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ABSTRACT 

Compared to wired channels, time dispersive radio chan- 
nels possess more frequent nulls in their spectral character- 
istics. Thus, the performance of linear filters to compen- 
sate intersymbol interference degrades dramatically. The 
well-known nonlinear Decision Feedback Equalizer (DFE) 
is one approach to improve this behavior. However, in sys- 
tems with observations of high dimensionality, the optimum 
DFE stmcture is computational intensive. 

In this paper, we apply the method of the Multi-Stage 
Wiener Filter (MSWF) to a conventional Minimum Mean 
Square Error (MMSE) DFE in order to reduce computa- 
tional complexity. The application of the new algorithm to 
an Enhanced Data rates f o r  GSM Evolution (EDGE) sys- 
tem demonstrates the ability to outperform the even more 
computational intensive linear Wiener Filter (WF). 

1. INTRODUCTION 

The Wiener Filter (WF) [ l ]  estimates an unknown signal 
from the observation signal in the Minimum Mean Square 
Error (MMSE) sense exploiting only second order statis- 
tics. In applications with observations of high dimension- 
ality, the required inversion of the covariance matrix of the 
observation vector implies high computational complexity. 

Goldstein et al. developed an computationally cheap ap- 
proximation of the WF, the so-called Multi-Stage Wiener 
Filter (MSWF, [2]). More recently, Honig et al. [3] showed 
that the MSWF is the solution of the Wiener-Hopf equa- 
tion in the Krylov subspace of the covariance matrix of the 
observation vector and the cross-correlation vector between 
the observation and the desired signal. Therefore, the Lonc- 
20s algorithm may be used to compute the reduced rank fil- 
ter weights [4]. Note that compared to the MSWF, meth- 
ods based on eigen subspaces like the Principal Compo- 
nent Method 151 or the more sophisticated Cross Spectral 
Method [6] are suboptimum when the sample support is low. 

Nevertheless, all mentioned methods to reduce complex. 
ity are based on the optimum linear filter. In mobile com- 

munication systems, nonlinear processing is necessary [71 
because radio channels possess nulls in their spectral char- 
acteristics. The Decisiun Feedback Equalizer (DFE) intro- 
duced by Austin [SI is one possible nonlinear approach but 
has high computational complexity as well as the WF. 

Zoltowski et al. [9] applied a Conjugate Gradient al- 
gorithm with decision feedback and structured channel es- 
timation to Digital TV which employs a 8-VSB modula- 
tion scheme with no memory. Sun et al. [ I O ]  analyzed the 
asymptotic performance of a Krylov subspace based DFE 
in a multi-user and multi-antenna system. Our contribution 
is to apply the ideas of the MSWF to the Minimum Mean 
Square Error (MMSE) implementation of the DFE and an- 
alyze the performance of its application to an Enhanced 
Data ra tes for  GSM Evolution (EDGE) system which suf- 
fers from severe intersymbol interference due to pulse shap- 
ing as well as multipath. Since EDGE implies a modula- 
tion technique with memory, the problem of applying the 
MSWF to a DFE for EDGE is different from the applica- 
tion to a DFE for Digital TV. 

The next section reviews briefly the MSWF. Before the 
derivation of the Multi-Stage DFE in Section 4, we intro- 
duce the DFE in Section 3. Finally, in Section 5 ,  we present 
simulation results of the application to an EDGE system. 
Throughout the paper the covariance matrix of a vector x[n] 
is denoted by R, = E{z[n]zH[n]}, the cross-correlation 
betweenthevectorsz[n] andy[n]  is Rz,v = E{z[nlyH[nl}, 
the cross-conelation between a vector x[n] and a scalar d [ n ]  
is ~ , , d  = E{z[n]d’[n]}, and the variance of a scalar d[n] 
is U; = E{ld[n] /*} .  The operation ‘(.)H’ denotes conjugate 
transpose. 

2. MULTI-STAGE WIENER FILTER 

The Wiener Filter (WF) minimizes the mean square error 

h ( w )  =U& ~ 2Re{WHT,,,d,} +wH&,w, (1) 

i.e. the variance of the error do[n]  - &[n], where the esti- 
mate $[n] = wH20[n] is obtained by applying the linear 
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Fig. 1. MSWF as Filter Bank 

filter w E CN to the observation signal ~ [ n ]  E CN. This 
design criterion leads to the Wiener-Hopfequation 

Rxowa = Tx,,.dar (2)  

whose solution, the WF W O ,  achieves the Minimum Mean 
Square Error (MMSE) <o(Wa) = a:" - ~ ! & ~ ~ R L t r , , , d ~ .  

Figure 1 sketches the block diagram of the Multi-Stage 
Wiener Filter (MSWF, [2]), an alternative representation of 
the WF. The first filter tl is the normalized matched filter 
rXo ,do / l l ~ , , , dJ2  and the i-th filter ti maximizes the real 
part of the correlation between its output di[n] and the out- 
put di-l[n] of the previous filter t i - 1 .  If we restrict the 
filters t, to be orthonormal, the i-th filter can be computed 
via the following optimization 141: 

t i  = a r g m a x E { R e  {di[n]dt-,[n]}} 

s t . :  tHt = 1 and t H t k  = 0, 15 k < i. 
(3) t 

The solution is the Arnold; iteration (e.g. [ 111) 

with the projector Pi, = 1~ - t r t :  onto the space orthog- 
onal to t k  and the N x N identity matrix 1 ~ .  Since R,, is 
Hermitian, we can use the Lanczos algorithm 

which leads to a tridiagonal covariance matrix R d  of the 
pre-filtered observation vector d[n] = [dl[n], . . . , dry[n]lT. 
The scalar WFs ai estimate the output of the previous filter 
di-l [n] from the error signal &i[n]. 

The MSWF of rank D is obtained by neglecting the 
signal &[n]. Thus, the D-dimensional observation vector 
d(D)[n]  = T(D)3Hzo[n], where the pre-filtermatrixdD) = 
[ t l , .  . . , tD] E CNxD implies only the first D filter vec- 
tors. The reduced dimension WF wiD' E CD estimates 
do[n] from d(D)[n] ,  and the rank D approximation of the 
full-dimensional WF wcD' = d D ) w Y P )  E CN can be ex- 
pressed as 

which yields to the mean square error 

Note that the rank D MSWF is equivalent [3, 41 to the 
solution of the Wiener-Hopf equation in the D-dimensional 
Kiylov subspace K ( D ) ( & o , r x o , d o )  where IC(D)(A, b )  = 

span{[b, A b , .  . . , A(D-l )b] } .  

3. MMSE DECISION FEEDBACK EQUALIZER 

The Decision Feedback Equalizer ( D E ,  [8, 71) considers 
not only the observation signal ~ [ n ]  b!t also prier sym- 
bol decisions do[n - 11 = 6[n - 11 * d o [ n ]  with do[n] = 
&(&[n]), to estimate the desired signal d o [ n ] ,  i .e. &[n] = 
g H ~ o [ n ]  + fH&[n - 11. The operation '*' denotes convo- 
lution, the function &(.) quantization or hard decision, and 
6[n - 11 = [6[n - 11,. . . ,b[n - MI]' E { O ,  1)M. 

do [nl 
+m 

d n l  - 

Fig. 2. MMSE Decision Feedback Equalizer 

In this paper, we restrict ourselves to the W F  version 
of the DFE depicted in Figure 2. Thus, the forward filter 
go t I C N  and the feedback filter f a  E CM are the results 
of the minimization of the mean square error <Dm(g, f) = 

E{/do[n] - &[n]12},i.e. 

h a ,  fo} = arg min EDFE (g, f) . (8) 
(s,f) 

For the solution, we assume t h g  the previous M sym- 
bols have been decided correctly: do[n  - 11 = da[n - 11. 
Thus, T J ~ , ~ ~  = 0, and R J ~  = u : o l ~  and the mean square 
error can be written as 

(9) 

We define&, = - U ; ~ ~ ~ L ~ , ~ R ! & ~ ,  andgetthe 

EDFE (G', f) = do - 2 Re {gH+%do}  + S H & 8  

+zRe{gHEIZ,,hf} + d , f H f .  

forward and feedback filters 

9 0  = R i ; T x a , d o  and fo = -Udo -2 R, , ,hgo ,  H (10) 

respectively, achieving the MMSE of the DFE 

EDFE (So, f a )  = do - T ~ , , , d , , & ~ T x o , d o ~  (11) 

If we use Equation (lo), we get the following expression 
for the estimate: $[n] = g ; ( q [ n ]  - OT:&,,da&[n - 

IV - 510 



11) = gPZo[n].  This leads to an alternative structure of the 
DFE shown in Figure 3. There, the forward filter estimates 
the desired signal do[n] from the transformed observation 
Zo[n] ,  where the part of the interference in the original ob- 
servation vector xg[n] caused by the transmission of prior 
symbol decisions do[n - 11 is removed. 

Fig. 3. Alternative DFE Structure 

4. MULTI-STAGE MMSE DECISION FEEDBACK 
EQUALIZER 

The previous defined matrix Rz, is the covariance matrix 
of the transformed observation Zo [n]. Besides, it can easily 
he shown that r , , , d o  = ~ ~ ~ , d ~ .  Thus, the forward filter go 
in Equation ( I  0) is the solution of the Wiener-Hopf equation 
R z , g o  = ~ ~ ~ : d ~ ,  and therefore the WF to estimate the de- 
sired signal do [n] from the transformed observation Zo [n]. 

Now, we approximate the WF g o  by the rank D MSWF 
as described in Section 2 and get the rank D Multi-Stage 
Decision Feedback Equalizer (MSDFE) with the forward 
filter 

and the feedback filtei 

(13) -2 H ( D ) ,  fip' = - g d o  Rx,,,,gn 

The columns of the pre-filter matrix T ( D )  are the base vec- 
tors of the Krylov subspace K ( D ) ( R z o , ~ , , , d o )  and may 
be computed by the Lanczos algorithm as shown in Sec- 
tion 2.  The rank D MSDFE achieves the mean square error 
(cf. Equation 9) 

5. APPLICATION TO AN EDGE SYSTEM 

In the following, we consider an EDGE system with 8PSK 
modulation and Laurent pulse shaping. The Laurent im- 
pulse is a linearized GMSK impulse [I21 which has a dura- 
tion of five symbol times. Thus, we have severe intersym- 
bo1 interference even without channel distortion. The sym- 
bol time T = 3.69 ps and the two antennae of the mobile 
station receive the signal of a base station which propagates 
over Rayleigh multipath fading channels with a delay spread 

of rmaX = 1Ofis or three symbol times. Note that the sec- 
ond antennais not really necessary but i t  makes the problem 
of equalization easier but also increases dimensionality by 
a factor of two. We assume a constant channel during one 
burst with 148 symbols (excluding guard symbols). 

The MSWF for a linear equalizer and the MSDFE are 
used as equalizer filters for the received signal at the mobile 
station. We sample two times during one symbol duration. 
If we use the MSWF, we take 20 samples of each antenna 
to build the space-time observation vector xn[n], thus, its 
dimension N = 40 and if we choose the MSDFE, we take 
only 15 samples, i.e. N = 30, because of the additional 
M = 10 feedback taps. We keep the total number of taps 
A' + A4 constant in order to compare fairly both equalizers 
(A" = 0 for the MSNWF). 

100 

10-1 

10-2 

m 
e: 
U 

10-4 

1n-5 

. . ..... . . . 

I" 

0 2 4 6 8 10 12 14 16 18 20 
SNWdB 

Fig. 4. BER for known channel 

Figure 4 plots the raw Bit Ermr Rate (BER) over the 
Signal to Noise Ratio (SNR) in dB for either the MSWF 
or the MSDFE with different ranks D. We assume perfect 
channel knowledge at the mobile station. Firstly, the nonlin- 
ear MSDFE outperforms the corresponding linear MSWF 
with the same rank D .  Moreover, the MSDFE with rank 4 
is even better than the optimum WF despite the enormous 
reduction in computational complexity. Secondly, the rank 
6 MSDFE is a good approximation of the optimum DFE 
whereas the BER of the rank 6 MSWF is still higher than 
the BER of the optimum W F  at the same SNR. 

This fact is further confirmed by Figure 5 which shows 
the BER of the MSWF and the MSDFE over the rank D at 
SNR = 15dB. It can he seen that subject to D,  the MSDFE 
converges much faster to the optimum than the MSWF. This 
is due to the fact that the observation vector of the MSDFE 
( N  = 30) has less dimensions than the observation vector of 
the MSWF (N = 40). Note that despite the smaller forward 
filter length, the rank D MSDFE has a lower BER than the 
rank D MSWF for all D. 
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Fig. 5. BER for known channel at SNR = 15 dB 
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Fig. 6. BER for estimated channel 

Finally, we see the BER over SNR for either the MSWF 
or the MSDFE in Figure 6, where the necessary statistics 
is derived from a channel matrix estimated via least squares 
method [ I31 from the 26 training symbols of a burst. The re- 
sults are slightly worse than the simulation results for known 
channel in Figure 4, but again, the MSDFE beats the MSWF 
in performance or computational complexity. 

Besides lowering computational complexity, the MSWF 
improves performance in cases of low sample support where 
there are not enough training symbols or data snapshots to 
average civer in estimating either the cross-correlation vec- 
tor or the covariance matrix. However, the simulation ex- 
amples presented in this paper had adequate sample support 
so that we focus mainly on the reduction in computational 
complexity. 

6. CONCLUSIONS 

In this paper, we derived a reduced rank DFE based on the 
MSWF. Simulation results of an application to an EDGE 
system showed that the MSDFE outperforms the even more 
computational intensive optimum linear WF. Besides, less 
dimensions D are necessary to achieve the performance of 
the corresponding full rank optimum filter, i .e.  the DFE for 
the MSDFE and the W F  for the MSWF. 
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