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Abstract-Instead of o priori approaches to Error-
Correcting OQutput Coding (ECOC) an adaptive solu-
tion to the definition of codewords in multiclass lear-
ning problems is presented. The generation of code-
words and the training of parallel subsystems of the
overall classification system is matter of an iterative
optimization method which takes advantage of a Maxi-
mum Likelihood (ML) technique in combination with
a regularization principle for penalizing low distances
between codewords, Fven for a very restricted com-
plexity of outputs the optimized codes outperform the
trivial one-per-class output coding. In a practical ap-
plication, the generalization capability of the infered
decision rule was considerably improved.

I. Introduction

Polychotomous classification is a general task in pat-
tern recognition. Designing a classifier is conside-
red to be the approximation of an unknown decision
rule which will be applied to a sequence of pat-
terns. The input pattern must be uniquely assigned
to one element of the unordered set of class indices
K = {1,2,...,K} on the basis of n observed at-
tributes (z1,...,2x) = @ € RY from the original
pattern. The construction of the decision rule is in-
fered from a set of pre-classified training examples
8 = ((wr, k1), (®a, k), - (mar, kar)) © X x K, for
which the true class indices k,, € K are given {see
supervised learning in [1, 2, 3, 4]).

The approximation of the decision rule is generally
identified with the construction of a mapping from the
feature space RY into the decision space D [3]. The
decision process of each input vector is composed in
two steps by

d:R*"—-=D— K,e—dm— k. (1)

A highly important feature between the layers of the
classifier is the representation of classes in the decision
space. Practitioners often prefer the trivial I-out-of-&
coding where each output of the classifier corresponds
to one of all classes. This method directly corresponds

to decision rules based on posterior probabilities of
classes [5]. Provided the representation of classes is
based on binary reference vectors ¢ € {—1,-+1}7 em-
bedded int a real-valued decision space D, the estima-
tion of reference vectors {codewords) for classes {6} is
equal to the optimal decomposition of polychotomies
into dichotomies [7] (e.g. class k is associated with
one of the two super classes of the jth dichetomy if
tr; = -+1, and v.v.). Reference vectors can be inter-
preted as corners of a high-dimensional hyper cube.

£

ﬁTIIJLlIJI[:.II?
Decider

Figure 1: The Classification System.

It has been shown that ECOC proposed by T. Di-
etterich and G. Bakiri [6, 8] outperforms the one-per-
class approach. ECOC is a kind of “neither hornoge-
neous nor non-homogeneous voting” [8], which redu-
ces both the bias error and the variance error if the
bias errors between the individual two-group classifiers




are uncorrelated. On the other hand, error-correcting
coding is supposed to be rebust in relation to small
sample sizes and in some cases does not depend on
the particular assignment of reference vectors to clas-
ses {8]. Whereas T. Dietterich’s methed of ECOC is
a prieri, the decomposition of polychotomies propo-
sed by E. Mayoraz and M. Moreira (7] depends on the
underlying training data.

In this work we propose a method that estimates
the reference vectors of classes using a technique that
combines a maximum {ikelihood (ML) method for den-
sity estimation together with the principle of regula-
rization. The presented classification system (Fig. 1)
consists of J parallel classifiers {neural networks) and
a following decoder that realizes the function from the
decision space onto the set of indices. Each parallel
network realizes its own two-clags problem with re-
spect to the decomposition of the complete classifi-
cation probiem. The d{x,&) expresses the mapping
of the first layer where 8 = (61,8,...,0;) summa-
rizes the parameters of the parallel components, and
T = (t1,t2,...,tx )7 represents the set of desired co-
dewords for classes in form of a matrix. The decoder
performs a minium distance based decision in form of

¢ == 1 — Eilla.
k= argip fld - tll (2)

Instead of two separate optimization tasks — sear-
ching for a set of reference vectors (decomposition into
dichotomies) and training of the parallel commponents —
the training of the network layer is split info a number
of training epochs. During cach training epoch the pa-
rameters of the network components and the reference
vectors of classes are iteratively estimated by means of
expectation maximization (EM) [9, 10}

In contrast to EM in density estimation problems,
the transformed input vectors in form of d(=z,0)}, or
in other words the realizations of the random varia-
ble dy,d3,...,ds — the given sample which plays the
fundamental part in the ML algorithm - are not con-
stant. Therefore the algorithm rather aims at lear-
ning the parameters 8 of all parallel classifiers such
that the vectors d,,(0) = d(en,8), zm € X, opti-
mally correspond to mixtures of disjeint distributions
p(d{x,0) | 1) according to their respective class mem-
berships. The estimation of this mixture distributions
is in turn part of the optimization. It is assumed that
for a training epoch the representation of each class is
distributed over a small subset of vectors £ € 7%. The
subset contains neighboring vectors of reference vec-
tor t; which is defined to be the “gravity center” of all
t € T during this epoch. In order to prevent the dis-
tributions of classes in decision space from overlapping,
the subsets of vectors 71,75, ..., T must be disjoint.
Under the assumption of normal distributions around
vectors £ € Ty, the center of distributions are impli-

city given. The covariance of the normal distribution
is defined to be diagonal and only depends on a single
variance parameter which is reasonably set to > 1 {cf.
distance between binary reference vectors).

The characteristic of the EM algorithm is that the
optimization of both objectives, namely the optimum
mixture of distributions according to ¢ € 7j and the
embedding of training samples into desired diséributi-
ons by training of the first layer, Is alternately prefor-
med. The algorithm is only indirectly error-correcting!
Fig. 2 presents the idea of the algorithm.

Pigure 2: “Gravity Centers” in Decision Space.

At the end of each training epoch, the set of refe-
rence vectors T is updated. The update of reference
vectors allows to implement the principle of regulari-
zation [11]. Using a regularization term, which is ba-
sed on distances between reference vectors in decision
space, already have shown promising results [12].

il. Expectation Maximization

Given the estimated parameters 8% and T (P*[t])
from the last training epoch, the expectation term (ef.
Appendix) of the EM is equal to

B | L. z f0g[p(dm (8),tm)]

Ry TRE

Hp{t.u [ d,.(67)) dty ---diy. (3)

=1

The reverse order of intergration and summation in
Eqn. 3 together with the condition of
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u 1 du(0%)) dt, = 1 results in

ff;ﬂp(t
E = Z/ loglp(d

Considering the prior knowledge of class membership

of vectors d,,, which reduces the variety of 7! to

I( disjoint 7, and log{p(dm(8),tm)] = log[p(dum(8) |
tm)] + loglp(t.,)], simplifies the E step to

), 8)] p(t| din(67)) dt.

(4)

My E=
Z f Z log|p(dim, (8) | £)] p(t | drm, (67)) it
*Z/ Z loglp(2)] p(t | dim, (6%)) dt (5)

kmkl

[ s ae=ria

k

where P{k] denotes the prior probability of class index
Eyand M, + My + ...+ M =M

Finally, the next estimation of parameters is obtai-
ned by maximizing both expectation terms in Eqgn. 5.
Using binary vectors ¢, € 7;} < {~1,+1}7, [ is re-
placed by 37, p(t) — Plt], and each domain 7}' con-
tains a finite number of possible reference vectors for
class k.

For the maximization of the expectation term (5),
the gradient according to 8 is

subject to

(6)

0F
88
x T M, Pit| dpm,(8")] 6p(d|t) 8
g§m§l p(dim, (6) | t) ad 69' (7)
Analogously,
OB _ % Pit|dim, (6°))
8P[t] Z PR + const.  (8)

=1

for all ¢ € [J,e 73, where const. represents the La-
grangian muitiplier from the additional linear cons-
traint P{k = 1]+ Plk = 2]+ ... + Pk = K] =
together with Eqn. 6. Setting Bqn. 8 to zero, the sum-
mation over all £ € 7)* yields const. = —M,, and for
allk € K and t € 7,7 the estimation of Pt] is obtained
by

My, ’
Pl =g 3 Plldim @), ()

where Pt | dim,{0%}] is infered from the estimated
parameters of the last training epoch:

P(dim, (07) | 2) P[¢] (

Plt| dim, (0%)] = = .
1 im0 24" P(dim, (67) | 7) P¥[7]

10)

ITI. Begularization

In order to prevent the distributions of classes in de- .
cision space from overlapping, and for the benefit of
ECOC, increasing the minimum distance between co-
dewords of classes is highly desirable. In the following,
we apply a regularization principle during the fearning
process for generation of reference vectors. The regula-
rization term is defined as the logarithm of the product
of all distances between reference vectors, or

k-1 K
R = Z Z log ity — 1|2,

k=1 l=k+41

(11)

and favours the generation of higher Hamming di-
stances between reference vectors. Hence, the cost
function of the overall optimization is defined as

F o= B(X,K,6,T*) + \- R(T™), (12)

where A is called “regularization parameter™.
After each training epoch the next potential refe-
rence vector of class &k is calculated by

(13)

The V. is called pseudo-gradient operator because in
the theory of the differential calculus there is no de-
finition of gradients in {—1,+1}’. The definition in
Eqn. 13 roughly follows the rules of numerical diffe-
rentiation. The feasible candidates for ¢;, are elements
from the M (1)) neighborhood (t € 7;* which maxi-
mally differ from t} in one component) of the cur-
rent reference vector. The operator @ is defined as
1, ®v = arg minteT; t+v—tl; foralle € R7. The
restriction to A (i) neighborhoods of possible candi-
dates is important. Otherwise, large modifications of
the reference vectors would change the composition of
the corresponding dichotomies such dramatically that
the after-training meaning of the learned parameters
from the previous training epoch would be destroyed.

The components of pseude-gradient Vi E would be
consequently defined by

tk:ti <] (VkE-{-)\-VkE).

8E _ E(t; +¢-e;) — E(t}) (14)
Otr; i |€§ ’
where all ¢;; of e; are equal to é;;, and € = ~ 28} ; bec-

ause of the binary properties of codewords. Hence, the
calculation of Vi E would require multiple repeated
runs of the last training epoch based on slightly mo-
dified reference vectors.

A definition of V F with lower complexity can be
obtained by utilizing the probabilities of vectors t € 7}*
from the previous training epoch (see Eqn. 9). The
proposed definition is equal to

8E |  Plif+e<- e
Bt ig; jel

- Plt}]

{15)
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The pseudo-gradient of the regularization term is
analogously derived from the rules of numerical diffe-

rentiation:
8
— - (16)
Otej ity
b1
1 3
. tp —t
o il B el

1= k

+ i — 1]
Zl iit ___ t!!i? at EE B f“2 :

b= Je-b .

The differential (k # 1) is again defined as

o}
—Ht, — 1
atkj” &

2; = (17)
L

[th +e-ej — il — [I35 — iz

lel

In order to guarantee that F(X,K,8,T) >
F(X,K,0%,T%), the iterative procedure (13) of
the discrete optimization must be performed semi-
implicitly and the next set of possible candidates of
reference vectors T must be chosen properly. This
is because of the non-local properties of the pseudo-
gradients. The calculation of VR for the k-th re-
ference vector depends on the already-adapted refe-
rence vectors t, ...1tg..1, and the still-unadapted vec-
tors 1} ...1%. The order of the sequence of updates
influences the optimization result of the iteration step.
A random choice of the order avoids systematical er-
Tors,

If the pseudo-gradient points into the direction of a
possible candidate for ¢, it simply depends on a thres-
hold whether the corresponding bit of the original re-
ference vector changes from +1 — —1 or —1 — +1, or
does not change. The threshold is practically determi-
ned by a stepsize.

There might be an interesting interpretation of the
proposed cost function approach: structural risk mi-
nimization {SRM) and regularization. SRM [13] is a
result of Statistical Learning Theory and emphasizes
the minimization of the ciassification error on training
samples as well as the generalization on test samples
by optimal model selection. The impact of the regula-
rizer B complicates the generation of trivial two-class
problems (dichotomies) of each parallel classifier (the
simpliest dichotomy would consist of purely one class
separated from all other classes). Hence, regulariza-
tion increases the expressivity requirements which are
imposed on the selected model by the composed clas-
sification task. This may be interpreted as a type of
SRM by configuration of the training data and not by
model selection.

IV. Example

The following exatnple is based on the data sets from
a realistic practical application — the recognition of
handwritten digits (K = 10) taken from a mixture of
the NIST databases [14]. The choice of the classifica-
tion task is especially relevant because of its import-
ance on the generation of optimal dichotomies accor-
ding to their data structure. The training was not ap-
plied to the pure bitmap of scanned images but fo the
transformed representation of the data. Each image of
a character was transformed into a high-dimensional
vector (N = 194) by a feature extraction method [15].
The feature extraction is performed by matching the
original input images with a variety of artificial pat-
terns, and each of this patternsis generated as a grid of
equidistant lines or concentrical circles. The matching
scores are equal to the input vector .

In a very first trial, the expectation term (5) was
substituted by means of the empirical error of the de-

cision rule (see [12]). Then
K
Ew~ Y Pld(z6) =t |z & P[k] (18)
k=1

is inspired from the supposed similarity between ma-
ximizing E and minimizing the empirical error of the
decision rule under the assumption of error-correcting
training of the classifier, and 73 = N,(ti) where
e = Lf‘-ﬂyﬂj, and Amin expresses the minimal Ham-
ming distance between any codewords of I'.

The following results are based on the minimization
of the empirical error instead of applying Iign. 7. The
employed learning algorithm is an extended version of
the classical error-correcting Madaline algorithm {16
{see [12]) which is separately applied to the single di-
chotomies of each parallel network and exclusively de-
pends on the binary reference values tx; € {~1,+1}
of components. The one per class coding (1-out-of-10)
served as a startcode for the iterative optimization pro-
cess. The number of parallel components is equal to
the number of classes {J == 10}. Each parallel network
consists of 5 neurons and the number of free parame-
ters is equal to 5 x 194 =2 1000. The sample size of &
and the size of an i.i.d. set of test examples is 10 x 2000
respectively.

The influence of the regularization parameter X is
presented in Figure 3. It shows averaged results (incl.
standard deviation) from 10 repeated training proces-
ses, The error rate of the constant 1-out-of-10 coding
serves as a reference. The polynomial least squares
approximation of the error rates versus A is given by
A > 25707 — 0.9489. X +0.6436- A2, For the given con-
figurations the optimal value of parameter was found
to be A,p = 0.8, For larger values of A, the genera-
tion of reference vectors would have resulted in ma-
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Figure 3: Lrror Rates of Test Samples after Training
vs. Regularization Parameter.

ximal Hamming distances, however almost indepen-
dently from the underlying database, and the genera-
lization capabilities would have become worse.

Eqn. 19 presents the codematrix after 18 training
epochs of 2000 online parameter adaptations of @ re-
spectively:

Topt =
+1 -1 +1 -1 -1 -1 -1 1 +1 -1
-1 +1 —1 el +1 -1 -1 -1 +1 41
-1 -1 1 +1 £1 -1 -1 -1 ~1 -1
+1 —1 -1 +1 -1 “1 #1 -1 -1 1
-1 -1 -1 -1 +1 +1 £ -1 -1 -1 ( )
-1 41 -1 +1 -1 +1 RS -1 =1 19
+1 +1 +1 -1 -1 -1 41 -1 =1 w1
+i +1 -1 -1 +1 ~1 -1 3 -1 -1
+1 -1 -t 41 -1 +1 -1 -1 41 =1

=1 =1 41 =1 =1 41 —1 4+l =1 1

Although the probability of error-free decisions ~
correct decisions at any component -~ became even
worse, the generalization error of the decision rule
- exploiting the error-correcting properties of Topt —
was reduced about 12% from 2.35% (1-out-of10) to
2.07%. The training results of the overall classifica-
tion rule and its components have always met 0.00%
classification error.

6 5 &8 T 6 4 4 4 a
[ 5 6 5 6 6 4 ¢ @
5 5 5 4 5 5 5 5 s
6 6 5 5 &6 4t ¢ 4 @
— T % 4 s 5 5 § &5 & ( )
{h“} 6 6 5 8 § 6 4 4 4 20
4 6 5§ 4 5 0 5 6 4
4 4 5 8 5 4 4 ¢ 8
4 6 5 4 5 4 8 8 [
1 a 5 L] 5 4 ¢ L] 8

The bit-distances between the reference vectors
of (19) are displayed in Eqn. 20. Whereas the
minimal Hamming distance hnim = 4, the ave-
raged Hamming distance between reference vectors

K1 K .
mzkzz 1=kp1 Pt is even larger than 5.

Although the advanced ECOC principally benefits the
classification system, the increased correlations bet-

ween errors of different parallel components for non-
trivial coding {# one per class) remain a problem.
Eqn. 23 shows the error correlations between NNj,
J = 1,2,3 and 4, according to I-out-of-10 output co-
ding. Analogously, Eqn. 24 holds for the optimized
codematrix in Eqn. 19. The correlation mafrices are
caleutated by R = 12 °¥ | Lo(z )r(2,,)7 where

() ::{ L if dj(@m) # tr,; (21)

otherwise

0.316 0.0:0  0.030  0.010

0.010  0.330  0.030 0,015
R — 0.020  0.030  0.685  0.100 (29
lof10 0.0:0  0.015 D050  0.880 ( }

2.10 0.510 0.876  0.435

0.510  3.885  0.440  0.335

B _ G870 0.440  3.430  0.48%
opl — 0.435 0.335 0.485 1.82% (23)

The definition of error-correcting output codes the-
refore can not be a matter of @ priori choices. The
presented example shows the superiority of optimized
reference vectors even for a considerably higher cor.
relation between errors of parallel components and a
rather low complexity of outputs. Further experiments
confirmed the earlier results [8] that non-trivial coding
is more advantageous in cases where overfitting is li-
kely [12].

V. Conclusion

Theoretical results in ECOC as well as practical app-
lications have generally considered the case where the
number of outputs is much larger than the number of
classes [6, 8, 17]. Results about using error-correcting
codes with small code length for classification pro-
blems are not known to the author. On the other
hand, the use of J » K is not recommendable he-
cause of the growing size of the classification system
and the increased computational costs for the decision
process.

We have shown that starting with a trivial 1-out-
of-K code, more efficient codes can be produced by
iterative optimization. Even for the case of & restric.
ted number of parallel components J = K, the one-
per-class output coding is not optimal. A more effi-
cient code has been generated by an iterative optimiza-
tion method based on a maximum likelihood technique
combined with a regularization prinicple for ECOC.
The generation of reference vectors is not based on a
priori appreciated codes but rather depends on an ite-
rative method which considers both the classification




system and the structure of data from the underlying
classification task. In the example, the generalization
of the classifier for handwritten characters was impro-
ved about more than 10%.

Appendix

The EM algorithm is a general method for solving ML
estimation problems given incomplete data. Let

M
L(8) = Z log p(.m; 8)

el

denote the log-likelihood function of the training set S
where p{w; @), which depends on a set of parameters
9, denotes the density function of the probability of
input patterns .

After simple manipulations and taking the condi-
tional expectation [...;8%] (at parameters 8%} with
respect to suitably introduced data (¥, | ®m) ; one
obtains L(8) = E{0,8") + H{0,0") where

M
> togp(@m,ymi @) ; €7
ezl

M
(3 logp(y, | mi6) 5 0°]

mazl

£(9,6%)

m(0,0")

It can be shown that it suffices to maximize E{8,6")
if one aims to maximize the log-likelihood function
L{@).

The idea of the EM method is to produce a simpler
ML estimation problem by any appropriate choice of
“complete data”. The most important prerequisite for
the practicability of the EM algorithm is that the ori-
ginal likelihood function of the “incomplete data” ¢,
can be obtained by the likelihood function of the un-
known “complete data” (y,, | ®x) in form of “margi-
nalization” which involves integrating out the so-calied
“complete data” [9, 10].

It follows the outline of the EM algozithm: the algo-
rithm starts with an arbitrary initial guess and denotes
by 8* the current estimate of the parameters € after
a number of training epochs. The next iteration step
consists of two steps, namely the E-step {expectation):

M
> logp(@m, ¥mi8) -

B(0,0%) = fy[y
b M m=1
M
T Py | 2mi€7) dyy - dyyy,
mw=1

and the M-Step (maximization): maxg E(6,8").

If Q(6,0%) is continuous in both # and 8%, it has
been proven that the algorithm converges to a local
maximum of the log-likelihood function L(8) [9, 10].

(1l

(9]

(23]
i14]

15}

{16]

(17}
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