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Abstract— Future wireless communication systems re-
quire the adaptation of the parameters of all layers in or-
der to efficiently provide a multitude of different applica-
tions. The optimality of a parameter setup is determined
at the application layer. A parameter adaptation can be
achieved by discarding the layered architecture and merg-
ing all layer parameters into a single optimization. In or-
der to preserve the layered structure, a concept for param-
eter optimization based on the passing of layer descriptions
from bottom to top layer is proposed. Theoretically opti-
mum and practically feasible descriptions are discussed. It
is shown that multiobjective optimization plays a key role in
the description-based optimization of layered communica-
tion systems. The proposed concept is applied to an exem-
plary system.

1. Introduction

A key challenge in the design of future wireless communication
systems is the efficient provision of a multitude of different ap-
plications. In this work, we assume that the ultimate goal when
setting up the various parameters of such a system is to max-
imize the application layer quality of service experiencedby
the end users, under the constraint of limited resources. Thus,
the optimality of a parameter setup at each layer is determined
based on an application layer criterion. Optimum performance
can only be achieved if the parameter setup in each layer takes
into account the properties of the application. This observation
leads directly to the field of cross-layer optimization.

In a first approach to cross-layer optimization, the parameters
of several adjoining layers are optimized jointly.Joint optimiza-
tion requires full transparency between layers. Thus, the modu-
lar structure provided by a layered architecture is abandoned in
favor of increased performance – but sacrificing the advantages
of a layered architecture may lead to unintended side effects.
Modular cross-layer optimization limits the amount of trans-
parency required.Modularity signifies that the parameter setup
at a certain layer is independent of the “inner” details of the
other layers. In the parameter setup process, such abstraction
can be achieved by an interface-based information exchange
between layers. In order to achieve modularity, interfacesare
designed such that the details of a parameter setup remain hid-
den to the other layers. An example for an interface are the
utility functions used in [1]. The utility function used in [1]
represents an abstraction of the properties of the upper layers
that is provided to the lower layers (“top-down”information ex-
change). Importantly, the formulation of the utility function is
independent of the properties of the lower layers.

We propose a concept in which each layer describes its ca-
pabilities by a finite set of feasible operation points. Thisset,

denoted aslayer description, serves as an interface between ad-
jacent layers. Each layer provides its description to the neigh-
boring upper layer. In this way, information about feasibleoper-
ation points is propagated from bottom layer to top layer, giving
rise to the term “bottom-up” optimization.

A layer description represents an abstract description of fea-
sible parameter setups, i.e., while a layer description represents
the common language between adjacent layers, it does not mat-
ter to the upper layer how the operation points in the descrip-
tion are realized by the lower layer. In the same manner, for the
lower layer it does not matter how the upper layers map an op-
eration point from its description into application layer perfor-
mance. Thus, except for the interface specifications (i.e. how
to describe operation points), the designs of all layers remain
independent of each other.

The description-based approach can be interpreted as the re-
versal of utility-based top-down approaches: While a utility
function is formulated independent of the lower layers, a layer
description is generated independent of the properties of the up-
per layers (except for a monotonicity constraint in both cases,
see [1] and Section 5).

A generic mathematical model for the parameter setup prob-
lem in a layered system is introduced in Section 3. Parameter
optimality is defined in Section 4. Modular optimization based
on layer descriptions is described in detail in Section 5. Con-
cerning the generation of layer descriptions, two design objec-
tives can be identified: On the one hand, we desire descrip-
tions for which the best operation point obtained by optimiza-
tion based on layer descriptions coincides with the optimumop-
eration point achievable by joint optimization. Such optimum
descriptions are discussed in Section 6. On the other hand, de-
scription size is limited due to complexity reasons. In Section 7,
we discuss how to minimize the deviation from the optimum so-
lution for a finite number of elements in a description.

Throughout the paper, we use an exemplary wireless com-
munication system to illustrate the application of the proposed
generic concept. The exemplary system is introduced in Sec-
tion 2. For the exemplary system, simulation results provided
in Section 8 demonstrate that modular optimization based on
layer descriptions can achieve close to optimum performance.

2. Exemplary system

We consider the optimization of the layer parameters at the
transmitter in a cellular system with one central transmitter and
two non-cooperating receivers. Based on the assumption of a
cellular structure, we only consider a single hop in the wireless
domain and neglect routing issues in the optimization. More-
over, we assume a system with an ARQ-free protocol at the
transport layer and without queuing of frames at the MAC layer,



modeling traffic with tight delay constraints. Based on these as-
sumptions, we employ a simplified architecture consisting of
only two layers: layer 1 comprises physical layer signal pro-
cessing and FEC, layer 2 corresponds to the application layer of
the OSI reference model.

At layer 1, assuming an orthogonal multiple access scheme
such as TDMA, the wireless link is modeled as parallel channels
hk ∈ C, k = 1, 2, to the two users. The channelshk are
assumed to be i.i.d. block fading with coherence timeTc and
Rayleigh distributed amplitude. The average gain of channel hk

is given byρk = E
ˆ

|hk|
2
˜

. The received signals are distorted
by complex-valued AWGN with varianceσ2

n,k.
The physical layer signal processing at the transmitter cor-

responds to allocating a transmit powerδk to each of the2
users, subject to a transmit power constraintδ1 + δ2 ≤ Ptr. We
consider the case that the transmitter knows the average gains
ρk, but not the channel realizationshk. Under the given as-
sumptions, the probability that the instantaneous capacity of the
channel to thekth user is smaller than a prescribed rateRk is
given by the outage probability [2]

εk(Rk, δk) = 1 − exp

 

−
σ2

n,k

ρkδk

“

2Rk − 1
”

!

.

We make the (idealizing) assumption of capacity-achieving
coding and signaling. In this case, the packet error probabil-
ity for a packet of lengthTc transmitted to userk is given by
εk.

At layer 2, the transmission of quantized data is considered.
As the channel is lossy, the application layer distortion ofthe
kth user results from distortion due to quantization(DQ,k) and
from distortion due to packet loss(DL,k). While DQ,k de-
pends on the source quantization rateRQ,k, DL,k depends on
the packet error probabilityεk. Adopting the model from [3],
we assume that both distortions can be combined as follows:

D̃k(RQ,k, εk) = DQ,k(RQ,k) (1 − εk) + DQ,k(0)εk.

Taking into account that the source quantization rateRQ,k can-
not be larger than the transmission rate, the overall application
layer distortion for thekth user is modeled as

Dk(RQ,k, εk, Rk) =

(

D̃k(RQ,k, εk), RQ,k ≤ Rk

D̃k(0, 1), RQ,k > Rk.

The choices for a rate-distortion function(DQ,k) are mani-
fold. Rate-distortion models for video data are presented,e.g.,
in [4]. For simplicity, we employ the following rate-distortion
function:

DQ,k(RQ,k) = 2−2RQ,k ,

which, under the assumption of infinite block length, can be
interpreted as the rate-distortion function of a real-valued Gaus-
sian source with unit variance.

3. Layer model

The problem of finding the optimum setup for the parameters
of each layer is considered. We start by defining a mathemati-
cal model for the parameter setup problem in a layered system.
Let N denote the number of layers. Thenth layer is modeled
by a setXn of feasible parameter values and a so-called layer
function

fn : Xn ×Dn−1 → R
No,n . (1)

The setDn−1 is provided by the(n − 1)th layer and is used
for information exchange between layers. Given an element
d ∈ Dn−1 and a feasible parameter choicex ∈ Xn, the layer
function provides an abstract representation of(x, d) in terms
of No,n quantities. TheNo,n quantities are to be chosen such
that all relevant characteristics of a layer are captured. Without
loss of generality, it is assumed that each quantity corresponds
to a cost, i.e., the layer function assigns a cost vectorfn(x, d)
to each parameter choice. Moreover, it is assumed that the layer
function of the top layer is scalar valued, i.e.,No,N = 1.

The layer output set is given by

Yn =
n

fn(xn, dn−1) ∈ R
No,n : xn ∈ Xn, dn−1 ∈ Dn−1

o

.

A descriptionDn of thenth layer is generated by selecting el-
ements fromYn, i.e., Dn ⊆ Yn, see Sections 6 and 7. The
bottom layer receives no input, i.e.,D0 = ∅.

Applied to our exemplary system, layer parameters and layer
functions are given as follows: At layer 1, we collect the param-
eters into a vector

x1 = (δ1, δ2, R1, R2).

For simplicity, we exclude the special casesδk = 0. The feasi-
ble layer parameters are then given by

X1 =
˘

x1 ∈ R
4
+ : δ1 + δ2 ≤ Ptr

¯

.

The layer function of layer 1 is chosen as

f1(x1) =
`

ε1(δ1, R1),−R1, ε2(δ2, R2),−R2

´

.

At layer 2, we have

x2 = (RQ,1, RQ,2) and X2 = R
2
0,+.

As the layer function for layer 2 we choose the weighted sum
of the distortionsDk:

f2(x2, d1) =
2
X

k=1

αkDk(RQ,k, εk, Rk),

with αk ≥ 0 andα1 + α2 = 1. The weightsαk are included
to model different application profiles, e.g., if some usershave
higher priority than others.

4. Parameter optimality

Optimality is determined at the application layer, i.e., anappli-
cation layer criterion is used to measure the cost of a parameter
setup. We introduce the following notation:

xk:ℓ = (xk, . . . , xℓ), Xk:ℓ = Xk × . . . × Xℓ.

Let fk:ℓ, k < ℓ denote the concatenation of the layer functions
fk, . . . , fℓ resulting from substitution ofdn by fn(xn, dn−1)
for n = ℓ−1, ℓ−2, . . . , k. The cost of a parameter setupx1:N

is given by

c (x1:N ) = f1:N (x1:N) .

Assuming that all feasible parameter setsXn and layer func-
tions fn are globally known, we can directly write down the
optimization problem that defines the optimum parameter setup:

x̃1:N = argmin
x1:N∈X1:N

c (x1:N) . (2)

The optimization problem formulated in Equation (2) can be in-
terpreted as the joint optimization of the parameters of alllay-
ers. In the formulation of Equation (2), properties such as ab-
straction and modularization provided by a layered architecture
are abandoned.



5. Optimization based on layer descriptions

In order to achieve a close to optimum parameter setup while
preserving modularity, we propose a cross-layer optimization
based on information exchange between layers. In the proposed
concept, neighboring layers exchange information in termsof
layer descriptionsDn and description elementsdn ∈ Dn.

The parameter setup takes place in two stages: In the first
stage, the layer descriptionsD1, . . . ,DN−1 of the firstN − 1
layers are generated in an iterative fashion. Starting withn = 1,
a descriptionDn of each layer is generated byselecting ele-
ments fromYn. That is, layer(n − 1) passes its description
Dn−1 to layern. Layer n computes its layer output setYn,
generates a descriptionDn by selecting elements fromYn, and
finally passesDn to layer (n + 1), and so on. The selection
of elements from a layer output set is discussed in detail in the
following sections. After the descriptionDN−1 has been com-
puted, the top layerN can determine the optimum setup of its
parameters, given descriptionDN−1, as well as the optimum
element fromDN−1:
“

x̂N , d̂N−1

”

= argmin
xN∈XN ,dN−1∈DN−1

fN (xN , dN−1). (3)

At the beginning of the second stage, the optimum element
d̂N−1 from the descriptionDN−1 is passed down to layer
(N − 1). Note thatd̂N−1 corresponds to all parameter setups
x̂N−1 ∈ XN−1 and description elementŝdN−2 ∈ DN−2 such
that

fN−1(x̂N−1, d̂N−2) = d̂N−1. (4)

All pairs (x̂N−1, d̂N−2) that fulfill Equation (4) are equivalent,
as they lead to the same minimum cost at layerN . One pair is
chosen, yielding the parameter setupx̂N−1 of layer (N − 1).
The corresponding description elementd̂N−2 is passed down
to layer(N − 2).

In the same fashion, from layer(N−2) down to layer1, after
receivingd̂n from layer(n + 1), layer n chooses parameters
x̂n ∈ Xn and a description element̂dn−1 ∈ Dn−1 such that

fn(x̂n, d̂n−1) = d̂n

holds and then passeŝdn−1 down to layer(n− 1). When layer
1 is reached, the parameters of all layers are set up.

6. Optimum descriptions

Let c̃ denote the minimum cost achievable byjoint optimization
of all layer parameters according to Section 4. Letĉ(Dn) de-
note the minimum cost achievable by joint optimization of the
parameters of layersn + 1, . . . , N , given a descriptionDn of
thenth layer:

ĉ(Dn) = min
xn+1:N∈Xn+1:N ,

dn∈Dn

fn+1:N (xn+1:N , dn).

For a descriptionDn to be optimum, we require

c̃ = ĉ(Dn). (5)

Recall that in order to achieve modularity,Dn is generated in-
dependent of the properties of the upper layers. In other words,
we require Eq. (5) to hold for all possibleXn+1:N andfn+1:N .

Due to practical reasons, we also desire descriptions that con-
tain the smallest possible number of elements. This property is
expressed by requiring that for a descriptions to be optimum, the
removal of a single element fromDn implies that Eq. 5 does no
longer hold for all possibleXn+1:N andfn+1:N .

In [5] it is argued that it is necessary to constrain the set of
all possiblefn+1:N . In particular, it is shown that optimiza-
tion based on layer descriptions requires the layer functions
fn(xn, dn) to be monotone (or order-preserving) in the vari-
able dn. Recall that a layer function expresses a cost of an
operation point. Monotonicity basically states that a parameter
setupxn that yields a higher cost at layern than a parameter
setupx′

n cannot lead to a lower cost at a higher layer. If perfor-
mance measures are properly chosen, the restriction to mono-
tone layer functions therefore does not represent a limitation in
real systems.

As shown in [5], under the condition of monotone layer func-
tions, the optimum description of thenth layer is given by the
efficient set of themultiobjective optimization (MOO) problem

min
xn∈Xn,dn−1∈Dn−1

fn(xn, dn−1). (6)

The cost function in Eq. (6) is, in general, vector-valued (hence
multiobjective optimization). The partial order

y � y
′ ⇔ yk ≤ y

′

k,∀k

is used to compare elements ofYn. Due to the fact that the
employed order is not total, the MOO problem generally has
a set of equivalent solutions (see, e.g., [6]). These solutions
constitute the efficient set. The setYn can be interpreted as
an achievable cost region. The efficient elements are those ele-
ments on the boundary of the achievable region for which one
component can only be further decreased by increasing at least
on other component. The parameter choicesxn that lead to
efficient elementsdn are denoted asPareto optimal.

In our example system, the set of Pareto optimal parameters
x1 at layer 1 is given by [5]:

P1 =
n

x1 ∈ R
4
+ : δ1 + δ2 = Ptr

o

.

Thus, all parameter configurations that are optimal from theper-
spective of layer 1 fully exploit the transmit power budget.No-
tably, based on the knowledge available at layer 1, all combi-
nations of non-negative rates are Pareto optimal. Note thatthe
corresponding optimum description

D1 = f1(P1)

contains an infinite number of elements and is not compact.
This issue is addressed in the following section.

7. Approximate descriptions

For monotone layer functions, optimum descriptions (as defined
in Section 6) correspond to efficient sets. However, a descrip-
tion in terms of efficient sets may not be feasible, for example
if it is not possible to find a parametrized description of theef-
ficient set or, in case finite sets are to be used for information
exchange between layers, if the number of elements in the effi-
cient set is simply too large.

In this section, we considerapproximate descriptionsDn

generated by selecting a finite number of elements from an ef-
ficient setEn. Approximate descriptions do not guarantee an



optimum parameter setup. However, it is possible to design
approximate descriptions such that the probability of a sub-
optimum parameter setup is minimized for a given numberNd,n

of elements inDn.
From the optimality of efficient sets we can conclude that ap-

proximate descriptions should be obtained by sampling the ef-
ficient set. If monotonicity is the only condition imposed onthe
properties of the layer functions, each element inEn is equally
likely to yield the optimum parameter setup. As a result, a good
sampling should yield an approximately equidistant distribution
of samples.

It may happen that a uniform distribution of theNd,n samples
on the efficient set is not possible due to the properties of the ef-
ficient set. In the example system, the efficient setE1 cannot
be equidistantly sampled with a finite number of samples, due
to the fact thatE1 is not compact (ratesRk can take any posi-
tive value). This problem can be solved by providing additional
knowledge about the upper layers that allows for choosing a
compact subset̂En ⊂ En. The compact set̂En can be properly
sampled with a finite number of elements. The setÊn can be
interpreted as a coarse estimate (“ball park”) of the regionin
which the optimum operating point lies.

Depending on the properties of the layer function, in some
cases it is much simpler to determine the set of Pareto optimal
parametersPn. If the Pareto set is known, elements of the effi-
cient set can be computed by collectingNd,n elements from the
Pareto set in a sampling setSn ⊂ Pn and then evaluating the
layer function for each element in the sampling set:

Dn = fn(Sn). (7)

Ideally, elements fromPn are chosen such that the samples
in Dn are distributed in the desired manner. In [7], a first-
order Taylor approximation of the layer function is employed
to achieve a nearly equidistant distribution of samples.

In our example, we choose a particularly simple sampling
scheme: LetNd,1 = S3. A sampling set is generated by

S1 = Sδ × SR, (8)

with

Sδ =



(δ1, Ptr − δ1) : δ1 =
Ptr

S + 1
s, s = 1, . . . , S

ff

, (9)

SR = {(R1, R2) : Rk = As + B, s = 1, . . . , S} , (10)

where

A =
2

S − 1
, and B =

S − 3

S − 1
.

It is easily verified that this corresponds to choosing

Ê1 = {d1 ∈ E1 : 1 ≤ Rk ≤ 3} .

8. Simulation results

In this section, the performance of the proposed description-
based cross-layer design for different description sizes is com-
pared with the performance of two strategies that are based on
layer separate optimization.

The average gains of the users’ channels are chosen asρ1 =
1 andρ2 = 2. The noise powers are equal, i.e.,σ2

n,1 = σ2
n,2.

We investigate three different sizes of the descriptionD1:

Nd,1 ∈ {S3 : S = 3, 5, 11}.
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Figure 1: Overall distortion for different application profiles

For a given description size, the approximate descriptionD1 is
generated according to Eqs. (7)-(10).

Two approaches for choosing the parameters of layer 1 with-
out information exchange between layers are considered. Both
strategies fix the outage probability of both users to a target out-
age probabilitȳε. In thesum-rate (SR) strategy, the parameters
of layer 1 are chosen such that the sum of the users’ rates is
maximized, under the constraint that the outage probability of
each user equals̄ε:

x1,SR = argmax
x1∈X1

R1 + R2 s.t. εk = ε̄.

In the second approach, denoted asmax-min (MM) strategy, the
parameters of layer 1 are chosen such that the smallest among
the users’ rates is maximized, under the constraint that theout-
age probability of each user equalsε̄. The max-min strategy
follows from the sum-rate strategy by adding the constraintthat
all ratesRk are equal.

Fig. 1 shows the overall distortionD = f2(x̂2, d̂1) for dif-
ferent weighting factorsα1 and a transmit SNR of16 dB. The
transmit SNR is defined as

SNR= 10 log10

Ptr

σ2
n,1 + σ2

n,2

.

Depicted are the performance of a cross-layer optimization
based on layer descriptions withNd,1 = 27 (LD-27), Nd,1 =
125 (LD-125), andNd,1 = 113 (LD-1331) elements inD1, as
well as the performance of the two layer-separate optimizations
according to the sum-rate strategy with target outage probabil-
ity ε̄ = 5% (SR-5%) and the max-min strategy, also with target
outage probabilitȳε = 5% (MM-5%). The description-based
optimization of layer parameters can adapt to the differentap-
plication profiles and provide close to optimum performance,
even for small description sizes. In the scenario under consid-
eration, a description size ofNd,1 = 125 is sufficient to well-
approximate the efficient set. In contrast to description-based
optimization, the parameter setups found based on optimizing
layer 1 criteria only do not take into account the propertiesof the
application. This can lead to severe performance degradations.
For example, the sum-rate strategy allocates more power to the
user with the stronger channel, which, in our scenario, is user 2.
The higher the priority of the user with the weaker channel, the
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Figure 2: LD-based optimization vs. sum-rate strategy

larger the performance loss induced by the sum-rate strategy.
The max-min strategy provides equal QoS to both users. Again,
if the optimization strategy at layer 1 contradicts the userprior-
ities at the application layer, a significant performance degrada-
tion is inevitable. In case of the max-min-strategy, this situation
occurs if the priority of one user is much larger than that of the
other one.

In Fig. 2 optimization based on layer descriptions with
Nd,1 = 125 (LD-125) is compared with the sum-rate strat-
egy. The performance of a parameter setup at layer 1 based
on the sum-rate strategy is evaluated for target outage proba-
bilities ε̄ = 3% (SR-3%), ε̄ = 5% (SR-5%), and ε̄ = 10%
(SR-10%). The curves in Fig. 2 emphasize the impact of the
choice of a target outage probability on the performance of the
sum-rate strategy. It can be observed that the performance of the
sum-rate strategy is highly sensitive to the choice ofε̄. In the
case of transmission of Gaussian sources,ε̄ = 3% represents
a poor choice. However, it may be a good choice for a differ-
ent application. As a result, choosing physical layer parameters
without knowledge about the upper layers can be considered a
game of chance.

In Fig. 3 optimization based on layer descriptions with
Nd,1 = 125 (LD-125) is compared with the max-min strategy.
The performance of the max-min strategy is shown for target
outage probabilities̄ε = 3% (SR-3%), ε̄ = 5% (SR-5%), and
ε̄ = 10% (SR-10%). Similarly to the sum-rate strategy, a high
sensitivity to the choice of a target outage probability canbe
observed. For a target outage probabilityε̄ = 3%, the max-min
strategy fails completely, while the choicēε = 5% provides
the best performance among the three choices. The same argu-
ments apply concerning the impossibility of a reliable choice of
physical layer parameters without knowledge of the application.

9. Conclusions

A concept for modular cross-layer optimization of layer pa-
rameters was presented. The layer parameters are optimized
according to an optimality criterion defined at the application
layer. The proposed concept is based on a “bottom-up” ex-
change of layer descriptions between layers. By providing
a description of the relevant characteristics of a layer to the
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Figure 3: LD-based optimization vs. max-min strategy

neighboring upper layer, a modular architecture can be pre-
served. Under the assumption of monotonicity, multiobjective
optimization was shown to play a key role in the description-
based optimization of layered communication systems. At each
layer, the optimum description is provided by an efficient set.
Good approximate descriptions are obtained by sampling the
efficient set.

Optimization based on layer descriptions can provide close
to optimum performance by adapting the layer parameters to
varying application profiles. In contrast, a layer-separate opti-
mization of parameters can lead to a severe performance degra-
dation.
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