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ABSTRACT

The Wiener filter (WF) estimate of a desired signal from a vector observation xg[n] is optimal in the Minimum
Mean Square Error (MMSE) sense, and is employed in many applications because it is easily implemented and only
relies on second order statistics. If the observation xg[n] is of high dimensionality, though, a reduced-rank approach
is needed in order to reduce computational complexity and lessen sample support requirements. In the Principal
Components (PC) method, the observation signal is transformed to lower dimensionality by a matrix composed of
the principal eigenvectors of the autocorrelation matrix of xo[n]. However, the PC method is suboptimum as it only
relies on the autocorrelation matrix and does not factor in the cross-correlation vector between the desired signal and
the data xg[n] in choosing the basis vectors for the reduced dimension subspace. Goldstein, Reed, & Scharf recently
developed the Multi-Stage Nested Wiener Filter (MSNWF') in which the reduced dimesion subspace is inherently the
Krylov subspace generated by the autocorrelation matrix and the cross-correlation vector. The MSNWF provides
better peformance than the PC method at a substantially reduced computational cost. We here provide an overview
of the MSNWF and a number of recent results related to both our conceptual understanding of the MSNWF and
efficient implementations of the MSNWEF. An application of the MSNWF to space-time equalization for the CDMA
Forward Link for Third Generation cellular communications is presented demonstrating its efficacy.

Keywords: adaptive filtering, conjugate gradients, reduced-rank equalization, space-time processing, wireless com-
munications, CDMA, multipath propagation.

1 Introduction

The Wiener filter (WF) estimate of an unknown signal dg[n] from a vector observation xg[n] is optimal in the
Minimum Mean Square Error (MMSE) sense, and optimal in the Bayesian sense if the signals do[n] and xq[n] are
jointly Gaussian random variables. The WF is employed in many applications because it is easily implemented
and only relies on second order statistics. However, the resulting filter depends upon the inverse of the covariance
matrix, Ry,. If the observation xg[n| is of high dimensionality, a reduced-rank approach is needed in order to
reduce computational complexity and lessen sample support requirements. The current strong need for reduced-
rank adaptive filtering arises from the growing disparity between the large number of degrees of freedom in the
next generation of wireless communications systems, radar systems, sonar systems, etc., and limitations on sample
support size due to high mobility, high sensitivity to small movements/perturbations, etc.

In the Principal Components (PC) method [Hot33], the observation signal is transformed to lower dimensionality
by a matrix composed of the principal eigenvectors of Rx,. However, the PC method only takes into account the
statistics of the observation signal and does not consider the relation to the desired signal. The Cross-Spectral
Metric (CSM) of Goldstein et. al. [GRI7b] is an alternative reduced-rank method that selects those eigenvectors
that maximize a metric based on the cross-correlation vector between the observation and the desired signal and
does not choose the principal eigenvectors, in general. However, Goldstein, Reed, & Scharf ultimately presented
the Multi-Stage Nested Wiener Filter (MSNWF) [GRS98] which showed that rank reduction based on the eigenvec-
tors is suboptimum. The MSNWF does not require the computation of eigenvectors and is thus computationally
advantageous as well.



We note several applications where the MSNWF has been applied with great success:
1. Goldstein and Reed have sucessfully applied the MSNWF to a broad spectrum of radar signal processing

problems [GR97b, GRZ99]

. Honig applied MSNWF to Multi-User Access Interference (MAI) suppression for asynchronous CDMA op-

erating in code-space where the weight vector dimensionality can be quite high [HG00, HX99]. Honig et.
al. showed that the number of necessary MSNWF stages even for a heavily loaded CDMA system is a mere
fraction of the subspace dimension required by the eigen-space based methods.

. Willsky has not applied MSNWF per se, but has applied Krylov subspace estimation principles to the problem

of error variance estimation in multi-resolution image processing [SW99]. The Krylov subspace basis framework
makes this work inherently related to the MSNWF.

. Myrick, Zoltowski, and Goldstein have applied the MSNWF to interference suppression for GPS receivers

[Zol00aa, Zol00a, Zol00b, Zol00c] and equalization for the forward-link CDMA with long code [Z0l00d, Zol00e,
Z0100f]

. Autoregressive (AR) spectral estimation is inherently related to linear prediction (LP), thereby establishing

well known ties between LP based spectral estimation and adaptive filtering. This motivated the recent
development of a reduced-rank based spectral estimation scheme based on the MSNWF by Witzgall, Goldstein,
and Zoltowski [Zol00Oh, Zol00i]. In this application, the MSNWF effects power minimization under a unity
tap constraint on the “weight” vector. Initializing the forward recursion of the MSNWF with the standard
basis vector e;, where e; contains all zeros except for a one in the i-th position (so that the first value of
each data block effectively serves as a “desired” signal), simulations reveal the MSNWF to rapidly converge
to a “weight” vector that lies in the noise subspace. The reciprocal of the magnitude square of the Fourier
Transform of this “weight” vector is the spectral estimate and has been observed to exhibit a low background
level with very low probability of false alarm peaks. The initial simulations are quite astounding: stopping the
MSNWF at stage 3 facilitated reliable estimation of the directions of 40 signals impinging upon a linear array
of 128 antenna elements [ZolOOh, Zol00i]. The performance achieved is similar to MUSIC without the need
for the computating eigenvectors or the need to estimate the number of sources prior to forming the spectral
estimate.

There have been a number of recent fundamental advances relative to the MSNWF. These include three recent

discoveries:
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1. Ricks and Goldstein [Ricks00] showed that the MSNWEF can be implemented without blocking matrices as

required in the original algorithmic formulation. This further reduces the computational complexity of the
MSNWEF relative to full-rank RLS or PC based reduced-rank adaptive filtering.

. Ricks and Goldstein [Ricks00] developed a lattice/modular MSNWF structure facilitating an efficient data-

level implementation as an alternative to the original covariance level implementation. Avoiding the need to
form a covariance matrix is advantageous since (i) it reduces computationally complexity, (ii) it facilitates real-
time implementation, and (iii) because there may not be enough sample support to form a reliable covariance
matrix estimate, especially when the data vector is high-dimensional and/or the signal statistics are rapidly
time-varying.

. Honig and Xiao [HX99] have proven an inherent relationship between MSNWF and Krylov subspace estimation:

stopping the MSNWF at stage D constrains the weight vector to lie in the D-dimensional subspace spanned
by { Txo,do> RxoTxo,dos -+ Ry 'Txg,do }, Where Ry, is the correlation matrix of the observed data and rxg,d,
is the cross-correlation vector between the observation data and the desired signal. This is a very important
discovery relative to the theoretical underpinnings of the MSNWF and its relation to other techniques employed

in numerical analysis that operate in a Krylov subspace

Brief development of original MSNWF.

Referring to Figure 1, the desired signal do[n] € C is estimated by applying the linear filter w € C¥ to the
observation signal xo[n] € CV. The variance of the estimation error g¢[n] = do[n] — do[n] = do[n] — wxq[n] is the



mean squared error MSEq = E{|eo|*} = 0] — whHryo ao — rg),dow +wHR,,w, where the covariance matrix of the
observation x¢[n] is Rx, = E{xo[n]x{![n]} € CN*N. The variance of the desired signal do[n], 03, = £{|do[n]|*}, and

the cross-correlation between dy[n] and x¢[n] is denoted rx, a, = E{xo[n]d§[n]}.
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Figure 1: (A) Weiner Filter. (B) Same but with Full Rank (Square) Matrix Pre-Filtering.

The Wiener Filter wo minimizing the mean squared error (MSE) is the solution to the Wiener-Hopf equation
Ry, Wo =Trxydy, = Wo= R;()lrx(,,do e CN. (1)
The minimum mean squared error (MMSE) achieved with with the WF is

MMSEq = 03, — rit a0 Rce Fxo,do- (2)

As discussed previously, the Multi-Stage Nested Wiener Filter (MSNWF) was developed by Goldstein et. al.
[GR97a, GRS98] as a means for computing an approximate solution of the Wiener-Hopf equation (cf. Equation
1) that does not require the inverse or the eigenvalue decomposition of the covariance matrix. The approximation
for the Wiener filter is found by stopping the recursive algorithm after D steps, hence, the approximation lies in a
D-dimensional subspace of CV. To briefly develop the Multi-Stage Nested Wiener Filter (MSNWF), we first note
the following theorem which is well-known and easy to prove.

Theorem 1 If the observation xo[n| to estimate dg[n] is pre-filtered by a full-rank matric T € CN*N_ 4. e,
z1[n] = Txg[n|, the Wiener filter w,, to estimate do[n] from z1[n] leads to the same minimum MSE.

Applying a full rank pre-filtering matrix of the form

T1 — h{{ c CN><N (3)
B,
we obtain the new observation signal
_ _ [ hi'xoln] | _ [ diln] N
Z1 = T1X0[n] = |: leo[n] = X1 [n] eC (4)

which does not change the estimate do [n] when the MSE is minimized as indicated previously. The rows of B; are
chosen to be orthogonal to hi’ so that B; is referred to as a Blocking Matrix.

Bih; =0 or Bi = null(hfI)H. (5)

The intuitive choice for the first row, h¥ is the vector which, when applied to xq[n], gives a scalar signal d;[n]
that has maximum correlation with the desired signal dy[n]. Constraining ||h;||2 = 1 and forcing d;[n] to be “in-
phase” with dy[n], i. e. the correlation between dy[n| and dj[n] is real-valued, without loss of generality, leads to
following optimization problem hy = arg maxy E{Real(d:[n]d§[n])} or hy = argmaxy 1 (hfry, q, +rfl 4,h), subject
to h'h = 1. The solution is the normalized matched filter

hy = —xedo o N, (6)
ero,dOHQ

The solution to the Wiener-Hopf equation associated with the transformed system in Figure 1 (B) is

2 H
_ o r
W, =R, 'r,, 4, € CY, wheree R, = [ 4 X1,d1 ] € CNVxN (7)

Txy,dy X1



is the covariance matrix of z1[n], o3 = £{|d1[n]|*} = hff Ry, hy, ry, a4, = E{x1[n]d}[n]} = BiRx,h; € CV7!, and
Ry, = E{x1[n]x [n]} = BiRy,BY¥ € CW-Dx(N-1) By design, the cross-correlation between z[n] and d;[n] is a
scalar multiple of the standard basis vector e;, where e; denotes a unit norm vector with a one in the i-th position
and zeroes elsewhere.

Tz1,do = Tlrxo,do = ”rxo,do”? e € RN? (8)

Thus, the Wiener filter w,, of the pre-filtered signal z;[n] is just a weighted version of the first column of the
inverse of the covariance matrix R,, in Equation (7). Applying the matrix inversion lemma for partitioned matrices
[GR97a, GRS98] yields

1 _ _
wamar| g |0 whore o= g ala(o, o, R ) o)
1 El
Equation (9) is the key equation to understanding the basic concept underlying the MSNWF.
The most important observation in Equation (9) is that the vector in brackets, when applied to z1[n], gives the
error signal e1[n| of the Wiener filter that estimates d;[n] from x3[n]. That is,

e1ln] = di[n] — di[n] = di[n] — wix;[n] = [1, —wi{'] z1[n] (10)

achieved with the Wiener filter below (again, rx, a, = £{x1[n|di[n]} = B1Rx,h1 and Ry, = E{xi[n|x[n]} =
B.R,,B):
w1 =Ry 'rx, q, eCV L (11)

Referring to Figure 2, another key observation is that a; may be interpreted as a scalar Wiener filter for estimating
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Figure 2: MSNWF after the First Step.
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do[n] from the error e1[n]. To see this, the scalar Wiener-Hopf Equation is E{|e1[n]|*}an = E{e}[n]do[n]}. From
previous definitions and the blocking property in (5), it is easily shown that

ElleinlP’} = 0, — v a, W1 = 04, — 1 a, R Txians - E{einldon]} = hi're,a, = [rxoaollz (12)
Thus, we have a1 = ||rx,,doll2(03, — rflle;llrxhdl)*l, which agrees with (9).

These observations relative to stage 1 of the decomposition, particularly Equations (10) and (11), lead naturally
to the next stage of the MSNWF decomposition. In the second stage, the output of the Wiener filter w; with
dimension N — 1 is replaced by the weighted error signal e2[n] of a Wiener filter which estimates the output signal
da[n] of the matched filter hy from the blocking-matrix output xs[n] = Bax;[n]. Following this through N stages,
we have the original formulation of the MSNWF depicted in Figure 3. The reduced-rank MSNWF of rank D is
easily obtained by stopping the MSNWEF decomposition after D — 1 steps and replacing the last Wiener filter wp_1
by the appropriate matched filter.

To understand the importance of the innovations proposed herein relative to the MSNWPF, it is important to keep
in mind two key drawbacks of the original algorithmic formulation of the MSNWF depicted in Figure 3. First, the
nested matched filters h; and blocking matrices B; are computed sequentially through the forward recursion. Only
after the forward recursion is truncated at some stage D to effect rank-reduction can one then subsequently execute
the backwards recursion to compute the scalar Wiener filters w; in reverse order. If one wanted to determine the MSE
as each new stage is added, to decide which stage to terminate at, for example, one had to ostensibly execute both
the forwards and backwards recursion on a per stage basis since the backwards recursion coefficients completely
change with each new stage that is added. Second, formation of the blocking matrices represents a significant
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Figure 3: Structure of initial conception of the Multistage Nested Weiner Filter.

computational task. Both of these drawbacks are being eliminated with the innovations proposed herein. Note that
Goldstein and Ricks [Ricks00] recently developed a data-level modular/lattice structure for the MSNWF that also
avoids the formation of blocking matrices, but still requires a backwards recursion after the forward recursion. Note
that the filter bank underlying the MSNWF can be synthesized without actually forming the covariance matrix
Ry,. This is because at the i-th stage the Wiener filter is replaced by a normalized matched filter that is simply
the cross-correlation between the new observation x;[n] and the new desired signal d;[n]. Thus, only an estimation
of this cross-correlation is needed with each new stage that is added. Observing Figure 3, it is straightforward to
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Figure 4: MSNWF as a Filter Bank

see that each new desired signal d;[n],i = 1,..., N, is the output of a length N filter

i—1
t; = (][ B& )i € CV. (13)

k=1
That is, the chain of nested Weiner Filters in Figure 3 may be replaced by the simple filter bank in Figure 4, where
the N length filters t; are computed in terms of the matched filters h;’s and the blocking matrices B;’s in Figure
3 according to Equation (13). Referring to Figure 4, a very important property is that the pre-filtered observation

vector

d[n] = [di[n],...,dn[n]]", (14)
has a tri-diagonal covariance matrix [GRS98]. This is because the matched filter t; is designed to retrieve all
information of d;_;[n] that can be found in x;_1[n]. The output of t;, d;[n], is thus correlated with d;_1[n] and with
d;+1[n], because t;; is the matched filter to find d;[n]. But d;;1[n] includes no information about d;_;[n], since the

input of t;11 was pre-filtered by the blocking matrix B; ;. Consequently, d;[n] is only correlated with its neighbors
di_l[n] and di+1[n].



3 Illustrative 3G CDMA Simulation

This illustrative example serves to demonstrate that the MSNWF converges much more quickly than LMS, and
more quickly than RLS as well, with reduced computational complexity relative to RLS. There are no eigenvectors
to compute or track. Thus, the MSNWF offers both improved performance and reduced computational complexity
relative to PC based reduced-rank filtering as well. [GRZ99, HG00, HX99, Zol00aa, Zol00a]. The example also
demonstrates that the MSNWF can be used to efficiently solve the Weiner-Hopf Equations in the case of block-
mode processing.

A CDMA forward link was simulated similar to one of the options in the US c¢dma2000 proposal. The chip
rate was 3.6864 MHz (T, = 0.27us), 3 times that of IS-95. Simulations were performed for a “saturated cell”: all 64
channel codes were “active” with equal power. For each user, each BPSK data symbol was spread with one of 64
Walsh-Hadamard sequences of length 64. The frequency selective nature of the multipath channel in a high-speed
(wideband) 3G CDMA link destroys the advantage of employing orthogonal Walsh-Hadarmard sequences relative
to avoiding multi-user access interference. The RAKE receiver thus performs poorly, especially in a saturated case.
Chip-level equalization is thus effected at the receiver in order to estimate the synchronous sum signal transmitted
from the base station and thereby effectively exploit the orthogonality of the Walsh-Hadamard codes [1, 2, 3].

All users were of equal power, and their signals were summed synchronously and then multiplied with a QPSK
scrambling code of length 32678. The channels were modeled to have four equal-power multi-paths, the first one
arriving at 0, the last at 10us (corresponding to about 37 chips) and the other two delays picked at random in
between. The multipath coefficients are complex normal, independent random variables with equal variance. The
receiver was assumed to have a dual antenna. The arrival times at antenna 1 and 2 are the same, but the multipath
coefficients are independent.

In the two base-station case, the channels are scaled so that the total energy from each of the two base-stations
is equal at the receiver. The 4 multi-path arrivals from the 2nd base-stations are random, with maximum delay
spread of 10us. SNR is defined to be the ratio of the sum of the average power of the received signals over all the
channels, to the average noise power, after chip-matched filtering. The abscissa is the post-correlation SNR for each
user which includes a processing gain of 10log(64) ~ 18 dB.

Figure 5 plots the Mean-Square Error for the different reduced-rank methods as a function of the subspace
dimension, D. The channel statistics and noise power are assumed to be known (i.e. perfect channel estimation).
In the single base-station case, 5(a), the dimension of the full space is 114 (the equalizer length is 57 at each of 2
antennas, as multipath delay spread is 37 chips and the chip pulse waveform is cut off after 5 chips at both ends). The
MSE for MSNWF is seen to drop dramatically with D, and achieves the performance of the full-rank Wiener filter
at dimension approximately 7! In contrast, the dimensionality required for Principal Components method to achieve
near optimum MMSE is more than twice the delay spread, and the required dimensionality for the Cross-spectral
method is also high.

Figure 6(a) displays the BER curves obtained with the MSNWF for different sizes of the reduced-dimension
subspace. The channel statistics are assumed to be known perfectly, so these curves serve as an informative upper
bound on the performance. It is observed that even a 2-stage reduced-rank filter outperforms the RAKE at all SNR/’s
and only a small number of stages of the MSNWF are needed in order to achieve near full-rank MMSE performance
over a practical range of SNR/’s.

Figures 5(b) and 6(b) display similar plots, but for the “edge of cell” scenario corresponding to soft hand-off.
Here we effect 4 channels at the receiver by sampling the received signal at twice the chip-rate at each antenna.
The dimension of the full space is 228 which makes full rank processing quite cumbersome. Amazingly, the MSE
for MSNWF still goes down very steeply with rank and achieves the full-rank value for a subspace dimension of
only 8 or so. In the BER plots of Figure 6(b), the bit error is calculated for the “soft handoff” mode. With perfect
channel estimation, the MSNWF can achieve uncoded BER’s similar to the full-rank MMSE over a practical SNR
range after stopping at stage as low as 5!

These plots suggest that MSNWF can achieve rapid adaptation in the case where the chip-level MMSE equalizer
is adapted based on a pilot channel. Figure 7 plots the output SINR for different chip-level equalizers vs. time in
symbols, at a fixed SNR. The MSNWF at stages 5 and 10 yields very good performance with low sample-support.
The convergence rate is significantly better than that of full-rank RLS which even asymptotically does not beat the
MSNWEF of rank only 10! The LMS algorithm converges much more slowly.

For the two base-station case, the asymptotic SINR is lower for all the equalizers due to the added interference



One Base-station, Known Channels, SNR = 10 dB

N T T T
\ —— Multistage Nested Wiener Filter
-1r \\ G%&% -<— Prinicipal Components b
N ---- Cross—spectral Components

m . %%
T-2f 5, b
£ NS
5.3 N i
= 3 N AN
L \ %%&
84 %, ]
< %%
> \, %y
o N Ry

51 N Y |
0 N w%,
c %,
3 S
s -6 T

N S
. *’bcga
_7 o |
-8 . . . . .
0 20 40 60 80 100 120

=)

Dimension of Reduced-Rank Subspace for g°

Two Base-stations, Known Channels, SNR = 10 dB

|
[N
T

|
N
T

Mean Squared Error in dB
A o

|
ol
T

—— Multistage Nested Wiener Filter
-<-- Prinicipal Components
---- Cross—spectral Components

Normal Handoff

50 100 150 200
Dimension of Reduced Rank Subspace for g°

250

Figure 5: MSE vs Rank of Reduced Dimension Subspace

Known Channels, One Base-station

Two Base-stations, Known Channels, Soft Handoff

10 ‘
-1
10 ¢ ]
o o T ]
W10 ¢ E
)
O]
g =
510 E E
>
<
10 -= RAKE Sl 1
* V—
—— MSNWF, stage 5 A
| —— MSNWEF, stage 10
10 £ - MSNWF, stage 20 3
-+ MMSE, rank 4*57
1076 Il Il Il
0 5 10 15 20

SNR in dB

Figure 6: BER for Different Chip-level Equalizers for CDMA Downlink.

10 i T T
107% - o :
— 7 R S S O N .
107 o |
. -
w3
mi10 ¢ |
()
2 -
o4l o= _ ]
g0 F  RAKE com o]
< - & - MSNWF stage 2
10°L -©- MSNWF stage 5 i
—— MSNWEF stage 10
of — MSNWF stage 15
10 ‘¢ = MMSE rank 2*57 1
¥ "\\:,;\
10_7 I I I
0 5 10 15 20
SNRin dB
1 One Transmitting Base-station
I ——
SNR =10 dB *M;;;‘;;;;%;E:o:moawewaww
8 -
o A
RS
24
Z
n or -o- MSNWEF, stage 5 1
-x-  MSNWEF, stage 10
e LMS
---RLS |
100 200 300 400 500

Number of Training Symbols

SINR (dB)

Two Base-stations, Soft Handoff

12 T T T T
SNR =10 dB
8,
4,
O,
—— MSNWEF, stage 5
—— MSNWEF, stage 10
4t o Full-Rank LMS i
- - - Full-Rank RLS
gl i | | |
0 100 200 300 400 500

Number of Training Symbols

Figure 7: Output SINR vs Time for Adaptive Chip-level Equalizers for CDMA downlink.



0 One Transmitting Base—-station 0 Two Base-stations, Soft Handoff

10 10 T ' '
After 200 symbols training After 300 Symbols Training
g
10
0% @ NN
& ]
e m
o &107)
c o
) (3]
z E
MSNWEF, stage 5 —e— MSNWEF rank 5 R
—=— MSNWF, stage 10 S Tk T -3 —— MSNWF rank 10 *~
—— MSNWEF, stage 15 S 0 MSNWF rank 15 I
107° ~° - Ful-Rank LMS W E -& - Full-rank LMS
-* - Full-Rank RLS - - Full-rank RLS
10—6 ‘ ) ) 10—4 \ L L
0 5 15 20 0 5 15 20

10 10
SNRin dB SNRin dB

Figure 8: BER for Adaptive Chip-level Equalizers for CDMA Downlink.

from the MAI of the 2nd base-station. But the convergence speed of the low-rank MSNWF is still impressive. The
BER curves in Figure 8 illustrate the performance of these equalizers. Note that graphs presented plot uncoded
BER. In practice, the target uncoded BER is somewhere between 10~! and 10~2. Figure 8 (a) reveals that for
uncoded BER’s in this range, the stage 5 MSNWF performs better than the stage 10 or stage 15 MSNWF| as well as
better than full-rank RLS! This improvement comes with dramatically lower computational complexity than RLS.
The LMS algorithm is simpler, but performs extremely poor with slow convergence.

4 Recent fundamental advances on MSNWF.

In this section we present additional advances relative to the MSNWF, briefly summarized below.

1. We recently developed a computationally efficient scheme for generating an orthogonal basis for the Krylov
subspace spanned by { rxq.do» RxeIxo,dos -+ R,’?O*lrx(,,do }: each successive member of the basis is generated
by multiplying the previous member by Ry, and subtracting off from the resulting vector its components onto
only the last two members of the basis. The resulting orthogonal basis is exactly the same as that generated
via the original forward recursion of the MSNWF, which tri-diagonalizes Ry, at any stage, but it is computed
without the need for blocking matrices as required in the original formulation of the MSNWF [GRS98] leading
to substantially reduced computation.

2. We have developed a simple order-recursion for updating the weight vector and the MSE as each new stage
is added. The original MSNWF was composed of two parts: a forward recursion followed by a backward
recursion. Now, it is important to monitor the Mean Square Error (MSE) as each new stage is added (new
stage = additional basis vector from forward recursion) since the sample support may be insufficient to support
an additional stage such that the addition of such may cause the MSE to increase. Since the backwards recursion
coefficients completely change each time a new basis vector is added, evaluation of its impact on the MSE
previously required a backwards recursion for each new added stage. In Section 4.2, we devevelop a method
which allows the MSE to be updated at each stage along with the backwards-recursion coefficients via a simple
recursion.

4.1 Recursive computation of othogonal basis for Krylov subspace.

Recall that the chain of nested Weiner Filters in Figure 3 may be replaced by the simple filter bank in Figure 4,
where the N length filters t; are computed in terms of the matched filters h;’s and the blocking matrices B;’s in
Figure 3 according to Equation (13). We here show that we can compute exactly the same set of orthonormal filters



t; without having to form the blocking matrices! Adding the i-th stage we obtain the additional output
signal d;[n] = tHxo[n] which is required to be maximally correlated with the output signal of the previous stage
d;—1[n] =t ;x¢[n]. Together with the orthogonality conditions this leads to following optimization problem:

1
t; = argmax E{Real(d;[n]d;_1[n])} = arg max E(tHRxotiA +tH Ry, t) (15)

st: tflt=1 and tft,=0,k=1,...,i—1. (16)

The solution, which is easily determined via the use of Lagrange multipliers, for example, is

(Hllc:z‘q Pk) Ry, ti—1
i = 1
I (TThzi-1 Pr) Roti il

P; is the unique projection operator onto the orthogonal complement of the 1-D space spanned t;. We now show
that it is not necessary to actually form P;! The key observation is that the recursion in Equation (17) is the Gram-
Schmidt Arnoldi algorithm [Arn51, Saa96] for computing an orthonormal basis for the Krylov subspace CK (D)
generated by the square matrix A € CM*M and the column vector b € CM: CKP) = span ([b, Ab,..., AD*Ib])
[Saa96, vdV00]. Recall that Honig and Xiao [HX99] proved that with B; = P; the filters t; are an orthonormal
basis for the Krylov subspace generated by (Rxg,Ixe,do)-

The covariance matrix Rq of the pre-filtered observation d[n] (cf. Equation 14) is tri-diagonal. Coupled with
the Hermitian property of Rx,, the orthogonal basis t; of the Krylov subspace CK(P) of (Rx,,Txo.d,) can be
alternatively computed using the Lanczos algorithm [Lan50, Saa96]. The net result is that the forward recursion
of the MSNWF may be executed without the need for forming blocking matrices. Each successive member of the
forward recursion basis may be efficiently computed as follows. At the i-th stage, first compute

s where: Pl = IN - titfl (17)

u; = Ryoti—1; (18)
the next basis vector for the forward recursion is then computed as
t=w; — (¢ jw)tiog — (6wt (19)

followed by scaling t; to have unit norm. Thus, we have an algorithm for computing the exact same orthogonal
basis as that generated by the forward recursion in the original algorithmic structure of the MSNWF depicted in
Figure 3, but which does not require blocking matrices!! This is a substantial computational savings. Another
computation reducing feature of our innovation is the realization that after multiplying the previous member of the
forward recursion basis by Rx,, we need only subtract off from the resulting vector its components onto only the
last two members of the basis.

Note that Goldstein and Ricks [Ricks00] recently developed a data-level lattice structure for the MSNWEF that also
avoids the formation of blocking matrices. In contrast, we have developed a covariance-level filter bank structure for
the MSN'WF that does not require blocking matrices. Goldstein and Ricks’ [Ricks00] algorithm requires a backwards
recursion after the forward recursion is terminated. In contrast, in the next section, we develop an order-recursive
form of the MSNWF through which the backwards recursion coefficients, and hence the weight vector, may be
updated at each stage via a simple recursion.

4.2 Order-Recursive MSNWF

Recall that at stage D the orthogonal basis

TP = [t,,...,tp] € CV*P (20)
obtained through the forward recursion yields the length D observation

dP)[n] = TP)Hx4[n] € CP, (21)
having the D x D tri-diagonal covariance matrix

R = £{dP)[n)dP)H [n]} = TOIHR, TD), (22)



If we terminate at stage D, indicated by the superscript (0)(D ), the backwards recursion coefficients are the compo-

(D)
d

nents of the Wiener filter wj ' which estimates do[n] from dP)[n]:

-1 -1
W = (R e, - (20 0 T )
The rank D MSNWF approximation of the Wiener filter is then
-1
wiP) = T(D)w(P) = (D) (T(D),HRXOT(D)) TP Hy, g (24)
which yields the mean squared error

—1
MSE®?) = g2 — 1 | T(P) (T<D>»HRXOT<D>) TP Hp g (25)

x0,do

The goal is to update both the backwards recursion coefficients wl(iD) (which change with each stage) and the MSE?)

for stage D in terms of wl(inl) and MSE®™Y from the previous stage.

To do this, recall that the observation d”)[n] = T(P)H x4[n] has the tri-diagonal covariance matrix

0
T(Dfl),HRx T(P-1)
R = T AR, TP — ° rp_1,p | € CP*P (26)
o7 7"1*371,D | D,D
and the cross-correlation vector with respect to the desired signal dy[n]
rgiio = T(D)’Ht'xo,d0 = [ ||rx°(’)d°”2 } erP. (27)
Given R((inl) from stage D — 1, the new entries of R((iD) are simply
rD_1,D = tg_leotD and rD,.D = ththD. (28)

Because r((iDd)0 has the property that only the first element is not equal to 0, only the first column of the inverse of

R((iD) is needed to compute the backwards recursion coefficients via w((iD) — R0

d d,do”
For the sake of notational simplicity, define °
c® =R =7, )] e CPP. (29)

The backwards recursion coefficients for stage D, wl(iD), is then the first column, ch), of C(P) = RSD)’_l. The

inversion lemma for partitioned matrices (e.g., [Sch91, ?]) leads to

c®-1 o _
c®) _ [ of 0 + B3 bP)p(D)H (30)
where the various quantities are defined as follows.
0 _
—_QD-1) _ (D-1)
b(P) = C [ TD_1,D } = [ rD*l’fCD—l ecCP (31)
1
and
" _ 0 D-1
Bp =7TD,D — [OTﬂ"D—l,D]C(D 2 { rD_1.D ] =TD,D — |7'D—1,D|2C(D—1,)D—1 (32)
with C(DDf_l}I)Dfl being the last element of the last column cSDD:ll) of C(P) at the previous step. Therefore, the first
column ch) can be written in terms of the first column of C(P~1 from stage D — 1 as
(D-1) 2.(D-1)
0 ’ —Tp-1,D




9]

where c1 1 denotes the first element of cS:)D:ll). Obviously, the first column of C(P) and, thus, the Wiener filter

4(1 ) at step D depends upon the first column ch_l) at step D — 1 and the new entries of the covariance matrix

. D-1
rp—1,p and rp p. However, we also observe a dependency on the previous last column c(D_1 ). Hence, we have to

determine an expression for the last column of C(P). Invoking Equation (30) we obtain

(D) —r P
=ppt| PP (34

which only depends on the previous last column and the new entries of R((iD). So, we have developed an iteration

that only updates two vectors ch) and CSDD) at each stage. In addition, the mean squared error at stage D can be

updated via the first entry c( ) of c (cf. Equation 25):

MSE®) = 03 — |[rx,d0 13¢5 (35)

The resulting “covariance level” version of the new (proposed) order-recursive MSNWF is summarized in Table 1,

where we substituted cgi) f(fr)st l(;)st, respectively.

and cgi) by ¢ and c

tp=0, t;= rxo,do/ero7d0”2

Forward Recursion:

u = Rthl

for i = 1 D
To,1 = 0 1,1 = tl
1 T
T =l 0 = Z di_y[nlxicalnl, = ti/llt]l2
a
MSE ) = U — ”rxo,doHZCﬁrst d[n] t % 1[71] n=0 M—_1
T =2,. D i = b Xi— ) =Y
or i = x;[n] = x;_1[n] — di[nJt;, n=0,.,,M -1
v=u-— 7‘1‘71,1‘71’51‘71 —7Ti—24-1bi—2 ol = dolnl
217_11‘,77“”‘,”2 Backwards Recursion:
i =V/Ti—1 e
u= Rt fori=(D-1),...,1

M-1
- —tHu
Tii =t — Wit1 = { Z:O di[n]e z+1 } { Z leit1[n }

ﬁi:r’il |7“1 1Z| Clastz 1

1—1 1 . = d: __ . . e . _
clglz) = |: clgubst) :| + ﬁ 1 1 . 1 |: |7‘Z 1 1|2c1(;st ) :| el[n] Dd [ ] wl+1€l+1[ ]7 n= 07 77M 1
TS as 7“ ) (D) B H—l
" /6’_ { — CI(Z tl) _ i—1,0 W, = z; {H wz}
C i—1,i%as 1=
fast Table 2. Data-Level Lattice MONWE.
MSE® — Ud — Irxo.do I3 2Cﬁrst . (not order-recursive)

TWD) = [tl,. tD]

W17

Table 1. Covariance-Level Order-Recursive MSNWE.

5 Further advances relative to the MSNWFEF.

These are summarized here and developed briefly in later sections.

1. The order-recursive MSNWF developed in Section 4.2 works at the covariance level, thereby presuming forma-
tion of a sample covariance matrix. We propose to develop data level versions of the order-recursive MSNWF
amenable to the modular/lattice structure of the MSNWTF recently developed by Goldstein and Ricks [Ricks00];
the latter is not order-recursive but rather requires a backwards-recursion as well as a forward recursion. The
proposed data-level, order-recursive MSNWF offers the following important benefits: (i) it is order-recursive
thereby updating the backwards recursion coefficients and MSE at each stage, (ii) it avoids computation of
blocking matrices, and (iii) it avoids computation of a covariance matrix (for which there may not be sufficient
sample support.)

2. We recently discovered a connection between the MSNWF and conjugate gradient (CG) search methods. The
inherent relationship between the two follows from the aforementioned connection between the MSNWEF and
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Figure 9: Lattice structure for MSNWF; dashed box is basic module for each additional stage.

Krylov subspace estimation since at each iteration the standard form of the CG search method minimizes
wHRy W + wlry, a0 + riIO,dow in the Krylov subspace generated by Ry, and rx,.d,. The fact that an
iterative search algorithm is related to a reduced-rank adaptive filtering scheme is a fascinating connection.

3. We have worked to incorporate multiple constraints into the MSNWF. In addition to its use in implicitly
solving the Weiner-Hopf equations Rx, W = ry, d, through reduced-rank adaptation, the MSNWEF can be
used to solve Minimum Variance problems of the form:

w = argmin w’R,,w (36)
st diw=1

where d is the signature vector for the desired user (array manifold vector, code, etc.) which is either known or
estimated a-priori. In this scenario, rx, .4, < d; we effectively know ry, 4, to within an unknown multiplicative
scalar. The solution to (36) may be computed as the solution to Rx,w = Ad; A is a scalar used to satisfy the
constraint in (36). Both the covariance and data level versions of the MSNWEF can be used to solve constrained
minimum variance problems of this form. However, some applications involve multiple constraints (to effect
smoothness, for example) in the form of a constraint matrix equation C¥w = §. The incorporation of multiple
constraints into the MSNWF has not yet been developed. We will also develop how to modify the recently
developed ”data-level” modular/lattice form of the MSNWEF [Ricks00] to accommodate multiple constraints.

5.1 Data-Level Order-Recursive MSNWEF.

The proposed order-recursive MSNWF summarized in Table 1 works at the covariance level, thereby presuming
formation of a sample covariance matrix. We propose to develop data level versions of the order-recursive MSNWF
amenable to the modular/lattice structure of the MSNWF recently developed by Goldstein and Ricks [Ricks00] and
depicted in Figure 9. The algorithm accompanying Figure 9 is delineated in Table 2 and entails block-oriented
processing: a block of data is extracted from the overall data stream and broken up into M blocks of length N
denoted x[n], n =0,1,..., M — 1. The M data blocks may or may not be overlapping depending on the application.

Similar to our forward recursion based on Krylov subspace estimation, the Goldstein/Ricks algorithm in Table 2
does not require blocking matrices but it still requires a backwards-recursion once the forward recursion is terminated.
We thus propose a data-level, order-recursive MSNWE': a single do-loop consisting of (in order) (I) the first three
lines of the forward recursion do-loop in Table 2 (compute t;, d;[n], and x;[n] at i-th stage), (II) compute r;_1; =

M-1 M-1
Z d;_{[n]d;[n] and r;; = Z |d;[n]]?, and (IIT) the last four lines of the do-loop in Table 1 (compute 3;, Cgr)sw
n=0 n=0
cl(;zt, and MSE® at i-th stage). The quantities r;_; ; and 7;; are the new entries introduced into the tri-diagonal
covariance matrix at stage i: r;_1,; = tZ;Ry,t; and r;; = tZ Ry t; (cf Eqn (28)), but expressed alternatively in

terms of d;[n] and d;_1[n], quantites produced in the execution of the lattice MSNWF depicted in Figure 9. The



proposed data-level, order-recursive MSNWF has all the desired benefits: (i) order-recursive thereby updating the
backwards recursion coefficients and MSE at each stage, (ii) avoids computation of blocking matrices, and (iii) avoids
computation of a covariance matrix (for which there may not be sufficient sample support.)

5.2 Connection to Gradient Search (CG) Techniques.

Substituting the expression for cgr)st in Table 1 into wéi) = T(i)cgr)st. where T = [t1,...,t;], yields a stage to
stage direct update of the weight vector

W(()i) = W(Si_l) +7igi + ¢iti,  where: g; = T(i)cl(;lt = 1igi—1 + Cits (37)

where v;, ¢;, 1n;, and (; are all scalars whose expressions are not provided here due to space limitations. As discussed
previously, the connection between CG and MSNWF is that at each iteration CG minimizes wi Rwa—i—wH Txo,do +
rfl . w in the Krylov subspace generated by Ry, and rx, d,- An analysis of the direct MSNWF weight update in

x0,do

(37) will allow us to assess the equivalence between MSNWF and CG.

5.3 Incorporating Multiple Constraints into the MSNWF

‘We propose to incorporate multiple constraints into the MSNWF, for both the covariance level and data level versions
of the MSNWF. A classic example of where multiple constraints may arise is in robust beamforming. In addition
to a unity gain constraint in the desired look direction, a zero derivative constraint at the look direction is often
imposed to reduce sensitivity to mismatch between the “look” direction and the actual arrival angle of the desired
source. The incorporation of multiple constraints into the MSNWF has heretofore not yet been developed.

We here briefly develop MSNWF based solutions for Minimum Variance problems of the form

w = argmin wi R, w (38)
st: Clw=4

with multiple constraints incorporated in the form of a constraint matrix equation C¥w = §. The closed-form
solution to (38) may be expressed as

w=AB+C(CHC)'d = AB+~ (39)

where ¥ = C(CHC)_l(s and CFA = O, i. e., the column space of A spans the orthogonal complement of the
column space of C. This leads to the unconstrained optimization problem

B = arg Hfan BTATR,,AB + BT ATRY + Y Ry AB + Y Ryyy (40)

The optimal 3 may be computed as the solution to the Wiener-Hopf Eqns {Af R, ,A}3 = —AHR,,y. It is
apparent that one may to solve for 3 via the efficient, covariance level version of the MSNWF summarized in Table
1 by replacing Rx, by AF Ry, a,A and ryx, a, by —AHRy, a7y The reduced-rank solution for 3 thus obtained is
then substituted into (39).

A data-level, modular /lattice form of the MSNWTF incorporating multiple constraints is facilitated by substituting
Ry, = + Z,]Y:O x[n)xH[n] into ARy, 4,A and APRy, d4,- The net result is that the structure in Figure 9,
governed by the algorithm outlined in Table 2, may be employed by replacing the input data blocks xg[n] by
xo,-[n] = Afx[n], n = 0,1,..., M — 1, and replacing the first basis vector for the forward recursion, t1, by t; =
ZT]\LO(AH x[n])(xH[n]7y) (followed by normalizing t; to have unit length).
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