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Abstract. Independent Component Analysis (ICA) is a frequently used
preprocessing step in source localization of MEG and EEG data. By de-
composing the measured data into maximally independent components
(ICs), estimates of the time course and the topographies of neural sources
are obtained. In this paper, we show that when using estimated source to-
pographies for localization, correlations between neural sources introduce
an error into the obtained source locations. This error can be avoided by
reprojecting ICs onto the observation space, but requires the identifica-
tion of relevant ICs. For Event Related Potentials (ERPs), we identify
relevant ICs by estimating their non-Gaussianity. The efficacy of the ap-
proach is tested on auditory evoked potentials (AEPs) recorded by MEG.
It is shown that ten trials are sufficient for reconstructing all important
characteristics of the AEP, and source localization of the reconstructed
ERP yields the same focus of activity as the average of 250 trials.

1 Introduction

Event related potentials (ERPs) are magnetic/electric fields of the brain elicited
by an event such as presentation of a visual or an auditory stimulus. These fields
can be measured outside the skull using magneto- or electroencephalography
(MEG/EEG). While all concepts presented in this paper can be applied equally
to MEG or EEG, we restrict our discussion to MEG for the sake of simplicity. In
the study of ERPs, the process of source localization is concerned with determin-
ing the position of neural generators causing the ERP, which allows conclusions
about brain areas involved in processing a stimulus. A wide range of methods
has been developed for MEG source localization, ranging from simple dipole to
distributed source models (see [1] for a review). Common to all methods is their
susceptibility to noise, requiring a high signal-to-noise ratio (SNR) of the ERP.

ERPs, however, are cloaked by ongoing background MEG activity usually
several times the magnitude of the signal of interest. To extract ERPs from the
magnetic background activity numerous trials are recorded, in which the stimulus



is presented repeatedly to the subject. Under the assumption that only the ERP
component of the magnetic field is invariant for every stimulus presentation, the
average time course of all trials results in an unbiased estimate of the original
ERP. The computation of this so called grand average ERP usually requires
several hundred trials if a positive SNR is desired. Since this amount of data is not
always available, source localization algorithms may perform poorly, rendering
these approaches impractical for a large group of experimental setups.

For these reasons, the development of methods for source localization that
are insensitive to MEG background activity is an active area of research. In
this paper, we focus on using Independent Component Analysis (ICA) for this
purpose. ICA is a special case of Blind Source Separation (BSS), that decomposes
the measured data into maximally independent components (ICs) [2]. In the
context of source localization, ICA is used as a preprocessing step to obtain
estimates of the topographies of neural sources. The position of a source inside
the brain can then be estimated from its topography without interference from
other neural sources [3,4]. This approach introduces an error into the localization
process if the neural sources are not fully statistically independent. As a remedy,
we show that reprojection of the relevant ICs onto the observation space, and
subsequent source localization of the reprojected data, removes this error. This
approach requires identification of the ICs contributing to the ERP. This can be
done by estimating the non-Gaussianity of each IC.

The efficacy of our approach is tested on auditory evoked potentials (AEPs)
recorded by MEG. Ten trials are randomly chosen from a total of 250 trials.
Using ICA and reprojecting the most non-Gaussian IC onto the observation
space is shown to result in a SNR of 5.52 dB in comparison to the grand average
of 250 trials. Reconstructing the current density with a distributed source model
results in identical maxima of current strength for the ERP reconstructed from
ten trials and the grand average ERP of 250 trials.

The rest of this paper is organized as follows. We first introduce the source
model, followed by a review of source localization using distributed source models
and ICA. We will then show why correlations between neural sources introduce
an error into the source localization procedure when using source topographies
estimated by ICA. This motivates the reprojection of relevant ICs onto the ob-
servation space, which renders the localization procedure more robust to source
correlations. The relevant ICs contributing to the ERP are then identified by
estimating their non-Gaussianity. In the results section, we apply the proposed
procedure to AEPs recorded by MEG, and conclude with a brief discussion.

2 Methods

2.1 Source Model

The determination of the current density from MEG measurements is an ill-
posed problem which has no unique solution. A first step to obtain a solution to
this inverse problem is to constrain the possible current sources to be dipoles,



since the synchronized pre-synaptic potentials of neurons in a cortical column,
that give rise to the MEG, can be approximated by a single current dipole
[1]. We restrict ourselves to a spherical head model which allows for a simple
determination of the magnetic field yk at the sensor positions generated by the
k-th dipole with known location and orientation (forward problem) [5]:

yk = Aksk ∈ R
M , (1)

with the leadfield matrix Ak ∈ R
M×3 of dipole k where M is the number of avail-

able MEG sensors and sk = [sk,x, sk,y, sk,z ]
T

contains the dipole moment in x, y

and z direction.3 The magnetic field generated by N dipoles is the superposition
of yk, k = 1, . . . , N . Thus, the model to be used in the sequel is

y = As, (2)

with A = [A1, . . . , AN ] ∈ R
M×3N and s = [sT

1 , . . . , sT
N ]T ∈ R

3N . The measure-
ment noise is neglected.

Note that the moment vector sk ∈ R
3 can be written as sk

‖sk‖2

‖sk‖2 = pkmk,

with the unit norm moment orientation vector pk ∈ R
3 and the scalar dipole

moment mk. If the orientation vectors are known or can be estimated simulta-
neously with the matrix A, (2) becomes

y = Gm, (3)

with m = [m1, . . . , mN ]T and gk = Akpk, where gk is the k-th column of
G ∈ R

M×N .

2.2 Source Localization

Because of the complex mathematical structure of spatially unconstrained dipole
fitting [1], we estimate a discrete approximation of the current density using a
large number of current dipoles, placed on a regular grid. It remains to determine
the contribution of each of these fixed dipoles to the measurement, thereby
reducing the localization to a linear inverse problem (“distributed linear” or
“imaging” methods [1]). Because there are typically much more dipoles than
sensors, this approach leads to an underdetermined system of linear equations. In
order to find a unique solution, it has to be regularized, usually by incorporating
assumptions about the spatial properties of the solution, e. g., the norm [6],
smoothness [7] or sparseness [8]. These algorithms often use one measurement in
time, but there are also attempts to include the temporal evolution (e. g., [9]).

In this paper, we use a distributed approach to determine strongly localized
solutions to the inverse problem.4 Thus, we impose the constraint for the solution
to be sparse. This is achieved by the following optimization [10]:

min
s

‖As − y‖2 + λ ‖s‖1 . (4)

3 Note that for MEG the matrix Ak has rank 2, since radial dipoles do not contribute
to the measurements [5]. Therefore, the dimension of the model could be reduced.

4 This spatial assumption might not be valid for all neural sources (e. g. cognitive
processes) but applies to the AEPs investigated in the results section.



The leadfield matrix A is known here because it is fully determined by the fixed
positions of the dipoles on the grid. The first term of (4) is used to find a solu-
tion which gives a good approximation of the measured data. The second term
penalizes the ℓ1 norm of the solution vector which is known to produce sparse
solutions [10]. The regularization parameter λ trades the data approximation
with the degree of sparsity. Note that this optimization would lead to a solution
that is not only sparse in the overall dipole moment, but also in its x, y and z

components which has no physiological justification. Thus, a modified penalty
on the norm (see, e. g., [9]) of the solution vector is introduced:5

‖s‖2,1

△
=

N
∑

n=1

‖sn‖2 =

N
∑

n=1

∣

∣

∣
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(

∑
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s2
n,k

)
1

2

∣

∣

∣

∣

. (5)

This produces a sparse solution in the overall dipole moments but not in the
respective moment components since the ℓ2 norm is not sparsity enforcing. The
resulting optimization problem

min
s

‖As − y‖2 + λ ‖s‖2,1 (6)

is a second order cone program and can be solved efficiently using standard
numerical optimization tools.

2.3 Independent Component Analysis

More recently, it has been proposed to apply ICA [2] to perform a BSS of the
dipole sources using the measurements of their superimposed activity [11]. This
approach explicitly uses the fact that typically not only one MEG measurement
is available, but a whole (sampled) time course, and decomposes the measured
signal into statistically maximally independent components.

In order to get interpretable results from the ICA, we make the following as-

sumptions : The time courses of the dipole moments of ERPs are non-Gaussian
distributed and statistically independent to the non-event related background
brain activity. This enables us to identify and separate sources as ICs contribut-
ing to the ERPs. Furthermore, we assume that there is only a small number
L < N of sources with non-Gaussian dipole moment. This assumption is based
on the observation that only a few ICs can be consistently reconstructed, which
implies that the other sources have a Gaussian distribution [12]. Additionally—
for ICA, not for the subsequent source localization—we restrict ourselves to the
case of N ≤ M , i. e., at least as many sensors as sources. If less sources than
sensors are present, a Principal Component Analysis (PCA) of the data with a
projection on the signal subspace can be performed [13]. Referring to the model
introduced in (3), we have T measurements

y[t] = Gm[t], t ∈ {1, 2, . . . , T}, (7)

5 Note that the absolute value in (5) is not necessary. It is included to emphasize the
application of the ℓ1 norm to the Eucledian (ℓ2) norms of sn, n ∈ {1, 2, . . . N}.



where it is assumed that the matrix G and thus the location and orientation of
the source dipoles do not change over time.

In order to perform a BSS, we determine a so called unmixing matrix W

such that, applied to the measurements y[t], the components of the resulting
vector are statistically independent. For the quadratic case (M = N), W is an
estimate of the inverse of G:6

m̂[t] = Wy[t] = WGm[t] = Pm[t]. (8)

This matrix can be found by minimizing the mutual information between the
components of the vector m̂[t], the ICs:

min
W

I (m̂1, . . . , m̂N) =

N
∑

n=1

H (m̂n)−H (m̂) s. t. ‖wn‖2 = 1, n ∈ {1, . . . , N}, (9)

with the differential entropy H (z) = −
∫∞

−∞ pz (u) log (pz (u)) du [14,15]. Note
that only the L non-Gaussian sources can consistently be found by this method,
the remaining N − L Gaussian sources are arbitrarily mixed together [12]. An

estimate of the leadfield matrix G is obtained by inverting W , i. e., Ĝ = W−1.

2.4 ICA for Source Localization

In the previous section, a method has been described to obtain an estimate
Ĝ of the leadfield matrix and the ICs. In [4], the assumption that each IC
corresponds to a single dipole and all sources have mutually independent time
courses allowed for a decoupled dipole fit since the k-th column ĝk of Ĝ, also
called the topography of the k-th IC, only depends on the parameters of dipole
k. If one assumes that ĝk corresponds to a distributed source rather than a single
dipole, a decoupled localization based on (6) is possible:7

min
s

‖As − ĝk‖2 + λ ‖s‖2,1 , k ∈ {1, . . . , N}. (10)

A problem arises if the assumption of mutually independent sources con-
tributing to the ERP is violated. Suppose a model with two sources which are
obtained by a linear transformation from two statistically independent and non-
Gaussian sources m′ ∈ R

2:

m = Tm′ ∈ R
2. (11)

This gives the observation

y = Gm = GTm′ = G′m′, (12)

6 Note that W G is not the identity but the product P of a permutation and diagonal
matrix due to the insensivity of the cost function (9) w. r. t. this operation.

7 The column ĝk is not multiplied with the corresponding IC m̂k since this changes
the minimizer of (10) only by a scalar factor.



with G′ = GT . The effective mixing matrix G′ can now be identified by ICA.8

Assuming the transformation

T =

[

1 c

c 1

]

, c ∈ R, (13)

the correlation of the components of m is determined by the scalar c and the
two columns of the matrix G′, read as g′

1 = g1 + cg2 and g′
2 = cg1 +g2. As long

as |c| 6= 1, these two columns are linearly independent and can be identified by
ICA. However, the columns g′

1 and g′
2 are not identical to g1 and g2 , and thus an

error is introduced if they are used for a decoupled source localization (see 10).
The effect on source localization demonstrated by this simple example might not
be a problem if (10) is used, since only linear correlations are present. However,
it is emphasized that care should be taken if the independence assumption does
not hold in general. This phenomenon can occur, e. g., for the case of AEPs [16].
In the next subsection, we propose a method to deal with this problem.

2.5 ICA for Preprocessing of MEG Data

While the results of ICA may not be directly suitable for a source localization,
they can still be used to extract relevant activity from the measured data. This
“denoised” signal can then be the basis for a more accurate localization.

A major assumption of the presented ICA approach is that only neural activ-
ity of interest results in a non-Gaussian signal, while the Gaussian background
activity results in Gaussian ICs. This gives a criterion to decide which com-
ponents contribute to the signal of interest. Assuming that there are L non-
Gaussian ICs, we get a “denoised” signal by computing

ŷ[t] = Ĝ(L)m̂(L)[t], (14)

where m̂(L)[t] ∈ R
L contains only the non-Gaussian ICs and Ĝ(L) ∈ R

M×L

the corresponding columns of W−1. 9 For the estimation of Gaussianity, we
employ the Anderson-Darling test (see, e. g., [17]) which is based on a distance
measure between the empirical distribution function of the available data and
the cumulative distribution function to be tested for. This is done separately for
each IC, since they are assumed to be statistically independent.

The advantage of this approach lies in the fact that the columns of Ĝ , which
may be affected by correlations of the signal components, are not used for a
decoupled source localization. Instead, we remove the signal portion assumed to
be background activity that is statistically independent to the signal of interest
and proceed with a simultaneous localization of the remaining sources. Assuming
that the non-Gaussian ICs have been correctly identified, the signal ŷ[t] is used
as data for the source localization algorithm as described above.

8 Up to permutation and scaling which is not considered here for simplicity.
9 Note W −1 is actually an estimate of G′ (with the problems mentioned in Section

2.4). Only for statistically independent sources, this is also an estimate of G.



3 Results

To test the efficacy of the proposed approach, we used MEG data recorded
during an auditory oddball task at the Biomagnetic Imaging Laboratory at the
University of California, San Francisco. The data was collected with M = 132
channels covering the right hemisphere, and was sampled at 4 kHz. Each trial
started with presentation of an auditory stimulus to the left ear, and lasted 275
ms (see [18] for a description). The grand average ERP y∗ was calculated as the
average of 250 trials and low-pass filtered with 16 Hz cut-off frequency [15]. The
resulting time course at all channels is shown in Fig. 1 (left panel).

Ten trials were chosen randomly as test data. After low-pass filtering with
50 Hz cut-off frequency and subtracting the mean of each channel, a PCA was
performed, only retaining the first 50 principal components [13].10 The extended
Infomax-ICA algorithm [14] was applied to the concatenated trials, resulting
in 50 ICs and associated topographies

{

m̂k[t], ĝk ∈ R
M
}

, k = 1, . . . , 50. After
computing the mean time course across the ten trials for each IC, the non-
Gaussianity of each averaged IC was estimated using the Anderson-Darling test
mentioned in section 2.5.

A remarkable result is that only one IC showed a high degree of non-Gaussiani-
ty, which was 5.9 times the standard deviation (std) apart from the mean non-
Gaussianity of all ICs. This IC was only ranked eighth in terms of explained
variance of the original measurements as expected from the low SNR of the data
set. Since the IC with the second highest non-Gaussianity was only 2.4 stds apart
from the mean non-Gaussianity, only the most non-Gaussian IC was assumed to
contribute to the ERP. Hence, we conclude that L = 1.

To reconstruct the ERP, the most non-Gaussian IC was reprojected onto the
observation space (cf. 14), and the reconstructed ERP ŷ was compared with the
grand average ERP y∗ by computing the SNR, defined as [18]

SNR = 10 log10

[

1

M

M
∑

i=1

(

N
∑

t=1

y∗
i [t]2

)

/

(

N
∑

t=1

(y∗
i [t] − ŷi [t])2

)]

(dB). (15)

This resulted in a SNR of 5.52 dB and the time course shown in the middle panel
of Fig. 1. In comparison with only averaging the ten trials and low-pass filtering
the resulting raw average with 16 Hz cut-off frequency (Fig. 1, right panel), an
increase in SNR of 5.79 dB was achieved.11

The effect of the denoising for source localization was assessed by estimating
the current distribution for all three data sets (i. e., grand average, reconstructed
and average, see Fig. 1), using the distributed source localization procedure
described in the methods section. A spherical head model was assumed, with the
MEG sensors located at a radius of 8.5 cm. A regular grid with an inner radius

10 Here, we have to set M = 50 for ICA and can therefore reconstruct up to N = 50
ICs. Note that M and N have different values for the subsequent source localization.

11 Note that for comparison the grand average, reconstructed and average only, ERPs
were all normalized to their first major peak occurring around 95 ms.



of 5.5 cm and outer radius of 7.1 cm was placed inside the spherical head model,
with a distance of 4.5 mm between each grid point. This resulted in N = 7437
dipoles. The time instant of maximum amplitude of the grand average ERP (92
ms) was chosen for localization for all three data sets. The same regularization
parameter was used for all data sets, with λ chosen to achieve a good trade-off
between sparsity and approximation of the measurements (resulting in a residual
variance of 0.73% for the grand average, 7.6% for the reconstructed and 1.9% for
the average only ERP). The results of the localization are shown in the bottom
row of Fig. 1. The location of maximum current strength for the grand average,
the reconstructed and the average ERP are indicated by the major star, triangle
and square, respectively. Smaller indicators represent grid points with a current
strength of at least 50% of the maximum current strength.

The grid point of maximum current strength of the reconstructed ERP co-
incided with the maximum grid point of the grand average ERP. The maximum
current strength for the average ERP on the other hand was located three grid
points (1.35 cm) apart from the focus of activity of the grand average ERP. Five
points of the grand average ERP showed a current strength of at least 50% of
the maximum current strength, while this was the case for only one more point
for the reconstructed ERP.

4 Discussion

To summarize the results, the proposed approach proved capable of achieving
a significant increase of SNR in comparison to only averaging and low-pass fil-
tering the data (+5.79 dB). While the peak latencies and amplitudes of the
AEP were difficult to identify in the averaged data set, the reconstructed ERP
showed a similar time course as the grand average ERP, with all peaks clearly
identifiable. We conclude, that with the proposed approach a small number of
trials is sufficient to reconstruct the most important characteristics of ERPs.
Furthermore, the results support our assumption that non-Gaussianity of ICs is
a good criterion for identifying ICs contributing to an ERP.

In terms of source localization, the focus of activity of the reconstructed ERP
coincided with the grand average ERP, while the focus of activity of the average
ERP was shifted by 1.35 cm. It should be noted that AEPs have a relatively
high SNR compared to other ERPs, resulting in acceptable results by averaging
only. Further studies have to show, how our approach performs in comparison
to only averaging if more complex experimental setups are being investigated.

Finally, it should be noted that the data set used in this study was not well
suited for investigating the issue of correlations between neural sources discussed
in section 2.4. Since one IC was sufficient to reconstruct the grand average ERP,
it can be concluded that no correlations between neural sources contributing
to the ERP existed.12 This issue will also be investigated in further simulation
studies and studies with more complex experimental setups.

12 Note that this does not exclude the possibility of the most non-Gaussian IC repre-
senting a distributed source.
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Fig. 1. Time course, topography at time point of grand average peak amplitude and
current distribution for grand average, denoised and raw average ERP datasets. The
vertical line in the first row shows the time index of the topographies and source local-
ization results in the two lower panels. The topographies were plotted using EEGLab
[15].
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