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Abstract— Future wireless communication systems re-
quire the adaptation of the parameters of all layers in or-
der to efficiently provide a multitude of different applica-
tions. The optimality of a parameter setup is determined
at the application layer. A parameter adaptation can be
achieved by discarding the layered architecture and merg-
ing all layer parameters into a single optimization. In or-
der to preserve the layered structure, a concept for param-
eter optimization based on the passing of layer description
from bottom to top layer is proposed. Theoretically opti-
mum and practically feasible descriptions are discussed.t|
is shown that multiobjective optimization plays a key role n
the description-based optimization of layered communica-
tion systems. The proposed concept is applied to an exem-
plary system.

1. Introduction

A key challenge in the design of future wireless communicati
systems is the efficient provision of a multitude of differap-
plications. In this work, we assume that the ultimate goa¢mvh
setting up the various parameters of such a system is to max-
imize the application layer quality of service experiendsd
the end users, under the constraint of limited resourcess,Th
the optimality of a parameter setup at each layer is detemunin
based on an application layer criterion. Optimum perforoean
can only be achieved if the parameter setup in each layes take
into account the properties of the application. This obeston
leads directly to the field of cross-layer optimization.

In a first approach to cross-layer optimization, the paramset
of several adjoining layers are optimized jointlgint optimiza-
tion requires full transparency between layers. Thus, the modu-
lar structure provided by a layered architecture is abaeddm
favor of increased performance — but sacrificing the adgasta
of a layered architecture may lead to unintended side sffect
Modular cross-layer optimization limits the amount of san
parency requiredModularity signifies that the parameter setup
at a certain layer is independent of the “inner” details @& th
other layers. In the parameter setup process, such alistract
can be achieved by an interface-based information exchange
between layers. In order to achieve modularity, interfaares
designed such that the details of a parameter setup rentkin hi
den to the other layers. An example for an interface are the
utility functions used in [1]. The utility function used iri]
represents an abstraction of the properties of the upperday
that is provided to the lower layers (“top-down”informatiex-
change). Importantly, the formulation of the utility furest is
independent of the properties of the lower layers.

We propose a concept in which each layer describes its ca-
pabilities by a finite set of feasible operation points. Tées,

denoted atayer description, serves as an interface between ad-
jacent layers. Each layer provides its description to thghe
boring upper layer. In this way, information about feasiper-
ation points is propagated from bottom layer to top layefingj
rise to the term “bottom-up” optimization.

A layer description represents an abstract descriptioeaf f
sible parameter setups, i.e., while a layer descriptioressmts
the common language between adjacent layers, it does net mat
ter to the upper layer how the operation points in the descrip
tion are realized by the lower layer. In the same mannerhfer t
lower layer it does not matter how the upper layers map an op-
eration point from its description into application layerfor-
mance. Thus, except for the interface specifications (icav h
to describe operation points), the designs of all layersaiem
independent of each other.

The description-based approach can be interpreted as-the re
versal of utility-based top-down approaches: While a ttili
function is formulated independent of the lower layers,yeta
description is generated independent of the propertidseadip-
per layers (except for a monotonicity constraint in bothesas
see [1] and Section 5).

A generic mathematical model for the parameter setup prob-
lem in a layered system is introduced in Section 3. Parameter
optimality is defined in Section 4. Modular optimization eds
on layer descriptions is described in detail in Section 5n-Co
cerning the generation of layer descriptions, two desige®b
tives can be identified: On the one hand, we desire descrip-
tions for which the best operation point obtained by optamniz
tion based on layer descriptions coincides with the optinopm
eration point achievable by joint optimization. Such optim
descriptions are discussed in Section 6. On the other hand, d
scription size is limited due to complexity reasons. In #er?,
we discuss how to minimize the deviation from the optimum so-
lution for a finite number of elements in a description.

Throughout the paper, we use an exemplary wireless com-
munication system to illustrate the application of the josgd
generic concept. The exemplary system is introduced in Sec-
tion 2. For the exemplary system, simulation results predid
in Section 8 demonstrate that modular optimization based on
layer descriptions can achieve close to optimum performanc

2. Exemplary system

We consider the optimization of the layer parameters at the
transmitter in a cellular system with one central transmiind

two non-cooperating receivers. Based on the assumption of a
cellular structure, we only consider a single hop in the lese
domain and neglect routing issues in the optimization. More
over, we assume a system with an ARQ-free protocol at the
transport layer and without queuing of frames at the MAClaye



modeling traffic with tight delay constraints. Based on thas-
sumptions, we employ a simplified architecture consistihg o
only two layers: layer 1 comprises physical layer signal pro
cessing and FEC, layer 2 corresponds to the application ¢tdye
the OSI reference model.

At layer 1, assuming an orthogonal multiple access scheme
such as TDMA, the wireless link is modeled as parallel chinne
hr € C, k = 1,2, to the two users. The channélg are
assumed to be i.i.d. block fading with coherence tifeand
Rayleigh distributed amplitude. The average gain of chbhne
is given bypy, = E [|h«|”]. The received signals are distorted
by complex-valued AWGN with varianoﬁﬁ,k.

The physical layer signal processing at the transmitter cor
responds to allocating a transmit pow®r to each of the2
users, subject to a transmit power constréaint- j; < Py. We
consider the case that the transmitter knows the average gai
Pk, but not the channel realizatiorls,. Under the given as-
sumptions, the probability that the instantaneous capatihe
channel to theith user is smaller than a prescribed ratg is

given by the outage probability [2]
(sz - 1)) .

We make the (idealizing) assumption of capacity-achieving
coding and signaling. In this case, the packet error prébabi
ity for a packet of lengthl: transmitted to usek is given by

€k

2

0,
er(Rk,0r) =1 —ex .2
k(Rk, 0k) p< O

At layer 2, the transmission of quantized data is considered
As the channel is lossy, the application layer distortiorhef
kth user results from distortion due to quantizat{dpy ;) and
from distortion due to packet los&Dy ). While Dq j de-
pends on the source quantization r&kg , Dy, depends on
the packet error probability,. Adopting the model from [3],
we assume that both distortions can be combined as follows:

Di(Rqx,ek) = Dai(Rax) (1 — ex) + Dok (0)ek.

Taking into account that the source quantization fage, can-
not be larger than the transmission rate, the overall agujidic
layer distortion for thekth user is modeled as

Dk(RQ,]mEk,Rk) = {Qk(RQ,k?Sk)7 RQ’k S Rk
D (0,1), Ro,x > Ri.

The choices for a rate-distortion functidig ) are mani-
fold. Rate-distortion models for video data are presergegl,
in [4]. For simplicity, we employ the following rate-distion
function:

Do k(Rqi) = 2721k,

which, under the assumption of infinite block length, can be
interpreted as the rate-distortion function of a real-gdlGaus-

sian source with unit variance.

3. Layer model

The problem of finding the optimum setup for the parameters
of each layer is considered. We start by defining a mathemati-
cal model for the parameter setup problem in a layered system
Let N denote the number of layers. Theh layer is modeled

by a setX,, of feasible parameter values and a so-called layer
function

fn i Xn X Dp_q — RYom, (1)

The setD,_; is provided by the(n — 1)th layer and is used
for information exchange between layers. Given an element
d € D,_1 and a feasible parameter choieec X, the layer
function provides an abstract representatiorfaafd) in terms
of No,» quantities. TheV,,,, quantities are to be chosen such
that all relevant characteristics of a layer are captureihdt
loss of generality, it is assumed that each quantity coomrdg
to a cost, i.e., the layer function assigns a cost vegidrr, d)
to each parameter choice. Moreover, it is assumed thatyke la
function of the top layer is scalar valued, i.8,, x = 1.

The layer output set is given by

Vn = {fn(a:nydn—l) S RNO’” 1,y € Xn7dn—1 S Dn—l} .

A descriptionD,, of thenth layer is generated by selecting el-
ements fromY,, i.e., D, C V., see Sections 6 and 7. The
bottom layer receives no input, i.€y = .

Applied to our exemplary system, layer parameters and layer
functions are given as follows: At layer 1, we collect thegmar
eters into a vector

r1 = ((51,(52,R1,R2).

For simplicity, we exclude the special cages= 0. The feasi-
ble layer parameters are then given by

Xi={z1 €R} 01 +6 < P}
The layer function of layer 1 is chosen as
fi(z1) = (61((517 R1),—R1,e2(02, R2), —Rz).
At layer 2, we have
x2 = (Rg1,Ro2) and X =Ry ..

As the layer function for layer 2 we choose the weighted sum
of the distortionsDy,:

2
fo(xe,d1) = Zaka(RQ,k75k7Rk)v
k=1
with ar, > 0 anda; + a2 = 1. The weightsy; are included

to model different application profiles, e.g., if some udease
higher priority than others.

4. Parameter optimality

Optimality is determined at the application layer, i.e. agpli-
cation layer criterion is used to measure the cost of a pamme
setup. We introduce the following notation:

), Ko =Xk X ... X X
Let fr.¢, k < ¢ denote the concatenation of the layer functions

Tre = (T, - .

S, ..., foresulting from substitution of,, by fr(zrn,dn-1)
forn=¢—1,0—2,... k. The cost of a parameter setup. y
is given by

c(z1:n) = funv (Z1N) -

Assuming that all feasible parameter sats and layer func-
tions f,, are globally known, we can directly write down the
optimization problem that defines the optimum parameteipset

)

Z1.xy = argmin c(z1:n).
T NEX:N
The optimization problem formulated in Equation (2) canrbe i
terpreted as the joint optimization of the parameters ofagH
ers. In the formulation of Equation (2), properties suchlas a
straction and modularization provided by a layered architre
are abandoned.



5. Optimization based on layer descriptions

In order to achieve a close to optimum parameter setup while
preserving modularity, we propose a cross-layer optirtnat
based on information exchange between layers. In the pedpos
concept, neighboring layers exchange information in teoms
layer description®,, and description elements, € D,,.

The parameter setup takes place in two stages: In the first
stage, the layer descriptioi®,, ..., Dny—_1 of the first vV — 1
layers are generated in an iterative fashion. Startingmwith 1,

a descriptionD,, of each layer is generated Isglecting ele-
ments from)),. That is, layer(n — 1) passes its description
D,_1 to layern. Layern computes its layer output sgt,,
generates a descriptidp,, by selecting elements fropi,,, and
finally passe<D,, to layer(n + 1), and so on. The selection
of elements from a layer output set is discussed in detafien t
following sections. After the descriptioPy_1 has been com-
puted, the top layelN can determine the optimum setup of its
parameters, given descriptiddy_1, as well as the optimum
element fronDy_1:

(531\7, dN71)

argmin
TNEXN,AN_1EDN_1

Iv(zn,dn-1). (3)

At the beginning of the second stage, the optimum element
dn_1 from the descriptionDy_1 is passed down to layer
(N —1). Note thatd 1 corresponds to all parameter setups
#Nn_1 € Xny_1 and description elementy_» € Dy_» such
that

fno1(@no1,dn—2) =dn-1. (4)
All pairs (21, dn_2) that fulfill Equation (4) are equivalent,
as they lead to the same minimum cost at lajferOne pair is
chosen, yielding the parameter setiig_1 of layer (N — 1).
The corresponding description elemeht_ is passed down
to layer(N — 2).

In the same fashion, from layéN —2) down to layerl, after
receivingd,, from layer (n + 1), layern chooses parameters
Z, € X, and a description elemedt,_, € D,_, such that

fn(-'f:n7dn—1) = dn

holds and then passes 1 down to layer(n — 1). When layer
1 is reached, the parameters of all layers are set up.

6. Optimum descriptions

Let ¢ denote the minimum cost achievablejbynt optimization
of all layer parameters according to Section 4. &@P,,) de-
note the minimum cost achievable by joint optimization & th
parameters of layers + 1,..., N, given a descriptiorD,, of
thenth layer:

min
zn,+1:N€€Xn+1:N7

é(Dn) .fn+1:N(mn+1:N,dn)-

For a descriptiorD,, to be optimum, we require

¢ = ¢&(Dy). (5)
Recall that in order to achieve modulari®y,, is generated in-
dependent of the properties of the upper layers. In othedsyor
we require Eq. (5) to hold for all possible, +1.x and fr+1:n-

Due to practical reasons, we also desire descriptions ¢imat ¢
tain the smallest possible number of elements. This prpjert
expressed by requiring that for a descriptions to be optintbhen
removal of a single element frof,, implies that Eq. 5 does no
longer hold for all possiblét,,+1.x and fr, 1.~

In [5] it is argued that it is necessary to constrain the set of
all possiblef,+1.n. In particular, it is shown that optimiza-
tion based on layer descriptions requires the layer funstio
fn(zn,d,) to bemonotone (or order-preserving) in the vari-
abled,. Recall that a layer function expresses a cost of an
operation point. Monotonicity basically states that a paeter
setupx., that yields a higher cost at layerthan a parameter
setupz,, cannot lead to a lower cost at a higher layer. If perfor-
mance measures are properly chosen, the restriction to-mnono
tone layer functions therefore does not represent a liioitan
real systems.

As shown in [5], under the condition of monotone layer func-
tions, the optimum description of theth layer is given by the
efficient set of thenultiobjective optimization (MOO) problem

min fn(mnydn71)~ (6)

Tn€Xp,dp_1€D, 1

The cost function in Eq. (6) is, in general, vector-valueengte
multiobjective optimization). The partial order

y =<y Sy <y, Vk

is used to compare elements 3f,. Due to the fact that the
employed order is not total, the MOO problem generally has
a set of equivalent solutions (see, e.g., [6]). These swisti
constitute the efficient set. The s can be interpreted as
an achievable cost region. The efficient elements are tHese e
ments on the boundary of the achievable region for which one
component can only be further decreased by increasingstt lea
on other component. The parameter choiggsthat lead to
efficient elementsl,, are denoted aBareto optimal.

In our example system, the set of Pareto optimal parameters
x1 at layer 1 is given by [5]:

’Pl:{mleRi251+52:Ptr}~

Thus, all parameter configurations that are optimal fronptire
spective of layer 1 fully exploit the transmit power buddeb-
tably, based on the knowledge available at layer 1, all combi
nations of non-negative rates are Pareto optimal. Notethieat
corresponding optimum description

Dy = f1(P1)

contains an infinite number of elements and is not compact.
This issue is addressed in the following section.

7. Approximate descriptions

For monotone layer functions, optimum descriptions (as@efi
in Section 6) correspond to efficient sets. However, a descri
tion in terms of efficient sets may not be feasible, for exampl
if it is not possible to find a parametrized description of ¢fie
ficient set or, in case finite sets are to be used for informatio
exchange between layers, if the number of elements in the effi
cient set is simply too large.

In this section, we considepproximate descriptionsD,,
generated by selecting a finite number of elements from an ef-
ficient set&,,. Approximate descriptions do not guarantee an



optimum parameter setup. However, it is possible to design
approximate descriptions such that the probability of a- sub
optimum parameter setup is minimized for a given nunier,

of elements irD,,.

From the optimality of efficient sets we can conclude that ap-
proximate descriptions should be obtained by sampling the e
ficient set. If monotonicity is the only condition imposedtbe
properties of the layer functions, each elemenf.ins equally
likely to yield the optimum parameter setup. As a result, ajo
sampling should yield an approximately equidistant disttion
of samples.

It may happen that a uniform distribution of th& ,, samples
on the efficient set is not possible due to the propertieseoéth
ficient set. In the example system, the efficient &etannot
be equidistantly sampled with a finite number of samples, due
to the fact that; is not compact (rate®; can take any posi-
tive value). This problem can be solved by providing additio
knowledge about the upper layers that allows for choosing a
compact subsef,, C &,. The compact sef,, can be properly
sampled with a finite number of elements. The &etcan be
interpreted as a coarse estimate (“ball park”) of the region
which the optimum operating point lies.

Depending on the properties of the layer function, in some
cases it is much simpler to determine the set of Pareto optima
parameter®,,. If the Pareto set is known, elements of the effi-
cient set can be computed by collectiNg,,, elements from the
Pareto set in a sampling sét, C P, and then evaluating the
layer function for each element in the sampling set:

Dy = fu(Sn). (1)

Ideally, elements fromP,, are chosen such that the samples
in D,, are distributed in the desired manner. In [7], a first-
order Taylor approximation of the layer function is empldye
to achieve a nearly equidistant distribution of samples.

In our example, we choose a particularly simple sampling
scheme: LeNg1 = S®. A sampling set is generated by

S1 = S(S X SR7 (8)

with

Py

852 {(617Br_61)351 = —8,821,4“,8}, (9)

SR:{(Rl,Rz):Rk:As+B,8:1,...,S}, (20)
where
2 S—3
A*ﬁ, and B*E.

Itis easily verified that this corresponds to choosing

51:{d1€51:1§Rk§3}.

8. Simulation results

In this section, the performance of the proposed descriptio
based cross-layer design for different description sige®in-
pared with the performance of two strategies that are based o
layer separate optimization.

The average gains of the users’ channels are chosen-as
1 andp2 = 2. The noise powers are equal, i.en; = ono.
We investigate three different sizes of the descripfian

Ng1€{S*:5=3,511}
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Figure 1: Overall distortion for different application fites

For a given description size, the approximate descripberis
generated according to Egs. (7)-(10).

Two approaches for choosing the parameters of layer 1 with-
out information exchange between layers are considereth Bo
strategies fix the outage probability of both users to a targe
age probabilitye. In thesum-rate (SR) strategy, the parameters
of layer 1 are chosen such that the sum of the users’ rates is
maximized, under the constraint that the outage probwlafit
each user equals

xi1sr=argmax Ry + R S.t. e, =E.

xr]EX]

In the second approach, denotedvax-min (MM) strategy, the
parameters of layer 1 are chosen such that the smallest among
the users’ rates is maximized, under the constraint thadtihe
age probability of each user equals The max-min strategy
follows from the sum-rate strategy by adding the constriat
all ratesRy, are equal.

Fig. 1 shows the overall distortioP = f»(is, d1) for dif-
ferent weighting factorsy; and a transmit SNR of6 dB. The
transmit SNR is defined as

Py
SNR= 10log;, o2, 1 of,
Depicted are the performance of a cross-layer optimization
based on layer descriptions wifkfiy 1 = 27 (LD-27), Ng;1 =
125 (LD-125), andNg; = 11° (LD-1331) elements itD;, as
well as the performance of the two layer-separate optinaizat
according to the sum-rate strategy with target outage fpibba
ity £ = 5% (SR-5%) and the max-min strategy, also with target
outage probability = 5% (MM-5%). The description-based
optimization of layer parameters can adapt to the diffeagnt
plication profiles and provide close to optimum performance
even for small description sizes. In the scenario underidens
eration, a description size dfq,1 = 125 is sufficient to well-
approximate the efficient set. In contrast to descriptiasel
optimization, the parameter setups found based on optimizi
layer 1 criteria only do not take into account the propeniabe
application. This can lead to severe performance degadati
For example, the sum-rate strategy allocates more powbeto t
user with the stronger channel, which, in our scenario, és s
The higher the priority of the user with the weaker chanried, t
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Figure 2: LD-based optimization vs. sum-rate strategy

larger the performance loss induced by the sum-rate syrateg
The max-min strategy provides equal QoS to both users. Again

if the optimization strategy at layer 1 contradicts the ys@r-
ities at the application layer, a significant performanogrdda-
tion is inevitable. In case of the max-min-strategy, thigagion
occurs if the priority of one user is much larger than thatef t
other one.

In Fig. 2 optimization based on layer descriptions with
Ng1 = 125 (LD-125) is compared with the sum-rate strat-
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Figure 3: LD-based optimization vs. max-min strategy

neighboring upper layer, a modular architecture can be pre-
served. Under the assumption of monotonicity, multiotiect
optimization was shown to play a key role in the description-
based optimization of layered communication systems. gliea
layer, the optimum description is provided by an efficierit se
Good approximate descriptions are obtained by sampling the
efficient set.

Optimization based on layer descriptions can provide close
to optimum performance by adapting the layer parameters to

egy. The performance of a parameter setup at layer 1 based varying application profiles. In contrast, a layer-sepagiti-

on the sum-rate strategy is evaluated for target outageaprob

bilities £ = 3% (SR3%), € = 5% (SR56%), ande = 10%

(SR-10%). The curves in Fig. 2 emphasize the impact of the

choice of a target outage probability on the performanc&ef t
sum-rate strategy. It can be observed that the performdnie o
sum-rate strategy is highly sensitive to the choice& ofn the
case of transmission of Gaussian sourées; 3% represents

a poor choice. However, it may be a good choice for a differ-

ent application. As a result, choosing physical layer patans

without knowledge about the upper layers can be considered a

game of chance.

In Fig. 3 optimization based on layer descriptions with

Ng,1 = 125 (LD-125) is compared with the max-min strategy.

The performance of the max-min strategy is shown for target

outage probabilities = 3% (SR3%), £ = 5% (SRH6%), and
g = 10% (SR-10%). Similarly to the sum-rate strategy, a high
sensitivity to the choice of a target outage probability ban
observed. For a target outage probabiity= 3%, the max-min
strategy fails completely, while the choiee= 5% provides

the best performance among the three choices. The same argu-

ments apply concerning the impossibility of a reliable cleadf
physical layer parameters without knowledge of the aptiioa

9. Conclusions

A concept for modular cross-layer optimization of layer pa-
rameters was presented. The layer parameters are optimized

according to an optimality criterion defined at the applmat

layer. The proposed concept is based on a “bottom-up” ex-
change of layer descriptions between layers. By providing

a description of the relevant characteristics of a layerh® t

mization of parameters can lead to a severe performancea-degr
dation.
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