscalar counterpart to the

scissors mode. In particular, the detailed study of the intrinsic transition densities

seem to suggest a skin mode. Unlike the case of the scissors mode, the isospin of this
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6.3 M1 transition in the RQRPA 83

Figure 6.7: Schematic drawing of the two low-lying orbital modes. The left-
hand side corresponds to the low lying skin mode. On the right is the typically
scissors-like motion, which corresponds to the higher lying peak with strong
orbital character.
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Figure 6.8: Radial dependence of the projection to good angular momentum
(J = 1) of the transition density in Figures 6.5 and 6.6.

excitation mode is not well defined. While near a perpendicular to the symmetry axis

(r-axis) neutrons and protons are in phase and have a comparable transition density,

at the far end of the nuclear surface along the symmetry axis the neutron transition

density is three times as big as the proton one. It is thus the case that in the central

surface region this mode is an isoscalar (T = 0) mode, while at the caps there is an

admixture of T = 0 and T = 1. The schematic representation on the left of Figure

6.7 portrays such a situation. The shaded region represents the nuclear core composed

of neutrons and protons rotating in phase. The full blue line represents the extended

neutron skin at the cap, which rotates out of phase against the core.

It can perhaps be seen more easily looking at the radial components of the projected

transition densities. Figure 6.8 confirm many of the first impressions one receives from

the two dimensional plots. Up to 4 fm the densities are essentially zero, i.e. there is

83



84 M1 transitions in deformed nuclei

practically no contribution coming from the core. It can also be gathered from the

plot that this precise mode has a very high isoscalar nature, neutrons and protons are

in phase. The proton maximum is twice the magnitude of that of neutrons, and is

located 1 fm closer to the origin. Many of the fine-grained details that can be seen in

the intrinsic transition density plots are lost because of the smearing caused by the

projection to good angular momentum; however, comparing with the typical projected

transition density of the scissors mode (see Figure 6.9)

Thus, the simple geometrical picture portrayed by the TRM does not reflect the results

obtained in the present self-consistent investigation for the lowest lying orbital M1

excitation peak. However, this is not the only one with a large orbital component,

even if it is in the only energy region where the orbital contribution dominates the

response. As can be seen in Fig. 6.4, around 4MeV, 5.5MeV and 6.5MeV, even

if the spin response dominates, the transition strength has a non negligible orbital

component. Whether this excitation modes have anything to do with what is known

as the scissors mode, or their nature, is a difficult question that we will try to address

in the following.

The intrinsic transition densities (both models) for the 3.8MeV peak are shown in

Figures 6.9 and 6.10. Below are also the projected densities for both parameters sets.

At a first glance there is a stark contrast with those densities shown in Figure 6.8.

It is evident that this mode has a very marked isovector nature, in contrast to the

lower lying peak around 3MeV. Roles are reversed concerning the neutron an proton

densities. While the proton contribution is stronger near the center, the neutron density

is larger further away from the origin.

Differences between the two functionals used in the calculations are also evident. In

Figure 6.4 it can be seen that, while for the NL3 calculation the peak at 3.87MeV is

dominantly of orbital nature, the same does not happen for DD-ME2. In the later case

the excitation peak is dominated by the spin part of the M1 operator. The excitation

pattern for the NL3 peak can be connected with the classical scissors mode description

easily: the neutron and protons rotate against each other around a perpendicular of

the symmetry axis. However, the same cannot be said about the peak for the DD-

ME2 parameter set, where even if the protons rotate against neutrons, they do it at

different distances from the origin. It can be regarded as a couple of onion shells that

rotate in different directions. Thus, the spin-flip contribution to the mode smears its

neutron-proton rotational character.

It is very interesting to compare the single particle structure of this mode around

3.5-4MeV with that at 2.5-3MeV. Table 6.3 shows that in fact the same structure of

transitions where the ∆nz = −1 and ∆Λ = 1 trait is present. Again, the largest spin-

flip contribution is under 1% share of the total strength. Even though the transition
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Figure 6.9: 156Gd transition density for the peak with strong orbital compo-
nent at 3.87MeV for the NL3 parameter set.
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Figure 6.10: 156Gd transition density for the peak with strong orbital com-
ponent at 3.86MeV for the DD-ME2 parameter set.
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NL3 parameter set, M1 in 156Gd

3.87MeV ∆E (MeV)

proton 73% −3
2

−
([541] 78%) → +5

2

−
([532] 87%) 3.91

neutron 15% −3
2

−
([532] 84%) → +5

2

−
([523] 90%) 3.79

neutron 4% −1
2

−
([530] 74%) → +3

2

−
([521] 84%) 3.67

neutron 2% −3
2

+
([651] 72%) → +5

2

+
([642] 82%) 2.66

neutron 2% +3
2

−
([530] 74%) → +5

2

−
([521] 84%) 4.59

DD-ME2 parameter set, M1 in 156Gd

3.86MeV ∆E (MeV)

proton 67% −3
2

−
([541] 78%) → +5

2

−
([532] 87%) 3.83

neutron 10% −1
2

−
([530] 75%) → +3

2

−
([521] 85%) 4.12

proton 6% −1
2

+
([420] 81%) → +3

2

−
([411] 89%) 4.52

proton 4% −5
2

−
([532] 87%) → +3

2

−
([523] 92%) 3.46

neutron 2% −1
2

+
([400] 93%) → +3

2

−
([651] 73%) 4.10

Table 6.3: ph structure of the peaks with large orbital contribution around
4MeV in the M1 response for 156Gd, for the NL3 and the DD-ME2 parameter
sets.

densities in Figures 6.9 and 6.10 seem to suggest the contrary, in both functionals the

main single particle component in this transition is the same, −3
2

− → +5
2

−
, with exactly

the same oscillator quantum numbers. Thus, the two parameter sets predict the same

structure and energy for this peak with a surprising degree of precision. Compared with

the lowest lying orbital peak at ∼ 2.5 MeV, both share the same excitation pattern of

∆nz = −1 and ∆Λ = 1, which is not present in all the rest of the spectrum. Therefore,

it is not totally illogical to speculate that both peaks belong to the same kind of

rotational excitation. However, none of the two is obviously, or even unambiguously,

connected with the classical scissors mode described by the Two Rotor Model, or the

interpretation of all the available experimental results.

Regarding the high energy part of the spectrum, the general picture above 5MeV is

quite different. As already noted, the tendency in this region is for the orbital and

spin M1 contributions to cancel each other, being the spin-flip the dominant excitation

mechanism. In the lower lying region, up to 6MeV the strength is very fragmented. The

folded curve contains contributions from many different single particle configurations.

However, in the region above 6MeV, most of the strength for the different peaks comes

from one RPA mode. Attending to the single particle structure of these excitations, it

is very clear that they are mostly spin excitations, with ∆ms = ±1 and most of the

time Λ = 0.
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88 M1 transitions in deformed nuclei

This fact has important consequences that become obvious looking at the projected

transition densities for the main peaks in the region, in Fig. 6.11. Comparing with the

lower lying peaks where the orbital part of the M1 operator plays a very important

role, in these cases no general feature with simple geometrical interpretation can be

extracted. It is, however, of interest to note that the two “bumps” that can be seen in

the spectrum, one in the 5-6MeV interval and the other in the energy region above,

have markedly different excitation patterns. When the total response has non negligible

contribution coming from the orbital part of the M1 operator the collectivity of the

peaks increase almost to the levels observed in the lower lying peaks. However, when

that does not happen, the strength is almost exclusively provided by a unique single

particle transition with up to a 90% share.

A closer look reveals that the important orbital contribution in the 5-7MeV region

explains the seemingly collective and isoscalar nature of the spin excitations in that

interval (six upper plots in Fig. 6.11). The two lower plots, however, indicate that in

the energy interval 7-10MeV the response is mostly due to single particle transitions

between spin orbit partners. Inconclusive experimental results proposed an interpreta-

tion based on isoscalar excitations for the 5-7MeV energy region, and isovector ones in

the 7-10MeV region. Our analysis cannot confirm those reports, even though it is true

that the lower “bump” seems to correspond with isoscalar excitations with a somewhat

high collectivity.

In summary, further study in other nuclei, from the same and others nuclear chart

regions, is of course needed to draw general conclusions. However, from the results

obtained in 156Gd it has been found that the pairing strength plays a dominant role

in the position of M1 excitations. When pairing correlations are absent, the single-

particle energy gap is not so pronounced and the whole spectrum is shifted to lower

energies. As one increases the pairing constants, the low lying response curve moves

almost unaltered in shape to higher energies. When the gap is chosen to be the exper-

imental one, the excitation at 3MeV is not of orbital character, in disagreement with

experimental results from reference [25].

Two major peaks with strong orbital character below 4MeV excitation energy are

found. We have tentatively labeled as the classical scissors mode the higher lying

one at 3.8MeV, which is 0.8MeV off the experimental value. The orbital and spin

contributions for this excitation mode are roughly the same. The simple picture of

protons rotating against neutrons does not properly describe the results found, being

the geometrical interpretation closer to a very specific kind of surface shear along a

perpendicular of the symmetry axis (see the schematic Figure 6.7). The collectivity of

the mode has been found to be rather low, with only a few single particle transitions

contributing to the overall response. The integrated M1 strength for the scissors mode,

however, predicts a low value of 2.6µ2
N , almost 0.5µ2

N off the experimental value. In
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Figure 6.11: M1 projected transition densities for the spin excitations in the
energy interval 5-12MeV in 156Gd. NL3 left, DD-ME2 right.
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addition, another strong orbital peak is found around 2.5-3MeV, which shares the

same excitation pattern as the scissors mode and is of isoscalar nature. Its geometrical

interpretation is, however, not clear, as it is a surface excitation where a skin of neutrons

rotates against a core composed of neutrons and protons, and can be the rotational

equivalent of the pygmy dipole resonance in the magnetic case. The similarities with

the classical scissors mode, in particular the identical single particle excitation pattern,

is a strong hint that they belong to the same kind of rotational collective excitation.

Regarding the structure of the high lying response in the 5-10MeV energy region, two

main zones can be identified attending to whether the orbital and spin response add

up or cancel to form the total M1 response, as was already noted when studying 20Ne.

Between 5MeV and 7MeV there is non negligible orbital response, while it disappears

from the response at higher energies. The almost isoscalar nature of the lower peaks

contrast to the almost pure single particle structure of the high lying ones. They

correspond to the experimentally well known “bumps” in the spin-flip part of the M1

spectrum.

Attending to their configuration, both show a radically different single particle structure

compared with the tentatively identified scissors mode peaks at 3MeV and 4MeV.

Comparisons of these results with calculations we have performed in other gadolinium

isotopes, demonstrate that this particular region of the response is very fragmented and

highly dependent on the nucleus under consideration. The exact position of the peaks

is also very sensitive to the strength of pairing constants used in the calculations,

showing a much cleaner spectrum when no pairing force is present. However, the

general features remain grossly the same, without much variation in the configuration

that composes the different excitation states.

In summary, we feel that the overall experimentally observed features of the M1 re-

sponse in 156Gd are well reproduced within the present relativistic functionals. How-

ever, a detailed systematic study of such excitations in isotopic chains in the actinide

and other regions should cast light into the reasons behind the quantitative diver-

gences observed with some of the experimental results, and clarify the true nature of

the scissors mode and the soft skin mode our calculations predict at low energies.
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Chapter 7

E1 transitions in deformed nuclei

“It doesn’t matter how beautiful your theory is, it doesn’t

matter how smart you are. If it doesn’t agree with ex-

periment, it’s wrong.”

— Richard P. Feynman, 1918-1988

7.1 E1 response in Ne isotopes

In recent years, the study of the low lying collective soft modes has been a very attrac-

tive subject, both experimentally and theoretically. They correspond to the oscillation

of the mantle composed from excess neutrons out of phase against a core formed from

the rest of the neutrons and protons. The structure of such modes is deeply linked

with the single particle structure near the Fermi surface, and thus its study can provide

valuable information regarding the performance of the different functionals. Originally

thought to be an exclusive phenomenon of heavy nuclei with large isospin asymme-

tries, a very similar excitation pattern has also been observed in light nuclei. The first

systematic experimental effort in light nuclei, based on electromagnetic excitations in

heavy-ion collisions, indicated the appearance of low-lying dipole strength in oxygen

isotopes 17O-22O [11, 152]. It has been also throughly investigated within a variety

of theoretical tools [123, 40, 151], including the RHB+RQRPA in spherical symmetry

[108, 110, 163, 109], with different degrees of success in comparison with experimental

data.

91



92 E1 transitions in deformed nuclei

Recent experiments [55] performed in 26Ne show an enhancement of the isovector dipole

response in the low lying region; tentatively, it has been identified as a possible pygmy

mode. We present a systematic study in the RHB+RQRPA framework of the dipole

response in the Ne isotopic chain, from 20Ne to 28Ne, using two different relativistic

density functionals, the veteran NL3 and the more recent DD-ME2. New IVGDR fea-

tures arising from the explicit use of a deformed formalism will be given consideration.

In particular, it is of interest to establish the evolution of the low lying E1 excitation

strength with increasing number of neutrons and the question of the existence and

properties of pygmy modes in deformed light nuclei.

In Figure 7.1 the evolution of the E1 dipole response in neon isotopes with increasing

number of neutrons, from 20Ne to 28Ne is plotted. On the left are the excitation

strengths for the NLME functional with the NL3 parameter set, and on the right those

for the DDME functional with the DD-ME2 parameter set. The red curve corresponds

to excitations along the symmetry axis with Kπ = 0−, while the blue curve are those

perpendicular to the symmetry axis with Kπ = 1−. In principle, for prolate nuclei,

as is the case for the studied neon isotopes, the strength due to the Kπ = 0− mode

should lie at lower energies compared to the Kπ = 1− mode. An intuitive argument

that accounts for that fact is to remember that the nuclear potential must be flatter

(more extended) along the symmetry axis, and thus it is more favorable energetically

for the nucleons to oscillate in that direction than perpendicular to the symmetry axis,

where the nuclear potential is narrower. It is possible, therefore, to relate the nuclear

deformation with the energy separation of the two modes. In the numerical chapter it

has been checked that for spherical nuclei peaks for both excitation modes appear at

the same energies.

The splitting of the response due to the broken spherical symmetry, and its interpreta-

tion, can be observed in Figures 7.2 and 7.3. The upper plot is the transition density

for the main IVGDR peak at 16.73MeV observed in the Kπ = 0− response in 20Ne for

NL3. The other corresponds to the peak at 21.31MeV in the Kπ = 1− mode. The

prolate deformation is evident, as the densities are elongated in the direction of the

z-axis. The character of the Kπ = 1− mode as a vibration along a perpendicular of

the symmetry axis is recognizable in Figure 7.3. By comparison, in Figure 7.2 is then

easily interpreted as a vibration along the symmetry axis. Warm colors (red) indicate

positive values, while cold colors (blue) represent negative values. As expected for the

IVGDR, the neutron-proton vibrations are out of phase over the same spatial regions.

It is more evident still looking at their respective projections to the laboratory system

of reference, which are shown in the lower plots. In general, the transition densities for

the absolute value for the Kπ = 1− mode are always larger than that of the Kπ = 0−

mode.

Coming back to Figure 7.1, the response in the energy region between 15MeV and
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Figure 7.2: 20Ne IVGDR transition density for the Kπ = 0− peak at
16.7MeV, NL3 parameter set.
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Figure 7.3: 20Ne IVGDR transition density for the Kπ = 1− peak at
21.3MeV, NL3 parameter set.
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Figure 7.4: Projected transition densities for the main contributing peaks in
the dipole response in 20Ne, as calculated with the DD-ME2 parameter set.

25MeV corresponds to the IVGDR. Its strength is heavily fragmented in several peaks

in an energy interval of about 3-4MeV for both excitation modes. The main contri-

butions to the strength curve (arbitrarily defined as more than 25% of the maximum)

come from at least four different peaks. For example, in 20Ne for the Kπ = 1− mode

with the DD-ME2 parameter set the IVGDR is composed by four separate peaks, at

19.61, 20.25, 21.81, and 22.41MeV respectively. The high collectivity of these peaks

indicate a very coherent excitation pattern that fits into the properties of a giant reso-

nance. Their projected transition densities, in Figure 7.4, show that all four peaks can

be classified as a vibration of neutrons against protons.

Starting in 20Ne, and as the number of neutrons increases, two main effects are observed:

a) an increased fragmentation of the dipole strength, and b) the appearance of low lying

strength below 10MeV. These results are similar to those obtained for oxygen isotopes

within the spherical RHB+RQRPA framework.

Even though the main motivation of the present investigation is the study of the low

lying strength below 10MeV, it is worthwhile to do a little detour and compare the

results obtained for the GDR with the available experimental data, and to dig into

the differences observed for the different functionals employed. The dependence of the

position, width and strength of the GDR on the mass number and the deformation

can all provide valuable information. In order to do just so, the discrete RPA spectra
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obtained from the deformed RHB+RQRPA calculations was adjusted to the Lorentzian

function

R(E) =
1

2

NΓ

(E − Ē)2 − Γ2/4
(7.1)

in the energy interval 12.5-32.5MeV by means of a non-linear least squares fit. The

result is plotted versus the isotope mass number in Figure 7.5. As can be seen in the

upper plot, both models predict the same deformation for all nuclei, and even though

they are a little high for 20Ne and 22Ne, they agree well with the experimental values.

The total Lorentzian height, NE1, depicted in the second plot is fairly stable across

the isotope chain. However, systematic differences between the models appear in the

position of the IVGDR. While the results of both models predict a energy of 21MeV

for 20Ne within a deviation of less than 0.3MeV, that difference increases as one moves

along the isotope chain up to 2MeV for 28Ne.

There is, however, the general trend of an increase in the position if the IVGDR up to
24Ne where it is maximal, and then a decrease until 28Ne, which is common to both

parameter sets. The divergence in these results should be, in principle, due to the

distinct isospin dependence encoded in the parameter sets used. As they are adjusted

to properties of selected nuclei, almost always chosen to be in the valley of β-stability,

it can be expected to find this kind of deviations. It would be very interesting to

undertake a broad study of nuclear excitation properties to be able to constrain and

improve the isospin dependence of such forces. However, such a study is out of the

scope of the present investigation.

In Figure 7.6 is depicted the difference, in MeV, of the position of the main peaks

Kπ = 0− and Kπ = 1− as a function of deformation. They were obtained through a

least squares fit to a Lorentzian function. In principle, the splitting should be directly

related to the nuclear deformation. However, for such light nuclei the single particle
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structure plays a dominant role, as can be gathered from the figure in conjunction

with Figure 7.5. It is interesting to note that a systematic discrepancy between the

two density functionals employed is clearly observed, with the DD-ME2 functional

consistently predicting approximately 1MeV more splitting than the NL3 functional

throughout all isotopes. The greater dispersion in the response for the IVGDR that

can be seen in Figure 7.5 for the DD-ME2 parameter set is directly related with the

energy splitting between the two excitation modes. This broadening of the GDR with

deformation is even more evident when studying heavier nuclei.

In the present investigation of the Neon isotopes, we also analyse the structure of the

main peaks in the low energy region for the isovector dipole strength distribution. In

particular, we will focus our attention on properties in 26Ne, where recent experimental

results [55] indicate the presence of a non negligible response in the 8-12MeV energy

region. Neutron contributions to the isovector dipole strength in 26Ne dominate in

the low energy region. The strength function below 12MeV is fragmented into several

different peaks, with major contributions at 7MeV and 9MeV for Kπ = 1− and Kπ =

0− transitions, respectively.

In contrast to the well known radial dependence of the IVGDR transition densities

(proton and neutron oscillate with opposite phases), the proton and neutron transition

densities are mostly in phase in the nuclear interior. Furthermore, there is almost no

contribution from the protons in the surface region. The strong neutron transition

density displays a long tail in the radial coordinate. The different radial dependence

of the transition densities that correspond to the soft low-energy states as compared

to those of the giant resonances are due to the contribution of the loosely bound

excess neutrons. Studies in light neutron halo nuclei [137] have shown that these

soft modes in light nuclei, which result from the large spatial extension of the bound

single particle states, represent a new type of non-resonant independent single particle

excitations. The narrow width and the large transition strength, which characterize

these excitations, are not caused by a coherent superposition of ph configurations as

in collective states.

In our calculations in 26Ne, the isovector dipole response in the low energy region below

12MeV is mainly characterized by unique neutron single particle transitions, with

minor contributions from additional configurations. This fact is in sharp contrast to

the coherent superposition of many ph configurations that characterizes the excitation

in the region of classical collective modes, i.e. the giant resonances. Although the

inclusion of pairing correlations increases the collectivity of the low lying states, its

main effect is that of shifting the response to higher energies and fragmenting the

isovector dipole response into several peaks with dominant single 2qph configurations.

The situation slightly differs from that found in other relativistic investigations [163]

in oxygen isotopes, where an increase in the response strength was also observed.
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Figure 7.7: Transition densities for the low lying peaks in the E1 response
of 26Ne, calculated with the NL3 parameter set.
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Figure 7.8: Transition densities for the low lying peaks in the E1 response
of 26Ne, calculated with the NL3 parameter set.
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neutron 44% −1
2

+
([211] 61%) → +3

2

−
([301]65%) 9.3

neutron 38% +5
2

+
([202] 97%) → −3

2

−
([321]83%) 9.5

neutron 8% +1
2

+
([211] 61%) → +1

2

−
([301]54%) 9.3

neutron 1% −3
2

+
([211] 94%) → +5

2

−
([312]86%) 14.4

Table 7.1: ph structure for the 7.8MeV and 9.3MeV peaks in 26Ne for the
NL3 parameter sets, respectively.

Figures 7.7 and 7.8 show the intrinsic and projected transition densities, for 26Ne, of

the main peaks found for the Kπ = 0− and Kπ = 1− excitation modes in the low

energy region, at 7.83MeV and 9.33MeV respectively. The transition density for the

7.8MeV peak is a mixture between the classical isovector dipole and the pygmy dipole

resonances. The same can be said of the transition density for the peak at 9.3MeV, even

though it shows a much more developed pygmy character, with protons and neutrons

in-phase in the nuclear core, and a skin predominantly composed of neutrons.

The decomposition into single particle transitions of these two peaks can be seen in

Table 7.1. The contribution Cqph from a particular proton or neutron qph configuration

to a RPA state is determined by

Cqph = (|X ν
ph|2 − |Yν

ph|2)η−ph (7.2)

where the occupation factor η− is defined in Equation (4.19). X ν and Yν are the

RQRPA amplitudes associated to a particular RQRPA excitation energy. With a ma-

jor contribution of 70% of the total coming from one configuration, it is evident that

the lower lying peak at 7.8MeV is mostly a single particle transition. The excitation

at 9.3MeV has important contributions coming from two different single particle tran-

sitions. Consequently, it cannot be said that these excitations have a very collective

nature. However, it has to be taken into account that we are treating with very light

nuclei, and that the number of possible configurations that can reasonably contribute

to such low lying excitations is not very high.
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Already mentioned, a recent experiment [55] has studied at RIKEN the elastic and

inelastic scattering of 26Ne on natPb and 27Al target. It was found that the excitation

energy spectrum between the one neutron and the two neutron emission thresholds

exhibits a strong E1 strength. The measured reduced transition probability in the

energy interval 8-10MeV is B(E1, ↑) = 0.544 ± 0.183e2fm2. The fraction of the clas-

sical Thomas-Reiche-Kuhn energy weighted sum rule exhausted by the mode is of

5.2%±2.1%. The theoretical value obtained in our calculations is 3.5%, which is in-

side the experimental error margin. However, other theoretical studies [76] carried out

in spherical symmetry show better agreement, in that respect, with the experimental

results. Concerning the position of the main enhancement in the E1 response, in this

experiment it was found at 9MeV. This value is in very good agreement with the re-

sult obtained in the present investigation, which is only 0.3MeV off the experimental

value, and much closer than the already cited theoretical study in spherical symmetry.

Regrettably, no data could be extracted from measurements around 7MeV, as it is too

close to the neutron threshold to draw reliable conclusions. Thus, the peak that our

calculations predict at 7.8MeV cannot be confirmed by these experimental results.

7.2 Low lying E1 response in 100Mo

The dipole strength close to separation energies in several Mo isotopes was measured

in a recent experiment [134]. We shall concentrate in 100Mo, as it was the only de-

formed nucleus which was studied. In that experiment it was found that there is a

modest enhancement of the response in the low lying energy region. It has been tenta-

tively linked to the Pygmy Dipole Resonance. The extracted dipole functions combine

smoothly with those previously reported in studies of the Giant Dipole Resonance

[14], obtained from photoneutron absorption reactions. In this section we apply the

RHB+RQRPA framework for deformed nuclei to the study of the response of the E1

operator in 100Mo, in particular the low lying dipole strength and its structure.

The ground state properties of 100Mo, as calculated with the NL3 and DD-ME2 pa-

rameter sets, predict a binding energy of 8.5MeV per particle. The pairing constants

were adjusted to reproduce the experimental gaps of ∆n = 0.9 MeV and ∆p = 1 MeV.

The deformation obtained with this parameters is of β = 0.3, with prolate shape.

In Figure 7.9 we display the RHB+RQRPA dipole strength distribution in 100Mo. The

black data points with error bars correspond to the experimental results of references

[14, 134]. The experimental centroid energy is situated at 18MeV. The calculated

positions of the theoretical centroid energies, taken over the same energy interval as

the available experimental data, is 17.4MeV for the NL3 parameter set, while for DD-
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Figure 7.9: Dipole strength in 100Mo for the NL3 and DD-ME2 parameter
sets. The red and blue curves correspond to the Kπ = 0− and Kπ = 1− exci-
tation modes, respectively. The experimental data was taken from references
[14, 134].
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m1/m0 (MeV)
√
m3/m1 −m1/m0 (MeV) ĒE1 (MeV) ΓE1 (MeV)

NL3 17.4 1.4 17.2 2.4
DD-ME2 18.3 1.2 18.5 3.3
Exp 18.0 1.4 17.4 3.6

Table 7.2: Energy moments (second and third columns) and Lorentz fits
(fourth and fifth columns) results for the GDR in 100Mo.

ME2 it is 18.3MeV. The more recent DD-ME2 parameter set performs very well. The

older NL3 is more than half an MeV off the experimental value. Adjusting both the

experimental and theoretical data to a Lorentzian over the same energy interval one

finds a different picture, as can be seen in Table 7.2. The experimental best Lorentzian

fit gives 17.4MeV as the experimental centroid position for the GDR, while the NL3

and DD-ME2 predict 17.2MeV and 18.5MeV, respectively.

Interestingly enough, at a first glance to Figure 7.9 the NL3 parameter set seems to

perform better, in agreement with the Lorentzian fits parameters. In particular, this

visual effect is produced because the maximum for the experimental and theoretical

curves are closer. However, the quantitative adjustment using energy moments show

that, in reality, DD-ME2 performs better. This should not come out as a surprise, as

DD-ME2 is adjusted specifically to ground state isovector properties. Attending to the

fragmentation of the response, as measured by both the moments and the Lorentzian

fits, it is also better reproduced with the more modern DDME functional. The dis-

crepancies between the Lorentzian fits and the energy moments predictions are a well

known problem caused by the relatively important influence of the GDR tails in the

fitting process. In an effort to minimize this effect it is not uncommon, in well deformed

nuclei, to fit to two or even three Lorentzians. However, in the present study, such a

fit does not change the results significantly.

As expected, the collectivity of the GDR peaks obtained is very high. The largest

single particle contribution in the dominant RPA peak has a share of only 15% of the

sum. The total strength of the GDR, for both functionals, is provided by two different

clusters of Kπ = 1− RPA excitation modes. One cluster is situated in the energy

interval 17.5-18MeV, while the other is around the 16.5-17MeV energy interval. All

the dominant peaks inside these two clusters show the typical isovector pattern in the

transition densities. This fine structure of the E1 response at GDR energies was also

found in the preceding section for Neon isotopes. However, in this case this feature can

also be observed in the experimental data as two separated peaks at the maximum (16-

17MeV). In our calculations the higher lying cluster provides one third more strength

to the total response, in contrast with the experimental data where both peaks are

of approximately the same height. We have performed some tests to understand this

105



106 E1 transitions in deformed nuclei

0

10

20

30

40

50

σ
(m

b
)

σ
(m

b
)

6 7 8 9 10 11 12

E (MeV)E (MeV)

exp
Kπ = 0−

Kπ = 1−

Total

100Mo PDR DD-ME2

Figure 7.10: Low lying E1 response in 100Mo for the DD-ME2 parameter
set.

discrepancy and preliminary results show that the size of the qp configuration space

plays a very important role in the share of strength that each cluster provides to the

total GDR response, even though the Energy Weighted Sum Rule and the centroid

energy over the relevant energy range stays practically unchanged. Some reports [35]

have attempted to interpret the GDR splitting using a extended collective mode, and

their findings link it to deformation effects.

However, a detailed study of our results in that energy region (16-18MeV) reveals

that the splitting is of isovector nature, with mostly neutron excitations in the lower

cluster around 16.5MeV and mostly proton excitations in the region around 17.5MeV.

Thus, this splitting comes from the influence of the electromagnetic interaction or the

isovector part of the nuclear force, or a combination of both. Calculations without

including the electromagnetic interaction also predict a comparable clustering, so one

has to conclude that the splitting is mostly due to the isovector part of the nuclear

interaction. Concerning whether the origin is deformation related or not, our results

obtained for the spherical nucleus 142Nd show also this fine structure in the GDR, i.e.,

in our case the effect is not driven by deformation.

Regarding the low lying dipole response, a recent experimental study [134] performed
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Figure 7.11: Upper panel: transition density for theKπ = 1− peak at 9MeV,
DD-ME2. Lower panel: projected transition density for the same peak.
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in Molybdenum isotopes has found non negligible strength enhancements in 100 Mo

at energies of 6.5MeV, 7MeV and 9MeV. Figure 7.10 is a detailed plot of the E1

strength as calculated with DD-ME2 parameter set in the energy interval 6-12MeV.

The plotted experimental data up to 8MeV is from reference [134], while for higher

energies, above the neutron separation threshold, it was taken from reference [14]. The

experimental data points show two enhancements at around 9MeV and 10.5MeV, in

good agreement with our results, which predict a Kπ = 1− mode peak at 8.9MeV

and a double Kπ = 0− mode peak at 10.5MeV. In addition to these, Figure 7.10

shows another theoretical Kπ = 0− peak at 7.4MeV, which can be linked to the 7MeV

enhancement found in the results from reference [134]. In that same study, another

peak was found at 6.5MeV with strong dipole strength. However, even though it

appears in our calculated response with both parameter sets, NL3 and DD-ME2, it

does not contribute appreciably to the total pygmy strength.

A detailed analysis of the peak at 7.4MeV reveals that 90% of its total strength comes

from a unique single particle transition. In particular, the radial dependence of its

projected transition density does not exhibit the typical characteristics of a pygmy

resonance. This contradicts the conclusions of reference [134], where it was postulated

that this peak belongs to a sequence of pygmy resonances, extending from 6MeV

up to 11MeV. However, the strong peak at 9MeV, which is well reproduced in our

results and was identified in the same study as a pygmy resonance, displays all the

characteristics linked with a soft dipole mode. The upper plot in Figure 7.11 is the

intrinsic transition density for the peak as calculated with the DD-ME2 parameter

set. Neutrons are clearly in-phase with protons in the nuclear interior, composing the

typical pygmy inner core, while on the surface region only neutrons contribute, out of

phase with the core, with a very extended transition probability. In the lower panel

of the same figure is depicted the projected transition density for that same excitation

mode. It confirms the interpretation of the intrinsic transition density. Neutrons and

protons are in phase within the nuclear interior and form a core against which a skin

composed predominantly of neutrons, with a very long tail, vibrates.

The single particle structure of both modes (at 7.4MeV and 9MeV) can be found in

Table 7.3. The high collectivity found in both cases is remarkable, with many contribu-

tions coming from different single particle configurations. This fact is in contradiction

with other theoretical studies where the collectivity of the PDR was found not to be

so high. Two effects might be adding up to build such a high collectivity. First, the

explicit increase in the configuration space, over spherical calculations, in the deformed

case. And second, the influence of pairing correlations, allowing many more possible

single particle transition in the same energy range.

The decomposition of the PDR at 9MeV attending to its single particle configuration

presented in Table 7.3, indicates clearly that it is an excitation dominated by neutrons,
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Peak at 8.7MeV, NL3 parameter set ∆E

neutron 19% +1
2

+
([420] 81%) → +1

2

−
([541]70%) 9.23

neutron 16% +3
2

+
([422] 86%) → −3

2

−
([541]70%) 9.41

neutron 9% −3
2

−
([301] 95%) → +5

2

+
([413]92%) 8.91

neutron 6% +5
2

+
([422] 92%) → −3

2

−
([541]76%) 9.14

neutron 4% +1
2

+
([431] 73%) → +1

2

−
([550]77%) 10.23

neutron 4% +1
2

−
([301] 94%) → +1

2

+
([400]90%) 10.64

proton 2% +7
2

−
([303] 98%) → −5

2

+
([422]92%) 8.6

Peak at 8.9MeV, DD-ME2 parameter set ∆E

neutron 15% +3
2

+
([422] 86%) → −1

2

−
([541]94%) 9.59

neutron 10% +5
2

+
([413] 92%) → −3

2

−
([521]59%) 9.02

neutron 10% +1
2

+
([301] 95%) → +1

2

−
([411]88%) 8.98

neutron 3% +1
2

+
([431] 73%) → +1

2

−
([550]74%) 10.62

proton 3% +3
2

−
([312] 93%) → −1

2

−
([440]66%) 9.12

neutron 3% +1
2

−
([301] 95%) → +1

2

+
([400]89%) 11.05

neutron 2.5% −1
2

+
([420] 82%) → +3

2

−
([521]59%) 9.98

neutron 2.5% −3
2

−
([301] 95%) → +5

2

+
([402]92%) 11.59

Table 7.3: ph structure for the 9MeV E1 transition operator in 100Mo for NL3
and DD-ME2 parameter sets, respectively. In parenthesis are the oscillator
quantum numbers of the oscillator levels with major contribution to the state,
with its corresponding percentage. The left column refers to the normalization
of RPA amplitudes.

4-12MeV (% TRK) 8.5-9.5MeV(% TRK) 4-27MeV (% TRK)

Exp 6.9% 0.9% 121%
NL3 6.7% 1.0% 126%

DD-ME2 5.3% 0.8% 140%

Table 7.4: Percentage of the classical Thomas-Reiche-Kuhn sum rule ex-
hausted by the experimental data [14, 134] and the parameter sets NL3 and
DD-ME2 in 100Mo.

as was easily gathered from Figure 7.11. Its structure and contribution to the total

strength are partially influenced by pairing correlations. Most of the intervening single

particle transitions are quenched by the occupation factors, and some would even be

forbidden in the absence of pairing correlations. The systematic change in the oscillator

quantum numbers of the major components indicates that this pygmy peak is a ∆N = 1

excitation.
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In Table 7.4 we show the percentage of the classical Thomas-Reiche-Kuhn sum rule

exhausted by the experimental data [14, 134] and the two parameter sets used in the

RHB+RQRPA calculations. Three different energy intervals are presented. The NL3

parameter set, with a percentage of 5.7% in the low lying energy region 4-12MeV,

reproduces the experimental value of 6.9% very well, while the DD-ME2 parameter set

underestimates the strength by more than one percent. For the total energy interval

measured in the experiments, again NL3 comes very close and DD-ME2 overestimates

in more than 15% the overall strength of the dipole response. The discrepancy in the

Thomas-Reiche-Kuhn sum rule over the whole experimental energy range as calculated

with the DD-ME2 is produced by an enhancement in the response at energies slightly

higher than the GDR, around 22MeV, that can be observed in Figure 7.9. The strength

exhausted by the peak identified as the Pygmy Dipole Resonance is around 1% of the

total TRK sum rule. Compared to other heavy nuclei where these soft collective dipole

modes exhaust up to 5% of the classical TRK sum rule, the PDR in 100Mo is not very

pronounced.

To summarise, the results obtained within the RHB+RQRPA framework for deformed

nuclei for the GDR agree reasonably well with the experimental data from reference [14]

and [134]. Surprisingly, we have found that the performance of the NLME functional

with the NL3 parameter set in the prediction of the giant dipole resonance features

is on a par with the DDME functional using the DD-ME2 parameter set. We have

confirmed the presence of soft collective mode of pygmy character at 9MeV in 100Mo,

that exhaust around 1% of the classical Thomas-Reiche-Kuhn sum rule. Its collectivity

has been found to be high and the detailed structure compatible with the features

found in studies carried out in spherical symmetry. However, the analysis of two other

experimentally found peaks in the same energy region disagrees with the conclusion

presented in reference [134], i.e., that they are of pygmy character; our results indicate

those peaks have very a markedly single particle nature.
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Chapter 8

Summary and Conclusions

“Physics is becoming so unbelievably complex that it is

taking longer and longer to train a physicist. It is taking

so long, in fact, to train a physicist to the place where

he understands the nature of physical problems that he

is already too old to solve them.”

— Eugene P. Wigner, 1902-1995

In the present investigation we have formulated the relativistic quasiparticle random

phase approximation (RQRPA) on the basis of a relativistic Hartree-Bogoliubov (RHB)

model having axial symmetry. The RHB model provides a unified description of mean

field and pairing correlations, making it a ideal tool for the study of nuclei over the entire

nuclear chart. The RHB+RQRPA model employed in this work is fully self-consistent.

For the interaction in the particle-hole channel three different density functionals were

used, i.e. the standard RMF functional with non-linear meson self interactions, the

RMF functional with density dependent meson-nucleon coupling constants, and the

RMF functional with density dependent point couplings. Pairing correlations are de-

scribed, as a first step, using a very simple monopole pairing force. The same interaction

is used in both the RHB equations and in the matrix equations of the RQRPA. As it

has been shown, this self-consistency feature is of vital importance for the fulfillment

of current conservation and the decoupling of spurious modes.

The two-quasiparticle QRPA configuration space includes states with both nucleons in

the discrete bound levels, states with one nucleon in the continuum, and also states
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with both nucleons in the continuum. The Dirac sea is consistently taken into account

when constructing the configuration space. This is of paramount importance for the

decoupling of spurious states, as well as for the proper description of the position of

collective giant resonances.

A great deal of effort and time was spent in the construction and validation of a par-

allel computer code written in FORTRAN 90 for solving the axial symmetry RQRPA

equations in the canonical basis. Through extensive testing, the correctness of the

implemented numerical solution has been proved. In particular, we have presented

a systematic study of the relevant numerical parameters, which shows that realistic

calculation in heavy nuclei are possible without sacrificing accuracy in the results. The

decoupling of the spurious Goldstone modes associated with the broken rotational,

translational and particle number symmetries is accomplished without further adjust-

ments in the interaction. Their influence on the physical results has been demonstrated

to be minimal.

We have applied the implemented framework to the study of the M1 excitations in sam-

ple nuclei, in particular the scissors and spin excitation modes. Results for 156Gd show

a relatively good agreement with experimental data, and essential physical features are

well reproduced. It has been shown that the response is divided in two well separated

regions, a low lying one between 2-5MeV were there exists strong orbital response,

and another between 5-10MeV where the dominant excitation mechanism is due to

spin-flip transitions. However, the results indicate that the supposed dominant orbital

nature of the scissors mode cannot be fully established as the response of the spin part

of M1 is as strong, if not stronger, than its orbital part. In addition to the scissors

mode, a soft M1 mode with strong orbital character is found in 156Gd at relatively

low energies. From the analysis of the proton and neutron transition densities in the

intrinsic frame, and from the structure of the RQRPA amplitudes, it is concluded that

this mode corresponds to a collective rotation of the deformed neutron skin against the

deformed proton-neutron core.

The existence of heavy fragmentation in the energy region corresponding to the scissors

mode has been traced back to the single particle ground state structure. The peak

identified as the scissors mode shows a moderately collective behaviour, being three

ph configuration responsible for approximately 90% of the observed response and the

rest distributed between different ph configurations with lesser contributions. The

two characteristic and experimentally well known “bumps“ in the M1 spin excitations

are well reproduced within the RQRPA model with the studied interactions. Their

different isospin structure shows that the low lying mode exhibits a dominant isoscalar

nature, while the peak at higher energy has a dominant isovector character. Both have

a radically different single particle structure compared to the low-lying peaks with

strong orbital character.
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The RHB+RQRPA in axial symmetry has also been applied to the study of E1 exci-

tations, in particular the GDR and the recently observed low lying modes. Results for

nuclei in the isotope chain 20Ne–28Ne are presented and analysed in comparison with

recent experimental results on the low lying E1 spectrum in 26Ne. Remarkable agree-

ment with experiment is found for the position of the GDR in the two nuclei (20Ne and
22Ne) for which data is available, even though small differences between the different

functionals and parameter sets used are evident.

The appearance of a soft collective mode in the region between 8-12MeV for 26Ne

exhausting around 5% of the classical Thomas-Reiche-Kuhn sum rule agrees with the

conclusions of experimental studies. Its structure resembles that of a mixture of dipole

and pygmy excitation modes, and hints to the possibility that the simple interpretation

of these modes as a vibration of a core composed of protons and neutrons against an

outer shell of excess neutrons is no longer fully valid in light deformed nuclei. It

has been found that the collectivity of these soft modes is increased compared to

similar studies in spherical nuclei, in part due to the artificial increase in the available

configuration space and in part due to pairing correlations. On the other hand, pairing

correlations have been found to be responsible for the quenching of the total strength

exhausted by these low lying soft collective modes. Since the single particle structure

greatly influences the excitation response in this kind of nuclei, however, further study

is necessary to draw final conclusions.

In order to compare with some very recent experimental results, we have also un-

dertaken the study of E1 excitations in 100Mo. General features of the Giant Dipole

Resonance are well reproduced by the different calculations performed with various

density functionals and parameter sets. The absence of significant low lying strength

compared with that of other heavy nuclei fully agrees with the published data. The

analysis of the structure of the low lying dominant peaks at 7MeV and 9MeV reveal

that their properties differ greatly. The former is composed of a single particle transi-

tion up to 80%, while the later displays a mild collectivity and pygmy-like features. We

have thus confirmed the presence of soft collective mode of pygmy character at 9MeV

in 100Mo, that exhaust around 1% of the classical Thomas-Reiche-Kuhn sum rule.

Future applications, already achievable with the presented RHB+RQRPA for deformed

nuclei, include the systematic study of the influence of deformation in nuclear excita-

tions, other multipolarities, the onset of collective modes. We would also like to give a

brief outlook of future extensions and improvements, planned or already under devel-

opment, which show the direction, scope and possibilities that such a framework offers.

These include:

i) Improving parameter sets. Systematic differences in the performance of the three

models implemented have been identified and studied under the relatively small scope
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of the sample applications presented in this document. As it is known from the success

of the Nilsson mode, deformed nuclei have been found to be better mean field nuclei

than spherical systems. Due to the additional correlations connected with the viola-

tion of the rotational symmetry, mean field theories provide a much better description

of these deformed systems than they do in spherical nuclei, where the exact ground

state contains large admixtures of low-lying surface phonons. Thus, the development of

future energy functionals that carry further the quantitative understanding of nuclear

systems can greatly benefit from the input that can be gathered from the study of exci-

tations in deformed nuclei. Identifying shortcomings and distinguishing trends between

different functionals will surely lead to an overall better description and understanding

of nuclear phenomena.

ii) Better treatment of pairing. A better treatment of pairing correlations opens the

door to the study of exotic nuclei close to the drip lines, where new nuclear structure

is being reported in recent experimental and theoretical results. The understanding of

questions like the influence of the change in shell structure in nuclear excitations, or

the evolution and development of collective soft modes, can be properly undertaken

with a better implementation of pairing correlations in the developed RMF+RQRPA

framework for deformed nuclei. In particular, it will be essential for applications in

exotic nuclei, where experiments are missing, to count on a pairing interaction that

does not depend on the experimental knowledge of the gaps.

iii) Applications to astrophysics. A direct and natural extension to this work is the

inclusion of proton-neutron RPA. Gamow-Teller and isobaric analog resonances play

a very important role in astrophysics. Electroweak interactions such as scattering

and absorption of electrons and neutrinos are strongly influenced by these resonances.

They play an essential role during many stages in the evolution of stellar objects.

The knowledge of such reaction rates provides a crucial input for the modeling of

supernova explosions as well as accretion processes in binary systems. Nuclear netowork

calculations for the description of nucleosynthesis are of particular importance in the

understanding of heavy element abundancies in the universe, and require a precise

knowledge of such reaction rates.

iv) Beyond-RPA. The use of response formalism, instead of the direct diagonalization

of the RPA matrix equation, will enable the inclusion of beyond-RPA models and

techniques, which have been proven to provide very good agreement with available

experimental data in spherical nuclei. The ground work has already been laid down

with a reference implementation that reproduces the results of spherical calculations

and the data presented in this document. It is now being tested for its extensibility.

Even though the feasibility of such an ambitious project depends crucially on efficient

numerical techniques and the availability of good computer facilities, we are confident

that in the near future we will be able to include beyond-RPA effects in our framework.
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In conclusion, the relativistic RQRPA formulated in axially deformed systems repre-

sents a significant new theoretical tool for a realistic description of excitation phe-

nomena in large regions of the nuclear chart, which has been accessible so far only

by relatively crude phenomenological models. Its development, and the few sample

applications presented in this document, show that its future use in nuclear struc-

ture and astrophysics will provide an valuable insight into very important, and still

open, questions about the nature of the nuclear interaction, collective response, defor-

mation effects, heavy element abundances and cross sections relevant in astrophysical

processes.
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Appendix A

Residual interaction two-body matrix

elements

A.1 Density functionals with non-linear σ-meson field

The residual interaction is

v̂ph = v̂σ + v̂ω + v̂ρ + v̂γ (A.1)

where each one of the terms is

• σ meson field

v̂ph
σ (r, r′) = −g2

σGσ(r, r′) (A.2)

• ω meson field

v̂ph
ω (r, r′) = g2

ωγ
µGω(r, r′)γ′µ (A.3)

• ρ meson field

v̂ph
ρ (r, r′) = g2

ργ
µ~τGρ(r, r

′)γ′µ~τ
′ (A.4)

• photon field

v̂ph
γ (r, r′) =

e2

4
γµ(1− τ3)Gγ(r, r

′)γ′µ(1− τ ′3) (A.5)

with the propagators for the ω, ρ and γ fields

Gφ(r, r
′) =

e−mφ|r−r′|

4π|r− r′|
(A.6)
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118 Residual interaction two-body matrix elements

The propagator for the σ field does not have an analytic expression and has to be

calculated numerically using the corresponding Klein-Gordon equation. In momentum

space the two-body matrix elements V ph
minj = 〈mi|v̂ph|jn〉 are

V ph
minj =

1

(2π)3

∑
m=σ,ω,ρ,γ

∫
d3k

∫
d3kQµ

mi(k)∆m(k,k′)Qnj,µ(−k) (A.7)

with the propagators for the linear meson fields (i.e. ω, ρ and γ)

∆m(k,k′) =
δ(k− k′)

k2 +m2
(A.8)

Details for the calculation of the propagator for the σ meson field are given in Ap-

pendix D. The single particle matrix elements Q are defined as

Qµ
mi(k) =

∫
d3rϕ̄m(r)Γµϕi(r)e

−ikr (A.9)

with the vertices Γµ given by

Γσ = gσ, Γµ
ω = gωγ

µ, Γµ
ρ = gρ~τγ

µ, Γµ
e = e

1− τ3
2

γµ (A.10)

and the single-particle Dirac spinors

ϕi(r) =
1√
2π


f+

i (r⊥, z)e
i(Ωi−1/2)φ

f−i (r⊥, z)e
i(Ωi+1/2)φ

ig+
i (r⊥, z)e

i(Ωi−1/2)φ

ig−i (r⊥, z)e
i(Ωi+1/2)φ

χti(t) (A.11)

In cylindrical coordinates ((r⊥, φ, z) and (k⊥, χ, kz)) we find for the dot product k · r

k · r = k⊥r⊥ cos(χ− φ) + kzz (A.12)

Using the Dirac basis

{γ0, γ+ =
−1√

2
(γ1 + iγ2), γ− =

1√
2
(γ1 − iγ2), γ3} (A.13)

it can be easily shown that for each µ, the factor ϕm(r⊥, z, φ) Γµ ϕi(r⊥, z, φ) can be

expressed as

ϕm(r⊥, z, φ) Γµ ϕi(r⊥, z, φ) =
α

2π
F µ

mi(r⊥, z) e
inφ (A.14)

where n is an integer of the form n = −Ωm +Ωi±{0, 1}, α = ±{1, i} is a phase and F

is a real function that does not depend on the azimuthal angle φ. The single particle
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A.1 Density functionals with non-linear σ-meson field 119

matrix elements can thus be written as

Qµ
mi(k) = α

∫∫∫
r⊥dr⊥ dz

dφ

2π
F µ

mi(r⊥, z) e
inφ eikzz eik⊥r⊥ cos(φ−χ) (A.15)

By means of the following variable change

φ− χ = θ dφ = dθ φ = θ + χ (A.16)

it becomes

Qµ
mi(k) = α einχ

∫∫
rdr dz F µ

mi(r⊥, z) e
ikzz

∫
dθ

2π
einθ eik⊥r⊥ cos θ (A.17)

and using the integral expression for the Bessel functions of the first kind

inJn(x) =

∫ 2π

0

dφ

2π
einφeix cos φ (A.18)

it can be written as

Qµ
mi(k) = inα einχ

∫∫
r⊥dr⊥ dz F

µ
mi(r⊥, z) Jn(k⊥r⊥) eikzz (A.19)

Since the functions F will always have a well defined parity, the exponential in the

z-direction reduces to a cosine or sine, giving an extra i factor in the later case.

Qµ
mi(k) = (+i)nαeinχ

∫∫
r⊥dr⊥dz F

µ
mi(r⊥, z)Jn(k⊥r⊥){cos, i sin}(kzz)(A.20)

Qµ
mi(−k) = (−i)nαeinχ

∫∫
r⊥dr⊥dz F

µ
mi(r⊥, z)Jn(k⊥r⊥){cos, i sin}(kzz)(A.21)

Defining Fµ
mi(k⊥, kz) as

Fµ
mi(k⊥, kz) =

∫∫
r⊥dr⊥dz F

µ
mi(r⊥, z)Jn(k⊥r⊥){cos, sin}(kzz) (A.22)

we have that the single particle matrix elements read

Qµ
mi(k) = (+i)nαeinχFµ

mi(k⊥, kz) (A.23)

Qµ
mi(−k) = (−i)nαeinχFµ

mi(k⊥, kz) (A.24)

and the full two-body matrix elements for a given meson field are

V ph
minj = αµ

miα
µ
nj

∫
dχdχ′

(2π)3
einµ

miχeinµ
njχ′ · (A.25)

·
∫∫

k⊥dk⊥dkzk
′
⊥dk

′
⊥dk

′
zF

µ
mi(k⊥, kz)∆(k,k′)Fµ

nj(k
′
⊥, k

′
z) (A.26)
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120 Residual interaction two-body matrix elements

where summation over µ is implied. For axial symmetry the propagator ∆(k,k′) is

always factored into a part depending on k⊥ and kz, and a δ(χ − χ′). So in order

for this matrix element not to be zero, the argument for the exponential functions

in the first integral must vanish, thus getting so the angular momentum projection

conservation rule

nµ
mi + nµ

nj = 0 (A.27)

For the σ meson field the vertex is Γ is proportional to the four by four identity matrix,

and so the functions Fmi read

F
(σ)
mi = f+

mf
+
i + f−mf

−
i − g+

mg
+
i − g−mg

−
i (A.28)

with nmi = Ωm − Ωi and α = 1.

For the other meson fields the vertexes Γ are proportional to the γ matrices. Remem-

bering that we are using a spherical Dirac basis, the functions F µ
mi are

• For µ = 0

F 0
mi = f+

mf
+
i + f−mf

−
i + g+

mg
+
i + g−mg

−
i (A.29)

with nmi = Ωm − Ωi and α = 1.

• For µ = +

F+
mi = g+

mf
−
i − f+

mg
−
i (A.30)

with nmi = Ωm − Ωi − 1 and α = i.

• For µ = −
F−

mi = f−mg
+
i − g−mf

+
i (A.31)

with nmi = Ωm − Ωi + 1 and α = i.

• For µ = 3

F 3
mi = g+

mf
+
i − f+

mg
+
i + g−mf

−
i − f−mg

−
i (A.32)

with nmi = Ωm − Ωi and α = −i.

A.2 Density dependent meson exchange density func-

tionals

The residual interaction is

v̂ph = v̂σ + v̂ω + v̂ρ + v̂γ (A.33)
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A.2 Density dependent meson exchange density functionals 121

where each one of the terms is

• σ meson field

v̂ph
σ (r, r′) = − gσ(ρv(r))Gσ(r, r′)gσ(ρv(r

′))

−
{

∂gσ

∂ρv(r)
γ′0 +

∂2gσ

∂ρ2
v(r)

+ γ0 ∂gσ

∂ρv(r)

}
σ(r)δ(r− r′)

−
{
gσ(ρv(r))

∂gσ

∂ρv(r′)
γ′0ρs(r

′) + γ0ρs(r)
∂gσ

∂ρv(r)
gσ(ρv(r

′))

+ γ0ρs(r)
∂gσ

∂ρv(r)

∂gσ

∂ρv(r′)
ρs(r

′)γ′0

}
Gσ(r, r′) (A.34)

• ω meson field

v̂ph
ω (r, r′) = γµgω(ρv(r))Gω(r, r′)gω(ρv(r))γ

′
µ

+

{
2
∂gω

∂ρv(r)
+

∂2gω

∂ρ2
v(r)

ρv(r)

}
ω(r)δ(r− r′)

+

{
gω(ρv(r))

∂gω

∂ρv(r′)
ρv(r

′) + ρv(r)
∂gω

∂ρv(r)
gω(ρv(r

′))

+ρv(r
′)

∂gω

∂ρv(r)

∂gω

∂ρv(r′)
ρv(r

′)

}
Gω(r, r′) (A.35)

• ρ meson field

v̂ph
ρ (r, r′) = γµ~τgρ(ρtv(r))Gρ(r, r

′)gρ(ρtv(r))~τ
′γ′µ

+

{
∂gρ

∂ρtv(r)
~τ +

∂gρ

∂ρtv(r)
~τ ′ +

∂2gρ

∂ρ2
tv(r)

ρtv(r)

}
ρ(r)δ(r− r′)

+

{
gρ(ρtv(r))~τ

∂gρ

∂ρtv(r′)
ρtv(r

′) + ρtv(r)
∂gρ

∂ρtv(r)
~τ ′gρ(ρtv(r

′))

+ρtv(r
′)

∂gρ

∂ρtv(r)

∂gρ

∂ρtv(r′)
ρtv(r

′)

}
Gρ(r, r

′) (A.36)

• photon field

v̂ph
γ (r, r′) =

e2

4
γµ(1− τ3)Gγ(r, r

′)γ′µ(1− τ ′3) (A.37)

The symbols without prime refer to particle 1 and the ones with it to particle 2. ρs,

ρv and ρtv denote the scalar, vector and isovector-vector density respectively, and the

derivatives of the meson-nucleon couplings with respect to the vector density ρv are

evaluated at the ground state density ρ0
v. σ(r), ω(r) and ρ(r) refer to the sigma, omega

and rho meson fields respectively.
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122 Residual interaction two-body matrix elements

The first terms in all cases can be calculated using the procedure outlined in the

previous section. The only difference is that one has to be careful because this time

the functions F contain the coordinate dependent coupling constant g. For example,

for the ω channel they would be

Fµ
mi(k⊥, kz) =

∫∫
r⊥dr⊥dz gω(ρ(r⊥, z))F

µ
mi(r⊥, z)Jn(k⊥r⊥){cos, sin}(kzz) (A.38)

and similarly for the other meson fields. In addition to the normal terms also found

in the linear functionals, the two-body residual interaction of functionals with density

dependent nucleon-meson couplings have a number of rearrangement terms. These

include two types: one that is formally identical to the others and that contains the

usual propagators G(r, r′), and another where the propagator is substituted by a delta

function. In axial symmetry these last ones read

• σ field, contact (delta) terms

V ph
minj = − 1

2π

∫∫
r⊥dr⊥dz σ(r⊥, z) (A.39){

∂2gσ

∂ρ2
v(r)

(f+
mf

+
i − f−mf

−
i − g+

mg
+
i + g−mg

−
i )(f+

n f
+
j − f−n f

−
j − g+

n g
+
j + g−n g

−
j )

+
∂gσ

∂ρv(r)
(f+

mf
+
i − f−mf

−
i + g+

mg
+
i − g−mg

−
i )(f+

n f
+
j − f−n f

−
j − g+

n g
+
j + g−n g

−
j )

+
∂gσ

∂ρv(r)
(f+

mf
+
i − f−mf

−
i − g+

mg
+
i + g−mg

−
i )(f+

n f
+
j − f−n f

−
j + g+

n g
+
j − g−n g

−
j )

}

• ω field, contact (delta) terms

V ph
minj =

1

2π

∫∫
r⊥dr⊥dz ω(r⊥, z)

{
2
∂gω

∂ρv(r)
+

∂2gω

∂ρ2
v(r)

ρv(r)

}
(A.40)

(f+
mf

−
i − f−mf

+
i − g+

mg
−
i + g−mg

+
i )(f+

n f
−
j − f−n f

+
j − g+

n g
−
j + g−n g

+
j )

• ρ field, contact (delta) terms

V ph
minj =

1

2π

∫∫
r⊥dr⊥dz ρ(r⊥, z)

{
∂gρ

∂ρtv(r)
~τ +

∂gρ

∂ρtv(r)
~τ ′ +

∂2gρ

∂ρ2
tv(r)

ρtv(r)

}
(f+

mf
−
i − f−mf

+
i − g+

mg
−
i + g−mg

+
i )(f+

n f
−
j − f−n f

+
j − g+

n g
−
j + g−n g

+
j )

(A.41)
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A.3 Density dependent point coupling density functionals 123

A.3 Density dependent point coupling density function-

als

The residual interaction is

v̂ph = v̂s + v̂v + v̂ts + v̂tv + v̂γ (A.42)

where each one of the terms is

• scalar isoscalar term

v̂ph
s (r, r′) = (αs + 2βρs + 3γsρ

2
s + δs∆)δ(r− r′) (A.43)

• vector isoscalar term

v̂ph
v (r, r′) = γµ(αv + 2βρv + 3γsρ

2
v + δv∆)γ′µδ(r− r′) (A.44)

• scalar isovector term

v̂ph
ts (r, r′) = ~τ(αts + 2βρts + 3γsρ

2
ts + δts∆)~τ ′δ(r− r′) (A.45)

• vector isovector term

v̂ph
tv (r, r′) = γµ~τ(αtv + 2βρtv + 3γsρ

2
tv + δtv∆)~τ ′γ′µδ(r− r′) (A.46)

• photon field

v̂ph
γ (r, r′) =

e2

4
γµ(1− τ3)Gγ(r, r

′)γ′µ(1− τ ′3) (A.47)
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Appendix B

M1 transition operator

The M1 operator is defined as:

M̂1µ = µN (gss + gll) · (∇rY1µ(θ, φ)) (B.1)

with

gs = gp

gl = 1
} protons

gs = gn

gl = 0
} neutrons (B.2)

and where the angular momentum operator l acts only on the coordinates of the wave-

function. If xµ are the spherical coordinates of r defined as:

x+1 =
−1√

2
(x+ iy)

x−1 =
1√
2

(x− iy)

x0 = z (B.3)

then rY1µ =
√

3
4π
xµ and

∇rY1µ =

√
3

4π
∂ixk =

√
3

4π
δik (B.4)

so if a is a vector in spherical coordinates it follows

a · (∇rY1µ) =

√
3

4π
aµ (B.5)
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126 M1 transition operator

The scissors mode excitation mode is K = 1+, and the corresponding operator is the

M̂11. Using (B.5)

M̂11 =

√
3

4π
µN (gss+1 + gll+1) (B.6)

where l+1 and s+1 are calculated using (B.3) and read

s+1 =
1

2
Σ+ =

−1

2
√

2
(Σx + iΣy) (B.7)

l+1 =
1

2
√

2
eiφ

[
r∂z − z

(
∂r + i

1

r
∂φ

)]
(B.8)

So finally the M̂11 single particle matrix elements, carrying out the integration over the

azimuthal angle φ, can be expanded to

〈m|M̂11|i〉 = µNδΩm−Ωi,1
1√
2

√
3

4π

∫
rdrdz[

− glz
(
f+

m∂rf
+
i + f−m∂rf

−
i + g+

m∂rg
+
i + g+

m∂rg
−
i

)
+ glr

(
f+

m∂zf
+
i + f−m∂zf

−
i + g+

m∂zg
+
i + g−m∂zg

−
i

)
+ gl

(Ωi − 1/2)z

r
(f+

mf
+
i + g+

mg
+
i )

+ gl
(Ωi + 1/2)z

r
(f−mf

−
i + g−mg

−
i )

− gs

(
f+

mf
−
i + g+

mg
−
i

)]
(B.9)
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Appendix C

E1 transition operator

The effective isovector dipole operator, with the center of mass correction already

subtracted, reads

Q̂T=1
1µ = e

N

N + Z

Z∑
p=1

rpY1µ(r̂p)− e
Z

N + Z

N∑
n=1

rnY1µ(r̂n) (C.1)

With the definition of spherical coordinates (B.3) and using the relation rY1µ =
√

3
4π
xµ

it can be expressed as

Q̂T=1
1µ = e

N

N + Z

Z∑
p=1

xpµ − e
Z

N + Z

N∑
n=1

xnµ (C.2)

And in cylindrical coordinates the three components are

Q̂T=1
10 = e

N

N + Z

Z∑
p=1

zp − e
Z

N + Z

N∑
n=1

zn

Q̂T=1
1±1 = e

N

N + Z

Z∑
p=1

rp⊥e
±iφ − e

Z

N + Z

N∑
n=1

rn⊥e
±iφ (C.3)

And the single particle matrix elements are

〈m|Q̂T=1
10 |i〉 = −δΩm−Ωi,0

eN

A

∫
rzdrdz

(
f+

mf
−
i − f−mf

+
i − g+

mg
−
i + g−mg

+
i

)
〈m|Q̂T=1

11 |i〉 = −δΩm−Ωi,1
eN

A

∫
r2drdz

(
f+

mf
−
i − f−mf

+
i − g+

mg
−
i + g−mg

+
i

)
(C.4)
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128 E1 transition operator

for proton pairs, and

〈m|Q̂T=1
10 |i〉 = +δΩm−Ωi,0

eZ

A

∫
rzdrdz

(
f+

mf
−
i − f−mf

+
i − g+

mg
−
i + g−mg

+
i

)
〈m|Q̂T=1

11 |i〉 = +δΩm−Ωi,1
eZ

A

∫
r2drdz

(
f+

mf
−
i − f−mf

+
i − g+

mg
−
i + g−mg

+
i

)
(C.5)

for neutron pairs.
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Appendix D

Non-linear Sigma Field

D.1 Plane wave expansion in cylindrical coordinates

The plane wave eikr in cylindrical coordinates with r = (z, r, ϕ) and k = (kz, k⊥, χ)

can be written as

eikr = eikzzeik⊥rcos(ϕ−χ). (D.1)

The first exponential of the decomposition is trivial to handle in the calculations, so

let us concentrate in the last term. We would like to expand it as a series:

eixcos(α) =
∞∑

n=−∞

Cne
inα (D.2)

where we have to determine the coefficients Cn. Using the integral representation for

the Bessel function we find

Jn(x) =
1

2πin

∫ 2π

0

eixcos(α)einαdα =
1

2πin

∞∑
n′=−∞

Cn′

∫ 2π

0

ei(n+n′)αdα = i−nC−n (D.3)

With the properties of the Bessel functions

J−n(x) = Jn(−x) = (−)nJn(x) (D.4)

we get

eixcos(α) =
∞∑

n=−∞

inJn(x)einα (D.5)
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130 Non-linear Sigma Field

or

eikr = eikzzeik⊥rcos(ϕ−χ) = eikzz

∞∑
n=−∞

inJn(k⊥r)e
in(ϕ−χ). (D.6)

D.2 The Klein-Gordon equation

The meson equation for the non-linear sigma channel is

[−∆ +m2
σ]σ = −gσρs − g2σ

2 − g3σ
3 (D.7)

In the small amplitude limit σ(t) = σ0 + δσ it becomes

[−∆ +m2
σ + U(r)]δσ(r) = −gσδρs(r) (D.8)

with

U(r) = 2g2σ + 3g3σ
2 (D.9)

Because of axial symmetry

U(r) ≡ U(r, z) (D.10)

Performing a Fourier transformation of equation (D.8) we obtain from the folding rule

(f ∗ g)(k) =

∫
d3r f(r)g(r)e−ikr =

∫
d3k′

(2π)3
f(k − k′)g(k′) (D.11)

the Klein-Gordon equation in Fourier space

(k2 +m2
σ)δσ(k) + U(k) ∗ δσ(k) = −gσδρs(k). (D.12)

The ∗ is the convolution operator, so that

(k2 +m2
σ)δσ(k) +

∫
d3k′

(2π)3
U(k − k′)δσ(k′) = −gσδρs(k) (D.13)
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D.2 The Klein-Gordon equation 131

Using axial symmetry we obtain

U(k − k′) =

∫
d3r U(r, z) e−ikreik

′r

=

∫
d3r U(r, z)e−i(kz−k′z)z

∞∑
n=−∞

i−nJn(k⊥r)e
−in(ϕ−χ)

∞∑
n′=−∞

in
′
Jn′(k

′
⊥r)e

in′(ϕ−χ′)

= 2π
∑

n

ein(χ−χ′)

∫
rdrdz U(r, z)Jn(k⊥r)Jn(k′⊥r)e

−i(kz−k′z)z

= (2π)2
∑

n

ein(χ−χ′)Un(k⊥, kz, k
′
⊥, k

′
z) (D.14)

with d2r = rdrdz

Un(k⊥, kz, k
′
⊥, k

′
z) =

1

2π

∫
d2r U(r, z) e−i(kz−k′z)zJn(k⊥r) Jn(k′⊥r) (D.15)

The source term in the Klein-Gordon equation (D.8) is periodic in the angle ϕ

−gσδρs(r) = gσQmi(r) = ϕm(r) ϕi(r) = Fmi(r, z)e
−iKϕ (D.16)

where K is an integer. We therefore find in Fourier space with Equation (D.6)

− gσδρs(k) =

∫
d3r Fmi(r, z)e

−iKϕe−ikr

=

∫
d3r Fmi(r, z)e

−iKϕe−ikzz

∞∑
n=−∞

(−i)nJn(k⊥r)e
−in(ϕ−χ)

= iKe−iKχ

∫
d2r Fmi(r, z) JK(k⊥r)e

−ikzz (D.17)

So we can write

δρs(k) = δρs(k⊥, kz)e
−iKχ (D.18)

with

−gsδρs(k⊥, kz) = iK
∫

d2r Fmi(r, z)JK(k⊥r)e
−ikzz (D.19)

Thus the Klein Gordon equation in Fourier space has the form

(k2 +m2
σ)δσ(k) +

∫
d3k′

(2π)3
U(k − k′)δσ(k′) = −gσδρs(k⊥, kz)e

−iKχ (D.20)

Therefore we make the ansatz

δσ(k) = δσ(k⊥, kz)e
−iKχ (D.21)
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and find

(k2 +m2
σ)δσ(k⊥, kz) +

∫
d3k′

(2π)3
U(k− k′)δσ(k′⊥, k

′
z)e

iK(χ−χ′) = −gσδρs(k⊥, kz) (D.22)

Now, using Equation (D.14) the integration over the azimuthal momentum can be

carried carried analytically∫
d3k′

(2π)3
U(k − k′)δσ(k′⊥, k

′
z)e

iK(χ−χ′) =

∫
d2k U−K(k⊥, kz, k

′
⊥, k

′
z)δσ(k′⊥, k

′
z) (D.23)

Finally we find

(k2 +m2
σ)δσ(k⊥, kz) +

∫
d2kU−K(k⊥, kz, k

′
⊥, k

′
z)δσ(k′⊥, k

′
z) = −gσδρs(k⊥, kz) (D.24)

We now define the Integral kernel

HK(k⊥, kz, k
′
⊥, k

′
z) = (k2

⊥+k2
z +m2)

δ(k⊥ − k′⊥)

k⊥
δ(kz−k′z)+U−K(k⊥, kz, k

′
⊥, k

′
z) (D.25)

so our equation can be written as∫
d2k′HK(k⊥, kz, k

′
⊥, k

′
z) δσ(k′⊥, k

′
z) = −gσδρs(k⊥, kz) (D.26)

The Propagator is defined by∫
d2k′′HK(k⊥, kz, k

′′
⊥, k

′′
z )∆(k′′⊥, k

′′
z , k

′
⊥, k

′
z) =

δ(k⊥ − k′⊥)

k⊥
δ(kz − k′z) (D.27)

and we can solve this integral equation by

δσ(k⊥, kz) = −gσ

∫
d2k′∆K(k⊥, kz, k

′
⊥, k

′
z)δρs(k

′
⊥, k

′
z) (D.28)

If we discretize the integration∫
k⊥dk⊥dkzf(k⊥,kz) =

∑
i

wif(k⊥i,kzi) (D.29)

(wi contains the factor k⊥i), the δ-function has to be replaced by

δ2(k − k′) :=
1

k⊥
δ(k⊥ − k′⊥)δ(kz − k′z) →

1

wi

δii′ (D.30)
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In this case we obtain

f(k⊥i
,kzi

) =

∫
d2kδ2(k − k′)f(k⊥,kz)

=
∑

i

wj
1

wj

δjj′f(k⊥j,kzj) (D.31)

and we find

wiδσ(i) = wiδσ(k⊥i, kzi)

= −gσwi

∫
d2k′∆K(k⊥, kz, k

′
⊥, k

′
z)δρs(k

′
⊥, k

′
z)

= −gσ

∑
j

wi∆K(i, j)wjδρs(j) (D.32)

We therefore need the matrix

∆ij = wi∆K(i, j)wj (D.33)

It is obtained from the definition∑
i

HK(i, j)wj∆K(j, i′) =
1

wi′
δii′ (D.34)

or ∑
j

HK(i, j)wj∆K(j, i′)wi′ = δii′ (D.35)

or

∆ij = wi∆K(i, j)wj = H−1
K (i, j) (D.36)

Therefore we have to invert the matrix

H−1
K (i, j) = (k2

⊥i
+ k2

zi
+m2)

1

wi

δij + U−K(i, j) (D.37)
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