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Abstract— Nonlinear minimum mean square error Tomlinson-
Harashima precoding considered in this paper is an attractive
solution for a scenario where a transmitter serves spatially
separated receivers and no cooperation among them is possible.
Unfortunately, the large performance gain against linear pre-
coding comes along with significantly higher complexity than
linear filters in the case of a large number of receivers. We
show that superior performance of the nonlinear minimum mean
square error Tomlinson-Harashima precoding can be obtained
with complexity equivalent to linear precoding. Our proposed
algorithm reduces the complexity by a factor ofNR which is the
number of receivers.

I. I NTRODUCTION

High spectral efficiency is expected in future wireless
communication systems. In [1] it was shown that enormous
capacity increase is promised onmultiple input multiple output
(MIMO) channels in rich scattering environments. In order to
obtain such a capacity advantage on MIMO channels with
reasonable complexity,vertical Bell Labs layered space-time
(V-BLAST) was proposed [2]. V-BLAST can be seen as a
block decision feedback equalizer(DFE) which iteratively
equalizes spatial interference nonlinearly [3].

While V-BLAST suffers from error propagation, a counter-
part of DFE, called spatialTomlinson-Harashima precoding
(THP) has been proposed in [4] to avoid the error prop-
agation. THP was originally proposed for dispersivesingle
input single output(SISO) channels in [5], [6] to avoid inter-
symbol interference. It moves the feedback filter of the DFE
to the transmitter to circumvent the error propagation under
the assumption that the channel is known at the transmitter.
The same principle can be applied to resolve the spatial
interference as proposed in [4]. However, because of the
feedforward filter remained at the receiver, all the received
signals must be cooperatively processed. That may not be
possible in some scenarios, e.g. when the receive antennas
belong to spatially separated users.

An interesting approach of spatial THP has been proposed
in [7], [8]. This approach moves not only the backward filter
but also the forward filter to the transmitter. This architecture
enables very simple receivers and more importantly, no signal
processing among different receive antennas is necessary. A
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Fig. 1. System model of precoding over flat MIMO channel. There is no
cooperation among the receive antennas.

particularly interesting situation is that one transmitter is serv-
ing for decentralized receivers or users where no cooperation
among receivers is possible. Unfortunately, the complexity of
this approach at the transmitter becomes very high for a large
number of receivers.

In this paper we propose new computationally efficientmin-
imum mean square error(MMSE) THP algorithms. Optimum
and suboptimum solutions are presented. Our optimum solu-
tion achieves equivalent performance of [7] with significantly
lower complexity. Further complexity reduction is possible
with our suboptimum solution, whose complexity is equivalent
to that of simple linear filters. Although the suboptimum
solution shows slight performance degradation, as we will
show, it is almost negligible.

This paper is organized as follows. Our system model is
introduced in Section II and the MMSE THP is thoroughly
reviewed in Section III. Our proposed algorithms are presented
in Section IV and the complexity is analyzed in Section V.
Section VI shows simulation results, then this paper is sum-
marized in Section VII.

II. SYSTEM MODEL

We consider a system equipped withNT transmit antennas
and NR receive antennas whereNT ≥ NR. We assume
narrow band signals, i.e. a non-dispersive fading channel.
The discrete time system model in the equivalent complex
baseband is illustrated in Fig. 1. The inputsui, i = 1, . . . , NR

are complex valued baseband signals and are filtered by the
precoding algorithm, which is the main focus of this paper
and is explained in the next section. Its output signalsxi, i =
1, . . . , NT are transmitted fromNT antennas simultaneously.
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Fig. 2. Block diagram of Tomlinson-Harashima transmission. Also see alternative representations of the sub-blocks (i) and (ii) in Fig. 4.

The channel tap gain from transmit antennai to receive
antennaj is denoted byhj,i. These channel taps are assumed
to be independent zero mean complex Gaussian variables of
equal variance E[|hj,i|2] = 1. This assumption of independent
paths holds if antenna spacing is sufficiently large and the
system is surrounded by rich scattering environments.

The signal at receive antennaj can be expressed by

yj =
NT∑

i=1

hj,ixi + nj , (1)

where nj is additive noise at the receive antennaj. By
collecting (1) forNR receive antennas, the receive signals can
be concisely expressed in matrix form as

y = Hx + n, (2)

where[H ]j,i = hj,i, y = [y1, . . . , yNR]T, x = [x1, . . . , xNT ]T,
n = [n1, . . . , nNR]T, and(•)T denotes transposition. Our goal
is to design a computationally efficient precoding algorithm
which maps the input signalsu = [u1, . . . , uNR]T to the
transmitted signalsx.

III. MMSE TOMLINSON-HARASHIMA PRECODING

This section reviews the MMSE Tomlinson-Harashima pre-
coding scheme presented in [7]. The overall system structure is
illustrated as a block diagram in Fig. 2 where the permutation
matrixP is additionally introduced to the system model in [7].
The input signal vectoru ∈ C

NR is firstly reordered in such a
way that it can take the best benefit from the filters that follow.
The ordering is expressed by the permutation matrix defined
as

P =
NR∑

i=1

eie
T
ki
∈ {0, 1}NR×NR,

whereei is the i-th column of theNR × NR identity matrix
and{k1, . . . , kNR} denotes the precoding ordering. The signal
vector v ∈ CNR is iteratively filtered by the backward filter
BH ∈ CNR×NR and by the modulo operator M(•) where(•)H

denotes Hermitian transpose.
The modulo operator is introduced to reduce the signal

power increased byBH. The modulo operator for a complex
variablec is defined as

M(c) = c− bRe(c)/κ + 1/2cκ− j bIm(c)/κ + 1/2cκ, (3)

where the floor operatorb•c gives the integer smaller than
or equal to the argument and the constantκ is determined
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Fig. 3. Example of THP structure for three data streams.τ denotes delay.

TABLE I

ITERATIVE PRECODING PROCEDURE WITH ORDERING.

v=Pu
for i = 1, . . . , NR

v(i) = M(v(i)− BH(:, i)v)
x = FHv

by the modulation alphabet used, e.g.κ = 2
√

2 for QPSK
symbols [7], [9]. Consequently, the output signalvj from M(•)
is an element of the setM = {x + jy | x, y ∈ [−κ/2, κ/2)}
and has the variance ofσ2

v = κ2/6 under the assumption that
vj is uniformly distributed both in real and imaginary parts.

The outputv from the feedback section is finally processed
by the forward filterF H ∈ C

NT×NR to get the transmit signal
x. The complete precoding procedure is concisely summarized
in Table I. Note that there are two constraints to be satisfied
by precoding filters. The first one is to limit the total transmit
power to certain valueEs. The second constraint is imposed
on the backward filter which must be strictly triangular. This
can be better understood by the example in Fig. 3. This
shows a case of three data streams. The data streams after
the permutationP are precoded from the upper to the lower
stream. The filter coefficients can be arranged in the matrix
(BH − 1) which is strictly lower triangular whenBH is unit
lower triangular. The triangular structure ensures the causality
of the feedback process.

The receive signalyj at thej-th antenna is multiplied with
the automatic gain control1/β ∈ R+ which is determined
by pilot signals, then the modulo operator M(•) is applied to
get rid of the respective effect of M(•) at the transmitter. The
quantizer Q(•) generates the estimatêuj.

Our goal is to jointly optimize the three tuple ofP , BH,
and F H. In order to formulate the joint optimization using
only linear equations, the nonlinear modulo operator in Fig. 2
is interpreted by the linear representation as shown in Fig. 4.
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âNR

−

−

−

Fig. 4. Alternative linear representation of modulo operators in Fig. 2.

We introduce the signalsa andd which satisfyv to be in the
setM. The real and imaginary parts ofa are integer multiples
of the constantκ. Indeed,a andâ are implicitly chosen by the
modulo operation in (3). Note that the value ofa is not our
main interest, but the optimization can be formulated using
only linear equations with respect to the desired signald.

The signalv after the backward filtering can be written
as v = Pd − (

BH − 1
)
v, which we solve ford yielding

d = P TBHv, while the estimated desired signal at the receiver
reads aŝd = β−1HF Hv+β−1n. By defining the error signal
ε = d̂− d, the error covariance matrix is calculated as

E
[
εεH

]
= Φεε = β−2HF HΦvvFHH + P TBHΦvvBP

−2β−1Re
(
HF HΦvvBP

)
+ β−2Φnn,

(4)
where we assume E

[
nnH

]
= Φnn, E

[
vnH

]
= 0,

E
[
vvH

]
= Φvv = diag(σ2

v1
, . . . , σ2

vNR
),

andσ2
vj

= σ2
v = κ2/6 for j 6= 1 andσ2

v1
= σ2

u = E[|ui|2] ∀i.
With the error covariance matrix, the MSE is expressed as

ϕ = E
[
εHε

]
= tr (Φεε) , (5)

where ‘tr’ denotes the trace operator. This is the cost function
to be minimized by the optimization. With two constraints
which we already discussed, the optimization problem is
formulated as{

F H
opt, B

H
opt, βopt

}
= argmin

{F H, BH,β}
ϕ

s.t.: E
[‖x‖2

2

]
= Es and

Si

(
BH − 1

)
ei = 0i for i = 1, . . . , NR

(6)

whereSi is defined asSi = [1i,0i×NR−i] ∈ {0, 1}i×NR. Note
that the constraint for lower triangular structure is defined
for every column of the backward filter so that its upper
triangular part must be zero. Note also that, as seen from (6),
the optimization does not take into accountP , therefore its
optimality depends on the choice ofP . That will be discussed
in the next section. This optimization problem can be solved
using Lagrangian multipliers and we get

BH
opt =

NR∑

i=1

P ΦP TST
i

(
SiP ΦP TST

i

)−1
Sieie

T
i ,

F H
opt = βopt

NR∑

i=1

HHP TST
i

(
SiPΦP TST

i

)−1
Sieie

T
i ,

(7)

where we defineΦ = HHH + γ−11, andγ = Es/tr(Φnn).
The optimum scalarβopt can be easily calculated to satisfy the
transmit power constraint in (6).

As we can see from (7), the filters are determined column
by column, each of which requires one matrix inverse resulting
in the total complexity order ofO(N4

R). That becomes quite
complex for largeNR. Detailed complexity analysis is given
in Section V. Complete description of the algorithm including
ordering strategy based on (7) can be found in [7].

IV. PROPOSEDEFFICIENT ALGORITHMS

This section presents our computationally efficient algo-
rithms. One is the suboptimum solution requiring complexity
equivalent to only one matrix inverse with slight performance
degradation. Our optimum solution performs equivalent to (7)
with the complexity slightly higher than the suboptimum one.

A. Suboptimum Ordered Cholesky

One can observe that the solution in (7) has the term
involving Φ which has to be invertedNR times. SinceΦ
is Hermitian and positive definite, the Cholesky factorization
with symmetric permutation [10] can be calculated as

PΦP T = LDLH, (8)

whereP , L, andD = diag(d1, . . . , dNR) are permutation, unit
lower triangular, and diagonal matrices, respectively. With (8),
it can be shown that the solution in (7) reduces to

BH
subopt= L and F H

subopt= βsuboptH
HP TLH,−1D−1. (9)

This is significant computational reduction, namely one factor-
ization in (8) and the inversion of the triangular matrix in (9)
suffice instead ofNR times matrix inversions. This complexity
corresponds to only one matrix inversion of the Hermitian
positive definite matrixΦ.

The MSEϕ in (5) can be also simplified using the results
in (9) and (4) as follows

ϕ = γ−1
NR∑

i=1

σ2
vi

d−1
i . (10)

This means that the MSE is determined by the diagonal entries
of D−1 weighted byσ2

vi
. The optimality of (9) depends on the

way to compute the factorization in (8). A successive algorithm
computing (8) finds the diagonal entry starting fromd1 up
to dNR with necessary permutation (cf. [10]). Our proposed
pseudo code for the filter calculation is summarized in Table II.
Its suboptimality is discussed in the next section.

B. Ordering Strategy for Filter Optimization and Precoding

It was shown in [2] that thebest-firstsuccessive detection
strategy (the layer with maximum post SNR is detected first)
improves the performance of the weakest layer and leads to the
global optimum solution. This strategy can be also applied to
the precoding, but there is a difference between the successive
detection (V-BLAST) and successive precoding (THP).

In the V-BLAST case, the filter optimization at the later
detection stage is less constrained because after each stage one
transmit signal less is subject to detection. On the other hand,
the precoding filter optimization for the later precoding stage
is more constrained since the transmit signal at certain stage



TABLE II

CALCULATION OF THP FILTER WITH SUBOPTIMUM ORDERING.

Φ = HHH + NR
γ

1

P = 1NR , D = 0NR
for i = 1, . . . , NR

q = argmin
q′=i,...,NR

σ2
vq′ Φ(q′, q′)

P i = 1NR whosei-th andq-th rows are exchanged
P = P iP
Φ = P iΦPT

i
D(i, i) = Φ(i, i)
Φ(i:NR, i) = Φ(i:NR, i)/D(i, i)
Φ(i + 1:NR, i + 1:NR) = Φ(i + 1:NR, i + 1:NR)

−Φ(i + 1:NR, i)Φ(i + 1:NR, i)HD(i, i)
L = lower triangular part ofΦ
BH = L, FH = HHPTLH,−1D−1

χ = ‖FH(:, 1)‖22 + σ2
v‖FH(:, 2:NR)‖2F

β =
p

Es/χ
FH = βFH

should not interfere with the already precoded data streams.
Hence, the precoding filter optimization has to be performed
in the opposite direction to the precoding ordering. That is
why our suboptimum algorithm in Section IV-A does not
always lead to the optimum solution. Such optimum solution
is possible as presented in the next section.

C. Optimum Ordered Cholesky

In order to have the desired direction of filter optimization
as explained in the previous section, themodifiedCholesky
factorization with symmetric permutation is computed forΦ−1

instead ofΦ (cf. Eq. 8), that is

PΦ−1P T = LHDL. (11)

With this factorization, the backward and forward filters in (7)
are calculated as (cf. Eq. 9)

BH
opt = L−1 and F H

opt = βoptH
HP TLHD. (12)

Using (12) and (4), the MSEϕ reads as (cf. Eq. 10)

ϕ = γ−1
NR∑

i=1

σ2
vi

di. (13)

The iterative algorithm computing (11) finds the diagonal entry
starting fromdNR down tod1 with the optimum permutation.
This is opposite to the precoding filtering (cf. Table I: fori=
1, . . . , NR). This reverse direction is desired as discussed in the
previous section. Our optimum algorithm computing the filters
is summarized in Table III. In each iteration the algorithm
finds the minimum diagonal entry ofΦ−1 weighted byσ2

vi
,

i.e. σ2
vi

di which is the MSE (cf. Eq. 13 and Table III) of the
i-th precoded data stream. Therefore, the algorithm iteratively
finds the optimum ordering in the MMSE sense.

V. A NALYSIS OF COMPUTATIONAL COMPLEXITY

To compare the complexity, the number of additions and
multiplications is separately computed because of their possi-
bly different computational costs for the different processors.

We compare the complexity of our proposed schemes
with that of the optimum MMSE THP presented in [7] as

TABLE III

CALCULATION OF THP FILTER WITH OPTIMUM ORDERING.

Φ−1 = (HHH + NR
γ

1)−1

P = 1NR , D = 0NR
for i = NR, . . . , 1

q = argmin
q′=1,...,i

σ2
vq′ Φ

−1(q′, q′)

P i = 1NR whosei-th andq-th rows are exchanged
P = P iP
Φ−1 = P iΦ

−1PT
i

D(i, i) = Φ−1(i, i)
Φ−1(1:i, i) = Φ−1(1:i, i)/D(i, i)
Φ−1(1:i − 1, 1:i − 1) = Φ−1(1:i − 1, 1:i − 1)

−Φ−1(1:i − 1, i)Φ−1(1:i− 1, i)HD(i, i)
LH = upper triangular part ofΦ−1

BH = L−1, FH = HHPTLHD
χ = ‖FH(:, 1)‖22 + σ2

v‖FH(:, 2:NR)‖2F
β =

p
Es/χ

FH = βFH

TABLE IV

COMPLEXITY OF SYSTEMS WITHNR = NT ANTENNAS FOR A PROCESSOR

REQUIRING THE SAME OPERATIONS FOR ADDITION AND MULTIPLICATION.

optimum optimum suboptimum linear
THP in [7] THP, proposed THP, proposed MMSE

13

6
N4

R
7

2
N3

R
13

6
N3

R
13

6
N3

R

well as simple linear MMSE transmit filter. The complexity
of the linear transmit filterβHHΦ−1 can be calculated as
1
2N2

RNT + 1
3N3

R additions andN2
RNT + 1

3N3
R multiplications.

This complexity is due to the inversion of the Hermitian
positive definite matrixΦ. This can be done by (8) and (9)
sinceΦ−1 = LH,−1D−1L−1 holds for the special case of no
ordering (P = 1). Thus, the complexity of our suboptimum
solution is equivalent to that of the simple linear transmit
filter. The solution in [7] requiresNR times matrix inversion
resulting in 1

2N3
RNT + 1

3N4
R additions andN3

RNT + 1
3N4

R
multiplications. Our optimum solution needs to computeΦ−1

in addition to our suboptimum solution. Its complexity is
1
2N2

RNT + N3
R additions andN2

RNT + N3
R multiplications.

Note that, although the pseudo codes in Table II and III
compute the whole elements of the symmetric matricesΦ
andΦ−1 for the concise description, the extension to compute
only the lower triangular part is easy. The complexity analysis
presented above makes use of such triangular structure.

Table IV summarizes the complexities as an example for
a system withNR = NT antennas using a processor which
requires the same number of operations for additions and
multiplications. Comparing to the optimum THP in [7], our
suboptimum and optimum algorithms reduce the complexity
by a factor ofNR and0.6NR, respectively.

VI. SIMULATION RESULTS

Computer simulations are performed to evaluate the un-
coded BER performance overEb/N0 = Es

NRNσ2
n

whereN is
the number of information bits per channel input and the noise
is assumed to be white, i.e.Φnn = σ2

n1. In the following,
information bits are QPSK modulated (N = 2). Fig. 5 shows
the performance of a system withNT = NR = 4 antennas.
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The impact of the ordering optimization can be observed. For
comparison, the performance of the MMSE linear filter is also
plotted. Significant gain of the nonlinear THP can be seen
against the linear filter. Our optimum algorithm shows exactly
the same performance of [7]. Our suboptimum algorithm
shows slight performance degradation in the low uncoded
BER region, but no performance degradation in the uncoded
BER, e.g.10−2 which is a practical operating point in coded
transmission.

The performance loss due to the suboptimality of the
ordering optimization is further investigated. Fig. 6 shows
the loss in dB against the optimum ordering at an uncoded
BER =10−2 over the number of antenna elements (NT = NR).
We conclude that the performance loss of our suboptimum
solution is negligible (below 0.03 dB).

Fig. 7 compares the performance of different transmission
schemes. Our proposed algorithm makes it possible to obtain
the superior performance of the nonlinear MMSE THP without
any computational complexity penalty against simple linear
schemes such aszero forcing(ZF) or MMSE linear filters. The
THP approach requires a modulo operation, but its complexity
is of minor impact on the total complexity.
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Fig. 7. BER performance of linear and nonlinear transmit processing schemes
for NT = NR = 8. The superior performance of MMSE THP can be obtained
with the same complexity of the simple linear scheme by our algorithm.

VII. SUMMARY

We have derived new computationally efficient MMSE THP
algorithms for spatial multiplexing on flat MIMO channels.
The system considered in this paper is attractive in scenarios
where a transmitter serves decentralized receivers which can-
not cooperate with each other. Interferences among different
receivers are resolved at the transmitter prior to the signal
transmission based on the MIMO channel state information.
As shown in [7], the performance of the nonlinear MMSE
THP is superior to linear variants. However, the complexity
is significantly higher for a large number of receivers. We
showed that a large performance advantage is possible without
any complexity penalty compared to the simple linear filters.
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