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Abstract: We address several approaches to modelling high frequency finan-
cial data in continuous time. Besides considering estimation for the existing con-
tinuous time GARCH(1, 1) (COGARCH) process we will propose three new mod-
els. At first we suggest a method of moment estimator for the parameters of the
COGARCH(1, 1) process. We show that the resulting estimators are consistent and
asymptotically normal and investigate the empirical quality in a simulation study
based on the compound Poisson and Variance Gamma driven COGARCH(1, 1)
model. The model is also fitted to high-frequency financial data from the New York
Stock Exchange. In the following chapter we develop the first new model, an expo-
nential COGARCH(p, q) process. We investigate stationarity and moment properties
of the model. An instantaneous leverage effect can be shown if p = q. The first steps
in estimating this new model are taken by proposing a quasi-maximum likelihood
type estimator for the parameters of a compound Poisson ECOGARCH(1, 1) pro-
cess. To account for the strong persistence in volatility, which is sometimes observed
in empirical data, we develop a fractionally integrated ECOGARCH(p, d, q) process.
Similarly to the short memory case we investigate stationarity and moment prop-
erties of the model. It is also shown that the long memory effect introduced in the
log-volatility propagates to the volatility process. Finally considering absolute log
returns as a proxy for stochastic volatility, the influence of explanatory variables on
absolute log returns of ultra high frequency data is analysed. In particular we propose
a new mixed effect model class for the absolute log returns. Explanatory variable
information is used to model the fixed effects, whereas the error is decomposed in a
non-negative Lévy driven continuous time ARMA process and a market microstruc-
ture noise component. The parameters are estimated in a state space approach with
application of the Kalman filter. In a small simulation study the performance of the
estimators is investigated. The model is applied to IBM trade data and the influence
of bid-ask spread and duration is quantified on a daily basis.
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Notation

Throughout the text stochastic processes like (Xt)t≥0 will frequently just be referred
to as X. The abbreviation a.s. denotes almost surely. Convergence in distribution,

probability and almost surely is written as
d−→,

P−→ and
a.s.−→, respectively. Equality

in distribution is denoted by
d
=.

We denote d×m matrices either by A = (Ai,j) or bold capital Greek letters like
Σ = (Σi,j) for 1 ≤ i ≤ d, 1 ≤ j ≤ m. The space of real d×m matrices is denoted by
Md,m(R). The transpose of a matrix A is written as AT and the identity in Md,d as
Id. Vectors are denoted by bold capital Roman letters like A or bold small Greek
letters like θ.

Let (S,F) be a measurable space. Then the indicator function of a set A ∈ F is
denoted by χA and defined for x ∈ S by

χA(x) :=

{
1, if x ∈ A
0, otherwise

.

Let (X,T ) be a topological space. The complement of a set A ⊆ X is denoted
by Ac and the closure in the topology T by A.

The Borel σ-algebra of Rd is denoted by B(Rd). Leb(A) is the Lebesgue measure
of a set A and Leb(dx) is written dx. For x ∈ Rd, δx(B) will be the Dirac measure
of a set B, that is

δx(B) =

{
1, if x ∈ B
0, otherwise

.

Let f be a continuously differentiable function from Rd to Rm. Then the total
derivative of f = (f1, . . . , fm)T at x ∈ Rd is written as

∂xf(x) =



∂1f

1(x) · · · ∂df
1(x)

...
...

∂1f
m(x) · · · ∂df

m(x)


 ∈ Mm,d(R) ,

where ∂if
j(x) is the i-th first order partial derivative of f j(x) for 1 ≤ i ≤ d,

1 ≤ j ≤ m. Let f, g be function from R to R. Then by f ∼ g as x→ ∞ it is meant
that limx→∞ f(x)/g(x) = 1.
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Introduction

Over the years finance has proceeded from analysing monthly, to weekly, to daily
data and is now confronted with the problem of designing models for intradaily data.
Hence the frequency of available data has enormously increased over the last years.
This process has come to an end, as observed by Engle (2000), since in almost all
cases all transactions are recorded nowadays and nothing more can be expected. He
called this limiting frequency ”ultra high frequency”. The most eminent characteristic
of this ultra high frequency, or also called tick-by-tick, data is the irregular spacing
of the observations in time. If one aggregates the data up to fixed time intervals,
there is truly a loss of information, which should be avoided. Therefore it seems
natural to model the price processes in continuous time. Of course newly proposed
models should also reflect as many as possible of the other so-called stylised facts
of financial data (cf. Cont (2001)), such as absence of autocorrelation of returns
despite being dependent, volatility clustering on high levels and the leverage effect.
A leverage effect in the econometric literature means the phenomenon of negative
correlation between current returns and future volatility.

These findings suggest that a suitable model is one with stochastic volatility.
Barndorff-Nielsen and Shephard (2001) proposed such a model, where the volatility
process (σ2

t )t≥0 is described by an Ornstein-Uhlenbeck (OU) type process, which
is driven by a Lévy process L with increasing sample path. It is defined by the
stochastic differential equations

dXt = (µ+ βσ2
t )dt + σtdWt + ρdLλt ,

dσ2
t = −λσ2

t dt + dLλt , λ > 0 ,

for each t ≥ 0, where W is a Brownian motion independent of L and σ2
0,

Lt := Lt − E(Lt) for each t ≥ 0 and µ, β and ρ are constants. The process X is
understood as the log-price process of an asset. For ρ < 0 the model is able to de-
scribe a leverage effect, but in the way that an increment in the volatility will lead to
a negative shock in the log-price process and not the other way round, which seems
more natural.

Another approach in modeling asset prices in continuous time are GARCH type
models. In the discrete time context the ARCH (autoregressive conditionally het-
eroscedastic) and GARCH (generalised ARCH) models proposed by Engle (1982)
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2 Exponential COGARCH and other continuous time models

and Bollerslev (1986), respectively, have become most popular, since they capture
many of the stylised facts. Different attempts have been made to define a contin-
uous time process sharing the same features as the discrete time GARCH process.
One approach could be summarised as diffusion approximation to the discrete time
GARCH process as presented in Nelson (1990). This idea however leads to a stochas-
tic volatility model driven by two independent Brownian motions, which are asymp-
totically non equivalent to GARCH models as shown in Wang (2002). The GARCH
model in contrast is driven by only one source of randomness. Therefore Klüppelberg
et al. (2004) recently introduced a new continuous time GARCH(1, 1) (COGARCH)
process driven by a single Lévy process L. The model is defined by the stochastic
differential equations

dGt = σt dLt ,

dσ2
t+ = (β − ησ2

t ) dt + ϕσ2
t d[L,L]dt ,

for each t ≥ 0, where β, η and ϕ are constants and [L,L]dt =
∑

0≤s≤t(∆Ls)
2. The

asset log-price is described by the stochastic process G and its increments G(r) =
Gt+r −Gt, r > 0, correspond to the discrete time GARCH(1, 1) process. One clearly
recognises that the driving process of the volatility is similar to the discrete time case.
This model was further extended by Brockwell et al. (2006) to a COGARCH(p, q)
process with p ≤ q. In analogy to the discrete time case the model is not able
to describe a leverage effect without further extensions. Different solutions to this
problem have been proposed in discrete time. On the one hand it was tried to keep
the GARCH model and just extend it to incorporate a leverage effect, as done e.g. in
Glosten et al. (1993). Another attempt was taken by Nelson (1991), who introduced
the exponential GARCH (EGARCH) process. It is not directly a GARCH model,
since it models the log-volatility process with the innovations of the returns as driving
noise sequence in contrast to the GARCH process, but it shares important properties
with it and additionally is able to describe a leverage effect. To our knowledge there
exists no continuous time extension of the EGARCH process up to now. Such an
extension will be given in this thesis.

Another stylised fact, the sometimes observed long-run volatility persistence, is
not taken into account by any of the models addressed so far. Numerous discrete time
long memory models have been introduced like the integrated GARCH (IGRACH)
process of Engle and Bollerslev (1986), the fractionally integrated GARCH (FI-
GARCH) process of Baillie et al. (1996) or the fractionally integrated EGARCH
(FIEGARCH) process of Bollerslev and Mikkelsen (1996). The FIGARCH process
has to be treated carefully since the existence of a stationary version is not clear;
see Section 4 in Mikosch and Stărică (2000). Although in the continuous time set-
ting there have been suggested a number of long memory models. Comte and Re-
nault (1998) defined a continuous time stochastic volatility model by specifying the
log-volatility process as an OU process driven by a fractional Brownian motion.
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Brockwell and Marquardt (2005) proposed to model the stochastic volatility as a
non-negative fractionally integrated continuous time ARMA (CARMA) process. An-
other non-Gaussian continuous time SV model with long memory was introduced
by Anh et al. (2002), where they define their model via the Green function solu-
tion of a fractional differential equation driven by a Lévy process. All of these are
stochastic volatility type models. Continuous time GARCH like models, which are
able to describe a long memory effect in the volatility process, do not exists as far
as we know. Again we will propose such an extension.

When dealing with ultra high frequency data one is provided with additional
information about each trade, which should be taken into account as pointed out
in Engle (2000). Such information consists of the bid and ask prices quoted at the
transaction time, the volume of the trade or the duration since the last trade. Using
this information in a sensible way can provide more insight into the market mi-
crostructure as shown in Engle (2000). We will also address this topic at the end of
the thesis, which is organised as follows.

This thesis is divided into six chapters, whereas Chapter 2, 3, 5 and 6 are based on
the papers Haug, Klüppelberg, Lindner, and Zapp (2007), Haug and Czado ((2006a),
(2006b), (2006c)), respectively.

The framework of the thesis will be set in Chapter 1. After a short introduction
to the theory of Lévy processes, stochastic integration with respect to martingale
valued random measures will be defined. Further we give a short review about the
discrete time state space representation of time series and how the Kalman filter can
be applied to compute Gaussian likelihoods. Afterwards the continuous time ARMA
process, as well as the fractionally integrated CARMA process are introduced and
discussed shortly. Finally the continuous time GARCH(1, 1) process of Klüppelberg
et al. (2004) is presented, some useful properties stated and an expression for the
fourth moment of the log-return process derived.

In Chapter 2 we develop a method of moment estimator for the parameters of
the COGARCH(1, 1) process. The estimator requires the second and fourth moment
of the log-return process, as well as the autocorrelation function of the squared log-
returns. It is shown that under these conditions the parameters are identifiable.
Before we consider the asymptotic properties of the estimator, a strong mixing con-
dition for an equidistant sequence of log-returns is derived. It is then shown that
the resulting estimators are consistent and asymptotically normal. The small sample
properties are investigated in a simulation study based on the compound Poisson
and Variance Gamma driven COGARCH(1, 1) model. The model is also fitted to
high-frequency financial data from the New York Stock Exchange (NYSE) and Nas-
daq. In this real data example the need for modeling the asymmetry in financial
log-returns is highlighted. At the end of the chapter a possible solution to that
problem is presented for the COGARCH(1, 1) model.

Our aim in Chapter 3 is to propose a continuous time parameter model, which
shares the main features of the discrete time EGARCH model. The new model will
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be called an exponential COGARCH(p, q) (ECOGARCH) process, and models the
stock log-prices. The increments (log-returns) of the process will correspond to the
discrete time EGARCH process. The ECOGARCH process is defined in such a way
that it is able to describe the asymmetry in financial data, i.e. the leverage effect,
directly. After investigating stationarity conditions, a strong mixing property of the
log-return process is shown. The second order structure of the volatility and the log-
return process is analysed and moment expressions derived, which depend on the
characteristic triplet of the driving Lévy process. An instantaneous leverage effect
can be shown if p = q.

The first steps concerning inference in this new model are taken in Chapter 4 by
proposing a quasi-maximum likelihood type estimator for the parameters of a com-
pound Poisson ECOGARCH(1, 1) process. The empirical quality of the estimator is
tested in a simulation study. We also consider the problem of predicting the volatil-
ity process and the construction of a prediction interval for the log-price process. In
the end the model is fitted to ultra high-frequency financial data of the NYSE.

To account for the strong persistence in volatility, which is sometimes observed in
empirical data, we develop in Chapter 5 a fractionally integrated ECOGARCH(p, d, q)
(FIECOGARCH) process. Similarly to the short memory case we investigate sta-
tionarity and moment properties of the model. It is also shown that the long memory
effect introduced in the log-volatility process propagates to the volatility process.

Finally considering absolute log returns as a proxy for the instantaneous volatil-
ity, the influence of explanatory variables on absolute log returns of ultra high fre-
quency data is analysed in Chapter 6. In particular we propose a new mixed effect
model class for the absolute log returns. Explanatory variable information, such as
the bid-ask spread and the duration, is used to model the fixed effects, whereas the
error is decomposed in a non-negative Lévy driven CARMA process and a market
microstructure noise component. The parameters are estimated in a state space ap-
proach with application of an augmented Kalman filter. In a small simulation study
the performance of the estimators is investigated. For checking the correlation in
the random effect we will use the variogram, which is suitable for irregularly spaced
time series. The model is applied to IBM trade data and the influence of bid-ask
spread and duration on the instantaneous volatility is quantified on a daily basis.
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Chapter 1

Preliminaries

The aim of the first part of this chapter is to provide the basic facts about univariate
Lévy processes and the stochastic integration with respect to them. These results
are mainly taken from Applebaum (2004) and Protter (2004). We also like to refer
to Sato (1999), Kyprianou (2006) and Cont and Tankov (2004) among others for
general treatment of Lévy processes and/or stochastic calculus.
The second part introduces the time series class of continuous time autoregressive
moving average processes and the continuous time GARCH(1, 1) process after a
short overview about state space models for time series.

1.1 Lévy processes

In this thesis we will always assume to work with a complete, filtered probability
space (Ω,F , (Ft)t≥0,P) with right-continuous filtration (Ft)t≥0 such that F0 contains
all P-null sets of F . In that case the filtered probability space is said to satisfy the
usual conditions. We start with the definition of a Lévy process on R.

Definition 1.1.1 Let (Ω,F , (Ft)t≥0,P) be a filtered probability space satisfying the
usual conditions. An adapted process L := (Lt)t≥0 with L0 = 0 a.s. is a R valued
Lévy process if

(L1) L has independent increments; i.e. Lt − Ls is independent of Fs, 0 ≤ s < t <
∞,

(L2) L has stationary increments; i.e. Lt − Ls has the same distribution as Lt−s,
0 ≤ s < t <∞,

(L3) L is continuous in probability; i.e. P(|Lt+s − Ls| > ǫ) → 0 as t→ 0 .

For each t > 0 the distribution of Lt will be in the class of infinitely divisible
distributions, which are defined in the following.

6



Preliminaries 7

Definition 1.1.2 Let X be a random variable taking values in R. We say that X
has an infinitely divisible distribution if, for each n ∈ N, there exist i.i.d. random

variables Y
(n)
1 , . . . , Y

(n)
n such that

X
d
= Y

(n)
1 + · · · + Y (n)

n .

If L is a Lévy process, then the law of Lt is infinitely divisible for each t ≥ 0, since
for each n ∈ N we have

Lt = Lt/n + (L2t/n − Lt/n) + · · · + (Lt − L(n−1)t/n) ,

which implies together with the stationarity and independence of the increments the
assumption.

From Theorem 8.1 in Sato (1999) we know that the characteristic function of
every infinitely divisible distribution can be written in the Lévy-Khinchine repre-
sentation, which is then called the Lévy-Khinchine formula . The Lévy-Khinchine
formula for the Lévy process L at time t ≥ 0 is then given by

E(eiuLt) = exp{tψL(u)} , t ≥ 0,

with

ψL(u) := iuγL − u2

2
σ2

L +

∫

R

[
eiux − 1 − iuxχ(−1,1)(x)

]
νL(dx) , (1.1)

for u ∈ R and γL ∈ R, σ2
L > 0 and νL is a measure on R which satisfies

νL({0}) = 0 and

∫

R

min(|x|2, 1)νL(dx) <∞ . (1.2)

The measure νL is called the Lévy measure of L. In the sequel we will see that for
A ∈ R, νL(A) is the expected number, per unit time, of jumps with size belonging
to A. The map ψL is referred to as the Lévy symbol or Lévy exponent. The triplet
(γL, σ

2
L, νL) satisfying (1.1) uniquely determines the distribution of L and is called

the characteristic triplet of L.

Remark 1.1.3 Observe that the integral in (1.1) is well-defined, since

|eiux − 1 − iuxχ(−1,1)(x)| ≤
1

2
u2x2χ(−1,1)(x) + 2χ(−1,1)c(x) ,

which follows from Lemma 8.6 in Sato (1999), and hence the integrand is integrable
with respect to νL by (1.2).
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Before we proceed with our short overview four examples of Lévy processes
occurring in the subsequent chapters will now be presented. Remember that the
processes in all the examples satisfy the conditions (L1) – (L3). In the examples
we will speak of the jump of a Lévy process at time t ≥ 0, which is defined as
∆Lt := Lt−Lt− and Lt− is the left limit of the sample path of L at time t ≥ 0, with
convention L0− := 0. Such a limit exists as we will see right after the examples.

Example 1.1.4 (Brownian motion) The first example concerns the only Lévy pro-
cess with continuous sample path. Such a process is called Brownian motion. Let
σ2

B > 0 then we call a Lévy process B = (Bt)t≥0 ∈ R a Brownian motion if

• Bt ∼ N(0, tσ2
B) for each t ≥ 0,

• B has continuous sample path .

Hence the Lévy symbol of a Brownian motion is given by

ψB(u) = −u
2

2
σ2

B

for each u ∈ R. The characteristic triplet is therefore equal to (0, σ2
B , 0). In case

σ2
B = 1, B is called a standard Brownian motion. Now let γB ∈ R and let B be a

Brownian motion in R, then the process B̃t := γBt+Bt, t ≥ 0, is called a Brownian
motion with drift and the triplet of B̃ is given by (γB , σ

2
B , 0). The simulated sample

path of a standard Brownian motion can be seen in Figure 1.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 1.1: Simulated sample path of standard Brownian motion over the time in-
terval [0, 1].
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For a detailed discussion of Brownian motion we like to refer to Karatzas and
Shreve (1991) among many others.

Example 1.1.5 (Poisson process) Let (Ti)i∈N be a strictly increasing sequence of
stopping times, then the counting process N defined by

Nt :=

∞∑

i=1

χ[Ti,∞)(t)

for each t ≥ 0 is an adapted processes and if further N has independent and station-
ary increments it is a Poisson process. For each t ≥ 0 and some λ > 0 Nt is Poisson
distributed with parameter λt (c.f. Theorem I.23 in Protter (2004)). The parameter
λ will be called the jump rate of N . The sample path of a Poisson process is piece-
wise constant with discontinuities of size one at the random time points (Ti)i∈N. A
simulated sample path of a Poisson process with parameter λ equal to 10 is shown
in Figure 1.2. The Ti will be referred to as the jump times of the process. Let δ1(·)
be the Dirac measure, then the characteristic function of Nt is of the form

E
(
eiuNt

)
= exp

{
t

∫

R

(eiux − 1 − iuxχ(−1,1)(x))λδ1(dx)

}

= exp
{
λt(eiu − 1)

}

and the characteristic triplet is hence given by (0, 0, λδ1). From the characteristic
function it follows immediately that E(Nt) = λt and Var(Nt) = λt.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

7

8

Figure 1.2: Simulated sample path of a Poisson process with parameter λ = 10 over
the time interval [0, 1].
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Example 1.1.6 (Compound Poisson process) If we want to generalise the Poisson
process with respect to the jump sizes we will get a compound Poisson process. Let
(Zi)i∈N ∈ R be a sequence of i.i.d. random variables independent of a Poisson process
N . The compound Poisson process C is then defined as

Ct :=

Nt∑

i=1

Zi

for each t ≥ 0. The rate λ of N will also be called the jump rate of C. The sample
path of the compound Poisson process is therefore still piecewise constant with dis-
continuities at random time points (Ti)i∈N, but now the size of the jumps is itself
random. The compound Poisson process C has characteristic function for all u ∈ R

E
(
eiuCt

)
=

∞∑

k=0

E(exp[iu(Z1 + · · · + ZNt)]|Nt = k)e−λt (λt)
k

k!

= e−λt
∞∑

k=0

(λtφZ(u))k

k!
= exp{tλ(φZ(u) − 1)}

= exp

{
t

∫

R

(
eiux − 1

)
λFZ(dx)

}
(1.3)

=: exp

{
t

[
iuγC +

∫

R

(
eiux − 1 − iuxχ(−1,1)(x)

)
λFZ(dx)

]}
,

where γC =
∫
|x|<1 xλFZ(dx), φZ is the characteristic function and FZ the law of Z1.

Thus the characteristic triplet is given by (γC , 0, λFZ ). As an illustration we plotted
in Figure 1.3 the sample path of a compound Poisson process with standard normally
distributed jumps and jump rate λ = 20 over the time interval [0, 1].

From (1.2) it follows that for a Lévy measure νL we have νL((−ǫ, ǫ)c) <∞ for all
ǫ > 0. But of course we can have νL(R) = ∞. Such Lévy processes are called infinite
activity Lévy processes in contrast to finite activity ones. In the last two examples
we presented Lévy processes with finite activity. The last example introduces a Lévy
process with infinite activity.

Example 1.1.7 (Variance Gamma process) In the last example we want to intro-
duce the Variance Gamma (VG) process. It can be defined as a time-changed Brow-
nian motion with drift. The time change is done with respect to a Gamma process
which is defined as a process (TG

t )t≥0 with parameters a, b > 0, such that each
TG

t ∼ Γ(at, b) is Gamma distributed with density

fT G
t

(x) =
bat

Γ(at)
xat−1e−bx ,



Preliminaries 11
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Figure 1.3: Simulated sample path of a compound Poisson process with parameter
λ = 20 and standard normally distributed jumps Zi over the time interval [0, 1].

for x ≥ 0, where Γ(·) denotes the Gamma function. Now let B be a standard Brow-
nian motion, σ > 0, θ ∈ R and let a = 1/τ > 0 and b = 1/τ > 0 be the parameters
of the Gamma process TG. Then the VG process V can be defined as

Vt := θTG
t + σBT G

t
, (1.4)

for each t ≥ 0. The characteristic function of VT for t ≥ 0 is then given by

E(eiuVt) =

(
1 − iuθτ +

1

2
σ2τu2

)−t/τ

,

for u ∈ R. If we paramterise the Variance Gamma process by

C = 1/τ, G =

(√
1

4
θ2τ2 +

1

2
σ2τ − 1

2
θτ

)−1

and M =

(√
1

4
θ2τ2 +

1

2
σ2τ +

1

2
θτ

)−1

then the Lévy measure νV can be expressed as

νV (dx) =

{
C exp(Gx)|x|−1dx , x < 0
C exp(−Mx)x−1dx , x > 0

.

The mean and variance of the VG process V at time t ≥ 0 are given by

E(Vt) = θt and Var(Vt) = (θ2τ + σ2)t . (1.5)
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For a detailed discussion of the VG process we refer to Madan et al. (1998).

The Lévy measure has infinite mass νV (R) = ∞ and hence the VG process
has infinitely many jumps in any finite time interval. If we want to simulate the
sample path of a VG process one should be aware of the fact that with any computer
simulation we can only describe a finite number of jumps in any given path. Taking
this into account, the simulation of a VG process is particularly simple. By (1.4) we
get a sample path of a VG process over a grid {i∆t , i = 0, 1, . . . } by sampling a
standard Brownian motion and a Gamma process over this grid. If we can simulate
random variables gi ∼ Γ(∆t/τ, 1/τ) the Gamma process can be approximated by
TG

i∆t = TG
(i−1)∆t + gi, i ≥ 1, and TG

0 = 0. By simulating normal random variables

Ni ∼ N(0, TG
i∆t − TG

(i−1)∆t) one can construct a time changed Brownian motion by

adding up the Ni. The VG process can then be simulated by (1.4). For a detailed
description we refer to Chapter 8.4 in Schoutens (2003). The sample path of a
Variance Gamma processes over the time interval [0, 1] with parameters σ = 0.3, θ =
−0.03 and τ = 0.01 is shown in Figure 1.4. For this simulation the grid size was
∆t = 10−5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

0.1

0.15

0.2

Figure 1.4: Simulated sample path of VG process with parameters σ = 0.3, θ = −0.03
and τ = 0.01 over the time interval [0, 1].

From Theorem 2.1.7 in Applebaum (2004) we know that every Lévy process has
a càdlàg modification that is itself a Lévy process. In the following we will always
assume to work with this càdlàg modification. Hence the jumps of L are well-defined.
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Below we concentrate on the jump process ∆L := (∆Lt)t≥0 of the Lévy process
L. Therefore one can define a random measure counting the jumps of L of a specific
size. More precisely, for 0 ≤ t <∞ and A ∈ B(R) define

NL(t, A) = #{0 ≤ s < t;∆Ls ∈ A} =
∑

0≤s<t

χA(∆Ls).

The measure NL is a Poisson random measure (see Chapter 2.3.1 in Applebaum
(2004) for details), in particular this implies that:

(1) For each t > 0, ω ∈ Ω, NL(t, ·)(ω) is a counting measure on B(R − {0}).

(2) For each A bounded away from 0 (NL(t, A), t ≥ 0) is a Poisson process with
intensity E(NL(1, A)), where A ∈ B(R) is said to be bounded away from 0 if
0 6∈ A.

Observe that for A bounded away from 0, NL(t, A) <∞ a.s. for all t ≥ 0. Since if
we do not count jumps of size 0 the set {s ≥ 0 : ∆Ls 6= 0} of jump times is countable
due to the càdlàg sample path of L (see Theorem 2.8.1 in Applebaum (2004)). Hence
the sequence of hitting times of the set A defined by TA

1 := inf{s > 0 : ∆Ls ∈ A} > 0
and TA

n := inf{s > TA
n−1 : ∆Ls ∈ A}, for n > 1, has no accumulation point, which

implies limn→∞ TA
n = ∞ a.s. . Thus we get for each t ≥ 0

NL(t, A) =
∑

0≤s≤t

χA(∆Ls) =
∞∑

n=1

χ(0,t](T
A
n ) <∞ a.s. .

The intensity of the Poisson process (NL(t, A), t ≥ 0), A ∈ B(R−{0}), describes
the expected number, per unit time, of jumps with size belonging to A, and defines
a measure on B(R − {0}) which is equal to νL (cf. Theorem I.35 in Protter (2004)),
i.e.

νL(·) = E(NL(1, ·)) .
We further define for each t ≥ 0 and A bounded away from 0 the compensated

Poisson random measure by

ÑL(t, A) = NL(t, A) − tνL(A) .

Notice that ÑL(t, A) is a martingale-valued measure on B(R−{0}), as we will show
now. Let (Ft)t≥0 be the filtration generated by (ÑL(t, A))t≥0. Then for 0 ≤ s ≤ t
we get

E(ÑL(t, A)|Fs) = E(NL(s,A) +NL(t, A) −NL(s,A)|Fs) − tνL(A)

= NL(s,A) + (t− s)νL(A) − tνL(A) = ÑL(s,A) (1.6)

since (NL(t, A))t≥0 is a Poisson process with intensity E(NL(1, A)) = νL(A).
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In the following we state the Lévy-Itô decomposition (see e.g. Theorem 2.4.16
of Applebaum (2004)) of the sample path of L into continuous and jump part. For
this we will need one further concept; namely integration with respect to a Poisson
random measure.
Let f : R → R be a measurable function and A ∈ B(R) bounded away from 0. Then
the Poisson integral of f over the set A can be defined by

∫

A
f(x)NL(t, dx) :=

∑

0≤s≤t

f(∆Ls)χA(∆Ls)

(see e.g. Chapter 2.3.2 in Applebaum (2004) or Theorem I.36 in Protter (2004)).
The jumps of L up to time t ≥ 0 of magnitude greater or equal to one can be

expressed as the Poisson integral

∫

|x|≥1
xNL(t, dx) =

∑

0≤s≤t

∆Lsχ(−1,1)c(∆Ls) . (1.7)

The process
(∫

|x|≥1 xNL(t, dx)
)

t≥0
is a compound Poisson process with rate

νL((−1, 1)c) and jump distribution νL((−1, 1)c)−1νL(dx) defined on (−1, 1)c (see
e.g. Lemma 2.8 in Kyprianou (2006)). Now a new stochastic process Lb can be
defined by

Lb
t := Lt −

∫

|x|≥1
xNL(t, dx)

for t ≥ 0. By Theorem 2.4.7 and 2.4.8 in Applebaum (2004) we know that Lb is
again a Lévy process with moments of all orders. The existence of moments results
from the fact that Lb has only jumps, which are bounded, more precisely bounded
by one. The centered version of Lb can be further decomposed into a martingale Lc

with continuous sample path and a martingale

Ld
t =

∫

|x|<1
xÑL(t, dx) , (1.8)

for each t ≥ 0, which are independent Lévy processes. Observe that in (1.8) the
integration is with respect to the compensated Poisson random measure. This has
to be the case since L can have infinitely many small jumps and their sum does not
necessarily converge. Actually the integral in (1.8) is defined as the L2 limit of the
martingales

Mn
t :=

n∑

k=1

∫

Ak

x(NL(t, dx) − tνL(dx)) , t ≥ 0, (1.9)
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which have (see e.g. equation (2.9) in Applebaum (2004)) the characteristic function

E(eiuMn
t ) = exp

(
t

n∑

k=1

∫

Ak

[
eiux − 1 − iux

]
νL(dx)

)
, (1.10)

where Ak := {x ∈ R : 1
k+1 < |x| < 1

k}. In particular one can find a subse-
quence converging a.s. , uniformly in t on any bounded time interval. For a proof
of this result see e.g. Theorem I.41 in Protter (2004) or Theorem 2.10 in Kypri-
anou (2006). The continuous part Lc can be identified as a Brownian motion (see
e.g. Theorem 2.4.15 in Applebaum (2004)). Hence for each t ≥ 0 we can write
Lb

t − E(Lb
t) = Lc

t + Ld
t =: Bt + Ld

t . Observe that (1.9) and (1.7) are independent,
since NL has independent counts on disjoint sets (cf. Theorem 2.4.6 in Applebaum
(2004)). This implies that (1.8) and (1.7) are independent processes.

The full Lévy-Itô decomposition then says the following. If L is a Lévy process,
then there exists γL ∈ R, a Brownian motion B with variance σ2

L and an independent
Poisson random measure NL on R+ × (R − {0}) such that, for each t ≥ 0,

Lt = Lb
t +

∫

|x|≥1
xNL(t, dx) = Bt + Ld

t + E(Lb
t) +

∫

|x|≥1
xNL(t, dx)

= Bt +

∫

|x|<1
x(NL(t, dx) − tνL(dx)) + tE

(
L1 −

∫

|x|≥1
xNL(1, dx)

)

+

∫

|x|≥1
xNL(t, dx)

= Bt +

∫

|x|<1
xÑL(t, dx) + γLt+

∫

|x|≥1
xNL(t, dx) , (1.11)

where γL = E

(
L1 −

∫
|x|≥1 xNL(1, dx)

)
. Given (1.11) one can derive the Lévy-

Khintchine formula for the characteristic function of L at time t ≥ 0

E(eiuLt) = E

(
exp

{
iu(γLt+Bt + Ld

t +

∫

|x|≥1
xNL(t, dx)

})

= eiuγLtE(eiuBt)E(eiuLd
t )E

(
exp

{
iu

∫

|x|≥1
xNL(t, dx)

})
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= eiuγLte−tu2

2
σ2

L exp

{
t

∫

|x|<1

[
eiux − 1 − iux

]
νL(dx)

}

× exp

{
t

∫

|x|≥1

[
eiux − 1

]
νL(dx)

}

= exp

{
t

(
iuγL − u2

2
σ2

L +

∫

R

[
eiux − 1 − iuxχ(−1,1)(x)

]
νL(dx)

)}
,

where the second equality is due to the independence of the summands in (1.11)

and the third follows from Bt ∼ N(0, tσ2
L), taking limits in (1.10) for getting E(eiuLd

t )

and the fact that
(∫

|x|≥1 xNL(t, dx)
)

t≥0
is a compound Poisson process together with

(1.3).
The existence of moments of L depends on the behaviour of the large jumps.

Necessary and sufficient conditions for L to have finite mean and variance are e.g.
given in Example 25.12 in Sato (1999), which are

∫

|x|≥1
|x|νL(dx) <∞ and

∫

|x|≥1
x2νL(dx) <∞ ,

respectively. If these conditions are met, then one gets by differentiating E(eiuLt)
(see e.g. Proposition 2.5(ix) in Sato (1999))

E(Lt) = t

(∫

|x|≥1
xνL(dx) + γL

)
(1.12)

and

Var(Lt) = t

(
σ2

L +

∫

R

x2νL(dx)

)
. (1.13)

Throughout this text we will only deal with square integrable Lévy processes. In case
we further assume E(L1) = 0, then it follows from (1.12) that γL = −

∫
|x|≥1 xνL(dx)

and the Lévy-Itô decomposition (1.11) simplifies to

Lt = Bt +

∫

R−{0}
xÑL(t, dx) . (1.14)

If the Lévy process L is of finite variation (see also Definition A.13), which will
be the case if and only if σ2

L = 0 and
∫
|x|<1 |x|νL(dx) < ∞ (cf. Proposition 3.9 in

Cont and Tankov (2004)), the Lévy-Itô decomposition will have the form

Lt = γLt+

∫

|x|<1
x(NL(t, dx) − tνL(dx)) +

∫

|x|≥1
xNL(t, dx) (1.15)

= γ∗Lt+

∫

R−{0}
xNL(t, dx) = γ∗t+

∑

0≤s≤t

∆Ls , (1.16)



Preliminaries 17

where γ∗L := γL −
∫
|x|<1 xνL(dx). The characteristic function can be expressed as

E(eiuLt) = exp{t[iuγ +

∫

|x|<1
(eiux − 1 − iux)νL(dx) +

∫

|x|≥1
(eiux − 1)νL(dx)]}

= exp{t[iuγ∗ +

∫

R

(eiux − 1)νL(dx)]} ,

which follows from (1.15) and the expression for the characteristic function of Ld
t .

Up to now we have only considered one-sided Lévy processes defined on the
positive half real line. But it is also possible to define an extension of L to the whole
real line by taking a second Lévy process L̃t≥0 independent of L but with the same
distribution as L, and setting

L∗
t := Ltχ[0,∞)(t) − L̃−t−χ(−∞,0)(t), t ∈ R . (1.17)

L∗ is then a Lévy process defined on the whole real line with càdlàg sample path.
For ease of notation we will denote one-sided as well as two-sided Lévy processes by
L.

1.2 Stochastic integration

This section deals with the stochastic integration of predictable processes with re-
spect to Lévy processes. We restrict the discussion to Lévy processes as integrator,
since this will be sufficient for this thesis. The class of integrators can of course be
extended and we refer for a comprehensive treatment of stochastic integration to
Chapter 4 in Applebaum (2004) or Chapter II and IV in Protter (2004).
In case the Lévy process L has almost surely trajectories of finite variation, the
stochastic integral can be defined as a path-by-path Stieltjes integral, cf. Chapter
I.7 in Protter (2004). This concept will not work for Lévy processes of unbounded
variation, e.g. the Brownian motion, as shown in Chapter I.8 in Protter (2004). The
main idea to overcome this problem is due to Kiyosi Itô, which was to restrict the
integrands to those that are predictable. This will be explained in the following.

1.2.1 General theory

From the Lévy-Itô decomposition (1.11) we see that the aim of this section has to
be to define integrals of the form

∫ t

0
F(s, ω)dBs,

∫ t

0

∫

A
H(s, x, ω)ÑL(ds, dx) and

∫ t

0

∫

A
K(s, x, ω)NL(ds, dx) ,

for each t ≥ 0, where L is a R-valued Lévy process with Lévy-Itô decomposition
(1.11), F,H and K are Rm valued random mappings and A ∈ B(R) is bounded away
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from 0. Since the integration will be understood componentwise, we just consider
the univariate case from now on.
The Brownian motion B as well as the compensated Poisson random measure ÑL

are both martingale-valued random measures (see also Definition A.12). Let δ0(·) be
the Dirac measure, then define

MB(t, A) := Btδ0(A),

for each t ≥ 0 and A ∈ B({0}), and

MN (t, A) := ÑL(t, A),

for each t ≥ 0 and A ∈ B(R − {0}). Then it is clear that MB is a martingale-
valued random measure on R+ × {0} since B is a martingale and in (1.6) it was
shown that MN is one on R+ ×R−{0}. In the following we will just work with one
martingale-valued random measure M on R+ × E, where E ∈ B(R), such that

(M1) M(0, A) = 0, a.s.,

(M2) M(t, A) −M(s,A) is independent of Fs for t > s,

(M3) there exists a σ-finite measure µ on E for which

E(M(t, A)2) = tµ(A)

for all 0 ≤ s < t < ∞, A ∈ B(E). Observe that MB and MN satisfy (M1)-(M3)
with E = {0} and µ({0}) = σ2

L for MB and E = R − {0} and µ(·) = νL(·) for
MN . Before we can define the stochastic integral with respect to martingale valued
random measures, we have to specify the class of integrands. In the first step these
will be all random mappings F : [0, T ] × E × Ω → R such that

• F is predictable

•
∫ T
0

∫
E E(|F (t, x, ω)|2)µ(dx)dt <∞ for fixed T > 0.

We denote the linear space of all equivalence classes of such mappings, which
coincide almost everywhere with respect to Leb × µ × P by H2(T,E), where Leb
denotes the Lebesgue measure. One can define an inner product on H2(T,E) by

〈F,G〉T,µ :=

∫ T

0

∫

E
E(F (s, x, ω)G(s, x, ω))µ(dx)ds ,

for each F,G ∈ H2(T,E). The inner product defines a norm ‖·‖T,µ, making H2(T,E)
a normed space and actually a Hilbert space, since it is a closed subspace of the
complete space L2([0, T ] × E × Ω, Leb × µ × P) (cf. Lemma 4.1.3 in Applebaum
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(2004)). In the Brownian motion case where E = {0} and µ({0}) = 1 we denote

H2(T,E) just by H2(T ), with norm ‖F‖T =
√∫ T

0 E(|F (s, ω)|2)ds, for F ∈ H2(T ).

A random mapping F ∈ H2(T,E) will be called simple if, for some m,k ∈ N,
there exists 0 ≤ t1 ≤ · · · ≤ tm+1 = T and disjoint Borel sets Aj ⊂ E, with µ(Aj) <
∞, j = 1, . . . , k, such that

F (t, x, ω) =
m∑

i=1

k∑

j=1

Fi,j(ω)χ(ti,ti+1](t)χAj (x) , (1.18)

for each t ∈ [0, T ], x ∈ E and where each Fi,j(ω) ∈ bFti is Fti measurable and
bounded. Observe that F (t, x, ω) is left continuous and measurable with respect
to the product σ-algebra B(E) ⊗ Ft, hence F is predictable. The linear subspace
of all simple mappings in H2(T,E) will be referred to as S(T,E). The stochastic

integral IT (F )(ω) =
∫ T
0

∫
E F (s, x, ω)M(ds, dx) of a simple mapping F ∈ S(T,E)

with respect to the martingale-valued random measure M is then defined as the
random variable

IT (F )(ω) :=
m∑

i=1

k∑

j=1

Fi,j(ω)[M(ti+1, Aj) −M(ti, Aj)] , (1.19)

for each T > 0. Notice that due to the predictability of F and the martingale prop-
erty of M , Fi,j will be independent of M(ti+1, Aj)−M(ti, Aj) for each j ∈ {1, . . . , k},
which implies that the martingale property is preserved. Here one recongises the
importance of predictability of the integrand. For further properties of IT see The-
orem 4.2.3 in Applebaum (2004). The quantity in (1.19) defines a linear mapping
F 7→ IT (F ) from S(T,E) into L2(Ω,F ,P). Since L2(Ω,F ,P) is a Hilbert space with
norm ‖IT (F )(ω)‖2 :=

√
E(IT (F )2(ω)) one obtains the following relation

‖IT (F )(ω)‖2
2 = E(IT (F )2(ω)) =

∫ T

0

∫

E
E(|F (t, x, ω)|2)µ(dx)dt = ‖F‖2

T,µ , (1.20)

showing that IT is an isometry. For a proof of (1.20) see Lemma 4.2.2 in Apple-
baum (2004) or Lemma A.18. But since S(T,E) is dense in H2(T,E) (see e.g.
Lemma 4.1.4 in Applebaum (2004)) IT can be extended to an isometric embedding
of H2(T,E) into L2(Ω,F ,P). We will denote this extension also by IT (F )(ω) :=∫ T
0

∫
E F (t, x, ω)M(dt, dx) and call it the stochastic integral of F ∈ H2(T,E). In par-

ticular this means that for any F ∈ H2(T,E) one can find a sequence (Fn)n∈N ∈
S(T,E) of simple mappings such that limn→∞ ‖F − Fn‖T,µ = 0 and

lim
n→∞

∥∥∥∥
∫ T

0

∫

E
F (t, x, ω)M(dt, dx) −

∫ T

0

∫

E
Fn(t, x, ω)M(dt, dx)

∥∥∥∥
2

= 0 .
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Since χ(a,b)χAF ∈ H2(T,E) for 0 ≤ a ≤ b ≤ T , A ∈ B(E) and F ∈ H2(T,E) we
can define I(a,b),A(F )(ω) := IT (χ(a,b)χAF )(ω). If ‖F‖t,µ < ∞ for all t ≥ 0 one can

define a stochastic process (It(F )(ω))t≥0 through t 7→
∫ t
0

∫
E F (t, x, ω)M(dt, dx).

If we consider again the random measure MB and some F ∈ H(T ) we will denote

the stochastic integral IT (F ) by
∫ T
0 F (s)dBs.

The stochastic integral has the following useful properties: Let F,G ∈ H2(T,E)
and α, β ∈ R, then

(I1) IT (αF + βG) = αIT (F ) + βIT (G)

(I2)

E(IT (F )) = 0 (1.21)

E(IT (F )2) =

∫ T

0

∫

E
E(|F (t, x)|2)µ(dx)dt . (1.22)

(I3) (It(F )(ω))t≥0 is Ft-adapted and a square integrable martingale .

For a proof of these properties see e.g. Theorem 4.2.3 in Applebaum (2004).
Further we would like to mention that the class of integrands can be extended

if one defines the stochastic integral through convergence in probability and not in
L2. In that case all mappings F : [0, T ]×E ×Ω → R will be integrable with respect
to the martingale valued measure M , which satisfy:

• F is predictable

• P(
∫ T
0

∫
E |F (t, x, ω)|2µ(dx)dt <∞) = 1, for fixed T > 0.

The linear space of all equivalence classes of such mappings will be denoted by
P(T,E) . For a detailed treatment of this topic we refer to Chapter 4.2.2 in Apple-
baum (2004). This completes our discussion of integration with respect to martingale-
valued measures.

Remember that we also wanted to define integration with respect to a Poisson
random measure NL over a set A ∈ B(R) which is bounded away from 0. Since NL is
not a martingale-valued random measure the above considerations can not be applied
here, but actually the definition of the integral is much easier. Let A ∈ B(R), which
is bounded away from 0 then all mappings K : [0, T ] × A × Ω → R are integrable
with respect to NL if they are predictable and we define

∫ T

0

∫

A
K(t, x, ω)NL(dt, dx) :=

∑

0≤u≤T

K(u,∆Lu, ω)χA(∆Lu) (1.23)

as a random finite sum. The finiteness follows from the predictability of K and the
fact that the Lévy process L has only finitely many jumps of size belonging to A in
the time interval [0, T ], if A is bounded away from 0.
Notice that in the following we will omit the dependence on ω ∈ Ω of the stochastic
integral.
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1.2.2 Itô’s formula

In this section we want to introduce the Itô formula, which is the stochastic analogue
of the Fundamental Theorem of Calculus. Let D1 := {y ∈ R : |y| < 1} be the
open unit ball and Y := (Y 1, . . . , Y m)T ∈ Rm a Lévy-type stochastic integral with
stochastic differential

dYt = G(t)dt + F(t)dBt +

∫

|x|<1
H(t, x)ÑL(dt, dx)

+

∫

|x|≥1
K(t, x)NL(dt, dx) , (1.24)

where G = (G1, . . . , Gm)T ,F = (F 1, . . . , Fm)T ,H = (H1, . . . ,Hm)T and K =
(K1, . . . ,Km) are Rm valued random mappings with |Gi|1/2, F i ∈ H2(T ),H i ∈
H2(T,D1 − {0}) and Ki predictable for each i = 1, . . . ,m. Notice that one can
generalise (1.24) by considering |Gi|1/2, F i ∈ P2(T ) and H i ∈ H(T,D1 − {0}) (cf.
equation (4.13) in Applebaum (2004)).
In Definition A.15 we defined the quadratic variation process [Y i, Y j] of Y i and Y j,
1 ≤ i, j ≤ m. From (A.2) we know that the quadratic variation can be decomposed
into a continuous and pure jump part, i.e.

[Y i, Y j ]t = [Y i, Y j]ct +
∑

0≤u≤t

∆Y i
u∆Y j

u .

[Y i, Y j ]c is part of the Itô formula which will now be presented in the following
theorem. From equation (4.15) in Applebaum (2004) we know that for a Lévy-type
stochastic integral (1.24) the quadratic variation of the components Y i and Y j,
1 ≤ i, j ≤ m, can be expressed as

[Y i, Y j]t = σ2
L

∫ t

0
F i(u)F j(u)du +

∫ t

0

∫

|x|<1
H i(u, x)Hj(u, x)NL(du, dx)

+

∫ t

0

∫

|x|≥1
Ki(u, x)Kj(u, x)NL(du, dx) , (1.25)

which follows from the formal product relations between differentials:

dBtdBt = σ2
Ldt and NL(dt, dx)NL(dt, dy) = NL(dt, dx)δ0(x− y) , (1.26)

whereas all other products of differentials vanish.

Theorem 1.2.1 (Itô formula) Let Y ∈ Rm be a Lévy-type stochastic integral of
the form (1.24) and f ∈ C2(Rm). Then we have for t ≥ 0

f(Yt) − f(Y0) =

m∑

i=1

∫ t

0

∂f

∂yi
(Yu−)dY i

u +
1

2

∑

1≤i,j≤m

∫ t

0

∂2f

∂yi∂yj
(Yu−)d[Y i, Y j ]cu

+
∑

0≤u≤t

{
f(Yu) − f(Yu−) −

m∑

i=1

∂f

∂yi
(Yu−)∆Y i

u

}
. (1.27)
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For a proof of Itô’s formula see for example Theorem 4.4.10 in Applebaum (2004).
In the following example we shall show two applications of Itô’s formula. The first
one is integration by parts and in the second example it is shown how to find the
solution of a system of linear stochastic differential equations (see Chapter 6 of
Applebaum (2004) for details on stochastic differential equations).

Example 1.2.2 (i) Let X and Y be two univariate Lévy-type stochastic integrals
of the form (1.24). Define a mapping f : R2 → R by f(x, y) = xy. Then applying
(1.27) we get for all t ≥ 0

XtYt −X0Y0 =

∫ t

0
Xu−dYu +

∫ t

0
Yu−dXu +

∫ t

0
d[X,Y ]cu

+
∑

0≤u≤t

{XuYu −Xu−Yu− − Yu−(Xu −Xu−) −Xu−(Yu − Yu−)}

=

∫ t

0
Xu−dYu +

∫ t

0
Yu−dXu + [X,Y ]ct

+
∑

0≤u≤t

(Xu −Xu−)(Yu − Yu−)

=

∫ t

0
Xu−dYu +

∫ t

0
Yu−dXu + [X,Y ]t . (1.28)

In particular we get

[X,X]t = X2
t −X2

0 − 2

∫ t

0
Xu−dXu . (1.29)

(ii) Let’s consider the following system of linear stochastic differential equa-
tions, which is driven by a one dimensional Lévy process (Lt)t≥0

dXt = BXtdt + σdLt, 0 ≤ t <∞, (1.30)

where B ∈ Mm,m(R) and σ ∈ Rm are non-random. Notice that (1.30) is of the
appropriate form (1.24), since

dXt = (BXt + γL)dt + σdBt +

∫

|x|<1
σxÑ(dt, dx) +

∫

|x|≥1
σxN(dt, dx) ,

if L has Lévy-Itô decomposition (1.11). A solution X ∈ Rm exists if all the eigenval-
ues of the matrix B have negative real part (see e.g. Theorem 6.7 in Karatzas and
Shreve (1991)) and can be found with the help of the Itô formula. Let’s define the
mapping f : Rm+1 → Rm, by f(t,x) := e−Btx for t ∈ R. The exponential matrix eBu

is defined by eBu :=
∑∞

k=0
(Bu)k

k! . Let ei ∈ Rm, i = 1, . . . ,m, be the i-th unit vector,
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then (1.27) tells us

e−BtXt − X0 =

∫ t

0
−Be−BuXudu+

m∑

i=1

∫ t

0
e−Bu ∂

∂xi
Xu−dX

i
u

+
1

2

∑

1≤i,j≤m

∫ t

0
e−Bu ∂2

∂xi∂xj
Xu−d[X

i,Xj ]cu

+
∑

0≤u≤t

{
e−BuXu − e−BuXu− −

m∑

i=1

e−Bu ∂

∂xi
Xu−∆Xi

u

}

=

∫ t

0
−Be−BuXudu+

m∑

i=1

∫ t

0
e−Buei((BXu)idu+ σidLu)

+
∑

0≤u≤t

{
e−BuXu − e−BuXu− − e−Bu

m∑

i=1

ei(X
i
u −Xi

u−)

}

=

∫ t

0
−Be−BuXudu+

∫ t

0
e−Bu(BXudu+ σdLu)

+
∑

0≤u≤t

{
e−BuXu − e−BuXu− − e−Bu(Xu − Xu−)

}

=

∫ t

0
e−BuσdLu.

Notice that all terms including partial second derivatives with respect to t vanish due
to (1.26). Therefore the solution of (1.30) is given by

Xt = eBtX0 +

∫ t

0
eB(t−u)σdLu.

1.3 State space models

The purpose of this section is to give a short introduction to the state space approach
to time series analysis. We will concentrate on the discrete time state space model.
Time series analysis based on state space models has been extensively studied over
the recent years. This is not surprising since the state space model is applicable to
a large number of time series models (see e.g. Chapter 12.1 in Brockwell and Davis
(1991) for examples). Another reason is the Kalman filter which is a powerful tool
for prediction and smoothing of time series as we will see later on. For a detailed
account of this subject we refer to the books of Durbin and Koopman (2001), Harvey
(1990), Jones (1993), Brockwell and Davis (1991) and Hannan and Deistler (1988).
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1.3.1 Discrete time state space model

The general state space form can be written in a variety of ways. We shall use the
following notation:

Yt = Gtαt + εt , (1.31)

αt+1 = F tαt + ηt , (1.32)

for t ∈ N. The vectors Yt ∈ Rp and αt ∈ Rm are called the observation and state
vector of the state space system. Before we continue the necessary assumptions
underlying the state space model defined by the state equation (1.32) and observation
equation (1.31) are given:

(S1) (1.31) and (1.32) can be parametrised by a vector θ ∈ Rq

(S2) (F t(θ))t∈N ∈ Rm×m and (Gt(θ))t∈N ∈ Rp×m are sequences of parameter ma-
trices.

(S3)

(
εt

ηt

)

t∈N

∈ Rp+m is an orthogonal sequence of random vectors.

(S4) The initial state α1 is orthogonal to (εT
t ,η

T
t )t∈N.

(S5) The errors εt ∈ Rp and ηt ∈ Rm satisfy

E(εT
t ,η

T
t ) = 0 ,

E

[(
εt

ηt

)
(εT

t ,η
T
t )

]
=

(
Rt(θ) 0

0 Qt(θ)

)
, t ∈ N ,

where (Rt(θ))t∈N ∈ Rp×p and (Qt(θ))t∈N ∈ Rm×m are sequences of parameter
matrices.

The assumption of uncorrelated error processes ε and η can be relaxed (cf. Chap-
ter 3 in Hannan and Deistler (1988)), but in our context zero correlation will always
be the case. In a lot of applications the matrices F t(θ),Gt(θ),Qt(θ) and Rt(θ) are
independent of time. Compare for example Example 12.1.5 in Brockwell and Davis
(1991) for the state space representation of a causal discrete time ARMA(p, q) pro-
cess. In Remark 1.4.3 we will give an example of a time-dependent state space model.

The term observation equation indicates that Y models the observed data which
depends on a latent state process α. In many applications the state process is of
interest. The best linear estimate in mean square sense of α at time t based on
observations Y can be found with the Kalman filter recursion.

In general the Kalman filter is concerned with three different types of prob-
lems. The prediction, filtering and smoothing problem, which are defined as the



Preliminaries 25

estimation of the state αt in terms of Y1, . . . ,Yt−s , t ≥ s > 0, Y1, . . . ,Yt and
Y1, . . . ,Yt+s , s > 0, respectively.

In our applications we will mainly deal with the prediction problem. If we speak
of the Kalman filter in the following we will mean the one-step prediction problem.

As we have already said, the Kalman filter computes an estimate αt+1|t(θ) of
αt+1, which is linear in Y1, . . . ,Yt and best in the mean square sense. In partic-
ular the i-th component of the one-step ahead prediction αt+1|t(θ) of αt+1 is the
projection of the i-th component, i = 1, . . . ,m, onto the linear span of all of the
components of Y1, . . . ,Yt (cf. also Chapter 2.7 and Definition 12.2.2 in Brockwell
and Davis (1991)). If all the components of αt+1,Y1, . . . ,Yt are jointly normally
distributed then

αt+1|t(θ) = E(αt+1|Y1, . . . , Yt) ,

for each t ≥ 1 (see Chapter 2.7 and Remark 3 in Chapter 12.2 in Brockwell and
Davis (1991)).

1.3.2 Kalman filter and Gaussian likelihood

Suppose we have a state space model (1.31) and (1.32) which satisfies (S1)-(S5). The
Kalman filter is a recursive algorithm which has to be initialised. There are different
ways to get initial values of the recursion. Since we will always deal throughout
the thesis with a stationary state space model, reasonable initial values for the best
linear prediction αt+1|t(θ) of αt+1 and the error covariance matrix

Pt+1(θ) = E[(αt+1 − αt+1|t)(αt+1 − αt+1|t)
T ]

are the mean E(α1) and covariance Cov(α1) of the stationary distribution of α. For
other initialisation techniques we refer to Chapter 5 of Durbin and Koopman (2001).

Then the best linear prediction αt+1|t(θ) and the error covariance matrix P t+1(θ)
are uniquely determined by the initial conditions

α1|0(θ) = E(α1) and P1(θ) = E[(α1 − E(α1))(α1 − E(α1))
T ]

and the filtering equations for t ≥ 1:

Ωt(θ) = Gt(θ)P t(θ)GT
t (θ) + Rt(θ) ,

Kt(θ) = F t(θ)P t(θ)GT
t (θ)Ω−1

t (θ) ,

P t+1(θ) = F t(θ)P t(θ)FT
t (θ) + Qt(θ) − Kt(θ)Ωt(θ)Kt(θ)T ,

αt+1|t(θ) = F t(θ)αt|t−1(θ) + Kt(θ)(Yt − Gt(θ)αt|t−1(θ)) .

For a proof of the Kalman recursion see e.g. Theorem 3.2.1 in Hannan and
Deistler (1988). Observe that Ω−1

t (θ) is any generalised inverse of Ωt(θ) (see also
Remark 5 on p. 475 in Brockwell and Davis (1991)).
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Next we want to show an application of the Kalman filter in context of maximum
likelihood estimation. Assume the state space model (1.31), (1.32) is parametrised
by the vector θ ∈ Rq. The parameters can then be estimated by maximising the
Gaussian log-likelihood

logL(θ,Y1, . . . ,Yn) = −np
2

log(2π)

−1

2
log(det(C(θ)) − 1

2
(Y − µ(θ))T C−1(θ)(Y − µ(θ)) ,

where Y = (Y1, . . . ,Yn)T ∈ Rnp, µ(θ) = E(Y) ∈ Rnp and C(θ) = Cov(Y) ∈
Rnp×np, even if Y is not normally distributed (see Chapter 4 in Hannan and Deistler
(1988) for details). For non-normal data we call the resulting estimator a quasi-
maximum likelihood estimator (QMLE). The computation of the inverse C−1(θ)
is expensive if the number of observations n is large. This computation can be
avoided. We therefore write the log-likelihood in the prediction error decomposition
(cf. Chapter 3.4 in Harvey (1990))

logL(θ,Y) =

n∑

t=1

log pθ(Yt|Yt−1
1 ) ,

where pθ(Yt|Yt−1
1 ) denotes the density of Yt conditional on the information set

Yt−1
1 := {Y1, . . . ,Yt−1} at time t−1 and pθ(Y1|Y0

1) = pθ(Y1). Now it follows from
the Kalman recursion under the assumption of normally distributed data Y that
the conditional distribution of Yt given Yt−1

1 is again normal with mean

E(Yt|Yt−1
1 ) = Gt(θ)αt|t−1(θ)

and covariance matrix Ωt(θ) (cf. Chapter 4.2 in Durbin and Koopman (2001)).
Hence the Gaussian log-likelihood is equal to

logL(θ,Y) = −np
2

log(2π) − 1

2

n∑

t=1

(log(det(Ωt(θ))) + vT
t (θ)Ω−1

t (θ)vt(θ)) ,

where vt(θ) := Yt −Gt(θ)αt|t−1(θ), and can routinely be calculated by the Kalman
filter. The problem of computing the inverse of a high-dimensional np × np matrix
is therefore reduced to computing the inverse of a p× p matrix n times, which is an
advantage since in most applications p is much smaller than n. In Chapter 6 we will
apply the Kalman filter in a mixed effect model, where one component consist of a
continuous time ARMA process defined in the next section.
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1.4 Continuous time autoregressive moving average pro-
cesses

In this section we want to introduce a time series model with continuous time pa-
rameter, which can be understood as the continuous time analogue of the well known
ARMA model (see e.g. Chapter 3 in Brockwell and Davis (1991)). Members of this
model class are therefore called continuous time autoregressive moving average pro-
cesses, or shortly CARMA processes. The model class was found to be especially
useful when modelling unequally spaced data as e.g. pointed out by Jones (1981) and
Jones (1985) who used a continuous time autoregression (CAR). In Jones (1993) it is
shown how to model the error process of a linear mixed effect model with irregularly
spaced observation by a Gaussian CARMA process.

Originally CARMA processes have been defined with a Brownian motion as
driving noise, cf. Chapter 3.7.7. in Priestley (1981). In recent years Brockwell (2001a,
2001b, 2004) has studied CARMA processes, which are driven by any Lévy process
with finite k-th moment for some k > 0. This generalisation allows for heavy tailed
marginal distributions and jumps in the sample path frequently observed in empirical
data. Despite the fact that the model can be defined for Lévy processes with finite
k-th moment, we will restrict ourselves to the case of Lévy processes with finite
second moment, since this will be enough for our purpose.

1.4.1 Lévy driven CARMA(p, q) processes

Being the continuous time analogue of an ARMA process it is natural that the
CARMA process is defined as the stationary solution of the continuous time ana-
logue of the difference equation defining an ARMA process, i.e. a linear differential
equation. Formally this is indeed the case. A second order Lévy driven CARMA(p, q)
process Y := (Yt)t≥0 is defined as the stationary solution of the formal p-th order
differential equation,

a(D)Yt = b(D)DLt, t ≥ 0, (1.33)

in which D denotes differentiation with respect to t, L := (Lt)t≥0 is a univariate
Lévy process with E(L2

1) <∞,

autoregressive polynomial: a(z) := zp + a1z
p−1 + · · · + ap,

moving-average polynomial: b(z) := 1 + b1z + · · · + bp−1z
p−1,

and the coefficients bj satisfy bq 6= 0 and bj = 0 for q < j < p. It is assumed that a(z)
and b(z) have no common factors. Since in general the derivative of a Lévy process
does not exist, one has to interpret (1.33) in a different way. And indeed (1.33)
can be transformed by some algebraic manipulation into the equivalent state-space
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representation:

observations equation: Yt = bTXt, (1.34)

and

state equation: dXt = AXtdt + 1pdLt, (1.35)

where

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ap −ap−1 −ap−2 · · · −a1



, 1p =




0
0
...
0
1



, b =




1
b1
...

bp−2

bp−1



.

The state equation is therefore a system of linear stochastic differential equations.

Definition 1.4.1 Let p, q ∈ N0 with p > q. Then we define a second order Lévy
driven CARMA(p, q) process Y as the stationary solution of the continuous time
state space model (1.34) and (1.35) with driving Lévy process L satisfying E(L2

1) <
∞.

The state equation (1.35) is a system of linear stochastic differential equations
driven by a one dimensional Lévy process. Thus it is of the same form as (1.30) and
the solution can be found by applying Itô’s formula, as shown in Example 1.2.2 (ii).
The conditions for existence of a weakly (strictly) stationary solution are given in
Proposition 1 (Proposition 2) in Brockwell and Marquardt (2005). We summarise
them in the following Proposition.

Proposition 1.4.2 If the real part of the roots λ1, . . . , λp of the autoregressive poly-
nomial a(z) is negative and X0 is independent of the driving Lévy process (Lt)t≥0,
with E(L2

1) <∞, then the process

Yt = bTXt,

where

Xt = eAtX0 +

∫ t

0
eA(t−u)1pdLu,

i.e.

Yt = bT eAtX0 +

∫ t

0
bT eA(t−u)1pdLu , (1.36)

for each t ≥ 0, is a solution to the continuous time state space model (1.34) and
(1.35). If X0 has the mean and covariance matrix of

∫∞
0 eAu1pdLu, then Y is a
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weakly stationary process. The mean and autocovariance function of the weakly sta-
tionary CARMA(p, q) process (Yt)t≥0 are

E(Yt) = −bT A−11pE(L1) (1.37)

and

Cov(Yt+h, Yt) = Var(L1)b
T eAhΣb, (1.38)

where Σ :=
∫∞
0 eAu1p1p

T eA
T udu (see also Proposition A.19). In case X0 has the

distribution of
∫∞
0 eAu1pdLu, then Y is strictly stationary.

Remark 1.4.3 Let L be a zero mean Lévy process with finite second moment. Sup-
pose we observe the CARMA(p, q) process (1.36) at time points t0 ≤ t1 ≤ t2 ≤ . . . ,
which may be unequally spaced. Then the state vectors Xti and observations Yti

satisfy the discrete time state space model

Yti = bTXti

Xti+1 = eA(ti+1−ti)Xti + Zti , i ∈ N,

where (Zti)i∈N ∈ Rp is a sequence of independent random vectors with

E(Zti) = 0

E(ZtiZ
T
ti) = E(L1)

2

∫ ti+1−ti

0
eAy1p1p

T eA
T ydy .

This is precisely the form of the discrete time state space model introduced in
Chapter 1.3 without an observation noise.

The strictly stationary CARMA(p, q) process can also be defined on the negative
real line by taking a two-sided Lévy process (see (1.17)) as driving process.

Definition 1.4.4 Let p, q ∈ N0 with p > q. If the real part of the roots λ1, . . . , λp

of the autoregressive polynomial a(z) is negative and L is a two-sided Lévy process,
with E(L2

1) < ∞ then the second order Lévy driven CARMA(p, q) is the strictly
stationary process

Yt =

∫ ∞

−∞
g(t− u)dLu, t ∈ R , (1.39)

with kernel function

g(t) := bT eAt1pχ(0,∞)(t) (1.40)

satisfying g ∈ L2(R) ∩ L1(R).
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From the representation (1.39) we see that Y is a causal continuous time moving
average process (the class of (causal) continuous time moving average processes will
be defined below). In the following we will always assume to work with a causal
CARMA process.

Definition 1.4.5 Let L be a square integrable Lévy process and f ∈ L2(R)∩L1(R).
Then the continuous time parameter process

Zt =

∫ ∞

−∞
f(t− u)dLu, t ∈ R , (1.41)

is called a continuous time moving average process. If f(t) = 0 for all t ≤ 0 the
process Z is said to be causal, i.e. that Zt depends only on the history (Ls)s≤t of L
for each t ∈ R.

The process Z is well defined (see Section 4.3 in Applebaum (2004)), strictly
stationary (see Theorem 4.3.16 in Applebaum (2004)) and by Theorem 2.7 in Rajput
and Rosiński (1989) infinitely divisible with characteristic function at time t ∈ R

given by

E(eiuZt) = exp

{
iuγt

Z − 1

2
u2σ2t

Z +

∫

R

(
eiux − 1 − iuxχ(−1,1)(x)

)
νt

Z(dx)

}
, u ∈ R ,

where

γt
Z :=

∫

R

γLf(t− u)du+

∫

R

∫

R

xf(t− u)(χ(−1,1)(xf(t− u)) − χ(−1,1)(x))νL(dx)du ,

σ2t

Z := σ2
L

∫

R

f2(t− u)du ,

νt
Z(A) :=

∫

R

∫

R

χA(f(t− u)x)νL(dx)du , A ∈ B(R) ,

and (γL, σ
2
L, νL) is the characteristic triplet of L.

In particular the stationary distribution of the CARMA(p, q) process (1.39) is
infinitely divisible. We will make use of this fact in Chapter 3 when we model the
log-volatility process of a continuous time EGARCH process as a CARMA process.

We conclude this section with a result on the mixing behaviour of CARMA(p, q)
processes (see Doukhan (1994) for a comprehensive treatment of mixing proper-
ties). In particular a strong mixing property is stated. Therefore we first recall the
definition of strongly mixing for a stationary process.
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Definition 1.4.6 For a stationary process Z = (Zs)s≥0 define the σ-algebras FZ
[0,u] :=

σ((Zs)s∈[0,u]) and FZ
[u+t,∞) := σ((Zs)s≥u+t) for all u ≥ 0. Then Z is called strongly

or α-mixing, if

α(t) = α(FZ
[0,u],FZ

[u+t,∞))

:= sup{|P(A ∩B) − P(A)P(B)| : A ∈ FZ
[0,u], B ∈ FZ

[u+t,∞)} → 0,

as t→ ∞, for all u ≥ 0.

The strong mixing property with exponential rate of the CARMA process is
the subject of the next proposition, by which strongly mixing with exponential
rate (exponentially α-mixing) means that α(t) decays to zero exponentially fast for
t → ∞ .

Proposition 1.4.7 Let Y be defined by (1.34) and (1.35). Assume that E(L2
1) <∞,

the real part of the roots λ1, . . . , λp of the autoregressive polynomial a(z) is negative
and X0 has the same distribution as

∫∞
0 eAu1pdMu, hence Y is strictly stationary.

Then there exist constants K > 0 and a > 0 such that

αY (t) ≤ K · e−at (1.42)

where αY (t) is the α-mixing coefficient of the CARMA(p, q) process Y .

Proof: The CARMA(p, q) process Y is equal to the first component of the
p-dimensional Ornstein-Uhlenbeck process (henceforth referred to as OU process)
V := (V 1, . . . , V p)T ∈ Rp (see e.g. Section 4 of Brockwell (2001b)) where for fixed t

Vt = eBAB−1(t−s)Vs +

∫ t

s
eA(t−u)B1pdLu a.s., (1.43)

with

B =




1 b1 b2 · · · bp−1

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1



.

Since L has finite second moment, V also has finite second moment. Therefore the
condition (4.5) in Masuda (2004) is satisfied. By Theorem 4.3 in Masuda (2004) V is
then exponentially α-mixing. Since every component of a multidimensional strongly
mixing process is strongly mixing, Y is also exponentially α-mixing. 2
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Remark 1.4.8 A consequence of the strong mixing property of the CARMA(p, q)
process (see e.g. Section 1.2.2 in Doukhan (1994)) is that

|Cov(Yt+h, Yt)| ≤ K · e−ah , ∀ h > 0 . (1.44)

In particular this means that the autocovariance function of the CARMA process
will decay to zero at an exponential rate.
In case the roots λ1, . . . , λp are distinct we get from (2.12) in Brockwell (2004) the
following representation of the autocovariance function

Cov(Yt+h, Yt) =

p∑

i=1

b(λi)b(−λi)

a′(λi)a(−λi)
eλi|h| , h ∈ R .

showing the exponential decay. Processes with an exponentially decaying autocovari-
ance function will be called short memory processes.

1.4.2 Lévy driven FICARMA(p, d, q) processes

At the end of last section we have seen that the CARMA process is a short mem-
ory process. In different applications like finance (see e.g. Andersen and Bollerslev
(1997)) or teletraffic (see Fay et al. (2006) and references therein) there is sometimes
need for models explaining long range dependence in the data. Since there are dif-
ferent ways to characterise long range dependence or long memory, we first want to
give the definition of a long memory process as we will use it before we continue.

Definition 1.4.9 Let Z be a stationary stochastic process and γZ(h) = Cov(Zt+h, Zt),
h ∈ R, be its autocovariance function. If there exists 0 < d < 0.5 and a constant
cZ > 0 such that

lim
h→∞

γZ(h)

h2d−1
= cZ , (1.45)

then Z is called a stationary process with long memory.

Thus we will say that a stationary process has long memory if the autocovariance
function decays to zero at a hyperbolic rate.

For discrete time ARMA processes it was possible to extend the model to a long
memory process resulting in the ARFIMA class of models (see e.g. Chapter 13.2 in
Brockwell and Davis (1991)) and the same is true for the continuous time parameter
case. Brockwell (2004) defined the class of fractionally integrated CARMA (FI-
CARMA) processes. The idea behind this definition is to replace the kernel function
g in (1.39) by its Riemann-Liouville fractional integral of order d. Let 0 < α < 1, then
the Riemann-Liouville fractional integral Iα

+ of order α of ϕ ∈ Lp(R), 1 ≤ p < 1/α,
is defined by
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(Iα
+ϕ)(x) =

1

Γ(α)

∫ x

−∞
ϕ(u)(x − u)α−1du .

The integral Iα
+ is also called left-sided Riemann-Liouville fractional integral. For

the definition of the right-sided one see Definition 2.1 in Samko et al. (1993), but
we will only need Iα

+. The long memory kernel function gd is then given by

gd(t) =

∫ t

0
g(t− u)

ud−1

Γ(d)
du . (1.46)

Definition 1.4.10 Let 0 < d < 0.5. If the real part of the roots λ1, . . . , λp of the
autoregressive polynomial a(z) is negative and L is a two-sided Lévy process, with
E(L2

1) <∞ then the stationary FICARMA(p, d, q) process Yd is defined as

Yd,t =

∫ ∞

−∞
gd(t− u)dLu, t ∈ R , (1.47)

with kernel function gd defined in (1.46).

Remark 1.4.11 From Theorem 5.3 in Samko et al. (1993) we get that gd ∈ L2(R).
Hence the stochastic integral (1.47) is indeed well-defined by Theorem 4.3.4 in Ap-
plebaum (2004).

The long memory parameter d was taken between 0 and 0.5 to get a long memory
process as defined in Definition 1.4.9, since

lim
h→∞

Cov(Yd,t+h, Yd)

h2d−1
=

E(L2
1)Γ(1 − 2d)

Γ(d)Γ(1 − d)

(
b(0)

a(0)

)2

,

for 0 < d < 0.5. For a proof of the long memory property of the FICARMA(p, d, q)
process see Theorem 1.24 in Marquardt (2006a). The asymptotic behaviour of the
autocovariance function is due to the behaviour of gd. From (4.6) in Brockwell (2004)

we know that the kernel function is asymptotically equivalent to td−1

Γ(d) · b(0)
a(0) , which

will be denoted by gd(t) ∼ td−1

Γ(d) ·
b(0)
a(0) as t→ ∞ and means that

lim
t→∞

gd(t)
Γ(d)

td−1
· a(0)
b(0)

= 1 .

In Chapter 5 we will show an application of the FICARMA model. The stationary
log-volatility process of a continuous time fractionally integrated EGARCH process
will be modeled by a FICARMA process.
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1.5 Continuous time GARCH(1, 1) processes

We conclude this chapter by introducing the continuous time GARCH model of
Klüppelberg et al. (2004). As we will see it is constructed in such a way to be the
continuous time analogue of a discrete time GARCH(1, 1) process. The GARCH(1, 1)
process is a model widely used by practitioners in the financial industry. It is defined
as

Yi = σi ǫi with σ2
i = ω0 + λY 2

i−1 + δσ2
i−1 , i ∈ N, (1.48)

where ω0 > 0, λ, δ ≥ 0 and (ǫi)i∈N is an i.i.d. innovation sequence (see also Bollerslev
(1986)). This model captures some of the most prominent features in financial data,
in particular in the volatility process. Empirical studies show that volatility changes
randomly in time, has heavy or semi-heavy tails and clusters on high levels. These
stylised features are modelled by the GARCH family as has been shown for the
GARCH(1, 1) process in detail in Mikosch and Stărică (2000).

Approaches to create a continuous time GARCH model go back to Nelson (1990)
and we refer to Drost and Werker (1996) for an overview. Such processes are diffusion
limits to discrete time GARCH models, where, unfortunately, many of the above
features of the GARCH process are wiped out in the limit; see Fasen et al. (2006).
Since empirical work indicates upwards jumps in the volatility, a model driven by a
Lévy process seems a natural approach. In Klüppelberg et al. (2004, 2006) such a
model was suggested. They iterated the volatility equation in (1.48) to get

σ2
i = ω0

i−1∑

k=0

i−1∏

j=k+1

(δ + λǫ2j) + σ2
0

i−1∏

j=0

(δ + λǫ2j)

= ω0

∫ i

0
exp






i−1∑

j=⌊u⌋+1

log(δ + λǫ2j )




 du+ σ2
0 exp






i−1∑

j=0

log(δ + λǫ2j )






=



ω0

∫ i

0
exp




−
⌊u⌋∑

j=0

log(δ + λǫ2j)




 du+ σ2
0



 exp






i−1∑

j=0

log(δ + λǫ2j)






=



ω0

∫ i

0
exp




η(⌊u⌋ + 1) −
⌊u⌋∑

j=0

log(1 + ϕǫ2j )




 du+ σ2
0





× exp




−ηi+
i−1∑

j=0

log(1 + ϕǫ2j )




 ,

where ⌊u⌋ denotes the integer part of u ∈ R, η := − log(δ) and ϕ := λ/δ, then
suggested to replace the noise variables ǫi by the jumps ∆Lt = Lt − Lt− of a Lévy
process L = (Lt)t≥0, which allowed them to define the volatility process σ2 for all



Preliminaries 35

t ≥ 0 by

σ2
t :=

(
ω0

∫ t

0
eXsds+ σ2

0

)
e−Xt− , (1.49)

where

Xt := ηt−
∑

0<s≤t

log(1 + ϕ (∆Ls)
2) , t ≥ 0 .

The parameter space is given by ω0, η > 0 and ϕ > 0 and the process X will be
referred to as the auxiliary process.

The COGARCH(1, 1) process G = (Gt)t≥0 is defined as the solution to the
stochastic differential equation (SDE)

dGt = σt dLt . (1.50)

We define G0 := 0 and σ2
0 is taken to be independent of L. In Theorem 2.2 in

Brockwell et al. (2006) it is shown that the volatility process σ2 can also be defined
as the solution to the SDE

dσ2
t+ = (αη − ησ2

t ) dt+ ϕσ2
t d[L,L]dt , (1.51)

where α > 0 and [L,L]dt =
∑

0≤s≤t(∆Ls)
2, t ≥ 0, is the discrete part of the quadratic

variation process ([L,L]t)t≥0 of the Lévy process L (see also (A.2)). They showed
that the solution to (1.51) coincides with (1.49) for ω0 = αη. We will define the new
parameter β := αη and work in the following with the SDE

dσ2
t+ = (β − ησ2

t ) dt + ϕσ2
t d[L,L]dt . (1.52)

If our data consist of returns over time intervals of fixed length r > 0, we denote

G
(r)
t := Gt −Gt−r =

∫

(t−r,t]
σu dLu , t ≥ r , (1.53)

and (G
(r)
ri )i∈N describes an equidistant sequence of such non-overlapping returns.

Hence G(r) corresponds to the discrete time GARCH process.

Here and in the next chapter the following terminology will be used:

G log-price process

G(r) log-return process
σ2 volatility process.
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Calculating for the volatility the quantity corresponding to G(r) yields

σ
2(r)
ri := σ2

ri − σ2
r(i−1) =

∫

(r(i−1),ri]

(
(β − ησ2

u) du+ ϕσ2
u d[L,L]du

)

= βr − η

∫

(r(i−1),ri]
σ2

u du+ ϕ

∫

(r(i−1),ri]
σ2

u d[L,L]du , (1.54)

which is referred to as actual volatility in contrast to σ2
t , which is also called instan-

taneous or spot volatility. Whereas the process G is taken as being càdlàg, for the
volatility process we assume càglàd sample paths. Further the volatility process is
assumed to be stationary and latent. From Lemma 1 in Klüppelberg et al. (2006) we
know that a strictly stationary version of σ2 exists if E(|L1|2s) < ∞ and Ψ(s) ≤ 0
for some s > 0, where

Ψ(s) = −ηs+

∫

R

((1 + ϕx2)s − 1) νL(dx) , s ≥ 0 . (1.55)

is the Laplace exponent of the Laplace transform E(e−sXt) = etΨ(s) of the auxiliary
process X.

In contrast to classical stochastic volatility models, is the volatility σ2 not inde-
pendent of the process L, which drives the log-price process G. On the contrary, L
drives both, the volatility and the log-price process. Note that G jumps at the same
times as L does with jump size ∆Gt = σt∆Lt, and that ∆Lt is independent of σt,
since σt is left-continuous and hence does not include the jump ∆Lt.

One of the advantages of the COGARCH(1, 1) is that its second order structure
is well-known. From Corollary 4.1 of Klüppelberg et al. (2004) we know for k ∈ N

the moment E(σ2k) of the stationary volatility process, which exists if and only if
E(L2k

1 ) < ∞ and Ψ(k) < 0. In particular, if E(L4
1) < ∞ and Ψ(2) < 0, then for

t, h ≥ 0

E(σ2
t ) =

β

|Ψ(1)| and E(σ4
t ) =

2β2

|Ψ(1)Ψ(2)| , (1.56)

Cov(σ2
t , σ

2
t+h) = β2

(
2

|Ψ(1)Ψ(2)| −
1

Ψ(1)2

)
e−h|Ψ(1)|

= Var(σ2
t ) e

−h|Ψ(1)| . (1.57)

In the following result we present the moments of G
(r)
t , which are independent of

t by stationarity: expressions (1.58) and (1.60) have been already proved in Propo-
sition 5.1 of Klüppelberg et al. (2004), however, under additional assumptions such
as finite variation of L for (1.60). Here we shall give a different proof under less
restrictive assumptions and also calculate the fourth moment of G.
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Proposition 1.5.1 Suppose that the Lévy process (Lt)t≥0 has finite variance and
zero mean, and that Ψ(1) < 0. Let (σ2

t )t≥0 be the stationary volatility process, so that
(Gt)t≥0 has stationary increments. Then E(G2

t ) < ∞ for all t ≥ 0, and for every
t, h ≥ r > 0 it holds

E(G
(r)
t ) = 0 , E(G

(r)
t )2 =

βr

|Ψ(1)|E(L2
1) , Cov(G

(r)
t , G

(r)
t+h) = 0. (1.58)

If further E(L4
1) < ∞ and Ψ(2) < 0, then E(G4

t ) < ∞ for all t ≥ 0 and, if
additionally the Lévy measure νL of L is such that

∫
R
x3νL(dx) = 0, then it holds

for every t, h ≥ r > 0

E(G
(r)
t )4

= 6E(L2
1)

β2

Ψ(1)2
(2ηϕ−1 + 2σ2

L − E(L2
1))

(
2

|Ψ(2)| −
1

|Ψ(1)|

)(
r − 1 − e−r|Ψ(1)|

|Ψ(1)|

)

+
2β2

ϕ2

(
2

|Ψ(2)| −
1

|Ψ(1)|

)
r + 3

β2

Ψ(1)2
(E(L2

1))
2r2 (1.59)

and

Cov((G
(r)
t )2, (G

(r)
t+h)2) =

E(L2
1)β

2

|Ψ(1)|3
(
2ηϕ−1 + 2σ2

L − E(L2
1)
)( 2

|Ψ(2)| −
1

|Ψ(1)|

)

×
(
1 − e−r|Ψ(1)|

)(
er|Ψ(1)| − 1

)
e−h|Ψ(1)| > 0 . (1.60)

Proof: Since L has finite variance and zero mean, it is a square integrable martin-
gale. Further, Ψ(1) < 0 implies E(σ2

t ) = β
|Ψ(1)| < ∞ by (1.56), and it follows from

equations (1.29) and (1.21) that

µ := E(G2
t )

(1.29)
= E([G,G]t) + 2E

∫ t

0
Gu−σudLu

(1.21)
= E([G,G]t) .

since Gu−σu is predictable. As

dGt = σtdLt
(1.14)
= σtdBt +

∫

R−{0}
σtxÑL(dt, dx) ,

we get from (1.25)

[G,G]t = σ2
L

∫ t

0
σ2

udu+

∫ t

0

∫

R

σ2
ux

2NL(du, dx)
(1.23)
= σ2

L

∫ t

0
σ2

udu+
∑

0≤u≤t

σ2
u (∆Lu)2 .

Applying the compensation formula (see Proposition A.17) it then follows that

µ = σ2
L

∫ t

0
E(σ2

u)du+ E




∑

0≤u≤t

σ2
u (∆Lu)2



 (A.7)
=

∫ t

0
E(σ2

u)[σ2
L +

∫

R

x2νL(dx)]du

(1.13)
= E(L2

1)

∫ t

0
E(σ2

u) du ,
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since E(L1) = 0. Thus E(G2
t ) is finite and has the form specified in (1.58). The

remaining equations in (1.58) are shown as in Proposition 5.1 of Klüppelberg et al.
(2004).

Suppose that E(L4
1) <∞ and Ψ(2) < 0. Then E(G4

t ) is finite by the Burkholder-
Davis-Gundy inequality, cf. Protter (2004), p. 222, since

E
(
[G,G]2t

)
= E








∫ t

0
σ2

u d(σ
2
Lu+

∑

0≤u≤t

(∆Lu)2)




2

 (A.3)
= E

((∫ t

0
σ2

u d[L,L]u

)2
)

is finite as a consequence of E(σ4
t ) <∞ and E(L4

1) <∞.

Now suppose additionally that
∫

R
x3 νL(dx) = 0. To calculate the value of E(G4

t ),
observe that by integration by parts (see equation (1.29)) and equation (A.6),

G2
t = 2

∫ t

0
Gu− dGu + [G,G]t = 2

∫ t

0
Gu−σu dLu +

∫ t

0
σ2

u d[L,L]u, (1.61)

G4
t

(1.29)
= 2

∫ t

0
G2

u− dG
2
u + [G2, G2]t

(1.61)
= 4

∫ t

0
G3

u−σu dLu + 2

∫ t

0
G2

u−σ
2
u d[L,L]u

+

[
2

∫ ·

0
Gu−σudLu +

∫ ·

0
σ2

ud[L,L]u, 2

∫ ·

0
Gu−σudLu +

∫ ·

0
σ2

ud[L,L]u

]

t

(A.6)
= 4

∫ t

0
G3

u−σu dLu + 2

∫ t

0
G2

u−σ
2
u d[L,L]u + 4

∫ t

0
G2

u−σ
2
u d[L,L]u

+

∫ t

0
σ4

u d
[
[L,L], [L,L]

]
u

+ 4

∫ t

0
Gu−σ

3
u d
[
[L,L], L]u .

Using (A.3)-(A.5) and the fact that the quadratic variation processes are of finite
variation we can write

G4
t = 4

∫ t

0
G3

u−σu dLu + 6



σ2
L

∫ t

0
G2

u−σ
2
u du+

∑

0≤u≤t

G2
u−σ

2
u (∆Lu)2





+
∑

0≤u≤t

σ4
u (∆Lu)4 + 4

∑

0≤u≤t

Gu−σ
3
u (∆Lu)3 , (1.62)

for each t ≥ 0. Applying again the compensation formula (A.7) for taking expec-
tations in (1.62), the first and the last summand vanish due to the assumptions
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EL1 = 0 and
∫

R
x3 νL(dx) = 0, respectively, so that

E(G4
t ) = 6

[
σ2

L

∫ t

0
E(G2

u−σ
2
u) du+

∫

R

x2νL(dx)

∫ t

0
E(G2

u−σ
2
u)du

]

+

∫

R

x4 νL(dx)

∫ t

0
E(σ4

u)du

(1.13)
= 6E(L2

1)

∫ t

0
E(G2

u−σ
2
u)du+

∫

R

x4 νL(dx)

∫ t

0
E(σ4

u)du . (1.63)

The expression E(G2
u−σ

2
u) was already calculated in the proof of Proposition 5.1 in

Klüppelberg et al. (2004), however, under additional assumptions which required
in particular finite variation of L. The following calculations do not require these
restrictions.

Let Yt :=
∫ t
0 Gu−σu dLu, t ≥ 0. Then E(Yt) = 0 for all t ≥ 0, and integration by

parts and substituting from (1.52) give

Ytσ
2
t+ =

∫ t

0
Yu− dσ

2
u+ +

∫ t

0
σ2

u dYu + [σ2
+, Y ]t

=

∫ t

0
Yu−(β − ησ2

u) ds +

∫ t

0
Yu−ϕσ

2
u d[L,L]du

+

∫ t

0
σ3

uGu− dLu +

[∫ ·

0
(β − ησ2

u) du+

∫ ·

0
ϕσ2

u d[L,L]du,

∫ ·

0
Gu−σu dLu

]

t

(A.6)
=

∫ t

0
Yu−(β − ησ2

u) du+

∫ t

0
Yu−ϕσ

2
u d[L,L]du +

∫ t

0
σ3

uGu− dLu

+

∫ t

0
ϕσ3

uGu−d
[
[L,L]d, L

]
.

Taking expectations gives

E(Ytσ
2
t+)

(A.7)
= −η

∫ t

0
E(Yu−σ

2
u)du+

∫ t

0
ϕE(Yu−σ

2
u)du

∫

R

x2νL(dx)

+

∫ t

0
ϕE(σ2

uGu−)

∫

R

x3νL(dx)du

(1.13)
=

(
ϕ(E(L2

1) − σ2
L) − η

) ∫ t

0
E(Yuσ

2
u+) du,

where we used that E(Yt) = 0,
∫

R
x3 νL(dx) = 0 and that Yu−σ

2
u = Yuσ

2
u+ almost

surely for fixed u, since ∆Lu = 0 almost surely for fixed u (see e.g. Lemma 2.3.2
in Applebaum (2004)). Solving this integral equation and using that Y0 = 0 implies
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E(Y0σ
2
0+) = 0, it follows that E(Ytσ

2
t+) = 0 for all t ≥ 0. Substituting

∫ t

0
σ2

u d[L,L]u =

∫ t

0
σ2

u d[L,L]cu +

∫ t

0
σ2

u d[L,L]du

= σ2
L

∫ t

0
σ2

u du+ ϕ−1

(
σ2

t+ − σ2
0 −

∫ t

0
(β − ησ2

u) du

)

from (1.52), equations (1.61) and (1.57) now give

E(G2
tσ

2
t+) = 2E(Ytσ

2
t+) + E

(
σ2

t+

∫ t

0
σ2

u d[L,L]u

)

= σ2
L

∫ t

0
E(σ2

t σ
2
u) du+ ϕ−1

(
E(σ4

t ) − E(σ2
t σ

2
0) − βE(σ2

t )t+ η

∫ t

0
E(σ2

t σ
2
u) du

)

= (σ2
L + ϕ−1η)

∫ t

0

[
Cov(σ2

t , σ
2
u) + (E(σ2

0))
2
]
du+ ϕ−1

(
E(σ4

t ) − E(σ2
t σ

2
0) − βE(σ2

t )t
)

= (σ2
L + ϕ−1η)

[
Var(σ2

0)e
−t|Ψ(1)|

∫ t

0
eu|Ψ(1)| du+ t(E(σ2

0))
2

]

+ϕ−1(Var(σ2
0) − Cov(σ2

t , σ
2
0) − βE(σ2

0)t)

= (σ2
L + ϕ−1η)Var(σ2

0)
1 − e−t|Ψ(1)|

|Ψ(1)| + ϕ−1Var(σ2
0)(1 − e−t|Ψ(1)|)

+
(
(σ2

L + ϕ−1η)(E(σ2
0))2 − βϕ−1E(σ2

0)
)
t. (1.64)

Using (1.56), (1.57) and Ψ(1) = −η + ϕ
(
E(L2

1) − σ2
L

)
then leads to

E(G2
tσ

2
t+) = β2

(
2

|Ψ(1)Ψ(2)| −
1

Ψ(1)2

)(
(σ2

L + ϕ−1η)
1

|Ψ(1)| + ϕ−1

)
(1 − e−t|Ψ(1)|)

+

(
(σ2

L + ϕ−1η)
β2

Ψ(1)2
− ϕ−1 β2

Ψ(1)

)
t

=
β2

ψ(1)2

(
2

|Ψ(2)| −
1

|Ψ(1)|

)
(2ηϕ−1 + 2σ2

L − E(L2
1))(1 − e−t|Ψ(1)|)

+
β2

Ψ(1)2
E(L2

1)t .

If we substitute this into (1.63) and use (1.56) together with the fact that

∫

R

x4 νL(dx) =
Ψ(2) − 2Ψ(1)

ϕ2
(1.65)

by (1.55), we get
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E((G
(r)
t )4)

= 6E(L2
1)

[∫ r

0

β2

ψ(1)2

(
2

|Ψ(2)| −
1

|Ψ(1)|

)
(2ηϕ−1 + 2σ2

L − E(L2
1))(1 − e−u|Ψ(1)|) du

+

∫ r

0

β2

Ψ(1)2
E(L2

1)u du

]
+

Ψ(2) − 2Ψ(1)

ϕ2

∫ r

0

2β2

|Ψ(1)Ψ(2)|du

= 6E(L2
1)

[
β2

ψ(1)2

(
2

|Ψ(2)| −
1

|Ψ(1)|

)
(2ηϕ−1 + 2σ2

L − E(L2
1))

(
r +

e−r|Ψ(1)| − 1

|Ψ(1)|

)

+
β2

Ψ(1)2
E(L2

1)
r2

2

]
+

2β2

ϕ2

Ψ(2) − Ψ(1)

|Ψ(1)Ψ(2)| ,

which implies (1.59). For the autocorrelation of the squared increments, observe that
by equation (5.4) of Klüppelberg et al. (2004) we have

Cov((G
(r)
t )2, (G

(r)
t+h)2) =

(
er|Ψ(1)| − 1

|Ψ(1)|

)
E(L2

1)Cov(G2
r , σ

2
r ) e

−h|Ψ(1)| (1.66)

(in Klüppelberg et al. (2004) this was stated under the additional assumption that
L is a quadratic pure jump process (i.e. σ2

L = 0), but it can be seen that the proof
given there holds true also for L having a Brownian motion component). This then
implies (1.60) by (1.64), (1.58) and (1.56). 2

Lemma 1.5.2 Under the conditions of Proposition 1.5.1 the process ((G
(r)
ri )2)i∈N

has for each fixed r > 0 the autocorrelation structure of an ARMA(1,1) process.

Proof: Denote by γ(h) = Cov((G
(r)
ri )2, (G

(r)
r(i+h))

2), h ∈ N0, the autocovariance func-

tion and by ρ(h) = Corr((G
(r)
ri )2, (G

(r)
r(i+h))

2), h ∈ N0, the autocorrelation function

of the discrete time process ((G
(r)
ri )2)i∈N as defined in (1.53). Then from (1.60) it

follows that
ρ(h)

ρ(1)
=
γ(h)

γ(1)
= e−(h−1)r|Ψ(1)| , h ≥ 1 .

Moreover, for h = 1 we get

ρ(1) =
γ(1)

Var(G2
r)
.

Recalling the autocorrelation function of an ARMA(1,1) process (see e.g. Brockwell
and Davis (1991), Exercise 3.16), we identify e−r|Ψ(1)| as the autoregressive root φ.
The moving average root θ can be determined by matching ρ(1) = (1 + φθ)(φ +
θ)/(1 + θ2 + 2φθ). 2



Chapter 2

Estimating the COGARCH(1, 1)

In this chapter we want to present a method of moment estimator of the parameters
in the COGARCH(1, 1) model defined at the end of the last chapter. After consid-
ering the identifiability of the parameters, we will define our estimator and derive
its asymptotic properties. The small sample properties will be analysed in a simu-
lation study. There we will consider two different kinds of driving Lévy processes, a
compound Poisson and a Variance Gamma process.

2.1 Identifiability of the model parameters

We aim at estimation of the model parameters (β, η, ϕ) from a sample of equally
spaced log-returns, matching empirical autocorrelation function and moments to
their theoretical counterparts given in Proposition 1.5.1. In our next result we show
that the parameters are identifiable by this estimation procedure for driving Lévy
processes L as in Proposition 1.5.1. We assume throughout that E(L1) = 0 and
Var(L1) = 1; furthermore, we assume that the variance σ2

L of the Brownian motion
component in L is known. This last assumption is crucial for our analysis. Therefore
we consider in our examples only pure jump Lévy processes. From an application
point of view we suggest an infinite activity pure jump driving Lévy process. This
seems reasonable in view of Madan and Seneta (1990) and Madan et al. (1998),
where the Variance Gamma process is used to model the logarithm of stock prices.
For the sake of simplicity we set r = 1.

Theorem 2.1.1 Suppose (Lt)t≥0 is a Lévy process such that E(L1) = 0, Var(L1) =
1, the variance σ2

L of the Brownian motion component of L is known with 0 ≤ σ2
L <

Var(L1) = 1, E(L4
1) < ∞ and

∫
R
x3 νL(dx) = 0. Assume also that Ψ(2) < 0, and

denote by (G
(1)
i )i∈N the stationary increment process of the COGARCH(1,1) process

42
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with parameters β, η, ϕ > 0. Let µ, γ(0), k, p > 0 be constants such that

E((G
(1)
i )2) = µ,

Var((G
(1)
i )2) = γ(0),

ρ(h) = Corr((G
(1)
i )2, (G

(1)
i+h)2) = ke−hp , h ∈ N .

Define

M1 := γ(0) − 2µ2 − 6
1 − p− e−p

(1 − ep)(1 − e−p)
k γ(0) , (2.1)

M2 :=
2kγ(0)p

M1(ep − 1)(1 − e−p)
. (2.2)

Then M1,M2 > 0, and the parameters β, η, ϕ are uniquely determined by µ, γ(0), k
and p and are given by the formulas

β = p µ , (2.3)

ϕ = p
√

1 +M2 − p, (2.4)

η = p
√

1 +M2 (1 − σ2
L) + p σ2

L = p+ ϕ(1 − σ2
L) . (2.5)

Proof: Since r = E(L2
1) = 1, we obtain from Proposition 1.5.1

µ =
β

|Ψ(1)| , (2.6)

γ(0) = 6
β2

|Ψ(1)|3
(
2ηϕ−1 + 2σ2

L − 1
)( 2

|Ψ(2)| −
1

|Ψ(1)|

)(
|Ψ(1)| − 1 + e−|Ψ(1)|

)

+
2β2

ϕ2

(
2

|Ψ(2)| −
1

|Ψ(1)|

)
+

2β2

Ψ(1)2
, (2.7)

=: β2γ̂(0)

p = |Ψ(1)|, (2.8)

k =
γ̂−1(0)

|Ψ(1)|3
(

2η

ϕ
+ 2σ2

L − 1

)(
2

|Ψ(2)| −
1

|Ψ(1)|

)(
1 − e−|Ψ(1)|

)

×
(
e|Ψ(1)| − 1

)
(2.9)

Then (2.6) and (2.8) immediately give (2.3). Inserting (2.9) in (2.7) and using (2.6)
and (2.8), we obtain

γ(0) = 6
p− 1 + e−p

(1 − e−p)(ep − 1)
kγ(0) +

2µ2p2

ϕ2

(
2

|Ψ(2)| −
1

p

)
+ 2µ2.

By definition of M1 and (1.65), we see that

M1 =
2µ2p2

ϕ2

(
2

|Ψ(2)| −
1

p

)
=

2µ2p2

ϕ2

ϕ2

|Ψ(2)|p

∫

R4

x4 νL(dx) > 0,
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so that
2

|Ψ(2)| −
1

p
=
M1ϕ

2

2µ2p2
.

Inserting this in (2.9) and using (2.3) gives

kγ(0) =
2ηϕ−1 + 2σ2

L − 1

p3

M1ϕ
2

2
(1 − e−p)(ep − 1),

so that

0 < pM2 =
2kγ(0)p2

M1(ep − 1)(1 − e−p)
=

2ηϕ−1 + 2σ2
L − 1

p
ϕ2 =

(
2 +

ϕ

p

)
ϕ,

where we used
p = |Ψ(1)| = η − ϕ(E(L2

1) − σ2
L) (2.10)

from (1.55). Solving this quadratic equation for ϕ gives (2.4), which together with
(2.10) implies (2.5). 2

We conclude from (2.3)–(2.5) that our model parameter vector (β, η, ϕ) is a
continuous function of the first two moments µ, γ(0) and the parameters of the au-
tocorrelation function p and k. Hence, by continuity, consistency of the moments will
immediately imply consistency of the corresponding plug-in estimates for (β, η, ϕ).

2.2 The estimation algorithm

The parameters are estimated under the following assumptions:

(H1) We have equally spaced observations Gi, i = 0, . . . , n, giving log-return data

G
(1)
i = Gi −Gi−1, i = 1, . . . , n.

(H2) E(L1) = 0 and Var(L1) = 1, i.e. σ2 can be interpreted as the volatility.

(H3) The variance σ2
L of the Brownian motion component of L is known and in

[0, 1).

(H4)
∫

R
x3 νL(dx) = 0, E(L4

1) <∞ and Ψ(2) < 0.

Define the parameter vectors θ := (k, p) and ϑ := (β, ϕ, η), where k and p are
as in Theorem 2.1.1.

Remark 2.2.1 In Theorem 2.1.1, under the chosen conditions, ρ(h) > 0 for all
h ∈ N. Furthermore, it was shown that M1 and M2 are strictly positive. However,
this does not imply that the corresponding empirical estimates are strictly positive.
As we shall prove in Theorem 2.3.9 the above estimators are strongly consistent.
This means for almost all sufficiently large sample paths the empirical estimates will
be strictly positive and all parameter estimates are well-defined.
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Algorithm 2.2.2

(1) Calculate the moment estimator

µ̂n :=
1

n

n∑

i=1

(G
(1)
i )2

of µ and for fixed d ≥ 2 the empirical autocovariances

γ̂n := (γ̂n(0), γ̂n(1), . . . , γ̂n(d))T

as

γ̂n(h) :=
1

n

n−h∑

i=1

(
(G

(1)
i+h)2 − µ̂n

)(
(G

(1)
i )2 − µ̂n

)
, h = 0, . . . , d .

(2) Compute the empirical autocorrelations ρ̂n := (γ̂n(1)/γ̂n(0), . . . , γ̂n(d)/γ̂n(0))T .

(3) For fixed d ≥ 2 define the mapping H : Rd+2
+ → R by

H(ρ̂n,θ) :=

d∑

h=1

(log(ρ̂n(h)) − log k + ph)2 .

Compute the least squares estimator

θ̂n := arg min
θ∈R2

+

H(ρ̂n,θ) . (2.11)

(4) Define the mapping J : R4
+ → [0,∞)3 by

J(µ, γ(0),θ) := (pµ, p
√

1 +M2 − p, p
√

1 +M2 (1 − σ2
L) + p σ2

L) (2.12)

if p,M2 > 0 and J(µ, γ(0),θ) := (0, 0, 0) otherwise, where M2 is defined as in
(2.2). Compute the estimator

ϑ̂n = J(µ̂n, γ̂n(0), θ̂n) .

In part (3), alternatively, we could also have based the least squares estimation
on the autocovariance function. It turned out, however, that the estimators chosen
as above are considerably more accurate. The reason for this is that k is independent

of β (see (2.9)) in contrast to kγ := Cov((G
(1)
i )2, (G

(1)
i+1)

2)ep.
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In addition to Remark 2.2.1 we emphasize that for a stationary model the pa-
rameter p has to be strictly positive. But if we compute the unrestricted minimum
of H(ρ̂n,θ) we get

p̂∗n := −
∑d

h=1

(
log(ρ̂n(h)) − log(ρ̂n)

) (
h− d+1

2

)

∑d
h=1

(
h− d+1

2

)2 (2.13)

k̂n := exp

{
log(ρ̂n) +

d+ 1

2
p̂∗n

}
, (2.14)

with log(ρ̂n) := 1
d

∑d
h=1 log(ρ̂n(h)) and p̂∗n may be negative. As a remedy we define

the estimator of p as

p̂n := max{p̂∗n, 0} (2.15)

and take p̂n = 0 as an indication that the data is non-stationary.
Defining the mapping S : Rd+1

+ → R2
+ by the equations (2.13)–(2.15) and noting

that ρ̂n(h) = γ̂n(h)/γ̂n(0) presents the least squares estimator θ̂n := (k̂n, p̂n) as a
function of γ̂n:

θ̂n = S(γ̂n) . (2.16)

2.3 Asymptotic properties of the moment estimators

Strong mixing properties guarantee strong consistency and asymptotic normality
of the empirical moments under suitable moment conditions. Remember that the
definition of the strong mixing coefficient can also be found in the Chapter 1.4 (see
Definition 1.4.6). We will further need the concept of α̃-mixing, which will now be
defined.

Definition 2.3.1 For a stationary process Y = (Ys)s≥0 define the σ-algebras FY
[0,u] :=

σ((Ys)s∈[0,u]) and FY
[u+t,∞) := σ((Ys)s≥u+t) for all u ≥ 0. Then f ∈ bFY

[u,∞) means

that f is a bounded FY
[u,∞)-measurable random variable. Let ‖ · ‖L1(P) and ‖ · ‖∞ be

the L1-norm under P and the supnorm, respectively. Then Y is called α̃-mixing, if

α̃(t) = α̃(FY
[0,u],FY

[u+t,∞))

:= sup{‖E(f |FY
[0,u]) − E(f)‖L1(P ) : f ∈ bFY

[u+t,∞), ‖f‖∞ ≤ 1} → 0,

as t→ ∞, for all u ≥ 0.

Throughout the thesis all σ-algebras are assumed to include all P-null sets. The
following result shows that any α-mixing property is equivalent to the corresponding
α̃-mixing property.
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Lemma 2.3.2 α(F1,F2) ≤ α̃(F1,F2) ≤ 6α(F1,F2) holds for all F1,F2 ⊂ F .

For the left-hand inequality assume A∗ ∈ F1 and B∗ ∈ F2 are such that α(F1,F2) =
|P (A∗∩B∗)−P (A∗)P (B∗)|. Then take f = χB∗ as the indicator of the set B∗, which
implies |P (A∗ ∩B∗)− P (A∗)P (B∗)| ≤ ‖E(χB∗ |A∗) − E(χB∗)‖L1(P ). See Lemma 3.5
in McLeish (1975) for the right-hand inequality.

Therefore the α-mixing property is equivalent to the α̃-mixing property. The
following remark is the starting point of our analysis.

Remark 2.3.3 Let σ2 := (σ2
t )t≥0 be the strictly stationary volatility process given

by (1.49). Then σ2
+ falls into the class of generalised Ornstein-Uhlenbeck processes

(see Section 5 in Lindner and Maller (2005)). Consequently Proposition 3.1 of Fasen
(2007) applies giving that σ2 is exponentially β-mixing (see Definition A.16). This
implies in particular that σ2 is exponentially α-mixing, which means that α(t) decays
to zero exponentially fast for t→ ∞ .

In the following theorem we show that also the COGARCH(1, 1) process satisfies
a strong mixing condition.

Theorem 2.3.4 Suppose that (Lt)t≥0 is such that E(L4
1) < ∞ and the parameters

of the COGARCH(1, 1) process satisfy Ψ(2) < 0. Let σ2 := (σ2
t )t≥0 be the strictly

stationary volatility process given as solution to (1.52). Then for every r > 0 the

process (G
(r)
ir )i∈N is α-mixing with exponentially decreasing rate.

We want to show that the sequence (G
(r)
ir )n∈N is α-mixing with exponentially fast

decreasing mixing coefficients. Recall from Lemma 2.3.2 that α-mixing is equivalent

to the α̃-mixing. Therefore we will show that (G
(r)
ir )n∈N is α̃-mixing

Proof: We show that (G
(r)
ir )i∈N is α̃-mixing. Define the σ-algebra FdL

I := σ(Lt−Ls :
s, t ∈ I) for I ⊂ R; i.e. generated from all increments of L over the interval I.
Using similarly notation as in Definition 2.3.1 for the σ algebras generated by the

log-return process (G
(r)
ir )i∈N and volatility process (σ2

t )t≥0, we can formulate the
following inclusions

FG(r)

{1,...,l} ⊂ FdL
[0,lr] ∨ Fσ2

[0,lr] =: FdL,σ2

[0,lr] ,

where ∨ denotes the σ-algebra generated by the union of the two σ-algebras, and

FG(r)

{k+l,k+l+1,...} ⊂ FdL
[(k+l−1)r,∞) ∨ Fσ2

[(k+l−1)r,∞) =: FdL,σ2

[(k+l−1)r,∞).
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Using these relations we get

α̃G(r)(k) := sup
{
‖E(f |FG(r)

{1,...,l}) − E(f)‖L1(P ) : f ∈ bFG(r)

{k+l,k+l+1,...}, ‖f‖∞ ≤ 1
}

≤ sup
{
‖E(f |FdL,σ2

[0,lr] ) − E(f)‖L1(P ) : f ∈ bFdL,σ2

[(k+l−1)r,∞), ‖f‖∞ ≤ 1
}

= sup
{
‖E(f |FdL,σ2

[0,lr] ) − E(f)‖L1(P ) : f ∈ bFdL
[(k+l−1)r,∞)

∨bFσ2

{(k+l−1)r}, ‖f‖∞ ≤ 1
}

= sup
{
‖E(f |Fσ2

[0,lr]) − E(f)‖L1(P ) : f ∈ bFdL
[(k+l−1)r,∞) ∨ bFσ2

{(k+l−1)r}, ‖f‖∞ ≤ 1
}

= sup
{
‖E(f |Fσ2

[0,lr]) − E(f)‖L1(P ) : f ∈ bFd[L,L]d

[(k+l−1)r,∞) ∨ bFσ2

{(k+l−1)r}, ‖f‖∞ ≤ 1
}

= α̃σ2((k − 1)r).

The first equality (in the third line) holds since the driving process of σ2 is the
discrete part of the quadratic variation of L. FdL

[0,lr] and bFdL
[(k+l−1)r,∞) ∨ bFσ2

{(k+l−1)r}

are conditionally independent given Fσ2

[0,lr], which is due to the Markov property

of σ2 (see Theorem 3.2 in Klüppelberg et al. (2004)) and the independence be-
tween FdL

[0,lr] and bFdL
[(k+l−1)r,∞). This gives the second equality. The third one fol-

lows from the independence of bFdL
[(k+l−1)r,∞) and bFd[L,L]d

[(k+l−1)r,∞) from Fσ2

[0,lr] and

again the Markov property of σ2, whereas the last one is due to the fact that

bFσ2

[(k+l−1)r,∞) = bFd[L,L]d

[(k+l−1)r,∞) ∨ bFσ2

{(k+l−1)r}.

Consequently, (G
(r)
ir )i∈N inherits the mixing properties from the volatility process

σ2. It has been shown in Proposition 3.1 in Fasen (2007) that σ2 is α-mixing with
exponential rate, i.e. there exist constants K,a > 0 such that

α̂G(r)(k) ≤ α̂σ2((k − 1)r) ≤ 6ασ2((k − 1)r) ≤ 6Ke−a(k−1)r ,

implying that (G
(r)
ir )i∈N is α-mixing with exponential rate. 2

Remark 2.3.5 We further like to mention that a different proof of the strong mixing

property of (G
(r)
ir )i∈N can be found in the proof of Proposition 3.1 in Fasen (2007).

Since we assumed in the above theorem that σ2 is strictly stationary, the log-
return process is also strictly stationary and together with the strong mixing prop-

erty this implies that (G
(r)
ir )i∈N is ergodic. This enables us to apply Birkhoff’s ergodic

theorem to give strong consistency of the empirical moments and autocovariance

function of ((G
(1)
i )2)i∈N:

Corollary 2.3.6 Under the same conditions as in Theorem 2.3.4 we obtain for
n→ ∞

µ̂n
a.s.−→ µ , γ̂n

a.s.−→ γ . (2.17)
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Corollary 2.3.6 will imply strong consistency of the estimator ϑ̂n, as stated in
(2.21) below. To obtain asymptotic normality of the empirical estimates we want to
apply a central limit theorem for strongly mixing processes.

Proposition 2.3.7 Let the same conditions hold as in Theorem 2.3.4. Assume fur-
ther

(H5) There exists a positive constant δ > 0 such that E

(
G8+δ

1

)
<∞.

Then as n→ ∞,

√
n

([
µ̂n

γ̂n

]
−
[
µ
γ

])
d−→ Nd+2 (0,Σ) , (2.18)

where the covariance Σ has components

Σk+2,l+2 = Cov((G
(1)
1 )2(G

(1)
1+k)2, (G

(1)
1 )2(G

(1)
1+l)

2)

+2
∞∑

j=1

Cov((G
(1)
1 )2(G

(1)
1+k)2, (G

(1)
1+j)

2(G
(1)
1+l+j)

2)

for k, l = 0, . . . , d,

Σ1,k+2 = Cov((G
(1)
1 )2, (G

(1)
1 )2(G

(1)
1+k)

2) + 2
∞∑

j=1

Cov((G
(1)
1 )2, (G

(1)
1+j)

2(G
(1)
1+k+j)

2)

for k = 0, . . . , d and Σ1,1 = γ(0) + 2
∑∞

h=1 kγe
−ph.

Proof: We will first concentrate on the asymptotic behaviour of (µ̂n,γ
∗
n), where

γ∗
n = (γ∗n(0), . . . , γ∗n(d)) and γ∗n(h) = 1

n

∑n
i=1[(G

(1)
i+h)2 −µ][(G

(1)
i )2 − µ], h = 0, . . . , d.

Denote

Yi := ((G
(1)
i )2, [(G

(1)
i )2−µ]2, [(G

(1)
i )2−µ][(G

(1)
i+1)

2−µ], . . . , [(G
(1)
i )2−µ][(G

(1)
i+d)

2−µ])T .

For (2.18) to hold for (µ̂n,γ
∗
n) in place of (µ̂n, γ̂n), by the Cramér-Wold device, we

have to show that as n→ ∞,

√
n

(
1

n

n∑

i=1

λTYi − λT

[
µ
γ

])
d−→ N(0,λTΣλ) , (2.19)

for all vectors λ ∈ Rd+2 such that λTΣλ > 0. But as strong mixing is preserved
under linear transformations as well as the rate, the sequence (λTYi)i∈N is strongly
mixing with exponentially decaying rate. Hence we get

∑∞
k=1{αλT

Y
(k)}c < ∞ for

every c > 0, and since E|Yi|2+δ < ∞ for some δ > 0 by (H5), the central limit
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theorem for strongly mixing processes is applicable (see Theorem 18.5.3 in Ibragimov
and Linnik (1971)). Therefore, as n→ ∞,

√
n

(
1

n

n∑

i=1

λTYi − λT

[
µ
γ

])
d−→ N(0, σ2) ,

with

σ2 := Var(λTY1) + 2

∞∑

i=1

Cov(λTY1,λ
TY1+i) . (2.20)

Evaluation of (2.20) and rearranging with respect to λ shows σ2 = λTΣλ. Observing

that
√
n
(
n−1

∑n
i=1 λTYi − λT

(bµn

bγn

))
converges in probability to zero as n → ∞

for every λ ∈ Rd+2 such that λTΣλ > 0 (see e.g. the proof of Proposition 7.3.4.
in Brockwell and Davis (1991)), it follows that (µ̂n, γ̂n) has the same asymptotic
behaviour as (µ̂n,γ

∗
n), giving (2.18). 2

Applying the delta method (see Theorem 3.1 in van der Vaart (1998)), we obtain:

Corollary 2.3.8 Let the same conditions hold as in Proposition 2.3.7. Then as
n→ ∞, √

n(ρ̂n − ρ)
d→ Nd(0,Σρ) .

The following theorem gives asymptotic normality of our parameter estimates.
The true parameter vector and the corresponding moments are from now on indi-
cated by ϑ0, µ0 and γ0 respectively. We shall also denote by Pϑ0 the probability
with respect to the parameter vector ϑ0.

Theorem 2.3.9 Let the same conditions hold as in Theorem 2.3.4. Assume that
(H1)–(H4) are satisfied. For S(γ) as in (2.16), define the mapping Q : Rd+2 → R3

by (µ,γT ) 7→ Q((µ,γT )) := J(µ, γ(0), S(γ)). Then as n→ ∞,

ϑ̂n
a.s.−→ ϑ0 . (2.21)

Assume additionally (H5). Then, under Pϑ0 , as n→ ∞,

√
n(ϑ̂n − ϑ0)

d−→ ∂(µ,γ)Q((µ0,γ0))Nd+2 (0,Σ) , (2.22)

where Σ is as in Proposition 2.3.7.

Proof: Strong consistency of ϑ̂n follows from (2.17) and the fact that the mappingQ
is continuous in (µ,γ). Since (µ̂n, γ̂n) is asymptotically normal andQ is differentiable
at (µ0,γ0), we can apply the delta method and the asymptotic normality of ϑ̂n

follows from (2.18). 2
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2.4 Examples of COGARCH(1, 1) processes

Before we analyse the small sample properties of our estimator, two examples of
COGARCH(1, 1) processes will be discussed. The main difference in the two exam-
ples is the activity of the driving Lévy process. In the first case it will be a compound
Poisson process, while in the second one it is a Variance Gamma process. Thus we
will consider Lévy processes with finite and infinite activity. An admissible choice
of parameters satisfying the assumptions (H1)-(H5) is derived, which will be used in
the simulation study. In the first example we also present an estimator for the jump
rate λ of the driving compound Poisson process.

2.4.1 Compound Poisson COGARCH(1, 1)

This section is devoted to the compound Poisson COGARCH(1, 1) process, which
corresponds to a compound Poisson driving process L given by

Lt =

Nt∑

k=1

Yk , t ≥ 0 ,

where N = (Nt)t≥0 is a Poisson process with jump rate λ > 0, and (Yk)k∈N are
i.i.d. random variables, independent of N . We introduce a generic random variable
Y with the same distribution function as the Yk, denoted by FY . For this model
(H3) is clearly satisfied, with σ2

L = 0. The Lévy measure of L has the representation
νL(dx) = λFY (dx). This allows us to calculate the Laplace exponent from (1.55)
getting

Ψ(s) = −η s+ λ

∫

R

(
(1 + ϕy2)s − 1

)
FY (dy) .

From this we obtain

Ψ(1) = −η + ϕλE(Y 2)

Ψ(2) = −2η + 2ϕλE(Y 2) + ϕ2λE(Y 4) .

Since Theorem 2.1.1 requires E(L1) = 0 and Var(L1) = E(L2
1) = 1, we must have

E(Y 2) = 1/λ yielding p = |Ψ(1)| = η−ϕ. The condition
∫

R
x3 νL(dx) = 0 translates

into E(Y 3) = 0. Moreover, we obtain

Ψ(2) = 2(ϕ − η) + ϕ2E(Y 4)/E(Y 2) = −2p+ ϕ2E(Y 4)/E(Y 2).

Then the condition Ψ(2) < 0 translates into ϕ2 < 2p/(λE(Y 4)). Condition (H5)
requires for G a finite moment of higher order than the eighth, which is the case if
E(L8+δ

1 ) < ∞ and the (4 + δ)-moment of the volatility is finite i.e. Ψ(4 + δ) < 0.
The (8 + δ)-moment of L will be finite if E(Y 8+δ) < ∞. The volatility will have a
finite fourth moment if

Ψ(4) = 4(ϕ− η) + 6λϕ2E(Y 4) + 4λϕ3E(Y 6) + λϕ4E(Y 8)
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Figure 2.1: Simulated COGARCH(1, 1) process (Gt) with parameters β = 0.04, η =

0.053 and ϕ = 0.038 (first), log-return process (G
(1)
i ) of order 1 (second), volatility

process (σ2
t ) (third) and driving compound Poisson process (Lt)0≤t≤5 000 with jump

rate λ = 1 and N(0, 1)-distributed jumps (last).

is negative (this then implies Ψ(4 + δ) < 0 for some δ > 0 by continuity of Ψ, cf.
Sato (1999), Lemma 26.4).

In Figure 2.1 we plotted simulated sample paths for the time interval [0, 5 000]
of the the compound Poisson COGARCH(1, 1) process G, the log-return process
G(1), the volatility process σ2 and the driving Lévy process L, respectively. All four
sample paths have been simulated with the same random seed. As can be seen G
looks similar to L, they only differ by the jump sizes. Also the volatility clustering,
which is observed in real data, can be rediscovered in this simulation.

As jumps in a compound Poisson model with moderate frequency are rare, we

should be able to estimate the jump rate λ from the discretised data G
(1)
i . This is

shown in our next result. The analysis is based on z(n), the number of intervals,

where G does not change; i.e. z(n) =
∑n

i=1 χ{0}(G
(1)
i ). This implies immediately

that one needs a fine enough observation grid.
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Proposition 2.4.1 Let (Lt)t≥0 be a compound Poisson process with continuous
jump distribution FY and jump rate λ > 0. Then

λ̂n := − log

(
z(n)

n

)
a.s.−→ λ , n→ ∞ ,

and

√
n(λ̂n − λ)

d−→ N(0, eλ(1 − e−λ)) , n→ ∞ . (2.23)

Proof: Denote by Si the number of jumps in the interval (i−1, i]. Then the Si, i =
1, . . . , n, are i.i.d. Poisson distributed with parameter λ. Therefore, the indicator
variables χ{0}(Si), i = 1, . . . , n, are also i.i.d. Since FY is continuous, we have

χ{0}(Si) = χ{0}(G
(1)
i ) a.s. , i = 1, . . . , n .

By the strong law of large numbers, we get

1

n

n∑

i=1

χ{0}(G
(1)
i )

a.s.−→ E(χ{0}(S1)) = P(S1 = 0) = e−λ, n→ ∞ ,

and therefore

− log

(
z(n)

n

)
a.s.−→ λ, n→ ∞ .

Moreover, as χ{0}(G
(1)
i ), i = 1, . . . , n, are i.i.d., the central limit theorem applies,

giving
z(n) − ne−λ

√
ne−λ(1 − e−λ)

d−→ N(0, 1) , n→ ∞ .

Invoking the delta-method (see Theorem 3.1 in van der Vaart (1998)) to − log(z(n)
n ),

using
√
e−λ(1 − e−λ)/n→ 0 as n→ ∞ and the fact that − log(·) is differentiable at

e−λ, we obtain (2.23). 2

Remark 2.4.2 The central limit result of Proposition 2.4.1 allows us to construct
confidence intervals for the jump rate λ. Using (2.23) and

n

z(n)

(
1 − z(n)

n

)
P−→ eλ(1 − e−λ), n→ ∞ ,

we apply Slutzky’s theorem to get

− log(z(n)
n ) − λ√

1
z(n)(1 − z(n)

n )

d−→ N(0, 1). (2.24)



54 Exponential COGARCH and other continuous time models

Solving (2.24) with respect to λ, we get a 100(1 − α)% confidence interval for λ
[
− log

(
z(n)

n

)
− q1−α

2

√
1

z(n)
− 1

n
,− log

(
z(n)

n

)
+ q1−α

2

√
1

z(n)
− 1

n

]
,

where q1−α
2

is the (1 − α
2 )-quantil of the standard normal distribution.

2.4.2 Variance Gamma COGARCH(1, 1)

In this section we investigate the Variance Gamma COGARCH(1, 1) process. Again
the driving Lévy process has no Brownian component. Consequently σ2

L = 0 and
(H3) is satisfied. Assumption (H2) requires that the mean of L is zero and the
variance is equal to one. Then it follows from (1.5) that the characteristic function
at time t ≥ 0 is given by

E(eiuLt) =

(
1 +

u2

2C

)−tC

.

The Lévy measure of L has the Lebesgue density

νL(dx) =
C

|x| exp
(
− (2C)1/2 |x|

)
dx , x 6= 0 . (2.25)

Inserting (2.25) into (1.55) we obtain

Ψ(1) = −η + ϕ and Ψ(2) = −2η + 2ϕ+ 3ϕ2C−1 . (2.26)

In Figure 2.2 we plotted simulated sample paths for the time interval [0, 5 000] of
the the Variance Gamma COGARCH(1, 1) process G, the log-return process G(1),
the volatility process σ2 and the driving Lévy process L, respectively.

The first condition of (H4) is satisfied by symmetry. The only delicate point for
choosing the parameters β, η and ϕ is the last condition of (H4). Econometric liter-
ature suggests that volatility is quite persistent. Hence the autocovariance function
of (G(1))2 should not decrease too fast. From Proposition 1.5.1 we know that this is
implied by Ψ(1) < 0 close to zero. Setting β = 0.04, η = 0.053 and ϕ = 0.038 gives
Ψ(1) = −0.015 and Ψ(2) = −0.0257 which are satisfactory values. Condition (H5)
requires for G a finite moment of higher order than the eighth, which is the case if
E(L8+2δ

1 ) < ∞ and the (4 + δ)-moment of the volatility is finite i.e. Ψ(4 + δ) < 0.
The VG process has finite moments of all orders for every C > 0, but for given η
and ϕ the finiteness of E(σ8+2δ

1 ) depends on C, since

Ψ(4) = −4η + 4ϕ + 18ϕ2C−1 + 120ϕ3C−2 + 630ϕ4C−3

has to be strictly negative (this then implies Ψ(4 + δ) < 0 for some δ > 0 by
continuity of Ψ, cf. Sato (1999), Lemma 26.4). Therefore we choose C = 1, resulting
in Ψ(4) = −0.0261.
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Figure 2.2: Simulated VG driven COGARCH(1,1) process (Gt)0≤t≤5 000 with pa-

rameters β = 0.04, η = 0.053 and ϕ = 0.038 (first), log-return process (G
(1)
i ) of

order 1 (second), the volatility process (σ2
t ) (third), the driving VG process (Lt)

with parameter C = 1 (last).

2.5 Simulation study

We will perform the estimation procedure for two different sample sizes, namely
5 000 and 20 000. The estimates p̂n (2.13) and k̂n (2.14) are sensitive to the choice
d of lags used and to outliers in the empirical autocorrelation function. Based on
experience for linear models (recall Lemma 1.5.2), it seems reasonable to choose
d ≈ √

n. Numerical experiments have indeed shown that d equal to 50 is sufficient
for both our sample sizes. Moreover, we performed a robust linear regression (see e.g.
Chapter 7 in Huber (2004)) to estimate the parameters, i.e. they are estimated by
an iteratively reweighted least squares algorithm instead of ordinary least squares.
The resulting estimates are not only less sensitive to outliers in the data, but also
to the number of lags d taken into account.

Remark 2.5.1 The choice of d in empirical applications is actually without any
problems. An inspection of the empirical autocorrelation function immediately sug-



56 Exponential COGARCH and other continuous time models

gests a reasonable choice of d. But in a simulation study the parameters should be
constant over all samples.

From (2.26) we know that Ψ(1) is equal to Ψ(1) = −η + ϕ. Thus these two
parameters give important characteristics of the model concerning stationarity and
the rate p of decrease of the autocovariance and autocorrelation function. In case
of p̂n > 0, which indicates that the data is stationary, it is also clear from (2.12),
that the estimated parameters will always correspond to a stationary model, since
p > 0 implies Ψ(1) = −η + ϕ < 0 and the same identity holds for the estimated
parameters.

2.5.1 Estimation results for the compound Poisson COGARCH(1, 1)

In this section the behaviour of the moment estimators of Algorithm 2.2.2 is analysed
in case of a driving compound Poisson process. All the conditions stated in Section
2.4.1 are satisfied if we choose standard normally distributed jumps implying a
jump rate λ equal to one and model parameters β = 0.04, η = 0.053 and ϕ = 0.038.
Observe that the chosen parameters imply a rather slow decay of the autocovariance
function of (G(1))2, since Ψ(1) = −0.015 is close to zero. Further we get for these
parameter values Ψ(2) = −0.0257 and Ψ(4) = −0.0329.

We first simulate 1 000 samples of n = 5000 equidistant observations of G(1).
Table 2.1 summarises the outcome of our simulation study concerning the parameters
β, η and ϕ. The empirical mean of all the estimated parameter values β̂n, η̂n and
ϕ̂n is shown in the first line, with the empirical standard deviations in brackets.
We also estimated mean square error (MSE) and mean absolute error (MAE), again
with the corresponding standard deviation in brackets. Additionally the relative bias
is reported. The corresponding results for a sample size of n = 20000 observations
are reported in the last four lines of Table 2.1.

The estimator β̂ seems to have the largest bias among all three estimators for
both sample sizes. Comparing the results with respect to the two sample sizes we
observe an increased accuracy, as expected due to the consistency of the estimators.
Overall we got acceptable results except for the estimation of β based on 5 000
observations showing a bias of about 20 percent.

The estimation results concerning the jump rate λ and σ2
Y1

, the variance of the
jumps Yk, are shown in Table 2.2 showing satisfactory performance. Again we cal-
culated the empirical mean, MSE and MAE with corresponding empirical standard
deviations.

2.5.2 Estimation results for the Variance Gamma COGARCH(1, 1)

Again we simulate first 1 000 samples of n = 5000 equidistant observations of G(1).
Table 2.3 summarises the estimation results of our simulation study concerning the
parameters β, η and ϕ.
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n=5000 β̂ η̂ ϕ̂

Mean 0.03262 (3· 10−4) 0.05212 (5· 10−4) 0.03984 (4· 10−4)
Rel. bias -0.18461 -0.01649 0.04855
MSE 0.00017 (6· 10−6) 0.00025 (1· 10−5) 0.00017 (9· 10−6)
MAE 0.01109 (2· 10−4) 0.01282 (3· 10−4) 0.01026 (3· 10−4)

n=20 000 β̂ η̂ ϕ̂

Mean 0.03942 (3· 10−4) 0.05273 (5· 10−4) 0.03787 (4· 10−4)
Rel. bias -0.01435 -0.00504 -0.00329
MSE 0.00008 (4· 10−6) 0.00022 (3· 10−6) 0.00016 (3· 10−6)
MAE 0.00753 (2· 10−4) 0.01015 (3· 10−4) 0.00867 (3· 10−4)

Table 2.1: Estimated mean, relative bias, MSE and MAE for β̂, η̂ and ϕ̂ and corre-
sponding estimated standard deviations in brackets. The true values are β = 0.04,
η = 0.053 and ϕ = 0.038.

n=5 000 λ̂ σ̂2
Y1

Mean 1.00099 (6· 10−4) 0.99935 (6· 10−4)
MSE 0.00034 (9· 10−6) 0.00034 (9· 10−6)
MAE 0.01459 (4· 10−4) 0.01456 (4· 10−4)

n=20 000 λ̂ σ̂2
Y1

Mean 0.99999 (3· 10−4) 1.00015 (3· 10−4)
MSE 0.00008 (3· 10−6) 0.00008 (3· 10−6)
MAE 0.00707 (2· 10−4) 0.00707 (2· 10−4)

Table 2.2: Estimated mean, MSE and MAE for λ̂ and σ̂2
Y1

and corresponding esti-
mated standard deviations in brackets. The true values are c = 1, and σ2

Y1
= 1.

The empirical mean of all the estimated parameter values β̂n, η̂n and ϕ̂n is shown
in the first line, with the empirical standard deviations in brackets. As before we
also estimated the relative bias, the MSE and the MAE. For the mean squared and
absolute error the estimated standard deviation is again shown in brackets. The
corresponding results for a sample size of n = 20000 observations are reported in
the last four lines of Table 2.3.

The three estimators β̂n, η̂n and ϕ̂n show a similar power. Actually β̂n seems to
have the largest small sample variance. Contrarily to the compound Poisson case
for n = 5000 the relative bias of β̂n is the smallest. For n = 20000 estimated bias
and variance of β̂n are the largest among the three estimators. When one compares
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n=5000 β̂ η̂ ϕ̂

Mean 0.04172 (7· 10−4) 0.04897 (7· 10−4) 0.03329 (5· 10−4)
Rel. bias 0.04304 -0.07603 -0.12394
MSE 0.00053 (3· 10−5) 0.00048 (2· 10−5) 0.00023 (9· 10−6)
MAE 0.01772 (5· 10−4) 0.01724 (4· 10−4) 0.01208 (3· 10−4)

n=20 000 β̂ η̂ ϕ̂

Mean 0.04309 (4· 10−4) 0.05311 (4· 10−4) 0.03689 (3· 10−4)
Rel. bias 0.07735 0.00201 -0.02899
MSE 0.00019 (9 · 10−6) 0.00015 (8 · 10−6) 0.00007 (4· 10−6)
MAE 0.01089 (3· 10−4) 0.00954 (2· 10−4) 0.00651 (2· 10−4)

Table 2.3: Estimated mean, relative bias, MSE and MAE for β̂, η̂ and ϕ̂ and corre-
sponding estimated standard deviations in brackets. The true values are β = 0.04,
η = 0.053 and ϕ = 0.038.

the estimates for the different sample sizes it can be seen that the MSE reduces for
all three estimators, when the sample size is increased, and the reduction is roughly
by a factor of four, which would correspond to the asymptotic properties of the
estimators.

2.5.3 Estimation of the volatility σ2
t

From an econometric point of view it is also of interest to estimate the volatility σ2.
Therefore we want to present a recursive estimator of the volatility process given
the estimated parameters ϑ̂n. The estimator is then applied to the Variance Gamma
example from the last section. Recall from (1.54) for r = 1,

σ2
i = σ2

i−1 + β − η

∫

(i−1,i]
σ2

sds+ ϕ
∑

i−1<s≤i

σ2
s(∆Ls)

2 , i ∈ N . (2.27)

Since σs is latent and ∆Ls is usually not observable, we have to approximate the
integral and the sum on the right hand side. For the integral we use a simple Euler
approximation ∫

(i−1,i]
σ2

sds ≈ σ2
i−1 , i ∈ N .

As we observe G only at integer times we approximate

∑

i−1<s≤i

σ2
s(∆Ls)

2 ≈ (Gi −Gi−1)
2 = (G

(1)
i )2 , i ∈ N .
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An estimate of the volatility process (σ2
t )t≥0 can therefore be calculated recursively

by

σ̂2
i = β̂ + (1 − η̂)σ̂2

i−1 + ϕ̂ (G
(1)
i )2 , i ∈ N . (2.28)

Note that σ̂i defines the conditional variance of a discrete time GARCH(1,1) model,
which implies that we have to require 0 < η < 1. The estimator (2.28) is plotted in
Figure 2.3 together with the theoretical (σ2

t )t≥0 for one simulation.
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Figure 2.3: Sample paths of σ2
t (solid line) and σ̂2

t (dotted line) of one simulation.

The goodness of fit of our estimation method is now investigated by a residual

analysis. The estimated residuals are given by G
(1)
i /σ̂i−1 for i = 1, . . . , n. Since

we assumed a symmetric jump distribution with zero mean, the residuals should
be symmetric around zero and their mean should be close to zero. Furthermore, if
the volatility has been estimated correctly, we expect the standard deviation to be
close to one. Consequently, we estimated mean, MSE, MAE and the corresponding
standard deviations for the mean, the standard deviation and the skewness of the

residuals G
(1)
i /σ̂i−1 based on 1 000 simulations. The results for both sample sizes are

reported in Table 2.4 and indicate a reasonable fit.
The correlation of the squared residuals was checked by performing a Ljung-

Box test for each sample. For n = 5000 we computed the test statistic based on
70 ≈

√
5 000 lags and had to reject the null hypothesis of no correlation 140 times

out of 1 000 simulations at the 0.05 level. Whereas for n = 20000 the test statistic
was computed using 140 ≈

√
20 000 lags and the null hypothesis was rejected 137

times out of 1 000 simulations again at the 0.05 level.

2.6 Real data analysis

The COGARCH(1,1) model will be fitted to five minutes log-returns of three differ-
ent stocks, which are General Motors (GM), Cisco and Intel. We have tick-by-tick
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n=5000 mean(G
(1)
i /σ̂i−1) std(G

(1)
i /σ̂i−1) skewness(G

(1)
i /σ̂i−1)

Mean 0.00011 (0.00044) 1.00931 (0.00021) -0.00152 (0.00428)
MSE 0.00019 (9 · 10−6) 0.00012 (8 · 10−6) 0.01838 (0.00098)
MAE 0.01110 (0.00027) 0.00945 (0.00020) 0.10671 (0.00264)

n=20 000 mean(G
(1)
i /σ̂i−1) std(G

(1)
i /σ̂i−1) skewness(G

(1)
i /σ̂i−1)

Mean 0.00018 (0.00022) 0.01078 (0.00014) -0.00285 (0.00205)
MSE 0.00005 (2 · 10−6) 0.00013 (4 · 10−6) 0.00422 (0.00019)
MAE 0.00577 (0.00013) 0.01079 (0.00014) 0.05119 (0.00126)

Table 2.4: Estimated mean, bias, MSE and MAE for the mean, standard deviation
and skewness of the residuals with corresponding estimated standard deviations in
brackets.

data of the Trades and Quotes database of the New York Stock Exchange (NYSE)
and Nasdaq. The GM stock is from NYSE, whereas Cisco and Intel belong to Nas-
daq. The data spans over 4 months starting in February 2002. We considered only
the prices between 9.35am and 4pm to compute the five minutes log-returns based
on previous tick interpolation. There were 83 trading days between the beginning
of February and the end of May 2002. Hence each of the series has a total length
of 6 391 data points. This is part of a data set, which was analysed in Brodin and
Klüppelberg (2006) with respect to the extreme dependence structure of the three
stocks.

The effect of seasonality is common in high frequency data and also appears in
the raw data. Therefore, the data was deseasonalised by a median filter, which is
explained in Section 4.2 in Brodin and Klüppelberg (2006). The resulting time series
are shown in Figure 2.4.

An application of Algorithm 2.2.2 produces moment estimates of β, η and ϕ un-
der the assumption that the driving Lévy processes of each stock have no Brownian
component. The results are shown in Table 2.5. To investigate the model fit, we

β̂ η̂ ϕ̂

GM 0.1091 0.1625 0.1357
Cisco 0.0621 0.0328 0.0126
Intel 0.0180 0.0396 0.0336

Table 2.5: β̂, η̂ and ϕ̂ for the GM, Cisco and Intel data.

performed a Ljung-Box test for squared residuals of all three data sets. The test



Estimating the COGARCH(1, 1) 61

0 1000 2000 3000 4000 5000 6000

−20

0

20

0 1000 2000 3000 4000 5000 6000

−10

0

10

0 1000 2000 3000 4000 5000 6000

−10

0

10

GM

Cisco

Intel

Figure 2.4: Deseasonalized 5 minutes log-returns of GM (top), Cisco (middle) and
Intel (bottom).

statistics used 80 lags of the corresponding empirical autocorrelation function. The
null hypothesis was not rejected for GM and Intel at the 0.05 level. For the GM
squared residuals the p-value was 0.35, whereas for Intel it was only 0.27. The test
statistic for the Cisco squared residuals was equal to 202.62, which led to a rejection
of the null hypothesis, since the test had a critical value of 101.87 at the 0.05 level.
This result is also obvious from Figure 2.5 were the empirical autocorrelation func-
tion of the squared residuals are plotted on the right, showing significant correlations
of the Cisco residuals.

The estimated mean, standard deviation and skewness of the residuals are sum-
marised in Table 2.6. The numbers show that the mean and variation of the residu-
als are according to our model, but that the residuals are significantly skewed. This
skewness can also be seen in Figure 2.6 showing estimates of the log density for all
three datasets.

mean(G
(1)
i /σ̂i−1) std(G

(1)
i /σ̂i−1) skewness(G

(1)
i /σ̂i−1)

GM -0.0143 1.0785 -0.3714
Cisco -0.0015 0.9832 -0.2082
Intel -0.0002 1.0100 -0.0626

Table 2.6: Mean, standard deviation and skewness of the GM, Cisco and Intel resid-
uals.
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Figure 2.5: Empirical acf of the squared 5 minutes log-returns (left ) and the squared
residuals (right ) of GM (top), Cisco (middle) and Intel (bottom).

It does not come as a surprise as it is a well-known fact that financial data
are skewed. Although we will not deal with this problem in the framework of the
COGARCH model, we want to discuss the assumptions, which prevent the modelling
of skewness and also indicate some remedy to be worked out in detail in future work.
This is not done in this thesis because we will introduce in the next chapter a new
model, which takes this asymmetry into account directly.

The observed skewness indicates that the first condition of (H4) requiring that∫
R
x3νL(dx) = 0 is violated. This introduces a bias into our estimates as in the

calculation of E(G4
t ) the last term in (1.62) does not disappear.

Instead of including the term
∫

R
x3νL(dx) in a statistical analysis we suggest to

extend the model by an extra term in a similar fashion as Glosten et al. (1993) for
the discrete GARCH process, to model the leverage in the market explicitly; thus
taking care of the effect directly. Consequently, we extend the volatility model (1.52)
for ρ > 0 to

dσ2
t+ = (β − ησ2

t ) dt + ϕσ2
t d[L,L]

(d)
t + ρ σ2

t dUt , (2.29)

where
Ut :=

∑

0<s≤t
∆Ls<0

(∆Ls)
2

and ρ is a positive constant. Then

∆σ2
t =

{
ϕσ2

t (∆Lt)
2, if ∆Lt > 0,

(ϕ+ ρ)σ2
t (∆Lt)

2, if ∆Lt < 0,
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Figure 2.6: Kernel estimates of the log density (solid line) of the squared GM (left),
Cisco (middle) and Intel (right) residuals together with a normal log density (dashed
line) with mean and variance of the corresponding residual series.

so that a negative jump of L gives rise to a higher increase of the volatility than a
positive jump of the same modulus does. Note that (Ut)t≥0 is a subordinator, and
so is

Mt := ϕ[L,L]
(d)
t + ρUt =

∑

0<s≤t
∆Ls>0

ϕ(∆Ls)
2 +

∑

0<s≤t
∆Ls<0

(ϕ+ ρ)(∆Ls)
2,

so that (2.29) can be rewritten as

dσ2
t+ = (β − ησ2

t ) dt + σ2
t dMt,

an expression similar to (1.52).



Chapter 3

Exponential continuous time
GARCH process

GARCH type processes have become very popular in financial econometrics to model
returns of stocks, exchange rates and other series observed at equidistant time points.
They have been designed (see Engle (1982) and Bollerslev (1986)) to capture so-
called stylised facts of such data, which are e.g. volatility clustering, dependence
without correlation and tail heaviness. Another characteristic is that stock returns
seem to be negatively correlated with changes in the volatility, i.e. that volatility
tends to increase after negative shocks and to fall after positive ones. This effect is
called leverage effect and cannot be modeled by a GARCH type process without fur-
ther extensions. This finding led Nelson (1990) to introduce the exponential GARCH
process, which is able to model this asymmetry in stock returns. The log-volatility
of the EGARCH(p, q) process was modeled as an ARMA(q, p − 1) process.
The availability of high frequency data, which increased enormously in the last years,
is one reason to consider continuous time models with similar behaviour as discrete
time GARCH models. The reason for this is of course that at the highest avail-
able frequency the observations of the price process occur at irregularly spaced time
points and therefore it is natural to assume an underlying continuous time model.
Different approaches have been taken to set up a continuous time model, which
has the same features as discrete time GARCH processes. Recently Klüppelberg
et al. (2004) developed a continuous time GARCH(1, 1) model (see also Chapter
1.5), shortly called COGARCH(1, 1). Their approach differs fundamentally from
previous attempts, which could be summarised as diffusion approximations (see e.g.
Nelson (1991)), by the fact that their model is driven by only one source of random-
ness (like discrete time GARCH) instead of two (as in the diffusion approximations).
They replaced the noise process of discrete time GARCH by the jumps of a Lévy
process. The COGARCH(1, 1) model was then extended by Brockwell et al. (2006)
to a continuous time GARCH(p, q) process for general orders p, q ∈ N, q ≥ p, hence-

64
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forth called COGARCH(p, q).
In this chapter a continuous time analogue of the EGARCH(p, q) model is intro-

duced. The noise processes will also be modeled by the increments of a Lévy process.
As in the discrete time case we describe the log-volatility process as a linear process,
more precisely a continuous time ARMA(q, p − 1) process.

3.1 The discrete time EGARCH process

Motivated by empirical evidence that stock returns are negatively correlated with
changes in returns volatility Nelson (1990) defined the exponential GARCH process
(EGARCH) to model this effect, which is called leverage effect (see also Chapter
3.4.2).

The process (Xn)n∈Z of the form

Xn = σnǫn , n ∈ Z, (3.1)

where (ǫn)n∈Z is an i.i.d. sequence with E(ǫ1) = 0 and Var(ǫ1) = 1, is called an
EGARCH process, if the volatility process (σ2

n)n∈Z satisfies

log(σ2
n) = µ+

∞∑

k=1

βkf(ǫn−k) , (3.2)

where f : R → R is some measurable real valued deterministic function, µ ∈ R and
(βk)k∈N are real coefficients such that

E(|f(ǫn)|) <∞ ,Var(f(ǫn)) <∞ and

∞∑

k=1

|βk| <∞ .

To achieve the asymmetric relation between the stock returns and the volatility,
f(ǫn) must be a function of the magnitude and the sign of ǫn as noted by Nelson
(1990). Therefore he proposed the following function:

f(ǫn) := θǫn + γ[|ǫn| − E(|ǫn|)] , (3.3)

with real coefficients θ and γ. We see that f(ǫn) is linear in ǫn and has slope θ + γ
for positive shocks ǫn and slope θ − γ for negative ones. Therefore f(ǫn) allows the
volatility process (σ2

n)n∈Z to respond asymmetrically to positive and negative jumps
in the stock price.
Nelson (1990) also suggested a finite parameter model by modeling the log-volatility
as an ARMA(q, p − 1) process instead of an infinite moving average process. This
leads to the EGARCH(p, q) model, which is defined in the following way.
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Let p, q ∈ N, µ, α1, . . . , αq, β1, . . . , βp ∈ R, suppose αq 6= 0 , βp 6= 0 and that the
autoregressive polynomial

α(z) := 1 − α1z − · · · − αqz
q

and the moving average polynomial

β(z) := β1 + β2z + · · · + βpz
p−1

have no common zeros and that α(z) 6= 0 on {z ∈ C | |z| ≤ 1}. Let (ǫn)n∈Z be
an i.i.d. sequence with E(ǫ1) = 0 and Var(ǫ1) = 1, and let f(·) be as in 3.3. Then
(Xn)n∈Z, where Xn = σnǫn and

log(σ2
n) = µ+

p∑

k=1

βkf(ǫn−k) +

q∑

k=1

αk log(σ2
n−k)

is called an EGARCH(p,q) process.

3.2 Exponential COGARCH

The goal of this section is to construct a continuous time analogue of the discrete time
EGARCH(p, q) process. Therefore we will use the idea of Klüppelberg et al. (2004)
to replace the noise variables ǫn by the increments of a Lévy process L = (Lt)t≥0.
We consider univariate zero mean Lévy processes L with jumps ∆Lt := Lt − Lt−

defined on a filtered probability space (Ω,F , (Ft)t≥0,P), which is assumed to satisfy
the usual conditions. Since a zero mean implies that γL = −

∫
|x|≥1 xνL(dx) the

corresponding Lévy symbol is of the form

ψL(u) = −σ2
L

u2

2
+

∫

R

(eiux − 1 − iux)νL(dx) ,

and from (1.14) we know that the Lévy-Itô decomposition of L is

Lt = Bt +

∫

R−{0}
xÑL(t, dx) , t ≥ 0. (3.4)

Now we define the exponential continuous time GARCH(p, q) process by specify-
ing the log-volatility process as a continuous time ARMA(q, p−1) process, henceforth
called CARMA(q, p−1) process (see Chapter 1.4 or Brockwell and Marquardt (2005)
for details on CARMA processes). The driving noise process of the CARMA(q, p−1)
process will be defined similarly to (3.3).
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Definition 3.2.1 Let L = (Lt)t≥0 be a zero mean Lévy process with Lévy measure
νL such that

∫
|x|≥1 x

2νL(dx) <∞. Then we define the exponential COGARCH(p, q)

process G, shortly ECOGARCH(p, q), as the stochastic process satisfying,

dGt := σtdLt, t > 0, G0 = 0, (3.5)

where the log-volatility process log(σ2) = (log(σ2
t ))t≥0 is a CARMA(q, p−1) process,

1 ≤ p ≤ q, with mean µ ∈ R and state space representation

log(σ2
t ) := µ+ bTXt−, t > 0 , log(σ2

0) = µ+ bTX0 (3.6)

dXt = AXt + 1qdMt , t > 0 (3.7)

where X0 ∈ Rq is independent of the driving Lévy process L and

Mt :=

∫

R−{0}
h(x)ÑL(t, dx) , t > 0, (3.8)

is a zero mean Lévy process (see Remark 3.2.2) with

h(x) := θx+ γ|x|

and parameters θ, γ ∈ R. The q × q matrix A and the vectors b ∈ Rq and 1q ∈ Rq

are defined by

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−aq −aq−1 −aq−2 · · · −a1



, b =




b1
b2
...

bq−1

bq



, 1q =




0
0
...
0
1




with coefficients a1, . . . , aq, b1, . . . , bp ∈ R, where aq 6= 0, bp 6= 0, and bp+1 = · · · =
bq = 0.

One has to observe that (3.6) implies independence between σ2
t and the jump

∆Lt at time t, i.e. σ2 is left continuous. Returns over a time interval of length r > 0
are described by the increments of G

G
(r)
t := Gt −Gt−r =

∫

(t−r,t]
σs dLs , t ≥ r > 0 . (3.9)

Thus this gives us the possibility to model ultra high frequency data, which consists
of returns over varying time intervals. On the other hand an equidistant sequence

of such non-overlapping returns of length r is given by (G
(r)
ir )i∈N.
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In the rest of the chapter the following terminology will be used:

G log-price process

G(r) log-return process
σ2 volatility process
log(σ2) log-volatility process.

Remark 3.2.2 (i) The process M defined by (3.8) is by construction a process
with independent and stationary increments and by Theorem 4.3.4 in Applebaum
(2004) well defined if

∫

R

|h(x)|2νL(dx) <∞ . (3.10)

Condition (3.10) is satisfied since νL is a Lévy measure and L has finite variance.
By equation (2.9) of Applebaum (2004) the characteristic function of M at time
t ≥ 0 is given by

E(eiuMt) = exp

(
t

∫

R

[eiux − 1 − iux]νM (dx)

)

= exp

(
t

{
iuγM +

∫

R

[eiux − 1 − iuxχ(−1,1)(x)]νM (dx)

})

=: exp(tψM (u)) ,

where νM := νL ◦ h−1 is the Lévy measure of M and γM := −
∫
|x|>1 xνM (dx). The

precise form of νM depends on the sign and size of θ and γ and is given in the
following:

νM ((−∞,−x]) =






νL([− x
θ+γ ,∞)) + νL((−∞,− x

θ−γ ]) , γ < θ < −γ
νL((−∞,− x

θ−γ ]) , −θ < γ < θ

νL([− x
θ+γ ,∞)) , θ < γ < −θ

0 −γ < θ < γ

and

νM ([x,∞)) =






νL([ x
θ+γ ,∞)) + νL((−∞, x

θ−γ ]) , −γ < θ < γ

νL((−∞, x
θ−γ ]) , θ < γ < −θ

νL([ x
θ+γ ,∞)) , −θ < γ < θ

0 γ < θ < −γ

for each x > 0. One recognises that for θ + γ < 0 ∨ θ − γ > 0 M is a spectrally
negative Lévy process, i.e. M has only negative jumps, and for θ+γ > 0 ∨ θ−γ < 0
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M is a spectrally positive Lévy process. Therefore M has the characteristic triplet
(γM , 0, νM ).
(ii) The model can of course also be defined for a different choice of h, as long as
condition (3.10) is satisfied.
(iii) In case the jump part of L is of finite variation M is a Lévy process of finite
variation with Lévy-Itô decomposition

Mt :=
∑

0≤s≤t

[θ∆Ls + γ|∆Ls|] − Ct , t > 0,

where C := γ
∫

R
|x|νL(dx).

Proposition 3.2.3 Let σ2 and G be as in Definition 3.2.1, with θ and γ not both
equal to zero. If the eigenvalues of A all have negative real parts and X0 has the
same distribution as

∫∞
0 eAu1qdMu, then log(σ2) and σ2 are strictly stationary.

Proof: The strict stationarity of log(σ2) follows from Proposition 2 in Brockwell
and Marquardt (2005), since it is a CARMA(q, p−1) process. Since strict stationarity
is invariant under continuous transformations, σ2 also has this property. 2

Remark 3.2.4 The solution of the continuous time state space model (3.6) and
(3.7) has the representation

log(σ2
t+) = µ+ bT eAtX0 +

∫ t

0
bT eA(t−u)1qdMu, t > 0.

Using the two-sided Lévy process L∗, defined in (1.17), instead of L in (3.8) we
get an extension M∗ of M . In the following we will write for simplicity L and M
instead of L∗ and M∗. In the strictly stationary case the log-volatility process can be
defined on the whole real line

log(σ2
t+) = µ+

∫ t

−∞
g(t− u)dMu, t ∈ R, (3.11)

with kernel function

g(t) = bT eAt1qχ(0,∞)(t) (3.12)

(see also Chapter 1.4).

From (3.9) it follows directly that the increments G(r)
. =

∫
(·−r,·] σsdLs of G are

stationary if the volatility σ2 is stationary, since the increments of L are stationary
and independent by definition.

Corollary 3.2.5

If σ2 is strictly stationary, then G has strictly stationary increments.
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Remark 3.2.6 (i) If q ≥ p+1 the log-volatility process is (q− p− 1) times differ-
entiable, which follows from the state space representation (3.7) and (3.6) of log(σ2),
and hence the volatility process has continuous sample path. In particular the volatil-
ity will only contain jumps for p = q.
(ii) The volatility of the ECOGARCH(p, q) process is positive by definition. There-
fore the parameters do not need to satisfy any constraints to assure positivity of the
volatility. This is not the case for the COGARCH(p, q) model. For higher order
COGARCH(p, q) processes these condition become quite difficult to check (see The-
orem 5.1 in Brockwell et al. (2006)).

Example 3.2.7 As a first illustrative example we consider an ECOGARCH(1, 1)
process driven by a Lévy process L with Lévy symbol

ψL(u) = −u
2

2
+

∫

R

(eiux − 1)λΦ0,1/λ(dx) ,

where Φ0,1/λ(·) is the distribution function of a normal distribution with mean 0 and
variance 1/λ. This means that L is the sum of a standard Brownian motion W and

the compound Poisson process Jt =
∑Nt

k=1 Zk , J−t =
∑−N−t

k=1 Z−k , t ≥ 0, where
(Nt)t∈R is an independent Poisson process with intensity λ > 0 and jump times
(Tk)k∈Z. The Poisson process N is also independent from the i.i.d. sequence of jump
sizes (Zk)k∈Z, with Z1 ∼ N(0, 1/λ). The Lévy process M is in this case given by the
following expression

Mt =

Nt∑

k=1

[θZk + γ|Zk|] − Ct , t > 0,

with C = γ
∫

R
|x|λΦ0,1/λ(dx) =

√
2λ
π γ. M−t, t ≥ 0 is defined analogously. If we just

consider the case that θ < −γ < 0 then the Lévymeasure νM of M is defined by

νM ((−∞,−x]) = λΦ0,1/λ([− x

θ + γ
,∞)) , x > 0,

on the negative half real line and by

νM ([x,∞)) = λΦ0,1/λ((−∞,
x

θ − γ
]) , x > 0,

on the positive half real line. In the top row of Figure 3.1 a simulated sample path of
the compound Poisson process J , with N(0, 1/2) distributed jumps, can be seen over
three time scales. The corresponding Lévy process M , with parameters θ = −0.2
and γ = 0.1, can be seen in the bottom row. Over all three time intervals one can
recognise the desired asymmetry for this set of parameters. If J jumps up, then M
jumps down and vice versa. If J does not move, then one observes the downwards



Exponential continuous time GARCH process 71

0 1000 2000 3000
−50

−40

−30

−20

−10

0

10

20

30

0 1000 2000 3000
−4

−2

0

2

4

6

8

10

12

1000 1200 1400 1600 1800 2000

−30

−20

−10

0

10

20

2600 2610 2620 2630 2640
−33

−32

−31

−30

−29

−28

−27

−26

1000 1200 1400 1600 1800 2000
−4

−2

0

2

4

6

8

10

2600 2610 2620 2630 2640
6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8

J
t

M
t

Figure 3.1: Simulated sample pathes of J (top row ) and M (bottom row ), with
parameters θ = −0.2 and γ = 0.1, over three different time scales.

drift of M , which can bee seen on the right hand side of Figure 3.1.

The log-volatility process is then of the form

log(σ2
t+) = µ+

∫ t

−∞
b1e

−a1(t−s)dMs

= µ+

Nt∑

k=−∞

k 6=0

b1e
−a1(t−Tk)[θZk + γ|Zk|] − C

b1
a1
, t > 0

and the log-price process is given by

Gt =

∫ t

0
σsdWs +

Nt∑

k=1

σTk
Zk , t > 0, G0 = 0 .

with jump times Tk, k ∈ N.

The simulation of a sample path of the log-price process G and the log-volatility
process log(σ2) over a time interval [0, T ] is done in the following steps.

(1) Choose observation times 0 = t0 < t1 < · · · < tn ≤ T , possibly random.

(2) Simulate the jump times (Tk), k = 1, . . . , nT , with nT := max{k ∈ N : Tk ≤
T}, of the compound Poisson process J .

(3) Approximate the state process (3.7) of the log-volatility by a stochastic Euler
scheme.
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(4) Compute an approximation Ĝ via the recursion

Ĝti = Ĝti−1 + σti−1−W̃i +

Nti∑

k=Nti−1
+1

√
exp{µ+ bT X̂Tk−}Zk,

where W̃i ∼ N(0, ti − ti−1) and X̂Tk− is the Euler approximation without the
jump ∆MTk

.

In Figure 3.2 the results of the above simulation procedure are shown. The jump
rate λ is now chosen to be 1/4, which implies a variance of the jump sizes Zi of 4.
For exponentially distributed interarrival times ∆ti := ti−ti−1 ∼ expo(1) the sample
path of the log-price G, the return process G(∆t.) and the volatility process σ2 are
displayed in the first three rows of Figure 3.2. The sample path of the driving Lévy
process L is shown in the last row. From the plots of the return and volatility process
we see the negative correlation between the two processes. We recognise increases in
the volatility after large negative returns.

Mixing properties (see Doukhan (1994) for a comprehensive treatment of mixing
properties) are useful for a number of applications. In particular for asymptotic
statistics, since central limit theorems exist for mixing processes. Thus we will derive
mixing properties of the strictly stationary volatility process and the return process
over equidistant time intervals. We will need the concept of strong mixing (see
Definition 1.4.6) and α̃-mixing (see Definition 2.3.1).

From Lemma 2.3.2 we know that any α-mixing property is equivalent to the
corresponding α̃-mixing property. This fact will be used in Theorem 3.2.9 to show

that (G
(r)
nr )n∈N is α-mixing. The strong mixing property with exponential rate of the

log-volatility and volatility process is the subject of the next proposition. Thereby
strongly mixing with exponential rate (exponentially α-mixing) means that α(t)
decays to zero exponentially fast for t→ ∞ .

Proposition 3.2.8 Let log(σ2) be defined by (3.6) and (3.7) with θ and γ not both
equal to zero. Assume that E(L2

1) < ∞, the eigenvalues of A all have negative real
parts and X0 has the same distribution as

∫∞
0 eAu1qdMu, so that log(σ2) and σ2 are

strictly stationary. Then there exist constants K > 0 and a > 0 such that

αlog(σ2)(t) ≤ K · e−at and ασ2(t) ≤ K · e−at , as t→ ∞, (3.13)

where αlog(σ2)(t) and ασ2(t) are the α-mixing coefficients of the log-volatility and
volatility process, respectively.

Proof: The log-volatility process is a CARMA(q, p−1) process and hence the mixing
property follows from Proposition 1.4.7. The property of α-mixing is invariant under
continuous transformations, which implies that σ2 also has this property. 2
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Figure 3.2: Observations of the log-price process Gt (top row), the return process

G
(r)
t (second row), the volatility process σ2

t (third row), with parameters b1 = 1, a1 =
0.1, µ = −4, θ = −0.2 and γ = 0.1 and the driving Lévy process Lt (last row) in the
time interval 0, 700].

Theorem 3.2.9 Assume that L is a Lévy process with finite variance. Let the
volatility process σ2 be strictly stationary and strongly mixing under P. Then the

discrete time process (G
(r)
ir )i∈N,

G
(r)
ir := Gir −G(i−1)r =

∫

((i−1)r,ir]
σs dLs , i ∈ N ,

is strongly mixing with geometric rate and since strict stationarity of σ2 implies

strict stationarity of (G
(r)
ir )i∈N also ergodic.

Proof: Consider the q-dimensional OU process V defined in the proof of Proposi-
tion 1.4.7 corresponding to the log-volatility process. Equation (1.43) shows that V

is a Markov process. The process V is also strictly stationary and α̃-mixing, since
α-mixing and α̃-mixing are equivalent. The same is true for the q-dimensional pro-
cess σ2 := (exp(V 1), . . . , exp(V q)), since both mixing properties are invariant under
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continuous transformations. Now define the discrete time q-dimensional process

G
(r)
ir =

∫

((i−1)r,ir]

√
σ2

sdLs , i ∈ N , (3.14)

which is also strictly stationary under P. Here we should mention that the integration
of vectors in (3.14) is understood componentwise.

Define the σ-algebra FdL
I := σ(Lt − Ls : s, t ∈ I) for I ⊂ R. Further we denote

the σ-algebra generated by the volatility process and the increments of L over the

interval [0, t] by Fσ2,dL
[0,t] := σ((σ2

s)s∈[0,t]) ∨ FdL
[0,t].

From FG
(r)

{1,2,...,l} ⊂ Fσ2,dL
[0,lr] and FG

(r)

{k+l,k+l+1,...} ⊂ Fσ2,dL
[(k+l−1)r,∞) we get that

α̃
G(r)(k) = sup

{
‖E(f |FG

(r)

{1,2,...,l}) − E(f)‖L1(P ) :

f ∈ bFG
(r)

{k+l,k+l+1,...}, l ∈ N, ‖f‖∞ ≤ 1
}

≤ sup
{
‖E(f |Fσ2,dL

[0,lr] ) − E(f)‖L1(P ) : f ∈ bFσ2,dL
[(k+l−1)r,∞), l ∈ N, ‖f‖∞ ≤ 1

}

= sup
{
‖E(f |Fσ2,dL

[0,lr] ) − E(f)‖L1(P ) :

f ∈ bFσ2

(k+l−1)r ∨ bFdL
[(k+l−1)r,∞), l ∈ N, ‖f‖∞ ≤ 1

}

= sup
{
‖E(f |Fσ2

[0,lr]) − E(f)‖L1(P ) :

f ∈ bFσ2

(k+l−1)r ∨ bFdL
[(k+l−1)r,∞), l ∈ N, ‖f‖∞ ≤ 1

}

= sup
{
‖E(f |Fσ2

[0,lr]) − E(f)‖L1(P ) :

f ∈ bFσ2

(k+l−1)r ∨ bFdM
[(k+l−1)r,∞), l ∈ N, ‖f‖∞ ≤ 1

}

= α̃σ2((k − 1)r)

for any k ∈ N. The second equality is due to the fact that the driving process of σ2

is defined through the jumps of L. FdL
[0,lr] and bFσ2

(k+l−1)r ∨ bFdL
[(k+l−1)r,∞) are condi-

tionally independent given Fσ2

[0,lr], which is due to the Markov property of σ2 and

the independence between FdL
[0,lr] and bFdL

[(k+l−1)r,∞). This shows the third equality.

The fourth one follows from the independence of bFdL
[(k+l−1)r,∞) and bFdM

[(k+l−1)r,∞)

from Fσ2

[0,lr] and again the Markov property of σ2, whereas the last one is due to the

fact that M is the driving process of σ2.

Therefore (G
(r)
nr )n∈N is α̃-mixing and by Lemma 2.3.2 also strongly mixing. The

strict stationarity of (G
(r)
nr )n∈N implies that it is also ergodic. Since both properties

have to hold componentwise, we have shown that (G
(r)
nr )n∈N as the first component of

(G
(r)
nr )n∈N is strongly mixing and ergodic. From Lemma 2.3.2 and (3.13) we further
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get that

αG(r)(k) ≤ 6ασ2((k − 1)r) ≤ 6Ke−a(k−1)r ,

as k → ∞. Hence (G
(r)
nr )n∈N is strongly mixing with exponential rate and ergodicity

follows from the strict stationarity. 2

3.3 Second order properties of the volatility process

In this section we derive moments and the autocovariance function of the volatility
process σ2. Since it is a non-linear transformation of a CARMA(q, p − 1) process,
we will first recall the moment structure and conditions for weak stationarity of a
CARMA(q, p − 1) process.

Proposition 3.3.1 If X0 has the same mean vector and covariance matrix as∫∞
0 eAu1qdMu, then log(σ2) is weakly stationary. In the weakly stationary case the

mean and autocovariance function of log(σ2) are given by

E(log(σ2
t )) = µ and Cov(log(σ2

t+h), log(σ2
t )) = E(M2

1 )bT eAhΣb , h, t ≥ 0,

where Σ :=
∫∞
0 eAs1q1q

T eA
T sds.

The results follow immediately from the fact that the log-volatility process is a
CARMA(q, p − 1) process, cf. Proposition 1.4.2.

The moments of the strictly stationary volatility process are exponential mo-
ments of the limit distribution of the log-volatility process. In Proposition 3.2.3 we
gave conditions for the existence of a stationary distribution F of the log-volatility
process. In the following proposition we want to further characterise this distribu-
tion.

Proposition 3.3.2 Let (γM , 0, νM ) be the characteristic triplet of the Lévy process
M , where M is defined in (3.8), and F is the stationary distribution of the log-
volatility process. Then F is infinitely divisible with characteristic triplet (γ∞, 0, ν∞),
where

γ∞ = µ+

∫ ∞

0
g(s)γMds+

∫ ∞

0

∫

R

g(s)x[χ(−1,1)(g(s)x) − χ(−1,1)(x)]νM (dx)ds

ν∞(B) =

∫ ∞

0

∫

R

χB(g(s)x)νM (dx)ds, B ∈ B(R) ,
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with g(s) = bT eAs1qχ(0,∞)(s). Let log(σ2
∞) be a random variable with distribution

F , then the characteristic function of log(σ2
∞) can be written as

E(eiu log(σ2
∞)) = exp {ψ∞(u)}

= exp

{
iuγ∞ +

∫

R

(
eiux − 1 − iuxχ(−1,1)(x)

)
ν∞(dx)

}

= exp

{
iuµ+

∫ ∞

0
ψM (g(s)u)ds

}
.

Proof: In the strictly stationary case the log-volatility process is the continuous
time moving average process (3.11). Since M has finite variance the kernel g and
the driving Lévy process M satisfy the conditions in Theorem 2.7 in Rajput and
Rosiński (1989). Therefore the stationary distribution F of the log-volatility process
is infinitely divisible with characteristic triplet (γ∞, 0, ν∞). The third equality in the
representation of the characteristic function follows from the fact that

∫
R
h(y)ν∞(dy) =

∫∞
0

∫
R
h(g(s)x)νM (dx)ds

for all h integrable with respect to ν∞ (see e.g. Theorem 41 in Rocha-Arteaga and
Sato (2003)). 2

Since the stationary distribution F of the log-volatility process is infinitely di-
visible, we can now apply Theorem 25.17 of Sato (1999) to calculate the exponential
moments of log(σ2

∞), i.e. the moments of σ2
∞, in the next Proposition.

Proposition 3.3.3 Let F be the stationary distribution of log(σ2) with character-
istic triplet (γ∞, 0, ν∞). Then the k-th moment of σ2

t is finite, if

k ∈ K∞ = {s ∈ R :

∫

|x|>1
esxν∞(dx) <∞} .

In this case

Ψ∞(k) := γ∞k +

∫

R

(
ekx − 1 − kxχ(−1,1)(x)

)
ν∞(dx) , (3.15)

is well defined and

E(σ2k
t ) = eΨ∞(k) , ∀ t ≥ 0 . (3.16)

Proof: The k-th exponential moment of a Lévy process (Xt)t≥0 is computed in
Theorem 25.17 of Sato (1999). Hence we can apply the Theorem for a Lévy process
X with infinitely divisible distribution F at time one to get the k-th exponential
moment of log(σ2

t ). It is then given by

E(exp(log(σ2
t ))

k) = eΨ∞(k) , ∀ t ≥ 0 ,

with Ψ∞(k) = γ∞k +
∫

R

(
ekx − 1 − kxχ(−1,1)(x)

)
ν∞(dx) (see equation (25.11) in

Sato (1999)). 2
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Proposition 3.3.4 Let log(σ2
t ) be the strictly stationary solution of (3.6) and (3.7).

Assume that E(σ4
t ) < ∞ for all t ≥ 0. Let Ψh

∞(1) and Ψh(1) be defined by (3.15)
with kernel function g replaced by

gh
∞(s) = bT (Iq + eAh)eAs1q and gh(s) = bT eAs1qχ(0,h)(s),

respectively. Then the autocovariance function of σ2 is given by the following expres-
sion

Cov(σ2
t+h, σ

2
t ) = eΨ

h
∞(1)eΨ

h(1) − e2Ψ∞(1) , h > 0, t ≥ 0 . (3.17)

Proof: Let FM
t = σ(Ms ,−∞ < s ≤ t) be the σ-algebra generated by the Lévy

process M up to time t, then

E(σ2
t+h|FM

t )

= E

(
exp

{∫ t+h

−∞
g(t+ h− s)dMs

} ∣∣∣∣FM
t

)

= exp

{
µ+

∫ t

−∞
bT eAheA(t−s)1qdMs

}
E

(
exp

{∫ t+h

t
g(t+ h− s)dMs

})
.

Therefore we get

E(σ2
t+hσ

2
t ) = E(E(σ2

t+hσ
2
t |FM

t )) = E(σ2
t E(σ2

t+h|FM
t ))

= E

(
σ2

t exp

{
µ+

∫ t

−∞
bT eAheA(t−s)1qdMs

}
E

(
e

R t+h
t g(t+h−s)dMs

))

= E

(
exp

{
2µ+

∫ t

−∞
bT (Iq + eAh)eA(t−s)1qdMs

})
E

(
e

R h
0 g(s)dMs

)

= E

(
exp

{
µ+

∫ ∞

0
bT (Iq + eAh)eAs1qdMs

})

×E

(
exp

{
µ+

∫ ∞

0
bT eAs1qχ(0,h)(s)dMs

})

= eΨ
h
∞(1)eΨ

h(1) ,

where the last equality follows from (3.16) when we substitute the kernel g in (3.11)
by gh

∞(s) and gh, respectively. This together with (3.16) yields (3.17). 2

Remark 3.3.5 In Proposition 3.2.8 we have seen that the volatility process is strong-
ly mixing with exponential rate. A consequence of this property (see e.g. Chapter 1.2.2
in Doukhan (1994)) is that

|Cov(σ2
t+h, σ

2
t )| ≤ Kσ · e−ah , ∀ h > 0 , (3.18)

for some constant Kσ > 0. In particular this means that the autocovariance function
of the volatility process will decay to zero at an exponential rate, thus σ2 is a short
memory process (cf. Remark 1.4.8).
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3.4 Second order properties of the return process

In this section we will first derive the moment structure of the return process

G
(r)
t := Gt −Gt−r =

∫

(t−r,t]
σs dLs , t ≥ r > 0 .

We will only consider the case of a strictly stationary volatility process. Afterwards
we discuss the leverage effect for our model.

3.4.1 Moments and autocovariance function of the return process

Proposition 3.4.1 Let L be a Lévy process with E(L1) = 0 and E(L2
1) < ∞.

Assume that the volatility process σ2 is strictly stationary with finite mean. Then
E(G2

t ) <∞ for all t ≥ 0, and for every t, h ≥ r > 0 it holds

EG
(r)
t = 0 (3.19)

E(G
(r)
t )2 = eΨ∞(1)rE(L2

1) (3.20)

Cov(G
(r)
t , G

(r)
t+h) = 0. (3.21)

If further E(L4
1) < ∞ and the volatility process has finite second moment, then

E(G4
t ) <∞ for all t ≥ 0 and for every t, h ≥ r > 0 we have

Cov((G
(r)
t )2, (G

(r)
t+h)2) = E(L2

1)

∫ h+r

h
Cov(G2

r , σ
2
s)ds . (3.22)

Proof: The proof of (3.19) - (3.21) is analogously to the proof of Proposition 5.1
in Klüppelberg et al. (2004), but we also present it here for completeness. Since G
is a square integrable martingale, with mean zero, (3.19) follows immediately and
(3.21) follows from the isometry (1.22). Observe that by Itô’s product formula (see
Example 1.2.2) and [G,G]t =

∫ t
0 σ

2
sd[L,L]s we get

G2
t = 2

∫ t

0
Gs−σsdLs +

∫ t

0
σ2

sd[L,L]s , t ≥ 0, (3.23)

where [L,L]t = [L,L]ct +
∑

0≤s≤t(∆Ls)
2 = σ2

Lt+
∑

0≤s≤t(∆Ls)
2. Application of the

compensation formula (see Proposition A.17) now yields

E(G2
r) = 2E

∫ r

0
Gs−σsdLs + E

∫ r

0
σ2

sd[L,L]s

=

∫ r

0
E(σ2

s)σ
2
Lds + E

∑

0≤s≤r

σ2
s(∆Ls)

2

= eΨ∞(1)r(σ2
L +

∫

R

x2νL(dx))
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which is finite under the assumptions E(L2
1) <∞ and 1 ∈ K∞ and equal to (3.20).

The martingale property and square integrability of G also implies

E((G(r)
r )2(G

(r)
h+r)

2) = E(G2
r(Gh+r −Gh)2) = E(G2

r(G
2
h+r −G2

h)) .

Using this result, (3.23) and the compensation formula we get

E((G(r)
r )2(G

(r)
h+r)

2) = E

(
2

∫ h+r

h
G2

rGs−σsdLs +

∫ h+r

h
G2

rσ
2
sd[L,L]s

)

= E

(∫ h+r

h
G2

rσ
2
sd[L,L]s

)

=

∫ h+r

h
E(G2

rσ
2
s)σ

2
Lds+

∫ h+r

h
E(G2

rσ
2
s)ds

∫

R

x2νL(dx)

= E(L2
1)

∫ h+r

h
E(G2

rσ
2
s)ds

Hence the covariance is equal to

Cov((G(r)
r )2(G

(r)
h+r)

2) = E((G
(r)
0 )2(G

(r)
h )2) − (E(G

(r)
t )2)2

= E(L2
1)

∫ h+r

h

(
Cov(G2

r , σ
2
s) + E(G2

r)E(σ2
s)
)
ds− (E(G

(r)
t )2)2

= E(L2
1)

∫ h+r

h
Cov(G2

r , σ
2
s)ds .

The covariance is finite if E(G4
t ) < ∞, ∀ t ≥ 0, and this follows with E(L4

1) < ∞
and 2 ∈ K∞ analogously as in Proposition 1.5.1. 2

Example 3.4.2 Let us consider again Example 3.2.7. From 50 000 equidistant ob-
servations of the simulated log-price we computed the empirical autocorrelation func-
tion of the returns and squared returns. In Figure 3.3 the first 40 lags of both empir-
ical autocorrelation functions are shown. One recognises the GARCH like behaviour
of zero correlation of the returns and significant correlation of the squared returns.

In the next Proposition we want to consider the special case that p = q = 1.
Under a further assumption on the mapping h, which has not to be the standard
choice of Definition 3.2.1, and the Lévy measure νL we can express the covariance
of the squared returns in terms of the covariance of the actual volatility

σ2(h) :=

∫ h+r

0
σ2

sds −
∫ h

0
σ2

sds , h ≥ r .
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Figure 3.3: The first 40 lags of the empirical autocorrelation function of the return
(left) and squared return (right) process.

Proposition 3.4.3 Let p = q = 1 and assume that the mapping h satisfies (3.10)
and additionally

∫
R
x
{
exp(b1e

−a1th(x)) − 1
}
νL(dx) = 0 for all t ≥ 0. Then under

the same conditions as in Proposition 3.4.1 we get

Cov((G
(r)
t )2, (G

(r)
t+h)2) = (E(L2

1))
2Cov(σ2(h), σ2(0)) .

Proof: From the proof of Proposition 3.4.1 we know that

Cov((G
(r)
t )2, (G

(r)
t+h)2) = E(L2

1)

∫ h+r

h
E(G2

rσ
2
s)ds− (rE(L2

1)E(σ2
1))

2

= E(L2
1)E

(∫ h+r

h

{
2

∫ r

0
Gu−σudLu +

∫ r

0
σ2

ud[L,L]u

}
σ2

sds

)
− (rE(L2

1)E(σ2
1))

2 .

Hence the result follows if we can show that E(
∫ r
0 Gu−σuσ

2
sdLu) = 0, for all

s > r, since

E

(∫ h+r

h

∫ r

0
σ2

uσ
2
sd[L,L]uds

)
= (E(L2

1))E(σ2(h)σ2(0)) .

Define Yt :=
∫ t
0 Gu−σudLu, t ≥ 0, and σ̃2

s,t := exp(b1e
−a1(s−t)Xt) for all t ∈ [0, s),

where X is the state process (3.7). Then

E(Yrσ
2
s) = E(Yrσ̃

2
s,r+)E(exp(

∫ s

r
b1e

−a1(s−u)dMu))

and we have to show E(Yrσ̃
2
s,r+) = 0. An application of Itô ’s formula (see Theorem

1.2.1) and substituting from (3.7) yields

σ̃2
s,r+ = σ̃2

s,0 +

∫ r

0

∫

R−{0}
σ̃2

s,ub1e
−a1(s−u)h(x)ÑL(du, dx)

+

∫ r

0

∫

R−{0}
σ̃2

s,u

{
exp(b1e

−a1(s−u)h(x)) − 1 − b1e
−a1(s−u)h(x)

}
NL(du, dx) .



Exponential continuous time GARCH process 81

Using this representation, integration by parts and taking expectation gives

E(Yrσ̃
2
s,r+) =
∫ r

0

∫

R

E(Yu−σ̃
2
s,u)

{
exp(b1e

−a1(s−u)h(x)) − 1 − b1e
−a1(s−u)h(x)

}
νL(dx)du

+

∫ r

0

∫

R

E(σ̃2
s,uGu−σu)x

{
exp(b1e

−a1(s−u)h(x)) − 1
}
νL(dx)du

=

∫ r

0

∫

R

E(Yuσ̃
2
s,u+)

{
exp(b1e

−a1(s−u)h(x)) − 1 − b1e
−a1(s−u)h(x)

}
νL(dx)du ,

where we used
∫

R
x
{
exp(b1e

−a1th(x)) − 1
}
νL(dx) = 0 and Yu−σ̃

2
s,u = Yuσ̃

2
s,u+ al-

most surely for fixed u. Solving this linear integral equation with initial condition
E(Y0σ̃

2
s,0+) = 0, it follows that E(Yrσ̃

2
s,r+) = 0 for all r ≥ 0 is the only solution. 2

Remark 3.4.4 In Theorem 3.2.9 we have seen that (G
(r)
nr )n∈N is strongly mixing

with exponential rate. A consequence of this property (see e.g. Chapter 1.2.2 in
Doukhan (1994)) is that there exists a constant KG > 0 such that

|Cov((G
(r)
(n+h)r)

2, (G(r)
nr )2)| ≤ KG · e−ah , ∀ h > 0 . (3.24)

In particular this means that the autocovariance function of the squared returns will
decay to zero at an exponential rate, thus (G(r))2 is a short memory process (cf.
Remark 1.4.8).

3.4.2 Leverage effect

In empirical return data researchers have found evidence (see e.g. Section 1 in Nelson
(1990)) that current returns are negatively correlated with future volatility. This
means that a negative shock increases the future volatility more than a positive one
or increases it while a positive one even decreases the volatility. This phenomenon
is called leverage effect in the literature.

If we take a look at the shocks of the state process X in the ECOGARCH(p, q)
model

∆Mt =

{
(θ + γ)∆Lt, ∆Lt ≥ 0
(θ − γ)∆Lt, ∆Lt < 0

,

we see that:

(i) a positive shock in the return data increases X less (more) than a negative one
for −γ < θ < 0 (0 < θ < γ), while a negative one decreases it for θ > |γ|.

(ii) a positive shock in the return data decreases X less (more) than a negative
one for 0 < θ < −γ (γ < θ < 0), while a negative one increases it for θ < −|γ|.



82 Exponential COGARCH and other continuous time models

If we compare this to the COGARCH(p, q) process, we see that in the COGARCH
model the innovations of the volatility process at time t are given by the squared
innovations of the log-price process (see Section 2 of Brockwell et al. (2006)). Hence
the volatility process of the COGARCH model reacts in the same way to positive
and negative shocks. But remember that this can be changed as e.g. explained in
Chapter 2.6. We will consider now an instantaneous leverage effect, which is defined
as

Cov(∆Gt, σ
2
t+ | |∆Lt| > ǫ)

being negative. Intuitively it is clear that this correlation can be different from zero
only if the sample path of σ2 can have jumps. But from Remark 3.2.6 (i) we know
that this is the case only if p = q. The reason is that for p < q the parameter bq
will be zero and therefore the jump ∆Lt at time t just contributes to the (q − 1)th
derivative of the state process X, but is not taken into account for the log-volatility
at that time point. Thus we will expect an instantaneous leverage effect only for the
ECOGARCH(p, p) models. This will be shown in the next proposition, in particular
we will show that the sign of the correlation is equal to the sign of θbq. This result is
similar to the discrete time case (see Proposition 2.9 in Surgailis and Viano (2002)).

Proposition 3.4.5 Assume that the distribution of the jumps of L is symmetric,
i.e. for all ǫ > 0,

P(∆Lt ∈ dx| |∆Lt| > ǫ) = P(∆Lt ∈ −dx| |∆Lt| > ǫ), t ≥ 0.

Conditionally on the event that |∆Lt| > ǫ, the sign of Cov(∆Gt, σ
2
t+) is equal to the

sign of θbq.

Proof: Since the distribution of the jumps of L is symmetric we get

Cov(∆Gt, σ
2
t+ | |∆Lt| > ǫ)

= E(∆Gtσ
2
t+ | |∆Lt| > ǫ) − E(∆Gt | |∆Lt| > ǫ)E(σ2

t+ | |∆Lt| > ǫ)

= E(∆Gtσ
2
t+| |∆Lt| > ǫ) − E(σt)E(∆Lt | |∆Lt| > ǫ)E(σ2

t+ | |∆Lt| > ǫ)

= E(∆Gtσ
2
t+| |∆Lt| > ǫ) − E(σt)

(∫

x>ǫ
xP(∆Lt ∈ dx| |∆Lt| > ǫ)

−
∫

x>ǫ
xP(∆Lt ∈ dx| |∆Lt| > ǫ)

)
E(σ2

t+ | |∆Lt| > ǫ)

= E

(
∆Gte

log(σ2
t )+bq∆Mt

∣∣∣ |∆Lt| > ǫ
)

= E
(
σ3

t ∆Lt exp{bq(θ∆Lt + γ|∆Lt|)} | |∆Lt| > ǫ
)
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Since ∆Lt is independent of σ3
t we get

Cov(∆Gt, σ
2
t+| |∆Lt| > ǫ)

= E(σ3
t )E(∆Lt exp {bq(θ∆Lt+ γ|∆Lt|)} | |∆Lt| > ǫ)

= E(σ3
t )

∫

x>ǫ
x exp(bqγx)(exp(θbqx) − exp(−θbqx))P (∆Lt ∈ dx| |∆Lt| > ǫ) .

From sgn(exp(θbqx)−exp(−θbqx)) = sgn(θbq) for all x > ǫ the desired result follows.
2



Chapter 4

QMLE of compound Poisson
ECOGARCH(1, 1)

A first step in estimating the ECOGARCH process will be taken in this chapter.
We will restrict ourselves to the compound Poisson ECOGARCH(1, 1) process and
introduce a quasi maximum likelihood estimator. It will be derived under the as-
sumption of full observations of the sample path, i.e. observation of every jump.
Since the jump points are a series of unequally spaced time points it is clear that
the estimation can and in fact should be done for irregularly spaced data.

4.1 Quasi MLE of compound Poisson ECOGARCH(1, 1)

We consider an ECOGARCH(1, 1) process driven by a compound Poisson process
L with Lévy symbol

ψL(u) =

∫

R

(eiux − 1)λF0,1/λ(dx) ,

where F0,1/λ(·) is a distribution function with mean 0 and variance 1/λ. Hence
the mean and variance of L are independent of λ and given by E(Lt) = 0 and
Var(Lt) = t, respectively. This means L has representation Lt =

∑Jt
k=1 Zk, t > 0,

L0 = 0, where (Jt)t≥0 is an independent Poisson process with intensity λ > 0
and jump times (tk)k∈N. The Poisson process J is also independent from the i.i.d.
sequence of jump sizes (Zk)k∈N, with distribution function F0,1/λ. The Lévy process
M , defined in (3.8), is in this case also a compound Poisson process and given by
the following expression

Mt =

Jt∑

k=1

[θZk + γ|Zk|] − γλKt , t > 0,

84
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with K =
∫

R
|x|F0,1/λ(dx). The log-volatility process at time t is then of the form

log(σ2
t ) = µ+ b1Xt− = µ+ b1e

−a1tX0 +

∫ t−

0
b1e

−a1(t−s)dMs

= µ+ b1e
−a1tX0 +

Jt−∑

k=1

b1e
−a1(t−tk)[θZk + γ|Zk|]

−γλK b1
a1

(1 − e−a1t) , t > 0

and from (3.5) it follows that the log-price process is given by

Gt =

Jt∑

k=1

σtkZk , t > 0, G0 = 0 ,

with jump times tk, k ∈ N. Note that log(σ2
t ) does not include a possible jump

∆Lt = ZJt at time t, while the log-price Gt includes such a jump.

We assume now that we observe G at n consecutive jump times 0 = t0 < t1 <
· · · < tn < T < tn+1, n ∈ N, over the time interval [0, T ]. The state process X has
then the following autoregressive representation

b1Xti = b1e
−a1∆tiXti−1 +

Jti∑

k=Jti−1+1

b1e
−a1(ti−tk)[θZk + γ|Zk|]

−γλ
∫ ti

ti−1

b1e
−a1(ti−s)Kds

= b1e
−a1∆tiXti−1 + b1θZi + b1γ

(
|Zi| −

λK

a1
(1 − e−a1∆ti)

)
, (4.1)

where ∆ti := ti − ti−1, i = 1, . . . , n. Here we used Jti−1 + 1 = Jti = i. This implies
that the left-hand limit is

b1Xti− = b1e
−a1∆tiXti−1 − b1γ

λK

a1
(1 − e−a1∆ti) ,

since Xti− does not include the jump at time ti and its corresponding jump size Zi.
Thus the log-volatility process at the jump times 0 = t0 < t1 < · · · < tn is given by

log(σ2
ti) = µ+ b1e

−a1∆tiXti−1 − b1γ
λK

a1
(1 − e−a1∆ti) . (4.2)



86 Exponential COGARCH and other continuous time models

Since b1 serves only as a scaling coefficient it will be set equal to one for identifiability
reasons from now on. The observations of the log-price process are given by

Gti =

Jti∑

k=1

σtkZk = Gti−1 + σtiZi . (4.3)

Hence the return at time ti is equal to G∆ti
ti

= σtiZi . Observe that σti is independent
of Zi for each i = 1, . . . , n.

The parameter estimation is done in two steps. The rate λ of the Poisson process
J can be estimated given only the jump times ti, therefore this is done in a first
step. Since we observe the total number n of jumps for the Poisson process J over
T intervals of length one the MLE of λ is given by

λ̂n :=
n

T
.

To estimate the remaining parameters ϑ := (a1, θ, γ, µ) we use similar ideas as
in the discrete time case to solve the parameter estimation problem. Quasi maxi-
mum likelihood estimation in discrete time conditionally heteroscedastic time series
models is e.g. explained in Straumann (2005).

Consider the following decomposition of the conditional log-likelihood given the
initial value X0

log ρϑ(G∆t1
t1 , . . . , G∆tn

tn |X0) =

n∑

i=1

log ρϑ(G∆ti
ti

|G∆ti−1

ti−1
, . . . , G∆t1

t1 ,X0) ,

where we assume that G∆ti
ti

given G
∆ti−1

ti−1
, . . . , G∆t1

t1 ,X0 is conditionally normal dis-

tributed with mean zero and variance σ2
ti/λ. This implies that the conditional log-

likelihood has the representation

log ρϑ(G∆t1
t1 , . . . , G∆tn

tn |X0) = −n
2

log(2π) − 1

2

n∑

i=1

(
log(σ2

ti/λ) − (G∆ti
ti

)2

σ2
ti
/λ

)
. (4.4)

Since the volatility is unobservable (4.4) can not be evaluated numerically. There-
fore we need an approximation of the state process X, which together with (4.2)
gives estimates of σ2

t1 , . . . , σ
2
tn . Given parameters ϑ and λ, an approximation of the

recursion (4.1) is used to compute estimates of the state process X by

X̂ti(ϑ, λ) = e−a1∆tiX̂ti−1(ϑ, λ) + θ
G∆ti

ti

σ̂ti(ϑ, λ)
+ γ

(
|G∆ti

ti
|

σ̂ti(ϑ, λ)
− λK̂∆ti

)
, (4.5)
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i = 1, . . . , n, where K̂ :=
√

2
πλ = E(|W |), W ∼ N(0, 1/λ).

Here we used (1− e−z) ≈ z for z small. The recursion needs a starting value X̂0,
which will be the mean value zero of the stationary distribution of X. (4.5) can be
understood as the log-volatility description in a discrete time EGARCH(1, 1) model
for irregularly spaced data. We work with this approximation since in our numerical
experiences it provided better results than (4.1). This is due to the independence of
a1 from the part compensating the absolute jumps, which is approximated by the
Gaussianity assumption. If we would use (4.1) the optimisation with respect to a1

tries to account for the approximation, which results in convergence problems and
biased estimates of the autoregressive parameter e−a1 .

Recursion (4.5) together with expression (4.2) provides then estimates of the
volatility given by

σ̂2
ti(ϑ, λ) := exp(µ+ e−a1∆tiX̂ti−1(ϑ, λ) − γλK̂∆ti) , i = 1, . . . , n.

Based on the approximation of the volatility we define the quasi log-likelihood
function for ϑ given the data G∆ := (G∆t1

t1 , . . . , G∆tn
tn ) and the MLE λ̂n by

L(ϑ|G∆, λ̂n) := −1

2

n∑

i=1

log(σ̂2
ti(ϑ, λ̂n)) − 1

2

n∑

i=1

(G∆ti
ti

)2

σ̂2
ti
(ϑ, λ̂n)/λ̂n

. (4.6)

Observe that L(ϑ|G∆, λ̂n) does not contain the constant n
2 log(λ̂n/2π), since it does

not affect the optimisation with respect to ϑ.
Maximising the log-likelihood function (4.6) with respect to ϑ over the parameter

space Θ := R × R+ × R2 yields QML estimates

ϑ̂n := arg max
ϑ∈Θ

L(ϑ|G∆, λ̂n) (4.7)

of ϑ. As a byproduct we get a parametric estimator of the volatility. If we first
determine the QMLE ϑ̂n in (4.7) then we can substitute ϑ̂n into (4.5) and get
estimates

σ̂2
ti(ϑ̂n, λ̂n) := exp(µ̂n + e−ban

1 ∆tiX̂ti−1(ϑ̂n, λ̂n) − γ̂nλ̂nK̂∆ti) (4.8)

of the volatility at the jump times t1, . . . , tn based on ϑ̂n = (ân
1 , θ̂n, γ̂n, µ̂n) and λ̂n.

4.2 Simulation study

The small sample behaviour of the QMLE introduced in the last section will be
investigated in a simulation study. In all of the following simulation cases we will
consider a compound Poisson ECOGARCH(1, 1) observed at all jump times ti over
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the time interval [0, 1 500]. The estimates will be computed for 1 000 independent
replications in each case. Since we are able to estimate the volatility by (4.8), an
analysis of the fitted innovations will also be done in one of the simulation examples.

In all of the following cases we have taken the parameter a1 equal to 0.1, the
intensity λ equal to 2 and the mean µ of the log-volatility process will be equal
to −3. This implies that we expect per replication 3 000 observations. The leverage
parameter θ and γ will vary over the examples. In most of the cases θ will be negative
and γ positive, i.e. we model the leverage effect as observed in stock price data. If
−γ < θ < 0, this corresponds to the case where a positive shock in the return data
increases the log-volatility process less than a negative one of the same magnitude.
For θ < −γ < 0 a positive shock decreases the log-volatility, whereas a negative one
increases it. The last example will illustrate the case where a positive shock in the
log-price process increases the log-volatility process more than a negative one. For
the distribution of the innovations Zi we will consider two different cases.

4.2.1 Leverage case with Gaussian jump distribution

First the innovations Zi are normally distributed with mean 0 and variance 1/λ. We

computed the empirical mean (m̂ean), relative bias (r̂bias), and mean squared error

(M̂SE) for all parameter estimates based on 1 000 independent replications. The
corresponding results are summarised in Table 4.1. In the leverage case we observe a
satisfying performance of the QMLE. The relative bias of â1, θ̂ and γ̂ varies between
−0.0361 and 0.0211. over the different parameter sets. For the mean µ̂ of the log-
volatility process a larger relative bias is observed. It also increases for larger values
of γ. Moreover we seem to underestimate µ consistently, shown by a negative bias
in each case. The quality of the separately estimated λ̂ remains of course unchanged
over all parameter settings.

The goodness of fit of our estimation method is further investigated by an analysis
of the fitted innovations for the case, where θ = −0.3 and γ = 0.4. The fitted
innovations are given by Ẑi := G∆ti

ti
/σ̂ti , i = 1, . . . , n. Since our innovations were

normally distributed with mean zero and standard deviation equal to 1/
√

2, we
expect the average 1

n

∑n
i=1 Ẑi of the fitted innovations close to zero, their empirical

standard deviation close to 1/
√

2 and their empirical skewness close to zero. For all

three quantities we computed m̂ean and M̂SE. The results are reported in Table 4.2
and indicate a good fit.

Under the assumption of a correctly estimated volatility the fitted innovations are
a white noise series, in particular the innovations and also the squared innovations
should be uncorrelated. The correlation of the squared innovations was checked by
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Gaussian â1 θ̂ γ̂ µ̂ λ̂

ϑ, λ 0.1000 -0.1000 0.2000 -3.0000 2.0000
m̂ean 0.1021 -0.1007 0.1927 -2.9058 2.0008

(5·10−4) (5·10−4) (6·10−4) (3·10−3) (1·10−3)

r̂bias 0.0211 0.0077 -0.0361 -0.0313 0.0004

M̂SE 0.0003 0.0003 0.0004 0.0161 0.0014
(1·10−5) (1·10−5) (2·10−5) (6·10−4) (6·10−5)

ϑ, λ 0.1000 -0.1800 0.2000 -3.0000 2.0000
m̂ean 0.0979 -0.1797 0.1938 -2.8980 2.0001

(7·10−4) (1·10−3) (6·10−4) (4·10−3) (1·10−3)

r̂bias -0.0202 -0.0016 -0.0310 -0.0339 2·10−5

M̂SE 0.0005 0.0014 0.0004 0.0274 0.0012
(6·10−5) (4·10−4) (2·10−5) (4·10−3) (6·10−5)

ϑ, λ 0.1000 -0.3000 0.2000 -3.0000 2.0000
m̂ean 0.1004 -0.3027 0.1930 -2.8982 2.0000

(3·10−4) (1·10−3) (6·10−4) (4·10−3) (1·10−3)

r̂bias 0.0038 0.0091 -0.0349 -0.0339 1·10−5

M̂SE 0.0001 0.0013 0.0004 0.0290 0.0012
(1·10−5) (5·10−4) (5·10−4) (1·10−2) (6·10−5)

ϑ, λ 0.1000 -0.1000 0.4000 -3.0000 2.0000
m̂ean 0.1017 -0.0996 0.3877 -2.8028 2.0001

(4·10−4) (6·10−4) (7·10−4) (4·10−3) (1·10−3)

r̂bias 0.0170 -0.0037 -0.0307 -0.0657 0.0005

M̂SE 0.0001 0.0004 0.0006 0.0562 0.0013
(7·10−6) (2·10−5) (3·10−5) (2·10−3) (6·10−5)

ϑ, λ 0.1000 -0.1800 0.4000 -3.0000 2.0000
m̂ean 0.1007 -0.1792 0.3864 -2.8122 1.9985

(4·10−4) (7·10−4) (7·10−4) (4·10−3) (1·10−3)

r̂bias 0.0071 -0.0044 -0.0338 -0.0625 -0.0007

M̂SE 0.0001 0.0005 0.0007 0.0526 0.0013
(6·10−6) (2·10−5) (3·10−5) (2·10−3) (5·10−5)

ϑ, λ 0.1000 -0.3000 0.4000 -3.0000 2.0000
m̂ean 0.1010 -0.3004 0.3880 -2.7998 2.0023

(3·10−4) (7·10−4) (7·10−4) (4·10−3) (1·10−3)

r̂bias 0.0102 0.0014 -0.0298 -0.0667 0.0011

M̂SE 0.0001 0.0005 0.0006 0.0595 0.0014
(4·10−6) (2·10−5) (2·10−5) (2·10−3) (6·10−5)

Table 4.1: Estimated mean and MSE for â1, θ̂, γ̂, µ̂ and λ̂ with corresponding es-
timated standard deviations in brackets based on 1 000 replications with normally
distributed jump sizes. In the third row of each case the relative bias is shown.
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Gaussian mean(Ẑi) std(Ẑi) skewness(Ẑi)

m̂ean -0.00004 (4·10−4) 0.70743 (2·10−4) 0.00062 (1·10−3)

M̂SE 0.00017 (8·10−6) 0.00004 (2·10−6) 0.00209 (9·10−5)

student-t mean(Ẑi) std(Ẑi) skewness(Ẑi)

m̂ean -0.00007 (4·10−4) 0.70763 (2·10−4) -0.00295 (6·10−3)

M̂SE 0.00016 (7·10−6) 0.00006 (7·10−6) 0.03846 (5·10−3)

Table 4.2: Estimated mean and MSE for the mean, standard deviation and skewness
of the residuals with corresponding estimated standard deviations in brackets for
normally (top) and student-t (bottom) distributed jumps based on 1 000 replications.

performing a Ljung-Box test. The test statistic is given by

Q = n(n+ 2)
m∑

k=1

ρ̂ bZ2(k)
2

n− k
,

where ρ̂ bZ2(k) is the empirical autocorrelation function of the the squared innova-
tions, and asymptotically χ2-distributed with m degrees of freedom under the null
hypothesis of no correlation. The number of lags m taken into account to compute
the statistic was set equal to

√
n (cf. Section 9.4 in (Brockwell and Davis 1991)).

The null hypothesis of no correlation was rejected 49 times out of 1 000 simulations
at the 0.05 level. The empirical mean of the 1 000 p-values was equal to 0.52, which
shows that a majority of the test statistics has a rather large p-value confirming the
hypothesis of no correlation.

4.2.2 Leverage case with student-t jump distribution

In all the previous examples the jump distribution was Gaussian. Now we want to
compute the QMLE under the assumption of sampling innovations from a student-
t distribution. We will consider a t-distribution with 6 degrees of freedom. Since
we assume E(Z1) = 0 and Var(Z1) = 1/λ, we have to scale the innovations in an
appropriate way. The intensity λ will again be equal to 2 and µ remains −3. The
parameters a1, θ and γ take on the same values as in the Gaussian case. The results
are reported in Table 4.3.

The quality of the estimators for a1, θ, γ and µ is reduced due to the model
misspecification. The relative bias and MSE have increased for almost all parameter
settings. Concerning µ the relative bias for example has doubled compared to results
for normally distributed jumps. But overall the results are still satisfying. Indicating
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student-t â1 θ̂ γ̂ µ̂ λ̂

ϑ, λ 0.1000 -0.1000 0.2000 -3.0000 2.0000
m̂ean 0.0978 -0.0995 0.1917 -2.7748 2.0020

(1·10−3) (1·10−3) (9·10−4) (6·10−3) (1·10−3)

r̂bias -0.0213 -0.0046 -0.0415 -0.0750 0.0010

M̂SE 0.0012 0.0017 0.0010 0.0873 0.0014
(8·10−5) (6·10−4) (5·10−5) (9·10−3) (6·10−5)

ϑ, λ 0.1000 -0.1800 0.2000 -3.0000 2.0000
m̂ean 0.1007 -0.1829 0.1934 -2.7776 2.0001

(8·10−4) (1·10−3) (9·10−4) (5·10−4) (1·10−3)

r̂bias 0.0077 0.0165 -0.0331 -0.0741 4·10−5

M̂SE 0.0007 0.0020 0.0008 0.0757 0.0013
(6·10−5) (6·10−4) (5·10−5) (5·10−3) (6·10−5)

ϑ, λ 0.1000 -0.3000 0.2000 -3.0000 2.0000
m̂ean 0.1013 -0.3034 0.1926 2.0012 -2.7738

(5·10−4) (1·10−3) (9·10−4) (1·10−3) (4·10−4)

r̂bias 0.0131 0.0115 -0.0369 0.0006 -0.0754

M̂SE 0.0002 0.0015 0.0008 0.0014 0.0668
(2·10−5) (5·10−4) (6·10−5) (6·10−5) (3·10−3)

ϑ, λ 0.1000 -0.1000 0.4000 -3.0000 2.0000
m̂ean 0.1022 -0.1010 0.3884 -2.5405 2.0025

(5·10−4) (1·10−3) (1·10−3) (6·10−3) (1·10−3)

r̂bias 0.0221 0.0101 -0.0290 -0.1531 0.0012

M̂SE 0.0003 0.0009 0.0012 0.2441 0.0014
(2·10−5) (4·10−5) (6·10−5) (6·10−3) (6·10−5)

ϑ, λ 0.1000 -0.1800 0.4000 -3.0000 2.0000
m̂ean 0.1015 -0.1819 0.3861 -2.5518 2.0004

(5·10−4) (1·10−3) (1·10−3) (6·10−3) (1·10−3)

r̂bias 0.0151 0.0109 -0.0347 -0.1493 0.0002

M̂SE 0.0003 0.0011 0.0013 0.2346 0.0013
(1·10−5) (2·10−4) (5·10−5) (5·10−3) (6·10−5)

ϑ, λ 0.1000 -0.3000 0.4000 -3.0000 2.0000
m̂ean 0.1020 -0.3030 0.3876 -2.5481 1.9997

(4·10−4) (1·10−3) (1·10−3) (6·10−3) (1·10−3)

r̂bias 0.0199 0.0099 -0.0309 -0.1506 -0.0002

M̂SE 0.0013 0.0009 0.0010 0.0789 0.0014
(8·10−5) (4·10−4) (5·10−5) (4·10−3) (6·10−5)

Table 4.3: Estimated mean and MSE for â1, θ̂, γ̂, µ̂ and λ̂ with corresponding esti-
mated standard deviations in brackets based on 1 000 replications with t-distributed
jump sizes. In the third row of each case the relative bias is shown.
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that the QMLE provides reasonable values even if the true distribution of the returns
is much heavier tailed than the assumed one.

Analogously to the Gaussian case we investigated the goodness of fit by an
analysis of the fitted innovations for the case, where θ = −0.3 and γ = 0.4. Since
we scaled the innovations such that they have mean zero and a standard deviation
equal to 1/

√
2, we expect the empirical mean of the estimated innovations close to

zero, their empirical standard deviation close to 1/
√

2 and their empirical skewness

close to zero. For all three quantities we computed m̂ean and M̂SE. The results
are reported in Table 4.2 and indicate a reasonable fit. The null hypothesis of the
Ljung-Box test was rejected 84 times out of 1 000 simulations at the 0.05 level. The
empirical mean of the 1 000 p-values was 0.59.

4.2.3 Non-leverage case

So far we have only considered the leverage case. In this last example we will have
the following relation: 0 < θ < γ. This means that a positive shock in the return
data increases the log-volatility process more than a negative one. For normally
distributed jumps the results in the non-leverage case are shown in the upper section
of Table 4.4.

Gaussian â1 θ̂ γ̂ µ̂ λ̂

ϑ, λ 0.1000 0.1000 0.2000 -3.0000 2.0000
m̂ean 0.0938 0.0980 0.1911 -2.8977 2.0024

(1·10−3) (1·10−3) (8·10−4) (7·10−3) (1·10−3)

r̂bias -0.0614 -0.0201 -0.0447 -0.0341 0.0012

M̂SE 0.0012 0.0015 0.0007 0.0595 0.0014
(9·10−5) (5·10−4) (1·10−4) (1·10−2) (6·10−5)

student-t â1 θ̂ γ̂ µ̂ λ̂

ϑ, λ 0.1000 0.1000 0.2000 -3.0000 2.0000
m̂ean 0.0976 0.0988 0.1913 -2.7873 2.0031

(1·10−3) (1·10−3) (1·10−3) (6·10−3) (1·10−3)

r̂bias -0.0235 -0.0117 -0.0432 -0.0709 0.0015

M̂SE 0.0013 0.0009 0.0009 0.0789 0.0013
(8·10−5) (4·10−5) (5·10−5) (4·10−3) (6·10−5)

Table 4.4: Estimated mean and MSE for â1, θ̂, γ̂, λ̂ and µ̂ with corresponding es-
timated standard deviations in brackets based on 1 000 replications with normally
distributed (top) and t-distributed (bottom) jump sizes. In the third row of each case
the relative bias is shown.
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One can observe an increased relative bias for a1, θ and γ compared to the lever-
age case. But the results are still acceptable. For t-distributed innovations the results
are shown in the lower section of Table 4.4. The conclusions which can be made are
similarly to the Gaussian case. It is interesting however that the leverage parameter
θ is estimated more accurately for t-distributed jumps. It can be concluded that the
influence of the sign of the leverage parameter θ is not so important for the QMLE.

4.3 Prediction

The aim of this section is to show how prediction can be done in this framework. In
particular we will construct a one-step ahead prediction of the volatility process and
also derive the prediction density in that case. Since future innovations of the log-
price process are positive or negative with probability 0.5, it is not possible to define
a sensible one-step ahead prediction of the log-price process. But we can construct
a prediction interval for the next observation.

4.3.1 One-step ahead prediction of the volatility

In this section we want to show how to compute a prediction Pr(σ
2
tn+1+) of the

volatility σ2
tn+1+, which means the volatility right after the next jump, conditional

on the information X̂tn , ϑ̂n, λ̂n and ∆tn+1. Remember that the parameters ϑ̂n and
λ̂n are estimated based on the observations Gt1 , . . . , Gtn . Definitely we will need
as a first step a prediction of the log-volatility process at time tn+1+. Since we
estimated the parameters by maximising a Gaussian likelihood it seems reasonable
to simulate the future jump Ẑn+1 as a normally distributed random variable with
mean 0 and variance 1/λ̂n. If we substitute in the recursion (4.5) for i = n + 1 the

fitted innovations G
∆tn+1

tn+1
/σ̂tn+1(ϑ, λ) by Ẑn+1, we get

X̂tn+1(ϑλ) = e−a1∆tn+1X̂tn(ϑ, λ) + θẐn+1 + γ
(
|Ẑn+1| − λK̂∆tn+1

)
.

Hence we will get a prediction of the log-volatility process at time tn+1+, which is
denoted by Pr(log(σ2

tn+1+)), by the following equation

Pr(log(σ2
tn+1+)) := µ̂n + e−ban

1 ∆tn+1X̂tn(ϑ̂n, λ̂n) + θ̂nẐn+1 + γ̂n

(
|Ẑn+1| − λ̂nK̂∆tn+1

)
.

The one-step ahead prediction of the volatility process at time tn+1+, which is
denoted by Pr(σ

2
tn+1+), is then defined by applying the exponential function to the

prediction Pr(log(σ2
tn+1+)), i.e.

Pr(σ
2
tn+1+) := exp(Pr(log(σ2

tn+1+))) . (4.9)
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Given X̂tn , ϑ̂n, λ̂n and ∆tn+1 Pr(σ
2
tn+1+) is a monotone function of Ẑn+1. Hence

we can in addition easily derive a prediction density of σ2
tn+1+, which is denoted by

p(s|X̂tn , ϑ̂n, λ̂n,∆tn+1). The form of the density depends on the sign and size of θ̂n

and γ̂n. If e.g. θ̂n < −γ̂n < 0, then the prediction density is given by

p(s|X̂tn , ϑ̂n, λ̂n,∆tn+1) =

1

s

[
χ(−∞,ϕ( bXtn ,∆tn+1)](log(s) − µ̂n)

∣∣∣∣
1

θ̂n + γ̂n

∣∣∣∣

×

√
λ̂n

2π
exp




− λ̂n

2

(
log(s) − µ̂n − ϕ(X̂tn ,∆tn+1)

θ̂n + γ̂n

)2





+χ
(ϕ( bXtn ,∆tn+1),∞)

(log(s) − µ̂n)

∣∣∣∣
1

θ̂n − γ̂n

∣∣∣∣

×

√
λ̂n

2π
exp




− λ̂n

2

(
log(s) − µ̂n − ϕ(X̂tn ,∆tn+1)

θ̂n − γ̂n

)2







 , (4.10)

for each s > 0, where

ϕ(X̂tn ,∆tn+1) := e−ban
1 ∆tn+1X̂tn − γ̂nλ̂nK̂∆tn+1 .

Next we want to illustrate how the shape of the prediction density for σ2
tn+1+

depends on the estimated parameters. Therefore we consider again 1 000 samples of
a compound Poisson ECOGARCH(1, 1) process with parameters µ = 0, a1 = 0.1,
θ = −0.3, γ = 0.2 and λ = 2. The sample paths are over the time interval [0, 1 000].
First we estimate the parameters, as explained in Section 4.1, based on the first
n = 1900 observations. To compute a prediction density for σ2

tn+1+ by (4.10) we will

further need X̂tn and ∆tn+1. Since both of them will be different for each sample, we
set them equal to 1 and 0.5, respectively, to make prediction densities comparable.
For each sample the prediction density was then computed over the same grid on
the interval [1.5, 4.7]. Everything was done for two different jump distributions. In
the first case the jumps Zi were normally distributed with mean 0 and variance 1/λ,
whereas in the second example scaled t-distributed with 6 degrees of freedom and
same mean and variance as in the normal case. In the first row of Figure 4.1 one can
see on the left hand side six replications of prediction densities p(·|1, ϑ̂n, λ̂n, 0.5) for
normally distributed jumps and on the right hand side for the t-distributed ones.

In both cases we also computed a mean prediction density

p̂(s|1, ϑ̂, λ̂n, 0.5) :=
1

N

N∑

i=1

pi(s|1, ϑ̂i

n, λ̂
i
n, 0.5) ,
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Figure 4.1: Prediction densities pi(·|1, ϑ̂i

n, λ̂
i
n, 0.5) for the first 6 replication (top row)

together with mean prediction density p̂(s|1, ϑ̂, λ̂n, 0.5) and true (solid line) pre-
diction density p(·|1,ϑn, λn, 0.5) (bottom row) for normally (left) and t-distributed
(right) jumps.

for s lying on the grid and N = 1000. The results are shown in the second row of
Figure 4.1 together with the true prediction density p(·|1,ϑ, λ, 0.5). One can observe
that despite the fact that we have a larger bias in the estimates ϑ̂n for t-distributed
jumps compared to normally distributed ones, the prediction densities show similar
behaviour. Especially for the mean prediction density there can be no big difference
observed.

For assessing the quality of the forecasts we will consider a scoring rule, which
assigns a numerical score based on the prediction density and the value actually ob-
served. We will work with the logarithmic score, for other scoring rules see Gneiting
and Raftery (2006). Assume we haveN observations of the volatility σ2

t1n+1+
, . . . , σ2

tNn+1+
.

For each of them we compute a prediction density

p(·|X̂tin
, ϑ̂

i

n, λ̂
i
n,∆t

i
n+1) , i = 1, . . . ,N ,

which will be evaluated at the observation point. The logarithmic score is then
defined as

LS
(
p(·|X̂tin

, ϑ̂
i

n, λ̂
i
n,∆t

i
n+1), σ

2
tin+1+

)
:= log

(
p(σ2

tin+1+|X̂tin
, ϑ̂

i

n, λ̂
i
n,∆t

i
n+1)

)
.
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Observe that the higher LS is, the better the prediction will be.
To associate a numerical score to all N samples we further calculate the mean

logarithmic score MLS
(
p(·|X̂tn , ϑ̂n, λ̂n,∆tn+1), σ

2
tn+1+

)
defined as

MLS :=
1

N

N∑

i=1

log
(
p(σ2

tin+1+|X̂tin
, ϑ̂

i

n, λ̂
i
n,∆t

i
n+1)

)
.

For our previous considered simulation examples we get the following mean log-
arithmic scores over N = 1000 replications

Gaussian: -0.0716
student-t: -0.8285 .

This result is not surprising, since we assumed normally distributed jumps to
compute the prediction density. Thus we would expect a better performance of the
prediction, if the jumps are really normally distributed. One also has to mention
that the logarithmic score is rather sensitive to outliers which produce large negative
values.

Given the prediction density we are able to define a second one-step ahead predic-
tion. More precisely we take the mode of the corresponding prediction distribution
as prediction of σ2

tn+1+, defined by

Pm(σ2
tn+1+) := argmax p(·|X̂tn , ϑ̂n, λ̂n,∆tn+1) .

Both predictions Pr and Pm are compared for the two simulation cases by com-
puting the empirical relative bias

r̂bias(Pk) :=
1

N

N∑

i=1




Pk(σ

2
tin+1+

)

σ2
tin+1+

− 1





and the empirical relative mean squared error

R̂MSE(Pk) :=
1

N

N∑

i=1




Pk(σ

2
tin+1+

)

σ2
tin+1+

− 1




2

,

for k = r,m. Remember that we have N = 1000 replications in each case. The
results were the following:

r̂bias(Pr) R̂MSE(Pr) r̂bias(Pm) R̂MSE(Pm)

Gaussian 0.0364 0.1301 -0.0895 0.0428
student-t 0.0399 0.1383 -0.0974 0.0517
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Concluding one can say that despite the reduced performance of the QMLE in
the non-normal case, the one-step ahead prediction ability is acceptable compared
to the normal case. The results for the recursive prediction Pr are actually very
similar. For the mode prediction greater differences can be observed. This is also
rather obvious, since it predicts the mode of a distribution, which is more suitable if
the innovations Z are not so heavy tailed. Concerning the RMSE the mode prediction
Pm is preferable compared to Pr in both cases, but one has to deal with a larger
relative bias of Pm. In Figure 4.2 we plotted for 50 of the 1000 samples the volatility
σ2

tn+1+ (⋄) together with the two predictions Pr(σ
2
tn+1+) (∗) and Pm(σ2

tn+1+) (x).
The top row corresponds to the case of normal and the bottom one to the case of
non-normal jumps.
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Figure 4.2: Future volatilities σ2
tn+1+ (⋄) together with their predictions Pr(σ

2
tn+1+)

(∗) and Pm(σ2
tn+1+) (x) for normally (top panel) and t-distributed (bottom panel)

jumps.

Finally we want to analyse how the accuracy of the prediction density depends on
the number of observations. For the 1 000 sample paths in each case, we estimated the
parameters based on all observations Gt1 , . . . , Gtn , the last 1 500 Gtn−1499 , . . . , Gtn ,
the last 1 000 Gtn−999 , . . . , Gtn and finally the last 500 Gtn−499 , . . . , Gtn . For all four
scenarios we computed the prediction density and logarithmic score, which was then
averaged over all 1 000 samples. The resulting MLS’s are:
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Number of observations n 1 500 1 000 500
MLS (Gaussian) -0.0716 -0.1426 -0.8002 -3.5185
MLS (student-t) -0.8285 -0.5776 -3.5121 -5.1267

Remember that the average number of observations over the 1 000 samples is 2 000.
Comparing the MLS’s one can recognise that at least 1 500 observations should
be taken into account to estimate the parameters. If not the prediction quality
will reduced considerably. In our real data example considered in Section 4.4, 1 500
observations correspond to roughly three quarters of a trading day.

4.3.2 Prediction interval for the log-price

If we consider again the log-price process G defined in (4.3) one observes that the

future return G
∆ti+1

ti+1
has variance σ2

ti+1
/λ under the assumption Zi+1 ∼ N(0, 1/λ).

From (4.2) it follows that given Xti and ∆ti+1 the volatility σ2
ti+1

is known up to
parameters ϑ and λ and can be calculated by (4.8). This enables us to construct
a 95% prediction interval for the one-step ahead log-price Gti+1 . It is given by the
following expression

PI(Gti+1) :=

(
Gti − 1.96 ·

√
σ̂2

ti+1
(ϑ̂i, λ̂i)/λ̂i, Gti + 1.96 ·

√
σ̂2

ti+1
(ϑ̂i, λ̂i)/λ̂i

)
.

For a simulated log-price process G, with observation times t1, . . . , tn+1 and
normally distributed jumps, the empirical quality of the prediction interval was
tested. The parameters of the process are set equal to ϑ = (−3, 0.1,−0.3, 0.4) and
λ = 2. Starting with 100 observations, we reestimated the model for each new
observation to get ϑ̂i, λ̂i and computed in each step the volatility σ2

ti+1
(ϑ̂i, λ̂i), i =

100, . . . , n. Then we calculated the prediction interval PI(Gti+1) and counted over
three time intervals (t100, tk1], (tk1, tk2 ] and (tk2 , tn+1], for 100 < k1 < k2 < n + 1,
containing the same number of observations Gti how many of them are observed
within PI(Gti). Notice that the length of the intervals differs for each sample. The
results are the following:

ti ∈ (t100, tk1] ti ∈ (tk1 , tk2 ] ti ∈ (tk2 , tn+1]

# Gti ∈ PI(Gti) (%) 575 (0.9200) 597 (0.9552) 603 (0.9633)

Even for the first interval the results are already satisfactory but the number of
observations lying in the prediction interval is still less then the expected 95%. But
already for the second interval this is the case. On the left hand side of Figure 4.3
we plotted the observations Gt201 , . . . , Gt300 and on the right hand side the last 50
observations Gtn−99 , . . . , Gtn together with the corresponding prediction interval.
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Figure 4.3: Simulated compound Poisson ECOGARCH(1, 1) observations with pre-
diction intervals (dotted line) .

4.4 Analysis of General Motors stock prices

In this section we will fit the compound Poisson ECOGARCH(1, 1) model to tick-
by-tick data for the General Motors (GM) stock. The data spans one week starting
from 4th of May 2002 until the 10th of May. The data will be analysed on a daily
basis. Therefore no strong seasonality effect will be present. On the other hand we
have to take into account a market microstructure noise on this fine level. This will
be done by considering mid quotes, which are the average of the last bid and ask
quote just before the trade, as our price data. In particular this means, if we have
observation points t1, . . . , tn, then the log-price Gti is given by

Gti =
1

2
(log(bti−) + log(ati−)) · 1000 , i = 1, . . . , n,

where bti− (ati−) denotes the last bid (ask) quote just before time ti. This will reduce
the effect of bid-ask bounces. We also multiplied the log-price by 1 000 not to run
into numerical difficulties due to very small values of the volatility process. If equal
transaction times occurred, the corresponding trades are combined to a single trade.
Further we have omitted the first and last 5 minutes on each trading day due to
possible irregularities during that time. Hence we only consider the trading between
9.35 and 15.55. The resulting log-price series together with the corresponding returns
are given in Figure 4.4. Observe that we have transformed the observation time such
that one unit corresponds to 30 seconds in calendar time.

The parameters are then estimated as explained in Section 4.1. The results are
reported in Table 4.5. The parameter values suggest that we have a leverage effect,
which is the case if θ̂ < 0, on all days except of May 8th.
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Figure 4.4: Tick-by-tick log-prices Gti (left) together with the corresponding returns
(right) of GM over the time span 06.05.02-10.05.02.

For these dates a positive shock to the log-price will increase the log-volatility
less than a negative one. On May the 8th a positive shock increases the log-volatility
process more than a negative one. The estimated γ for May the 7th is significantly
smaller than on the other days. Therefore we will expect no large jumps in the
estimated volatility.

Given the parameter estimates (ϑ̂n, λ̂n) we are able, due to equation (4.8), to
estimate the volatility for the five days. The results are plotted on the left hand side
in Figure 4.5.

Date â1 θ̂ γ̂ µ̂ λ̂

06.05.02 0.2139 -0.0960 0.1701 -3.3392 2.4757
07.05.02 0.2859 -0.0604 0.0667 -3.0909 2.3579
08.05.02 0.5618 0.0691 0.1436 -2.8646 2.7004
09.05.02 0.2533 -0.0477 0.1816 -3.2837 2.4484
10.05.02 0.5972 -0.0230 0.2745 -3.5036 2.5888

Table 4.5: Estimated parameters for the GM data over the time span 06.05.02-
10.05.02.
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Figure 4.5: Estimated volatility σ2
ti of GM tick-by-tick data (left) and estimated

autocorrelation function of the squared residuals (right) over the time span 06.05.02-
10.05.02.

Analogously to the simulation the remaining correlation in the squared fitted
innovations was checked by performing a Ljung-Box test. For all five days the hy-
pothesis of no correlation could not be rejected, indicating a suitable fit of the data.
This is also confirmed by the empirical autocorrelation function of the squared resid-
uals Ẑi = G∆ti

ti
/σ̂ti , which can be seen on the right hand side of Figure 4.5.

As explained in Section 4.3.1 we are able to compute a prediction density
p(s|X̂tn , ϑ̂n, λ̂n,∆tn+1) for the one-step ahead volatility σ2

tn+1+. This is also done
for the volatility of the last observation on each of the five days. The densities are
shown in Figure 4.6. One observes that the support of the density for May 7th is
smaller than for the other days, due to the fact that the log-price process on May
7th was not that volatile. Notice also that up to now we have seen in Figure 4.1 only
the shape of the prediction density in the leverage case where a negative jump in
the price increases the log-volatility process, while a positive one decreases it.

Here we have for the 8th of May an example for the non-leverage case and on the
other days we see prediction densities for the leverage case where a positive shock
increases the log-volatility process less than a negative one. In the bottom panel we
plotted the corresponding logarithmic prediction densities.

In Section 4.3.2 we introduced a prediction interval PI(Gti+1) for the one-step
ahead log-price process Gti+1 . For each of the five days we started with 100 obser-
vations to estimate the model and then reestimated it for each new observation up
to Gtn . At each time point ti we calculated the prediction interval PI(Gti+1) for
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Figure 4.6: Estimated prediction density (top) and prediction log density (bottom)
of the volatility for the last trade on the days 06.05.02 to 10.05.02.

i = 100, . . . , n, and then counted how many observations Gti+1 were actually ob-
served within PI(Gti+1) separately for the time intervals T1 = (9.35, 12.00), T2 =
[12.00, 14.00) and T3 = [14.00, 15.55]. Let Mk be the number of observation in the
time interval Tk, k = 1, 2, 3. In Table 4.6 we report Jk := #{Gti ∈ PI(Gti); ti ∈ Tk}
the number of observations lying in the prediction interval, the percentage Jk/Mk

and the average prediction interval length

P̂ Ik =
1

Mk

∑

tj∈Tk

|PI(Gtj )| k = 1, 2, 3.

Date J1 (J1/M1); P̂ I1 J2 (J2/M2); P̂ I2 J3 (J3/M3); P̂ I3

06.05.02 600 (0.8982); 3.5602 402 (0.8072); 0.3636 565 (0.8856); 0.3357
07.05.02 593 (0.9324); 4.9761 402 (0.8816); 0.6593 567 (0.9116); 0.5920
08.05.02 728 (0.8656); 0.5790 393 (0.8433); 0.4939 593 (0.8838); 0.5391
09.05.02 539 (0.8242); 1053.6 430 (0.7847); 0.3742 497 (0.8569); 0.3686
10.05.02 599 (0.8139); 0.5194 436 (0.8651); 0.3574 564 (0.8650); 0.3467

Table 4.6: The number (percentage) of observations Gti lying in the prediction in-
terval PI(Gti) on the days 06.05.02 to 10.05.02.
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Figure 4.7: Log-price process on May 6th with corresponding prediction intervals
over the whole trading day (top panel), the last 100 observations in T2 (middle
panel) and the last 100 observations in T3 (bottom panel).

The first thing, which stands out are the large average interval length during the
first third of the day on May the 6th, 7th and especially the 9th. For the other two
days they are comparatively small. In Figure 4.7 we plotted the log-price process on
May 6th together with the corresponding prediction intervals.

There one can observe that the interval can actually grow over time and then
become smaller again. Hence the percentage numbers for the time interval T1 can not
be taken into account since the intervals are to wide. For the other two time periods
Jk/Mk varies between 78% and 91%. If the data were normally distributed, we would
have expected about 95% of the observations within the prediction interval. This
suggests that the data is heavier tailed than the normal distribution.



Chapter 5

Fractionally integrated
ECOGARCH process

In Chapter 3 we have introduced an EGARCH like process in continuous time. We
have seen that the ECOGARCH process is a short memory process (see Remark
3.4.4), which is inappropriate in some financial applications. Andersen and Boller-
slev (1997) have found empirical evidence for the existence of long-run volatility
persistence by analysing high-frequency foreign exchange data. Baillie et al. (1996),
Bollerslev and Mikkelsen (1996) and Baillie (1996) provide an overview over long
memory processes in econometrics. These findings have to be treated carefully since
certain empirical evidence, like a slow decay of the empirical autocorrelation func-
tion, could also be due to non-stationarity of the data. This was e.g. shown by
Mikosch and Stărică (2000) for a long time series of S&P 500 log-returns. In the
following this problem will not be our subject.
In the discrete time GARCH framework there are various models with long range
dependence in the volatility process. Among these are the IGARCH(p, q) process
of Engle and Bollerslev (1986), the FIGARCH(p, d, q) process proposed by Baillie
et al. (1996) or the fractionally integrated EGARCH(p, d, q) process of Bollerslev
and Mikkelsen (1996). The FIGARCH process has to be treated carefully since the
existence of a stationary version is not clear; see Section 4 in Mikosch and Stărică
(2000) and Remark 3.2 in Kazakevičius and Leipus (2003). The FIEGARCH(p, d, q)
process is a modification of the EGARCH model of Nelson (1990) in the sense that
the log-volatility process is modeled by a fractionally integrated ARMA(q, d, p − 1)
process instead of a short memory ARMA process. This long memory effect intro-
duced in the log-volatility process propagates to the volatility and the squared return
process. This was shown by Surgailis and Viano (2002).
In the continuous time setting there are also various approaches to incorporated a
long memory effect. Comte and Renault (1998) defined a continuous time stochas-
tic volatility (SV) model by specifying the log-volatility process as an OU process

104
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driven by a fractional Brownian motion. Brockwell and Marquardt (2005) proposed
to model the stochastic volatility as a non-negative fractionally integrated CARMA
process. Another non-Gaussian continuous time SV model with long memory was
introduced by Anh et al. (2002), where they define their model via the Green func-
tion solution of a fractional differential equation driven by a Lévy process. Since
this shows considerable interest in continuous time models with long memory in the
volatility process, the aim of this chapter is to extend the ECOGARCH(p, q) in such
a way.

5.1 Fractionally integrated exponential COGARCH

In this section we want to construct a continuous time analogue of the discrete time
fractionally integrated EGARCH(p, d, q) process, which is defined in the following
way:
Let p, q ∈ N, µ, α1, . . . , αq, β1, . . . , βp ∈ R, suppose αq 6= 0 , βp 6= 0 and that the

autoregressive polynomial

α(z) := 1 − α1z − · · · − αqz
q

and the moving average polynomial

β(z) := β1 + β2z + · · · + βpz
p−1

have no common zeros and that α(z) 6= 0 on {z ∈ C | |z| ≤ 1}. Let (ǫn)n∈Z be an
i.i.d. sequence with E(ǫ1) = 0 and Var(ǫ1) = 1 and −0.5 < d < 0.5. Define the
measurable function f : R → R by

f(x) := θx+ γ[|x| − E(|x|)] , x ∈ R , (5.1)

with real coefficients θ and γ. Then we call (Xn)n∈Z, where Xn = σnǫn, a
FIEGARCH(p,d,q) process if

log(σ2
n) = µ+ α(B)−1(1 −B)−d(1 + β(B))f(ǫn−1) ,

where B is the backward shift operator, BXn = Xn−1.

We will define the process using the idea of Klüppelberg et al. (2004) to replace
the innovations ǫn of the discrete time model by the jumps of a Lévy process L =
(Lt)t≥0.

We consider zero mean Lévy processes L with jumps ∆Lt := Lt − Lt− defined
on a filtered probability space (Ω,F , (Ft)t≥0,P), which is assumed to satisfy the
usual conditions. Since E(Lt) = t(γL +

∫
|x|>1 xνL(dx)), a zero mean implies that

γL = −
∫
|x|>1 xνL(dx) and hence the corresponding Lévy symbol is of the form

ψL(u) = −σ2
L

u2

2
+

∫

R

(eiux − 1 − iux)νL(dx) ,
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and from (1.14) we know that the Lévy-Itô decomposition of L is

Lt = Bt +

∫

R−{0}
xÑL(t, dx) , t ≥ 0, (5.2)

where B is a Brownian motion with variance σ2
L and ÑL(t, dx) = NL(t, dx) −

tνL(dx), t ≥ 0, is the compensated random measure associated to the Poisson
random measure

NL(t, A) = #{0 ≤ s < t;∆Ls ∈ A} =
∑

0≤s≤t

χA(∆Ls), A ∈ B(R − {0}),

on R+ × R − {0}, which is independent of B.

Now we are able to define the fractionally integrated exponential continuous
time GARCH(p, d, q) process , shortly called FIECOGARCH(p, d, q). The stationary
log-volatility process will be modeled by a fractionally integrated continuous time
ARMA(q, d, p − 1) process, henceforth called FICARMA(q, d, p − 1) process (see
Chapter 1.4.2 for details on FICARMA processes). The driving noise process of the
log-volatility process will be defined similarly to (5.1).

Definition 5.1.1 Let L = (Lt)t≥0 be a Lévy process with E(L1) = 0,Var(L1) = 1
and Lévy measure νL and let the q × q matrix A and vectors b ∈ Rq and 1q ∈ Rq

be defined by

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−aq −aq−1 −aq−2 · · · −a1



, b =




b1
b2
...

bq−1

bq



, 1q =




0
0
...
0
1




with coefficients a1, . . . , aq, b1, . . . , bp ∈ R, where aq 6= 0, bp 6= 0, and bp+1 = · · · =
bq = 0.. Then for 0 < d < 0.5 we define the fractionally integrated exponential
COGARCH(p, d, q) process Gd as the stochastic process satisfying,

dGd,t = σd,tdLt, t > 0, G0 = 0, (5.3)

where the log-volatility process is given by

log(σ2
d,t+) = µ+

∫ t

−∞
gd(t− u)dMu, t > 0, (5.4)

with mean µ ∈ R and initial value log(σ2
d,0) independent of the driving Lévy process

L. The process

Mt :=

∫

R−{0}
h(x)ÑL(t, dx) , t > 0,
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is a zero mean Lévy process (see Remark 5.1.2) with

h(x) := θx+ γ|x|

and parameters θ, γ ∈ R. The kernel function

gd(t) =

∫ t

0
g(t− u)

ud−1

Γ(d)
du , 0 < d < 0.5, (5.5)

is the Riemann-Liouville fractional integral of order d (see Definition 2.1 in Samko
et al. (1993)) of the kernel function g(t) = bT eAt1qχ(0,∞)(t).

One has to observe that (5.4) implies predictability of σ2. Returns over a time
interval of length r > 0 are described by the increments of Gd

G
(r)
d,t := Gd,t −Gd,t−r =

∫

(t−r,t]
σd,s dLs , t ≥ r > 0 .

Thus this gives us the possibility to model ultra high frequency data, which consists
of returns over varying time intervals.On the other hand an equidistant sequence of

such non-overlapping returns of length r is given by (G
(r)
nr )n∈N.

In the rest of the chapter the following terminology will be used:

Gd (log-)price process

G
(r)
d (log-)return process

σ2
d volatility process

log(σ2
d) log-volatility process.

Remark 5.1.2 (i) If the real part of the eigenvalues of A is negative, we get from
Theorem 5.3 in Samko et al. (1993) that gd ∈ L2(R). Hence the log-volatility process
(5.4) is indeed well-defined and stationary, since then

∫

R

∫

R

|gd(t− s)x|2νL(dx)ds <∞ , ∀ t ≥ 0,

and we can apply Theorem 4.3.4 and 4.3.16 in Applebaum (2004) from which the
assumptions follow.
In this case the log-volatility process is a zero mean FICARMA(p, d, q) process plus
a constant mean µ. In the following we denote the stationary distribution, which is
also the limit distribution of log(σ2

d,t) as t→ ∞, by Fd.
(ii) The driving process M is the same as in the ECOGARCH model and was
already discussed in Remark 3.2.2. Analogously to the ECOGARCH case the map-
ping h given in Definition 5.1.1 can be replaced by any other mapping satisfying the
integrability condition (3.10).
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Alternatively the log-volatility process can be defined in terms of the fractional
Lévy process Md associated with M . We recall the definition of a fractional Lévy
process from Marquardt (2006b).

Remark 5.1.3 Let M = (Mt)t∈R be a Lévy process on R with EM1 = 0,EM2
1 <∞

and without Brownian component. For the fractional integration parameter
0 < d < 0.5 the stochastic process

Md,t =
1

Γ(d+ 1)

∫

R

[(t− s)d+ − (−s)d+]dMs , t ∈ R , (5.6)

is called a fractional Lévy process.

The strictly stationary log-volatility process (5.4) is then equal to

µ+

∫ t

−∞
Dd

+gd(t− u)dMd,u, t > 0 , (5.7)

in the L2-sense, where Dd
+gd(x) = 1

Γ(1−d)
d
dx

∫ x
−∞

g(u)
(x−u)d du is the Riemann-Liouville

fractional derivative of gd of order d (see Definition 2.2 in Samko et al. (1993)).
Since g ∈ L1(R) we get from Theorem 2.4 in Samko et al. (1993) that Dd

+gd = g.
The proof of the equivalence of (5.4) and (5.7) can be found in Marquardt (2006b),
Theorem 6.5 .

If the Lévy process M is of finite activity, i.e. νM (R) <∞, then the correspond-
ing fractional Lévy process Md is of finite variation. In this case the integral in
(5.7) can be defined as a Riemann-Stieltjes integral. In case where M is not of finite
activity the corresponding fractional Lévy process is not a semimartingale, but for
a deterministic integrand the integral with respect to Md can be defined in the L2-
sense (we refer to Section 5 of Marquardt (2006b) for details). We do not restrict
the driving Lévy process to be of finite activity but we only deal with deterministic
integrands and hence this turns out to be sufficient for our purpose.

The log-volatility process (5.7) is now the solution of the continuous time state
space model

log(σ2
d,t) = µ+ bTXd,t− , t > 0, log(σ2

d,0) = µ+ bTXd,0 (5.8)

dXd,t = AXd,tdt+ 1qdMd,t , t > 0 , (5.9)

where Xd,0 is independent of (Md,t)t≥0 and A,b and 1q are defined in Definition
5.1.1. The state space representation of the log-volatility process is also advantageous
for the purpose of simulating the log-price process Gd. The simulation procedure is
the following:
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(1) Choose simulation times 0 = t0 < t1 < · · · < tn ≤ T , possibly random.

(2) Generate increments Md,ti+1
−Md,ti , i = 0, . . . , n−1, of the driving fractional

Lévy process.

(3) Approximate the state process (5.9) of the log-volatility by a stochastic Euler
scheme.

(4) Compute
log(σ̂2

d,ti) = µ+ bT X̂d,ti−1

for i = 1, . . . , n.

(5) Compute an approximation Ĝd by a stochastic Euler scheme:

Ĝd,ti = Ĝd,ti−1
+ σ̂d,ti−1

Wi + σ̂d,ti−1
Ji,

where Wi ∼ N(0, ti − ti−1) and Ji is an increment of the jump part of L over
the time interval [ti−1, ti].

Since the fractional Lévy process Md at time t is an integral with respect to
the driving Lévy process M it can be approximated by the corresponding Riemann
sums. This approximation is explained in Chapter 2.4.3 in Marquardt (2006a).

Defined in this way log(σ2
d) is not strictly stationary by definition. The conditions

for stationarity of log(σ2
d), the volatility process σ2

d and the return process G
(r)
d are

summarised in the next proposition. The autocovariance function of the log-volatility
process and its asymptotic behaviour is also stated.

Proposition 5.1.4 Let log(σ2
d) be defined by (5.8) and (5.9) and Gd as in Definition

5.1.1. If the eigenvalues of A all have negative real parts and Xd,0 has the same
distribution as

∫∞
0 eAs1qdMd,s, then log(σ2

d) and σ2
d are strictly stationary and Gd

has strictly stationary increments. The log-volatility process is weakly stationary if
Xd,0 has the same mean and covariance matrix as

∫∞
0 eAs1qdMd,s. Let t > 0, h ≥ 0,

then the weakly stationary log(σ2
d) has autocovariance function

Cov(log(σ2
d,t+h), log(σ2

d,t)) = E(M2
1 )

∫

R

gd(u+ h)gd(u)du , (5.10)

∼ C1h
2d−1 , ash→ ∞ , (5.11)

where C1 := Γ(1−2d)
Γ(d)Γ(1−d)EM2

1

(∫
R
g(s)ds

)2
.

The strict stationarity of log(σ2
d), σ

2
d and the increments of Gd follows from the

same reasoning as in the short memory case (see Proposition 3.2.3 and Corollary
3.2.5). The proof of (5.10) and (5.11) is given in Marquardt (2006b), Theorem 6.7
and 6.6 .
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Remark 5.1.5 The asymptotic behaviour of the autocovariance function of a FI-
CARMA process was derived by Brockwell (2004). The result depends on the asymp-
totic behaviour of the kernel function gd

gd(s) ∼
(∫

R

g(x)dx

)
sd−1 , for s→ ∞, (5.12)

which was shown in Brockwell (2004), Section 4. In the following the constant in
(5.12) will be denoted by C2.

5.2 Second order properties of the volatility process

Second order properties are now derived under the assumption that the log-volatility
process is strictly stationary. The stationary distribution Fd (see also Remark 5.1.2)
is infinitely divisible, which follows from Theorem 2.7 in Rajput and Rosiński (1989)
and the characteristic function of log(σ2

d,t+) is given by

E(eiu log(σ2
d,t+)) = eiuµ exp

{∫ ∞

0
ψM (gd(s)u)ds

}
.

This implies that the Lévy symbol has the form

log(E(eiu log(σ2
d,t+)))

= iu

(
µ+

∫ ∞

0
gd(s)γMds+

∫ ∞

0

∫

R

gd(s)x(χ(−1,1)(gd(s)x) − χ(−1,1)(x))νM (dx)ds

)

+

∫ ∞

0

∫

R

(eiugd(s)x − 1 − iugd(s)xχ(−1,1)(gd(s)x))νM (dx)ds .

The stationary distribution Fd of log(σ2
d) is therefore specified by the character-

istic triplet (γd,∞, 0, νd,∞), where

γd,∞ = µ+

∫ ∞

0
gd(s)γMds

+

∫ ∞

0

∫

R

gd(s)x(χ(−1,1)(gd(s)x) − χ(−1,1)(x))νM (dx)ds (5.13)

νd,∞(B) =

∫ ∞

0

∫

R

χB(gd(s)x)νM (dx)ds, B ∈ B(R) . (5.14)

The second order behaviour is now summarised in the following proposition.

Proposition 5.2.1 Let log(σ2
d) be strictly stationary with marginal distribution Fd,

where Fd is infinitely divisible with characteristic triplet (γd,∞, 0, νd,∞). The k-th
moment of σ2

d,t is finite, if

k ∈ Kd,∞ = {s ∈ R :

∫

|x|>1
esxνd,∞(dx) <∞} .
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In this case

Ψd,∞(k) := γd,∞k +

∫

R

(
ekx − 1 − kxχ(−1,1)(x)

)
νd,∞(dx) , (5.15)

is well defined and

E(σ2k
d,t) = eΨd,∞(k) , ∀ t ≥ 0 . (5.16)

Assume that E(σ4
d,t) < ∞. Let Ψh

d,∞(k) and Ψh
d(k) be defined by (5.15) with

kernel function gd replaced by

gh
d,∞(s) := gd(s) + gd(s+ h) and gh

d (s) := gd(s)χ(0,h)(s)

respectively. Then the autocovariance function of σ2
d is given by

Cov(σ2
d,t+h, σ

2
d,t) = eΨ

h
d,∞(1)eΨ

h
d(1) − e2Ψd,∞(1) . (5.17)

If we replace the kernel functions in the proof of Proposition 3.3.3 and 3.3.4 with
the kernel functions gd, g

h
d,∞ and gh

d , then the result follows.

Next we will show that the long memory property introduced in the log-volatility
process implies also a long memory effect in the volatility process. The proof is based
on a result for the FICARMA(p, d, q) process which can be found in Lemma 1.23 in
Marquardt (2006a).

Theorem 5.2.2 Let log(σ2
d) be the strictly stationary long memory process (5.4)

with long memory parameter 0 < d < 0.5 and assume that 2 ∈ Kd,∞. Then
E(σ4

d,t) <∞, ∀ t ≥ 0, and

Cov(σ2
d,t+h, σ

2
d,t) ∼ e2Ψd,∞(1)C1h

2d−1 , as h→ ∞,

where C1 = Γ(1−2d)
Γ(d)Γ(1−d)E(M2

1 )
(∫

R
g(s)ds

)2
.

Proof: From equation (5.17) it follows that

Cov(σ2
d,t+h, σ

2
d,t)

= eΨ
h
d,∞(1)eΨ

h
d(1) − e2Ψd,∞(1) = e2Ψd,∞(1)(eΨ

h
d,∞(1)+Ψh

d (1)−2Ψd,∞(1) − 1)

= e2Ψd,∞(1)
[
Ψh

d,∞(1) + Ψh
d(1) − 2Ψd,∞(1) +O

(
(Ψh

d,∞(1) + Ψh
d(1) − 2Ψd,∞(1))2

)]
.
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If we can show that Ψh
d,∞(1) + Ψh

d(1) − 2Ψd,∞(1) ∼ C1h
2d−1, as h→ ∞, the result

follows. Consider therefore

Ψh
d,∞(1) − Ψd,∞(1) + Ψh

d(1) − Ψd,∞(1)

=

∫ ∞

0

∫

R

{
eg

h
d,∞(s)x − 1 − gh

d,∞(s)x−
[
egd(s)x − 1 − gd(s)x

]}
νM (dx)ds

+

∫ ∞

0

∫

R

{
eg

h
d (s)x − 1 − gh

d (s)x−
[
egd(s)x − 1 − gd(s)x

]}
νM (dx)ds

=

∫ ∞

0

∫

R

{
eg

h
d,∞(s)x − egd(s)x + eg

h
d (s)x − egd(s)x

}
νM (dx)ds

=

∫ ∞

0

∫

R

egd(s)x
{
egd(s+h)x − 1

}
νM (dx)ds −

∫ ∞

h

∫

R

{
1 − egd(s)x

}
νM (dx)ds .

Series expansion of the exponential function yields

Ψh
d,∞(1) − Ψd,∞(1) + Ψh

d(1) − Ψd,∞(1)

=

∫ ∞

0

∫

R

[
∞∑

k=1

(gd(s+ h)x)k

k!
+ gd(s)x

∞∑

k=1

(gd(s+ h)x)k

k!

+

∞∑

m=2

(gd(s)x)
m

m!

∞∑

k=1

(gd(s+ h)x)k

k!
−

∞∑

k=1

(gd(s+ h)x)k

k!

]
νM (dx)ds

=

∫ ∞

0

∫

R

[
xgd(s)

∞∑

k=1

(gd(s+ h)x)k

k!

+

∞∑

m=2

(gd(s)x)
m

m!

∞∑

k=1

(gd(s + h)x)k

k!

]
νM (dx)ds

=

∫ ∞

0

∫

R

[
x2gd(s)gd(s+ h) + gd(s)x

∞∑

k=2

(gd(s+ h)x)k

k!

+gd(s+ h)x
∞∑

m=2

(gd(s)x)
m

m!
+

∞∑

m=2

(gd(s)x)
m

m!

∞∑

k=2

(gd(s+ h)x)k

k!

]
νM (dx)ds

=

∫ ∞

0

∫

R

[
gd(s+ h)x

∞∑

m=1

(gd(s)x)
m

m!

+
∞∑

m=1

(gd(s)x)
m

m!

∞∑

k=2

(gd(s + h)x)k

k!

]
νM (dx)ds .

Define Mj :=
∫

R
xjνM (dx), j ∈ N. Since

∫
|x|>1 e

xνd,∞(dx) < ∞ implies that∫
R
|x|kνM (dx) <∞, k ≥ 2, we get that all moments Mj, j ≥ 2, of the Lévy measure
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νM are finite. Consider now the integral

I1(h) :=

∫ ∞

0
gd(s + h)gd(s)

[
M2 +

∞∑

m=2

(gd(s))
m−1

m!
Mm+1

]
ds .

We want to show that

I1(h) ∼M2

∫ ∞

0
Gd(s+ h)Gd(s)ds =: IG(h) , as h→ ∞, (5.18)

with Gd(s) := C2s
d−1, since IG(h) ∼ C1h

2d−1, h→ ∞. We show first, that

gd(s+ h+ hd/2)gd(s+ hd/2)

[
M2 +

∞∑

m=2

(gd(s + hd/2))m−1

m!
Mm+1

]

∼M2Gd(s+ h+ hd/2)Gd(s+ hd/2) ,

if h→ ∞. Consider therefore the limit

lim
s≥0,h→∞

gd(s+ h+ hd/2)gd(s+ hd/2)
[
M2 +

∑∞
m=2

(gd(s+hd/2))m−1

m! Mm+1

]

M2Gd(s+ h+ hd/2)Gd(s+ hd/2)

= 1 + lim
s≥0,h→∞

M−1
2

∞∑

m=2

(gd(s+ hd/2))m−1

m!
Mm+1 ,

which is equal to 1 because of (5.12),

∣∣∣∣∣gd(s+ hd/2)−1
∞∑

m=2

(gd(s+ hd/2))m

m!
Mm+1

∣∣∣∣∣

≤M∗|gd(s+ hd/2)|−1
(
e|gd(s+hd/2)| − |gd(s+ hd/2)| − 1

)
,

with M∗ := supj∈N |Mj | < ∞, and limx≥0,x→0 x
−1(ex − x − 1) = 0 . From Lemma

1.22 in Marquardt (2006a) it follows that

Ĩ1(h) ∼ ĨG(h) , for h→ ∞, (5.19)

where

Ĩ1(h) :=

∫ ∞

hd/2

gd(s+ h)gd(s)

[
M2 +

∞∑

m=2

(gd(s))
m−1

m!
Mm+1

]
ds

and

ĨG(h) := M2

∫ ∞

hd/2

Gd(s + h)Gd(s)ds.
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Now (5.18) follows if we can show

|I1(h) − IG(h)|
|IG(h)| ≤ |I1(h) − Ĩ1(h)|

|IG(h)| +
|Ĩ1(h) − ĨG(h)|

|IG(h)| +
|ĨG(h) − IG(h)|

|IG(h)| → 0

for h→ ∞. This can be done in a similar way as in the proof of Lemma 1.23 in
Marquardt (2006a). In particular, since |IG(h)| ≥ |ĨG(h)| it follows from (5.19) that

|Ĩ1(h) − ĨG(h)|
|IG(h)| ≤ |Ĩ1(h) − ĨG(h)|

|ĨG(h)|
→ 0 .

For d < 0.5 we get |IG(h)| ≥ |C2|2 h2d−1

1−2d and for all h ≥ K,K large enough, we have

|gd(s+h)| ≤ 2|C2|hd−1 . There exists also a constant Cg > 0 with sups≥0 |gd(s)| ≤ Cg.
This yields for h ≥ K

|I1(h) − Ĩ1(h)| =

∣∣∣∣∣

∫ hd/2

0
gd(s+ h)gd(s)

[
M2 +

∞∑

m=2

(gd(s))
m−1

m!
Mm+1

]
ds

∣∣∣∣∣

≤
∫ hd/2

0
2|C2|hd−1Cg

[
M2 +M∗C−1

g (eCg − Cg − 1)
]
ds

≤ 2|C2|Cg

[
M2 +M∗C−1

g (eCg − Cg − 1)
]
h2d−1−d/2

and hence

|I1(h) − Ĩ1(h)|
|IG(h)| ≤

2Cg

[
M2 +M∗C−1

g (eCg − Cg − 1)
]
h2d−1−d/2

|C2|h2d−1

1−2d

→ 0 for h→ ∞ .

Similarly we get

|ĨG(h) − IG(h)|
|IG(h)| ≤ Cgh

2d−1−d/2

|C2|h2d−1

1−2d

for h→ ∞ ,

from which the result follows. Analogously we get with
∫ ∞

0
gk
d(s+ h)gd(s)ds ∼ C3h

(k+1)d−k , k ≥ 2,

that

Ik(h) :=

∫ ∞

0

1

k!
gk
d (s+ h)gd(s)

[
Mk+1 +

∞∑

m=2

(gd(s))
m−1

m!
Mm+k

]
ds = o(h2d−1) .

and hence it follows that

Ψh
d,∞(1) + Ψh

d(1) − 2Ψd,∞(1) ∼ C1h
2d−1, for h→ ∞ ,

which proves the assertion. 2
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Example 5.2.3 In this example we consider a fractionally integrated
ECOGARCH(1, 0.4, 1) process driven by a Lévy process L with Lévy symbol

ψL(u) = −u
2

2
+

∫

R

(eiux − 1)λΦ0,1/λ(dx) ,

where Φ0,1/λ(·) is the distribution function of a normal distribution with mean 0 and
variance 1/λ. This means that L is the sum of a standard Brownian motion W and
the compound Poisson process

Jt =

Nt∑

k=1

Zk , J−t =

−N−t∑

k=1

Z−k , t ≥ 0,

where (Nt)t∈R is an independent Poisson process with intensity λ > 0 and jump
times (Tk)k∈Z. The Poisson process N is also independent from the i.i.d. sequence
of jump sizes (Zk)k∈Z, with Z1 ∼ N(0, 1/λ). The Lévy process M is in this case
given by the following expression

Mt =
Nt∑

k=1

[θZk + γ|Zk|] − Ct , t > 0,

with C = γ
∫

R
|x|λΦ0,1/λ(dx) =

√
2λ
π γ. M−t, t ≥ 0 is defined analogously. The

parameter θ is equal to −0.15 and γ is equal to 0.1. The stationary log-volatility
process is of the form

log(σ2
d,t+) = µ+

∫ t

−∞
b1e

−a1(t−s)dMd,s , t > 0,

where µ = −5, a1 = 0.5 and b1 = 1. In Figure 5.1 we plotted 3 000observations of the
sample path of the simulated log-volatility log(σ2

d) and volatility σ2
d process observed

at 10 000 equidistant time points in the first row. The long memory parameter d in
this example is 0.4. Hence we will expect a slow decay of the autocorrelation function
(acf). This is indeed the case. The empirical autocorrelation function of the volatility
σ2

d and log-volatility log(σ2
d) process are shown in the bottom left panel of Figure 5.1

as a dashed and solid line, respectively. One observes that the empirical acf of both
series show similar asymptotic behaviour as indicated from Theorem 5.2.2. In the
bottom right panel the corresponding return process is shown.

Remark 5.2.4 In the last Theorem we have shown, that the autocovariance function
of the volatility process decays at a hyperbolic rate. For the discrete time EGARCH
process this was shown by Surgailis and Viano (2002).
In the continuous time setting Comte and Renault (1998) showed this effect for a
long memory stochastic volatility model, where the log-volatility process was modeled
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Figure 5.1: (I) The log-volatility process log(σ2
d) and (II) volatility process σ2

d of a
FIECOGARCH(1, 0.4, 1) with parameters a1 = 0.5, b1 = 1, µ = −5, θ = −0.15, γ =
0.1 and d = 0.4. (III) The empirical autocorrelation function of σ2

d (solid line ) and

log(σ2
d) (dashed line). (IV) 3 000 observations of the return process G

(1)
d . The jumps

of the compound Poisson process are N(0, 1/2) distributed.

as an OU process driven by a fractional Brownian motion. Hence our result can
also be applied to a continuous-time stochastic volatility model, where the log-price
process Y = (Yt)t≥0 satisfies

dYt = σtdWt , t ≥ 0, (5.20)

with a Brownian motion W , and the log-volatility process log(σ2) is described by a
FICARMA(p, d, q), p ≥ q, process, where the Lévy measure of the driving noise
process has finite moments of all orders.

5.3 Second order properties of the return process

Second order properties are now derived under the assumption that the log-volatility
process is strictly stationary. The structure of the price process Gd is the same as
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that of an ECOGARCH(p, q) process. Therefore the result concerning the first and
second moment, as well as the autocovariance function, of the return process is
analogous to the result in Proposition 3.4.1.

Proposition 5.3.1 Let L be a Lévy process with E(L1) = 0 and E(L2
1) < ∞.

Assume that log(σ2
d) is strictly stationary with marginal distribution Fd, where Fd

is infinitely divisible with characteristic triplet (γd,∞, 0, νd,∞) and 1 ∈ Kd,∞. Then
E(G2

d,t) <∞ for all t ≥ 0, and for every t, h ≥ r > 0 it holds

EG
(r)
d,t = 0 (5.21)

E(G
(r)
d,t )

2 = eΨd,∞(1)rE(L2
1) (5.22)

Cov(G
(r)
d,t , G

(r)
d,t+h) = 0 . (5.23)

If further E(L4
1) < ∞ and the volatility process has finite second moment, then

E(G4
d,t) <∞ for all t ≥ 0 and for every t, h ≥ r > 0 it holds

Cov((G
(r)
d,t )

2, (G
(r)
d,t+h)2) = E(L2

1)

∫ h+r

h
Cov(G2

d,r, σ
2
s)ds . (5.24)



Chapter 6

Mixed effect models for absolute
log returns of ultra high
frequency data

In the previous chapters we have considered models for the log-price process of fi-
nancial data with stochastic volatility. Now we want to concentrate on providing
estimates just for the volatility, but allowing for explanatory variables and account-
ing for market micro structures. For this we use ultra high frequency (uhf) financial
data. The term uhf data was defined by Engle (2000). He calls financial data uhf
data, if they consist of all transactions and quotes recorded during the trading day.
The recorded transactions of course do not take place at regularly spaced time
points, i.e. we have to analyse irregularly spaced time series. One way would be to
sample it at a given frequency, but this results in a loss of information. Therefore
we set up a model directly dealing with this irregular time spacing. Our object of
interest will be the absolute log return, which is a proxy for the unobservable instan-
taneous standard deviation σti , where ti is the time of the i-th trade, of the log price
Sti = log(Pti). By modeling the mean of the absolute log returns, we get a model-
based estimate of the instantaneous standard deviation. This could then be used for
example, as in Jungbacker and Koopman (2006), to estimate actual volatility of the
interval [ti, tj ], j > i, given by

σ∗2(ti, tj) =

∫ tj

ti

σ2
t dt

based on all available information. Here it is important to account for microstructure
noise, when dealing with ultra high frequencies. The problem of market microstruc-
ture noise at this frequency is for example explained in Aı̈t-Sahalia et al. (2005). It is
more common to account for microstructure effects on the return level, while we will
account for these effects on the absolute log return scale. This is more appropriate

118
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in the context of the regression set-up we follow for the absolute log returns. The
absolute log-return |Sti −Sti−1 | will be modeled in this Chapter given the past infor-
mation Gti−1 = σ(Stj , dtj ; j ≤ i − 1) and current duration dti = ti − ti−1. Since the
duration process is a stochastic process itself one also needs a model for this regularly
spaced (measured in tick time) time series. A popular model for the durations given
the past information, called Autoregressive Conditional Duration (ACD) model, has
been proposed by Engle and Russell (1998). There are a number of modifications of
the ACD model, which are described for example in Bauwens et al. (2004).
To cope with the problem of unequally spaced data, we will assume a continuous
time parameter price process. The absolute log returns will be the response in a
regression framework with the current duration as one of the explanatory variables
and correlated residuals. They have the correlation structure of a continuous time
ARMA process. The estimation of correlation for unequally spaced time series is
problematic, since e.g. the sample autocorrelation function cannot be estimated di-
rectly. We compute the sample variogram, which is defined in terms of increments
and therefore adequate for irregularly spaced observations. We have already said,
that the absolute log return is viewed in this paper as a noisy measure of instan-
taneous volatility. It can be decomposed into a fixed effect, a random effect and a
measurement error. The fixed effect describes the time dependent mean of the data,
whereas the random effect specifies the correlation structure. Since the fixed effect
is a function of time varying explanatory variables it allows for time of day effects
(see for example Bauwens and Giot (2001)). The measurement error accounts for
the market microstructure noise on this absolute return level. The presence of mi-
crostructure effects also allows us to assume the mean function to be a continuous
variable, despite the fact that the prices are multiple of one cent of a US dollar. The
return of irregularly spaced transaction data is also modeled as a continuous variable
for example in Meddahi et al. (1998), whereas Russell and Engle (2005) or Liesenfeld
and Pohlmeier (2003) assume that it takes on only countably many values. The influ-
ence of the explanatory variables will be modeled in a parametric way, which allows
us to compute predictions based on past information and current duration in a very
easy way. By using the mean squared error as scoring rule, we are able to quantify
the loss in predictive power, when duration is not used as an explanatory variable.
Here we would like to mention that initially we are interested in detecting certain
dependencies between the response and the explanatory variables. In a further step
one could think about additionally applying an ACD model to compute predictions
in real applications. Visualisation of the explanatory variable effect on the absolute
log returns on a daily basis is also possible. Renault and Werker (2006) studied
the instantaneous causality effect from transaction durations to price volatility and
found significant empirical evidence for it. There are also further regression models
with measures of volatility as response. Corsi (2004), Andersen et al. (2006) and
Ghysels et al. (2002) have set-up different kinds of linear regression models with for
example realized volatility (see Barndorff-Nielsen and Shephard (2002)) as response.
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An overview over these three models can be found in Forsberg and Ghysels (2004).
As we have already mentioned, Jungbacker and Koopman (2006) estimated actual
volatility of ultra-high frequency data in a model-based approach. They considered a
state space model for the return process, which is defined for every second. This leads
to a missing values problem. We also used a state space approach, but rather prefer
to work with time dependent matrices, to account for the irregular time spacing,
than to deal with a large number of missing values per day.

6.1 A mixed effect regression model for irregularly

spaced data

The main characteristic of the data we deal with is that we have observations at
irregularly spaced time points. Therefore we think it is natural to assume that these
observations are observations from a continuous time model. The volatility of high
frequency data is often modeled as a continuous time linear process. Examples are the
stochastic volatility model in Barndorff-Nielsen and Shephard (2001) or Jungbacker
and Koopman (2006) or the continuous time GARCH(1, 1) model of Klüppelberg,
Lindner, and Maller (2004) (see also Chapter 2). Since the absolute log return is a
measure of the instantaneous standard deviation, we will model them in such a way
that they have the autocorrelation structure of a continuous time linear process. To
be precise, we assume the autocorrelation structure of a continuous time ARMA(p, q)
process as defined in Chapter 1.4.

6.1.1 Regression mean specification

Ultra high frequency data exhibit some time of day effects (see for example Bauwens
and Giot (2001)), which result in a non-stationary time series. We try to explain
these effects as being influenced by explanatory variables, which have time of day
dependent values. In our set-up this explanatory variable information is used to
model the mean of the data,

µti := E(|rti |),

with

|rti | := | log(Pti) − log(Pti−1)| · 100, i = 1, . . . , n, (6.1)

where Pti is the stock price observed at time ti, as in a typcial regression set-up.
There will be no assumption made about a stock price model, except that we assume,
that it is a continuous time process. To assure positivity of the mean we will use a
log-link, i.e.

log(µti) := xT
tiβ, i = 1, . . . , n, (6.2)
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with xT
ti ∈ R1×s+1 the i-th row of the design matrix

X =




xT
t1
...

xT
tn


 ∈ Rn×s+1

and parameter vector βT := (β0, . . . , βs)
T ∈ Rs+1×1. As can be seen from (6.2), a

parametric approach is taken. The specific structure of the design matrix will be
discussed in the applications. Potential explanatory variables are

bti := the last bid-ask spread before time ti

dti := the duration ti − ti−1

vti := the volume of the the last trade before time ti.

The choice of explanatory variables will be discussed in the applications. The ex-
planatory variable dti is unknown before time ti and has therefore to be estimated, by
some autoregressive conditional duration model, if the model is used for prediction.

6.1.2 Correlated residuals

As we have said in the beginning we model the absolute log returns as an auto-
correlated process. The question is if autocorrelation is really present in this uhf
data. The answer to this question is part of the analysis. The problem with em-
pirically estimating the autocorrelation in uhf data is the irregular time structure.
Therefore the empirical autocorrelation function cannot be computed. One way out
is to consider the variogram (it will be introduced and discussed in Appendix B),
which is defined for irregularly spaced data. But the variogram is also not defined
for (|rti |), because the mean of the increments is not a linear function of the time
lag, i.e. E(|rt|−|rs|) 6= C ·(t−s), which has to be the case. The variogram is however
defined, when we consider the residuals

εti := |rti | − µti , i = 1, . . . , n, (6.3)

with E(εti) = 0 and Var(εti) =: σ2
ε . The εti are autocorrelated because of the

following assumption

εti =: Yti + ε̃ti , i = 1, . . . , n, (6.4)

where Y is a CARMA(p,q) process, which is defined in Chapter 1.4, and (ε̃ti) is an
i.i.d. sequence and uncorrelated with (Yti). To motivate (6.4) think of (Yti) as the
random effect of the absolute log returns, which describes their correlation structure.
The mean, as we have already said, will be accounted for by µti . But since we will
not observe µti + Yti due to some microstructure noise, like for example the fixed
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tick size of the log returns, we will make some measurement error ε̃ti . To assure that
Y is non-negative, the driving Lévy process L of the CARMA(p,q) process Y has to
be non-decreasing and the kernel of Y has to be non-negative. By substituting (6.4)
into (6.3) we get

ε̃ti = |rti | − µti − Yti ,

which leads to

E(ε̃ti) = −E(Yti) = bT A−11qE(L1).

The variance of εti decomposes into

σ2
ε = Var(Yti) + Var(ε̃ti),

=: Var(L1)b
TΣb + σ2

ε̃ ,

and the autocovariance function of (εti) is equal to that of (Yti), i.e.

Cov(εti , εti−1) = Var(L1)b
T eA(ti−ti−1)Σb.

6.1.3 A generalised regression model with CARMA(p,q) random
effects

The above considerations have led us to the model

|rti | = exp(xT
tiβ) + Yti + ε̃ti , i = 1, . . . , n. (6.5)

In (6.5) we will understand exp(xT
tiβ) as some fixed effect, Yti as some random effect

and ε̃ti as a measurement error. The parameters which have to be estimated are

θ := (a1, . . . , ap, b1, . . . , bq, σ
2, β0, . . . , βs, σ

2
ε̃ ),

with σ2 := Var(L1). This is done by an iterated estimation algorithm, which will be
described in the next section.

6.2 Parameter Estimation

The actual parameter estimation can be done in two ways. The first one (henceforth
called direct approach) works directly on the linear regression model approxima-
tion to model (6.5), which will be introduced in the following, and the second one
(henceforth called state space approach) on the associated state space model with
application of the Kalman filter. Both estimation procedures will be explained in
Chapter 6.2.1 and 6.2.2, respectively. But first we start by describing the general
estimation algorithm. Therefore consider equation (6.3) in vector notation

|r| = µ + ε, (6.6)
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with |r| = (|rt1 |, . . . , |rtn |)T ,µ and ε similarly. Since we chose the logarithm as link
function, we have the relationship

log(µ) = Xβ =: η. (6.7)

The covariance matrix of ε will be denoted by

V(ξ) = Cov(Y) + σ2
ε̃In,

with ξ := (a1, . . . , ap, b1, . . . , bq, σ
2, σ2

ε̃) and Y = (Yt1 , . . . , Ytn)T . Equation (6.6) is
just a nonlinear regression model with correlated errors. Therefore the parameters
can be estimated by maximizing

G(θ, |r|) := −(|r| − µ)T V(ξ)−1(|r| − µ). (6.8)

Applying the Fisher scoring algorithm to maximize (6.8) leads to an iterative gen-
eralised least squares problem. The linear model, occurring in each iteration step,
can be constructed as in generalised linear models ( McCullagh and Nelder (1983)
p.40) by applying the link function g(·) := log(·) to the data |r| and linearise to the
first order. The estimation algorithm, which can also be found e.g. in Schall (1991),
is described in the following.

General Estimation Algorithm:

(1) Linearise g(|r|) := (g(|rt1 |), . . . , g(|rtn |)T to the first order

g(|r|) = g(µ) + ∂µg(µ)(|r| − µ),

where ∂µg(µ) = diag( ∂
∂µt1

g(µt1), . . . ,
∂

∂µtn
g(µtn)), and define the new depen-

dent variable

z := g(µ) + ∂µg(µ)(|r| − µ)

= η + ∂µg(µ)ε

= η + e,

where e := ∂µηε. Now we have a linear regression model with correlated errors

z = Xβ + e, (6.9)

where E(z) = Xβ and Cov(e) = ∂µηV(ξ)∂µηT .

(2) To get starting values η̂0, ẑ0 we fit a generalised linear model to (6.6) assuming
uncorrelated errors, i.e. Cov(ε) = σ2

εIn.

(3) Start Iteration k = 1
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(4) The parameters β and ξ in (6.9) are then estimated in the direct or state space
approach giving parameter estimates

β̂
k

and ξ̂
k
,

respectively.

(5) Construct new estimates of η, i.e. define

η̂k := X β̂
k
.

Check if

||η̂k − η̂k−1|| < TOL

is satisfied. If not set

µ̂k := g−1(η̂k)

ẑk := η̂k +
(
∂µη̂k|µ=µ̂k

)
(|r| − µ̂k)

k = k + 1 and go to (4).

Both estimation approaches will perform quasi maximum likelihood (QML) es-
timation (see for example Chapter 2 in White (1994)) of the parameters, which
requires only the knowledge of the first two moments of the model for the data. In
particular the quasi maximum likelihood estimate (QMLE) θ̂n of an arbitrary pa-
rameter vector θ is defined, in this case, to maximise the QML-estimation criterion

Qn(θ, z) := − 1

n

[
log(|Λ(ξ)|) + (z − Xβ)TΛ(ξ)−1(z − Xβ)

]
(6.10)

where

Λ(ξ) := ∂µηV(ξ)∂µηT .

Therefore

θ̂n := argmaxθ∈ΘQn(θ, z), (6.11)

where Θ := Θ̃ × R+ × Rs+1 × R+, with

Θ̃ := {(a1, . . . , ap, b1, . . . , bq) | a(z) 6= 0 if Re(z) ≥ 0; b(z) 6= 0 if Re(z) > 0 :

the kernel of Y is non-negative }.

Conditions for the kernel of Y to be non-negative are given in Tsai and Chan (2005).
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6.2.1 Direct approach

The estimation of parameters in (6.9) is a generalised least squares problem. It
can be solved in the following way. Since Λ(ξ) is positive definite there exists a
positive definite lower triangular matrix K(ξ) with ones on the leading diagonal,
and a positive definite diagonal matrix F(ξ), such that

Λ(ξ)−1 := K(ξ)T F(ξ)−1K(ξ).

If we transform the data

z∗(ξ) := K(ξ)z, X ∗(ξ) := K(ξ)X , e∗(ξ) := K(ξ)e,

we get the heteroscedastic regression model

z∗(ξ) = X ∗(ξ)β + e∗(ξ) with Cov(e∗) = F(ξ). (6.12)

If we assume that ξ is known and fixed, we get the generalised least squares estimate
of β by solving an ordinary least-squares problem:

β̂n(ξ) = [(F(ξ)−1/2X ∗(ξ))T F(ξ)−1/2X ∗(ξ)]−1(F(ξ)−1/2X ∗(ξ))T F(ξ)−1/2z∗(ξ)

= [X TΛ−1(ξ)X ]−1X T Λ−1(ξ)z. (6.13)

Replacing β in (6.10) by the above estimate on gets the reduced QML-estimation
criterion

Qn(ξ, z) :=
1

n

n∑

i=1

[
− log(Fti(ξ)) − v2

ti(ξ)

Fti(ξ)

]
, (6.14)

with vti(ξ) = z∗ti(ξ)− x∗
T

ti (ξ)β̂n(ξ) and Fti(ξ) = (F(ξ))i,i. QMLE of the parameters

are therefore obtained by first maximizing (6.14) with respect to ξ to get ξ̂n. After-
wards one replaces ξ in β̂n(ξ) by ξ̂n to get the generalised least squares estimate of
β.

Remark 6.2.1 The estimation of the parameters in the direct approach includes
the computation of the inverse of Λ(ξ). In the application, which we have in mind,
the dimension of Λ(ξ) varies from 2000 to 3000. Λ(ξ)−1 will also be a full matrix in
comparison to regularly spaced observation, where Λ(ξ)−1 will be sparse (see Jones
(1993) for details). Computationally it is not efficient to compute this inverse, and
therefore we reformulate (6.9) as a state space model and apply the Kalman filter
to compute (6.14). The idea to rewrite a regression model in state space form is
explained for example in Chapter 6.2 in Durbin and Koopman (2001) and Chapter
5 in Jones (1993).
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6.2.2 State space approach

Consider again the linear regression model with correlated errors

z = Xβ + ∂µηε.

Since ε = Y + ε̃, where Yti = bTXti is a CARMA(p,q) process, and
∂µη = diag (1/µt1 , . . . , 1/µtn), because of the log-link, we get the following state
space representation of (6.9).

(1) Observation equation:

zti = xT
tiβ + Gtiαti +

1

µti

ε̃ti , (6.15)

where

Gti :=
1

µti

bT and αti := Xti .

with xT
ti the i-th row of X ∈ Rn×s+1.

(2) State equation:

αti+1 = T tiαti + ζti , (6.16)

where

T ti := eA(ti+1−ti) and ζti :=

∫ ti+1

ti

eA(ti+1−u)1pdLu.

One standard assumption for state-space models is the zero mean of the noise
processes. This assumption is not satisfied in (6.15) and (6.16). But we can con-
struct a second state-space model defining observations (z∗ti , which are identical to
zti in L2(R). Since the QML-estimation criterion (6.10) only depends on the first
two moments of the observations we will get the same QMLE for both models.
For ease of notation we denote the observations in the second model also by z.
Because of the assumption E(ε̃ti) = −E(Yti), a zero mean CARMA(p,q) process
(Y ∗

t )t≥0 = (bT X∗
t )t≥0, with Cov(Y ∗

t , Y
∗
s ) = Cov(Yt, Ys), together with an i.i.d. noise

sequence(ε̃∗ti), with E(ε̃∗ti) = 0, Var(ε̃∗ti) = σ2
ε̃ and uncorrelated with Y ∗, will lead to

the same first and second order structure of zti . Let L∗ be the driving Lévy process
of Y ∗, with E(L∗

1) = 0 and Var(L∗
1) = Var(L1). Then we get the state-space model:

(1) Observation equation:

zti = xT
tiβ + Gtiα

∗
ti +

1

µti

ε̃∗ti , (6.17)

where

Gti =
1

µti

bT and α∗
ti := X∗

ti .

with xT
ti the i-th row of X ∈ Rn×s+1.
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(2) State equation:

α∗
ti+1

= T tiα
∗
ti + ζ∗

ti , (6.18)

where

T ti = eA(ti+1−ti) and ζ∗
ti :=

∫ ti+1

ti

eA(ti+1−u)1pdL
∗
u.

An augmented Kalman filter (see e.g. Chapter 5.7 in Durbin and Koopman
(2001)) will be applied to (6.17) and (6.18). The idea of this filter is to apply the
Kalman filter with observation matrix Gti and state matrix T ti to the variables
zti , x

T
ti,1
, . . . , xT

ti,s+1 consecutively. xT
ti,k

is the k-th element of the row vector xT
ti . For

each of the variables xT
ti,1
, . . . , xT

ti,s+1 a new state vector αk
ti , k = 1, . . . , s + 1 is

taken, but the variance elements in the Kalman filter are the same as for zti . The
Kalman filter computes best linear predictions ẑti , x̂

T
ti,1
, . . . , x̂T

ti,s+1 based on all past

observations {ztj , xT
tj ,1, . . . , x

T
tj ,s+1; 1 ≤ j < i}. In each step of the filter we store the

one-step forecast errors z∗ti(ξ) := zti − ẑti , x
∗T

ti,1
(ξ) := xT

ti,1
− x̂T

ti,1
, . . . , x∗

T

ti,s+1(ξ) :=

xT
ti,s+1 − x̂T

ti,s+1. These forecast errors can then be used to calculate the generalised

least square estimates β̂, given by

β̂(ξ) :=

(
n∑

i=1

x∗
ti(ξ)F−1

ti
(ξ)x∗T

ti (ξ)

)−1 n∑

i=1

x∗
ti(ξ)F−1

ti
(ξ)z∗ti(ξ), (6.19)

where x∗T

ti (ξ) := (x∗
T

ti,1
(ξ), . . . , x∗

T

ti,s+1(ξ)) and Fti(ξ) := Var(z∗ti(ξ) − x∗T

ti (ξ)β). To
see that (6.19) is equal to (6.13) one has to recall that

Λ−1(ξ) = KT (ξ)F−1(ξ)K(ξ). (6.20)

Inserting (6.20) into (6.13) yields

β̂(ξ) = [(K(ξ)X )T F−1(ξ)K(ξ)X ]−1(K(ξ)X )T F−1(ξ)K(ξ)z.

Since the Kalman filter performs the Cholesky decomposition (6.20) (see Chapter
3.4 in Harvey (1990)), we see that applying the Kalman filter is equivalent to the
multiplication by the matrix K(ξ). For more details on the augmented Kalman filter
see Chapter 5.7 Durbin and Koopman (2001) or Chapter 3.4 in Harvey (1990).

The procedure to estimate the parameters is then exactly the same as in the
direct approach. First ξ is estimated by maximizing

Qn(ξ, z) =
1

n

n∑

i=1

[
− log(Fti(ξ)) − (v∗ti(ξ) − x∗T

ti (ξ)β̂(ξ))2

Fti(ξ)

]

=
1

n

n∑

i=1

[
− log(Fti(ξ)) − v2

ti(ξ)

Fti(ξ)

]
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with respect to ξ. This estimate is denoted by ξ̂n. Afterwards ξ in (6.19) is replaced
by ξ̂n to get the generalised least squares estimate of β.

6.3 Simulation results

The performance of the QML estimator using the state space approach is going to be
analysed in a small simulation study. The parameters are estimated in two set-ups.
One with regularly spaced observations and the other with irregularly spaced ones.
For the regularly spaced observations we created 2000 equidistant time points in
the interval (0, 400). In case of irregularly sampling the durations are exponentially
distributed, with a mean value of 0.2, to assure that time points are also in the
interval (0, 400).

In each of the 100 simulations the sample size was 2000. As a explanatory vari-
able we took real bid ask spreads from the IBM stock. The regression coefficient
β was taken equal to 0.3. We did not include an intercept in the regression. The
correlation was simulated by a CARMA(1,0) process with parameter a = 0.8. As
driving Lévy process L we chose a compound Poisson process (see also Example
1.1.6) with exponentially distributed jumps (Xk) i.i.d. expo(100). The jump rate of
the Poisson process N was taken equal to 3. The mean and variance of L1 are then
0.0375 and σ2 = 0.0006, respectively. The choice of the parameter values was moti-
vated by similar parameter values obtained in the application presented later. The
measurement noise ε̃ was simulated as a Gaussian i.i.d. noise with mean −0.0375
and variance σ2

ε̃ = 0.0001, respectively.
For the resulting estimates we computed estimates of mean, bias, mean absolute
error (MAE), mean squared error (MSE) and the estimated standard errors of these
estimates. The results can be seen in Table 6.1 and 6.2 showing satisfying perfor-
mance for both settings.

6.4 Application

The data,which we will use, comes from the Trades and Quotes (TAQ) database of
the New York Stock Exchange (NYSE). We will work with IBM trade data from
September 30, 2002 up to October 31, 2002. The NYSE market opens 9.30 am and
closes at 4.00 pm. Tradings outside these official trading hours have been deleted.
Since we want to concentrate on real price changes we also excluded all zero returns
and the corresponding explanatory variables. We also eliminated all multiple trades.
Trades for the same transaction price were treated as a single trade by adding up the
volumes. Different transaction prices were averaged and the volumes totalled. The
resulting data set consists of transaction, bid and ask prices (all measured in cents
of US dollars), transaction times (measured in seconds) and volumes (measured
in the number of shares) realised over the specified time period. No further data
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â β̂ σ̂2 σ̂2
ε̃

True value 0.8000 3.0000·10−1 6.0000·10−4 1.0000·10−4

Mean 0.8122 2.9881·10−1 6.1091·10−4 0.9939·10−4

(0.0095) (1.1341·10−1) (6.9019·10−6) (7.8563·10−7)
Rel. bias 0.0152 -3.9676·10−3 1.8193·10−2 -6.0439·10−3

MAE 0.0781 8.8016·10−3 5.7419·10−5 6.2597·10−6

(0.0056) (7.1971·10−4) (3.9417·10−6) (4.7446·10−7)
MSE 0.0092 1.2875·10−4 4.8352·10−9 6.1470·10−11

(0.0013) (1.8454·10−5) (6.0478·10−10) (7.7510·10−12)

Table 6.1: Mean, relative bias, mean absolute error (MAE) and mean squared error
(MSE) for â, β̂, σ̂2 and σ̂2

ε̃ together with their estimated standard errors in paren-
theses in case of regularly spaced observations.

â β̂ σ̂2 σ̂2
ε̃

True value 0.8000 3.0000·10−1 6.0000·10−4 1.0000·10−4

Mean 0.8015 2.9844·10−1 6.0974·10−4 9.8657·10−5

(0.0092) (9.4843·10−4) (6.9191·10−6) (5.4509·10−7)
Rel. bias 0.0019 -5.1803·10−3 1.6248·10−2 -1.3423·10−2

MAE 0.0696 8.1259·10−3 5.5842·10−5 4.4295·10−6

(0.0059) (5.0689·10−4) (4.1634·10−6) (3.4225·10−7)
MSE 0.0082 9.1468·10−5 4.8344·10−9 3.1220·10−11

(0.0014) (1.1264·10−5) (6.8064·10−10) (4.2670·10−12)

Table 6.2: Mean, relative bias, mean absolute error (MAE) and mean squared error
(MSE) for â, β̂, σ̂2 and σ̂2

ε̃ together with their estimated standard errors in paren-
theses in case of irregularly spaced observations.

manipulations have been carried out. Sample absolute log returns of six trading
days have been plotted in Figure 6.1.

In Chapter 6.1.1 we have said, that a parametric approach is used. But up to now we
have not specified the parametric set-up. To get an idea how the absolute log return
may depend on the explanatory variables, we perform some kind of explorative data
analysis by fitting a Generalized Additive Model (see Hastie and Tibshirani (1990))
with uncorrelated errors to the data. The functional relationship displayed by the
model, will then be used to set up a parametric model. The aim of the analysis in
this section is to fit our model to the data. Then to check if the fitted correlation
structure can be justified and investigate the predictive power of the explanatory
variables. The one step ahead predictions of the absolute log return for October 14th
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Figure 6.1: Absolute log returns of the 11th (first row), 18th (second row), 22nd
(third row), 23rd (fourth row), 24th (fifth row) and 25th (last row) of October 2002.
The time is measured in real time.

until October 31st, 2002, will be computed using the information corresponding to
each of the following four set-ups:

(1) the last day

(2) the last three days

(3) the last day and the same day one week ago

(4) the same day one and two weeks ago.

The different forecasts are then compared using the mean squared error as criterion.
Exploratory we will present the estimation results for the days needed to predict
October 25th, 2002.

6.4.1 Explorative data analysis

Initially we chose only the bid-ask spread and the duration as explanatory vari-
ables. The influence of the volume will be analysed in a further study. Therefore the
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generalised additive model under consideration is the following one

log(µti) = s1(bti) + s2(dti),

where si(), i = 1, 2, are smoothing splines and bti (bid-ask spread) and dti (dura-
tions) are the explanatory variables. This model is fitted using the Splus function
gam() under the assumption of uncorrelated errors. The results of this estimation
procedure can be seen in Figure 6.2.
For the bid-ask spread as well as the duration one can recognise a relatively smooth
functional relationship. We decided, that a polynomial of third order has enough
flexibility to model both explanatory variables. This led us to consider a model with
design matrix X , where

xT
tiβ := β0 + β1bti + β2b

2
ti + β3b

3
ti + β4dti + β5d

2
ti + β6d

3
ti ,

with bid-ask spread bti and duration dti .

6.4.2 Estimation results

The application of the augmented Kalman filter, which was described in Chapter
6.2.2, and the quasi maximum likelihood estimation of the remaining parameters re-
sulted in the parameter estimates, which can be seen in Table 6.3. The coefficients β̂k,
k = 4, 5, 6, correspond to durations measured in one-hundredth of a second, whereas
the time was measured in seconds. The plots of the absolute log returns together
with their fitted mean values are shown in Figure 6.3 demonstrating no obvious lack
of fit.

The regression coefficients lead to estimates of the two polynomials

pb(bti) := β0 + β1bti + β2b
2
ti + β3b

3
ti (6.21)

pd(dti) := β4dti + β5d
2
ti + β6d

3
ti . (6.22)

The estimated polynomials of the m-th day are denoted by

p̂m
b (x) := β̂m

0 (bm,dm) + β̂m
1 (bm,dm)x+ β̂m

2 (bm,dm)x2 + β̂m
3 (bm,dm)x3

and

p̂m
d (x) := β̂m

4 (bm,dm)x+ β̂m
5 (bm,dm)x2 + β̂m

6 (bm,dm)x3

and the observations on the m-th day by

bm := (bmt1 , . . . , b
m
tnm

) and dm := (dm
t1 , . . . , d

m
tnm

)

where nm is the number of observations on day m. These estimated polynomials are
shown in Figure 6.2.
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Day β̂0 β̂1 β̂2 β̂3 β̂4

October 11, 2002 -4.2726 18.0106 -48.9357 49.1082 1.8313
October 18, 2002 -4.4576 18.0729 -27.0261 -42.8318 2.6261
October 22, 2002 -4.6144 24.0957 -113.1130 253.7693 2.1601
October 23, 2002 -4.3120 17.2861 -38.7623 22.5341 1.3981
October 24, 2002 -4.4129 15.7375 -27.6543 16.4028 2.8124
October 25, 2002 -4.6366 26.6262 -117.5710 228.4430 1.8190

Day β̂5 β̂6 â σ̂2 σ̂2
ε̃

October 11, 2002 -2.1036 0.7714 0.3942 1.1·10−3 2.6·10−09

October 18, 2002 -4.7253 2.6941 0.5942 7.4·10−4 9.1·10−13

October 22, 2002 -3.8395 3.2206 0.9886 2.1·10−4 4.1·10−04

October 23, 2002 -0.2093 -0.7194 0.7301 1.3·10−3 2.1·10−10

October 24, 2002 -3.4322 -0.0021 0.5253 7.1·10−4 4.0·10−08

October 25, 2002 -1.4558 0.2407 0.8991 9.8·10−4 1.4·10−04

Table 6.3: QMLE based on the augmented Kalman filter.

6.4.3 Analysis of the correlation structure

In the end we want to take a look at the sample variograms of the residuals, and
see if the assumed correlation structure can be justified. The variogram is defined in
Appendix B, where we also present four examples of sample variograms of simulated
CARMA(p,q) processes. Figure 6.3 contains the sample variograms and variograms
of the estimated models for all six residual processes.

The rough structure of the sample variogram is due to the irregularly spaced
observations, because the irregular spacing leads to greater changes in the number of
observations for consecutive lags. For October 11, 2002 the estimated model proposes
stronger correlation than the sample variogram, but despite this fact, the shape of
the sample variogram and the variogram based on the estimated model is quite
similar. The reason for this might be a numerical imprecision or a misspecified
correlation structure, which has to be further analysed. The other days show less
correlation in the residuals, which can be seen by the faster increasing variograms.
The sample variograms represent the proposed structure of the model variogram
quite well. Only for the first few lags we see consistently smaller values of the sample
variogram γ̂(h) compared to the model variogram γ(h). This may be due to the fact
that γ(h) → σ2

ε̃ but γ̂(h) → 0 as h → 0 (see also the appendix). This effect is
known in the geostatistics literature as a nugget effect and appears because of the
superposition of independent noise on an underlying process. The nugget effect can
be seen on all six days. Therefore one could try to fit CARMA processes of higher
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Figure 6.2: Smoothing spline estimates and estimated bid-ask and duration polyno-
mials p̂m

b (·) and p̂m
d (·) for the days 11th (first row), 18th (second row), 22nd (third

row), 23rd (fourth row), 24th (fifth row) and 25th (last row) of October 2002. The
marks represent the observed values of the explanatory variables.

order to the data on October 11th to see, if the fit could be improved. For the
remaining days the proposed correlation could be justified.

6.4.4 Prediction

Since we have shown how to estimate the polynomials, we want to explain now how
to predict the mean of the absolute log return of the next trading day. Imagine that
we have estimates for m = 1, . . . ,M days. Using these 2M polynomials we construct

two mean piecewise polynomials by averaging over the observed data points

pM
b (x) :=

1

|M b(x)|
∑

m∈Mb(x)

p̂m
b (x) (6.23)

pM
d (x) :=

1

|Md(x)|
∑

m∈Md(x)

p̂m
d (x), (6.24)
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Figure 6.3: Left column: Absolute log returns (dashed line) together with the fitted values
(solid line ) for the days 11th (top row ), 18th (second row), 22nd (third row), 23rd (fourth
row), 24th (fifth row) and 25th (bottom row) of October 2002. Right column: Model (dashed
line) and sample variogram of the residuals εti

(solid line) for the days 11th (top row ), 18th
(second row), 22nd (third row), 23rd (fourth row), 24th (fifth row) and 25th (bottom row) of
October 2002.

where

M b(x) := {m ∈ {1, . . . ,M}| x ∈ [0,max
i
bmti ]}

|M b(x)| := card M b(x)

and

Md(x) := {m ∈ {1, . . . ,M}| x ∈ [0,max
i
dm

ti ]}

|Md(x)| := card Md(x).

A smoothed version of these two piecewise polynomials for day M + 1 we get by
fitting two smoothing splines at pM

b (·) and pM
d (·) over the intervals [0,maxm bmtnm

]
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and [0,maxm dm
tnm

]. The smoothing splines pb(·) and pd(·) minimise

n∑

i=1

(
pM

b (xb
ti) − pb(x

b
ti)
)2

+ λb

∫ Tb

0

[
∂2pb(x)

∂2x

]2

dx, xb
ti ∈ [0,max

m
bmtnm

], (6.25)

and

n∑

i=1

(
pM

d (xd
ti) − pd(x

d
ti)
)2

+ λd

∫ Td

0

[
∂2pd(x)

∂2x

]2

dx, xd
ti ∈ [0,max

m
dm

tnm
] (6.26)

respectively, where λb, λd > 0 are smoothing parameters, Tb := maxm bmtnm
and

Td similarly. λb and λd are maximum likelihood estimates. Maximum likelihood
estimation of smoothing parameters for spline smoothing is explained in Chapter
3.11 in Durbin and Koopman (2001).
The predicted mean values of the absolute log returns |r̂ti | of the M + 1-th day are
then defined like this

P (|rM+1
ti

|) := exp(pb(b
M+1
ti

) + pd(d
M+1
ti

)). (6.27)

Remark 6.4.1 Observe that dti is unknown up to time ti. Since we mainly want
to investigate the dependence on the explanatory variables, we will assume in a first
step, that the durations are known. In a second step an ACD model could be fitted
to the durations, to get forecasts also for the durations.

6.4.5 Prediction results

As we mentioned at the beginning of this section, the one step ahead predictions
of the absolute log return for the days October 14th-31st, 2002, will be computed
using the data of:

(i) the last day

(ii) the last three days

(iii) the last day and the same day one week ago

(iv) the same day one and two weeks ago.

Performing the steps described in Chapter 6.4.4 produced for each day the
smoothing spline estimates pb

k(·), k = 1, . . . , 4 and pd
k(·), k = 1, . . . , 4. In the first

prediction set-up (i) the smoothing splines are equal to the estimated polynomials
for the last day, since we have only one polynomial observation in each case. For the
25th of October, the smoothing splines together with the mean piecewise polynomi-
als are shown in Figure 6.4. The absolute log returns together with corresponding
predictions can also be seen.
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Figure 6.4: Smoothing spline (solid line) and mean piecewise polynomials (dashed
line) in rows 1,2,4 and 5, absolute log returns (dashed line) and mean value predic-
tions (solid line) in rows 3 and 6 for the prediction set-up (i) (top left 3 panels), (ii)
(top right 3 panels), (iii) (bottom left 3 panels) and (iv) (bottom right 3 panels).

The different forecasts are now compared using the mean squared errors

MSEk,j :=
1

nj

nj∑

i=1

(|rj
ti
| − P k(|rj

ti
|))2, k = 14, . . . , 4, j ∈ I,

where

P k(|rj
ti
|) := exp(pb

k(bjti) + pd
k(dj

ti
)), k = 1, . . . , 4, j ∈ I,

and I is the index set of the sample including October 14th to 31st, as criterion.
These MSE are shown in Table 5.4. In parentheses one can see the rank of the pre-
diction within each day. For October 14th the random effect could not be described
by a CARMA(1,0) process. Therefore we fitted a CARMA(2,1) process to the data.
To compare the different prediction set-ups we calculated average ranks over the
days. For this data the best strategy would be to use the information of the last
three days for prediction. set-up (iii) is the second best strategy and set-up (i) and
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Day set-up (i) set-up (ii) set-up (iii) set-up (iv)

October 14 1.387·10−3 (3) 1.356·10−3 (1) 1.368·10−3 (2) 1.389·10−3 (4)
October 15 6.825·10−4 (2) 6.830·10−4 (3) 6.804·10−4 (1) 7.776·10−4 (4)
October 16 9.541·10−4 (1) 9.639·10−4 (2) 9.771·10−4 (3) 1.013·10−3 (4)
October 17 4.538·10−4 (1) 5.157·10−4 (2) 5.661·10−4 (3) 8.871·10−4 (4)
October 18 6.453·10−4 (3) 6.203·10−4 (1) 6.211·10−4 (2) 6.485·10−4 (4)
October 21 5.598·10−4 (1) 5.942·10−4 (3) 5.665·10−4 (2) 8.365·10−4 (4)
October 22 5.261·10−4 (3) 5.254·10−4 (2) 5.228·10−4 (1) 5.952·10−4 (4)
October 23 9.311·10−4 (2) 8.705·10−4 (1) 3.846·10−3 (4) 1.475·10−3 (3)
October 24 7.644·10−4 (4) 7.581·10−4 (3) 7.537·10−4 (2) 7.378·10−4 (1)
October 25 7.054·10−4 (4) 7.011·10−4 (3) 6.932·10−4 (2) 6.928·10−4 (1)
October 28 1.048·10−3 (4) 8.157·10−4 (2) 8.048·10−4 (1) 8.746·10−4 (3)
October 29 8.529·10−4 (2) 8.421·10−4 (1) 8.561·10−4 (3) 8.828·10−4 (4)
October 30 2.657·10−3 (4) 1.829·10−3 (3) 1.226·10−3 (1) 1.323·10−3 (2)
October 31 5.463·10−4 (1) 5.558·10−4 (2) 5.700·10−4 (3) 6.821·10−4 (4)

average rank (2.50) (2.07) (2.14) (3.28)

Table 6.4: MSE of the one step ahead predictions on the next trading day for the
set-up (i), (ii), (iii) and (iv) together with the corresponding rank in parentheses.

(iv) are third and fourth. This presents a method which allows to empirically in-
vestigate the performance of different prediction strategies. The predictive power of
the duration can be seen, when we recompute the predictions for the set-up with
the smallest MSE without using the duration. We observed an increase in the MSE
between 5 and 20 percent. For October 25th the resulting predictions are shown in
Figure 6.5. The mean squared error in this case is equal to 8.1874 · 10−4, showing a
significant increase of about 18 percent.
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Figure 6.5: Absolute log returns on October 25th (dashed line) and mean value
predictions (solid line) for prediction set-up (iv) using bid ask and duration (top)
and using only bid ask (bottom).



Conclusion and outlook

Analysing ultra high frequency financial data is nowadays mostly based on a con-
tinuous time model. In this thesis we addressed several new approaches. First of
all the exponential continuous time GARCH(p, q) process was introduced and its
probabilistic properties studied to some extend. It was shown that the model can
explain a leverage effect in the way that a jump in the log-price process can be nega-
tively correlated with future volatility for certain parameters. For the simplest case,
the compound Poisson ECOGARCH(1, 1) process, we also considered inference in
this new model. Future work in this direction has to be done to develop estimators
applicable for more general driving Lévy processes.

To adjust for long range dependence in the volatility, which is sometimes observed
in financial data, we introduced the fractionally integrated ECOGARH(p, d, q) pro-
cess. Due to the long memory property, which we showed for the volatility process,
the estimation of the model will be more complicated. Inference of this model should
probably be based on Whittle type estimators and use the linear structure of the
log-volatility process. In both models we have not taken into account any explana-
tory variables, which are provided to us by the market. Finding suitable extensions
to allow for such information should also be one point in future research.

The mixed effect model we introduced at the end of the thesis takes into account
such explanatory variables, but models a proxy, the absolute log-return, of the in-
stantaneous volatility. We analysed the impact of this exogenous information on the
absolute log-return on a daily basis. Significant and time varying influence of the
bid-ask spread and the duration was found. Since the duration is unknown prior to
the trade, one should consider in future work an autoregressive condition duration
model for the unknown duration. Also the influence of further explanatory variables
has to be analysed.

Multivariate approaches to model a portfolio of stocks have not been consid-
ered in this thesis. Though the interest in multivariate continuous time models with
stochastic volatility has increased in recent time, see e.g. Barndorff-Nielsen and Shep-
hard (2001), Barndorff-Nielsen and Stelzer (2007) or Pigorsch and Stelzer (2007).
The research on extending the ECOGARCH(p, q) process to the multivariate case
is joint work with Robert Stelzer and a first multivariate model is currently under
investigation.
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Appendix A

Basics on stochastic processes
and related topics

A.1 Definitions and review of basic results

We review some basic facts about the theory of stochastic processes and related
topics. For further details we refer to Protter (2004), Karatzas and Shreve (1991)
and Applebaum (2004).

Definition A.1 Let T be a parameter space. A stochastic process is a family of
random variables (Xt)t∈T defined on a probability space (Ω,F , P ).

In the following we will only consider d-dimensional continuous time stochastic pro-
cesses. In that case the parameter space T is identified with R+.

Definition A.2 Let F and G be two σ-algebras. Then the product σ-algebra formed
from F and G is defined by F ⊗ G := σ(A×B ;A ∈ F , B ∈ G).

Definition A.3

(1) A random variable defined on the probability space (Ω,F ,P) is called F-measurable
if X−1(B(Rd)) ⊂ F . If X is a bounded F-measurable random variable we de-
note it by X ∈ bF .

(2) A d-dimensional stochastic process X defined on the probability space (Ω,F ,P)
is called measurable if, for every A ∈ B(Rd), the set {(t, ω); Xt(ω) ∈ A}
belongs to the product σ-algebra B([0,∞)) ⊗F .

If we equip the sample space (Ω,F) with a filtration, i.e. a nondecreasing family
{Ft; t ≥ 0} of sub-σ-algebras of F : Fs ⊆ Ft ⊆ F for 0 ≤ s < t < ∞, then an
adapted stochastic process can be defined as follows.
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Definition A.4 The stochastic process X is adapted to the filtration {Ft}, if for
every t ≥ 0, Xt is an Ft-measurable random variable.

A probability space (Ω,F ,P) equipped with a filtration {Ft} will be called a
filtered probability space and denoted by (Ω,F , (Ft)t≥0,P).

Definition A.5 Let E ∈ B(Rm). Then the smallest σ-algebra P on R+ × E × Ω,
with respect to which all mappings F : R+ × E × Ω → Rd satisfying:

(1) for each t ∈ R+ the mapping (x, ω) 7→ F(t, x, ω) is B(E) ⊗Ft-measurable

(2) for each x ∈ E,ω ∈ Ω the mapping t 7→ F(t, x, ω) is left-continuous

are measurable, is called the predictable σ-algebra . A mapping measurable with
respect to P is said to be predictable.

Notice that we would call a mapping defined on R+×Ω also a stochastic process.

Definition A.6 Consider a measurable space (Ω,F) equipped with a filtration {Ft}.
(1) A random time T is a F-measurable random variable, with values in [0,∞]. A

random time T is a stopping time of the filtration, if

{T ≤ t} ∈ Ft, ∀t ∈ R+.

(2) Let X be stochastic process and T a stopping time. The stopped process XT

is defined by XT
s (ω) = XT∧s(ω).

Definition A.7

(1) Let us define Ft− := σ(
⋃

s<t Fs) to be the σ-algebra of events strictly prior to
t > 0, Ft+ :=

⋂
ǫ>0 Ft+ǫ to be the σ-algebra of events immediately after t ≥ 0

and F0− := F0. Then the filtration {Ft} is right- (left-) continuous if Ft = Ft+

(Ft = Ft−) holds for every t ≥ 0.

(2) A filtration {Ft} is said to satisfy the usual conditions if it is right-continuous
and F0 contains all the P-negligible events (events which occur with probability
zero) in F .

Definition A.8 A stochastic process X is said to be càdlàg (càglàd) if it a.s. has
sample paths which are right- (left-) continuous, with left- (right-) hand limits.

Definition A.9 The stochastic process X is called (left-, right-) continuous in prob-
ability, if

lim
(h↓0,h↑0),h→0

P(‖Xt+h − Xt‖ > ǫ) = 0, ∀ (t > 0, t ≥ 0) t ≥ 0 and ǫ > 0.
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Definition A.10 Two stochastic processes X and Y are modifications if Xt = Yt

a.s., for each t.

Definition A.11 Let (S,A) be a measurable space and (Ω,F ,P) a probability space.
Then a random measure M on (S,A) is defined as a collection of random variables
{M(B), B ∈ A} on (Ω,F ,P) such that:

(R1) M(∅) = 0

(R2)

M

(
∞⋃

n=1

An

)
=

∞∑

n=1

M(An) , a.s. ,

for any given sequence (An)n∈N of mutually disjoint sets in A.

(R3) for each disjoint family B1, . . . , Bn of sets in A, the random variables
M(B1), . . . ,M(Bn) are independent.

Definition A.12

(1) Let X be an adapted process on a filtered probability space (Ω,F , (Ft)t≥0,P)
such that E(‖Xt‖) < ∞ for all t ≥ 0. Then we say that X is a martingale if,
for all 0 ≤ s < t <∞,

E(Xt|Fs) = Xs a.s. .

(2) Let U be a topological space and M a random measure on S = R+ × U . For
each A ∈ B(U), define the process MA := (M([0, t)×A))t≥0. Then M is called
a martingale-valued random measure if there exists V ∈ B(U) such that MA

is a martingale whenever A ∩ V = ∅.

Definition A.13 Let π = {a = t0 < t1 < · · · < tn = b} be a finite partition of
the interval [a, b] ⊂ R and f : [a, b] → Rm a càdlàg mapping. Then the variation
varπ(f) of f over the partition π is defined as

varπ(f) :=

n∑

i=1

‖f(ti) − f(ti−1)‖ .

If supπ varπ(f) <∞, then f is said to be of finite variation on [a, b]. If f is defined
on R, then f has finite variation if it has finite variation on every compact interval.

Remark A.14 A stochastic process X is said to be of finite variation if the trajec-
tories (Xt(ω))t≥0 are of finite variation for almost all ω ∈ Ω.
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Definition A.15 Let X and Y be univariate Lévy-type stochastic integrals as de-
fined in (1.24), i.e.

dXt = G(t)dt + F (t)dBt +

∫

|x|<1
H(t, x)ÑL(dt, dx) +

∫

|x|≥1
K(t, x)NL(dt, dx) ,

where |G|1/2, F ∈ H2(T ),H ∈ H2(T,B1 − {0}) and K is predictable. For each t ≥ 0

let (πn)n∈N, where πn = {0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
kn

= t}, be a sequence of finite

partitions of [0, t] with mesh mn := max1≤i≤kn |t(n)
i −t(n)

i−1| tending to zero for n→ ∞.
Then we define

[X,Y ]t := lim
n→∞

kn∑

i=1

(
X

t
(n)
i

−X
t
(n)
i−1

)(
Y

t
(n)
i

− Y
t
(n)
i−1

)
, (A.1)

where the limit is taken in probability, i.e.

lim
n→∞

P

(∣∣∣∣∣

kn∑

i=1

(
X

t
(n)
i

−X
t
(n)
i−1

)(
Y

t
(n)
i

− Y
t
(n)
i−1

)
− [X,Y ]t

∣∣∣∣∣ > ǫ

)
= 0

for all ǫ > 0. [X,Y ]t will be called the quadratic variation of X and Y at time t and
([X,Y ]t)t≥0 the quadratic variation process of X and Y .

From Corollary II.1 in Protter (2004) we know that [X,Y ] has sample paths of
finite variation on every compact interval. From the polarization identity (see e.g.
Chapter II.6 in Protter (2004))

[X,Y ] =
1

2
([X + Y,X + Y ] − ([X,X] + [Y, Y ]))

one can see that [X,Y ] is the difference of two non-decreasing processes, hence its
sample path is of finite variation (cf. Corollary II.1 in Protter (2004)). Then we know
by Lemma 21.8 (iv) in Sato (1999) that the sample path can be decomposed into a
continuous [X,Y ]c and pure jump [X,Y ]d part. Therefore we can write

[X,Y ]t = [X,Y ]ct + [X,Y ]dt = [X,Y ]ct +
∑

0≤u≤t

∆[X,Y ]du

= [X,Y ]ct +
∑

0≤u≤t

∆Xu∆Yu . (A.2)

In particular the quadratic variation of a Lévy process L with Lévy-Itô decom-
position (1.11) is given by

[L,L]t = [L,L]ct + [L,L]dt = [L,L]ct +
∑

0≤u≤t

(∆Lu)2

= σ2
Lt+

∫ t

0

∫

R−{0}
x2NL(du, dx) . (A.3)
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In Chapter 1.5 we need also the following quadratic variation processes:

[L, [L,L]]t = [L, [L,L]]ct +
∑

0≤u≤t

∆Lu∆[L,L]u = [Lc, [L,L]c]t +
∑

0≤u≤t

(∆Lu)3

= [γL · +B·, σ
2
L·]t +

∑

0≤u≤t

(∆Lu)3 =
∑

0≤u≤t

(∆Lu)3 , (A.4)

where the last equality follows from the formal relations dt · dt = dt · dBt = 0.

[[L,L], [L,L]]t = [[L,L], [L,L]]ct +
∑

0≤u≤t

∆[L,L]u∆[L,L]u

= [σ2
L·, σ2

L·]t +
∑

0≤u≤t

(∆Lu)4 =
∑

0≤u≤t

(∆Lu)4 . (A.5)

The quadratic variation of two Lévy-type integrals can be expressed as a stochas-
tic integral with respect to the quadratic variation of the driving Lévy processes.
Assume therefore H,K ∈ H2(R) and X and Y are two Lévy processes. Then

[

∫ ·

0
HudXu,

∫ ·

0
KudYu]t =

∫ t

0
HuKud[X,Y ]u , (A.6)

for each t ≥ 0. For a proof of this result see Theorem II.29 in Protter (2004).
In Chapter 2.3 we use the β-mixing concept which is defined below.

Definition A.16 For a stationary process Z = (Zs)s≥0 define the σ-algebras FZ
[0,u] :=

σ((Zs)s∈[0,u]) and FZ
[u+t,∞) := σ((Zs)s≥u+t) for all u ≥ 0. Then Z is called β-mixing,

if

β(t) = β(FZ
[0,u],FZ

[u+t,∞))

:= E(sup{|P(B|FZ
[0,u]) − P(B)| : B ∈ FZ

[u+t,∞)}) → 0,

as t→ ∞, for all u ≥ 0.

From Proposition 1.1 in Doukhan (1994) we know that β-mixing implies α-
mixing, since

2α(FZ
[0,u],FZ

[u+t,∞)) ≤ β(FZ
[0,u],FZ

[u+t,∞)) .

A.2 Auxiliary results

A useful tool to calculate certain expression when dealing with Lévy processes is
the compensation formula (see e.g. Section 0.5 in Bertoin (1996)).
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Proposition A.17 (Compensation formula) Let L be a Lévy process with jumps
taking values in R − {0} and H ∈ P2(T,R − {0}). Then we have

E




∑

0≤u≤T

H(u,∆Lu)



 = E

(∫ T

0

∫

R

H(u, x)νL(dx)du

)
. (A.7)

Lemma A.18 (Applebaum (2004) Lemma 4.2.2) Let F ∈ H2(T,E) be a simple
mapping, i.e.

F (t, x) =

m∑

i=1

k∑

j=1

Fi,jχ(ti,ti+1](t)χAj(x) ,

for each t ∈ [0, T ], x ∈ E and where each Fi,j ∈ bFti , and M a martingale-valued
random measure satisfying (M1)-(M3). The stochastic integral of F with respect to
M is defined as

IT (F ) :=

m∑

i=1

k∑

j=1

Fi,j[M(ti+1, Aj) −M(ti, Aj)] ,

for each T > 0. Then we have

E(IT (F )) = 0 , (A.8)

E(IT (F )2) =

∫ T

0

∫

E
E(|F (t, x)|2)µ(dx)dt . (A.9)

Proof: Due to (M2) is M(ti+1, Aj) −M(ti, Aj) independent of Fti and hence

E(IT (F )) =

m∑

i=1

k∑

j=1

E(Fi,j)E([M(ti+1, Aj) −M(ti, Aj)]) = 0 .

The second moment is equal to

E(IT (F )2)

=

m,k∑

i,j=1

m,k∑

h,l=1

E(Fi,j [M(ti+1, Aj) −M(ti, Aj)]Fh,l[M(th+1, Al) −M(th, Al)])

=

m,k∑

i,j=1

k∑

l=1

∑

h<i

E(Fi,j [M(ti+1, Aj) −M(ti, Aj)]Fh,l[M(th+1, Al) −M(th, Al)])

+

m,k∑

i,j=1

k∑

l=1

E(Fi,j[M(ti+1, Aj) −M(ti, Aj)]Fi,l[M(ti+1, Al) −M(ti, Al)])

+

m,k∑

i,j=1

k∑

l=1

∑

h>i

E(Fi,j [M(ti+1, Aj) −M(ti, Aj)]Fh,l[M(th+1, Al) −M(th, Al)])
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The first and third term are zero due to the independent increment property (M2)
of M , since

m,k∑

i,j=1

k∑

l=1

∑

h<i

E(Fi,j [M(ti+1, Aj) −M(ti, Aj)]Fh,l[M(th+1, Al) −M(th, Al)])

=

m,k∑

i,j=1

k∑

l=1

∑

h<i

E(Fi,jFh,l[M(th+1, Al) −M(th, Al)])E([M(ti+1, Aj) −M(ti, Aj))

= 0 ,

and similarly for the third term. Again using (M2) and (R3) in Definition A.11 we
get

m,k∑

i,j=1

k∑

l=1

E(Fi,j [M(ti+1, Aj) −M(ti, Aj)]Fi,l[M(ti+1, Al) −M(ti, Al)])

(M2)
=

m,k∑

i,j=1

k∑

l=1

E(Fi,jFi,l)E([M(ti+1, Aj) −M(ti, Aj)][M(ti+1, Al) −M(ti, Al)])

=

m,k∑

i,j=1

k∑

l=1
l 6=j

E(Fi,jFi,l)E([M(ti+1, Aj) −M(ti, Aj)][M(ti+1, Al) −M(ti, Al)])

+

m,k∑

i,j=1

E(F 2
i,j)E([M(ti+1, Aj) −M(ti, Aj)]

2)

(R3)
=

m,k∑

i,j=1

E(F 2
i,j)E([M(ti+1, Aj) −M(ti, Aj)]

2)

Using the martingale property of M and (M3) we finally get

m,k∑

i,j=1

E(F 2
i,j)E([M(ti+1, Aj) −M(ti, Aj)]

2)

=

m,k∑

i,j=1

E(F 2
i,j)
[
E(M(ti+1, Aj)

2) − 2E(E(M(ti+1, Aj)M(ti, Aj)|Fti)) + E(M(ti, Aj)
2)
]

=

m,k∑

i,j=1

E(F 2
i,j)
[
E(M(ti+1, Aj)

2) − E(M(ti, Aj)
2)
]

=

m,k∑

i,j=1

E(F 2
i,j)(ti+1 − ti)µ(Aj) =

∫ T

0

∫

E
E(|F (t, x)|2)µ(dx)dt .

2
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Proposition A.19 Let Y be the stationary CARMA(p, q) process

Yt = bT eAtX0 +

∫ t

0
bT eA(t−u)1pdLu .

Then the mean and autocovariance function of Y are

E(Yt) = −bT A−11pE(L1) and Cov(Yt+h, Yt) = Var(L1)b
T eAhΣb ,

where Σ :=
∫∞
0 eAu1p1p

T eA
T udu.

Proof: The stationary solution of the state equation (1.35) is given by

Xt = eAtX0 +

∫ t

0
eA(t−u)1pdLu

= eAtX0 +

∫ t

0
eA(t−u)1p

(
dBu + γLdu+

∫

|x|<1
xÑL(du, dx)

+

∫

|x|≥1
xNL(du, dx)

)
.

Hence we get

E(Xt) = eAtE(X0) +

∫ t

0
eA(t−u)1p

(
γL +

∫

|x|≥1
xνL(dx)

)
du

= eAtE(X0) +
(
eAt − Ip

)
A−11pE(L1) .

Since X is stationary, E(Xt) has to be independent of t. Thus E(X0) has to be
−A−11pE(L1), implying

E(Yt) = −bT A−11pE(L1) .

For computing the autocovariance Cov(Xt+h,Xt), h ≥ 0, consider the zero mean
state process X̃t := Xt − E(Xt) = eAtX̃0 +

∫ t
0 e

A(t−u)1pdL̃u, with L̃t := Lt − E(Lt)
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for each t ≥ 0. Then

Cov(Xt+h,Xt)

= E

[
(eA(t+h)X̃0 +

∫ t+h

0
eA(t+h−u)1pdL̃u)(eAtX̃0 +

∫ t

0
eA(t−u)1pdL̃u)T

]

= eA(t+h)E(X̃0X̃
T
0 )eA

T t + eA(t+h)E

[
X̃0

(∫ t

0
eA(t−u)1pdL̃u

)T
]

+E

[∫ t+h

0
eA(t+h−u)1pdL̃uX̃

T
0 e

AT t

]

+E

[∫ t+h

0
eA(t+h−u)1p(dBu +

∫

R−{0}
xÑL(du, dx))

×
(∫ t

0
eA(t−u)1p(dBu +

∫

R−{0}
xÑL(du, dx))

)T




= eA(t+h)

[
Cov(X0,X0) +

∫ t+h

0
e−Au1p1p

T e−AT u(σ2
L +

∫

R

x2νL(dx))du

]
eA

T t

One can show that Cov(Xt,Xt) solves the linear differential equation

d

dt
V t = AVt + V tA

T + Var(L1)1p1p
T

(cf. (6.13)’ in Karatzas and Shreve (1991)). But since X is stationary, Cov(Xt,Xt)
has to be a constant solution, i.e. Cov(Xt,Xt) has to solve the algebraic matrix
equation

AV + VAT = −Var(L1)1p1p
T . (A.10)

Substituting the right hand side of (A.10) into the expression for Σ

Σ =

∫ ∞

0
eAu1p1p

T eA
T udu = −Var(L1)

−1

∫ ∞

0
eAu(AV + VAT )eA

T udu

= −Var(L1)
−1

∫ ∞

0

d

du
(eAuVeA

T u)du = −Var(L1)
−1eAuVeA

T u
∣∣∣
∞

0

= Var(L1)
−1V .

shows that Var(L1)Σ is a solution to (A.10) and thus Cov(Xt,Xt) = Var(L1)Σ.
From

Cov(Xt,Xt) = eAt

[
Cov(X0,X0) + Var(L1)

∫ t

0
e−Au1p1p

T e−AT udu

]
eA

T t
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it then follows that

∫ t

0
e−Au1p1p

T e−AT udu = e−AtΣe−AT t − Σ .

Thus one gets for the autocovariance

Cov(Xt+h,Xt) = eA(t+h)
[
Var(L1)

(
Σ + e−AtΣe−AT t − Σ

)]
eA

T t

= Var(L1)e
AhΣ ,

which implies

Cov(Yt+h, Yt) = Var(L1)b
T eAhΣb .

2



Appendix B

Variogram for irregularly spaced
time series

The variogram is mainly used in geostatistics. Applications for time series data are
rare, despite the fact that it has the advantage to be defined for irregularly spaced
and even non-stationary time series in comparison to the autocovariance function
(see Haslett (1997)).

Definition B.1 (variogram) Let (Zt)0≤t<∞ be a process, such that

E(Zt+h − Zt) = Ch,

with a constant C, and

Var(Zt+h − Zt) =: 2γ(h), (B.1)

where γ(h) is a conditionally negative definite function. Then γ(h) is called the
variogram.

Remark B.2 The requirement that γ(h) be conditionally negative definite means
that Var(

∑
i aiYti) (which is equal to −∑i,j aiajγ(ti − tj) when

∑
i ai = 0) be non-

negative definite when
∑

i ai = 0.

For observations Zt1 , . . . , Ztn , with C = 0, the variogram can be estimated
through the sample variogram

γ̂(h) :=
1

2
(n− |Nh|)−1

∑

(i,j)∈Ih

(Zti − Ztj )
2, (B.2)

where Nh := {(i, j), i, j ∈ {1, . . . , n}| |ti − tj | = h}.
To compare the sample variogram of the residuals (ε̂ti) in (6.5) with the theoretical
one, we have to compute the variogram of (εti). It is given by the following expression

γε(h) = Var(L1)b
T (Ip − eAh)Σb + σ2

ε̃ . (B.3)
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Example B.3 As an example consider a Lévy driven CARMA(p,q) process (Yt).
Here the driving Lévy process (Lt) is chosen to be a compound Poisson process with
exponentially distributed jumps, i.e.

Lt =
Nt∑

k=1

Xk,

where (Xk) i.i.d.with density f(x) = 100e−100x and Nt ∼ Pois(15t). The simulated
sample path has 2000 equidistant observations. The variogram γ(h) and sample var-
iogram γ̂(h) for the following parameter sets:

(1) p = 1, q = 0, a(z) = z + 0.1, b(z) = 1

(2) p = 2, q = 1, a(z) = z2 + 0.9z + 0.5, b(z) = 1 + z

(3) p = 2, q = 1, a(z) = z2 + 0.09z + 0.5, b(z) = 1 + z

(4) p = 3, q = 2, a(z) = z3 + 1.1z2 + 2.8174z + 0.2717, b(z) = 1 + 5z + z2.

are shown in Figure B.1. They are all computed for a maximal lag of 30. Figure B.1
shows the flexibility of the CARMA(p,q) process to model a wide variety of correla-
tion structures, represented by a slowly, fast increasing or oscillating variogram.
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Figure B.1: The variogram γ(h) (dashed line) and sample variogram γ̂(h) (solid line)
for the following processes: (i) CAR(1) with a(z) = z+ 0.1 and b(z) = 1 (top left),
(ii) CARMA(2,1) with a(z) = z2 + 0.9z + 0.5 and b(z) = 1 + z (top right), (iii)
CARMA(2,1) with a(z) = z2 + 0.09z + 0.5 and b(z) = 1 + z (bottom left), (iv)
CARMA(3,2) with a(z) = z3 + 1.1z2 + 2.8174z + 0.2717 and b(z) = 1 + 5z + z2

(bottom right)
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Marquardt, T. (2006a). Fractional Lévy processes, CARMA processes and related
topics. PhD thesis, Centre of Mathematical Sciences, Munich University of
Technology.
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and Lévy Processes, Volume 17 of Aportaciones Matemáticas: Investigación
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càglàd, 141
CARMA(p, q), 28

α-mixing, 31

causal, 30
characteristic triplet, 7
COGARCH(1, 1), 35

G, G(r), σ2, 35
α-mixing, 48

compound Poisson, 52
Variance Gamma, 55

compensation formula, 145

compound Poisson process, 10
continuous in probability, 141

Dirac measure, iv

duration, 119

ECOGARCH(p, q), 68

G, G(r), σ2, 69
α-mixing, 74

EGARCH(p, q), 67
exponential matrix, 23

FICARMA(p, d, q) process, 33
FIECOGARCH(p, d, q), 106

Gd, G
(r)
d , σ2

d, 107

FIEGARCH(p, d, q), 105
filtration, 140

right-(left-)continuous, 141
fractional integral, 33

GARCH(1, 1), 34

infinitely divisible, 7
integration by parts, 22
isometry, 19
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Abbreviations

a.s. almost surely
ARMA autoregressive moving average
CARMA continuous time ARMA
COGARCH continuous time generalised autoregressive

conditionally heteroscedastic
ECOGARCH exponential COGARCH
EGARCH exponential generalised autoregressive

conditionally heteroscedastic
FICARMA fractionally integrated CARMA
FIECOGARCH fractionally integrated ECOGARCH
FIEGARCH fractionally integrated EGARCH
GARCH generalised autoregressive conditionally heteroscedastic
i.i.d. independent identically distributed
OU Ornstein Uhlenbeck
SDE stochastic differential equation
SV stochastic volatility

Symbols

N, N0, Z {1, 2, . . . }, {0, 1, 2, . . . }, {. . . ,−1, 0, 1, . . . }
R, R+ (−∞,∞), [0,∞)
B(R) Borel σ-algebra over R

Md,m(R) space of all real d×m matrices

AT transpose of matrix A

Id identitiy in Md,d(R)
log, exp natural logarithm, exponential function
P,E probability, expectation
Var,Cov variance, covariance

d−→,
P−→,

a.s.−→ convergence in distribution, probability, almost surely
d
= equality in distribution
∂if i-th partial derivative of f
δx Dirac measure at x
Leb(A) Lebesgue measure of a set A
χA indicator function of the set A

Ac, A complement, closure of a set A
Lp space of p-integrable functions
(γL, σ

2
L, νL) characteristic triplet of a Lévy process L
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Kurzfassung: In dieser Arbeit werden verschiedene zeitstetige Ansätze zur
Modellierung hochfrequenter Finanzdaten behandelt. Neben dem Schätzen des bere-
its existierenden zeitstetigen GARCH(1, 1) (COGARCH) Prozesses, werden drei
neue Modelle vorgeschlagen. Zu Beginn stellen wir einen Momentenschätzer für
die Parameter des COGARCH(1, 1) Prozesses vor. Es wird gezeigt, dass die so
definierten Schätzer konsistent und asymptotisch normalverteilt sind. Ferner wird
das empirische Verhalten der Schätzer in zwei Simulationsstudien basierend auf
dem compound Poisson und Variance Gamma COGARCH(1, 1) Prozess untersucht.
Schließlich wird das Modell an reale hochfrequenz Finanzdaten von der New York
Stock Exchange angepasst. Als nächstes wird ein neues Modell, der exponentielle
COGARCH(p, q) Prozess, zur Modellierung von logarithmierten Aktienpreisen mit
stochastischer Volatilität definiert. Es werden Stationaritätseigenschaften sowie die
Momentenstruktur untersucht. Für den Fall p = q kann ein unmittelbar auftre-
tender ”leverage effect” nachgewiesen werden. Erste Schritte zum Schätzen dieses
Modells werden ebenfall unternommen. Es wird ein Quasi-Maximum Likelihood
Schätzer für die Parameter des compound Poisson ECOGARCH(1, 1) Prozesses
vorgeschlagen. Um lang andauernden Abhängigkeiten in der Volatilität, welche von
Zeit zu Zeit in empirischen Daten beobachtet werden, gerecht zu werden muß das
ECOGARCH Modell erweitert werden. Zu diesem Zweck wird der fraktionell in-
tegrierte ECOGARCH(p, q) Prozess eingeführt. Ähnlich wie zuvor werden Station-
aritätseigenschaften und die Momentenstruktur des neuen Modells untersucht. Ferner
wird gezeigt, dass das sogenannte ”Long Memory” Verhalten, welches per Definition
in der logarithmierten Volatilität auftritt auch in der Volatilität selbst vorhanden
ist. Im letzten Teil der Arbeit betrachten wir den absolut Betrag des logarithmierten
Gewinns als eine Approximation der stochastischen Volatilität zum jeweiligen Zeit-
punkt. Dadurch kann der Einfluß von Kovariablen auf den absolut Betrag des loga-
rithmierten Gewinns, und somit die stochastische Volatilität, in ”ultra” hochfre-
quenten Finanzdaten analysiert werden. Genauer gesagt schlagen wir ein neues
”mixed effect” Modell für den absolut Betrag des logarithmierten Gewinns vor. Die
Kovariablen werden verwendet, um einen fixen Effekt zu modellieren, wohingegen
der zufällig Fehler im Modell zerlegt werden kann in einen nichtnegativen zeitstetigen
ARMA Prozess und ein unabhängiges Rauschen, resultierend aus der Mikrostruktur
des Marktes. Die Parameter des Modells werden geschätzt basierend auf der Zu-
standsraumdarstellung des Modells und der Verwendung des Kalman Filters. Das
empirische Verhalten der Schätzer wird in einer Simulationsstudie untersucht. Ab-
schließend wird das Modell auf IBM Daten angewandt und der Einfluß der Kovari-
ablen ”bid-ask spread” und ”duration” auf einer täglichen Basis dargestellt.


