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Abstract— Nonlinear minimum mean square error Tomlinson- M n
Harashima precoding considered in this paper is an attractive T1 i i !
solution for a scenario where a transmitter serves spatially U — n Y
separated receivers and no cooperation among them is possible. u 2 T i 2
Unfortunately, the large performance gain against linear pre- 2 —| precoding . . Y2
coding comes along with significantly higher complexity than . . .
linear filters in the case of a large number of receivers. We : ﬁ 3 ' Ng
show that superior performance of the nonlinear minimum mean UNg — il Nr, Nt Lé-. YNg

square error Tomlinson-Harashima precoding can be obtained
with complexity equivalent to linear precoding. Our proposed
algorithm reduces the complexity by a factor of Nr which is the
number of receivers.

Fig. 1. System model of precoding over flat MIMO channel. There is no
cooperation among the receive antennas.

particularly interesting situation is that one transmitter is serv-
ing for decentralized receivers or users where no cooperation
among receivers is possible. Unfortunately, the complexity of
High spectral efficiency is expected in future wirelesdliS approach atthe transmitter becomes very high for a large
communication systems. In [1] it was shown that enormol}imber of receivers.
capacity increase is promised onultiple input multiple output I this paper we propose new computationally efficiet-
(MIMO) channels in rich scattering environments. In order t§num mean square errdMMSE) THP algorithms. Optimum
obtain such a capacity advantage on MIMO channels wigfd suboptimum solutions are presented. Our optimum solu-
reasonable complexityertical Bell Labs layered space-timetion achieves equivalent performance of [7] with significantly
(V-BLAST) was proposed [2]. V-BLAST can be seen as #Wer complexity. Further complexity reduction is possible
block decision feedback equaliz§DFE) which iteratively With our suboptimum solution, whose complexity is equivalent
equalizes spatial interference nonlinearly [3]. to th.at of simple. linear filters. Although th(_e suboptimum
While V-BLAST suffers from error propagation, a Coumer_solutlop .shows slight .p_erformance degradation, as we will
part of DFE, called spatiaTomlinson-Harashima precodingSNoW it is almost negligible. _
(THP) has been proposed in [4] to avoid the error prop- This paper is or_gamzed as follows. Our sy;tem model is
agation. THP was originally proposed for disperssiagle mtrpduce(_:l in Sgctlon Il and the MMSE THP is thoroughly
input single outpu{SISO) channels in [5], [6] to avoid inter- rewewgd in Section Ill. Our prop_osgd algorlthms_ are pr(_asented
symbol interference. It moves the feedback filter of the DA Section IV and the complexity is analyzed in Section V.
to the transmitter to circumvent the error propagation undgfction VI shows simulation results, then this paper is sum-
the assumption that the channel is known at the transmitt@i@rized in Section V.
The same principle can be applied to resolve the spatial
interference as proposed in [4]. However, because of the
feedforward filter remained at the receiver, all the receivedWe consider a system equipped witfy transmit antennas
signals must be cooperatively processed. That may not d&x@d Nr receive antennas wherdt > Ng. We assume
possible in some scenarios, e.g. when the receive antennagow band signals, i.e. a non-dispersive fading channel.
belong to spatially separated users. The discrete time system model in the equivalent complex
An interesting approach of spatial THP has been propodegaseband is illustrated in Fig. 1. The inputsi = 1,..., Ngr
in [7], [8]. This approach moves not only the backward filteare complex valued baseband signals and are filtered by the
but also the forward filter to the transmitter. This architectuggrecoding algorithm, which is the main focus of this paper
enables very simple receivers and more importantly, no sigraald is explained in the next section. Its output signals =
processing among different receive antennas is necessani,A ., Nt are transmitted fromVy antennas simultaneously.

I. INTRODUCTION

Il. SYSTEM MODEL
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Fig. 2. Block diagram of Tomlinson-Harashima transmission. Also see alternative representations of the sub-blocks (i) and (ii) in Fig. 4.
The channel tap gain from transmit antenhao receive wu; —.{ P T %. i
antenng is denoted by:; ;. These channel taps are assumed H Y
to be independent zero mean complex Gaussian variablestef— = E @ E'—’ F
equal variance Fh; ;|?] = 1. This assumption of independent — o
paths holds if antenna spacing is sufficiently large and th& —1 = "= & T
system is surrounded by rich scattering environments. b3
The signal at receive antenriacan be expressed by J
—® —%—
N Tb?’>,1 b3 o
Yi = Z hjvixi LR @) Fig. 3. Example of THP structure for three data streamdenotes delay.
=1
where n; is additive noise at the receive antengia By TABLE |
collecting (1) for Nk receive antennas, the receive signals can ITERATIVE PRECODING PROCEDURE WITH ORDERING
be concisely expressed in matrix form as —=Pu
N for i=1,...,NRr
y=Hetn, @ w(i) =M(v(i) B, i)o)
Where[H]“- = hjﬂ', Yy = [yl; e 7yNR]T, xr = [xl, e ,ZL‘NT]T, z=Fv

n = [n,...,nx]", and(e)T denotes transposition. Our goaky, the modulation alphabet used, exg= 2v/2 for QPSK
is to design a computationally efficient precoding algor'th%&/mbols [7], [9]. Consequently, the output signafrom M(e)

; ) ) T K : .

\t/vhlch _r;ags_thelmput signals. = [u1,..., une]" 10 the g an element of the sétl — {x +jy | .y € [-r/2,5/2)}

ransmitied signais. and has the variance of = x2/6 under the assumption that
I1l. MMSE TOMLINSON-HARASHIMA PRECODING v; is uniformly distributed both in real and imaginary parts.

This section reviews the MMSE Tomlinson-Harashima pre- The outputv from the feedback section is finally processed

; H NN it g
coding scheme presented in [7]. The overall system structur s the forward filterF” < crrr o get the transmit S|gna.I
illustrated as a block diagram in Fig. 2 where the permutatidh The complete precoding procedure is cor?usely summgn;ed
matrix P is additionally introduced to the system model in [7]In Table "_ Not_e that the“? are tW(_) con;trglnts to be Sat'Sf'?d
The input signal vector € C is firstly reordered in such a by precoding filters. The first one is to limit the total transmit
way that it can take the best benefit from the filters that folloW°"€" to certain valuds. The second constraint is imposed

The ordering is expressed by the permutation matrix defin@f the backward filter which must be strictly triangular. This
as can be better understood by the example in Fig. 3. This

NR shows a case of three data streams. The data streams after
P = Z eie), € {0, 1}NR<Nr, the permutationP are precoded from the upper to the lower
i=1 stream. The filter coefficients can be arranged in the matrix
wheree; is thei-th column of theNg x Ng identity matrix (B™ — 1) which is strictly lower triangular wheB" is unit
and{ki, ..., kns} denotes the precoding ordering. The signddwer triangular. The triangular structure ensures the causality

vectorv € C® is iteratively filtered by the backward filter of the feedback process.
B ¢ CNrxNr and by the modulo operator (W) where (o)™ The receive signay; at thej-th antenna is multiplied with
denotes Hermitian transpose. the automatic gain contral/3 € R4 which is determined
The modulo operator is introduced to reduce the signy pilot signals, then the modulo operator(# is applied to
power increased byB". The modulo operator for a complexget rid of the respective effect of () at the transmitter. The
variablec is defined as quantizer Qe) generates the estimate. !
. Our goal is to jointly optimize the three tuple @, B",
M(e) = c— [Re(c)/r +1/2] k= [Im(c)/k +1/2] . (3) and F". In order to form%late the joint optirgization using
where the floor operatofe| gives the integer smaller thanonly linear equations, the nonlinear modulo operator in Fig. 2
or equal to the argument and the constanis determined is interpreted by the linear representation as shown in Fig. 4.



in the total complexity order 0O (N3). That becomes quite

: complex for largeNg. Detailed complexity analysis is given

dn a_NR in Section V. Complete description of the algorithm including
R

a d v . an As we can see from (7), the filters are determined column
“@%:> p :x'> dy %— by column, each of which requires one matrix inverse resulting

a= [ah...,aNR]T H
. B -1
d=1d,... dx] _

0} (i) IV. PROPOSEDEFFICIENT ALGORITHMS
Fig. 4. Alternative linear representation of modulo operators in Fig. 2. This section presents our computationally efficient algo-

We introduce the signals andd which satisfyv to be in the thms. One is the suboptimum solution requiring complexity
setM. The real and imaginary parts afare integer multiples eqU|vaIer_1t to only one matrix inverse with slight performance
of the constank. Indeed.a anda are implicitly chosen by the dégradation. Our optimum solution performs equivalent to (7)
modulo operation in (3). Note that the value @fis not our with the complexity slightly higher than the suboptimum one.

main interest, but the optimization can be formulated using sypoptimum Ordered Cholesky
only linear equations with respect to the desired sighal

The signalv after the backward filtering can be written, On(_e can obg,erve that the .solutlon n .(7) ha; the term
asv — Pd — (BH B 1)v, which we solve ford yielding involving @ which has to be invertedVg times. Since®

d — PTB", while the estimated desired signal at the receivis Hermitian and positive definite, the Cholesky factorization

reads asi = 3~ LH F'v+ 3-'n. By defining the error signal Wwith symmetric permutation [10] can be calculated as

e = d — d, the error covariance matrix is calculated as P&P" = LDI", (8)

. H H T oH
Elec"] =@.. = 5°HF ‘pvva +P B"®,,BP  \whereP, L, andD = diag(d;, . . ., dy,) are permutation, unit
—237'Re(HF"®,,BP) + *®,,,  lower triangular, and diagonal matrices, respectively. With (8),
(4) it can be shown that the solution in (7) reduces to

BsHubopt: L and FsHubopt: ﬂSUbODHHPTLH771D71- (9)

p ordering strategy based on (7) can be found in [7].

where we assume fan'| = ®,,,,, E[vn"] =0,
E [va} = &,, =diago? ,...,02

vy NR>’

This is significant computational reduction, namely one factor-
ization in (8) and the inversion of the triangular matrix in (9)
suffice instead ofVi times matrix inversions. This complexity
p=E [gHg] =tr(P..), (5) corresponds to only one matrix inversion of the Hermitian

h ‘' d h This is th f _positive definite matrix®.
where tr. .eT‘OteS‘ e trace quratpr. IS Is the cost un,Ct' NThe MSE ¢ in (5) can be also simplified using the results
to be minimized by the optimization. With two constramtsm (9) and (4) as follows

which we already discussed, the optimization problem is

andaﬁj =02 =r%/6 for j £ 1 ando?, = o2 = E[Ju,|*] Vi.
With the error covariance matrix, the MSE is expressed as

formulated as Ve
v . p=7""> old . (10)
{Fopta B, 6091} = alk“'gmHln ¥ =
{F 7B 7ﬁ}
st: E[|z]2] = Es and (6) This means that the MSE is determined by the diagonal entries
S, (BH _ 1) e;=0; for i=1,....Ng of D! weighted bya?)i. The optimality of (9) depends on the

) , N way to compute the factorization in (8). A successive algorithm
whereS; is defined asS; = [1, 0ix nz—i] € {0, 1} . Note  computing (8) finds the diagonal entry starting frof up
that the constraint for lower triangular structure is defingg dx, with necessary permutation (cf. [10]). Our proposed
for every column of the backward filter so that its upp&sseudo code for the filter calculation is summarized in Table I.

triangular part must be zero. Note also that, as seen from (g, suboptimality is discussed in the next section.
the optimization does not take into accouRt therefore its

optimality depends on the choice &% That will be discussed B. Ordering Strategy for Filter Optimization and Precoding
in the next section. This optimization problem can be solved It was shown in [2] that thdvest-firstsuccessive detection

using Lagrangian multipliers and we get strategy (the layer with maximum post SNR is detected first)
N improves the performance of the weakest layer and leads to the
ngt = ZP‘PPTSI (Sz-PdiPTSZT)fl Sieel, global optimum solution. This strategy can be also applied to
i=1 @) Lhe preco?ing, bu;tf;ere(;s a difference betvx:jeen 'Ehe SL)Jccessive
R 1 etection (V-BLAST) and successive precoding (THP).
ngt = ﬁOPtZHHPTSiT (SiP@PTSzT) Sieie;, In the V-BLAST case, the filter optimization at the later
=1 detection stage is less constrained because after each stage one

where we defineb = HH" + v~ 1, andy = Es/tr(®,,,). transmit signal less is subject to detection. On the other hand,
The optimum scalaf,p: can be easily calculated to satisfy thehe precoding filter optimization for the later precoding stage
transmit power constraint in (6). is more constrained since the transmit signal at certain stage



TABLE Il TABLE IlI

CALCULATION OF THP FILTER WITH SUBOPTIMUM ORDERING CALCULATION OF THP FILTER WITH OPTIMUM ORDERING.
&= HH" + T’1 &' = (HH" + TR1)~!
P =1y, D=0, P=1xn,, D=0y,
for i=1,...,Nr for ¢ = Ng,...,1
q = argmin 0'5 ﬁP(q’,q’) q = argmin 0’% ,é_l(q/,q/)
q'=i,...,Ng ¢ q=1,...,4 9
P; = 1y, whosei-th andg-th rows are exchanged P; = 1xn; whosei-th andg-th rows are exchanged
P=P,P P=P,P
& = P, $P] &l =P,dP]
D(i,1) = ®(i,1) D(i,i) = &1 (1)
®(i:NR, i) = ®(i:Nr,1)/D(i, i) & 1(1:4,4) = d~1(1:4,4) / D(i,4)
D(i + L:NR, i+ 1:NR) = P(i + 1:NR, i + 1:NR) S (Li—1,1i—1) =& (1 — 1,154 — 1)
— (i + 1:Ng,9)P(i + 1:Nr, )" D(i, 1) —& (1 — 1,i)® L (1 — 1,4)H D(i, )
L = lower triangular part okp LH = upper triangular part o—*
Bt=L F=H'PTLH 1D BY=L ' F'= H'PTIMD
x = IFAC D113 + o3 |1 F(:, 2:NR) |12 X = | FHC 1|12 + 02| FH(:, 2:NR)||2
B = VEs/x B = \/Es/x
FH =gF FH = gFH
TABLE IV

should not interfere with the already precoded data Streand®mpLexiTy OF SYSTEMS WITHNR = N ANTENNAS FOR A PROCESSOR

Hence, the precoding filter optimization has to be performe@quirine THE SAME OPERATIONS FOR ADDITION AND MULTIPLICATION
in the opposite direction to the precoding ordering. That is

; . X . optimum optimum suboptimum linear
why our suboptimum algorithm in Section IV-A does not THP in [7] | THP, proposed| THP, proposed| MMSE
always lead to the optimum solution. Such optimum solution 13 \a ‘ N3 ‘ 13 8 ‘ 13 8
is possible as presented in the next section. 6 " 2 " 6 " 6 "
C. Optimum Ordered Cholesky well as simple linear MMSE transmit filter. The complexity

In order to have the desired direction of filter optimizatioef the linear transmit filter3H"® ' can be calculated as

as explained in the previous section, tmedified Cholesky % NZNt + + N3 additions andV3 Nt + 1 N3 multiplications.
factorization with symmetric permutation is computeddor'  This complexity is due to the inversion of the Hermitian
instead of® (cf. Eq. 8), that is positive definite matrix®. This can be done by (8) and (9)
LT oh sinced ! = L™ "' D71 L~! holds for the special case of no
PP =L"DL. (11) ordering P = 1). Thus, the complexity of our suboptimum
With this factorization, the backward and forward filters in (7§0lution is equivalent to that of the simple linear transmit
are calculated as (cf. Eq. 9) filter. The solution in [7] requiregVg times matrix inversion
resulting in N3Nt + £ N3 additions and N3Nt + 1 N3

Boyw=L"" and Foy = ffopH"PTL"D. (12)  multiplications. Our optimum solution needs to compdte’
Using (12) and (4), the MSE reads as (cf. Eq. 10) in addition to our suboptimum solutjon. Its complexity is
N 1NENt + N3 additions andV3 Nt + N3 multiplications.
o= 771202 d;. (13) Note that, although the pseudo codes in Table Il and Il
p vi compute the whole elements of the symmetric matrides

and® ! for the concise description, the extension to compute

Tthet!tera;nve ZJQOSthm (ior;put.ltrr\]gtﬁll) f|rt1_ds the d|ago?at! entr(¥nly the lower triangular part is easy. The complexity analysis
starting fromdy, down tod; wi € opimum permutation. presented above makes use of such triangular structure.

This is opposite to the precoding filtering (cf. Table I: fex : L
. R . . i Table IV summariz h mplexiti n example for
1,..., NR). This reverse direction is desired as discussed in tge able summarizes the complexities as an example fo

. . . : . ) system withNg = Ny antennas using a processor which
previous section. Our optimum algorithm computing the filters, >, R 3 gap

is summarized in Table Ill. In each iteration the algorithn;hquires the same number of operations for additions and
finds the minimum diagonal entry @~ weighted bya? . ultiplications. Comparing to the optimum THP in [7], our

e oﬁidi which is the MSE (cf. Eq. 13 and Table Ill) of thesuboptlmum and optimum algorithms reduce the complexity

. 4 : f r ofNgr and0.6Ng, r ively.
i-th precoded data stream. Therefore, the algorithm |terat|vettR// a factor ofNg and0.6Ng, respectively

finds the optimum ordering in the MMSE sense. V1. SIMULATION RESULTS

V. ANALYSIS OF COMPUTATIONAL COMPLEXITY Computer simulations are performed to evaluate the un-
To compare the complexity, the number of additions antbded BER performance ovés,/Ny = %NU% where N is
multiplications is separately computed because of their posgie number of information bits per channel input and the noise
bly different computational costs for the different processoris assumed to be white, i.@,,, = ¢21. In the following,
We compare the complexity of our proposed schemeésormation bits are QPSK modulated/ (= 2). Fig. 5 shows
with that of the optimum MMSE THP presented in [7] ashe performance of a system witNit = Ng = 4 antennas.
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Fig. 5. BER Performance foNt = Nr = 4. Our proposed optimum Fig 7. BER performance of linear and nonlinear transmit processing schemes

algorithm performs equivalent to the optimum scheme in [7]. The performangs N, = Ng = 8. The superior performance of MMSE THP can be obtained

of our suboptimum algorithm is approaching the optimum performance. \yith
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the same complexity of the simple linear scheme by our algorithm.

VIl. SUMMARY

without ordering optimization

suboptimum ordering optimization

We have derived new computationally efficient MMSE THP
algorithms for spatial multiplexing on flat MIMO channels.
The system considered in this paper is attractive in scenarios
where a transmitter serves decentralized receivers which can-
not cooperate with each other. Interferences among different
receivers are resolved at the transmitter prior to the signal
transmission based on the MIMO channel state information.
As shown in [7], the performance of the nonlinear MMSE
THP is superior to linear variants. However, the complexity

0.5

loss in dB against optimum ordering

N

4

C Fany
6 )4 0
N_= N, antennas

Fig. 6. Performance loss in dB due to the ordering algorithm at an uncoded
BER=10"2. The loss of the proposed suboptimum solution is negligible. 1]

O Va)
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The impact of the ordering optimization can be observed. Fd#l
comparison, the performance of the MMSE linear filter is also
plotted. Significant gain of the nonlinear THP can be seen
against the linear filter. Our optimum algorithm shows exactly
the same performance of [7]. Our suboptimum algorithn{3
shows slight performance degradation in the low uncoded
BER region, but no performance degradation in the uncoded
BER, e.9.10~2 which is a practical operating point in coded [4]
transmission.

The performance loss due to the suboptimality of thes
ordering optimization is further investigated. Fig. 6 shows
the loss in dB against the optimum ordering at an uncodeld
BER =10"2 over the number of antenna elememg (= Ng).

We conclude that the performance loss of our suboptimuri]
solution is negligible (below 0.03 dB).

Fig. 7 compares the performance of different transmissizﬁg
schemes. Our proposed algorithm makes it possible to obt A
the superior performance of the nonlinear MMSE THP without
any computational complexity penalty against simple lineal’!
schemes such a=ro forcing(ZF) or MMSE linear filters. The
THP approach requires a modulo operation, but its complexity]
is of minor impact on the total complexity.

is significantly higher for a large number of receivers. We
showed that a large performance advantage is possible without
any complexity penalty compared to the simple linear filters.
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