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ABSTRACT main ideas, they are directly applicable to frequency selective chan-
The performance of algorithms for preprocessing the signal atels (space-time filtering) and CDMA systems following [6]. Pre-
the transmitter in mobile communications is severely limited by thecoding is optimized based onnaean square erro(MSE) criterion
amount of available channel state information (CSI). The channelith average power constraint [4, 5], which is netechastici.e., a
can be modeled as random variable conditioned on a delayed amdndom variable, due to the transmitter’s partial channel knowledge.
noisy observation of the channel realization. We introduce novel As the transmitter knows the precoding/beamforming, which it
criteria for linear precoding based on an MMSE criterion, which isuses for transmitting the training sequence(s), it has all informa-
stochastic due to the transmitter’s channel model. Moreover, emtion about the receivers’ degree of CSI. We exploit this information
ploying an estimation theoretic perspective, a new model for the reto model the receivers’ signal processing based on their amount of
ceivers’ processing is incorporated into the optimization. We showCS|. Assuming an amplitude and phase modulation, coherent de-
that the transmitter’s partial CSI can is exploited efficiently by thistection is required at every receiver, which includes the correction
design method and leads to combined linear precoding and channgf the channel phase. Therefore, we describe the receivers’ depen-
estimation, which contains the categories of complete and statisticaency on the current channel realization in terms of a phase cor-
CSl as asymptotic cases. rection (Sec. 2). As this simple processing is part of every coher-
1. INTRODUCTION ent receiver's processing chain, it does not pose any constraint on
receiver design. Thus, the receiver can still be optimized indepen-
Precoding or preequalization schemes may be designed based a@ent of the precoding. Previously, the receivers have been modeled
complete, partial, statistical, or no channel state information (CSl)to have no CSI or only an automatic gain control when optimiz-
We definepartial CSlin terms of a conditional probability density ing beamforming and precoding. This is not a realistic model for
function (PDF) assuming an indirect (delayed and noisy) observaa wireless communication system with coherent demodulation and
tion of the current channel’s realization. This observation can beesults in a performance loss in case of partial CSI at the transmitter.
obtained based on training symbols in the uplink in a time division  |n Sec. 3 differenprincipal strategiesor dealing with stochas-
duplex (TDD) system [1] or from the feedback of the receivers intic systems are introduced in the framework of Bayesian estimation,
a closed loop system [2]. Thus, from the transmitter's perspectivgvhere the focus is on@ombined optimization of channel estimation
the channel is modeled as a random variable with a conditional PD&nd precoding It is shown how different assumptions made by the
given the noisy observatioompleteor statistical CSlare viewed  transmitter about theeceiver's CSland processing capabilities in-
as asymptotic cases of partial CSI: in the former the channel reaftuence the solution of the new optimization problems, which can be
ization is known completely and in the latter only knowledge aboutgiven explicitly. Connections to robust optimization [1, 7] and reg-
the channel’s unconditioned PDF is available. ularization are emphasized. In Sec. 4 and 5 it is shown analytically
The slot structure in TDD systems, the limited feedback, andand with simulations—w.r.t. uncoded bit error rate (BER)—that
the Doppler spread of the channel lead to a delayed CSI, whicBreequalization based on a conditional mean (CM) estimate of the
causes significant performance degradation of signal processing @bst function leads to a consistent solution, which converges nicely
the transmitter. Thustobust algorithmsare required to exploit to the case of complete CSI (e.g. for stationary users with an infi-
knowledge about size and structure of the errors in CSI given by thgite number of training symbols) and statistical CSl (e.g. for very
conditional PDF. In this article the problem is treated, how differ-high Doppler frequencies). Viewing our problem in the context of
ent categories of CSI can be incorporated into a clean optimizatiofpbust optimization we show, that the receivers’ processing capabil-
problem for a linear preequalizer. ities have to be considered by the transmitter to avoid unnecessarily
In [3] the MMSE solution from theuplink assuming statistical conservative robust preequalizers resulting in a bad performance.
CSl and a phase correction at the receiver was applied for downviodeling the receivers’ CSl, i.e., their dependency on the current
link beamforming. An MMSE design for preequalizatiomthe  channel realization, together with a CM estimate of the resulting
downlink i.e., without using an analogy to the uplink as in [3], was MSE cost function introduces a new methodology in the design of
presented in [4, 5] assuming complete CSI and without modelingrecoding or downlink beamforming. It is more robust to partial
the receivers’ channel knowledge explicitly. Assuming a (channelCS| and allows to model the degree of CSI at the receivers at the
matched filter at the receiver this approach was extended to statigansmitter.
tical CSl in [6] with the detour over a “power equivalent model” Notation: Random vectors and matrices are denoted by lower and upper
based on the channel covariance matrix. . ) case sans serif bold letters (ely.B), whereas the realizations or determin-
Our contributions are: 1) The MMSE design of [4, 5] is ex- istic variables are, e.gh, B. The operator&[e], (s)T, (o), andtr(e)
tended to partial and statistical CSI. 2) Criteria for a combined opstand for expectation, transpose, Hermitian transpose, and trace of a ma-
timization of channel estimation and precoding are proposed anghx, respectively.® andsy, + denote the Kronecker product and function,
solved. 3) The “detour” over the power equivalent model [6] iSvec(B) stacks the columns aB in a vector. e; is thei-th column of an
avoided with the new “direct” approaches. 4) The receivers’ degreev x N identity matrixI 5
of CSI and processing capability is included into the optimization
of the transmitter to avoid a conservative design. 2. SYSTEM MODEL
We consider a TDD system with multiple transmit antennas and )
non-cooperative receivers (downlink). Although our results are deDownlink Data Channel:  Data symbols s[n] € BX
rived for a frequency-flat fading channel to be able to focus on thgE[s[n]s[n]!] = Iy, modulation alphabetB) are preequal-



ized/precoded wittP € C* X and transmitted using/ antennas ~ with ko = [h] 3,h] 5,... ,h;fi(QQH)]T e COMK,
over the channeH , € CK*M to K receivers in thedownlink _[gT =T =T T andS =TIn0STol
(time slotg). The channel is assumed constant during one tim&? o-sYa-50+Yq-2q41)] Q®5p ©lar
slot (“block-fading”). The (non-cooperative) receivers are modeled  The channel coefficients, = VeC[H;F] are modeled as a sta-
as G = diag[g,]5_ | € CK*K which may be a function of the tionary zero mean complex Gaussian random vector with covari-
channel G(H,). Including white additive complex Gaussian ance matrixCy = E[hqh}f], which is block diagonal assuming
noisen(n] ~ (0,021 i) the estimate of the signa[n] reads as E[hkth}qu] =Ch O k- hy g ~A(0,Cp, ) isthek-th column of
(Fig- 1) HqT. For simplicity, we assume identical autocorrelatigij (nor-
a1 K malized tor[0] = 1) for all elements ofh, and a time-difference of
§ln] = GH ,Ps[n]+Gn[n] € CX. @ islots, i.e.Cp, = Cr®Ch. Cr is Toeplitz with first column
[7[0],7[2],...,r[2Q —2]]T.
n[n) Throughout the article we assume that first and second order
channel and noise statistics are given. For convenience, we omit the
sln] = P [ Hyq G [3[n] slot indexq in H 4, hq, y,, andhr 4 in the sequel and writeH,

h,y,andhr.
pl]

Optimization o 3. STOCHASTIC MSE CRITERION:
with partial CS :ﬁ?@ g~ [ spln] PARTIAL CSI AT TRANSMITTER

Vg—e[n] The filter P is optimized minimizing the modified MSE [5]

Figure 1: Flat fading system model of up- and downlink.
Bownlink Training ChannelTh _ . o2(P,B,H) = E[||s[n] - 8" $[n]|3] = K + 8 *otx(G" G]
ownlink Training ChannelThere are two main concepts for 9 H o H ~H q
training symbol based channel estimation in the downlink: Provid- +0 "t [PTHYGTGHP] - 237" Re[tr[GHP]]  (7)
ing K receiver specific (dedicated) training sequences (in some sys- _ _
tems restricted td/ sequences) or transmitting one common train-subject to an average transmit power constraint:
ing sequence to the receivers. For the former case a different trans-
mit filter d;, may be used for every training sequence, elgis the P} — ino2(P'. 3. H) st EllPs|2 < P 8
k-th column of P. In the latter case it is transmitted with the same {P.5} afgn%( B, H) st E[IPsla] < Prx. (§)
filter d. = d, e.qg., over the first antenr, = e;. Thus, we assume ’
that receivek knowshqu,c (P, q is thek-th column ofH;f) and

: - - -1 i §
corrects the phase based on this CSI: Rescaling of the estimat#n] by 3~ provides the necessary de

gree of freedom to incorporate the power constraint and may be
) e ) T 7 K interpreted, e.g., as a model for the automatic gain control at the
G = diag[gy],—, = diag [(hk,qdk> /‘hk,qdku we” @ receivers [5].
Complete knowledge about the realizatibhis never available
As mentioned above, this model of the receivers’ dependencies aat the transmitter, but obtained via the observationg.inThus,
the current channel realization is novel in optimization of transmitthe channeh is considered as a random variable by the transmitter
processing. It captures the most important aspect of a coherent redth conditional (complex) Gaussian P¥g,, (H |y) with mean
ceiver. On the other hand it is still simple enough, that it is includeduhly = E[h|y] and covarianc€p,,:
in any—even low-complexity—receiver design without any need
for standardization. R - - ) L
Uplink Training Channelin a TDD system thehannel for de- ~ ipy =h =Wy, W =Cpp S (SCh S" +oyIyng)”
S|gn|ngPI(<:an be estimated _fronN tra_unlng symbols (per receiver) Chy =Ch—WSChop, 9)
sp[n] € CH (ne{l,...,N})inanuplinkslot. We assume alternat-
ing up-/downlink slots and a delay of 3 slots (due to processing the
training sequence) to the first uplink slot available with a trainingwhereCpp,.. = E[hhY] = [r[3],7[5],...,7[2Q + 1]] ® C}, andW
sequence. The receive training signal is (Fig. 1) is equivalent to the LMMSE estimator [9]. Due to the partial knowl-
edge abouf{ via the conditional PDF the cost function (7) and the
Yqln] = H;fsp[n] +yn]eC” ne{l,.. N} (3)  argument of t_he optimization (8) are random_vgriables, too.
The solution of (8) depends aH. Thus, it is a random vari-
with additive white noisev,[n] ~ .4(0,0521 ;). Collecting ally  @ble itself. Witha' = optr(G"G)/Pry ands3 chosen to satisfy the

training symbolss;, [n] in one matrixS7, € C**" we obtain constraint with equality it is given by
Y, = HI'S! + V, e CMxN ) P=P(H)=pH"G"GH+aI,) 'H'G".  (10)
= o T - MN
Yq = vec[Yq] = (Sp @Inr)hg+7g € T, ®) Certainly, assuming no CSI at the receiver [6, 1] is not justified
in most systems. The strategy for transmitting the training sequence

where h, = vec[H]]. Training signals fromQ previous uplink  in the downlink determines the receivers’ channel knowledge. Their
slots' are available for estimating/predicting the channel realizatiorProcessing is modeled by a phase correction tt2). Although

at timegq. Thus, the total observation is G is fixed at the receivers for one channel realization, from the
transmitter’s perspectiv@ is now also a random variable described
Yg = Shr 4+ vy e CMNQ (6) bydyandpy,(Hly).

There arethree principal approachesiow to deal with the
1in closed loop systemg,, can be substituted by estimats: , with stochastic MSE criteriom (8), which are presented in the next sub-
appropriate Gaussian statistical model in the sequel [2, 8]. sections.



3.1 Traditional Approach

The channel realizatiod is estimated, e.gH = E[H|y], and

simply plugged into the optimization (8) problem based@hG =
Ik, (10), and (2), which yields [5]

Pr=06r(H"A +al,) tAYGY (11)

AH .~ -1
with o = Ko2/Pr, and St chosen to satisfy the constraint with Pp = fp (H H+Cpnyy ‘H)‘IM) (H G
equality. The estimaté&'1 for the receivers’ processing is obtained

applyingh from (9) to (2). The estimat&l of the channel is used
asif it was the true one The numerical complexity is in the order

of O(K?) after applying the matrix-inversion lemma [9].

3.2 Conditional Mean Estimate of the Cost Function

A conditional mean (CM) estimate of the MSE (7), i.e., the expectetgjl

cost given past observations of the channgj jiis minimized

min By [02(P',8',Hy)ly] st E[|Ps[3] <Pre.  (12)

T 1/2 1 | 2
E“Xk‘ |y] = %cxily 1F1 <2717Xky ’ (18)

Cxily

where F (a, 3, z) is the confluent hypergeometric function.
With Sp chosen to satisfy the constraint with equality, the so-
lution of (12) based on the Lagrange function is

~H AH H
+UH|y).
(19)

Interpretation: The combined optimization is identical to CM
channel estimation off with W (9) and of G (17), whose esti-
mation error size and structure are describe@yt:|,, andU ;.

The structured loading witli’ ;i1 |, in the inverse shows a close re-
tion torobust optimizatiorand Tikhonov regularization based on
stochastic error model and the paradigm of (static) stochastic pro-
gramming [7, 1]. Thus, knowledge about size and structure of the
(random) estimation error is considered in the desig#ofCom-
paring (19) with (11) we can interprét H + U ,, as the channel

model of the transmitter, which is used instead®f H and is

It can be viewed as eombined optimization of channel estimation strongly influenced by the choice df, above.

and precoding as the optimization problem only depends on the

observationy and not on the channé or its estimatef .
The CM estimate of the MSE (7) is
02(P,B,H) = K+ 8 %0, ur[E[G" Gly]] (13)
+ 3 2tr[PHE[HR GH GH|y]| P] — 267! Re[tr[E[GH|y] P]]
The CM estimate of the MSE (13) can be simplified wEi G =

I, i.e., E[HHGYGH|y] = E[H"H|y] the CM estimate of the
channel Gramiat™ H is

~AH A ~
Ey [HHH|y] =H"H+Cynyy, H=E[Hly. (14

The conditional covariance can be computed usingC('Q.)H‘y =
E(H-E)YH-H)y =3E, by @nd is identical to the

covariance matrix of the estimation erBf(H — H)"(H — H)]
due to the orthogonality property of the LMMSE estimaaoid the
jointly (complex) Gaussian distribution gfandh [9].

The CM estimate of the effective chanr@H reads

E[GH|y| = GH + Uy, G =E[Gly] = diag[g]}—; .

where thekth row of Uy, € C**M is given by

eFUnly = di'Ch 1, oy (Elel [yl = g yn ). (15)

U y,, accounts for the CM estimation of tipgoductGH, asG and

H are separate CM estimates. The channel estimated bi-the
receiver isx;, = d;fhk with first and second order moments

x|y = E[Xk‘y] = drlgh"kv (16)

2 T
Cxply = EHXk - ka\y‘ ‘y] = dk Chk|ydz

With [10] the remaining terms, i.e., the CM estimate of the receiver

g and of the magnitudgx | are

gr = BElgr|y] (17)

VT |”Xk\y| uiﬂy
T2 1/2
ly

2
1
lFl _727_‘uXk|y| )
Iz 2 Cxily

1
&/
Xk

The additional complexity compared to the traditional approach
(11) with LMMSE channel estimatidris small and dominated by
the computation o€ i1, (9) with O(M3K?NQ).

3.3 Conditional Mean Estimate of the Argument

The best estimator faP (H) (10), i.e., for the solution of (8), in the
mean square sense givgrcan be derived from

min By(||P(H) = Pou|Ely] st [PoulE = Prs.
CM

Itis the CM estimate of? (H)
Pcy = BemEwH[P(H)|yl,

Bcw chosen to satisfy the constraint. An explicit solution is not
possible, but can be obtained via Monte Carlo simulations of the
CM, which is very expensivé.

(20)

4. ASYMPTOTIC CASES OF CSI

Further insights in the solution (19) for partial CSI can be obtained

when considering the situation of complete and statistical CSI at
the transmitter. We show that a continuous transition between the
different categories of CSl is possible.

4.1 Complete CSI at Transmitter

For complete CSlI, i.eH = H, the error covariance matr(Z'HH‘y

of the channel estimate is zero and the maffi&H|y] is equivalent
to the effective channelr H':

Chsjy — Orrns, Uy — Ok, H—H, G—G.

Convergence is achieved fog — 0 andr[i] — 1Vi. The MSE (7)
is no random variable, as the conditional PRy, (H |y) = d(h —
W y) is a Dirac distribution centered & y. Thus, all approaches
of Sec. 3 converge to

—1
Pc=fc (HHH + aIM> HIGH (1)

with o and¢ as above.

2The computational complexity of the LMMSE estimator—computation
of Win (9)—is O(M3N3Q3 + K2M3Q?N) if no symmetry and struc-
ture of the linear system of equations is exploited.

3A approach in two stages is also introduced in [11] for statistical CSI
using the dominant eigenvector of the precoder’s correlation matrix.



4.2 Statistical CSI at Transmitter

The situation is more involved in the case of statistical CSl, i.e., only
knowledge about the PDFy (H ), where the observation is in- 101
dependent of the current chantdl due to high Doppler frequency x
(temporally uncorrelated channel). If no information is available ]
about the current channel, e.g.,cs— o or r[i] — 0 fori > 0, the @ s 3
CM channel estimate (9) Bl = 0y ;. 10~2 p—v— Traditional no Rx B
L - A - Traditional P =
The traditional approach (11) yield8t — 0y« x for H = T <
05« a7, Which can be derived from the Karush-Kuhn-Tucker con- <o Ey[P(H)|y] ~a
ditions. Obviously, not transmitting at all is not an adequate solution | X Stat!stlcal CSiPs
for the case of statistical CSlI. 10-3 |--8-- Partial CSIPp
Furthermore, it has to be noted thal" B[z > 0 numeri- -~ Complete CSPP¢ n
cally: For example, the traditional solution will not reach its limitin 0 10 20 30 40
practice but converge B — SrH " as|H" H||p < |lod vl 10log 1 Pr«/o7

This is a matched filter on the channel. Applying an LMMSE esti-
mator together with the traditional approach, ensures that the rows

of H are part of the subspace in cask, is of low rank. This S —
yields a BER smaller tha®.5 as seen in Fig. 3. /7
As the PDFpp,, (H |y) — py(H) andU y),, — U  the so- 101 e X
lution (19) for partial CSI at the transmitter and some CSI at the e ™ *;_;:;__,,__ﬁ_;;_ AR
receiver converges to AT
Cw 14 /& .~ —v— Traditional no Rx
Pp - Ps=03s(Cpyn+aly) Uy (22) L 7 -+ Traditional Pt
with the channel’s second order statisti = Hy = e e BulB(H)|y]
i€ = E[HUH] = é( e *-- Statistical CSIPg
Sie1Ch, andefUp = ad; Cy /(dj Cpdy)'/?/2. This / --g-- Partial CSIPp
converges is a consequence of the receiver model £2).shows --m-- Complete CSIP¢ ]
a close relation to traditional beamforming solutions [3] with a rank el S

one model for each receiver's channel. Note, Uiat is determined
by the system’s concept for transmitting the downlink training se-
guence with spatial filterd;, (Sec. 2).

5. PERFORMANCE EVALUATION

Simulation parametersQPSK data symbols)/ = 4 transmit an-
tennas in a uniform linear array (half wavelength spacing), and
K = 3 receivers are used. All complex Gaussian channel coeffi-
cients have the same Jakes power spectrum with maximum Doppler
frequencyfyq (normalized to the slot period). The azimuth direc-
tions of the receivers’ channels are Laplace distributed with mean(g;
[—15°,0°,15°] and standard deviatioB®. Walsh-Hadamard se-
quences of lengtiv = 32 are used for training in the uplink and

the received training sequences fran= 5 previous uplink slots

are considered for prediction. The receivers (2) perform a phase[4
correction withd;, equal to the principal eigenvector of the cor- ]

relation matricesRy,, |, = hiyhy + C'p,|y- For computingP ¢y
in (20) we choos&= as in (2) and us&00 random realizations to
compute the CM estimate via Monte Carlo simulations.

Results: Fig. 2 shows the uncoded BER vs. SNRp (19)
based on the CM estimate of the cost results in a significantly lower
BER floor than the traditional desiglPt (11). Having CSI at
the receiver is clearly better than traditional desiBr without
Rx-processingG = I (cf. Fig. 3). With increasing Doppler
frequency f4 our systematic approacRp (19) results in a per-
fect transition in BER from complete C3P to statistical CSI
Pg (cf. Fig. 3). The CM estimatd?y; (20) of the argument
of (8), which requires a high computational complexity, performs 8]
worse thanPp: Thus, estimating the MSE cost function is the cor-
rect paradigm for dealing with partial CSI. At low SNR and low
Doppler frequency all approaches perform similarly. For medium
SNR, where interference is the performance limiting factor, and (9]
medium Doppler frequency we already have a large performance
advantage—in this simple scenario—when modeling the received0]
more accurately and performing a CM estimate of the MSE.

REFERENCES

[1] F. A. Dietrich, R. Hunger, M. Joham, and W. Utschick. Robust
Transmit Wiener Filter for Time Division Duplex Systems. In
Proc. of ISSPITGermany, Dec. 2003.

(2]

(5]

(6]

(11]

Figure 2: Uncoded BER vs. SNR at Doppler fr¢g.= 0.11.

0 0.05 0.1 0.15 0.2 0.25

fd

Figure 3: Uncoded BER vgfy at10logyo(Pryx/02) = 30dB.

F. Rey, M. Lamarca, and G. Vazquez. A Joint Transmitter-
Receiver Design in MIMO systems Robust to Channel Uncer-
tainty for W-LAN Applications. InProceedings of the IST
Mobile & Wireless Telecommunications Sumrpiéges 314—
318, June 2002.

M. Bengtsson and B. Ottersten. Uplink and Downlink Beam-
forming for Fading Channels. IRroc. of IEEE Signal Proc.
Workshop on Signal Proc. Advances in Wireless Communica-
tions, pages 350-353, Feb. 1999.

M. Joham, K. Kusume, M. H. Gzara, W. Utschick, and J. A.
Nossek. Transmit Wiener Filter for the Downlink of TDD
DS-CDMA Systems. IrProc. ISSSTA 20020lume 1, pages
9-13, Sept. 2002.

M. Joham, W. Utschick, and J. A. Nossek. Linear Transmit
Processing in MIMO Communications SysterttSsEE Trans.
on Signal Prog.Aug. 2005.

M. Joham, K. Kusume, W. Utschick, and J. A. Nossek. Trans-
mit Matched Filter and Transmit Wiener Filter for the Down-
link of FDD DS-CDMA Systems. IiProc. PIMRC 2002vol-
ume 5, pages 2312-2316, Sept. 2002.

[7] Andras Pekopa.Stochastic Programmingluwer, 1995.

R. Hunger, F. A. Dietrich, M. Joham, and W. Utschick. Robust
Transmit Zero-Forcing Filters. IRroc. of the ITG Workshop
on Smart Antennadunich, Germany, March 2004.

Steven M. Kay.Fundamentals of Statistical Signal Processing
- Estimation TheoryPTR Prentice Hall, 1st edition, 1993.

K. S. Miller. Complex Stochastic Processésldison-Wesley,
1st edition, 1974.

M. T. Ivrlac, Ruly Lai U Choi, Ross Murch, and Josef A.
Nossek. Effective use of long-term transmit channel state in-
formation in multi-user MIMO communication systems. In
Proc. VTC Fal| pages 409-413, Orlando, Florida, Oct. 2003.



