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ABSTRACT 

Reduced-rank processing is a well-known strategy in order 
to reduce computational complexity and enhance the per- 
formance in case of low sample support. In this paper, we 
use the eigenspace based Principal Component (PC) and 
Cmss-Spectral (CS) method for rank-reduction of a matrix 
Wiener Filter (WF) which estimates a signal vector instead 
of a scalar by minimizing the mean square error. 

Finally, we apply the resulting filters to a frequency- 
flat Multi-lnput Multi-Ourput (MIMO) transmission chan- 
nel. Although the matrix PC algorithm is computational 
cheaper than the matrix CS algorithm, we show analytically 
that the two methods are equal if we assume i.i.d. transmit 
symbols and uncorrelated white Gaussian noise. Simulation 
results show additionally that the matrix Mulri-Stage WF 
(MSWF) which approximates the WF in a Krylov subspace 
is partially outperformed in the considered MIMO case. 

1. INTRODUCTION 

The Wiener Filter (WF) [ I ]  recovers an unknown sig- 
nal vector from an observation vector by minimizing the 
Mean Square Ermr (MSE) and exploiting only second order 
statistics. The derivation ends up in solving the Wiener-Hopf 
equation which is computational intense for observations of 
high dimensionality. Since reduced-rank methods approxi- 
mate the WF in a subspace, they reduce computational com- 
plexity and enhance the robustness against estimation errors 
of statistics due to low sample support. 

In this paper, we consider the approximation of the W 
in subspaces spanned by eigenvectors of the covariance ma- 
trix of the observation vector. The Principal Component 
(PC) method [ 2 ]  chooses the eigenvectors corresponding to 
the largest eigenvalues. Neverthelcss, in the case of a mix- 
ture of signals, there is no distinction between the signal of 
interest and the interference signal. Hence, the performance 
of the algorithm degrades dramatically if the interference 
power is larger than the power of the unknown signal. More 
recently, Goldstein et al. [3] introduced the Cross-Spectral 
metnc as a selection criterion for the eigenvectors spanning 
the eigenspace. Compared to the PC method, the CS method 

is more robust against strong interference because it con- 
siders additionally the cross-correlation between the signal 
and the observation vector. Moreover, it minimizes the MSE 
over all eigenspace based methods with equal rank. 

Our contribution is to derive a reduced-rank matrix 
W F  based on the PC and CS method, respectively, and to 
show that the two eigenspace based methods are identi- 
cal if we apply them to a frequency-flat Multi-Znput Mulri- 
Output (MIMO) system where the transmitted symbols are 
1.i.d. and the noise is uncorrelated white Gaussian. More- 
over, the comparison with the matrix version of the Multi- 
Sfage WF (MSWF), a reduced-rank W developed by Gold- 
stein et al. [4, 51 which is based on the Krylov subspace 
of the covariance matrix of the observation and the cross- 
correlation matrix between the observation and the signal 
vector, shows that the eigenspace based methods exceed 
the performance of the matrix MSWF in certain Signal- 
to-Noise Ratio (SNR) regions and have the possibility of 
a more flexible rank selection. 

The next section briefly reviews the WF. In Section 3. 
we derive a matrix version of the PC and CS algorithm and 
finally apply them to a frequency-flat MIMO system in Sec- 
tion 4. Throughout the paper, the covariance matrix of a ran- 
dom vector U is & = E { uuH} and the cross-correlation 
matrix between the vectors U and v is = E {uv"} 
where 'E {.}' denotes expectation and '(.)"' Hermitian. 

. .  
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2. WIENER FILTER 

The WF [ I ]  W E C h f x N  estimates the unknown signal 
vector x[n] E CM from the observation vector y[n] E CN, 
N 2 A4, by minimizing the MSE E (W) between x[n] and 
its estimate i[n] = W y [ n ] ,  i.e. 

W = a r g m i n < ( W ) ,  with (1) 

E (W)  = t r  { Rx ~ 2 Re { W q , . )  + W&WH},  (2) 

W 

where the operation 'tr {.}' denotes the trace of a matrix 
and 'Re { .}' the real part of a complex variable. 

The optimization leads to the Wiener-Hopf equation 
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whose solution, the WF 

- W = %HxRY’, ( 3 )  

achieves the Minimum Mean Square Error (MMSE) 

< ( W )  = t r  {Rx - (4) 

Note that we consider a matrix WF which estimates a 
M-dimensional signal x[n] .  If M = 1, the cross-correlation 
matrix Ry,x shrinks to a cross-correlation vector and we end 
up in the vector WF which produces a scalar output. Con- 
sidering Equation ( 3 ) ,  it is obvious that estimating each ele- 
ment of x[n]  with M parallel vector WFs produces the same 
estimate f[n] as a matrix WF since the covariance matrix 4 
is the same and the cross-correlation vectors of the vector 
WFs are the columns of the cross-correlation matrix R,+ 

3. REDUCED-RANK MATRIX WIENER FILTERS 

The basic idea of reduced-rank equalization is to prefilter 
the N-dimensional observation vector y [ n ]  by the matrix 
T(D1 E C N x D ,  D < N ,  and to get the estimate ic(D1[n] E 

CM by applying a reduced-dimension matrix WF‘ W!,“’ E 
C M x D  to the transformed observation vector ~ ( ~ ’ [ n ]  = 

~ ( ~ ) , ~ y [ n ]  E CD, i.e. dD’[n] = ~ i ~ ) ~ ( ~ ’ , ~ y [ n ] .  n u s ,  
the reduced-dimension matrix WF is the solution of the op- 
timization 

3.1. Principal Component Method 

The PC method [2] chooses the eigenspace such that the 
sum of signal powers in the eigenmodes of the covariance 
matrix R, of the observation is maximized. 

Consider the unitary modal matrix Q = [ql, . . . , qN]  
corresponding to the diagonal matrix of eigenvalues A = 
diag {Al , .  . . , A N }  where A1 2 . . . 2 AN 2 0. Then, 
the PC prefilter mauix ‘2’;;’ is composed by the eigenvec- 
tors corresponding to the largest eigenvalues, i.e. Tg’ = 
[gl,. . . , qD].  Thus, the MMSE may be written as 

0: 
The reduced-rank matrix WF2 is the combination of the pre- 
filter matrix and the reduced-dimension matrix WE i.e. 

w(D1 = w(D)T(DI.H rd C h f x N  (6) 

wIf1 = %,,T H (Dl (T(D),HR,T(D)) -’ , (7) 

and achieves the MMSE 

E ( W(D’) = t r  { Rx - Ry”(D,;XR$) R+D>+} . (8) 

Note that in general, P(D1[n] is unequal to the estimate f[n] 
since the reduced-rank matrix WF W(D1 is only an approx- 
imation of the matrix WF W in the subspace spanned by 
the columns of the prefilter matrix T(D’. 

In this paper, we restrict ourselves on the approximation 
of the matrix WF in eigenspaces, i.e. the prefilter matrix 
“(Dl  is composed by D eigenvectors of the covariance ma- 
trix R,. In the sequel, we assume the eigenvalue decompo- 
sition 4 = QAQH and consider two reduced-rank meth- 
ods with a different choice of eigenvectors. 

whose rows are reduced-dimension vector WFs. 
‘The notation reduced-dimension marrix WF denates a matrix WF 

zAgain, the reduced-rank mrru WF i s  B matrix whose mws < .p; reduced-rank vector WE. 

Since only the N-dimensional eigenvectors correspond- 
ing to the D principal eigenvalues must be computed 
and the inversion of the diagonal matrix R y c D j , K  = 

Ti:)’”R&’ is computational negligible, the PC method 
has a computational complexity of O ( D N 2 ) .  

Again, the parallel application of reduced-rank vec- 
tor WFs based on the PC method yields the same esti- 
mate as the application of the reduced-rank matrix WF 
W;:) because the prefilter matrix Ti;’ does not depend 
on cross-correlation information and therefore, the term 
T ~ ~ ’ R ; ~ ~  &t$$”H is identical for the equalization of 
each element of x[n] (cf. Equation 6 and 7). 

3.2. Cross-Spectral Method 

Compared to the PC method, the CS method [ 3 ]  chooses 
the D eigenvectors which achieve the minimum MSE of all 
eigenspace based reduced-rank matrix WFs with the same 
rank D, i.e. 

where the set 

includes the indices of the eigenvectors with the largest CS 
metrics at = A;’/I%Hxq,J$ IMI denotes the power of the 
set M .  The CS prefilter matrix Ti:’ is finally composed by 
the eigenvectors q,, i E M. 

Note that the complexity of the CS method is equal to 
the one of the WF, I. e. O ( N 3 )  due to the inversion of the 
N x N covariance matrix, because all eigenvectors have to 
be computed before determining the CS metrics. It remains 
the superiority of reduced-rank processing compared to the 
full approach in case of estimation errors of statistics due to 
low sample support [6]. 
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Here, the prefilter matrix TLf) depends on the 
cross-correlation information and hence, the term 
T,, iD)  Ry,,,,CST&~)'H -1 is different for the estimation of 
each element of x[n] .  Thus, thqreduced-rank matrix WF 
based on the CS method is different from the parallel 
application of M reduced-rank vector WFs (cf. Figure 1). 

4. APPLICATION TO A MULTI-INPUT 
MULTI-OUTPUT TRANSMISSION CHANNEL 

4.1. Channel Model 

The MIMO transmission channel with A4 inputs and N out- 
puts is described by the channel matrix H E CNxnr.  The 
received signal vector 

(12) 

is perturbed by additive white Gaussian noise n[n] with 
the complex normal distribution N, (Owxlr u t 1 ~ )  where 
O w x 1  denotes the N x 1 zero matrix and 1~ the N x N 
identity matrix. The transmit signal vector x[n] E Cnr at 
time index n is composed by zero-mean i.i.d. symbols with 
variance U,". Note that the total transmit power is &, = 
tr{R,} =u:M. 

We consider a MIMO scenario [7] with flat fading where 
the channels H are realizations of the random variable 

y[n] = Hx[n] + n[n] E CN, 

H = U R ~ E ~ Z Z T ~ V ~ ~ .  (13) 

The matrix Z E ICNxn' has i.i.d. random entries with 
N, (O>u:). The columns of the unitary matrix U R ~  E 
C N x N  are eigenmodes of the correlations at the re- 
ceiver, i.e. E{HHH} = U: tr {.E&} UR,.E&UF~ with 
the power distribution described by the diagonal matrix 
of eigenvalues E& E ~ , f , ~ " ~  . Analogous, the uni- 
tary matrix V T ~  E @ I W x M  and the diagonal matrix 

E R:."'" from the eigenvalue decomposition of 
E{H"H} = U," tr {.E&} VT~E&V!~ depict the correla- 
tions at the transmitter. Note that the channel amplification 
concerning the variance U," is given by tr{E{HHH}} = 
tr{E{H"H}} =u:tr{E&}tr {.E;x}. 

4.2. Relationship between Matrix PC and CS Method 

In this subsection, we prove that the matrix PC and CS 
algorithm are equal since they choose exactly the same 
eigenspace for the approximation of the WF assuming the 
MIMO channel model defined in Subsection 4. I. First, con- 
sider the eigenvalue decomposition of the covan'ance matrix 

R, = u;HHH + u.21~ = QAQH, 

Ry,x = uZH = U.EVH, 

(14) 

with Q and A from Subsection 3.1. Additionally, assume 
the Singular Value Decomposition (SVD) of 

(15) 

with the unitary matrices U E C N x N  and V E . C M x M ,  
and the rank R = rank {H} 5 A4 matrix 

composed by the singular values a, 2 . . . 2 UR > U R + ~  = 
. . .  = U M = o .  

It can easily be seen that Q = U and A = u;'EET + 
O i 1 N  where '(.)T' denotes transpose. Consequently, with 
Equation (15) and the characteristics of the left and right 
singular vectors, the CS metric f o r i  E {1, . . . N} gets 

R < i 5 iv. 
Due to the descending order of the singular values, it fol- 
lows 011 2 ... 2 (YR > C Y R + ~  = . _ .  = LYN = 0 and 
the set of indices reads as M = {1, . . , , D} if we recall 
Equation (1  1). Thus, the CS method chooses the same set 
of eigenvectors {q l , .  . . , q D }  as those selected by the PC 
method. 

4.3. Simulation Results 

We consider the transmission of QPSK symbols with vari- 
ance U," = 1 over a channel with M = 4 and N = 8. We 
choose a strongly correlated MIMO channel where .E& = 
diag {0.7,0.1,0.1; 0.05.0.02,0.01,0.01,0.01} and E& = 
diag {0.8,0.1,0.05,0.05}. The unitary matrices URr and 
V T ~  are chosen arbitrarily for every realization of the chan- 
ne1 H. Note that the channel amplification is comparable 
to the one of an uncorrelated MIMO channel where the 
zero-mean i.i.d. complex normal distributed random entries 
have variance one if we set U: = 32 = NM because 
tr { = tr { E+x} = 1. Additionally, we assume per- 
fect estimation of second order statistics at the receiver. 

Figure 1 shows the uncoded Bif Ermr Rate (BER) over 
the SNR 10 lg ( h x / u ; )  in dB for the proposed equalizers. 
It can he seen that all rank 4 approximations of the ma- 
trix WF perform equal to the optimum linear filter since 
R = 4. If second order statistics are estimated imperfectly, 
the reduced-rank methods may even he better than the ma- 
trix WF as shown by Goldstein e t  al. [6 ] .  Contrary to the 
matrix MSWF whose rank is restricted to D = 4 in the 
given scenario since it reduces to a matched filter followed 
by a quadratic WF [5], the matrix PC and CS method may 
have ranks D E {l.. . . . 8 } .  Therefore, the rank can even 
be smaller than the dimension of the signal vector. The ma- 
trix PC and CS algorithm with rank D = 3 < R saturate 
for high SNR values but produce identical BERs as derived 
in Section 4.2 although the matrix PC method is much less 
computational intense. Nevertheless, the vector CS method 
is much closer to the optimum solution while having only 

. 
8 
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Fig. 1. Uncoded BER comparison of different reduced-rank equal- 
izers to the WF in a flat MIMO scenario 

a slightly more computational complexity since the SVD 
is performed only once whereas the CS metrics have to be 
computed for every element of the signal vector. 

Now we consider the MIMO scenario described above 
with an additional weak interferer. In this case, the received 
signal vector may be written as 

Y["I = W n l +  HI XI[^] ++I, (18) 

where the matrix H I  is also a realization of H. We assume 
the variance of the elements of the interference signal vector 
x&] to be U:, = 1/3. 
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Fig. 2. Uncoded BER comparison of different reduced-rank equal- 
izers to the WF in an interfered flat MIMO scenario 

The simulation results are plotted in Figure 2 where 
only the signal vector x[n] of interest is detected (single- 
user detection). In this case the matrix PC and CS algorithm :# 

are no longer identical. This would change if we detect the 
user of interest and the interferer together (multi-user detec- 
tion) because we end up in the case similar to a single-user 
MIMO scenario where the channel matrix has the dimen- 
sion N x 2M and the signal vector [xT[n], xT[n]] E @". 
Finally, the rank 4 approximations of the matrix WF are no 
longer equal to the optimum filter since the rank of the chan- 
nel R > 4 due to the additional interferer. Note that the ma- 
trix MSWF performs even worse than the matrix CS method 
for SNR values larger than approximately 15 dB but it has 
also a smaller computational complexity. 

5. CONCLUSIONS 

In this paper, we extended two eigenspace based meth- 
ods, the PC and CS method, for rank-reduction of a matrix 
WF which estimates an unknown signal vector instead of a 
scalar. Moreover, we showed that the PC and CS algorithms 
are exactly the same if we assume a flat MIMO channel with 
i.i.d. symbols and uncorrelated white Gaussian noise. Sim- 
ulation results demonstrated the ability of the matrix CS al- 
gorithm to partially outperform the matrix MSWF in this 
special scenario. Additionally, the eigenspace based meth- 
ods have more freedom in rank selection. 

6. REFERENCES 

[I] L. L. Scharf, Staristical Signal Processing, Addison-Wesley, 

[21 H. Hotelling, "Analysis of a Complex of Statistical Vari- 
ables into Principal Components," J o u m l  of Educational 
Psychology, vol. 24, no. 617, pp. 417441. 498-520, Septem- 
bedOctober 1933. 

1991. 

131 J..S. Goldstein and I. S. Reed, "Reduced-Rank Adaptive Fil- 
tering:' IEEE Transactions on Signal Processing, vot. 45. no. 
2, pp. 492496, February 1997. 

141 J. S. Goldstein, I. S. Reed, D. E. Dudgeon, and J. R. Guerci, 
"A Multistage Matrix Wiener Filter for Subspace Detection:' 
in Pmc. IT Workshop on Derecrion, Esrimnrion and Classif- 
carion and Imaging, February 1999. 

[SI P. Cifuentes, W. L. Myrick, S. Sud, I. S. Goldstein, and M. D. 
Zoltowski, "Reduced Rank Matrix Multistage Wiener Filter 
with Applications in MMSE Joint Multiuser Detection for DS- 
CDMA," in Proc. ICASSP 2002, May 2002, vol. 3. pp. 2605- 
2608. 

[6] J .  S. Goldstein and I. S. Reed. 'Theory of Partially Adap- 
tive Radar," IEEE Transactions on Aerospace and Electronic 
Sysrems. vol. 33. no. 4, pp. 1309-1325, October 1997. 

[71 J. P. Kermoal, L. Schumacher, K. 1. Pedersen, P. E. Mogensen, 
and F. Frederiksen, "A Stochastic MIMO Radio Channel 
Model With Experimental Validation:' IEEE Joumol on Se- 
lected Areas in Commwiicotions, vol. 20, no. 6, pp. 1211- 
1226, August 2002. 

85 


