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Abstract— Compared to the conventional full-rank Wiener
Filter (WF), reduced-rank processing in the minimum mean
square error sense is a well-known strategy in order to reduce
computational complexity and enhance performance in case of
low sample support.

In this paper, we reveal the relationship between block Krylov
methods and the Multi-Stage Matrix WF (MSMWF) as a
reduced-rank matrix WF which estimates a signal vector instead
of a scalar. The new insights lead to an implementation of the
MSMWF based on Ruhe’s variant of the block Lanczos algorithm
which is more flexible with respect to rank selection compared
to existing algorithms.

Finally, the application to a time-dispersive Multiple-Input
Multiple-Output (MIMO) system demonstrates the ability of the
new algorithm to lessen receiver complexity while maintaining
the same level of system performance or even improve it if second
order statistics are not perfectly known. Moreover, the MSMWF
outperforms the parallel implementation of multi-stage vector
WFs with a comparable computational complexity.

I. INTRODUCTION

The Wiener Filter (WF) [1], [2] estimates an unknown
signal from an observation signal by minimizing the Mean
Square Error (MSE). The derivation ends up in solving the
Wiener-Hopf equation which is computational intense for ob-
servations of high dimensionality. Since reduced-rank methods
approximate the WF in a lower dimensional subspace, they
reduce computational complexity and enhance the robustness
against estimation errors of second order statistics due to low
sample support.

The Principal Component (PC) algorithm [3] was the first
reduced-rank approach where the eigenvectors corresponding
to the largest eigenvalues of the auto-correlation matrix of the
observation vector span the subspace for the approximation of
the WF. An alternative method exploits information about the
cross-correlation between the observation and the desired sig-
nal by using the Cross-Spectral (CS) metric [4] instead of the
eigenvalue magnitude to choose the eigenvectors spanning the
subspace. Contrary to the eigenspace based PC or CS method,
the Multi-Stage Vector WF (MSVWF) [5], [6] approximates
the vector WF in a Krylov subspace composed of the auto-
correlation matrix of the observation and the cross-correlation
vector between the observation and the desired signal. More
recently, Goldstein et al. [7], [8] derived the Multi-Stage
Matrix WF (MSMWF) by applying the multi-stage principle to

a Matrix WF (MWF) which estimates a signal vector instead
of a scalar. Due to the block structure, the dimension of the
observation vector and the rank of the MSMWF is restricted
to be an integer multiple of the dimension of the desired signal
vector.

Our contribution is to show the relationship between
the MSMWF and block Krylov methods [9] like the block
Arnoldi [10] or the block Lanczos algorithm [11], [12], [13]
if we exploit additionally that auto-correlation matrices are
Hermitian. Moreover, we consider Ruhe’s version [14] of the
Lanczos algorithm in order to get a new implementation of the
MSMWF which is more flexible concerning rank selection,
i. e. the rank can be any integer between the dimension of
the signal vector and the dimension of the observation vector.
Furthermore, the dimension of the observation is no longer
restricted to be an integer multiple of the dimension of the
desired signal.

In the next section, we briefly review the MSMWF. Before
we derive a MSMWF based on the Lanczos-Ruhe algorithm in
Section IV, we show the relationship between the MSMWF
and block Krylov methods in Section III. Finally, we apply
the considered algorithms to a time-dispersive MIMO System
in Section V. Throughout the paper, Ru = E

{
uuH

}
denotes

the auto-correlation matrix of the random vector u, Ru,v =
E

{
uvH

}
the cross-correlation matrix between the vectors u

and v, 1n a n× n identity, and 0m×n a m× n zero matrix.

II. MULTI-STAGE MATRIX WIENER FILTER (MSMWF)

Applying the linear matrix filter W ∈ C
M×N , M ∈ N,

N ∈ N, to the observation vector y[n] ∈ C
N , N ≥ M , leads

to the estimate x̂[n] = Wy[n] of the desired signal vector
x[n] ∈ C

M . The power of the Euclidian norm of the estimation
error e[n] = x[n]− x̂[n] is the Mean Square Error (MSE)

ξ (W) = tr
{

Rx − 2Re {WRy,x}+ WRyWH
}

. (1)

The Matrix Wiener Filter (MWF) W minimizes ξ (W) and
consequently solves the Wiener-Hopf equation

RyW
H = Ry,x ⇔ W = RH

y,xR
−1
y . (2)

Thus, the Minimum MSE (MMSE) may be written as ξ (W ) =
tr

{
Rx −RH

y,xRyRy,x

}
.
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The first step of the Multi-Stage Matrix Wiener Filter
(MSMWF) introduced by Goldstein et al. [7], [8] is to prefilter
the observation vector y[n] with the full-rank matrix T̃1 =[
MT

1 ,BT
1

]T ∈ C
N×N to get the transformed observation

vector

z1[n] = T̃1y[n] =
[
M1y[n]
B1y[n]

]
=:

[
x1[n]
y1[n]

]
, (3)

where

M1 =
(
RH

y,xRy,x

)− 1
2 RH

y,x ∈ C
M×N (4)

is a matched filter with orthonormal rows, i. e. the argument
of the optimization

max
M

E
{
Re

{
xH
1 [n]x[n]

}}
s.t. MMH = 1M . (5)

Note that M1 maximizes the sum of cross-correlations be-
tween each element of the signal vector x[n] and the cor-
responding element of the output vector x1[n] ∈ C

M . The
rows of the so-called blocking matrix B1 ∈ C

(N−M)×N are
orthonormal to the rows of M1, i. e.

span
{
BH

1

}
= null {M1} ⇔ B1M

H
1 = 0(N−M)×M . (6)

Thus, the transformed observation vector y1[n] ∈ C
N−M is

uncorrelated to the signal vector x[n] but still bears information
about the interference in x1[n] which was not suppressed by
the matched filter M1 with orthonormal rows.

With the inversion lemma for partitioned matrices [1], the
MWF estimating the signal vector x[n] from the transformed
observation vector z1[n] may be written as

Wz1 = ∆1 [1M ,−W1] ∈ C
M×N , (7)

where

∆1 = RH
e1,xR

−1
e1 with (8)

Re1,x = M1Ry,x =
(
RH

y,xRy,x

) 1
2 and (9)

Re1 = Rx1 −RH
y1,x1R

−1
y1 Ry1,x1 (10)

is a quadratic MWF which estimates the desired signal vector
x[n] from the error vector e1[n] = x1[n] − x̂1[n] ∈ C

M with
x̂1[n] = W1y1[n] ∈ C

M (cf. Equations 4, 6, and 11). The
reduced-dimension MWF1

W1 = RH
y1,x1R

−1
y1 ∈ C

M×(N−M) (11)

estimates x1[n] from the prefiltered observation vector y1[n].
The resulting structure which produces the same output x̂[n]
as the MWF is summarized in Figure 1.

Note that this structure is very related to the Generalized
Sidelobe Canceller (GSC) [15], [16], especially if we assume
the vector case, i. e. M = 1. The MWF W1 estimates the
interference remained in x1[n], i. e. x̂1[n], in order to subtract
it from x1[n]. The quadratic MWF ∆1 is needed to reconstruct
the desired signal vector in the MMSE sense. Nevertheless,
the classical GSC has been designed to be the solution

1The notation reduced-dimension MWF denotes a matrix whose rows are
reduced-dimension vector WFs.

M1

B1 W1

x1[n]

x̂1[n]

e1[n]
y[n]

y1[n]
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N−M

M
N

∆1 x̂[n]

Fig. 1. Multi-Stage Matrix Wiener Filter (MSMWF) after First Step

of the minimum variance distortionless response constrained
optimization problem and not the MMSE solution.

Analogous to the original MWF W , the reduced-dimension
MWF W1 can be replaced by the prefilter matrix T̃2 =[
MT

2 ,BT
2

]T ∈ C
(N−M)×(N−M) and the reduced-dimension

MWF Wz2 = ∆2 [1M ,−W2] ∈ C
M×(N−M). Continuing

this replacement method for every W� ∈ C
M×(N−�M), � ∈

{2, 3, . . . , L − 2}, and finally substituting WL−1 ∈ C
M×M

by ∆LML, leads to the filter bank depicted in Figure 2 if N
is an integer multiple of M , i. e. N = LM , L ∈ N.

T1

T2

TL

x1[n]

x2[n]

xL[n]
= eL[n]

x̂1[n]

x̂2[n]

x̂L−1[n]
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y[n]

M

M

M

M

M

M

M
N

∆1

∆2

∆L

... . . .

x̂[n]

Fig. 2. MSMWF as a Filter Bank

The prefilter matrices

T� = M�

1∏
k=�−1

k>0

Bk ∈ C
M×N , � ∈ {1, 2, . . . , L}, (12)

are composed of the matched filters M� ∈ C
M×(N−(�−1)M)

with orthonormal rows, i. e.

M� =
(
RH

y�−1,x�−1
Ry�−1,x�−1

)− 1
2

RH
y�−1,x�−1

, (13)

maximizing the sum of cross-correlations between each el-
ement of the M -dimensional transformed observation vec-
tors x�[n] and the corresponding element of x�−1[n], where
x0[n] := x[n] and y0[n] := y[n]. The complex conjugate
rows of the blocking matrices B� ∈ C

(N−�M)×(N−(�−1)M)

are chosen to span the null-space of M�, i. e.

span
{
BH

�

}
= null {M�} ⇔ B�M

H
� = 0(N−�M)×M . (14)

Thus, y�[n] is uncorrelated to x�−1[n]. Finally, the matrices

∆� = RH
e�,x�−1

R−1
e�

with (15)

Re�,x�−1 =
(
RH

y�−1,x�−1
Ry�−1,x�−1

) 1
2

and (16)

Re�
=

{
Rx�
−RH

y�,x�
R−1

y�
Ry�,x�

, � < L,

RxL
, � = L,

(17)
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are M × M MWFs which estimate x�−1[n] from the error
vector e�[n] = x�[n]− x̂�[n].

Up to now, the MSMWF is equivalent to the optimal MWF,
i. e. it produces the same output x̂[n]. If we neglect x̂d[n], d ∈
{1, 2, . . . , L− 1}, such that ed[n] = xd[n] (cf. Figure 2), we
obtain the rank D MSMWF W (D) ∈ C

M×N , D = dM ∈ N,
which is composed of the multi-stage prefilter matrix

T (D) =
[
T T

1 ,T T
2 , . . . ,T T

d

]T ∈ C
D×N , (18)

and the reduced-dimension MWF

W
(D)
rd = argmin

W(D)
rd

ξ
(
W(D)

rd T (D)
)

= RH
y,xT

(D),H
(
T (D)RyT

(D),H
)−1

∈ C
M×D,

(19)

estimating x[n] from the prefiltered observation vector
T (D)y[n] ∈ C

D.
Note that the rank D as well as the dimension N of the

observation vector is restricted to be an integer multiple of
the dimension M of the signal vector. In Section IV, we
propose an implementation of the MSMWF where D can be
any integer between M and N , and N is no longer limited to
integer multiples of M .

The reduced-rank MWF2 W (D) = W
(D)
rd T (D) is an

approximation of the MWF W in the subspace spanned by
the complex conjugate rows of the multi-stage prefilter matrix
T (D). Due to the characteristics of T (D) which are inves-
tigated in more detail in the following section, the reduced-
dimension MWF W

(D)
rd decomposes into the quadratic MWFs

∆�, � ∈ {1, 2, . . . , d}, arranged as shown in Figure 2. The
rank D MSMWF achieves the MMSE

ξ
(
W (D)

)
= tr

{
Rx −W (D)Ry,x

}
, (20)

which is generally greater than ξ (W ).

III. RELATIONSHIP BETWEEN MSMWF AND BLOCK

KRYLOV METHODS

Recall that the matched filters M� maximize the sum of
cross-correlations between each element of the transformed
observation vectors of two adjacent stages, viz. x�[n] and
x�−1[n]. Hence, if we assume blocking matrices with orthonor-
mal rows, i. e. B�B

H
� = 1N−�M , the prefilter matrices may

be obtained by the following optimization [6], [17]:

T� = argmax
T

E
{
Re

{
xH

� [n]x�−1[n]
}}

s.t. T T H = 1M and

T T H
k = 0M×M , k ∈ {1, 2, . . . , �− 1}.

(21)

It can easily be seen that T1 = M1 since the second side
condition is not active for � = 1. Henceforth, we consider the

2Again, the reduced-rank MWF is a matrix whose rows are reduced-rank
vector WFs.

case � > 1. With the Lagrangian function

L (T ,Λ1,Λ2, . . . ,Λ�) = tr
{

Re
{

T�−1RyT H

−
�−1∑
k=1

ΛH
k T T H

k −ΛH
�

(
T T H − 1M

)}}
(22)

and the projector matrices P⊥T H
k

= 1N − T H
k Tk projecting

onto the space orthogonal to the one spanned by the complex
conjugate rows of Tk, we get after some computation steps

Λ̃�T = T�−1Ry

�−1∏
k=1

P⊥T H
k

=: S (T�−1) =: S�−1, (23)

where Λ̃� := ΛH
� +Λ� is Hermitian. Thus, the solution of the

prefilter matrix

T� =
(
S�−1S

H
�−1

)− 1
2 S�−1 (24)

is given recursively due to the dependency of S�−1 ∈ C
M×N

on T�−1.
Proposition 1: The auto-correlation matrix T (D)RyT

(D),H

of the prefiltered observation vector is block tridiagonal3.
Proof: If we replace � by i + 1 in Equation (23),

multiply it by T H
� on the right hand side, and use additionally

Equation (24), we get for i ∈ {1, 2, . . . , �− 1}(
SiS

H
i

) 1
2 Ti+1T

H
� = TiRyT

H
� , (25)

since the matrices Ti fulfill the constraints of the optimization
in Equation (21). Using again this property, it follows that

TiRyT
H
� =

{(
S�−1S

H
�−1

) 1
2 , for i = �− 1,

0M×M , for i < �− 1,
(26)

i. e. T (D)RyT
(D),H has a lower block Hessenberg structure4.

If we recall that auto-correlation matrices are Hermitian,
T (D)RyT

(D),H is a block tridiagonal matrix, a special case
of block Hessenberg matrices.

Usually we use block Krylov methods (e. g. [9]) to generate
block Hessenberg matrices by similarity transformation. If
we look at Equation (23), we see that the term S�−1 is
strongly related to the block Arnoldi algorithm [10], [9]. The
only difference is that the latter one performs a reduced LQ-
decomposition of S (Q�−1) = L�Q� for � ∈ {2, 3, . . . , d}
and RH

y,x = L1Q1 for � = 1, instead of the decomposi-

tion S�−1 =
(
S�−1S

H
�−1

)1/2
T� for � ∈ {2, 3, . . . , d} and

RH
y,x =

(
RH

y,xRy,x

)1/2
T1 for � = 1, in order to generate

the prefilter matrices with orthonormal rows, i. e. Q� or T�,
respectively. Due to the reduced LQ-decomposition, the matrix
T

(D)
KrylovRyT

(D),H
Krylov with the Krylov prefilter matrix

T
(D)
Krylov =

[
QT

1 ,QT
2 , . . . ,QT

d

]T ∈ C
D×N , (27)

3A block tridiagonal matrix consists of block matrices in the main block
diagonal and the two adjacent block subdiagonals. In our case, the block
matrices are elements of CM×M .

4A lower block Hessenberg matrix is a lower block triangular matrix with
additional non-zero block entries in the first block subdiagonal.

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society 2685



has no longer lower block Hessenberg structure but lower band
Hessenberg structure5 because in this case

QiRyQ
H
� =

{
L�, for i = �− 1,

0M×M , for i < �− 1.
(28)

Proposition 2: The complex conjugate rows of T (D) and
T

(D)
Krylov span both the subspace

K(D)
block = span

{[
Ry,x,RyRy,x, . . . ,Rd−1

y Ry,x

]}
, (29)

which is the Krylov subspace [9].
Proof: First, the columns of T

(D)
Krylov span the Krylov sub-

space if each QH
� can be expressed by the matrix polynomial

of degree �− 1, i. e.

QH
� = Ψ (�−1)(Ry) :=

�−1∑
k=0

Rk
yRy,xΨk, (30)

where the matrix weights Ψk ∈ C
M×M , Ψ�−1 �= 0M×M .

This can be shown by induction on � as follows. The result is
clearly true for � = 1 since QH

1 = Ry,xΨ0 with Ψ0 := LH,−1
1 .

We have to show that QH
� = Ψ (�−1)(Ry) if we assume that

QH
k = Ψ (k−1)(Ry) for k < �. With Equation (23) and the

definition Hk,�−1 := QkRyQ
H
�−1 ∈ C

M×M , we get

QH
� LH

� = SH (Q�−1) = RyQ
H
�−1 −

�−1∑
k=1

QH
k Hk,�−1. (31)

Using the induction assumption yields QH
� = Ψ (�−1)(Ry)

since the degree of QH
�−1 = Ψ (�−2)(Ry) is increased by one

due to the multiplication by Ry on the left hand side.
It remains to show that the columns of T (D) span the

same subspace as the columns of T
(D)
Krylov. This is true if

span
{
T H

�

}
= span

{
QH

�

}
for � ∈ {1, 2, . . . , d} which is

again proven by induction on �. For � = 1, it can easily be seen
that span

{
T H

1

}
= span {Ry,x} = span

{
QH

1

}
. If we assume

span
{
T H

k

}
= span

{
QH

k

}
for k < � and use Equation (23)

to get

SH (T�−1) = RyT
H
�−1 −

�−1∑
k=1

T H
k

(
TkRyT

H
�−1

)
, (32)

we see that span
{
SH (Q�−1)

}
= span

{
SH (T�−1)

}
since

the columns of the product of Ry and T H
�−1 or QH

�−1, respec-
tively, span the same subspace. This concludes the proof of
Proposition 2.

If we recall once again that auto-correlation matrices are
Hermitian, the block Arnoldi algorithm can be replaced by
the computational cheaper block Lanczos algorithm [11], [12],
[9], i. e.

L�Q� = Q�−1Ry

(
1N −QH

�−2Q�−2 −QH
�−1Q�−1

)
. (33)

Note that contrary to T�, � ∈ {1, 2, . . . , d}, the prefilter
matrices Q� are no solution of the optimization problem given

5A lower band Hessenberg matrix is a lower block Hessenberg matrix where
the non-zero block entries in the first block subdiagonal are lower triangular
matrices.

in Equation (21) because compared to
(
S�−1S

H
�−1

)1/2
for

� ∈ {2, 3, . . . , d} and
(
RH

y,xRy,x

)1/2
for � = 1, the lower tri-

angular matrix L� of the LQ-decomposition is not Hermitian.
Nevertheless, the Krylov prefilter matrix T

(D)
Krylov followed by

a reduced-dimension MWF consisting of d quadratic MWFs,
produces the same output as the MSMWF derived in Section II
since they are MMSE approximations of the MWF in the same
subspace, i. e. the Krylov subspace K(D)

block.

IV. FLEXIBLE RANK SELECTION OF LANCZOS-RUHE

BASED MSMWF

Remember that the dimension N of the observation vector
and the rank D of the reduced-rank MSMWF are restricted
to be integer multiples of M . The restriction on N leads to
either a very small subset of systems where the MSMWF
can be applied or to an unnecessary increase in computational
complexity if the observation vector is filled with zeros such
that N = LM . Moreover, the restriction on D bears the
problem that the optimum rank cannot be achieved if it is
no integer multiple of M .

Ruhe [14], [9] derived a version of the block Lanczos
algorithm where the complex conjugate rows of the Krylov
prefilter matrix T

(D)
Krylov are computed step by step. Therefore,

the rank D can be any integer between M and N . Algorithm I
summarizes the Lanczos-Ruhe computation of the Krylov
prefilter matrix which is used as the prefilter of the MSMWF
in the simulations of Section V. The function QR {Ry,x}
denotes the QR-decomposition of the cross-correlation matrix
Ry,x. Note that the resulting upper triangular matrix R can
be discarded since it is not needed for the remaining steps.
Consequently, the dimension N of the observation vector is
no longer limited to integer multiples of M which offers the
application of the proposed method to more general systems.

ALGORITHM I

LANCZOS-RUHE COMPUTATION OF THE MULTI-STAGE PREFILTER

{[q1, q2, . . . , qM ] ,R} ← QR {Ry,x}
2: for i ∈ {M,M + 1, . . . ,D − 1} do

k ← i−M + 1
4: v ← Ryqk

for � ∈ {i− 2M + 1, i− 2M + 2, . . . , i} ∩N do
6: h�,k ← vHq�

v ← v − h�,kq�

8: end for
hi+1,k ← ‖v‖2

10: qi+1 ← v/hi+1,k

end for
12: T

(D),H
Ruhe ← [q1, q2, . . . , qD] ∈ C

N×D

V. APPLICATION TO A TIME-DISPERSIVE MIMO SYSTEM

A. Channel Model

The time-dispersive MIMO system with S inputs, R outputs
and Q propagation paths is described by the channel matrix
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impulse response

H[n] =
Q−1∑
q=0

Hqδ[n− q] ∈ C
R×S , (34)

with the unit impulse function δ[n]. The weighting matrices
of the propagation paths, Hq, q ∈ {0, 1, . . . , Q − 1}, are
realizations of the random variable [18]

H = URxΣRxZΣTxV
H

Tx ∈ C
R×S . (35)

The matrix Z ∈ C
R×S has i. i. d. random entries with

Nc

(
0, σ2

z

)
. The columns of the unitary matrix URx ∈

C
R×R are eigenmodes of the correlations at the receiver,

i. e. E
{
HHH

}
= σ2

z tr
{
Σ2

Tx

}
URxΣ

2
RxU

H
Rx with the power

distribution described by the diagonal matrix of eigenvalues
Σ2

Rx ∈ R
R×R
0,+ . Analogous, the unitary matrix VTx ∈ C

S×S

and the diagonal matrix Σ2
Tx ∈ R

S×S
0,+ from the eigenvalue de-

composition of E
{
HHH

}
= σ2

z tr
{
Σ2

Rx

}
VTxΣ

2
TxV

H
Tx depict

the correlations at the transmitter.
The received signal vector

r[n] = H[n] ∗ s[n] + n[n] ∈ C
R, (36)

where ‘∗’ denotes convolution, is perturbed by additive white
Gaussian noise n[n] ∈ C

R with the complex normal distri-
bution Nc

(
0R×1, σ

2
n1R

)
. The transmit signal vector s[n] at

time index n is composed of S zero-mean i. i. d. symbols
with variance σ2

s . Note that the total transmit power is PTx =
tr {Rs} = Sσ2

s .
In order to compute the linear equalizer filter of

length K, we derive an alternative matrix-vector model
of the time-dispersive MIMO channel. The vector r̃[n] =[
rT[n], rT[n− 1], . . . , rT[n−K + 1]

]T ∈ C
KR is composed

of K adjacent received signal vectors r[n]. Using the block
Toeplitz matrix

H̃ =
Q−1∑
q=0

S(q,K,Q−1) ⊗Hq ∈ C
KR×(K+Q−1)S , (37)

where ‘⊗’ denotes the Kronecker product and S(q,K,Q−1) =[
0K×q,1K ,0K×(Q−q−1)

] ∈ {0, 1}K×(K+Q−1) the selection
matrix, Equation (36) may be rewritten as

r̃[n] = H̃ s̃[n] + ñ[n] ∈ C
KR. (38)

Analogous to r̃[n], the vector s̃[n] ∈ C
(K+Q−1)S is composed

of K +Q−1 adjacent transmit signal vectors s[n] and ñ[n] ∈
C

KR of K adjacent noise vectors n[n]. The filter algorithms
of the previous sections may be applied to the given MIMO
scenario, if we set y[n] = r̃[n] and x[n] = s[n − ν] where ν
is the latency time introduced by the equalizer. Consequently,
N = KR and M = S.

B. Simulation Results

In this section, we apply the algorithms of Section III and
IV to a frequency-selective MIMO system with R = 8 outputs
and S = 4 inputs. A transmission of QPSK symbols with
variance σ2

x = 1 is considered. The channel impulse response

has Q = 3 i. i. d. taps with uncorrelated normal distributed
entries, i. e. they are realizations of H where Σ2

Tx = 1S/S
and Σ2

Rx = 1R/R. The unitary matrices URx and VTx are
chosen arbitrary for every realization of H. In order to keep the
channel amplification comparable to a frequency-flat MIMO
channel with zero-mean i. i. d. complex normal distributed
random entries of variance one, we set σ2

z = RS/Q = 32/3
because tr

{
Σ2

Rx

}
= tr

{
Σ2

Tx

}
= 1. The filter length is K = 4

with latency ν = 2, thus, the observation vector has the
dimension N = KR = 32.
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Fig. 3. BER comparison between the MSMWF and the MSVWF with a
comparable computational complexity for known statistics

Figure 3 shows the uncoded Bit Error Rate (BER) compari-
son between the MSMWF and a filter structure where each el-
ement of the transmit vector x[n] = [x1[n], x2[n], . . . , xM [n]]T

is estimated by a Multi-Stage Vector WF (MSVWF) [5] over
the Transmit Signal-to-Noise Ratio (Tx-SNR) 10 lg(PTx/σ2

n)
if statistics are perfectly known. The results are averaged
over several thousands channel realizations. Since we choose
the rank D of the MSMWF to be D = dM , where d is
the reduced rank of each MSVWF, the determination of the
prefilter matrices for both methods has the same order of
computational complexity. Note that for the derivation of the
MSVWFs a d × d tridiagonal matrix has to be inverted M
times instead of one inversion of a D × D band matrix of
width 2M + 1 in the case of the MSMWF. Compared to the
computation of the prefilter matrices, even the inversion of the
band matrix has a negligible computational complexity. It can
be seen that the MSMWF with rank D = 12 outperforms the
implementation of M = 4 parallel MSVWFs with rank d = 3
as well as with rank d = 4.

In Figure 4, we compare the conventional MSMWF to
its Lanczos-Ruhe implementation in the previously defined
MIMO scenario. Again, statistics are perfectly known. It can
be seen that the new algorithm has more flexibility concerning
rank selection and that both algorithms are good approxi-
mations of the MWF despite the tremendous reduction in
computational complexity.
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Fig. 5. MSE comparison between the MSMWF, its Ruhe version, and the
eigenspace based reduced-rank MWFs for estimated statistics (SNR = 10 dB)

The MSE is plotted over the rank D in Figure 5 where
we estimated the cross-correlation matrix with 50 and the
auto-correlation matrix with 100 training symbols. In this
case, we choose a strongly correlated MIMO channel where
Σ2

Rx = diag {0.7, 0.1, 0.1, 0.05, 0.02, 0.01, 0.01, 0.01} and
Σ2

Tx = diag {0.8, 0.1, 0.05, 0.05}. Note that due to its flexi-
bility, only the Lanczos-Ruhe implementation of the MSMWF
offers access to the optimum rank of Dopt = 10 which is not an
integer multiple of M = 4. Moreover, the MSMWF achieves
its optimum with a smaller rank than the eigenspace based
PC and CS method. Nevertheless, the latter may also have
ranks smaller than M = 4 and the PC algorithm achieves the
smallest MSE of all at the expense of a higher computational
complexity. Since we are interested in computational cheap
implementations, the Lanczos-Ruhe based MSMWF has the
best performance in case of low sample support. Note that the
MSE ripples of the PC method at multiple ranks of M occur

due to the eigenvalue profile of the auto-correlation matrix
given by Σ2

Rx.

VI. CONCLUSIONS

In this paper, we derived the relationship between the
MSMWF and block Krylov methods, especially the block
Lanczos algorithm and used its Ruhe version in order to im-
prove the flexibility in rank selection. Simulation results of an
application to a frequency-selective MIMO system showed that
only the Lanczos-Ruhe based MSMWF achieves the optimum
rank in case of estimated statistics. Moreover, the MSMWF
outperforms the parallel implementation of MSVWFs with a
comparable computational complexity.
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