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ABSTRACT

A new semi-blind algorithm for channel estimation is pro-
posed. The intention is to improve the estimation of the
channel impulse response based on training data. We de-
ploy the information gained from the properties of the whole
received signal in order to reduce the dimension of the opti-
mization problem encountered with the training data based
method. The new method is compared with an algorithm
based only on training data, and another semi-blind algo-
rithm. As a descriptive measure for evaluation the bit error
ratio (BER) is used.

1. INTRODUCTION

The task ofchannel estimation is to find an approxima-
tion ĥ(t) 2 L2 of the channel impulse response by process-
ing the received signal in baseband in order to remove the
distortion caused by the dispersive characteristics of radio
channels.
Most of the standards for mobile communications include
training data which can be utilized for channel estimation.
The usage of training data leads to a straight and accurate
channel estimation for the price of reduced capacity caused
by transmitting training sequences. On the other hand, the
blind channel estimation approaches do not need any train-
ing information. They are based on statistical properties
of the received signals [TXK94, MDCM95, KZ98] or ex-
ploit the diversity of two or more antennas at the receiver

[XLTK95]. Xu et. al presented theCross Relation (CR)
method which does not use statistics but deploys the prop-
erty of commutation of the linear convolution [XLTK95].
Blind channel estimation is inaccurate for the case of noise.
Moreover, the algorithms presume that the channel is time-
invariant over many symbol times.
In general,semi-blind methods combine both approaches.
In this work, we present a semi-blind channel estimation
method which deploys the CR method. Li and Ding [LD98]
presented a similar approach which leads to higher compu-
tational costs but does not improve the data transmission.
The new algorithm still keeps the idea of channel estima-
tion via a training data basedleast-squares method. How-
ever, the solution is constrained to a reduced signal subspace
which lies in the manifold of CR solutions.

2. CHANNEL MODEL

We presume that there is more than one receiving antenna
but only one transmitting antenna. Moreover, we refer to
the narrowband assumption. Hence, the channel impulse
responseshi(t) only differ in the complex factorgip. There-
fore the impulse response of thei-th channelhi(t) = PXp=1 gip�(t� �p); (1)

wheregip 2 C is the amplitude and�p 2 R+ is the de-
lay time which is modelled as a stochastic process with a



uniform distribution over[0; �max] (delay spread). Hereby,
we approximate the real channel impulse functionh 2 L2 :R ! C by its representation in a subspace of a finite set
of dirac functions. We consider onlyP dominant paths be-
cause paths with small amplitudes are neglected. Without
loss of generality we set�1 = 0 andg11 = 1. The received
signal at thei-th antenna element in baseband is equal toxi(t) = hi(t) � y(t) + ni(t); i = 1; : : : ;M; (2)

corrupted by additive, white, gaussian noiseni(t). The
symbol ‘�’ denotes the linear convolution. The received
signal is sampledl times per symbol durationT0 overNs
symbols. The data sequence used in the remainder isxi[n] = xi(T0l n); n = 0; : : : ; lNs � 1: (3)

We approximate the unknown channelhi(t) withĥi(t) = Nh�1Xm=0 ĥi[m]�(t� T0l m): (4)

This approximation is reasonable since we have to match
the original channel only over the bandwidth of the trans-
mitted signal. The number of impulsesNh has influence on
the quality of the algorithms presented in this paper. We as-
sume that the delay spread�max is known, thus, we choose
aNh = �max=T0 in order to cover the whole delay spread
with the impulse response of the estimationĥi(t).

3. TRAINING BASED CHANNEL ESTIMATION

Since the GSM standard includes aNt = 26 bit long train-
ing sequence in the midamble of each burst we exemplarily
examine the training based channel estimation method for
GSM. We have to take into account that theGaussian Min-
imum Shift Keying (GMSK) signal in GSM has “memory”,
because all previously sent bits have influence on the cur-
rent value of the phase. However, after four symbol times
the phase portion according to a particular bit has the con-
stant value��=2 [JKZ99, JU98]. As a consequence, we
do not use the samples of the first three symbol times of
the training sequence, because we do not know the values
of the prior bits, hence our actual training sequence is three
bits shorter. So we know the transmitted sequence and the
received signal of the remainingNt � 3 bits of the training
sequence. The GMSK modulated training sequence reads
as yt[n] = exp j �2 Nt�1Xm=0 tm �T0l n �mT0�! ; (5)

where tm 2 f�1;+1g are the known training bits. By
collecting the transmitted signals in the convolution matrix

Y t =2664 yt[Nh + 3l� 1] yt[Nh + 3l� 2] � � � yt[3l]yt[Nh + 3l] yt[Nh + 3l� 1] � � � yt[3l+ 1]
...

...
...

...yt[Ntl � 1] yt[Ntl� 2] � � � yt[Ntl�Nh] 3775 ;
(6)

with Y t 2 CNtl�Nh�3l+1�Nh , we end up with the follow-
ing least squares problem:minĥ kY ĥ� xtk22; (7)

where the transmitted and received signals are arranged inY = � Y t 00 Y t � ; and (8)xt = [xTt1;xTt2]T ;xti = [xi[Ntrpos + 3l]; : : : ; xi[Ntrpos +Ntl �Nh]]T
(9)

with xt 2 CNtl�Nh�3l+1. Ntrpos is the number of the first
received sample that belongs to the training sequence. The
solution of (7) is the multiplication with the Moore-Penrose-
pseudoinverseofY , thus,ĥ = Y +xt = (Y HY )�1Y Hxt.

4. BLIND CHANNEL ESTIMATION

In [XLTK95] Xu, Liu, Tong, and Kailath presented the
Cross Relation (CR) method for blind channel estimation.
The CR follows from the property of commutation of the
linear convolution. For simplicity let us consider two chan-
nelsh1(t) andh2(t) since the CR method can be easily ex-
tended for more than two antennas. We excite both of them
with the same input signaly(t). Then the output of theith
channel equalsxi(t) = y(t) � hi(t).
Let us assume that we filter the signalx1(t) with h2(t) andx2(t) with h1(t). Fig. 1 depicts this configuration. The out-
put signalsx12(t) andx21(t) are the same due to the prop-
erty of commutationh1(t) � h2(t) = h2(t) � h1(t). Sincex1(t) andx2(t) are known we can substitutey(t) �hi(t) byxi(t) andhi(t) by ĥi(t). The basic result of the CR method
is x2(t) � ĥ1(t)� x1(t) � ĥ2(t) = 0: (10)

After receiving the transmitted signal, it is sampledl times
per symbol time, and sincêhi(t) is a weighted sum of Dirac
delta functions we can use the sampled version of the CR.
We again collect the samplesxi[n] in a convolution matrixX i = 26664 xi[Nh � 1] xi[Nh � 2] � � � xi[0]xi[Nh] xi[Nh � 1] � � � xi[1]

...
...

...
...xi[lNs � 1] xi[lNs � 2] : : : xi[lNs �Nh] 37775 ;

(11)
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Figure 1: Principle of the cross relation (CR) method.

with Xi 2 ClNs�Nh+1�Nh , and put the taps of̂hi(t) in the
vectorĥ = hĥ1[0]; : : : ; ĥ1[Nh � 1]; ĥ2[0]; : : : ; ĥ2[Nh � 1]iT

(12)2 C2Nh�1. This leads to following system of equations:[X2;�X1]ĥ =Xĥ = 0: (13)

To find the solution we apply theSingular Value Decom-
position (SVD) to thelNs � Nh + 1 � 2Nh matrixX =[X2;�X1], thus, we getX = U�V H : (14)

If the column space ofX is not of full rank the2Nh � r
smallest singular values�r+1; �r+2; : : : ; �2Nh (wherer =
rank(X)) are equal to zero. In this noisefree case the col-
umn vectorsvr+1;vr+2; : : : ;v2Nh span the nullspace of
matrixX and the manifold of nontrivial solutions of (13).
In the following we refer to the rankr as the rank of signal
subspace and toXs resp.Xn as the noisefree (s)ignal and
(n)oise part ofX .
In practical applications, the samplesxi[n] and the matricesX i are noisy and the column space of matrixX is numeri-
cally of full rank. If we know or estimate (cf. [WK85]) the
reduced rankr of the noisefree signal subspace, represented
by matrix “Xs”, the SVD ofX can be denoted byX = U s�ssV Hs| {z }Xs +U s�snV Hs +Un�nnV Hn| {z }Xn ;

(15)

where � = � �ss +�sn 00 �nn � : (16)

The matrix�nn = diag(�r+1; �r+2; : : : ; �2Nh) represents
the diagonal matrix of the2Nh � r smallest singular val-
ues of�. Then it can be easily shown that the correspond-

ing vectors ofV n = [vr+1;vr+2; : : : ;v2Nh ] span the lin-
ear manifold of nontrivial solutions of minimum residuumkUn�nn�k22 where� 2 R2Nh�r.

The CR method inherits a serious disadvantage: the
Cross Relation is unintentionally fulfilled if the estimated
channels have highpass characteristics. The received sig-
nal is zero outside the bandwidth of the transmitted signal.
If the ĥi(t) are highpass, then the convolution will also be
zero inside the bandwidth, and the difference is zero over
the whole band. To avoid these bad estimates Zoltowski
and Tseng [ZT98] proposed the Maximum in Band Energy
method (MIE). The MIE uses a solution out of the nullspace
ofX , which maximizes the energy inside the bandwidth of
the transmitted signal to avert trivial highpass estimates.

5. SEMI-BLIND ESTIMATION

Obviously, a combined approach of channel estimation both
utilizing training sequences and a blind method is supposed
to outperform the accuracy of a single strategy solution. To
accomplish that, Li et. al. [LD98] proposed the combination
of the training method and the Cross Relation (CR) method
(13) in form of the least squares problem:minĥ k ~Xĥ� ~xk22; (17)

where~X = 24 Y t 00 Y tX2 �X1 35 and ~x = � xt0 � : (18)

Since this approach leads to a degradation (see 6. Simula-
tion Results) of the channel estimation performance for low
signal to noise ratio (SNR) we reformulate the problem: If
training sequences are available the channel estimation task
basically remains the least squares problem in (7) and blind
approaches are merely considered as a method to include
extra knowledge. Therefore, the plain combination of both



problems (17) can be outperformed by a more problem ad-
equate approach.
First, in noisefree cases the CR method is correct and the
nullspace ofX exists. Consequently, the nontrivial solu-
tion of (13) lies in the nullspace.
In practical applications which imply noise, the sampled
matrix reads as X =Xs +Xn (19)

and (13) is replaced byminĥ kXĥk22 , minĥ kXsĥ+Xnĥk22: (20)

The prementioned benefit from the blind channel estimation
for the training bases estimation is that the solution of (7)
must still suffice Xsĥ = 0: (21)

Unfortunately, the noisefree matrixXs is not known. How-
ever, assuming that we know rankr of the signal subspace,
we yield the nullspace estimate ofXs as: null(Xs) �
span(V n). Then the reformulated least squares problem
reads asminĥ kY ĥ� xtk22 s.t. ĥ 2 span(V n) , (22)minĥ kY V n� � xtk22: (23)

With the Moore-Penrose-pseudoinverse ofY V n the esti-
mation
can be denoted aŝh = V n(V Hn Y HY V n)�1V Hn Y Hxt.
The new semi-blind channel estimation algorithm is sum-
marized as follows:

1. Nullspace estimation: estimate the signal subspace
dimension:

rank([X2;�X1]);
based on the blind method (CR), and computeVn as
the2Nh � r least dominant right singular vectors ofX = [X2;�X1].

2. Training sequence matrices: collect the transmitted
and received signals inY = � Y t 00 Y t � ; and xt = [xTt1;xTt2]T :

3. Channel estimation: calculate the least squares so-
lution of the channel response functionĥ = V n��
with �� = argmin� kY V n� � xtk22:

6. SIMULATION RESULTS

In our simulations, we used a multipath channel withP =10. The bit sequence and all channel parameters were cho-
sen randomly for each Monte Carlo run exceptg11 = 1 and�1 = 0. We assumed that the delay spread�max is about10�s, thus, we set�max = 3T0, sinceT0 = 3:69�s. The
received signalx(t) was sampledl = 3 times perT0. We
exploited the whole GSM burst for the semi-blind methods,
thereforeNs = 142. The lengthNh of the channel esti-
mation ĥi was set to3l to cover the whole delay spread.
In the new semi-blind channel estimation algorithm, we set2Nh � r = Nh.
Figure 2 depicts thebit error rate (BER) of the different
methods compared to the BER of anadditive white gaussion
noise (AWGN) channel. The plots are the mean of10000
Monte Carlo runs. We show the results for the AWGN chan-
nel to demonstrate the influence of the channel estimation
and equalization on the performance of the demodulation
with a maximum likelihood sequence estimation (MLSE)
demodulator which is aViterbi Algorithm (VA) implemen-
tation.
First, it can be seen that the semi-blind algorithm of Li
et. al. [LD98] does not improve the channel estimation of
the training sequence method. For lowsignal to noise ratio
(SNR) the semi-blind approach increases the BER, thus, the
result is worse. For greater SNR Li’s method improves the
demodulation only slightly.
Our new semi-blind algorithm outperforms the other meth-
ods. The improvement in respect to the training sequence
method depends on the SNR, because the CR which we ex-
ploit is sensitive to noise. For low SNR the CR is very un-
precise and the plot of the new method moves very close to
the plot of the training sequence method forSNR < 2dB.
On the other hand, the semi-blind algorithm has the same
BER at 9dB as the training sequence method at10dB.
Hence we gain about1dB at a SNR of10dB.
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