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ABSTRACT
The performance of algorithms for preprocessing the signal at

the transmitter in mobile communications is severely limited by the
amount of available channel state information (CSI). The channel
can be modeled as random variable conditioned on a delayed and
noisy observation of the channel realization. We introduce novel
criteria for linear precoding based on an MMSE criterion, which is
stochastic due to the transmitter’s channel model. Moreover, em-
ploying an estimation theoretic perspective, a new model for the re-
ceivers’ processing is incorporated into the optimization. We show
that the transmitter’s partial CSI can is exploited efficiently by this
design method and leads to combined linear precoding and channel
estimation, which contains the categories of complete and statistical
CSI as asymptotic cases.

1. INTRODUCTION

Precoding or preequalization schemes may be designed based on
complete, partial, statistical, or no channel state information (CSI).
We definepartial CSI in terms of a conditional probability density
function (PDF) assuming an indirect (delayed and noisy) observa-
tion of the current channel’s realization. This observation can be
obtained based on training symbols in the uplink in a time division
duplex (TDD) system [1] or from the feedback of the receivers in
a closed loop system [2]. Thus, from the transmitter’s perspective
the channel is modeled as a random variable with a conditional PDF
given the noisy observation.Completeor statistical CSIare viewed
as asymptotic cases of partial CSI: in the former the channel real-
ization is known completely and in the latter only knowledge about
the channel’s unconditioned PDF is available.

The slot structure in TDD systems, the limited feedback, and
the Doppler spread of the channel lead to a delayed CSI, which
causes significant performance degradation of signal processing at
the transmitter. Thus,robust algorithmsare required to exploit
knowledge about size and structure of the errors in CSI given by the
conditional PDF. In this article the problem is treated, how differ-
ent categories of CSI can be incorporated into a clean optimization
problem for a linear preequalizer.

In [3] the MMSE solution from theuplink assuming statistical
CSI and a phase correction at the receiver was applied for down-
link beamforming. An MMSE design for preequalizationin the
downlink, i.e., without using an analogy to the uplink as in [3], was
presented in [4, 5] assuming complete CSI and without modeling
the receivers’ channel knowledge explicitly. Assuming a (channel)
matched filter at the receiver this approach was extended to statis-
tical CSI in [6] with the detour over a “power equivalent model”
based on the channel covariance matrix.

Our contributions are: 1) The MMSE design of [4, 5] is ex-
tended to partial and statistical CSI. 2) Criteria for a combined op-
timization of channel estimation and precoding are proposed and
solved. 3) The “detour” over the power equivalent model [6] is
avoided with the new “direct” approaches. 4) The receivers’ degree
of CSI and processing capability is included into the optimization
of the transmitter to avoid a conservative design.

We consider a TDD system with multiple transmit antennas and
non-cooperative receivers (downlink). Although our results are de-
rived for a frequency-flat fading channel to be able to focus on the

main ideas, they are directly applicable to frequency selective chan-
nels (space-time filtering) and CDMA systems following [6]. Pre-
coding is optimized based on amean square error(MSE) criterion
with average power constraint [4, 5], which is nowstochastic, i.e., a
random variable, due to the transmitter’s partial channel knowledge.

As the transmitter knows the precoding/beamforming, which it
uses for transmitting the training sequence(s), it has all informa-
tion about the receivers’ degree of CSI. We exploit this information
to model the receivers’ signal processing based on their amount of
CSI. Assuming an amplitude and phase modulation, coherent de-
tection is required at every receiver, which includes the correction
of the channel phase. Therefore, we describe the receivers’ depen-
dency on the current channel realization in terms of a phase cor-
rection (Sec. 2). As this simple processing is part of every coher-
ent receiver’s processing chain, it does not pose any constraint on
receiver design. Thus, the receiver can still be optimized indepen-
dent of the precoding. Previously, the receivers have been modeled
to have no CSI or only an automatic gain control when optimiz-
ing beamforming and precoding. This is not a realistic model for
a wireless communication system with coherent demodulation and
results in a performance loss in case of partial CSI at the transmitter.

In Sec. 3 differentprincipal strategiesfor dealing with stochas-
tic systems are introduced in the framework of Bayesian estimation,
where the focus is on acombined optimization of channel estimation
and precoding. It is shown how different assumptions made by the
transmitter about thereceiver’s CSIand processing capabilities in-
fluence the solution of the new optimization problems, which can be
given explicitly. Connections to robust optimization [1, 7] and reg-
ularization are emphasized. In Sec. 4 and 5 it is shown analytically
and with simulations—w.r.t. uncoded bit error rate (BER)—that
preequalization based on a conditional mean (CM) estimate of the
cost function leads to a consistent solution, which converges nicely
to the case of complete CSI (e.g. for stationary users with an infi-
nite number of training symbols) and statistical CSI (e.g. for very
high Doppler frequencies). Viewing our problem in the context of
robust optimization we show, that the receivers’ processing capabil-
ities have to be considered by the transmitter to avoid unnecessarily
conservative robust preequalizers resulting in a bad performance.
Modeling the receivers’ CSI, i.e., their dependency on the current
channel realization, together with a CM estimate of the resulting
MSE cost function introduces a new methodology in the design of
precoding or downlink beamforming. It is more robust to partial
CSI and allows to model the degree of CSI at the receivers at the
transmitter.

Notation: Random vectors and matrices are denoted by lower and upper
case sans serif bold letters (e.g.b, B), whereas the realizations or determin-
istic variables are, e.g.,b, B. The operatorsE[•], (•)T, (•)H, andtr(•)
stand for expectation, transpose, Hermitian transpose, and trace of a ma-
trix, respectively.⊗ andδk,k′ denote the Kronecker product and function,
vec(B) stacks the columns ofB in a vector. ei is the i-th column of an
N ×N identity matrixIN

2. SYSTEM MODEL

Downlink Data Channel: Data symbols s[n] ∈ BK

(E[s[n]s[n]H ] = IK , modulation alphabetB) are preequal-



ized/precoded withP ∈ CM×K and transmitted usingM antennas
over the channelHq ∈ CK×M to K receivers in thedownlink
(time slot q). The channel is assumed constant during one time
slot (“block-fading”). The (non-cooperative) receivers are modeled
as G = diag[gk]Kk=1 ∈ CK×K , which may be a function of the
channel G(Hq). Including white additive complex Gaussian
noisen[n] ∼ Nc(0,σ2

nIK) the estimate of the signals[n] reads as
(Fig. 1)

ŝ[n] = GHqP s[n]+Gn[n] ∈ C
K . (1)
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Figure 1: Flat fading system model of up- and downlink.

Downlink Training Channel:There are two main concepts for
training symbol based channel estimation in the downlink: Provid-
ing K receiver specific (dedicated) training sequences (in some sys-
tems restricted toM sequences) or transmitting one common train-
ing sequence to the receivers. For the former case a different trans-
mit filter dk may be used for every training sequence, e.g.,dk is the
k-th column ofP . In the latter case it is transmitted with the same
filter dk = d, e.g., over the first antennadk = e1. Thus, we assume
that receiverk knowshT

k,qdk (hk,q is thek-th column ofHT
q ) and

corrects the phase based on this CSI:

G = diag [gk ]Kk=1 = diag
[(

hT
k,qdk

)∗/∣∣∣hT
k,qdk

∣∣∣]K
k=1

. (2)

As mentioned above, this model of the receivers’ dependencies on
the current channel realization is novel in optimization of transmit
processing. It captures the most important aspect of a coherent re-
ceiver. On the other hand it is still simple enough, that it is included
in any—even low-complexity—receiver design without any need
for standardization.

Uplink Training Channel:In a TDD system thechannel for de-
signingP can be estimated fromN training symbols (per receiver)
sp[n]∈CK (n∈ {1, . . . ,N}) in anuplinkslot. We assume alternat-
ing up-/downlink slots and a delay of 3 slots (due to processing the
training sequence) to the first uplink slot available with a training
sequence. The receive training signal is (Fig. 1)

yq[n] = HT
q sp[n]+vq [n] ∈ C

M , n ∈ {1, . . . ,N} (3)

with additive white noisevq [n] ∼ Nc(0,σ2
vIM ). Collecting allN

training symbolssp[n] in one matrixS ′
p ∈ C

K×N we obtain

Yq = HT
q S ′

p +Vq ∈ C
M×N (4)

ȳq = vec[Yq] = (S ′T
p ⊗IM )hq + v̄q ∈ C

MN , (5)

wherehq = vec[HT
q ]. Training signals fromQ previous uplink

slots1 are available for estimating/predicting the channel realization
at timeq. Thus, the total observation is

yq = ShT,q +vq ∈ C
MNQ (6)

1In closed loop systemsyq can be substituted by estimatesĥT,q with
appropriate Gaussian statistical model in the sequel [2, 8].

with hT,q = [hT
q−3,hT

q−5, . . . ,hT
q−(2Q+1)]

T ∈ CQMK ,

yq = [ȳT
q−3, ȳT

q−5, . . . , ȳT
q−(2Q+1)]

T, andS = IQ ⊗S ′T
p ⊗IM .

The channel coefficientshq = vec[HT
q ] are modeled as a sta-

tionary zero mean complex Gaussian random vector with covari-
ance matrixCh = E[hqhH

q ], which is block diagonal assuming

E[hk,qhH
k′,q ] =Chk

δk,k′ . hk,q ∼Nc(0,Chk
) is thek-th column of

HT
q . For simplicity, we assume identical autocorrelationr[i] (nor-

malized tor[0] = 1) for all elements ofhq and a time-difference of
i slots, i.e.,ChT

= CT ⊗Ch . CT is Toeplitz with first column
[r[0],r[2], . . . ,r[2Q−2]]T .

Throughout the article we assume that first and second order
channel and noise statistics are given. For convenience, we omit the
slot indexq in Hq, hq , yq , andhT,q in the sequel and write:H ,
h, y, andhT.

3. STOCHASTIC MSE CRITERION:
PARTIAL CSI AT TRANSMITTER

The filterP is optimized minimizing the modified MSE [5]

σ2
ε(P ,β,H) = E[‖s[n]−β−1 ŝ[n]‖22] = K +β−2σ2

ntr[GHG ]

+β−2tr[P HHHGHGHP ]−2β−1 Re[tr[GHP ]] (7)

subject to an average transmit power constraint:

{P,b} = argmin
P ′,β′

σ2
ε(P ′,β′,H) s.t. E[‖P s‖22] ≤ PTx. (8)

Rescaling of the estimatês[n] by β−1 provides the necessary de-
gree of freedom to incorporate the power constraint and may be
interpreted, e.g., as a model for the automatic gain control at the
receivers [5].

Complete knowledge about the realizationH is never available
at the transmitter, but obtained via the observations iny. Thus,
the channelh is considered as a random variable by the transmitter
with conditional (complex) Gaussian PDFpH|y(H |y) with mean
µh|y = E[h|y] and covarianceCh|y :

µh|y = ĥ = W y, W = ChhTSH(SChTSH +σ2
vIMNQ)−1

Ch|y = Ch −W SChTh , (9)

whereChhT = E[hhH
T ] = [r[3],r[5], . . . ,r[2Q+1]]⊗Ch andW

is equivalent to the LMMSE estimator [9]. Due to the partial knowl-
edge aboutH via the conditional PDF the cost function (7) and the
argument of the optimization (8) are random variables, too.

The solution of (8) depends onH . Thus, it is a random vari-
able itself. Withα = σ2

ntr(GHG )/PTx andβ chosen to satisfy the
constraint with equality it is given by

P = P (H) = β(HHGHGH +αIM )−1HHGH. (10)

Certainly, assuming no CSI at the receiver [6, 1] is not justified
in most systems. The strategy for transmitting the training sequence
in the downlink determines the receivers’ channel knowledge. Their
processing is modeled by a phase correction withG (2). Although
G is fixed at the receivers for one channel realization, from the
transmitter’s perspectiveG is now also a random variable described
by dk andpH|y(H |y).

There arethree principal approacheshow to deal with the
stochastic MSE criterionin (8), which are presented in the next sub-
sections.



3.1 Traditional Approach

The channel realizationH is estimated, e.g.,̂H = E[H |y], and
simply plugged into the optimization (8) problem based onGHG =
IK , (10), and (2), which yields [5]

P T = βT(Ĥ
H

Ĥ +αIM )−1Ĥ
H

Ĝ
H
T (11)

with α = Kσ2
n/PTx andβT chosen to satisfy the constraint with

equality. The estimatêGT for the receivers’ processing is obtained
applyingĥ from (9) to (2). The estimatêH of the channel is used
as if it was the true one. The numerical complexity is in the order
of O(K3) after applying the matrix-inversion lemma [9].

3.2 Conditional Mean Estimate of the Cost Function

A conditional mean (CM) estimate of the MSE (7), i.e., the expected
cost given past observations of the channel iny, is minimized

min
P ′,β′

EH
[
σ2

ε(P ′,β′,Hq)|y] s.t. E[‖P s‖22] ≤ PTx. (12)

It can be viewed as acombined optimization of channel estimation
and precoding, as the optimization problem only depends on the
observationy and not on the channelH or its estimateĤ .

The CM estimate of the MSE (7) is

σ2
ε(P ,β,H) = K +β−2σ2

ntr[E[GHG |y]] (13)

+β−2tr[P HE[HHGHGH |y]P ]−2β−1 Re[tr[E[GH |y]P ]]

The CM estimate of the MSE (13) can be simplified withGHG =
IK , i.e., E[HHGHGH |y] = E[HHH |y] the CM estimate of the
channel GramianHHH is

EH

[
HHH |y

]
= Ĥ

H
Ĥ +CHH|y , Ĥ = E[H |y]. (14)

The conditional covariance can be computed using (9)CHH|y =

E[(H − Ĥ)H(H − Ĥ)|y] = ∑K
k=1 C∗

hk|y and is identical to the

covariance matrix of the estimation errorE[(H − Ĥ)H(H − Ĥ)]
due to the orthogonality property of the LMMSE estimatorand the
jointly (complex) Gaussian distribution ofy andh [9].

The CM estimate of the effective channelGH reads

E[GH |y] = ĜĤ +UH|y , Ĝ = E[G |y] = diag [ĝk]Kk=1 ,

where thekth row ofUH|y ∈ CK×M is given by

eT
k UH|y = dH

k C∗
hk |y c−1

xk|y
(
E[|xk | |y]−µxk |y ĝk

)
. (15)

UH|y accounts for the CM estimation of theproductGH , asĜ and

Ĥ are separate CM estimates. The channel estimated by thek-th
receiver isxk = dT

k hk with first and second order moments

µxk|y = E[xk|y] = dT
k ĥk, (16)

cxk|y = E[|xk −µxk|y |2|y] = dT
k Chk |yd∗

k.

With [10] the remaining terms, i.e., the CM estimate of the receiver
gk and of the magnitude|xk| are

ĝk = E[gk |y] (17)

=

√
π

2

|µxk|y|
c
1/2
xk|y

µ∗
xk|y

|µxk|y |
1F1

(
1

2
,2,−|µxk |y |2

cxk|y

)
,

E[|xk| |y] =

√
π

2
c
1/2
xk |y 1F1

(
−1

2
,1,−|µxk |y |2

cxk|y

)
, (18)

where1F1(α,β,z) is the confluent hypergeometric function.
With βP chosen to satisfy the constraint with equality, the so-

lution of (12) based on the Lagrange function is

P P = βP

(
Ĥ

H
Ĥ +CHH|y +αIM

)−1(
Ĥ

H
Ĝ

H
+UH

H|y
)

.

(19)

Interpretation: The combined optimization is identical to CM
channel estimation ofH with W (9) and ofG (17), whose esti-
mation error size and structure are described byCHH|y andUH|y .
The structured loading withCHH |y in the inverse shows a close re-
lation to robust optimizationand Tikhonov regularization based on
a stochastic error model and the paradigm of (static) stochastic pro-
gramming [7, 1]. Thus, knowledge about size and structure of the
(random) estimation error is considered in the design ofP . Com-
paring (19) with (11) we can interpret̂GĤ +UH|y as the channel

model of the transmitter, which is used instead ofĜTĤ and is
strongly influenced by the choice ofdk above.

The additional complexity compared to the traditional approach
(11) with LMMSE channel estimation2 is small and dominated by
the computation ofCHH|y (9) with O(M3K2NQ).

3.3 Conditional Mean Estimate of the Argument

The best estimator forP (H) (10), i.e., for the solution of (8), in the
mean square sense giveny can be derived from

min
P CM

EH [‖P (H)−P CM‖2F|y] s.t. ‖P CM‖2F = PTx.

It is the CM estimate ofP (H)

P CM = βCMEH [P (H)|y], (20)

βCM chosen to satisfy the constraint. An explicit solution is not
possible, but can be obtained via Monte Carlo simulations of the
CM, which is very expensive.3

4. ASYMPTOTIC CASES OF CSI

Further insights in the solution (19) for partial CSI can be obtained
when considering the situation of complete and statistical CSI at
the transmitter. We show that a continuous transition between the
different categories of CSI is possible.

4.1 Complete CSI at Transmitter

For complete CSI, i.e.,̂H = H , the error covariance matrixCHH|y
of the channel estimate is zero and the matrixE[GH |y] is equivalent
to the effective channelGH :

CHH|y → 0M×M , UH|y → 0K×M , Ĥ → H , Ĝ → G.

Convergence is achieved forσ2
v → 0 andr[i] → 1∀i. The MSE (7)

is no random variable, as the conditional PDFpH|y(H |y) = δ(h−
W y) is a Dirac distribution centered atW y. Thus, all approaches
of Sec. 3 converge to

P C = βC

(
HHH +αIM

)−1
HHGH (21)

with α andβC as above.

2The computational complexity of the LMMSE estimator—computation
of W in (9)—is O(M3N3Q3 +K2M3Q2N) if no symmetry and struc-
ture of the linear system of equations is exploited.

3A approach in two stages is also introduced in [11] for statistical CSI
using the dominant eigenvector of the precoder’s correlation matrix.



4.2 Statistical CSI at Transmitter

The situation is more involved in the case of statistical CSI, i.e., only
knowledge about the PDFpH(H), where the observationy is in-
dependent of the current channelH due to high Doppler frequency
(temporally uncorrelated channel). If no information is available
about the current channel, e.g., asσ2

v → ∞ or r[i]→ 0 for i > 0, the
CM channel estimate (9) iŝH = 0K×M .

The traditional approach (11) yieldsP T → 0M×K for Ĥ =
0K×M , which can be derived from the Karush-Kuhn-Tucker con-
ditions. Obviously, not transmitting at all is not an adequate solution
for the case of statistical CSI.

Furthermore, it has to be noted that‖ĤH
Ĥ‖F > 0 numeri-

cally: For example, the traditional solution will not reach its limit in

practice but converge toP T → βTĤ
H

as‖ĤH
Ĥ‖F �‖αIM‖F.

This is a matched filter on the channel. Applying an LMMSE esti-
mator together with the traditional approach, ensures that the rows
of Ĥ are part of the subspace in caseChk

is of low rank. This
yields a BER smaller than0.5 as seen in Fig. 3.

As the PDFpH|y(H |y) → pH(H) andUH|y → UH the so-
lution (19) for partial CSI at the transmitter and some CSI at the
receiver converges to

P P → P S = βS (CHH +αIM )−1 UH
H (22)

with the channel’s second order statisticsCHH = E[HHH ] =

∑K
k=1 C∗

hk
and eT

k UH =
√

πdT
k CT

hk
/(dH

k Chk
dk)1/2/2. This

converges is a consequence of the receiver model (2).P S shows
a close relation to traditional beamforming solutions [3] with a rank
one model for each receiver’s channel. Note, thatUH is determined
by the system’s concept for transmitting the downlink training se-
quence with spatial filtersdk (Sec. 2).

5. PERFORMANCE EVALUATION

Simulation parameters:QPSK data symbols,M = 4 transmit an-
tennas in a uniform linear array (half wavelength spacing), and
K = 3 receivers are used. All complex Gaussian channel coeffi-
cients have the same Jakes power spectrum with maximum Doppler
frequencyfd (normalized to the slot period). The azimuth direc-
tions of the receivers’ channels are Laplace distributed with mean
[−15◦,0◦,15◦] and standard deviation3◦. Walsh-Hadamard se-
quences of lengthN = 32 are used for training in the uplink and
the received training sequences fromQ = 5 previous uplink slots
are considered for prediction. The receivers (2) perform a phase
correction withdk equal to the principal eigenvector of the cor-

relation matricesRhk|y = ĥkĥ
H
k +Chk|y . For computingP CM

in (20) we chooseG as in (2) and use100 random realizations to
compute the CM estimate via Monte Carlo simulations.

Results:Fig. 2 shows the uncoded BER vs. SNR:P P (19)
based on the CM estimate of the cost results in a significantly lower
BER floor than the traditional designP T (11). Having CSI at
the receiver is clearly better than traditional designP T without
Rx-processingG = IK (cf. Fig. 3). With increasing Doppler
frequencyfd our systematic approachP P (19) results in a per-
fect transition in BER from complete CSIP C to statistical CSI
P S (cf. Fig. 3). The CM estimateP CM (20) of the argument
of (8), which requires a high computational complexity, performs
worse thanP P: Thus, estimating the MSE cost function is the cor-
rect paradigm for dealing with partial CSI. At low SNR and low
Doppler frequency all approaches perform similarly. For medium
SNR, where interference is the performance limiting factor, and
medium Doppler frequency we already have a large performance
advantage—in this simple scenario—when modeling the receiver
more accurately and performing a CM estimate of the MSE.
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