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Prüfer der Dissertation: 1. Univ.-Prof. Dr. techn. Peter Russer
2. Prof. W. J. R. Hoefer,

Univ. of Victoria, Victoria/Kanada

Die Dissertation wurde am 04. Dezember 2006 bei der Technischen Uni-
versität München eingereicht und durch die Fakultät für Elektrotechnik
und Informationstechnik am 27. März 2007 angenommen.





1 Abstract

This work deals with the development of a novel efficient hybrid method combin-
ing the Transmission Line Matrix (TLM) method and the Time-Domain Method of
Moments (TDMOM), for the analysis of transient electromagnetic interference of a
complex object exhibiting compound dielectric and lossy materials in interaction with
a thin curved structure, separated by large free space regions. The separation of the
configuration into a complex object treated by TLM and thin scatterer treated by TD-
MOM is a crucial detail in the proposed hybrid method. The separation is necessary
to reduce the complexity of the problem, two small problems being less expensive than
one large. Both problems, i.e. the complex object and the thin scatterer, are tackled
with the most appropriate method.

The TLM method is widely used due to its capability of dealing with complex
geometries with arbitrary electrical properties. The time-domain electric field integral
equation (EFIE) solution using the marching on in time (MOT) procedure is well suited
for the analysis of arbitrarily shaped conducting thin wires/surfaces embedded in a
homogenous environment, because they need only consider portions of the structure
where the currents flow. The application of the equivalence principle with a proper
set of ficticious currents (accounting for the coupling) permits us to divide the three-
dimensional space into subregions, and to apply each method in its best domain of
application. The electromagnetic interaction between the subregions is provided by
the dyadic free-space Green’s functions in time domain, because they do not need to
apply resources to the modeling of homogeneous propagating space.

The present work treats the scattering problem solved through discretization of
the EFIE and its direct time-domain solution by means of a marching-on-in-time
procedure. An explicit equation that relates the current at a certain time instant
to the currents of previous instants and the incident field is obtained. These currents
can then be used in radiation integrals to calculate the fields scattered by the objects.

The contributions in this thesis address the theoretical concept of the hybrid TLM-
IE/TDMOM method, illustrate the capability of this hybrid method and establish
guidelines for its selection in preference to the pure conventional TLM method with
a particular focus on the analysis of transient electromagnetic interference between a
complex object and a curved conducting structure. The attributes of such methods,
both in terms of computational efficiency, solution accuracy and stability, are examined
through their application to the analysis of several electromagnetic compatibility prob-
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iv 1 Abstract

lems. For this purpose the hybridization of the implicit time evolution TLM-scheme
with the explicit integral-Equation/Method of Moments is presented and utilized.

The goal of this hybridization is to achieve sufficient accuracy with minimum effort,
where effort usually is interpreted as computational cost in terms of computational
times and memory requirements. In this work, resource predictions for this hybrid
method in comparison with TLM method are determined based on the number of
computational elements, as this number takes both the physical problem size and the
solution frequency into account.

To validate this new approach, we have compared the results with those obtained
using the pure transmission line matrix (TLM) method.
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3 Motivation and Introduction

The impact on modern ultra-wideband (UWB) communication systems of com-
plex radiated interference environments requires fullwave simulation of highly com-
plex three-dimensional electromagnetic structures. To solve the electromagnetic design
problems in these fields will require electromagnetic design systems with computing
power and capabilities far beyond present systems.

A simulation method intended for solving electromagnetic problems must be capable
of dealing with highly non-uniform and non-linear systems, over a wide frequency
range including transients in equipment configurations which are electrically large and
contain fine features. No single method can be expected to meet fully and in the most
efficient manner all these requirements. In some situations, one method is competitive
for a part of the problem while another algorithm is better suited for the remaining
parts. It is then attractive to combine the different algorithms to form a so-called
hybrid method. Hybrid methods, which combine the desirable features of two or more
different techniques, offer possibilities to treat significantly larger classes of problems
that cannot be resolved conveniently and/or accurately, by using them individually.

Several numerical modeling methods for solving electromagnetic problems have been
developed, each possessing particular features advantageous to particular types of
problems. Methods can be classified in generic groups based on the domain of the
variable (time- or frequency-domain) and the domain of the operator (differential or
integral). In dealing with the most general material and conductor configurations at
high frequencies, differential time-domain techniques offer the most versatile simula-
tion tool. The foremost methods in this area are the finite-difference time-domain
(FDTD) method [42] and the transmission line Matrix (TLM) method [1]. The three-
dimensional discretization of the objects leads to a simple description of the field
behavior even in complex structures of dielectric and lossy material. However, the
space discretizing methods have difficulties when open geometries are analyzed, such
as radiating structures and unshielded microwave and millimeter-wave circuits compo-
nents. Since these techniques require discretization of the whole volume of interest, the
difficulties arise from the discretization of an infinite region in cases of open structures.
In other words, the TLM and FDTD methods require finite domain to set up a mesh
(i.e. the computational space must be of limited size or must be approximated by a
limited region by introducing some artificial boundaries, of course without altering the
electromagnetic characteristics of the geometry). An other drawback of these methods
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2 3 Motivation and Introduction

is that they work well only on uniform Cartesian (structured) grids, and typically use
the so-called staircase approximation of boundaries not aligned with the grid.

Integral equation [3] approaches can be efficiently used to characterize arbitrarily
curved thin structure. The MOM [3] discretizes Maxwell’s equations in integral form,
and the unknowns are sources such as currents or charges on the surfaces of conductors
and dielectrics. This method is advantageous for problems involving open regions, and
when the current-carrying surfaces are small. MOM model e.m. currents and need
only consider portions of the problem where the currents flow. Arbitrarily field values
can then be efficiently derived from the current solution at any point in space as a
secondary computational step. This means that integral techniques do not need to
apply resources to the modeling of homogeneous propagating space. The MOM is
often applied to scattering problems. Tab. 3.1 summarizes the comparison between
differential ( i.e. space discretizing) and integral methods.

integral differential

inhomogeneous

materials

difficult easy

non-linearities

time variations

difficult easy

open boundaries easy difficult
number of nodes required only on

certain surfaces
whole workspace
has to be filled

maths. complex (invert
large matrices)

simple

Table 3.1: Comparison between integral and differential methods.

Space discretizing methods such as FDTD or TLM do have a role to play, particularly
when dealing with localized inhomogeneous dielectric regions. Integral methods can be
applied to analyze multiple and nested dielectric bodies, but are generally less effective
than localized space discretizing techniques. MOM used for efficient free-space and
curved metallic struture field calculations combined with a TLM formulation method
for direct electromagnetic field computations in localized inhomogeneous dielectric
regions therefore delivers a most efficient and versatile algorithm for the analysis of
transient electromagnetic interferences between objects separated by large free-space
regions.
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3.1 State of the Art

The Transmission Line Matrix (TLM) method, developed and first published in
1971 by JOHNS [1] has emerged as a powerful method for computer modeling of
electromagnetic fields [50] [48] [86]. The TLM method exhibits excellent numerical
stability and is also suitable for the modeling of lossy, dispersive, active and nonlin-
ear media [60] [76] [62]. However the state-space representation of TLM is usually
very large, requiring significant computational resources and long computation times.
It is the objective of the proposed hybrid method TLM-IE/MOM to address these
computational difficulties of standard TLM through dividing the original model into
subregions, where the best suited method is applied for the field modeling.

In many problems in electromagnetics it is necessary to simulate coupling between
electromagnetic fields and thin curved metallic structures (wires/surfaces). Examples
are in electromagnetic compatibility (EMC), in antennas and in microwave design.
Focusing in particular on the electromagnetic compatibility problems, the main dif-
ficulty as far as numerical modeling is concerned is that it is normally inefficient to
describe in detail the geometrical features of curved thin metallic structure in a mesh
which is normally configured to model propagation in a large space, e.g. free-space,
room or equipment cabinet. This problem is particularly acute when space discretiz-
ing methods such as TLM and FDTD methods are used in modeling. With integral
methods this problem does not arise but other difficulties such as the treatment of
non-uniformities and interconnected regions makes modeling again difficult.

Two basic approaches for treating thin wires in TLM have evolved, the so-called
separated and integrated solutions. In the separated solutions, the wires are treated
separately from the rest of the problem, allowing for field coupling to the wire by
introducing equivalent sources derived from knowledge of the incident fields in the
vicinity of the wire. Separated solutions for TLM are simple and can deal easily
with both single and multi-wire problems [63] [64]. The simplest integrated solutions
for TLM are those where wires are modeled by using short-circuits nodes or shorted
link-lines adjacent to the wire surface. Here, all the energy incident on the boundary
is returned along the link-lines by simply inverting incident voltage pulses for the
following time period. In these methods, the wires are explicitly included in the
model, hence the model is consistent and two-way coupling is simulated. Taking into
consideration the computational resource problems the wire is usually modeled by no
more than a single node cross-section on a rectangular Cartesian mesh [50]. More
sophisticated integrated solution methods which can allow for accurate modeling of
wires with a considerably smaller diameter than the node size have been introduced
in [66] [69] [68]. They use special wire networks embedded between or within nodes
to model signal propagation along the wires, while allowing for interactions with the
electromagnetic field.

The generalization of the TLM for a non-orthogonal mesh and for dispersive an-
isotropic materials is presented in [74] [75] [60]. Dispersive, active and nonlinear media
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[76] can be well modeled by the SCN. Almost radiating boundary conditions, e.g.
reflection free walls, matched [70] and perfectly matched layers [77] [78] are already
used in the TLM, which yields approximate solutions of a radiating problem and
require some distance between the structure to be modeled and boundaries of the
computational domain. A novel TLM Multipole Expansion (TLM-ME) method for
a potentially exact modeling of the radiating boundary condition is proposed in [57],
where an electromagnetic structure is embedded in a spherical region and modeled
with the TLM method. Then outside the spherical region the field is expanded into
analytically known spherical waves. The problems of the local subgridding in the TLM
scheme are investigated in [79] and [80]. The state-space representation of TLM is
usually very large, requiring significant computational resources and long computation
times. In order to address these computational complexity difficulties of standard
TLM, the TLM Model Order Reduction (TLM-MOR) is proposed in [58] to reduce
the original model into one of significantly smaller dimension. The dimension of the
reduced model, also called model order, is associated with a subset of the eigenmodes
of the system that influence its response over the desirable frequency bandwidth of
interest. Hybridizations of the TLM method with other numerical methods such as
the TLM-Integral Equation (TLM-IE) method [5]- [12] for the solving of radiation
problems and the TLM-Mode Matching (TLM-MM) approach [58] for a full-wave
analysis of transmission structures in multilayered MMICs occurred to be very efficient.
The improved skin effect [81] and thin wire [10] models allowed to spread the usage of
the TLM additionally.

TLM is a space-discretizing method that allows the numerical full-wave modeling of
3D structures with nearly arbitrary geometry. Like other full-wave numerical methods
(e.g., Finite Element, Finite Difference in Frequency/Time Domain) TLM has typical
drawbacks in:

� modeling of exact boundary conditions (e.g. antenna problems),

� dealing with extremely wide ”aspect ratio” values, the relative ratio among the
maxima and minima geometrical dimensions (e.g. photonic devices),

� dealing with interacting objects embedded in large (respect to the operating
wavelength) homogeneous regions; (typical of electromagnetic interference and
compatibility problems).

� dealing with arbitrarily curved thin wire and surface structures.

In order to treat large free-space region between electromagnetically coupled objects a
hybrid TLM-IE has been developed. The Transmission Line Matrix-Integral Equation
(TLM-IE) method is a 3D full-wave time-domain hybrid technique which combines
the advantages of the numerical Transmission Line Matrix (TLM) method in dense,
finite regions and those of the Integral Equation method in homogeneous regions where
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analytical and/or numerical Green’s functions are available for representing the elec-
tromagnetic field. The hybrid TLM-IE method has been developed in order to treat
efficiently transient interferences between complex objects separated by large free-
space region. In such a method the 3D-space is segmented in different sub-regions
containing the physical objects (structures, devices, circuits). Inside the subregions
the electromagnetic field is modeled by the TLM method, whereas outside the subre-
gions it is represented by equivalent sources located on the surfaces which bound the
subregions. These equivalent current/charges distributions are coupled via the dyadic
Green’s function (be it analytical and/or numerical) of the homogeneous region. At
the boundary between the discretized TLM regions and the continuous region the two
representations are then interfaced by applying the continuity of the EM tangential
field, thus providing appropriate sets of Electric Field Integral Equations (EFIE) and
Magnetic Field Integral Equations (MFIE). The latter integral equations are then
transformed in matrix systems by applying the Moment Method in the time-domain
(TDMOM) and solved explicitly, at each time step, for the unknown tangential field.
The tangential field components represent, in turns, the exact boundary condition for
the TLM subregions.

The method of moments (MOM) plays a crucial role in numerical electromagnet-
ics [3] [4] [34]. In the MOM the field functions are expanded into series of basis func-
tions. The problem of solving partial differential equations or integral equations for
the field functions is converted into the problem of solving linear systems of equations
for determining the coefficients of the series expansions of the field functions. Within
the methods for field computation the MOM holds a special position since most of the
methods of field computation - for example the integral equation method, the spectral
domain method, the partial wave synthesis, the transmission line matrix method and
the finite difference method - may be considered in connection with the MOM. The
MOM is a very general scheme for the discretization of the field problem, whereas the
other methods specify in detail how to the discretization is performed. The integral
equation (IE) method introduces the far-field interaction via Green’s functions and
may reduce the dimension of the field problem [4] [29]. Since the interaction with
infinite space is included in the Green’s function integral equation methods are espe-
cially powerful in the case of radiating structures. In the spectral domain method the
integral equations are transformed into algebraic equations by Fourier transformation
with respect to the space coordinates [36]. Integral equation methods as well as spec-
tral domain methods are computationally efficient but require considerable analytic
preprocessing for the specific class of structures to be modeled.

The well-known marching-on-in-time (MOT) method is usually adopted to solve
the time domain integral equations (TDIE) for transient scattering problems [23]. An
explicit equation that relates the current at a certain time instant to the currents of
previous instants and the incident field is obtained. An important disadvantage of this
procedure is the possible occurrence of rapidly growing spurious oscillations at later
instant which is apparently due to the accumulation of errors during the calculations.
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Many researchers have extensively analyzed the stability of time marching numerical
schemes. Although the instability can often be reduced or eliminated on a particular
mesh by averaging the current in time [21] [22] [23] or space [82], the schemes typically
become more unstable as more mesh points are used. This means that even if a method
appears to be stable on one particular mesh it cannot be assumed that it will be stable
on another finer mesh and, hence, cannot be used for general surfaces with any degree
of confidence. Many works have been done for suppressing the late time instability,
such as conjugate degree method [25], weighted Laguerre polynomials [26], smoothing
procedures [84] and others. But these methods need more additional computation
time. The schemes in [27] pushes the late-time instability further down in time but
could not eliminate it completely unless an implicit scheme, such as the one proposed
in [28], which requires solving a large matrix equation, is employed. The solution of
the system matrix can become an excessive burden on CPU time. This characteristic
is especially burdensome in the time-domain version, where a matrix equation has to
be solved at each time step of the marching-on-in-time algorithm, so without matrix
inversion, the speed of MOT method is very fast. In the present work, we have used
the averaging scheme proposed in [21], because the scheme is simple, accurate, and
involves a negligible amount of extra computation.

3.2 The Scope of the Thesis

The analysis of the electromagnetic interaction between objects separated by wide
free space regions with a full-wave method such as the TLM or the FDTD method,
based on a full discretization of the environment, represents a challenging task with
regard to computational resources and modeling effort. A suitable hybrid method
which drastically reduces computation time and effort is to combine the TLM method
and the Integral-Equation (IE) method in a hybrid method that permits to incorpo-
rate the treatment of large free space regions with high efficiency. However, there
still exist some drawbacks to this hybrid technique since, for objects with thin curved
boundaries, the staircasing approach employed in the conventional TLM method can
introduce significant errors into the solution unless very dense grids are used to accu-
rately resolve the variations in the geometric features, with a consequent increase in
the computational demands. Although an alternative might be to use a nonuniform
mesh or a local subcell approach, these are still susceptible to the errors introduced by
staircasing. Furthermore, they may, in fact, be less accurate than their uniform coun-
terpart. Staircase errors can be mitigated by using the method of moment solution of
the EFIE, which has the advantage over TLM that it employs surface discretization
that are well suited for modeling of thin curved structure. The considered problem
space is separated into subregions. The segmentation of the problem space can be
applied very easily on the TLM method. In the TLM scheme the field dynamics are
expressed as incident and reflected wave pulses which are propagating in a mesh of



3.3 Structure of the Manuscript 7

transmission lines. Hence spatial regions can be described as multiports. This enables
us to separate the considered problem space into subregions which are connected with
each other via interface surfaces. Since in the TLM method the segmentation of the
space can be handled very easily the TLM method is also very suitable to be combined
with other methods. The TLM-TDMOM approach takes advantage of the capability
of the TLM to analyze inhomogeneous bodies with arbitrary material properties and
that of the IE/MOM to deal with thin wire/surface structures located in free space, in
a numerically efficient manner to calculate the electromagnetic interaction between a
complex inhomogeneous objects and arbitrarily oriented thin wire/surface structures,
separated by large free-space regions.

The present work focuses on the theoretical concept of the hybrid TLM-IE/TDMOM
method combining the flexibility of Transmission line Matrix method (TLM) with
the efficiency of the Integral-Equation/Method of Moments for the efficient numerical
modeling of transient electromagnetic interferences. The attributes of such methods,
both in terms of computational efficiency, solution accuracy and stability, are examined
through their application to the analysis of several electromagnetic problems. For this
purpose the hybridization of the explicit time evolution TLM-scheme with the explicit
integral-Equation/Method of Moments algorithm is presented and utilized. Also, a
comparison is provided between the pure conventional TLM and the hybrid method
(TLM-IE/MOM) with regards to the computational efficiency.

The main goals to be set and achieved by the hybrid TLM-IE/MOM are:

� Acceleration of TLM simulations and enhancement of computational efficiency
(Simulation time and memory)

� Accurate and efficient treatment of free-space regions, arbitrarily curved thin
wire and surface structures.

The purpose of this thesis is to address the different steps of the hybrid TLM-IE/MOM
method implementation, to illustrate the capability of this hybrid method and to es-
tablish guidelines for its selection in preference to the pure conventional TLM method
with a particular focus on the analysis of transient electromagnetic interference be-
tween a complex object and a curved conducting structure.

3.3 Structure of the Manuscript

This section outlines the organization of the work contained in this thesis. In cases
where a novel technique has been introduced comparisons with results gained from
existing methods are drawn upon as appropriate and discussed in context with the
work described. The present work can be divided into two main areas: development
and application of the hybrid TLM-IE/MOM method to the numerical modeling of
transient interference.
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In Chapter 3, after a brief introduction, the motivation for this work is expanded
in the context of the present state-of-the-art of the Transmission Line Matrix (TLM)
method, its hybrid algorithms and of the time domain integral equation in combination
with the method of moments.

In Chapter 4, the principles of the TLM method with symmetrical condensed node
are explained. The discretization of the computational domain using TLM cells and
nodes is illustrated. The TLM scattering algorithm is presented and the symmetrical
condensed node both with and without stubs is recalled. Various mappings between
the TLM wave pulses and the discretized electromagnetic field components are given.
The Hilbert space formulation of the TLM is introduced using the DIRAC notation;
the TLM method is expressed by operator equations. The Hilbert space formulation
of the TLM method will be used.

In Chapter 5, after a short introduction with some background theory of elec-
tromagnetic fields, special emphasis is placed on the time domain integral equation
methods. Consideration is given to the application of the electric field integral equa-
tion in combination with the method of moments for the investigation of the scattering
of arbitrarily oriented thin wire and surface structures. The goal of this chapter is to
find current distribution on the structure surface excited by a incident electromagnetic
signal using the marching on in time technique. Using the MOT procedure an explicit
equation that relates the current at a certain time instant to the currents of previous
instants and the incident field is obtained. The resulting current distribution is the
major parameter of interest. Wire structures are traditionally studied in terms of a
one-dimensional segment model. The method of moments (MOM) used for conduct-
ing surfaces relies on RWG (Rao-Wilton-Glisson) edge elements. Conducting surfaces
are divided into separate triangles. Each pair of triangles, having a common edge,
constitutes the corresponding RWG edge element.

At this point, we are well equipped for the introduction of the hybrid TLM-IE
method in Chapter 6. This chapter illustrates the hybridization of the Transmission
Line Matrix method with the integral equation method to investigate the transient
electromagnetic coupling between two complex objects separated by large free space
region. The near field region of the complex objects is modeled by the full-wave TLM
method, while the electromagnetic interaction between the subregions is modeled by
the integral equation.

In Chapter 7, the novel efficient hybrid Transmission Line Matrix - Method of
Moments (TLM-TDMOM) approach is proposed for a full-wave analysis of the elec-
tromagnetic interaction between a complex structure and thin curved wire or surface
structures. Using the hybrid TLM-TDMOM approach, time and memory require-
ments for structure response generation can be reduced in comparison to pure TLM
simulations, while improving solution accuracy.

The application of the hybrid TLM-TDMOM method to different electromagnetic
problems is presented in Chapter 8. A comparison between the results obtained
from the novel hybrid method and those obtained from the pure conventional TLM
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method is presented. A direct comparison of the two methods is discussed, focusing on
accuracy, computation time and memory requirements. The objective of this chapter
is to illustrate the validation and capability of the hybrid method and to establish
guidelines for its selection in preference to TLM with a particular focus on the analysis
of electromagnetic transient interferences.

Finally, Chapter 9 draws together the main conclusions of this work by summariz-
ing and discussing its main results.





4 The Transmission Line Matrix
Method

4.1 Introduction

The three-dimensional Transmission Line Matrix (TLM) method with symmetri-
cal condensed node (SCN) introduced by Johns [1] has proven to be a very powerful
method of electromagnetic field computation [50] [48] [86]. The technique was orig-
inally based on Huygens model of wave propagation and inspired by earlier network
simulation techniques. According to Huygens principle, a wave front consists of a
number of secondary radiators that give rise to spherical wavelets. The envelope of
these wavelets forms a new wavefront which in turns give rise to spherical wavelets
and so forth.

The Transmission Line Matrix, TLM, method employs a network of discrete trans-
mission lines connected at scattering junctions in order to simulate the behavior of a
distributed system [48]. It is based on the analogy between the field quantities and
lumped circuit equivalents. The space is discretised using a mesh of transmission lines
connected at nodes. The field, which is represented by wave pulses scattered in the
nodes and propagating in the transmission lines, is calculated at each node at ev-
ery time step. The theoretical foundation, generalization are presented in the next
sections.

4.2 Basics of the TLM Method

The TLMmethod is a powerful and versatile time-domain algorithm for the numerical
full-wave analysis of electromagnetic field problems. The TLM is founded on the
propagation of electromagnetic waves according to the Huygens principle and based on
the analogy between the propagation of discretized electromagnetic fields and a mesh
of transmission lines and nodes. The TLMmethod involves dividing the solution region
into a rectangular cells and the tangential components of the electromagnetic field are
sampled at the center of each boundary surface of a cell (or at the cell center according
to Johns), at so-called ports according to Fig. 4.1. The transmission line connect the
center of a cell (the node) with its ports at the boundary surfaces. The continuous

11
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Figure 4.1: Symmetrical condensed node; (A) TLM cell, (B) three-dimensional SCN.

space is approximated by a mesh of TLM nodes interconnected by transmission lines
(or by a mesh of transmission lines interconnecting TLM nodes). The time evolution
of the electromagnetic field is modeled by wave pulses propagating between adjacent
cells and scattered within the cells, i.e. the wave pulses are scattered at the nodes and
these scattered pulses are propagated through the transmission lines to the adjacent
nodes, where these pulses are scattered again. In general, the TLM cell, as indicated
in Fig. 4.1(A), is represented by a respective abstract network model containing a
scattering center with six stubs which is connected via twelve transmission lines with
ports of adjacent cells. When all transmission lines have the same length and the node
is located in the cell center this model is called as the symmetrical Condensed Node
(SCN). The lossless three-dimensional SCN shown in Fig. 4.1(B) was introduced by
Johns in 1987 [1] first. As a basis for the present thesis the Johns original form of the
TLM method with SCN is preferred.

4.3 The TLM Scheme in Hilbert Space

The field state of each cell is given by the 12 or 18-dimensional vectors of incident
and reflected TLM pulses. The whole set of these vectors comprises an approximate
solution of the electromagnetic field problem. As one has not only in space but also in
time an enumerable infinite number of intervals, it is possible to define an Hilbert space
for describing the discrete field problem [2] [85]. In this abstract Hilbert space, it is
possible to investigate the TLM algorithm algebraically, which facilates the calculation
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of the dispersion characteristics of TLM meshes.
Now we introduce the Hilbert space spanned by the sequence of the grid points

with normalized space coordinates l, m and n. The indices l, m and n are linked to
the space coordinates with unitary spatial steps ∆lx, ∆ly and ∆lz through x = l∆lx,
y = m∆ly and z = n∆lz. A base vector, characterized by the number triple (l,m, n),
is assigned to each TLM cell.

If the Hilbert space is chosen appropriately, the base vectors fulfill the orthogonality
relation

〈li,mi, ni|lj ,mj , nj〉 = δli,ljδmimj
δninj

. (4.1)

The Hermitian conjugate is denoted by 〈l,m, n|. The Cartesian product of the space
of base vectors with the space of TLM pulse vectors defines a space for describing the
complete field state at time k. We now introduce the wave amplitude vectors

kal,m,n = k [a1, a2, a3, ...a10, a11, a12]
T
l,m,n , (4.2)

kbl,m,n = k [b1, b2, b3, ...b10, b11, b12]
T
l,m,n , (4.3)

where the state vectors kal,m,n and kbl,m,n summarize the incident and the scattered
wave pulses at the single SCN (l,m, n) at the discrete time k corresponding to the
unit time interval ∆t. The instant scattering of the wave pulses at the single SCN is
represented by

k+1bl,m,n = kSl,m,n kal,m,n, (4.4)

where the operator kSl,m,nis related to the scattering rules of wave amplitudes at the
single SCN (l,m, n). The Cartesian product of the space of base vectors with the
space of TLM pulse vectors defines a space for describing the complete field state at
time k. The state vector of all incident |ka〉 and scattered |kb〉 wave amplitudes of the
complete TLM mesh at time k are given by

|ka〉 =
+∞∑

l,m,n=−∞

kal,m,n |l,m, n〉 , (4.5)

|kb〉 =
+∞∑

l,m,n=−∞

kbl,m,n |l,m, n〉 . (4.6)

Applying the projection operator |l,m, n〉 〈l,m, n| yields the vector of the incident and
scattered wave pulses of TLM cell (l,m, n),

|l,m, n〉 〈l,m, n| ka〉 =k al,m,n |l,m, n〉 , (4.7)

|l,m, n〉 〈l,m, n| kb〉 =k bl,m,n |l,m, n〉 . (4.8)



14 4 The Transmission Line Matrix Method

The simultaneous scattering at all TLM mesh nodes can be described by the operator
equation

|k+1b〉 = kS |ka〉 , (4.9)

where the scattering matrix kS is given by

kS =

+∞∑

l,m,n=−∞

|l,m, n〉 kSl,m,n 〈l,m, n| . (4.10)

The operator kS represents the scattering operations at the time k for the complete
TLM mesh. Introducing the connection operator kΓ to specify the interaction between
adjacent cells (or nodes) we obtain the TLM time evolution scheme for a lossless case

|k+1a〉 = kΓkS |ka〉 . (4.11)

In order to describe the time evolution of electromagnetic fields in the TLM scheme
we define an unitary time shift operator as

T |k, l,m, n〉 = |k + 1, l,m, n〉 , (4.12)

which does not describe the time evolution of the vector |l,m, n〉, it just shifts the
vector |l,m, n〉 for a time step ∆t, i.e.

T (T |k, l,m, n〉) = |k + 2, l,m, n〉 . (4.13)

Its inverse shift operator

T† |k, l,m, n〉 = |k − 1, l,m, n〉 , (4.14)

satisfies

TT† = T†T =
+∞∑

l,m,n=−∞

|k, l,m, n〉 〈k, l,m, n| = 1. (4.15)

Therfore the TLM algorithm can be summarized as

|b〉 = ΓS |a〉 , (4.16)

|a〉 = Γ |b〉 , (4.17)

where the global scattering S and Γ connection operators are defined as

S =

+∞∑

l,m,n=−∞

|k, l,m, n〉 kSk,l,m,n 〈k, l,m, n| , (4.18)
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and

Γ=

+∞∑

k=−∞

|k〉 kΓ 〈k| . (4.19)

The eqs. (4.16) with (4.18) describes the scattering process of all incident wave
amplitudes at every time step k. The eqs. (4.17) with (4.19) describes the connection
between all cells at every time step k. The system of these equations gives the complete
description of the TLM algorithm. Using the time shift operator T the complete time-
spatial state of the TLM scheme can be written as,

|a〉 = TΓS |a〉 , (4.20)

|b〉 = TΓS |b〉 . (4.21)

The TLM scheme can be fully characterized by using only one of the state vector
(incident or scattered) amplitudes, as shown in the eqs. (4.20) and (4.21). It means
also that only one (incident or scattered) wave vector has to be stored to calculate the
electromagnetic field state vector.

4.4 The Scattering Process

The scattering Matrix Sl,m,n of Johns original node [1] for homogeneous media is
defined as follows

Sl,m,n =




a c 0 0 0 0 d −d 0 0 b b
c a 0 0 0 0 −d d 0 0 b b
0 0 a c b b 0 0 d −d 0 0
0 0 c a b b 0 0 −d d 0 0
0 0 b b a c 0 0 0 0 d −d
0 0 b b c a 0 0 0 0 −d d
d −d 0 0 0 0 a c b b 0 0
−d d 0 0 0 0 c a b b 0 0
0 0 d −d 0 0 b b a c 0 0
0 0 −d d 0 0 b b c a 0 0
b b 0 0 d −d 0 0 0 0 a c
b b 0 0 −d d 0 0 0 0 c a




. (4.22)

The scattering matrix Sl,m,n has the following properties:

� Each incident pulse is according to the field component assigned to it, only
connected with some of the other ports. For example the pulse a7 having an Ex
and a Hz field component assigned to it, can according to

dHz

dy
− dHy

dz
= ε

dEx
dt

,
dEy
dx

− dEx
dy

= −µdHz

dt
, (4.23)
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only be scattered into ports 7, 8, 9, and 10, as Ex and Hz are also associated
with port 8 on a y-directed line. whereas Ex and Hy are associated with ports
7 and 9 on z-directed lines.

� Due to the symmetry of the node, there are only four unknown parameters, and

Sl,m,n = STl,m,n. (4.24)

� The scattering process must preserve charge.

� The scattering process is supposed to be lossless, so energy must be conserved.
It means that the energy must be conserved meaning that the scattering matrix
must be unitary, i.e.

STl,m,nSl,m,n = 1. (4.25)

With the last two properties, the one of four possible solutions for the unknown
parameters a, b, c and d can be determined as

a = 0, b =
1

2
, c = 0, d =

1

2
. (4.26)

The scattering Matrix from the eq. (4.22) can be written in compact form as

Sl,m,n =




0 S0 ST0
ST0 0 S0
S0 ST0 0


 , with S0 =




0 0 1
2 − 1

2
0 0 − 1

2
1
2

1
2

1
2 0 0

1
2

1
2 0 0


 . (4.27)

The scattering matrix Sl,m,n has the property S = ST = S† = S−1, i.e. it is
real, symmetric, hermitian and unitary. Consequently the TLM scheme fulfills energy
conservation, reciprocity and invariance with respect to time reversal exactly.

We consider the TLM mesh to be composed of condensed symmetric TLM nodes
as shown in Fig. 4.1(B), where each of the six arms is of length ∆l/2, with the same
characteristic impedance

Z0 =

√
µ0
ε0

=

√
L0

C0
, (4.28)

and propagation velocity

c0 =
1√
µ0ε0

=
1√
L0C0

. (4.29)

The characteristic impedance and the propagation velocity in each arm can be mod-
eled by network with one capacitance C0 and the inductance L0 [50] with

C0 = Y0
∆t

2
= ε0

∆l

h
and L0 = Z0

∆t

2
= µ0

∆l

h
, (4.30)
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where h is a stability factor introduced as

h ≥ 2∆l

c0∆t
. (4.31)

To account for inhomogeneous media and non-cubic TLM cells with dimensions

(∆lx, ∆ly, ∆lz) ≡ (u∆l, v∆l, w∆l) ,

Johns added open and short circuited stubs to the node. Each stub has a length
according to a propagation time of ∆t/2. The port numbers 13-18 are assigned to
the six stubs. The first three stubs couple to Ex, Ey and Ez. They are open, as
to add additional capacitance to the node. The other three stubs are shorted and
couple to Hx, Hy and Hz and add further inductance to the node. As each stub
only couples to one of the field components, it is possible to account for anisotropic
material properties, namely permittivity εx, εy and εz, and permeability µx, µy and
µz. For more details see [1] and [50]. The variation of the node arm length causes the
changing of the propagation time through the node. The equal time variation can be
achieved through the corresponding scaling of capacitances and inductances as well.
The required total capacitances at a SCN of dimension (u∆l, v∆l, w∆l) introduced
by Johns in [1] are

Cx = εx
vw

u
∆l, Cy = εy

uw

v
∆l, Cz = εz

uv

w
∆l, (4.32)

and inductances are

Lx = µx
vw

u
∆l, Ly = µy

uw

v
∆l, Lz = µz

uv

w
∆l. (4.33)

For example, the modeled capacitance Cx is associated with lines 7, 8, 9 and 10,
and as following, is equivalent to 4C0 for a cubic TLM cell in free space. The modeled
inductance Lx is linked to the lines 5, 6, 11 and 12, and is equivalent to 4L0. Therefore,
in order to model non-uniform cells the capacitance and inductance have to be added
to the symmetric node, e.g. for the x-components we have

Cstubx = εx
vw

u
− 4C0, and Lstubx = µx

vw

u
− 4∆L0 (4.34)

From eqs. (4.30-4.34) and from the relations normalized with respect to Y0 and/or
Z0 we get,

Cstub = Y0Y
stub∆t

2
, and Lstub = ZoZ

stub∆t

2
, (4.35)

where the admittances Y stubof the stubs 13− 15 are calculated by

Yx = 2(
vw

u
hεrx − 2), Yy = 2(

uw

v
hεry − 2), Yz = 2(

uv

w
hεrz − 2), (4.36)
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where εrx, εry and εrz denote the relative permittivities. The impedances of stubs
16− 18 are calculated in a similar manner, which results in

Zx = 2(
vw

u
hµrx − 2), Zy = 2(

uw

v
hµry − 2), Zz = 2(

uv

w
hµrz − 2), (4.37)

where µrx, µry and µrz represent the permeabilities. If ohmic and magnetic losses
have to be included, six additional stubs are connected to the center of the SCN, so
the 18 × 18 scattering matrix gets six additional lines. The scattering in these stubs
needs not explicitly be considered as the energy dissipated in these lines is lost. The
values of the loss stubs for the simulating ohmic losses are given by

Gx =
vw

u
σex∆lZ0, Cy =

uw

v
σey∆lZ0, Cz =

uv

w
σez∆lZ0, (4.38)

where σex, σey and σex represent the electric conductivities in x-, y- and z-direction.
The magnetic loss stubs are analogously calculated as

Rx =
vw

u
σmx∆lY0, Ry =

uw

v
σmy∆lY0, Rz =

uv

w
σmz∆lY0, (4.39)

where σmx , σmy and σmz stand for the anisotropic magnetic conductivities. Consid-
ering the loss stubs, the general scattering 18 × 18 matrix of any deformed SCN has
been introduced by Johns [1] as following

Sstubsl,m,n =




a c 0 0 0 0 d d̄ 0 0 b b 0 g 0 0 0 d̄
c a 0 0 0 0 d̄ d 0 0 b b 0 g 0 0 0 d
0 0 a c b b 0 0 d d̄ 0 0 0 0 g 0 d 0
0 0 c a b b 0 0 d̄ d 0 0 0 0 g 0 d̄ 0
0 0 b b a c 0 0 0 0 d d̄ 0 0 g d̄ 0 0
0 0 b b c a 0 0 0 0 d̄ d 0 0 g d 0 0
d d̄ 0 0 0 0 a c b b 0 0 g 0 0 0 0 d
d̄ d 0 0 0 0 c a b b 0 0 g 0 0 0 0 d̄
0 0 d d̄ 0 0 b b a c 0 0 g 0 0 0 d̄ 0
0 0 d̄ d 0 0 b b c a 0 0 g 0 0 0 d 0
b b 0 0 d d̄ 0 0 0 0 a c 0 g 0 d 0 0
b b 0 0 d̄ d 0 0 0 0 c a 0 g 0 d̄ 0 0
0 0 0 0 0 0 b b b b 0 0 h 0 0 0 0 0
b b 0 0 0 0 0 0 0 0 b b 0 h 0 0 0 0
0 0 b b b b 0 0 0 0 0 0 0 0 h 0 0 0
0 0 0 0 f̄ f 0 0 0 0 f f̄ 0 0 0 j 0 0
0 0 f f̄ 0 0 0 0 f̄ f 0 0 0 0 0 0 j 0
f̄ f 0 0 0 0 f f̄ 0 0 0 0 0 0 0 0 0 j




,

(4.40)
with coefficients

a = − G+ Y

2(G+ Y + 4)
+

R+ Z

2(R+ Z + 4)
, b =

2

G+ Y + 4
,
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c = − G+ Y

2(G+ Y + 4)
− R+ Z

2(R+ Z + 4)
, d =

2

Z +R+ 4
, d̄ = −d

f =
2Z

R+ Z + 4
, f̄ = −f, g =

2Y

G+ Y + 4
, (4.41)

h = −G− Y + 4

G+ Y + 4
, j = −−R+ Z − 4

R+ Z + 4
.

For the general scattering matrix eq. (4.40) with losses we have that

Sstubl,m,n 6=
[
Sstubl,m,n

]† 6=
[
Sstubl,m,n

]−1
. (4.42)

The symmetry of Sstubl,m,n is not preserved due to the stub parameter normalization
proposed by Johns. The unitarity of the scattering matrix is not only lost due to
the losses in an analyzed structure. Indeed, even though the scattering matrix in
eq. (4.40) comprises no losses, it is also non-unitary. In other words, the unitarity
and symmetry are lost due to the normalization in accord with eq. (4.40). However,
the symmetry of the general scattering operator in eq. (4.40) can be reconstructed
by a new normalization without its energy conservation property being changed by
following

Ŝstubl,m,n = N−1Sstubl,m,nN, (4.43)

here the diagonal matrix N is given as

N = diag
[
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, (

√
Y )−1,

√
Z
]
. (4.44)

Now the modified general scattering operator for the lossy SCN in eq. (4.43) satisfies
next relations

Ŝstubl,m,n =
[
Ŝstubl,m,n

]†
6=
[
Ŝstubl,m,n

]−1

. (4.45)

The general scattering operator kS describing the scattering at all nodes of the TLM
mesh at the time k, has the block-diagonal matrix structure, i.e.

kS = diag
[
Ŝstubl,m,n

]
. (4.46)

Then we obtain the following properties of the operator S,

kS = kS
† 6= kS

−1. (4.47)

Further, we will deal with the modified scattering operators in accord with eq. (4.43)
and eq. (4.46), which are self-adjoint (or Hermitian) and non-unitary. The modifica-
tions of the Sl,m,n in eq. (4.43) does not infringe mapping between the electromagnetic
field and the wave amplitudes.
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4.5 The Connection Process

In order to describe the connection process with the operator Γ representing the
interaction between all adjacent nodes, we define first the unitary shift operators X ,
Y, Z and their Hermitian conjugate X†, Y†, Z† as

X |l,m, n〉 = |l + 1,m, n〉 ,
X† |l,m, n〉 = |l − 1,m, n〉 ,
Y |l,m, n〉 = |l,m+ 1, n〉 ,
Y† |l,m, n〉 = |l,m− 1, n〉 ,
Z |l,m, n〉 = |l,m, n+ 1〉 ,
Z† |l,m, n〉 = |l,m, n− 1〉 . (4.48)

The spatial operators X, Y and Z shift the position of the node (l,m, n) by ∆l in
positive x−, y− or z−direction respectively. The operators X†, Y† and Z† make the
opposite moving by one step. The shift operators (4.48) can be written as proposed
in [2] in the next form

X =

+∞∑

l,m,n=−∞

|l + 1,m, n〉 〈l,m, n| ,

X† =
+∞∑

l,m,n=−∞

|l − 1,m, n〉 〈l,m, n| ,

Y =

+∞∑

l,m,n=−∞

|l,m+ 1, n〉 〈l,m, n| ,

Y†
+∞∑

l,m,n=−∞

|l,m− 1, n〉 〈l,m, n| ,

Z =
+∞∑

l,m,n=−∞

|l,m, n+ 1〉 〈l,m, n| ,

Z† =

+∞∑

l,m,n=−∞

|l,m, n− 1〉 〈l,m, n| . (4.49)

The shift operators have the properties to be self-adjoint, unitary and commutative
with itself [2]. Using these operators, the connection between all nodes in the infinite
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space can be summarized in the following matrix form

kΓ=




0 X 0 0 0 0 0 0 0 0 0 0
X† 0 0 0 0 0 0 0 0 0 0 0
0 0 0 X 0 0 0 0 0 0 0 0
0 0 X† 0 0 0 0 0 0 0 0 0
0 0 0 0 0 Y 0 0 0 0 0 0
0 0 0 0 Y† 0 0 0 0 0 0 0
0 0 0 0 0 0 Y 0 0 0 0 0
0 0 0 0 0 Y† 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Z 0 0
0 0 0 0 0 0 0 0 Z† 0 0 Z

0 0 0 0 0 0 0 0 0 0 0 Z

0 0 0 0 0 0 0 0 0 0 Z† 0




(4.50)

The connection operator kΓ according to eq. (4.50) has the properties

kΓ = kΓ
† = kΓ

−1, (4.51)

and

kΓkΓ
† = kΓ

†
kΓ = 1. (4.52)

Therfore the connection operator kΓ is unitary and Hermitian. As the reflected
pulses from one TLM cell are the incident TLM pulses of the neighboring cells, the field
state is completely defined by the incident |ka〉 and scattered |kb〉 pulse amplitudes,

|ka〉 = kΓ |kb〉 and |kb〉 = kΓ
† |ka〉 . (4.53)

Actually, it is self-evident that the matrix kΓ for the infinite space filled with ones,
since no losses come into play during the linking operations.

4.6 Field-Mappings for the Symmetrical Condensed

Node

Considering a TLM cell as depicted in Fig. 4.1(B), it is possible to define the
mapping between the 18 incident and/or scattered TLM pulse variables and the six
electromagnetic field components either at the centre of the cell located at (l,m, n),
or at the centre of the tangential planes as shown in Fig. 4.1(A). The mapping in the
centre shall be reflected to by centered field-mapping (CFM) and the mapping at the
boundaries of the TLM cell by cell boundary mapping (CBM).
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4.6.1 Centered Field Mapping (CFM)

The mapping in the SCN TLM node was originally defined at the centre. Con-
sequently, this mapping is not bijective, as in the TLM algorithm one has twelve or
more variables and in MAXWELL’s equations, there are only six electromagnetic field
components in one point of space. In order to describe the centered Field Mapping in
the Hilbert space, we introduce the field state vector

|F〉 =
+∞∑

l,m,n=−∞




kE
x
l,m,n

kE
y
l,m,n

kE
z
l,m,n

ZkH
x
l,m,n

ZkH
y
l,m,n

ZkH
z
l,m,n



|l,m, n〉 , (4.54)

where Z is the impedance of one of the six equivalent arms of the TLM cell. In order
to describe the projection of the wave amplitude state vector onto the field state vector
we introduce the projection operator P as in [1]

|F〉 = 1

∆l
P |a〉 , (4.55)

with

P =
1

2




0 0 0 0 0 0 1 1 1 1 0 0
1 1 0 0 0 0 0 0 0 0 1 1
0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 −1 1
0 0 −1 1 0 0 0 0 1 −1 0 0
1 −1 0 0 0 0 −1 1 0 0 0 0



, (4.56)

where The vector |F〉 comprises the six electromagnetic field components, sampled in
the centre of a TLM cell. Whereas |a〉 is the vector of the incident TLM pulses. Then
the inverse mapping PT is given as

|a〉 = ∆lPT |F〉 . (4.57)

From eqs. (4.55) and (4.57) it follows that

|F′〉 = PPT |F〉 (4.58)

and
|a′〉 = PTP |a〉 . (4.59)

Since the operator PPT has ones at its diagonal, i.e.

PPT = diag [1, 1, 1, 1, 1, 1] , (4.60)
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the application of the operator PPT onto the field state vector does not change it, or
|F′〉 = |F〉. A different situation occurs for PTP, due to the relation

PTP = U diag[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]U−1, (4.61)

where U is an unitary matrix. The operator PTP transfers the vector |a〉 and leads
to |a′〉 6= |a〉. An important property, which has to be noticed, is that the whole
energy in the wave amplitudes is conserved during a TLM simulation. According
to [1] and taking into account the losses in the media with eqs. (4.38) and (4.39),
the deformations of the TLM mesh in eqs. (4.36) and (4.37) and the normalization
of the scattering matrix given by eq. (4.43), we obtain all six components of the
electromagnetic field as

Ex =
2

u∆l

(
a7 + a8 + a9 + a10 +

√
Yxa13

4 + Yx +Gx

)
, (4.62)

Ey =
2

v∆l

(
a1 + a2 + a11 + a12 +

√
Yya14

4 + Yy +Gy

)
, (4.63)

Ez =
2

w∆l

(
a3 + a4 + a5 + a6 +

√
Yza15

4 + Yz +Gz

)
, (4.64)

Hx =
2

u∆lZ0

(
a5 − a6 − a11 + a12 +

√
Zxa16

4 + Zx +Rx

)
, (4.65)

Hy =
2

v∆lZ0

(
−a3 + a4 + a9 − a10 +

√
Zya17

4 + Zy +Ry

)
, (4.66)

Hz =
2

w∆lZ0

(
a1 − a2 − a7 + a8 +

√
Zxa18

4 + Zz +Rz

)
. (4.67)

The mapping from field components to TLM pulses to excite the TLM mesh is given
as

a1 =
1

2
∆l (vEy + wZ0Hz) , a7 =

1

2
∆l (uEx − wZ0Hz) , (4.68)

a2 =
1

2
∆l (vEy − wZ0Hz) , a8 =

1

2
∆l (uEx + wZ0Hz) , (4.69)

a3 =
1

2
∆l (wEz − vZ0Hy) , a9 =

1

2
∆l (uEx + vZ0Hy) , (4.70)

a4 =
1

2
∆l (wEz + vZ0Hy) , a10 =

1

2
∆l (uEx − vZ0Hy) , (4.71)

a5 =
1

2
∆l (wEz + uZ0Hx) , a11 =

1

2
∆l (vEy − uZ0Hx) , (4.72)
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a6 =
1

2
∆l (wEz − uZ0Hx) , a12 =

1

2
∆l (vEy + uZ0Hx) , (4.73)

a13 =
1

2
u∆l

√
YxEx, a16 =

1

2
u∆lZ0

√
ZxHx, (4.74)

a14 =
1

2
v∆l

√
YyEy, a17 =

1

2
v∆lZ0

√
ZyHy, (4.75)

a15 =
1

2
w∆l

√
YzEz, a18 =

1

2
w∆lZ0

√
ZzHz. (4.76)

The operator Pstubs can be summarized in the form

Pstub =




0 aEy 0 0 0 aHz
0 aEy 0 0 0 −aHz
0 0 aEz 0 −aHy 0
0 0 aEz 0 aHy 0
0 0 aEz aHx 0 0
0 0 aEz −aHx 0 0
aEx 0 0 0 0 −aHz
aEx 0 0 0 0 aHz
aEx 0 0 0 aHy 0
aEx 0 0 0 −aHy 0
0 aEy 0 −aHx 0 0
0 aEy 0 aHx 0 0

aEx
√
Yx 0 0 0 0 0

0 aEy
√
Yy 0 0 0 0

0 0 aEz
√
Yz 0 0 0

0 0 0 aHx
√
Zx 0 0

0 0 0 0 aHy
√
Zy 0

0 0 0 0 0 aHz
√
Zz




T

(4.77)

where

aEx =
2

u (4 + Yx +Gx)
, aEy =

2

v (4 + Yy +Gy)
, aEz =

2

w (4 + Yz +Gz)
,

aHx =
2

u (4 + Zx +Rx)
, aHy =

2

v (4 + Zy +Ry)
, aHz =

2

w (4 + Zz +Rz)
. (4.78)
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The operator Pstub can be presented as

Pstub =




0 ey 0 0 0 hz
0 ey 0 0 0 −hz
0 0 ez 0 −hy 0
0 0 ez 0 hy 0
0 0 ez hx 0 0
0 0 ez −hx 0 0
ex 0 0 0 0 −hz
ex 0 0 0 0 hz
ex 0 0 0 hy 0
ex 0 0 0 −hy 0
0 ey 0 −hx 0 0
0 ey 0 hx 0 0

ex
√
Yx 0 0 0 0 0

0 ey
√
Yy 0 0 0 0

0 0 ez
√
Yz 0 0 0

0 0 0 hx
√
Zx 0 0

0 0 0 0 hy
√
Zy 0

0 0 0 0 0 hz
√
Zz




T

, (4.79)

with coefficients

ex =
u

2
, ey =

v

2
, ez =

w

2
,

hx =
u

2
Z0, hy =

v

2
Z0, hz =

w

2
Z0. (4.80)

4.6.2 Cell Boundary Mapping (CBM)

Assuming a correspondence between the TLM state variables and the electromagnetic
field components at the centre of the tangential planes (or the ends of the six arms)
(l± 1

2 ,m, n), (l,m± 1
2 , n) and (l,m, n± 1

2 ) yields a bijective field-mapping introduced by
Krumpholz and Russer [2]. The waves amplitudes at the center of the cell boundaries
are defined as

|a〉 = 1/2 (− |E〉+ Z · n× |H〉) , (4.81)

|b〉 = −1/2 (|E〉+ Z · n× |H〉) , (4.82)

where |E〉 and |H〉 are electric and magnetic field vectors sampled at a boundary. The
unity vector n is normal to the cell boundary. For example, we take a look at the
mapping operation for the arm (l± 1

2 ,m, n) at time k. From eqs. (4.81) and (4.82) we
obtain the following relations for

n = [1, 0, 0]T ,
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k[ax]l+1/2,m,n = 0,

k[ay]l+1/2,m,n =k [a2]l,m,n =
∆l

2

(
v kE

y
l+1/2,m,n − wZ kH

z
l+1/2,m,n

)
,

k[az]l+1/2,m,n =k [a4]l,m,n =
∆l

2

(
w kE

z
l+1/2,m,n + vZ kH

y
l+1/2,m,n

)
,

k[bx]l+1/2,m,n = 0,

k[by]l+1/2,m,n =k [b2]l,m,n =
∆l

2

(
v kE

y
l+1/2,m,n + wZ kH

z
l+1/2,m,n

)
,

k[bz]l+1/2,m,n =k [b4]l,m,n =
∆l

2

(
w kE

z
l+1/2,m,n − vZ kH

y
l+1/2,m,n

)
, (4.83)

and

kE
y
l+1/2,m,n =

1

v∆l
(k[a2]l,m,n +k [b2]l,m,n) ,

kE
z
l+1/2,m,n =

1

w∆l
(k[a4]l,m,n +k [b4]l,m,n) ,

kH
y
l+1/2,m,n =

1

v∆lZ
(k[a4]l,m,n −k [b4]l,m,n) ,

kH
z
l+1/2,m,n =

1

w∆lZ
(k[b2]l,m,n −k [a2]l,m,n) , (4.84)

respectively. In order to obtain the Cell Boundary Mapping (CBM) in a matrix form
we define the electromagnetic field state vectors in |kFE〉 and |kFM 〉 as

|kFE〉 1
2
=

+∞∑

l,m,n=−∞




kE
y
l−1/2,m,n

kE
y
l+1/2,m,n

kE
z
l−1/2,m,n

kE
z
l+1/2,m,n

kE
z
l,m−1/2,n

kE
z
l,m+1/2,n

kE
x
l,m−1/2,n

kE
x
l,m+1/2,n

kE
x
l,m,n−1/2

kE
x
l,m,n+1/2

kE
y
l,m,n−1/2

kE
y
l,m,n+1/2




|l,m, n〉 , (4.85)
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|kFM 〉 1
2
= Z

+∞∑

l,m,n=−∞




kH
z
l−1/2,m,n

kH
z
l+1/2,m,n

kH
y
l−1/2,m,n

kH
y
l+1/2,m,n

kH
x
l,m−1/2,n

kH
x
l,m+1/2,n

kH
z
l,m−1/2,n

kH
z
l,m+1/2,n

kH
y
l,m,n−1/2

kH
y
l,m,n+1/2

kH
x
l,m,n−1/2

kH
x
l,m,n+1/2




|l,m, n〉 . (4.86)

From eqs. (4.81) and (4.82) we obtain the mapping operations in the next operator
expressions,

|kFE〉 1
2
=

1

∆l
P−1

E
(|ka〉+ |kb〉) ,

|kFH〉 1
2
=

1

∆l
P−1

H
(|ka〉 − |kb〉) , (4.87)

and

|ka〉 1
2
=

∆l

2

(
PE |kFE〉 1

2
+PH |kFH〉 1

2

)
,

|kb〉 1
2
=

∆l

2

(
PE |kPE〉 1

2
−PH |kPH〉 1

2

)
, (4.88)

where the operators PE and PH are given as

PE = diag [v, v, w,w,w,w, u, u, u, u, v, v] , (4.89)

and
PH = diag [w,−w,−v, v, u,−u,−w,w, v,−v,−u, u] . (4.90)

Since 24 equations are involved in order to establish the relations between the 24
wave amplitudes and the 24 electromagnetic field components, the CBM operation is
definite and bijective in contrast to CFM. We note, that we do not need to utilize the
wave amplitudes at stubs during the mapping. Thus, the normalizing presented in eq.
(4.43) does not have any influence on CBM.

4.7 Boundary Conditions

The simulation of an electromagnetic structure using the SCN-TLM method is
truncating the finite computational domain with absorbing boundary conditions. An
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improper mesh truncation results in back scattering of electromagnetic waves into the
computational domain. These back scattered waves interference with the propagating
modes in the simulated structure such that they effect or corrupt the field solution.
A number of different methods have been developed to absorb electromagnetic waves
that impinge on the boundaries of the open space problem. Examples are the dis-
cretization of the analytical conditions [70] and Taylor’s expansion of the plane wave
solution [87]. The use of discrete Green’s functions is also an approach to describe
absorbing boundary conditions [85], but implies a large amount of memory require-
ment when regions with different media have to be truncated. The simplest absorbing
boundary condition is a matched load with zero reflection coefficient, truncating the
transmission lines of the TLM mesh, which are cut by the boundary of the computa-
tioanl domain. This simple ABC yields good approximations in many cases. One of
the best way to truncat media is to use matched layer absorber (ML), where electric
and magnetic losses are introduced in layers to absorb the incident electromagnetic
energy. However these methods deliver only an approximate solution of the problem
and require that a distance must be kept between the strucutre and the boundary of
the computational region. The realization of interne boundaries PEC and PMC in the
computational domain with simple reflection coefficients do not pose any challenge in
the TLM algorithm.

4.7.1 One-Sided Reflection Wall

Absorbing boundary condition may be modelled by terminating the transmission
lines on the edge of the computational domain with an appropriate load. Then the

incident waves impignes normal on the boundary wall with impedance Zload =
√

µr

εr
Z0

are fully absorbed. The local reflection coefficient is in general dependent on the wall
cell properties can be calculated through the effective reflection coefficient as

rloc(reff , εr, µr, (l,m, n)) = rloc =
r0 + reff
1 + r0reff

, (4.91)

with

r0 = r0 =

g‖
g⊥

√
µr

εr
− 1

g‖
g⊥

√
µr

εr
+ 1

, with

{
g‖ ∈ {u, v, w} , g‖ ‖ ai,
g⊥ ∈ {u, v, w} , g⊥ ⊥ ai.

(4.92)

For the special case of PEC and PMC, reff = ±1 leads to rloc = ±1. The geometry
parameter g‖ and g⊥ mean the cell sizes in directions parallel and perpendicular to the
incident wave pulses respectively. We note, that even though the effective reflection
coefficient is set to zero, the local reflection is not, that, actually, conserves the TLM
nature. Boundaries with fixed reflection coefficients present only a first order for the
general problem of reflection free boundary conditions, because they do not take into
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consideration the falling wave angle, but deliver good results in numerous electromag-
netic problems with enough distance betwenn the structure and the boundaries.

4.7.2 Two-Sided Reflection-Transmission Wall

The two-sided reflection-transmission wall is used in the discretized TLM domain,
when thin layer with constant surface impedance has to be modelled. The electromag-
netic simulation of a thin layer with the smallest space step, defined by the thicknes of
the layer leads to a significant increase of computational effort. The two-sided reflec-
tion wall is represented via additional boundary conditions, which model the variation
of the wave impedance. One part of the incident wave on the boundary wall is trans-
mitted through the wall with the transmission coefficient tloc and the second part is
reflected back to the neighboring cells with the reflection coefficient rloc. Using the
two-sided reflection wall, the analysis of the electromagnetic structures with discretiza-
tion of lower order allows to reduce the computational effort. When a thin layer with
a thicknes d is discretized, the wave impedance change is considered through material
properties in the connection process, the loss are considered in the scattering matrix.
In the TLM-mesh the surface impedane ρ¤ of the thin layer in the connecting surface
between adjacent cells is

ρ¤ =
ρ

d
. (4.93)

The coefficients rloc and tloc are defined as

rloc = −
1

1 + 2Y0ρ¤
g‖
g⊥

, (4.94)

tloc =
Y0ρ¤

Y0ρ¤ +
g‖
g⊥

. (4.95)

This type of wall can be efficiently used to model impedance layers in high fre-
quency planar circuits. If the skin-effect must be taken into consideration, then a
more complicated model have to be used as in [81].

4.7.3 Matched Layer Absorbers

In thematched layer absorber (ML), the impedance of the absorbing medium matches
the impedance of the medium to be truncated. Electric and magnetic losses are intro-
duced to absorb the incident electromagnetic energy. The loss of the absorbing material
increases from layer to layer, wheras the wave impedance ZML1 remains constant as

ZML1 =

√
µ

ε
= ZMLi

=

√
µ+ ρmi

jω

ε+ ρei

jω

. (4.96)
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This equation (4.96) holds if
ε

µ
=

ρei
ρmi

, (4.97)

this condition is known as “Matched Layer Condition”. The conductivity profile in
the matched layer is given according to

ρ = ρmax

(
i

NML

)p
, (4.98)

where ρmax denotes the maximum matched layer electric conductivity at the outer
layer N of the matched layer, i ∈ 1, ..., NML denotes the index of the matched layer.
The maximum conductivity is calculated according to

ρmax = −α(p+ 1) ln(Ro)

2NML∆lZ0
, (4.99)

with Ro denotes the theoretical reflection coefficient when the matched layer absorber
is terminated by an electric wall. Zo represents the free space impedance. p respresents
the profile coefficients. Using a constant α = 0.1 results a good performance in reducing
the differences in dispersion between neighbouring layers [88]. In layered media, the
matched condition is as follows

σ1e
ε1

=
σ1m
µ1

= ... =
σje
εj

=
σjm
µj

= const. (4.100)

The optimum conductivity profile depends on the number of matched layers. In
the cases of 5 matched layers comprehensive practical investigations have shown that
α = 0.1, R0 = 10−4 and p = 1 delivers the best results in terms of minimum return
loss [88]. The thicker the absorbing layer and the flatter the profile are the better
absorption will be achieved.

4.8 Excitation

Energy is generally introduced into a simulation by means of an impulse excitation
either at nodes or on transmission lines of the TLM cell. For the analysis of electro-
magnetic problems, the Gaussian pulse represents one of the most useful excitation
waveforms. The time and frequency characteristics are given, respectively, by

gg(t) = 2fg exp
(
−π(2fgt)2

)
with

∫ +∞

−∞

gn(t) = 1, (4.101)

and

Gg(f) = exp

(
−πf

2

4f2g

)
. (4.102)
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Gg(f) represents the spectrum of the normalized Gaussian pulse given by Fourier-
transform. The Gaussian time function must be offset by t0 so that the negative tail of
the pulse is not significantly truncated. Then the shifted Gauss pulse in time-domain
is given as

gg(t) = 2fg exp
(
−π(2fg(t− t0))2

)
, (4.103)

where fg is a parameter to control the bandwith and the amplitude of the Gaussian
pulse. For the excitation of an electromagnetic structure, a choice has to be made
on whether to excite in a completely general way or in a more restrictive way. For
example, placing a source at a single point in a cavity will excite many modes but
only a limited set of modes will be excited if sources are placed on a plane, or, if a
TEM cell is excited by the steady-state field distribution over a plane then only the
TEM mode will propagate. For some waveguide structure such as a microstrip line or
coplanar waveguide it is very simple to define the input-output voltages and currents
corresponding to the fundamental and to several higher modes. These voltages and
currents can be transformed to the electromagnetic fields and to the waves amplitude
and vice versa. The decision on wheter to excite in general or restrictive way will
be based upon the particular aspect of the electromagnetic structure which is to be
investigated.





5 Time-Domain Method of Moments

5.1 Introduction

Time Domain Integral Equation, TDIE, based solvers are poised to be increasingly
applied throughout the computational electromagnetics community for the analysis
of complex, wide-band, electromagnetic scattering and radiation phenomena. Indeed,
TDIE based methods promise to deliver a combination of advantages not seen in
any other simulation technique in broad use today. As integral equation methods,
they only require discretization of the interior or boundary of regions whose material
properties differ from an assumed background, e.g. a within scattering object, and
automatically impose the correct radiation and causality conditions, which must be
imposed artificially in the truncation of finite grids used by space discretizing methods
such as TLM or FDTD methods. As time-domain techniques, they analyze wide-band
and potentially time-varying phenomena in a single simulation.

In general, the electromagnetic community refers to the integral formulation as the
Method of Moments (MOM). The MOM technique has been used since the 1960s
as it is a more computationally efficient method compared to the TLM algorithm for
homogeneous objects. This is because the MOM method discretizes only the surface of
objects as opposed to a volumetric cell discretization of the entire simulation domain
as in the TLM method [3] [4]. In the MOM technique, the Electric Field Integral
Equation (EFIE) is typically used to mathematically define the problem and is solved
for the surface/line currents generated on the objects of interest. These currents can
then be used in radiation integrals to calculate the fields scattered by the objects.

In the following sections we will rewrite the full Maxwell equations as an integral
equation for currents on the surfaces of conductors, and apply this formulation to a
scattering problem. We will develop the EFIE and MFIE and describe the MOM
technique used to solve it in determining the line or surface currents generated on
an arbitrarily-shaped conducting body by an incident electromagnetic field. The con-
dition that the tangential electric field vanishes on conductor surfaces then gives an
integral equation from which we can compute the surface currents. The scattered
electromagnetic field can be expressed in terms of surface currents on conductors.

33
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5.1.1 Derivation of Electric and Magnetic Field Integral Equation

The Maxwell equations in the time domain in a linear, non-dispersive, and isotropic
medium take the following differential and integral forms [3]:

Differential form Integral form

∇×H = J+
∂D

∂t
,

∮

L

H · dl = I+

∫

S

∂D

∂t
· dS, (5.1)

∇×E = −∂B
∂t
,

∮

C

E · dl = −∂Φ
∂t
, (5.2)

∇ ·D = ρv,

∮

S

D · dS = Q, (5.3)

∇ ·B = 0,

∮

S

B · dS = 0. (5.4)

We will first consider the simple case in which a scatterer occupying a volume V
enclosed by a surface S is illuminated by a source in an unbounded free space. In this
case and using the constitutive relationships D = ε0E and B = µ0H the eqs. (5.1-5.4)
become:

∇×H(r, t) = J(r, t) + ε0
∂E(r, t)

∂t
, (5.5)

∇×E(r, t) = −µ0
∂H(r, t)

∂t
, (5.6)

∇ ·E =
ρv(r, t)

ε0
, (5.7)

∇ ·H(r, t) = 0. (5.8)

A solution can be constructed in terms of the time domain scalar and vector poten-
tials, Φt and A, as

H(r, t) =
1

µ0
∇×A(r, t), (5.9)

E(r, t) = −∇Φt(r, t)−
∂A(r, t)

∂t
. (5.10)

It can be shown that Φt and A are solutions to the following vector and scalar wave
equations [3]:

∇2A(r, t)− ε0µ0
∂2

∂t2
A(r, t) = −µ0J(r, t)

∇2Φt(r, t)− ε0µ0
∂2

∂t2
Φt(r, t) = −

ρv(r, t)

ε0
. (5.11)
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The time-domain scalar and vector potentials are related to each other by the fol-
lowing time-domain Lorentz condition:

∇ ·A+ ε0µ0
∂Φt(r, t)

∂t
= 0. (5.12)

The solution to eqs. (5.11) can be constructed directly from the following scalar
wave equation in the time domain.

(∇2 − 1

c2
∂2

∂t2
) gt(r, r

′, t, t′) = −δ(r− r′)δ(t− t′), (5.13)

where c = 1/(ε0µ0)
1/2 is the the speed of light in vacuum. It can be readily shown that

the solution to eq. (5.13) subject to the causality and radiation conditions (outgoing
wave condition) is

gt(r, r
′, t, t′) =

{
1

4πR δ(t− t′ −R/c) for t > t′

0 for t ≤ t′,
(5.14)

gt(r, r
′, t, t′) is called the free-space scalar Green’s function in the time domain. R =

|r− r′| denotes the distance between the source points r′ and destination points r. By
comparing eqs. (5.11) through (5.14), we obtain the following solutions for A and Φt:

A(r, t) = µ0

∫

V

dv′
∫ ∞

−∞

dt′J(r′, t) gt(r, r
′, t, t′)

= µ0

∫

V

J(r′, t−R/c)
4πR

dV ′, (5.15)

and

Φt(r, t) =

∫

V

ρt(r
′, t−R/c)
4πε0R

dV ′. (5.16)

Substituting the above equations into eqs. (5.9) and (5.10) yields

H(r, t) =
1

4π

∫

V

{[
1

c

∂

∂τ
J(r′, τ) +

1

R
J(r′, τ)

]
× R

R2

}

τ=t−R/c

dv′ (5.17)

E(r, t) =
1

4π

∫

V

{[
1

c

∂

∂τ
ρt(r

′, τ) +
1

R
ρt(r

′, τ)

]
R

ε0R2
− µ0
R

∂

∂τ
J(r′, τ)

}

τ=t−R/c

dv′,

(5.18)
where τ = t−R/c denotes the retarded time. In deriving these equations, the following
mathematical identities were used:

∇ 1

R
=
−R
R3

∇R =
R

R

∇× J(r′, τ) = −1
c

R

R
× ∂J

∂τ
∇ρt(r, τ) = −

R

cR

∂ρt
∂τ

(5.19)
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5.1.2 Perfectly Conducting Scatterers

Considering the case in which the surface S enclosing the volume V is perfectly
conducting. The object is illuminated by an external source. Under such a condition,
eqs. (5.17) and (5.18) take the form :

Es(r, t) =
1

4π

∫

S

{[
1

c

∂

∂τ
ρs(r

′, τ) +
1

R
ρs(r

′, τ)

]
R

ε0R2
− µ0
R

∂

∂τ
Js(r

′, τ)

}

τ=t−R/c

ds′,

(5.20)

Hs(r, t) =
1

4π

∫

S

{[
1

c

∂

∂τ
Js(r

′, τ) +
1

R
Js(r

′, τ)

]
× R

R2

}

τ=t−R/c

ds′, (5.21)

where Es and Hs denote the scattered electric and magnetic field, respectively. Js
and ρs are the equivalent surface current and charge, respectively, on S due to an
incident field Ei. The Electric Field Integral Equation (EFIE) is derived from the zero
total tangential electric field condition on the surface of a perfectly conducting body
S. Since the total electric field is composed of the incident and scattered fields (Ei

and Es), we have
n × (Es +Ei) = 0 on S. (5.22)

Substituting eq. (5.20) into eq. (5.22), we obtain the (EFIE):

n×Ei(r, t)+
1

4π
n×

∫ ∗

S

{[
1

c

∂

∂τ
ρs(r

′, τ) +
1

R
ρs(r

′, τ)

]
R

ε0R2
− µ0
R

∂

∂τ
Js(r

′, τ)

}

τ=t−R/c

ds′ = 0,

(5.23)

where the
∫ ∗

sign denotes a principal value integral with the singular point r′ = r

excluded. The magnetic field integral equation (MFIE) can be derived from eq. (5.21)
and the following boundary condition:

n × (Hs +Hi) = Js on S, (5.24)

resulting in

Js(r, t) = 2n×Hi(r, t)+
1

2π
n×

∫ ∗

S

{[
1

c

∂

∂τ
Js(r

′, τ) +
1

R
Js(r

′, τ)

]
× R

R2

}

τ=t−R/c

ds′,

(5.25)
where Js(r

′, τ) is the current distribution on the surface S at a source point r′ and
at the retarded time τ = t − R/c; r′ is the integration point, R = |r− r′|. n is a
unitary vector normal to the surface of the scatterer. As was the case in eq. (5.23),
a principal-value integral sign is used here to exclude the singular point at r′ = r.
Note that in the principal value, we essentially exclude the part for which R = 0.
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Since τ = t − R/c and R 6= 0, we always have that τ < t. The time domain integral
equations have a time-retardation feature that allows them to be solved by a generally
more straightforward method. The time domain equations therefore state that the
current at location r and time t is equal to a known term 2n ×Hi(r, t) plus a term
(integral) known from the past history of Js. This is the basis for solving the time
domain integral equation by iterative methods, the most well-known one being the
marching-on-in-time technique. An important feature of the MFIE equation is that
it presents a kernel with both derivatives and singularities of a lower order that the
EFIE. As a consequence, it is possible to employ base and testing functions that are
simpler than the ones required for the electric field integral equation.

The electric field integral equation (EFIE) and the magnetic field integral equation
(MFIE) can be used to model the electromagnetic response of general structures. Each
equation has advantages for particular structure types. The EFIE is well suited for
thin-wire structures of small or vanishing conductor volume while the MFIE, which
fails for the thin-wire case, is more attractive for voluminous structures, especially
those having large smooth surfaces. The EFIE can also be used to model surfaces and
is preferred for thin structures where there is little separation between a front and
back surface.

Eq. (5.23) is referred to the Electric Field Integral Equation (EFIE) and is expressed
in terms of the known incident electric field. In order to determine the unknown
surface current density Js, a technique known as the marching on in time (MOT) will
be applied. This is described in the next sections for the first case of a thin wire and
the second case of a thin surface.

5.2 Thin-Wire Antennas and Scatterers

An important engineering problem is the electromagnetic behavior of thin wire
objects. A general analysis of such objects according to the method of moments is
presented in this section. The impressed field is considered arbitrary, and hence both
the antenna and scatterer problems are included in the solution. The distinction
between antennas and scatterers is primarily that of the location of the source. If
the source is at the object it is viewed as an antenna; if the source is distant from
the object it is viewed as a scatterer. So that the development of the solution may
be easily followed, it is given with few references to the general theory. Basically, it
involves

1. an approximation of the exact equation for conducting bodies by an approximate
equation valid for thin wires,

2. replacement of the derivatives by finite difference approximations, yielding an
approximate operator,
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3. use of pulse functions for expansion functions, to give a step approximation to
the current and charge, and

4. the use of point-matching for testing.

The scattering problem is solved through discretization of the EFIE and its direct time-
domain solution by means of a marching-on-in-time procedure. An explicit equation
that relates the current at a certain time instant to the currents of previous instants
and the incident field is obtained.

Consider an arbitrary shaped conducting wire with length l, radius a, and surface
S, which may be closed or open, illuminated by a transient electromagnetic field. This
field induces a surface current on S, J(r, t), which then reradiates. According to the
electromagnetic theory, the total tangential electrical field on the wire surface equals
to zero, therefore we derive an integro-differential vector equation in the unknown
induced surface current [3],

[
∂A(r, t)

∂t
+∇φ(r, t)

]

tan

=
[
Einc(r, t)

]
tan

, r ∈ S (5.26)

where A and φ are the magnetic vector and the electric scalar potential, respectively,
and Einc is the incident field. The subscript tan denotes the tangential component.
Using the thin-wire approximation, the current and charge can be seen as current and
charge filaments lying along the axis of the wire. The vector A and scalar potentials
φ are given by the retarded integrals involving the electric line current density I(r, t)
and the line charge density ρ(r, t), respectively, as

A(r , t) =
µo
4π

∫

l

I(r′ , τ)

R
dl′ (5.27)

φ(r , t) =
1

4πεo

∫

l

ρ(r′, τ)

R
dl′, (5.28)

where R = |r− r′| represents the distance between the observation point r and the
source point r′, τ = t−R/c is the retarded time. The current density and the electric
charge are coupled through the conservation of charge equation [3], since

∇ · I(r, t) = −∂ρ(r, t)
∂t

(5.29)

and

ρ(r, t) = −
∫ t

−∞

∇ · I(r, ζ)dζ. (5.30)

For excitation with smooth time dependence, the time derivative of the EFIE (5.26)
is generally used, because it avoids the time integral due to the charge contribution,
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Figure 5.2: A wire scatterer

we derive, [
∂2A(r, t)

∂t2
+∇ψ(r, t)

]

tan

=

[
∂Einc(r, t)

∂t

]

tan

, r ∈ S (5.31)

with

ψ(r, t) =
∂φ

∂t
=
−1
ε

∫

l

∂I(r′, t−R/c)/∂l
4πR

dl′. (5.32)

Hence

∂Einc(r, t)

∂t
· el =

µ

4π

∂2

∂t2

∫

l(r)

I(r′, τ)

R
el · e′l dl′

− 1

4πε

∂

∂s

∫

l(r)

∂I(r′, τ)

∂l′
1

R
dl′, (5.33)

where I(r, t) denotes the unknown current distribution flowing along the wire axis,
l(r) is the integration path, EincC is the incident field at the wire surface, l and l′ are
curvilinear coordinates along the wire axis, as indicated in Fig. 5.2. el and e

′
l are unit

vectors tangential to the wire axis in the field and the source points, respectively. R
is the distance between the source and the field points. τ = t − R/c is the retarded
time and c the light velocity in free space. The singularity of the integral is overcome
choosing the field point on the wire surface, where the boundary condition is applied,
and the source point on the wire axis, where the current is assumed to flow, according
to the thin wire approximation.

The eq. (5.33) can be numerically solved using the marching on in time version of
the MOM; in this way the integro-differential equation is transformed into a linear,
iterative relation that provides an explicit evaluation of the current, as reported in the
next section.
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Figure 5.3: Thin wire discretization into straight segments.

5.2.1 Current distribution on the wire

The marching on in time (MOT) procedure allows to transform the integro-differential
equation (5.33) into an iterative relation: to simplify the formulation for the curved
wire in Fig. 5.2, it is a general practice to approximate it by discretized segments of
straight wires of the same radius. Fig. 5.3 illustrates the division of the wire into
N segments, which corresponds to the same number of subdomains and defines the
notation. The mth segment is identified by its starting point m−, its midpoint m, and
its terminated m+. An increment ∆lm denotes that between m+ and m− , ∆l−m and
∆l+m denote increments shifted 1/2 segment minus or plus along the wire axis. The
tangential unit vector em of the mth segment is given by

em =
rm+ − rm−

|rm+ − rm−|
. (5.34)

Adopting the conventional procedure of MOT to solve equation (5.33), we use pulse
basis functions to expand the unknown current distribution I(r, t) both in time and
space domain as well as delta test functions according to the point matching technique
[25]. The set of basic functions, chosen as the standard pulse functions on a linear
segment, is given by

fm(r) =

{
1 for r ∈ [rm−, rm+]

0 otherwise.
(5.35)

The set of basis functions is used as a testing function where the inner product is
defined as:

< a, b >=

∫

l

a · b dl′. (5.36)

The time is also discretized into time intervals with span of ∆t. The relationship
between the length of wire segment and time interval is given by ∆t ≤ ∆l/c

√
2. By
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using point-matching method, that is, considering the field at the center point of the
mth segment rm and at moment tn(tn = n∆t). Using the test function (5.36) and
apply into eq. (5.31) gives

< fmem,
∂2A

∂t2
+∇ψ >=< fmem ,

∂Einc

∂t
> . (5.37)

Using a central difference to approximate the time derivatives of the vector potential
function, we get

< fmem ,
A(r, tn+1)− 2A(r, tn) +A(r, tn−1)

∆t2
+∇ψ >=< fmem ,

∂Einc

∂t
> . (5.38)

Using a 1-point integration to test the vector potential, across a segment, we get

< fmem,A(r, tn) > ' A(rm, tn) ·∆lmem. (5.39)

This approximation is done by evaluating the vector potential, A, at point rm, at
the present time tn, and multiply by the length of the segment, ∆lm where ∆lm =
|rm+ − rm−|. The same testing approximation is applied to the testing of the incident
electric field Einc.

< fmem ,
∂Einc(r, tn)

∂t
> ' ∂Ei(rm, tn)

∂t
·∆lmem. (5.40)

Using the fact that the line integral of the gradient of a potential function is the
function evaluated at its end points, the testing of the time derivative of the scalar
potential can be written as

< fmem ,∇ψ(rn, tn) >=
∫

l

∇ψ(r, tn) · fmeldl′

' ψ(rm+, tn)− ψ(rm−, tn) (5.41)

Using the eqs. (5.39), (5.40) and (5.41), the eq. (5.38) can be rewritten as:

[
A(r, tn+1)− 2A(r, tn) +A(r, tn−1)

∆t2

]
·∆lmem

+ψ(rm+, tn)− ψ(rm−, tn) =
∂Einc(rm, tn)

∂t
·∆lmem, (5.42)

where m = 1, 2, .... N. Next, the unknown line current, I(r, t), over the wire structure,
is approximated as

I(r , t) =

N∑

k=1

Ik(t) fk(r), (5.43)
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where Ik(t) is the unknown coefficient in the segment k with r = rk for k = 1, 2, ...., N .
Substituting eq. (5.43) into eq. (5.27) and assuming the current over a segment to be
constant with time, results in

A(r, tn) =
µ

4π

∫

l

e′l
∑N
k=1 Ik(tn − Rmk

c ) fk(r
′)

R
dl′

' µ

4π

N∑

k=1

Ik(tn −
Rmk
c

)km,k ek, (5.44)

where

km,k =

∫

l

fk(r
′)

Rm
dl′, (5.45)

Rmk = |rm − rk| ,
and

Rm =

√
|rm − r′|2 + a2,

where a denotes the wire radius. The integral km,k term can be further expressed as

km,k =

{
∆lk√

|rm−rk|
2+a2

k 6= m

km,m k = m,
(5.46)

where

km,m = 2 ln




∆lm
2 +

√(
∆lm
2

)2
+ a2

a2


 , (5.47)

represents the self-term integral. ∆lm = |rm+ − rm−| denotes the length of the mth
wire segment.

Removing the self term, k = m, the vector potential can be rewritten as:

A(r, tn) =
µ

4π
km,mIm(tn)em

︸ ︷︷ ︸
self−term

+
µ

4π

N∑

k=1,k 6=m

Ik(tn −
Rmk
c

)km,k ek

︸ ︷︷ ︸
Ă(r,tn)

, (5.48)

where Ă indicates that the self-term is excluded from the summation. Ă is computing
at earlier time instant since the distance Rmk can never be zero. Fig. 5.4(b) represents
the case for k 6= m, in which the source and field segments are different. When k = m,
Fig. 5.4(a), the field point can be chosen to be any point on the circumference without
affecting the computation. Note also that by approximating the source current as an
axial line current, we have circumvented the singularity problem occurring at k = m.
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Figure 5.4: Field and source points when m = k (a) and when m 6= k (b).

That is, since the field point is on the surface S of the wire, and the source point is on
the center axis of the wire, r never equals r′, even for the self-element in which k = m.

Next the time derivative of the scalar potential is evaluated. Using the current
approximation (5.43), the time derivative of scalar potential (5.32) is expressed as:

ψ(rm, tn) =
∂φ

∂t
=
−1
ε

N∑

k=1

∫

l

∂
[
Ik(tn − Rmk

c )fk
]
/∂l

4πRm
dl′, (5.49)

where Rm = |rm − r′|. Using the basic pulse functions, the derivative of the function
fk results in two delta functions at rk+and rk−. The effect of these delta functions can
be spread across the region rk−1 to rk+1. Fig. 5.5 illustrates the procedure.

The used of the basic function essentially approximate the derivative by a finite
difference. Using this approximation, eq. (5.49) can be rewritten as

ψ(rm, tn) =

N∑

k=1

ψ+(rm, tn)− ψ−(rm, tn), (5.50)

where

ψ+(rm, tn) =
−1
4πε

Ik(tn − R
+

mk

c )

∆l+k

∫ rk+1

rk

1√
|r− r′|2 + a2

dl′, (5.51)
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Figure 5.5: Approximation of Delta Functions by Pulse Function

ψ−(rm, tn) =
−1
4πε

Ik(tn − R
−
mk

c )

∆l−k

∫ rk

rk−1

1√
|r− r′|2 + a2

dl′, (5.52)

and

R±
mk =

√
|rm − rk±|2 + a2, ∆l+k = |rk+1 − rk| , ∆l−k = |rk − rk−1| . (5.53)

Using Equation (5.48) and replacing the n-terms with n − 1, eq. (5.42) can be
rewritten as

µkm,mIm(tn)∆lmem
∆t2

=
∂Ei(rm, tn−1)

∂t
·∆lmem

−
[
Ă(rm, tn)− 2Ă(rm, tn−1) + Ă(rm, tn−2)

∆t2

]
·∆lmem

+ [ψ(rm+, tn−1)− ψ(rm−, tn−1)] for m = 1, 2, ..., N. (5.54)

It is clear from eq. (5.54) that the present time unknown current Im(tn) is calculated
by utilizing the retarded known currents at the earlier instants. The right side involves
only currents and incident field up to the time t = tn−1. An important advantage of
this method, is the fact that no matrix inversion is needed to solve the integral equation.
As stated earlier, the explicit approach is applied, therfore, the time interval, ∆t, must
be less than the minimum distances between observation and the source points on the
wire, c∆t ≤ Rmin. The equation of current continuity dictates that any current flowing



5.3 Thin-Surface Antennas and Scatterers 45

toward the end of a thin wire must decrease to zero as it approaches the end, otherwise
there will be an infinite amount of accumulation of charge, which is not possible unless
the end is a source or a sink. If a wire-end is free, we assume that there is no current
flow though the end point and therefore we enforce the current to be zero at the wire-
end ( for the segments m = 1 and m = N). On the other hand, if a wire ends on
a large perfectly conducting surface the charge per unit length is zero and therefore
we enforce the voltage to be zero at that wire-end. This enforcement is valid only for
wires ending on large PECs.

5.3 Thin-Surface Antennas and Scatterers

The problem of obtaining transient response of an arbitrary shaped conducting body
excited either as an antenna or as a scatterer is of much interest in electromagnetic
community. This is partly due to the recent developments in the area of high resolution
radar technology, target identification techniques, and electromagnetic compatibility
related problems where the transient response plays a major role.

Earlier models in frequency domain as well as integral-equation in time-domain
adopted wires in the geometry representation. The structure is modeled as a net of
wires, but as noted in [4], the wire grid model is not well suited for calculating quantities
such as current distribution. Recently in TDIE, surface-patch models have shown
advantage of better representing the true circumstances, particularly with regard to
the near-field quantities [17]. The most widely used surface discretization method
is based on Rao-Wilton-Glisson (RWG) elements, which are simple, flat, triangular
facets. It can be used both in PEC and dielectric surfaces. In the RWG discretization
methods, the singular integrands vanish, whilst the methods still can give good results
on simple shapes [17]. In this approach, a singularity is subtracted, leaving the kernel
only weakly singular.

In this thesis, we use planar triangular patch modeling and apply the marching on in
time technique to develop a simple numerical procedure to solve the EFIE directly in
the time-domain. The solution technique is capable of handling either open or closed
arbitrarily curved structures of finite extent. In the following, the time domain EFIE
formulation and the numerical solution is presented.

Consider the case where we have a conducting structure which we subject to an
incident electromagnetic field, Fig. 5.6(a). Due to the incident field a current will be
induced on the surface of the structure and this current will in turn produce a field
which we call the scattered field. We denote the incident field as Einc and the scattered
field Escat. If the structure is assumed to be a perfect conductor, we know that the
tangential component of the electric field at the surface of the structure must vanish.
Thus, the following equation follows:

(Einc +Escat)tan = 0, on S. (5.55)
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Figure 5.6: Planar conducting structure subject to an incident electromagnetic field;
(a) thin surface (b) RWG discretization.

Escat can be constructed in terms of the time domain scalar and vector potentials, φ
and A, respectively. Therefore we derive an integro-differential vector equation in the
unknown induced surface current [3] as

[
∂A(r, t)

∂t
+∇φ(r, t)

]

tan

=
[
Einc(r, t)

]
tan

, r ∈ S. (5.56)

The forcing term of this equation is given by the tangential component of the incident
electric field Einc. For the case of thin planar conducting structures, we can assume
the conducting sheet to be infinitesimal thin and that the current only can flow in
the orthogonal directions. The solution of the EFIE (5.56) for the unknown surface
current using the marching on in time technique is performed in the next section.

5.3.1 Current distribution on the surface

In order to obtain a numerical solution of eq. (5.56), we use the MOT procedure and
the same type of basis and test functions as were introduced by Glisson & Wilton [17].
In particular, the spatial variation of the surface currents induced on the body can be
accurately approximated by discretizing its exterior surface in sub-domain patches ,
over which a suitable set of basis functions can be defined, Fig. 5.6(b). The choice here
is to use the triangular current expansion and approximating the conducting surface S
by triangular patches. Thus the surface current distribution Js(r, t) can be numerically
approximated as:

J(r , t) =
Ne∑

k=1

Ik(t) fk(r), (5.57)

where Ne is the number of the edges of the triangles which models the scatterer,
excluding the boundary edges if S is open. Each unknown coefficient Ik(tn) denotes
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Figure 5.7: Geometry of triangular patches.

the value of the component of the current, normal to the kth edge at the instant
tn = n∆t. The adopted basis functions fk(r) are defined over each triangle pair
discretizing the body surface. Let T+

m and T−
m be two triangular patches associated

with the mth edge of length lm as shown in Fig. 5.7. The same procedure as applied
in [17]; then

fm(r) =

{
lm
2A±m

ρ±m for r ∈ T±
m

0 for r /∈ T±
m ,

(5.58)

where lm and A±
m are the length of the edge and the area of triangle T±

m . ρ±m is
the position vectors referenced at the free vertex to the centroid of T±

m . Next the
testing functions are the same as the expansion function fm, presented above, the
inner product is chosen as

< A, B >=

∫

S

A ·B∗ dS, (5.59)

where the asterisk represents the conjugate. We begin by applying the testing proce-
dure to (5.56), which results in

< fm,
∂A(r, t)

∂t
+∇φ(r, t) >=< fm ,E

inc
C > . (5.60)

By considering (5.56) at a time instant tn, and assuming that the current does not
vary appreciably with time within the pair of triangles, so that

Ik(tn −R/c)⇒ Ik(tn −Rmk/c)

< fm ,E
inc
C >' lm

2
(ρ+m + ρ−m) · EincC (rm, tn) (5.61)

A(rm, tn) '
µ

4π

Ne∑

k=1

Ik(tn −
Rmk
c

) emk (5.62)
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emk =

∫

T+
k
+T−

k

fk

Rm
dS (5.63)

Rm = |rm − r′| Rmk = |rm − rk| , (5.64)

where rm and rk are the positions vectors to the center of the mth and kth edges,
respectively. Separating the self term (k = m) from (5.62) and applying the inner
product ,

< fm ,
∂A(r, t)

∂t
>=<

fm, (A(r, tn+1)−A(r, tn))

∆t
>

=
lm
2
(ρ+m + ρ−m) · µo

4π

emm

∆t
Im(tn+1)

+
lm
2
(ρ+m + ρ−m)

[
(Ă(rm, tn+1)− Ă(rm, tn))

∆t

]
, (5.65)

where Ă(rm, tn) represents A(rm, tn) with the self term deleted. ∆t = tn+1 − tn.
emm denotes the self term integral (m = k).

The scalar potential term becomes

< fm ,∇φ(r, t) >= −
∫

S

φ∇ · fm dS

' −lm [φ(rc+m , tn)− φ(rc−m , tn)], (5.66)

with

φ(r , tn) = −
1

4πεo

∫

S

dS

R

[∫ tn−R/c

0

Ne∑

k=1

Ik(τ)∇ · fk dτ
]

' − 1

4πεo

∫

S

dS

R

Ne∑

k=1

[∫ tn−R
+

mk
/c

0

Ik(τ)φ
+
mk dτ

+

∫ tn−R
−
mk
/c

0

Ik(τ)φ
−
mk dτ

]
, (5.67)

where

φ±mk =
lk

A±
k

∫

T±
k

dS

R±
m

(5.68)

R±
mk =

∣∣r− rc±k
∣∣ R±

m = |r− r′| . (5.69)

Moreover, vector potentials A(r, t) are evaluated at the center of each edge, while
scalar potentials φ±mk are evaluated at the centroids of the triangles by replacing r with
rc+m or rc−m , Fig. 5.7.
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By combining all the relationships presented above, we obtain:

lm
2
(ρ+m + ρ−m) · emm

µo
4π∆t

Im(tn+1)

=
lm
2
(ρ+m + ρ−m) · Einc(rm, tn)

− lm
2
(ρ+m + ρ−m) ·

[
(Ă(rm, tn+1)− Ă(rm, tn))

∆t

]

+lm[φ(rc+m , tn)− φ(rc−m , tn)]. (5.70)

On close examination of (5.70), it is clear that the right-hand side involves only
currents and incident fields up to the time t = tn. Hence the currents Im(tn+1) can be
determined if the currents up to the previous time step tn are available, this allowing us
to treat (5.70) as a recursion formula by which the current is computed by marching-
on-in-time and without solving simultaneous equations. This is well-known feature of
the numerical solution of the time domain formulations of scattering problems [19].
An important parameter to be noted in (5.70) is the choice of the time step ∆t,
which should satisfy the condition ∆t ≤ Rmin/c, where Rmin represents the minimum
distance between the edge centers. In order to generate a stable numerical results,
the Courant’s stability condition [22] forces the choice of the time step to be less than
Rmin/c

√
2 and in the present work we chose ∆t = Rmin/2c.

The electric field integral equation EFIE is used with the Method of Moments
(MOM) to develop a simple and efficient numerical procedure for treating problems
of transient scattering by arbitrarily shaped conducting objects. For numerical pur-
poses the objects are modeled by triangular surface patch models. Because the EFIE
formulation is used, the procedure is applicable to both open and closed objects. The
solution technique of the scattering problem will be implemented in the hybrid method
TLM-TDMOM combining the Transmission Line Matrix and the Method of Moments
presented in Chapter 7. This hybrid method is very efficient to analyze the tran-
sient electromagnetic interaction between a complex object, modeled by TLM, and a
conducting scatterer, modeled by the time domain Method of Moments (TDMOM).

5.4 Surface Equivalence Principle

It is generally impractical to simulate a large domain that includes the far field of
a radiating object or scatterer. Using a Green’s function and radiation integral, far
fields can be computed from near fields. One way to do this is to surround all material
objects and sources in the simulation domain with an imaginary closed contour (2D)
or surface (3D), which is sometimes called a Huygens surface. For convenience with
rectangular grids used in TLM, this is often chosen to be a box, as shown in Fig. 5.8.
Once the TLM-simulation has reached steady state, electric and magnetic fields are
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Figure 5.8: The equivalence principle

stored along the surface. If the contour lies exactly on electric field grid points, then
for a maximum accuracy the magnetic field values must be obtained by interpolation of
two values on either side of the surface. The equivalence principle can be used to relate
the fields on the surface to equivalent sources which if impressed in free-space would
radiate the same fields outside the surface [4]. In the equivalent problem, suppose
that the fields inside the surface are arbitrary fields E2 and H2. By the boundary
condition, the sources

JS = n × (H−H2) (5.71)

MS = −n × (E−E2), (5.72)

must lie on the surface S. If we choose E2 and H2 to be zero, then

JS = n × H (5.73)

MS = −n × E (5.74)

Since these sources lie in free space, we can use the free-space radiation integral to
compute the fields radiated by these sources. n is the unit vector normal to S. Js
and Ms denote the equivalent electric and magnetic surface current densities on S,
respectively.
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6.1 Introduction

A simulation method for solving EMC problems must be capable of dealing with
highly non-uniform and non-linear systems, over a wide frequency range including
transients in equipment configurations which are electrically large and contain fine
features. The space discretizing TLM or FDTD methods are very flexible for the
field modeling of general structures with arbitrary shapes [1] [72], their disadvantages
occur in modeling of problems involving wide free-space regions. The analysis of the
electromagnetic interaction between objects separated by large free-space regions with
a full-wave method such as the TLM method, based on a full discretization of the
environment, represents a challenging task with regard to computational resources and
modeling effort. On the other hand, field propagation in large free-space environments
can be efficiently studied by using the time domain integral equation (TDIE). Since in
the TLM method the segmentation of the space can be handled very easily the TLM
method is also very suitable to be combined with other methods. Therefore, a suitable
hybrid method which drastically reduces computation time and effort is to combine
the TLM method and the Integral-Equation (IE) method in a hybrid TLM-IE method
that permits to analyze complex objects and to incorporate the treatment of large free-
space regions with high efficiency [6] [7] [12]. In the TLM-IE method, the application of
the equivalence principle allows to divide the three-dimensional space into subregions.
Each object is enclosed by a discretized subregion where the TLM method is applied.
The electromagnetic interaction between the subregions is performed by the dyadic
free-space Green’s functions in time domain.

6.2 TLM-IE Concept for Radiation Analysis

In the framework of the Electromagnetic Compatibility (EMC), it is often necessary
to investigate spurious radiation phenomena of complex structures. The electromag-
netic analysis is particularly important in the time domain, because with one single
time simulation we get the information for all frequencies after a FFT transformation.
An accurate analysis of radiating structure with the TLM method requires a great

51
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computational effort, due the necessity of dealing with large metallic structures, in-
cluding radiating elements and feeding lines. The computational effort increases if we
have to deal with radiation problems in large free-space regions. The hybrid method
TLM-IE method provide a procedure which allows to treat radiation problems with a
high efficiency regarding to the computation time and memory requirements.

SB

Erad Erad

G(r,r’)
G(r,r’)

(a) (b)

Figure 6.9: Hybrid TLM-Integral Equation concept; (a) radiating structure, (b) the
structure is embedded into a TLM-box, the surface elements of the subre-
gion are coupled via Green’s functions in time domain G(r, r′).

We consider an radiating object with complex geometry, as shown in Fig. 6.9(a).
The near field region is discretized by the TLM scheme and surrounded by a surface
SB which represents the interface to the far field region as shown in Fig. 6.9(b) . In
the further derivation we apply the TLM algorithm for the calculation of the near field.
The boundary of the discretized region is the surface SB . The tangential field on the
surface SB represents a distribution of equivalent currents and charges, according to
the Huygens-Schelkunoff’s representation of the equivalence theorem. These sources
are mutually coupled via the free space region by the Green’s function in time domain.
Inside the discretized region there are sources. The field which is excited by the given
sources produces an incident tangential field TLMEincB (r, t) and TLMHinc

B (r, t) on the
interface SB as indicated in Fig. 6.10. This field is calculated by the TLM algorithm.
By applying the continuity of the total tangential fields at the interface SB , we derive
the following integral equations as in [55]:

EBtot =
TLM EincB +ErB , (EFIE) (6.1)

HBtot =
TLM Hinc

B +Hr
B , (MFIE) (6.2)

where EBtot, HBtot represent the unknown total tangential fields at the interface SB as
shown in Fig. 6.10. ErB and Hr

B are the tangential radiated field at the interface and
represent the self interaction between the surface elements belonging to the boundary
SB . These field quantities are derived from the total tangential fields via the dyadic
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Figure 6.10: Interface between the TLM-box and the free-space region.

free-space Green’s function in time domain as [4]

Er(r,t) =
T

4π

∫∫

S

dS′
{−µ
R

∂

∂t

(
n(r′)×HBtot(r

′, τ)
)

+(n(r′)×EBtot(r′, τ))×
R

4πR3
+
∂

∂t
(n(r′)×EBtot(r′, τ))×

R

4πR2c

+
(
n(r′) ·EBtot(r′, τ)

)
· R

4πR3
+
∂

∂t

(
n(r′) ·EBtot(r′, τ)

) R

4πR2c

}

τ=t−R/c

(6.3)

Hr(r,t) =
T

4π

∫∫

S

dS′
{
ε

R

∂

∂t

(
n(r′)×EBtot(r′, τ)

)

+(n(r′)×HBtot(r
′, τ))× R

4πR3
+
∂

∂t
(n(r′)×HBtot(r

′, τ))× R

4πR2c

+(n(r′) ·HBtot(r
′, τ) · R

4πR3
+
∂

∂t
(n(r′) ·HBtot(r

′, τ)) · R

4πR2c

}

τ=t−R/c

, (6.4)

where r and r′ are the destination and source positions vectors, respectively, R is the
distance between these vectors. This equation can be applied to all the space: when r
and r′ belong to the same interface SB , then with T = 2, the calculated radiated field
represents the self coupling between the surface elements, ErB and Hr

B in eqs. (6.1)
(6.2), for destination r outside the TLM-subregion, the radiated electromagnetic field
can be calculated using the eqs. (6.3) (6.4) with T = 1. The points r′ are defined on
the radiating interface while n are the normal vectors on the interface at these points.

With that, the EFIE (6.1) and MFIE (6.2) can be written in a compact dyadic form:

EBtot(r, t) =
TLM EincB (r, t) + C̃EH(r, r′, t− τ)(EBtot(r′, τ) + ZHBtot(r

′, τ)) (6.5)

HBtot(r, t) =
TLM Hinc

B (r, t)+ D̃EH(r, r′, t−τ)(Z−1EBtot(r
′, τ)+HBtot(r

′, τ)), (6.6)

where the dyadic forms C̃EH and D̃EH represent matrix operators involving integro-
differential operations. Z represent the wave impedance in free space. An important
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observation is that the integral eqs. (6.5) (6.6) have a time retardation feature that
allows to solve them in an iterative way. In the kernel of the operators on the right
side of these equations, the time variable is retarded with respect to the same variable
in the left side. Since the point R = 0 is excluded in the evaluation of the integrals,
R/c is never zero (we consider principal-value integrals). Therefore the variable τ is
always less than t and with that the unknown electromagnetic field EBtot, HBtot is the
sum of a known term, the incident field term and an integral that is also known from
the past history of the same field. With that we derive the basis for solving integral
equations by iterative methods such as the marching on in time (MOT) technique.

Now we discretize the EFIE (6.5) and MFIE (6.6) by expanding the total tangential
fields with an appropriate set of functions, in time and in space; the subdomains of
such functions are due to the TLM mesh.

EBtot(r,t) =

V∑

v=1

N∑

i=0

Eϕ(rv , ti)Φ(r− rv)P (t− ti), (6.7)

HBtot(r,t) =

V∑

v=1

N∑

i=0

Hψ(rv , ti)Ψ(r− rv)Q(t− ti), (6.8)

where Φ and Ψ denote surface pulse functions, being equal to unity for r on the
elementary surface centered at rv; P and Q are time-pulse functions, being equal to
unity for t in the time interval centered at ti.

We consider V surface element at the boundary SB and N time steps. Eϕ and
Hψ are the unknown expanding coefficients. Following the direct Method of Moments
approach, as in [4], we choose the following weighting functions:

Wvi(rv, ti) = δ(t− ti)δ(r− rv), with ti = i∆t, (6.9)

and

〈Wvi(rv, ti), Φ(r− rv)P (t− ti)〉 =∫ +∞

−∞

dt

∫ ∫

S

Φ(r− rv)P (t− ti)δ(t− ti)δ(r− rv)dS = δvδi, (6.10)

where the time step is chosen as in the TLM algorithm ∆t = ∆l/2. We assume a
smooth field distribution on the surface SB , a distance has to be kept between the
objects and the surface SB in order to ensure this. For obtaining a matrix system we
give numbers to the coordinates of the fields: v, v’, v” are the numbers of the discrete
co-ordinates rv, rv′ , rv′′ and i, i

′, i′′ are the numbers of the discrete time steps t, tn′ ,
tn′′ . Now, by inserting the eqs (6.7,6.8) in (6.5,6.6) and taking the symmetric product
with equations (6.9) and (6.10), we get

Eϕ(u, j) =
TLM EincB (u, j) +

V∑

v=1

N∑

i=0

[
C̃EH(u, v, j − i)(Eϕ(v, i) + ZHψ(v, i))

]
(6.11)
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Hψ(u, j) =
TLM Hinc

B (u, j) +

V∑

v=1

N∑

i=0

[
D̃EH(u, v, j − i)(Z−1Eϕ(v, i) +Hψ(v, i))

]
.

(6.12)
In order to solve the above equations for the unknown field coefficients Eϕ(u, j) and

Hψ(u, j), we introduce two weighting matrices with elements given by:

W̃E(u, v) = δuv Ĩ− C̃EH(u, v, 0) (6.13)

W̃H(u, v) = δuv Ĩ− D̃EH(u, v, 0), (6.14)

where Ĩ is a identity dyad and δuv is a Kronecker delta function. By applying the eqs.
(6.13, 6.14) to (6.11, 6.12) and after some manipulations, we derive the following form
for the unknown coefficients:

Eϕ(u, j) =

V∑

v=1

W̃−1
E (u, v) ·

(
TLMEincB (v, j)

)

+W̃−1
E (u, v) ·

{
V∑

v′=1

j−1∑

i=0

[
C̃EH(v, v′, j − i)(Eϕ(v′, i) + ZHψ(v

′, i))
]}

(6.15)

Hψ(u, j) =

V∑

v=1

W̃−1
H (u, v) ·

(
TLMHinc

B (v, j)
)

+W̃−1
H (u, v) ·

{
V∑

v′=1

j−1∑

i=0

[
D̃EH(v, v′, j − i)(Z−1Eϕ(v

′, i) +Hψ(v
′, i))

]}
. (6.16)

The eqs. (6.15, 6.16) constitute an equation system whose solution permits us to
recover iteratively the expanding coefficients of the tangential e.m. field. For every
surface element of number u, the expanding coefficients at time j can be directly
computed from the incident field at the same time j and the past history of the
tangential field in all the surface-elements from the time i = 0 up to the time (j − 1).

After the computation of the corrected total tangential field values at SB , the radi-
ated e.m. field at any destination point outside the TLM subregion can be performed
using the eqs. (6.3, 6.4) and setting T = 1.

We summarize the different steps of the hybrid TLM-IE algorithm for the analysis
of radiating structures:

� The TLM algorithm starts with the absorbing boundary condition at the inter-
face SB .

� For every time step j and for every surface-element u at the interface SB , the
incident tangential field TLMEincB (u, j) is known.
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� The known incident tangential field values are now inserted in the equations
(6.15, 6.16). Considering now a particular destination surface-element u and
all other source elements v on the boundary surface SB , defined by the TLM
grid. The effect of every source element with respect to the destination surface-
element depends on the contribution of the discretized integral in (6.15, 6.16),
which depends on the case if tj ≤ Ruv/c, where Ruv represents the distance
between the destination u and source surface-element v.

� The same procedure is repeated for every destination element at the interface
SB . When the condition tj > Ruv/c is fulfilled, we have contribution providing
the correct total tangential field at the interface SB , calculated from the known
values at earlier time steps.

� The calculated total tangential field at the interface on every surface element
and at every time step describe exactly the radiation boundary condition at the
interface SB for the TLM scheme.

The hybrid (TLM-IE) method consists of a TLM procedure applied for the field
modeling inside the subregion SB in which, for every time step, the corrected total
tangential field values at the interface is evaluated by means of a proper set of integral
equations and providing the radiating boundary condition for the TLM algorithm at
SB .

6.3 TLM-IE Concept for Transient Interferences

In Electromagnetic Compatibility we often have to deal with transient interference
among objects of arbitrary shape which are separated by wide free space regions. For
the electromagnetic field analysis of such problems, an efficient numerical time domain
method is required. The field simulation of very general structures exhibiting complex
geometry and lossy materials may be performed by space discretizing method like the
Transmission Line Matrix (TLM) method. However , using the space discretizing TLM
method, the numerical modeling of electromagnetic interference problems involving
wide free space regions requires a high computational effort. In order to overcome the
limits of the TLM method, the hybrid TLM-Integral Equation Method (TLM-IE) has
been developed. In the TLM-IE Method the space discretising TLM Method for the
numerical modeling of the near field is combined with the Integral Equation method
for the description of the electromagnetic field propagation in the wide region of the
homogenous medium around the objects.

We consider two or more interacting objects embedded in free space, as shown in
Fig.6.11. These objects may exhibits complex structure and may contain various lossy
and dielectric materials, as well as metallic layers of finite thickness. For the efficient
numerical modeling of the electromagnetic field interaction in such an arrangement,
two main aspects are combined in the hybrid TLM-IE method:
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Figure 6.11: Electromagnetic coupling among different discretized subregions. The
surface elements of the subregions are coupled via Green’s functions in
time domain

� Each object is embedded into a separate volume which is discretized spatially
as indicated in Fig. 6.11. The discretized volumes are enclosed by imaginary
free space boundary boxes. Inside these volumes, Maxwell’s equations are solved
numerically in the time domain, applying the TLM method with symmetrical
condensed nodes [1].

� For the description of the electromagnetic interaction of the objects, we apply
the equivalence theorem in the Schelkunoff-Huygen’s representation. The objects
are enclosed by a boundary box, where the total tangential electromagnetic field
is evaluated by means of a proper set of integral equations in each time step.

In the following the synthesis of the two above aspects in the hybrid TLM-IE method
is described more closely at the example of p interacting objects, which are coupled
electromagnetically. In Fig. 6.11, three interacting objects are shown with the bound-
ary surfaces SB1, SB2 and SB2. The TLM-subregions can be considered as multiports.
The ports of these subregions are the open transmission lines of the TLM nodes at
the boundaries of the TLM mesh. At the boundaries between the discretized TLM
regions and the homogeneous free-space region, the two representations are interfaced
by applying the continuity of the EM tangential field, thus providing an appropriate
set of electric-field integral equations (EFIEs) and magnetic-field integral equations
(MFIEs); the latter equations are solved explicitly at each time step [12].

Let us consider a general case where the free-space region with p interacting objects
are considered. We now analyze the subregion k, with its boundary surface SBk.
The tangential field at the surface SBk represents a distribution of equivalent currents
and charges, according to the Huygens Shelkunoff’s representation of the equivalence
theorem [4]. The equivalent sources on the surface SBk are self- and mutually coupled.
Inside the discretized subregion k , there are sources, producing an incident tangential
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Figure 6.12: Hybrid TLM-IE scheme for transient coupling between two objects.

field TLMEincBkand
TLMHinc

Bk on the surface SBk , as produced by the TLM algorithm.
By applying the continuity of the tangential electric field at the surface boundary, we
derive the following EFIE and MFIE equations for subregion k [12]:

n × EBk(rk, t) = n ×
(
TLMEincBk (rk, t) +ErBk(rk, t) +ErBp(rk, t)

)
(6.17)

n × HBk(rk, t) = n ×
(
TLMHinc

Bk (rk, t) +Hr
Bk(rk, t) +Hr

Bp(rk, t)
)
, (6.18)

where ErBp(rk, t) and Hr
Bp(rk, t) represent the contribution to the radiated field on

the interface SBk produced via the free-space Green’s functions by the Np equivalent
sources (tangential field) located on the boundaries of all the other subregions p, p 6= k,
as indicated in Fig. 6.12. ErBk(rk, t) and Hr

Bk(rk, t) denote the contribution due to
the Nk sources ( including the self contribution ) belonging to the same surface SBk .
By taking the tangential part of the radiated e.m. field, we derive, as in [4]:

ErBk(rk,t) =
2

4π

∫∫

SBk

dS′
{ −µ
Rkk

∂

∂t

(
nk(r

′
k)×HBk(r

′
k, τkk)

)

+
1

R3
kk

[
1 + (t− τkk)

∂

∂t

] [
(nk(r

′
k)×EBk(r′k, τkk))×Rkk

+
(
nk(r

′
k) ·EBk(r′k, τkk)

)
·Rkk

]}

τkk=t−Rkk/c

(6.19)
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Hr
Bk(rk,t) =

2

4π

∫∫

SBk

dS′
{

ε

Rkk

∂

∂t

(
nk(r

′
k)×EBk(r′k, τkk)

)

+
1

R3
kk

[
1 + (t− τkk)

∂

∂t

] [
(nk(r

′
k)×HBk(r

′
k, τkk))×Rkk

+
(
nk(r

′
k) ·HBk(r

′
k, τkk)

)
·Rkk

]}

τkk=t−Rkk/c

, (6.20)

where the unit vector nk(r
′
k) is normal to the boundary surface Sk and points out of

the surface element centered by r′k. The vectors rk and r′k are the observation and
source point vectors, respectively, both defined on the boundary surface SBk. Rkk is
the corresponding distance vectors : Rkk = rk − r′k and Rkk = |rk − rk′ |. For the
calculation of the radiated field ErBp(rk, t) and H

r
Bp(rk, t) from all the objects p 6= k

we derive as in [4]:

ErBp(rk,t) =

p∑

i,i6=k

ErBi(rk, t)

=

p∑

i,i6=k

1

4π

∫∫

SBi

dS′
{−µ
Rki

∂

∂t

(
ni(r

′
i)×HBi(r

′
i, τki)

)
(6.21)

+
1

R3
ki

[
1 + (t− τki)

∂

∂t

] [
(ni(r

′
i)×EBi(r′i, τki))×Rki

+
(
ni(r

′
i) ·EBi(r′i, τki)

)
·Rki

]}

τki=t−Rki/c

(6.22)

Hr
Bp(rk,t) =

p∑

i,i6=k

Hr
Bi(rk, t)

=

p∑

i,i6=k

1

4π

∫∫

SBi

dS′
{

ε

Rki

∂

∂t

(
ni(r

′
i)×EBi(r′i, τki)

)
(6.23)

+
1

R3
ki

[
1 + (t− τki)

∂

∂t

] [
(ni(r

′
i)×HBi(r

′
i, τki))×Rki

+
(
ni(r

′
i) ·HBi(r

′
i, τki)

)
·Rki

]}

τki=t−Rki/c

, (6.24)

where the unit vectors ni(r
′
i) are normal to the boundary surface SBi with (i =

1, ...., p, i 6= k), The vectors r′i are the source point vectors, lying on the source
boundary surfaces SBi, while rk are the observation point vectors, lying on the bound-
ary surface SBk. Rki are the corresponding distance vectors : Rki = rk − r′i and
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Rki = |rk − r′i|, with (i = 1, ...., p, i 6= k). The time variable τki is retarded with
respect to the time t of field evaluation. For rk 6= r′i, Rki > 0, τki = t−Rki < t. This
means that the ErBi(rk,t) fields are known from the past history of the total tangential
fields at the boundary surfaces SBi of the regions i with (i = 1, ...., p, i 6= k).

The EFIE (6.17) and the dual MFIE (6.18) are then discretized by expanding the
total tangential-field components with appropriate sets of rectangular basis functions,
both in time and in space; the subdomains of such functions are defined by the TLM
grid. For the subregion k, k = 1, ..., p, we choose

EBtk(rk,t) =

Vk∑

v=1

N∑

i=0

Eϕk(rv , ti)Φk(rk − rv)TEk(t− ti), (6.25)

HBtk(rk,t) =

Vk∑

v=1

N∑

i=0

Hψk(rv , ti)Ψk(rk − rv)THk(t− ti), (6.26)

where Eϕk and HΨk are the unknown expansion coefficients of the total tangential
field EBtkand HBtk, respectively, on the surface Sk. The functions Φk and Ψk denote
surface pulse functions of rectangular type,

Φk(rk − rv) = Ψu(rk − rv) =
{
0 for rk − rv ≥ ∆l/2

1 otherwise,
(6.27)

equal to unity for rk on the elementary surface cell centered at rv and zero on all the
other cells. TEk and THk are time-pulse functions, equal to unity for t in the time
interval centered at tiand zero on all the other time steps, as

TEk(t− ti) = THu(t− ti) =
{
0 for t− i∆t ≥ ∆t/2

1 otherwise.
(6.28)

We consider Vk elementary subdomains for the subregion k and N time steps for all
the subregions. Following a direct time-domain method of moments approach [4], we
choose the weight functions

Wvj(r, rv, t, tj) = δ(t− tj)δ(r− rv) with tj = j∆t. (6.29)

The time step is chosen according to the TLM algorithm: ∆t = ∆l/hc, with c being
the light velocity, ∆l the size of the TLM grid and h the stabilization factor of the
Symmetrical Condensed Node (SCN) approach [49]. For each subregion k, we assign
discrete coordinates of the fields and the time step; in particular, vk and uk represent
source rvk and destination ruk points, respectively, while N is the number of discrete
time steps.



6.3 TLM-IE Concept for Transient Interferences 61

We insert now the expanded fields (6.25, 6.26) in the EFIE (6.17) and MFIE (6.18).
Taking the symmetric product with Wvj of (6.29) for j = 0, 1, 2, ...N , we obtain, for
each subregion k, the expanding coefficients of the total tangential field,

Eϕk(uk, j) =
TLM EincBk (uk, j) +Erϕk(uk, j) +Erϕp(uk, j), (6.30)

Hψk(uk, j) =
TLM Hinc

Bk (uk, j) +Hψk(uk, j) +Hψp(uk, j), (6.31)

with

Erϕk(uk, j) =
1

2π

Vk∑

vk=1

∆Svk
[

−µ
Rukvk

∆t
(nk(vk)× (HBψk

(vk, ik)−HBψk
(vk, ik − 1)))

+(nk(vk)× ((j − ik + 1)EBϕk
(vk, ik)− (j − ik)EBϕk

(vk, ik − 1))× Rukvk

R3
ukvk

)

+(nk(vk) · ((j − ik + 1)EBϕk
(vk, ik)− (j − ik)EBϕk

(vk, ik − 1)) · Rukvk

R3
ukvk

)],

(6.32)

Hr
ψk(uk, j) =

1

2π

Vk∑

vk=1

∆Svk
[

ε

Rukvk
∆t

(nk(vk)× (EBϕk
(vk, ik)−EBϕk

(vk, ik − 1)))

+(nk(vk)× ((j − ik + 1)HBψk
(vk, ik)− (j − ik)HBψk

(vk, ik − 1))× Rukvk

R3
ukvk

)

+(nk(vk) · ((j − ik + 1)HBψk
(vk, ik)− (j − ik)HBψk

(vk, ik − 1)) · Rukvk

R3
ukvk

)],

(6.33)

where ∆Svk
denotes the area of the elementary surface cell centered at rvk

, Rukvk
=

ruk
− rvk

, Rukvk
= |ruk

− rvk
|, and ik = j − hRukvk

/∆l c. For Erϕp(uk, j) in (6.30)
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and Hr
ψp(uk, j) in (6.31), we derive

Erϕp(uk, j) =
1

4π

p∑

s,s6=k

Vs∑

vs=1

∆Svs
[

−µ
Rukvs

∆t
(ns(vs)× (HBψs

(vs, is)−HBψs
(vs, is − 1)))

+(ns(vs)× ((j − is + 1)EBϕs
(vs, is)− (j − is)EBϕk

(vs, is − 1))× Rukvs

R3
ukvs

)

+(ns(vs) · ((j − is + 1)EBϕs
(vs, is)− (j − is)EBϕs

(vs, is − 1)) · Rukvs

R3
ukvs

)],

(6.34)

Hr
ψp(uk, j) =

1

4π

p∑

s,s6=k

Vs∑

vs=1

∆Svs
[

ε

Rukvs
∆t

(ns(vs)× (EBϕs
(vs, is)−EBϕs

(vs, is − 1)))

+(ns(vs)× ((j − is + 1)HBψs
(vs, is)− (j − is)HBψk

(vs, is − 1))× Rukvs

R3
ukvs

)

+(ns(vs) · ((j − is + 1)HBψs
(vs, is)− (j − is)HBψs

(vs, is − 1)) · Rukvs

R3
ukvs

)],

(6.35)

where Vs represents the number of boundary elements on the boundary surface of the
TLM-subregion s (s = 1, ..., p, s 6= p). ∆Svs

is the area of the elementary cell centered
at rvs

,Rukvs
= ruk

− rvs
, Rukvs

= |ruk
− rvs

|. is is the retarded time step.

The solution of eqs. (6.30) (6.31) is the set of expanding coefficients for the unknown
total tangential field. The expanding coefficients at time j can be directly computed
from the incident field at the same time plus the past history of the total tangential
field on all the surface elements of all the interacting TLM-subregions, including the
self-coupling contribution. Moreover, for each time step tj , the correct value of the
tangential field, calculated by the boundary integral equations, provides the exact
radiating boundary for the TLM algorithm on the surface Sk(k = 1, ..., p). The time
difference index (j − is) is the time retardation of the signal caused by the distance
Rukvs

. The time step is chosen according to the TLM algorithm for wave propagation
in free space with the stability factor h ≥ 2 of the TLM algorithm, with

(tj − tis)
∆t

= j − is =
hRukvs

∆l
(6.36)
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For long distances, the factor (j − is − 1) can be approximated to (j − is). In this
case eqs. (6.34, 6.35) can be further simplified.

The wave amplitudes aBk(uk, j) of the incident wave pulses at the open external
ports of the TLM-subregions can be expressed by the unknown total tangential e.m.
field Eϕk(uk, j) and Hψk(uk, j) at the free space boundaries and its normal vector nk
according to [49].

aBk(uk, j) =
1

2
(−nk × nk ×Eϕk(uk, j) + Z nk ×Hψk(uk, j)). (6.37)

In the eqs. (6.30, 6.31) is shown that the field, which is occurring at the destination
points due to radiation from the all the boundary surfaces, can be expressed by a series
of weighted field values of all the boundary surface elements. In order to save compu-
tational time, the weighting factors, connecting the field values of the surface elements
with each other are developed and stored in advance. The weighting coefficients in
the series are only dependant on the relative location of the surface element uk to the
surface element vs, between all the interacting objects.
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7.1 Introduction

The transient phenomena in response to an impulse excitation are of great practi-
cal interest because they are central to the analysis of electromagnetic compatibility
problems, inverse scattering, microwave imaging, radar identification, and so on.

Modeling of these electromagnetic problems requires fine resolution to deal with thin
curved structures, the capability to model open boundary problems, and also to model
complex objects placed in a non-uniform environment consisting of several materials
like dielectrics, lossy material and conductors. These large differences in physical scale
impose severe computational and modeling requirements.

The TLM method is very flexible for the modeling of general complex structures
exhibiting compound dielectric and lossy materials, but the main drawback of the
TLM method is its inability to accurately model curved thin structure, especially
when the curvature is not conformable to the axes of the structured grid. The Carte-
sian grid leads to a staircase approximation of the geometry and small details are not
resolved at all. Using the space discretizing TLM method to analyze the electromag-
netic interaction between objects separated by large free-space regions requires a high
computational effort. One possibility for the reduction of the computational effort is
to combine the transmission line matrix method and the Integral-Equation method in
a hybrid method that permits to incorporate the treatment of large free space regions
with high efficiency, because it reduces the complexity of the field problem by one
dimension [6]- [12]. In the hybrid TLM-IE method, discussed in the previous chapter,
each of the interacting objects is embedded into a closed spatial subdomain, where
the TLM method is applied for the field modeling. However, there still exist some
drawbacks to this hybrid technique since, for objects with thin curved boundaries the
staircasing approach employed in the conventional TLM method can introduce signif-
icant errors into the solution unless very dense grids are used to accurately resolve the
variations in the geometric features, with a consequent increase in the computational
demands. Curved conducting structures can be efficiently modeled using the time-
domain version of the Method of Moments [17]- [29]. Indeed, the TD-MOM algorithm
only require a discretization of the scatterer body, where the current flows, as opposed
to a volume discretization surrounding the scatterer, as shown in Fig. 7.13, and do not

65
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call for absorbing boundary condition, but automatically impose the radiation condi-
tion. The implementation of the time-domain MOM algorithm to curved conducting
thin structure has been discussed in details in chapter 5. Therfore the basic idea is to

(A) (B)
TLM TD−MOMTLM TD−MOM

Figure 7.13: Fine discretization used for curved structure in TLM in comparison with
the discretization used in the TD-MOM algorithm; (a) arbitrarily curved
thin wire, (b) coducting surface with arbitrary shape.

develop a novel efficient hybrid method (TLM-TDMOM) combining the very flexible
Transmission Line Matrix Method (TLM) and the efficient Time Domain Method of
Moments (TDMOM), using for each part of the overall complex electromagnetic prob-
lem the most efficient technique, in order to overcome the intrinsic limitations of using
a single technique only.

With that the TLM-TDMOM method can be applied to complex transient electro-
magnetic problems, as shown in Fig. 7.14. The novel efficient hybrid method has got
the high flexibility of a space discretizing method for modeling of complex objects ex-
hibiting materials with non-linear properties and the efficiency of method of moments
for the scattering analysis of thin curved conducting structure and the treatment of
large free-space regions.

EHrad

HE scat

Figure 7.14: A complex object in interaction with an arbitrarily curved conducting
structure.
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7.2 TLM-TDMOM Concept

We present now the theoretical concept and the implementation of the different steps
for the proposed novel efficient hybrid TLM-TDMOM method, restricting our inves-
tigation to the transient analysis of a complex configuration comprising thin curved
conducting structure placed in front of an arbitrary inhomogeneous complex structure.

The application of the equivalence principle allows us to divide the three-dimensional
space into subregions, and to apply the TLM method for modeling of the complex
inhomogeneous object and the TD-MOM for the scattering modeling of the curved
conducting object (thin wire or surface). The electromagnetic interaction between the
subregions is provided by the dyadic free-space Green’s functions in time domain.

The problem is the evaluation of the transient interference between the interacting
objects. The analysis is performed in time domain, which seems to be the most
suitable approach to treat fast transient phenomena. In fact EMC radiated fields
are characterized by a very wide bandwith (up to several GHz), and moreover, that
part of the spectrum having an apparently negligible amplitude can produce strong
effects when the natural frequencies of resonant structures are excited. In this case a
frequency domain approach requires a very accurate sampling, especially around the
resonant frequencies, thus resulting in a very large number of samples and consequently
a great computational effort.

In the hybrid TLM-TDMOM method, the time domain approach leads to the use
of the time domain formulation of the MOM, also known as Marching On in Time
(MOT) procedure. In this manner we obtain a perfect matching between the two
numerical techniques, because both of them provide explicit iterative expressions for
the electromagnetic field quantities. In this hybrid method the source object, analyzed
by TLM, and the scattering object, analyzed by TDMOM, are studied separately as
two simpler sub-problems of the original complex problem. This formulation was
obtained by means of the application of the equivalence principle: the source object is
enclosed by equivalence surface, where equivalent electric and magnetic currents flow.
A proper determination of the equivalent currents allows us to evaluate the radiated
field due to the sources in the complex object, and to account for the scattered field
from the curved conducting structure, considering that all fields propagate in free
space.

We consider two objects embedded into free space as shown in Fig. 7.15. The
complex structure is enclosed by a discretized subregion where the TLM method is
applied for the field modeling. The scattering structure (wire or surface) can be ef-
ficiently characterized by integral equation approaches, like the Method of Moments
(MOM). The Marching on in Time procedure adopted to solve the integral equation
for the current along the scattering structure, gives an explicit value of the unknown
induced current samples at each time step.

The electromagnetic interaction between the TLM-interface SB and scatterer is
provided by the dyadic free-space Green’s function in time domain. According to the
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TLM−region TD−MOM

Complex object Complex wire

TD−MOMTLM−region

  

Complex object Complex surface

(a) (b)

G(r,r’,t−τ)

G(r,r’,t−τ)

G(r,r’,t−τ)

G(r,r’,t−τ)

SB SB

  

Figure 7.15: Hybrid TLM-TDMOM scheme; interference between a complex object
and (a) curved thin wire, (b) conducting surface.

equivalence theorem, the tangential field at the TLM-interface represent equivalent
surface currents which are sources of radiation. Inside the discretized subregion there
are sources producing an incident field TLMEincB and TLMHinc

B on the interface modeled
by the TLM algorithm, as indicated in Fig. 7.16. On the interface we impress the
total tangential field EBtot and HBtot during the TLM Simulation. By applying the
continuity of the tangential field at the interface, we derive the following EFIE and
MFIE equations:

EBtot|tan =
(
TLMEincB +ErBself +ErBScat

)∣∣
tan

, (EFIE) (7.1)

HBtot|tan =
(
TLMHinc

B +Hr
Bself +Hr

BScat

)∣∣
tan

, (MFIE) (7.2)

where EBtot and HBtot represent the unknown total tangential e.m. field on the
interface. ErBself and Hr

Bself are the radiated fields coming from the self interaction
between the boundary elements. ErBScat and Hr

BScat are the radiated fields at the
boundary surface coming from the scattering structure. This field is obtained from
the current distribution on the scattering structure.

The focus of the next sections is to calculate the different field quantities in the EFIE
(7.1) and MFIE (7.2) and then the total tangential field at every surface boundary
element at the TLM interface for the case (a) Fig. 7.15(a): the scatterer is an arbi-
trarily oriented thin wire and for the case (b) Fig. 7.15(b): the scatterer is a perfectly
conducting surface with arbitrary shape.
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Figure 7.16: Total tangential field components at TLM-interface.

7.3 Calculation of the scattered fields

7.3.1 Thin wire scatterer

We consider in the first problem the electromagnetic interaction between a complex
structure exhibiting complex dielectric and lossy materials and an arbitrarily oriented
thin wire structure, as shown in Fig. 7.15(a). The time domain formulation of the
problem allows us to treat efficiently fast transient phenomena, at the same time the
hybrid technique allows us to treat separately the electromagnetic field source object
and a scattered structure, strongly coupled with the source, solving each structure
with the most suitable method.

In order to calculate the scattered field ErBscat and Hr
BScat from the thin wire

structure back to the TLM subregion, we have to determine in advance the current
distribution on the wire body. This is shown in the next subsection.

Current Distribution

The most straightforward technique to calculate the induced transient currents would
be to model the wire as a perfect electric conductor, and hence set all tangential electric
components on the wire surface equal to zero. This leads to the Electric Field Integral
Equation (EFIE). For excitation with smooth time dependence, the time derivative
of the EFIE is generally used, because it avoids the time integral due to the charge
contribution, as shown in chapter 5 (section 5.2),

∂EincC (r, t)

∂t
el =

µ

4π

∂2

∂t2

∫

l(r)

I(r′, τ)

R
el · el′ dl′

− 1

4πε

∂

∂l

∫

l(r)

∂I(r′, τ)

∂l′
1

R
dl′, (7.3)
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where I(r, t) is the unknown current distribution, l(r) is the integration path. EincC is
the incident field at the wire surface coming from the TLM-subregion with EincC = ErB ,
as indicated in Fig. 7.17. l and l′ are curvilinear coordinates along the wire axis. el
and e′l are unit vectors tangential to the wire axis in the field and the source points,
respectively, as shown in Fig. 7.17. R is the distance between the source r′ and the
field points r. τ = t− R/c is the retarded time and c the light velocity in free space.
All points on the wire are defined by the three dimensional coordinate vectors r. We
discretize the thin conductor into N wire segments with the index k as shown in Fig.
7.17.

l

l

l’

l

k=N

k=1

Source
Object

e

e’
Er

BScat

I(r,t)E
B
r

Figure 7.17: Discretization of the curved thin wire through straight segments for the
the application to the hybrid TLM-TDMOM algorithm.

On each wire segment we define the current Ik and the tangential unity vector ek.
Assuming constant current values Ik along the wire segments k in every time step
and replacing derivatives with their finite difference scheme. The incident field at the
sampling points of the wire is calculated from the total tangential e.m. field quantities
at the TLM-interface by the Green’s function in time domain. Equation (7.3) can be
solved for the actual current values Ik,n in every time step using the marching on in
time version of the MOM. In this way the eq. (7.3) involving integral and differential
operations is transformed into a linear, iterative relation that provides an explicit
evaluation of the current. A detailed calculation of the current distribution on the
wire scatterer, using the Marching On in Time technique (MOT) is presented in the
chapter 5 (section 5.2). At the actual time step tn = n∆t the unknown current Ik,n is
calculated by using the retarded known currents. The eq. (5.54) written in a compact
form as

Ik,n =
1

Kkk


∆ErBk,n −

N∑

m=1,m6=k

Im,iGkm,i


 , (7.4)

where Gkm,i contains the coupling coefficient vectors of the current values at earlier
time steps i. i = n − R/∆s. Kk,k is the self term integral (m = k). ∆ErBk,ndenotes
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the time derivative of the radiated electric field from the TLM-interface and represents
the excitation of the wire segment k at tn.

Scattered field from the thin wire structure at TLM-interface

After computation of the current distribution on the wire body due to an incident
field ErB coming from the complex object, we can now evaluate the quantity of interest,
the scattered e.m. field ErBScat and Hr

BScat for the eqs. (7.1) (7.2). The scattered
fields can be calculated using the electric and magnetic field integral equations, with
the observation point located somewhere outside the scatterer surface or on the TLM-
interface, in order to account the scattered fields in the TLM simulation. The scattered
fields, both in in the near- and the far field region, can be computed with the following
integral expressions for the electric field ErBScat(r, t) and magnetic field Hr

BScat(r, t),
respectively, [4]:

ErBScat(r, t) =
1

4π

∫

l(r)

dl′
{
−µo
R

∂

∂τ
I(r′, τ)

+
1

εo

∂

∂l

[
I(r′, τ)

R

cR2
+

∫ t−R/c

0

I(r′, τ)dτ
R

R3

]}

τ=t−R/c

(7.5)

Hr
BScat(r, t) =

1

4π

∫

l(r)

dl′
{
I(r′, τ)× R

R3
+

∂

∂τ
I(r′, τ)× R

cR2

}

τ=t−R/c

, (7.6)

where l(r) denotes the integration path along the wire body. I(r′, τ) = I(r′, τ).e′l
represents the line current vector in the wire axis. e′l is the unit vector tangential to
the wire axis in the source points r′. τ = t−R/c is the retarded time. R/c denotes the
retarded time feature between the observation points r outside the scatterer and the
source points r′ on the wire axis, with R = |r− r′|. c is the speed of light in free-space.
From the current distribution along the wire axis we derive the radiated fields ErBScat
and Hr

BScat at the TLM-subregion interface, as indicated in Fig.7.18.

We give numbers u to all boundary surface elements on the TLM-subregion, as
indicated in Fig. 7.18. The radiated electromagnetic field on the center of these surface
elements coming from the current distribution along the wire segments is obtained by
summing the effect of each individual current element on the wire. After expanding
the current by basis functions (5.35) at given time in a given subdomain we can
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Figure 7.18: Scattered field from the thin wire towards the TLM interface.

approximate the eqs. (7.5) (7.6) by,

ErBScat(ru, tn) =
1

4π

N∑

k=1

∫ lk+
∆l
2

lk−
∆s
2

− µ
R

∂

∂t
I(r′, τ)e′l dl

′+

1

4πε

N∑

k=1

∫ lk+
∆l
2

lk−
∆l
2

∂

∂l
I(r′, τ)e′l

R

cR2
dl′+

1

4πε

N∑

k=1

∫ lk+
∆l
2

lk−
∆l
2

∂

∂l
[

∫ tn−R/c

0

I(r′, τ)e′l dτ ]
R

R3
dl′, (7.7)

Hr
BScat(ru, tn) =

1

4π

N∑

k=1

∫ lk+
∆l
2

lk−
∆l
2

I(r′, τ)e′l ×
R

R3
dl′+

1

4π

N∑

k=1

∫ lk+
∆l
2

lk−
∆l
2

∂

∂t
I(r′, τ)e′l ×

R

cR2
dl′, (7.8)

where lk is the location of the wire segments k, with k = (1, ..., N). R is the distance
between the destination ru on the boundary surface element u of the TLM-subregion
and source position vectors r′ on the wire segments, τ = t−R/c is a properly delayed
time. By approximating the current to be constant at given time in a given subdomain
we obtain the scattered e. m. field at every patch u at the TLM-interface. The eqs.
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(7.5) (7.6) can be written in a simplified compact form as

ErBScat(u, n) =

N∑

k=1

n∑

i=0

Φu,k,iIk,i,

Hr
BScat(u, n) =

N∑

k=1

n∑

i=0

Ψu,k,iIk,i,

(7.9)

where Φ and Ψ denote the matrices of the coupling coefficients of the current values
at earlier time steps i. The time integral can be discretized using the TLM time step.
The indices n and i are the time indices at the destination and at the source points,
respectively. The field values ErBScat(u, n) and H

r
BScat(u.n) are defined in the center

of the patches u at the TLM interface.

7.3.2 Thin conducting surface scatterer

We consider in the second problem the transient interference between a complex
structure exhibiting materials with non-linear properties and an arbitrarily shaped
conducting surface, as shown in Fig. 7.15(b). In this thesis, the thin surface scatterer
is approximated by planar triangular patches. The triangularization have the ability
to conform to any geometrical surface or boundary, permit easy description of the
patching scheme to the computer and may be used with greater densities on those
portions of the surface where more resolution is desired. The most widely used surface
discretization method is based on Rao-Wilton-Glisson (RWG) elements, which are
simple, flat, and have triangular facets.

Current distribution on the surface scatterer

A Time-Domain version of the EFIE for the scattering problem of interest is solved
through a MOM approach. Let S be the exterior surface of a perfectly conducting
body, which can be either closed or open, illuminated by the radiated field ErB coming
from the TLM-subregion, as shown in Fig. 7.19. J is the surface current density
induced on S.

Since the body is a perfect electric conductor, the tangential component of the total
electric field on S must vanish. This leads to an integro-differential vector equation in
the unknown induced current density J(r′, t) [4]. The forcing term of this equation is
given by the tangential component of the incident electric field [ErB ]tan,

[ErB(r, t)]tan =
∂

∂t

[
µ

4π

∫

S

J(r′ t−R/c)
R

dS′
]

−∇
[

1

4πε

∫

S

1

R
[

∫ t−R/c

0

∇′ · J(r′ , τ) dτ ] dS′
]
, (7.10)
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Figure 7.19: Discretization of the curved surface through triangular patches for the
application to the hybrid TLM-TDMOM algorithm.

where R = |r− r′| represents the distance between an arbitrarily located observation
point r and a source point r′, both on S; t−R/c is the retarded time, µ and ε are the
permeability and permittivity of the medium surrounding the scatterer, respectively.

As mentioned in the chapter 5 (section 5.3), the scattering problem is solved through
discretization of the EFIE and its direct time-domain solution by means of a marching-
on-in-time procedure. A suitable expansion of the unknown current J(r, t) is employed,
as given by eqs. (5.57) and (5.58) in chapter 5. In particular, the spatial variation
of surface currents induced on the body can be accurately approximated by discretiz-
ing its surface into NT triangular patches over which a set of basis functions can be
defined. An iterative vector equation is obtained, allowing all the samples of the un-
known surface current distribution to be derived at each time step by simple algebraic
expressions, involving the discrete values of the same current distribution at previous
time intervals, as shown in chapter 5 (subsection 5.3.1),

Im(tn+1) =
4π∆t

µoemm
ErB(rm, tn)−

4π

µoemm

[
(Ă(rm, tn+1)− Ă(rm, tn))

]
(7.11)

+
8π∆t

µoemm(ρ+m + ρ−m)
[φ(rc+m , tn)− φ(rc−m , tn)].

Equation (7.11) is a recursion formula relating unknown present time currents Im(tn+1)
in terms of retarded known currents.

Scattered-Field Calculation

Once the transient current density on the induced scatterer has been determined,
we can easily compute the scattered field ErBScat and Hr

BScat at the boundary of
the TLM-subregion by summing the effect of each individual current element on the
surface of the thin conducting structure, as indicated in Fig. 7.20. We give numbers u
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to all boundary surface patches on the TLM-subregion with the position vector ru on
the center. The radiated electromagnetic field on the center of these patches coming
from the surface current distribution along the curved structure is obtained, as in [4],
by

ErBScat(ru, t) =
1

4π

∫

S

{
−µo
R

∂

∂τ
J(r′, τ)

+
1

εo

∂

∂S

[
J(r′, τ)

R

cR2
+

∫ t−R/c

0

J(r′, τ)dτ
R

R3

]}
dS′, (7.12)

Hr
BScat(ru, t) =

1

4π

∫

S

{
J(r′, τ)× R

R3
+

∂

∂τ
J(r′, τ)× R

cR2

}
dS′, (7.13)

where

R = |R| = |ru − r′| and τ = t−R/c , (7.14)

R is the distance between the destination ru on the boundary surface element u of the
TLM-subregion and source position vectors r′ on the surface of the conducting thin
structure, τ is a properly delayed time.

  

Complex surfaceTLM−region

u

  

Er
BScat

Figure 7.20: Scattered field from the curved conducting surface towards TLM-
interface.

After approximating the current distribution by the triangular current expansion on
S, as given by eqs. (5.57) and (5.58) in chapter 5, we obtain the following approxima-
tion of the scattered electromagnetic field at every patch u of the TLM interface,
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ErBScat(ru, tn) =
1

4π

Ne∑

k=1

∫

T+
k
+T−

k

− µ
R

∂

∂t
I(r′, τ)dS′+

1

4πε

Ne∑

k=1

∫

T+
k
+T−

k

∂

∂l
I(r′, τ)

R

cR2
dS′+

1

4πε

Ne∑

k=1

∫

T+
k
+T−

k

∂

∂l
[

∫ tn−R/c

0

I(r′, τ)dτ ]
R

R3
dS′, (7.15)

Hr
BScat(ru, tn) =

1

4π

Ne∑

k=1

∫

T+
k
+T−

k

I(r′, τ)× R

R3
dS′+

1

4π

Ne∑

k=1

∫

T+
k
+T−

k

∂

∂t
I(r′, τ)× R

cR2
dS′, (7.16)

where Ne represents all the edges, discounting the boundary edges in the triangulated
model of the conducting surface. T+

k and T−
k represent the triangles associated with the

edge k, as shown in Fig. 5.7 (chapter 5). R is the distance between the destination ru
on the boundary surface element u of the TLM-subregion and source position vectors
r′ on the triangular patch elements on the surface scatterer, τ = t−R/c is a properly
delayed time. By expanding the current at given time in a given subdomain as shown
in Chapter 3, we obtain the radiated e. m. field coming from the surface scatterer at
every boundary element u on the TLM interface. For simplification, the eqs. (7.15)
(7.16) can be written in a compact form as,

ErBScat(u, n) =

Ne∑

k=1

n∑

i=0

Θu,k,iIk,i (7.17)

Hr
BScat(u, n) =

Ne∑

k=1

n∑

i=0

Υu,k,iIk,i, (7.18)

where the matrices Θ and Υ contain the coupling coefficients of the current values.
The indices n and i are the time indices at the destination patch u and at the source
points on the center of the kth edge, respectively. The field values ErBScat(u, n) and
Hr
BScat(u, n) are defined in the center of the patches u at the TLM interface.
We have now calculated the contributions for the scattered e.m field ErBScat and

Hr
BScat in the EFIE (7.1) and MFIE (7.2) for the first case of a thin wire and for the

second case of conducting surface. In the next section we deal with how to calculate
the radiated fields ErB and Hr

B from the TLM-subregion, which represent at the same
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time the excitation of the scatterer. We have also to evaluate the self interaction fields
ErBself and Hr

Bself at the TLM-interface for the total tangential e.m field in the eqs.
(7.1) and (7.2).

7.4 Radiated field from the TLM-subregion

The radiation from the complex object towards a destination point outside its dis-
cretized TLM-subregion is expressed replacing the sources inside the object by equiv-
alent current sources at the TLM-interface. At any destination point on (and outside)
the TLM-subregion, the field can be derived from the past history of the total tangen-
tial field on the interface using the dyadic free space Green’s function in time domain,
as in [4], by

ErB(r,t) =
T

4π

∫∫

S

dS′
{−µ
R

∂

∂t

(
n(r′)×HBtot(r

′, τ)
)

+
1

R3

[
1 + (t− τ) ∂

∂t

] [
(n(r′)×EBtot(r′, τ))×R

+
(
n(r′) ·EBtot(r′, τ)

)
·R
]}

τ=t−R/c

(7.19)

Hr
B(r,t) =

T

4π

∫∫

S

dS′
{
ε

R

∂

∂t

(
n(r′)×EBtot(r′, τ)

)

+
1

R3

[
1 + (t− τ) ∂

∂t

] [
(n(r′)×HBtot(r

′, τ))×R

+
(
n(r′) ·HBtot(r

′, τ)
)
·R
]}

τ=t−R/c

, (7.20)

where EBtot and HBtot represent the total tangential fields at the interface. n(r′) ×
EBtot, n(r

′)×HBtot, n(r
′) ·EBtot, and n(r′) ·HBtot represent the equivalent currents

and charges on the external surface of the TLM-subregion, respectively . The vectors r
and r′ are the destination and source positions vectors, respectively. The vectors r′ are
the source point vectors, lying on the TLM-interface. R is the corresponding distance
vector (R = r− r′ ; R = |r− r′|). The unit vector n is normal to the boundary of the
TLM-subregion and pointing out of the interface. The coefficient T is defined so that
the above equations can be applied to all the space: T = 2, for interaction between
patches belonging to the same interface ErBself (r,t) = ErB(r,t) |T=2, T = 1 can be used
to calculate the radiated field from the TLM-interface at every destination point in
free-space as well as on every element on the discretized scatterer (wire or surface), as
indicated in Fig. 7.21 for both cases of the scatterer. This field represents the incident
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field on the conducting surface, which is the forcing term used to calculate the current
distribution on the scatterer, by applying eq. (7.4) for thin wire or eq. (7.11) for thin
conducting surface.

TLM−region

  

TLM−region

  

Curved wire Curved surface
SB

v

u

v

u

k
k

    

r
BselfE r

BselfE

Er
BEr

B

T=2

T=1

(a) (b)

T=1

T=2

Figure 7.21: Radiation from the complex TLM-region towards a scatterer; (a) thin
wire scatterer, (b) thin conducting surface scatterer.

According to the sampling theorem a smooth field distribution of the e.m. field EBtot
and HBtot is obligatory at the TLM-interface in order to avoid discretization errors.
Since at the complex object, modeled by TLM, there may occur field singularities,
therefore the TLM-interface have to be kept in distance to the object [12].

The electromagnetic integral equations (7.19) and (7.20) are then discretized by ex-
panding the total tangential-field components with appropriate sets of basis functions,
both in time and in space; the subdomains of such functions are defined by the TLM
grid, and can be chosen rectangular, triangular or as parabola segments. In this thesis
we choose basis functions of rectangular type,

EBtot(r,t) =

V∑

v=1

N∑

i=0

Eϕ(rv , ti)P (r− rv)Q(t− ti). (7.21)

HBtot(r,t) =
V∑

v=1

N∑

i=0

Hϕ(rv , ti)P (r− rv)Q(t− ti), (7.22)

where the function P denotes a surface pulse function of rectangular type, being equal
to unity for r on the elementary surface patch v centered at rv and zero on all the
other patches. Q is a time pulse function of rectangular type, being equal to unity
for t in the time interval centered at ti and zero on all the other time steps. Eϕ and
Hϕ represent the unknown expansion coefficients of the total tangential e.m. field.
We consider V patches at the TLM-interface and N time steps for all the interacting
objects.
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By using the expansion functions (7.21) and (7.22) and approximating the time
derivative by finite differences, we obtain the following approximation of the eqs. (7.19)
and (7.20) for the radiated e.m. field at any destination point outside (or on) the
discretized TLM-subregion,

ErBk,j = T
V∑

v=1

(
− µ0
Rkv∆t

∆av
4π

)[
nv × (Hϕv,i −Hϕv,i−1)

]
+

[
(nv × ((j − i+ 1)Eϕv,i − (j − i)Eϕv,i−1)

]
×
(
Rkv

R3
kv

∆av
4π

)
+

[
(nv · ((j − i+ 1)Eϕv,i − (j − i)Eϕv,i−1)

](Rkv

R3
vk

∆av
4π

)
)], (7.23)

Hr
Bk,j = T

V∑

v=1

(
ε

Rkv∆t

∆av
4π

)[
nv × (Eϕv,i −Eϕv,i−1)

]
+

[
(nv × ((j − i+ 1)Hϕv,i − (j − i)Hϕv,i−1)

]
×
(
Rkv

R3
kv

∆av
4π

)
+

[
(nv · ((j − i+ 1)Hϕv,i − (j − i)Hϕv,i−1)

](Rkv

R3
vk

∆av
4π

)
)], (7.24)

where the indices j and i are the time indices of the destination and the source points
respectively. The unit vector nv is normal to the boundary element v of the TLM-
interface and pointing out of the surface. The vector Rkv = rk − rv and its value
Rkv = |Rkv| the distance between the source points rv, lying on the TLM-interface,
and the destination points rk at every element k (segment k for wire or edge k for
triangular surface patch) on the scatterer for T = 1. T = 2 can be used to calculate
the electromagnetic self-interaction ErBself and Hr

bself between the boundary elements
belonging to the same TLM-interface, in this case rk represents the destination points
on the TLM-interface ru, (rv , ru = rk) ∈ SB . The time retardation feature (t− t′) is
calculated from the time step ∆t = ∆l/hc according to the TLM algorithm for wave
propagation in free-space, with the stability factor h, as

(t− t′)
∆t

= j − i = hRkv
∆l

, (7.25)

∆l represents the side length of the surface element on the TLM-boundary. ∆av
denotes the area of the elementary surface patch centered at rv. The field values Eϕv,i
and Hϕv,i represent the sampling of the total tangential fields at discrete sampling
points at the boundary surface SB on the cell v at earlier time step i. For large free
space region between the TLM-subregion and the scatterer, the term (j− i+1) can be
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approximated to (j − i). In this case the eqs. (7.23) (7.24) can be further simplified
to,

ErBk,j =
V∑

v=1

(
− µ0
Rkv∆t

∆av
4π

)

︸ ︷︷ ︸
F1

[
nv × (Hϕv,i −Hϕv,i−1)

]
+

[
(nv × (Eϕv,i −Eϕv,i−1)

]
×
(
Rkv

R2
kv

∆av
2π

)

︸ ︷︷ ︸
F2

+

[
(nv · (Eϕv,i −Eϕv,i−1)

](Rkv

R2
kv

∆av
2π

)

︸ ︷︷ ︸
F2

)] (7.26)

Hr
Bk,j =

V∑

v=1

(
ε

Rkv∆t

∆av
4π

)

︸ ︷︷ ︸
G1

[
nv × (Eϕv,i −Eϕv,i−1)

]
+

[
(nv × (Hϕv,i −Hϕv,i−1)

]
×
(
Rkv

R2
kv

∆av
2π

)

︸ ︷︷ ︸
F2

+

[
(nv · (Hϕv,i −Hϕv,i−1)

](Rkv

R2
kv

∆av
2π

)

︸ ︷︷ ︸
F2

)]. (7.27)

The eqs. (7.26) and (7.27) show that the field, which is occurring at the destination
points on the scatterer due to the radiation from the TLM interface, can be expressed
by a series of the weighted field values of all the boundary cells at the TLM interface.
In order to save computational time, the weighting factors F1, F2 and G1, connecting
the field values of the TLM-interface boundary cells to those of the destination points
on the scatterer are developed and stored in advance. The electric field quantities
ErBk,j represent the excitation of the scatterer, which are needed to calculate the
current distribution on the scatterer.

7.5 Total tangential field at TLM-interface

By inserting all the integral representation for the electric field (7.12, 7.19), the dual
equations for the magnetic field (7.13, 7.20) into the general EFIE (7.1) and the MFIE
(7.2) at the TLM-interface, respectively, we observe in the kernel of the operators on
the right side of (7.1) and (7.2), the time variable t is retarded with respect to the
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same variable in the left side. This allows us to solve the EFIE (7.1) and MFIE (7.2)
for the total tangential field in an iterative way. Since the point (r = r′) is excluded
in the evaluation of the integrals (7.19, 7.20), R/c is never zero (we consider principal-
value integrals). Therefore the variable τ is always less than t or, in other words,
we have always (t − τ) = R/c > 0. This implies that the unknown total tangential
electromagnetic field at the TLM-interface can be directly calculated from the known
incident field, coming from the sources inside the TLM-subregion, and an integral
that is also known from the past history of the same field. By inserting the expanded
fields referring to (7.21, 7.22) in (7.1, 7.2) and following a direct time-domain method
of moments approach, we derive an equation system whose solution permits us to
recover iteratively the expanding coefficients of the total tangential electromagnetic
field at the TLM interface:

Eϕu,j =
TLM EincB (u, j) +ErBScat(u, j) +

V∑

v=1

j−1∑

i=0

{GE(u, v , j − i)Eϕ(v , i) +GH(u, v , j − i)Hϕ(v , i)} , (7.28)

Hϕu,j =
TLM Hinc

B (u, j) +Hr
BScat(u, j) +

V∑

v=1

j−1∑

i=0

{DE(u, v , j − i)Eϕ(v , i) +DH(u, v , j − i)Hϕ(v , i)} , (7.29)

where GE , GH , DE and DH represent operators involving integral and differential
operations of the Green’s function formulation of the radiated field in (7.19, 7.20) with
T = 2 (self-interaction). The equations (7.28, 7.29) show that, for every cell number u,
the expanding coefficients Eϕu,j andHϕu,j at time j = tj/∆t can be directly computed
from the incident field at the same time j plus the past history of the tangential field on
all the surface elements of the interacting objects, including the self contribution, up to
the time (j − 1). This process is called marching-on-in-time (MOT) technique. Once
the total electromagnetic field quantities at the TLM-interface have been calculated the
radiated field from the TLM interface towards the destination points on the scatterer
can be calculated using the equations (7.23, 7.24) or for large free space regions the
simplified equations (7.26, 7.27). For each time step, the correct value of the total
tangential field at the interface provides the exact radiating boundary for the TLM
algorithm at interface SB . The hybrid TLM-TDMOM algorithm consists of a TLM
program in which, for every time step, the total tangential field at TLM-interface is
evaluated by means of a proper set of integral equations.

The electromagnetic fields coming from outside the TLM-subregion are obtained by
superposition of the scattered field coming from the scatterer (wire or surface) and the
radiated field from the neighbored patches belonging to the same interface, as shown in
Fig. 7.22. These field values Er,outBuj and Hr,out

Buj at the port on the boundary surfaces of
the TLM-subregion are mapped on the TLM wave amplitudes auj , which are defined
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Figure 7.22: Injection of the self-coupling and scattered fields back to the TLM simu-
lation.

at the transmission lines which are cut by the interface, and injected back to the TLM
simulation:

au,j =
1

2
(−nu × nu ×Er,outBu,j + Z nu ×Hr,out

Bu,j ), (7.30)

with E
r,out
Bu,j = ErBScat(u, j) +ErBself (u, j), (7.31)

and H
r,out
Bu,j = Hr

BScat(u, j) +Hr
Bself (u, j). (7.32)

The bijective field-mapping formulation of the cell boundary mapping CBM in the
SCN-TLM (chapter 4, section 4.6.2) make it possible to excite the boundary elements
at TLM-interface, following the equation (4.81).

In conclusion, we develop the following essential steps in the implementation of the
proposed new efficient hybrid TLM-TDMOM method for the accurate and efficient
modeling of the electromagnetic transient interference between a complex structure,
which may contain dielectric and lossy materials, and a scatterer, which may be an
arbitrarily oriented thin wire or a perfectly conducting surface with arbitrary shape:

1. For every time step the incident field on the surface of the TLM-subregion is
calculated by the TLM algorithm using the absorbing boundary conditions at
the TLM-interface.

2. The known incident field values will be inserted in the integral equations (7.28
and 7.29).

3. For every destination cell u on the surface of the TLM-subregion and for every
time step j the total field on the boundary of the TLM-subregion is calculated
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by summing the effect of every neighbor source cell v on the same boundary
surface using the past history of the same field of the TLM-subregion eqs. (7.23,
7.24) with T = 2 , and the incident field (step2) using the TLM scheme. Since
the singularity point Ruv = 0 is excluded in the evaluation of the integrals
(7.23, 7.24), we consider principal-value integrals, we have always the condition
t > t− hRuv/c.

4. For every destination segment k on the surface of the scattering structure and
for every TLM time step the radiated field, which represents the excitation of
the scatterer, is calculated by summing the effect of every source cell v on the
surface of the TLM-subregion by applying the eqs. (7.23, 7.24), with T = 1,
or for large free space regions between the structures the simplified eqs. (7.26,
7.27). After that the iterative equation (7.4) for thin wire or (7.11) for surface,
can be used to calculate the actual current values I(rk, tn) of the scatterer in
every time step using the marching on in time technique.

5. The radiated fields from the scatterer and the self-interaction fields are super-
posed, mapped to TLM wave pulses and injected back to TLM simulation using
the bijective cell boundary mapping CBM-formulation of the SCN-TLM.

6. After the derivation of the total tangential field on the boundary of the TLM-
subregion and the current distribution on the wire structure, the field in every
point of the free-space region can be calculated by superposition of the radiated
field from the TLM-subregion using the eqs. (7.23) and (7.24) with T = 1, and
the radiated field from the scattering structure by applying eqs. (7.7, 7.8) for
thin wire or eqs. (7.15, 7.16) for thin conducting surface.





8 Numerical Applications

8.1 Introduction

The previous chapter presented details about the different steps implementation
of the hybrid TLM-TDMOM method. In this chapter, the new proposed efficient
hybrid method is demonstrated by studying typical EMC problems restricting our
investigation to the electromagnetic transient interference between a complex structure
in interaction with a scatterer, which may be a thin wire structure or an arbitrarily
shaped conducting surface. The application of the hybrid method (TLM-TDMOM) to
significant cases is presented in the following sections, as well as a comparison between
the hybrid method and the pure conventional TLM method showing the capability of
this hybrid technique to accurately model complex configurations excited by transient
electromagnetic fields.

8.2 Apertured metallic box and thin wire

Apertures and thin wire structure are widely used in many electromagnetic ap-
plications such as antennas, but due to their radiating characteristics, they are also
source of interferences with respect to other equipments. In particular, the interfer-
ences exist in the case of a realistic equipment which consists of a metallic box with a
rectangular aperture. The aperture is fed by an arbitrary distribution of electric and
magnetic dipoles inside the box. For such equipments, it is very important to achieve
an accurate computation of the EM field surrounding the metallic enclosure and, in
particular, it is essential to compute the box resonances, aperture resonances and ,
most of all, the resonances due to the interaction between aperture and the extern
objects such as a thin wire structure. These resonant frequencies are dominant in the
far field interaction with other devices. In this section we apply the hybrid method
(TLM-TDMOM) for studying the electromagnetic interaction between a metallic box
with aperture and a thin wire in order to obtain an accurate prediction of the EM field
between the interacting objects.

As example we consider a typical EMC-problem which is depicted in Fig. 8.23
consisting of a metallic enclosure with an aperture and a simple straight wire. We
use the TLM-TDMOM method presented in this thesis for the investigation of the

85
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problem. The dimensions of the metallic enclosure as specified in Fig. 8.23 are given
in the following: H = 12.5 cm, A = 20 cm, B = 20 cm. The thickness of the metallic
walls is 5mm. The dimensions of the aperture are 15 × 1 cm. The radius and the
total length of straight wire are a = 2.5mm and L = 20 cm, respectively. The wire is
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Figure 8.23: An apertured metallic enclosure interfering with a thin wire structure.

placed at a distance of 10 cm from the aperture. The wire is assumed to be perfectly
conducting and thin enough for the thin-wire approximation to be applied. The field
in a metallic box with a rectangular aperture is excited by an electric field having
a gaussian evolution in the time domain, with amplitude Eo. In the following we
assume ideal conducting walls at the air filled box. We place the aperture in the plane
z = 12.5 cm. The electromagnetic field inside the box is described by means of the

S
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(ML)
ABC

(A) (B)

B

Figure 8.24: Concept of the discretization used in the hybrid TLM-TDMOM algorithm
(A) and in the pure TLM method (B).
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TLM method, the field in the external region is described by means of the free-space
Green’s functions in the time domain. The thin wire is described by means of the time
domain integral equation and solved by the marching on in time technique (MOT). An
incident field coming from the source region inside the box impinges on the separating
top surface with aperture, producing an equivalent distribution of sources; this in turns
produces a back-scattered field inside the box and a radiating field to the free-space
region, which in turns excite the thin wire structure and induces a transient current
distribution, which produces a backscattered field to the metallic box.

We investigate the backscattering and the resonances of the metallic enclosure which
is interfered by the thin wire at a point P in distance of d/2 = 5 cm from the aperture.
The main part of the electromagnetic interaction between the box and the wire occurs
via the upper-plane boundary surface of the TLM-subregion and the surface of the
wire. For a fast field computation with the TLM-TDMOM method, we consider only
these two surfaces as radiating boundaries. For a self-consistent comparison we apply
the novel hybrid TLM-TDMOM and the pure TLM method to this problem.

For applying the conventional TLM method, we enlarge the spatial domain around
the configuration and we apply the absorbing boundary condition, as shown in Fig.
8.24(B). We have to embed the interacting objects and most of the near field region
of the configuration in the discretized TLM region. The distance between the objects
and the boundaries of the discretized TLM region is 20 cm.

(b)(a)

Figure 8.25: Various methods of describing wire cross-section in the TLM mesh; (a)
one node description, (b) finer description.

The thin wire description in the TLM algorithm is determined to a large extent by
the size of its diameter, relative to the size of the nodes. In this example, the wire
diameter is equal to the node size, one node is used with appropriate short circuits
to describe the wire cross-section. Fig. 8.25 shows various methods of describing
wires in the TLM mesh, where one node or more finer discretization with a staircase
approximation can be used. The dimension of the TLM cell is ∆l = 5mm. By
applying the hybrid TLM-TDMOM to this configuration, the metallic enclosure is
embedded into an imaginary TLM box with the boundary surface SB as shown in Fig.
8.24(A), we discretize the space inside the box and 3 additional layers in the aperture
side of the enclosure to avoid the field singularities [12], as shown in Fig. 8.26. The
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E tot

SB

Figure 8.26: The imaginary boundary SB in the aperture area; 3 additional layers in
the aperture side of the enclosure.

wire structure is broken down into N = 40 linear straight segments and is modeled
using Time Domain Method of Moments (TDMOM). We evaluate the electric field Ex
(normalized respect to Eo) at a point P .
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Figure 8.27: Time evolution of the Ex-field calculated by the TLM and the hybrid
TLM-TDMOM methods at point P.

The field evaluated using the hybrid method is closer to the field calculated by TLM,
as shown in Fig. 8.27. The same comparison is performed in frequency domain, after
FFT (Fig. 8.28). A good agreement over the large band is remarkable. The deviations
in amplitude are caused by the different boundary conditions, which are used in the



8.3 Mictrostrip patch antenna and thin wire 89

0 0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,5 2,75 3
Frequency (GHz)

0

0,25

0,5

0,75

1

1,25

1,5

1,75

2

E
x/

E
o

TLM-TDMOM
TLM

Figure 8.28: Spectrum of the Ex-field at the point P evaluated by the TLM-TDMOM
vs pure TLM after FFT.

different methods.
The time domain waveform for the x-directed current Ix at the wire center is given

by Fig. 8.29. In order to compute the current distribution using the TLM algorithm,
the Ampere’s Law is used to perform the current linked to a closed path surrounding
the wire. The distribution of the line current Ix on the whole wire body is performed
at different time steps in Fig 8.30. The current is assumed to be zero at the ends of
the wire.

Fig. 8.31 shows the time domain waveform of the scattered field from the wire struc-
ture in comparison with the radiated field from the metallic enclosure at destination
P . The superposition of the scattered and the radiated field provides the total field at
destination P performed in Fig. 8.27.

The resonant frequencies which were calculated by the TLM-TDMOM method were
compared with results of the pure TLM-method for an area of high extension. The
results show very good agreement, thus confirming the validity of the proposed hybrid
TLM-TDMOM method.

8.3 Mictrostrip patch antenna and thin wire

Real radiating systems do not work under free space conditions. The presence
of obstacles, the environment of the mechanical structure of an antenna can modify
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Figure 8.29: Current induced at the wire center.
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Figure 8.30: Axial component line current magnitude Ix along the wire axis at different
time steps (t = T∆t) with ∆t = 8.33 ps.
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Figure 8.31: Comparison of the time evolution of the radiated and the scattered part
of the total Ex-field component at the point P evaluated by the hybrid
TLM-TDMOM method.

its properties so that the results of an ideal analysis process cannot be considered
perfectly valid. The direct way to consider this effect is introducing in the model
of the radiating system the distorting elements in order to be compensated. The
proposed hybrid method pretends modeling the scattering over the obstacle and its
influence over the global radiation characteristics of an antenna.

As example we consider a configuration containing a microstrip-fed rectangular
patch antenna printed on a dielectric layer in interaction with a thin wire structure
as drawn in Fig. 8.32. The configuration will be investigated using the hybrid TLM-
TDMOM algorithm. The radiating structure is modeled using the TLM method,
whereas the thin wire obstacle is modeled using the time-domain method of moments,
which is able to model, by one hand, the relation between the incident field coming
from the patch antenna and the current distribution over the wire; and, by the other
hand, the relation between the current distribution and the scattered field that it gen-
erates. In order to validate the simulation we apply the full-wave pure TLM method
for the analysis of the electromagnetic interaction between the objects.

The microstrip patch antenna parameters are: s = 3mm, h = 5mm, t = 1mm,
a = 20mm, b = 22mm, εr = 2.1, as depicted in Fig. 8.32. The metalization plane
is placed at z = 0. The boundary of the discretized TLM-subregion is the surface
SB . In this case the surface SB surrounding the radiating patch-antenna structure has
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Figure 8.32: A rectangular microstrip patch antenna printed on a substrate interfering
with a thin wire structure.

the form of a rectangular box, as shown in Fig. 8.32, where the boundary surface is
depicted with dashed lines. The upper plane of the surface SB is placed at a distance
of 7mm from the plane z = 0. The dimension of the TLM cell is ∆l = 1mm. The
radius and the total length of the simple straight wire are r = 1mm and L = 40mm,
respectively. The wire is placed at a distance of d = 20mm from the upper plane of
the surface SB . The wire is assumed to be perfectly conducting and thin enough for
the thin-wire approximation to be applied. The microstrip structure is excited by an
electric pulse propagating in the z-direction. The excitation, with amplitude Eo has
a gaussian time dependence, and is placed at the boundary between the ground plane
and the feeding microstrip, as shown in Fig. 8.32.

We investigate the perturbation of the radiating patch antenna through the thin wire
obstacle at a point P in distance of 15mm from the patch antenna, as indicated in Fig.
8.32. The main part of the electromagnetic interaction between the patch and the wire
occurs via the upper-plane boundary surface of the TLM-subregion and the surface of
the wire. For a self-consistent comparison we apply the novel efficient hybrid method,
presented in the previous chapter, and the pure TLM method to this problem. For
applying the conventional TLM method, we enlarge the spatial domain and we apply
the absorbing boundary conditions. These ABCs are realized through matched layer
absorber (ML), discussed in chapter 4 (section 4.7.3). The wire structure is broken
down into 40 linear straight segments and is modeled using MOM. The wire structure
is modeled as a net of straight segments.
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Figure 8.33: Time evolution of the Ex-field calculated by the TLM and the hybrid
TLM-TDMOM methods at the point P .
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Figure 8.34: Spectrum of the Ex-field at the point P evaluated by the TLM-TDMOM
vs pure TLM after FFT.
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We evaluate the electric field Ex component (normalized with respect to Eo), at a
point P (z = 20mm). The field evaluated using the hybrid method is closer to the
field computed by TLM, as shown in Fig. 8.33. The same comparison is performed in
frequency domain, after FFT (Fig. 8.34), a good agreement is shown. The deviations
in amplitude are caused by the different boundary conditions, which are used in the
different methods. However the peak amplitude difference is quite acceptable in an
EMC context.
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Figure 8.35: Radiated and scattered field parts of the total Ex-field at point P evalu-
ated by the hybrid TLM-TDMOM method.

Fig. 8.35 shows the radiated field from the patch antenna in comparison with the
perturbation, represented through the scattered field from the wire obstacle. The
superposition of these field quantities deliver the total field at the point P performed
in Fig. 8.33. For thin wire, we expect that the longitudinal component of the current
in the direction of the wire dominates the transversal component. The x-component
of the current induced at the wire center is plotted versus time in Fig. 8.36. Note that
the currents at the end segments are always set to be zero. At the early stage of the
response, the induced current is relatively large because of the gaussian pulsed electric
field. The induced current follows mostly the temporal characteristic of the incident
field.

The obstacle now is a thin wire structure with two 90◦ bent segments ( 2L-shaped
wire ), with L1 = 20mm, as shown in Fig. 8.37. Two special issues has to be handled
before to incorporate this type of scatterer in the analysis of the configuration using the
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Figure 8.36: Transient current induced at the center of the wire scatterer .
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Figure 8.37: A rectangular microstrip patch antenna printed on a substrate interfering
with a thin wire structure with two 90◦ junctions.
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Figure 8.38: Time evolution of the Ex, Ey, Hx, and Hy fields calculated by the TLM
and the hybrid TLM-TDMOM methods at point P , for the case of a wire
obstacle with two 90o junctions.

hybrid TLM-TDMOM-method. The first issue is related to the choice of the time step.
The time step, used in the marching on in time procedure, must be equal or less than
the minimum distances, Rmin, between two distance match points. In this case, if the
length of any segment is longer than distance across 90◦bend, the distance across the
90◦ bend will be Rmin ∼= ∆l = 1mm. For curved thin wires we can assume Rmin ∼= ∆l
because of the great number of elements required to describe the curved structures.
This condition makes elements so small that there is a negligible difference between
arc and straight element length. To handle this, the code must calculate the distance
between every segment k end point vector, as well as the distance between every half-
segment vector. The minimum distance is then obtained by evaluating the two sets of
values. The second issue is related to the basic pulse function, as shown in Fig. 8.37(b).
The basic function is based on a geometry whereby the segments are not perpendicular
to one another. Looking at Fig. 8.37(b), the current might lies at an imaginary wire
segment that cuts across the 90◦ bent. This might introduces a certain amount of
error, however, this error has not been evaluated and is assumed to be small enough
to be ignored. We investigate the perturbation caused by the 2L-shaped wire on the
radiated field from the patch antenna at the point P (z = 20) between the interacting
objects. For this purpose we evaluate the normalized field components, Ex, Ey, Hx,
and Hy, at a point P . In Fig. 8.38 we compare the normalized field components at
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P by the hybrid TLM-TDMOM method and by the pure TLM method. We observe
a good agreement between the hybrid method and the TLM method, thus confirming
the validity of the proposed hybrid algorithm.

8.4 Microstrip loop and circular cylinder configuration

We consider the electromagnetic interaction between a microstrip line forming a
loop and a circular cylinder as indicated in Fig. 8.39. The dimensions as specified in
Fig. 8.39 are given in the following : a = 30mm, b = 22mm, s = 3mm, t = 1mm,
h = 5mm, H = 5mm. The total length and the radius of the circular cylinder
are L = 40mm and r = 5mm, respectively. The cylinder is placed at a distance
of d = 20mm from the upper plane of the TLM-subregion. The electromagnetic
field inside the TLM-subregion is computed by the TLM algorithm, the field in the
external region is described by means of the free-space Green’s functions, the circular
cylinder is modeled using the method of moments which relies on a triangular-patch
geometrical model of its exterior surface. We excite the field by an electric pulse
of gaussian-type propagating in the z-direction with amplitude Eo. The excitation
is placed at the boundary between the ground plane and the feeding microstrip, as
depicted in Fig. 8.39. The dielectric substrate has a permittivity of εr = 2.1. In the
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Figure 8.39: A microstrip loop interfering with a perfectly conducting circular cylinder.

present case the TLM-subregion interface surrounds the structure in the geometrical
form of rectangular box, as shown in Fig. 8.39. For comparing the results we apply
the hybrid method as well as the pure TLM method to this problem. The circular
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cylinder is modeled by 96 triangular surface patches. For the pure TLM simulation
we have to discretize a region which encloses the microstrip loop, the circular cylinder
with a staircase approximation, the entire near-field region, and to apply the absorbing
boundary conditions as shown in Fig. 4. The dimensions of the discretized space for
the pure TLM method are 120mm × 120mm × 110mm. For both the pure TLM
and the hybrid method, the TLM grid is uniform with ∆x = ∆y = ∆z = ∆l = 1mm.
Also the time step is the same with ∆t = ∆l/2c = 1.66 ps.
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Figure 8.40: Time evolution of the Ex-field calculated by the TLM and the hybrid
TLM-TDMOM methods at point P.

We evaluate the electric field Ex (normalized with respect to Eo), at a distance
of d/2 = 10mm between the interacting objects at the point P (x = 15mm, y =
15mm, z = 20mm). The field evaluated using the hybrid method is closer to the
field calculated by TLM, as shown in Fig. 8.40. In Fig. 8.41 the same comparison
is performed in the frequency domain after a FFT, a good agreement is remarkable.
The deviations in amplitude are caused by the different boundary conditions, which
are used in the different methods.

Fig. 8.42 reports the different parts of the electric field Ex at the point P, the radi-
ated field coming from the equivalent sources at the TLM interface, and the scattered
field coming from the circular cylinder. The superposition of these both parts gives the
total electric field Ex, performed in Fig. 8.40, using the hybrid method. The surface
current density induced at the center patch of the circular cylinder, as indicated in
Fig. 8.39, is plotted versus time in Fig. 8.43. The results show very good agreement,
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Figure 8.41: Spectrum of the Ex-field at the point P evaluated by the hybrid TLM-
TDMOM method vs the pure TLM method after FFT.
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of the total Ex-field component at the point P evaluated by the hybrid
TLM-TDMOM method.
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Figure 8.43: Transient current induced at the center patch of the circular cylinder.

thus confirming the validity of the hybrid TLM-TDMOM method for the analysis of
transient interferences between a complex object exhibiting compound dielectric and
lossy materials and a metallic regular object.

While the CPU-time, required for the pure TLM method is about 70% higher than
the computation time effort required for the hybrid TLM-TDMOM method. Because
for the pure TLM method we have to discretize a region which encloses both the
structures and the entire near field region, which leads to a considerably higher com-
putational time. The ratio between the CPU computational time for the pure TLM
method and the TLM-TDMOM method is strongly increasing when we consider the
far field evaluation. Using the TLM-TDMOM method, it is possible to calculate the
near as well as the far field with about the same computational effort. A general eval-
uation of the efficiency of the hybrid TLM-TDMOM algorithm in comparison with the
conventional TLM method is presented and discussed in section 8.6 in this chapter.

8.5 Stability analysis

Time domain, iterative numerical techniques such as the marching on in time pro-
cedure can exhibit problems of numerical stability in terms of spurious growing oscil-
lations. The advantages using the MOT-technique can be achieved only by taking a
great care in the choice of the key parameters, which affect numerical stability of the
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solution. This is a critical aspect because it is difficult to state general rules. In fact
the parameter evaluation depends on many factors such as the geometrical complexity
of the structure. The first basic parameter to be defined in the application of the
hybrid TLM-TDMOM method is the space step ∆l. The scatterer (wire or surface)
is discretized into N subdomains (segments or triangular patches). The choice N de-
pends on the compromise between the accuracy of the geometrical representation of
the structure and the computational efficiency. A second important parameter is the
choice of the time step ∆t. Marching on in time technique forces the choice of the time
step to depend on the space step and should satisfy the condition ∆t ≤ Rmin/c, where
Rmin represents the minimum distance between the edge centers (segments in case of
wire). This distance coincides perfectly with space step in the case of straight wires.
For curved structures we can also assume Rmin ∼= ∆l because of the great number
of elements required to describe curved structures. This condition makes elements
so small that there is a negligible difference between arc and straight element length.
Furthermore the Courant’s stability condition [21] forces the choice of the time step
to be less than Rmin/c

√
2 and in the present work we chose ∆t = Rmin/hc, with the

stability factor h and h ≥ 2. Moreover, we found that ∆t cannot be arbitrarily small,
but it depends on the geometrical complexity. This requirement may be related to the
different propagation paths characterizing the electromagnetic field and the current
wave induced on the curved scatterer. In this case the propagation delay from the
source to field point, is not an integer multiple of time step ∆t, so that an approxima-
tion is necessary to determine the retarded contributions of electromagnetic quantities.
Adopting a linear interpolation of field (or current) values in the calculation of such
retarded contributions, a significant improvement can be obtained. The delay time is
truncated at the nearest integer multiple of time step ∆t.

We should mention furthermore that, even after satisfying the Courant stability
condition, the hybrid TLM-TDMOM technique may suffer from late-time instabilities,
although these usually have a slow growth rates. To control the late time oscillations
we use a special averaging procedure: Let Eϕu ,j be the expanding field quantity at the
cell u at a time instant j on the TLM-interface of the complex object as in eq. (7.28).
We calculate Eϕu ,j+1 at the next time step and simply approximate the averaged value

Ẽϕu ,j as:

Ẽϕu ,j =
1

4
(Ẽϕu ,j−1 + 2Eϕu ,j +Eϕu ,j+1). (8.1)

The averaging technique is used in this thesis because the scheme is simple, accurate,
and involves a negligible amount of extra computation. The same averaging technique
is applied to the expanding magnetic field quantity Hϕu ,j eq. (7.29). We need to add
an extra step to the normal marching on in time algorithm, and obviously, this step
involves very little processing time.

Fig. 8.44 shows the transient interference field evaluated using the hybrid TLM-
TDMOM method for the example of a patch antenna in interaction with a straight
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Figure 8.44: Time evolution of the Ex-field calculated by the hybrid TLM-TDMOM
method at point P , with and without averaging technique.

wire, studied in section 8.3. In the shown results, the use of the averaging technique
eq. (8.1) leads to the total disapperence of oscillations as shown in Fig. 8.44. Even if
this is a particular example, we want to stress that the use of the averaging technique
yields good improvement also for more complex curved structures. Furthermore, after
using this averaging scheme, the late-time instabilities are pushed further down in time
or eliminated completely by reducing the mesh points. In particular the more uniform
and regular is the discretization, the more stable is the algorithm with the averaging
procedure.

In some applications, only the early time response of the system, prior the appear-
ance of the instabilities, is of interest, so a time domain method is preferred as it can
effectively be truncated allowing us to compute solutions only for as long as neces-
sary. In our opinion this instability does not affect appreciably the problem solution,
because the iterative procedure allows to stop the process after acquiring the needed
transient information.

8.6 Computational Efficiency

It is very difficult to absolutely quantify the general resource requirements for a
computational electromagnetic (CEM) solution for problems relative to physical size.
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Resource requirements are influenced by many things, including the frequencies of
interest, the applied formulation, complementary techniques used, and a host of factors
in the specific methods employed during coding of the numerical routines.

In general, resource predictions for classical full wave techniques are determined
based on the number of computational elements, as this number takes both the physical
problem size and the solution frequency into account. Unfortunately, the scaling of
the resources with respect to the number of computational elements is not linear, but
rather close to quadratic or even cubic.

The goal of any analysis or optimization is to achieve sufficient accuracy with min-
imum effort, where effort usually is interpreted as computational cost in terms of
computational times and memory requirements. However, there may also be a con-
siderable effort associated with other issues such as the programming of the numerical
algorithm or the construction of geometrical description suitable for the computation
at hand.
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Figure 8.45: General comparison of TLM and the hybrid TLM-TDMOM: Discretized
regions for the simulation of the electromagnetic interaction between two
objects separated by free-space regions.

The need to tackle increasingly larger and more complex problems has focused atten-
tion to increasing the efficiency of TLM algorithm by minimizing storage and run-time
requirements. Although any conclusions reached are likely to be dependent on hard-
ware and software configurations, it is nevertheless useful to make some estimate of
computational requirements. There is a trade-off between storage and run-time re-
quirements in many situations. A TLM code that allows structuring of the problem
into two or three regions which are treated in the most efficient way can result in
significant storage savings and improvements in execution speed.

For a general comparison of the computational effort of the hybrid TLM-TDMOM
algorithm and the pure conventional TLM method, we consider a cubic complex object
with a side length of a cells and which is modeled using the TLM scheme and a 2D
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Figure 8.46: General comparison of TLM and the hybrid method in the case of one
radiating object, without a scatterer.

metallic surface with the position and dimensions, as indicated in Fig. 8.45. The
metallic surface is discretized by triangular patches with Ne edges and modeled using
the time-domain Method of Moments. The interacting objects are separated by a
distance of A cells as shown in Fig. 8.45. By applying the pure conventional TLM
method the most near field region must be embedded in the discretized TLM region.
Therefore the distance d between the objects and the boundary of the discretized TLM
region must be chosen as d ≥ λmax/2, as indicated in Fig. 8.45. We consider the
case, that the size a of the objects is not more than half of the largest wavelength
considered (a ≤ λmax/2). That implies that d ≥ a. We consider the case d = a
for which the calculation effort of the TLM-algorithm is the smallest. For the TLM
simulation matched layers are used to achieve absorbing boundary conditions at the
boundary of the discretized TLM region, as shown in Fig. 8.45. For the case of the
hybrid TLM-TDMOM algorithm we discretize the space inside the complex structure
and s additional layers to avoid the field singularities [12].

8.6.1 Computation time

For a comparison of the computational time, we consider the number of multiplica-
tions of floating points variables which have to be performed in every time step in the
TLM and the hybrid TLM-TDMOM methods.

Pure TLM algorithm

In the pure conventional SCN TLM method the number of multiplication NTLM in
every time step is calculated from the number of 72 multiplication in the scattering
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process times the number of nodes in the discretized TLM region.

NTLM = 72 (2d+ 2a+A)(2d+ a)2, (8.2)

for the case of one radiating complex object, as shown in Fig. 8.46, we have,

NTLM = 72 (2d+ a)3. (8.3)

Hybrid TLM-TDMOM

In the hybrid TLM-TDMOM algorithm, we get the number of multiplications
NHybrid from the number of multiplications NMSPTLM in the scattering process
in the nodes of the TLM-subregion SB , the number of multiplications NMSI at the
interface of the TLM-subregion using the dyadic free-space Green’s functions in the
time domain, and the number of multiplications NMCMOM in the coupling with the
TDMOM region, so we get,

NHybrid = NMSPTLM +NMSI +NMCMOM

= 72.(a+ 2s)3︸ ︷︷ ︸
NMSPTLM

+Rred.12(a+ 2s)4︸ ︷︷ ︸
NMSI

+Rred.48.(a+ 2s)2Ne︸ ︷︷ ︸
NMCMOM

, (8.4)

where

NMSPTLM Number of Multiplications in the
TLM Scattering Process

72.(a+ 2s)3

NMSI Number of Multiplications for the
Self-Interaction between the bound-
ary elements belonging to the same
TLM interface.

Rred.12(a+ 2s)4

NMCMOM Number of Multiplications for the
Coupling with the MOM region
outside the TLM interface.

Rred48(a+ 2s)2Ne

Rred Reduction factor with Rred =
rts.rtd.rrd.

0.125

rts Reduction factor of the time sam-
pling points of the field-distribution
at the TLM-interface as source
points.

0.5

rtd Reduction factor of the calculated
time-fieldvalues at destination points
through time interpolation.

0.5
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rrd Reduction factor of the calcu-
lated space-fieldvalues at destination
points through space interpolation.

0.5

For s = 3 and Ne = a2, and Rred = 0.125 we get,

NHybrid = 72.(a+ 2s)3 + 1.5(a+ 2s)4 + 6(a+ 2s)2a2 (8.5)

As it is shown the number of multiplications NHybrid is independent from the sep-
aration distance A between the interacting objects, as plotted in Fig. 8.47. In Fig.
8.48 the relative number of multiplications Nm of the TLM algorithm compared to the
number of multiplications in the Hybrid algorithm is shown. It shows that the number
of multiplications of the Hybrid method is considerably smaller than the number of
multiplications of the TLM algorithm. For example, we discretize the side of the cube
with a = 60 cells. If the distance between the objects is two times the side length
A = 2a , the computational time of the TLM method is six times higher than the one
of the hybrid TLM-TDMOM algorithm
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Figure 8.48: Relative number of multiplication for the hybrid TLM-TDMOM method
in comparison with the TLM algorithm.

8.6.2 Memory requirement

For a comparison of the storage requirement of the TLM method and the hybrid
method, we consider the maximal number of floating points values which has to be
stored.

Pure TLM algorithm

In the pure TLM method the number STLM of the stored floating point values is
calculated through the number of 18 incoming and 18 outgoing impulses in one TLM
node times the number of nodes in the discretized TLM region. For the case of two
interacting object as shown in Fig. 8.45,

STLM = 36(2d+ a)2(2d+ 2a+A) (8.6)

For the case of one single radiated object as shown in Fig. 8.46 we have,

STLM = 36.(2d+ a)3 (8.7)
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Hybrid TLM-TDMOM

In the Hybrid method the number of the stored values is calculated through the num-
ber of impulses in the TLM-subregion, the coefficients of the dyadic green’s functions,
and in the previous time-steps stored field values at the TLM-interface.

For the case of two objects separated by A cells as shown in Fig. 8.45, we have,

SHybrid = STLM + SCSI + SCMOM + SSSI + SSIMOM + SSMOM

= 36.(a+ 2s)3︸ ︷︷ ︸
STLM

+Rred8(a+ 2s)4︸ ︷︷ ︸
SCSI

+Rred.8.(a+ 2s)2Ne︸ ︷︷ ︸
SCMOM

+Rred.48
√
3(a+ 2s)3︸ ︷︷ ︸

SSSI

+

h.Ne.a
√
3︸ ︷︷ ︸

SSIMOM

+Rred.48.(a+ 2s)2Ne

√
[(s+ 2a+A)2 + (a

√
2)2]

︸ ︷︷ ︸
SSMOM

, (8.8)

where

STLM Stored impulses in the TLM-
subregion

36.(a+ 2s)3

SCSI Stored Coefficients for Self
Interaction

Rrednpnmn
2
fs=

Rred8(a+ 2s)4

SCMOM Stored Coefficients for coupling with
MOM region

Rrednp.nm.nfsNe=
Rred.8.(a+ 2s)2Ne

Ne Number of patch-elements at the
scatterer surface, for example (Ne =
a2).

Ne = a2

SSSI Stored Sampling values for Self
Interaction

Rred.h.nk.nf .Dv=
Rred.48

√
3(a+ 2s)3

SSIMOM Stored Sampling Current values in
the MOM region

h.Ne.a
√
3

= h.a3.
√
6

SSMOM Stored Sampling values for coupling
with MOM region

Rred.h.nf .nkDmax

= Rred.48.(a +
2s)2Ne.Dmax

h Stability factor 2

nfs Number of surface elements in one
side at TLM-interface

(a+ 2s)2

nf Number of surface elements in all
sides at TLM-interface

6(a+ 2s)2

np Number of ports at one side at TLM-
interface

2
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nk Number of field-components at every
side of the TLM- interface ( example:
Ex,Ey, Hx, Hy)

4

nm Number of Multiplication in the
EFIE/MFIE

4

Ds Diagonal in one side of the TLM-
subregion

Ds =
√
2(a+ 2s)

Dv Volume diagonal of the TLM-
subregion

Dv =
√
3(a+ 2s)

Dmax Maximal space between a TLM-cell
and Scatterer-element

Dmax =
√
H2 + V 2

H = (s+ 2a+A)

V = (a
√
2)

For s = 3, Ne = a2, h = 2.0, and Rred = 0.125 we get,

SHybrid = 46.39(a+ 6)3 + (a+ 6)4 + (a+ 6)2a2
√
2 + 2.a3

√
6+

6
√
2(a+ 6)2a2

√
[(A+ 3 + 2a)2 + (a

√
2)2]. (8.9)

As we can see from the general equation (8.8), the maximal number of stored float-
ing point values in the hybrid TLM-TDMOM algorithm depends on the separation
distance A between the objects. The time window, where the sampled field values
in the previous time-steps must be stored, is the maximal distance Dmax between a
surface element at the TLM interface and an edge on the MOM region.

In Fig. 8.49, the relative number Sv of stored values of the TLM method compared
to the number of stored values in the hybrid TLM-TDMOM algorithm is shown. As
can be seen, the storage requirement of the hybrid method is considerably lower than
the one of the TLM method. The difference between the storage requirement of the
hybrid method and the pure conventional TLM method is increasing if we increase
the distance of the interacting structures, as can be seen in Fig. 8.50. Using only the
front side of the discretized TLM-subregion as radiating boundary the computational
effort of the hybrid method can be further reduced to one third.

As it has been shown the computational effort of the hybrid TLM-TDMOM method
is much lower than the computational effort of the pure TLM-Method. On the other
hand the demand for a homogeneous discretization at the boundaries of the discretized
region makes it possible to use a graded mesh for the TLM-simulation. In the hybrid
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method the use of a graded mesh is possible which can lead to further reductions in
computational effort, dependant on the structure to be modeled. The most important
aspect of the hybrid method is the low storage requirement. In many cases where
we have to model radiation and coupling phenomena in large free-space regions the
memory requirement of the pure TLM method exceeds the limit of the computational
machine. These are the cases where only the hybrid methods are working.





9 Discussion and Conclusions

9.1 Conclusions and outline

In this thesis, we have presented the theoretical analysis and the numerical ap-
plication of the novel efficient hybrid TLM-TDMOM method combining the flexible
Transmission Line Matrix method (TLM) and the efficient Time Domain Method of
Moments (TDMOM). This hybrid method is very efficient for the accurate modeling
of the transient interference between a complex object exhibiting materials with arbi-
trary electrical properties and a perfectly conducting thin wire or surface of arbitrary
shape, separated by large free space regions. The time domain formulation of the
methods allows us to treat efficiently fast transient phenomena, at the same time the
hybrid technique allows us to treat separately the electromagnetic field source object
and a scattered object, strongly coupled with the source, solving each structure with
the most suitable method. The application of the equivalence principle allows us to
divide the three-dimensional space into subregions, and to apply each method in its
best domain of application. The complex inhomogeneous object is embedded into a
closed TLM-subregion and modeled by the transmission line matrix (TLM) scheme.
Outside the subregion the coupling is represented by equivalent sources located on the
surfaces which bound the TLM-subregion. These equivalent current/charges distribu-
tions are coupled via the dyadic Green’s functions (be it analytical and/or numerical)
of the homogeneous region. At the boundary between the discretized TLM-subregion
and the scatterer region, the two representations are then interfaced by applying the
continuity of the EM tangential field, thus providing appropriate sets of Electric Field
Integral Equations (EFIE) and Magnetic Field Integral Equations (MFIE). The latter
integral equations are then transformed to matrix systems by applying the Marching
On in Time (MOT) procedure and solved explicitly, at each time step, for the unknown
total tangential field. The tangential field components represent, in turns, the exact
radiating boundary condition for the TLM-subregion.

For the modeling of the conducting scatterer (wire or surface), the time domain
electric field integral equation is used along with the method of moments which relies on
a triangular-patch geometrical model of the exterior surface or net of straight segments
for the case of a thin wire and operates according to the marching-on-in-time (MOT)
technique. Adopting the conventional procedure of MOM, we use pulse basis functions
to expand the current distribution both in time and space domain as well as delta test

113
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functions according to the point matching technique. This time formulation of the
MOM delivers an explicit iterative procedure for computing the current distribution
on the scatterer. Arbitrarily field values can then be efficiently derived from the current
solution at any point in space as a secondary computational step. This means that
integral techniques do not need to apply resources to the modeling of homogeneous
propagating space.

This new approach was validated by comparing the results with those obtained by
applying the pure transmission line matrix method (TLM) to the whole electromag-
netic problem.

The benefits of the novel proposed hybrid method are

� Accurate and efficient characterization of arbitrarily curved thin wire or surface
using the TDMOM method.

� The complex object exhibiting materials with nonlinearities, anisotropies, or
dispersive characteristics can be enclosed into a TLM-subregion and efficiently
modeled using the Transmission Line Matrix (TLM) method.

� Accurate and efficient treatment of large free free space regions using the dyadic
free space Green’s functions in time domain.

� The approach imposes automatically the correct radiation and causality con-
ditions, which must be imposed artificially in the truncation of finite grids by
applying only the pure TLM for the analysis of the whole configuration.

� The time domain formulation of the problem allows us to treat efficiently the
transient interference between the objects.

� Significant reductions in computer resources over those required for the pure
TLM algorithm.

Two major problems were faced in the development of this hybrid method. The TD-
MOM algorithm solves an integro-differential equation for the current on the scatterer,
whereas the TLM algorithm provides combinations of electric and magnetic fields,
represented as pulses propagating on a 3D grid of transmission lines. The problem
of these different mathematical formulations was overcome by means of the marching
on in time procedure, which gives an iterative solution of the electromagnetic integral
equations. The equivalence principle was used to solve the second problem concerning
the interaction between the source and the scatterer; the complex object is enclosed
by equivalence surfaces, where equivalent electric and magnetic sources have to be
calculated at every time steps.

The complex object is embedded into a discretized region, where the TLM method is
applied for the field modeling. According to the Huygens Shelkunoff’s representation
of the equivalence theorem, the radiation from the complex object outside its dis-
cretized subdomain is expressed replacing the sources inside the object by equivalent
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surface currents at the TLM interface. The tangential field on the surface represents
a distribution of equivalent currents and charges. The radiated field from the complex
structure represents the incident field or the excitation of the scatterer. The scatter-
ing problem is solved through discretization of the EFIE and its direct time-domain
solution by means of a marching-on-in-time procedure. An explicit equation that re-
lates the current at a certain time instant to the currents of previous instants and the
incident field is obtained. Once the transient current density on the induced scatterer
has been determined, we can easily compute the scattered field back to the boundary
of the TLM-subregion by summing the effect of each individual current element on the
surface of the thin conducting structure.

The novel hybrid method has been applied to the modeling of different electro-
magnetic coupling problems. All interactions and backscattering processes have been
taken into consideration. A comparison between the results obtained from the hybrid
method TLM-TDMOM and those obtained from the pure conventional TLM method
has been presented. The results confirm the validity of the proposed approach. For a
comparison of the computational time, the number of multiplications of floating points
variables which have to be performed in every time step in the TLM and the hybrid
TLM-MOM methods was considered. The relative number of multiplications of the
hybrid method is considerably smaller than the number of multiplications of the TLM
algorithm. For example, If the distance between the objects is two times the side
length of the object, the computational time of the TLM method is six times higher
than the one of the hybrid TLM-TDMOM algorithm. For a comparison of the stor-
age requirement of the TLM method and the hybrid method, the maximal number of
floating points values which has to be stored was considered. The storage requirement
of the hybrid method is considerably lower than the one of the TLM method. The
difference between the storage requirement is increasing if we increase the distance of
the interacting structures.

The thesis has illustrated the capability of this hybrid method and established guide-
lines for its selection in preference to the pure TLM with a particular focus on the
simulation of the transient electromagnetic interference.

We should mention that, the hybrid TLM-TDMOM technique may suffer from late-
time instabilities, although these usually have a slow growth rates. To study this
phenomenon, we have compared the responses of several regular objects, by using the
hybrid TLM-TDMOM. For the example studied in this thesis, we have found that the
instabilities appear after 7000 time steps. It means the early-time transient response
is usually calculated accurately, prior to the appearance of the instabilities. Further-
more, after using the averaging scheme, the late-time instabilities are pushed further
down in time or eliminated completely by reducing the mesh points. In particular
the more uniform and regular is the discretization, the more stable is the algorithm
with the averaging procedure. In some applications, only the early time response of
the system is of interest, so a time domain method is preferred as it can effectively
be truncated allowing us to compute solutions only for as long as necessary. In our
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opinion this instability does not affect appreciably the problem solution, because the
iterative procedure allows to stop the process after acquiring the needed information.

The above considerations show that the advantages of the hybrid method TLM-
TDMOM with respect to the pure TLM method are especially evident if we have
to model radiation, coupling phenomena in large free-space regions and to deal with
curved thin structure such as a wire or surface. In many such cases the memory
requirement of the pure space discretizing TLM method exceeds the limit of the com-
putational machine and only the hybrid method is working.

Already now with the conjuction of the present rigorous numerical hybrid methods,
the engineer has tools for investigating coupling problems efficiently. The user will
gain more understanding of the coupling phenomena, and is hence able to react and
to prevent strong interactions.



A Appendix

A.1 Wires with arbitrary orientation and length

A.1.1 Overview

To analyze general EMC configurations comprising thin wire structures, it is inter-
esting to study configurations with wires of arbitrary length and arbitrary orientation
with respect to a reference coordinate system. In this section, rotated and trans-
lated coordinate systems with respect to a reference coordinate system will be intro-
duced. Subsequently, electric field integral equation for a single thin wire pointing in
the x-direction of an arbitrary coordinate system is subjected to this transformation.
All transformations are considered with respect to the reference coordinate system
(Or,uxr,uyr,uzr). A wire can thus be arbitrarily positioned in space. If in the new
coordinate system the wire is oriented along the x-axis, only the pertaining incident
field term needs to be considered. Next, the coupling between two, now arbitrarily
oriented, wires in free space is studied again. This coupling exists because the radi-
ated field of one wire may be regarded as a part of the incident field on the other wire.
When the radiated field is also written in terms of the reference coordinate system,
mutual coupling can be described. The organization of this section is as follows. First,
the transformation from the reference coordinate system to an arbitrary coordinate
system and vice versa is introduced. Next, the transformation is applied to the EFIE
equation for a single thin wire and a transformation is applied to the EFIE equation
for a second thin wire in another arbitrary coordinate system. With these three steps,
wires can be arbitrarily positioned with respect to a reference coordinate system.

A.1.2 Coordinate transformations

The currents along a set of straight wires are coupled via the radiated field and the
incident-field term in the EFIE equation pertaining to each wire. As described earlier,
for an arbitrarily oriented wire as in Fig. A.51, the incident-field term in coordinate
system (O1,ux1,uy1,uz1) is transformed to the reference system. In a later stage, the
currents along other wires can be related to the current along the wire displayed in
Fig. A.51.
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Figure A.51: An arbitrarily oriented thin wire with respect to the reference system
(Or,uxr,uyr,uzr).

Before the incident field term is transformed to the reference system for every point
along the wire, first an arbitrary point r = x1ux1 + y1uy1 + z1uz1 in coordinate
system (O1,ux1,uy1,uz1) will be expressed in terms of the unit vectors of the reference
system(Or,uxr,uyr,uzr). The transformation involves the following steps.

� Translation of the system (Or,uxr,uyr,uzr) over a displacement vector d1 re-

sulting in (O1,u
(1)
x ,u

(1)
y ,u

(1)
z ).

� Rotation of (O1,u
(1)
x ,u

(1)
y ,u

(1)
z ) around the z-axis over an angle φ1 resulting in

(O1,u
(2)
x ,u

(2)
y ,u

(2)
z ).

� Rotation of system (O1,u
(2)
x ,u

(2)
y ,u

(2)
z ) around the y-axis over a second angle θ1

resulting in (O1,ux1,uy1,uz1).

In Fig. A.52, each step is visualized. The extra superscripts (1) and (2) indicate that
the first and the second step have been carried out, respectively. The two intermediate
coordinate systems are only introduced for the derivation of the transformation. Note
that the subscript 1 refers to coordinate system 1.

An arbitrary vector r can be written as

r = xruxr + yruyr + zruzr = x(1)u(1)x + y(1)u(1)y + z(1)u(1)z

= x(2)u(2)x + y(2)u(2)y + z(2)u(2)z = x1ux1 + y1uy1 + z1uz1. (A.1)

The derivation of the transformation formulas is carried out by composition of at
most three individual steps whose mathematical description is given below.

The transformation of the reference system to system 1 is then as follows:
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Figure A.52: An arbitrarily oriented thin wire with respect to the reference system
(Or,uxr,uyr,uzr).

(A) Translation over d1 = d1xuxr + d1yuyr + d1zuzr :

r = xruxr + yruyr + zruzr = x(1)u(1)x + y(1)u(1)y + z(1)u(1)z , (A.2)

with



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y(1)

z(1)


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 . (A.3)

(B) Rotation around the z-axis over φ1:

r = x(1)u(1)x + y(1)u(1)y + z(1)u(1)z = x(2)u(2)x + y(2)u(2)y + z(2)u(2)z , (A.4)

with 
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
 , (A.5)

and

T(1) =




cosφ1 sinφ1 0
− sinφ1 cosφ1 0

0 0 1


 . (A.6)

(C) Rotation around the y-axis over θ1:

r = x(2)u(2)x + y(2)u(2)y + z(2)u(2)z = x1ux1 + y1uy1 + z1uz1, (A.7)
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with 
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and

T(2) =




cos θ1 0 sin θ1
0 1 0

− sin θ1 0 cos θ1


 . (A.9)

With these three steps the following composed transformation formula the reference
system to coordinate system 1 can be constructed:
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and 


ux1
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
 = T1



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uyr

uzr


 , (A.11)

with

T1 = T(2) ·T(1) =




cosφ1 cos θ1 sinφ1 cos θ1 sin θ1
− sinφ1 cosφ1 0

− cosφ1 sin θ1 sinφ1 sin θ1 cos θ1


 . (A.12)

Because T1T
T
1 = I, the transformation matrix T1 is orthogonal and hence the

inverse transformation matrix can be written as

T−1
1 = TT1 =




cosφ1 cos θ1 − sinφ1 − cosφ1 sin θ1
sinφ1 cos θ1 cosφ1 − sinφ1 cos θ1

sin θ1 0 cos θ1


 , (A.13)

where the superscript T stands for transposed. The transformation from coordinate
system (O1,ux1,uy1,uz1) to the reference system is found as:




xr
yr
zr


 = TT1




x1
y1
z1


+




d1x
d1y
d1z


 ,




uxr

uyr

uzr


 = TT1




ux1
uy1
uz1


 , (A.14)

where the subscript 1 in the transformation matrix indicates that the transformation
pertains to coordinate system 1. Since all transformations are from and to the reference
coordinate system, no extra indication is made. In general, a transformation from
coordinate system n = 1, 2, ... to the reference system is described by a transformation
matrix Tn and a translation vector dn. Note that the components of the vector dn
are found with respect to the reference coordinate system.
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A.1.3 Transformation of the incident field term

With the coordinate transformations that are found, the electric field in a certain
coordinate system can be transformed to the reference system and vice versa. Once the
transformed electric field from a coordinate system is known in the reference system,
the transformation to a second coordinate system can be carried out. If these electric
fields originate from wire antennas, the mutual coupling between wires, each in their
own coordinate system, can be described.

In terms of the notation of previous chapters, the radiated electric field originating
from a wire antenna will be referred to as the direct field Ed(r) of a wire.

The transformation as described in the previous section will be applied to the inci-
dent field term in the EFIE equation for a thin wire in coordinate system 1 and length
L1, as shown in Fig. A.51. The incident field term at position r can be written as:

Eincx1 (r)ux1 + Eincy1 (r)uy1 + Eincz1 (r)uz1 = Eincxr (r)uxr + Eincyr (r)uyr + Einczr (r)uzr,
(A.15)

with

r = x1ux1 + y1uy1 + z1uz1 = xruxr + yruyr + zruzr.

The position r can be described in terms of the reference system as well as in
terms of coordinate system 1 as was shown earlier. For the incident electric field
vector, the transformation is limited to the orientation and magnitude of the three
field components. The value of the field vector is already determined by the position
r which is a parameter of the incident electric field. This can be easily shown by
introducing the start and end points of the incident field vector as

p = (px1, py1, pz1)




ux1
uy1
uz1


 = (pxr, pyr, pzr)




uxr
uyr
uzr


 , (A.16)

q = (qx1, qy1, qz1)




ux1
uy1
uz1


 = (qxr, qyr, qzr)




uxr
uyr
uzr


 , (A.17)

respectively. The incident field vector as such is then defined by q − p. When the
coordinate transformation is carried out on the right-hand sides of (A.14) as follows




pxr
pyr
pzr


 = TT1




px1
py1
pz1


+




d1x
d1y
d1z


 , (A.18)




qxr
qyr
qzr


 = TT1




qx1
qy1
qz1


+




d1x
d1y
d1z


 , (A.19)
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and 


uxr
uyr
uzr


 = T1




ux1
uy1
uz1


 ,

it is seen that the translation vector d1 cancels in the subtraction q − p. Hence, the
translation has no effect in the transformation of a field vector.

With this result, the transformation of the incident electric field term in the EFIE
equation from the reference system to system 1 is found as

(Eincx1 (r) , Eincy1 (r) , Eincz1 (r) )




ux1
uy1
uz1


 = (Eincxr (r) , Eincyr (r) , Einczr (r) )




uxr
uyr
uzr


 ,

(A.20)
with




xr
yr
zr


 = TT1




x1
y1
z1


+




d1x
d1y
d1z


 ,




Eincxr

Eincyr

Einczr


 = TT1




Eincx1

Eincy1

Eincz1


 , (A.21)

and 


uxr
uyr
uzr


 = TT1




ux1
uy1
uz1


 .

What remains is to write the electric field in the reference system in terms of the electric
field in system 1. With the incident field term as defined in (A.15), the transformation
from system 1 to the reference system is determined by




x1
y1
z1


 = T1






xr
yr
zr


−




d1x
d1y
d1z




 ,




Eincx1

Eincy1

Eincz1


 = T1




Eincxr

Eincyr

Einczr


 , (A.22)

and 


ux1
uy1
uz1


 = T1




uxr
uyr
uzr


 .

In chapter 7, a special form of the EFIE equation is used to describe the mutual
coupling between a complex object and an arbitrarilly oriented thin wire. Since the
wire may now be arbitrarily oriented, the previous transformations can then be used
to find an expression for the direct field on (or from) the wire.
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