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ABSTRACT

In the last years the use of multiple receive antennas as well as
multiple transmit antennas has attracted worldwide attention to
extend existing mobile communication systems with respect to their
performance. Therefore it is of great importance to know the fea-
tures of the real propagation channel. To this end, the real propa-
gation channel is investigared by MIMO Channel Sounding, where
high-resolution parameter estimation schemes are used to resolve
the physical channel with respect to their spatial (and temporal)
structure. However, due to narrow diffuse scatterers the commonly
used model of discrete wavefronts is no longer valid.

In this article we introduce a simple approach to model wavefronts
with small angular spread. Additionally, we show that the ESPRIT
algorithm with a slight modification is applicable to jointly esti-
mate the direction of arrival and the angular spread. The approach
is based on the assumption of Gaussian distributed wavefronts.

1. INTRODUCTION

One of the most innovative and fastest growing sectors of
industry is the mobile communication market, which expe-
riences a big push to extend existing systems with respect
to an increased performance, not only because of the grow-
ing number of subscribers, but also due io the increasing
demands regarding quality of service (QoS8) and data rate.
Thereby the use of multiple receive antennas as well as mul-
tiple transmit antennas has attracted worldwide atteation in
the last years. Such systems are denoted as multiple-input-
multiple-output (MIMO) systems. The proposals to exploit
the potentialities of MIMO systems are very variegated (e.g.
BLAST [1} and Eigenbeamforming [2] in various versions),
However, just as various as the system proposals are the re-
quests for the channel. Therefore, it is of fundamental in-
terest to have detailed knowledge of the properties of the
real MIMO propagation channel between transmitter and
receiver to rank and differentiate the different system pro-
posals with respect to their performance under real con-
ditions. To this end, high-resolution parameter estimation
schemes, such as SAGE [3], MUSIC [4], ESPRIT (5, 6]
and many more, have obtained new interest to measure the
real MIMO propagation channel by means of a geometric
interpretation [7}: MIMO Channel sounding.
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The high-resolution parameter estimation schemes are used
to resolve the measured channel transfer function into sin-
gle wavefronts, which are usually characterized by the dJi-
rection of arrival (DOA), propagation delay, Doppler fre-
quency and power. The most commonly used model for a
wavefront in the wireless channel has been a point source
mode! which corresponds to discrete DOAs [8]. However,
due to the presence of scatterers in a real environment the
spatial signature of each wavefront can no longer be pa-
rameterized by a discrete direction of arrival alone. The
presence of narrow diffuse scattering occurring in real radio
channel measurements will cause smaif anguiar spread [9].
The assumption of mere discrete rays becomes restrictive
and would lead to estimation errors.

One method to compensate for this effect is to increase the
number of discrete wavefronts that have to be estimated.
Thereby the spread wavefront will hopefully be approxi-
mated be several discrete wavefronts.

A more promising method is to adopt the signal model and
to assume wavefronts with angular spread according to a
suitable distribution function. As a consequence the im-
pinging waveftonts are now parameterized by their nominal
direction # and a parameter ¢ of the distribution function.
Recently some methods have been proposed to estimate the
DOAs and the angular spread, based on multidimensional
search [10]. Other methods have been proposed to estimate
the spatial signature [11, 12] of the impinging wavefronts.
In this work we introduce a simple model for wavefronts
with Gaussian distributed angular spread. The angular spread
is assumed small so that the the anguiar spread has not yet
led to a numerical increase in the rank. Additionally we pro-
vide a method to jointly estimate the DOA and the angular
spread with a modified ESPRIT algorithm.

2. DATA MODEL

2.1. Point Source Model

Assuming a single source with muitipath propagation, im-
pinging with L rays at a uniform linear array (ULA) with
M antennas under the influence of additive white Gaussian
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noise produces the data model

L
@(t) =Y paa(6y) - 5(t) + n(t), ¢))

n=1

whete p,, denotes the complex amplitude of each wavefront,
a(f,) denotes the steering voctor of one wavefront, s(t) de-
notes the transmitted signal, and n(t) denates the complex,
white Gaussian noise.

Under the assumption of discrete wavefronts, the steering
vectors a(fy,) are parameterized only by the nominal DOA
. The steering vector can be written as

. . T
Qg = [1;6“‘"; . ;SJ(M"l)#ﬂ] s (2)

where ()T denotes the transpose of a vector and
tn = —27Asin(8,) 3

is the spatial frequency with antenna spacing A in fractions
of the wavelength.

2.2, Distributed Source Model

Giving up the point source model and going to a more real-
istic channel model, where each propagation path consists
of a large number of sub-paths being distributed around the
nominal direction 8,,, leads to the distributed source model.
To this end, a steering vector with small angular spread can
be modeled as )

w(bn) = pn- Y alfy + 9i), )
k .

where w(f;,} denotes the spread steering vector which con-
sists of a sum over a huge, possibly infinite, number of dis-
crete sub-paths a(f, + 9¢). This wave-packet is centered
around a nominal direction 8,, and ¥;, is distributed accord-
ing to a given distribution. The whole wave-packet is given
a complex amplitude p,,. Note, that the model in Eq, (4) is
only valid for small angular spread.

In the sequel we will work with the normalized version of
the spread steering vector

w(6) = ;1— cw(0a) = Y ala+9%). )
n %

In the following we are assuming that the sub-paths a(#, +
9;) are Gaussian distributed around the nominai DOA 8,
with standard deviation o,. This seems a reasonable as-
sumption, since the biggest portion of the sub-paths are con-
centrated around the main direction and large deviations
from the nominal direction are less likely [13]. Additionally
it seems reasonable to assume a symmetric distribution. The
proximate distribution function is the Gaussian distribution,
According to [13] the distribution function is not critical, as
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long as the anguiar spread is small.

For simplicity we are assuming an infinite number of sub-
paths. Additionally we assume the Gaussian function to be
zero owtside of €, T 40, . With these assumptions the spread
steering vector can be written as

”(em'gn) = ]i _a-(en -+ ﬁk}
. ©)

G4

= al9) - NBnyo2) 49,

8n—46n

where N(#,a2) denotes the normal distribution fimction
with mean #,, and variance o2. The m-th entry of the steer-
ing vector v(0n, 0 ) for a wavefront with small Gaussian
distributed angular spread v, (6., on) reads as

Um(6n¢ Un) =
2
fn-+ion exp(~%’9— - j(m-1)2rA sin(ﬁ))
= J — a9
B —40, T n

M

Unfortunately the integration in Eq. (7) cannot be solved
analytically.

3. EFFECT OF ANGULAR SPREAD

Eq. (7) computes the steering vector of a wavefront, normal
distributed around the main direction #,, with a standard de-
viation o,,. To get a better insight into the effects of angular
spread to judge the demand for an estimation scheme, we
numerically evaluate the ratio r(m) = ju,,|/|v;|. Figure 1
shows this ratio for m € {1,---, 10} for a wavefront, im-
pinging from direction & = 30° for different standard devi-
ations of the Gaussian distribution.

3 T ™

Fig. 1. Ratio r{m) = |vum|/}v1] of a spread steering vector from & =
30° for different standard deviations o = {0°,0.6°,1.2°,1.8°,2.4°}.

It can be seen, that the correlation decreases with increasing



angular spread ¢ and increasing element number m. This
influence indicates the effect of angular spread to reduce the
mutual correlations between the antenna elements, which
has been described previously [14].

When comparing the steering vector with angular spread
and the steering vector without angular spread with regard
to the complex phase it can be seen that the complex phase

"1is influenced only by a rather tiny amount.

4. APPROXIMATION OF ANGULAR SPREAD

Proper DOA and angular spread estimation requires extraci-
ing the parameters of the function v = f{#, o). To this end,
the analytic solution of Eq. (7) is required. Unfortunately
the integral cannot be solved analytically and therefore an
analytical inversion is also not possible. To circunvent this
problem, we introduce two approximations for the integra-
tion:
First, we approximate the Gaussian distribution by a poly-
nomiat of second order and secondly, we model the steering
vector a(@, + J) by & Taylor series of second order at the
operating point 8,,.

The approximation of the Gaussian distribution can be
written as

{#—0,)2

N(Hn,af‘) = 72:3::6 203 @)

S Cl'l('l? — 8,,)2 + (12(19 - ﬂn) + 3.

Constructing the polynomial such that the maximum value
of the polynomial and the maximum value of the Gaussian
distribution coincide and that the polynomial has unity sur-
face between the two intersections with the abscissa, yields

o = 16 s =0; az3= L 9
! 9(v/Z7s,)3 ' 2= 3_\/2_71'0,.,'

Figure 2 compares this approximation with the original Gaus-
sian function.

In our second approximation, we model the steering vector
a(f,+17) by a Taylor series of second order at the operating
point 8,,. The solution reads

a(Bu +9) = a(8,) + @'(602)(0n — 9) +a" (o) L

(10)

where the derivations are performed with respect to ,,. With
these two approximations the integration from Eq. (7) can
now be solved. Performing the integration between the two
intersections with the abscissa of the polynomial from Eq. (8)
yields the solution
11702

Vapprox (gm Un) = G{B,‘) + T—n '
Note, that the solutton contains no first-order derivative. This
matches with the assumption of a symmetric distribution of

a’(6,). (11)

Fip. 2. The Gaussian function (solid line) and its approximation by a
potynomial of second order (dashed line). The used Gaussian function
represents the density of one path impinging from 8, = 30° with standard
deviation of oy, = 2.4°.

the sub-paths.

Figure 3 compares the approximation ¥spprox (0, o) from
Eq. (11) with the numerical derived steering vector v(9n, oy )
from Eq. (7). It can be seen that the approximated model

Fig. 3. Ratio r(m} = |vrm{/}v1| of a spread steering vector from 6 =
30° for different standard deviations ¢ = {0°,0.6°,1.2°,1.8%,2.4°}
(solid line), compared with the approximation (dashed lines).

matches very well with the numerical solution

5. DOA AND ANGULAR SPREAD ESTIMATION

The simple analytical formula for a steering vector, pro-
duced by a small Gaussian distributed wavefrontin Eq. (11),
gives raise to a new concept for estimating the DOA and
the standard deviation of the distribution function. One ap-
proach would be for example to replace the array response
vector of Eq. (2) by Eq. {11) for the optimization of the ML
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function. Thereby, not only the parameter set {6, } has to be
chosen, but also the corresponding set {oy, }. The procedure
is very straightforward.

Here we want to show, that also a linear estimation tech-
nique, in particular ESPRIT, can be extended to be applica-
ble to this estimation task.

5.1. Estimation with ESPRIT

The ESPRIT algorithm performs the DOA estimation by
exploiting the shift-invariance property of two overlapping
subarrays of a ULA [5, 6]. Due to this shift-invariance prop-
erty the antenna signals of two overlapping subarrays differ
only by a complex factor, which is directly related to the
DOA.

The equation for the shift-invariance property reads as

Ji-A- diag{@l"n}rdml =J3-4, (12)

where .JJ, and .J» denote selection matrices cutting out only
the first (M — 1) and the last (M — 1) lines of the sub-
sequent matrix, respectively. The matrix A = [e;...a4)
comprises the steering vectors of the d wavefronts. Tt is weli
known [6], that the equation

A=U, T, (13

holds, where U, are the d dominant eigenvectors of the co-
variance matrix of the received signal (denoted as signal
subspace) and T' € C*4 is a matrix of full rank,

Inserting this in Eq. (12), we obtain the valaes 1, as the
eigenvalues of

®=(J,-U)" - (J:-U,), (14)

where ()F denotes the pseudo-inverse.

3.1.1. Discrete wavefionts

In the case of discrete wavefronts the complex coefficients
ry are only a function of the DOA. In particular,

Yo = exp(jin), (15)

where 11, is the spatial frequency, c.f. Eq. (3).

5.1.2. Angular Spread

In the case of spread wavefronts the complex factor is a
function of the DOA and the standard deviation of the Gaus-
sian distribution function of the angle. After having solved
the invariance ¢quation of Eq. {14) to obtain the complex
factors ¥, we have to map back the complex factors to the
parameters 8, and ,,. Note, that the invariance equation
was designed to operate on Vandermonde vectors, however,
it is still able to deal with angular spread, if the results 10,
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are interpreted and processed differently. The functional
connection is

Jl "U(Gn,ﬂn) . ’!/)n =J2"U(9naa'n), (16)

according to Eq. (11) and (12).

5.2. Simulations

Eq. (16) gives the analytical relationship between the com-
plex factor provided by the invariance equation of ESPRIT
and the parameters of the Gaussian distributed wavefront.
Estimating the complex factor 1/, provides a direct estimate
for the DOA and the standard deviation of the distributed
wavefront. To find the right parameter set &, and o, we use
an gradient based optimization algorithm. First, we choose
a test parameter set § and & and compute the corresponding
(8, &). Then we modify § and & by a small increment to
approach 7, from the invariance equation. To this end, we
minimize

min [y, — $(8, 0) ", (an

where we minimize the squared absolute value since ¥, is
approximately Gaussian distributed for Gaussian distributed
notse. For each wavefront a 2D minimization has to be per-
formed. Figure 4 shows a typical shape of the cost fanction
of Eq. (17). It can be seen, that only one distinct minimmun

g in degees

Fig. 4. Shape of the cost function at high SNR (¢ = 38.5%, & = 3°}.

exists. The standard approach to retrieve the nominal DOA
from 1, {c.f. Eq. {15)) provides a first and close starting
point for this optimization. Therefore, the minimization is
well-behaved and can be accomplished in very few steps.
Figure 5 shows the RMSE as a function of the SNR fora
scenario with two wavefront with the parameters {64, 07} =
{38.5°,3°} and {8, 03} = {—25°,0.1°} at an 8-ULA with
1024 BPSK samples. We compute the RMSE for the DOAs
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Fig. 5. RMSE in degrees of the cstimated DOAs with standard estima-
tion (dashed line) and considering the angular spread {solid line) for two
impinging DOAs with different spread.

as

N
RMSEs = | v 3~ 10: - o1, (18)

i=1

where N, # and §; denote the number of trials, the vector
of the real DOAs and the vector of the estimated DOAs,
respectively. The same applies for the standard deviation

1 N
7 28 el

i=1

RMSE, = (19)

It can be seen, that for increasing SNR the standard esti-
mation approach starts to saturate, while for the medified
ESPRIT the RMSE of the estimated DOAs continuous to
decrease. However, note that the RMSE of the modified
ESPRIT also starts to saturate at high SNR which is due to
the fact, that the modified ESPRIT works with an approxi-
mation, c.f. Eq. (11), of the continuously spread wavefront,
c.f. Eq. (6).

6. CONCLUSION

In this article we have presented a closed form expression
of a steering vector, modeling a wavefront with small, Gaus-
sian distributed angular spread. In the end we have extended
the ESPRIT algorithm for jointly estimating the DOA and
the standard deviation of the wavefront. The simulation
showed that the new, extended estimation approach avoids
a saturation of the RMSE of the DOA due to an angular
spread for increasing SNR. Additionally the standard devi-
ation of the distribution function of the angle can be esti-
mated. This approach seems suitable for channel sounding
in real channel situations, where the model of discrete wave-
fronts is not valid.
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