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ABSTRACT

We address the nonlinear transceiver design in a point-to-
point MIMO system withTomlinson-Harashima precoding
(THP). By jointly optimizing both transmitter and receiver,
capacity can be achieved up to the shaping loss and each
stream can be decoded separately. In contrast to linear fil-
tering, THP allows for uniform stream properties rendering
bit-loading unnecessary and allows to span an arbitrarily high
number of streams for the sake of a reduced cardinality mod-
ulation alphabet. Existing work studied either the decision
feedback equalizer version with the nonlinearity located at
the receiver or the perfect dirty paper precoding where the
geometric mean decomposition(GMD) can be applied. We
explicitly take the modulo operator into account leading to
the fact that thegeneralized triangular decompositionhas to
be applied instead of the GMD.

1. INTRODUCTION

Recently, decision feedback aided nonlinear filtering was
shown to achieve capacity in point-to-point systems with the
nice characteristic of uniform stream properties and minimum
sum mean square error [1, 2]. Thus, undesirable bit-loading
and different coding on each stream, which is necessary for
linear filtering to achieve capacity, become obsolete. The non-
linear structure can also be shifted to the transmitter: in [2],
the authors also consider perfectdirty paper(DP) precoding
for which stream-coding must be done jointly leading to a
highly complex precoder. We deployTomlinson Harashima
Precoding(THP) as a low-complexity practical implementa-
tion of DP. For the THP system, we show that capacity is
achieved except for the shaping loss [3]. Moreover, a uniform
stream property is achieved in the relevant SNR region and an
arbitrarily high number of streams can be transmitted for the
sake of a reduced cardinality modulation alphabet. However,
the main difference to the work [1, 2] is that for THP, the so
called generalized triangular decomposition(GTD) [4] has
to be applied instead of thegeometric mean decomposition
(GMD) [5] which in contrast to the GMD not necessarily ex-
ists. The GTD must be used due to the fact that the modulo

operator does not affect the last stream which therefore has
a different variance. Both GTD and GMD are matrix factor-
izations where a matrix is decomposed into a the product of
a unitary matrix, an upper/lower triangular matrix with pre-
scribed main diagonal, and another unitary matrix.

In Section 2, we discuss the system model and briefly re-
view thelinear capacity achieving filtering in Section 3. Af-
terwards, we show in Section 4 that the capacity achieving
precoder in THP has enough degrees of freedom left to let
all individual streams have uniform properties in the relevant
SNR region. To this end, the GTD is utilized, the properties
and construction of which are explained in Section 5. Finally,
simulation results in Section 6 show that THP can clearly out-
perform the decision feedback aided system despite the power
loss and the modulo loss since THP does not suffer from error
propagation.

Notation: Matrices and vectors are denoted by upper and
lower case bold italic letters, respectively. The operatorsE[·],
(·)H, (·)T, tr(·), det(·), and [·]i,j denote expectation with
respect to the noiseη and the signalv, conjugate transpo-
sition, transposition, trace, determinant, and the matrix ele-
ment in theith row andjth column, respectively. The set
T
K×K ⊂ CK×K contains allK×K strictly upper triangular

matrices,A represents the discrete or continuous modulation
alphabet,SK×K+ ⊂ C

K×K denotes the cone of theK × K
positive semidefinite matrices,DK×r ⊂ R

K×r
+,0 is the set of

all (not necessarily square) diagonal matrices, and the set of
all K ×K unitary matrices is denoted byUK×K ⊂ CK×K .
<{·}, ={·}, andj denote real and imaginary part of the com-
plex argument, and the imaginary unit

√−1, respectively.<
is a partial order on the proper cone of positive semidefinite
matrices.

2. SYSTEM MODEL

We consider a point-to-point MIMO communication link as
depicted in Figure 1 where the zero-mean data vectors ∈ A

K

with identity covariance matrix contains the modulated sym-
bols of theK streams. The feedback filterF ∈ TK×K van-
ishes in case of linear precoding whereas it is restricted to
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Fig. 1. Nonlinear point-to-point system model.

bestrictly upper1 triangular (with zeros on its main diagonal)
when THP is applied. The modulo operatorM(·) : CK →
VK with V = {z ∈ C| − τ ≤ 2<{z} < τ, −τ ≤ 2={z} <
τ} is an element-wise many-to-one mapping from the entire
K-dimensional complex hyper-plane into the half-open com-
plex hyper-cube by an element-wise addition of integer mul-
tiples of the modulo constantτ to both real and imaginary
parts of its argument such that its image lies inV

K . We make
the common statistical assumptions on the outputv ∈ VK of
the modulo operator [6], i.e., we assume that the covariance
matrix Cv = E[vvH] ∈ S

K×K
+ is diagonal which means

that the individual entries are uncorrelated. Furthermore, the
last stream is not affected by the modulo operator when the
modulo constantτ is chosen sufficiently large, hence its vari-
ance remains one. In case of anM -ary QAM modulation
with M = 4n, n ∈ N, the firstK − 1 diagonal entries of
Cv are assumed to have varianceσ2

v = M
M−1 , see [6],if the

respective feedback isactive. This follows from the assump-
tion that [v]1,1, . . . , [v]K−1,1 are uniformly distributed over
V. The signalv is linearly precoded byP ∈ CNTx×K and
propagates over the frequency flat channelHNRx×NTx . At
the receiver side, zero-mean additive white Gaussian noise
η ∈ CNRx is superimposed and the receive filterBK×NRx gen-
eratesd̂ ∈ CK representing an estimate for the virtual signal
d ∈ AK + τZK + j τZK ⊂ CK . In the end, the modulo op-
erator generates the estimated symbol vectorŝ by performing
the remapping ontoVK .

Fig. 2 shows a modulo operator free representation of
the transmitter with the additive signala(s,F ) from aK-
dimensional infinite latticeτZK + j τZK such thatv ∈ VK

remains the same. As the modulo operators avoid simple re-
lations betweens and ŝ, all our optimizations are based on
the virtual signalsd andd̂.

3. CAPACITY ACHIEVING LINEAR FILTERING
REVISITED

If the precoder is restricted to act linearly, the feedback filter
F = 0 is inactive and all modulo operators are removed. In
the following, we shortly review the capacity achieving linear
filtering from an information theoretic point of view and from

1In general, any symmetrically permuted strictly upper triangular matrix
may be chosen since causality and realizability are ensured by means of the
resulting matrix structure. We choose the strictly upper triangularity due to
the fact that the general triangular decomposition, which we will make use of
later, was introduced for upper triangular matrices first.
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Fig. 2. Modulo-operator free precoder and receiver representation.

a signal processing point of view and highlight key properties
of the resulting transmission chain.

3.1. Information Theoretic Point of View

Capacity is defined as the maximum mutual information be-
tween the transmit signalx = Ps ∈ C

NTx and the receive
signaly = HPs + η ∈ C

NRx, and maximization is done
with respect to the input distribution ofx and its covariance
Cx = E[xxH] = PPH ∈ S

NTx×NTx
+ subject to an average

power constrainttr(Cx) ≤ PTx:

max
Cx

log2 det
(

INTx +CxH
HC−1

η H
)

s.t.: tr(Cx) ≤ PTx andCx < 0
(1)

First of all, Gaussian signaling has to be chosen such that the
utility in (1) represents not only an upper bound, but also the
truly achievable sum-rate. Telatar [7] came up with the well
known result that the input covarianceCx needs to have the
same eigenspace asHHC−1

η H . Moreover, the water-filling
policy guarantees optimum power allocation. The optimum
covarianceČx directly follows from the KKT conditions as-
signed to (1) and can compactly be expressed as

Čx =
[
µ−1INTx − (HHC−1

η H)−1]
⊥ , (2)

whereµ ln 2 is the Lagrangian factor which is chosen such
that the constrainttr(Čx) ≤ PTx is fulfilled with equality.
The operator[·]⊥ performs the orthogonal projection of its
Hermitian argument onto the proper cone of positive semidef-
inite matrices by setting all negative eigenvalues to zero [8].
It can be thought of as the multi-dimensional extension of the
max(0, ·) operator known from scalar water-pouring. How-
ever, this compact notation already tells us which eigenspace
needs to be chosen and the optimum power allocation follows
as well, cf. [9].

3.2. Signal Processing Point of View

Solution (2) is important from an information theoretic point
of view. However, from a signal processing perspective, it is
more relevant to know how to realize the precoderP instead
of its covarianceCx = PPH and how to design the receiver.
In conjunction with an MMSE-typereceiverB recovering
s, the utility in (1) can also be expressed as− log2 detCe

(see [10]) with

Ce =
(
IK + PHHHC−1

η HP
)−1



denoting the covariance matrix of the error vectore = s− ŝ.
In order to find the optimum transmit filter, we intro-

duce thesorted reduced eigenvalue decompositionUΛUH

ofHHC−1
η H with U ∈ CNTx×r containing the firstr unit-

norm eigenvectors andΛ ∈ Dr×r containing ther non-
zero eigenvaluesλ1, . . . , λr in non-increasing order. Set-
ting P̌ = UΦS, whereΦ ∈ D

r×K is diagonal but not
necessarily square with entriesΦ1, . . . , Φmin(r,K) ∈ R, the
water-filling policy leads to a power allocation according to
Φ2
k = max(0, 1

µ − 1
λk

), k ∈ {1, . . . ,min(K, r)}. In order

to let the covariance matrixCx = PPH achieve the rank of
the optimum covariance matrix̌Cx from (2), the number of
streamsK has to be chosen at least as large as the rank of the
optimum covariance matrixd = rank(Čx) ≤ NTx. Other-
wise, capacity cannot be achieved. Finally, a unitary matrix
S ∈ UK×K can be chosen as a degree of freedom as it does
not change the obtained sum-rate.

3.3. Key Properties of the Transmission Chain

ChoosingU andΦ as in the previous section, capacity is
achieved. The resulting impacts on the transmission chain
are now summarized:

1.) For S = IK , the number of streamsK has to
be chosen equal to the dimensiond of the subspace where
transmission takes place. IfK < d, capacity cannot be
achieved, ifK > d, K − d streams get zero power allo-
cated. So forS = IK andK = d, the error covariance matrix
Ce = (IK +ΦTΛΦ)−1 gets diagonalized and allK streams
can be decodedseparately, which has an enormous practical
relevancy and drastically reduces complexity. However, the
K streams have different individual MSEs and hence different
signal-to-noise ratios in general. The MSE of streamk reads
asεk = µ

λk
and obviously depends on the associated eigen-

valueλk. As a consequence, both transmitter and receiver
must be capable of handling different coding schemes and dif-
ferent coding rates in order to achieve capacity. Furthermore,
different modulation schemes must be available if the theo-
retical limit which is based on Gaussian signaling shall be ap-
proached by a practical QAM modulation scheme. Whereas
one stream may require QPSK, another stream might demand
for 64QAM in order to come close to the Gaussian limit.

2.) Identical stream MSEs and SINRs, i.e., equal diagonal
elements of the error covariance matrixCe, can be achieved
by choosingS as a DFT or Hadamard matrix [11]. For this
case,K > d would also make sense, since power for the
additionalK − d streams is allocated by the unitary matrix
S. Despite the fact that capacity is still obtained, the price
one has to pay is that the error covariance matrix is no longer
diagonal. Since all streams are coupled then, they have to be
decoded jointly, leading to an intractable complexity.

3.) The number of transmitted streamsK is therefore lim-
ited by the dimensiond = rank(Čx) and reaches the rank
of the channelr = rank(H) ≤ min(NTx, NRx) in the high

SNR region. No more streams can be spanned for the sake of
a reduced cardinality of the modulation alphabet if separate
stream decoding is preferred.

4. OPTIMUM THP TRANSCEIVER DESIGN

4.1. Precoder Structure for Near-Capacity Transmission

For THP, the modulo operator limits the real and imaginary
part of each entry inv ∈ VK and hence prevents Gaussian
signaling. The inducedshaping loss[3] leads to the fact that
the channel capacity can only be obtained up to this 1.53 dB
shaping loss [3]. Nonetheless, we focus on the maximization
of the upper bound. Inserting the MMSE receiver, depending
onF andP , into the covariance matrixCe of the error signal
e = d− d̂ yields

Ce = (I−F )(PHHHC−1
η HP+C−1

v )−1(I−F )H. (3)

Again, the obtained rate can be expressed as a function of the
determinant ofCe, see [10]. However, as mentioned in Sec-
tion 2, the covariance matrixCv of v is no longer an identity
matrix and the obtained rate, neglecting the shaping loss, now
reads aslog2 det(Cv) − log2 det(Ce). Due to the fact that
F is strictly upper triangular, the determinant ofCe does not
depend onF , i.e., det(IK − F ) = 1. This means that, no
matter howF is chosen, capacity up to the shaping loss can
always be reached by properly choosingP . The optimum
precoderP̌ follows from a determinant maximization prob-
lem [12] with covariance matrixCv and reads as

P̌ = UΦSC−
1
2

v , (4)

whereU andΦ are defined as in Section 3.2 andS ∈ UK×K

is again an arbitrary unitary matrix. Summing up, capacity-
achieving precoding, except from the non-Gaussianity, does
not uniquely determine the feedforward filterP , a unitary ma-
trix S remains as degree of freedom. Moreover, the feedback
filter F does not have any influence on the throughput.

4.2. MSE Minimization and Uniform Stream Properties

Defining thearithmeticMSE εA as the sum MSE via

εA = E[‖d− d̂‖22] = tr
(

E[eeH]
)

= tr(Ce),

it becomes evident thatεA corresponds to the trace of the error
covariance matrixCe. A lower bound on the arithmetic MSE
can be derived from the trace-determinant inequality

εA = tr(Ce) ≥ K K
√

det(Ce) = K K
√

det(εG) (5)

relating the arithmeticmeanto the geometricmean. Here,
εG = det(Ce) denotes thegeometricMSE. The lower bound
is obtained if, and only if,Ce is a scaled identity matrix. The



authors in [1,2] were the first to introduce this framework. In-
stead of directly minimizing the sum-MSE in a decision feed-
back system at the receiver, they minimized the lower bound,
i.e., the geometric MSE, and showed that the minimum lower
bound can also be achieved by means of thegeometric mean
decomposition(GMD) [5]. The GMD is a matrix factoriza-
tion where an arbitrary matrix is decomposed into the product
of a unitary matrix, an upper triangular matrix withidentical
main diagonal entries, and a second unitary matrix. But since
we employ THP at the transmitter and not decision feedback
at the receiver, the signal covariance matrixCv is not a scaled
identity matrix. This follows from the fact that the power loss
does not affect that last stream which is not influenced by the
modulo operator. As we will see later, we have to decompose
a matrix in a similar way except that the main diagonal en-
tries of the upper triangular matrix have (different) prescribed
values now. As a consequence, the GMD cannot be applied
and the more powerfulgeneralized triangular decomposition
(GTD) [4] must be utilized. Its existence and properties as
well as a very fast implementation are discussed in Section 5.

As P̌ from (4) achieves capacity up to the shaping loss,
it maximizes− log2 detCe and thus minimizes the geomet-
ric meanεG = det(Ce). In order to let the arithmetic mean
εA = tr(Ce) merge with this minimum lower bound, the er-
ror covariance matrixCe has to boil down to a scaled identity
matrix. Plugging the optimum precoderP̌ into the covariance
expression (3), we get

Ce = (IK − F )C
1
2
v S

HD−2SC
1
2
v (IK − F )H, (6)

whereD = (IK +ΦTΛΦ) 1
2 is diagonal and positive def-

inite. If a unitary S and and a strictly upper triangular
F ∈ TK×K exist such thatCe = σ2

εIK = σ2
εQ

HQ with
unitaryQ ∈ UK×K , i.e.,Ce becomes a scaled identity, the
arithmetic mean achieves its global minimum. To this end, a
unitary decomposition2

D = Q(IK − F )σ−1
ε C

1
2
v S

H = QRSH (7)

should exist with unitaryS andQ and an upper triangular
matrix

R = σ−1
ε (IK − F )C

1
2
v , (8)

the diagonal of which corresponds to the diagonal ofC
1
2
v di-

vided byσε and therefore has different entries on its main
diagonal. That’s why the GMD cannot be used and the GTD
has to be employed. In Section 5, exact conditions for its ex-
istence are presented. From simulations, we find that these re-
quirements are only violated for very low SNR values below
-10 dB. More precisely, the common MSE levelσ2

ε cannot
grow above one, see Section 5. AsR follows from two uni-
tary transformations applied toD (cf. Eq. 7), and since both
R andD have positive real-valued main diagonal entries,Q

2Remember thatD = (IK+ΦTΛΦ)
1
2 is diagonal.

andS can be chosen real-valued as well. Additionally,R and
D have the same determinant from which we can compute
the common MSE level

σ2
ε = K

√√√√ K∏
k=1

[Cv]k,k
K∏
k=1

[D]−2
k,k = K

√√√√σ2(K−1)
v

K∏
k=1

[D]−2
k,k,

(9)
where we exploited the fact that the firstK − 1 diagonal en-
tries ofCv areσ2

v and the last entry equals one. Given the
unfavorable conditions at very low SNR that the GTD does
not exist, the minimum MSE cannot be achieved in combina-
tion with a balancing of all individual MSEs. As soon asσ2

ε is
one, i.e., the sum-MSE reachesK, a further reduction of the
transmit power prevents the GTD to exist, and consequently,
all streams cannot be balanced any more. Interestingly, it is
possible to switch off the last stream such that its MSE is one,
and balance the remaining streams1, . . . ,K − 1 at an MSE
level below one. Doing so, theK − 1st stream is precoded
linearly, and therefore, theK − 1st diagonal entry inCv re-
duces fromσ2

v to one, as the feedback for the linearly pre-
coded streamK − 1 is disabled. This change in the variance
leads to the fact that the MSE level of the remaining streams
changes, cf. (9). If this level has dropped below[D]−2

K,K , the
remainingK − 1 streams can be balanced at this level, other-
wise, theK − 1st stream will also be switched off, changing
the variance of theK − 2nd stream to one, and so on. If only
a single stream is active in the end, the covariance matrixCv

has been transformed to the identity matrix, and the modulo
operators become obsolete. From this procedure it becomes
obvious that the sum-MSE can never grow above the num-
ber of streamsK no matter how small the transmit powerPTx

gets.

4.3. Key Properties of the Nonlinear Transmission

The following statements hold under the assumption that the
GTD exists.

1.) Except for the shaping loss due to the non-Gaussianity
of v, the precoder achieves capacity. At high SNRs, the mod-
ulo operator at the receiver side does not significantly change
the Gaussianity of the receive noise. These propositions re-
main valid even if the GTD does not exist.

2.) The error covariance matrixCe reduces to a scaled
identity matrix, meaning that all streams have the same prop-
erties, especially the same MSEs and the same rates. Hence,
no bit-loading is necessary which is the major advantage com-
pared to capacity achieving linear filtering. Moreover, each
stream can be decoded separately which has a drastically
lower complexity than a joint decoding of all streams simul-
taneously.

3.) The numberK of active streams must be larger than
or equal to the dimensiond = rank(Čx) of the optimum
covariance matrix from (2). Capacity is achieved for an arbi-
trary high number of streams. Larger stream numbers facili-



tate the use of small cardinality modulation alphabets making
this approach very important with respect to the practical im-
plementation. Clearly, the MSE per stream is increased when
increasing the number of streams.

4) In contrast to decision-feedback equalization (DFE)
based nonlinear filtering [1,2], THP does not suffer from error
propagation. Thus, considerable gains can be achieved in the
mid-SNR region despite the modulo loss implicating the gen-
eration of new nearest neighbors and despite the power loss
(Cv 6= IK) since the crucial assumption of perfect decision
in DFE is not fulfilled in this SNR region, see the simulation
results in Section 6.

5. THE GENERALIZED TRIANGULAR
DECOMPOSITION

5.1. Existence and Uniqueness

Taking a closer look at (7), we find fromR = QHDS that
the diagonal matrixD comprises the singular values of the
matrixR, which itself has the eigenvalues on its diagonal,
since it is upper triangular. Weyl [13] proved that the singular
values multiplicatively majorize3 the eigenvalues of a matrix,
and Horn [14] stated that an upper triangular matrixR with
prescribed diagonal and a specific singular value set exists, if
the diagonal is majorized by the singular values, see [5]. In
our context, this means that∏`

k=1
[R]2k,k ≤

∏`

k=1
[D]2k,k∀` : 1 ≤ ` < K∏K

k=1
[R]2k,k =

∏K

k=1
[D]2k,k,

(10)

because the diagonal entries of bothR andD are already
sorted in an non-increasing fashion. ForD, this follows from
the water-pouring policy and the fact that we made use of
thesortedeigenvalue decomposition. The second row in (10)
is always fulfilled due to the choice ofσ2

ε in (9). Since the
entries inD are non-increasing and the firstK − 1 entries in
Cv are identical, we may replace (10) in conjunction with (8)
by the necessary and sufficient condition

1
σ2
ε

≥ [D]2K,K (11)

for the existence of the GTD. Note that[D]−2
K,K ≤ 1 and

henceσ2
ε ≤ 1 must hold. In the following, we show that the

transmit powerPTx can always be chosen so small that the
GTD does not exist. To this end, we assume that the transmit
power is already so small thatd = 1 holds, i.e.,Φ2

1 = PTx

andΦk = 0 ∀k 6= 1. Moreover,K = 2 streams shall be
transmitted. Then[D]21,1 = 1 + λ1PTx, [D]22,2 = 1, and

σ2
ε =
√

σ2
v

1+λ1PTx
hold. Eq. 10 now requires thatσ

2
v

σ2
ε
≤ [D]21,1,

which is violated forPTx < λ
−1
1 (σ2

v − 1).
3In this context, majorization is related to an non-increasing ordering.

Similar to the GMD [5], the GTD is not unique if it ex-
ists. In particular, infinitely many decompositions exist but
the Frobenius norm of all those matricesR is identical to
‖D‖F. One type of invariance are unitary diagonal matrices:
LetD = QRSH be a GTD decomposition of the diagonal
matrixD, and letV andW be unitary diagonal matrices.
With R̄ = V RV H, Q̄ = WQV H, andS̄ = WSV H, we
find thatD = WDWH = WQRSHWH = Q̄R̄S̄H is
also a valid GTD decomposition ofD. Furthermore, a com-
pletely different off-diagonal structure inR can be obtained
for K > 2 by changing the order selection of the Givens ro-
tations, see the following section.

5.2. Efficient and Stable Computation of the GTD

Independently from but similar to [2,4], we found a low com-
plexity and extremely stable way to compute the GTD when
trying to recude the complexity of the GMD from quartic or-
der in [15] to quadratic order. This goal was achieved by the
use of Givens rotations as in [2]. We interpret the unitary ma-
tricesS andQ as the product ofK − 1 real-valued Givens
rotationsQi andSi, respectively:

S =
∏K−1

i=1
Si, and Q =

∏K−1

i=1
Qi.

A (real-valued) Givens rotationGj,k is a rank-two perturba-
tion of theK-dimensional identity matrix with[Gj,k]j,j =
[Gj,k]k,k = a, [Gj,k]j,k = b, and[Gj,k]k,j = −b holds. Im-
posing the constraintsa, b ∈ R, −1 ≤ a ≤ 1, −1 ≤ b ≤ 1,
anda2 + b2 = 1 leads to the fact thatGj,k is orthogonal. We
assume thatj < k. Note thatGj,k performs a counterclock-
wise rotation in thej, k plane witha andb corresponding to
the cosine and the sine of the rotation angle [16].

Multiplying Gj,k from the right-hand side (RHS) onto a
matrix has influence only on the columnsj andk whereas a
left-hand side (LHS) multiplication has impact on rowsj and
k only. Hence, we can focus on rowsj andk and columnsj
andk separately. Extracting the four entries of the LHS and
RHS multiplication of two different Givens rotations applied
to the matrixD yields[

a b
−b a

] [
zj 0
0 zk

] [
c d
−d c

]
=[

aczj − bdzk adzj + bczk
−(bczj + adzk) −bdzj + aczk

]
.

(12)

zj andzk are thejth and thekth diagonal entries of the ma-
trix Z which is initialized with the matrixD and to which
the Givens rotations are applied such that afterN − 1 rota-
tions,Z = R holds. Since the upper triangular structure of
Z must be preserved, the lower left entry in (12) has to be
zero. W.l.o.g., we set the upper left4 element to the desired

4It is also possible to set the lower right element to the desired value.
However, the order selection changes then.



valueβj = σ−1
ε [C

1
2
v ]j,j , see (8). The set of equations

aczj − bdzk = βj , bczj + adzk = 0
a2 + b2 = 1, c2 + d2 = 1

leads to the solutions

c =

√
β2
j − z2k
z2j − z2k

, d = −
√
z2j − β2

j

z2j − z2k
, a = zjc

βj
, b = −zkd

βj
.

The verification of the constraints0 ≤ 1 − b2 ≤ 1 and0 ≤
d2 ≤ 1 tells us how to choose the indicesj andk:

zj ≤ βj ≤ zk or zj ≥ βj ≥ zk. (13)

Apparently, we need to findk such that the desired valueβj
is enclosed by the two diagonal elementszk andzj . Starting
with j = 1, we search for an indexk > j for which (13) is
fulfilled. If the majorization criterion (10) is fulfilled, such a
k always exists. After the application of the Givens rotations
to Z, j is increased by one and ak > j satisfying (13) has
to be found again. This procedure terminates afterK − 1
steps and during the last step,j = K − 1 andk = K hold
since the determinants ofD andR are the same. The overall
complexity to compute bothQ, S, andR is onlyO(K2).

6. SIMULATION RESULTS

In our simulation results, we compare the THP GTD-based
joint transmitter and receiver design (cross marker) presented
in this paper, with the joint transmitter and receiver GMD-
based decision feedback equalization (circle marker) from
[1,2]. Both versions guarantee uniform stream properties (the
GTD requires the common MSE level to be below one for
stream balancing). For purposes of comparison, we also sim-
ulated the nonlinear MMSE THP (square marker) from [17]
and the linear MMSE filter (dashed curve) from [18] where
the receive filters are forced to be scaled identity matrices.
Clearly, these filters only exist forK = NRx but they do not
balance the individual streams’ MSEs. Nonetheless, we plot
stream-averaged uncoded bit-error ratios (BERs).

Fig. 3 shows a QPSK transmission ofK = 4 streams in
a system withNTx = 4 transmit andNRx = 4 receive anten-
nas averaged over uncorrelated channels. Linear MMSE pre-
coding (dashed curve) [18] with a non-cooperative receiver is
clearly inferior to nonlinear THP-based precoding or nonlin-
ear DFE-based equalization. Both the GMD-based and the
GTD-based schemes clearly outperform the MMSE THP fil-
ter [17] with a non-cooperative receiver being a scaled iden-
tity matrix. There are two reasons why the DFE-based system
performs better than the GTD-based one. First, the generation
of next neighbors due to the modulo operator is quite crucial
for QPSK, since every symbol now has four nearest neigh-
bors instead of two. Second, the varianceσ2

v of the first three
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Fig. 3. QPSK transmission ofK = 4 streams over a system with
NTx = 4 transmit andNRx = 4 receive antennas (uncorrelated chan-
nel).

streams raises from one toσ2
v = M

M−1 = 4
3 for QPSK bring-

ing an increased MSE levelσ2
ε with it compared to the case

whenσ2
v = 1 would hold, see the definition ofσ2

ε in Sec-
tion 4.2.

This changes when we switch the modulation alphabet to
16-QAM, see Fig. 4. All other parameters are left unchanged.
First, we notice that all filters perform slightly worse. In the
previous figure, the transmit signal-to-noise ratioPTx/ tr(Cη)
was to small to see that the MMSE THP with non-cooperative
receiver (square marker) from [17] flattens due to the fact that
it does not achieve the full diversity order. In Fig. 4, this can
already be anticipated, and in fact, the square marker curve
achieves the diversity order1 + min(NTx, NRx) − K = 1,
since one stream is precoded linearly. By contrast, both the
GMD (circle marker) and therefore also the GTD based (cross
marker) version have the full diversity order, see [2]. An-
other interesting observation is the intersection between the
DFE-GMD curve (circle marker) and the MMSE THP curve
(square marker). It results from the error propagation of the
DFE in the small and moderate SNR range. The assumption
of perfect interference subtraction is clearly violated in this
region. Furthermore, the generation of next neighbors due to
the modulo operator is not so severe for the THP-GTD (cross
marker) in case of 16-QAM, since only the outer symbol get
new nearest neighbors. In addition, the power loss induced by
σ2
v > 1 is very small for 16-QAM, sinceσ2

v = M
M−1 = 16

15 .
Both effects are not as detrimental as the error propagation in
case of decision feedback equalization. For an uncoded BER
of 10−1, a gain of 2 dB can be achieved if THP is applied
instead of the DFE.

Even larger gains can be obtained when the channel be-
comes correlated as in Fig. 5. Here,K = 8 streams are
transmitted from aNTx = 8 antenna sender to aNRx = 8
antenna receiver. Due to the correlated scenario, error propa-
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Fig. 4. 16-QAM transmission ofK = 4 streams over a system
with NTx = 4 transmit andNRx = 4 receive antennas (uncorrelated
channel).

gation turns out to be even more severe. For an uncoded BER
of 10−1, 3 dB can be gained by the THP-GTD compared to
the DFE-GMD, and if10−2 is the desired operation point, we
can still save 1 dB.
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