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Abstract

We investigateTomlinson-Harashima precoding(THP) for multiuser systems. Since we aim at simple receivers,
the feedforward and feedback filters are located at the transmitter. The filters are derived based onminimum mean
square error(MMSE) criteria, with (zero-forcing THP) and without (Wiener THP) additional constraints. For flat
fading and frequency selective scenarios, we modify the well known linear transmit filter optimizations to yield the
optimizations for the respective THP approaches. The resulting feedback filters directly depend on the feedforward
filters which are computed successively. Inspired by this observation, we include a suboptimum ordering strategy for
spatial THP similar tovertical Bell Laboratories space time(V-BLAST) at the receiver. Moreover, we incorporate
a suboptimum latency time optimization for temporal THP. Simulation results reveal that THP is particularly
advantageous in conjunction with higher-order modulation schemes and for highsignal to noise ratio(SNR).

1 Introduction

Motivated by the need for cheap mobiles with low
power consumption, we focus on systems where the
complex signal processing is performed at thebase sta-
tion (BS) as proposed by Gibbard et al. [1], i. e. receive
processing in the uplink and transmit processing in the
downlink. Similar to the noise enhancement problem
of linear receive filters (e. g. [2]), linear transmit filters
(e. g. [3], [4], [5], [6], [7], [8], [9], [10], [11]) suffer
from the need of increased transmit power. To over-
come this problem, THP feeds back alreadytransmitted
symbolsto reduce interference at the receiver [12], [13].
A similar principle at the receiver is thedecision feed-
back equalization(DFE, [14]), where alreadydetected
symbolsare fed back to reduce interference.

THP was originally proposed to nonlinearly combat
intersymbol interference(ISI), since the recursive filter
necessary to equalize an FIR channel linearly can
be unstable (see [12], [13], and also [15]). Spatial
equalization of a flat fadingmultiple input multiple
output (MIMO) system with THP was considered by
Ginis et al. [16] and Fischer et al. [17]. In [18], Fischer
et al. used THP for a DS-CDMA system which was also
investigated by Liu et al. [19]. Contrary to the popular
assumption of full channel knowledge at the transmit-
ter, Fischer et al. [20] proposed THP based on partial
channel state information (see also [21]). However, we
assume perfect instantaneous channel state information
at the transmitter which is available intime division
duplex(TDD) systems from the channel estimation dur-
ing the reception in the other link, if the calibration is
good enough (see e. g. [22]) and the channel coherence
time (e. g. [23]) is large enough. As channel estimation
errors can be neglected compared to the variation of the

channel due to Doppler (cf. [24]), prediction increases
the applicability of precoding (see [25], [24]). In [26],
channel variations are combatted with a robust filter
design. In frequency division duplex(FDD) systems,
feedback of the channel state information from the
receivers to the transmitter is necessary.

Most contributions on THP assumed that the feed-
forward filter is located at the receiver. This assumption
was made, because THP was used to overcome the
error propagation problemof DFE. Obviously, the
complexity of the receiver is only reduced slightly
in this case, as the feedforward filter still has to be
optimized and applied by the receiver. If the feedfor-
ward filter of THP is deployed at the transmitter, the
receiver can be simplified dramatically. This setup for
decentralized receivershas only been considered in [1],
[16], [27], [18], [28], [19] and will be used in this paper.

First, we focus on multiuser systems with flat fad-
ing vector channels (which are equivalent to MIMO
systems without cooperation of the receiving antenna
elements) and modify the well known optimizations for
the linear zero-forcing and the linear Wiener transmit
filter to obtain the optimizations for the respective THP
filters under the assumption of known ordering as we
have done for DFE in [29]. For both THP filter types,
the feedback filter directly depends on the feedforward
filter and the channel. Since the columns of the resulting
feedforward filters are computed successively by simply
dropping the respective row in the channel matrix at
each step, we employ a successive algorithm to find
the suboptimum ordering. This heuristic approach to
find the ordering for THP is similar to the V-BLAST
ordering for DFE [30]. As our THP filters are based on
an optimization that applies the same scalar weight at
all receivers, our precoding tries to support the different
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users equally in contrast to [31] where Windpassinger
et al. proposed an ordering which leads to maximally
different receive powers and is advandageous in con-
junction with adaptive modulation.

Second, we investigate THP for frequency selective
fading channels. Starting from the linear transmit filters,
we develop spatio-temporal THP which suppresses the
ISI of succeeding symbols linearly, theco-channel
interference(CCI) with spatial THP, and ISI due to
already transmitted symbols with temporal THP. We
apply the ordering algorithm developed for flat fading
channels also to spatio-temporal THP and incorporate
a latency time optimization (see e. g. [32]) in THP for
frequency selective channels.

We explain the system models for flat fading and
frequency selective vector channels in Section 2 and
discuss zero-forcing and Wiener THP together with the
respective ordering algorithms for flat fading channels
in Section 3. After introducing spatio-temporal THP for
frequency selective channels in Section 4, we present
and analyze the simulation results in Section 5.

1.1 Notation

Vectors and matrices are denoted by lower case bold
and capital bold letters, respectively. We useE[•], ‘∗’,
‘⊗’, (•)∗, (•)T, and(•)H for expectation, convolution,
the Kronecker product, complex conjugation, transpo-
sition, and conjugate transposition, respectively. The
trace of a matrix is denoted bytr(•) and the pseudo in-
verse by(•)+. All random processes are assumed to be
zero-mean and stationary. The covariance matrix of the
vector processx[n] is denoted byRx = E

[
x[n]xH[n]

]
,

whereas the variance of the scalar processy[n] is
denoted byσ2

y = E
[
|y[n]|2

]
. TheN×M zero matrix is

0N×M , theM -dimensional zero vector is0M , and the
N×N identity matrix is1N , whosen-th column isen.
Throughout the paper, we utilize the selection matrix
S(q,M,N) = [0M×q,1M ,0M×N−q] ∈ {0, 1}M×M+N .

2 System Model

2.1 Flat Fading Vector Channels
The symbolssk[n], k = 1, . . . ,K, for theK receivers
are stacked in the vector signal

s[n] =
[
s1[n], . . . , sK [n]

]T ∈ CK
and passed through the precoder consisting of the

feedforward filterP ∈ CNa×K and the feedback filter
F ∈ CK×K (cf. Fig. 1), whereNa denotes the number
of antenna elements at the transmitter. For THP, the
modulo operation for complexx is defined as

M(x) = x−
⌊

Re (x)
τ

+
1
2

⌋
τ − j

⌊
Im (x)
τ

+
1
2

⌋
τ.

The floor operatorb•c gives the integer number smaller
than or equal to the argument and the constantτ de-
pends on the used modulation alphabet (e. g. [17]), e. g.
as sk[n] ∈ {exp(jµπ/4) |µ ∈ {−3,−1,+1,+3}}, we
setτ = 2

√
2 for QPSK. For linear transmit processing,

the modulo operator reduces toM(x) = x and the
feedback filter is inactive, i. e.F = 0K×K .

The precoded signaly[n] = Pv[n] ∈ CNa propa-
gates over thek-th of theK vector channelshk ∈ CNa,
and leads together with the complex Gaussian noise
ηk[n] to the received signal̃sk[n]. After forming vector
signals s̃[n],η[n] ∈ CK similar to s[n], the received
signals can be concisely expressed as

s̃[n] = Hy[n] + η[n] = HPv[n] + η[n], (1)

whereH = [h1, . . . ,hK ]T ∈ CK×Na. All receivers
apply the same scalar weightingβ−1 to correct the
amplitude of the desired signal which follows from the
transmit power constraint. Note that [18], [19] did not
make the restriction of identical weighting, but a unitary
feedforward filterP was assumed.

Every receiver must apply a modulo operationM(•)
to remove the effect of the modulo operation at the



transmitter. The quantizerQ(•) maps onto the signal
constellation to generate the symbol estimates. Note
that the chain of modulo operation and quantizer can
be interpreted as a modified quantizer that also maps
onto the signal constellation, whose mapping is based
on an infinite periodic repetition of the original signal
constellation. Due to the additional neighbours in the
periodic repetition, the error probability is increased.

2.2 Frequency Selective Vector Channels
Due to the frequency selectivity of the channels

hk[n] =
Q∑
q=0

hk,qδ[n− q] ∈ CNa, k = 1, . . . ,K,

with maximum delayQ, the feedforward filter also has
to be FIR:

P [n] =
L∑
`=0

P `δ[n− `] ∈ CNa×K .

Additionally to the feedback filterF ∈ CK×K for
spatial THP, the feedback filterT [n] ∈ CK×K is neces-
sary for temporal THP. Again, when linear precoding is
utilized,M(x) = x and the feedback filters are inactive,
i. e. F = 0K×K andT [n] = 0K×K .

The k-th received signal reads as (see Fig. 2)

s̃k[n] = hT
k [n] ∗ P [n] ∗ v[n] + ηk[n] or

s̃k[n] =
K∑
i=1

pT
i Hkvi[n] + ηk[n], (2)

where we defined

Hk =
Q∑
q=0

S(q,L+1,Q) ⊗ hk,q ∈ CNa(L+1)×L+Q+1,

pi = [eT
i P

T
0 , . . . ,e

T
i P

T
L]T ∈ CNa(L+1), and

vi[n] = [vi[n], . . . , vi[n− L−Q]]T ∈ CL+Q+1,

with vi[n] = eT
i v[n]. Since we assume uncorrelated

outputs of the modulo operator at the transmitter, i. e.
E
[
vi[n]vT

j [n]
]

= δ[i−j]σ2
v1L+Q+1, the transmit power

is simply E[‖y[n]‖22] = σ2
v

∑K
i=1 ‖pi‖22.

3 THP for Flat Fading Channels

3.1 Zero-Forcing THP (ZF-THP)
Linear zero-forcing precoding(TxZF) results from
MSE minimization under the constraint of an unbiased
and interference-free estimateβ−1s̃[n]. The TxZF op-
timization can be written as (e. g. [8])

{P ′ZF, β
′
ZF} = argmin

{P ,β}
E
[∥∥s[n]− β−1s̃[n]

∥∥2

2

]
(3)

s. t.: s̃[n]|η[n]=0K
= βs[n] andE

[
‖y[n]‖22

]
= Etr,

whereEtr denotes the available transmit power. With
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Fig. 3. Linear Representation of the Precoder

Lagrangian multipliers we easily obtain

P ′ZF = β′ZFH
H
(
HHH

)−1

andβ′ZF is chosen to set the transmit power toEtr.
Fig. 3 which depicts a linear representation of the

precoder used in the original papers [12], [13] suggests
how we have to modify the optimization in Eqn. (3) to
end up with the optimization for ZF-THP. The auxiliary
signal a[n], whose entries have real and imaginary
parts which are integer multiples ofτ , is chosen to get
entries ofv[n] whose real and imaginary parts lie in
the interval[−τ/2,+τ/2). As a[n] is removed by the
modulo operators at the receivers, the desired value for
s̃[n] is d[n] = s[n] + a[n] instead ofs[n]. Moreover,
we have to take into account thatF can only feed back
already precoded entries ofv[n]. Thus, the feedback
filter F has to be lower triangular with zero main
diagonal under the assumption of ordered data streams.
Thus, we get following optimization for ZF-THP:

{P ZF,F ZF, βZF} = argmin
{P ,F ,β}

E
[∥∥d[n]− β−1s̃[n]

∥∥2

2

]
s. t.: s̃[n]|η[n]=0K

= βd[n], E
[
‖y[n]‖22

]
= Etr,

F : lower triangular, zero main diagonal.
(4)

Sinced[n] = v[n]−Fv[n] as can be concluded from
Fig. 3, above optimization simplifies to

{P ZF,F ZF, βZF} = argmin
{P ,F ,β}

σ2
ηβ
−2 (5)

s. t.:HP = β (1K − F ) , tr
(
PRvP

H
)

= Etr, and

SiFei = 0i, i = 1, . . . ,K,

where σ2
η =

∑K
i=1 σ

2
ηi . We split the constraint on

the structure ofF into K constraints, each for one
column ofF . To this end, we introduced the selection
matrix Si = S(0,i,K−i) ∈ {0, 1}i×K to cut out the
first i entries of thei-th column ofF . Furthermore, we
assume that the signals at the output of the modulo
operator at the transmitter are uncorrelated, that is
Rv = E[v[n]vH[n]] = diag(σ2

v1
, . . . , σ2

vK ). Then, the
solution of Eqn. (5) can be found with Lagrangian
multipliers:

P ZF = βZF

K∑
i=1

HHST
i (SiHHHST

i )−1Sieie
T
i ,

F ZF =
K∑
i=1

(ei −HHHST
i (SiHHHST

i )−1Siei)eT
i ,

and βZF is chosen to fulfill the transmit power con-
straint. Note thatP ZF andF ZF only exist, ifNa ≥ K.



1: K ← {1, . . . , K}
G←H
for i = K, . . . , 1:

4: P ← G+

5: ki ← argmin
k∈K

‖Pek‖22
6: pi ← Peki
7: f i ← eki −Hpi

K ← K\{ki}
G← (1K − ekieT

ki
)G

10: χ← σ2
s‖p1‖22 + σ2

v

∑K
i=2 ‖pi‖22

β ←
√
Etr/χ

P ← β[p1, . . . ,pK ]

TABLE I

FILTER AND ORDERINGCOMPUTATION FORSPATIAL ZF-THP

The i-th column ofP ZF is the i-th column of the
pseudo-inverse ofSiH weighted withβZF, whereas
the i-th column ofF ZF is the respective column of the
pseudo-inverse weighted withH and subtracted from
ei. SinceSiH ∈ Ci×K consists of the firsti rows
of H, we observe that thei-th column ofP ZF only
depends on the firsti rows of H which suggests to
compute the filtersP ZF andF ZF successively. There-
fore, we start withi = K (HK = H), end withi = 1,
drop the last row ofHi to form the new channel matrix
Hi−1 after stepi, set thei-th column ofP ZF equal to
the weighted last column of the pseudo inverse ofHi,
and compute thei-th column ofF ZF accordingly.

Obviously, the order of precoding cannot be noticed
by the receivers. Therefore, we can change the ordering
to further minimize the cost function. Since the columns
of P ZF are orthogonal, we get

σ2
ηβ
−2
ZF =

σ2
η

Etr

K∑
i=1

σ2
vki

∥∥∥(ΠiH)+
eki

∥∥∥2

2
. (6)

Note that ki is the index of the receiver which is
precoded at thei-th step and the projection matrix

Πi = 1K −
K∑

j=i+1

ekje
T
kj

sets the rows of the channel matrix belonging to
receivers which will be precoded at a later step to
zero. As the optimum ordering{k1, . . . , kK} can only
be found by examining allK! possibilities, we use
following suboptimum criterion known from V-BLAST
instead of minimizing Eqn. (6):

ki = argmin
k∈{1,...,K}\{ki+1,...,kK}

∥∥(ΠiH)+ek
∥∥2

2
,

for i = K, . . . , 1. Hence, we minimize thei-th
summand for fixedki+1, . . . , kK instead of the whole
sum. The resulting algorithm for joint order and filter
computation is listed as pseudo code in Table I. The
algorithm for ordered spatial THP is found in Table II.
Note that we usedσ2

s = E[|sk1 [n]|2] as variance of
the first precoded signalv1[n] in line 10 of Table I,
since v1[n] is simply sk1 [n] (see line 2 in Table II).

1: for i = 1, . . . ,K:
2: vi[n]←M(ski [n] + eT

ki

∑i−1
j=1 f jvj [n])

v[n] = [v1[n], . . . , vK [n]]T

y[n] = Pv[n]

TABLE II

ORDEREDSPATIAL THP

The variance of the other outputs of the modulo opera-
tor is approximately equal toσ2

v = E[|vi[n]|2] = τ2/6,
i = 2, . . . ,K, under the assumption of uniformly dis-
tributed symbols (see e. g. [17]). When comparing the
Tables I and II, we see that the columns ofP ZF are
applied in reverse order of their computation, e. g.
the K-th column is computed first, but applied last.
Because this property is in contrast to V-BLAST for
DFE, we do not term the ordering algorithm V-BLAST
for THP like in [31].

3.2 Wiener THP (WF-THP)
The optimization of thelinear Wiener transmit filter
(TxWF, e. g. [8], [9]) is found by dropping the zero-
forcing constraint in Eqn. (3):

{P ′WF, β
′
WF} = argmin

{P ,β}
E
[∥∥s[n]− β−1s̃[n]

∥∥2

2

]
s. t.: E

[
‖y[n]‖22

]
= Etr,

(7)

whose solution reads as

P ′WF = β′WF

(
HHH + ξWF1Na

)−1

HH,

whereξWF = σ2
η/Etr and β′WF is necessary to fulfill

the transmit power constrainttr(PRsPH) = Etr.
Similar to ZF-THP, the WF-THP optimization can

be obtained from the TxWF optimization by replacing
the desired signals[n] by d[n] = v[n] − Fv[n] and
constraining the feedback filterF to be lower triangular
with zero main diagonal:

{PWF,FWF, βWF} = argmin
{P ,F ,β}

E
[
‖ε[n]‖22

]
s. t.: tr

(
PRvP

H
)

= Etr and

SiFei = 0i, i = 1, . . . ,K,

(8)

where the error signal can be written as

ε[n] = v[n]− Fv[n]− β−1HPv[n]− β−1η[n].

With the Lagrangian multiplier method, the result of
above optimization can be found:

PWF = βWF

K∑
i=1

A−1
i H

HST
i Sieie

T
i ,

FWF =
K∑
i=1

(
ST
i Si − 1K

)
HA−1

i H
Heie

T
i ,

andβWF is defined bytr(PRvPH) = Etr. Here, we
used the abbreviationAi = HHST

i SiH+ξWF1Na and
the scalarξWF is againσ2

η/Etr.



1: K ← {1, . . . ,K}
G←H
for i = K, . . . , 1:

4: P ← (GGH + ξWF1K)−1

5: ki ← argmin
k∈K

eT
kPek

6: pi ← GHPeki
7: f i ← (Πi − 1K)Hpi

K ← K\{ki}
G← (1K − ekieT

ki
)G

χ← σ2
s‖p1‖22 + σ2

v

∑K
i=2 ‖pi‖22

β ←
√
Etr/χ

P ← β[p1, . . . ,pK ]

TABLE III

FILTER AND ORDERINGCOMPUTATION FORSPATIAL WF-THP

We make the same observation as for ZF-THP: the
i-th column ofPWF only depends on the firsti rows of
H and the respective column ofFWF directly follows
from the i-th column ofPWF. Thus, we can use a
similar successive algorithm for WF-THP as for ZF-
THP. Plugging the optimumPWF, FWF, andβWF into
the cost functionσ2

ε = E[‖ε[n]‖22] yields:

σ2
ε

ξWF
=

K∑
i=1

σ2
vki
eT
ki

(
ΠiHH

HΠi + ξWF1K
)−1

eki ,

(9)

where we used thematrix inversion lemma(e. g. [33]),
employed the already defined projection matrixΠi, and
included the ordering indexki. To avoid the exami-
nation of all K! possibilities for ordering, we make
the heuristic simplification to minimize each summand
separately instead of the whole sum in Eqn. (9).

The resulting algorithm for joint WF-THP filter and
ordering computation can be found in Table III which
we obtained by changing the lines 4, 5, 6, and 7 of
Table I. The resulting WF-THP filters are applied in
the same manner as their ZF-THP counterparts. Thus,
Table II is also valid for WF-THP.

4 Multiuser Space-Time THP
In the following, we focus on the design ofWiener
spatio-temporal THP(WF-ST-THP) as the design of
the zero-forcing variant is straightforward — only the
constraint for an unbiased and interference-free esti-
mateβ−1s̃[n] has to be included.

The TxWF for frequency selective channels follows
from a MSE minimization similar to the TxWF for flat
fading channels in Eqn. (7):

{P̌WF, β̌WF} = argmin
{P ,β}

K∑
k=1

E
[
|ε̌k[n]|2

]
s. t.: E

[
‖y[n]‖22

]
= Etr,

(10)

where we usedP = [p1, . . . ,pK ] ∈ CNa(L+1)×K and
ε̌k[n] = sk[n − ν] − β−1s̃k[n]. The latency time is

s[n]

a[n]

d[n]

F

v[n]

T [n]

Fig. 4. Linear Representation of the Precoder

denoted byν. The coefficients of the TxWF filter for
the k-th data streamsk[n] can be expressed as

p̌T
WF,k = β̌WFe

T
ν+1H

H
k

(
ȞȞ

H
+ ξWF1Na(L+1)

)−1

,

with Ȟ = [H1, . . . ,HK ] ∈ CNa(L+1)×K(L+Q+1) and
ξWF = σ2

η/Etr. Note that the TxZF which is the TxWF
after applying the matrix inversion lemma and setting
ξ = 0 only exists, ifNa(L+ 1) ≥ K(L+Q+ 1).

Like for flat fading channels, we have to employ the
signaldk[n− ν] = eT

k d[n− ν] (see Fig. 4) as desired
signal instead ofsk[n−ν] to get the THP optimization.
Additionally, we have to constrain the structure of the
spatial feedback filterF :

{PWF,FWF,TWF, βWF} = argmin
{P ,F ,T ,β}

K∑
k=1

σ2
εk

s. t.: E
[
‖y[n]‖22

]
= Etr and

F : lower triangular, zero main diagonal.

(11)

Here,σ2
εk is the variance of the error for thek-th data

stream which can be expressed as

εk[n] = dk[n− ν]− β−1s̃k[n]

and as can be seen in Fig. 4, the signaldk[n− ν] is

eT
ν+1vk[n]− eT

k

K∑
i=1

(
Feie

T
ν+1 + T iS(ν)

)
vi[n],

where we collected the coefficients of the temporal
feedback filterT [n] =

∑L+Q−ν
r=1 T̃ rδ[n − r] for the

i-th THP streamvi[n] in

T i =
[
T̃ 1ei, . . . , T̃L+Q−νei

]
∈ CK×L+Q−ν

and in the optimization of Eqn. (11), we utilized the
abbreviationT = [T 1, . . . ,TK ] ∈ CK×K(L+Q−ν).
Moreover, we introduced the special selection matrix
S(ν) = S(ν+1,L+Q−ν,ν+1) ∈ {0, 1}L+Q+ν×L+Q+1 to
cut out the lastL+Q− ν entries ofvi[n].

To solve the optimization in Eqn. (11) we divide the
constraint on the structure ofF into K constraints for
the K columns ofF like in the flat fading case (cf.
Eqn. 8). With Lagrangian multipliers we easily find
expressions for the feedback filters as functions of the



1: ν ← argmin
ν′

∑K
i=1 e

(ν′),T
i B

(ν′),−1
K e

(ν′)
i

K ← {1, . . . ,K}
G← ȞΠ

(ν)
K

for i = K, . . . , 1:
5: P ← (GHG+ ξWF1K(L+Q+1))

−1

6: ki ← argmin
k∈K

e
(ν),T
k Pe

(ν)
k

7: pT
i ← e

(ν),T
ki

PGH

f i ← (Πi − 1K)
∑K
j=1 ejp

T
i Ȟe

(ν)
j

T i ← −
∑K
j=1 ejp

T
i HjS

(ν),T

K ← K\{ki}
G← G(1K(L+Q+1) − e

(ν)
ki
e

(ν),T
ki

)

χ← σ2
v

∑K
i=1 ‖pi‖22

β ←
√
Etr/χ

for i = 0, . . . , L:
P i = βS(Nai,Na,NaL)[p1, . . . ,pK ]

for i = 1, . . . , L+Q− ν:
T̃ i = [T 1ei, . . . ,TKei]

TABLE IV

FILTER AND ORDERINGCOMPUTATION FORWIENER ST-THP

feedforward filterspT
WF,1, . . . ,p

T
WF,K :

TWF,i = −
K∑
k=1

β−1
WFekp

T
WF,iHkS

(ν),T and

FWF =
K∑

i,k=1

(
ST
i Si − 1K

)
β−1

WFekp
T
WF,iHkeν+1e

T
i .

With the projectorS(ν)
k,iS

(ν),T
k,i which is defined as

1L+Q+1 +
(
‖Siek‖22 − 1

)
eν+1e

T
ν+1 − S(ν),TS(ν),

andAi =
∑K
k=1HkS

(ν)
k,iS

(ν),T
k,i HH

k + ξWF1Na(L+1),
the feedforward filters can be written as

pT
WF,i = βWFe

T
ν+1S

(ν)
i,i S

(ν),T
i,i HH

i A
−1
i , i = 1, . . . ,K.

The scalarβWF is defined by the transmit power
constraint, i. e.σ2

v

∑K
i=1 ‖pWF,i‖22 = Etr.

We conclude from above results that thei-th feed-
forward filter pT

WF,i only depends on the firstν + 1
columns ofH1, . . . ,H i and the firstν columns of
Hi+1, . . . ,HK . Moreover,TWF,i and also thei-th
column ofFWF only depend onpWF,i. This observation
suggests to compute the filters successively like in the
flat fading case: start with the firstν+1 columns of all
channel matrices to computepT

WF,K , drop theν + 1-th
column ofHi after computingpT

WF,i, and basepT
WF,i−1

on the remaining columns of the channel matrices.
Again, we can change the order of precoding as done

for spatial THP, but we also can optimize the latency
time to further minimize the MSE. To this end, we plug
the filters for fixed ordering{k1, . . . , kK} and fixed
latency timeν into the MSEσ2

ε =
∑K
i=1 σ

2
εi :

σ2
ε = σ2

vξWF

K∑
i=1

e
(ν),T
ki

B
(ν),−1
i e

(ν)
ki
, (12)

1: for i = 1, . . . ,K:
vi[n]←M(ski [n] + eT

ki

∑i−1
j=1 fjvj [n])

vi[n]←M(vi[n] + eT
ki

∑L+Q−ν
j=1 T̃ jv[n− j])

v[n] = [v1[n], . . . , vK [n]]T

y[n] =
∑L
`=0 P `v[n− `]

TABLE V

ORDEREDSPATIO-TEMPORAL THP

5: P ← G+

6: ki ← argmin
k∈K

‖PTe
(ν)
k ‖22

7: pT
i ← e

(ν),T
ki

P

TABLE VI

FILTER AND ORDERINGCOMPUTATION FORZF-ST-THP

whereB(ν)
i = Π

(ν)
i Ȟ

H
ȞΠ

(ν)
i +ξWF1K(L+Q+1) and

e
(ν)
k = e(L+Q+1)(k−1)+ν+1. The k-th block diagonal

entry of the projector

Π
(ν)
i = blockdiag

(
Π

(ν)
1,i , . . . ,Π

(ν)
K,i

)
sets the lastL+Q+ 1− ν or L+Q− ν columns of

the respective channel matrixHk to zero:

Π
(ν)
k,i = 1L+Q+1 − S(ν),TS(ν) −

K∑
j=i+1

eν+1e
T
k ekje

T
ν+1.

Note that the sum vanishes fori = K and therefore,
Π

(ν)
k,K = 1L+Q+1 − S(ν),TS(ν).
Instead of the minimization of the MSE in Eqn. (12)

which requires the examination ofK!(L + Q + 1)
possible ordering and latency time combinations we
split the problem into two subproblems. First, we
minimize the MSE by choosing the latency time under
the assumption that no spatial THP is applied. Second,
we use the heuristic successive algorithm which we
employed for spatial THP over flat fading channels to
find the ordering. The resulting algorithm for joint order
and filter computation of WF-ST-THP can be found in
Table IV. The ST-THP procedure is outlined in Table V.

Zero-forcing spatio-temporal THP(ZF-ST-THP) can
be computed with the same algorithm as in Table IV,
only lines 5, 6, and 7 have to be changed (see Table VI).

5 Simulation Results
We presentuncoded bit error ratio(uncoded BER)
results comparing the linear transmit filters with the
different MMSE approaches to THP. We use following
(transmit) SNR definition: SNR= 10 log10(Etr/σ

2
η).

In all scenarios, we assume that the transmitter has full
channel state information.

5.1 Flat Fading Vector Channels
In Fig. 5, we present results for a system withNa = 4
antenna elements at the transmitter andK = 3 receivers
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Fig. 5. QPSK Transmission over Frequency Flat Channels, 3 Users,
4 Tx Antennas

in a spatially uncorrelated flat Rayleigh fading scenario,
using QPSK modulation. The results are the mean of
10000 channel realizations and20 symbol vectors were
transmitted for each realization. We observe that the
linear transmit filters outperform their THP counterparts
for low SNR values. This behaviour can be explained
by the fact that in THP systems, even though QPSK is
used, the decision depends on phase and amplitude in-
formation, due to the modulo operation at the receiver.
For higher SNR values,spatial THP(S-THP) provides
superior performance. TheWiener S-THP(WF-S-THP)
solution performs significantly better than both the
zero-forcing S-THP(ZF-S-THP) presented in this paper
and the zero-forcing approach with unitary feedforward
filter presented by Fischer et al. in [18]. Moreover, the
ZF-S-THP solution derived from the TxZF optimization
leads to better results for high SNR than the unitary ZF-
S-THP although the unitary ZF-S-THP allows different
scalar weighting at the receivers and has therefore
potentially more degrees of freedom. We can conclude
that the weighting for unitary ZF-S-THP arising from
the LQ-factorization as proposed in [18] is suboptimum
with respect to overall BER, since we used the same
ordering as for ZF-S-THP.

5.2 Frequency Selective Vector Channels
In Fig. 6, we show results for a system withNa = 4
antenna elements at the transmitter,K = 3 receivers,
and QPSK modulation. The frequency selective chan-
nels haveQ + 1 = 6 paths and an exponential power
delay profile. Again, we assume uncorrelated Rayleigh
fading. The results are the mean of3000 channel
realizations,100 symbol vectors were transmitted per
channel realization. The linear transmit filters TxWF
and TxZF are of orderL = 15, but the order of the
feedforward filter ofspatio-temporal THP(ST-THP) is
set toL = 7 taking into account the coefficients of the
THP systems’ feedback filter in order to end up with a
fair comparison between the different systems.
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Fig. 6. QPSK Transmission over Frequency Selective Channels with
Exponential Power Delay Profile

In Fig. 6, we can observe that the linear TxZF
is clearly outperformed by thezero-forcing ST-THP
(ZF-ST-THP). In contrast to the ZF solutions, in the
uncoded BER region between10−1 and 10−2, the
Wiener ST-THP(WF-ST-THP) and the TxWF show
almost identical performance (difference is less than
1 dB). For high SNR values, the WF-ST-THP and the
ZF-ST-THP both outperform the TxWF.

For the results in Fig. 7, we only changed the
modulation to 16QAM, leaving all other simulation
parameters unchanged. The results highlight the impact
of the chosen modulation on the THP systems, which
was already discussed in Subsection 5.1. Clearly, the
higher the order of the modulation alphabet, the better
the performance of the THP systems compared to the
linear transmit filters. From Fig. 7, it can be seen that in
the given scenario, the WF-ST-THP solution provides
optimum performance, regardless of the SNR region.
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Fig. 7. 16QAM Transmission over Frequency Selective Channels
with Exponential Power Delay Profile

Fig. 8 shows results for a channel of orderQ = 4
with a uniform power delay profile. For the linear
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Fig. 8. QPSK Transmission over Frequency Selective Channels with
Uniform Power Delay Profile

transmit filters, we setL = 11, for the feedforward
filters of the THP-systems we choseL = 5. It can be
observed that in case of a uniform power delay profile,
the difference between the ZF-ST-THP solution and the
WF-ST-THP solution is larger than for the exponential
power delay profile.
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