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Abstract—Recently, the 3GPP standardization body for future
mobile communication systems proposed four realistic channel
models for propagation channels in a communication system with
several transmit and several receive antennas.
In this paper we apply the eigenbeamforming approach to these
standardization MIMO channel models to investigate this system
setup with respect to the bit-error-rate (BER).

I. INTRODUCTION

For the last years much effort has been spent to extend ex-
isting mobile communication systems with respect to an in-
creased performance, not only because of the growing number
of subscribers, but also due to the increasing demands regard-
ing quality of service (QoS) and data rate. Thereby, the use of
multiple receive antennas as well as multiple transmit antennas
has attracted worldwide attention. Such systems are denoted as
multiple-input-multiple-output (MIMO) systems.
The proposals to exploit the potentialities of MIMO systems are
very variegated (e.g. BLAST [1] and Eigenbeamforming [2] in
various versions). However, just as various as the system pro-
posals are the required properties for the MIMO propagation
channel [3]. A possibility to obtain an insight into basic proper-
ties of real propagation channels are MIMO channel measure-
ments [4]. A first consensus about basic temporal and spatial
features of a MIMO channel was defined in a proposal in the
standardization discussions [5].

Section II describes the model of the MIMO propagation
channel proposed in the standardization, Section III describes
the system setup of our communication link and Section IV
gives some simulation results of the performance, i.e. the BER
of the investigated system.

II. THE MIMO CHANNEL MODELS IN STANDARDIZATION

The MIMO channel models proposed in the standardization
were defined to be applicable for link level simulations of dif-
ferent MIMO schemes. Moreover, the MIMO channel models
are backward compatible with the existing ITU channel pro-
files, which only define the power-delay profile. The channel
model is given as a general tap-delay line model (FIR), where
the number of taps, their power and their delay is fixed. The
time-variant behavior is implicitly specified via the Doppler
spectrum. All these properties are already given by the stan-
dardized ITU models [6]. With this starting point, the only
additional input parameters to the MIMO channel model com-
pared to the ITU single-input-single-output (SISO) models are

the spatial correlation matrices for the transmitter and receiver
side. These correlation matrices are defined by the power-
azimuth spectrum (PAS) with a certain azimuth-spread (AS),
angle-of-arrival (AoA) and array configuration. Note, that dif-
ferent combinations of PAS, AS and AoA can result in almost
identical correlation matrices. Therefore, only four cases are
specified:

Case 1 Uncorrelated Rayleigh Channel
Case 2 Macrocell Pedestrian Type A
Case 3 Macrocell Vehicular Type A
Case 4 Microcell/Bad-urban Pedestrian Type B

The mathematical representation of the channel impulse re-
sponse H(t′, t) for a system with M transmit antennas and N
receive antennas can be written as

H(t′, t) =
K∑

k=1

Hk(t′)δ(t − τk), (1)

where K denotes the number of temporal taps, each with de-
lay τk and the corresponding weighting Hk(t′) ∈ CN×M .
Thereby, the tap weights Hk(t′) are time variant and have to
be chosen such, that the desired antenna correlations are ful-
filled. We assume block fading such, that all Hk(t′) are con-
stant within a block of L transmissions. In the following we
will focus on the downlink.

III. SYSTEM MODEL
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Fig. 1. System diagram for the transmitter (Base station)

At the transmitter the bit stream b(t) is multiplexed into
D substreams and mapped onto complex modulation symbols
s(t). Each substream is given an individual power by multiply-
ing with a diagonal matrix P 1/2 and then a unitary beamform-
ing matrix T according to the eigenbeamforming concept is ap-
plied [2]. The resulting signal x(t) is pulse shaped with a root-
raised cosine (RRC) impulse with roll-off factor α = 0, 22.
Note, that the beamforming T has no FIR structure.

At the receiver the received signal y(t) is matched filtered with
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Fig. 2. System diagram for the receiver (User equipment)

a RRC pulse and then processed by a linear filter to combat
inter-symbol-interference (ISI) due to the frequency selective
channel H(t′, t). This linear filter is one of the following:
matched filter (MF), zero-forcing filter (ZF), or Wiener filter
(WF). The resulting signal r(t) is basis for a maximum likeli-
hood (ML) symbol decision of the actual transmit signal, disre-
garding transmit signals at other time instants (hard decision)1.
Both parts, transmitter and receiver, are connected by the
MIMO propagation channel from Eq. (1). If we include the
transmit RRC (α = 0.22) filter into the channel as

HRRC(t′, t) =
K∑

k=1

Hk(t′) · RRC(t − τk), (2)

we can write

y(t) = HRRC(t′, t) � x(t) + n(t), (3)

where ‘�’ denotes convolution and n(t) is assumed to be addi-
tive Gaussian noise, temporally and spatially white with power
σ2

n.
To adjust the desired correlations [5] at the base station (NB)
and at the user equipment (UE) for each temporal tap k we com-
pute the weighting Hk(t′) as

Hk(t′) = Ck,UEZ(t′)CH
k,NB, (4)

where (•)H denotes conjugate transpose and Z(t′) is a N ×M
zero-mean complex Gaussian matrix with unit variance real-
izing the time variant fading, i.e. the Doppler spectrum. The
matrices Ck emerge from the eigenvalue decomposition of the
desired correlation matrices Rk = UkΛkUH

k as

Ck = UkΛ
1/2
k . (5)

Since the temporal structure of the MIMO standardization
channels has taps at delay times, which are no multiples of the
symbol duration, the MIMO channel as well as the two RRC
pulse filters and the linear receive filter have to operate at con-
tinuous time, while the other parts in the communication link
are time discrete, i.e. work at symbol rate T .

Since it is possible to transmit less data streams than the num-
ber of antennas (D < M ), the signals lie in a D-dimensional
subspace. In the following we will perform the linear filtering
at the receiver in the full, M -dimensional space to estimate the
modulation symbols x(t). Thereafter we will reduce the di-
mension to D by applying the reverse beamforming with T H

and perform a scalar Wiener Filter g to recover the amplitude
before we perform the symbol decision (see also Figure 3).

1Note, that the optimum receiver would be a maximum likelihood sequence
estimator. However, our suboptimum approach combats the time dispersion
of the frequency selective channel and accounts for the additive noise of the
channel while simultaneously keeping the computational effort low.

DDMM

gTH
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rWF(t)

r̃MF(t)
r̃ZF(t)
r̃WF(t)

MF,ZF,WF

Fig. 3. System diagram of the linear receive filter.

Additionally we assume unit transmit power per transmission

tr (P ) = 1. (6)

A. Matched Filter Receiver

As stated above, the matched filter has to operate at continu-
ous time. The output rMF(t) of the matched filter can be sam-
pled at symbol rate T .
The continuous convolution of the channel HRRC(t′, t) with
the matched filter HH

RRC(t′,−t) reads as

HMF(t′, t) = HH
RRC(t′,−t) � HRRC(t′, t) =

=
K∑

k=1

K∑
k′=1

HH
k (t′) · Hk′(t′) · RC(t − τk′ + τk),

(7)

where RC(t) denotes the raised-cosine impulse RRC(t) �
RRC(t). Assuming block processing at the receiver we can
combine the transmit signals x(t) from L time instances into
one big space-time vector

x = vec [x(0), x(T ), x(2T ), . . . , x((L − 1) · T )] . (8)

The same applies for the output of the MF rMF(t) to produce a
space-time vector rMF. The space-time beamforming matrices
are

T st = 1L×L ⊗ T , P st = 1L×L ⊗ P . (9)

This produces the functional connection between s and rMF as

rMF = Hst
MF · x + nMF

= Hst
MFT stP

1/2
st s + nMF,

(10)

where Hst
MF denotes a space-time block Toeplitz matrix com-

prising the whole time-continuous transmission elements. The
(j, k)-th block of Hst

MF reads as

[
Hst

MF

]
(i,j)

=

=
K∑

k=1

K∑
k′=1

HH
k (t′) · Hk′ (t′) · RC ((i − j)T − τk′ + τk)

(11)

The noise nMF from Eq. (10) is the sampled complex noise
after the receive matched filter. The noise nMF is now spatially
and temporally correlated. For one time instant t this can be
written as

nMF(t) = HH
RRC(t′,−t) � n(t)

=
K∑

k=1

HH
k (t′) · n(t) � RRC(τk + t).

(12)
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The filtered and sampled space-time noise vector reads then as

nMF = vec [nMF(0), nMF(T ), . . . ,nMF((L − 1) · T )] .
(13)

We will denote the space-time noise covariance matrix as

Rst,MF
nn = E

{
nMFnH

MF

}
= σ2

nHst
MF. (14)

The output rMF of the MF is dimensional reduced

r̃MF = T H
strMF

= T H
stH

st
MFT stP

1/2
st s + ñMF

(15)

with the new noise covariancematrix

Rst,MF
ññ = E

{
ñMFñH

MF

}
= σ2

nT H
stH

st
MFT st (16)

and weighted with the scalar WF (see Figure 2)

gMF =
tr

(
T H

stH
st
MFT stP

1/2
st

)

tr
(
T H

stH
st
MF T stP stT

H
st︸ ︷︷ ︸

:= Rst
xx

Hst,H
MF T st+Rst,MF

ññ

) . (17)

The result r(t) is then fed into a ML estimator which pro-
vides an estimate ŝ(t) of the originally transmitted modulation
symbol s(t). TheML-estimation is only performed in the space
domain, only one time instant is considered. Consequently,
only the (k, k)-th block Rññ of the space-time noise covariance
matrix Rst,MF

ññ applies as noise statistic for the ML estimate

ŝ(kT ) = argmin
s

‖r(kT ) − gMFT HH0
MFTP 1/2s‖2

R−1
ññ

,

(18)

with H0
MF = HMF(t′, t = 0).

B. Zero-Forcing Filter Receiver

Also the ZF filter has to operate at continuous time, just as
the MF. It has been shown, that the analog ZF filter can be de-
composed into an analog MF, followed by a time-discrete ZF
stage [7] working at symbol rate T .
With this insight, we can take the time-discrete output of theMF
(see Section III-A) as input for a subsequent ZF stage. Right af-
ter the ZF stage we apply the space-time beamforming matrix
from Eq. (9) and a scalar Wiener Filter gZF to recover the cor-
rect signal amplitude. This produces the filter output r(t) (see
Figure 2).

Again we are assuming block processing. The output rZF

of the ZF filter in the space-time domain in analogy to the MF,
c.f. Eq. (10), reads as

rZF = Gst
ZFHst

MF · x + nZF

= Gst
ZFHst

MFT stP
1/2
st s + nZF,

(19)

where the zero-forcing stage Gst
ZF computes as

Gst
ZF = Hst,−1

MF (20)

and the noise nZF computes as

nZF = Gst
ZFvec

{
HH

RRC(t′,−t) � n(t)
}∣∣∣

kT
. (21)

The space-time noise covariance matrix consequently reads as

Rst,ZF
nn = E

{
nZFnH

ZF

}
= σ2

nGst
ZF. (22)

We again reduce the dimension with

r̃ZF = T H
strZF

= T H
stG

st
ZFHst

MFT stP
1/2
st s + ñZF

= T H
stT stP

1/2
st s + ñZF

= P
1/2
st s + ñZF

(23)

and obtain the new noise covariance matrix

Rst,ZF
ññ = E

{
nMFnH

MF

}
= σ2

nT H
stH

st,−1
MF T st (24)

The output r̃ZF is weighted with the scalar Wiener Filter

gZF =
L

tr
(
P st+Rst,ZF

ññ

) (25)

to produce r (see Figure 2 and 3).
The result r(t) is fed into a ML estimator which provides an

estimate ŝ(t) of the originally transmitted modulation symbol
s(t). This reads, in analogy to the MF receiver, as

ŝ(kT ) = argmin
s

‖r(kT ) − gZFP 1/2s‖2

R−1
ññ

, (26)

where only the (k, k)-th block Rññ of the space-time noise co-
variance matrix Rst,ZF

ññ applies as noise statistic for the ML es-
timate2.

C. Wiener Filter Receiver

The time continuous space-time Wiener Filter can also be
decomposed into an analogMF, followed by a time-discreteWF
stage [7] working at symbol rate T .
With block processing the output rWF of the WF filter in the
space-time domain reads as

rWF = Gst
WFHst

MF · x + nWF

= Gst
WFHst

MFT st︸ ︷︷ ︸
Hst

WF

P
1/2
st s + nWF, (27)

where the WF stage Gst
WF computes as

Gst
WF = Rst

xxHst,H
MF

(
Hst

MFRst
xxHst,H

MF + σ2
nHst

MF

)−1

. (28)

The noise nWF computes as

ñWF = Gst
WFvec

{
HH

RRC(t′,−t) � n(t)
}∣∣∣

kT
(29)

2Note, that THT = 1, but TTH �= 1.
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with the space-time noise covariance matrix

Rst,WF
nn = E

{
nWFnH

WF

}
= σ2

nGst
WFHst

MFGst,H
WF .

(30)

Applying the rank reduction T H
st and the trivial scalar Wiener

filter gWF = 1 produces the filter output

r = r̃WF = T H
strWF

= T H
stG

st
WFHst

MFT stP
1/2
st︸ ︷︷ ︸

:= Hst
WF

s + ñWF (31)

with the new space-time noise covariance matrix

Rst,WF
ññ = σ2

nT H
stG

st
WFHst

MFGst,H
WF T st. (32)

The result r(t) of the WF is fed into a ML estimator to pro-
vide an estimate ŝ(t) of the originally transmitted modulation
symbol s(t) as

ŝ(kT ) = argmin
s

‖r(kT ) − HWF(k)s‖2
R−1

ññ
, (33)

where only the (k, k)-th block Rññ of the space-time noise co-
variance matrix Rst,WF

ññ applies as noise statistic for the ML
estimate and HWF(k) denotes the (k, k)-th block of the com-
bined space-time transfer function Hst

WF .

D. Transmitter Knowledge

The unitary beamforming matrix T is chosen according to
the eigenbeamforming concept [2]. Since the frequency selec-
tive channel H(t′, t) is experiencing block fading with given
average values

Rk,UE = E
{
Hk(t′)HH

k (t′)
}

(34)

and

Rk,NB = E
{
HH

k (t′)Hk(t′)
}

(35)

it is possible to perform the eigenbeamforming on two different
time scales:

• on a short-term basis by computing the strongest eigenvec-
tors of H0

MFH0,H
MF (instantaneous knowledge), or

• on a long-term basis by computing the strongest eigenvec-
tors of

∑
k Rk,NB (knowledge on average).

The eigen spectrum of each of the two approaches also allows
to choose the rank D of the transmission. More explicitly: if
the channel offers only one dominant eigenvalue, it is reason-
able to transmit only one, scalar data stream. To maintain a
constant data rate it is necessary to simultaneously increase the
modulation level while decreasing the number of data streams.

It is well-known, that the best possible strategy for allocat-
ing the power on the eigenmodes in a MIMO transmission is
the water-filling approach [8]. However, this is only valid for
Gaussian distributed signals.
To circumvent this difficult problem, we are applying a uniform
power distribution on our data streams. In other word, we al-
ways choose

P =
1
D

· 1D×D. (36)

IV. SIMULATIONS

For the simulations we are transmitting at a fixed data rate of
4 bits per channel use over a symmetrical 4 × 4 system.

A. Channel Case 4

Figure 4 shows the BER of the Eigenbeamforming approach
for different receiver structures and different knowledge at the
transmitter if we transmit one 16QAMdata stream. We transmit
L = 60 symbols over one channel realization and averaged over
500 channel realizations.
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Fig. 4. BER as function of the transmit SNR for Eigenbeamforming
with one 16-QAM stream.

Figure 5 shows the BER of the Eigenbeamforming approach
for different receiver structures and different knowledge at the
transmitter if we transmit two 4QAM data stream.
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Fig. 5. BER as function of the transmit SNR for Eigenbeamforming
with two 4-QAM streams.

From the comparison of Figure 4 and 5 we see, that we
gain approximately 3dB SNR if we double the number of data
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streams in the long-termWF approach. This is easily explained
by the fact, that channel type #4 offers two dominant eigenval-
ues.
Additionally we can see, that in the case of a WF receiver and
two data streams (see Figure 5) there is no substantial differ-
ence between short-term and long-term knowledge at the re-
ceiver. However, this is a result of the uniform distribution of
the data rate and power onto the two dominant eigenvalues. Ap-
plying smart power allocation and adaptive modulation would
re-establish the difference between short-term and long-term
knowledge. However, note that also the long-term approach
would gain from smart power allocation and adaptive modula-
tion.

B. Channel Case 3

Figure 6 shows the BER of the Eigenbeamforming approach
for different receiver structures and different knowledge at the
transmitter if we transmit one 16QAMdata stream. We transmit
L = 60 symbols over one channel realization and averaged over
500 channel realizations.
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Fig. 6. BER as function of the transmit SNR for Eigenbeamforming
with one 16-QAM stream.

Figure 7 shows the BER of the Eigenbeamforming approach
for different receiver structures and different knowledge at the
transmitter if we transmit two 4QAM data stream.

From the comparison of Figure 6 and 7 we see, that we lose
performance if we transmit more than one data stream. This
indicates, that the strongest eigenvalue is very dominant. We
also see, that in Figure 7 the long-term approach performs bet-
ter than the short-term approach. The reason is, that in the
short-term approach the data is exactly separated into the two
eigenspaces. If one eigenspace degrades, one half of the data is
lost. In the long-term approach the data is not perfectly sepa-
rated. Therefore always at least a fraction of every data stream
can be recovered from each subspace.

V. CONCLUSIONS

In this paper we have applied the Eigenbeamforming ap-
proach to two realistic channel models, proposed by the 3GPP
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Fig. 7. BER as function of the transmit SNR for Eigenbeamforming
with two 4-QAM streams.

standardization body. We have evaluated this transmission con-
cept with respect to the BER for different receiver structures
and different number of data streams while keeping the data
rate constant. The results show, that for these channel types
long-term knowledge at the transmitter achieves high perfor-
mance, which is close to instantaneous channel knowledge at
the transmitter side.
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