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Outline

1 Receive Processing

2 Transmit Processing

– Complete Channel State Information

– Partial Channel State Information

– No Channel State Information
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Receive Processing 1

• Maximum-Likelihood (ML) Detector

• Linear Receive Filters

• Decision Feedback Equalization (DFE, V-BLAST)

• Lattice-Reduction-Aided Detector
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Maximum-Likelihood (ML) Detector 2
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Principle: Maximization of the probability that an assumed symbol
vector a ∈ ANT leads to the received signal y ∈ CNR.

Optimization: ãML = argmax
a∈ANT

py|a(y|a)

ãML = argmin
a∈ANT

(y −Ha)HR−1
n (y −Ha) for n ∼ NC(0,Rn)

Complexity: O
(
NRNT|A|NT

)
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ML Detector: Sphere Decoder 3

Principle: search in a tree for the point in a lattice nearest to the received signal y

Starting Point: e. g. with DFE

Complexity: polynomial in NT on average
not polynomial in the worst case

a1a2a3

starting point

[Fincke et al. 1985], [Schnorr et al. 1994], [Viterbo et al. 1999], [Agrell et al. 2002], [Vikalo et al. 2002], . . .
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Linear Receive Filters 4
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Principle: split into linear estimatorG ∈ CNT×NR and symbol-by-symbol quantizer

Optimization: GWF = argmin
G

E
[
‖a− â‖2

2

]
ãi = argmin

ai∈A
|ai − âi|2

Complexity: filter computation: O
(
N3

R

)
filtering: O (NRNT)
quantization: O (NT|A|)

[Lucky ’65], [Shnidman ’67], [Kaye et al. ’70], [Lupas et al. ’89], [Madhow et al. ’94], [Klein et al. ’96], . . .
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Linear Receive Filters: Optimization Criteria 5

• Minimization of Mean Square Error (MSE) :

⇒Wiener filter (WF), zero-forcing filter (ZF)

• Maximization of Signal-to-Noise-Ratio (SNR) :

⇒ matched filter (MF), zero-forcing filter (ZF)

• Minimization of Mean Output Energy (MOE) :

⇒ minimum variance distortionless response (MVDR)

• Maximization of Signal-to-Interference-and-Noise-Ratio (SINR) :

⇒ eigenfilter

• Minimization of Bit Error Probability
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Linear Receive Filters: Suboptimality 6

zero-forcing filter delivers sufficient statistic:

âZF = GZFy = a +
(
HHR−1

n H
)−1

HHR−1
n n

ML criterion:

ãML = argmin
a∈A

(âZF − a)H
(
HHR−1

n H
)

(âZF − a)

if HHR−1
n H diagonal:

ãML = argmin
a∈A

‖âZF − a‖2
2 =

argmin
a1∈A

∣∣∣a1 − âZF,1

∣∣∣2 , . . . , argmin
aNT
∈A

∣∣∣aNT
− âZF,NT

∣∣∣2


T

= ãZF

⇒ symbol-by-symbol quantization only optimal, if HHR−1
n H diagonal

special case: Rn = σ2
nI

⇒ symbol-by-symbol quantization only optimal, if columns of H orthogonal
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Decision Feedback Equalization (DFE) 7
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Principle: use already quantized symbols for interference reduction

Feedforward Filter: G suppresses the interference of symbols not already quantized

Feedback Filter: B for realizability: lower triangular and zero main diagonal

Ordering: permutation matrix P =
NT∑
i=1
ebie

T
i defines detection order

Assumption: symbol-by-symbol quantization delivers transmitted symbols

Munich University of Technology
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Decision Feedback Equalization: Optimization 8
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Criterion: minimization of mean square error

Optimierung: {GWF,BWF,PWF} = argmin
{G,B,P}

E
[∥∥∥PTa− â

∥∥∥2

2

]
s. t.: P : permutation matrix and

B: lower triangular matrix with zero main diagonal

Ordering: with V-BLAST ordering algorithm

Complexity: filter computation: O
(
N3

R

)
filtering, quantization: O (NRNT), O (NT|A|)

[Wolniansky et al. 1998], [Hassibi 2000], [Wübben et al. 2003], [Böhnke et al. 2003], [Kusume et al. 2004]
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Lattice-Reduction-Aided Detector 9
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Principle: decomposition of channel matrix into one part with (nearly) orthogonal
columns and another part with integer entries

quantization after equalization of part with orthogonal columns
⇒ close to optimal

Criterion: minimization of mean square error

Complexity: filter computation: O
(
N4

R

)
or not polynomial in NR

filtering: O (NRNT)
quantization: O (NT|A|)

[Yao et al. 2002], [Windpassinger et al. 2003], [Wübben et al. 2004]
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Transmit Processing 10

• Complete Channel State Information

– realization of channel matrix completely known

time division duplex systems (calibration) or
feedback channel

– robust design necessary

• Partial Channel State Information

– only statistics (e. g. covariance matrix) of channel known

frequency division duplex systems (frequency gap, calibration) or
feedback channel

• No Channel State Information

– only transmit processing independent of channel properties

Munich University of Technology
Institute for Circuit Theory and Signal Processing



Transmit Processing (II) 11

• Complete CSI

– linear transmit filters

– Tomlinson Harashima precoding

– vector precoding

– lattice-reduction-aided precoding

– minimization of bit error probability

• Partial CSI

– linear transmit filters

• No CSI

– receive processing

Munich University of Technology
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Linear Transmit and Receive Filters 12

Joint
Optimization

Receive
Processing

Transmit
Processing

RxWF RxZF RxMFTxWF TxZF TxMF

Joint WF Joint ZF Joint MF

scalar transmit filterscalar receive filter
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Linear Transmit Filters 13
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Principle: “predistortion” with F ∈ CNT×NR: channel acts as equalizer
correction of amplitude with scalar estimator g ∈ C
⇒ joint optimization

Transmitter: limitation of average transmit power: E
[
‖x‖2

2

]
≤ Ptr

Receiver: symbol-by-symbol quantization
⇒ no cooperation of receivers necessary

(multiuser systems)

very simple
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Linear Transmit Filters: Transmit Matched Filter 14
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Criterion: maximization of signal-to-noise-ratio

Optimization: {FMF, gMF} = argmax
{F ,g}

∣∣∣E [aHâ
]∣∣∣2

E
[
‖a‖2

2

]
E
[
‖gn‖2

2

]
s. t.: E

[
‖x‖2

2

]
≤ Ptr

Complexity: filter computation: O (NRNT)
filtering: O (NRNT)

Extension: receive matched filter (eigenprecoder)

[McIntosh et al. ’70], [Esmailzadeh et al. ’93], [Choi et al. ’01], [Wang et al. ’99], [Irmer et al. ’01], . . .
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Linear Transmit Filters: Transmit Zero-Forcing Filter 15
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Criterion: minimization of mean square error
with complete interference suppression

Optimization: {F ZF, gZF} = argmin
{F ,g}

E
[
‖a− â‖2

2

]
s. t.: â|n=0 = a and E

[
‖x‖2

2

]
≤ Ptr

Complexity: filter computation: O
(
N2

RNT

)
filtering: O (NRNT)

[Vojčić et al. ’98], [Montalbano et al. ’98], [Brandt-Pearce et al. ’00], [Baier et al. ’00], [Joham et al. ’00],
[Noll Barreto et al. ’01], [Walke et al. ’01], . . .
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Linear Transmit Filters: Transmit Wiener Filter 16
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Criterion: minimization of mean square error

Optimization: {FWF, gWF} = argmin
{F ,g}

E
[
‖a− â‖2

2

]
s. t.: E

[
‖x‖2

2

]
≤ Ptr

Convergence: for high SNR: FWF→ F ZF
for low SNR: FWF→ FMF

Complexity: filter computation: O
(
N2

RNT

)
filtering: O (NRNT)

[Karimi et al. 1999], [Choi et al. 2002], [Joham et al. 2002], [Peel et al. 2003], [Berenguer et al. 2005]
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Linear Transmit Filter: Alternative Approaches and Extensions 17

Other Criteria: – minimization of transmit power
guaranteed signal-to-interference-and-noise-ratio
[Visotsky et al. ’99], [Tse et al. ’02], [Boche et al. ’02], [Wiesel et al. ’04]

– minimization of bit error probability
[Hjørungnes et al. 2005]

Extensions: – different weights at the receivers
[Schubert et al. 2005], [Hunger et al. 2005]

– prediction of channel impulse response
[Visotsky et al. 2001], [Guncavdi et al. 2001], [Dietrich et al. 2003]

– robust design
[Rey et al. 2002], [Dietrich et al. 2003], [Abdel-Samad et al. 2003],
[Palomar et al. 2004]
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Tomlinson Harashima Precoding 18
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Principle: use already precoded symbols for interference reduction

Feedback Filter: for realizability: lower triangular and zero main diagonal

Ordering: permutation matrix P defines precoding order

Modulo: mod(x) = x−
⌊

Re(x)

τ
+

1

2

⌋
τ − j

⌊
Im(x)

τ
+

1

2

⌋
τ

= x + d(x) with d(x) ∈ τZ + j τZ

Assumption: statistics of signal v are known
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Tomlinson Harashima Precoding: Optimization 19
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Criterion: minimization of mean square error

Optimization: {FWF,BWF, gWF,PWF} = argmin
{F ,B,g,P}

E
[
‖s− ŝ‖2

2

]
s. t.: P : permutation matrix, E

[
‖x‖2

2

]
≤ Ptr and

B: lower triangular matrix with zero main diagonal

Ordering: similar to V-BLAST ordering algorithm

Complexity: filter computation: O
(
N2

RNT

)
filtering: O (NRNT)

[Tomlinson 1971], [Harashima et al. 1972], [Fischer et al. 1994/2002], [Ginis et al. 2000],
[Schubert et al. 2002], [Liu et al. 2003], [Joham et al. 2004]
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Vector Precoding 20
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ŝ

Principle: use ambiguity due to modulo operator at receiver for transmit power
minimization

Optimization: dvec = argmin
d∈τZNR+j τZNR

∥∥∥∥HH
(
HHH

)−1
(a + d)

∥∥∥∥2

2

[Peel et al. 2003], [Shi et al. 2004], [Fischer et al. 1995]
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Vector Precoding (II) 21

Optimization: dvec = argmin
d∈τZNR+j τZNR

∥∥∥∥HH
(
HHH

)−1
(a + d)

∥∥∥∥2

2

= argmin
d∈τZNR+j τZNR

∥∥∥∥HH
(
HHH

)−1
d− a′

∥∥∥∥2

2

compare to: ãML = argmin
a∈ANT

‖Ha− y‖2
2

⇒ like sphere decoder:
”
maximum likelihood“ at transmitter

Transmit Power: weight g follows from E
[
‖x‖2

2

]
Complexity: not polynomial in NR

Alternatively: – transformation withHH
(
HHH + ζI

)−1
instead ofHH

(
HHH

)−1

[Peel et al. 2003]

– lattice-reduction-aided detector instead of sphere decoder
[Windpassinger et al. 2004]

– division into groups
[Meurer et al. 2004]
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Lattice-Reduction-Aided Precoding 22
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Principle: decomposition of channel matrix into integer part and another part with
(nearly) orthogonal rows

– equalization of part with orthogonal rows with precoding
– inversion of part with integer entries in front of modulo operator

Criterion: minimization of mean square error

Complexity: filter computation: open
filtering O (NRNT)

[Windpassinger et al. 2003]
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Minimization of Bit Error Probability 23
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Principle: minimization of bit error probability by appropriate choice
of transmit signal for given transmit power

Optimization: xminBEP = argmin
x

Pb(x) s. t.: ‖x‖2
2 = Ptr

Complexity: not polynomial

[Irmer et al. 2003], [Weber et al. 2003]
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Linear Transmit Filters: Partial CSI — MSE-Methods 24
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Principle: formulation of a power equivalent model
application of methods for full CSI

CSI: covariance matrices of channels: Rhk = E
[
hkh

H
k

]
equivalent channel uk: dominant eigenvector of Rhk

Receiver: matched filter or correction of phase

[Montalbano et al. ’99], [Forster et al. ’00], [Joham et al. ’02], [Simeone et al. ’04], [Dietrich et al. ’05]
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Linear Transmit Filters: Partial CSI — SINR-Methods 25

Principle: maximization of minimal SINR for given transmit power or

minimization of transmit power for given SINRs

CSI: covariance matrices of channels: Rhk = E
[
hkh

H
k

]

Solution: – division into power scaling and normalized vector

– iterative algorithm to find the normalized vectors

via a duality of uplink and downlink

– computation of power scaling via couple matrix

[Gerlach et al. ’96], [Montalbano et al. ’98], [Farsakh et al. ’98], [Rashi-Farrokhi et al. ’98],

[Bengtsson et al. ’99], [Tse et al. ’02], [Boche et al. ’02]

Munich University of Technology
Institute for Circuit Theory and Signal Processing



Linear-Dispersion Codes 26

Principle: symbol is spread over space and time:

S =
Q∑
q=1

Aq Re(aq)+jBq Im(aq) ∈ CNT×T mit Aq,Bq ∈ RNT×T

CSI: not necessary at transmitter

Specal Cases: – (orthogonal) space-time block codes

– spatial multiplex

Receiver: – sphere decoder

– V-BLAST

[Wittneben 1993], [Foschini 1996], [Tarokh et al. 1998], [Wolniansky et al. 1998], [Alamouti 1998],
[Hassibi et al. 2002]
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Conclusions 27

• Point-to-Multipoint MIMO Systems:
⇒ transmit processing

• Complete Channel State Information:

– linear transmit filters

– Tomlinson Harashima precoding

– robust design

• Partial Channel State Information:

– linear transmit filters
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