
HYBRID TRANSMIT WAVEFORM DESIGN BASED ON BEAMFORMING AND
ORTHOGONAL SPACE-TIME BLOCK CODING

G. Dietl‡, J. Wang†, P. Ding†, M. D. Zoltowski†, D. J. Love†, and W. Utschick‡

†School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47906-1285, USA

‡Institute for Circuit Theory and Signal Processing
Munich University of Technology

80333 Munich, Germany, Email: dietl@tum.de

ABSTRACT

In this paper, we derive a hybrid of Beam-Forming (BF) and
Space-Time Block Coding (STBC), where the space-time
code is transmitted over the beams generated by the steering
vectors corresponding to the channel path directions. This
is for the practical case where the transmit array may have
adequate information on the departure angles of the domi-
nant paths between transmitter and receiver, but unreliable
information on the associated complex path gains. We com-
pute analytically the Signal-to-Noise Ratio (SNR) of the
proposed hybrid for the specific case of a two-path channel
model and using the orthogonal Alamouti code, and com-
pare the result to the SNR of optimal Linear Precoding (LP)
and the theoretically possible SNR of Orthogonal STBC
(OSTBC). Simulation results show that the performance of
the BF/STBC hybrid can be very close to LP—under cer-
tain conditions—or even better in the practical case where
there are phase estimation errors in the path gain estimates
employed at the transmitter.

1. INTRODUCTION

Transmit antenna diversity is a powerful technique that pro-
vides resilience to fading. To this point, transmit diversity
techniques can primarily be partitioned into either Linear
Precoding (LP) or Space-Time Block Coding (STBC) [1, 2].
Space-time codes can provide full diversity advantage with-
out employing Channel State Information (CSI) at the trans-
mitter, while LP provides superior error rate performance at
the expense of complete transmitter CSI.

Recent research has shown that there can be perfor-
mance and implementation benefits when STBC is com-
bined with Beam-Forming (BF) [3, 4, 5, 6, 7, 8]. These tech-
niques, which we refer to as hybrid BF and STBC, transmit
a space-time code designed for M antennas over N beams
with N > M. The space-time code matrix is mapped to the
larger array by BF vectors, which provide improved per-
formance by adapting the space-time code matrix to cur-
rent channel conditions. Hybrid techniques can operate us-
ing statistical [4, 7], partial [3, 6], or quantized CSI [5, 8].

While statistical techniques provide excellent error rate
performance, tracking of the spatial correlation matrix can
be difficult to implement. The channel can often be mod-
eled as a sum of array response vectors of varying gain at
different Angles of Departure (AoDs) from different point
sources [9]. When the number of incoming rays is relatively
small, the AoDs can be easily tracked. Knowledge of the
AoDs and corresponding response vectors gives a partial,
but reliable, description of the channel subspace structure.

In this paper, we present hybrid BF and STBC tech-
niques that adapt a transmitted space-time code to the cur-
rent channel conditions using knowledge of the array re-
sponse vector for each channel path. We show that these
techniques can provide performance close to LP which re-
quires perfect CSI at the transmitter. Furthermore, when
the receiver’s channel estimate is incorrect hybrid BF and
STBC techniques can actually outperform LP.

This paper is organized as follows. Section 2 overviews
the channel and system under configuration. Prior work on
LP, BF, Eigen-BF (EBF), and STBC is reviewed in Sec-
tion 3. Section 3 also presents our ray-based hybrid tech-
nique. Section 4 presents several simulation results. We con-
clude in Section 5.

Throughout the paper, vectors and matrices are denoted
by lower case bold and capital bold letters, respectively. The
matrix In is the n × n identity matrix. The operation E{·}
denotes expectation, (·)∗ conjugate complex, (·)T trans-
pose, (·)H Hermitian, i. e., conjugate transpose, and ‖·‖2 the
Euclidean norm. We use tr{A} as the trace of the matrix A
and Re{z} as the real part of the complex number z. All
random processes are assumed to be zero-mean and station-
ary. The variance of the scalar process x[n] is denoted by
σ2

x = E{|x[n]|2}.

2. SYSTEM MODEL

We consider a system with N antennas at the transmitter and
one antenna at the receiver. The received signal y[n] ∈ C

may be written as

y[n] = hTx[n] + ν[n], (1)
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where h ∈ CN is the channel vector, x[n] ∈ CN is the
transmitted signal at time index n, and ν[n] ∈ C is complex-
valued Additive White Gaussian Noise (AWGN) with vari-
ance σ2

ν . For a fair comparison amongst the different meth-
ods explained in the following section, we define the total
transmit power P = E{‖x[n]‖2

2} to be the same for all
transmit strategies.

For illustrative purposes, the channel is assumed to have
two paths with the AoDs θ1 and θ2, respectively, i. e.,

h = g1a (θ1) + g2a (θ2) , (2)

where g1 ∈ C and g2 ∈ C are path weights, and a (θ) =
[1, exp(jµ), . . . , exp(j (N−1)µ)] ∈ CN is the steering vec-
tor corresponding to the AoD θ ∈ [−π/2, π/2]. The vari-
able µ = 2πd sin θ/λ denotes the spatial frequency of a
uniform linear array with elements spaced by d and wave-
length λ.

In the sequel, we investigate different transmit strategies
to generate the transmitted signal x[n]. Although, we con-
sider only the two-path channel model due to space limita-
tions, the extension of the following derivations to channels
with an arbitrary number of paths is straight forward.

3. HYBRID BF AND STBC TECHNIQUES

3.1. Optimal LP

We denote LP [10] to be the optimal transmit strategy using
full CSI. The transmitted signal may be written as

x[n] = ps[n], (3)

with the precoder p and the symbol sequence s[n] ∈ M

with modulation alphabet M and variance σ2
s . The precoder

is chosen to maximize the Signal-to-Noise Ratio (SNR)
γ = σ2

ŝ |ν[n]=0/σ2
ŝ |s[n]=0 at the output of the receiver which

results in

p =

√
P

σ2
s ‖h‖2

2

h∗, (4)

under the given power constraint and under the assump-
tion that the receiver is an arbitrary scalar weight, i. e.,
ŝ[n] = wy[n]. It can easily be shown that the SNR γLP =
P ‖h‖2

2 /σ2
ν is given by

γLP =

(
N

2∑
i=1

|gi|2 + 2 Re
{
g∗1g2a

H
1 a2

})
P

σ2
ν

, (5)

using the channel model of Section 2 and the shortcut nota-
tion ai = a (θi), i ∈ {1, 2}.

Note that the chosen precoder is also optimal in the
Maximum Likelihood (ML) sense due to the given AWGN
scenario [2].

3.2. BF/STBC Hybrid

In this section, we derive a hybrid of BF and STBC based
on the orthogonalAlamouti code [11] in the case where only
partial CSI, i. e., the AoDs but not the path weights, is avail-
able at the transmitter. We transmit

x[n] =

√
P

2Nσ2
s

x′[n], (6)

where the signal x′[n] at time index n = 2k and n = 2k+1
is defined as

x′[2k] = a∗
1s[2k] + a∗

2s[2k + 1] and (7)

x′[2k + 1] = −a∗
1s

∗[2k + 1] + a∗
2s

∗[2k], (8)

respectively. Again, the prefactor in Equation (6) is due to
the transmit power constraint. If we compose the receive
vector y[k] = [y[2k], y∗[2k + 1]]T ∈ C2 and analogous,
the noise vector ν[k] = [ν[2k], ν∗[2k + 1]]T ∈ C2 and the
symbol vector s[k] = [s[2k], s[2k + 1]]T ∈ M2, we can
rewrite the system model of Section 2 as

y[k] = Hs[k] + ν[k], (9)

with the resulting channel matrix

H =

√
P

2Nσ2
s

[
hTa∗

1 hTa∗
2

hHa2 −hHa1

]
∈ C

2×2. (10)

To get the estimate ŝ[k] of the symbol vector, we ap-
ply the receiver W to the receive vector y[k], i. e., ŝ[k] =
Wy[k]. Using the Zero-Forcing (ZF) optimization criterion

W = argmin
W

tr
{
WHW

}
s. t. WH = I2, (11)

yields

W =
2Nσ2

s

P

(
2∑

i=1

∣∣∣hHai

∣∣∣2
)−1

HH. (12)

Note that this solution is equal to ML detection since the
columns of the channel H are mutually orthogonal.

Finally, the SNR γH = P
∑2

i=1 |hHai|2/(2Nσ2
ν) can

be written as

γH =

(
N2 +

∣∣aH
1 a2

∣∣2
2N

2∑
i=1

|gi|2 + 2 Re
{
g∗1g2a

H
1 a2

})
P

σ2
ν

.

(13)
Note that 0 ≤ ∣∣aH

1 a2

∣∣2 ≤ N2, i. e., the SNR γH of the
BF/STBC hybrid is equal to the SNR γLP of LP if and only
if the steering vectors are identical, i. e., a = a1 = a2. This
observation can easily be verified regarding the resulting
single-path case: The influence of the resulting path weight
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g = g1 + g2 can be fully equalized at the receiver with-
out performance loss. On the other hand, the worst SNR
performance of the hybrid is given if the AoDs are such
that the steering vectors are orthogonal to each other, i. e.,
a1 ⊥ a2, if the path weights g1 and g2 are uncorrelated
random variables. In this case, the mean of the SNR of the
hybrid scheme is 3 dB less compared to the one of LP, i. e.,
E{γLP} = 2 E{γH}, as can be seen by comparing Equa-
tions (5) and (13).

The hybrid can also be derived using EBF [4, 7, 12]
where a1 and a2 in Equations (7) and (8) are chosen to be
the eigenvectors corresponding to the two largest eigenval-
ues of the channel auto-correlation matrix Rh = E{hhH}.
If the eigenvectors are assumed to be normalized, the pre-
factor of Equation (6) has to be changed to

√
P/(2σ2

s) and
the following dependent equations has to be adopted ade-
quately which is not shown in this paper due to space limi-
tations.

3.3. OSTBC

Let us now assume no CSI at the transmitter. The transmit
signal x[n] can then be defined as

x[n] =

√
P

Nσ2
s

x′[n], (14)

where the signals x′[n], n ∈ {Nk, . . . , N(k + 1) − 1},
are chosen by Orthogonal STBC (OSTBC). Although such
full-rate codes only exist for N = 2 in the case of complex
symbols (cf. [13]), i. e., M ⊂ C, a theoretical SNR can be
computed as an upper bound for the SNR of full-rate STBC
using N transmit antennas or for lower-rate OSTBC. The
combination of the resulting channel matrix and the ZF re-
ceiver yields an identity matrix scaled by

√
P/(Nσ2

s) ‖h‖2
2.

Due to the noise amplification of the ZF receiver, the SNR
γOSTBC = P ‖h‖2

2 /(Nσ2
ν). Finally, it can be rewritten as

γOSTBC =

(
2∑

i=1

|gi|2 +
2
N

Re
{
g∗1g2a

H
1 a2

})
P

σ2
ν

, (15)

using Equation (2). If g1 and g2 are assumed to be un-
correlated random variables, it follows that E{γLP} =
N E{γOSTBC}, i. e., there is a 10 lgN dB lost when using
OSTBC instead of LP.

4. SIMULATION RESULTS

Figure 1 depicts the averaged Bit Error Probability (BEP)
over the Transmit-SNR (Tx-SNR) 10 lg(P/σ2

ν) dB com-
puted via BEP = 1/2 erfc(

√
γ) using the SNRs γ derived

in Section 3 and assuming QPSK transmission over four
transmit antennas (N = 4) spaced by d = λ/2. The AoDs

are uniformly distributed between −π/2 and π/2 and the
path weights are complex Gaussian distributed with vari-
ance one. It can be seen that LP is best since it has full
CSI available at the transmitter. OSTBC without any CSI
performs 10 lg 4 dB ≈ 6 dB worse than LP. Whereas the
EBF/STBC hybrid is 3 dB away from LP, the proposed
BF/STBC hybrid is even closer for small Tx-SNR values.
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Fig. 1. Comparison of different transmit strategies averaging over
uniformly distributed AoDs and Gaussian distributed path weights

Figure 2 shows the averaged BEP dependency of LP
and the BF/STBC hybrid on the AoDs. For θ1 = θ2 = 0,
both performs equal as derived in Subsection 3.2. Whereas
the worst SNR performance is given for orthogonal steering
vectors, i. e., sin θ2 = 1/2, the averaged BEP performance
is not minimum in this case, especially for high SNR. This
is due to the non-linear relationship between the BEP and
γ based on the complementary error function. Note that the
higher slope in the case of non-collinear steering vectors
(θ2 �= 0) is due to the diversity gain.

In the sequel, we consider estimation errors in the
phases of the path weights available at the transmitter. The
amplitudes of the path weights and the AoDs are assumed to
be known perfectly since they can be estimated very accu-
rately due to their slow-varying characteristic. The receiver
is assumed to have perfect CSI. We consider the channel of
Equation (2) with the AoDs θ1 = 0 and θ2 = arcsin(1/4),
and the path weights g1 = 1 and g2 = 0.7. The trans-
mitter uses the estimates ĝ1 = g1 and ĝ2 = g2 exp(jα)
with the phase mismatch α. Figure 3 shows the results for
α ∈ {0, π/4, π/2, 3π/4}. Again, in the case of no mis-
match (α = 0), the performance of the hybrid scheme is be-
tween the one of LP and OSTBC. As can be seen, the phase
mismatch α in the CSI play a crucial rule in the behavior
of LP. On the other hand, OSTBC and the hybrid scheme
are not affected by the mismatch since OSTBC requires no
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Fig. 2. Comparison between LP and BF/STBC hybrid with θ1 = 0
and different θ2 averaging over Gaussian distributed path weights

CSI at the transmitter and the hybrid BF and STBC tech-
nique is only based on partial CSI, i. e., the AoDs which
are known perfectly at the transmitter. Thus, LP tends to
perform worse then the BF/STBC hybrid and is even out-
performed by OSTBC when the mismatch becomes large.
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Fig. 3. Comparison of different transmit strategies with θ1 = 0,
sin θ2 = 1/4, g1 = 1, g2 = 0.7, and different phase mismatchs α

5. CONCLUSIONS

In this paper, we presented hybrid BF and OSTBC tech-
niques based on the steering vectors corresponding to the
channel path directions. We derived the SNR of the pro-
posed hybrid scheme and compared it to the SNR of LP and
a theoretical bound of OSTBC. Simulation results based on

the averaged BEP showed that the BF/STBC hybrid outper-
forms the EBF/STBC hybrid for low Tx-SNR. Moreover,
BER investigations assuming a fixed channel scenario re-
vealed that LP is beaten by the proposed hybrid scheme
and even by OSTBC if the path weights are estimated at
the transmitter.
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