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Abstract

Document processing is a very important application of computers. Most documents for
personal and business use are today created and processed using computer systems.

Processing of documents is eased by creating and storing documents in a structured
form. Besides that, it is beneficial to separate logical document structures from layout.
This allows, for instance, to easily produce multiple layouts of the same document, which
has been created in its logical structure, on different output media and in different layout
styles. The generic structure and semantic properties of documents can be conveniently
specified using attribute grammars.

A document formatter (formatter for short) is the part of a document processing
system whose task is to provide a mapping from logical document structures to lay-
out structures. Complex requirements are usually imposed on this mapping: firstly,
consistency constraints have to be satisfied concerning, for instance, the placement of
floating objects or footnotes; secondly, a formatter is often supposed to optimize certain
aspects of layout in order to present a document in the most readable and visually most
appealing form to readers.

A formatter that meets such demands to a great extent is hard to implement and
maintain using a general-purpose programming language. Languages tailored to the
specification of formatters exist, but are limited in their support for formatting con-
straints and/or optimization.

In this work a new model for optimizing transformations between attributed trees
is introduced. The model is based on rules involving constraints on the syntactical
structure as well as on semantic properties of source and target trees. The transformation
model and its semantics is defined in a completely formal manner. It is described how
transformations based on the model can be efficiently executed and the correctness of
the resulting execution model w.r.t. the transformation model’s semantics is formally
proved.

A practical specification language based on the new transformation model is intro-
duced which allows to specify constraint-based optimizing formatters on a high level.
It has been implemented in Java and provides, together with a set of tools specific to
document processing, a complete system for realizing practical formatters.

The applicability of the new approach is demonstrated by several example formatters
that have been successfully realized using the new system. Besides formatters, the new
transformation model can be applied in other fields such as user interfaces and code
generation.
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CHAPTER

Introduction

Document processing has become an increasingly important use of computers over the
last years, especially of personal computers. Most documents (for both business and
private use) are today created, stored, and processed electronically.

As shown in the literature [8, 41, 42, 43, 55|, processing of documents greatly benefits
from organizing documents in a structured way and keeping logical document structure
and content separated from its layout.

A part of a document processing system which is important for realizing this sep-
aration is the document formatter whose task is to create layout representations from
logical document structures. Complex requirements are usually imposed on formatters
as their result must firstly satisfy often difficult to handle consistency constraints and
secondly be as visually pleasing as possible. This makes implementing formatters by
hand using a general-purpose programming language very difficult and error-prone.

In this work the novel approach of applying constraint optimization to the spec-
ification of document formatters is taken, i.e., formatters are described using highly
descriptive executable specifications which are concise and easy to create and maintain.

1.1 Documents

In the scope of electronic document processing the term document usually denotes data
representing some information, stored persistently in a computer system. A document’s
data can consist for instance in textual data, graphical data, or multimedial data such
as sound and movie clips.

Documents are usually—besides being stored in computer systems— processed in
various ways, including editing, printing, online viewing/browsing, archiving and trans-
forming. A collection of tools supporting such tasks is called a document processing
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system.

Very often, many documents of the same or of a similar kind exist, for example con-
ference papers or technical reports. In order to be able to process such documents using
a single system, they are most often grouped into document classes which formalize
important common characteristics, including the generic structure, for instance.

In the following, the generally accepted [8, 41, 42, 43, 55] structured document model
and well-known techniques of specifying document classes based on that model are in-
troduced at an informal level.

1.1.1 The structured document model

Documents were originally created and processed in an unstructured or weakly struc-
tured way. For example, a document created with a usual word-processing application
was (and often still is) just structured into a sequence of paragraphs, which themselves
consist in a sequence of characters.

In contrast, with the structured document model, a document is seen as a hi-
erarchical tree structure of elements. Figure 1.1 shows, as a typical example, a report
document which is structured into chapters, sections, and paragraphs.

Report

N

Chapter Chapter

N

Head Para Section Section

TN

Paa - Head Para

Para

Figure 1.1: Example of a structured document

The structured document model became popular in the 1980s with SGML (Standard-
ized Markup Language) [12, 18] and ODA [19]. The most popular system in use today
is XML [45].

Some of the benefits of using the structured document model are:

e editing of large documents is eased as quick navigation within the document is
possible
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e reuse of parts of a document, e.g., for assembling and reconstructing documents
is made easier (see for example [15]); a general approach for creating documents
using highly reusable units is realized with DITA [6]

e some processing tasks like automatic creation of tables of contents or numbering
of sections are greatly simplified

1.1.2 Context-free grammars

Individual structured documents can be represented using structure trees. When dealing
with document classes, however, the generic structure of documents of a given class needs
to be specified. A context-free grammar can be used for this purpose.

A context-free grammar formally describes the syntactic structure of a language using
grammar symbols and productions describing their syntactic structure. A context-free
grammar can be used to specify the concrete syntax of a language, and a parser mapping
a sequence of input tokens to a structure tree can be derived automatically. However, it
is also possible to specify the abstract syntax of a language using a context-free grammar
by dropping all delimiters needed for disambiguating the grammar. The latter approach
will result in a grammar which cannot be used for parsing, but specifies the structure of
a language in a way that is perfectly suitable for processing. Abstract syntax is usually
used in compiler construction, but Figure 1.2, which gives a grammar for the report
document type described above, shows that it can be used for describing the generic
structure of documents as well. Note that context-free grammars require sequences to
be specified using recursive productions while sequences are shown in Figure 1.1 on the
facing page in a flat fashion.

Report = ParaSeq ChapterSeq
ChapterSeq = ¢

| Chapter ChapterSeq
Chapter = Head ParaSeq SectionSeq
SectionSeq = €

| Section SectionSeq
Section = Head ParaSeq
Head == Para
ParaSeq = ¢

| Para ParaSeq
Para =

Figure 1.2: Partial context-free grammar for document class Report

Context-free grammars are also used in SGML and XML for the specification of the
generic structure of documents. Document Type Definitions (DTDs) and XML schemata
[47] there serve for this purpose. With SGML and XML, concrete syntax is simply derived
by enclosing each nonterminal element in start and end tags. The resulting concrete
language can be parsed very easily.
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1.1.3 Attribute grammars

While context-free grammars can be used to specify the generic syntactic structure of
documents, they cannot be used to describe semantic properties of documents.

Attribute grammars, which were introduced in [26] and are often used in the field
of compiler construction, provide a means to fill this gap, as they allow to enrich syntax
trees with semantic information.

An attribute grammar associates attributes with symbols of a context-free grammar
and defines equations for each production, describing how attributes are computed.

When dealing with documents, one can take advantage of attribute grammars as well.
Many problems of computing semantic information about documents can be specified
using attribute grammars. Well known examples include the construction of tables of
contents and section numbering [8, 9].

1.1.4 Layout structure of documents

The layout of a document is a visual representation of the document which can be output
on a printer or computer screen.

We have already seen that the structured document model can be applied to logical
document structures. However, it is also an appropriate means to naturally describe the
layout of documents [8, 9]. Figure 1.3 indicates how a possible concrete layout might be
structured.

Layout

Header Body Footer

Box Box Box

Figure 1.3: Example of a structured document layout

The structured document model for layout can be found in practice in widely used
standards like Portable Document Format (PDF) [1] or Scalable Vector Graphics
(SVG) [44].

Attribute grammars can again be used to associate semantic information with layout
structure [8, 9]. Page numbering is a simple example; another example is the computa-
tion of geometric properties of boxes, like position in a page’s coordinate system, or box
dimensions.
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1.1.5 Separation of logical document structure and layout

We have seen that both logical content of documents and document layout can be suit-
ably represented using tree structures. It is, however, also very important that logical
structure and layout always be kept in separate structures. Creating a document in its
purely logical structure and keeping it independent from layout allows for instance to
easily recreate a document in different layout styles and formats and for different output
media (e.g., on paper as well as online).

1.2 Document Formatters

Separating logical structure and layout of documents requires the existence of compo-
nents in a document processing system which map a given logical document structure
to layouts. Such a component is usually called a document formatter (or formatter
for short) [33, 41, 42, 43]. There are two basic requirements on the mapping provided
by a formatter [33]:

e the layouts which are produced are faithful to the author’s intentions
e layouts are aesthetically pleasing.

As a formatter does the job which formerly a human typesetter did, it should be
driven by a set of (formalized) rules which a human typesetter would use to craft the same
layout. Thus, a formatter’s functionality can be imagined as is depicted in Figure 1.4.

/ Formatting rules /

l

Logical document Formatter — Document layout
structure

Figure 1.4: Functionality of a formatter

1.2.1 Typical tasks of a document formatter

A formatter constructs layouts from basic objects with certain graphic characteristics
and arranges those objects on the output medium. The constructed layout must satisfy
certain consistency constraints in order to fulfill the two main requirements of a formatter
listed above.

On the one hand, for a layout to be faithful to the author’s intentions, constraints
like preservation of the order of certain elements or the usage of fonts must be fulfilled
in order to communicate the structure of the document correctly. An example of more
complex constraints is the placement of floating objects, which is described, e.g., in [33]:
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a floating object may typically not appear on a page (or page spread) before its first or
main reference in the text.

On the other hand, further constraints have to be satisfied for a layout in order to
be aesthetically pleasing. For example, pages should neither be underfull nor overfull.

The constraints a formatter must fulfill usually still allow some freedom. So, an-
other desired feature of a formatter is to choose the optimal consistent document layout
w.r.t. some measure. A well-known example for this is optimal line breaking [9, 27, 55]
where all words contained in a paragraph are distributed as evenly as possible in the
resulting sequence of lines, leaving as little gaps as possible between words. Another
example is optimal page breaking; [5, 36] describe for example the optimization problem
that floating objects should be placed as near as possible to their main reference in the
text.

1.2.2 Declarative specification of document formatters

A formatter should ideally be driven by rules which are specified in a highly declarative
manner. An appropriate way to specify rules in such a declarative manner is by using
constraints, i.e., logical formulas describing desired characteristics of a solution instead
of an algorithm to compute it. Constraints have been used in various fields described,
e.g., in [10, 30, 31].

1.2.3 Generative approach to document formatters

Using a declarative specification technique with formal semantics allows a special ap-
proach to be taken: the program implementing a given specification can be automatically
generated from a specification. This approach is well-known in the area of compiler con-
struction where, e.g., lexical, syntactic, and semantic analyzers are usually generated
from formal specifications [2, 56].

The main benefit of this approach is that the implementation phase of the software
engineering process can be completely automated, which causes an important shortening
of software development time and significantly eases maintenance of the software.

This generative approach can be applied to the development of document formatters
which has previously been shown [43]. The resulting architecture is depicted in Figure 1.5
on the next page.

1.3 Approach to document formatting taken in this work

As has been pointed out, logical document content as well as layout can be modeled
using attribute grammars, and we wish to be able to declaratively specify and gener-
ate optimizing formatters, i.e., mappings from logical document structures to layout
structures.

That means that our actual task is to describe optimizing transformations from at-
tributed trees to other attributed trees. The new approach taken in this work is using
constraints, so our model for specifying document formatters can be concisely charac-
terized as
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Formatter specification
(Rules)

Formatter generator

Logical document / , Formatter — / Document layout
structure |

Figure 1.5: Generating formatters from formal specifications: architecture overview

Constraint-based specification of optimizing transformations of attributed
trees.

The general idea of the constraint-based approach is the following: in order to specify
a formatting (sub-) problem, a relation that relates source document structures to a set
of consistent target structures is defined. This is accomplished by a set of rules, where
constraints are used to specify consistency (pertaining to syntactic as well as semantic
properties). An objective function defines a measure for which is to be optimized, i.e., the
relation describing possible consistent target structures is further constrained to contain
only optimal results according to the desired measure.

As will be shown in this work, the new approach allows to specify formatting problems
in a very natural way. Problems which were hard to tackle with existing methods and
systems (see below) can be declaratively described.

1.4 Previous approaches to document formatting

The approach to document formatting described above in Section 1.3 has not been
taken before. In the following, characteristics and shortcomings of the most prominent
representatives of existing approaches to document formatting are discussed which are
meant to be leviated by the new approach. Note that a more elaborate discussion will
be given in Chapter 6.

1.4.1 Solutions to specific formatting problems

Several methods for solving specific formatting problems have been developed and have
been implemented in general-purpose programming languages. Popular examples are
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optimal line breaking [27, 35] and optimal page breaking [5, 54].

Using general-purpose languages ist is very difficult to create complex formatters.
The resulting implementations are hard to read and maintain. It would also be difficult
to extend or modify the behavior of a formatter created in this manner to suit the needs
that may arise with new document processing systems.

1.4.2 Transformation languages

As it would be difficult and tedious to implement special-purpose formatters using the
approach described above in Section 1.4.1 for each new document processing system
that has to be developed, the most popular method used today is to first transform
logical documents to a widely usable intermediate language; this first transformation is
relatively simple to implement. Fixed programs are then used to transform from this
intermediate format to the actual layout format solving the complex formatting tasks
like line and page breaking.

An example of such an intermediate language widely used today is XSL-F0 (XSL
formatting objects) [48], for which transformers are available which perform the actual
formatting tasks and produce various output formats like HTML and PDF.

For the transformation from logical structures to the intermediate structure a declar-
ative transformation language is often used, for example DSSSL (see for example [37]) or
XSLT [49].

This approach works well in practice. However, it has the limitation that formatting
tasks beyond those expressible in the fixed intermediate language cannot be solved.

1.4.3 Specification languages for document formatters

Some special-purpose languages for implementing document formatters have been devel-
oped. An example is the Lout document preparation system [25], which allows a user to
specify formatters for structured documents on a relatively high level. It is based on a
lazily evaluated functional language extended for special concepts for cases that exceed
simple bottom-up construction of layout (e.g., placement of floating objects).

The Agenda system [43] allows to specify source and target structure of a formatter
using attribute grammars and the formatting process itself using a stream-based model
[34].

Both Lout and Agenda, and other systems of this kind, provide a means to declara-
tively specify document formatters. However, declarativity is provided only at the price
of some limitations:

e both systems do not allow to specify general formatting constraints, and thus make
some formatting tasks quite hard or impossible to specify

e while Lout offers a limited form of optimization, an optimizing formatter cannot
be specified using Agenda at all

1.5 Mathematical notation

The following introduces the mathematical notation used in this work.
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Sets. The set of natural numbers is denoted by Nat =, {1,2,...}. The set of natural
numbers including zero is denoted by Natg =,, {0} U Nat. Int denotes the set of
all integer numbers Natg U {—n | n € Nat}. We will write min(M) for the minimum
of a non-empty, finite set M C Int. The empty set is given by (). The power set of a
set M is denoted by Pow(M). The union of two disjoint sets M; and M, is denoted by
My U Mos.

Sequences. Let M be a set. A sequence over M is denoted by (mims...m,) where
n € Natg and m; € M for each 1 < i < n. If no doubt exists that we refer to a list we will
also shortly write mymsg ... m,. We will further write £ for the empty sequence (). The
set of sequences of fixed length n over M is denoted by M™. The set of all sequences of
arbitrary finite length over M is defined as M* = UnGNatO M". Given two sequences
m = mims...my, and M’ = mimy...ml,, mom = mims ... mymims...m,, de-
notes the concatenation of both sequences. A sequence m; is called a prefix of a sequence
my iff a sequence mg exists such that mq o mg = mo.

Functions. Given two sets X and Y, X — Y denotes the set of functions from X
to Y. For functions f from the set X — Y we write f: X — Y. If f: X — Y and
M C X, then we write f|ps for the restriction of f to M, for which the following holds:
flar: M —Y and f|apr(m) = f(m) for all m € M.

1.6 Overview over the following chapters

The following chapter will present realistic examples of document formatting problems,
and a new specification technique based on constraint optimization is motivated.

A formal model for optimizing transformations of attributed trees is developed in
Chapter 3, including a formal semantics. Methods for efficient execution of transforma-
tions based on the model are developed and proved to be correct.

Chapter 4 describes a new system called Coala providing a specification language
based on the theoretical transformation model introduced in Chapter 3, and its runtime
system, suitable for realizing practical document formatters.

In Chapter 5 several example applications are shown that have been realized using
the new system.

Chapter 6 describes previous work in this area in comparison with the new specifi-
cation technique.

Chapter 7 gives a summary of the achievements of this dissertation and a brief
outlook to future work.

The appendix contains a glossary of terms used in the field of document processing,
technical proofs that have been omitted in Chapter 3, a precise description of the slightly
extended attribute grammar model used in this work, a summary of the context-free syn-
tax of Coala’s specification language, and a functional implementation of the theoretical
transformation model.
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Examples of formatting problems

In this chapter some basic formatting problems are addressed, showing how logical and
layout document structures can be modeled using attribute grammars and how optimiz-
ing transformations between logical and layout document structures can be specified in a
natural and declarative way. The examples deal with the formatting of documents con-
taining text structured into paragraphs and sections, and are as such classic formatting
problems. The target of transformations is a hierarchical box model as the one known
from the TEX system [27].

The ideas gained from these examples, which are treated in this chapter at an informal
level, will build the basis for the formal document transformation model developed in
Chapter 3.

2.1 Logical document structure

The source structure (logical document structure) of our example formatting application
is defined by the following context-free grammar giving the abstract syntax of documents
structured into sections and paragraphs.
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Document = SectionSeq
SectionSeq := Section

| Section SectionSeq
Section := Header ParagraphSeq
Heading :=  Paragraph
ParagraphSeq ::= Paragraph

| Paragraph ParagraphSeq
Paragraph = Word

| Word Paragraph
Word = text

2.2 Layout document structure

The following context-free grammar defines the abstract syntax of a simple page descrip-
tion language used as the target structure of transformations.

Layout = PageSeq
PageSeq = €
|  Page PageSeq
Page = Boz
Bozx = HBox | VBox
|  TextBox | EmptyBox
HBox = DBoz Box
VBoz := Box Boz
TextBozx = Str
EmptyBox ::= Int Int Int (* width height depth *)

Layout is defined as a sequence of pages, where page content is described using a hierar-
chy of boxes, terminal elements being TextBor and EmptyBoz; boxes can be composed
horizontally (HBox) or vertically (VBox).

The box geometry shown in Figure 2.1 on the facing page is used, where the dimen-
sions of each box are described by three attributes width, height and depth. Each box
has a reference point used for the alignment of HBozes and VBoxes. The geometry of
those compound boxes is shown in Figure 2.2 on the next page. The box geometry used
here is very close to the one used in TEX [27].

An attribute grammar can describe box geometry in a natural way. Figure 2.3 on
page 14 shows the attribution of layout structure necessary to compute the dimensions
of compound boxes. In Figure 2.4 on page 15 the computation of the coordinates of the
reference point of each box is given. The content of a page is placed in a way such that
the top left corner of the box is at the origin of the coordinate system, which lies at the
upper left corner of the page.
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Figure 2.1:  Geometry of boxes (in this case TextBozes)

HBox ::= Box Box VBox ::= Box Box
(xy)| Box
xy) Box, Box,
"""""""""""" Box,

Figure 2.2: Geometry of HBoxes and VBozes

2.3 Line breaking

2.3.1 Problem description

We will first discuss the classic problem of (optimal) line breaking. Solutions to optimal
line breaking have already been built into prominent document preparation systems such
as TEX or Lout and have been described in [9, 35]. However, these solutions have up to
now been described only in an operational manner and deal only with flat document
structures. The highly declarative specification of line breaking is still an open question
and interesting to analyze when searching for a more general solution to the specification
of optimizing document formatting problems.

The (slightly simplified!) task of line breaking is to arrange the words contained in
a paragraph among justified lines of a given width. Points where lines are allowed to
be broken lie between any two adjacent words. In order to allow lines to extend to the
desired width of the paragraph, white space of variable width is inserted between words.
However, to avoid underfull and overfull lines, whitespace can be shrunken or stretched
only within given limits.

1We omit the handling of hyphenation
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Figure 2.3: Computation of the dimensions of HBoxes and VBozes

The description of line breaking so far will in general allow more than one possible
solution; so the actual result of line breaking should be the one that is optimal with
respect to some measure. The following approaches are described in [35]:

break each line as early as possible (stretching white space as much as possible)
break each line as late as possible (shrinking white space as much as possible)

always choose the next line such that its white space is stretched or shrunken as
little as possible (locally optimal, also called ‘best fit’)

choose all lines such that the white space of all lines is stretched or shrunken as
little as possible (globally optimal)

The last approach—which we will take in the following—is the most interesting. Because
it might occur that choosing a locally optimal line leaves a rest paragraph that can be
only broken into very bad subsequent lines it is not possible to produce the resulting
lines one after another. Instead, all consistent complete sequences of lines have to be
constructed and the best one has to be selected among them. This makes this approach
very hard to implement in a general-purpose programming language.

2.3.2 An approach to a solution

Attribute grammar describing sequences of lines

White space of variable width can be modeled using the concept of glue. The valid range
of width of a glue is defined by three parameters: the natural width (nat), the amount by
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Figure 2.4: Computation of reference point coordinates

which it can be shrunken (minus) and the amount by which it can be stretched (plus).

The range of valid widths is then [nat — minus, nat + plus].

As our target document structure provides no means to represent lines containing

glue, we will first introduce an intermediate structure LineSeq for this purpose:

LineSeq = ¢
|  Line LineSeq
Line = £
|  Box Line
| Glue Line
Glue = Int Int Int (* nat plus minus *)

A LineSeq can later be easily transformed to our target structure where each line

becomes an HBox containing EmptyBoxes for glues, when the actual width of glues is

known.

The computation of the actual width of each glue element can be described using
the attribute grammar depicted in Figure 2.5 on page 17. In this attribute grammar,
each glue element of a line is stretched or shrunken according to an adjustment factor
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« which is computed from the sums of natural widths, stretchability and shrinkability
of all the elements of the line and the constant line Width by a function f, defined as
follows:

f(Nat, Plus, Minus) =

def

(0 ifNat = line Width
‘ dih — N
line Width at ifNat < lineWidth N Plus # 0
Plus
li idth — Nat
ine Vi - © ifNat > lineWidth N Minus # 0
Minus
00 ifNat < lineWidth N Plus =0
| —00 iftNat > lineWidth N Minus =0

Using the adjustment factor, the actual width of each glue is computed using the function
g, defined so:

) nat + o x plus if a>0
g(a, nat, plus, minus) =, , ]
- nat + o X minus otherwise.

If the width of all glue elements of a line is computed like this a justfied line of width
line Width results.

Box kerf sequences

The core of the line breaking problem is to transform a sequence of word boxes into a
sequence of lines where breaks occur at allowable points (in our case between adjacent
words). Allowable points can be represented by special elements called kerfs, so the
input to the line breaking process is actually a sequence of boxes and kerfs. We will use
BozKerfSeq structures, defined as follows, to represent such sequences.

BoxKerfSeq == ¢

|  Boz BozKerfSeq

|  Kerf BoxKerfSeq
Kerf = Glue

Kerfs contain a glue element which is used as an inter-word space if a line is not
broken at that kerf?. If lines are actually broken at some kerf element, it will simply
vanish.

2Note that in a setting with hyphenation, a more complicated notion of Kerf supporting the insertion
of hyphen characters can be used.
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Figure 2.5: Computation of actual glue widths

Specification of a transformation to consistent sequences of lines

Having introduced all the necessary structures, we can now address the actual trans-
formation task of line breaking. The transformation of our source document structure
(Paragraph) to BoxKerfSeq, simply inserting kerf elements between adjacent words, is
straightforward and rather uninteresting, so we will assume that we already have a trans-
formation function paragraphToBoxzKerfSeq: Paragraph — BoxKerfSeq available which
performs this task. The more interesting part is the transformation BozKerfSeq —
LineSeq which can be specified as shown in the following. We omit optimization at first
and only describe the construction of consistent sequences of lines.

An overview of the transformation is shown in Figure 2.6 on the next page. A single
sequence of lines is constructed by choosing a consistent first line leaving a rest box kerf
sequence, and applying the same process recursively until the rest box kerf sequence
is empty. The specification of how a single line is to be constructed will describe the
structure of all consistent lines, so the whole line breaking process will result in all
consistent sequences of lines.

An idea to describe the construction of a single line is using rules consisting of tree
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Sequence of boxes and kerfs:

I PV A% I Qe S % 5% I I 3 S
Sequence of lines:
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_______________ [ ... Box
"""""" o3

Figure 2.6: Constructing a sequence of lines from a sequence of boxes and kerfs

templates and constraints. Three rules are necessary to describe the transformation of
a box kerf sequence depending on the structure of the source box kerf sequence.

The case where the source box kerf sequence starts with a box can be handled as is
shown in Figure 2.7. Here, the box is appended to the current line and the transformation
proceeds with the sub box kerf sequence.

|
BoxKerfSeg — Line, / BoxKerfSeg

Box BoxKerfSegq Box Ling,

where copy: Box — Box
I: BoxKerfSgeg— Line, / BoxKerfSeg

Figure 2.7: Processing of a box

If the source box kerf sequence starts with a kerf the current line can either be broken
or not broken, in the latter case appending the inter-word glue to the current line. These
rules are shown in Figure 2.8 on the next page and Figure 2.9 on the facing page.

The rules consist of:

e a tree template matching the source box kerf sequence structure
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BoxKerfSeg —_— Line / BoxKerfSeg

Kerf BoxKerfSeq

where Line.Nat + Line.Plus >= lineWidth

Figure 2.8: Processing of a kerf breaking the current line

BoxKerfSeg —_— Ling, / BoxKerfSeg
Kerf BoxKerfSeg Glue, Ling,
Glug

where copy: Glug - Glug
LingNat - Ling.Minus <= lineWidth
I: BoxKerfSeqg— Line, / BoxKerfSeg

Figure 2.9: Processing of a kerf not breaking the current line

e a tree template describing the structure of the target line structure
e a variable giving the rest box kerf sequence remaining after applying the rule

e constraints describing necessary sub transformations and conditions on attribute
occurrences that must be satisfied for the resulting line to be neither underfull nor
overfull

The rules describe a transformation to all possible consistent lines that can be con-
structed from the beginning of a box kerf sequence. Note here that two rules can be
applied to a rest box kerf sequence beginning with a kerf as long as the resulting lines
are consistent. Note also that the existence of built-in transformations for structurally
copying boxes and glue from the source structure to the target structure is assumed.
We are now ready to describe the complete line breaking process as a transformation
Is. For producing a consistent sequence of resulting lines, this transformation uses [ as a
sub transformation to create line after line until the remaining source box kerf sequence
is empty. Notice again that all consistent sequences of lines result, as [ describes a



20 Examples of formatting problems

relation to all consistent single lines. The transformation Is can be specified using rules
such as shown in Figure 2.10.

BoxKerfSeq E—— LineSeq
€ €
Is
BoxKerfSegq _— LineSeq
Line LineSeq

where |: BoxKerfSeg - Line / BoxKerfSeq
Is: BoxKerfSeg» LineSeg

Figure 2.10: Construction of the target line sequence

Specification of optimization

The specification as discussed so far defines a transformation relation s which relates a
given source box kerf sequence to all consistent sequences of lines. In order to find the
optimal possible line break, we can now constrain this relation by introducing a measure
of cost (or badness) associated with sequences of lines and then choosing the optimal
result w.r.t. this measure. The appearance of a line is best when the contained glue
elements’ widths are as close as possible to their natural widths, i.e., the least amount of
stretching or shrinking is required. Thus, the amount of necessary stretching or shrinking
can serve as a measure of cost for a line. The average cost of all lines can then serve as a
measure of cost for a sequence of lines. The computation of cost can again be specified
using an attribute grammar whose rules are shown in Figure 2.11 on the facing page.
The function cost : Int x Int x Int — Int U {oo} used there is defined as follows:

cost(Nat, Plus, Minus) =

line Width — Nat

e 9\t Nat < lineWidth < Nat + Plus
Plus

Nat — lineWidth o v Minus < line Width < Nat
Minus

00 otherwise

This is a simplified variant of the measure of cost used in the TEX system [28]. Note
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that, as desired, cost is 0 (i.e., minimal) when no stretching or shrinking is necessary
and cost rises with the required amount of stretching and shrinking. The cost is infinite
if glues are stretched or shrunken beyond their limits.

cost lineCount nat plus minus cost

LineSeqq\ O o O O Line O
O
T cosD

R SN

Line o LineSeqO O €
cost cost lineCount

Box Line O Glue Line O

cost lineCount

LineSeq % i}

Figure 2.11: Computation of cost of line breaking results

Our specification of line breaking described so far can be extended to allow minimiza-
tion of cost simply by attaching a corresponding instruction to the rule construction line
sequences as shown in Figure 2.12 on the next page. The intended meaning is to choose,
after considering all consistent variants of sequences of lines, the result producing the
least cost.

As this example has shown, the problem of breaking paragraphs into lines can be
described declaratively using relatively simple transformation rules.

2.4 Page breaking

A more difficult formatting problem as compared to line breaking is page breaking.
The increased difficulty is caused by the requirement that in addition to normal text
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BoxKerfSeg —_— LineSeg

Line LineSeq

where |. BoxKerfSeg - Line / BoxKerfSeq
Is: BoxKerfSeg» LineSeg
minimize LineSegcost

Figure 2.12: Rule for construction of optimal sequence of lines

other kinds of document elements, e.g., figures or footnotes, are placed on pages rather
independently, apart from the flow of the body text. The placement of such elements
is constrained by some typographical rules. E.g., a figure must not appear on a page
before its first reference in the text.

Besides such formatting constraints, requirements of optimality w.r.t. some measures
also exist for the problem of page breaking [5, 36, 54]. For instance, besides requiring
that a figure is placed after its first reference, it is desirable for the figure to appear
as near as possible to the reference, in order to minimize the reader’s time looking for
referenced figures. Apart from that it is desirable to optimize the visual appearance by
minimizing the stretching and shrinking of white space just like with line breaking as
described above.

Existing solutions to isolated page breaking problems have so far only been imple-
mented in an operational fashion, e.g., in [28, 36]. These operational implementations
are hard to create, read, and maintain. Thus, it is certainly desirable to be able to
specify page breaking declaratively at a high level.

In the following a closer look at typical requirements arising with page breaking is
taken. After that an outline to the declarative specification with techniques similar to
the ones described for line breaking above is given.

2.4.1 Requirements on page breaking

Some selected common requirements on page breaking are described in more detail below.
A more complete description can be found in [33].

Avoidance of widows and orphans

An important requirement is the avoidance of Jwidows and O orphans. The first line
of text of a paragraph appearing solitarily at the bottom of a page is called an orphan.
A widow is the last line of a paragraph located at the top of a page. Both widows and
orphans impair the visual appearance of a document and should therefore be avoided.
Similarly, it is not desirable that section headings appear at the bottom of a page.
Instead, the beginning of the first paragraph of a section should always go to the same
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page as the heading.

Footnotes

A new kind of requirement occurs when placing footnotes. A footnote consists of an
anchor in the text and a body which is usually placed at the bottom of pages. The
general rule is that a footnote body can spread over multiple pages, but must start on
the page containing the footnote anchor.

Floating objects

Similar to footnotes, floating objects such as figures or tables appear separately from the
flow of the main document text. The rules for placing floats are usually less restrictive
than those for footnotes: a float can be placed on any page not preceding the page
containing the float anchor in the text.

2.4.2 Declarative rules for specifying page layout

We now outline an approach to the specification of page breaking. As we will see,
similar techniques as the one used before for line breaking can be applied. This example
will be picked up again in Chapter 5, when our transformation model and a practical
specification language have been developed.

We restrict ourselves to the problems of the avoidance of Jwidows and U orphans,
and the placement of floating objects. The handling of footnotes is omitted, but can be
realized similar to floating objects.

Problems like the avoidance of Jwidows and O orphans can be modeled with box kerf
sequences used before for the specification of line breaking. Box kerf sequences are now
vertical and boxes represent lines of text (as for instance produced like described above
for line breaking) and kerfs indicate where page breaks may occur. So, for a sequence
of lines representing a text paragraph kerfs are inserted between any two adjacent lines,
but not between the first and the second and not between the second last and the last.
The glue contained in kerfs now realizes inter-line space (0leading).

In order to specify the transformation of breaking text lines and floating objects into
pages we decide to divide a page into two areas, one containing a sequence of floating
objects and the other containing text lines. For this purpose it is a good idea to introduce
an intermediate structure again. It is rather straightforward to define such a structure
of PageAreas and PageAreaSeqs, similar to Line and LineSeq which were used above
when specifying line breaking.

A requirement described above is that floating objects must not be placed on a page
before its anchor in the text. To recognize if a sequence of pages is consistent w.r.t. this
condition, it is possible to attribute page sequence structures with cross reference tables
similar to the way symbol tables are used in the field of compiler construction. For each
page both anchors of floating objects as well as floating objects themselves are added to
this table, so inconsistent sequences of pages can be recognized easily.

It is also quite straightforward to realize the computation of the cost associated with
a sequence of pages. Cost related to the visual appearance can be computed in a similar
way as done in the line breaking example above. In addition, the computation of cost
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can use the cross reference table described above to incorporate, e.g., the distance of
floating objects from their anchor references.

Using those intermediate structures it is possible to specify the page breaking process
using transformation rules like outlined in Figure 2.13.

ps
BoxKerfSeq BoxKerfSeq —=——> PageSeg

Page PageSeq

where p: BoxKerfSeg BoxKerfSeg— Page / BoxKerfSgdoxKerfSeg
is_consistent(Page.xref_table)
ps: BoxKerfSgdoxKerfSeg - PageSeq

minimize PageSegcost

Figure 2.13: Rules specifying the breaking of text lines and floating objects into pages

We do not further describe how to specify the transformation relation p at this point.
It should be clear by now that the techniques described before can be applied again. A
more complete description will be given in Chapter 5 using the specification language
then having been developed.

2.5 Conclusion

We have developed ideas for techniques allowing to specify important problems of opti-
mizing document formatters. In the following chapters we will use these ideas to develop
a formal model for the transformation of attributed trees and a practical specification
language based upon it.



CHAPTER

A formal model for optimizing
transformations of attributed trees

In this chapter a formal model for optimizing transformations between attributed trees
is developed, incorporating the ideas for specifying formatting problems described in the
previous chapter.

First, a representation of attributed trees and semantic constraints is introduced.

Then, a constraint-based language for specifying optimizing transformations between
attributed trees is introduced and its formal semantics is defined.

After that, it is described how transformations based on that model can be efficiently
executed. This execution scheme is first defined for non-optimizing specifications and
proved to be sound and complete w.r.t. the transformation model’s semantics. After
that handling of optimization is added, resulting in a system of recursive functions im-
plementing an optimizing transformation specification. Finally, it is shown how dynamic
programming can be applied in order to increase efficiency by avoiding unnecessary re-
computations of common sub transformation results.

3.1 Modeling attributed trees and constraints

3.1.1 Attributed trees

Before developing a model for the specification of transformations, we first define the
representation of attributed trees that will be used. Note that, as discussed before,
syntactic correctness of trees can and should be enforced using a context-free grammar;
however, this is not relevant for the theoretical transformation model described here and
is therefore omitted. It is also abstracted from how trees are actually attributed, i.e.,
attribute values are obtained by some, not further specified, attribution function.
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Definition 3.1.1 (X-Trees)
Let X be a set of syntactic symbols. The set 75, of Y-trees is inductively defined as
follows:

o if F € ¥ and t,t9,...,t; are X-trees for some k > 0, then F(t1,ta,...,t;) is a
>-tree.

O

In order to address nodes of a tree positions are introduced. A position specifies the
path from the root of a tree to a node by a sequence of natural numbers each giving the
index of the child node to visit next. The following defines the set of positions of a tree
(which is a subset of Nat™).

Definition 3.1.2 (Positions)
The set Pos(t) C Nat™* of positions of a ¥-tree ¢ is defined by induction on the structure
of t:

Pos(F(t1,t,...,tx)) =, {e} U ( U {(i) o pos | pos € Pos(ti)}>

1<i<k

The following definition introduces some useful operations on trees.

Definition 3.1.3 (Operations on trees)
Let ¥ be a set of symbols. Given a -tree t, symbol(t) denotes the symbol at the root
of the tree:

symbol(F(tl,...,tk)) =4 T

For a tree ¢t and a position pos € Pos(t), subtree(pos,t) denotes the subtree at position
PoSs:

t if pos=¢
subtree(pos,t) =, subtree(pos’,t;) if pos = (i) o pos’,
t=F(t1,...,tx) and 1 <i <k
t[t'/pos] denotes the tree obtained by replacing the subtree from position pos € Pos(t)
by the new subtree ¢’ and is defined by induction on pos:
t[t' /€] = def t
F(ty,... ,tk>[t//<’i> o pOS/] = def F(tl, ... ,ti_l,ti[t//posl],ti_;_l, e ,tk)

The number of direct subtrees of a tree t is given by:

subtree_count (F(tl, . ,tk)) =4 K
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A node of a tree can be specified by the tree itself together with a position. We will now
define, given a set X of symbols, the set of all nodes of a single Y-tree and the set of
nodes of all Y-trees.

Definition 3.1.4 (Nodes)
Let ¥ be a set of symbols. The set of nodes of a X-tree t is given by Node(t) =
{(t,pos) | pos € Pos(t)}. The set of all nodes of S-trees is defined as Ny, =

T def

Usezs, Node(t). We will write #|,,5 for elements of Ns. O

def

Example 3.1.5
Let Xp ={A,T,E, H,V}. An example tree according to this signature is

t =T(EH(E(V(E(A(), E(A))), E(A()))))
which is depicted in Figure 3.1. The set of nodes of this tree is

Node(t) = { t|e, tj1, tj11, tj111,
ti1111, ty11111, tpaiiiin, tliiiies
ti111121, tl112, 1101 }

1111 A1121

Elllll E11112

>_

Allllll 111121

Figure 3.1: Example tree

Some useful operations on tree nodes needed later are introduced in the following defi-
nition.

Definition 3.1.6 (Operations on tree nodes)
The subtree at a node t|,,s is given by:

subtree(t|pos) = subtree(pos, t)

def
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The symbol used at a node o is denoted by

symbol(c) =,  symbol(subtree(o))

The number of children of a node ¢ is given by:

child_count(c) =,  subtree_count(subtree(o))

A descendant from position pos’ of a node o = ¢, is given by:

O | pos’ def tlposopos’
o|; is an abbreviation for o |(; addressing the i-th child of o.

Replacing the subtree at a node with a new subtree yields the node at the same position
in a new tree:

replace (] pos, t') = e t[t'/pos] | pos
The sequence of children of a node o is given by
children(o) =,, 0p1012...0

where k = child_count(o). O

We have now defined a representation of trees and tree nodes. In order to enforce
syntactic validity of trees with respect to a context-free grammar the necessary additions
can be easily made (see Appendix C).

As we will work with attributed trees, the following introduces the notion of attribu-
tions which allow attributes to be associated with tree nodes. An attribution specifies
a set of attribute symbols, a domain of attribute values, an attribution function, and
a relation describing the functional dependencies between attribute occurrences in a
tree. The attribution function yields, given a tree node and an attribute symbol, an
attribute value or the special value L for undefined attributes, e.g., if some attribute is
not associated with a node at all.

Definition 3.1.7 (Attribution)
An attribution is a tuple A = (X, Inh, Synth, D, att, Dep) where

(i) X is a set of syntactic symbols.

(ii) Inh and Synth are two disjoint sets of inherited and synthesized attributes,
respectively. Let A = Inh U Synth. A tree attribute occurrence is given by
an element of Atir = def N5 x A. The tree attribute occurrences of a tree t are
denoted by Attr(t) =, Node(t) x A.

(iii) D is a domain of attribute values.

(iv) att: Ny x A — DU {L} is a function associating attribute values with tree at-
tribute occurrences; the special symbol L ¢ D represents the undefined attribute
value. As usual for attribute grammars, root nodes have no inherited attributes,
so att(t|e,a) = L for any t € Ty, and a € Inh.
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(v) Dep C Attr x Attr is a transitive and irreflexive relation reflecting the functional
dependencies between attributes. We define the restriction to the dependencies
within a single tree ¢ as Dep(t) =,,, Dep N (Attr(t) x Atir(t)).

Note that att and Dep are in practice defined by the semantics of an attribute grammar.
An attribution representing an example attribute grammar is shown below in Exam-
ple 3.1.8. A general mapping from attribute grammars to attributions is described in
detail in Appendix C.

Also note that attribute grammar semantics traditionally allow more than one con-
sistent attribution of a tree, e.g., if underspecification occurs. The present model, in
contrast, enforces unambiguous attribution of trees which suffices for most applications
of attribute grammars and is more appropriate for our purposes.

—
O x
= —-0Os=s
>

X Je— o
m
=0
x O=w-----0 %
I —m
=s0-----»0=
x O=w-----0 %
=s0-----»0=

Figure 3.2: Example attribute grammar

Example 3.1.8
Let Y7 be defined as in Example 3.1.5 on page 27.

The attribute grammar depicted in Figure 3.2 defines how the inherited attribute = and
the synthesized attribute w (both integers) can be associated with tree nodes of symbols
E, H and V . The functions plus and maz are intended to have their usual meaning here.
In this case we have an attribution (ET, Inh = {z}, Synth = {w}, D = Int, attr, DepT).
attr attributes the example tree ¢ from Example 3.1.5 on page 27 as follows (compare
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with Figure 3.3):

0 if pose {1,11,111,1111,11111,11112}
if pos =112

[y

attT(tlpos,m) =

1 otherwise.

1 if pos € {11111,11112,1111,111,112}
attr(t|pes, w) = 2 if pos e {11,1}

\ 1 otherwise.

The value L is used for attributes which are not associated with a node’s symbol.

Depp(t) reflects the attribute dependency information for ¢ and can be seen as the
transitive closure of the attribute dependency graph shown in Figure 3.3. |

Figure 3.3: Attribution of the example tree

3.1.2 Semantic constraints

In order to be able to express semantic constraints (i.e., constraints on attributes of tree
nodes), a constraint system defines a family of predicate symbols for each arity and an
interpretation of all predicate symbols in some domain.
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Definition 3.1.9 (Constraint system)

A constraint system over a domain D is a tuple CS = ((Predk) keNato, 1 ) consisting of
a family of predicate symbols for each arity £ € Natg and an interpretation I associating
with each P € Predy, a relation I(P) C DF. O

3.2 Specification of optimizing transformations of
attributed trees

After the preliminaries, we now come to the definition of our model for the specification of
tree transformations. As motivated by the previous chapter, we first deal with specifying
relations between source and target trees satisfying syntactic and semantic consistency
constraints and later make the additions needed for optimization.

Throughout the rest of the chapter, let X be a fixed, but arbitrary, set of symbols and
D a fixed, but arbitrary semantic domain. Further, let A = (X, Inh, Synth, D, att, Dep)
and CS = ((Predy)keNato, ) be fixed, but arbitrary, 3-attribution and constraint system
over D, respectively. Further, let A = Inh U Synth. As we will only deal with a single
signature X, we will write 7 for 7y, and N for Ny in order to save indices.

3.2.1 Specification of relations between attributed trees

A central concept used for the specification of transformations is that of templates.
A template describes the structure of a contiguous set of nodes of a tree and will be
used for matching both source and target subtrees. Templates can be imagined as
tree patterns where a node variable is located at each pattern node. Using those node
variables attributes of all nodes may be addressed when specifying semantic aspects of
transformations. A syntactic symbol is associated with each node variable and a node
variable will only be allowed to hold a node of its symbol.

Definition 3.2.1 (Node variables)
A set of node variables is given by a countable set Var of variables together with a
mapping symbol: Var — 3. %

In examples we will use variables consisting of a symbol from ¥ and disambiguating
numbers or primes identifying the variable; i.e., given a symbol F' € ¥, we will use F,
F', F", Fy, F|, Fy, etc. as variables of symbol F.

Definition 3.2.2 (Templates)
Given a set Var of node variables, the syntactic set Template of templates is defined
inductively:

(i) X € Template for each X € Var
(ii)) X(ThWT>... Ty ) € Template if X € Var and T; € Template for each 1 <i < k.

The set of variables of a template T' is denoted by Var(T'), inductively defined as follows:

Var(X) = {X}

def

VGT(X<T1Tk>) :def {X} @] ( U VGT'(TZ)>

1<i<k



32 A formal model for optimizing transformations of attributed trees

For a sequence of templates T = T ... Ty, we define Var(T) =,,; U,<;<;, Var(Ty).

The set of leaf variables of a template T is denoted by Leaf_Var(T'), inductively defined
s0:

Leaf _Var(X) = X}
Leaf Var(X (Ty...Ty)) = U Leaf Var(T;)
1<i<k

The set of positions of a template is inductively defined:

(i) Pos(X) =, {e}

def

(ii) Pos(X(Ty...Ty)) =,, {et U <1<U<k {(i) o pos | pos € Pos(Ti)})

Let T be a template and pos € Pos(T'). The variable at a position pos in T' is denoted
by T'| pos, defined by induction on pos:

(1) XJ,E :def X

(i) X(Ty...Ti)e =,, X

def

(111) X <T1 o Tk >L<i)opos’ Tdef Tilposl

The following defines the notions of matching and instantiation of templates.

Definition 3.2.3 (Matching of templates and instantiation at nodes)
We define when a template matches a tree by induction on the structure of templates:

(i) X matches t iff symbol(t) = symbol(X)

(ii) X (T ...Ty ) matches F(t1,...,t,) iff F' = symbol(X), k = n, and T; matches t;
for each 1 <7 < k.

A template T is defined to be instantiated at a node o iff T matches subtree(o). ¢

As an example, Figure 3.4 on the facing page illustrates the instantiation of the
template T" having the form Ey (H (E; E3)) in a tree. Note that the template can be
instantiated at the tree’s root node as well.

As already mentioned above, a template carries variables at each node in order
to allow specifying semantic aspects (constraints) of transformation specifications by
referring to attributes. This is made possible using attribute occurrences which are
introduced next.

Definition 3.2.4 (Attribute occurrences)
An attribute occurrence has the form X.a where X € Var and a € A. The set of
attribute occurrences is denoted by Attr_Occ.

Given a template T', Attr Occ(T) =,, {X.a | X € Var(T),a € A} denotes the set of
attribute occurrences of T'. O



3.2 Specification of optimizing transformations of attributed trees 33

EE
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Figure 3.4: Example of the instantiation of a template

A relation between (sequences of) tree nodes is specified using a set of rules which each
consist of a sequence of source templates, a target template, a sequence of rest variables
and a set of constraints. Constraints can express that descendant nodes are related, or
that predicates on some attribute occurrences hold.

Definition 3.2.5 (Transformation rules, transformation specification)
A transformation rule has the form

S — T/R where 1,09, ...,0k

where S is a sequence of templates, T is a single template, R is a sequence of variables,
k>0, and ¢1,...,p; are constraints. .S, T, and R are called the rule’s source, target
and rest, respectively.

A constraint has either the form
X — Y/ 7
where X € Var*, Y € Var and Z € Var*, or the form

Ploa, ..., ax)

where k£ > 0, aq,...,q; are attribute occurrences and P € Pred;. We will call a con-
straint of the first form a syntactic constraint and one of the second form a semantic
constraint.

A transformation specification is defined to be a set of transformation rules. O
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We now take a look at an example of a transformation specification. In this simple
specification the rules’ and syntactic constraints’ rest is always empty.

Example 3.2.6
Let 37 be defined as in Example 3.1.5 on page 27. In addition, let g be the following
set of symbols:
Ys={L,S,B}
A combined set of symbols is formed by Ygr =Yg U Xp.

We define an attribution such that Yp-trees are attributed as in Example 3.1.8 on page 29
and Y g-trees obtain no additional attributes. So the attribution is defined as the tuple
(ZST, {z},{w},Int, attsr, DepST), where

attT(tLpos, CL) if te TET

attST(tlposja) o {J— otherwise

and
Depgr = Depp

We further introduce the constraint system CSgr = ((Predk) keNato, L ) over Int where

Predy = {P}
Pred, =0 for k#2

where P(z,y) is satisfied iff z +y < 2. We will write applications of P in the latter form
to increase readability.

We then define the following specification describing a transformation of S-trees to T-
trees:
specg_,p = {ri,ro, 13,74}
where
r: S—T(E)/e
where S —FE /¢
ro: So(B(S152)) = E(H(E\Ey)) /¢
where S1 — Ey /e,
Sy — By /¢,
Fxz+Fw<2
rg: So(B(S51S2)) = E(V(E1E2)) /¢
where S1— E1 /¢,
Sy — Es /¢,
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A second example defines a transformation specification realizing the approach to line
breaking described in Chapter 2.

Example 3.2.7
Let A, = (X, Inh, Synth, D, att, Dep) be an attribution where

Y. = {BozKerfSeq, Box, Kerf, Glue, LineSeq, Line, Int}
Inh = {d, Nat, Plus, Minus}
Synth = {«o,w,h,d,value, nat, plus, minus}
D = Int

and att and Dep correspond to the attribute grammar described in Chapter 2.

We assume a constraint system CSj to be defined that contains two predicates P; and
Py, both of arity 2, where Pj(x,y) is satisfied iff  + y > lineWidth and Ps(z,y) is
satisfied iff z —y < line Width. Here, line Width is some given constant integer value. To
make things more readable we will use infix notation for these two predicates.

We then define a transformation specification spec; containing the following transfor-
mation rules:

r1: BozKerfSeq(e) — LineSeq(c) /€

ro:  BoxKerfSeqy — LineSeq ( Line LineSeq,) / €
where BozKerfSeqy — Line /| BoxKerfSeqy,
BoxzKerfSeq; — LineSeq, / €
rg:  BoxKerfSeq, ( Box1 BoxKerfSeq, ) — Lineg ( Boxa Liney) /| BoxKerfSeqy
where Box1 — Bozxsy / ¢,
BoxzKerfSeq, — Liney /| BoxKerfSeq,
rs:  BoxKerfSeqy ( Kerf BoxKerfSeq, ) — Line (e) | BozKerfSeq,
where Line.Nat + Line.Plus > line Width
r5 . BoxKerfSeqq ( Kerf ( Gluey ) BoxKerfSeq, )
— Lineg ( Gluey Liney ) /| BoxKerfSeqy
where Line.Nat — Line. Minus < line Width,
Glue; — Glues,
BoxzKerfSeq; — Liney /| BoxKerfSeq,

We assume that further transformation rules Boxi — Boxrs and Glue; — Glues per-
forming structural copying are defined. |
3.2.2 Semantics of a specification

A sequence of source nodes should by intuition be related to a target node and a sequence
of rest nodes according to a given specification if a rule’s source, target and rest can be
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instantiated, and the rule’s constraints are satisfied. A semantic constraint should be
satisfied if the predicate on the given attributes holds; a syntactic constraint should be
satisfied if the nodes referred to by the given variables are related. These ideas are for-
malized in the following by notions of variable environments and template instantiation
by environments, and the definition of a transformation relation.

A wvariable environment defines a mapping from variables to nodes. Undefined vari-
ables are mapped to the special symbol L. It is enforced that a defined variable of some
symbol can only be mapped to a tree node of the same symbol.

Definition 3.2.8 (Variable environment)
We define N =, NU{L}. A variable environment is a function env: Var — N
where for each X € Var and 0 € N

env(X)=0 = symbol(X) = symbol(o)

The set of all variable environments is denoted by Env.

For a sequence of variables X = X1 X5 ... X,, we will use env(X) as an abbreviation for
the sequence env(X;) env(Xs2) ... env(X,).

The following abbreviations are introduced for convenient addressing of node variables
and attribute occurrences, given an environment env:

[XTenw = def env(X)

[[X ]] att([[X]]em,,a) if [[X]]em/ 7é 1
Alleny =4
o 1 otherwise.

For a k-ary constraint P we write:
”—em, P(al,...,ak) <:>d8f ([[al]]em,...,[[ak]]em) c I(P)

O

We now extend the notion of template instantiation introduced before by incorporating
an environment: an environment instantiates a template at a node iff it maps each
template variable to the corresponding descendant of the node.

Definition 3.2.9 (Instantiation of templates by environments)
Let env be an environment.

env instantiates a template T at a node o iff T' is instantiated at o and [T'|pos]ens =
0 | pos for each pos € Pos(T).

env instantiates a sequence 1175 ...T, of templates at a sequence o109 ...0,, of nodes
iff n = m and env instantiates T; at o; for each 1 < i < n. O

Example 3.2.10
As an example, we consider the instantiation of the template T having the form
Eo (H (Ey E2)) in the tree ¢ shown in Figure 3.4 on page 33.
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T is instantiated at ¢j1; by any environment env containing the following mappings:

Ey —

H — tn
Ey — tin
Ey — t1112

We are now ready to formally define the semantics of a specification as a transfor-
mation relation between sequences of source nodes, a target node and a sequence of
rest nodes. The definition of the transformation relation is based upon a notion of S-
derivations which reflect the application of a transformation rule (each sub derivation
corresponds to a syntactic constraint of the applied rule).

Definition 3.2.11 (Semantics of a specification)
Let spec be a specification, @ € N*, 7 € N, p € N* and r € spec be a rule of the form

S — T/R where ©1,..., ¢

An S-derivation for ¢ —, 7/p has the form (¢ —, 7/p, env)[D1,..., Dy,], where n > 0,
D; is itself an S-derivation for each 1 < i < n, and env is a variable environment such
that

(i) env instantiates S at &

(ii) env instantiates T  at T

(ili) [R]enw = p

(iv) each semantic constraint P(aq,...,am) € {@1,..., ¢k} is satisfied, i.e.,
IFeny Plag, ..., am)

(v) each syntactic constraint (X — Y/R) € {¢1,...,px} is satisfied, i.e., D; is an
S-derivation for [X]eny —w [Y]env/[Z]enw for some 1 < i < n and some rule
" € spec; in addition it is required that [Y]eny is a root node (i.e., has the form
t|c for some tree t) if Y ¢ Var(T)

We will write ¢ —, 7/p iff an S-derivation for & —, 7/p exists. Further, we write
o — 7/piff & —, 7/p for some r € spec.

The semantics of a transformation specification spec is declared as

TR (spec) =u; {(@:7.0) | & = 7/p}
TR(spec) =,, {(o,7,p)|3r € spec.(a,7,p) € TR, (spec)}
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Example 3.2.12

We now take a look at the transformation of an example tree according to the transfor-
mation specification from Example 3.2.6 on page 34. The tree s that is to be transformed
is depicted in Figure 3.5 on the next page. Figure 3.6 on page 40 shows three trees ¢, ¢/
and t”, which are valid transformation results for the input tree. The following shows
why ¢ is a valid transformation result:

1. sj1111 —ry tp1n11. Rule rg © S(L) — E(A)/e has no constraints, so it is suffi-
cient that source and target templates can be instantiated which is true. Thus, a
corresponding S-derivation

D1 = (sj1111 =y t11111, €701)|]

exists where env; instantiates S (L) at s|111; and instantiates E ( A) at t|11111-

2. In the same way, we can see that sji112 —r, tj11112 and sj12 —,, tj112. The
corresponding S-derivations shall be denoted by Do and D3, respectively.

3. Using D1 and D2 we can then derive that s|11 —,, t)111. Recall that r3 was defined
as

rg: So(B(S1S2)) = E(V(E1Ey))/e
where S1 — Fy/e,
Sy — Eay /e,
EFx+Fw<2

Source and target templates of this rule can be instantiated as is visualized in
Figure 3.8 on page 41, and the semantic constraint F.x + F.w < 2 is satisfied. So
an S-derivation

Dy = (8111 —ry tj111, €nvy)[D1, Do

exists where env, instantiates Sy (B (S152)) at s;1; and also instantiates
E<V<E1E2>> at tllll-

4. Similarly, an S-derivation
Ds = (s1c =, t]1, €nvs)[D3, Dy
can be constructed.
5. Finally, an S-derivation
D¢ = (s)c =, t|e, enve)[Ds]

can easily be constructed.

Analogously, s|. —, t'|c and s|. —,, t”|. can be shown to be valid transformations.

However, the tree shown in Figure 3.7 on page 41 is no valid transformation result.
Here, syntactic constraints alone are satisfied, but s;. —, t”|; does not hold because
the semantic constraint is not satisfied (t”|;.z +t"|;.w =3 £ 2).

This example shows that our transformation model really allows to specify a transfor-
mation relation as three valid target structures exist. |
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1111 1112

L
11111 11121

Figure 3.5: Source tree for the example transformation

3.2.3 Optimizing transformation specifications

Optimization can easily be realized by associating an optional objective function with
each rule of a specification. An objective function assigns an integer value with the result
of a transformation measuring the cost or badness of the possible transformation. This
is captured in the following definition.

Definition 3.2.13 (Optimizing transformation specification)
An objective function has the form

f(Oq, e ,Oék)

where k£ > 0, f is a function from Dk — Int, and «; € Attr_Occ for 1 < i < k. The set
of objective functions is denoted by Obj.

An optimizing transformation specification consists of a transformation specifica-
tion spec and a function
obj: spec — Obj U {L}

which associates with each rule r € spec an optional objective function. O

In the semantics of an optimizing transformation specification a sequence of source
nodes is only related to a target node and sequence of rest nodes if no better target node
and sequence of rest nodes exist w.r.t. the objective function of the applied transforma-
tion. This idea is formalized in the following definition of optimal S-derivations:

Definition 3.2.14 (Semantics of an optimizing specification)
Let spec be an optimizing specification, @ € N*, 7 € N, p € N*, and r € spec.

An S-derivation (¢ —, 7/p, env)[D1,. .., Dy] is called optimal iff
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Figure 3.6: Results of the example transformation

(i) obj(r) = L, or obj(r) has the form f(ai,...,a;) and no S-derivation (¢ —
7'/p, env’)[DY,. .., D} exists such that 7" = replace(r,t’) for some ¢’ and

f([[all]env’a ceey [[ak]]env’) < f([[alﬂem/» ceey [[ak]]em;)
(ii) D; is optimal for each 1 <i<n

We write 0 — opt T /p iff an optimal derivation for ¢ —, 7/p exists. Further, we write
G —opt T/p iff @ —4 ope 7/p for some r € spec.

The semantics of an optimizing transformation specification spec is finally declared as

TROPt(Spec) def {(677—7 ﬁ) | 0 —opt T/ﬁ}
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Figure 3.7: A tree which is no result for the example transformation
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Figure 3.8: Example of the application of a transformation rule

O

We have now formally defined specifications of optimizing transformations between

attributed trees and their semantics. The semantics has been defined in a natural way
through a notion of derivations.
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However, the semantics is unfortunately not constructive, i.e., it does not yet give any
idea of how to effectively compute target and rest nodes given source nodes. The reason
for this is that the semantics defines relations to target nodes by means of an existentially
quantified environment leaving open how such an environment can be constructed.

So we will now investigate the execution of transformation specifications, i.e., the
task of constructing target and rest nodes given a sequence of source nodes.

3.3 Efficient execution of transformations

In this section an execution scheme for the transformation model is developed which
describes the construction of transformation results, given source nodes, in an operational
way and which can directly be used to implement the model. Omitting optimization at
first, the task of performing a transformation is to find, given a sequence of source nodes,
all possible target and rest nodes which are related to the source nodes by the means of
TR (spec).

The execution scheme developed in this section works efficiently by pruning search
space for transformation results to a great extent using the transformation rules’ semantic
constraints. During execution the constraints of each rule are processed separately. To
make things a little easier, constraints are processed strictly in order from left to right
(this will be shown to impose some restrictions on specifications; however, an algorithm
will be given later that turns a specification into an equivalent specification satisfying
these restrictions, if one exists).

We first describe how target trees are built while a transformation is performed and
introduce means to analyze the attribute dependencies affecting transformations. We
then formally define the notion of LR specifications which define the restrictions to spec-
ifications allowing left to right processing of constraints as mentioned above. Then an
execution scheme for LR specifications without optimization is introduced and proven to
be sound and complete w.r.t. the semantics given in Section 3.2.2. After that, support
for optimization is added, resulting in a system of recursive functions implementing a
transformation specification. It is then shown that dynamic programming can be applied
to further increase efficiency by avoiding unnecessary re-computations of sub transfor-
mation results. Finally, the algorithm already mentioned above, turning transformation
specifications into equivalent LR specifications, is given.

3.3.1 Construction of target trees

A crucial decision to make is whether target trees should be built in a bottom-up or
top-down fashion. The following will show why top-down construction promises much
better efficiency.

In the case of sub transformations, target trees are subtrees of larger trees. The
situation for a sub transformation is illustrated in Figure 3.9 on the next page. Trans-
formation rules may involve constraints on inherited attributes of nodes of these subtrees
or attributes dependent on them. Such constraints can not be evaluated until enough of
the context of the target subtrees is known for the required attribute occurrences to be
defined.
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Transformation ruler:

Application of r:

/@ (>\ —_— /O\ / P1-e P

Figure 3.9: A transformation rule and its application

As a consequence, if target trees were built bottom-up, checking semantic constraints
would in the worst case have to be delayed until the complete target tree has been built;
i.e., in the course of a transformation all syntactically consistent target trees would have
to be searched for first, and only then all semantically inconsistent results could be
excluded. So this approach is unacceptably inefficient. Semantic constraints should in
contrast be used to recognize failing transformations as soon as possible.

In contrast, a better approach is to construct the target tree in a top-down fashion.
Then, inherited attributes and attributes dependent on them can be computed already
during the process of building the target tree, and thus semantic constraints can be
checked as early as possible, pruning search space for transformation results to the
greatest possible extent. This approach promises highest efficiency and is followed here.

To

AN /A

Figure 3.10: Construction of target subtrees

The top-down construction of target trees is realized as follows: for performing a (sub)
transformation, besides the sequence of source nodes an additional unexpanded anchor
node is given. When applying a transformation rule, the target subtree will initially be
constructed as a tree fragment having only unexpanded nodes at the target template’s
leaves; the target subtree will then be expanded by processing syntactic constraints until
a complete subtree has been reached. This process is illustrated in Figure 3.10.
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3.3.2 Tree fragments and their attribution

The idea to build target trees in a top-down fashion requires a representation of inter-
mediate trees allowing unexpanded subtrees, which we will call tree fragments. In the
following, we will see how tree fragments can be modeled and introduce a partial order
resembling the expansion of tree fragments. Then, we will discuss the attribution of tree
fragments.

Representing tree fragments

Intermediate target trees can contain unexpanded subtrees, i.e., subtrees which are not
yet known. The idea of tree fragments is accounted for in our model simply by assuming
the presence of a special syntactic symbol A representing a yet unknown sequence of
subtrees. L.e., we assume that A € 3. An unexpanded subtree of some symbol F' is then
represented as Fa =, I (A()). Trees containing no A-subtrees are called complete.
It would make not much sense to allow the usage of /A in specifications since a user
would neither want to specify a transformation to nor from (partly) undefined trees.
To prevent this, the following simple restriction can be introduced in order to exclude

variables of symbol A:

symbol(§) # A for all & € Var

Expansion of tree fragments

The idea of expanding target trees from an initial tree fragment to a complete subtree
motivates the definition of a binary relation expressing that one tree fragment ¢’ is an
expansion of another tree fragment t. Thus, we define a relation < C 7 x 7 as follows.

Definition 3.3.1
The relation = C 7 x 7 is defined as the least relation satisfying the following
conditions, where F' € ¥, k,1 > 0, and t1,...,t; and t],...,t] are trees:

(i) Fa =X F(t1,...tg)

(il) F(ty,...,tx) < F(t),... ), if t; <t for 1 <i <k

As indicated by the symbol, < is a partial order on tree fragments.

Proposition 3.3.2
The binary relation < C 7 x 7 is a partial order, i.e., it is reflexive, transitive and
antisymmetric.

Proof:
see Appendix B.2. O
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We now introduce corresponding partial orders on tree nodes, sequences of nodes and
on environments as well. A node is called less or equally expanded than another node iff
it is the node at the same position in a less or equally expanded tree. A sequence of nodes
is called less or equally expanded than another sequence of nodes iff both have the same
length and each contained node is less or equally expanded than the corresponding node
in the second sequence. An environment is called a predecessor of another environment
iff the environment maps each variable to L or to a node less or equally expanded than
the node the other environment maps the variable to.

Definition 3.3.3
Let t and ¢ be trees, pos € Pos(t), and pos’ € Pos(t'). We define a binary relation
< C N x N as follows:

tipos St |post Sy POs =pos’ At =2t A symbol(t|pos) # A

If 0 < o/, we say that o is less or equally expanded than o’.

For sequences of nodes we define:

k=1

01...0p201...0) S def
: o <o, foreach 1<i<k

Let env, env’ € Env. A binary relation < C Env X Env is defined as follows:

env < env &

def Hg]]env =1 \ IIg]]eTw = Hg]]env’
for all & € Var

We will call env a predecessor of env’ iff env < env’. O

Attribution of tree fragments

Tree fragments were introduced in order to evaluate and check semantic constraints
already during the process of building target trees. Hence, it is necessary to describe the
attribution of tree fragments.

The semantics of attribute grammars can be extended in a natural way to handle tree
fragments, simply by assigning tree occurrences of synthesized attributes of unexpanded
nodes and all dependent tree attribute occurrences the special undefined value L. These
tree occurrences of attributes will be called preliminary as later expansion of the tree
fragment may cause those attributes to evaluate to a defined value.!

Figure 3.11 on the next page illustrates the attribution of tree fragments, again
using the attribute grammar from Example 3.1.8 on page 29. The shown example tree
fragment resulted from replacing the node at position 1 1 1 in the tree that was shown
in Figure 3.3 on page 30 by an unexpanded subtree.

The extensions to attribute grammars necessary to allow attribution of tree frag-
ments are precisely described in Appendix C. At this point only two properties of the

!Note that L is also used for attributes which are not associated with a tree node at all (see Sec-
tion 3.1.1), so it is conversely not true that non-preliminary occurrences of attributes always evaluate to
a defined value.
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Figure 3.11: Example of a partially attributed tree fragment

attribution of tree fragments that are relevant here are described. Firstly, we expect that
preliminary tree attribute occurrences really evaluate to 1, and secondly, we expect that
(non-preliminary) occurrences which evaluate to a defined value in a tree fragment eval-
uate to the same value as the tree fragment expands. The second requirement is crucial
to allow a semantic constraint to be checked as soon as all attributes involved become
defined, as the result (constraint satisfied or not satisfied) will remain valid while the
target tree expands. This monotonicity condition is illustrated in Figure 3.12 where an
undefined subtree of a tree ¢ is replaced by a new tree fragment and the value of a non-
preliminary attribute a at some node o7 does not change while a preliminary attribute
b at some other node o9 evaluates to a defined value in the expanded tree.

Figure 3.12: Monotonicity condition on the attribution of tree fragments

Regarding our transformation model it is practical to analyze the preliminary at-
tributes of only the part of a target tree instantiating a rule’s target template. Since
the attribution of a subtree depends only on the inherited attributes at its root and the
subtree’s structure itself, the preliminary attribute occurrences in a subtree from a node
o can be determined from a given set of inherited attributes at ¢ already known to be
preliminary, and from a set of positions giving the descendants of o known to be yet
unexpanded. Given this information, the preliminary attribute occurrences in a subtree
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of o are:

e attributes at o which are contained in the given set I C Inh of inherited attributes
already known to be preliminary

e synthesized attributes of descendants of ¢ whose subtrees are known to be prelim-
inary; the positions of those descendants is given by a set P C Pos (subtree(o))

e all attribute occurrences dependent on those given above

The set of final attribute occurrences in a subtree consists of all attribute occurrences
which are not preliminary. The formal definition is as follows.

Definition 3.3.4 (Prelim_Attr_Occr p(0))

The set of preliminary tree attribute occurrences within the subtree of a node
o w.r.t. a set of attributes I C Inh and set of positions P C Pos(subtr@e(a)) is de-
noted by Prelim_Attr_Occrp(c) and is defined to be the least set of pairs (pos,a) C
Pos(subtree(o)) x A satisfying the following conditions:

(i) {(e,a) | a € I} C Prelim_Attr_Occy p(o)

(ii) {(pos,a) | pos € P A a € Synth} C Prelim_Attr_Occy p(c)

0s,a) € Prelim_Attr_Occy p(o
(iii) (pos, a) 1.p(o) = (pos’,a’) € Prelim_Attr_Occr p(0)
(0 1pos-@; T | posr-a’) € Dep

Final _Attr_Occr p(o)

:def

(Pos (subtree(o)) x A) \ Prelim_Attr_Occy p(0) O

In order to help formalize the monotonicity property of attributions given informally
above, we introduce a binary relation <; p on nodes where I C Inh and P C Pos(o).
o =1.p o' holds iff o’ is an expansion of o where P is the set positions at which subtrees of
o are preliminary and [ is the set of preliminary inherited attributes at o. Le., 0 < p o’
is true iff:

e 0 is less or equally expanded than o’

e only descendants from positions in P may be preliminary, i.e., descendants of o
and ¢’ from a position p, where p is not a prefix of any element of P, have equal
subtrees

e only attributes from I may be preliminary, i.e., inherited attributes not contained
in I have the same value at o and ¢’

The formal definition of <; p is given next.

Definition 3.3.5
(i) Let o be a node, P C Pos(o), and I C Inh.

The set of positions of final subtrees of o w.r.t. P is denoted by Final_Posp (o).

Final_Posp(o) =, {pos € Pos(subtree(c)) | Apos’ . poso pos’ € P}
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(ii) Let o and o’ be nodes. Further, let P C Pos(subtree(o)) and I C Inh.

We define

o <o
o=rpa E, Vpos € Final_Posp(o) . subtree(o|pos) = subtree(o” | pos)
Va € Inh \ I . att(c,a) = att(o’,a)

The monotonicity property of attributions can now be formalized.

Definition 3.3.6
An attribution A = (X, Inh, Synth, D, alt, Dep) is called monotonous iff the following
conditions are satisfied for any nodes o and o/, P C Pos(subtree(o)), any attribute
a€ A, and I C Inh:
(i) o =rpo
= ((pos,a) € Final_Attr _Occrp(0) = att(0|pos,a) = att(o” pos, a))

(ii) o <0’ = att(o,a) =L V att(o,a) = att(o’,a)

O

The properties of monotonous attributions described above concerning semantic con-
straints are captured in the following proposition and corollary.

Proposition 3.3.7
Let A = (X, Inh, Synth, D, att, Dep) be a monotonous attribution. Then the following is
true for any environments env and env’, attribute occurrence o, and value d € D:

[a]ens # L A env < env’ = []en = [] enw

Proof:
Follows immediately from Definition 3.3.6 (ii). O

Corollary 3.3.8
Let A be a monotonous attribution. Then the following holds for any k-ary predicate
P, attribute occurrences aq, ..., ay and environments env, env':

env <X env’ A [ai]eny # L forall 1<i<k =

lFeny Plag,...,ar) < lrepy Plag,...,a)

O

We will need Corollary 3.3.8 later in Section 3.3.6 when proving the soundness of the
then developed execution scheme to show that semantic constraints can be checked as
soon as all tree attribute occurrences are defined.
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Incremental attribution of tree fragments

We have now completely described and formalized the notion of tree fragments and their
attribution. As a target tree fragment is expanded during the invocation of a transfor-
mation rule, the question may arise how attributes can be efficiently re-evaluated with
each expansion step. A closer look shows that this is just a special case of incremental
attribution [7, 39, 40]. In the case of general incremental attribution arbitrary subtrees
can be replaced, while in our case only unexpanded subtrees can be replaced and only
attributes having the value 1 will ever have to be re-evaluated. Efficient methods for
incremental attribution are well-known from the field of language-based programming
environments [39, 40]; these methods can be directly applied or slightly refined to exactly
fit our purposes (which is, however, not described here).

3.3.3 Attribute dependencies in templates

It will be necessary to analyze the attribute dependencies affecting the building of target
tree structures. For this purpose we define a relation describing the possible dependencies
between attribute occurrences in a (target) template.

Definition 3.3.9 (Attribute dependencies in templates)
Let T be a template. Dep(T) C Attr_Occ(T) x Attr_Occ(T) denotes the relation
describing all possible dependencies between attribute occurrences in T

(X.a,Yb) € Dep(T) <,
X e Var(T) NY € Var(T) A
denv . env instantiates T A ([[X]]em.a, [[Y]]em,.b) € Dep

O

We now define the sets of preliminary and final attribute occurrences in a target
template. The set Prelim_Attr_Occr,y (1) contains the preliminary attribute occurrences
in T when the inherited attributes at T’s root given in I are assumed to be preliminary
and the leaf variables given in V are assumed to be preliminary as well, i.e., have an
unexpanded node assigned. The set of final attribute occurrences in a template consists
of all attribute occurrences which are not preliminary.

Definition 3.3.10 (Prelim_Attr_Occy v (T'))
Let T be a template. Further, let I C Inh and V C Leaf_Var(T).

We define Prelim_Attr_Occr v (T') to be the least set satisfying the following conditions:
(i) {T|c.a | a €I} C Prelim_Attr_Occyy(T)
(i) {€.a| €V A ae Synth} C Prelim_Attr_Occry(T)

a € Prelim_Attr_Occr vy (T)

iii = o € Prelim_Attr_Occyv (T
W) (wa) € Dep(m) } )

Final _Attr _Occry(T) =, Attr_Occ(T')\ Prelim_Attr_Occyy (T) O
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3.3.4 LR specifications

It has already been indicated above that target subtrees are expanded by processing the
syntactic constraints while applying a transformation rule. It is however not clear yet
in what order the constraints of a rule are to be processed. For the execution scheme
developed in this section we will restrict ourselves to process the constraints of a rule—
including semantic constraints—strictly from left to right.

Left to right execution imposes some restrictions on transformation specifications;
specifications satisfying these properties will be called LR specifications. The main
restrictions are:

e when processing a semantic constraint, all of the constraint’s attribute occurrences
must be final

e when processing a syntactic constraint, the variables on the left hand side must
be defined; this means that those variables must occur in source templates or have
been assigned a node by a previously processed syntactic constraint

e when processing a syntactic constraint the target variable’s inherited attributes
necessary to process the constraint must be final (all rules that can possibly be
invoked through the constraint must be considered)

e after processing all constraints all leaf variables of the target template must be
defined; this ensures that no tree fragment can result from a transformation

The conditions listed above describe properties that must necessarily be satisfied at
the time constraints are processed. However, it turns out that these conditions can be
guaranteed to be satisfied by certain properties of a transformation specification that
can be statically checked by analysis of the specification. This analysis of specifications
is described next. First, some required preliminary definitions are introduced.

Preliminary definitions

The set of variables that become defined by processing a constraint consists of the
variables appearing on the constraint’s right hand side in case of a syntactic constraint
and is empty for a semantic constraint. The set of variables that are defined after
processing the first ¢ constraints of a rule consists of the variables appearing in the
rules’s source templates and the variables defined through each of the first ¢ constraints.

Definition 3.3.11
The set of variables that become defined by processing a constraint ¢ is denoted by
Def _Var , which is defined as follows:

{Y} U Var(Z) if  has the foom X — Y/Z

0 otherwise.

Def Var, =, {

The set of variables that are defined after processing the first ¢ constraints of a rule r
of the form S — T/R where ¢1,..., ¢} are denoted by Def Var,, (where 0 < i < k),
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defined as follows:

Def Var;, =,, Var(S) U ( U Derar%,)

1<j<
O

In order to be able to express which transformation rules can possibly be applied
at a syntactic constraint, we introduce the notion of signatures of rules and syntactic
constraints. If a transformation rule can be applied through a syntactic constraint, then
the signatures of the rule and the constraint must be the same. Signatures take into
account the arities and (root) symbols of source, target and rest variables or templates.
As such, signatures of constraints and rules are elements of ¥* x ¥ x ¥*.

Definition 3.3.12 (Signature)
The set of signatures is denoted by

Sig = Y x Y x X

def

The signature of a syntactic constraint ¢ is denoted by sig(p) € Sig:

sig(Xv... X = Y/Z0 ... Zy) =4 (T1o.Tnsy, 21 2m)
where
z; = symbol(X;) foreachl1l<i<mn
y = symbol(Y)
zj = symbol(Z;) foreach1<j<m

The signature of a transformation rule r is denoted by sig(r) € Sig:

519(S1...S, = T/Ry...Rp) = s (S1 . SnytyT1 e )
where
si = symbol(S;c)) foreachl<i<n
t = symbol(T|.)
r; = symbol(R;) foreach1 <j<m

O

The application of a transformation rule requires that initially enough inherited oc-
currences of attributes at the anchor node are defined to be able to evaluate all semantic
constraints and to be able to perform all sub transformations for syntactic constraints.
Further, it is necessary that each time a constraint is processed enough of the target
tree is expanded so that all required attributes evaluate to a defined value. Otherwise it
would be possible that a transformation cannot proceed because a semantic constraint
cannot be checked due to missing attribute values.

The following defines the set Requ_Attr_Occ(p) of attribute occurrences required to
be defined in order to be able to evaluate a constraint ¢, and the set Requ_Attr(r) of
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attributes at a rule r’s anchor node required to invoke the rule. The set of attribute oc-
currences required for processing a semantic constraint is the set of attribute occurrences
referenced by the constraint; for a syntactic constraint the required attribute occurrences
are occurrences of attributes from sets Requ_Attr(r’) at the constraint’s target variable
which are required to invoke any rule 7’ matching the syntactic constraint’s signature.
The attributes required to process a rule are those attributes for whose occurrences at
the target template’s root variable a dependency to any attribute occurrences needed
for any of the rule’s constraints exists.

As the sets Requ_Attr_Occ(p) and Requ_Attr(r) mutually depend on each other,
those sets are formally defined as a least fixed point.

Definition 3.3.13 (Requ_Attr(r) and Requ_Attr_Occ(yp))
Let 7 be a transformation rule of the form S — T/R where o1, ..., k.

Requ_Attr(r) C A and Requ_Attr_Occ(p;) C Attr_Occ for each 1 < i < k are defined to
be the least sets satisfying the following conditions:

(i) {ou,...,an} C Requ_-Attr_Occ(P(az, ..., o))

(i) {Y.a | 3" € spec . sig(r’) = sig(X — Y/Z) A a € Requ_Attr(r')} C
Requ_Attr _Occ(X — Y/Z)

(ili) {a € Inh | 3o . (T|c.a,c) € Dep(T) A a € Requ_Attr_Occ(p;)} € Requ-Atir(r)

O

We finally need to know which attribute occurrences have their final value after process-
ing the first constraints of a rule up to a given index. These are the non-preliminary
attribute occurrences in the target template assuming the following;:

e only attribute occurrences at the target template’s root node not belonging to the
rule’s required attributes are preliminary; i.e., the rule’s required attributes are
final

e the target template’s leaf variables that are not contained in Def_Var, . are pre-
liminary; the leaf variables contained in Def_Var,; , are final

Definition 3.3.14 (Final_Attr_Occ; )
Let r be a rule of the form S — T/R where @1, ..., ¢k and i be an index (0 < < k).

The set Final_Attr_Occ;, is defined as follows:

Final_Attr Occiy =, Attr_Occ\ Prelim_Attr_Occg x(T)

where
R = Inh\ Requ_Attr(r)
X = Leaf Var(T)\ Def_Var,,
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Formal definition of LR specifications

We are now ready to formalize the requirements on a specification allowing processing
of constraints from left to right. As already mentioned, we call specifications satisfying
those restrictions LR specifications.

Definition 3.3.15 (LR specification) B
A s_peciﬁcation is called an LR specification iff for all rules r of the form S —
T/R where ¢1,..., ¢ the following holds:

(i) for each syntactic constraint ¢; (where 1 < i < k) of the form X — Y/Z the
following conditions are satisfied:

(a) Var(X) C Def_Var, i,
(b) Def_Var,, 0 Def Var,_;, =10
(c) {Y} n Var(T) C Leaf_Var(T)

(ii) for each semantic constraint ¢; (where 1 < i < k) of the form P(Xj.a1,..., X,.ap)
the following holds:

{X1,..., Xu} € Def Var;, U Var(T)

(iii) Requ_Attr_Occ(yp;) C Final_Attr_Occi—1, for each constraint ¢; (1 <i < k)

(iv) Leaf Var(T) U Var(R) < Def Vary,

3.3.5 An execution scheme for LR specifications

We are now ready to introduce an execution scheme for LR specifications in the form
of a system of execution rules. Let in the sequel spec be a fixed, but arbitrary, LR
specification.

First, the principle approach to processing constraints and the notion of processing
states will be described. Then, auxiliary operations will be defined. Finally, the rules of
the execution scheme will be given.

Processing of constraints

While processing a sequence @12 ... ¢y of constraints when applying a transformation
rule, a chain envy = envy =X envs... = envj of environments will be constructed,
starting from an initial environment envy and constructing an environment with more
information with each syntactic constraint. However, the application of a transformation
rule can also fail. To account for this we introduce the notion of processing states. A
processing state is either an environment or a special constant fail representing an invalid
processing state.
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Definition 3.3.16 (Processing state)
An invalid processing state is represented by the special constant fail. The set of
processing states is defined as

State =,, FEnv U {fail}

def

O

In the following some operations for constructing and manipulating processing states are
introduced.

Definition 3.3.17 (Operations on processing states)
By LEgnw we denote the empty environment mapping all variables to _L:

L (§) =,y L+ forall £€Var

The restriction of an environment env to a set X C Var of variables is denoted by
envy and defined so:

env(§) if £e X

1 otherwise

env|X(§) T def {

For an environment env € Env its domain is denoted by Dom(env)

Dom(env) =, {&€Var|env(§)# L}

A binary operator < for composition of two processing states envi, enve € State which
is strict w.r.t. fail is defined as follows:

fail if  envy = fail vV enve = fail
envy denvy =, _
env’ otherwise.
where

env (€) =

envy(§) otherwise.

{em}g(&) if enva(€) # L

An environment mapping a variable £ to a node o and all other variables to L is denoted
by [0/£]. For sequences of variables and nodes [07...0%/&1 ... &;] will be used an an
abbreviation for [o1/&1] <. .. < [ok/&k]. O

The binary operator < has some important properties which are shown next.

Proposition 3.3.18 (Properties of <)
The < operator has the following properties:

(i) For any processing states envi, enva, envs:

envy < (envy < envs) = (envy < envs) < envs
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(ii) For envy, envg € Env where Dom(envi) N Dom(envs) = (:

env1 < envg = envg < envy

(iii) For any env € State:

env < Lgnw = LEw <env = env

(iv) For any envi, enve € Env where Dom(envi) = Dom(envs):

envi < envg = envs

(v) For any envi, enve € State, and X C Var:

(envy < envy)|x = envi|x < enva|x
(without proof) O

Auxiliary operations

An operation inst: Template® x N* — State performing the instantiation of templates
is now introduced. This operation constructs an environment instantiating a sequence
of templates at a sequence of nodes if possible. If instantiation is not possible, however,
inst yields fail.

Definition 3.3.19 (Operation for template instantiation)

Let T = T\T»...T} be a sequence of templates, X a variable, and & = o102...07 a
sequence of nodes. We define inductively the operations inst: Template® x N* — State
and insty: Template x N' — State:

inst1(T1,01) <...<insty(Tk, if k=1
inst(Ty ... Ty, 01...01) =, {Zns 1(T1,01) insty(Tg, o) i

fail ik £
insty (X, o) = s [0/ X]
inst1(X(Ty... Ty ), 0) =, inst(Ty... Ty, children(o)) < [o/X]

O

The following proposition shows that inst correctly implements template instantiation
as defined in Definition 3.2.9 on page 36.

Proposition 3.3.20 (Properties of inst)
Let T be a sequence of templates, & a sequence of nodes, and env € State.

Then the following is true:

(i) if inst(T,5) = env # fail, then T is instantiated at & by env and Dom(env) =
Var(T)
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(ii) if env instantiates T at &, then inst(T,5) = env| ygr(7)
(iii) if inst(T, &) = fail, then no environment env exists that instantiates T’ at &

(without proof) O

We finally need auxiliary operations for building target trees and for creating anchors
for sub transformations.

The function build: Templatex Env — 7T defined first is used to build (target) subtree
fragments from templates, using unexpanded subtrees for undefined leaf variables and
complete subtrees for defined leaf variables.

Definition 3.3.21
Let T be a template and env an environment. We define by induction on the structure
of T

bt X eno if [ X]enw 1
build(X, env) =, {su ree([Xlow) i [Xons %

Fa otherwise.

where

F = symbol(X)

build(X (Ty ... Ty ), env) = F(ti,...,tg)
where
F = symbol(X)

t; = build(T;,env) foreach 1<i<k
O
Proposition 3.3.22 (Properties of build)
Let T be a template, T a tree node, and env, env’ environments.
(1) If subtree([€]env) = subtree([€] eny) for all £ € Leaf -Var(T), then build(T, env) =
build (T, env').
(ii) If env instantiates T' at 7, then build(T, env) = subtree(T)
Proof:
see Appendix B.3. O

The operation anchor: Var x Env — N creates an anchor node for a sub transformation
corresponding to a syntactic constraint X — Y/Z. If Y is defined in the given environ-
ment that node is returned as the anchor, i.e., the target tree constructed by the sub
transformation will replace this node. If Y is not defined, the operation yields the root
of a new unexpanded node (which means that a new intermediate tree is constructed
through the sub transformation).
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Definition 3.3.23
Let Y be a variable where F' = symbol(Y), and env an environment. We define:

[[Y]] env if [[Y]] env ?é 1

anchor(Y, env) =, {FAl therwice
. )

O

A final helper function constructs the target node at each execution step. This is done
by replacing the anchor node or previous intermediate target node by the tree built using
the target template and the current environment.

Definition 3.3.24
Let T be a template, v a tree node, and env an environment. We define:

target(T,~, env) = replace (’y, build (T, env))

def

Execution rules

The execution of a transformation according to spec is described by a relation TRg C
N*XN x N x N* relating a sequence of source nodes and an anchor node to a target node
and a sequence of rest nodes. Elements of this relation will be written as (7,v) — (7, p).

TRpE will be defined by the means of a rule system. For detailed information about
rule systems see, e.g., [57]. We will in particular make use of the notion of derivations
induced by rule systems and proofs by induction on the structure of such derivations.

TR is defined using two auxiliary relations: transformations through specific rules
are described by (r,a,v) — (7, p); processing of a constraint ¢; of a rule r is described
by (@i, Ti—1, envi_1) —" (7, env;) where 7; and env; represent the current target node
and state while executing the rule.

Definition 3.3.25 (Execution rule system)

A rule system for the execution of transformations is defined by four execution rules
(E1) through (E4) introduced below. In the rules, r ranges over transformation rules
from spec of the form S — T/R where ¢1,...,p1; &, &, p and j are placeholders for
sequences of nodes; 7, 7/, v and v/ are placeholders for single nodes; env, env’, envy,
envi, ..., stand for processing states.

(E1)
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{p1, 70, envo) =" (11, enw1) ... (@i, Th—1, envg—1) =" (Tk, envi)
(r,a,7) = (&, p)
where
(E2) To target(T, v, L gny)
envg = inst(S,5) < inst(T, 1)
envg # fail
p = [Rlew,
(Plai,...,an), T, env) =" (T, env)
(E3) where
env # fail
IFeny Plag, ..., an)
(0',7") = {7, 0)
(X - Y/Z, 1, env) —" (7, env)
where
env # fail
(E4) & = [X]eno
v anchor(Y, env)
7 target(T, T, env < [17'/Y])
env = env<[r'/Y]<[p/Z] <inst(T,7)
env # fail

We will write Fg (7,7) — (7, p) iff a derivation rooting in rule (E1) exists. Similarly,
Fp {(p, 7, env) =" (7, env’) will be written iff a derivation rooting in (E2) exists. O

3.3.6 Soundness of the execution scheme

We will now show that the execution scheme introduced above is sound w.r.t. the se-
mantics of the transformation model defined in Section 3.2.2. Two auxiliary lemmata
necessary for the proof are introduced first.

Lemma 3.3.26
Let r be a rule of the form S — T'/R where ¢1,...,¢k. Let further 7, 7,..., 7% be
nodes, and enwvg, envy, ..., env, environments.

If (pi, Ti—1, envi—1) —" (7, env;) for each 1 < i < k, then the following is true:
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(i) env; instantiates T" at 7; for each 0 < i < k
(i1) env;—1 < env; foreach 1 <i <k
(iil) [€lenv; = [€]env,y,; for each & € Def Var; .\ Var(T),0<i<k,and 0 <j <k —i

Proof:
see Appendix B.4. O

Lemma 3.3.27
Let 6 and p be sequences of nodes. Further, let 7 and 7/ be nodes.

Then the following is true:

c—T1/p NT=T = G—-7/p

Proof:
see Appendix B.4. O

We can now show that the execution scheme is sound w.r.t. the semantics of the
transformation model.

Theorem 3.3.28 (Soundness of the execution scheme)
Let r € spec be a transformation rule,  and p sequences of nodes, and vy a single node.
Then the following holds:

Fe(ro,) = (1.p) = G—rT/p

Proof:

The proof uses induction on the proper sub derivation relation of theiE—deriviation of
(r,a,7) — (1, p). Assume that (r,7,~v) — (7, p) and that r has the form S — T'/R where
©1,- .., ¢k The derivation D of (r,a,7) — (7, p) then looks like follows:

<<P1> 70, enUO> - <Tla 67”LU1> o <80k7 Tk—15 envk—1> - <7—k’> €TLUk>

(S — T/R where ¢1,...,0,7,7) — (1,p)

So ¢ —, 7/p according to Definition 3.2.11 as the following shows:

(i) S is instantiated at o by envy: first observe that envy = inst(S, &) < inst(T, o)
and Var(T) N Var(S) = 0. So by Proposition 3.3.20 S is instantiated at & by

envg. As Var(S) C Def_Varg, we can conclude that envy|yy,(g) = envol yye(s)
using Lemma 3.3.26 (iii). So S is instantiated at & also by envy,.

(ii) T is instantiated at 7 by envy: by Lemma 3.3.26 (i) 7" is instantiated at 7; by env;
for each 0 <4 < k, so in particular envy instantiates T at 7, = 7.

(iii) [R]env = p according to (E2).
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(iv) Syntactic constraints are satisfied: consider a constraint ; of the form X — Y/Z.
The sub derivation D; for this constraint has the form

(r, [[X]] envi_1s 1Y Jenvi_y) — (', 0)
<|IX]]57'“11‘—17 [[Y]]envi_1> - <7'/7ﬁl>
<X — Y/Z, Ti—1, em)i_l) — <Ti, envi>

for some 7; and env; = env;_1 < inst(T,7;) < [p'/Z]. As the sub derivation

(r, HX]] envi_15 [Y lenvi 1) — (7', 0')

is a proper sub derivation of D, we know by induction hypothesis that
[[X]]emzi_l ! T//ﬁ/-

As Var(X) C Def _Var;_, , and VQT(Z) € Def_Var; W
Lemma 3.3.26 (iii) that [X]eny; = [X]enw, = 0" and [Z]eny; = [Z]env, = 7'~ By

- it follows by
Lemma 3.3.26 (ii) we can conclude that [Y]eny, = 7" = [Y]env,

Lemma 3.3.27 implies that [X]env, —w [Y]envy/[Z]env, and a corresponding
S-derivation Dg(p;) exists.

(v) Semantic constraints are satisfied: a constraint ¢; of the form P(aq,...,qq) is
satisfied in env; according to (E3). As env; = envy by Lemma 3.3.26 (ii), we can
conclude that ¢; is satisfied also in env; using Corollary 3.3.8.

So (7 — 7/p, envg)[Ds(piy), - - -, Ds(pi,,)] is an S-derivation for 6 — 7/p. O

We now know that our execution scheme is sound w.r.t. the semantics of the transforma-
tion model defined in Section 3.2.2. The next question arising is whether the execution
scheme is also complete, i.e., the execution scheme also finds all possible transformations.
So completeness is shown next.

3.3.7 Completeness of the execution scheme

For the execution scheme to be complete it is required that for each rule r, if ¢ =" 7/p
for some &, T and p, then (7,7) —" (7, p) for an appropriate anchor node . But what
is an appropriate anchor node? The first idea coming to mind may be that v must be 7
replaced by an unexpanded subtree; however, this is to restrictive as not all of 7’s context
in the complete target tree is required to be known in order to execute a transformation.
It turns out that it is sufficient that 7 is a predecessor of 7 (w.r.t. =) and the rule’s
required attributes have the same value at 7 and ~y. This is captured in the following,
where the notion of a suitable anchor is defined.

Definition 3.3.29 (Suitable anchor)
A node v € N is called a suitable anchor w.r.t. transformation rule r and target node
7 iff the following is satisfied:
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(i) v=7
(ii) att(y,a) = att(r,a) for each a € Requ_Attr(r)
O

Note that if 7 is a root node, any predecessor v < 7 will be a suitable anchor as no
inherited attributes are defined at a root node according to Definition 3.1.7 on page 28.
We will show that in the above situation, where « is a suitable anchor w.r.t. » and
T, (r,a,v) — (7, p) where 7 = replace(y, subtree(T)).
The following two lemmata help in showing the completeness property.

Lemma 3.3.30
Let T be a template, 7 a node, and env and env’ environments. Further, the following
is true:

(i) subtree(t) = build(T, env)

(ii) env’ instantiates T at T

Then the following holds for all £ € Leaf _Var(T):

subtree([€] eny) = build (&, env)

Proof:
see Appendix B.5. O

Lemma 3.3.31
Let T be a template, v, 7 and 7 nodes. Further, let X’ be a set of variables, env and env
be environments, and I C Inh.

Further, the following is satisfied:
(i) v
(i)
(iii) 7 = target(T,~, env|x)
)
)

| Jk

env instantiates T at 7

(iv) env = env|x < inst(T, 7)

(v) att(,a) = att(r,a) for all a € Inh \ I
Then for any £ € X U Var(T) and a € A:

§.a€ FinalfAttrfOCCI,Leaf,VaT(T)\X (T) = [[g'a]]% = [ga]] env

Proof:
see Appendix B.5 O
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Theorem 3.3.32 (Completeness of the execution scheme)
Let r be a rule from spec having the form S — T/R where ¢1, ..., py.

Then for any 6,p € N* and ~,7,7 € N, where 7 = replace (’y, subtree(v')) and v is a
suitable anchor w.r.t. r and 7, the following holds:

o= T/p = (r,0,7) —(T,p)

Proof:
The proof is by induction on the structure of the S-derivation of ¢ —, 7/p which has,
according to Definition 3.2.11, the following form:

(6 — 7/p, env)[D1, ..., Dy]
We define for each 0 <7 < k:

Ti T def target(Tu v env|Def,Vari7T)

env; =, enU|D€f7Vari7T<linst(T, Ti)

Then the following holds:
(i) 70 = target(T,v, Lgny) and envy = inst(S,5) < inst(T, 79):
As defined above, unfolding the definition of target yields:
To = replace (% build (T, env\peffvm,w))
By Proposition 3.3.22 it follows that
build (T, env| pef_var,,) = build(T', env|pes_var, , 0 Leaf Var(T))
As by LR conditions Leaf_Var(T) N Def_Varg, = 0, we can conclude that

70 = replace(, build(T,J_Em))
= target(T,~, Lpn)

Def _Vary, = Var(S), so envg = env| yyr(g)- As S is instantiated at & by env, we

know by Proposition 3.3.20 that env|y,,(g) = inst(S,5). So
envg = inst(S, ) <inst(T, 9)

(ii) <90i77'i—17 envi—1> —" <7’¢, em)i> for1 <i<k:

We first show that all attribute occurrences required to process ¢ are non-
preliminary: by applying Lemma 3.3.31 we can follow that [§.a]env, ; = [§-0]enw
for any £.a € Final_Attr_Occy x(T) where X = Leaf _Var(T) \ Def _Var;_, , and
e X U Var(T). So for £.a € Requ_Attr_Occ(p)

[[é.a]] envi_1 — [[ga]] env

We then distinguish cases on the form of constraint ¢.
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(a)

¢ has the form P(ai,...,am,). We know that IFep P(aq,...,qu). For
each 1 < i < m we know from above that [a;]eny, ;, = [®i]eny as a; €
Requ_Attr_Occ(p). Thus, IFepy, , P(ai,...,qn). Further, env;_1 = env; as
Def _Var;_; = Def_Var,.

So by (E3)
(P(agy...,0un), Ti—1, €nvi—1) —' (T4, env;)

otherwise, ¢ is a syntactic constraint of the form X — Y/Z. In this case
observe first that [X]env,_, = [X]env as Var(X) C Def_Var; ;, in an LR
specification. Let &' = [X]enw, 7 = [Y]em, 7/ = anchor(Y, env;_1), and
pl = [[Z]] env-

IfY € Var(T), then [Y]en, , # L as env;_; instantiates T', so by definition
of anchor v = [Y]en,_, and Y.a € Requ_Attr_Occ(p) for a € Requ_Attr(r’).
So we know from above that att(y',a) = att(7’,a) for a € Requ_Attr(r’).

If, otherwise, Y ¢ Var(T), then [Y]em, , = L and by definition of anchor
v = Fa|e where F = symbol(Y). We also know by Definition 3.2.11 that
in this case 7’ has the form t|. for some tree t. So, by Definition 3.1.7,
att(v',a) = att(r") = L for each a € Requ_Attr(r’) C Inh.

Thus, +' is a suitable anchor w.r.t. 7’ and 7/ and we can assume by induction
hypothesis that (5',7') — (7', ') where 7' = replace(, subtree(r')).

For j =i —1and j =i it is true that subtree(r;) = build(T, env|pes_var, )
and env; instantiates T" at 7;, so by Lemma 3.3.30
subtree([€]env;) = build(€, envpes var, )
for each & € Leaf _Var(T) and j € {i — 1,i}. Further, it is true that
subtree(#') = subtree(r") = subtree([Y]env; )
Hence, by Proposition 3.3.22
(%) build(T, env;) = build(T, env,—1 < [7'/Y])

So
i = target(T,~, env;)
replace (7, build (T, envi))
replace (Ti_l, build(T, emji))
replace (Ti—1, build (T, env,—1 < [7'/Y])) (%)
= target(T, 71, env;—1 < [7'/Y])

Further, by Proposition 3.3.18 it follows that:

env; = env|pef_var, <inst(T, ;)
LT/ Y]« [0/ Z] <inst(T, 7;)
env|pef_var, , <inst(T,7i_1) <[t /Y]<[p/Z] «inst(T, ;)
= emw;_1<4[7)Y]<[p/Z]) <inst(T,T;)

enU|Def,Var-

k3
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So (E4) can be applied and indeed (p;, 71, env;_1) —" (1, env;).
(iii) 7 = replace (7, subtree(T)) =7 and [R]env, = [R]env:

By LR conditions we know that Leaf_Var(T) C Def _Vary, ., so using Proposi-
tion 3.3.22 we can conclude:

7, = target(T, ", em}‘DEf—VaTk,r)
= replace ('y, build(T, env|pef_var, T))
= replace (% subtree(T))

N

= T

Further, as by LR conditions Var(R) C Def_Vary, .\ Var(T), we can conclude that

[R] envy

=

env | (Def,Va'rk’,,,dinst(T,Ti))

jno]]

-
=

]] env'Def,Vark’T

jno]]

Henv

3.3.8 Optimization

The execution scheme described so far does not handle optimization yet. In the following
a solution using recursive functions is shown fixing this shortcoming.

A transformation function trafo compatible with the execution scheme described in
Section 3.3.5, but in addition performing optimization, basically has the functionality

trafo: N* x N'— Pow(N x N*)
with the following property:

(1,p) € trafo(,7) = (5,7) = (1,p)

Note that in particular for a transformation function producing optimal transformation
results the reverse direction < is not true as optimization obviously constrains the
transformation relation.

The function trafo can be recursively defined using functions trafo, obtaining trans-
formation results through a specific transformation rule r working as follows:

e compute all transformation results obtained from application of r using only opti-
mal sub transformation results (obtained by recursively applying trafo)

e if an objective function is given for r, filter for those minimizing r’s objective
function among all results
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The function trafo, given below computing all transformation results obtained from
application of rule r was mechanically derived from the execution scheme’s rule (E2)
(cf. Section 3.3.5) and filtering for optimal results was added. Note that in order to make
things a little easier trafo has as an additional parameter a signature. Also note that two
auxiliary functions constrs, and constr, are used to handle the processing of constraints,
and the auxiliary function minimize handles optimization. Throughout the following
function definitions r is a placeholder for a rule of the form S — T'/R where 1, ..., 0.

trafo: Sig Xx N* x N’ — Pow(N x N*)
trafo(sig,0,v) =,, {trafo,(c,7) | r € spec A sig(r) = sig}

trafo,: N* x N'— Pow(N x N*)
trafoT((?,'y) :def {(T? [[R]] em)) ‘ (7—7 67?,1}) € E)}

where
E = minimize(obj(r), E’)
E' = {(r,emv) € E" | env # fail}
E" = constrs, (o102 ... ¢k, Fo)
Ey = {(70, envo)}
70 = target(T,v, LEny)
envg = inst(S,o) <inst(T, 7o)

The processing of constraints is realized by the following functions.

constrs,: Constraint™ x Pow(N x State) — Pow(N x State)
constrsy(p1... o1, E) =, Ex
where

E; = constr,(p;, Fi—1) for 1<i<k

constry: Constraint x Pow(N x State) — Pow(N x State)
constr, (P(ozl, ce ), E) = gef
{(r,env) € E | env # fail A Fepy Ploa,...,0m)}
constrr(X = Y/Z,E) =,
{makeResult(t",p', 7, env) | (T,env) € E A env # fail A
(7', 7) € trafo(sig, [X]env, anchor(Y, env)) }

where
s1g = sig(X - Y/2)
makeResult(7', p', T, env) = (7, env)
T = target(T, T, env <[r'/Y])

env = em<|[r'/Y]<[p/Z] «inst(T,7)
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Minimization for an objective function is realized using the following function:

minimize: (Obj U {L}) X Pow((N x Env)) — Pow((N x Env))

minimize(L, E) =, E
minimize(f (o, ..., a),0) =4y
mmz’mize(f(al, A ak),E) = g
{(r,env) € E'| f([a1]envs - -, [k]enn) = min(M)}
where

M = {f([o1]env; - - -+ [k]env) | (7, env) € E}

The above functions add optimization to our execution scheme. It should be noted
that the transformation result obtained by applying trafo can be undefined if the evalu-
ation does not terminate. Assuming termination though, and incorporating our results
about soundness and completeness, the following holds for given rule r, € N*, 7 € N/,
and p € N*, and anchor node ~ which is suitable w.r.t. » and 7:

(7,p) € trafo.(G,7) & & —r,opt T/p

The functions as defined above can almost directly be used to implement the trans-
formation model. This is shown in Appendix E where a concrete implementation in the
functional programming language Haskell is given.

3.3.9 Application of dynamic programming

A remaining problem with the execution scheme described so far is that in the course
of an optimizing transformation the situation will often arise where common sub trans-
formations will be executed more than once. To see this, consider as an example the
line breaking example from Chapter 2. While computing the sequence of lines for a
BoxKerfSeq, it might be possible to first choose a shorter first line followed by a longer
second line, or choose a longer first line followed by a shorter second line, in both cases
leaving the same rest box kerf sequence. The transformation result for the rest box kerf
sequence is the same in both cases and it is of course desirable to compute it only once.
With the functional solution described above, however, it will be computed twice.

A solution to this problem is the application of dynamic programming where
computed solutions to sub problems are kept in a table for later reuse. In our case the
subtree of a previously computed target node can be used to replace a different anchor
node in a later executed transformation.

Some further investigation is needed to see when a transformation result can be
reused. So assume that ¢ —" 71/p and a second (potential) target node 7o where
subtree(re) = subtree(r;). Under what circumstances do we know that also ¢ —" 7 /p 7
The crucial point here is that a transformation may depend on the attribution of the
target subtree, so it is also necessary that the attribution of the subtrees of 7 and 7
is the same as far as the attributes required for the applied transformation rule are
concerned.

So, when is the attribution a subtree the same when occurring in two target trees?
With attribute grammars the attribution of a subtree only depends on the values of the
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inherited attributes at its root. More precisely, if a subset of the inherited attributes at
the root is known to evaluate to the same value in two contexts the attributes depending
only on inherited attributes from that set evaluate to the same value in both contexts too.
Carried over to the attribution functions used in this chapter, his property is captured
by the axiom defined in the following.

Definition 3.3.33
For all o, o', pos, a:

(subtree(o) = subtree(a’) A
(Attr2) (Vb € A (0.0,0p05.a) € Dep = att(o,b) = att(o, b)))

= att(0|pos, @) = att(o’ | pos, Q)

O

It is assumed in the following that (Attr2) holds. We are now ready to formulate a
theorem lying the basics for the application of dynamic programming.

Theorem 3.3.34
Let & and ﬁjae sequences of nodes, 71 and 75 be nodes, and r be a transformation rule
of the form S — T/R where ©1,..., pk.

Further, the following holds:
(i) o ="7/p
(ii) subtree(m) = subtree(s)
(iii) att(11,a) = att(me,a) for a € Requ_Attr(r)
Then the following holds:
(i) ¢ =" 12/p.

(i) if & —p opt T1/p, then also & —, opt T2/p

Proof:

(i) The proof is by induction on the structure of the S-derivation of ¢ —" 71/p.
So let (¢ —" 71/p, env1)[D1,..., Dy] be an S-derivation. We define envy =,
envy < inst(T, 7o) (Note that envy # fail as subtree(rs) = subtree(r;) and T is
instantiated at 7).

Then an S-derivation (¢ —" 72/p, enva)[D}, ..., D] exists as the following shows.

First consider the required attribute occurrences £.a for all constraints 1, . .., k.
If £ ¢ Var(T), then [{]env, = [Elenvys thus [§.a]env, = [€-a]env,- Otherwise
T pos = & for some pos. Suppose that (7.b,7|p0s.a) € Dep for some attribute
b. Then by Definition 3.3.9 (T'|..b,{.a) € Dep(T') and thus by Definition 3.3.13
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b € Requ_Attr(r). By premises it follows that att(71,b) = att(72,b) and thus by
(Attr2) att(T1pos, a) = att(T2|pos, a), so finally [£.a]env; = [£.0]envs-

We can now construct an S-derivation for ¢ —" 1 using envs.

(a)

S is instantiated at & by envs as by LR conditions Var(S) N Var(T) = () and
thus envg\vm,(g) = 6””1|Var(5‘)

T is instantiated at ™ by envq

[R] envs = [R]env, as by LR conditions Var(R)N Var(T) = 0, so enva| ver(r) =
env1 | yar(R)

IFenv, @ for any semantic constraint ¢ € {p1,...,¢x} of the form
Plag,...,ap):

We know that Ik, P(aq,...,a,). Further, we know from above that
[eti] envy, = [@i] env, for each 1 < i < n. So also IFepy, Plaq,. .., o).

for any syntactic constraint ¢ € {1, ..., ¢k} of the form X — Y/Z:
Let ' = [X]envy = [X]env, and ¢ = [R]envy = [R]envs-

We distinguish two cases.

i. T|pos = Y for some pos. Then by Definition 3.2.9 [Y]eny, = T1pos and
|IY]]5m,2 = T2|pos- Let T{ = T1|pos; and Té = T2|pos-

We know that ¢ —" 7]/f/. From above we further know that
att(ry,a) = att(1y,a) for a € Requ_Attr(r’). Obviously it is also true
that subtree(r]) = subtree(7s).

So by induction hypothesis 3 —" 75/7 and a corresponding S-derivation
D], exists.
ii. Otherwise Y ¢ Var(T). In this case [Y]env, = [Y]envy- Let 77 = [Y]enw, -

We know that 5 —" 7//§ for some rule 7.

(ii) if & — opt T1/p, then the S-derivation of & —" 71/p is optimal. As can easily be
checked the S-derivation for & —" 79/p constructed in (i) is then optimal as well.

O

This theorem can be applied in the situation when a transformation & —" 7/p has been
previously performed and a new transformation with the same source nodes and some
new anchor node is to be performed. The following corollary allows to decide if 7’s
subtree can be used as result for the new transformation.

Corollary 3.3.35
Let & and p be sequences of nodes, 7 and v be nodes, and r a transformation rule.

Let the following be satisfied:

() &~ 7/p

(ii) subtree(y) = subtree(T)
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(iii) att(r,a) = att(vy,a) for all a € Requ_Attr(r)
Then the following holds:

(i) e ="7/p
where

7' = replace(y, subtree(r))

(ii) if & —r opt /P, then also & —, opt 7'/p

Proof:
By definition of 7" it immediately follows that v < 7/. So, for any a € Requ_Attr(r)

att(t',a) = att(y,a) (Attrl)

= att(r,a) (premise)

We also know that subtree(r) = subtree(r’).

Thus both (i) and (ii) are direct consequences of Theorem 3.3.34. O

With the application of dynamic programming together with the transformation func-
tions described in Section 3.3.8 we now have a means to efficiently perform optimizing
transformations of attributed trees.

3.3.10 Automatic construction of LR specifications

Section 3.3.4 introduced the notion of LR specifications which imposes restrictions on the
order of constraints in rules. These restrictions were shown to allow efficient execution
of transformations processing constraints strictly from left to right.

In the following an algorithm is given allowing to turn a possibly non-LR specification
into an equivalent LR specification, if possible, by reordering each rule’s constraints.

The algorithm takes one rule at a time and works iteratively maintaining a set
of remaining constraints (starting off with the set of all of the rule’s constraints), a
set of currently preliminary attribute occurrences and a set of currently defined node
variables. In each iteration step a constraint whose required attribute occurrences are
non-preliminary is picked. If no such constraint exists an equivalent LR specification
does not exist and an error is issued. The algorithm which must be applied to each of a
specification’s rules is as follows:

Input: a rule r of the form S — T/R where ¢1,..., o
Output: a new rule S — T//R where ¢}, ..., ¢} which satisfies
the LR conditions and where {¢1,...,¢r} = {¢],..., ¢}, or an error

I := Inh \ Requ_Attr(r)
C:={¢1,..., 0k}

DV := Var(95)
PAO := Prelim_Attr_Occr,py (T')
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fori=1,2,...,k

do
if 3p = P(a1,...,an) € C. Requ_Attr_Occ(p) N PAO = ()
then
=
C:=C\{p} B
else if 3p = (X — Y/Z) € C . Requ_Atir_Occ(p) N PAO =)
then
0=
C:=C\{y}
DV := DV U Def_Var(y)
PAO := Prelim_Attr_Occr,py (T)
else
error
fi
od

output S — T//R where ¢, ..., ¢}

Note that the algorithm chooses semantic constraints as early as possible. This way
unnecessary sub transformations which are potentially expensive are avoided.

3.4 Comparison with existing approaches

In Chapter 1 it has been pointed out that existing optimizing formatters have up to now
only been described in operational manners and have been implemented using general-
purpose programming languages. While the new approach described here is more declar-
ative and makes it a lot easier to create such formatters, the question may arise how
the execution of a transformation in the new model relates to existing solutions. So, as
an example, a comparison of the approach to line breaking described in [9, 35] with the
approach taken here will be made.

As described in [9, 35], line breaking with global optimization can be reduced to the
problem of finding the shortest path between two nodes of a graph:

e the input is a sequence of boxes and kerfs as already described in Chapter 2
e a graph is built where nodes correspond to kerfs and

— a starting node S corresponds to the kerf at the beginning of the input box
kerf sequence (note, however, that in the description given in Chapter 2 this
kerf at the beginning was omitted)

— an edge between two kerfs k1 and ko exists iff ko follows k1 and the sub box
kerf sequence between ki and ko can be stretched or shrunken such that the
target line width can be attained, i.e., a consistent line is represented by the
sub sequence

— the complete graph is built incrementally, beginning with the starting node
and adding all edges as necessary
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— an end node E exists, corresponding to the kerf terminating the input box
kerf sequence

e cost measuring the badness, i.e., the required amount of stretching and shrinking,
is associated with each edge

Any path from S to E in such a graph describes a consistent line break in the sense that
for each line maximum stretchability or shrinkability are not exceeded.

Figure 3.13 shows an example graph for an imaginary paragraph that can be broken
into two variants of three and one variant of two lines. All edges are marked with a label
l;; for later reference, and with cost as described above. Assuming that the nodes are
arranged horizontally from left to right in the order in which they appear in the input
box-kerf sequence, the path l11 l12 l13 corresponds to the first fit line break, and l3; l32
corresponds to the last fit line break as described in Chapter 2. Taking into account the
cost associated with each line, lo; loo l13 (the shortest path from S to E) corresponds
to the globally optimal linebreak. The locally optimal line break results from choosing
directly the best next line (or edge) from each point and happens to coincide with the
first fit line break in this example.

Figure 3.13: Example of a graph describing possible line breaks

We now turn to the corresponding tree transformation according to our new trans-
formation model. The transformation specification describing line breaking was given in
Example 3.2.7 on page 35. The source of the transformation is a tree representing the
input box kerf sequence (which results from folding a flat input sequence to the right)
is depicted in Figure 3.14 on the next page. Intermediate nodes which will not occur
as allowable break points have been omitted. Figure 3.15 on page 73 shows the target
trees created while executing the transformation specification. Note that the subtrees of
LineSeq,3 and LineSeqqs are identical which corresponds to the fact that the two paths
in the example graph in Figure 3.13 share the same trailing edge. By using the results
that have been obtained in Section 3.3.9 dynamic programming can be applied and this
subtree will be computed only once, though, and will be copied when it is needed the
second time.

The transformation is performed as an invocation of a transformation og — 79/e
where 7y is the root of an unexpanded tree of symbol LineSeq. The only rule that can
be applied is 9. This is how the transformation proceeds:
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Figure 3.14: Transformation source

e The initial target tree is expanded to the tree (a) shown in Figure 3.16 on page 74

by expanding the target template.

A sub transformation og — Linej/p is invoked yielding three results (Lineji,o1),
(Linea1, 02) and (Linesy, 03), each consisting of a possible first line and a remaining
input sequence. The results are shown in target trees (b), (c) and (d) in Figure 3.16.

For each of the three results the transformation proceeds with a second sub trans-
formation o; — LineSeq;y/e for i = 1,2,3. Each of those sub transformations are
carried out in a similar way as the root transformation described here:

— The sub transformation for i = 1 proceeds by constructing (Lineis, o4) (only
a single consistent alternative exists), and in a further nested sub transfor-
mation (Line1s,05) (again, only one consistent alternative exists).

— The sub transformation for ¢ = 2 proceeds by constructing (Liness, o4) (only
a single consistent alternative exists). At this point, a further sub transfor-
mation processing the rest input sequence oy4 is invoked. However, this sub
transformation has already been carried out, so its result will be reused (dy-
namic programming). The result is (Lineas, 05) where the subtree of Lineas
is simply copied from Line;s.

— For ¢ = 3 the sub transformation creates as the single consistent alternative
the line Lineso, leaving the empty rest input sequence os.

The results of the transformation so far are the trees shown in Figure 3.15 on the
next page

Finally, minimization of cost is done. Cost is here attached to nodes of symbol
LineSeq as a synthesized attribute. The result is LineSeq,; shown in Figure 3.16
which corresponds to the result also obtained using the traditional approach.
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cost cost
LineSeq, [1] LineSeg, [1]
A cost A cost
Line;; LineSeg, [8] Liney LineSeg, [s]
A cost /\ cost
L|n942 LineSeg; [3] Line,, LineSeg; [3]
/\ cost A cost
Line; LineSeg, [o] Liney LineSeg, [o]
A € A €
cost

LineSeg

cost

Liney, LineSeg,

cost

Line, LineSeg; [o]

Figure 3.15: Target trees created during transformation

An imaginary graph resembling the one used in the traditional approach actually
occurs hidden in the transformation process as well. The nodes in that graph correspond
to sub transformations here. The graph for the example transformation is shown in
Figure 3.17 on the following page. Implicitly, also the finding of the shortest path
happens.

As a last note it should be mentioned that the efficiency of both approaches is
basically the same. A little overhead is caused by manipulating trees, though.
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LineSeq
Line, LineSegq
A A
@
LineSegq, LineSeg, LineSegq,
Line, LineSeg Line,, LineSeg, Line;, LineSeg,

(b) (© (d)

Figure 3.16: Evolution of target trees

0,-LineSeg / €

\ 0,-LineSeg;/ €
0,-LineSeg;/ €

0,-LineSeg /€

0y LineSeq/ €

05— LineSegq, / €
O 05— LineSeg,/ ¢
Os-LineSeg; / €

0;-LineSeg, / €

Figure 3.17: Transformation process as a graph

3.5 Conclusion

In this chapter we have developed a formal model for transformations between attributed
trees and the model’s formal semantics. We have further developed an execution scheme
describing how transformations can be efficiently performed for the non-optimizing case.
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We have proven this operational semantics to be sound and complete. We have then
developed recursive functions performing optimizing transformations and have shown
how dynamic programming can be applied further improving the efficiency.

In the following chapters a practical language realizing these theoretical concepts will
be introduced and some example applications will be shown.






CHAPTER

The Coala system

This chapter presents a new specification language for document formatters based on
the theoretical model for optimizing tree transformations developed in Chapter 3, and
its runtime environment. The new system is called Coala which stands for Constraint-
based approach to document layout. Coala has been implemented in Java.

Coala’s specification language provides means to specify attribute grammars and op-
timizing transformation relations. The Coala system allows to load specifications, and
to generate interpreters for them. An interpreter is then used to build structures of
attributed trees and perform transformations between them. Further, the Coala sys-
tem provides tools for reading document structures from XML files, and for output of
PostScript code for a built-in page layout format, ready for printing and viewing.
Thus, Coala provides a complete set of tools for realizing practical document formatters.

In Section 4.1 we will first take a look at the most important elements of Coala’s
specification language. Then, in Section 4.2, an overview over Coala’s runtime system
will be given.

4.1 Coala’s specification language

Coala provides language elements for specifying attribute grammars (i.e., context-free
grammars together with attribute declarations and attribution rules), and rules de-
scribing optimizing transformations of attributed trees. Those language elements are
described in the following. Note that the complete context-free syntax is summarized in
Appendix D.

After introducing the syntax notation used in this chapter, we will first define Coala’s
lexical conventions in Section 4.1.2. Thereafter, basic syntactic elements of specifications
are defined. Section 4.1.4 introduces the syntax and semantics of Coala’s expressions.
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In Section 4.1.6 through Section 4.1.11 the structure of specifications is then described.
Section 4.1.12 shows an example specification.

4.1.1 Syntax notation

In this chapter’s description of Coala’s specification language a variant of extended BNF
notation is used:

e keywords (literal sequences of letters) are shown in typewriter font, e.g., if, let,
etc.

e literal character sequences containing special symbols are enclosed in apostrophes,
e.g., ‘< >=" etc.

e nonterminal symbols appear in italic font, e.g., specification, rule, etc.

e on the right hand side of productions regular expressions composed using the
following operators (listed in order of decreasing binding strength) are used:

— [r] stands for an optional r

— r* stands for zero or more repetitions of r
— rT stands for one or more repetitions of r
— r1 ro stands for r; followed by 79

— r1|ry stands for 71 or 7o

where 7, 1 and 1o are regular expressions. Atomic regular expressions are key-
words, literal character sequences and nonterminal symbols. Sub expressions can
be enclosed in braces to enforce grouping.

4.1.2 Lexical structure

A specification is at the lowest level a sequence of characters which is in a first step
transformed into a sequence of syntactic tokens. Tokens of the following classes are rec-
ognized: identifiers, relation identifiers, keywords, constants, operators and separators.
White space (blanks, tabulators, newline and carriage-return characters) and comments
delimit tokens and are otherwise ignored.

The sequence of tokens is produced in an unambiguous way by following the conven-
tion that at a given position in the stream of input characters the next token is always
chosen to be the one constituting of the longest sequence of characters. If a sequence of
an equal number of characters is matched by multiple rules, the first applicable rule in
the following description is used.

In order to ease the definition of some of the token classes, the following definitions
of auxiliary lexical classes are first introduced.

letter n= @Y. 2| A B2
digit n= 0 v] .Y
letter_or_digit == letter | digit

hex_digit n= digit |2’ | D | .|| N | B .. | F
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Comments. Like in Java or C++, comments either begin with the characters ‘/*’ and
end with ‘*/’ or begin with the characters ‘//’ and extend to the end of the current line.
In the first form comments cannot be nested.

Keywords. The following is a list of Coala’s keywords: specification, include, termi-
nal, productions, inherited, synthesized, with, fct, true, false, nil, if, then, else, let, in,
attr, rule, where, and minimize.

Natural numbers. Natural numbers including zero are specified in decimal format.

nat_const = digitT

It is an error to specify a number that exceeds the implementation-defined range of
natural numbers.

Floating point numbers. (Positive) floating point numbers can be specified as fol-

lows.
real_const = digit* ‘.’ digit™ [exponent]
exponent == (‘' | ‘E)) [+ | ‘=] digit™

If the represented number exceeds the implementation’s range or precision of floating
point values the number is truncated or rounded as necessary.

Dimension constants. Coala supports dimensions which are specified by a decimal
number followed by a unit of measure. Supported units of measure are U point, centime-
ter, millimeter and inch.

nat_const measure_unit
real_const measure_unit
pt | cm | mm | in

dim_const

measure_unit

String constants. String constants have the following syntax:

string_const = ‘" (string_char|escape_sequence)* ‘"’
string_char := every character except ‘\’, ‘"’
escape_sequence =\’ (‘D |t | ‘2’| ‘£ ]| "] \V)

| \u hex_digit hex_digit hex_digit hex_digit

String constants can include—Dbesides raw characters—escape sequences for special char-
acters including all [0 Unicode characters specified by their 16-bit value in hexadecimal
format.
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Identifiers. Identifiers are defined as follows.

ident = letter letter_or_digit*

Relation identifiers. Coala allows, as an extension to the model described in Chap-
ter 3, to assign names to relations, like for instance ls or [ used in the introductory
line breaking example described in Section 2.3. Relation identifiers are preceded by an
ampersand character. ‘@@’ denotes a special default relation identifier.

rel_ident = ‘@ ident
’ (@@7
Operators. The following are Coala’s operators: ‘+’, ‘=7 7 ¢/7 ‘<07 k=" >=",
[ ) =2 ‘ 9 3 9 (1
=="41="0 gk ]| .
Separators. The list of Coala’s separators is: ‘=", ¢,”, ;7 7 <17, <C, 97 {7, ‘), ‘O,
[ i ¢ ) 2] N [ ¢y [
R R O e T

This concludes the description of lexical structure. What follows now is Coala’s context-
free syntax.

4.1.3 Basic language elements

In the following basic language elements are introduced which can occur in several parts
in a specification.

Node variables

Node variables occur in transformation rules’ templates and in attribute occurrences
(cf. Chapter 3). A node variable consists of an identifier referring to a syntactic symbol
and an optional extension in the form of a number or identifier enclosed in square
brackets to disambiguate multiple occurrences of the syntactic symbol in productions or
templates.

ident

node_var =
| ident ‘[’ natconst ‘1’
|

ident ‘[ ident ‘1’

Attribute occurrences

Attribute occurrences can appear in attribute equations, semantic constraints and min-
imize clauses, and consist of a node variable and an attribute name (cf. Chapter 3).

)

attr_occ ::= node_var ‘.’ ident
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Lists of identifiers

In several places Coala requires comma-separated lists of identifiers.

ident_list = ident
| ident_list ¢,’ ident

4.1.4 Expressions

Coala supports expressions in attribution rules and transformation rules. The expressions
supported are those expected from a simple untyped first-order functional language.

expr if expr then expr else expr
let ident ‘=" expr in expr
expr where local_def _list
ident ‘C [argument _list] )’
tdent

attr_occ

const_expr

expr binop expr

unop expr

“C expr ‘)’

local_def

local _def _list *,’ local_def
ident ‘=" expr

expr

argument_list *,’ expr

local _def _list

local_def

argument_list

The following operators can be used to construct binary and unary expressions.

bmop — 4*7 ’ 4/7 | 4+7 | (9
| c<7|c>7|c<=7|c>=7’c==7‘4!=7
| 4&&7 ’ cl |7

unop = =74

The operators and their associativity are listed in Table 4.1 in the order of decreasing
operator precedence.

] Operator Associativity
EINYA left associative
RN left associative
<IN k=T >=" 0 t==" ‘1="  non-associative
7 A N R left associative

Table 4.1: Coala’s operators in order of decreasing precedence

The following defines Coala’s constant expressions.
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const_expr = string_const
| nat_const

| real_const

| dim_const

| bool_const

|

nil

In order to keep the expression grammar unambiguous, within where expressions
of the form expr, where ident; ‘=" expr; ...identy ‘=" expr; nested where expressions
must be enclosed in braces.

Evaluation of expressions

Evaluation of expressions happens in a given evaluation environment (or environment
for short) and results in a value or an evaluation error. An environment provides partial
functions from attribute occurrences to values and from identifiers to values.

Also required for the evaluation of expressions is a set of globally defined functions
known to the Coala interpreter; Coala provides functions through libraries which are
either built-in or plugged in, and allows to define functions in a specification. Libraries
will be described in Section 4.2.2, user-defined functions will be described in Section 4.1.5.
The application of a function to given argument values results in either a value or an
evaluation error.

The Coala interpreter provides a domain of values which includes at least the follow-
ing:

e the undefined value L

e the Boolean values true and false

integer numbers

floating point numbers
e strings over the [ Unicode character set
e dimensions

Additional sets of values can be supported by user-provided libraries which will be ex-
plained in Section 4.2.2.

In the following the evaluation of each form of expression is described. For compound
expressions containing sub expressions the following general rules apply:

e if not otherwise stated, sub expressions are evaluated in the same environment as
the compound expression

e generally, if the evaluation of a sub expression leads to an error, the evaluation of
the compound expression immediately stops and yields an error too

Constant expressions. All constant expressions evaluate to their represented value.
The undefined value L is represented by nil.
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Attribute occurrences. An attribute occurrence evaluates to the value defined by
the current environment. If the attribute occurrence’s value is undefined an evaluation
error results.

References. An identifier referencing a local variable evaluates to the value defined
by the current environment. If the referenced local identifier is undefined an evaluation
error results.

Function application. An expression of the form ident ‘(" expry ‘,” ..., expry )’
is evaluated as follows. First, the expressions expry,..., expr; are evaluated to values
v1,...,V;. The result of the function application is obtained by applying the function
denoted by ident to the arguments vy, ..., vg. If no function with the given identifier is
known to the Coala interpreter an evaluation error results.

If-then-else. An expression expr, of the form if expr; then expr, else exprs is evalu-
ated in the following fashion. First, ezpr; is evaluated. If the result is no Boolean value
the result of evaluating expr, is an evaluation error. Otherwise, if expr; evaluates to
true, the result is obtained by evaluating expry; if expr, evaluates to false, the result is
obtained by evaluating ezprs.

Let expressions. An expression expr, of the form let ident ‘=" expr, in expry is
evaluated as follows. First, expr; is evaluated. A new environment extending the current
environment is constructed which maps ident to the result of ezpr; (any existing mapping
of ident is overwritten in the new environment). The result of ezpr( is the result of
evaluating expry in this new environment.

9

Where expressions. An expression of the form expr, where ident; ‘=" expry, ...,

identy, ‘=" expr;, is equivalent to:

let ident; ‘=" expr, in

Y

let identy ‘=’ expr; in

expry
Unary expressions. Coala supports the two unary operators ‘=’ and ‘!’ which are
both abbreviations for applications of predefined unary functions: ‘-’ expr is an abbre-
viation for neg ‘C’ expr ‘)’; ‘!’ expr is equivalent to not ‘(" ezpr )’. Those predefined

functions will be described in Section 4.2.2.

Sequential OR. An expression of the form expr; ‘||’ expry is equivalent to the ex-
pression if expr; then true else expr,.

Sequential AND. An expression of the form expr; ‘&&’ expr, is equivalent to the
expression if expr; then expr, else false.
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Binary expressions. Binary expressions of the form expr; binop expry for all binary
operators except ‘&&’ and ‘||’ are abbreviations for function applications f ‘(" expry,
expry )’ where f is a predefined function selected according to Table 4.2. Those prede-
fined functions are described in Section 4.2.2.

’ operator ‘ function ‘ ‘ operator | function ‘
+ plus =’ minus
“x times A div
‘< 1t 7 gt
<=’ le >=’ ge
‘==’ equ e notequ

Table 4.2: Functions corresponding to binary operators

Context conditions imposed on expressions

Expressions must satisfy some context conditions which are checked statically while
loading or compiling a Coala specification. These are listed in the following;:

e References to local variables must be bound by their context. The variable defined
by a let expression is bound within the let expression’s body. Within definitions of
user-defined functions, which are described below in Section 4.1.5, the function’s
parameters are bound within the function’s body expression.

e Attribute occurrences must be defined in the context in which they occur. That
means that an attribute occurrence’s node variable must be bound by an enclos-
ing attribution rule (see Section 4.1.8) or transformation rule (see later in Sec-
tion 4.1.11) and the addressed attribute must be associated with the node variable’s
grammar symbol.

e The function referenced in a function application must be defined. A function can
either be defined by a built-in or user-provided library (see later in Section 4.2.2),
or within the Coala specification as described below. In the latter case the function
definition may occur after the place of application.

Note that some errors which have been described to occur during the evaluation of
expressions are eliminated if the static context conditions above are satisfied.

4.1.5 User-defined semantic functions

A specification can include definitions of semantic functions.

fet_def = fct ident ‘C [ident_list] ‘)’ ‘=" expr

A function defined this way has the arity n equal to the number of specified parameter
identifiers. When applied to n argument values the result is obtained by evaluating the
body expression in an environment that maps the i-th parameter to the i-th argument
value for all 1 < ¢ < n. An error is raised if the function is applied to other than n
arguments.
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4.1.6 Structure of specifications

A specification begins with the declaration of the specification’s name and is followed by
a sequence of declarations. Those declarations can be either the inclusion other speci-
fications, declarations for the specification of an attribute grammar, or transformation
rules.

specification ::= specification ident ‘;’ decl*
decl include_decl

terminal_decl

production _list

fet_def

attr_decl

attr_rules

trafo_rule

4.1.7 1Inclusion of specifications

In order to increase modularity, parts of large specifications can be put in external
specifications and included using a declaration of the form:

include_decl ::= include ident ‘;’

An include declaration instructs the Coala interpreter to load the referenced specification
and make the contained declarations available within the current specification. More
details about loading specifications are described later in Section 4.2.

4.1.8 Specifying attribute grammars

The language constructs for the specification of attribute grammars are declarations
of terminal symbols, productions, attributes and attribution rules. The specification of
attribute grammars can be done in a very concise and readable way which is accomplished
by the following features:

e attribution rules allow expressions on the right hand side, making it unnecessary
to define semantic functions explicitly for each rule

e copy rules, i.e, rules where the semantic function is the identity function applied
to an occurrence of the same attribute as on the left hand side, are automatically
added and can be omitted in most cases

e nonterminal symbols are declared implicitly when occurring on the left hand side
of productions

These features will be described in more detail later. In the following we introduce the
language constructs for specifying attribute grammars.
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Terminal symbols

In the Coala system terminal symbols are treated specially with respect to attribution:
no user-defined attributes can be associated with terminal symbols; instead, all terminal
symbols have exactly one synthesized attribute value which holds a value from Coala’s
semantic domain.

Coala provides one predefined terminal symbol Val representing values from the
semantic domain like Booleans, integers, floating point values and string values, but also
any values supported through libraries other than the built-in standard libraries (see
Section 4.2.2).

The user can specify additional terminal symbols as follows:

terminal_decl ::= terminal ident_list ¢;’

The identifiers from the list on the right hand side are declared as terminal grammar
symbols. These grammar symbols must not already have been declared. Although
declaring additional terminals in this fashion is not strictly necessary (Val can always
be used instead), they are useful to emphasize that they hold only a specific type of
values.

Productions

Productions of context-free grammars can be specified in BNF notation:

production_list = productions ‘{’ productions™ ‘}’
productions = ident ‘::=" prod_rhs_list ‘;’
prod_rhs_list = prod_rhs
| prod_rhs_list ‘|’ prod_rhs
prod_rhs = node_var*
The identifier on the left hand side of ‘: : =" is declared as a nonterminal grammar symbol

and the productions given for it on the right hand side (separated by ‘|’) are declared.
The node variables on the right hand side must refer to grammar symbols defined in
the current specification or in an included specification. Only the symbol part of node
variables is actually relevant here; however, identifiers can be specified for documentary
purposes to distinguish multiple occurrences of the same symbol.

Attribute declarations

Attributes are declared as follows:

attr_decl ::= inherited ident_list with ident_list *;’
| synthesized ident_list with ident_list *;’

An attribute declaration declares the attributes given left of with to be inherited or
synthesized attributes associated with the grammar symbols following with.

All identifiers following with must denote non-terminal grammar symbols having
been defined before. An attribute with a given symbol cannot be declared to be inherited
and at the same time synthesized.
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Attribution rules

Attribution rules are introduced by specifying a production and a list of attribute equa-
tions:

attr_rules = attr node_var ‘::=" node_var* ‘{’ attr_equ™ ‘}’
attr_equ n=  attr_occ ‘=" expr ‘;’
The production referenced by node_var ‘: :=" node_var* must have been declared before.

The following must be true for all attribute equations: the attribute occurrence on the
equation’s left hand side must refer to either a previously declared synthesized attribute
with the production’s left hand side symbol, or a previously declared inherited attribute
with one of the production’s right hand side symbols.

An attribution rule provides a context for the right hand side expressions of its
attribute equations in which all attribute occurrences of the referenced production are
defined. This context is used to statically check the context conditions that have been
listed in Section 4.1.4; further, the expression is always evaluated in an environment that
contains mappings for these attribute occurrences.

Built-in copy rules

In attribute grammars many attributes are often simply passed down to child nodes or
passed up to parent nodes without modification. To free the user of the tedious task of
adding the necessary copy rules manually, Coala adds such rules automatically according
to the following rules:

e if in a production the same inherited attribute is associated with the production’s
left hand side symbol and with a right hand side symbol, and if no rule to compute
the latter attribute occurrence is defined, then a copy rule is implicitly added

e ifin a production the same synthesized attribute is associated with the production’s
left hand side symbol and with some right hand side symbols, and if no rule
to compute the attribute’s occurrence on the left hand side of the production is
defined, then a rule copying the the rightmost occurrence on the right hand side
is implicitly added

Built-in copy rules allow attribute grammars to be specified very concisely as the example
specifications coming up in in Section 4.1.12 and Chapter 5 will show.

4.1.9 Semantics

The semantics of attribute grammar specifications is described in detail in Appendix C.
As an extension as compared to the attribute grammar semantics known from the liter-
ature [26, 7], support for tree fragments as introduced in Section 3.3.2 has been added.
That means that the semantic domain includes the special undefined value 1 which is
handled specially w.r.t. attribution: attributes depending on an other attribute evalu-
ating to L also evaluate to L. Besides, the synthesized attributes at unexpanded nodes
are ensured to evaluate to 1. Further, attributes for which no rule exists always evaluate
to L.
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4.1.10 Attribute evaluation strategy

A note about attribute evaluation strategies is due here. Any evaluation strategy known
from the literature [7] could theoretically be employed by Coala. However, in order to
achieve highest possible efficiency, Coala’s evaluation strategy should have the following
properties:

e it should be lazy, since during a tree transformation potentially many intermediate
trees which are later discarded may be constructed; evaluating only the necessary
attributes on demand will avoid unnecessary overhead

e it should be incremental, since target trees are constructed in an evolutionary
process and evaluating only the changed attributes after replacing an unexpanded
subtree will increase efficiency significantly

4.1.11 Transformation rules

Template syntax is basically the same as in Chapter 3. In addition to node variables,
however, templates can contain expressions. Appearing on a transformation rule’s right
hand side an expression is used to construct a terminal node whose attribute value con-
tains the result obtained by evaluating the expression. Appearing on the left hand side of
a transformation rule, a (constant) expression can be used to constrain the applicability
of a rule.

template w= leaf _template
| node_var ‘<’ template* >’
leaf _template ::= mnode_var
| “Cident 27 expr ‘)’
| C expr ‘)’
| const_expr
| attr_occ
The identifier in a leaf template of the form ‘(’ ident ‘:’ expr ‘)’ specifies the terminal
grammar symbol to use. A leaf template of the form ‘C expr ¢)’ is an abbreviation for
‘Cval ‘.’ expr ‘)’. Similarly, const_expr is an appreviation for ‘C Val ‘:’ const_expr
)" and attr_occ is an abbreviation for ‘(" Val ‘:’ attr_occ *)’.

The syntax of transformation rules is also basically the same as in Chapter 3 with
only slight extensions. A rule is introduced with the keyword rule followed by an op-
tional relation identifier. Then a sequence of source templates, a target template, and
optional transformation rest variables, optional constraints and an optional minimize ex-
pression is specified. Constraints are either semantic constraints specified as (Boolean)
expressions enclosed in square brackets, or syntactic constraints. For the latter an op-
tional relation identifier, a sequence of source variables, a target variable and optional
transformation rest variables are given.
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trafo_rule = rule [rel_ident ‘:")] template* ‘=>’ template
[trafo_rest] [constraints] [minimizer] ‘;’
trafo_rest w= /" node_var*
constraints = where constraint™
constraint = ‘[ expr 1’ 5’
| [rel_ident ‘:’] leaf _template* ‘=>’
leaf _template [trafo_rest] *;’
minimizer = minimize expr ‘;’

Optional parts (except minimizer) are when missing just convenient abbreviations for
more verbose syntax and are automatically supplemented as follows:

e missing rel_ident ‘:’ is supplemented by ‘@@’ ‘:’
e missing trafo_rest is supplemented by /’ €

e missing constraints is supplemented by where ¢

In contrast to the definition of transformation rules in Chapter 3, relation identifiers are
associated with transformation rules and syntactic constraints. This makes it possible
to define more than one transformation relation in a Coala specification and refer to
specific relations in syntactic constraints. Relation identifiers mainly increase the read-
ability of specifications and are only a minor extension of the transformation model from
Chapter 3. It is straightforward to add support for them.

Minimize expressions—if specified—correspond to the objective functions used in
Chapter 3 and can be easily mapped to such functions.

Evaluation of expressions in templates, semantic constraints and minimize
expressions

It is required to describe the handling of expressions in templates and semantic con-
straints as they provide an extension to the model described in Chapter 3.

Expressions in templates and semantic constraints can contain occurrences of at-
tributes of node variables occurring in the rule’s source templates, target template and
transformation rest. At the point when an expression is evaluated during the process of
applying the enclosing transformation rule a variable environment describes the binding
of node variable to nodes (cf Section 3.3.5).

Some node variables can be yet undefined when the evaluation takes place. So, for
the evaluation of an expression a semantic environment is constructed which maps all
attribute occurrences contained in the expression to the attribute’s value at the node
bound by the attribute occurrence’s node variable, or to L if the node variable is not yet
defined. The evaluation of the expression then proceeds as described in Section 4.1.4.

Semantics of templates

For templates containing no expressions the semantics is the same as has been described
in Chapter 3, i.e., Definition 3.2.9 on page 36 directly applies.

In addition, a (leaf) template of the form ‘(" ident ‘:’ expr ‘)’ is instantiated at a
node iff the following is satisfied:
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e the node has the terminal symbol specified by ident

e the attribute value of the node has the value that results from evaluating expr

Semantics of transformation rules

Coala transformation rules are—apart from the minor extensions described above—
directly related to rules as defined in Chapter 3. As expressions are allowed to be
used as semantic constraints it is necessary to map them to k-ary predicates where k
is the number of attribute occurrences in the expression. When evaluating a semantic
constraint a runtime error is raised if the result is not a Boolean value. In a similar way,
minimize expressions have to be mapped to objective functions. Here, the evaluation
result is required to be a number.

4.1.12 Example specification

We will now take a look at a simple example specification. The specified attribute
grammar has already been seen in Chapter 3 and is depicted in a graphical way in
Figure 3.2 on page 29. The transformation rules are those given in Example 3.2.6 on
page 34.

specification ExampleSpec;

// Source grammar
productions {

S :=B;

S u:=1L;

B::=SS;

L = /xemptyx/ ;
}

// Target grammar
productions {

T:=E;

E :=H:

E:=V;

E =A;

H:=EE;

V. .=EE;

A = /xemptyx/ ;
}
fct max(x, y ) =if x >y then x else y
fct zero() =0
fct one() =1

inherited x with E, H V;
synthesized w with E, H, V,

attrk T == E {
E.x =zero();
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}

attr E = A {

E.w =one();

}

attr H = E[1] E[2] {

H.w =plus( E[1].w, E[2].w );
} E[2].x =plus( H.x, E[1].x );

attr 'V = E[1] E[2] {
V.w =max( E[1].w, E[2].w );

//

// transformation S — T

//

rueS — T<E>
where S — E;

rule S[0]< B <S[1] S[2] >> — E<H<E[1] E[2] >>
where S[1] — EJ1];
S[2] — E[2];
[ (Ex +Ew) < 2 ];

rule S[0]< B <S[1] S[2] >> — E< V< E[1] E[2] >>
where S[1] — E[1];
S[2] — E[2];
[ (Ex +Ew) < 2 ];

rule S<L >— E<A<> >

Further examples can be found in the next chapter which examines some practical ap-
plications of Coala.

4.2 The Coala runtime system

This section gives an overview over Coala’s runtime system. The runtime system pro-
vides an API for loading specifications, building and manipulating attributed trees, and
performing transformations. Support specific to document processing is provided which
allows to read documents from XML and to write Postscript output.

First, the most important parts of the Coala runtime system are described. Then the
implementation of semantic domains using function libraries and some built-in libraries
are described. Finally, Coala’s support for output of PostScript files for a built-in page
layout structure are described.
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4.2.1 Loading and interpretation of Coala specifications

The most important components of the Coala runtime system are SpecLoaders for load-
ing specifications and creating an interpreter, and Interpreters themselves allowing to
build and manipulate attributed trees and to perform transformations. Their usage is
outlined next.

Loading Coala specifications

A SpeclLoader provides a generator for Coala interpreters. The basic usage of a
SpecLoader is as follows.

e necessary function libraries extending the semantic domain (see later in
Section 4.2.2) are specified

e Coala specifications are loaded
e an interpreter is generated for the loaded specifications

In the last step the loaded specifications are analyzed and data structures necessary to
efficiently perform the attribution of trees and the transformation of attributed trees
are generated. The result is an interpreter driven by these data structures. This ap-
proach corresponds to the generative approach to document formatters described in
Section 1.2.3.

The resulting Interpreter can then be used to build tree structures and perform
tree transformations. This is described next.

Building attributed tree structures

An Interpreter provides functions allowing to create trees and tree fragments in a
bottom-up fashion. Only syntactically valid trees with respect to the context-free gram-
mar specified in the loaded specifications are allowed to be created.

Also provided are functions for reading tree structures from XML. In order for the
necessary XML files to be given in a convenient format the following functionality is built
in:

e “flat” sequences of XML elements are automatically transformed into recursive
structures based on the specified context-free grammar

e intermediate nodes are automatically supplemented when missing, also based on
the context-free grammar

e if desired, text is transformed into a sequence of words
As an example, assume that the following context-free grammar has been specified:

productions {

Paragraph :»= WordSeq ;
WordSeq = /xemptyx/

| Word WordSeq ;
Word = Val[text] ;

}
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Then the following XML is a valid representation of a Paragraph tree:
<Paragraph>
Lorem ipsum dolor sit

</Paragraph>

Given this XML the tree shown in Figure 4.1 is created.

Paragraph
WordSeq
Word WordSeq
Val /\
"Lorem" Word WordSeq
Val /\
“ipsum" Word WordSeq
Val /\
"dolor" Word WordSeq
Val €

gt

Figure 4.1: Example tree

In order to allow terminal Val nodes with specific values to be specified in XML, map-
pings from string representations to values are predefined for the built-in basic types
and further mappings can be added. This is necessary as XML allows only string at-
tributes. For instance, a terminal Val node with an integer value can be specified as the
XML element <Val type="int" value="10"/>. A dimension of 10pt can be specified as
<Val type="dim" value="10pt"/>.

Performing transformations

An Interpreter of course provides functions allowing to perform transformations. The
most important variant directly corresponds to the execution scheme developed in Sec-
tion 3.3 and takes an optional relation identifier, an array of source nodes, and an anchor
node as arguments, and returns a list of transformation results. A transformation result
consists of a target node and an array of transformation rest nodes.

4.2.2 Function libraries

Coala realizes the semantic domain used for attributing of trees using libraries of func-
tions. Fach library defines functions operating on one or more data types. Besides, a
library can also define functions converting string representations of values of these data
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types to the actual values. The latter functionality is used when reading tree structures
from XML as was described in Section 4.2.1.

Coala already provides several libraries, some of which are built in (i.e., are auto-
matically loaded by a SpecLoader), implementing a set of general purpose functions on
basic data types.

Some library functions are polymorphic; this is true in particular for the standard
arithmetic functions on integers, floating point numbers, and dimensions; e.g., the func-
tion plus is defined for all of these data types.

The data types used by Coala’s built-in libraries form a hierarchy of classes are and
are listed the following.

e Boolean: Boolean values true and false

e Integer: integer numbers

e Double: (double precision) floating point numbers
e Number: all numbers (integer or floating point)

e Dim: dimensions (stored in some standard unit of measure left to the implementa-
tion)

e Str: strings

e Ord: semantic values on which a total order is defined; the types Number, Integer,
Double, Dim, and Str described above are all subtypes of Ord

e TypelFont: Postscript [ Type 1 Fonts known to the Coala system

e Object: any semantic values including all of the values from the data types above
and any data type provided by a user-defined library

Coala’s built-in libraries are:

e DimensionLib: provides functions performing arithmetic operations on dimensions
and conversion between units of measure

e StdLib: operates on Number, Boolean, Str, and Ord

e PSFontLib: operates on Postscript U Type I fonts providing information about
their metrics

The libraries are described in more detail next.

DimensionLib

This library provides arithmetic operations on dimensions and operations for converting
between units of measure. The provided arithmetic operations on dimensions are:

U Dim plus(Dim x, Dim y)

0O Dim minus(Dim x, Dim y)
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U Dim times(Dim x, Number y)
[0 Dim times(Number x, Dim y)
O Dim div(Dim x, Dim y)
[0 Dim times(Dim x, Number y)
0 Dim neg(Dim x)
The operations allowing to convert dimensions to certain units of measure are:
[0 Double to_cm(Dim x)
U Double tomm(Dim x)
U Double to_in(Dim x)
[J Double to_pt(Dim x)

DimensionLib also allows to convert string representations of dimensions to actual di-
mensions. String representations consist of a number followed by an abbreviated unit of
measure (one of cm, mm, in, or pt).

StdLib

StdLib provides several basic functions including arithmetic operations on numbers and
dimensions, comparison operations, and operations on strings.

All arithmetic functions on numbers act like follows: if all arguments are integer
numbers, an integer operation is performed and the result is an integer number too.
Otherwise, all arguments are converted to floating point numbers as necessary, the arith-
metic operation is performed on floating point numbers, and the result is a floating point
number. These are the provided arithmetic operations:

U Number plus(Number x, Number y)
0 Number minus(Number x, Number y)
0 Number times(Number x, Number y)
0 Number div(Number x, Number y)
U Number neg(Number x)

The following functions compare Ord-values.
0 Boolean 1t(0Ord x, Ord y)
0 Boolean gt(Ord x, Ord y)
[0 Boolean le(Ord x, Ord y)

[0 Boolean ge(Ord x, Ord y)
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The function plus applied to strings performs string concatenation. If the second argu-
ment is no string it will be converted to one before.

O String plus(Str x, Object y)
The following operations test objects for equality.
0 Boolean equ(Object x, Object y)
0 Boolean notequ(Object x, Object y)
Negation of Boolean values is performed by the function not.
[l Boolean not(Boolean x)

StdLib also provides functionality for converting string representations of data types
Integer, Double, Boolean and Str to values.

PSFontLib

This library makes the metric characteristics of Postscript [ Type 1 Fonts accessible
to a Coala specification which is required to compute the geometry of text boxes. The
data type TypelFont represents fonts. The following functions operate on TypelFonts.

U TypelFont makeTypelFont(Str name) finds a font by the given name; returns
nil if no font with that name is known

U Dim stringWidth(String text, TypelFont f, Number ptSize) returns the
width of text when rendered in font £ at [point size ptSize; substitution of
Oligatures and O kerning according to the font’s specification is taken account for

U Dim ascender(TypelFont f, Number ptSize) returns the Uascent of a font at
the given size

0 Dim descender(TypelFont f, Number ptSize) returns the Odescent of a font
at the given size

4.2.3 A simple page layout format with PostScript language output

In order to complete the set of features needed for realizing working document formatters,
Coala defines a simple page layout format and provides functionality converting such page
layouts to Postscript. The resulting Postscript is suitable for viewing, printing, and
further conversion to other formats like PDF.

The page layout format supports rules and text. Also supported is cross-referencing
between boxes. This allows to realize hyperlinks in a viewer application. The context-
free grammar productions for the page layout are shown in Figure 4.2 on the next page.
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PageLayout ::= PageSeq
PageSeq = ¢
|  Page PageSeq
Page = Bor
Box = HBoz | VBoz | TextBoz | RuleBox | EmptyBox
| RefBoz | TargetBox
HBozx = DBox Bozx
VBox = DBox Bozx
TextBox = Val[text] Val[fontName] Val[ptSize]
RuleBozx = Val[width] Vallheight] Val[depth]
EmptyBox = Val[width] Val[height] Val]depth]
RefBox = Val[label] Box
TargetBox = Val[label] Box

Figure 4.2: Grammar of Coala’s simple page layout format

4.3 Conclusion

The Coala system provides a specification language and its implementation of the theo-
retic model of optimizing attributed tree transformations described in Chapter 3. The
system includes means to specify attribute grammars in a convenient way and has some
minor extensions to the theoretic transformation model, allowing transformation speci-
fications also to be made in a comfortable way.

Coala further provides ready-to-use tools for dealing with XML files and PostScript
output and as such can be used for realizing practical document formatters.

Coala has been implemented using the Java programming language. The next chapter
will show Coala’s practical application realizing several example document formatters.
Formatting results produced with this Coala implementation are included.






CHAPTER

Example applications

This chapter presents some realistic examples showing the applicability of the new trans-
formation language and its underlying model.

5.1 Line breaking

Line breaking has already been addressed as an introductory example in Chapter 2. In
this section it is now shown how a specification of line breaking can be realized using
Coala. We first handle a solution using global optimization. We then show how the
specification can be modified to achieve variants using local optimization.

5.1.1 Global optimization

As the specification of the source structure and the target structure in the description
of line breaking in Chapter 2 is rather straightforward, we focus on the specification
of the intermediate structure of sequences of lines and the transformation rules for line
breaking.

LineSeq structure
The structure of sequences of lines is described using Coala like follows:

productions {

LineSeq = Val[lineWidth] LineSeq;
LineSeq = /xemptyx/

|  Line LineSeq;
Line = /xemptyx/

| Box Line
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|  Glue Line;
Glue = Val[nat] Val[plus] Val[minus];
}

In contrast to Section 2.3 we do not realize line width as a constant but as an inherited
attribute of the intermediate structure.

We specify the following attributes.

inherited Nat, Plus, Minus with Line;

inherited adjust with Line;
synthesized sAdjust with Line;
synthesized lineCount with LineSeq;
synthesized cost with Line, LineSeq;
inherited lineWidth with LineSeq, Line;
synthesized nat, plus, minus with Glue;
inherited actual with Glue;

Attribution rules

The inherited attribute line Width is initialized at the root of a LineSeq structure. Note
that the copy rules necessary to pass down the attribute to all descendants are added
automatically for us by Coala and thus need not be specified.

attr LineSeq[0] ::= Val[lineWidth] LineSeq[1] {
LineSeq [1]. lineWidth =Val[lineWidth ]. value;
}

The adjustment factor of each line is computed as follows (cf. Figure 2.5 on page 17).

attr Line[0] := Box Line[l] {
Line [1]. Nat =Line [0]. Nat +Box.w;

attr Line[0] := Glue Line[1] {
Line [1]. Nat =Line [0]. Nat +Glue.nat;
Line [1]. Plus =Line [0]. Plus + Glue.plus;
Line [1]. Minus =Line [0]. Minus +Glue.minus;
}

fct f(lineWidth, nat, plus, minus) =

if nat ==lineWidth then 0.0

else if lineWidth >nat && plus != 0.0 then
to_pt(lineWidth —nat) / to_pt(plus)

else if lineWidth <nat && minus != 0.0 then
to_pt(lineWidth —nat) / to_pt(minus)

else if lineWidth >nat then infinity ()

else — infinity ()

attr Line 1= /xemptyx/ {
Line.sAdjust =f(Line.lineWidth, Line.Nat, Line.Plus, Line.Minus);
Line.sNat =Line.Nat;

}
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attr LineSeq[0] ::= Line LineSeq[1] {
Line.iAdjust =Line.sAdjust;
Line.Nat =0.0pt;
Line.Plus =0.0pt;
Line.Minus =0.0pt;
Line.lineWidth =LineSeq [0]. lineWidth;
}

fct g(adjust, nat, plus, minus) =
if adjust > 0.0 then nat + (adjust * plus)
else nat + (adjust * minus)

attr Line[0] := Glue Line[1] {
Glue.actual =g(Line [0]. iAdjust, Glue.nat, Glue.plus, Glue.minus);

}

Here is how the computation of the cost (badness) of a sequence of lines is specified
(cf. Figure 2.11 on page 21).

fct lineCost (lineWidth, nat, plus, minus) =
abs(a)
where
a = f(lineWidth, nat, plus, minus)

attr Line = /xemptyx/ {
Line.cost = lineCost (Line.lineWidth, Line.Nat, Line.Plus, Line.Minus);

}

attr LineSeq := /xemptyx/ {
LineSeq.lineCount =0;
LineSeq.cost = 0.0;

}

attr LineSeq[0] ::= Line LineSeq[1] {

LineSeq [0]. lineCount =LineSeq [1]. lineCount +1;

LineSeq [0]. cost =
(c2 % (n—1) +cl) / n

where

n =LineSeq]0]. lineCount,
cl =Line. cost,
c2 =LineSeq [1]. cost;

Transformation rules

Here is the specification of transformation relation [ constructing possible single next
lines from a (rest) box kerf sequence, described in Section 2.3.

rule @l: BoxKerfSeq[0]< Kerf BoxKerfSeq[1] >— Line<> / BoxKerfSeq[1]
where
[ Line.Nat +Line.Plus > Line.lineWidth |;
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rule Ol: BoxKerfSeq[0]< Kerf< Val[nat] Val[plus] Val[minus] > BoxKerfSeq[1] >
— Line [0] <
Glue< Val[nat] Val[plus] Val[minus] >
Line [1]
> / BoxKerfSeq[2]
where
[ Line [1]. Nat —Line [1]. Minus < Line [1]. lineWidth |;
Ol: BoxKerfSeq[1] — Line[1] / BoxKerfSeq[2];

rule OI: BoxKerfSeq[0]< Box[0] BoxKerfSeq[1] >
— Line[0] < Box[1] Line[1] >/ BoxKerfSeq[2]
where
Box[0] — Box|[1];
[ Line [1]. Nat —Line [1]. Minus < Line [1]. lineWidth |;
@l: BoxKerfSeq[1] — Line[1] / BoxKerfSeq[2];

And this is how transformation relation Is from Section 2.3 constructing sequences of
lines is specified using Coala.

rule Qls: BoxKerfSeq<> —LineSeq<>
rule Qls: BoxKerfSeq[0] — LineSeq[0]< Line LineSeq[1] >
where
@I: BoxKerfSeq[0] — Line / BoxKerfSeq[1];
Qls: BoxKerfSeq[1] — LineSeq[1];
minimize LineSeq[0].cost;

An example formatting result will be shown in Section 5.1.3. Next, we discuss some
variants of the line breaking specification.

5.1.2 Variants

Besides global optimization described above some well-known other approaches to line
breaking exist [35], as already discussed in Chapter 2. They can be characterized as
follows:

e First fit: lines are broken as early as possible
e Local optimization (best fit): next line is always chosen such that its cost is minimal
e Last fit: lines are broken as late as possible

It is quite easy to adapt the line breaking specification developed so far to achieve these
variants of formatting. All that has to be done is basically to change the minimize
clause and move it to a different place. As an example we look at a specification using
local optimization (best fit).

rule Ql_local : BoxKerfSeq[l] — Line / BoxKerfSeq|[2]
where
Ql: BoxKerfSeq[l] — Line / BoxKerfSeq[2];
minimize Line.cost;

rule Qls_local : BoxKerfSeq<> —LineSeq<>
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rule QIs_local : BoxKerfSeq[0] — LineSeq[0] < Line LineSeq[1] >
where
Ql_local : BoxKerfSeq[0] — Line / BoxKerfSeq[1];
Qls_local : BoxKerfSeq[1] — LineSeq[1];

In order to realize first fit and last fit line breaking it is only necessary to minimize or
maximize the number of boxes in a line.

Example runs showing the output of our formatter in all discussed variants for an
example text are shown next.

5.1.3 Example runs

As an example run, the beginning of Jack London’s The Sea- Wolf [29] was processed by
our formatters. The resulting sequence of lines was converted to a PageLayout structure
(see Section 4.2.3) containing a single page, and then converted to Postscript. The
result for each formatting variant is shown in Figure 5.1 on the following page.

5.2 A page formatter

This section shows how page breaking can be specified using Coala. The transformation
described takes two streams, one consisting of styled text paragraphs and one consisting
of figures, and produces a sequence of pages with the following properties:

e paragraphs are broken into lines using global optimization as described before

e each resulting page contains two areas, one for figures and one for text lines; either
of these areas may be empty

e each resulting page is neither underfull nor overfull; stretchable and shrinkable
glue is inserted between adjacent figures, between figures and text area (if both
are non-empty), and between consecutive paragraphs; as an exception, the last
page may be underfull

e 1o figure appears on a page before the first reference to it

e the resulting sequence of pages is globally optimal w.r.t. some yet to be defined
measure of layout quality

The source structure consists of two sequences: one containing text paragraphs (each
having its own font), and one containing figures described by a label (for reference), a
description, and its size. Text paragraphs can contain references to figures. The following
shows how this source structure is specified:

productions {

Article = ParagraphSeq FigureSeq;
FigureSeq 1= /[xemptys/

|  Figure FigureSeq;
Figure = Val[ label]

Val[width] Val[height]
Val[ description |;
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| scarcely know where to begin, though | sometimes facetiously place
the cause of it al to Charley Furuseth’'s credit. He kept a summer
cottage in Mill Valley, under the shadow of Mount Tamalpais, and never
occupied it except when he loafed through the winter months and read
Nietzsche and Schopenhauer to rest his brain. When summer came on,
he elected to sweat out a hot and dusty existence in the city and
to toil incessantly. Had it not been my custom to run up to see
him every Saturday afternoon and to stop over till Monday morning,
this particular January Monday morning would not have found me afloat
on San Francisco Bay.

Not but that | was afloat in a safe craft, for the Martinez was a
new ferry-steamer, making ...

| scarcely know where to begin, though | sometimes facetiously place the cause
of it al to Charley Furuseth’s credit. He kept a summer cottage in Mill Valley,
under the shadow of Mount Tamalpais, and never occupied it except when he
loafed through the winter months and read Nietzsche and Schopenhauer to rest
his brain. When summer came on, he elected to sweat out a hot and dusty
existence in the city and to toil incessantly. Had it not been my custom to
run up to see him every Saturday afternoon and to stop over till Monday
morning, this particular January Monday morning would not have found me
afloat on San Francisco Bay.

Not but that | was afloat in a safe craft, for the Martinez was a new
ferry-steamer, making ...

| scarcely know where to begin, though | sometimes facetiously place the cause
of it al to Charley Furuseth’'s credit. He kept a summer cottage in Mill Valley,
under the shadow of Mount Tamalpais, and never occupied it except when he
loafed through the winter months and read Nietzsche and Schopenhauer to rest
his brain. When summer came on, he elected to sweat out a hot and dusty
existence in the city and to toil incessantly. Had it not been my custom to run
up to see him every Saturday afternoon and to stop over till Monday morning,
this particular January Monday morning would not have found me afloat on
San Francisco Bay.

Not but that | was afloat in a safe craft, for the Martinez was a new
ferry-steamer, making ...

| scarcely know where to begin, though | sometimes facetiously place the cause of it
al to Charley Furuseth’'scredit. He kept a summer cottage in Mill Valley, under the
shadow of Mount Tamalpais, and never occupied it except when he loafed through
the winter months and read Nietzsche and Schopenhauer to rest his brain. When
summer came on, he elected to sweat out a hot and dusty existence in the city and
to toil incessantly. Had it not been my custom to run up to see him every Saturday
afternoon and to stop over till Monday morning, this particular January Monday
morning would not have found me afloat on San Francisco Bay.

Not but that | was afloat in a safe craft, for the Martinez was a new ferry-steamer,
making ...

First fit

Locally optimal

Globally optimal

Last fit

Figure 5.1: Formatting results for example article
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ParagraphSeq ::1= /xemptyx/
|  Paragraph ParagraphSeq;
Paragraph ::= Font WordSeq
|  WordSeq;
WordSeq = /xemptyx*/
|  Word WordSeq;
Word = Val[text]
|  Reference;
Reference = Val[ label |;
Font ::= Val[fontName] Val[fontSize ];

Note that this structure can easily be produced from a purely logical article structure
where font information is derived from logical structure.

A consecutive number is assigned to each figure which is stored in a symbol table.
This number is used when figures are referenced in text.

inherited figureCount with FigureSeq, Figure;
inherited iFigureRefTable with FigureSeq, Figure;
synthesized sFigureRefTable with FigureSeq, Figure;
synthesized label with Figure;

attr Article ::= ParagraphSeq FigureSeq {
FigureSeq.figureCount =1,
FigureSeq. iFigureRefTable =symtab_empty_table();
ParagraphSeq.refTable =FigureSeq.sFigureRefTable;

}

attr FigureSeq 1= /xemptyx/ {
FigureSeq.sFigureRefTable =FigureSeq.iFigureRefTable ;
}

attr FigureSeq[0] ::= Figure FigureSeq[1] {
FigureSeq [1]. figureCount =FigureSeq [0]. figureCount + 1;
FigureSeq [1]. iFigureRefTable =
symtab_put(FigureSeq[0]. iFigureRefTable ,
Figure. label , FigureSeq [0]. figureCount);

}

attr Figure ::= Val[label] Val[width] Val[height] Val[ description] {
Figure. label =Val[label ]. value;
}

inherited refTable with ParagraphSeq, Paragraph, WordSeq, Word, Reference;
synthesized refText with Reference;

attr Reference ::= Val[label] {
Reference. refText ="" +symtab_get(Reference. refTable, Val[label |. value);

}
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Symbol tables are realized using a data structure SymbolTable on which the following
operations are defined:

U SymbolTable symtab_empty_table() constructs an empty symbol table

U SymbolTable symtab_put(SymbolTable table, Object key, Object value)
puts an entry into a symbol table, constructing a new table

[J Object symtab_get(SymbolTable table, Object key)
retrieves the value stored under the given key from a symbol table, or nil if the
symbol table does not contain the given key

The target structure is again chosen to be the page layout structure as defined in Sec-
tion 4.2.3 for which Coala provides functionality to produce Postscript code.

5.2.1 Area model

An intermediate structure of areas is used for the transformation. An area can in general
be thought of as a container for vertically arranged boxes, glues, and subareas. Each
area’s height is constrained by a minimum and a maximum dimension. Two types of
areas, VAreas and PageAreas are used:

e a VArea is a sequence of boxes and glues from one of the two input sequences (text
lines or figures); a VArea can end in a special End element indicating that the end
of the input sequence has been reached

e a PageArea contains two VAreas, one for figures and one for lines of text, separated
by a glue

The structure of areas is specified by the following Coala productions:

productions {
PageAreaSeq ::= /xemptyx*/
| PageArea PageAreaSeq
| Val[pageHeight] PageAreaSeq ;

PageArea ::= VArealfigArea] Glue[sep] VArea[textArea] ;
VArea = /xemptyx/
| End
| Box VArea
| Glue VArea;
End = /xemptyx/;
}

During transformations we will need to know if a given area is empty (i.e., contains no
boxes or glue) and if it is the last area for the corresponding figure or text sequence (i.e.,
contains an End element). For this purpose the synthesized is_empty and is_last are
introduced. The necessary attribution rules are omitted here.

Natural height, stretchability and shrinkability of areas are described using synthe-
sized attributes nat, plus and minus, respectively. Figure 5.2 on page 108 shows the
computation of these attributes for VAreas. The attribution of PageAreas is shown in
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Figure 5.3 on the following page, Figure 5.4 on page 109 and Figure 5.5 on page 109.
Note that the Glue separating figure and text areas only contributes to the PageArea’s
attribute values if both subareas are non-empty. The corresponding part of the Coala
specification looks like follows.

attr VArea[0] ::= Box VArea[1] {
VArea[0].nat =Box.h +Box.d +VArea[l].nat;
VArea[0]. plus =0.0pt +VArea[1]. plus;
VArea[0]. minus =0.0pt + VArea[1]. minus;

}

attr VArea[0] ::= Glue VArea[1] {
VArea[0].nat =Glue.nat +VArea[l].nat;
VArea[0]. plus =Glue.plus +VArea[l].plus;
VArea[0]. minus =Glue.minus +VArea[1]. minus;

}

attr VArea ;1= /xemptyx/ {
VArea.nat =0.0pt;
VArea.plus =0.0pt;
VArea.minus =0.0pt;

}

attr VArea ::= End {
VArea.nat =0.0pt;
VArea.plus =0.0pt;
VArea.minus =0.0pt;

}

attr PageArea ::= VArea[figs] Glue[sep] VArea[text] {
PageArea.nat =
VArea|figs |. nat + VArea[text]. nat + glue_nat
where
glue_nat =
if VArea[figs |.is_.empty || VArea[text].is_empty then 0.0pt
else Glue[sep]. nat;
PageArea.plus =
VArea(figs |. plus + VArea[text]. plus + glue_plus
where
glue_plus =
if VArea[figs |.is_.empty || VArea[text].is_.empty then 0.0pt
else Glue[sep]. plus;
PageArea.minus =
VArea([ figs |. minus +VArea[text |. minus +glue_minus
where
glue_minus =
if VArea[figs |.is_.empty || VArea[text].is_empty then 0.0pt
else Glue[sep]. minus;

}

In order to be able to create neither underfull nor overfull pages we introduce the inher-
ited attributes min and maz giving the minimum and maximum height of VAreas. For



108 Example applications

nat plus minus nat plus minus
VArea O O O VAreao 0O O

\\ A3 \ T /
SN

N N
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N N

Box O O VAreao 0O O End
h d nat plus minus
nat plus minus nat plus minus

VArea O O VArea O O O

AN L

Glueo o o VArea O O O
nat plus minus nat  plus minus

Figure 5.2: Computation of natural height, stretchability and shrinkability of areas (1)

nat
PageArean

—

VArea O m| Glue O VArea O O
nat is_empty nat nat is_empty

natHeight(naty, is_empty, , naty, naty, is_emptyo) =
naty + natiq + nato
where

nat! — 0.0pt if is_empty, V is_emptyo
9 natg  otherwise

Figure 5.3: Computation of natural height, stretchability and shrinkability of areas (2)

PageAreas, the subarea for figures gets a minimum height of Opt and a maximum height
of the page height; the remaining space on the page is assigned to the subarea for text.
The attribution is shown in Figure 5.6 on page 110 and Figure 5.7 on page 111. For
VAreas consisting of a box or glue and a subarea, the subarea is assigned the VArea’s
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plus
PageArean

—

VArea O O Glue O VArea O O
plus is_empty plus plus is_empty

plusHeight(plusy, is_emptyy , plus 5, plusy, is_emptyy) =
plusy + plus; + plusg
where

; _ J0.0pt if dis_empty; V is_emptyqy
plus, = A
g plusg otherwise

Figure 5.4: Computation of natural height, stretchability and shrinkability of areas (3)

minus
PageArean

—

VArea O O Glue O VAreano O
minus is_empty minus minus is_empty

minusHeight(minusy, is_emptyq, Minus g, minusa, is_emptyg) =
minusy + minus; —+ minusg
where
X , _ J0.0pt if is_empty; V is_emptyy
minus g, = . R
minusg otherwise

Figure 5.5: Computation of natural height, stretchability and shrinkability of areas (4)

space minus the space used up by the box or glue. The attribution of VAreas is depicted
in Figure 5.8 on page 111 and specified using Coala as follows.

attr PageArea ::= VArea[figs] Glue[sep] VArea[text] {
VArea(figs ]. min =0pt;
VArea|figs |. max =PageArea.page_height;
VArea[text |. min =
PageArea.page_height —VArea|figs |. nat — VArea[figs ]. plus —maxSepHeight
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where
maxSepHeight =if VArea[figs ]. is_empty then Opt
else Glue[sep]. nat + Glue[sep]. plus;
VArea[text |. max =
PageArea.page_height —VArea|figs |. nat 4+ VArea[figs ]. minus —minSepHeight
where
minSepHeight =if VArea[figs ]. is_empty then Opt
else Glue[sep].nat — Glue[sep]. minus;

}

attr VArea[0] ::= Box VArea[1] {
VArea[1].min =VArea[0]. min —Box.h —Box.d;
VArea[1]. max =VArea[0].max —Box.h —Box.d;
}

attr VArea[0] ::= Glue VArea[l] {
VArea[1].min =VArea[0].min —(Glue.nat + Glue.plus);
VArea[1].max =VArea[0].max —(Glue.nat — Glue.minus);

}

page_height
O PageArea

|:|/ VArea 0 O D/Glue |:|f\|:| \D VArea

min nat plus is_empty nat plus min

\@

minHeight(pageHeight, naty, plusy , is_emptyq, nata, plusy) =
pageHeight — (naty + plusy) — maz_sep_height
where

height 0.0pt if  is_empty
mazx_sep_hei =
P g nato + plusy  otherwise

Figure 5.6: Computation of minimum heights for PageAreas

For computation of actual glue sizes, a PageArea’s natural height nat, stretch factor plus
and shrink factor minus, and the desired page height page_height is taken into account
and an adjust factor « is computed such that

nat + a X plus = page_height

or
nat + o X minus = page_height

depending on whether page_height is greater than or less than nat. If such an a does
not exist it is assigned an infinite value. The actual size act_size of each Glue is then
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page_height
.U PageArea

e \
o VArea O O m] Glue o O O
max nat minus is_empty nat minus max

VArea

mazHeight(pageHeight, naty, minusy, is_emptyq, naty, minusg) =
pageHeight — (naty — minusy) — min_sep_height

where

0.0pt
min_sep_height = { P

nato — minusg

if  is_emptyq

otherwise

Figure 5.7: Computation of maximum heights for PageAreas

min max
o VArea o VArea
/O /O
@ \ @ \
Box D/Df o VArea Box D/D/‘ o VArea
h d min h d max
min max
o VArea 0o VArea
/G) /C)
@ \ S,
a
Glueo O o VArea Glueo o O VArea
nat plus min nat minus max

Figure 5.8: Computation of minimum and maximum heights for VAreas

computed as nat + a X plus if a > 0, or nat + o X minus otherwise. The attribution
realizing this is shown in Figure 5.9 on page 113 and Figure 5.10 on page 114. The
corresponding Coala code is as follows.

fct adjustFactor (nat, plus, minus, pageHeight) =
if nat >pageHeight && minus != Opt then
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(pageHeight —nat) / minus

else if nat <pageHeight && plus != Opt then
(pageHeight —nat) / plus

else infinity ()

fct actSize(adjust, nat, plus, minus) =
if adjust > 0 then nat + (adjust * plus)
else nat + (adjust * minus)

attr PageAreaSeq[0] ::= PageArea PageAreaSeq[1] {
PageArea.adjust =
if PageArea. is_last then 0.0
else adjustFactor (PageArea.nat, PageArea.plus, PageArea.minus,
PageAreaSeq[0].page_height);
}

attr PageArea ::= VArea[figs] Glue[sep] VArea[text] {
Glue[sep]. actual =
if VArea|figs |. is_.empty then Opt
else actSize (PageArea.adjust, Glue[sep]. nat,
Glue[sep]. plus, Glue[sep]. minus);

}

attr VArea[0] ::= Glue VArea[l] {
Glue. actual = actSize (VArea[0]. adjust, Glue.nat, Glue.plus, Glue.minus);

}

An appropriate measure for the cost or badness of a PageArea is the adjustment fac-
tor’s absolute value. The cost of a PageAreaSeq we simply define to be the average of
all PageAreas’ cost. The cost is stored in the synthesized attribute layout_cost. The
corresponding attribution rules are straightforward and therefore omitted.

5.2.2 Managing cross references

One of our requirements is consistent cross referencing, i.e., no figures are placed on
a page before their first reference in the text. So we need a way to determine if a
PageAreaSeq being built is consistent w.r.t. this requirement. We realize this using a
new user-defined symbol table-like data structure XRefTable keeping track of all figures
and references to them in a PageSeq structure. A cross reference table contains the
following information:

e the current page number

e a set of pairs, each consisting of a label and a page number representing the target
objects (in our case figures) placed so far

e a set of pairs, each consisting of a label and a page number representing the
references placed so far

All operations on cross reference tables are purely functional, i.e., once constructed, cross
reference tables never change; instead, operations adding information to an existing table
always construct a fresh new table. The following operations are provided.
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PageAreaSeq

Val O O PageAreaSeq
value page_height

page_height

O PageArean 0O O m| O PageAreaSeq
adjust nat plus minus is_last page_height

adjustFactor(nat, plus, minus, is_last, page_height)

def
Opt if  is_last
adjusf,Facf,or/(na,t, plus, minus, page_height) otherwise

adjustFactor’ (nat, plus, minus, page_height) = def

(page-height — nat)/plus if nat < page_height A plus # Opt
(page_height — nat) /minus if nat > page_height A minus # Opt

oo otherwise

Figure 5.9: Computation of adjustment factor

XRefTable xref _empty_table()

Description: Creates a new empty cross reference table with current page num-
ber 1

Returns: A new table

XRefTable xref_add ref (XRefTable table, String label)

Description: Adds a cross reference on the current page to an existing table
Parameters:

table: the existing cross reference table

label: the referenced object’s label

Returns: A new table with the added reference

XRefTable xref_add target(XRefTable table, String label)
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adjust
o PageArea

AN
VArea 0O O Glueo o o VArea
is_empty actual nat plusminus
. . . X _ Opt if  is_empty
actualSize(is-empty, adjust, nat, plus, minus) T def {act'LLalSize/(adju.st7 nat, plus, minus) otherwise
t djust lus if djust >
actualSize’ (adjust, nat, plus, minus) =, nat + adjust X plus if adjust 20
ef | nat + adjust X minus otherwise

Figure 5.10: Computation of actual glue sizes

Description: Adds a target object (figure) on the current page to an existing
table

Parameters:

table: the existing cross reference table
label: the target’s label
Returns: A new table with the added target

XRefTable xref new page(XRefTable table)

Description: Starts a new page
Parameters:
table: an existing cross reference table

Returns: A new table with incremented current page number
Boolean xref_is_consistent (XRefTable table)

Description: Determines if a cross reference table is consistent, i.e., contains
no target objects (figures) whose page number is less than that of its first
reference

Parameters:
table: a cross reference table

Returns: true if the table is consistent, false otherwise

An inherited attribute i_zref_table and a synthesized attribute s_zref _table are intro-
duced for passing a cross reference table through a PageAreaSeq structure and collecting
all figures and references. Figure 5.11 on the facing page shows how the attributes
i_zref _table and s_zref _table are computed. Not shown is that at terminal Bozes the
i_zref _table attribute is copied to the s_zref _table attribute.



5.2 A page formatter 115

PageAreaSeq

xref_empty_table

N
Val O PageAreaSeq
i_xref_table

i_xref_table s_xref_table
O PageAreaSeq O
A

/\

o PageArea O O  PageAreaSeq O
i_xref_table s_xref_table i_xref_table s_xref_table
i_xref_table s_xref_table i_xref_table s_xref_table

O RefBox O o TargetBox 0O
% %

Val o ] Box ] Val o ] Box O
value i_xref_table s_xref_table value i_xref_table s_xref_table

Figure 5.11: Computation of cross referencing information

5.2.3 Transformation rules

We now turn to the transformation rules of our page formatter. The necessary rules can
be roughly categorized as follows:

1. creation of (vertical) BoxKerfSegs for text and figures
2. construction of single pages

3. construction of optimal PageAreaSeqs

4. transformation of PageAreaSeq to a PageLayout

In order to save space, Coala rules are only listed for the essential rules (items 2. and
3. in the listing above). The other parts are described in verbal fashion only.
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Construction of BoxKerfSeqs
The BoxKerfSeq for the text is constructed as follows:

e a box for each text line is constructed as described in Section 5.1; for each para-
graph a sequence of boxes results

e for each paragraph a box-kerf sequence is constructed such that Owidows and
Oorphans are avoided; i.e., kerfs are inserted between all adjacent boxes but be-
tween the first and the second, and between the second last and the last

e a box-kerf sequence for all text paragraphs results by concatenating all box-kerf
sequences for each paragraph, inserting a kerf with a somewhat stretchable and
shrinkable glue in between

The box kerf sequence for the document’s figures is constructed by creating a placeholder
box for each figure (a framed box of the figure’s size containing the figure’s caption) and
inserting a kerf between adjacent figures.

Construction of PageAreas

We now define rules constructing a PageArea from two source BozKerfSegs leaving two
rest BoxKerfSeqs.

As a PageArea contains two VAreas, we first specify how a single VArea is to be
constructed from a single box kerf sequence leaving a remaining rest box kerf sequence.
We have to make sure that the resulting VArea’s height is within its minimum and
maximum height, and that if the end of the box-kerf sequence has been reached the
resulting VArea ens with an End element. Here are the corresponding Coala rules.

rule Ovbreak: BoxKerfSeq<> —VArea<End<>> /BoxKerfSeq

rule Qvbreak: BoxKerfSeq[0]<Kerf BoxKerfSeq[1]>
— VArea<> /BoxKerfSeq[0]
where
[ VArea.min < 0.0pt && 0.0pt < VArea.max |;

rule Qvbreak: BoxKerfSeq[0]<Kerf BoxKerfSeq[1]>
— VArea[0]<Glue VArea[l]> /BoxKerfSeq[rest]
where
[ VArea[0].max >0.0pt |;
Kerf — Glue;
Ovbreak: BoxKerfSeq[1l] — VArea[l] / BoxKerfSeqrest];

rule Qvbreak: BoxKerfSeq[0]<Box[1] BoxKerfSeq[1]>
— VArea[0]<Box[2] VArea[l]> / BoxKerfSeq]rest]
where
Box[1] — Box[2];
[ VArea[l].max >0.0pt |;
Q@vbreak: BoxKerfSeq[1] — VArea[l] / BoxKerfSeq[rest|;

rule Kerf<Val[nat] Val[plus] Val[minus]>
— Glue<Val[nat] Val[plus] Val[minus]>
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One note should be made about the second rule which implements breaking at a kerf.
The rest box-kerf sequence is in this case the complete input box-kerf sequence including
the initial kerf. The reason for this is that if the initial kerf were removed the next page
would necessarily contain the next box as there would be no more kerf to break at. That
means, e.g., that all figures would be placed on consecutive pages which is clearly not
intended.

Using the above @vbreak rules it is now easy to specify the construction of pages.

rule @PageArea: BoxKerfSeq[1] BoxKerfSeq|[2]
— PageArea< VArea[l] Glue[sep] < 20.0pt 20.0pt 2.0pt > VArea[2] >/
BoxKerfSeq[3] BoxKerfSeq[4]
where
@vbreak: BoxKerfSeq[1] — VArea[l] / BoxKerfSeq[3];
@vbreak: BoxKerfSeq[2] — VArea[2] / BoxKerfSeq[4];
[ !PageArea.is_empty |;

Construction of optimal PageAreaSeqs

We are now ready to define the complete transformation of two box-kerf sequences to
an optimal sequence of pages. The basic procedure is as follows:

1. construct new PageArea (as described above)
2. check that the cross reference table is still consistent
3. continue formatting with remaining box kerf sequences

4. choose resulting PageAreaSeq with minimal layout cost
This is specified using Coala like follows.

rule @PageAreaSeq: Val[page_height] BoxKerfSeq[1] BoxKerfSeq[2]
— PageAreaSeq[0]< Val[page_height] PageAreaSeq[1] >
where
©@PageAreaSeq: BoxKerfSeq[1] BoxKerfSeq[2] —PageAreaSeq[1];

rule @PageAreaSeq: BoxKerfSeq[1]<> BoxKerfSeq[2]<> —PageAreaSeq<>

rule @PageAreaSeq: BoxKerfSeq[1] BoxKerfSeq[2]

— PageAreaSeq[0]< PageArea PageAreaSeq[1] >

where
[ !(BoxKerfSeq[1].isEmpty && BoxKerfSeq[2].isEmpty) |;
©@PageArea: BoxKerfSeq[1] BoxKerfSeq|[2]

— PageArea / BoxKerfSeq[3] BoxKerfSeq[4];

[ xref_is_consistent (PageArea. s xref_table ) |;
©@PageAreaSeq: BoxKerfSeq[3] BoxKerfSeq[4] —PageAreaSeq[1];
minimize PageAreaSeq[0].layout_cost;

Construction of a PageLayout

In order to obtain a PageLayout from a PageAreaSeq additional rules are necessary.
The main task is to convert each glue element to empty boxes of the glue’s actual size.
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Further it is necessary to create the margins of each page using empty boxes. And, for
the purpose of this chapter, each page box is surrounded with a frame constructed from
rule boxes. This straightforward procedure is omitted here.

5.2.4 Example run

We now take a look at an example run of our formatter. As an example document serves
a slightly modified article about Murphy’s Law from Wikipedia [53]. The document
contains some paragraphs of text—including a title, subtitle and section headers using
different fonts—and three figures referenced in the text.

The PageLayout structure resulting from the formatting process was written to a
Postscript file using Coala’s built-in converter (see Section 4.2.3). The resulting article
is shown in Figure 5.12 on the next page and Figure 5.13 on page 120.

5.3 Ideas for further applications

Coala and its transformation model were designed to solve problems from the field of
document processing. However, the new transformation model is rather universal and
as such applicable in other fields as well. To give an idea, this section briefly outlines a
problem from the field of compiler construction that can be approached using Coala and
ideas for application in the field of user interfaces.

5.3.1 Code generation optimizing order of execution

The first example from the field of compiler construction that will be addressed is that
of generating optimal machine instruction sequences for binary arithmetic expressions.

Consider a simple stack-based target machine whose instructions are shown in Ta-
ble 5.1 where for each instruction the change at the top of the stack is shown.

instruction stack change ‘
push x e — -+ wval(z)

add R — - (v1 +v2)
sub cee v Vg — e (v — )
sub? cee ] U — - (v — 1)

Table 5.1:  Instructions of simple target machine; = stands for a (symbolic) memory
location, val(z) for the numeric value at that location, and vy, ve for numeric values

For a given arithmetic expression containing binary operators multiple target code
sequences exist, as the two sub expressions of a binary expression can be evaluated in
any order. As an example, consider the expression (a + b) — (c —(d+ e)). Table 5.2 on
page 120 shows two possible sequences of target machine instructions implementing this
expression (such that the expression’s result is on the top of the stack after executing the
instruction sequences). The instruction sequence on the left hand side always evaluates
the left hand side expression of each binary expression first, while the sequence on the
right hand side always evaluates sub expressions in reverse order.
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Murphy’s law

From Wikipedia, the free encyclopedia

Murphy’s law (sometimes confused with Finagle's
Corollary or in some western cultures as Sod’s law)
is a popular adage in Western culture developed in
rocket-sled tests in the late 1940s, which broadly
states that things will go wrong in any given situation,
if you give them a chance. "If there’s more than one
way to do a job, and one of those ways will result
in disaster, then somebody will do it that way." It is
most often cited as "Whatever can go wrong, will
go wrong", per researcher Nicholas T. Spark, author
of the book 'A History of Murphy’s Law’[1].

In American culture the law was named somewhat
sarcastically by Stapp’s Team working on Project
MX981 at Edwards Air Force Base after Major
Edward A. Murphy, Jr., a development engineer
contributing support measurement technology for a
brief time on rocket sled experiments done by the
United States Air Force in 1949 with inveterate
adage collector and the law’s undoubted populizer
Doctor/Colonel John Paul Stapp, a former next-door
neighbor and friend of Murphy.

Author Nick T. Spark concludes 'A History of
Murphy’s Law’[2] that differing recollections years
later are unable to pinpoint who exactly coined the
phrase in its now well known form in the several

months since the team tried new measurement
devices developed by the eponymous Edward
Murphy, but that is was coined in adverse reaction
to something Murphy said when his devices failed
to perform and eventually cast into its present form
prior to a press conference some months later, the
first ever (of many) given by Colonel Stapp, The
fastest man on earth.

Figure 1 shows a popular American poster depicting
many humorous applications of Murphy’s law.

The letter of the law

Accounts differ as to the precise origin of
Murphy’s law and the details about how it was
initially formulated, which conflicts (a long running
interpersonal feud, in truth) were unreported until
Spark researched the matter. By far the most
in-depth discussion of the various accounts is the
book A History of Murphy's Law by Nick T. Spark,
which expands upon and documents his original four
part article published in 2003 (Annals of Improbable
Research (AIR)) on the controversy: Why Everything
You Know About Murphy’s Law is Wrong. From
1947 to 1949, a project known as MX981 took
place on Muroc Field (later renamed Edwards Air
Force Base) for the purpose of testing the human

tolerance for g-forces during rapid deceleration. The
tests used a rocket sled mounted on a railroad
track with a series of hydraulic brakes at the end.

Initial tests used a humanoid crash test dummy
strapped to a seat on the sled, but subsequent
tests were performed by medical doctor John Paul
Stapp, at that time a Air Force Captain. During the
tests, questions were raised about the accuracy of
the instrumentation used to measure the g-forces
Captain Stapp was experiencing. Edward Murphy
proposed using electronic strain gauges attached to
the restraining clamps of Stapp’s harness to measure
the force exerted on them by his rapid deceleration.
Murphy was engaged in supporting similar research
using high speed centrifuges to generate G-forces.
Murphy’s assistant wired the harness, and a trial
was run using a chimpanzee.

The sensors provided a zero reading, however;
it became apparent that they had been installed
incorrectly, with each sensor wired wrongly. It was
at this point that a disgusted Murphy made his
pronouncement, despite being offered the time and
chance to calibrate and test the sensor installation
prior to the test proper, which he declined
somewhat irritably getting off on the wrong foot
with the MX981 team. In an interview conducted by

Fig. 1: Poster of Mirphy's Laws

Nick Spark, George Nichols, another engineer who
was present, stated that Murphy blamed the failure
on his assistant after the failed test, saying, "If that
guy has any way of making a mistake, he will."
Nichols’ account is that "Murphy’s law" came about
through conversation among the other members of
the team; it was condensed to “If it can happen, it
will happen,” and named for Murphy in mockery of
what Nichols perceived as arrogance on Murphy’s
part. Another account credits Doctor Captain Stapp
(known both as the fastest man on earth and
a habitual collector of adages), with espousing
it shortly afterwards during a press conference.
Others, including Edward Murphy’s surviving son
Robert Murphy, deny Nichols’ account (which is
supported by Hill, both interviewed by Spark), and
claim that the phrase did originate with Edward
Murphy. According to Robert Murphy’s account, his
father's statement was along the lines of “If there’s

Figure 5.12: Example article (1)

Table 5.2 on the next page also shows the number of temporary values on the stack
after each instruction. Observe that the instruction sequence on the left hand side
requires one more temporary cell on the stack. If, for instance, the target machine uses
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* When you need an item that is in a heap, it will
always be the one at the bottom.

Fig. 2: Falling toast

* Buses take ages to arrive, but when they do they
always arrive in sets of three (in Britain "you wait
ages for a bus, then two come along at once!").
There actually is a logical explanation for this: the
first bus is slowed down because of the time needed
to let passengers get on and off. The subsequent
buses are (typically) not allowed to pass the first
bus, so you tend to end up with a full bus followed
by a line of empty ones.

Fig. 3: Mathematical fornmula for Mirphy's |aw

* The day you forget your umbrella, it pours with rain.

more than one way to do a job, and one of those N

ways will result in disaster, then somebody will do it
that way." Other documents indicate that Robert A.
Murphy himself changed his story several times on
several different occasions, including on an lengthy
radio station interview which survives.

The spirit of the law

A mathematical formula for Murphy's Law is shown
in Figure 3

Examples

* A slice of buttered bread, when dropped, will
always land butter-side down (see Figure 2 ).

Figure 5.13: Example article (2)

instruction sequ. 1 | stack level ‘ ‘ instruction sequ. 2 | stack level

push a 1 push d 1
push b 2 push e 2
add 1 add 1
push ¢ 2 push ¢ 2
push d 3 sub2 1
push e 4 push a 2
add 3 push b 3
sub 2 add 2
sub 1 sub2 1

Table 5.2: Two target instruction sequences for the expression (a +b) — (¢ — (d +¢))

a register stack the machine could run out of registers and be required to use slower
memory if excessive temporary storage is used. This can have a significant impact on
performance, so it is desired to use as little temporary storage on the stack as necessary.

It is possible to decide which sub expression to evaluate first by computing the
amount of required temporary storage for each expression first (as described e.g. in
[56]). The amount of temporary storage for a binary expression is then minimized by
first evaluating the sub expression requiring more space than the other (if both sub
expressions require the same space evaluation order does not matter).

However, code generation minimizing the required temporary storage can also be
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specified using Coala as is described in the following. First, source and target grammar
is specified.

terminal Loc;

productions {

Expr 2= Plus | Minus | Loc;
Plus = Expr[l] Expr[2];
Minus = Expr[l] Expr[2];

}

terminal Add, Sub, Sub2;

productions {

Code ;2= Conc | Push | Add | Sub | Sub2;
Conc := Code[l] Code[2];
Push = Loc;

}

synthesized requ_storage with Code;

The required storage is here realized as a synthesized attribute of the target instruc-
tion sequence (the attribution rules are straightforward and have been omitted). The
transformation of a source expression to target code minimizing the amount of required
temporary storage can be specified in Coala like so:

rule @code: Expr< Loc >— Code< Push< Loc >>

rule Qcode: Expr[0]< Plus< Expr[1] Expr[2] >>
— Code[0]< Conc[l]< Code[al]< Conc[2]< Code[l] Code[2] >>Code[a2]< Add >>>
where
@code: Expr[1] — Code[1];
Qcode: Expr[2] — Code[2];
minimize Code[0].requ_storage;

rule Qcode: Expr[0] < Plus< Expr[1] Expr[2] >>
— Code[0]< Conc[l]< Code[al]< Conc[2]< Code[l] Code[2] >>Code[a2]< Add >>>
where
Q@code: Expr[2] — Code[1];
Qcode: Expr[1l] — Code[2];
minimize Code[0].requ_storage;

rule @code: Expr[0]< Minus< Expr[1] Expr[2] >>
— Code[0]< Conc[1l]< Code[al]< Conc[2]< Code[l] Code[2] >>Code[a2]< Sub >>>
where
Q@code: Expr[1l] — Code[1];
@code: Expr[2] — Code[2];
minimize Code[0].requ_storage;

rule @code: Expr[0]< Minus< Expr[1] Expr[2] >>
— Code[0]< Conc[l]< Code[al]< Conc[2]< Code[l] Code[2] >>Code[a2]< Sub2 >>>
where
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@code: Expr[2] — Code[1];
@code: Expr[l] — Code[2];
minimize Code[0].requ_storage;

This raises an interesting point: while it is a known fact that the optimal order of
evaluation can be determined by analyzing the source expression, in the Coala approach
all possible target instruction sequences are generated; cost (required space) is associated
with target structures which is used to select optimal results. The Coala approach is more
declarative, but at the same time less efficient. Thus, it would be very interesting if one
could decide in a more general setting which transformation rule’s application leads to
an optimal result without actually trying all applicable rules.

5.3.2 User interface layout

Another interesting application of Coala would be for optimizing layout of graphical user
interfaces. The key aspect here is that many logical elements of user interfaces can be
presented to the user in multiple ways. For instance, selecting an item from a given list
can be realized using a group of radio buttons or a pop-up menu. Depending on factors
like the number of items in the list and the context within the rest of the user interfaces
each of the two alternatives can be chosen to be better.

Using Coala it would be possible to globally optimize layouts of user interfaces by
specifying all alternatives and applying some measure of visual appearance and usability.

Besides that, user interface layout raises similar problems as occur with document
processing. Consider for example a large dialog for editing user preferences where items
are organized on pages of a tabbed pane. This resembles the problem of page breaking
described before.

While it is certainly generally desirable to have user interfaces optimized for visual
appearance and usability, this is particularly important for devices with small displays
and limited interaction facilities such as cell phones or PDAs. Coala could be used to
automatically produce optimal user interface layouts given the individual characteristics
of a target device.



CHAPTER

Related Work

In this chapter we take a look at some existing document processing systems and their
approach to document formatting. These systems are:

e ODA which is of historical importance

e SGML/DSSSL and XML/XSL which apply an approach to document formatting
being widely in use today, and

e Agenda which has up to now the most advanced formatting model known from
research

It will be shown that Coala’s new approach to document formatting developed in this
work has significant advantages as compared to these existing systems.

6.1 ODA

ODA (Office Document Architecture, or more recently Open Document Architecture)
was developed in the 1980s in order to facilitate the creation, processing, and inter-
change of documents in heterogeneous computing systems [19]. Although ODA is only
of minor practical relevance today, it is historically important as one of the first ap-
proaches applying the structured document model.

6.1.1 ODA’s document model

ODA uses an object-oriented model to describe both logical and layout document struc-
tures. A document is described as a tree of objects where leaves represent the actual
document content. Inner nodes may be tagged with a user visible name which is helpful
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while creating and editing a document and which allows to define generic document
structures as described below. Each child of a node carries an unambiguous sequence
number which makes it possible to identify every node of a document as a sequence of
numbers. The content nodes at a document tree’s leaves must conform to a predefined
content architecture and may contain text, raster graphics and vector graphics, but also
special content like movie and sound clips, etc. Content nodes may appear only as
children of a special type of nodes (basic logical objects).

ODA allows to describe the generic structure of classes of documents by specifying
the composition of allowable children for given logical objects. This is done in a way
comparable with productions of a context-free grammar allowing regular right hand
sides.

A limited form of attribution is supported by ODA. Attributes can be specified for
nodes (either in the specific or generic document structure) and may be inherited by
descendant nodes, comparable with inherited attributes of an attribute grammar using
only copy rules.

As opposed to logical document structures, ODA imposes some restrictions on lay-
out document structures. Layout structures may only be composed of the predefined
elements page set, composite page, basic page, frame, and block, nested in the given order.

6.1.2 Formatting of documents

ODA also defines the process of creating layouts from logical documents. Here, content
objects are first transformed into blocks, taking into account the content architectures
being involved and presentation styles (given as attributes). A layout structure is then
built from the created blocks, incorporating the generic layout document structure and
some attributes from the logical document structure.

6.1.3 Comparison with Coala

In comparison with Coala the following main differences are recognized:

e as opposed to Coala, ODA’s support for the attribution of document structures is
very limited and does not allow to describe complex semantic properties

e ODA imposes restrictions on the target structure; Coala allows to specify transfor-
mation to arbitrary target structures

e an essential part of the formatting process is predefined through given content
architectures; using Coala even basic formatting tasks can be precisely specified

e the formatting process is limited at higher levels in ODA as well; for instance,
logical objects are always visited strictly sequentially (it is however possible to use
multiple streams like for floating figures)

6.2 SGML/DSSSL, XML/XSL

An approach to document formatting in common use today is followed by SGML/DSSSL
and, more recently, XML/XSL. SGML and XML provide means to describe the generic and
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specific structure of documents; DSSSL and XSL define a universal intermediate language
of formatting object trees describing document layouts in an abstract way, and a tree
transformation language allowing to describe transformations from logical document
structures to the intermediate structure. The intermediate language represents layout
still in an abstract way, so the transformation from a logical document structure to it is
usually quite simple. A processor for the intermediate language, usually implemented in a
general-purpose programming language, is then used to create concrete layout structures.

6.2.1 SGML’s and XML’s document model

SGML and XML use a similar approach to the structured document model. Documents
are described as a hierarchy of nested elements and character content. Each element
has a name assigned and has an arbitrary set of attributes given as pairs of an attribute
name and a string value. The linear form of a document appropriate for storage and
interchange is given in a fully bracketed way where each element is enclosed in a start
tag containing the element’s name and attributes and an end tag again containing the
element’s name. SGML allows start or end tags to be omitted as long as a document’s
structure can be still recreated in an unambiguous way.

The generic structure of documents can be defined in both SGML and XML using a
document type definition. A document type definition allows to define the allowable sub
elements and character content of an element referenced by its name using context-free
productions with regular right hand sides, and allows to specify which attributes can be
associated with elements. Besides document type definitions, more powerful languages
for defining the generic structure of XML exist, as for example the XML Schema language
[47].

Many languages based on SGML and XML describing both logical and layout doc-
ument structures exist. To name just a few, XHTML [46] allows to describe the logical
structure of World Wide Web pages, DocBook is a language for book-like documents
and reports, targeted at technical documentation; SVG [44] is a language for documents
containing vector graphics.

6.2.2 Flow object trees

Both DSSSL and XSL use an intermediate representation of formatting object trees dur-
ing the formatting process. A formatting object tree describes a document layout in
an abstract way, i.e., the complex tasks of formatting take place in a subsequent trans-
formation to a concrete layout document structure. A formatting object tree in XSL
contains (slightly simplified):

o A layout master set defining the page geometries to be used. It is possible to
specify the sequencing of pages, like, e.g., the repetition of a combination of left
and right hand side pages for book-like documents. Each page master defines a set
of regions into which the flows of the document’s content are distributed.

e One or more page sequences defining the document’s content. Each page sequence
references a page (sequence) master defined in the layout master set and contains
one or more flows. A flow is assigned a name referencing the region of a master
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page into which the flow’s content is to be distributed. A flow finally contains
basic content such as blocks (textual content like paragraphs with information
about layout styles) and tables.

Figure 6.1 shows a simple example formatting object tree defining only a single page
master and a single flow of text with two paragraphs.

root
font="Times"
font-size="12pt"

///\

layout-master -set | page-sequence

master-reference = "page|

simple-page-master flow
master-name = "page" flow-name = "body"
margin-left ="1in"

margin-right = "1in"
margin-top = "1in"
margin-bottom = "1in"
page-width = "210mm"

page-height = "297mm"

block block
‘ font-size = "10pt" font = "Courier”
root - . . }
region-name = "body First paragraph Second paragraph

Figure 6.1: Example formatting object tree

6.2.3 Transformation to target structures

XSL and DSSSL use area trees as target document structures which describe the format-
ting result in a geometrically structured way; each area represents a rectangular portion
on the output medium. The transformation from a formatting object tree to an area
tree is specified for XSL and DSSSL in a mostly verbal fashion.

6.2.4 Comparison with Coala

SGML and XML do not provide means to describe semantic properties of structured
documents. However, Coala has built-in support for handling XML documents. So the
semantics of XML documents can be specified using an attribute grammar in Coala.

As the transformation from formatting object trees to area trees is specified in a
mostly verbal fashion for both XSL and DSSSL, known implementations are available in
general-purpose programming languages only. This has the following shortcomings:

e as the underlying specifications are complex, it is difficult to create implementa-
tions at all
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e it is hard to verify that implementations fully conform to the specifications
e implementations are difficult to maintain and extend

Coala allows to specify such transformations declaratively in an executable way. No
implementation needs to be created by hand, so the shortcomings given above are elim-
inated.

Coala would also allow to specify transformations from logical document structures
to flow object trees and as such replace DSSSL’s and XSL’s transformation languages.
Here, the transformation specification could benefit from using attribute grammars to
specify semantic properties of logical document structures like, e.g., section numbering.

6.3 Agenda

Agenda [43] is a system allowing to specify document formatters on a very high level.

Agenda uses attribute grammars to specify generic document structures and their
semantic properties.

Agenda’s formatting model is based on the one described in [34] which does not ap-
ply the structured document model. In this model, formatting source and target are
described as a hierarchy of objects which can contain one or more streams of subordi-
nate objects. During a formatting process objects from the source streams are poured
into layout objects specified by layout templates which are conceived as containers of
constrained capacity.

Agenda extends this formatting model allowing the application of a structured docu-
ment model where document classes are specified using attribute grammars. Multistream
type definitions are used to identify the hierarchy of streams of sub documents in both
source and target documents. Layout references describe the mapping from source sub
documents to target sub documents and correspond to the layout templates used in
the original formatting model. A Boolean attribute is used to realize the constrained
capacity of target sub documents. A target sub document is extended as long as this
attribute indicates that the target sub document is still consistent.

Agenda allows to specify document formatters in a declarative way on a very high
level. Document formatters are automatically generated from these specifications.

In comparison with Coala the following similarities and differences can be observed:

e Coala and Agenda share the same document model: in both systems an attribute
grammar based structured document model is used.

e Both Coala and Agenda do not impose any restriction on source and target struc-
tures. As opposed to ODA and DSSSL/XSL any document structure can be the
target of a transformation process. Document formatters are not specified using
document processing specific terms and concepts which makes the systems more
universally usable exceeding the realm of document processing. Another similarity
of Coala and Agenda is that target structures can serve as source structures of
subsequent transformations, i.e., transformation processes can be specified using
intermediate structures.
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e Due to its underlying pouring model Agenda formatters are restricted to produce
“last-fit” type results (cf. Chapter 2 and Chapter 5). It is not possible to specify
formatters optimizing for any given measures. It would also not be easy to extend
Agenda by such a feature. As opposed to that, Coala allows to specify formatters
optimizing for any semantic property that can be described using an objective
function applied to attributes specified through an attribute grammar.

e Formatters are specified in Agenda on a very abstract level using streams in source
and target structures and layout references between them. While allowing very
concise specifications, a minor downside of this approach is that sub documents
can be processed in a fixed sequential order only. Coala requires to specify the
mapping from document structures to streams and back. This approach allows
more freedom in processing of document structures.

6.4 (Constraint) Logic Programming

In this section some interesting similarities of logic programming and its extension con-
straint logic programming with the new tree transformation model introduced in this
work are pointed out.

First, logic programs and their relationship to tree transformation specifications with-
out semantic constraints are described. Then, it will be shown how constraint logic
programs relate to transformation specifications with semantic constraints.

6.4.1 Logic programs

A logic program, as e.g. known from Prolog, consists of a finite set of clauses, each of
which having the form

po(to) — pi(t1) A pa(ta) A ... A pp(tn)

where n > 0, p; are predicate symbols, and ¢; are sequences of terms over a set of function
symbols, a set of constants, and a set of variables. The interpretation of a clause is that
the left hand side formula can be derived to be true if the right hand side formula can
be derived to be true. A clause with n = 0 is called a fact.

For example, given a constant nil, function symbol cons, predicate symbol append
and variables W, X, Y Z the following is a simple logic program describing a ternary
relation between lists:

append(nil,Y,Y) «—
append (cons(VV, X),Y, cons(W, Z)) — append(X,Y, Z)

The intended meaning is that append(X,Y, Z) is true whenever the list Z is a concate-
nation of lists X and Y.
A query has the form

— p(t)
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and can be interpreted as the question “is there a substitution for the variables in ¢ with
ground terms such that p(t) can be derived form the logic program’s clauses”. A logic
programming system typically answers to such a query with an enumeration of all such
substitutions, or with yes or no if ¢ contains no variables.

Logic programs are executed using a mechanism called resolution which finds answers
using unification and backtracking.

Transformation specifications without semantic constraints can be implemented as
logic programs in a quite straightforward manner. To see this, consider as an example the
following transformation specification (which is similar to the one given in Example 3.2.6
on page 34 with semantic constraints removed)!:

So(B(5152)) = E(H (E\E2))
where S1 — Fn,
Sy — Fy
So(B(5152)) = E(V (E1E2))
where S1 — FEn,
Sy — FEy
S(L) = E(A)

This transformation specification can be turned into the following logic program:

trafo(s(b(S1,52)), e(h(E1, E2))) « trafo(S1, E1) A trafo(Ss, Es)
trafo(s(b(S1,S2)), e(v(E1, Ep))) < trafo(S1, E1) A trafo(Sa, Es)
tmfo(s(l),e(a)) —

Here, s, b, ¢, h and v are function symbols representing the corresponding syntactic
symbols with capital letters; [ and a are constants representing the terminal syntactic
symbols L and A. Variables are denoted by capital letters. Note, however, that variables
in terms cannot be constrained to only be substituted with terms constructed with a
given function symbol or constant.

Given the query

— trafo(s(b(s(b(s(1), s(1))), 5(1))), X)

the system would emit four terms corresponding to the trees depicted in Figure 3.6 on
page 40 and Figure 3.6 on page 40 (without the root nodes of symbol T'). Note that the
semantic constraints in the original example ruled out one of the four trees.

So, transformation specifications without semantic constraints have a strong relation-
ship to logic programs. Note that rests in transformation rules and syntactic constraints,
which are not used in the above simple examples, can be realized in logic programs as
well by using a ternary transformation relation.

However, semantic constraints and optimization cannot be realized using a logic
program—at least not in a straightforward manner.

!Note that the empty rest parts have been omitted.
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6.4.2 Constraint logic programs

The objects a logic program as described above deals with are (ground) terms with no
special meaning. Constraint logic programming (CLP) languages [20] extend a logic
programming language by a semantic domain D and constraints over D. Rules in a
constraint logic program then have the form

po(to) <—p1(51) A pQ(LTQ) VANV pn(in) Ncy N ca... N cm

where all ¢; are constraints. For example, [20] introduces CLP(R) which provides equa-
tions and inequations such as X +Y > 0 or Y = Z on real numbers.

Given a query, in extension to the search for solutions as described above for pure
logic programs, a CLP system manages a constraint store. Constraints are always solved
as far as possible. If the constraints in the constraint store are determined not to be
satisfiable the CLP system backtracks like a normal logic programming system. This
way constraints are used to prune the search space as much as possible.

In comparison with Coala and its underlying new tree transformation model intro-
duced in this work the following can be noticed:

e like in CLP, Coala uses semantic domains and constraints in addition to dealing
with term/tree structures

e while in a constraint logic program extra variables are used to hold semantic values,
with Coala semantic properties are attached to tree nodes as attributes; this can
be seen as an interesting new variant of CLP

e while a CLP system can deal with unsolved or only partly solved sets of constraints,
Coala uses semantic constraints only to check if a possible transformation is valid
(or on its way to become valid) which is sufficient for transformations of trees
required by document formatters

e due to its simpler use of constraints, Coala allows to specify user-defined semantic
domains and constraints, which is achieved simply by defining functions returning
Boolean results; CLP systems have fixed built-in semantic domains and adding
more requires to implement and integrate in most cases complex constraint solvers

6.5 Conclusion

We have compared Coala’s approach to document formatting with important existing
approaches.

We have seen that Coala is based upon the same powerful structured document
model that is also used in Agenda where the generic structure and semantic properties of
documents are specified using attribute grammars. This document model is significantly
more powerful than that used in ODA, SGML and XML.

Coala’s formatting model has the following advantages in comparison with ODA, XSL
and DSSSL:

e transformations to arbitrary target structures are possible; the possible target
structures in ODA, XSL and DSSSL are fixed or significantly restricted
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e Coala allows to specify formatting processes in a formal and executable way; thus,
a formatting process is always specified in a precise way and it is not necessary to
manually create implementations in a general-purpose programming language

In comparison with Agenda, Coala allows to specify more powerful formatters optimizing
formatting results for given measures. This comes at the price of a slightly less abstract
level. As a possible future extension, Coala would greatly benefit from carrying over
Agenda’s stream model.

Coala could be used in the scope of document processing systems currently used in
practice. As an example, it would be possible to specify the transformation process from
formatting object trees to area trees described in Section 6.2 using Coala.

We have finally seen an interesting similarity of Coala with (constraint) logic pro-
gramming.






CHAPTER

Summary and outlook

7.1 Summary

This work has introduced a new model for optimizing transformations between attributed
trees, targeted at the declarative specification of document formatters. The transforma-
tion model is based on rules incorporating the following:

e source and target tree templates

e transformation rest for handling breaking problems often occurring with document
formatters

e syntactic constraints describing required relationships between source subtrees and
target subtrees

e semantic constraints on attribute occurrences at source and target tree nodes de-
scribing required conditions on semantic properties of source and target trees

e optional objective functions allowing to minimize for given semantic properties

The transformation model and its semantics have been defined in a completely formal
manner, the semantics being concise and descriptive, yet not constructive. The notion
of LR specifications has been introduced which imposes restrictions on the order of
constraints in rules, which allows efficient execution of transformations processing con-
straints strictly from left to right. An execution scheme for LR specifications without
handling optimization has been defined whose soundness and completeness w.r.t. the
transformation model’s semantics has been formally proved. Handling of optimization
has been realized by turning this execution scheme into a set of recursive transformation
functions returning optimal results for each transformation rule’s application. It has
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been shown how efficient execution can be achieved by making use of dynamic program-
ming. Further, it has been shown how standard transformation specifications can be
automatically turned into LR specifications if possible.

A new system called Coala has been developed consisting of a specification language
based on the new transformation model and a set of tools specific to document process-
ing. The specification language allows convenient definition of attribute grammars and
transformation specifications. Coala allows to realize complete document formatters by
supporting the reading of XML documents and output of Postscript code for a prede-
fined document layout structure. Coala has been implemented in the Java programming
language.

The applicability of the new approach to document formatting has been shown by
realizing line breaking in several variants and page breaking using Coala. It has further
been shown that Coala can be applied in other fields beyond document processing: an
example application from the field of compiler construction realizing code generation
for binary arithmetic expressions optimizing the order of evaluation has been given; in
addition, some promising ideas for applying Coala in the field of user interfaces have
been outlined.

The new approach has been compared with previous approaches to document for-
matting both being of historical importance and being in practical use today. In addition
an interesting relationship with (constraint) logic programming has been shown.

7.2 Contributions

The main contribution of this work is a new model for transformations between at-
tributed trees. It has been developed on a very strong formal basis. The model’s seman-
tics is formally defined in a very concise and natural way. The correctness of its scheme
for execution of transformations w.r.t. the model’s semantics is almost completely for-
mally proved. More over, Coala, a system based on the new transformation model has
been developed, implemented using the Java programming language. Examples imple-
mented using this new system show that the new approach is not only of theoretical
interest but also applicable in practice.

Optimizing document formatters which were difficult to create with conventional
approaches using general-purpose programming languages can now be specified on a
high level in a declarative, concise and readable way using the new system. Besides the
obvious advantages this has the following benefits.

e As formatting constraints and optimization can be specified in a declarative and
concise way using the new approach, very difficult formatting problems can now be
tackled that could previously not be approached at all; such very hard formatting
problems arise with documents such as newspapers (optimal page planning), mag-
azines and product catalogs. In these kinds of documents very complex constraints
on the placement of objects occur and optimization in various ways is desired. In
today’s practice a lot of manual work is still involved which can be approached to
be automated using the new approach.

e The new approach allows to declaratively specify layout style guides on a com-
pletely new level; existing solutions only allow to specify relatively simple aspects
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of layout styles.

Besides document formatting the new approach can be used in other fields as well. Some
ideas have been given in this work, but many more possible uses should be explored.

7.3 Possible extensions and improvements

Improvement of Coala is possible in many aspects, two of which are outlined in the
following.

As described in Section 6.3 the existing Agenda system allows to specify formatting
problems on a very high level, but has little support for formatting constraints and
does not allow optimization at all. It would be interesting, yet certainly not easy, to
investigate if Agenda’s approach based on document streams could be carried over to
Coala.

Another idea is to extend Coala’s support for constraints and optimization. As has
been shown in other work about constraint programming [3, 51], it can be beneficial
to have constraints that are not strictly required but desirable to be fulfilled. Such
constraints are usually called preferential. Preferential constraints arise naturally in
document processing; for instance, a desired property for page breaking with footnotes
would be to not break footnote bodies across multiple pages if possible. Preferential con-
straints can already be simulated in Coala by integrating them in to objective functions,
i.e., cost rises with each unsatisfied preferential constraint. However, this approach is
less declarative and makes it harder to define objective functions.
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APPENDIX

Glossary

This glossary describes common terms from the field of document processing which are
used in examples in this work. The information here is gathered from various sources,
e.g., [16, 55]. No claim to provide a complete listing of terms used in the field of document
processing is made.

Ascent. The amount by which a Oglyph extends above the [baseline. See also
O descent.

Baseline. The imaginary line at which characters on a line of text are aligned. Portions
of some characters may extend below the baseline (see O descent).

Character. A logical atomic element of text. Characters are arranged in O character
sets.

Character set. A collection of O characters where each individual element is identified
by a code position (a positive integer number).

Descent. The amount by which a Oglyph extends below the [baseline. See also
O ascent.

Encoding. A mapping of binary values to code positions of a U character set.

Ex-height. A typographical unit of measure which is based on the [ font currently in
use. lex originally used to equal the O ascent of the O glyph for the O character ‘x’
in a [ font at a given O point size. Today, this unit of measure is a rather arbitrary
property of a U font. See also U Em-width.
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Em-width. A typographical unit of measure which is based on the U font currently in
use. lem orriginally used to equal the width of the O glyph for the character ‘M’ in
a Ofont at a given Upoint size. Today, this unit of measure is a rather arbitrary
property of a U font. See also U Ex-height.

Font. A font defines a set of Oglyphs. For scalable fonts glyphs are defined by their
outline O path at some normalized O point size (usually 1pt) and must be scaled to
the size needed in documents.

Glyph. The presentation of a single [ character or a sequence of more than one con-
secutive U characters in a [ font at some U point size. See also U Ligature.

Kerning. The process of adjusting the spacing between certain pairs of adjacent
Oglyphs on a line of text. This is done in order to improve the visual appear-
ance or to adjust the general tightness of text. In the first case, for instance,
the two letters VA are usually moved closer together (as opposed to VA), so that
the bounding boxes of both individual O glyphs overlap. In the latter case, the
space between all pairs of 0 glyphs are adjusted equally. Kerning is guided by the
specification of the metrics specified for a O font.

Leading. The vertical space separating two adjacent lines of text. This space was in
the time of manual typesetting realized using pieces made out of lead.

Ligature. A single Oglyph representing two or more consecutive 0 characters instead
of only one. Ligatures are intended to give a better visual appearance than the
sequence of U glyphs for the single characters. Common ligatures include ‘i’ and
‘ffi” which look better than ‘fi’ and ‘ffi’.

Orphan. First line of a paragraph appearing alone at the end of a page while the rest
of the paragraph is placed on the following page. Orphans are in general undesired
and avoided whenever possible. See also O widow.

Path. A sequence of straight and curved line segments. Paths are used to define the
outline and interior of graphic objects, e.g., O glyphs. More details are beyond the
scope of this work and can be found, e.g, in [1].

Point. Important unit of measure in the area of document processing. Varying defi-
nitions have developed over time. Today a Postscript point is referred to in the
majority of cases, which equals 1/72 of an inch or 0.3527mm.

Point size. Measure for the size of Uglyphs of a U font given in [ points. The point
size equals the height of a line of text, i.e., the sum of maximum O ascents and
O descents of all O glyphs and is measured in points (see O point).

Type 1 font. A Postscript language U font format which defines O glyphs as the
interior of outline [paths. This allows such fonts to be freely scalable to any
desired O point size without loss of quality.

Unicode. A Ocharacter set defining a large collection of [ characters covering most
contemporary and historic languages.
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UTF-8. A popular Oencoding for [ Unicode which uses byte sequences of varying
length to encode U characters. Most characters used in western languages are
encoded as a single byte.

Widow. Last line of a paragraph appearing alone on a new page. Usually undesired
and thus avoided whenever possible. See also U orphan.
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Missing proofs from Chapter 3

B.1 Auxiliary lemmata

Lemma B.1.1
For any trees t, ¢}, ¢}, and a position pos € Pos(t):

(t[t} /pos)) [th/pos] = t[th/pos]

Proof (by induction on pos):

(i) pos =e. Then

(t[t1/pos])[ta/pos] = ti[ty/e]
= t’2

= t[ty/pos]

(ii) pos = (i) o pos’. Suppose t = F(t1,...,ti—1,ti,tix1,- .-, tn), then

(t[t1/pos])[ty/pos] = F ( 75'1/ pos',.... ) [t/ pos]
= F(...,(t[ty/pos)[ts/pos'], ...)
= F( tg/pos l,...) (Ind. Hyp.)

= tty/ pos}
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Lemma B.1.2
For any tree t and position pos € Pos(t) the following holds:

t[subtree(pos, t)/pos] = t

Proof (by induction on pos):

(i) pos =e. Then t[subtree(pos,t)/pos| = t[t/e] =t.
(ii) pos = (i) o pos’. Suppose t = F(t1,...,ti—1,ti,tix1,...,tn). Then

t[subtree(pos, t)/pos]
= F(...,t[subtree((i) o pos’,t)/pos'],...)
F(... ti[subtree(pos’,t;)/pos'],...)

F(...,t;...) (Ind. Hyp.)
— ¢
O
Lemma B.1.3
For any tree node o and trees ¢y, ta:
replace (replace(o, t1),t2) = replace(o,ts)
Proof:
Suppose 0 = t|4s. Then:
replace (replace(a, t1), tg) = ((t[tl/pos]) [to /pos]) Lpos
= t[ta/pos]|pos (Lemma B.1.1)
= replace(o,t2)
O

Lemma B.1.4
For any tree node o

replace (o, subtree(o)) = o
Proof:
Suppose 0 = t|pos. Then
replace (o, subtree(o)) = (t[subtree(pos,t)/pos]) pos
t|pos (Lemma B.1.2)
= 0o
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Lemma B.1.5
Let T be a template, and env, env’ environments.

If subtree([€]eny) =< subtree([€]eny) for each £ € Leaf Var(T), then build(T, env) <
build (T, env').

Proof:
The simple proof by induction on the structure of 7" is omitted. O

Lemma B.1.6
Let T be a template, and 7, 7/ tree nodes.

If T can be instantiated at both 7 and 7/, then the following is true:

=7 = inst(T,7) =X inst(T,7")

Proof:
The proof by induction on the structure of 1" is omitted. O

Lemma B.1.7
Let T be a template, & € Leaf_Var(T'), and pos the position of £ in T', i.e., T'| o5 = &.
Further, let env be an environment and t = build (T, env).

Then subtree(t|pos) = build (€, env).
Proof (by induction on the structure of T'):

(i) T has the form X. Then { = X and pos = €. So subtree(t|pos) =t = build(T, env).

(ii) T has the form X (Ty...Ty). Then pos = (i) o pos’ for some i and pos’. By
definition of build, build(T, env) = F(t1,...,tx) where F' = symbol(X) and t; =
build(T;) for 1 <14 < k.

So, by induction hypothesis, subtree(t|pos) = subtree(t;|pos) = build(§, env).
O

Lemma B.1.8
Let r be a rule of the form S — T'/R where ¢1,...,¢k. Further, let v,79,71,..., 7 be
nodes, and envg, envy, ..., envg environments.

If 9 = target(T,7, Lgw), envg = inst(S,5) < inst(T, 1), and {(@;, Ti_1, env;_1) —"

(i, env;) for each 1 < i < k, then
(i) 7; = target(T,~, env;) for each 0 <i < k
(ii) for any 0 <i <k and £ € Leaf Var(T) \ Def_Var,, the following holds:

subtree([€] env;) = Fa  where F = symbol(§)

(iii) 71 <7 foreach 1 <i <k
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(iv) [€lenv, = L for any & € Var \ (Def Var;,, U Var(T)), 0 <i <k

Proof:

Note that the execution rules (E1) through (E4) that are referred to below were defined
in Section 3.3.5.

(i) We prove this by induction on 1.

(a) ¢ =0. Here, 19 = target(T,~, envy) by premises.

(b) i — i+ 1. We distinguish two cases:

i. If ;41 is a semantic constraint, then 7,11 = 7 and env;y1 = env;
(cf. (E3)). So 741 = target(T,~y, env;+1) by induction hypothesis.

ii. If p;41 is a syntactic constraint, then 7,411 = target(T, 1;, env; < [7"/Y])
for some t” and Y (cf. (E4)). By induction hypothesis we can assume
that =, = target(T,~, env;), so we know by definition of target and
Lemma B.1.3 that 7,41 = replace(+y,t) for some tree t.

Further, env;y; = ... <inst(T, 7 + 1) # fail. So, by Proposition 3.3.20,
env;+1 instantiates T at 7,41 and subtree(r;+1) = build(T, enviy1) by
Proposition 3.3.22.

Thus, we can conclude using Lemma B.1.4 that

Tivl = 7"eplace(77 build (T, em)H_l))
= target(T,y, envit1)

(ii) The proof is again by induction on .

(a)

i = 0. We have, by unfolding the definition of target, 79 = replace(y,t)
where ¢t = build(T, Lgyy). By Lemma B.1.7 it follows that subtree(t|,os) =
build (&, L pny) = Fa.

As, according to (E2), envo|var(ry = inst(T,10) # fail, envy instantiates T
at 79. So by Definition 3.2.9 [{]env, = Tojpos- Hence, subtree([&]env,) =
subtree(To| pos) = subtree(t|pos) = F.

i — i+ 1. As Def _Var;,, 2 Def_Var; ,, we know by induction hypothesis

2,7

that subtree([¢]en,) = Fa for § € Leaf _Var(T)\ Def _Var; .

We then have to distinguish two cases. If ¢; 11 is a semantic constraint, then
env;y1 = env;, so this case is trivial.

Otherwise, ¢;41 is a syntactic constraint of the form X — Y/Z and by (E4)
and definition of target we have 7,41 = replace(y,t) where t = build(T, env; <
[7"/Y]) for some 7".

We can then conclude using Lemma B.1.7 that subtree(t|pos) = build(§, env;<
[7"/Y]). As & & Def_Var,,,,, but Y € Def_Var, ,, by definition, this
becomes subtree(t|pos) = build(§, env;).
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In the same way as in the proof of the induction basis we know again that
env;1 instantiates T' at 7;,1. So by Definition 3.2.9, it follows that [{]cpne,,, =

Ti+1|pos-

Thus, finally, subtree([{]env,,,) = subtree(Tit1|pos) = subtree(t|pos) =
build(&, env;) = Fa.

(iii) If ; is a semantic constraint, then 7; = 7,41, so this case is trivial. Otherwise, ¢;
is a syntactic constraint of the form X — Y/Z. In this case we have by (E4)

7 = target(T,Ti—1, env;—1 < [7"/Y])
= replace(ri—1, build(T, envi_y < [7"/Y]))
= replace (’y, build (T, envi_1 < [T”/Y]))

for some 7".

On the other hand, we know by (i) and the definition of target that 7,1 =
replace (7, build (T, em)i,l)). So it is sufficient to show that subtree([€]env, ;) <
subtree([§] env, ,afr/y]) for each € € Leaf Var, because then build(T, env;—1) =
build(T, env;—1 < [7"”/Y]) by Lemma B.1.5.

So, let & € Leaf Var(T). AsY & Def Var,_;, by LR conditions, we know by
(ii) that subtree([Y]en; ,) = Fa where F' = symbol(Y). So it is indeed true that
subtree([§]env;_,) = subtree([§]env,_ <+ /v))-

(iv) We prove this again by induction on 1.

(a) i = 0. By (E2) we have envg = inst(S,5) < inst(T, ) for some 9. Thus,

Dom(envo) = Var(S) U Var(T) = Def _Vary, U Var(T).
(b) i — i+ 1. The case where ;11 is a semantic constraint is trivial. If @,y is

a syntactic constraint of the form X — Y/Z, then env;11 = env; < [7"/Y] <
0"/ Z] < inst(T, ") for some 7", p/, and 7.

Consider a variable & € Var \ (Def _Var;,, U Var(T)). As Def _Var; ., =
Def Var;,, U {Y} U Var(Z), we can assume by induction hypothesis that
[€]env;, = L. Hence, as £ € {Y'} U Var(Z) U Var(T), we have [{]env;,, = L.

O
Lemma B.1.9
Let T be a template and 7, 7’ tree nodes.
If T can be instantiated at 7 and 7 < 7/, then T can be instantiated also at 7’.
Proof:
The proof by induction on the structure of 1" is omitted. O

Lemma B.1.10
Let T be a template instantiated at a node o. Further, let X C Leaf_Var(T) and
P ={pos | T|pos € X}.

Then the following is true:
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(i) Prelim_Attr_Occrp(o) C {(pos,a) | (T|pos-a) € Prelim_Attr_Occry (T)}

(ii) Typos-a € Final Attr_Occryv(T) = (pos,a) € Final_Attr_Occy p(0)

Proof:

(i) Let (pos,a) € Prelim_Attr_Occrp(o). Then a chain (posgy,ap), (posi,ai), ...
(posy., ax) exists where
e (posg,ap) € {(e,d') | a' € I} U {(pos’,d’) | pos’ € P A o' € Synth}
® (0lpos, ;-Qi—1,0 | pos,-0i) € Dep

e (posy,ar) = (pos,a)
o instantiates T', so

(T pos, ,-@i~1,T | pos;»a;) € Dep(T) forall 1<i<k

Further, if (posg, ag) € {(e,a’) | @’ € I}, then T'|p0,,.a0 € Prelim_Attr_Occy x(T).
Otherwise, (posg,ao) € {(pos’,d’) | pos’ € P A o' € Synth}. In this case T'|pos, €
X, 80 also T'|pys,-a0 € Prelim_Attr_Occr x(T').

So (Tlposi'ai)0<i<k is a chain where

o Tiposy-a0 € {T)c.d' |ael} U {d [E€X A d € Synth}
° (TiPOSi_l'a’i*bTlPOSi‘ai) c Dep(T)

® T\ pos,-ak =T |pos-a
So T'| pos-a € Prelim_Attr_Occrx(T).

(ii) follows directly from the definitions of Final Attr_Occyy(T) and
Final _Attr_Occy p(0)

Definition B.1.11
The operation subtempl(pos,T) yields the sub template of a template T from a position
pos € Pos(T') and is inductively defined so:

subtempl (e, T) =, T

def

subtempl((i) o pos’, X (Ty ... T )) = subtempl(pos’, T;)

def
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Lemma B.1.12
Let T be a template, pos € Pos(T), and env be an environment. Further, let ¢t =

build (T, env).
Then the following holds:

subtree(pos,t) = build(subtempl(pos,T),env)

Proof (by induction on pos):

(i) If pos = e, then the contention is obviously true.
(ii) Otherwise, pos has the form (i) o pos’ and T has the form X (T} ...Ty). Then
subtree(pos,t) = subtree (pos’, build(T;, em)))
= build(subtempl(pos’,Ti), em)) (Ind. Hyp.)
= build(subtempl(pos, T), em})
]

Lemma B.1.13
Let T be a template, 0 a node, and env an environment. 7T is instantiated at o by env.

Then for any pos € Pos(T)

subtree(o | pos) = build (subtempl(pos,T), env)

Proof (by induction on pos):

(i) pos =¢e. Then

subtree(o|pos) = subtree(o)
= build(T, env) (Lemma B.1.12)
= build(subtempl(pos, T), em))

(ii) pos = (i) o pos’. Then T must have the form X (Ty,...,T, ) where n > i. As T is
instantiated at o by env we know that also T; is instantiated at o|; by env. Thus

subtree(o |pos) = subtree((ali)lpoy)
= build(subtempl(pos’, T;), env) (Ind. Hyp.)
= build (subtempl((i) o pos’, T), env)
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B.2 Proofs from Section 3.3.2

We first introduce a lemma needed for proving that < is a partial order.

Lemma B.2.1
For any trees t and ', and symbol F' the following holds:

(i)tjt//\t/:FA = t=Fa

(ii) if ¢ < ¢’ and ¢ has the form F(t1,...,t;) # Fa, then ¢’ has the form F(¢},...,t,)
where t; < t) for 1 <i <k

(i) t <t = symbol(t) = symbol(t')

Proof:

These properties can be shown by rule induction (see, e.g., [57]). Note that < is the
least set defined by a set of rules which take the two forms given in Definition 3.3.1 on
page 44. The details are left to the reader. O

Proposition 3.3.2

The binary relation < C 7 x 7 is a partial order, i.e., it is reflexive, transitive and
antisymmetric.

Proof:

(i) = is reflexive, ie., t Jtforallt e T:

We use induction on the structure of ¢ which has the form F(¢y,...,tx). By
induction hypothesis, t; < t¢; for 1 < i < k, so immediately ¢t < ¢ according to the
definition of <.

(ii) =< is antisymmetric, i.e., t <t/ At/ t = t=1.
We use induction on the structure of ¢ distinguishing two cases:

(a) t has the form Fa. As ¢t < t/, by Lemma B.2.1 (iii) # must have the form
F(t1,...,t;). But at the same time t' < ¢, so by Lemma B.2.1 (i) ¢ = Fa = t.

(b) ¢ has the form F(t,...,t;) # Fa. Lemma B.2.1 (ii) implies that ¢’ has the
form F(t},...,t}) where t; < t; for 1 <i < k. As ¢’ <t, for the same reason
t; <t; for 1 < i < k. So by induction hypothesis ¢; = t; for 1 < i < k, so
t="t.

(iii) = is transitive, i.e., t <t A ¢/ Xt" = ¢t
We use induction on the structure of ¢ distinguishing two cases again:

(a) ¢t has the form Fa. Then, as t < ¢ and ¢/ < ¢, by Lemma B.2.1 (iii)
symbol(t') = symbol(t") = F. So t < t" by definition of <.
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(b) t has the form F(t1,...,tx) # Fa. t = t/, so by Lemma B.2.1 (ii) ¢’ has the
form F(t},...,t)) where t; <t/ for 1 < i < k. Further, ¢’ < ¢”, so again by
Lemma B.2.1 (ii) ¢ has the form F(t{,...,t]) where t; <t/ for 1 <i < k.
By induction hypothesis t; < t7, so t < t" by definition of <.

O

B.3 Proofs from Section 3.3.5

Proposition 3.3.22

Let T be a template, 7 a tree node, and env, env’ environments.

(i) If subtree([€]eny) = subtree([€] eny) for all £ € Leaf _Var(T), then build(T, env) =
build(T, env").

(ii) If env instantiates T' at 7, then build(T, env) = subtree(T)
Proof:
The proof for the first fact by simple induction on the structure of T" is omitted. We only

show the proof for the second contention which is also by induction on the structure of
T.

(i) T has the form X. Then, build(T, env) = subtree([X]eny) by definition of build.
As env instantiates T at 7 we know that [X]en, = 7.

(ii) T has the form X (Ty...Ty). Then build(T,env) = F(t1,...,tx) where t; =
build(T;, env) and F = symbol(X) for each 1 < i < k.

As env instantiates T at 7, env also instantiates T; at 7;, and thus, by induction
hypothesis, build(T;, env) = subtree(r ;) for each 1 <7 < k.

We also know that child_count(t) = k and symbol(t) = F. So,
F(subtree(t|1),. .., subtree(T 1)) = subtree(r).

B.4 Proofs from Section 3.3.6

Lemma 3.3.26

Let r be a rule of the form S — T/R where ¢1,...,0r. Let further 79, 7(,..., 7 be
nodes, and envg, envy, ..., envg environments.

If (i, i1, envi—1) —" (7;, env;) for each 1 < i < k, then the following is true:
(i) env; instantiates T" at 7; for each 0 <7 < k
(ii) envi—1 < env; foreach 1 <i <k

(iil) [€lenv; = [€]env,y,; for each & € Def Var; .\ Var(T),0<i<k,and 0 <j <k —i
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Proof:

(i) The proof is by induction on i.

(a) ¢ =0. By (E2) envg = inst(S,d) <inst(T,19) # fail. Thus, envy instantiates
T at 19 by Proposition 3.3.20.

(b) i+ i+ 1. If ;41 is a semantic constraint, then env;;; instantiates 7" at 741
directly by induction hypothesis, as env; 11 = env; and 7,41 = 7. Otherwise,
©i+1 is a syntactic constraint of the form X — Y/Z. Here we have env; 1 =
env < inst(T, 7;+1) for some env. Thus, again by Proposition 3.3.20, env;;q
instantiates 1" at 7541.

(ii) If ¢; is a semantic constraint, then env; = env;y1, so env; < env;y1 by reflexivity

(iii)

of <.

Otherwise, ; is a syntactic constraint of the form X — Y/Z. In this case we have
by (E4)
7 = target(T,1i—1,env;_1 < [7"/Y])
= replace(r;—1, build(T, env;—q < [7"/Y]))

and env; = env;_1 < [7" /Y] <[p'/Z] <inst(T, ;) for some 7" and p’. Note that the
execution rules enforce that env; # fail.

We show that [¢]env, ; = [€]enw; for each £ € Var by distinction of the following
cases:

(a) & € Var(Z). As by LR conditions € ¢ Def _Var
(iv) that []en, , = L.
So obviously [€]env;_; = [€]enw,; -

(b) & € Var(T). We have by (E4) env;|yy. (1) = inst(T,7;) and by (i) and by
Proposition 3.3.20 env;_1|var(ry = inst(T, 7i-1).

we know by Lemma B.1.8

i—1,7

By Lemma B.1.8 we know that 7,_1 < 7;. By Lemma B.1.6 it follows that
inst(T, 1) = inst(T, ;).

Thus7 [[é.:[le'n/l}i_l j [I:g]]envi'

(¢) £ € Var \ (Var(T) U Var(Z)). For & # Y obviously [E]env,, = []env,-
If¢ =Y (and Y & Var(T)), then by Lemma B.1.8 (iv) [{]eny, , = L, so
[[gjl]en'l)i71 j |I£:[|€7L’U7j‘

The proof is by induction on j. The induction base j = 0 is trivial. For the induc-
tion step, if ¢;4 11 is a semantic constraint, then env;y;y1 = env;;; according to
(E3), so this case is trivial as well.

Otherwise, ¢;4j+1 is a syntactic constraint of the form X — Y/Z and by
(E4) enviyjp1 = enviy; < [7"/Y] < [p//Z] < inst(T,7") for some 7", p', and

7. By LR conditions ({Y} U Var(Z)) N Def_Var,,;, = 0 and obviously
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Def Var;, C Def Var; ;.. So [€lenviy; i1 = [€lenviy,> and thus, by induction
hypothesis, [¢]env;y ;1 = [E]ens; for § € Def _Var; .\ Var(T).

O
Lemma 3.3.27
Let 6 and p be sequences of nodes. Further, let 7 and 7' be nodes.
Then the following is true:
c—T1/p ANT=T = G-1/p
Proof:
Let the S-derivation D for & —; 7/p have the form (& —; 7/p, env)[D1,. .., Dy], where
r is a transformation rule of the form S — T/R where ¢1,...,pi. Let further env’ =

env < inst(T,7"). We show by induction on the structure of D that an S-derivation
(¢ =, 7'/p,env’)[DY, ..., Dy exists as well.

First observe that inst(T,7") # fail as env instantiates T' at 7 and 7 < 7/ by Lemma B.1.9
and Proposition 3.3.20. Consequently, env’ instantiates 7" at 7’.

We are now ready to check the conditions in Definition 3.2.11.

(i) S is instantiated by env’: as in an LR-specification Var(T) N Var(S) = ) we know
that env'|y4,(g) = env]yy,(5) Which entails that S is instantiated by env’.

(ii) T is instantiated by env’ as already shown above.

(iii) [R]enw = p because [R]eny = p and Var(R) N Var(T) = .

(iv) each semantic constraint P(aq,...,an) € {¢1,...,¢k} is satisfied: 7 < 7/, so
env X env’. Thus, lFeny, Plaq,...,qp) entails kg P(ag,...,a,) by Corol-
lary 3.3.8.

(v) each syntactic constraint (X — Y/Z) € {e1,..., ¢k} is satisfied: let D; be the sub
S-derivation for [X]eny — [Y]eno/[Z]env- [X]env' = [X]env as Var(X)N Var(T) =
0. Likewise [Z]eny = [Z]env- [Y1env = [Y]enw, so by induction hypothesis an
S-derivation D/ for [X]enor — [Yenv'/[Z]ens exists.

g

B.5 Proofs from Section 3.3.7

Lemma 3.3.30

Let T be a template, 7 a node, and env, env’ environments. Further, the following is
true:

(i) subtree(r) = build(T, env)

(ii) env’ instantiates T at T
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Then the following holds for all £ € Leaf _Var(T):

subtree([€] enyr) = build (&, env)

Proof:
Let pos be the position of £ in T, i.e., T'| o5 = . Then

subtree([€]eny) = subtree(T|pos) (env’ inst. T at T, Def 3.2.9)
= subtree(pos, build(T, env))
= build (&, env) (Lemma B.1.7)

Lemma 3.3.31

Let T be a template, v, 7 and 7 nodes. Further, let X’ be a set of variables, env and env
be environments, and I C Inh.

Further, the following is satisfied:

(i

| Jk

env instantiates 1" at 7

)
ii)

(iii) 7 = target(T,~, env|x)
iv) env = env|y <inst(T,7)
)

(v) att(y,a) = att(r,a) for all a € Inh \ I

Then for any £ € X U Var(T') and a € A:

§.a € FinaLAttrfOCCI,Leaf,Var(T)\X(T) = [[g'a]]% = IIga]] env

Proof:
If § € X\ Var(T), then directly [§.a]eam = [€-a]envjr = [€-a]env-

Otherwise, £ € Var(T). Let pos be the position of £ in T and P = {pos(T,¢') | £ €
Leaf _Var(T) \ X}.

(i) By Lemma B.1.13 it follows that subtree(Tp0s) = build (subtempl(pos’,T), env)
and that subtree(7|os') = build(subtempl(pos’, T, env).

(i) We can now show that the requirements for the monotonicity property of att are
fulfilled, i.e., for any pos’ € Final_Posp(7)

(x)  subtree(T|posr) = subtree(T |pos)
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(iii)

(iv)

and
(xx) (pos,a) € Final_Attr_Occy p(T)

Assume that subtree(7 |pos)) # subtree(T|pos)) for a position pos’. Then from (i)
it follows that

build(subtempl(pos', T), env) + build(subtempl(pos’, T), em)|X)

So Leaf _Var (subtempl(pos’,T)) ¢ X, which implies that a position pos” exists
such that pos’ o pos” € P. Thus, pos’ & Final_Posp(7). So (x) is fulfilled.

(#x) follows from the premise §.a € Final Attr_Occy peqf var(ryx (1) and
Lemma B.1.10.

So the requirements given in Definition 3.3.6 are satisfied and we know that
att(%lpos) = att(Tlpos)
env (env) instantiates T at 7 (77), so by Definition 3.2.9:

[[g]] env = T |pos

and
[[&]]% = T/lpos

Thus, the following is true:

[€lew = att(7ipos,a) (i)
= att(T pos, @) (ii)
= [[5]]67111 (iii)






APPENDIX

Extensions to attribute grammars
and their semantics

We now formalize the attribute grammar model used in this dissertation. The model
is very close to the original model introduced in [26, 7]. As an extension, an attribute
grammar allows to attribute tree fragments which were introduced in Section 3.3.2 in a
special way.

An undefined semantic value | exists and attribution behaves in a strict way w.r.t.
this value, i.e., attributes depending on an other attribute with value L also evaluate to
L. Further, synthesized attributes of unexpanded nodes evaluate to 1.

As compared with the traditional semantics of attribute grammars, it is also ensured
that attributes in a tree always evaluate to an unambiguous value.

C.1 Context-free grammars

A context-free grammar is given by a tuple I' = (3, T, 11, S), where
(i) X is a set of grammar symbols containing a special symbol A
(il) T C X is a set of terminal symbols; A € T

(iii) IT C (X \ T) x ¥* is a set of productions where a production is written as X =
X1...X,

(iv) S € ¥\ T is a start symbol

Note that the transformation model described in this work uses more than one tree
structure (at least a source structure and a target structure). To avoid unnecessary
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complexity all structures are described using a single (attribute) grammar. So in our
case the start symbol S is of no significance.

C.2 Attributes

An attribute grammar associates attributes with grammar symbols. Attributes are di-
vided into inherited and synthesizes attributes. Thus, let A = Inh U Synth be a set of
attribute symbols.

For each production attribution rules (equations on attribute occurrences of the
production) are defined describing relationships between attributes. On the left hand
side of each rule is a production attribute occurrence; on the right hand side is a semantic
function applied to other production attribute occurrences.

A production occurrence of an attribute in a production p of the form X ::= X7 ... X,
is specified by its symbol a and the position v € {e,1,2,...,n}, where £ denotes the
position of X and 7 denotes the position of X; for 1 <i < n:

Attr(p) = {(a,v) |a€ Aand v € {¢,1,2,...,n}}

def

An occurrence of an attribute in a production can be either defined, i.e., computed by
rules belonging to this production, or otherwise applied. Defined occurrences are syn-
thesized attributes of the production’s left hand side symbol X and inherited attributes
of the production’s right hand side symbols X; (1 <7 < n):

Def(p)  =,,{(a,e) | a € Synth} U
{(a,v) |a€Inh N ve{l2,...,n}}
Appl(p) =, Attr(p) \ Def (p)

s —

C.3 Attribution rules

Let D be a semantic domain not containing the special element |, i.e., I &€ D. An
attribution rule is an equation of the form

(CLO’ VO) = fpﬂoﬂ’o((alv Vl)v SRRE) (amv Vm))

(i) p € Il is a production X ::= X; ... X,, which does not have the form X := A

)
(ii) (ao,r0) € Def(p)

(iii) (a;,v4) € Attr(p) for 1 <i<m

(iv) fp.aowo 1s @ function from D™ — D U {1}

The set of attribution rules is denoted by Attr_Rule.

Note that the attribution of unexpanded nodes is handled in a special way as de-

scribed below. So no attribution rules are allowed to be given for a production with A
on the right hand side.
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C.4 Initialization of synthesized attributes at terminal
nodes

Attribution rules allow to specify the computation of inherited attributes (except those

at a tree’s root) and synthesized attributes of nonterminal nodes. What is missing is

a way to provide values for synthesized attributes at terminal nodes. Among several

possible solutions described in the literature [7, 56] we choose to assume the presence a
function init: T x Synth — D U {L} for this purpose.

C.5 Attribute grammars

An attribute grammar is a tuple
AG = (I‘ = (%,T,11,S), A = Inh U Synth, Rule, D, z'm't)
where

(i) T is a context-free grammar
(ii) A is a set of inherited and synthesized attribute symbols

(iii) Rule: II — Pow(Attr_Rule) is a mapping from productions to sets of attribution
rules

(iv) D is a semantic domain

(v) init: T'x Synth — D U {L} is a function providing values of synthesized attributes
for terminal symbols

C.6 Semantics

C.6.1 Syntax trees

Trees over a signature X were already introduced in Chapter 3. Trees could there be
built in a completely free way. Given a context-free grammar we now have to make sure
that trees are built only using existing productions.

Let 0 € N be a tree node having n children nodes (child_count(c) = n € Natg). The
production used at o is given by prod(o) =, (X 1= Xjy...X,) where X = symbol(o)
and X; = symbol(o|;) for 1 <i < n. A tree t is a I-syntaz tree iff for all o € Node(t)
either prod(c) € II, symbol(c) € T and child_count(c) = 0, or subtree(c) has the form
Fa.

C.6.2 Tree attribute equations

We can now construct the system of attribute equations for a given tree ¢ by instantiat-
ing all production occurrences of attributes with tree attribute occurrences in all used
productions’ attribution rules. The instantiation of an attribution rule r of the form

(a0, 0) = fp.aowo ((a1,11), -, (am,vm)) at a node o is given by

(o) = def (Ull/O'aﬂ = fp.ao.wo (Ull/ralv e 7Ulvm'am))
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The complete system of equations for a syntax tree ¢ is then given by:

ﬁzz?e(t) = of {f(a) | 0 € Node(t) A prod(c) €Il A re Rule(prod(o))}

C.6.3 Consistent attributions

A consistent attribution associates values from D or the undefined value L with all at-
tribute occurrences in a way such that all attribute equations are satisfied and attribute
occurrences for which no rule exists and dependent attributes are undefined. In Chap-
ter 3 attributions were modeled by mappings att: N x A — D U {L}. Formally such
an attribution is valid iff for each node o € Node(t) of a tree t the following is satisfied:

init(symbol(c), a) if symbol(c) € T N a € Synth
flatt(ar),..., att(am)) if (c.a= flan,...,0m)) € @(t) A
att(a;) # L forall 1 <i<m

1 otherwise.

att(o,a) =

Note that no attribution rules were allowed to be given for productions of the form
X ::= A. This ensures that synthesized attributes of unexpanded nodes always evaluate
to L.

Also note that it is enforced that all attributes in a tree evaluate to an unambiguous
value which is a requirement raised in Chapter 3. Traditional attribute grammars in
contrast generally allow ambiguous attribution in cases of underspecification.

C.6.4 Attribute dependencies

In Chapter 3 a binary relation Dep describes the functional dependencies between at-
tributes. For attribute grammars this relation can be defined as the transitive closure of
a relation describing the direct dependencies induced by tree attribute equations:

(tllp051~ala thPOSQ.GQ) e Depl <:>def t1 =1ty =t A
(t1posy-a2 = f(- -, tpos,-a1,--.)) € Rule(t)
_ +

Dep = 4er Dep]
Dep is required to be irreflexive in Chapter 3 which means that Dep; does not contain
any cycles. Note that the test for a attribute grammar to be free of circular attribute
dependencies generally requires exponential complexity [21]. However, for certain classes
of attribute grammars the test can be performed efficiently (see, e.g., [23] and [24]). In
the following we will assume that no circular attribute dependencies occur.

C.6.5 Monotonicity property

In Chapter 3 attributions were required to behave monotonically w.r.t. the continuous
expansion of the tree being attributed. This basically means that attributes having a
final value in a tree where certain subtrees are yet unexpanded have the same value when
any of these unexpanded subtrees have been replaced by new subtrees. The property was
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defined formally in Definition 3.3.6. We now show that attribute grammars as defined
above satisfy this property.

Let A = (X, Inh, Synth, D, att, Dep) be an attribution where att has the consistency
property defined in Section C.6.3 and Dep is the non-circular relation defined in Sec-
tion C.6.4.

Theorem C.6.1
A is monotonous, i.e., the following conditions are satisfied for any nodes o =t 05, and
o', P C Pos(subtree(c)), any attribute a € A, and I C Inh:

(i) o =rpo’

= ((pos,a) € Final_Attr_Occyp(o) = att(0|pos,a) = att(0’ |pos, a))

(i) o X0’ = att(o,a) = L V att(o,a) = att(o’,a)

Proof:

(i) We prove this property using well-founded induction.

Let < C Final_Attr_Occy p(o) X Final_Attr_Occy p(o) where

(posy,a1) < (posy,az) S (olposl.al,alp052.a2) € Dep

Dep has no cycles, so < is a well-founded relation.

We introduce a new predicate ® on attribute occurrences.

®(pos,a) < ((pos,a) € Final_Attr_Occy p(o)

= att(0|pes) = att(a’lpos))

def

Using well-founded induction we show that ®(pos,a) for all (pos,a), if o <1 p o’
It is necessary to show that

(V(pos',d’) . (pos’,a’) < (pos,a) = @(pos’,a')) = ®(pos,a)
for all (pos,a).

To show this let (pos,a) € Final_Attr_Occy p(o). We distinguish the following
cases.

(a) pos = ¢ and a € Inh. Then a ¢ I as (pos,a) € Final_Attr_Occy p(c). So
att(0 | pos-a) = att(o’ | pos.a) follows directly from o <7 p o’.

(b) otherwise
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i. (Ulpos.a = f(0|pos,-a1, - - - ,alposn.an)) € Rule(t).

In this case (pos;,a;) € Final_Attr_Occrp(o) for each 1 < i < n, as
otherwise o |pps.a would not be final.. By o < ¢’ we also know that

(a’lpos.a = f(0' | pos, a1, - - -, a'iposn.an)) € Rule(t'), if 0/ =t | pos, -

®(pos’,a’) for all (pos’,a’) < (pos,a) implies that att(o|pos,.a;)
att(0’| pos,-a;) for all 1 <4 < n. Thus

att(0 | pos-a) = f(att(olposl.al), e att(alposn.an))
= f(att(a'lposl.al), e att(a’lposn.an))
= att(o’|pos-a)

ii. symbol(o|pes) = F € T and a € Synth. Then also symbol(c’|,05) = F as
o =o', so
att(o|pos-a) = init(F,a)
= att(o’ | pos-a)
Thus, ®(pos, a) holds.

iii. otherwise
att(0|pos-a) = L

= att(o’ | pos-a)

Thus, ®(pos,a) holds.

(ii) This property is shown in a similar way also using well-founded induction. Let

o' =1t'|pos, Where t < t'.

As Dep contains no cycles, Dep(t) C Dep is a well-founded relation.

A new predicate ® is defined as follows.

D(pos,a) &,  att(tipes,a) = LV att(t|pes,a) = att(t' | pos, @)

In order to show that ®(pos,a) for all (pos,a) using well-founded induction it is
necessary to show that

(V(pos’,a’).((pos’,a’),(pos,a)) = é(pos’,a')) =  ®(pos,a)

We show this distinguishing the following cases.
(a) pos = e and a € Inh. Then att(t] os,a) = L, so ®(pos, a) follows immediately.
(b) otherwise:
i (tlpos'a = f(tlposl‘ala e 7tlposn-QN)) S Rule(t).
By t <t we know that (t/lpos.a = f(t' |pos,-a1, - - - ,t/lposn.an)) € %(t/).

V(pos',a') . ((pos’,d’), (pos,a)) = ®(pos’,a’) implies that for each
1 < i <neither att(t)pos,, a;) = L or att(t|pos,, a:) = att(t'|pos,, a;).
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If att(t|pos,, a;i) = L for some 4, then att(t|pos,a) = L, so @(pos,a) holds.
Otherwise

att(t|pos-a) = f(att(tpos,-a1), ., att(t|pos, -an))
= f(att(t' |pos,-a1), - .., alt(t' | pos, .an))
= alt(t'|pos.a)

So ®(pos, a) holds in this case as well.
ii. symbol(t|pos) = F € T and a € Synth. Then also symbol(t'|,,s) = F as
t=t,so
att(t|pos-a) = nit(F,a)
= att(t' |pos.a)
Thus, ®(pos,a) holds.
iii. otherwise
att(t|pes-a) = L
= att(t' |pos.a)

Thus, ®(pos,a) holds.

g

A also satisfies the property (Attr2) described in Section 3.3.9 which is required for the
application of dynamic programming while performing a transformation.

Theorem C.6.2
A satisfies (Attr2), i.e, for all o, o', pos, a the following holds:

(subtree(o) = subtree(a’) A
Vb e A . (0.b,0p0s.a) € Dep = att(o,b) = att(o’,b))
= att(0|pos,a) = att(0’|pos, a)

(without proof) O

C.7 Construction of an attribute grammar from a Coala
specification

The syntactic elements for the specification of an attribute grammar were described in
Section 4.1.8. In the following we describe how an attribute grammar as defined in C.5
can be constructed from those elements of a Coala specification.

C.7.1 Context-free grammar

Given all the terminals and productions declared in a Coala specification a context-free
grammar I' = (3,711, S) as described in C.1 can easily be constructed where
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> is the set of all defined terminal and non-terminal symbols
e T C X is the set of terminal symbols
o II C X x ¥* is the set of declared productions

S is one of the defined non-terminal symbols (we will not make use of it, so it does
not matter)

C.7.2 Attributes

The attribute declarations contained in a Coala specification naturally induce a set A =
Inh U Synth of attribute symbols.

C.7.3 Attribution rules

Coala attribution rules can be mapped to a function Rule: II — Pow(Attr_Rule) as
defined in C.3 as follows. Consider a Coala attribution rule of the form

¢ 9

attr node_varg ‘::=" node_vary ...node_vary, ‘{’

attr_occy ‘=" expr

3%
Further, assume the following:

e let p be the production referred to by node_varg ‘: :=" node_vary ...node_vary

e let {attr_occy, ..., attr_occy} be the set of attribute occurrences appearing in ezpr.

e for 0 < i <k, let v; be the position of attr_occ;’s node variable in the attribution
rule’s production where the production’s left hand side has position ¢ and (j) is
the position of the j-th right hand side node variable.

e let a; be the attribute referenced by attr_occ; for 0 <1 < k.

We construct a semantic function fp 4., (21, ..., 2x) which returns the result of evalu-
ating expr in an environment that binds attr_occ; to the value of z; for each 1 < i < k.
Using fp ag,v0, an attribution rule as defined in C.3 is then given by

(CLO’ VO) = fpﬂoﬂ’o((alv Vl)v SRR (ak7 Vk))

The complete mapping Rule for an attribute grammar can be created by collecting
all attribution rules contained in a Coala specification including implicit copy rules.
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Summary of Coala syntax

1. specification = specification ident,, ‘;’ decl,”
2. decl n= include_decl,

| terminal_decl,
| production_list,
| fetdef,,

| attr_decl,

| attr_rules,,

|

trafo_rule,,

3. include_decl = include ident,, ‘;’
4. terminal_decl = terminal ident_list,, ‘;’
5. production_list ::= productions ‘{’ producti0n56+ ‘¥
6. productions = ddent,, ‘::=" prod_rhs_list, ‘;’
7. prod_rhs_list = prod-rhs,
| prod_rhs_list. ‘1" prod_rhs
s. prod_rhs = node_vary,”
9. attr_decl = (inherited | synthesized ) ident_list,, with

ident_listy, “;’
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0. attr_rules = attr node_var,, ‘::=" node_var,,*
U attr_equ,, T ¥
1. attr_equ = attrooccgs ‘=" expr,, *;’
2. fet_def fct ident,, C [ident_list,,] )’ ‘=" expr,,
3. trafo_rule = rule [rel_ident,, ‘:’] template ;* ‘=>" template,
[trafo_rest ,] [constraints ;] [minimizer,,] ‘3’
1. trafo_rest = ‘/’ node_var,*
15, constraints where constraint,;*
16.  constraint = ‘[ expr, 1"
| [relident,, ‘:’]
* ¢ ) )
leaf_template,,* ‘=> leaf_template , [trafo_rest ] ;
7. manimizer = minimize expr,, *;’
1s.  template = leaf-template
| node_var,, ‘<’ template * >’
0. leaf-template := node_var,,
| Cident,, ‘" expr,, )’
‘ 4(7 exp,r,QQ 4)7
| const_expr,,
| attroocc,,
Expressions
22, expr = if expr,, then expr,, else expr,,
let ident,, ‘=" expr,, in expr,,

expr,, where local_def list,,

ident,, ‘C [argument_list,_] ‘)’

ident,,

attr_occ,g

const_expr,,

expr,, binop,. expr,,

unop,. €xpr,,

[
61Ep’f’22

‘¢ expr,,

ident,,

4)7
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23.  local_def_list

21, local_def

25.  argument_list

2. binop

27.  UNOP

28.  const_expr

2. bool_const

Lists of identifiers

32.  ident_list

Node variables

35.  node_var

Attribute occurrences

3s. attr_occ

Lexical tokens
2. ident

42.  rel_ident

local,def24

local_def list,, *,” local_def,

N [
ident,, ‘=" expr,,

expr,,

il

- 3
argumemﬁ,lzst25 s €IPT,,

c*7|c/7|c+7|¢_7

) ) b b b b
‘< ‘c> ‘c<= ‘4>= |c== |c!=

4&&7 | 3 | | 9

t! ) ‘ (0
string-const,
nat_const,,
real_const,,
dim_const,,
bool_const,,
nil

true | false

ident,,

ident_list,, *," ident,,

ident,,

tdent,, ‘[’ nat_const,, ‘1’

ident,, ‘[’ ident,, ‘1’

[
node_vary, ‘.’ ident,,

letter,, letter_or_digit,*

‘@’ ident,,
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| ‘ee’

a3, letter = )@ |v|... |2 |N|B)|... |7

e, digit L IR R B -

a5, letter_or_digit letter,, | digit,,

46.  hex_digit = digit,,
| @ || ...| T |N[B]...|F

47, nat_const = digz’t44+

a8, real_const digit,,* ©.’ dz’gz’t44+ [exponent ]

19, exponent (‘e |‘E") [+ ] ] digit,, *

s0.  dim_const = nat_const,, measure_unit,,

51.

52.

53.

54.

measure_unit
string-const
string_char

escape_sequence

real_const,, measure_unity,
pt | cm | mm |in

‘" (string_char,, | escape_sequence,,)* ‘"’
ey

N | V)

\" ‘u’ hexr_digit,,

every character except

hex_digit,, hex_digit,  hex_digit,,
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Haskell implementation

The following lists a Haskell implementation of the transformation model presented in
this dissertation. This implementation was designed to be as close as possible to the
solution given in Chapter 3. As such it serves as a proof of concept, but has also in no
way been tuned towards efficiency. Note also that the implementations of some functions
having little relevance to the transformation model have been omitted. A full version of
the program including test cases can be obtained from the author.

In Chapter 3 variables denoting sets and functions yielding sets have been given
names with capitalized first letters. In Haskell, however, names beginning with capital
letters always represent types. So, in order to stay as close as possible to the notation
used in Chapter 3, the convention has been followed that variables and functions giving
sets are always prefixed with an underscore character. For example, the function Var
giving the variables occurring in a template is denoted here by _Var.

—— Haskell implementation of Coala’s
—— attributed tree transformation model

type Sym = String
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unexpsym :: Sym

unexpsym =" _
type D = Int

data Tree = Tree Sym [Tree]

instance Show Tree where
show (Trees [|) =s
show (Tree s ts) = s ++ " (" ++ (showsubtrees ts) ++ ")"
where
showsubtrees :: [Tree] — String
showsubtrees [| =""
showsubtrees (t :[])

show t)
showsubtrees (t:ts) "

= (
= (show t) ++ ",” ++ (showsubtrees ts)
instance Eq Tree where

(Tree s ts) == (Trees' ts’) = s ==5s' && ts == ts’

type Pos = [Int]

symbol :: Tree — Sym
symbol (Tree s _) =s

subtree :: Pos — Tree — Tree

subtree [| t =t

subtree (i:is) (Tree _ ts) = subtree is (elementAt ts i)
subtree _ _ = error "subtree:. invalid _pos”

treplace :: Tree — Tree — Pos — Tree
treplace t1 t2 [] =t2
treplace (Tree s ts) t2 (i:is) = Tree s (replaceElem ts t3 i)
where
t3 = treplace (elementAt ts i) t2 is

subtree_count :: Tree — Int
subtree_count (Tree _ ts) = length ts

unexptree :: Sym —Tree

unexptree s =
Tree s [Tree unexpsym []]

data Node = Tree :@: Pos
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instance Eq Node where
(t :@: pos) == (t' :@: pos') = t ==t && pos == pos’

nsubtree :: Node — Tree
nsubtree (t :@: pos) = subtree pos t

child :: Int — Node —Node
child i (t :@: pos) =t :@: (pos ++ [i])

desc :: Node —Pos — Node
desc (t :@: posl) pos2 =t :@: (posl ++ pos2)

nsymbol :: Node —Sym
nsymbol (t :@: pos) = symbol (subtree pos t)

replace :: Node —Tree — Node
replace (tl :@: pos) t2 = (treplace tl t2 pos) :@: pos

child_count :: Node —Int
child_count n = subtree_count (nsubtree n)

children :: Node — [Node]
children n = [child i n | i « [1 .. (child_count n)]]

parent :: Node —Node
parent (t :@: pos) =t :@: (init pos)

att :: Node —String — Maybe Int

—— (implementation omitted)

—— Theory chapter’s example constraint
—— system

sat :: String — [Maybe Int] —Bool

—— (implementation omitted)

data Var = Sym :#: Int

instance Eq Var where
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(s1 #: il) == (2 :#:i2) = sl == 2 && il == i2

instance Show Var where
show (s :#: nr) = (show s) ++ "[" 4+ (show nr) ++ "]

vsymbol :: Var — Sym
vsymbol (s :#: id) =s

data Template = LeafVar Var
| CTemplate Var [Template]

Var :: Template — [Var]
_Var (LeafVar x) = [X]
Var (CTemplate x ts) =
[x] ++ (concat $ map _Var ts)

_LeafVar :: Template — [Var]

_LeafVar (LeafVar x) = [x]

_LeafVar (CTemplate x ts) =
concat (map _LeafVar ts)

root_var :: Template — Var
root_var (LeafVar x) = x
root_var (CTemplate x ts) = x

data AttrOcc = Var :.: String

data Rule = Rule [Template] Template [Var]

[ Constraint] Obj
data Constraint = SynConstr [Var] Var [Var]

| SemConstr String [AttrOcc]
type Obj = Maybe ([Maybe D] —Int, [AttrOcc])
type Spec = [Rule]
type Sig = ([Sym], Sym, [Sym])

rsignature :: Rule — Sig
rsignature (Rule Ss T _Rs _ _) = (ss, t, rs)
where
ss = [vsymbol $ rootvar .S | _S « _Ss]
t = vsymbol $ rootvar _T
rs = [vsymbol _R | R «— _Rs]

csignature :: Constraint — Sig
csignature (SynConstr Xs _Y _Zs) = (xs, y, zs)
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where
xs = [vsymbol X | X « _Xs]
y = vsymbol .Y
zs = [vsymbol Z | Z «— _Zs]

type Env = Var —Maybe Node

attenv :: Env — AttrOcc— Maybe D
attenv env (x :: a) =

case env x of

Nothing —Nothing

Just n — att n a

satenv :: Env — Constraint — Bool
satenv env (SemConstr p aos) = sat p vs
where
vs = map (attenv env) aos

empty_env :: Env
empty_env v = Nothing

envget :: Env — Var — Node
envget env v = checkdef (env v)
where
checkdef (Just n) =n
checkdef _ = error $ "envget:_undef (" ++ (show v) ++ )"

data State = Fail
| State Env

empty_state :: State
empty_state = State empty_env

getenv :: State — Env
getenv (State env) = env
getenv Fail = error "env:_Fail”

restrict_env :: Env — [Var] — Env
restrict_env env xs = env’
where
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env’ x = if x ‘elem’ xs then env x
else Nothing

(<:) :: State — State — State

Fail <: _ = Fail

_ <: Fail = Fail

(State envl) <: (State env2) =
State env3
where

env3 x = case env2 x of
Just n — Just n
Nothing —envl x

(//) :: Node —Var — State
n // v = State env
where
env x = if x == v then Just n
else Nothing

(///) :: [Node] — [Var] — State

[l /// [] = State empty_env

(n:ns) /// (vivs) = (n// V) <:(ns /// vs)
_//] - =error " ///:_ differing _lengths”

instl :: Template — Node — State
instl (LeafVar x) n =
if vsymbol x == nsymbol n then
n//x
else Fail
instl (CTemplate x ts) n =

(inst ts (children n)) <: (instl (LeafVar x) n)

inst :: [Template] — [Node] — State
inst [] [] = empty_state
inst [] - = Fail
inst _ [] = Fail
inst (t:ts) (n:ns) =
(instl t n) <: (inst ts ns)

build :: Template — State — Tree
build (LeafVar x) (State env) =
case env x of
Nothing —unexptree (vsymbol x)
Just n — nsubtree n
build (CTemplate x ts) s@(State env) =
Tree f [build t s | t « ts]
where
f = vsymbol x
build _ Fail = error " build : _Fail”

anchor :: Var — Env — Node
anchor x env =
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case env x of
Justn — n
otherwise — (unexptree f) :Q@: []
where
f = vsymbol x

type GConstraint a = a — [a]

processl :: (GConstraint a) — [a] — [a]
processl ¢ ss = concat $ map c ss

process :: [GConstraint a] — [a] — [a]
process [| states = states
process (c:cs) states =

process cs $ processl c states

spec :: Spec

type Result = (Node, [Node])
type PState = (Node, State)

trafo :: Sig — [Node] — Node — [Result]
trafo sig sigmas gamma =
concat [ trafo_r r sigmas gamma |
r < spec, rsignature r == sig]

trafo_r :: Rule — [Node] — Node — [Result]
trafo_r r@(Rule Ss _T _Rs phis obj) sigmas gamma =
makeResult r ss’

where
ss’' = minimize obj ss
ss = process (makeGConstrs r) [(tau0, env0)]

tau0 = replace gamma (build _T empty_state)
env0 = (inst _Ss sigmas) <: (instl _T tau0)

makeResult :: Rule — [PState] — [Result]
makeResult _ [| =]
makeResult r ((_, Fail ):ss) = makeResult r ss
makeResult r ((tau, State env):ss) = x:xs
where
x = makeResult’ r tau env
xs = makeResult r ss

makeResult’ :: Rule — Node —Env — Result
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makeResult’ (Rule - _T _Rs _ _) tau env =
(tau, [envget env r | r «— _Rs])

minimize :: Obj — [PState] — [PState]
minimize Nothing ss = ss
minimize obj@(Just (f, aos)) ss =
[s | s « ss, cost obj s == (]
where
¢ = minimum [cost obj s’ | s’ « ss]

cost :: Obj — PState — Int
cost Nothing _ = error " cost:_no_obj._fct"
cost _ (-, Fail) = error "cost:. fail
cost (Just (f, aos)) (-, State env) =f vs
where
vs = map (attenv env) aos

makeGConstrs :: Rule — [GConstraint PState]
makeGConstrs r@(Rule Ss _T _Rs phis obj) =
[makeGConstr r phi | phi « phis]

makeGConstr :: Rule — Constraint —
GConstraint PState
makeGConstr r phi@(SemConstr s aos) = ¢
where
c (-, Fail) =1]
c s@(_, State env ) =
if satenv env phi then [s]
else []

makeGConstr (Rule _Ss _T _Rs phis obj)
phi@(SynConstr Xs _Y _Zs) = ¢
where
c (-, Fail) =]
c (tau, State env) =
[makePState _T _Rs _Y env tau result |
result <« _Result]
where
_Result =
trafo (csignature phi)
[envget env X | X « _Xs]
(anchor _Y env)

makePState :: Template — [Var] — Var — Env — Node — Result
— PState
makePState T _Rs _Y env tau (tau’, rhos') = (_tau_, _env.)
where
_tau_ = replace tau (build _T (State env <:
(tau’ // Y')))
_env_ = State env <: (tau’ // .Y) <:
(rhos' /// Rs) <: (instl _T _tau.)
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—— get element from list where index starts at 1
elementAt :: [a] — Int — a

—— replace element at index starting at 1
replaceElem :: [Tree] — Tree — Int — [Tree]

—— (implementations omitted)

——spec =[rl, r2, r3, r4 | where
spec = [ rl, r2, r3, r4 | where
rl = Rule
[LeafVar ("S":#:0)]
- =
(CTemplate ("T":#:0) [LeafVar ("E":#:0)])
I

—— where

[SynConstr ['S":#:0] ("E":#:0) []]
—— minimizing

Nothing

r2 = Rule
[CTemplate ("S":#:0)
[CTemplate ("B":#:0)
[LeafVar ("S":#:1), LeafVar ("S":#:2)]
Il

(_C_Template ("E":#:0)
[CTemplate ("H":#:0)
[LeafVar ("E":#:1), LeafVar ("E":#:2)]

)

I
—— where
[SynConstr ['S™:#:1] ("E":#:1) [].
SynConstr ['S":#:2] ("E":#:2) ],
SemConstr "P" [("E":#:0 .0 "X"),
| ("E":#:0 . "w")]
—— minimizing
Nothing

r3 = Rule

[CTemplate ("S":#:0)
[CTemplate ("B":#:0)
[LeafVar ("S":#:1), LeafVar ("S":#:2)]
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Il

(_C_Tejnplate ("E":#:0)

[CTemplate ("V":#:0)
[LeafVar ("E":#:1), LeafVar ("E":#:2)]
)

I

—— where

[SynConstr ['S":#:1] ("E":#:1
SynConstr ['S":#: ]( E" #
P" E(

SemConstr "

—— minimizing

Nothing

r4 = Rule
[CTemplate ("S":#:0)
[LeafVar ("L":#:0)]]
(Cirejnplate ("E":#:0)
[CTemplate ("A":#:0) []])
I

—— where

I
—— minimizing
Nothing
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T pos, 32

(0/€ 54

[01 .. .Jk/€1 .. Ek}v 54
Attr_Oce, 32
Attr_Occ(T), 32

Def Var,, 50

Def _Var; ., 51

Dep(T), 49

Dom(env), 54

Env, 536

Final _Attr_Occr p(o), 47
Final_Attr_Occr v (T), 49
Final_Attr_Occ; ., 52
Final_Posp(o), 47

Leaf _Var, 32

Pos(T), 32
Prelim_Attr_Occy p(0), 47
Prelim_Attr_Occr v (T), 49
Requ_Attr(r), 52
Requ_Attr_Occ(p), 52
Sig, 51

Template, 31

Var(T), 51

anchor(Y, env), 57

build (T, env), 56

envy, 94

inst(T,5), 55
target(T,~, env), 57

Ny, 36

Y-tree, 26

State, 54

TR(spec), 37

TR, (spec), 37

TR opt(spec), 40

fail, 54

g, 58

J—ETL’U; 54

Obj, 39

=1,p, 48

=, 44

d, 54

TEX, 11-13, 20
ascent, 141
baseline, 141
character set, 141
character, 141
descent, 141
em-width, 142
encoding, 141
ex-height, 141
font, 142
glyph, 142
kerning, 142
leading, 142
ligature, 142
orphan, 142
path, 142
point size, 142
point, 142
type 1 font, 142
utf-8, 143
unicode, 142
widow, 143

A

Agenda, 8, 123, 127-128, 130, 131, 135

attribute, 28

attribute grammar, 4, 4, 6, 8, 9, 11, 12, 15,
20, 29, 45, 66, 77, 97, 124, 126-128,
130, 134, 159-166

attribute occurrence, 32

attribution, 28

B
BNF, 78, 86



182 Index
C H
C++, 79 Haskell, 66, 171
Coala, 9, 77, 75-97, 99, 100, 102, 103, 106, HTML, 8
107, 109, 111, 115-118, 121-124, ;

126-128, 130, 131, 134, 135, 165-
167

compiler construction, 4

complete tree, 44

concatenation, 9

constraint, 1, 5, 6, 6, 7, 8, 18, 19, 22, 30-33,
33, 88, 129-130, 133

Constraint Logic Programming, 128130

constraint system, 31, 31, 34, 35

context-free grammar, 3, 3, 4, 11, 12, 25,
28, 124, 159, 161

D

DITA, 3

DocBook, 125

document, 1, 1, 2-5, 11, 22, 23, 116, 118,
123-131, 142

structured, 8

document class, 2, 2, 3

document formatter, 1, 5, 5, 6-8, 24, 77,
92, 96, 97

document processing, 1, 91, 118, 122, 141,
142

document processing system, 1, 2, 123

document structure, 11, 11-12, 13, 15, 17,
77, 123-125

Document Type Definition, 3

domain, 28, 54

DSSSL, 8, 123-127, 130

dynamic programming, 25, 42, 66—69, 71,
72,75, 134, 165

E
empty environment, 54

F
formatter, see document formatter
formatting object tree, 125

G
glue, 14
grammar symbol, 3

incremental attribution, 49
inherited attribute, 28
instantiation (of a template), 32
instantiation by environment, 36
invalid processing state, 54

J
Java, 77, 79, 97, 134

L

less or equally expanded, 45
line breaking, 13

Logic Programming, 128—-130
Lout, 8, 13

LR specification, 53

M
matching (of a template), 32
monotonous attribution, 48

N
node, 27
node variable, 31

O

objective function, 39

ODA, 123-124, 130

optimal S-derivation, 39

optimizing transformation specification, 39

P

PDF, 8, 96

Portable Document Format, 4

position, 26

position (in a template), 32

PostScript, 77, 91, 96, 97

Postscript, 91, 94, 96, 103, 106, 118, 134,
142

power set, 9

predecessor, 45

prefix, 9

preliminary tree attribute occurrence, 47

processing state, 54



Index

183

production, 3
Prolog, 128

R

rest, 33

restriction (of a function), 9
restriction of an environment, 54
rule system, 57

S

S-derivation, 87

Scalable Vector Graphics, 4

semantic constraint, 25, 30, 33, 80, 89, 90,
133

sequence, 9

SGML, 2, 3, 123-127, 130

signature (of syntactic constraint), 51

signature (of transformation rule), 51

source, 33

structured document model, 2, 2, 4, 123,
125, 127

suitable anchor, 60

SVG, 125

syntactic constraint, 33, 88, 89, 133

synthesized attribute, 28

T

target, 33

template, 31

transformation rule, 33
transformation specification, 3%
tree attribute occurrence, 28

A%

variable environment, 36
\%%

Wikipedia, 118

X

XHTML, 125

XML, 2, 3, 77, 91-94, 97, 123-127, 130, 134
XML Schema, 3, 125

XSL, 123-127, 130

XSL-FO, 8

XSLT, 8



