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Zusammenfassung

Es werden verschiedene multivariate stochastische Modelle in stetiger Zeit eingeführt

und aus probabilistischer und statistischer Sicht im Detail untersucht. Alle diese

Modelle werden von Lévyprozessen getrieben und können allgemein für die Model-

lierung mehrdimensionaler Beobachtungsreihen verwendet werden. Hierbei liegt in

dieser Arbeit der Schwerpunkt auf verschiedenen stochastischen Volatilitätsmodellen

für Finanzmarktdaten.

Zunächst werden multivariate zeitstetige autoregressive Moving-Average (CAR-

MA) Prozesse betrachtet und darauf aufbauend ein multivariates zeitstetiges ex-

ponentielles GARCH Modell (ECOGARCH). Danach werden positiv semidefinite

Ornstein-Uhlenbeck-Prozesse eingeführt und es wird allgemein das Verhalten stochas-

tischer Prozesse endlicher Variation mit Werten in den positiv semidefiniten Matrizen,

die als Summe eines Integrales bezüglich der Zeit und eines Integrales bezüglich eines

erweiterten Poissonzufallsmaßes dargestellt werden können, bei der Wurzelbildung

(und ähnlichen Transformationen) untersucht. Die positiv semidefiniten Ornstein-

Uhlenbeck-Prozesse bilden die Grundlage für die Definition einer multivariaten Er-

weiterung des populären stochastischen Volatilitätsmodells von Barndorff-Nielsen und

Shephard. Nach einer detaillierten theoretischen Untersuchung wird dieses Modell für

beobachtete Aktienkurse geschätzt. Als weiteres Modell mit stochastischer Volatilität

werden multivariate zeitstetige GARCH (COGARCH) Prozesse eingeführt und deren

probabilistischen und statistischen Eigenschaften näher betrachtet.





Abstract

Several multivariate stochastic models in continuous time are introduced and their

probabilistic and statistical properties are studied in detail. All models are driven

by Lévy processes and can generally be used to model multidimensional time series

of observations. In this thesis the focus is on various stochastic volatility models for

financial data.

Firstly, multidimensional continuous-time autoregressive moving-average (CAR-

MA) processes are considered and, based upon them, a multivariate continuous

time exponential GARCH model (ECOGARCH). Thereafter, positive semi-definite

Ornstein-Uhlenbeck type processes are introduced and the behaviour of the square

root (and similar transformations) of stochastic processes of finite variation, which

take values in the positive semi-definite matrices and can be represented as the sum

of an integral with respect to time and another integral with respect to an extended

Poisson random measure, is analysed in general. The positive semi-definite Ornstein-

Uhlenbeck type processes form the basis for the definition of a multivariate extension

of the popular stochastic volatility model of Barndorff-Nielsen and Shephard. After a

detailed theoretical study this model is estimated for some observed stock price series.

As a further model with stochastic volatility multivariate continuous time GARCH

(COGARCH) processes are introduced and their probabilistic and statistical proper-

ties are analysed.
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1. Introduction

Today sophisticated probabilistic and statistical models play an important role in finance
and related areas. The widespread availability of high frequency or tick-by-tick data being
unequally spaced calls for the use of continuous time models. Furthermore, it has become
clear over the years that the classical model of Black and Scholes specifying the logarith-
mic asset price as a Brownian motion with drift fails to reproduce important features of
empirically observed price series, the so-called “stylized facts” (cf. Barndorff-Nielsen and
Shephard (2001a), Cont and Tankov (2004) or Guillaume, Dacorogna, Davé, Müller, Olsen
and Pictet (1997), for instance).

The “stylized facts” of price data of financial assets (stocks, currencies, etc.) are that the
volatility is not constant over time but stochastic and exhibits jumps, that there are clusters
of extremes in the volatility, that the marginal distributions are asymmetric and heavy-
tailed and that the returns exhibit a (quasi)long-range dependent behaviour although they
are uncorrelated. Moreover, one often adds certain scaling and self-similarity properties.

In recent years many models reproducing at least some of these stylized facts have been
proposed and applied. Such models are typically stochastic volatility models of some
kind, i.e. the price process is determined by a stochastic differential equation involving
a stochastic process describing the instantaneous volatility. In order to account for the
jumps observed, this stochastic volatility process is often defined using a Lévy process.
Two prominent examples of such models are the Ornstein-Uhlenbeck stochastic volatility
model introduced in Barndorff-Nielsen and Shephard (2001b) and studied and applied in
various papers thereafter, and the continuous time GARCH (generalized autoregressive
conditional heteroskedasticity) model presented first in Klüppelberg, Lindner and Maller
(2004) which is a continuous time analogue of the GARCH process popular in discrete time
and inherits most of the appealing features of this discrete time process. Likewise, Haug and
Czado (2007) introduced recently a continuous time analogue of the exponential GARCH
(EGARCH) process modelling the logarithm of the volatility as a Lévy-driven CARMA
process.

The models mentioned above are all univariate and thus can only model the price of
a single asset. However, for portfolio optimization, risk management and the pricing of
multi-asset options, which are becoming more and more important, one needs a model
for the joint evolution of the prices of several assets. From empirical observations and
economic reasoning it is clear that in general the prices of different assets exhibit highly
non-trivial interdependencies. Clearly, it is essential to cover these in multivariate models.
So far there are only rather few continuous time multivariate stochastic volatility models
available which model the whole covariance matrix and not only the variances. Hubalek
and Nicolato (2005) and Lindberg (2005) present different factor models extending the
univariate model of Barndorff-Nielsen and Shephard, and Gourieroux (2006) uses Gaussian
vector Ornstein-Uhlenbeck processes to specify the stochastic volatility process, which in a
multivariate setting is the instantaneous covariance matrix and thus has to be a stochastic

1



2 1. Introduction

process in the positive semi-definite matrices.

In this thesis we introduce and study several multivariate stochastic volatility models
which are generalizations of univariate ones. Since this involves defining suitable stochastic
processes taking values in the positive semi-definite matrices, the generalizations are not
straightforward. Moreover, it should be noted that the processes we introduce in the def-
inition of the multivariate stochastic volatility models are of considerable interest in their
own right and should not only be of use in finance, but also in very different areas. More-
over, our analysis of the processes presented often goes further than what is needed for the
definition and understanding of the stochastic volatility models.

Extending the univariate work of Brockwell (2001b) in particular, we introduce and
analyse multivariate Lévy-driven continuous time autoregressive moving-average (CARMA)
processes. As these processes are the continuous time analogues of the discrete time ARMA
processes, they form a very elementary class of processes with wide-ranging applications.
In particular, for Lévy processes with finite variance we construct associated random or-
thogonal measures and use them to obtain spectral representations of multivariate CARMA
processes. Based upon these processes we define our first stochastic volatility model, the
multivariate continuous time exponential GARCH(p, q) (ECOGARCH) model generalizing
the univariate model presented in Haug and Czado (2007). A major motivation for con-
sidering exponential GARCH models is that a negative shock in the price process may be
accompanied by a larger positive shock in the stochastic volatility than a positive one, which
resembles the “leverage effect” often encountered empirically. After analysing some elemen-
tary properties we show that a multivariate ECOGARCH(1,1) process can be approximated
by a sequence of piecewise constant processes determined by discrete time multivariate E-
GARCH(1,1) processes arbitrarily well in the Skorokhod topology in probability. Actually,
we establish in general that a multidimensional and infinite time extension of the first
jump approximation of a Lévy process introduced in Szimayer and Maller (2007) satisfies
a “uniform tightness” condition important for the convergence of solutions of sequences of
stochastic differential equations in the Skorokhod topology.

Furthermore, Ornstein-Uhlenbeck type processes taking values in the positive semi-
definite matrices are introduced using matrix subordinators (see Barndorff-Nielsen and
Pérez-Abreu (2007)) and appropriate linear operators, and for a certain related class of
stochastic processes taking values in the positive semi-definite matrices the behaviour of
the square root (and similar transformations) is analysed. Along the way several elementary
but important results for processes in the positive semi-definite matrices are obtained. The
positive semi-definite Ornstein-Uhlenbeck processes are used to define another multivariate
stochastic volatility model, namely a multivariate generalization of the Barndorff-Nielsen
and Shephard model. This model is analysed in detail focusing in particular on the sec-
ond order structure of discretely observed returns, a state space representation and the
behaviour of the realized quadratic variation, where we state the results for a general class
of stochastic volatility models whenever possible. The analysis is completed by presenting
some further results for positive semi-definite Ornstein-Uhlenbeck type processes, in partic-
ular regarding the stationary distribution and relating them to superpositions of univariate
Ornstein-Uhlenbeck type processes. After the theoretical study the model is successfully ap-
plied to empirical data. Our results show that this multivariate stochastic volatility model
is highly tractable and that basically all results obtained for the univariate model can be ex-
tended. It generates dependent returns with zero autocorrelation and thus reproduces this
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important stylized fact. The dependence is seen by showing that the squared returns have
a non-zero autocorrelation function decaying exponentially after lag one. Moreover, like in
the univariate model one can get more flexibility (and long-range dependence) by specify-
ing the volatility process as a superposition of positive semi-definite Ornstein-Uhlenbeck
processes.

The final model with stochastic volatility, which we introduce, is the multivariate con-
tinuous time GARCH(1,1) (MUCOGARCH(1,1)) process extending the univariate COGA-
RCH(1,1) process of Klüppelberg et al. (2004). For the definition we use some insight from
the construction of the univariate COGARCH(p, q) process in Brockwell, Chadraa and Lind-
ner (2006). One reason why COGARCH processes, like their discrete time counterparts,
are particularly interesting is that their stationary distribution is usually heavy-tailed and
that they normally exhibit extremal clusters (cf. Fasen, Klüppelberg and Lindner (2006)),
whereas for most other models with stochastic volatility this is only the case under some
special assumptions. To analyse the MUCOGARCH(1,1) process and also to establish its
well-definedness we need to present some results on the existence and uniqueness of solu-
tions of multidimensional stochastic differential equations being defined only on an open set
and satisfying only a local Lipschitz property, and some results on their Markovian prop-
erties. Again we present a thorough study of the probabilistic and statistical properties,
especially the second order structure, and show that the returns are uncorrelated, whereas
the squared returns have a non-vanishing autocorrelation function. The analysis of the
MUCOGARCH(1,1) process is concluded by considering several examples along with some
simulations.

Finally, we address the issue of scaling laws in a univariate set-up extending the work of
Barndorff-Nielsen and Prause (2001). We obtain series representations of certain (absolute)
moments of generalized hyperbolic distributions and normal inverse Gaussian (NIG) Lévy
processes. Based upon this some asymptotic scaling results for the moments of NIG Lévy
processes are obtained and some graphs are presented which indicate that the behaviour of
moments of an NIG Lévy process over time may optically look very close to scaling.

1.1. Outline of the thesis

As every of the following chapters and appendices of this thesis is based on a paper, they
are basically self-contained and the notation is only unified within the individual chapters.
However, some general abbreviations and notation are also explained at the end of the
thesis.

In the following brief abstracts of the contents of the individual chapters are presented.
More detailed information on the content of an individual chapter is to be found in the
introductory section of each chapter.

Chapter 2 is based on Marquardt and Stelzer (2007). Here a multivariate continuous
time autoregressive moving average (CARMA) model of order (p, q), q < p, driven by a
Lévy process is introduced. It extends the well-known univariate CARMA and multivariate
discrete time ARMA models. We give an explicit construction using a state space repre-
sentation and a spectral representation of the driving Lévy process. Furthermore, various
probabilistic properties of the state space model and the multivariate CARMA process itself
are discussed in detail.

Thereafter, a multivariate extension of the exponential continuous time GARCH(p, q)
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model (ECOGARCH) is introduced and studied in Chapter 3 being based on Haug and
Stelzer (2007). Stationarity and mixing properties of the new model are investigated and
ways to model a component-wise leverage effect are presented. Further it is shown that there
exists a sequence of piecewise constant processes determined by discrete time multivariate
EGARCH(1, 1) processes which converge in probability in the Skorokhod topology to the
multivariate ECOGARCH(1, 1) process. To obtain this result the first jump approximation
of a Lévy process is used and it is shown to satisfy an important uniform tightness condition
regarding the convergence of stochastic differential equations in general.

In the following Chapter 4 based on Barndorff-Nielsen and Stelzer (2007) processes of fi-
nite variation, which take values in the positive semi-definite matrices and are representable
as the sum of an integral with respect to time and one with respect to an extended Poisson
random measure, are considered. For such processes we derive conditions for the square
root (and the r-th power with 0 < r < 1) to be of finite variation and obtain integral
representations of the square root. Our discussion is based on a variant of the Itô formula
for finite variation processes. Moreover, Ornstein-Uhlenbeck type processes taking values in
the positive semi-definite matrices are introduced and some of their probabilistic properties
are studied.

Chapter 5 is an extended version of Pigorsch and Stelzer (2007). This chapter generalizes
the univariate Ornstein-Uhlenbeck (OU) stochastic volatility model proposed by Barndorff-
Nielsen and Shephard (2001b) to the multivariate case using positive semi-definite processes
of Ornstein-Uhlenbeck type. We show that most of the properties of the univariate model
are still available in closed form for the multivariate model. After deriving the second
order properties of the returns and their outer product (“squared returns”), we estab-
lish a state-space representation for the joint sequence which can be used to estimate the
model via quasi maximum likelihood. Moreover, the state-space representation provides
a straightforward way to filter out the unobservable, time varying covariance using the
Kalman filter. Likewise we analyse the realized quadratic variation and superpositions of
positive semi-definite OU type processes, for which we also obtain state-space representa-
tions. Furthermore, conditions ensuring the identifiability of our model are presented and
additionally some further results on positive semi-definite OU type processes, especially
regarding the marginal dynamics and the stationary distribution. Noteworthy, many of
our results are shown to be valid for more general multivariate stochastic volatility models
which are driven by a stationary and square-integrable instantaneous covariance process.

Furthermore, a multivariate extension of the COGARCH(1,1) process introduced in
Klüppelberg et al. (2004) is presented and shown to be well-defined in Chapter 6 which
contains the results of Stelzer (2007a). The definition generalizes the idea of Brockwell
et al. (2006) for the definition of the univariate COGARCH(p, q) process and is in a natu-
ral way related to multivariate discrete time GARCH processes as well as positive definite
Ornstein-Uhlenbeck type processes. Furthermore, we establish important Markovian prop-
erties and sufficient conditions for the existence of a stationary distribution for the volatility
process, which lives in the positive semi-definite matrices, by bounding it by a univariate
COGARCH(1,1) process in a special norm. Moreover, criteria ensuring the finiteness of
moments of both the multivariate COGARCH process as well as its volatility process are
given. Under certain assumptions on the moments of the driving Lévy process, explicit
expressions for the first and second order moments and (asymptotic) second order station-
arity are obtained. As a necessary prerequisite we study the existence of solutions and some
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other properties of stochastic differential equations being only defined on a subset of R
d

and satisfying only local Lipschitz conditions.
The main part of this thesis is concluded by Chapter 7 which has been published as

Barndorff-Nielsen and Stelzer (2005). In this chapter expressions for (absolute) moments
of generalized hyperbolic (GH) and normal inverse Gaussian (NIG) laws are given in terms
of moments of the corresponding symmetric laws. For the (absolute) moments centred
at the location parameter µ explicit expressions as series containing Bessel functions are
provided. Furthermore, the derivatives of the logarithms of absolute µ–centred moments
with respect to the logarithm of time are calculated explicitly for NIG Lévy processes.
Computer implementation of the formulae obtained is briefly discussed. Finally, some
further insight into the apparent scaling behaviour of NIG Lévy processes is gained.

Finally, there are two general appendices based on Stelzer (2006, 2007b). In Appendix A
the linear operators B on the real symmetric matrices whose exponential exp(Bt) leaves the
inertia invariant and maps the positive (semi-)definite matrices onto themselves for all t ∈ R

are fully characterized. Appendix B addresses the question which multivariate GARCH
models in the vec form are representable in the BEKK form. Using results from linear
algebra, it is established that all vec models not representable in the simplest BEKK form
contain matrices as parameters which map the vectorized positive semi-definite matrices
into a strict subset of themselves. Moreover, a general result from linear algebra is presented
implying that in dimension two the models are equivalent and in dimension three a simple
analytically tractable example for a vec model having no BEKK representation is given.
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2. Multivariate CARMA Processes1

2.1. Introduction

Being the continuous time analogue of the well-known autoregressive moving-average (AR-
MA) processes (see e.g. Brockwell and Davis (1991)), continuous time ARMA (CARMA)
processes, dating back to Doob (1944), have been extensively studied over the recent years
(see e.g. Brockwell (2001a,b), Todorov and Tauchen (2006) and references therein) and
widely used in various areas of application like engineering, finance and the natural sci-
ences (e.g. Jones and Ackerson (1990), Mossberg and Larsson (2004) and Todorov and
Tauchen (2006)). The advantage of continuous time modelling is that it allows handling
irregularly spaced time series and in particular high-frequency data often appearing in fi-
nance. Originally, driving processes of CARMA models were restricted to Brownian motion,
however, Brockwell (2001b) allowed for Lévy processes which have a finite r-th moment for
some r > 0.

Since CARMA processes are short memory moving average processes, Brockwell and
Marquardt (2005) developed fractionally integrated CARMA (FICARMA, for short) pro-
cesses, which exhibit long range dependence. So far only univariate CARMA processes
have been defined and investigated. However, in order to model the joint behaviour of
several time series (e.g. prices of various stocks) multivariate models are required. Thus,
we develop multivariate CARMA processes and study their probabilistic properties in this
chapter.

Unfortunately, it is not straightforward to define the multivariate CARMA processes
analogously to the univariate ones, as the state space representation (see Section 3.1) relies
on the ability to exchange the autoregressive and moving average operators, which is only
possible in one dimension. Simply taking this approach would lead to a spectral represen-
tation which does not reflect the autoregressive moving average structure. Our approach
leads to a model which can be interpreted as a solution to the formal differential equation
P (D)Y (t) = Q(D)DL(t), where D denotes the differential operator with respect to t, L a
Lévy process and P and Q the autoregressive and moving average polynomial, respectively.
Moreover, it is the continuous time analogue of the multivariate ARMA model.

The chapter is organized as follows. In Section 2.2 we review elementary properties of
multidimensional Lévy processes and the stochastic integration theory for deterministic
functions with respect to them. A brief summary of univariate Lévy-driven CARMA pro-
cesses forms the first part of the third section and is followed by the development of what
will turn out to be the state space representation of multivariate CARMA (MCARMA)
processes. We start by constructing a random orthogonal measure allowing for a spectral
representation of the driving Lévy process and continue by studying a stochastic differential
equation. Analysing the spectral representation of its solution shows that it can be used
to define multivariate CARMA processes. After spending a closer look on the probabilistic
properties of this SDE (second moments, Markov property, stationary and limiting distribu-

1The contents of this chapter appeared in Marquardt, T. and Stelzer, R. (2007), Multivariate CARMA
Processes, Stochastic Process. Appl., 117(1), 96–120

7
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tions and path behaviour), we state the definition of MCARMA processes in Section 2.3.3.
Furthermore, we establish a kernel representation, which enables us to derive some further
probabilistic properties of MCARMA models. In particular, we characterize the stationary
distribution and the path behaviour and give conditions for the existence of moments, the
existence of a C∞

b density as well as for strong mixing.
Throughout this chapter we use the following notation. We call the space of all real

or complex m ×m-matrices Mm(R) or Mm(C), respectively, and the space of all complex
invertible m ×m-matrices Glm(C). Furthermore, A∗ denotes the adjoint of the matrix A
and KerA its kernel. Im ∈ Mm(C) is the identity matrix and ‖A‖ is the operator norm
corresponding to the norm ‖x‖ for x ∈ C

m. Finally, IB(·) is the indicator function of the
set B and N0 = N ∪ {0}.

2.2. Multivariate Lévy processes

2.2.1. Basic facts on multivariate Lévy processes

We state some elementary properties of multivariate Lévy processes that will be needed.
For a more general treatment and proofs we refer to Applebaum (2004), Protter (2004) or
Sato (1999).

We consider a Lévy process L = {L(t)}t≥0 (where L(0) = 0 a.s.) in R
m without Brow-

nian component determined by its characteristic function in the Lévy-Khintchine form
E
[
ei〈u,L(t)〉] = exp{tψL(u)}, t ≥ 0, with

ψL(u) = i〈γ, u〉 +

∫

Rm

(ei〈u,x〉 − 1 − i〈u, x〉I[0,1](‖x‖)) ν(dx), u ∈ R
m, (2.2.1)

where γ ∈ R
m and ν is a measure on R

m that satisfies ν({0}) = 0 and
∫

Rm

(‖x‖2 ∧1) ν(dx) <

∞. The measure ν is referred to as the Lévy measure of L. It is a well-known fact that to
every càdlàg Lévy process L on R

m one can associate a random measure J on R
+×R

m\{0}
describing the jumps of L. For any measurable set B ⊂ R

+ × R
m \ {0},

J(B) = ♯{s ≥ 0 : (s, Ls − Ls−) ∈ B}.

The jump measure J is a Poisson random measure on R
+×R

m\{0} (see e.g. Definition 2.18
in Cont and Tankov (2004)) with intensity measure n(ds, dx) = ds ν(dx). By the Lévy-Itô
decomposition we can rewrite L almost surely as

L(t) = γt+

∫

‖x‖≥1,s∈[0,t]

xJ(ds, dx) + lim
ε↓0

∫

ε≤‖x‖≤1, s∈[0,t]

xJ̃(ds, dx), t ≥ 0. (2.2.2)

Here J̃(ds, dx) = J(ds, dx)−dsν(dx) is the compensated jump measure, the terms in (2.2.2)
are independent and the convergence in the last term is a.s. and locally uniform in t ≥ 0.

In the sequel we will work with a two-sided Lévy process L = {L(t)}t∈R, constructed
by taking two independent copies {L1(t)}t≥0, {L2(t)}t≥0 of a one-sided Lévy process and
setting

L(t) =

{
L1(t) if t ≥ 0

−L2(−t−) if t < 0.
(2.2.3)
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Assuming that ν satisfies additionally
∫

‖x‖>1

‖x‖2 ν(dx) <∞, (2.2.4)

L has finite mean and covariance matrix ΣL given by

ΣL =

∫

Rm

xx∗ ν(dx). (2.2.5)

Furthermore, if we suppose that E[L(1)] = γ +
∫
‖x‖>1 x ν(dx) = 0, then it follows that

(2.2.1) can be written in the form

ψL(u) =

∫

Rm

(ei〈u,x〉 − 1 − i〈u, x〉) ν(dx), u ∈ R
m, (2.2.6)

and (2.2.2) simplifies to

L(t) =

∫

x∈Rm\{0}, s∈[0,t]

xJ̃(ds, dx), t ∈ R. (2.2.7)

In this case L = {L(t)}t≥0 is a martingale.

2.2.2. Stochastic integrals with respect to Lévy processes

In this section we consider the stochastic process X = {X(t)}∈R given by

X(t) =

∫

R

f(t, s)L(ds), t ∈ R, (2.2.8)

where f : R×R →Mm(R) is a measurable function and L = {L(t)}t∈R is an m-dimensional
Lévy process without Brownian component. For integration with respect to Brownian
motion we refer to any of the standard books.

We first assume that the process L in (2.2.8) is an m-dimensional Lévy process with-
out a Gaussian component satisfying E[L(1)] = 0 and E[L(1)L(1)∗] < ∞, i.e., L can be
represented as in (2.2.7).

In this case it follows from (2.2.7) that the process X can be represented by

X(t) =

∫

R×Rm

f(t, s)x J̃(ds, dx), t ∈ R, (2.2.9)

where J̃(ds, dx) = J(ds, dx)− dsν(dx) is the compensated jump measure of L. A sufficient
condition for the existence of the stochastic integral (2.2.9) in L1(Ω, P ) (see e.g. Rajput
and Rosinski (1989) or Marcus and Rosinski (2005)) is that

∫

R

∫

Rm

(‖f(t, s)x‖2 ∧ ‖f(t, s)x‖) ν(dx) ds <∞, ∀ t ∈ R.
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Then the law of X(t) is for all t ∈ R infinitely divisible with characteristic function

E [exp {i〈u,X(t)〉}] = exp





∫

R

∫

Rm

(
ei〈u,f(t,s)x〉 − 1 − i〈u, f(t, s)x〉

)
ν(dx) ds



 .

Furthermore, if f(t, ·) ∈ L2(R;Mm(R)), the integral (2.2.9) exists in L2(Ω, P ) and

E [X(t)X(t)∗] =

∫

R

f(t, s)ΣLf
∗(t, s) ds. (2.2.10)

If additionally ∫

R

∫

Rm

(‖f(t, s)x‖ ∧ 1) ν(dx) ds <∞, ∀ t ∈ R,

the stochastic integral (2.2.8) exists without a compensator and we can write

X(t) =

∫

R×Rm

f(t, s)xJ(ds, dx), t ∈ R, (2.2.11)

still assuming E(L1) = 0.

Finally, in the general case, where condition (2.2.4) is not satisfied, necessary and suffi-
cient conditions for the integral (2.2.8) to exist are (see Rajput and Rosinski (1989) and
Sato (2006)) ∫

R

∫

Rm

(‖f(t, s)x‖2 ∧ 1) ν(dx) ds <∞, ∀ t ∈ R, (2.2.12)

and

∫

R

∥∥∥∥∥∥
f(t, s)γ +

∫

Rm

f(t, s)x
(
I[0,1](‖f(t, s)x‖) − I[0,1](‖x‖)

)
ν(dx)

∥∥∥∥∥∥
ds <∞. (2.2.13)

Then we represent X as

X(t) =

∫

R



∫

Rm

f(t, s)x
[
J(ds, dx) − I[0,1](‖f(t, s)x‖) ν(dx)

]
+ f(t, s)γ


 ds, t ∈ R.

Moreover, if the integral in (2.2.8) is well-defined, the distribution of X(t) is infinitely
divisible with characteristic triplet (γt

X , 0, ν
t
X) given by

γt
X =

∫

R


f(t, s)γ +

∫

Rm

f(t, s)x
[
I[0,1](‖f(t, s)x‖) − I[0,1](‖x‖)

]
ν(dx)


 ds, (2.2.14)

νt
X(B) =

∫

R

∫

Rm

1B(f(t, s)x) ν(dx) ds. (2.2.15)
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It follows that the characteristic function of X(t) can be written as

E
[
ei〈u,X(t)〉

]
= exp



i〈γ

t
X , u〉 +

∫

Rm

[
ei〈u,x〉 − 1 − i〈u, x〉I[0,1](‖x‖)

]
νt

X(dx)





= exp





∫

R

ψL(f(t, s)∗u) ds



 , (2.2.16)

where ψL is given as in (2.2.1). These facts follow from Sato (2006, Theorem 3.1, Proposition
2.17 and Corollary 2.19).

2.3. Multivariate CARMA processes

In this section we discuss CARMA processes driven by general Lévy processes, i.e., the
Lévy processes may have a Brownian component and does not need to have finite variance,
if not stated otherwise. We start with a brief review of the well-known one-dimensional
case.

2.3.1. Univariate Lévy-driven CARMA processes

Continuous-time ARMA (CARMA) processes constitute a special class of moving average
(MA) processes (see, for instance, Applebaum (2004, Section 4.3.5)) with short memory
and are the continuous time analogues of the well-known autoregressive moving average
(ARMA) processes. We give here a short summary of their definition and properties. For
further details see Brockwell (2001a,b, 2004).

Definition 2.3.1 (CARMA Process). Let {L(t)}t∈R be a Lévy process satisfying

∫

|x|≥1
log |x|ν(dx) <∞,

p, q be in N0 with p > q and a1, . . . , ap, b0, . . . , bq ∈ R, ap, b0 6= 0 such that

A :=

[
0 Ip−1

−ap −ap−1 . . . −a1

]

has only eigenvalues with strictly negative real part. Furthermore, let {X(t)}t∈R denote the
unique stationary solution to

dX(t) = AX(t)dt + eL(dt), t ∈ R, (2.3.1)

where eT = [0, . . . , 0, 1]. Then the process

Y (t) = bTX(t), (2.3.2)

with bT =
[
bq, bq−1, . . . , bq−p+1

]
, is called a Lévy-driven continuous time autoregressive

moving average process of order (p, q) (CARMA(p, q), for short). If q < p − 1, we set
b−1 = . . . = bq−p+1 = 0.



12 2. Multivariate CARMA Processes

The CARMA(p, q) process can be interpreted as the stationary solution of the p-th order
linear differential equation,

p(D)Y (t) = q(D)DL(t), t ≥ 0, (2.3.3)

where D denotes differentiation with respect to t and

p(z) := zp + a1z
p−1 + ...+ ap and q(z) := b0z

q + b1z
q−1 + ....+ bq

are the so-called autoregressive and moving-average polynomials, respectively. To see this
note first that in the case q(z) = 1 (i.e. q = 0 and bT = (1, 0, . . . , 0)) rewriting (2.3.3) as
a system of first-order differential equations in the standard way gives (2.3.1) and (2.3.2)
with XT

t = (Yt,DYt, . . . ,D
p−1Yt). In the general case we transform (2.3.3) to Y (t) =

p(D)−1q(D)DL(t) = q(D)p(D)−1DL(t) (note that we may commute p−1(D) and q(D),
since the real coefficients and the operator D all commute). From the previous case we
infer that the process in (2.3.1) is formed by p(D)−1DL(t) and the first p − 1 derivatives
of this process. Now one can immediately see that Yt = bTXt = q(D)p(D)−1DLt.

Remark 2.3.2. Observe that the process {X(t)}t∈R can be represented as

X(t) =

t∫

−∞

eA(t−u)eL(du), t ∈ R, (2.3.4)

and is a multivariate Ornstein-Uhlenbeck-type process (Jurek and Mason (1993), Sato and
Yamazato (1984), Wolfe (1982)). Hence, we have

Y (t) =

t∫

−∞

bT eA(t−u)eL(du), t ∈ R. (2.3.5)

From (2.3.5) it is obvious that {Y (t)}t∈R is a causal short memory moving average process,
since it has the form

Y (t) =

∞∫

−∞

g(t− u)L(du), t ∈ R, (2.3.6)

with kernel g(t) = bT eAteI[0,∞)(t). Replacing eAt by its spectral representation, the kernel
g can be expressed as

g(t) =
1

2π

∞∫

−∞

eitλ
q(iλ)

p(iλ)
dλ, t ∈ R. (2.3.7)

Note that the representation of {Y (t)}t∈R given by (2.3.6) together with (2.3.7) defines a
strictly stationary process even if there are eigenvalues of A with strictly positive real part.
However, if there are eigenvalues with positive real part, the CARMA process will be no
longer causal. Henceforth we focus on causal CARMA processes.

Proposition 2.3.3 (Brockwell (2004, Section 2)). If E[L(1)2] < ∞, then the spectral
density fY of Y = {Y (t)}t∈R is given by

fY (λ) =
var(L(1))

2π

|q(iλ)|2
|p(iλ)|2 , λ ∈ R.
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Consequently, the autocovariance function γY of the CARMA process Y can be expressed
as

γY (h) = cov(Y (t+ h), Y (t)) =
var(L(1))

2π

∞∫

−∞

eihλ

∣∣∣∣
q(iλ)

p(iλ)

∣∣∣∣
2

dλ, h ∈ R.

Moreover, for a causal CARMA process an application of the residue theorem leads to

γY (h) = var(L(1))

p∑

r=1

q(λr)q(−λr)

p′(λr)p(−λr)
eλr |h|, h ∈ R,

provided all eigenvalues λ1, . . . , λp of the matrix A are algebraically simple.

2.3.2. State Space Representation of Multivariate CARMA Processes

This section contains the necessary results and insights enabling us to define multivariate
CARMA processes in the next section. As we shall heavily make use of spectral represen-
tations of stationary processes (see Doob (1953), Gihman and Skorohod (1974), Rozanov
(1967) for comprehensive treatments), let us briefly recall the notions and results we shall
employ.

Definition 2.3.4. Let B(R) denote the Borel-σ-algebra over R.

A family {ζ(∆)}∆∈B(R) of C
m-valued random variables is called an m-dimensional ran-

dom orthogonal measure, if

(i) ζ(∆) ∈ L2 for all bounded ∆ ∈ B(R),

(ii) ζ(∅) = 0,

(iii) ζ(∆1 ∪ ∆2) = ζ(∆1) + ζ(∆2) a.s., if ∆1 ∩ ∆2 = ∅, and

(iv) F : B(R) →Mm(C), ∆ 7→ E[ζ(∆)ζ(∆)∗] defines a σ-additive positive definite matrix
measure (i.e., a σ-additive set function that assumes values in the positive semi-
definite matrices) and it holds that E[ζ(∆1)ζ(∆2)

∗] = F (∆1 ∩ ∆2) for all ∆1,∆2 ∈
B(R).

F is referred to as the spectral measure of ζ.

The definition above obviously implies E[ζ(∆1)ζ(∆2)
∗] = 0 for disjoint Borel sets ∆1,∆2.

Stochastic integrals
∫
∆ f(t)ζ(dt) of deterministic Lebesgue-measurable functions f : R →

Mm(C) with respect to a random orthogonal measure ζ are now as usually defined in an L2-
sense (see, in particular, Rozanov (1967, Ch. 1) for details). Note that the integration can
be understood component-wise: Denoting the coordinates of ζ by ζi, i.e. ζ = (ζ1, . . . , ζm)∗,
the i-th element

(∫
∆ f(t)ζ(dt)

)
i
of
∫
∆ f(t)ζ(dt) is given by

∑m
k=1

∫
∆ fik(t)ζk(dt), where the

integrals are standard one-dimensional stochastic integrals in an L2-sense and fik(t) denotes
the element in the i-th row and k-th column of f(t). The above integral is defined whenever
the integral

∫

∆
f(t)F (dt)f(t)∗ :=




m∑

k,l=1

∫

R

fik(t)f jl(t)Fkl(dt)




1≤i,j≤m
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exists. Functions satisfying this condition are said to be in L2(F ). For two functions
f, g ∈ L2(F ) we have

E

[∫

∆
f(t)ζ(dt)

(∫

∆
g(t)ζ(dt)

)∗]
=

∫

∆
f(t)F (dt)g(t)∗. (2.3.8)

In the following we will only encounter random orthogonal measures, whose associated
spectral measures have constant density with respect to the Lebesgue measure λ on R,
i.e. F (dt) = Cλ(dt) := C dt for some positive definite C ∈ Mm(C), which simplifies
the integration theory considerably. In this case it is easy to see that it is sufficient for∫
∆ f(t)F (dt)f(t)∗ to exist that

∫
∆ ‖f(t)‖2 dt is finite, where ‖ · ‖ is some norm on Mm(C).

To ease notation we define the space of square-integrable matrix-valued functions

L2(R;Mm(C)) :=

{
f : R →Mm(C),

∫

R

‖f(t)‖2dt <∞
}
. (2.3.9)

In the following we abbreviate L2(R;Mm(C)) by L2(Mm(C)). This space is independent
of the norm ‖ · ‖ on Mm(C) used in the definition and is equal to the space of functions
f = (fij) : R →Mm(C) where all components fij are in the usual space L2(R; C).

‖f‖L2(Mm(C)) =

(∫

R

‖f(t)‖2dt

)1/2

(2.3.10)

defines a norm on L2(Mm(C)) and again it is immaterial, which norm we use, as all norms
‖ · ‖ on Mm(C) lead to equivalent norms ‖ · ‖L2(Mm(C)). With this norm L2(Mm(C)) is
a Banach space and even a Hilbert space, provided the original norm ‖ · ‖ on Mm(C) is
induced by a scalar product. Observe that as usual we do not distinguish between functions
and equivalence classes in L2(·). The integrals

∫
∆ f(t)ζ(dt) and

∫
∆ g(t)ζ(dt) agree (in L2),

if f and g are identical in L2(Mm(C)), and a sequence of integrals
∫
∆ ‖fn(t)‖2 dt converges

(in L2) to
∫
∆ ‖f(t)‖2 dt for n→ ∞, if ‖fn(t) − f(t)‖L2(Mm(C)) → 0 as n→ ∞. Moreover,

E

[∫

∆
f(t)ζ(dt)

(∫

∆
g(t)ζ(dt)

)∗]
=

∫

∆
f(t)Cg(t)∗dt. (2.3.11)

Our first step in the construction of multivariate CARMA processes is the following
theorem extending the well-known fact that

W (t) =

∞∫

−∞

eiµt − 1

iµ
φ(dµ), t ∈ R,

is an m-dimensional standard Wiener process, if φ is an m-dimensional Gaussian random
orthogonal measure satisfying E[φ(A)] = 0 and E[φ(A)φ(A)∗ ] = Im

2π λ(A) for all A ∈ B(R)
(see e.g. Arató (1982, Section 2.1, Lemma 5)).

Theorem 2.3.5. Let L = {L(t)}t∈R be a two-sided m-dimensional square integrable Lévy
process with E[L(1)] = 0 and E[L(1)L(1)∗] = ΣL. Then there exists an m-dimensional
random orthogonal measure ΦL with spectral measure FL such that E[ΦL(∆)] = 0 for any
bounded Borel set ∆,

FL(dt) =
ΣL

2π
dt (2.3.12)



2.3. Multivariate CARMA processes 15

and

L(t) =

∞∫

−∞

eiµt − 1

iµ
ΦL(dµ). (2.3.13)

The random measure ΦL is uniquely determined by

ΦL([a, b)) =

∞∫

−∞

e−iµa − e−iµb

2πiµ
L(dµ) (2.3.14)

for all −∞ < a < b <∞.

Proof. Observe that setting Φ̃([a, b)) = L(b)−L(a) defines a random orthogonal measure on
the semi-ring of intervals [a; b), with −∞ < a < b <∞. Using an obvious multidimensional
extension of Rozanov (1967, Theorem 2.1), we extend Φ̃L to a random orthogonal measure
on the Borel sets. It is immediate that the associated spectral measure F̃L satisfies F̃L(dt) =
ΣL dt and that integrating with respect to Φ̃L is the same as integrating with respect to
the Lévy process L.

Now define ΦL([a, b)) for −∞ < a < b <∞ by (2.3.14) which is equivalent to

ΦL([a, b)) =

∞∫

−∞

e−iµa − e−iµb

2πiµ
Φ̃L(dµ). (2.3.15)

Using (2.3.11) we obtain for any two intervals [a, b) and [a′, b′)

E[ΦL([a, b))ΦL([a′, b′))∗] =

∞∫

−∞

e−iµa − e−iµb

2πiµ
ΣL

(
e−iµa′ − e−iµb′

2πiµ

)
dµ (2.3.16)

=

∞∫

−∞

e−iµa − e−iµb

2πiµ
Σ

1/2
L

(
e−iµa′ − e−iµb′

2πiµ
Σ

1/2
L

)∗

dµ,

where Σ
1/2
L denotes the unique square root of ΣL defined by spectral calculus. The crucial

point is now to observe that the function φ̂a,b(µ) = e−iµa−e−iµb√
2πiµ

Σ
1/2
L is the Fourier transform

of the function I[a,b)(t)Σ
1/2
L , i.e.,

φ̂a,b(µ) =
1√
2π

∫ ∞

−∞
e−iµtI[a,b)(t)Σ

1/2
L dt.

The standard theory of Fourier-Plancherel transforms F (see e.g. Chandrasekharan
(1989, Chapter II) or Yosida (1965, Chapter 6)) extends immediately to L2(Mm(C)) by
setting

Fm : L2(Mm(C)) → L2(Mm(C)), f(t) 7→ f̂(µ) =
1√
2π

∞∫

−∞

e−iµtf(t)dt

where
∫∞
−∞ e−iµtf(t)dt is the limit in L2(Mm(C)) of

∫ R
−R e

−iµtf(t)dt as R→ ∞, because this
can be interpreted as a component-wise Fourier-Plancherel transformation and, as stated
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before, a function f is in L2(Mm(C)), if and only if all components fij are in L2(R; C). In
particular, Fm is an invertible continuous linear operator on L2(Mm(C)) with

F−1
m : L2(Mm(C)) → L2(Mm(C)), f̂(µ) 7→ f(t) =

1√
2π

∞∫

−∞

eiµtf̂(µ)dµ,

and Plancherel’s identity generalises to:
∫

R

f(t)g(t)∗dt =

∫

R

f̂(µ)ĝ(µ)∗dµ. (2.3.17)

Combining (2.3.16) with (2.3.17) gives

E[ΦL([a, b))ΦL([a′, b′))∗] =
1

2π

∞∫

−∞

φ̂a,b(µ)
(
φ̂a′,b′(µ)

)∗
dµ =

ΣL

2π

∞∫

−∞

I[a,b)(t)I[a′,b′)(t) dt.

This implies immediately that E[ΦL([a, b))ΦL([a′, b′))∗] = 0, if [a, b) and [a′, b′) are disjoint,

E[ΦL([a, b))ΦL([a, b))∗] = ΣLλ([a,b))
2π and that ΦL is a random orthogonal measure on the

semi-ring of intervals [a, b), which we extend to one on all Borel sets. Therefore, (2.3.15)
extends to ∞∫

−∞

I∆(t)ΦL(dt) =
1√
2π

∞∫

−∞

φ̂∆(µ) Φ̃L(dµ) (2.3.18)

for all Borel sets ∆, where φ̂∆ = Fm(I∆) is the Fourier transform of I∆.
For any function ϕ ∈ L2(Mm(C)) there is a sequence of elementary functions ϕk(t),

k ∈ N, (i.e., matrix-valued functions of the form
∑N

i=1 CiI∆i(t) with appropriate N ∈
N, Ci ∈ Mm(C) and Borel sets ∆i) which converges to ϕ in L2(Mm(C)). As the Fourier-
Plancherel transform is a topological isomorphism that maps L2(Mm(C)) onto itself, the
Fourier-Plancherel transforms ϕ̂k(t) converge to the Fourier-Plancherel transform ϕ̂(t) in
L2(Mm(C)), which allows us to extend (2.3.18), exchanging the roles of µ and t, to

∞∫

−∞

ϕ(µ)ΦL(dµ) =
1√
2π

∞∫

−∞

ϕ̂(t) Φ̃L(dt) (2.3.19)

for all functions ϕ in L2(Mm(C)) and their Fourier-Plancherel transforms ϕ̂. Now choose

ϕ(µ) = eiµb−eiµa

iµ , then ϕ̂(t) =
√

2πI[a,b)(t). This shows that

∞∫

−∞

eiµb − eiµa

iµ
ΦL(dµ) = L(b) − L(a)

and thus (2.3.13) is shown.
The uniqueness of ΦL follows easily, as (2.3.13) implies (2.3.19) using arguments analo-

gous to the above ones.

Note that for one-dimensional random orthogonal measures such results can already be
found in Doob (1953, Section IX.4).
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Remark 2.3.6. If we formally differentiate (2.3.13), we obtain

dL(t)

dt
=

∫ ∞

−∞
eiµtΦL(dµ),

as in the spectral representation differentiation is the transform given by
∫ ∞

−∞
eiµtΦ(dµ) 7→

∫ ∞

−∞
iµeiµtΦ(dµ).

Thus, a univariate CARMA processes should have the representation

Y (t) =

∫ ∞

−∞
eiµt q(iµ)

p(iµ)
ΦL(dµ), (2.3.20)

as this reflects the differential equation (2.3.3). Later, in Theorem 2.3.22, we will see that
this is indeed the case. The square integrability necessary for (2.3.20) to be defined, explains
why one can only consider CARMA processes with q < p (cf. Lemma 2.3.11).

The next lemma deals with the spectral representation of integrals of processes.

Lemma 2.3.7. Let Φ be an m-dimensional random orthogonal measure with spectral mea-
sure F (dt) = C dt for some positive definite C ∈ Mm(C) and g ∈ L2(Mm(C)). Define the
m-dimensional random process G = {G(t)}t∈R by

G(t) =

∞∫

−∞

eiµtg(iµ)Φ(dµ).

Then G is weakly stationary,

t∫

0

G(s) ds < ∞ a.s. for every t > 0 and

t∫

0

G(s) ds =

∞∫

−∞

eiµt − 1

iµ
g(iµ)Φ(dµ), t > 0.

Proof. Weak stationarity follows immediately from (2.3.11), which implies

E[G(t)G(s)∗] =

∞∫

−∞

eiµ(t−s)g(iµ)Cg(iµ)∗dµ.

The weak stationarity implies that

‖G(s)‖L2 := E[‖G(s)‖2
2]

1/2 = E[G(s)∗G(s)]1/2

is finite and constant, where ‖ · ‖2 denotes the Euclidean norm. Thus an elementary Fubini
argument and using ‖ · ‖L1 ≤ ‖ · ‖L2 gives:

E

∥∥∥∥∥∥

t∫

0

G(s)ds

∥∥∥∥∥∥
2

≤ E




t∫

0

‖G(s)‖2ds


 =

t∫

0

E [‖G(s)‖2] ds ≤
t∫

0

‖G(s)‖L2ds <∞.
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In particular,
∫ t
0 G(s)ds is almost surely finite. Finally, we obtain

t∫

0

G(s)ds =

t∫

0

∞∫

−∞

eiµsg(iµ)Φ(dµ)ds =

∞∫

−∞

t∫

0

eiµsds g(iµ)Φ(dµ)

=

∞∫

−∞

eiµt − 1

iµ
g(iµ)Φ(dµ),

using a stochastic version of Fubini’s theorem (e.g. the obvious multidimensional extension
of Gihman and Skorohod (1974, Section IV.4, Lemma 4)).

Before turning to a theorem enabling us to define MCARMA processes we establish three
lemmata and one corollary which contain necessary technical results relating the zeros of
what is to become the autoregressive polynomial to the spectrum of a particular matrix A.
The first lemma contains furthermore some additional insight into the eigenvectors of A.

Lemma 2.3.8. Let A1, . . . , Ap ∈ Mm(C), p ∈ N, define P : C → Mm(C), z 7→ Imz
p +

A1z
p−1 +A2z

p−2 + . . .+Ap and set

N (P ) = {z ∈ C : det(P (z)) = 0}, (2.3.21)

i.e., N (P ) is the set of all z ∈ C such that P (z) 6∈ Glm(C). Furthermore, set

A =




0 Im 0 . . . 0

0 0 Im
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 Im
−Ap −Ap−1 . . . . . . −A1




∈Mmp(C) (2.3.22)

and denote the spectrum of A by σ(A). Then N (P ) = σ(A) and x̄ ∈ C
mp \ {0} is an

eigenvector of A with corresponding eigenvalue λ, if and only if there is an x̃ ∈ KerP (λ) \
{0}, such that x̄ = (x̃∗, (λx̃)∗, . . . , (λp−1x̃)∗)∗. Moreover, 0 ∈ σ(A), if and only if 0 ∈ σ(Ap).

Proof. It is immediate from the structure of A, that A is of full rank, if and only if Ap is of
full rank.

Let λ be an eigenvalue of A and x̄ = (x∗1, . . . x
∗
p)

∗ ∈ R
mp, xi ∈ R

m, a corresponding
eigenvector, i.e., Ax̄ − λx̄ = 0 from which λx1 = x2, λx2 = x3, . . . , λxp−1 = xp, λxp +
A1xp +A2xp−1 + . . .+Apx1 = 0 follows. Hence, xi = λi−1x1, i = 1, 2, . . . , p and

λpx1 +A1λ
p−1x1 +A2λ

p−2x1 + . . .+Apx1 = (Imλ
p +A1λ

p−1 + . . .+Ap)x1 = 0. (2.3.23)

As x̄ 6= 0, we have x1 6= 0 and (2.3.23) gives x1 ∈ KerP (λ). Hence, we can set x̃ = x1.
Furthermore the non-triviality of the kernel of P (λ) implies det(P (λ)) = 0. Thus N (P ) ⊇
σ(A) has been established.

Now we turn to the converse implication. Let λ ∈ N (P ), then P (λ) has a non-trivial
kernel. Take any x̃ ∈ KerP (λ) \ {0} and set

x̄ = (x̃∗, (λx̃)∗, . . . , (λp−1x̃)∗)∗.

Then (2.3.23) shows that Ax̄ = λx̄ and thus λ ∈ σ(A). Therefore N (P ) ⊆ σ(A) and x̄ is
an eigenvector of A to the eigenvalue λ.
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Corollary 2.3.9. σ(A) ⊆ (−∞, 0) + iR if and only if N (P ) ⊆ (−∞, 0) + iR.

Lemma 2.3.10. If N (P ) ⊆ R\{0} + iR, then P (iz) ∈ Glm(C) for all z ∈ R.

Proof. As all zeros of det(P (z)) have non-vanishing real part, all zeros of det(P (iz)) must
have non-vanishing imaginary part and thus P (iz) is invertible for all z ∈ R.

Lemma 2.3.11. Let C0, C1, . . . , Cp−1 ∈Mm(C) and R(z) =
p−1∑
i=0

Ciz
i. Assume that N (P ) ⊆

R\{0} + iR, then
∞∫

−∞

‖P (iz)−1R(iz)‖2 dz <∞,

where P (z) = Imz
p +A1z

p−1 + ...+Ap.

Proof. As det(P (iz)), z ∈ R, has no zeros, ‖P (iz)−1R(iz)‖ is finite for all z ∈ R, continuous
and thus bounded on any compact set. Hence,

∫ K

−K
‖P (iz)−1R(iz)‖2 dz

exists for all K ∈ R. For any x ∈ R
m we have

‖P (z)x‖ =

∣∣∣∣∣

∣∣∣∣∣

(
Imz

p +

p−1∑

k=0

Ap−kz
k

)
x

∣∣∣∣∣

∣∣∣∣∣ ≥ ‖zpx‖ −
∣∣∣∣∣

∣∣∣∣∣

p−1∑

k=0

Ap−kz
kx

∣∣∣∣∣

∣∣∣∣∣

≥
(
|z|p −

p−1∑

k=0

‖Ap−k‖|zk|
)
‖x‖.

Thus, there is K > 0 such that ‖P (z)x‖ ≥ |z|p‖x‖/2 for all z such that |z| ≥ K, x ∈ R
m.

This implies ‖P (z)−1‖ ≤ 2|z|−p ∀ |z| ≥ K and thus for all z ∈ R, |z| ≥ K,

‖P (iz)−1R(iz)‖2 ≤ ‖P (iz)−1‖2‖R(iz)‖2 ≤ 4

|z|2p

(
p−1∑

i=0

‖Ci‖|z|i
)2

,

which gives that
∫ −K
−∞ ‖P (iz)−1R(iz)‖2 dz and

∫∞
K ‖P (iz)−1R(iz)‖2 dz are finite.

The following result provides the key to be able to define multivariate CARMA processes.

Theorem 2.3.12. Let L = {L(t)}t∈R be an m-dimensional square-integrable Lévy pro-
cess with zero mean and corresponding m-dimensional random orthogonal measure Φ as
in Theorem 2.3.5 and p, q ∈ N0, q < p (i.e., p ≥ 1). Let further A1, A2, . . . , Ap, B0,
B1, . . . , Bq ∈ Mm(R), where B0 6= 0 and define β1 = β2 = . . . = βp−q−1 = 0 (if

p > q + 1) and βp−j = −
p−j−1∑

i=1
Aiβp−j−i + Bq−j for j = 0, 1, 2, . . . , q. (Alternatively,

βp−j = −
p−j−1∑

i=1
Aiβp−j−i + Bq−j for j = 0, 1, . . . , p− 1, setting Bi = 0 for i < 0.) Assume

that A as defined in (2.3.22) satisfies σ(A) ⊆ (−∞, 0) + iR, which implies Ap ∈ Glm(R).
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Denote by

G = (G∗
1(t), . . . , G

∗
p(t))

∗

an mp-dimensional process and set β∗ =
(
β∗1 , . . . , β

∗
p

)
. Then the stochastic differential

equation

dG(t) = AG(t)dt + βdL(t) (2.3.24)

is uniquely solved by the process G given by

Gj(t) =

∞∫

−∞

eiλtwj(iλ)Φ(dλ), j = 1, 2, . . . , p, t ∈ R, where (2.3.25)

wj(z) =
1

z
(wj+1(z) + βj), j = 1, 2, . . . , p− 1 and

wp(z) =
1

z

(
−

p−1∑

k=0

Ap−kwk+1(z) + βp

)
.

The strictly stationary process G can also be represented as

G(t) =

t∫

−∞

eA(t−s)β L(ds), t ∈ R. (2.3.26)

Moreover, G(0) and {L(t)}t≥0 are independent, in particular,

E[Gj(0)L(t)∗] = 0 for all t ≥ 0, j = 1, 2, . . . , p.

Finally, it holds that

wp(z) = P (z)−1


βpz

p−1 −
p−2∑

j=0

j∑

k=0

Ap−kβp+k−j−1z
j


 , (2.3.27)

w1(z) = (P (z))−1Q(z), (2.3.28)

where

P (z) = Imz
p +A1z

p−1 + . . . +Ap (“autoregressive polynomial”) ,

Q(z) = B0z
q +B1z

q−1 + . . .+Bq (“moving-average polynomial”)

and
∞∫

−∞
‖wj(iλ)‖2 dλ <∞ for all j ∈ {1, 2, . . . , p}.

Proof. Ap ∈ Glm(R) follows from Lemma 2.3.8. That (2.3.26) is the strictly stationary
solution of (2.3.24) is a standard result, since all elements of σ(A) have strictly negative
real part, and a simple application of Gronwall’s Lemma shows that the solution of (2.3.24)
is a.s. unique for all t ∈ R (see e.g. Ikeda and Watanabe (1989), Theorem 3.1). SinceG(0) =∫ 0
−∞ e−Asβ L(ds) and the processes {L(t)}t<0 and {L(t)}t≥0 are independent according to

our definition (2.2.3) of L, G(0) and {L(t)}t≥0 are independent.
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To prove (2.3.27) and (2.3.28) we first show

wj(z) =
1

zp−j

(
wp(z) +

p−j∑

i=1

βp−iz
i−1

)
for j = 1, . . . , p− 1. (2.3.29)

In fact, for p − j = 1 (2.3.29) becomes wp−1 = 1
z (wp(z) + βp−1) which proves the identity

for j = p− 1 immediately. Assume the identity holds for j + 1 ∈ {2, 3, . . . , p− 1}, then

wj(z) =
1

z
(wj+1(z) + βj) =

1

z

[
1

zp−j−1

(
wp(z) +

p−j−1∑

i=1

βp−iz
i−1

)
+ βj

]

=
1

zp−j

(
wp(z) +

p−j∑

i=1

βp−iz
i−1

)
,

which proves (2.3.29). Now we turn to (2.3.27):

wp(z) =
1

z

(
−

p−1∑

k=0

Ap−kwk+1(z) + βp

)

=
1

z

[
−

p−1∑

k=0

Ap−k

(
1

zp−k−1

(
wp(z) +

p−k−1∑

i=1

βp−iz
i−1

))]
+
βp

z
.

It follows,
(
Imz

p +

p−1∑

k=0

Ap−kz
k

)
wp(z) = βpz

p−1 −
p−1∑

k=0

p−k−1∑

i=1

Ap−kβp−iz
k+i−1.

Set j = k + i− 1, then

wp(z) = (P (z))−1


βpz

p−1 −
p−2∑

k=0

p−2∑

j=k

Ap−kβp+k−j−1z
j




= (P (z))−1


βpz

p−1 −
p−2∑

j=0

j∑

k=0

Ap−kβp+k−j−1z
j


 ,

which proves (2.3.27).
Let now l ∈ {1, 2, . . . , p− 1}. Then setting A0 = Im,

wl(z) =
1

zp−l

(
wp(z) +

p−l∑

i=1

βp−iz
i−1

)

=
1

zp−l


(P (z))−1


βpz

p−1 −
p−2∑

j=0

j∑

k=0

Ap−kβp+k−j−1z
j


+

p−l∑

i=1

βp−iz
i−1




=
(P (z))−1

zp−l


βpz

p−1 −
p−2∑

j=0

j∑

k=0

Ap−kβp+k−j−1z
j +

(
p−l∑

i=1

βp−iz
i−1

)


=
(P (z))−1

zp−l


βpz

p−1 −
p−2∑

j=0

j∑

k=0

Ap−kβp+k−j−1z
j +

p∑

k=0

p−l−1∑

i=0

Ap−kβp−i−1z
i+k


 .
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Setting j = k + l we obtain,

wl(z) =
(P (z))−1

zp−l


βpz

p−1 −
p−2∑

j=0

j∑

k=0

Ap−kβp+k−j−1z
j +

p∑

k=0

k+p−l−1∑

j=k

Ap−kβp+k−j−1z
j




=
(P (z))−1

zp−l


−

p−2∑

j=0

j∑

k=0

Ap−kβp+k−j−1z
j +

p−l−1∑

k=0

p−l−1∑

j=k

Ap−kβp+k−j−1z
j

+βpz
p−1 +

p∑

k=p−l

k+p−l−1∑

j=k

Ap−kβp+k−j−1z
j +

p−l−1∑

k=1

k+p−l−1∑

j=p−l

Ap−kβp+k−j−1z
j


 .

It follows,

wl(z) = (P (z))−1


βpz

l−1 −
p−2∑

j=p−l

j∑

k=0

Ap−kβp+k−j−1z
j−p+l

+

p∑

k=p−l

k+p−l−1∑

j=k

Ap−kβp+k−j−1z
j−p+l +

p−l−1∑

k=1

k+p−l−1∑

j=p−l

Ap−kβp+k−j−1z
j−p+l


 .

The last term in the bracket appears only if p− l − 1 ≥ 1. Therefore, the whole term in
the bracket is a polynomial of at most order p − 1. Fixing l = 1 and setting i = j − p + 1
we obtain,

w1(z) = P (z)−1


βp +

p∑

k=p−1

k−1∑

i=k−p+1

Ap−kβk−iz
i +

p−2∑

k=1

k−1∑

i=0

Ap−kβk−iz
i

]

= P (z)−1

[
βp +

p−1∑

k=1

k−1∑

i=0

Ap−kβk−iz
i +A0

p−1∑

i=1

βp−iz
i

]

= P (z)−1

[
p−1∑

i=0

βp−iz
i +

p−2∑

i=0

p−1∑

k=i+1

Ap−kβk−iz
i

]
.

Using the fact that β1 = Bq−p+1 and setting j = p− k, we finally get

w1(z) = (P (z))−1


Bq−p+1z

p−1 +

p−2∑

i=0


βp−i +

p−i−1∑

j=1

Ajβp−j−i


 zi




= P (z)−1

[
Bq−p+1z

p−1 +

p−2∑

i=0

Bq−iz
i

]
= P (z)−1

p−1∑

i=0

Bq−iz
i

= P (z)−1
q∑

i=0

Bq−iz
i = P (z)−1Q(z).

The finiteness of
∫∞
−∞ ‖wj(iλ)‖2 dλ for all j = 1, 2, . . . , p is now a direct consequence of

Lemmata 2.3.10, 2.3.11 and Corollary 2.3.9.
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It remains to show that the process defined in (2.3.25) solves (2.3.24): For j = 1, . . . , p
we have as a consequence of (2.3.25),

Gj(t) −Gj(0) =

∞∫

−∞

(eiλt − 1)wj(iλ)Φ(dλ). (2.3.30)

For j = 1, . . . , p− 1 the recursion for wj together with Lemma 2.3.7 gives

Gj(t) −Gj(0) =

∞∫

−∞

eiλt − 1

iλ
wj+1(iλ)Φ(dλ) + βj

∞∫

−∞

eiλt − 1

iλ
Φ(dλ)

=

t∫

0

∞∫

−∞

wj+1(iλ)eiλs Φ(dλ) ds + βjL(t)

=

t∫

0

Gj+1(s) ds + βjL(t).

Hence,
dGj(t) = Gj+1(t)dt + βjdL(t). (2.3.31)

Analogously we obtain for Gp,

Gp(t) −Gp(0) =

∞∫

−∞

(eiλt − 1)wp(iλ)Φ(dλ)

= −
p−1∑

k=0

t∫

0

∞∫

−∞

eiλsAp−kwk+1(iλ)Φ(dλ) ds + βpL(t)

= −




t∫

0

ApG1(s) + · · · +A1Gp(s) ds


+ βpL(t).

Therefore,
dGp(t) = −(ApG1(t) + . . .+A1Gp(t))dt + βpdL(t).

Together with (2.3.31) this gives that the process G defined by (2.3.25) solves (2.3.24).

Obviously, E[G(t)] = 0 for the process G = {G(t)}t∈R which solves (2.3.24). Noting
that G is a multivariate Ornstein-Uhlenbeck process, the second-order structure follows
immediately.

Proposition 2.3.13. Let G = {G(t)}t∈R be the process that solves (2.3.24). Then its
autocovariance matrix function has the form

Γ(h) = E[G(t + h)G(t)∗] = eAhΓ(0), h ≥ 0, (2.3.32)

with Γ(0) =
∞∫
0

eAuβΣLβ
∗eA

∗u du satisfying AΓ(0) + Γ(0)A∗ = −βΣLβ
∗.
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Proof. (2.3.32) follows from (2.3.11) and the last identity is a standard result from matrix
theory (see e.g. Bhatia (1997, Theorem VII.2.3)).

From Chojnowska-Michalik (1987), Jurek and Mason (1993), Sato and Yamazato (1984)
or Wolfe (1982) we know that (2.3.26) is the unique stationary solution to (2.3.24) whenever
the Lévy measure ν of the driving process L satisfies

∫

‖x‖≥1
log ‖x‖ν(dx) <∞.

This condition is sufficient (and necessary, provided β is injective) for the stochastic integral
in (2.3.26) to exist, as can be seen from (2.2.12) and (2.2.13) with f(t, s) = eA(t−s)βI[0,∞)(t−
s). As we shall use this fact later on to define CARMA processes driven by Lévy processes
with infinite second moment, we state the following two results on the process G in a general
manner.

Proposition 2.3.14. For any driving Lévy process L = {L(t)}t∈R, the process G =
{G(t)}t∈R solving (2.3.24) in Theorem 2.3.12 is a temporally homogeneous strong Mar-
kov process with an infinitely divisible transition probability Pt(x, dy) having characteristic
function

∫

Rmp

ei〈u,y〉 Pt(x, dy) = exp



i〈x, e

A∗tu〉 +

t∫

0

ψL((eAvβ)∗u) dv



 , u ∈ R

mp. (2.3.33)

Proof. See Sato and Yamazato (1984, Th. 3.1) and additionally Protter (2004, Theorem
V.32) for the strong Markov property.

Proposition 2.3.15. Consider the unique solution G = {G(t)}t≥0 of (2.3.24) with initial
value G(0) independent of L = {L(t)}t≥0, where L is a Lévy process on R

m satisfying∫
‖x‖≥1 log ‖x‖ν(dx) <∞.

Let L(G(t)) denote the marginal distribution of the process G = {G(t)}t≥0 at time t.
Then there exists a limit distribution F such that L(G(t)) → F in distribution as t → ∞.
This F is infinitely divisible with characteristic function

E
[
ei〈u,F 〉

]
= exp





∞∫

0

ψL((eAsβ)∗u) ds



 , u ∈ R

mp. (2.3.34)

Proof. See Sato and Yamazato (1984, Theorem 4.1).

Remark 2.3.16. Obviously F is also the marginal distribution of the stationary solution
considered in Theorem 2.3.12.

The sample path behaviour of the process G = {G(t)}t∈R is described below.

Proposition 2.3.17. If the driving Lévy process L = {L(t)}t∈R of the process G =
{G(t)}t∈R in Theorem 2.3.12 is Brownian motion, the sample paths of G are continuous.
Otherwise the process G has a jump, whenever L has one. In particular, ∆G(t) = β∆L(t).
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2.3.3. Multivariate CARMA processes

We are now in a position to define anm-dimensional CARMA (MCARMA) process by using
the spectral representation for square-integrable driving Lévy processes and to extend this
definition making use of the insight obtained in Theorem 2.3.12.

Definition 2.3.18 (MCARMA Process). Let L = {L(t)}t∈R be a two-sided square inte-
grable m-dimensional Lévy-process with

E[L(1)] = 0 and E[L(1)L(1)∗] = ΣL.

An m-dimensional Lévy-driven continuous time autoregressive moving average process
{Y (t)}t∈R of order (p, q), p > q, (MCARMA(p, q) process) is defined as

Y (t) =

∞∫

−∞

eiλtP (iλ)−1Q(iλ)Φ(dλ), t ∈ R, where (2.3.35)

P (z) : = Imz
p +A1z

p−1 + ...+Ap,

Q(z) : = B0z
q +B1z

q−1 + ....+Bq and

Φ is the Lévy orthogonal random measure of Theorem 2.3.5 satisfying E[Φ(dλ)] = 0 and
E[Φ(dλ)Φ(dλ)∗] = dλ

2π ΣL. Here Aj ∈ Mm(R), j = 1, ..., p and Bj ∈ Mm(R) are matrices
satisfying Bq 6= 0 and N (P ) := {z ∈ C : det(P (z)) = 0} ⊂ R\{0} + iR.

The process G defined as in Theorem 2.3.12 is called the state space representation of
the MCARMA process Y .

Remark 2.3.19. (i) There are several reasons why the name “multivariate continuous
time ARMA process” is indeed appropriate. The same arguments as in Remark 2.3.6
show that an MCARMA process Y can be interpreted as a solution to the p-th order
m-dimensional differential equation

P (D)Y (t) = Q(D)DL(t),

where D denotes the differentiation operator. Moreover, the upcoming Theorem 2.3.22
shows that for m = 1 the well-known univariate CARMA processes are obtained (an
alternative proof for some special cases needing no finite variances is to be found
in Lemma 6.6.1 in Chapter 6) and, finally, the spectral representation (2.3.35) is
the obvious continuous time analogue of the spectral representation of multivariate
discrete time ARMA processes (see, for instance, Brockwell and Davis (1991, Section
11.8)).

(ii) The well-definedness is ensured by Lemma 2.3.11. Observe, moreover, that, if the
determinant det(P (z)) has zeros with positive real part, all assertions of Theorem
2.3.12 except the alternative representation (2.3.26) and the independence of G(0)
and {L(t)}t≥0 remain still valid interpreting the stochastic differential equation as an
integral equation as in the proof of the theorem. However, in this case the process is
no longer causal, i.e. adapted to the natural filtration of the driving Lévy process.



26 2. Multivariate CARMA Processes

(iii) Assuming E[L(1)] = 0 is actually no restriction. If E[L(1)] = µL 6= 0, one simply
observes that L̃(t) = L(t) − µLt has zero expectation and

P (D)−1Q(D)DL(t) = P (D)−1Q(D)DL̃(t) + P (D)−1Q(D)µL.

The first term is the MCARMA process driven by L̃(t) and the second an ordinary
differential equation having the unique “stationary” solution −A−1

p BqµL, as simple
calculations show. Thus, the definition can be immediately extended to E[L(1)] 6= 0.
Moreover, it is easy to see that the SDE representation given in Theorem 2.3.12 still
holds and one can also extend the spectral representation by adding an atom with mass
µL to ΦL̃ at 0.

(iv) Furthermore, observe that the representation of MCARMA processes by the stochastic
differential equation (2.3.24) is a continuous time version of state space representa-
tions for (multivariate) ARMA processes as given in Brockwell and Davis (1991, Ex-
ample 12.1.5) or Wei (1990, p. 387). In the univariate Gaussian case it can already
be found in Arató (1982, Lemma 3, Chapter 2.2).

As already noted before, we extend the definition of MCARMA processes to driving Lévy
processes L with finite logarithmic moment using Theorem 2.3.12. As they agree with the
above defined MCARMA processes, when L is square-integrable, and are always causal, we
call them causal MCARMA processes.

Definition 2.3.20 (Causal MCARMA Process). Let L = {L(t)}t∈R be an m-dimensional
Lévy process satisfying ∫

‖x‖≥1

log ‖x‖ ν(dx) <∞, (2.3.36)

p, q ∈ N0 with q < p, and further A1, A2, . . . , Ap, B0, B1, . . . , Bq ∈ Mm(R), where B0 6= 0.
Define the matrices A, β and the polynomial P as in Theorem 2.3.12 and assume σ(A) =
N (P ) ⊆ (−∞, 0) + iR. Then the m-dimensional process

Y (t) =
(
Im, 0Mm(C), . . . , 0Mm(C)

)
G(t) (2.3.37)

where G is the unique stationary solution to dG(t) = AG(t)dt + βdL(t) is called causal
MCARMA(p, q) process. Again G is referred to as the state space representation.

Remark 2.3.21. In the following we will write “MCARMA” when referring to Definition
2.3.18, “causal MCARMA” when referring to Definition 2.3.20 and “(causal) MCARMA”
when referring to both Definitions 2.3.18 and 2.3.20.

Let us now state a result extending the short memory moving average representation of
univariate CARMA processes to our MCARMA processes and showing that our definition
is in line with univariate CARMA processes.

Theorem 2.3.22. Analogously to a one-dimensional CARMA process (confer Equation
(2.3.7)), the MCARMA process (2.3.35) can be represented as a moving average process

Y (t) =

∞∫

−∞

g(t− s)L(ds), t ∈ R, (2.3.38)
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where the kernel matrix function g : R →Mm(R) is given by

g(t) =
1

2π

∞∫

−∞

eiµtP (iµ)−1Q(iµ) dµ. (2.3.39)

Proof. Using the notation of the proof of Theorem 2.3.5 we obtain this immediately from
(2.3.19):

Y (t) =

∞∫

−∞

eiµtP (iµ)−1Q(iµ)Φ(dµ)

=
1

2π

∞∫

−∞

∞∫

−∞

eiµ(t−s)P (iµ)−1Q(iµ) dµ Φ̃L(ds)

=
1

2π

∞∫

−∞

∞∫

−∞

eiµ(t−s)P (iµ)−1Q(iµ) dµL(ds) =

∞∫

−∞

g(t− s)L(ds).

Remark 2.3.23. For causal MCARMA processes an analogous result holds with the kernel
function g replaced by

g̃(s) = (Im, 0Mm(C), . . . , 0Mm(C))e
AsβI[0,∞)(s).

Moreover, the function g simplifies in the square-integrable causal case as the following
extension of a well-known result for univariate CARMA processes shows.

Lemma 2.3.24. Assume that σ(A) = N (P ) ⊆ (−∞, 0) + iR. Then the function g given
in (2.3.39) vanishes on the negative real line.

Proof. We need the following consequence of the residue theorem from complex analysis
(cf., for instance, Lang (1993, Section VI.2, Theorem 2.2)):

Let q and p : C 7→ C be polynomials where p is of higher degree than q. Assume that p
has no zeros on the real line. Then

∞∫

−∞

q(t)

p(t)
exp(iαt)dt = 2πi

∑

z∈C:ℑ(z)>0,p(iz)=0

Res (f, z) ∀ α > 0, (2.3.40)

∞∫

−∞

q(t)

p(t)
exp(iαt)dt = −2πi

∑

z∈C:ℑ(z)<0,p(iz)=0

Res (f, z) ∀ α < 0 (2.3.41)

with f : C 7→ C, z 7→ q(z)
p(z) exp(iαz) and Res(f, a) denoting the residual of the function f at

point a.
Turning to our function g, we have from elementary matrix theory that

P (iz)−1Q(iz) =
S(z)

det(P (iz))
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where S : C 7→ Mm(C) is some matrix-valued polynomial in z. Observe that det(P (iz))
is a complex-valued polynomial in z and that Lemma 2.3.11 applied to R = Q implies
that det(P (iz)) is of higher degree than S(z). Thus, we can apply the above stated results
from complex function theory component-wise to (2.3.39). But as all zeros of det(P (z))
are in the left half plane (−∞, 0) + iR, all zeros of det(P (iz)) are in the upper half plane
R + i(0,∞) and therefore (2.3.41) shows that

g(t) =
1

2π

∞∫

−∞

eiµtP (iµ)−1Q(iµ) dµ = 0 for all t < 0.

Remark 2.3.25. The above result reflects the causality, i.e., that the MCARMA process
Y (t) only depends on the past of the driving Lévy process, i.e., on {L(s)}s≤t. Similarly
g vanishes on the positive half line, if N (P ) ⊂ (0,∞) + iR. In this case the MCARMA
process Y (t) depends only on the future of the driving Lévy process, i.e., on {L(s)}s≥t. In
all other non-causal cases the MCARMA process depends on the driving Lévy process at all
times.

Using the kernel representations, strict stationarity of MCARMA processes is obtained
by applying Applebaum (2004, Theorem 4.3.16).

Proposition 2.3.26. The (causal) MCARMA process is strictly stationary.

Furthermore, we can characterize the stationary distribution by applying representation
(2.3.38) and the results of Sato (2006) mentioned at the end of Section 2.2.2.

Proposition 2.3.27. If (γ, σ, ν) is the characteristic triplet of the driving Lévy process L,
then the distribution of the MCARMA process Y (t) is infinitely divisible for t ∈ R and the
characteristic triplet of the stationary distribution is (γ∞Y , σ∞Y , ν

∞
Y ), where

γ∞Y =

∫

R

g(s)γ ds+

∫

R

∫

Rm

g(s)x[I[0,1](‖g(s)x‖) − I[0,1](‖x‖)] ν(dx) ds,

σ∞Y =

∫

R

g(s)σg∗(s)ds,

ν∞Y (B) =

∫

R

∫

Rm

IB(g(s)x) ν(dx) ds. (2.3.42)

For a causal MCARMA process the same result holds with g replaced by g̃.

2.3.4. Further properties of MCARMA processes

Having defined multivariate CARMA processes above, we analyse their probabilistic be-
haviour further in this section. First we turn to the second order properties.

Proposition 2.3.28. Let {Y (t)}t∈R be the MCARMA process defined by (2.3.35). Then
its autocovariance matrix function is given by

ΓY (h) =
1

2π

∞∫

−∞

eiλhP (iλ)−1Q(iλ)ΣLQ(iλ)∗(P (iλ)−1)∗ dλ, h ∈ R.
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Proof. It follows directly from the spectral representation (2.3.35) that the MCARMA
process Y = {Y (t)}t∈R has the spectral density

fY (λ) =
1

2π
P (iλ)−1Q(iλ)ΣLQ(iλ)∗(P (iλ)−1)∗, λ ∈ R. (2.3.43)

The autocovariance function is the Fourier transform of (2.3.43).

Remark 2.3.29. Note that in Proposition 2.3.13 we already obtained an expression for the
autocovariance matrix function of the process {G(t)}t∈R of Theorem 2.3.12. The upper left
m×m block of (2.3.32) is also equal to ΓY .

Regarding the general existence of moments, it is mainly the driving Lévy process that
matters.

Proposition 2.3.30. Let Y be a causal MCARMA process and assume that the driving
Lévy process L is in Lr(Ω, P ) for some r > 0. Then Y and its state space representation
G are in Lr(Ω, P ). Provided β is injective, the converse is true as well for G.

Proof. We use the general fact that an infinitely divisible distribution with characteristic
triplet (γ, σ, ν) has finite r-th moment, if and only if

∫

‖x‖≥C
‖x‖rν(dx) <∞

for one and hence all C > 0 (see Sato (1999, Corollary 25.8)). Using the Kernel represen-
tation (2.3.38) with

g̃(s) = (Im, 0Mm(C), . . . , 0Mm(C))e
AsβI[0,∞)(s),

(2.3.42) and the fact that there are C, c > 0 such that

‖(Im, 0Mm(C), . . . , 0Mm(C))e
Asβ‖ ≤ Ce−cs

we obtain for the stationary distribution of Y

∫

‖x‖≥1
‖x‖rν∞Y (dx) =

∞∫

0

∫

Rm

I[1,∞)

(∥∥(Im, 0Mm(C), . . . , 0Mm(C))e
Asβx

∥∥)

×
∥∥(Im, 0Mm(C), . . . , 0Mm(C))e

Asβx
∥∥r
ν(dx)ds

≤
∞∫

0

∫

Rm

I[1,∞)

(
Ce−cs ‖x‖

)
Cre−rcs ‖x‖r ν(dx)ds

=

∫

‖x‖≥1/C

log(1/(C‖x‖))
−c∫

0

Cre−rcs ‖x‖r dsν(dx)

=
Cr

rc

∫

‖x‖≥1/C
(‖x‖r − 1/Cr) ν(dx),

which is finite, if and only if L has a finite r-th moment.
Basically the same arguments apply toG(t) =

∫ t
−∞ eA(t−s)βL(ds). Provided β is injective,

there are D, d > 0 such that ‖eAsβ‖ ≥ De−ds and calculations analogous to the above ones
lead to a lower bound which establishes the necessity of L ∈ Lr for G ∈ Lr.
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Since the characteristic function of Y (t) for each t is explicitly given, we can investi-
gate the existence of a C∞

b density, where C∞
b denotes the space of bounded, continuous,

infinitely often differentiable functions whose derivatives are bounded.

Proposition 2.3.31. Suppose that there exists an α ∈ (0, 2) and a constant C > 0 such
that ∫

R

∫

Rm

|〈u, g(t− s)x〉|2 1{|〈u,g(t−s)x〉|≤1} ν(dx) ds ≥ C‖u‖2−α (2.3.44)

for any vector u such that ‖u‖ ≥ 1. Then the MCARMA process Y (t) has a C∞
b density.

The same holds for a causal MCARMA Y (t) process with g replaced by g̃.

Proof. It is sufficient to show that
∫
‖u‖k‖Φ(u)‖ du < ∞ for any non-negative integer k,

where Φ denotes the characteristic function of Y (t) (see e.g. Picard (1996, Proposition
0.2)).

The characteristic function of the (causal) MCARMA process Y (t) is given by

Φ(u) = exp





∫

R

∫

Rm

[
ei〈u,g(t−s)x〉 − 1 − i〈u, g(t − s)x〉I{|〈u,g(t−s)x〉|≤1}

]
ν(dx) ds



 ,

where g stands for either g or g̃. Thus,

‖Φ(u)‖ =


exp





∫

R

∫

Rm

[
ei〈u,g(t−s)x〉 + e−i〈u,g(t−s)x〉 − 2

]
ν(dx) ds








1/2

= exp





∫

R

∫

Rm

(cos〈u, g(t − s)x〉 − 1) ν(dx) ds





≤ exp





∫

R

∫

Rm

(cos〈u, g(t − s)x〉 − 1) I{|〈u,g(t−s)x〉|≤1} ν(dx) ds



 ,

as cos〈u, g(t − s)x〉 − 1 ≤ 0. Then, using the inequality 1 − cos(z) ≥ 2(z/π)2 for |z| ≤ π
and Assumption (2.3.44) we have

‖Φ(u)‖ ≤ exp



−C̃

∫

R

∫

Rm

|〈u, g(t − s)x〉|2I{|〈u,g(t−s)x〉|≤1} ν(dx) ds





≤ exp{−C‖u‖2−α},

where C, C̃ > 0 are generic constants and the proof is complete. The inequality 1−cos(z) ≥
2(z/π)2 for |z| ≤ π can be easily shown: Define f(z) = 1 − cos(z) − 2(z/π)2. Then
f(0) = f(π) = 0 and there is y ∈ (0, π) such that f ′(z) > 0, z ∈ [0, y) and f ′(z) < 0,
z ∈ (y, π]. Hence, f(z) > 0 for all z ∈ (0, π).

We summarize the sample path behaviour of the MCARMA(p, q) process Y = {Y (t)}t∈R,
which is immediate from the state space representation (2.3.24) and the proof of Theorem
2.3.12.
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Proposition 2.3.32. If p > q+1, then the (causal) MCARMA(p, q) process Y = {Y (t)}t∈R

is (p − q − 1)-times differentiable. Using the state space representation G = {G(t)}t∈R we

have di

dti
Y (t) = Gi+1(t) for i = 1, 2, . . . , p− q − 1.

If p = q + 1, then ∆Y (t) = β1∆L(t), i.e., Y has a jump, whenever L has one.
If the driving Lévy process L = {L(t)}t∈R of the MCARMA(p, q) process is Brownian mo-
tion, the sample paths of Y are continuous and (p−q−1)-times continuously differentiable,
provided p > q + 1.

Ergodicity and mixing properties (see, for instance, Doukhan (1994) for a comprehensive
treatment) have far reaching implications. We thus conclude the analysis of MCARMA
processes with a result on their mixing behaviour. Recall the following notions:

Definition 2.3.33 (cf. Davydov (1973)). A continuous time stationary stochastic process
X = {Xt}t∈R is called strongly (or α-) mixing, if

αl := sup
{
|P (A ∩B) − P (A)P (B)| : A ∈ F0

−∞, B ∈ F∞
l

}
→ 0

as l → ∞, where F0
−∞ := σ ({Xt}t≤0) and F∞

l = σ ({Xt}t≥l).
It is said to be β- mixing (or completely regular), if

βl := E
(
sup

{∣∣P (B|F0
−∞) − P (B)

∣∣ : B ∈ F∞
l

})
→ 0

as l → ∞.

Note that αl ≤ βl and thus any β-mixing process is strongly mixing.

Proposition 2.3.34. Let Y be a causal MCARMA process and G be its state space repre-
sentation. If the driving Lévy process L satisfies

∫

‖x‖≥1
‖x‖rν(dx) <∞ (2.3.45)

for some r > 0, then G is β-mixing with mixing coefficients βl = O(e−al) for some a > 0
and Y is strongly mixing. In particular, both G and Y are ergodic.

Proof. Since G(t) =
∫ t
−∞ eA(t−s)βL(ds) is a multidimensional Ornstein-Uhlenbeck process

driven by the Lévy process βL, we may apply Masuda (2004, Theorem 4.3) noting that
(2.3.45) together with Proposition 2.3.30 ensure that all conditions are satisfied. Hence,
the β-mixing of G with exponentially decaying coefficients is shown. But this implies that
G = (G∗

1, G
∗
2, . . . , G

∗
p)

∗ is also strongly mixing, which in turn shows the strong mixing
property for Y , since Y is equal to G1 and it is obvious from the definition of strong mixing
that strong mixing of a multidimensional process implies strong mixing of its components.
Note that we also obtain αl ≤ βl for the mixing coefficients αl of Y . Using the well-known
result that mixing implies ergodicity concludes the proof.
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3. A Multivariate Exponential Continuous
Time GARCH Process

3.1. Introduction

GARCH type processes have become very popular in financial econometrics to model re-
turns of stocks, exchange rates and other series observed at equidistant time points. They
have been designed (see Engle (1982) and Bollerslev (1986)) to capture so-called stylized
facts of such data, which are e.g. volatility clustering, dependence without correlation and
tail heaviness. Another characteristic is that stock returns seem to be negatively correlated
with changes in the volatility, i.e. that volatility tends to increase after negative shocks
and to fall after positive ones. This effect is called leverage effect and cannot be modelled
by a GARCH type process without further extensions. This finding led Nelson (1991) to
introduce the exponential GARCH process, which is able to model this asymmetry. In that
paper the log-volatility of the EGARCH(p, q) process was modelled as an ARMA(q, p − 1)
process.

Starting with Nelson (1990) continuous time models related to GARCH processes have
been investigated for a long time. As several important characteristic features of GARCH
processes get lost in the originally studied diffusion limits of GARCH processes, Klüppelberg
et al. (2004) introduced the COGARCH process as a continuous time analogue of the
GARCH process, which inherits many of the characteristic features of GARCH processes.
Likewise, Haug and Czado (2007) recently defined and analysed an EGARCH process in
continuous time and Haug (2007) presented first estimation results. Moreover, Haug and
Czado (2006) extended this model allowing for long range dependence using fractionally
integrated processes.

In this chapter we develop a multivariate version of the continuous time EGARCH process
of Haug and Czado (2007). Note that in discrete time matrix exponential GARCH processes
have for the first time been studied by Kawakatsu (2006) in a truly multivariate sense,
whereas before only the variances, but not the whole covariance matrix, have been modelled
as EGARCH processes (cf. Östermark (2001), Tse and Hackard (2004) or Yang and Doong
(2004) for some typical examples).

In our EGARCH specification we model the logarithm of the covariance matrix process
as a CARMA process in the symmetric matrices using the multivariate CARMA processes
introduced in Chapter 2. Taking the exponential then automatically ensures positive def-
initeness of the covariance matrix process. The standard mathematical fact that the ex-
ponential of a symmetric matrix is positive definite seems to have been used only very
rarely in order to model covariance matrices so far (the recent paper Kawakatsu (2006), for
instance, does not credit any references for this idea). To the best of our knowledge the
first appearance in the statistics literature is Chiu, Leonard and Tsui (1996).

This chapter is organized as follows. At the end of this section some notations used
throughout the chapter are given. In Section 3.2 we first introduce a general specification

33
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of the discrete time multivariate EGARCH process and propose two ways of modelling
asymmetric behaviour in the vectorized log-volatility process. Afterwards we recall some
basic facts on multivariate Lévy processes and on the multivariate Lévy-driven CARMA
process, as defined in Chapter 2. We further give a sufficient condition for the existence
of the α-th exponential moment of a CARMA process. In the first part of Section 3.3 the
multivariate exponential continuous time GARCH process (ECOGARCH) is defined and
stationarity conditions are discussed. In the second part we show a strong mixing property
of the volatility and the return process and shortly consider the mean and autocovariance
function of the return process. In the last section it is shown that for an ECOGARCH(1,1)
process there exists a sequence of EGARCH(1,1) processes converging to the ECOGARCH
process in a strong sense, viz. in the Skorokhod topology in probability. To this end we give
a multivariate and infinite time extension of the first jump approximation of a Lévy process
presented in Szimayer and Maller (2007) and show that it satisfies an important general
condition of Kurtz and Protter (1991) regarding the convergence of solutions of stochastic
differential equations.

3.1.1. Notation

Throughout this chapter we write R
+ for the positive real numbers including zero, R

++

when zero is excluded, and we denote the set of real m×n matrices by Mm,n(R). If m = n
we simply write Mn(R) and denote the group of invertible n× n matrices by GLn(R), the
linear subspace of symmetric matrices by Sn, the (closed) positive semi-definite cone by
S

+
n and the open (in Sn) positive definite cone by S

++
n . In stands for the n × n identity

matrix, det(A) for the determinant and σ(A) for the spectrum (the set of all eigenvalues) of
a matrix A ∈ Mn(R). Moreover, vech : Sd → R

d(d+1)/2 denotes the “vector-half” operator
that stacks the columns of the lower triangular part of a symmetric matrix below another.
Finally, A∗ is the adjoint of a matrix A ∈Mn(R).

Norms of vectors and matrices are denoted by ‖ · ‖. If the norm is not specified then it
is irrelevant which particular norm is used.

The exponential of a matrix A is denoted by exp(A) or eA (see Horn and Johnson (1991,
Ch. 6) for a detailed discussion). Recall that for symmetric matrices it is defined by
functional calculus and it holds that

exp(A) =

∞∑

k=0

Ak

k!
.

From functional calculus it is immediately clear that the matrix exponential maps the
symmetric d×d matrices to the positive definite ones. Likewise, we can define the logarithm
log : S

++
d → Sd by functional calculus and log is the inverse function of exp : Sd → S

++
d .

Moreover, we denote by A1/2 the unique positive semi-definite square root of a matrix
A ∈ S

+
d .

For a matrix A we denote by Aij the element in the i-th row and j-th column and this
notation is extended to processes in a natural way.

Regarding all random variables and processes we assume that they are defined on a given
appropriate filtered probability space (Ω,F , P, (Ft)t∈R+) satisfying the usual hypotheses
(complete and right continuous filtration). Lp denotes as usual the space of all random
variables with a finite p-th moment, i.e. all random variables X with E(‖X‖p) < ∞ in a
multivariate setting.

The indicator function of some set A is denoted by 1A. A sequence (xn)n∈N in a normed
space is called an ℓ1-sequence if

∑
n∈N

‖xn‖ <∞.
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3.2. Related processes

3.2.1. Multivariate EGARCH processes in discrete time

In this section we discuss a multivariate EGARCH model in discrete time providing the
basis for our continuous time modelling. We will throughout use a very general specification
and briefly indicate some possible specifications to be used in practice later on.

Definition 3.2.1 (Multivariate Discrete Time EGARCH). Let d ∈ N, µ ∈ Sd, (βk)k∈N be

an ℓ1-sequence in Mm(R) with m = d(d+1)
2 , ǫ = (ǫn)n∈Z an i.i.d. sequence of R

d-valued
random variables with E(ǫ1) = 0 and var(ǫ1) = Id and f : R

d → R
m a measurable function

such that f(ǫ1) ∈ L2. Then the process Y = (Yt)t∈Z with

Yt = exp((µ+Ht)/2)ǫt

and vectorized logarithmic volatility process H = (Ht)t∈Z given by

vech(Ht) =

∞∑

k=1

βkf(ǫt−k)

for all t ∈ Z is called a d-dimensional EGARCH process.

As in the univariate case one usually is less interested in the log-volatility being an
infinitely moving average process, but more in it being an ARMA process. This leads to the
following definition of multivariate EGARCH(p, q) processes, where we refer to Brockwell
and Davis (1991) for the necessary background on multivariate ARMA processes.

Definition 3.2.2 (Multivariate Discrete Time EGARCH(p,q)). Let d, p, q ∈ N, µ ∈ Sd,

α1, . . . , αq, β1, . . . , βp ∈ Mm(R) with m = d(d+1)
2 , ǫ = (ǫn)n∈Z an i.i.d. sequence of R

d-
valued random variables with E(ǫ1) = 0 and var(ǫ1) = Id and f : R

d → R
m a measurable

function such that f(ǫ1) ∈ L2. Suppose αq 6= 0 , βp 6= 0 and that

det(1 − α1z − · · · − αqz
q) 6= 0

on {z ∈ C | |z| ≤ 1}. Then the process Y = (Yt)t∈Z, where

Yt = exp((µ+Ht)/2)ǫt

and the vectorized log volatility H is given by

vech(Ht) =

p∑

k=1

βkf(ǫt−k) +

q∑

k=1

αkvech(Ht−k)

for all t ∈ Z, is called an EGARCH(p, q) process.

So far we have considered a general transformation f of the noise sequence ǫ. Concrete
specifications should be made in such a way that the model exhibits some desired properties,
e.g. a leverage effect. In the univariate case the “standard choice” introduced originally in
Nelson (1991) is

f(η) = θη + γ(|η| − E(|ǫ1|))
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with some real parameters θ, γ. This choice allows for a leverage effect, is at the same time of
a simple structure and ensures E(f(ǫ1)) = 0. The logarithmic volatility models put forth in
Kawakatsu (2006) can all be transformed into our above model using appropriate choices of
f . However, all of them lead to functional forms involving only the individual components
ǫi,t, i = 1, . . . , d, of the innovation sequence ǫ and their absolute values |ǫi,t| in a linear
manner. In particular, crossproducts of the form ǫi,tǫj,t do not enter the specification of f .
Dependence on these crossproducts seems, however, desirable, especially when comparing
things to multivariate GARCH specifications. We thus suggest two new possible choices
for f now. The first possible choice

f(η) = Θη + Γ
(
vech

(
(ηη∗)1/2

)
− E

(
vech

(
(ǫ1ǫ

∗
1)

1/2
)))

(3.2.1)

with Θ ∈ Mm,d(R) and Γ ∈ Mm(R) is a straightforward multivariate extension of the
standard choice. Note that (ηη∗)1/2 can be interpreted as an extension of the absolute value

to a multidimensional setting and that
(
(ηη∗)1/2

)
ij

= ηiηj/‖η‖2 with ‖ · ‖2 denoting the

Euclidean norm on R
d. The second possibility we suggest is to use a generalized standard

choice component-wise, viz.

f(η) = vech(g(η) − E(g(ǫ1))) with (3.2.2)

g : R
d → Sd, (η1, η2, · · · , ηd) 7→ (fij(ηi, ηj))1≤i,j≤d

fii(ηi, ηi) := θi,iηi + γi,i|ηi| for i = 1, 2, . . . , d

fij(ηi, ηj) := θi,j
ηiηj√
ηiηj

+ γi,j

√
|ηiηj | for i = 1, 2, . . . , d, j = 1, 2, . . . , i− 1

fij(ηi, ηi) := fji(ηi, ηj) for i = 1, 2, . . . , d, j = i+ 1, i + 2, . . . , d

where θi,j, γi,j with i = 1, 2, . . . , d, j = 1, 2 . . . , i are real parameters.
The following proposition shows that f as specified in (3.2.1) or (3.2.2) satisfies the

required conditions for EGARCH processes.

Proposition 3.2.3. Let ǫ1 be an R
d-valued random variable with ǫ1 ∈ L2 and f : R

d → R
m

as specified in Equation (3.2.1) or (3.2.2). Then f is well-defined and f(ǫ1) ∈ L2.

Proof. If f is specified by (3.2.2) this follows from an element-wise application of the
Cauchy-Schwartz inequality.

If f is given by (3.2.1) we are free to choose any norm for the proof. Thus we work in
the following with the Euclidean norm ‖ · ‖2 on R

d, resp. R
m, and the induced operator

norm on matrix spaces. Elementary calculations give
∥∥(ǫ1ǫ1∗)1/2

∥∥
2

= ‖ǫ1‖2, which implies
the well-definedness. Likewise, we use the operator norm ‖ · ‖ induced by these choices for
the vech operator. We have

‖f(ǫ1)‖2 ≤ ‖Θ‖2‖ǫ1‖2 + ‖Γ‖2

(
‖vech‖

∥∥∥(ǫ1ǫ1∗)1/2
∥∥∥

2
+
∥∥∥E
(
vech

(
(ǫ1ǫ1

∗)1/2
))∥∥∥

2

)
.

Using Jensen’s inequality one obtains
∥∥∥E
(
vech

(
(ǫ1ǫ1

∗)1/2
))∥∥∥

2
≤ ‖vech‖E(‖ǫ1‖2). Thus

‖f(ǫ1)‖2 ≤ (‖Θ‖2 + ‖Γ‖2‖vech‖) ‖ǫ1‖2 + ‖Γ‖2‖vech‖E(‖ǫ1‖2).

Since ǫ1 ∈ L2 this immediately implies f(ǫ1) ∈ L2.
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3.2.2. Multivariate Lévy and Lévy-driven CARMA processes

Before defining multivariate ECOGARCH processes in the next section, we briefly review
Lévy processes and multivariate CARMA processes as introduced in Chapter 2.

3.2.2.1. Basic facts on multivariate Lévy processes

We state some elementary properties of multivariate Lévy processes that will be needed.
For a more general treatment and proofs we refer to Sato (1999), Applebaum (2004) or
Protter (2004).

We consider a Lévy process L = (Lt)t∈R+ (where L0 = 0 a.s.) in R
d determined by its

characteristic function in the Lévy-Khintchine form E
[
ei〈u,Lt〉] = exp{tψL(u)}, t ≥ 0,

where

ψL(u) = i〈γL, u〉 −
1

2
〈u,CLu〉 +

∫

Rd

(
ei〈u,x〉 − 1 − i〈u, x〉1[0,1](‖x‖)

)
) νL(dx), u ∈ R

d,

(3.2.3)
where the drift γL ∈ R

d, CL ∈ S
+
d and νL is a measure on (Rd,B(Rd)) that satisfies

νL({0}) = 0 and
∫

Rd

(‖x‖2 ∧ 1) νL(dx) < ∞. The measure νL is referred to as the Lévy

measure of L. Here ‖ · ‖ may be any fixed norm (not only the Euclidean one). Different
norms simply correspond to different truncation functions and thus for a given Lévy process
γL changes when the norm is changed. Implicitly we presume throughout this chapter that
given a Lévy process γL is set to the value such that (3.2.3) holds with the currently
employed norm.

It is a well-known fact that to every càdlàg Lévy process L on R
d one can associate

a random measure NL on R
+ × R

d \ {0} describing the jumps of L (see e.g. Jacod and
Shiryaev (2003, Section II.1)). For any measurable set B ⊂ R

+ × R
d \ {0},

NL(B) = ♯{s ≥ 0 : (s, Ls − Ls−) ∈ B}.

The jump measure NL is an extended Poisson random measure (as defined in Jacod and
Shiryaev (2003, Definition II.1.20)) on R

+ × R
d \ {0} with intensity measure nL(ds, dx) =

ds νL(dx). By the Lévy-Itô decomposition we can rewrite L almost surely as

Lt = γLt+Bt +

∫

‖x‖≥1,s∈[0,t]

xNL(ds, dx) + lim
ε↓0

∫

ε≤‖x‖≤1, s∈[0,t]

xÑL(ds, dx), t ≥ 0. (3.2.4)

Here B is a d-dimensional Brownian motion with covariance matrix CL, Ñ(ds, dx) =
N(ds, dx) − dsνL(dx) is the compensated jump measure, the terms in (3.2.4) are inde-
pendent and the convergence in the last term is a.s. and locally uniform in t ≥ 0.

In the sequel we will sometimes work with a two-sided Lévy process L = (Lt)t∈R, con-
structed by taking two independent copies (L1,t)t∈R+ , (L2,t)t∈R+ of a one-sided Lévy process
and setting

Lt =

{
L1,t if t ≥ 0

−L2,−t− if t < 0.
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Assuming that νL satisfies additionally
∫

‖x‖>1

‖x‖2 νL(dx) <∞,

L has finite mean and covariance matrix ΣL given by

ΣL = CL +

∫

Rd

xx∗ νL(dx).

For the stochastic integration theory (with respect to Lévy processes and/or random
measures) we refer to the brief overview in Section 2.2.2 in Chapter 2 or any of the standard
texts, e.g. Jacod and Shiryaev (2003), Protter (2004) or Applebaum (2004).

3.2.2.2. Multivariate Lévy-driven CARMA processes

As the name “continuous time ARMA” (CARMA) already suggests, these processes are
the continuous time analogue of the well-known ARMA processes. A d-dimensional CAR-
MA(q, p) process Y with q, p ∈ N0 can be viewed as the stationary solution to the formal
differential equation:

Q(D)Yt = P (D)DLt

where L = (Lt)t∈R is a d-dimensional Lévy process and D the differential operator with
respect to t.

Q(z) = zq +A1z
q−1 +A2z

q−2 + . . . +Aq

P (z) = B0z
p +B1z

p−1 + . . .+Bp

with B0, . . . , Bp, A1, . . . , Aq ∈ Md(R), Aq ∈ GLd(R) and B0 6= 0 are referred to as the
autoregressive and moving average polynomial, respectively. In order to be able to define
CARMA processes properly one needs q > p and that the zeros of det(Q(z)) have all strictly
negative real parts. Then the CARMA(q, p) process Y is defined as the unique stationary
solution of

Yt = (Id, 0, . . . , 0)Xt (3.2.5)

dXt =




0 Id 0 · · · 0
0 0 Id · · · 0
...

...
...

. . .
...

0 0 0 · · · Id
−Aq −Aq−1 −Aq−2 · · · −A1



Xtdt+ βdLt, (3.2.6)

where β = (βT
1 , β

T
2 , . . . , β

T
q )T is a qd×d matrix with elements βq−j = −∑q−j−1

i=1 Aiβq−j−i +
Bp−j (setting Bi = 0 for i < 0). The process X is usually called state space representation.

In the univariate case d = 1 the representation by (3.2.5), (3.2.6) can be replaced by

Yt = (Bp, Bp−1, . . . , Bp−q+1)X̃t

dX̃t =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−Aq −Aq−1 −Aq−2 · · · −A1



X̃tdt+




0
...
0
1


 dLt ,
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setting Bi = 0 for i < 0. This representation was used in the definition of the univariate
ECOGARCH processes in Haug and Czado (2007).

For CARMA(q, 0) processes the equivalence of the two representation for univariate
CARMA processes is clear. In general, the equivalence in L2 (i.e. the driving Lévy process
L has to have a finite second moment) has been shown in Theorem 2.3.22 in Chapter 2
using Fourier methods. For CARMA(2,1) processes a proof of the equivalence not needing
a finite variance is presented in Lemma 6.6.1 of Chapter 6.

Later on we need the following result on the existence of exponential moments. By
Ei : R\{0} → R we denote the exponential integral, i.e.

Ei(x) =

∫ x

−∞

et

t
dt = γ + ln |x| +

∞∑

k=1

xk

k · k! for all x ∈ R\{0} (3.2.7)

taking the Cauchy principal value of the integral for x > 0 and γ being the Euler constant.

Proposition 3.2.4. Let Y be a stationary d-dimensional CARMA(q, p) process satisfying
σ(A) ⊂ (−∞, 0) + iR, ‖ · ‖ a norm on R

d and its induced operator norm, α ∈ R
++ and

C, b ∈ R
++ such that ‖(Id, 0, . . . , 0)eAsβ‖ ≤ Ce−bs for all s ∈ R

+. If

∫

‖x‖≥1
Ei(αC‖x‖)νL(dx) <∞ (3.2.8)

then E
(
eα‖Y0‖) <∞.

For all 0 < b < −max(ℜ(σ(A))) there exists a C ∈ R
++ such that ‖(Id, 0, . . . , 0)eAsβ‖ ≤

Ce−bs holds for all s ∈ R
+. If A is diagonalizable this holds also for b = −max(ℜ(σ(A))).

Furthermore, (3.2.8) is implied by

∫

‖x‖≥1
eαC‖x‖νL(dx) <∞. (3.2.9)

Proof. It is elementary to see (using e.g. the Jordan decomposition of A) that σ(A) ⊂
(−∞, 0)+ iR implies for all 0 < b < −max(ℜ(σ(A))) that there exists a C ∈ R

++ such that
‖(Id, 0, . . . , 0)eAsβ‖ ≤ Ce−bs holds for all s ∈ R

+. If A is diagonalizable this also shows
that one can take b = −max(ℜ(σ(A))).

From Proposition 2.3.27 of Chapter 2 we know that the stationary distribution of Y
is infinitely divisible. Denote by (γY , σY , νY ) the characteristic triplet of the stationary
distribution of Y . Sato (1999, Theorem 25.3) implies that for all α > 0 we have E(eα‖Y1‖) <
∞ if and only if ∫

‖x‖≥1
eα‖x‖νY (dx) <∞.

Proposition 2.3.27 of Chapter 2 implies

∫

‖x‖≥1
eα‖x‖νY (dx) =

∫ ∞

0

∫

Rd

eα‖(Id,0,...,0)eAsβx‖1[1,∞)(‖(Id, 0, . . . , 0)eAsβx‖)νL(dx)ds

≤
∫ ∞

0

∫

Rd

eαCe−bs‖x‖1[1,∞)(αCe
−bs‖x‖)νL(dx)ds
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=

∫

‖x‖≥1/(αC)

∫ ln(αC‖x‖)/b

0
eαCe−bs‖x‖dsνL(dx)

=
1

b

∫

‖x‖≥1/(αC)

∫ αC‖x‖

1

ez

z
dzνL(dx)

=
1

b

∫

‖x‖≥1/(αC)
(Ei(αC‖x‖) − Ei(1)) νL(dx).

Since νL is a Lévy measure,
∫
‖x‖≥1/(αC) Ei(1)νL(dx) < ∞ for all α > 0 and the integral∫

‖x‖≥1/(αC) Ei(αC‖x‖)νL(dx) is finite if and only if
∫
‖x‖≥1 Ei(αC‖x‖)νL(dx) < ∞. There-

fore (3.2.8) is sufficient for E(eα‖Y1‖) <∞.
From (3.2.7) it follows that for any c > 0 there exists a K(c) ∈ R

++ such that |Ei(x)| ≤
K(c)ex for all x ≥ c. This shows that (3.2.9) implies (3.2.8).

If (q, p) = (1, 0), A1 is diagonal or unitarily diagonalizable, ‖ · ‖ is the Euclidean norm
and B0 = Id, then one can take b = −max(ℜ(σ(A))) and C = 1. So a d-dimensional
CARMA(1,0) process (OU process) with unitarily diagonalizable A has at least as many
exponential moments as the driving Lévy process.

3.3. Multivariate exponential COGARCH

3.3.1. Definition and stationarity

Now we define the exponential continuous time GARCH(p, q) process by specifying the
vech-transformed log-volatility process as a CARMA(q, p − 1) process.

Definition 3.3.1. Let L = (Lt)t≥0 be a d-dimensional zero-mean Lévy process with Lévy
measure νL such that

∫
‖x‖≥1 ‖x‖2νL(dx) < ∞ and associated jump measure NL. Further-

more, let h : R
d → R

m with m = d(d+1)
2 be a measurable function satisfying

∫

Rd

‖h(x)‖2νL(dx) <∞, (3.3.1)

p, q ∈ N with q ≥ p and A1, . . . , Aq, B0, . . . , Bp−1 ∈ Mm(R) with Aq ∈ GLd(R) and B0 6= 0
such that all zeros of the determinant det(Q(z)) of the autoregressive polynomial Q(z) :=
zq +A1z

q−1 +A2z
q−2 + . . .+Aq, z ∈ C, have strictly negative real part.

Then we define the d-dimensional exponential COGARCH(p, q) process G, shortly ECO-
GARCH(p, q), as the stochastic process satisfying,

dGt := exp((µ+Ht−)/2)dLt, t > 0, G0 = 0, (3.3.2)

where µ ∈ Sd and the vectorized log-volatility process H = (Ht)t≥0 is a process in Sd with
mean zero and vectorial state space representation

vech(Ht) := (Im, 0, . . . , 0)Xt, t ≥ 0, (3.3.3)

dXt = AXt−dt + βdMt , t > 0, (3.3.4)

with the initial value X0 ∈ Rqm being independent of the driving Lévy process L and

Mt :=

∫ t

0

∫

Rd\{0}
h(x)ÑL(ds, dx) , t ≥ 0, (3.3.5)
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being a zero-mean Lévy process. The matrices A ∈Mqm(R) and β ∈Mqm,m(R) are defined
by

A =




0 Im 0 · · · 0
0 0 Im · · · 0
...

...
...

. . .
...

0 0 0 · · · Im
−Aq −Aq−1 −Aq−2 · · · −A1



, β =




β1

β2
...

βq−1

βq




with coefficients βq−j = −∑q−j−1
i=1 Aiβq−j−i +Bp−1−j for j = 0, 1, . . . , q− 1 (setting Bi = 0

for i < 0). If p = q = 1, we have A = −A1 and β = B0.

Then returns over a time interval of length r > 0 ending at time t are described by the
increments of G

G
(r)
t := Gt −Gt−r =

∫

(t−r,t]
exp(µ+Hs−/2) dLs , t ≥ r > 0 . (3.3.6)

Thus this gives us the possibility to model ultra high frequency data, which consists of
returns over varying time intervals. On the other hand an equidistant sequence of such

non-overlapping returns of length r is given by (G
(r)
nr )n∈N. Such a sequence then corresponds

to a discrete time multivariate EGARCH process Y .

Remark 3.3.2. (a) The condition (3.3.1) ensures that the integral defining the Lévy process
M is indeed well-defined and that M has a finite variance.

(b) The condition that det(Q(z)) has only zeros with strictly negative real part is equivalent
to demanding that all eigenvalues of A have strictly negative real part.

(c) In order for the multivariate CARMA process for the log-volatility to be definable it
would actually suffice to demand that det(Q(z)) has no zero with vanishing real part (see
Remark 2.3.19 in Chapter 2). But the resulting multivariate CARMA process would no
longer be adapted to the natural filtration of the driving Lévy process L. In view of equation
(3.3.2) this adaptedness is, however, clearly desired. Thus we refrain from discussing any
possible extension of the above model in this direction.

(d) After extending the Lévy process (Mt)t∈R+ to one defined on the whole real line the
unique stationary version of H can be written as

vech(Ht) =

∫ t

−∞
(Im, 0, . . . , 0)e

A(t−s)βdMs .

(e) In general one can define a continuous time analogue of the infinite moving average
discrete time EGARCH process of Definition 3.2.1 by

vech(Ht) =

∫ t

−∞
f(t− s)dMs

with f : R
+ →Mm(R) being an appropriate deterministic function.

So far we have considered a general transformation h of the jumps of the driving Lévy
process L. Concrete specifications should be made in such a way that the model exhibits
similar properties, e.g. a leverage effect, as in the discrete time case. The choice

h(η) = Θη + Γvech
(
(ηη∗)1/2

)
, (3.3.7)
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with Θ ∈ Mm,d(R) and Γ ∈ Mm(R), being the continuous time analogue of (3.2.1) clearly
is always a valid choice, as an inspection of the proof of Proposition 3.2.3 shows. Again it
is notable that this extends the standard choice from the univariate literature.

A choice analogous to (3.2.2) is

h(η) = vech(g(η)) (3.3.8)

with g as in (3.2.2). That
∫

Rd ‖h(x)‖2νL(dx) is finite is elementary to see.
Both specifications (3.3.7) and (3.3.8) obviously allow for asymmetric responses to posi-

tive and negative shocks in the logarithmic (co)variance components. For p = q and (3.3.8)
the instantaneous leverage effect for the variance components can be shown as in Haug and
Czado (2007, Proposition 5.5).

Proposition 3.3.3. Let H and G be as in Definition 3.3.1 with h satisfying (3.3.1).
If the eigenvalues of A all have negative real parts and X0 has the same distribution as∫∞
0 eAuβdMu, then X,H and exp((µ+H)/2) are strictly stationary.

Proof. The strict stationarity of X, vech(H) follows from Theorem 2.3.12 in Chapter 2,
because X is the state space representation of a CARMA(q, p − 1) process. Since strict
stationarity is invariant under continuous transformations, exp((µ + H)/2) also has this
property.

From (3.3.6) it follows directly that the increments (G
(r)
nr )n∈N of G are stationary if

the volatility exp((µ + H)/2) is stationary, since the increments of L are stationary and
independent by definition.

Corollary 3.3.4. If exp((µ + H)/2) is strictly stationary, then G has strictly stationary
increments.

Remark 3.3.5. If q ≥ p + 1 the log-volatility process is continuous and (q − p − 1) times
differentiable, which follows from the state space representation of vech(H) (cf. Proposition
2.3.32 in Chapter 2). In particular, the volatility will only contain jumps for p = q.

3.3.2. Mixing and second order properties

Mixing properties (see Doukhan (1994) for a comprehensive treatment) are useful for a
number of applications. In particular for asymptotic statistics, since consistency results and
central limit theorems exist for mixing processes. Thus we will derive mixing properties
of the strictly stationary volatility process and the return process. First we recall the
definition of strong mixing, which is also called α-mixing for a process with continuous
time parameter.

Definition 3.3.6 (Davydov (1973)). For a process Y = (Ys)s≥0 define the σ-algebras
FY

[0,u] := σ((Ys)s∈[0,u]) and FY
[u+t,∞) := σ((Ys)s≥u+t) for all u ≥ 0. Then Y is called

strongly or α-mixing, if

α(t) = sup
u≥0

α(FY
[0,u],FY

[u+t,∞))

:= sup
u≥0

sup{|P (A ∩B) − P (A)P (B)| : A ∈ FY
[0,u], B ∈ FY

[u+t,∞)} → 0,

as t→ ∞.
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Above we denote by σ(·) the generated completed σ-algebra. The strong mixing property
with exponential rate of the log-volatility and volatility process is the subject of the next
proposition. Here strong mixing with exponential rate (exponential α-mixing) means that
α(t) decays to zero exponentially fast for t→ ∞ .

Proposition 3.3.7. Let vech(H) be defined by (3.3.3) and (3.3.4). Assume that the eigen-
values of A all have negative real parts and X0 has the same distribution as

∫∞
0 eAuβdMu,

hence H and exp(µ +H/2) are strictly stationary. Then there exist constants K > 0 and
a > 0 such that

αH(t) ≤ K · e−at and αexp(µ+H/2)(t) ≤ K · e−at , as t→ ∞,

where αH(t) and αexp(H/2)(t) are the α-mixing coefficients of the log-volatility and volatility
process, respectively.

Proof. Since vech(H) is a CARMA(q, p − 1) process the result follows from Proposition
2.3.34 of Chapter 2 and the fact that α-mixing is preserved under continuous transforma-
tions.

Theorem 3.3.8. Assume that L is a Lévy process with E(‖L1‖2) <∞. Let the log-volatility
process H be strictly stationary and strongly mixing.

Then for all r ∈ R
++ the discrete time process (G

(r)
nr )n∈N,

G(r)
nr = Gnr −G(n−1)r =

∫

((n−1)r,nr]
exp(µ+Hs−/2) dLs , n ∈ N ,

is strongly mixing with exponential rate and ergodic.

Proof. We define the process ℵ with values in (S+
m)q by

ℵt := (exp(µ+ vech−1(X1
t )/2), . . . , exp(µ+ vech−1(Xq

t )/2)) ,

where Xt = (X1
t , . . . ,X

q
t )∗. Then ℵ is a Markov process and we can define the

qm-dimensional process

G(r)
nr :=

∫

((n−1)r,nr]
ℵs− dLs , n ∈ N .

Now the rest of the proof works along the lines of the proof of Haug and Czado (2007,
Theorem 3.10).

Corollary 3.3.9. Let (tn)n∈N0 be a strictly increasing sequence of observation time points
with limn→∞ tn = ∞ and tn = knc for all n ∈ N0, where kn ∈ N0 and c > 0. Then the

discrete time process (G
(∆n)
tn )n∈N,

G
(∆n)
tn := Gtn −Gtn−1 ,

with ∆n = tn − tn−1, is strongly mixing with exponential rate.
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Proof. Simply expand the grid of observation times to an equidistant one with step size c.
Then clearly

FG(∆·)

1,2,...,l ⊂ FG(c)

1,2,...,tl/c and FG(∆·)

k+l,k+l+1,... ⊂ FG(c)

tk+l/c,tk+l+1/c,... ,

where FG(∆·)

1,2,...,l is the σ-algebra generated from the random vectors G
(∆1)
t1 , . . . , G

(∆l)
tl

and the
other σ-algebras are defined analogously. An application of Theorem 3.3.8 then provides
the result.

Now we derive the second order moment structure of the return process

G
(r)
t := Gt −Gt−r =

∫

(t−r,t]
exp(µ+Hs−/2) dLs , t ≥ r > 0 ,

considering only the case of a strictly stationary volatility process.

Proposition 3.3.10. Let L be a Lévy process with E(L1) = 0 and E(‖L1‖2) <∞. Assume
that the log-volatility process H is strictly stationary and E(‖ exp(µ+Ht/2)‖) < ∞. Then
E(‖Gt‖2) <∞ for all t ≥ 0, and for every t, h ≥ r > 0 it holds that

EG
(r)
t = 0

E(G
(r)
t (G

(r)
t )∗) =

∫ r

0
E(exp(µ+Hs−/2)E(L1L

∗
1) exp(µ+Hs−/2))ds

cov(G
(r)
t , G

(r)
t+h) = 0.

The results follow analogously to the univariate case in Haug and Czado (2007, Propo-
sition 5.1). Note that the second order moment structure of H is clear from Chapter 2,

whereas for the volatility exp(µ +H) and the “squared returns” G
(r)
t (G

(r)
t )∗ the formulae

obtained in the univariate case are already not explicit. Thus we refrain from stating them
in our multivariate setting.

Regarding the finiteness of “exponential moments” of H needed above we have the fol-
lowing result.

Proposition 3.3.11. (i) Let ‖ · ‖∗ be an algebra norm on Sd and the ECOGARCH log-
volatility process H be strictly stationary. Then

E(eα1α2‖H1‖∗) <∞ with α1, α2 ∈ R
++ (3.3.9)

implies
E (‖ exp(α1(µ+H1))‖α2

∗ ) <∞. (3.3.10)

(ii) Let moreover C ∈ R
++ be such that

sup
x∈Rm,‖vech−1(x)‖∗=1

{∥∥vech−1
(
(Im, 0 . . . , 0)e

Asβx
)∥∥

∗
}
≤ Ce−bs

for all s ∈ R
+ and some b ∈ R

++. Then (3.3.9) is in turn implied by
∫

x∈Rd,‖vech−1(h(x))‖∗≥1
Ei
(
α1α2C‖vech−1(h(x))‖∗

)
νL(dx) <∞

or ∫

x∈Rd,‖vech−1(h(x))‖∗≥1
exp

(
α1α2C‖vech−1(h(x))‖∗

)
νL(dx) <∞.
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Proof. (i) Since ‖ · ‖ is an algebra norm, ‖ exp(α1(µ+H1))‖α2∗ ≤ eα1α2‖µ‖∗eα1α2‖H1‖∗ . This
immediately shows (i).

(ii) The second part follows from Proposition 3.2.4 using the norm ‖ · ‖ = ‖vech−1(·)‖∗
on R

m and the definition of M implying νM(dx) = νL(h−1(dx)), because vech(H) is an
m-dimensional stationary CARMA process.

3.4. Approximation of ECOGARCH(1,1) processes by
EGARCH(1,1) processes

In this section we show that for any multivariate ECOGARCH(1,1) process where the
driving Lévy process L has a vanishing Brownian part there exists a sequence of piecewise
constant processes determined by discrete time multivariate EGARCH(1,1) processes which
converges in probability in the Skorokhod topology (see Billingsley (1999) or Jacod and
Shiryaev (2003, Chapter IV) for a comprehensive introduction) to the ECOGARCH(1,1)
process. This result is also new in the univariate case and should be especially useful for
statistical purposes (cp. Maller, Müller and Szimayer (2006)).

For a complete and separable normed space (E, ‖ · ‖E) denote by DE the set of all
functions f : R

+ → E that are right continuous and have left limits. Let further Λ be
the set of all time change functions, i.e. all continuous and strictly increasing functions
λ : R

+ → R
+ that satisfy λ(0) = 0 and limt→∞ λ(t) = ∞. Denote by eR+ the function

R
+ → R

+, t 7→ t and by ‖x‖E,[a,b) := supt∈[a,b) ‖x(t)‖E for x ∈ DE . A sequence (xn)n∈N in
DE converges to x ∈ DE in the Skorokhod topology if there exists a sequence (λn)n∈N in
Λ such that (λn)n∈N converges uniformly to eR+ , i.e. limn→∞ ‖λn − eR+‖R+,[0,∞) = 0, and
(xn ◦λn)n∈N converges uniformly on compacts to x, i.e. limn→∞ ‖xn ◦λn −x‖E,[0,N ] = 0 for
all N ∈ N. In particular uniform convergence on compacts of (xn)n∈N implies convergence
in the Skorokhod topology. A separable (yet not complete) metric inducing the Skorokhod
topology is given by

dE(x, y) = inf
λ∈Λ

dλ,E(x, y) for x, y ∈ DE (3.4.1)

where

dλ,E(x, y) = ‖λ− eR+‖R+,[0,∞) +

∞∑

n=1

1

2n
min

(
1, sup

t≤n
‖x(min(n, λ(t))) − y(min(n, t))‖E

)
,

see e.g. Kurtz and Protter (1996). For equivalent norms on E the above definition leads to
equivalent metrics on DE . As we are only considering finite dimensional normed spaces E in
the following it is irrelevant which particular norm on E we use, we may even switch between
different norms to use the most convenient one. Convergence of a sequence (X(n))n∈N of
E-valued càdlàg random processes, i.e. random variables in DE , in probability in the
Skorokhod topology to a càdlàg random process X means for us in the following that
plimn→∞dE(X(n),X) = 0 with plim denoting the limit in probability. Again we note
that uniform convergence on compacts in probability (ucp convergence, cf. Protter (2004,
Chapter II.4)) obviously implies convergence in the Skorokhod topology in probability and
that in a metric space convergence in probability is metrizable (follows e.g. by replacing
the absolute value with the metric in Loéve (1977, p. 160 (3), p.175 9.)).

In the following we presume that each of the appearing spaces Sn,R
n,Mn(R) with n ∈ N

and products of such spaces are equipped with some norm. For the in the following necessary
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theory from stochastic analysis we refer to Protter (2004). Now we can state our main
theorem of this section where again m := d(d+ 1)/2.

Theorem 3.4.1. Let (G,X) in R
d × R

m be a d-dimensional ECOGARCH(1,1) process G
and its associated vectorized log-volatility process X = vech(H) with initial value (G0,X0).

Assume the driving Lévy process L has no Brownian part and let (t
(n)
i )i∈N0 for each n ∈ N

be a strictly increasing sequence in R
+ with t

(n)
0 = 0 and limi→∞ t

(n)
i = ∞. Defining

δ(n) = supi∈N

{
t
(n)
i − t

(n)
i−1

}
assume that limn→∞ δ(n) = 0.

Then there exists for each n ∈ N a function hn : R
d × R

+ → R
m and a sequence of

independent random variables (ǫ
(n)
i )i∈N in R

d with finite variance and E(ǫ
(n)
i ) = 0∀ i, n ∈ N

such that hn

(
ǫ
(n)
i , t

(n)
i − t

(n)
i−1

)
has finite variance, E

(
hn

(
ǫ
(n)
i , t

(n)
i − t

(n)
i−1

))
= 0 and

plimn→∞dRd×Rm

(
(G(n),X(n)), (G,X)

)
= 0 , (3.4.2)

where for each n ∈ N the process (G(n),X(n)) in R
d × R

m is defined by

(G
(n)
0 ,X

(n)
0 ) = (G0,X0), (3.4.3)

G
(n)

t
(n)
i

= G
(n)

t
(n)
i−1

+ exp

((
µ+ vech−1

(
X

(n)

t
(n)
i−1

))
/2

)
ǫ
(n)
i , (3.4.4)

X
(n)

t
(n)
i

= e
A

“
t
(n)
i −t

(n)
i−1

”

X
(n)

t
(n)
i−1

+ βhn

(
ǫ
(n)
i , t

(n)
i − t

(n)
i−1

)
for all i ∈ N and (3.4.5)

(G
(n)
t ,X

(n)
t ) =

(
G

(n)

t
(n)
i−1

,X
(n)

t
(n)
i−1

)
for t ∈ (t

(n)
i−1, t

(n)
i ), i ∈ N. (3.4.6)

The sequence (ǫ
(n)
i )i∈N can be chosen to be i.i.d. provided t

(n)
i − t

(n)
i−1 = δ(n) for all i ∈ N.

If h is continuous hn can be chosen such that the sequence of functions hn : R
d×R

+ → R
m

satisfies

lim
n→∞

(
sup
z∈K

sup
i∈N

{∥∥∥hn

(
z, t

(n)
i − t

(n)
i−1

)
− h(z)

∥∥∥
})

= 0 (3.4.7)

for all compact K ⊂ R
d. If h is uniformly continuous, hn can be chosen such that (3.4.7)

holds with R
d instead of K.

When the time grids are equidistant, i.e. t
(n)
i − t

(n)
i−1 = δ(n) for all i ∈ N, and (ǫ

(n)
i )i∈N is

chosen i.i.d., then the increments

(
G

(n)

t
(n)
i

−G
(n)

t
(n)
i−1

)

i∈N

=:
(
Y

(n)
i

)
i∈N

of G(n) are a discrete

time multivariate EGARCH(1,1) process with associated vectorized log-volatility process(
X

(n)

t
(n)
i−1

)

i∈N

=:
(
vech(H

(n)
i )

)
i∈N

(apart from the fact that var
(
ǫ
(n)
i

)
= Id will usually

not be satisfied). We allow for a non-equidistant grid as this may be useful when having
irregularly spaced data (cf. Maller et al. (2006)).

We will prove this result in several steps now using the first jump approximation of a
Lévy process introduced in Szimayer and Maller (2007) and the theory on the convergence
of stochastic integrals and differential equations to be found in Kurtz and Protter(1991,
1996). As similar techniques should be useful elsewhere as well, we state several results in
a general manner below.
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It should be noted that there is an immediate extension to ECOGARCH(p, q) processes
with orders p, q where q > 1. However, the approximating piecewise constant processes
are no longer essentially discrete time multivariate EGARCH processes. Furthermore, it
is clear that the result remains valid when considering the processes only on a finite time

interval [0, T ] and looking at partitions (t
(n)
i )i∈{1,2,...,N(n)} of this interval with N (n) ∈ N.

We start by giving a d-dimensional and infinite time extension of the first jump approxi-
mation for a general Lévy process presented in Szimayer and Maller (2007) and a refinement
of it for a Lévy process with zero mean. Below the infimum over an empty set is taken to
be ∞ as usual. Recall below that for a given Lévy process its drift γL is defined such that
(3.2.3) is satisfied with the currently employed norm.

Theorem 3.4.2. Let L be a d-dimensional Lévy process with no Brownian part, drift γL

and Lévy measure νL. Further let (m(n))n∈N be a positive sequence, which is bounded by

1 and monotonically decreases to 0, and (t
(n)
i )i∈N0 be for each n ∈ N a strictly increasing

sequence with t
(n)
0 = 0 and limi→∞ t

(n)
i = ∞. Setting δ(n) := supi∈N

{
t
(n)
i − t

(n)
i−1

}
, assume

further that limn→∞ δ(n) = 0 and

lim
n→∞

δ(n)
(
νL

(
J (n)

))2
= 0 , (3.4.8)

where J (n) := {x ∈ R
d : ‖x‖ > m(n)}.

(a) Define for all n ∈ N

γ(n) := γL −
∫

m(n)<‖x‖≤1
xνL(dx),

τ
(n)
i := inf{t : t

(n)
(i−1) < t ≤ t

(n)
i , ‖∆Lt‖ > m(n)} for all i ∈ N,

L̃
(n)
t := γ(n)t+

∑

i∈N: τ
(n)
i ≤t

∆L
τ
(n)
i

for t ∈ R
+, L̃(n) := (L̃

(n)
t )t∈R+ ,

L̄
(n)
t := L̃

(n)

t
(n)
i−1

, for all t ∈ [t
(n)
i−1, t

(n)
i ), i ∈ N, L̄(n) := (L̄

(n)
t )t∈R+ .

Then it holds that
L̃(n) → L in ucp as n→ ∞ (3.4.9)

and
plimn→∞dRd(L̄(n), L) = 0. (3.4.10)

(b) If L has finite expectation and E(L1) = 0, define L(n) = (L
(n)
t )t∈R+ by setting

L
(n)
t =

∑

i∈N: t
(n)
i ≤t


1(0,∞)(τ

(n)
i )∆L

τ
(n)
i

− 1 − e
−νL(J(n))

“
t
(n)
i −t

(n)
i−1

”

νL

(
J (n)

)
∫

J(n)

xνL(dx)


 . (3.4.11)

Then
plimn→∞dRd(L(n), L) = 0. (3.4.12)

and E
(
L

(n)
t

)
= 0 for all t ∈ R

+ as well as E

(
∆L

(n)

t
(n)
i

)
= 0 for all i ∈ N and each n ∈ N.

(c) Provided E(‖L1‖2) < ∞, it holds that E(‖L̃(n)
t ‖2), E(‖L̄(n)

t ‖2), E(‖L(n)
t ‖2) as well

as E(‖∆L̃(n)
t ‖2), E(‖∆L̄(n)

t ‖2), E(‖∆L(n)
t ‖2) are finite for all t ∈ R

+ and n ∈ N.
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The definition of τ
(n)
i above means that it is the first time in the grid interval (t

(n)
i−1, t

(n)
i ]

at which L has a jump bigger than m(n) in norm. If there is no such jump, τ
(n)
i = ∞.

L̃(n) approximates the Lévy process L by a drift and the first jumps of size greater than
m(n) in the grid intervals. Since the jumps are left at their original time, we obtain ucp
convergence. In the approximation L̄(n) both these jumps and the increment caused by
the drift are shifted to the grid points, so that L̄(n) is constant in between the grid times.
Due to shifting the jumps we obtain only convergence in the Skorokhod topology. Finally,
the approximation L(n) is a modification of L̄(n) when L has a finite and vanishing first
moment. It ensures that also the approximation has a vanishing mean, as it will often be
desirable to reproduce this property of L.

Proof. (a) An inspection of the proof of Szimayer and Maller (2007, Theorem 3.1) shows
that it immediately generalizes to our multivariate set-up with no upper bound on the jump
sizes and no binning of the jump sizes. This proves (3.4.9) which implies

plimn→∞dRd(L̃(n), L) = 0.

Using the time change λ which is the obvious extension to [0,∞) of the time change em-
ployed in the proof of Szimayer and Maller (2007, Theorem 3.2) and arguments analogous

to theirs give dRd(L̃(n), L̄(n)) ≤ dλ,Rd(L̃(n), L̄(n)) ≤ δ(n) + o(
√
δ(n)) → 0 as n → ∞ a.s. The

triangle inequality thus establishes (3.4.10).

(b) Assume now E(L1) = 0. Then E
(
L

(n)
t

)
= 0 for all t ∈ R

+ as well as E

(
∆L

(n)

t
(n)
i

)
= 0

for all i ∈ N and each n ∈ N follows from

E
(
1(0,∞)(τ

(n)
i )∆L

τ
(n)
i

)
=

1 − e
−νL(J(n))

“
t
(n)
i −t

(n)
i−1

”

νL

(
J (n)

)
∫

J(n)

xνL(dx).

Since E(L1) = 0, we have γL = −
∫
‖x‖>1 xνL(dx). Hence, straightforward calculations give

for all t ∈ R
+

‖L̄(n)
t − L

(n)
t ‖

=

∥∥∥∥∥∥∥

∑

i∈N: t
(n)
i ≤t


1 − e

−νL(J(n))
“
t
(n)
i −t

(n)
i−1

”

νL

(
J (n)

)
∫

J(n)

xνL(dx) −
(
t
(n)
i − t

(n)
i−1

)∫

J(n)

xνL(dx)




∥∥∥∥∥∥∥

≤ tC(n) ,

where

C(n) =
√
δ(n)

∫

J(n)
‖x‖νL(dx)

∞∑

k=1

(
νL(J (n))

√
δ(n)

)k
(δ(n))(k−1)/2

k + 1!
.

Since (3.4.8) and E(‖L1‖) < ∞ imply that
√
δ(n)

∫
J(n) ‖x‖νL(dx) and νL(J (n))

√
δ(n) con-

verge to zero as n→ ∞, we have limn→∞C(n) = 0 and hence limn→∞ ‖L̄(n)−L(n)‖Rd,[0,T ] =
0 a.s. for all T ∈ R

+. Combining this with (3.4.10) shows (3.4.12).
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Finally, (c) is easily seen using

E
(
1(0,∞)(τi)∆Lτ

(n)
i

(
∆L

τ
(n)
i

)∗)
=

1 − e
−νL(J(n))

“
t
(n)
i −t

(n)
i−1

”

νL

(
J (n)

)
∫

J(n)

xx∗νL(dx),

since E(‖L1‖2) < ∞ is equivalent to the finiteness of
∫

Rd ‖x‖2νL(dx) or of all components
of
∫

Rd xx
∗νL(dx).

The next Lemma shows that when one of the sequences (δ(n))n∈N or (m(n))n∈N is given
one can always choose the other one such that (3.4.8) holds.

Lemma 3.4.3. Let L be a Lévy process in R
d. Assume that (δ(n))n∈N is a monotonically de-

creasing sequence in R
++ with limn→∞ δ(n) = 0 or (m(n))n∈N is a monotonically decreasing

sequence in R
++ with limn→∞m(n) = 0 and m(n) ≤ 1∀n ∈ N, respectively. Then a monoton-

ically decreasing sequence (m(n))n∈N in R
++ with limn→∞m(n) = 0 and m(n) ≤ 1∀n ∈ N or

a monotonically decreasing sequence (δ(n))n∈N in R
++ with limn→∞ δ(n) = 0, respectively,

can be chosen such that (3.4.8) is satisfied for all norms ‖ · ‖.

Proof. We have that
∫

Rd min(‖x‖2, 1)νL(dx) < ∞ for all norms ‖ · ‖, because νL is a Lévy

measure. Thus limn→∞ δ(n)νL(J (n)\U1(0)) = 0 for all norms where U1(0) denotes the open
ball around zero with radius 1 and J (n) = {x ∈ R

d : ‖x‖ > m(n)}. Moreover,

m(n)2νL(J (n) ∩ U1(0)) ≤
∫

J(n)∩U1(0)
‖x‖2νL(dx) ≤

∫

U1(0)
‖x‖2νL(dx) <∞.

This implies that (3.4.8) holds if δ(n) = o
((
m(n)

)4)
. Hence, the lemma is shown by choosing

for instance m(n) = (δ(n))1/5 ∧ 1 or δ(n) = (m(n))5, respectively, for all n ∈ N.

Next we show that the first jump approximation of a Lévy process has uniformly con-
trolled variations (UCV) which is important, as it ensures convergence of stochastic inte-
grals and solutions to stochastic differential equations (cf. Kurtz and Protter (1991, 1996)).
Equivalently one could use a condition called “uniform tightness” (cf. Jacod and Shiryaev
(2003, Section IV.6) or Kurtz and Protter (1991, 1996)). This shows in general that the
solution of a Lévy-driven stochastic differential equation can be approximated arbitrarily
well in the Skorokhod topology in probability by replacing the driving Lévy process with
its first jump approximation provided the additional technical assumptions of Kurtz and
Protter (1991, 1996) or Jacod and Shiryaev (2003, Section IX.6) are satisfied.

In the following we need to transform any semi-martingale to one with bounded jumps in
a suitable way. To this end we define for a semi-martingale Z and κ ∈ R

++∪{∞} the semi-

martingale Z [κ] by setting Z
[κ]
t = Zt −

∑
0<s≤t rκ(∆Zs) with rκ(z) := max(0, 1 − κ/‖z‖)z

for finite κ and Z [∞] = Z. Furthermore, for a finite variation process A we denote by
(TV (A)t)t∈R+ the process giving the total variation of A over the interval [0, t] for t ∈ R

+

and for a d-dimensional martingale M = (M1,M2, . . . ,Md)
∗ the quadratic variation [M,M ]

is understood to be defined by [M,M ]t =
∑d

i=1[Mi,Mi]t.

Definition 3.4.4 (Kurtz and Protter (1991)). Let (Z(n))n∈N be a sequence of semi-martin-

gales in R
d each defined on its own filtered probability space (Ω(n),F (n), P (n), (F (n)

t )t∈R+)
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satisfying the usual hypothesis. If there exists a κ ∈ R
++∪{∞} such that for each α > 0 and

n ∈ N there exist (F (n)
t )-local martingales M (n), (F (n)

t )-adapted finite variation processes

A(n) in R
d and (F (n)

t )-stopping times T (n,α) satisfying (Z(n))[κ] = M (n)+A(n), P (n)(T (n,α) ≤
α) ≤ (1/α) and

sup
n∈N

EP (n)

(
[M (n),M (n)]min(t,T (n,α)) + TV (A(n))min(t,T (n,α))

)
<∞ (3.4.13)

for all t ∈ R
+ then the sequence (Z(n))n∈N is said to have uniformly controlled variations

(UCV).

In the following our processes are defined on the same probability space, but the filtrations
are different.

Theorem 3.4.5. Let L be a d-dimensional Lévy process without a Brownian part and

(L̄(n))n∈N the first jump approximation of Theorem 3.4.2 (a). Let (F (n)
t )t∈R be for each

n ∈ N the completed filtration generated by L̄(n). Then the usual conditions are satisfied

and L̄(n) is for each n ∈ N a semi-martingale on (Ω,F , P, (F (n)
t )t∈R). Moreover, (L̄(n))n∈N

has UCV.
If L has finite mean and E(L1) = 0, let L(n) be the first jump approximation of Theorem

3.4.2 (b). Then L(n) is for each n ∈ N a martingale on (Ω,F , P, (F (n)
t )t∈R) and (L(n))n∈N

has UCV.

Proof. (1) Since L̄(n) is piecewise constant, it is clear that (F (n)
t )t∈R is right continuous.

Thus the usual conditions are satisfied. The semi-martingale property is also immediate. To
see that also L(n) is a semi-martingale with respect to this filtration, provided E(L1) = 0,
it suffices to note that L(n) − L̄(n) is a deterministic process of finite variation on compacts.
That L(n) is even a martingale is then straightforward as the jumps have zero expectation
and are independent of the past.

(2) We now show UCV for (L̄(n))n∈N.
Choose κ ∈ (2,∞) such that

κ/2 > sup
n∈N

{
δ(n)‖γ(n)‖

}
+ 1 and κ/2 > sup

i,n∈N





∥∥∥∥∥∥
1 − e

−νL(J(n))
“
t
(n)
i −t

(n)
i−1

”

νL

(
J (n)

)
∫

J
(n)
0

xνL(dx)

∥∥∥∥∥∥





where J
(n)
0 := J (n) ∩ {x : ‖x‖ ≤ 1}. The finiteness of the first supremum is a consequence

of (3.4.8) and the finiteness of the second one follows from

∥∥∥∥∥∥
1 − e

−νL(J(n))
“
t
(n)
i −t

(n)
i−1

”

νL

(
J (n)

)
∫

J
(n)
0

xνL(dx)

∥∥∥∥∥∥

≤
√
δ(n)νL(J

(n)
0 )

∞∑

k=0

(√
δ(n)νL(J (n))

)k
(δ(n))(k+1)/2

k + 1!

for all i, n ∈ N, since the right hand side goes to zero as n→ ∞.
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Define (M
(n)
t )t∈R+ by

M
(n)
t =

∑

i∈N: t
(n)
i ≤t


1(0,∞)(τ

(n)
i )1(0,1](‖∆Lτ

(n)
i

‖)∆L
τ
(n)
i

− 1 − e
−νL(J(n))

“
t
(n)
i −t

(n)
i−1

”

νL

(
J (n)

)
∫

J
(n)
0

xνL(dx)




and (A
(n)
t )t∈R+ by

A
(n)
t =

∑

i∈N: t
(n)
i ≤t

(
r̃κ

(
1(0,∞)(τ

(n)
i )1(1,∞)(‖∆Lτ

(n)
i

‖)∆L
τ
(n)
i

+ γ(n)
(
t
(n)
i − t

(n)
i−1

))

+
1 − e

−νL(J(n))
“
t
(n)
i −t

(n)
i−1

”

νL

(
J (n)

)
∫

J
(n)
0

xνL(dx)

)
,

where r̃κ(x) = x− rκ(x). Then M (n) is a (F (n)
t )-martingale with expectation zero and A(n)

a (F (n)
t )-adapted finite variation process for all n ∈ N. By the choice of κ we have

(L(n))[κ] = M (n) +A(n).

Since [M (n),M (n)]t =
∑

i∈N: t
(n)
i ≤t

(
∆M

(n)

t
(n)
i

)∗
∆M

(n)

t
(n)
i

, it follows that

E
(
[M (n),M (n)]t

)
=

∑

i∈N: t
(n)
i ≤t

E
(
1(0,∞)(τ

(n)
i )1(0,1](‖∆Lτ

(n)
i

‖)(∆L
τ
(n)
i

)∗∆L
τ
(n)
i

)

−
∑

i∈N: t
(n)
i ≤t


1 − e

−νL(J(n))
“
t
(n)
i −t

(n)
i−1

”

νL

(
J (n)

)




2 ∫

J
(n)
0

x∗νL(dx)

∫

J
(n)
0

xνL(dx)

≤
∑

i∈N: t
(n)
i ≤t

E
(
1(0,∞)(τ

(n)
i )1(0,1](‖∆Lτ

(n)
i

‖)(∆L
τ
(n)
i

)∗∆L
τ
(n)
i

)

=
∑

i∈N: t
(n)
i ≤t

1 − e
−νL(J(n))

“
t
(n)
i −t

(n)
i−1

”

νL

(
J (n)

)
∫

J
(n)
0

x∗xνL(dx).

Denoting by ‖ · ‖2 the Euclidean norm and using the elementary inequality 1− e−x ≤ x for
all x ∈ R

+, this implies

sup
n∈N

E([M (n),M (n)]t) ≤ t

∫

‖x‖≤1
‖x‖2

2νL(dx) <∞ (3.4.14)

for all t ∈ R. Note that the appearance of the Euclidean norm here does not imply that
the Euclidean norm is also used elsewhere, e.g. in the definition of J (n), i.e. ‖ · ‖ is not
necessarily ‖ · ‖2.
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Turning to A(n) we have that

‖∆A(n)

t
(n)
i

‖ ≤3
∥∥∥r̃κ

(
1(0,∞)(τ

(n)
i )1(1,∞)(‖∆Lτ

(n)
i

‖)∆L
τ
(n)
i

)∥∥∥+ ‖γL‖
(
t
(n)
i − t

(n)
i−1

)

+

∥∥∥∥∥∥


1 − e

−νL(J(n))
“
t
(n)
i −t

(n)
i−1

”

νL

(
J (n)

) −
(
t
(n)
i − t

(n)
i−1

)


∫

J
(n)
0

xνL(dx)

∥∥∥∥∥∥

for all i, n ∈ N. The inequality is immediate provided
∥∥∥1(0,∞)(τ

(n)
i )1(1,∞)(‖∆Lτ

(n)
i

‖)∆L
τ
(n)
i

+ γ(n)
(
t
(n)
i − t

(n)
i−1

)∥∥∥ ≤ κ and
∥∥∥1(0,∞)(τ

(n)
i )1(1,∞)(‖∆Lτ

(n)
i

‖)∆L
τ
(n)
i

∥∥∥ ≤ κ.

Otherwise the choice of κ ensures
∥∥∥1(0,∞)(τ

(n)
i )1(1,∞)(‖∆Lτ

(n)
i

‖)∆L
τ
(n)
i

∥∥∥ > κ/2 and that
∥∥∥∥∆A

(n)

t
(n)
i

∥∥∥∥ ≤ (3/2)κ which implies the validity of the inequality. We have

∥∥∥∥∥∥


1 − e

−νL(J(n))
“
t
(n)
i −t

(n)
i−1

”

νL

(
J (n)

) −
(
t
(n)
i − t

(n)
i−1

)


∫

J
(n)
0

xνL(dx)

∥∥∥∥∥∥
≤ C

(n)
A

(
t
(n)
i − t

(n)
i−1

)

with

C
(n)
A :=

√
δ(n)νL(J

(n)
0 )

∞∑

k=1

(
νL(J (n))

√
δ(n)

)k
(δ(n))(k−1)/2

k + 1!
,

which converges to zero as n→ ∞. Hence,

TV (A(n))t ≤ 3

∫ t

0

∫

‖x‖>1
min(‖x‖, κ)NL(ds, dx) + t

(
‖γL‖ + sup

n∈N

{
C

(n)
A

})

and thus

sup
n∈N

E
(
TV (A(n))t

)
(3.4.15)

≤ t

(
3

∫

‖x‖>1
min(‖x‖, κ)νL(dx) + ‖γL‖ + sup

n∈N

{
C

(n)
A

})
<∞

for all t ∈ R
+.

Combining (3.4.14) and (3.4.15) and choosing T (n,α) = α+ 1 for all n ∈ N and α ∈ R
++

shows that (L̄(n))n∈N has UCV.
(3) It remains to verify that (L(n))n∈N has UCV, provided L has a finite expectation and

E(L1) = 0. The arguments presented in the proof of Theorem 3.4.2 (b) imply that

TV (L(n) − L̄(n))t ≤ C(n)t.

for all n ∈ N and t ∈ R
+ with limn→∞C(n) = 0. This immediately shows that (L(n) −

L̄(n))n∈N has UCV. As (L(n) − L̄(n))n∈N and (L̄(n))n∈N converge in probability in the Sko-
rokhod topology, Kurtz and Protter (1996, Theorem 7.6) ensures that both sequences are
uniformly tight. Property 6.3 on page 377 of Jacod and Shiryaev (2003) therefore implies
that (L(n))n∈N is uniformly tight and so Kurtz and Protter (1996, Theorem 7.6) shows that
it has UCV.
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After these preliminaries we can proof our theorem on the convergence of discrete time
EGARCH(1,1) processes to a ECOGARCH(1,1) process.

Proof of Theorem 3.4.1: Let ‖ · ‖ be a norm on R
d+m. We have that the joint process

L = (L∗
t ,M

∗
t )∗

t∈Rd is a Lévy process in R
d+m with

Lt =

(
γL

γM

)
t+

∫ t

0

∫

‖(x∗,h(x)∗)∗‖≤1

(
x

h(x)

)
ÑL(ds, dx) +

∫ t

0

∫

‖(x∗,h(x)∗)∗‖>1

(
x

h(x)

)
NL(ds, dx)

for all t ∈ R
+ with γL = −

∫
‖(x∗,h(x)∗)∗‖>1 xνL(dx) and γM = −

∫
‖(x∗,h(x)∗)∗‖>1 h(x)νL(dx).

Here we used that νL(W ) = νL(f−1(W )) and NL(ds,W ) = NL(ds, f−1(W )) for all Borel
sets W ⊂ R

d+m where f : R
d → R

d+m, x 7→ (x∗, h(x)∗)∗. It is clear that L has a finite
expectation and E(L1) = 0.

First Step: Choice of noise sequences ǫ(n) and functions hn

Choose a sequence (m(n))n∈N such that (3.4.8) is satisfied for νL noting that the existence
is ensured by Lemma 3.4.3. Let (L(n))n∈N =

(
(L(n))∗, (M (n))∗

)∗
n∈N

be the first jump ap-

proximation to L as given in Theorem 3.4.2 (b). Hence, plimn→∞dRd+m(L(n),L) = 0 and
due to Theorem 3.4.5 (L(n))n∈N has UCV.

Set

ǫ
(n)
i = ∆L

(n)

t
(n)
i

= 1(0,∞)(τ
(n)
i )∆L

τ
(n)
i

+ γ
(n)
L,i for all i, n ∈ N (3.4.16)

with

γ
(n)
L,i = −1 − e

−νL(J(n))
“
t
(n)
i −t

(n)
i−1

”

νL

(
J (n)

)
∫

J(n)

xνL(dx) , (3.4.17)

where J (n) =
{
x ∈ R

d : ‖(x∗, h(x)∗)∗‖ > m(n)
}
. Then by construction (ǫ

(n)
i )i∈N is for each

n ∈ N a sequence of independent random variables having finite variance and zero expec-

tation (cf. Theorem 3.4.2 (b), (c)). If t
(n)
i − t

(n)
i−1 = δ(n) for all i ∈ N then γ

(n)
L,i does not

depend on i ∈ N and (ǫ
(n)
i )i∈N is i.i.d.

Moreover,

∆M
(n)

t
(n)
i

= h
(
1(0,∞)(τ

(n)
i )∆L

τ
(n)
i

)
+ γ

(n)
M,i = hn

(
ǫ
(n)
i , t

(n)
i − t

(n)
i−1

)
(3.4.18)

for all i, n ∈ N, with

γ
(n)
M,i = − 1 − e

−νL(J(n))
“
t
(n)
i −t

(n)
i−1

”

νL

(
J (n)

)
∫

J(n)

h(x)νL(dx) and (3.4.19)

hn : R
d × R

+ → R
m, (3.4.20)

(z, t) 7→ h

(
z +

1 − e−νL(J(n))t

νL

(
J (n)

)
∫

J(n)

xνL(dx)

)
− 1 − e−νL(J(n))t

νL

(
J (n)

)
∫

J(n)

h(x)νL(dx).

Theorem 3.4.2 (b), (c) ensures that hn

(
ǫ
(n)
i , t

(n)
i − t

(n)
i−1

)
has a finite variance and zero

expectation for all i, n ∈ N.
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We have that limn→∞ supi∈N

{
‖γ(n)

M,i‖
}

= 0 and limn→∞ supi∈N

{
‖γ(n)

L,i ‖
}

= 0. From this

it is easy to see that (3.4.7) holds with R
d instead of K if h is uniformly continuous. If h

is only continuous (3.4.7) follows along the same lines noting that any continuous function
is uniformly continuous on compacts.

Second Step: Convergence to the ECOGARCH

Define the processes S in R
m by St = (1, 1, . . . , 1)∗t for all t ∈ R

+ and (X̃
(n)
t )t∈R+ for all

n ∈ N by

X̃
(n)
0 = X0,

X̃
(n)

t
(n)
i

= e
A

“
t
(n)
i −t

(n)
i−1

”

X̃
(n)

t
(n)
i−1

+ βhn

(
ǫ
(n)
i , t

(n)
i − t

(n)
i−1

)
for all i ∈ N and

X̃t = e
A

“
t−t

(n)
i−1

”

X̃
(n)

t
(n)
i−1

for t ∈ (t
(n)
i−1, t

(n)
i ), i ∈ N.

Below 0Rd denotes the zero in R
d.

Then the joint process (X̃(n), L(n),M (n), S) satisfies the stochastic integral equation




X̃
(n)
t

L
(n)
t

M
(n)
t

St


 =




X0

0Rd

0Rm

0Rm


+

∫ t

0
F
(
X̃

(n)
s−
)
d



L

(n)
s

M
(n)
s

Ss


 . (3.4.21)

with

F : R
m →Md+3m,d+2m(R), x 7→




0Mm,d(R) β Ax

Id 0Md,m(R) 0Md,m(R)

0Mm,d(R) Im 0Mm(R)

0Mm,d(R) 0Mm(R) Im


 .

Obviously F is globally Lipschitz and hence the stochastic integral equation (3.4.21) has a

unique global strong solution. Here we are implicitly using the filtration (F (n)
t )t∈R for each

n ∈ N as defined in Theorem 3.4.5.
Likewise (X,L,M,S) is the unique solution to the stochastic integral equation




Xt

Lt

Mt

St


 =




X0

0Rd

0Rm

0Rm


+

∫ t

0
F (Xs−) d



Ls

Ms

Ss


 . (3.4.22)

We have that

plimn→∞dRd+2m

((
(L(n))∗, (M (n))∗, S∗

)∗
, (L∗,M∗, S∗)∗

)
= 0

follows from plimn→∞dRd+m

(
L(n),L

)
= 0. Moreover, the fact that L(n) has UCV implies

that
(
(L(n))∗, (M (n))∗, S∗)∗ has UCV. Hence, Kurtz and Protter (1991, Corollary 5.6) shows

that

plimn→∞dRd+3m

((
(X̃(n))∗, (L(n))∗, (M (n))∗, S∗

)∗
, (X∗, L∗,M∗, S∗)∗

)
= 0 , (3.4.23)
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noting that Kurtz and Protter (1996, Example 8.2) ensures that F satisfies the necessary
technical conditions (alternatively one can use Jacod and Shiryaev (2003, Theorem IX.6.9)).

Setting F (X̃(n)) =
(
F (X̃

(n)
t )

)
t∈R+

a continuity argument gives that

plimn→∞
dMd+3m,d+2m(R)×Rd+2m

([
F (X̃(n)),

(
(L(n))∗, (M (n))∗, S∗

)
∗
]
,
[
F (X), (L∗,M∗, S∗)

∗
])

= 0

and therefore a combination of Theorems 7.7, 7.10, 7.11 of Kurtz and Protter (1996) implies

that
(
(X̃(n))∗, (L(n))∗, (M (n))∗, S∗

)∗
n∈N

has UCV.

Next we observe that for all T ∈ R
+

sup
t≤T

∥∥∥X(n)
t − X̃

(n)
t

∥∥∥ ≤ sup
s∈[0,δ(n)]

∥∥e−As − Im
∥∥
∗ sup

t≤T

∥∥∥X̃(n)
t

∥∥∥ , (3.4.24)

where ‖ · ‖∗ is the operator norm induced by ‖ · ‖. Since
(
(X̃(n))∗, (L(n))∗, (M (n))∗, S∗

)∗
n∈N

has UCV and thus (X̃(n))n∈N is uniformly tight (use Kurtz and Protter (1996, Theorem
7.6) and Jacod and Shiryaev (2003, Property 6.3, p. 377)), we have from the definition

of uniform tightness (cf. Kurtz and Protter (1996, Definition 7.4)) that supt≤T

∥∥∥X̃(n)
t

∥∥∥ is

stochastically bounded in n ∈ N for all T ∈ R
+. Combining this with

lim
n→∞

sup
s∈[0,δ(n)]

∥∥e−As − Im
∥∥
∗ = 0

and (3.4.24) establishes that

X(n) − X̃(n) → 0 in ucp as n→ ∞. (3.4.25)

This implies

plimn→∞dRd+2m

((
(X(n))∗, (X̃(n))∗, (L(n))∗

)∗
, (X∗,X∗, L∗)∗

)
= 0

and by a continuity argument

plimn→∞dSd×Rd+m

([
Z(n),

(
(X̃(n))∗, (L(n))∗

)∗]
, [Z, (X∗, L∗)∗]

)
= 0 (3.4.26)

with Z and (Z(n))n∈N defined by

Z
(n)
t = exp

((
µ+ vech−1

(
X

(n)
t

))
/2
)
,

Zt = exp
((
µ+ vech−1 (Xt)

)
/2
)

for all t ∈ R
+.

Finally, we observe that

G
(n)
t = G0 +

∫ t

0
Z

(n)
s− dL

(n)
s , X̃

(n)
t = X0 +

∫ t

0
ImdX̃

(n)
s and

Gt = G0 +

∫ t

0
Zs−dLs, Xt = X0 +

∫ t

0
ImdXs for all t ∈ R

+.
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Therefore Kurtz and Protter (1991, Theorem 2.2) (or alternatively Jacod and Shiryaev
(2003, Theorem VI.6.22)) shows that

plimn→∞dRd×Rm

(
(G(n), X̃(n)), (G,X)

)
= 0,

since ((X̃(n))∗, (L(n))∗)∗ has UCV. Hence, (3.4.25) establishes

plimn→∞dRd×Rm

(
(G(n),X(n)), (G,X)

)
= 0.

In the following we consider one of our special choices for h and thereafter give some
variants of our main Theorem 3.4.1.

Proposition 3.4.6. Assume that h is given by (3.3.7). Then h is Lipschitz and thereby
uniformly continuous.

Proof. To show that h as given in (3.3.7) is Lipschitz it suffices to show that

R
d → Sd, η 7→ (ηη∗)1/2 =

ηη∗

‖η‖2

is Lipschitz. But this is immediate from
∣∣∣∣
ηiηj

‖η‖2
− η̃iη̃j

‖η̃‖2

∣∣∣∣ ≤ |ηi − η̃i| + |ηj − η̃j | + ‖η − η̃‖ for all η, η̃ ∈ R
d, i, j ∈ {1, 2, . . . , d}.

Theorem 3.4.7. Let the set-up of Theorem 3.4.1 be given and assume that var(L1) = Id.
Then in Theorem 3.4.1 the function hn and the sequence of independent random variables

(ǫ
(n)
i )i∈N can for all n ∈ N be chosen such that ǫ

(n)
i =

(√
t
(n)
i − t

(n)
i−1

)
ζ
(n)
i for all i, n ∈ N

where (ζ
(n)
i )i∈N is for all n ∈ N a sequence of independent d-dimensional random variables

with var(ζ
(n)
i ) = Id for all i, n ∈ N.

Moreover, if h is continuous hn can be chosen such that the sequence of functions hn :
R

d × R
+ → R

m satisfies

lim
n→∞

(
sup
z∈K

sup
i∈N

{∥∥∥hn

(
z, t

(n)
i − t

(n)
i−1

)
− h(z)

∥∥∥
})

= 0 (3.4.27)

for all compact K ⊂ R
d.

Proof. Let L, L(n),M (n), γ
(n)
L,i , γ

(n)
M,i be as in the proof of Theorem 3.4.1. We have that

V
(n)
i := var

(
1(0,∞)(τ

(n)
i )∆L

τ
(n)
i

)
=

1 − e−νL(J(n))(t
(n)
i −t

(n)
i−1)

νL(J (n))

∫

J(n)
xx∗νL(dx)

−
(

1 − e−νL(J(n))(t
(n)
i −t

(n)
i−1)

νL(J (n))

)2 ∫

J(n)

xνL(dx)

∫

J(n)

x∗νL(dx)
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for all i, n ∈ N. A series expansion shows

lim
n→∞

sup
i∈N

∥∥∥∥∥∥∥∥




1 − e−νL(J(n))(t
(n)
i −t

(n)
i−1)

(√
t
(n)
i − t

(n)
i−1

)
νL(J (n))




2

∫

J(n)

xνL(dx)

∫

J(n)

x∗νL(dx)

∥∥∥∥∥∥∥∥
2

= 0. (3.4.28)

Combining this with

lim
n→∞

sup
i∈N

∥∥∥∥∥
1 − e−νL(J(n))(t

(n)
i −t

(n)
i−1)

νL(J (n))(t
(n)
i − t

(n)
i−1)

∫

J(n)

xx∗νL(dx) − Id

∥∥∥∥∥
2

≤ lim
n→∞

∥∥∥∥
∫

J(n)

xx∗νL(dx) − Id

∥∥∥∥
2

+ lim
n→∞

( ∞∑

k=2

(
νL(J (n))δ(n)

)k−1

k!

∫

J(n)

‖x‖2
2νL(dx)

)
= 0

establishes

lim
n→∞

sup
i∈N

∥∥∥∥∥
V

(n)
i

t
(n)
i − t

(n)
i−1

− Id

∥∥∥∥∥ = 0. (3.4.29)

Hence, there exists a N ∈ N such that V
(n)
i ∈ GLd(R) for all i ∈ N and n ≥ N . W.l.o.g.

we assume N = 1. Then a continuity and compactness argument gives

lim
n→∞

sup
i∈N

∥∥∥∥
(
V

(n)
i

)−1/2
√
t
(n)
i − t

(n)
i−1 − Id

∥∥∥∥ = 0. (3.4.30)

Define for each n ∈ N the process (Σ
(n)
t )t∈R+ by

Σ
(n)
t = Id for t ∈ [0, t

(n)
1 /2),

Σ
(n)
t =

(
V

(n)
i

)−1/2
√
t
(n)
i − t

(n)
i−1 for t ∈

[(
t
(n)
i + t

(n)
i−1

)
/2,
(
t
(n)
i + t

(n)
i+1

)
/2
)
, i ∈ N.

Since (3.4.30) implies that (Σ
(n)
t )t∈R+ converges uniformly to the identity, it follows that

plimn→∞dMd+m(R)×Rd+m

(((
Σ(n) 0

0 Im

)
,L(n)

)
, (Id+m,L)

)
= 0. (3.4.31)

Setting

L̃
(n)
t =

∫ t

0
Σ

(n)
s−dL

(n)
s

we thus have from Kurtz and Protter (1991, Theorem 2.2) or Kurtz and Protter (1996,
Theorem 7.10) that

plimn→∞dRd+m

((
(L̃(n))∗, (M (n))∗

)
, (L∗,M∗)∗

)
= 0 (3.4.32)

and from Kurtz and Protter (1996, Theorem 7.11) that
(
(L̃(n))∗, (M (n))∗

)
n∈N

has UCV.
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Setting

ζ
(n)
i =

(
V

(n)
i

)−1/2 (
1(0,∞)(τ

(n)
i )∆L

τ
(n)
i

+ γ
(n)
L,i

)
,

ǫ
(n)
i =

(√
t
(n)
i − t

(n)
i−1

)
ζ
(n)
i ,

Vn(t) =
1 − e−νL(J(n))t

νL(J (n))

∫

J(n)

xx∗νL(dx) −
(

1 − e−νL(J(n))t

νL(J (n))

)2 ∫

J(n)

xνL(dx)

∫

J(n)

x∗νL(dx),

hn : R
d × R

+ → R
m,

(z, t) 7→h




(Vn(t))1/2

√
t

z +
1 − e−νL(J(n))t

νL

(
J (n)

)
∫

J(n)

xνL(dx)


 − 1 − e−νL(J(n))t

νL

(
J (n)

)
∫

J(n)

h(x)νL(dx)

for all i, n ∈ N it is easy to see that (ǫ
(n)
i )i∈N, (ζ

(n)
i )i∈N and hn have for all n ∈ N the claimed

properties. Finally, noting that

L̃
(n)
t =

∑

i∈N: t
(n)
i ≤t

ǫ
(n)
i and

M
(n)
t =

∑

i∈N: t
(n)
i ≤t

hn

(
ǫ
(n)
i , t

(n)
i − t

(n)
i−1

)
for all i, n ∈ N, t ∈ R

+

the proof continues now as the proof of Theorem 3.4.1 with L̃(n) in the place of L(n).

Proposition 3.4.8. Let the set-up of Theorem 3.4.1 be given and assume that h is linear.
Then hn(z, t) = h(z) can be chosen for all n ∈ N.

Proof. Obviously hn = h for hn as defined in the proof of Theorem 3.4.1.



4. Positive Definite Matrix Processes of
Finite Variation1

4.1. Introduction

The theory of self-decomposability, as developed by Lévy, Urbanik, Sato, Jurek and Mason,
and others, has turned out to be of substantial interest for stochastic modelling in finance,
turbulence and other fields. See, for instance, Barndorff-Nielsen (1998a), Barndorff-Nielsen
and Shephard (2001b) and Barndorff-Nielsen and Schmiegel (2004), where (positive) Lévy
driven processes of Ornstein – Uhlenbeck type have a key role.

The focus of the present chapter is on stochastic differential equation representations of
square roots of positive definite matrix processes of Lévy or Ornstein – Uhlenbeck type.
Such representations are, in particular, of interest in connection with the general theory
of multipower variation, cf. Barndorff-Nielsen, Graversen, Jacod, Podolskij and Shephard
(2006) and Barndorff-Nielsen, Graversen, Jacod and Shephard (2006).

In the present literature matrix-valued stochastic processes are not commonly used to
model multivariate phenomena (see, for instance, the short discussion on multivariate
stochastic volatility models at the end of Section 4.4). Our introduction of positive-definite
Ornstein-Uhlenbeck processes and the discussion of the representations of square (and
other) roots shows that matrix-valued models of considerable generality can be defined
in a natural way and univariate results can very often be generalized by using notions
and results from matrix analysis. Furthermore, several results of general interest regard-
ing matrix-valued processes (semi-martingales) and matrix analysis are obtained, as we
proceed.

This chapter is organized as follows. Section 4.2 establishes some notation, and in Section
4.3 we present a convenient version of Itô’s formula for processes of finite variation. In
Section 4.4 we introduce positive definite processes of Ornstein – Uhlenbeck type (OU
processes), using the concept of matrix subordinators discussed by Barndorff-Nielsen and
Pérez-Abreu (2007). The question of establishing tractable stochastic differential equations
for roots of positive definite matrix processes is then addressed in Section 4.5, and in Section
4.6 the results are applied to the case of OU processes.

4.2. Notation

Throughout this chapter we write R
+ for the positive real numbers including zero and we

denote the set of real m× n matrices by Mm,n(R). If m = n we simply write Mn(R) and
denote the group of invertible n×n matrices by GLn(R), the linear subspace of symmetric

1The contents of this chapter appeared in Barndorff-Nielsen, O. E. and Stelzer, R. (2007), Positive Definite
Matrix Processes of Finite Variation, Probab. Math. Statist., 27(1), 3-43 (Special issue in the memory
of K. Urbanik)
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matrices by Sn, the (closed) positive semi-definite cone by S
+
n and the open (in Sn) positive

definite cone by S
++
n . In stands for the n × n identity matrix and σ(A) for the spectrum

(the set of all eigenvalues) of a matrix A ∈Mn(R). The natural ordering on the symmetric
n × n matrices will be denoted by ≤, i.e. for A,B ∈ Sn we have that A ≤ B, if and
only if B − A ∈ S

+
n . The tensor (Kronecker) product of two matrices A,B is written as

A⊗B. vec denotes the well-known vectorisation operator that maps the n× n matrices to
Rn2

by stacking the columns of the matrices below one another. Finally, A∗ is the adjoint
(transposed) of a matrix A ∈Mn(R).

For a matrix A we denote by Aij the element in the i-th row and j-th column and this
notation is extended to processes in a natural way.

Norms of vectors or matrices are denoted by ‖ · ‖. If the specific norm is not specified,
then it is irrelevant which particular norm is used.

Regarding all random variables and processes we assume that they are defined on a given
appropriate filtered probability space (Ω,F , P, (Ft)) satisfying the usual hypotheses. With
random functions we usually do not state the dependence on ω ∈ Ω explicitly.

Furthermore, we employ an intuitive notation with respect to the (stochastic) integration
with matrix-valued integrators referring to any of the standard texts (e.g. Protter (2004))
for a comprehensive treatment of the theory of stochastic integration. Let (At)t∈R+ in
Mm,n(R), (Bt)t∈R+ in Mr,s(R) be càdlàg and adapted processes and (Lt)t∈R+ in Mn,r(R)

be a semimartingale. Then we denote by
∫ t
0 As−dLsBs− the matrix Ct in Mm,s(R) which

has ij-th element Cij,t =
∑n

k=1

∑r
l=1

∫ t
0 Aik,s−Blj,s−dLkl,s. Equivalently such an integral

can be understood in the sense of Métivier and Pellaumail (1980b), resp. Métivier (1982),
by identifying it with the integral

∫ t
0 As−dLs with At being for each fixed t the linear

operator Mn,r(R) → Mm,s(R), X 7→ AtXBt. Moreover, we always denote by
∫ b
a with

a ∈ R∪{−∞}, b ∈ R the integral over the half-open interval (a, b] for notational convenience.
If b = ∞, the integral is understood to be over (a, b).

If X = (Xt)t∈R+ is some stochastic process and f some function, then f(X) denotes the
process (f(Xt))t∈R+ . Extending this notation we also write

√
X when taking the square

root and Xr when taking the r-th power, for instance.

4.3. Itô formulae for finite variation processes in open sets

In this section we provide a univariate and a multivariate version of the Itô formula from
stochastic analysis, which is especially suitable for the purposes of this chapter. Actually,
our version is a consequence of standard results, but not given in the usual references.
Closely related versions for processes taking values in R

d instead of an open subset C can
be found in Protter (2004, Theorem II.31) or Rogers and Williams (2000, pp. 28-29), for
example, and for processes in an open subset with not necessarily finite variation in Jacod
(1979, Theorem 2.54).

As we are analysing stochastic processes in general open subsets C of R
d,Md(R) or Sd,

we need an appropriate assumption that the process stays within C and does not hit the
boundary, since this causes problems in general. To describe “good” behaviour we thus
introduce “local boundedness within C”. If C is the whole space it is the same as “local
boundedness”.
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Definition 4.3.1. Let (V, ‖ · ‖V ) be either R
d,Md(R) or Sd with d ∈ N and equipped with

the norm ‖ · ‖V . Let a ∈ V and let X = (Xt)t∈R+ be a V -valued stochastic process. We say
that X is locally bounded away from a if there exists a sequence of stopping times (Tn)n∈N

increasing to infinity almost surely and a real sequence (dn)n∈N with dn > 0 for all n ∈ N

such that ‖Xt − a‖V ≥ dn for all 0 ≤ t < Tn.
Likewise, we say for some open set C ⊂ V that the process X is locally bounded within

C if there exists a sequence of stopping times (Tn)n∈N increasing to infinity almost surely
and a sequence of compact convex subsets Dn ⊂ C with Dn ⊂ Dn+1 ∀n ∈ N such that
Xt ∈ Dn for all 0 ≤ t < Tn.

Obviously, if a process is locally bounded away from some a or is locally bounded within
some C in one norm, then the same holds for all other norms. We will see in the following
that these definitions play a central role for our Itô formulae and that they hold for many
processes.

Proposition 4.3.2 (Univariate Itô formula for processes of finite variation). Let (Xt)t∈R+

be a càdlàg process of finite variation (thus a semi-martingale) with associated jump measure
µX on (R+ × R\{0},B (R+ × R\{0})) (see e.g. Jacod and Shiryaev (2003, Proposition
II.1.16)) and let f : C → R be continuously differentiable, where C is some open interval
C = (a, b) with a, b ∈ R∪ {±∞}, a < b. Assume that (Xt)t∈R+ is locally bounded within C.
Then the process X as well as its left limit process (Xt−)t∈R+ take values in C at all times
t ∈ R

+, the integral
∫ t
0

∫
R\{0}(f(Xs− + x)− f(Xs−))µX(ds, dx) exists a.s. for all t ∈ R and

f(Xt) = f(X0) +

∫ t

0
f ′(Xs−)dXc

s +

∫ t

0

∫

R\{0}
(f(Xs− + x) − f(Xs−))µX(ds, dx),

where Xc
t = Xt −

∫ t
0

∫
R\{0} xµX(ds, dx) is the continuous part of X.

(Strictly speaking f(Xs−+x) is not defined for all x ∈ R, as f is only defined on C. But our
assumptions assure that µX is concentrated on those x for which Xs− + x ∈ C. Therefore
we can simply continue f arbitrarily outside of C.)

Proof. As X is locally bounded within C, the process X cannot get arbitrarily close to the
boundary of C in finite time and hence Xt and Xt− are in C at all times t ∈ R

+.
Obviously,

∫ t
0

∫
R\{0}(f(Xs− + x) − f(Xs−))µX(ds, dx) =

∑
0<s≤t ∆f(Xs). That Xt is

locally bounded within C implies the existence of compact intervals Dn ⊂ C such that
Xt ∈ Dn for all t ∈ [0, Tn) for some sequence (Tn)n∈N of stopping times increasing to
infinity a.s. However, f ′ is bounded on Dn, say by cn, and the mean value theorem gives us
that ∆f(Xs) = f(Xs)−f(Xs−) = f ′(ζs)(Xs −Xs−) = f ′(ζs)∆Xs with ζs ∈ Dn. Therefore,∫ t
0

∫
R\{0} |f(Xs− + x) − f(Xs−)|µX(ds, dx) =

∑
0<s≤t |∆f(Xs)| ≤ cn

∑
0<s≤t |∆Xs| for all

t ∈ [0, Tn), which is finite due to the finite variation of X. Thus the almost sure existence
of the integral is shown.

The standard Itô formula (see Bichteler (2002, Theorem 3.9.1 together with Proposition
3.10.10) for an appropriate version) gives

f(Xt) = f(X0) +

∫ t

0
f ′(Xs−)dXs

+

∫ t

0

∫

R\{0}
(f(Xs− + x) − f(Xs−) − f ′(Xs−)x)µX(ds, dx),
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on observing that, since X is a finite variation process, we can move from a twice contin-
uously differentiable f to an only once continuously differentiable one, as in Protter (2004,
Theorem II.31). Noting further that

∫ t

0
f ′(Xs−)dXs =

∫ t

0
f ′(Xs−)dXc

s +

∫ t

0

∫

R\{0}
f ′(Xs−)xµX(ds, dx)

and that the integral
∫ t

0

∫

R\{0}
(f(Xs− + x) − f(Xs−))µX(ds, dx)

exists, we obtain:

f(Xt) = f(X0) +

∫ t

0
f ′(Xs−)dXc

s +

∫ t

0

∫

R\{0}
(f(Xs− + x) − f(Xs−))µX(ds, dx).

Remark 4.3.3. a) The assumption that X remains locally bounded within C ensures that
f ′(X) is locally bounded. This reflects the boundedness of the derivative needed in the proof
of Protter (2004, Theorem I.54), which is a special case of the above result.

b) It is straightforward to see that X is locally bounded within C = (a, b) if and only if
Xt is in C at all times and locally bounded away from both a and b, where for a = −∞ or
b = ∞ this has to be understood as meaning locally bounded. Recall in this context that any
finite variation process is locally bounded.

In the multivariate version we use the notion of (total) differentials, sometimes also
called Fréchet differentials (see Rudin (1976, Chapter 9), or Bhatia (1997, Section X.4)
for an overview focusing on the matrix case), rather than partial derivatives for notational
convenience. Recall, however, that a function is continuously differentiable if and only if
all partial derivatives exist and are continuous, and that the derivative, which is a linear
operator, simply has the partial derivatives as entries. The derivative of a function f at a
point x is denoted by Df(x). In particular, we have the following multivariate version of
Proposition 4.3.2. We state it only for processes in R

d, but it should be obvious that R
d

can be replaced by Md(R) or Sd.

Proposition 4.3.4 (Multivariate Itô formula for processes of finite variation). Let (Xt)t∈R+

be a càdlàg R
d-valued process of finite variation (thus a semi-martingale) with associated

jump measure µX on
(
R

+ × R
d\{0},B

(
R

+ × R
d\{0}

))
and let f : C → R

m be continuously
differentiable, where C ⊆ R

d is an open set. Assume that the process (Xt)t∈R+ is locally
bounded within C. Then the process X as well as its left limit process (Xt−)t∈R+ take values
in C at all times t ∈ R

+, the integral
∫ t
0

∫
Rd\{0}(f(Xs− +x)−f(Xs−))µX(ds, dx) exists a.s.

for all t ∈ R and

f(Xt) = f(X0) +

∫ t

0
Df(Xs−)dXc

s +

∫ t

0

∫

Rd\{0}
(f(Xs− + x) − f(Xs−))µX(ds, dx),

where Xc
t = Xt −

∫ t
0

∫
Rd\{0} xµX(ds, dx) is the continuous part of X.

Proof. The proof is a mere multivariate rephrasing of the one for Proposition 4.3.2 using
an appropriate general multidimensional version of Itô’s formula (e.g. Bichteler (2002,
Proposition 3.10.10), Métivier (1982, Theorem 27.2) or Protter (2004, Theorem 7.33)) and
standard results from multivariate calculus.
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4.4. Positive semi-definite matrix processes of OU type

In this section we briefly review one-dimensional processes of Ornstein-Uhlenbeck (OU) type
(cf. Applebaum (2004), Cont and Tankov (2004) or Barndorff-Nielsen and Shephard (2001b,
2007) among many others) and then introduce Ornstein-Uhlenbeck processes taking values
in the positive semi-definite matrices. For the necessary background on Lévy processes see
Protter (2004, Section I.4) or Sato (1999).

In univariate financial modelling, it has become popular in recent years to specify the vari-
ance process σ2 as an Ornstein-Uhlenbeck process (see in particular the works of Barndorff-
Nielsen and Shephard). We assume given a Lévy process (Lt)t∈R+ and consider the SDE

dσ2
t = −λσ2

t−dt+ dLt (4.4.1)

with some λ ∈ R and initial value σ2
0 ∈ R. The solution can be shown to be

σ2
t = e−λtσ2

0 +

∫ t

0
e−λ(t−s)dLs (4.4.2)

and is referred to as an OU type process. Note that for univariate OU type processes one
often applies a time transformation on the Lévy process and then has dLλs instead of dLs

above, but this is not possible in the multivariate case below. Provided the Lévy process L
is a subordinator (a.s. non-decreasing Lévy process) and σ2

0 ≥ 0, the unique strong solution
σ2 is positive and thus can be used as a variance process. After extending the Lévy process
to one, (Lt)t∈R, living on the whole real line in the usual way, one can show that (4.4.1)
has a unique stationary solution given by

σ2
t =

∫ t

−∞
e−λ(t−s)dLs

provided λ > 0 and the Lévy process has a finite logarithmic moment, i.e. E(log+(L1))
<∞.

There is a vast literature concerning the extension of OU processes to R
d-valued processes

(for instance, Chojnowska-Michalik (1987), Jurek and Mason (1993) or Sato and Yamazato
(1984)). By identifying Md(R) with R

d2
one immediately obtains matrix valued processes.

So for a given Lévy process (Lt)t∈R with values in Md(R) and a linear operator A : Md(R) →
Md(R) we call some solution to the SDE

dXt = AXt−dt + dLt (4.4.3)

a (matrix-valued) process of Ornstein-Uhlenbeck type.

As in the univariate case one can show that for some given initial value X0 the solution
is unique and given by

Xt = eAtX0 +

∫ t

0
eA(t−s)dLs. (4.4.4)

Provided E(log+ ‖L1‖) < ∞ and σ(A) ∈ (−∞, 0) + iR, there exists a unique stationary
solution given by

Xt =

∫ t

−∞
eA(t−s)dLs.
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In order to obtain positive semi-definite Ornstein-Uhlenbeck processes we need to consider
matrix subordinators as driving Lévy processes. An Md(R)-valued Lévy process L is called
“matrix subordinator”, if Lt − Ls ∈ S

+
d a.s. for all t ≥ s, see Barndorff-Nielsen and Pérez-

Abreu (2002, 2007), Rocha-Arteaga (2006) and the references therein for further details.

Proposition 4.4.1. Let L be a matrix subordinator, assume that the linear operator A

satisfies exp(At)(S+
d ) ⊆ S

+
d for all t ∈ R

+ and let X0 ∈ S
+
d . Then the Ornstein-Uhlenbeck

process (Xt)t∈R+ with initial value X0 satisfying (4.4.3) takes only values in S
+
d .

If E(log+ ‖L1‖) < ∞ and σ(A) ∈ (−∞, 0) + iR, then the unique stationary solution
(Xt)t∈R to (4.4.3) takes values in S

+
d only.

Proof. The first term eAtX0 in (4.4.4) is obviously positive semi-definite for all t ∈ R
+ due

to the assumption on A. Approximating the integral
∫ t
0 e

A(t−s)dLs by sums in the usual
way, shows that also the second term is positive semi-definite, since all approximating sums
are in S

+
d due to the assumption on A and the S

+
d -increasingness of a Lévy subordinator.

The very same argument implies the positive semi-definiteness of the unique stationary
solution.

An important question arises now, namely, which linear operators A can one actually
take to obtain both a unique stationary solution and ensure positive semi-definiteness. The
condition exp(At)(S+

d ) ⊆ S
+
d means that for all t ∈ R

+ the exponential operator exp(At)
has to preserve positive semi-definiteness. So one seems to need to know first which linear
operators on Md(R) preserve positive semi-definiteness. This problem has been studied
for a long time in linear algebra in connection with the general topic “Linear Preserver
Problems” (see, for instance, the overview articles Li and Pierce (2001) and Pierce, Lim,
Loewy, Li, Tsing, McDonald and Beasley (1992)). We have the following:

Proposition 4.4.2. Let A : Sd → Sd be a linear operator. Then A(S+
d ) = S

+
d , if and only

if there exists a matrix B ∈ GLd(R) such that A can be represented as X 7→ BXB∗.

Proof. This was initially proved in Schneider (1965). A more general proof in a Hilbert
space context may be found in Li, Rodman and Semrl (2003).

Remark 4.4.3. No explicit characterization of the linear operators mapping S
+
d into S

+
d ,

i.e. A(S+
d ) ⊆ S

+
d , is known for general dimension d.

Naturally, all linear maps on Sd can be extended to mappings on Md(R). From this linear
algebraic result we obtain the following result, introducing the linear operators preserving
positive semi-definiteness which we shall employ.

Proposition 4.4.4. Assume the operator A : Md(R) → Md(R) is representable as X 7→
AX + XA∗ for some A ∈ Md(R). Then eAt has the representation X 7→ eAtXeA

∗t and
eAt(S+

d ) = S
+
d for all t ∈ R.

Proof. eAtX = eAtXeA
∗t for all X ∈Md(R) follows from Horn and Johnson (1991, pp. 255

and 440) and eAt(S+
d ) = S

+
d for all t ∈ R is then implied by Proposition 4.4.2, since eB is

invertible for any matrix B ∈Md(R).
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That all linear operators A on Sd satisfying eAt(S+
d ) = S

+
d for all t ∈ R are of the above

form is shown in Appendix A.
Note the close relation of this kind of operators to Kronecker sums and the so-called

“Lyapunov equation” (see Horn and Johnson (1991, Ch. 4)). For a linear operator A of
the type specified in Proposition 4.4.4 formula (4.4.3) becomes

dXt = (AXt− +Xt−A
∗)dt + dLt (4.4.5)

and the solution is

Xt = eAtX0e
A∗t +

∫ t

0
eA(t−s)dLse

A∗(t−s). (4.4.6)

Confer also Horn and Johnson (1991, p. 440) for a related deterministic differential equa-
tion.

Using the vec transformation and Horn and Johnson (1991, Theorem 4.4.5) we see that
σ(A) = σ(A)+σ(A), where the addition of two sets A,B ⊆ R is defined by A+B = {a+b :
a ∈ A, b ∈ B}. Thus

Theorem 4.4.5. Let (Lt)t∈R be a matrix subordinator with E(log+ ‖L1‖) < ∞ and A ∈
Md(R) such that σ(A) ⊂ (−∞, 0)+iR. Then the stochastic differential equation of Ornstein-
Uhlenbeck type

dXt = (AXt− +Xt−A
∗)dt + dLt

has a unique stationary solution

Xt =

∫ t

−∞
eA(t−s)dLse

A∗(t−s)

or, in vectorial representation,

vec(Xt) =

∫ t

−∞
e(Id⊗A+A⊗Id)(t−s)dvec(Ls).

Moreover, Xt ∈ S
+
d for all t ∈ R.

Recall from Barndorff-Nielsen and Pérez-Abreu (2007) that any matrix subordinator
(Lt)t∈R has paths of finite variation and can be represented as

Lt = γt+

∫ t

0

∫

S
+
d \{0}

xµ(ds, dx) (4.4.7)

where γ ∈ S
+
d is a deterministic drift and µ(ds, dx) an extended Poisson random measure

on R
+ × S

+
d (regarding the definitions of random measures and the integration theory with

respect to them we refer to Jacod and Shiryaev (2003, Section II.1)). Observe in particular
that the integral exists without compensating. Moreover, the expectation of µ factorises,
i.e. E(µ(ds, dx)) = Leb(ds)ν(dx), Leb denoting the Lebesgue measure and ν the Lévy
measure of L. The above equation (4.4.7) can be restated in a differential manner as

dLt = γdt+

∫

S
+
d \{0}

xµ(dt, dx). (4.4.8)

The obvious extension of this to a Lévy process (Lt)t∈R having been started in the infinite
past gives another representation of the above stationary OU process.
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Proposition 4.4.6. The positive semi-definite Ornstein-Uhlenbeck process X defined in
Theorem 4.4.5 can equivalently be represented as

Xt =

∫ t

−∞

∫

S
+
d \{0}

eA(t−s)xeA
∗(t−s)µ(ds, dx) +

∫ t

−∞
eA(t−s)γeA

∗(t−s)ds

=

∫ t

−∞

∫

S
+
d \{0}

eA(t−s)xeA
∗(t−s)µ(ds, dx) −B−1γ

where B−1 is the inverse of the linear operator B : Md(R) → Md(R), X 7→ AX + XA∗

which can be represented as vec−1 ◦ ((Id ⊗A) + (A⊗ Id))
−1 ◦ vec.

Proof. The invertibility of B and the positive semi-definiteness of −B−1γ follow immedi-
ately from the standard theory on the Lyapunov equations (Horn and Johnson (1991, Th.
2.2.3, 4.4.7). Now only the second equality remains to be shown, but this is immediate as
−B−1 d

dse
A(t−s)γeA

∗(t−s) = eA(t−s)γeA
∗(t−s) and lims→−∞ eA(t−s) = 0.

The next proposition provides a characterization of the stationary distribution. To this
end observe that tr(XY ∗) (with X,Y ∈Md(R) and tr denoting the usual trace functional)
defines a scalar product on Md(R). Moreover, the vec operator is a Hilbert space isome-
try between Md(R) equipped with this scalar product and R

d2
with the usual Euclidean

scalar product. This, in particular, implies that the driving Lévy process L at time t has
characteristic function (cf. also Barndorff-Nielsen and Pérez-Abreu (2007))

µLt(Z) = exp

(
ittr(γZ) + t

∫

S
+
d \{0}

(eitr(XZ) − 1)ν(dX)

)
, Z ∈ Sd. (4.4.9)

Proposition 4.4.7. The stationary distribution of the positive semi-definite Ornstein-
Uhlenbeck process X is infinitely divisible with characteristic function

µ̂X(Z) = exp

(
itr(γXZ) +

∫

S
+
d \{0}

(eitr(Y Z) − 1)νX(dY )

)
, Z ∈ Sd (4.4.10)

where
γX = −B−1γ

with B defined as in Proposition 4.4.6 and

νX(E) =

∫ ∞

0

∫

S
+
d \{0}

IE(eAsxeA
∗s)ν(dx)ds

for all Borel sets E in S
+
d \{0}.

Assume that the driving Lévy process is square-integrable. Then the second order moment
structure is given by

E(Xt) = γX −B−1

∫

S
+
d \{0}

yν(dy) = −B−1E(L1) (4.4.11)

V ar(vec(Xt)) =

∫ ∞

0
e(A⊗Id+Id⊗A)tV ar(vec(L1))e

(A∗⊗Id+Id⊗A∗)tdt

= −B
−1V ar(vec(L1)) (4.4.12)

Cov(vec(Xt+h), vec(Xt)) = e(A⊗Id+Id⊗A)hV ar(vec(Xt)), (4.4.13)
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where t ∈ R and h ∈ R
+ and B : Md2(R) →Md2(R), X 7→ (A⊗ Id + Id ⊗ A)X +X(A∗ ⊗

Id + Id ⊗A∗). The linear operator B can be represented as

vec−1 ◦ ((Id2 ⊗ (A⊗ Id + Id ⊗A)) + ((A⊗ Id + Id ⊗A) ⊗ Id2)) ◦ vec.

Above the vec operator is used, as this clarifies the order of the elements of the (co)vari-
ance matrix.

Proof. The characteristic function is standard, cf. Barndorff-Nielsen, Pedersen and Sato
(2001, p. 178) for instance. Regarding (4.4.11) a general result for infinitely divisible
distributions implies that E(Xt) = γX +

∫
S
+
d
yνX(dy). Using the explicit representation

for νX and evaluating the integral as in the proof of the last proposition immediately
establishes (4.4.11). The proof of the first equality in (4.4.12) and of (4.4.13) is standard,
see e.g. Proposition 2.3.13 in Chapter 2, and the second equality in (4.4.12) follows by an
explicit integration as before.

Remark 4.4.8. In the existing literature for R
d-valued processes only the analogue to the

first equality in (4.4.12) is stated and an identity is given that becomes

−V ar(vec(L1)) = (A⊗ Id + Id ⊗A)V ar(vec(Xt)) + V ar(vec(Xt))(A
∗ ⊗ Id + Id ⊗A∗)

in our case. That identity is, of course, equivalent to our second equality in (4.4.12), but
usually obtained by a very different approach (cf. Arató (1982), for instance). Our version
involving B−1 stresses that the variance can be calculated by solving a standard linear
equation and fits in nicely, as inverse operators of this type appear in many of our results.

Moreover, conditions ensuring that the stationary OU type process X is almost surely
strictly positive definite can be obtained.

Theorem 4.4.9. If γ ∈ S
++
d or ν(S++

d ) > 0, then the stationary distribution PX of X is
concentrated on S

++
d , i.e. PX(S++

d ) = 1.

Proof. From Proposition 4.4.6 and its proof we have Xt ≥ −B−1γ. In the case γ ∈ S
++
d this

proves the theorem immediately, as then −B−1γ is strictly positive definite due to Horn
and Johnson (1991, Theorem 2.2.3).

Assume now that ν(S++
d ) > 0. From Proposition 4.4.6 we know that

X0 ≥
∑

−∞<s≤0

e−As∆(Ls)e
−A∗s d

=
∑

0≤s<∞
eAs∆(Ls)e

A∗s.

Since Z 7→ eAsZeA
∗s preserves positive definiteness for all s ∈ R, it is obviously suf-

ficient to show that (Ls)s∈R+ has at least one jump that is positive definite. Choose
now ǫ > 0 such that ν(S++

d ∩ {x ∈ S
+
d : ‖x‖ ≥ ǫ}) > 0. Then the process Lǫ,s :=∑

0≤s≤t 1{x∈S
+
d :‖x‖≥ǫ}(∆Ls)∆Ls is a Lévy process with Lévy measure νǫ(·) = ν(·∩{x ∈ S

+
d :

‖x‖ ≥ ǫ}), where we denoted by 1M (·) the indicator function of a set M . Lǫ is obviously
a compound Poisson process and the probability that a jump of Lǫ is in S

+
d \S++

d is given
by q := νǫ(S

+
d \S++

d )/νǫ(S
+
d ) < 1. As the individual jump sizes and the jump times are

independent and (Lǫ,s)s∈R+ has a.s. infinitely many jumps in R
+, this implies that with

probability zero all jumps of (Lǫ,s)s∈R+ are in S
+
d \S++

d . In other words, (Lǫ,s)s∈R+ and thus
(Ls)s∈R+ has a.s. at least one jump in S

++
d .
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The positive-definite Ornstein-Uhlenbeck processes introduced above can be used as a
multivariate stochastic volatility model in finance, as an extension of the one-dimensional
approach proposed in Barndorff-Nielsen and Shephard (2001b). A different kind of gen-
eralization has been discussed by Hubalek and Nicolato (2005) and Lindberg (2005), who
have specified different multivariate stochastic volatility models using factor models, where
the individual factors are univariate positive Ornstein-Uhlenbeck type processes. The d-
dimensional volatility model of Hubalek and Nicolato is of the form Σ2

t = AStA
∗ where

S is an Ornstein-Uhlenbeck process in S
+
m (actually only on the diagonal matrices) and

A ∈ Md,m(R). The results for the roots of positive definite processes which we obtain in
Section 5 are with a minor obvious adaptation immediately applicable to processes of this
type. Another proposal put forth in Gourieroux, Jasiak and Sufana (2004) specifies a d× d
volatility process V as a sum Vt =

∑K
i=1 xi,tx

∗
i,t with the processes xi being i.i.d. Gaussian

Ornstein-Uhlenbeck processes in R
d and K ∈ N. These processes are referred to as Wishart

autoregressive processes, as the distribution of V is the Wishart distribution (see also Bru
(1991)). This specification is not amenable to the type of SDE representations of the root
processes that we shall discuss in Section 5, under a general set-up, and in Section 6 for
positive definite OU processes. Note also, in this connection, that the Wishart law is not
infinitely divisible, hence, in particular, not self-decomposable (see Lévy (1948)).

In stochastic volatility models the integrated variance process is of particular interest
(see e.g. Barndorff-Nielsen and Shephard (2001b, 2003)). The same reasoning as in the
univariate case (Barndorff-Nielsen (1998b)) leads to the following explicit result for the
integrated variance of a positive definite Ornstein-Uhlenbeck stochastic volatility process:

Proposition 4.4.10. Let X be a positive semi-definite Ornstein-Uhlenbeck process with
initial value X0 ∈ S

+
d and driven by the Lévy process L. Then the integrated Ornstein-

Uhlenbeck process X+ is given by

X+
t :=

∫ t

0
Xtdt = B−1 (Xt −X0 − Lt)

for t ∈ R
+, where B is the linear operator defined in Proposition 4.4.6.

The use of positive semi-definite OU type processes in a multivariate stochastic volatility
model is discussed at length in Chapter 5.

4.5. Roots of positive semi-definite processes

In this section we obtain stochastic representations of general roots of processes in R
+ and

later on of the square root of stochastic processes taking values in S
+
d . Recall that every

positive semi-definite matrix A has a unique positive semi-definite square root A1/2 defined
by functional calculus (see, for instance, Horn and Johnson (1985) and Horn and Johnson
(1991) for a comprehensive introduction).

The interest in such representations comes, in particular, from the theoretical works on
the properties of multipower variation; see Barndorff-Nielsen, Graversen, Jacod, Podolskij
and Shephard (2006), for instance. In that paper the limit theorems are obtained under
an hypothesis that the square root of the covariance matrix process is a semi-martingale of
a special type. Moreover, in many cases the additional assumption is needed that it takes
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values in the strictly positive definite matrices, as this ensures that the covariance matrix
process is of the same type (and vice versa). However, as there are no formulae given
relating the characteristics of the covariance matrix process with those of its square root,
we shall derive the relations explicitly and discuss whether the invertibility assumption is
indeed always necessary. Under the invertibility assumption Itô’s lemma is the key tool,
but as we see later on we can move away from this prerequisite. On the other hand we
restrict ourselves to the study of processes of finite variation. The reasons are that the
processes we intend to apply our results to are naturally of finite variation and that in the
infinite variation case it seems impossible to obtain results for processes that may reach the
boundary ∂S

+
d = S

+
d \S++

d . As a consequence all our “stochastic” integrals coming up can
actually be computed path-wise as Lebesgue-Stieltjes integrals.

In the following we start by analysing univariate processes, where we study general r-th
powers and then move on to multivariate processes.

4.5.1. The univariate case

Now we shall first present the univariate case, as it involves no advanced matrix analysis,
but allows one to understand the behaviour of root processes. Due to the applications we
have in mind, we state the following results for finite variation processes, whose discontin-
uous part is of the special form

∫ t
0

∫
R+\{0} g(s−, x)µ(ds, dx) with some extended Poisson

random measure µ on R
+\{0} (in the sense of Jacod and Shiryaev (2003, Definition 1.20)).

Moreover, g(s, x) = g(ω, s, x) : Ω × R
+ × R

+\{0} → R
+\{0} is a (random) function that

is Fs × B(R+) measurable in (ω, x) and càdlàg in s. For such a process the jump measure
is µX(ds, dx) = µ(ds, g−1(s−, ·)(dx)), where g−1(s−, ·) is to be understood as taking the
preimage of the set dx with respect to the map R

+\{0} → R
+\{0}, x 7→ g(s−, x). We

frequently refer to the dependence on ω ∈ Ω in the following, but keep suppressing it in the
notation.

Theorem 4.5.1. Let (Xt)t∈R+ be a given adapted càdlàg process which takes values in
R

+\{0}, is locally bounded away from zero and can be represented as

dXt = ctdt+

∫

R+\{0}
g(t−, x)µ(dt, dx)

where c is a predictable and locally bounded process, µ an extended Poisson random measure
on R

+ × R
+\{0} and g(s, x) is Fs × B(R+\{0}) measurable in (ω, x) and càdlàg in s.

Moreover, g(s, x) takes only non-negative values.
Then for any 0 < r < 1 the unique positive process Y = Xr is representable as

Y0 = Xr
0 , dYt = atdt+

∫

R+\{0}
w(t−, x)µ(dt, dx),

where the drift
at := rXr−1

t− ct

is predictable and locally bounded and where

w(s, x) := (Xs + g(s, x))r − (Xs)
r

is Fs × B(R+) measurable in (ω, x) and càdlàg in s. Moreover, w(s, x) takes only non-
negative values.
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Proof. Remark 4.3.3 implies the local boundedness of X within R
+ and restating Proposi-

tion 4.3.2 in a differential manner gives

dXr
t = rXr−1

t− ctdt+

∫

R+\{0}
((Xt− + x)r −Xr

t−)µX(dt, dx).

Using the relation between µX and µ stated before the theorem, we obtain

dXr
t = rXr−1

t− ctdt+

∫

R+\{0}
((Xt− + g(t−, x))r −Xr

t−)µ(dt, dx).

The positivity of w(s, x) is a consequence of an elementary inequality recalled in the
following lemma and the additional properties stated are now straightforward.

For the sake of completeness and since it is essential to our results, we recall the following
elementary inequality and give a proof.

Lemma 4.5.2. For a, x ∈ R
+ and 0 < r < 1 we have that (a+ x)r − ar is monotonically

decreasing in a and
(a+ x)r − ar ≤ xr.

In particular, for a, b ∈ R
+ it holds that |ar − br| ≤ |a− b|r.

Proof. Define for fixed x the function f : R
+ → R, a 7→ (a + x)r − ar. Then f ′(a) =

r
(
(a+ x)r−1 − ar−1

)
≤ 0 using that the r−1-th power is monotonically decreasing. Hence,

f is monotonically decreasing and f(a) = (a + x)r − ar ≤ f(0) = xr. For the second
inequality we assume without loss of generality that a ≥ b. Then |ar − br| = (b+(a− b))r −
br ≤ (a− b)r = |a− b|r, due to the first inequality.

Remark 4.5.3. Actually the representation stated in Theorem 4.5.1 holds for arbitrary
powers Xr with r ∈ R. If r ≥ 1, the assumption that X is locally bounded away from zero
is no longer necessary.

For processes that start at zero or may become zero, we obviously cannot use Itô’s formula
in the above manner, since there is no way to extend the r-th power for 0 < r < 1 to an
open set containing [0,∞) in a continuously differentiable manner. Likewise, all advanced
extensions of Itô’s formula we know of (e.g. Bardina and Jolis (1997), Ghomrasni and Peskir
(2003), Peskir (2005)), cannot be applied. For instance, the Boleau-Yor formula (Protter
(2004, Theorem IV.77)) allows for a non-continuous derivative, but still demands it to be
bounded, but for r-th roots it is unbounded at zero. The Meyer-Itô formula (Protter (2004,
Theorem IV.70)) needs a left derivative, which again cannot be defined at zero. But by
using the very standard Itô formula and applying a tailor-made limiting procedure, we can
indeed verify an extension to processes that may become zero:

Theorem 4.5.4. Let (Xt)t∈R+ be a given adapted càdlàg process which takes values in R
+

and can be represented as

dXt = ctdt+

∫

R+\{0}
g(t−, x)µ(dt, dx)

where c is a predictable and locally bounded process, µ an extended Poisson random measure
on R

+ × R
+\{0} and g(s, x) is Fs × B(R+\{0}) measurable in (ω, x) and càdlàg in s.
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Moreover, g(s, x) takes only non-negative values. Assume that the integrals
∫ t
0 rX

r−1
s− csds

(in the Lebesgue sense) and
∫ t
0

∫
R+\{0}(Xs− + g(s−, x))r − (Xs−)rµ(ds, dx) exist a.s. for all

t ∈ R
+.

Then for any 0 < r < 1 the unique positive process Y = Xr is representable as

Y0 = Xr
0 , dYt = atdt+

∫

R+\{0}
w(t−, x)µ(dt, dx), (4.5.1)

where the drift
at := rXr−1

t− ct

is predictable and where
w(s, x) = (Xs + g(s, x))r − (Xs)

r

is Fs × B(R+) measurable in (ω, x) and càdlàg in s. Moreover, w(s, x) takes only non-
negative values and Yt is a.s. of finite variation.

Note that ct = 0 implies at = 0 above, even if Xt− = 0, using the conventions of Lebesgue
integration theory.

Proof. We first show that Y = Xr is representable by (4.5.1). Recall below that all integrals
can be viewed as path-wise Lebesgue-Stieltjes ones.

For any ǫ > 0 the process Xǫ,t := Xt + ǫ is bounded away from zero and

Xǫ,t = X0 + ǫ+

∫ t

0
csds +

∫ t

0

∫

R+\{0}
g(s−, x)µ(ds, dx).

From Theorem 4.5.1 we obtain that

(Xt + ǫ)r = Xr
ǫ,t = (X0 + ǫ)r +

∫ t

0
r (Xs− + ǫ)r−1 csds (4.5.2)

+

∫ t

0

∫

R+\{0}
((Xs− + ǫ+ g(s−, x))r − (Xs− + ǫ)r)µ(ds, dx).

For s ∈ R
+ we clearly have that (Xs− + ǫ)r → Xr

s− point-wise as ǫ → 0. Moreover, since

r − 1 ∈ (−1, 0), one has that (Xs− + ǫ)r−1 is decreasing in ǫ. Thus,

|r (Xs− + ǫ)r−1 cs| ≤ |rXr−1
s− cs| for all ǫ > 0.

By assumption |rXr−1
s− cs| is Lebesgue-integrable over [0, t] and so majorized convergence

gives that ∫ t

0
r (Xs− + ǫ)r−1 csds→

∫ t

0
rXr−1

s− csds as ǫ→ 0.

From Lemma 4.5.2 we see that (Xs− + ǫ+ g(s−, x))r − (Xs− + ǫ)r is positive and also
decreasing in ǫ. So our assumptions and majorized convergence ensure that

lim
ǫ→0

∫ t

0

∫

R+\{0}
((Xs− + ǫ+ g(s−, x))r − (Xs− + ǫ)r)µ(ds, dx)

=

∫ t

0

∫

R+\{0}

(
(Xs− + g(s−, x))r −Xr

s−
)
µ(ds, dx).
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Combining these results we obtain, from (4.5.2) and by letting ǫ→ 0,

Xr
t = Xr

0 +

∫ t

0
rXr−1

s− csds+

∫ t

0

∫

R+\{0}

(
(Xs− + g(s−, x))r −Xr

s−
)
µ(ds, dx),

which concludes the proof of the representation for Y .
To establish the finite variation of the process Y it suffices now to argue that both

integral processes
∫ t
0 rX

r−1
s− csds and

∫ t
0

∫
R+\{0}(Xs− + g(s−, x))r − (Xs−)rµ(ds, dx) are of

finite variation. For the second this is immediately clear and for the first we only need to
observe that the existence in the Lebesgue sense implies the existence of

∫ t
0 |rXr−1

s− cs|ds.
The latter is strictly increasing (thus of finite variation) when viewed as a process in t and
its total variation is an upper bound for the total variation of the first integral.

Remark 4.5.5. a) Inspecting the proof it is clear that Theorem 4.5.1 remains valid when
replacing the square root with any continuously differentiable function f : R

+ → R. If
additionally |f ′(x+ ǫ)| ≤ K|f ′(x)| and |f(x+ ǫ+ y) − f(x+ ǫ)| ≤ K̃|f(x+ y) − f(x)| for
all x, y, ǫ ∈ R

+, where K and K̃ are some constants, the same is true for Theorem 4.5.4.
Then f(X) is representable by (4.5.1) with at = f ′(Xt−)ct and w(t, x) = f(Xt +g(t, x))−

f(Xt).
b) In general, r-th powers with 0 < r < 1 of finite variation processes do not have to be

of finite variation, as the following deterministic example exhibits. Let X be given by:

Xt =
1

n2
−
(

1 +
1

n

)(
t− 1 +

1

n

)
for t ∈

[
1 − 1

n
, 1 − 1

n+ 1

)
, n ∈ N,

Xt = 0 for t ∈ [1,∞).

Then we have that X1−(1/n) = 1/n2 and X(1− 1
n+1

)− = 0 for all n ∈ N and in each interval[
1 − 1

n , 1 − 1
n+1

)
the process X is linearly decreasing. From this it is immediate to see that

the total variation of (Xt)t∈R+ is given by 2
∑∞

n=1
1
n2 − 1, which is finite. Likewise, we see

that for 0 < r < 1 the process Xr has jumps of size 1/n2r at the times 1 − (1/n). As∑∞
n=1

1
nα is infinite for all α ≤ 1, this shows that for r ≤ 1/2 the process Xr is not of

finite variation. Note, moreover, that X is of the form studied in Theorem 4.5.4 where
ct = −

(
1 + 1

n

)
for t ∈ [1 − (1/n), 1 − (1/(n+ 1))), which is trivially predictable and locally

bounded, g(s, x) = x and µ(ds, dx) =
∑∞

n=1 δ(1−1/n)(ds)δ1/n2(dx) with δv denoting the Dirac
measure with respect to v.

Naturally, the next step is to give some readily checkable conditions for the existence of
the integrals.

Lemma 4.5.6. The integral
∫ t
0

∫
R+\{0} w(s−, x)µ(ds, dx) exists a.s. in the usual sense, if

the integral
∫ t
0

∫
R+\{0}(g(s−, x))rµ(ds, dx) exists a.s. or there is some a.s. finite random

variable C > 0 such that Xt ≥ C for all t ∈ R
+.

Proof. In the first case the existence follows by a standard majorization argument from
0 ≤ w(s, x) = (Xs + g(s, x))r − (Xs)

r ≤ (g(s, x))r (Lemma 4.5.2). Likewise, we observe
in the second case that we can argue ω-wise and the function x 7→ xr is Lipschitz on any
interval of the form [a,∞) with a ∈ R

+\{0}. Thus there is a (possibly random) K ∈ R
+

such that 0 ≤ (Xs + g(s, x))r − (Xs)
r ≤ Kg(s, x). Hence, the claim follows by a dominated

convergence argument, since the integral
∫ t
0

∫
R+\{0} g(s−, x)µ(ds, dx) exists.
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The condition Xt ≥ C actually means that the previous Theorem 4.5.1 applies.

Lemma 4.5.7. The integral
∫ t
0

∫
R+\{0}

(
(Xs− + g(s−, x))r −Xr

s−
)
µ(ds, dx) exists in the

usual sense, provided ct ≥ 0 for all t ∈ R
+. In particular, the process X is monotonically

increasing then.

Proof. The monotonicity of X is obvious. We assume ct = 0 ∀ t ∈ R
+ first. As the

mapping x 7→ xr is monotone, also the process Xr has càdlàg monotonically increasing
paths. Thus Xr is necessarily of finite variation (on compacts). Denoting the variation
of a function f over a time interval [t1, t2] with 0 ≤ t1 ≤ t2 by var(f ; t1, t2), one deducts
that var(Xr

t , t1, t2) = Xr
t2 − Xr

t1 =
∑

t1<s≤t2
∆ (Xr

s ) =
∑

t1<s≤t2
|∆ (Xr

s )|. But obviously,
∑

t1<s≤t2
|∆ (Xr

s )| =
∫ t2
t1

∫
R+\{0}

∣∣(Xs− + g(s−, x))r −Xr
s−
∣∣µ(ds, dx) and hence the finite

variation of Xr implies the existence of the integral.
If c does not vanish, we obtain Xr

t2 −Xr
t1 ≥∑t1<s≤t2

∆ (Xr
s ) and can then basically argue

as before.

Lemma 4.5.8. Suppose the function g(s, x) = g(x) is deterministic and independent of s
and the extended Poisson random measure µ is the jump measure of a Lévy subordinator
with Lévy measure ν.Then the integral

∫ t

0

∫

R+\{0}

(
(Xs− + g(x))r −Xr

s−
)
µ(ds, dx)

is a.s. defined for all t ∈ R
+ provided

∫
0≤x≤1 g(x)

rν(dx) is finite.

Proof. Recall that E(µ(ds, dx)) = ds×ν(dx) in the given set-up. The existence of the inte-
gral follows immediately by combining Lemma 4.5.6 and the fact that

∫
0≤x≤1 g(x)

rν(dx) <

∞ implies the existence of
∫ t
0

∫
R+\{0} g(x)

rµ(ds, dx) for all t ∈ R
+ (cf. Marcus and Rosinski

(2005, p. 113)).

Regarding the existence of the integral with respect to the Lebesgue measure, we only
present the following criterion (a standard consequence of dominated convergence), which
is applicable to many processes of interest.

Lemma 4.5.9. Assume that there exists a (possibly random) function f : R
+ → R

+

with
∫ t
0 f(t)dt < ∞ a.s. such that |rXr−1

t− ct| ≤ f(t) for all t ∈ R
+. Then the integral∫ t

0 rX
r−1
t− ctdt exists in the Lebesgue sense.The latter is in particular the case if there are

(possibly random) constants C ≥ 0 and α > −1 such that |rXr−1
t− ct| ≤ Ctα.

For positive Lévy processes, i.e. Lévy subordinators, one can immediately apply the
above results and obtain the following.

Corollary 4.5.10. Let (Lt)t∈R+ be a Lévy subordinator with initial value L0 ∈ R
+, asso-

ciated drift γ and jump measure µ. Then for 0 < r < 1 we have that the unique positive
process Lr is of finite variation and

dLr
t = rγLr−1

t− dt+

∫

R+\{0}

(
(Lt− + x)r − Lr

t−
)
µ(dt, dx),

where the drift rγLr−1
t− is predictable. Moreover, the drift is locally bounded, if and only if

L0 > 0 or γ = 0.
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Proof. If γ is zero, the integrability condition imposed on the drift in Theorem 4.5.4 is
trivially satisfied and in the case of a non-vanishing γ we know that Lt ≥ γt for all t ∈ R

+.
The latter gives rγLr−1

t ≤ rγrtr−1 and so an application of Lemma 4.5.9 establishes the
existence of

∫ t
0 rγL

r−1
t dt in the Lebesgue sense. Finally, noting that Lévy subordinators are

monotonically increasing and using Lemma 4.5.7, the corollary follows immediately from
Theorem 4.5.4. The result on the local boundedness of the drift is immediate.

4.5.2. The multivariate case

The aim of this section is to generalise the above univariate results to processes taking
values in the cone of positive semi-definite d× d matrices. For reasons becoming clear later
we only take square roots, but generalizations to general roots are straightforward and we
shall indicate them. Before giving rigorous results and proofs, we want to give intuitive
but non-rigorous arguments showing what the results should be. The reason is that for
the rigorous proof we will need the multidimensional Itô formula and the derivative of the
matrix square root, whereas the following two elementary lemmata immediately allow for
an intuitive argument implying what the result should be. Though these lemmata are
rather elementary, we decided to give complete proofs, as they seem to be unavailable in
the standard literature, but should be useful in many situations.

The first result generalizes the representation for the product of two one-dimensional
semi-martingales (confer e.g. Protter (2004, p. 68)) to matrix products of semi-martingales
and is briefly stated, without proof, in Karandikar (1991) (for the continuous case already
in Karandikar (1982a,b)).

Lemma 4.5.11. Let m,n, d ∈ N and A and B be semi-martingales taking values in
Md,m(R) and Mm,n(R), respectively. Then the matrix product AB in Md,n(R) is a semi-
martingale and

AtBt =

∫ t

0
At−dBt +

∫ t

0
dAtBt− + [A,B]Mt

where [A,B]Mt ∈Md,n(R) is defined by

[A,B]Mij,t =

m∑

k=1

[Aik, Bkj]t.

If the continuous part of the quadratic covariation of A and B is zero, we have

[A,B]Mt = A0B0 +
∑

0<s≤t

∆As∆Bs.

Proof. Applying the univariate result component-wise to AB we obtain for 1 ≤ i ≤ d,
1 ≤ j ≤ n:

(AtBt)ij =
m∑

k=1

Aik,tBkj,t =
m∑

k=1

(∫ t

0
Aik,s−dBkj,s +

∫ t

0
Bkj,s−dAik,s + [Aik, Bkj ]t

)

=

(∫ t

0
As−dBs +

∫ t

0
dAsBs− + [A,B]Mt

)

ij

.
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In particular, we see immediately that all components of AB are semi-martingales being
sums of products of semi-martingales. Thus AB is a matrix-valued semi-martingale.

If the continuous quadratic covariation is zero, we have that

[A,B]Mt =

m∑

k=1

[Aik, Bkj]t =

m∑

k=1

(
Aik,0Bkj,0 +

∑

0<s≤t

∆Aik,s∆Bkj,s

)

=

(
A0B0 +

∑

0<s≤t

∆As∆Bs

)

ij

,

since ∆As = (∆Akl,s)1≤k≤d, 1≤l≤m and likewise for B.

Remark 4.5.12. Obviously the operator [·, ·]M plays the same role for the matrix multi-
plication of matrix-valued semi-martingales, as the quadratic variation does for ordinary
multiplication of one-dimensional semi-martingales. Therefore we call the operator [·, ·]M
the matrix covariation. Note that in general it can be decomposed into

[A,B]Mt = A0B0 + [A,B]M,c
t +

∑

0<s≤t

∆As∆Bs

where [A,B]M,c
t,ij =

∑m
k=1[Aik, Bkj]

c
t , i.e. into a continuous part and a pure jump part.

Our next result concerns quadratic equations of positive semi-definite matrices.

Lemma 4.5.13. Let A,B ∈ S
+
d . The equation

X2 +AX +XA−B = 0

has a unique positive semi-definite solution given by

X =
√
A2 +B −A.

Proof. We start by establishing the positive semi-definiteness of
√
A2 +B − A. It is clear

that A2 + B ≥ A2. Observing that the matrix square root is a matrix monotone function
(i.e. preserves the ordering on S

+
d , see e.g. Bhatia (1997, Proposition V.1.8)), we have√

A2 +B ≥ A, which is equivalent to the claim.
Solving the equation can actually be done using the standard trick for complex quadratic

equations:

X2 +AX +XA−B = (X +A)2 −A2 −B = 0 ⇔ (X +A)2 = A2 +B.

Taking any “square root” in the right hand equation would now lead to a solution X.
However, we consider only positive semi-definite solutions and thus X + A has to be in
S

+
d , which is the case, if and only if we take the unique positive semi-definite square root.

Therefore there is one and only one solution in S
+
d which is given by X =

√
A2 +B−A.

Let now a positive semi-definite process X be given by

dXt = ctdt +

∫

S
+
d \{0}

g(t−, x)µ(dt, dx)
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where c is an Sd-valued, predictable and locally bounded process, µ an extended Poisson
random measure on R

+ × S
+
d \{0} and g(s, x) is Fs × B(S+

d \{0}) measurable in (ω, x) and

càdlàg in s. Moreover, g(s, x) assumes only values in S
+
d . Suppose Y :=

√
X is representable

as dYt = atdt +
∫

S
+
d \{0} w(t−, x)µ(dt, dx) for some appropriate at and w(t, x) being of the

same type as ct and g(t, x). Using a differential version of Lemma 4.5.11 we obtain

dY 2
t = Yt−dYt + dYtYt− + d[Y, Y ]Mt = Yt−dYt + dYtYt− + (∆Yt)

2

= Yt−

(
atdt +

∫

S
+
d \{0}

w(t−, x)µ(dt, dx)

)

+

(
atdt+

∫

S
+
d \{0}

w(t−, x)µ(dt, dx)

)
Yt− +

∫

S
+
d \{0}

w2(t−, x)µ(dt, dx)

=
(√

Xt−at + at

√
Xt−

)
dt

+

∫

S
+
d \{0}

(√
Xt−w(t−, x) + w(t−, x)

√
Xt− + w2(t−, x)

)
µ(dt, dx).

As one clearly needs to have dY 2
t = dXt, the equations ct =

√
Xt−at + at

√
Xt− and√

Xt−w(t−, x)+w(t−, x)√Xt−+w2(t−, x) = g(t−, x) have to hold. Assuming the necessary
invertibility this gives at = X−1

t− ct, where Xt− : Md(R) → Md(R) is the linear operator

Z 7→ √
Xt−Z + Z

√
Xt−, and w(s−, x) =

√
Xs− + g(s−, x) − √

Xs− using Lemma 4.5.13.
In the following we show that this representation for

√
X is indeed true. It will also turn

out that we implicitly obtained the derivative of the positive definite matrix square root,
which is given in the next Lemma. Here and in the following we regard S

++
d as a subset of

the vector space Sd, which we identify with R
d(d+1)

2 when necessary.

Lemma 4.5.14. The positive definite square root
√· : S

++
d → S

++
d is continuously dif-

ferentiable and the derivative D
√
X is given by the inverse of the linear operator Z 7→√

XZ + Z
√
X.

Proof. The square root is the inverse of the bijective function f : S
++
d → S

++
d , X 7→ X2.

It is easy to see that Df(X) is the linear operator Z 7→ XZ + ZX (see also Bhatia (1997,
Example X.4.2)). Using that σ(Df(X)) = σ(X) + σ(X) ⊂ R

+\{0}, we see that Df(X) is
invertible for all X ∈ S

++
d . Thus, Rudin (1976, Theorem 9.24) shows that the square root

is continuously differentiable and the derivative is given by the claimed linear operator.

With the above results, we can now generalize our results on the behaviour of univariate
square roots in a straightforward manner to the multivariate case.

Theorem 4.5.15. Let (Xt)t∈R+ be a given adapted càdlàg process which takes values in
S

++
d , is locally bounded within S

++
d and can be represented as

dXt = ctdt +

∫

S
+
d \{0}

g(t−, x)µ(dt, dx) (4.5.3)

where c is an Sd-valued, predictable and locally bounded process, µ an extended Poisson
random measure on R

+ × S
+
d \{0}, and g(s, x) is Fs ×B(S+

d \{0}) measurable in (ω, x) and
càdlàg in s. Moreover, g(s, x) takes only values in S

+
d .
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Then the integral
∫ t
0

∫
S
+
d \{0}

(√
Xs− + g(s−, x)−√

Xs−
)
µ(ds, dx) exists a.s. for all t ∈ R

+

and the unique positive definite square root process Y =
√
X is given by

Y0 =
√
X0, dYt = atdt+

∫

S
+
d \{0}

w(t−, x)µ(dt, dx),

with
at = X−1

t− ct,

where Xt− is the linear operator Z 7→ √
Xt−Z + Z

√
Xt− on Md(R). The drift process a is

predictable and locally bounded and

w(s, x) :=
√
Xs + g(s, x) −

√
Xs

is Fs × B(S+
d \{0}) measurable in (ω, x) and càdlàg in s. Moreover, w(s, x) takes only

positive semi-definite values.

Proof. The representation of Y follows from Proposition 4.3.4 and Lemma 4.5.14 by the
same arguments as used for Theorem 4.5.1.

Using the vec-transformation and the Kronecker product, the linear operator Xt− is
easily seen to be symmetric (self-adjoint) and to possess a spectrum that is positive and
locally bounded away from 0, since σ(Xt−) = σ(

√
Xt−)+σ(

√
Xt−), the function f : S

++
d →

S
++
d , Z 7→ min(σ(Z)) is continuous and

√
X is locally bounded within S

++
d . The variational

characterizations of the eigenvalues of a self-adjoint operator (cf. Horn and Johnson (1985,

Section 4.2) for a matrix formulation) imply that min (σ(Xt−)) = min‖x‖2̃ 6=0

(‖Xt−x‖2̃
‖x‖2̃

)
.

Hence, ‖X−1
t− ‖2̃ ≤ (min (σ(Xt−)))−1 is locally bounded. Here ‖ · ‖2̃ denotes the norm on

Md(R) given by ‖x‖2̃ = ‖vec(x)‖2 =
√

tr(xxT ), with ‖ · ‖2 being the Euclidean norm on

R
d2

, and the associated operator norm on the linear operators over Md(R). This establishes
the local boundedness of a.

That w(s, x) takes only positive semi-definite values follows from Lemma 4.5.13 and the
additional properties stated are straightforward.

Remark 4.5.16. In principle we could immediately extend the above result to arbitrary
r-th powers with 0 < r < 1 again. Yet, this would mean that we need to calculate Dfr

where fr denotes the unique positive definite r-th power and at would become Dfr(Xt−)ct.
In general there seems to be no useful formula for Dfr. Arguing as in Lemma 4.5.14 was
possible for r = 1/n with n ∈ N, but then Dfr(X) would be characterized as the inverse
of the linear operator Z 7→ ∑

j+k=n−1;j,k∈N0
XjrZXkr. Although in principle this can be

applied, it appears to be infeasible for general n.

Assuming the existence of the relevant integrals, the strict positivity condition can again
be relaxed. To be able to argue as in the univariate case we need two new technical results,
the first one involving the so-called trace norm ‖ · ‖tr of matrices. For A ∈ Md(R) it is
defined as ‖A‖tr = tr

(
(AA∗)1/2

)
and it is easy to see that ‖A‖tr = tr(A) for A ∈ S

+
d .

Lemma 4.5.17. Let A,B ∈ S
+
d and 0 < r < 1. Then the function R

+ → R
+, ǫ 7→

‖(A+ ǫId +B)r − (A+ ǫId)
r‖tr is monotonically decreasing. In particular,

‖(A+ ǫId +B)r − (A+ ǫId)
r‖tr ≤ ‖(A+B)r −Ar‖tr

for all ǫ ∈ R
+.
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Proof. Denote for some matrix Z ∈ S
+
d by λ1(Z), λ2(Z), . . . , λd(Z) the eigenvalues of Z

sorted in ascending order.
Choose now some arbitrary ǫ, ǫ̃ ∈ R

+ with ǫ ≥ ǫ̃. From Horn and Johnson (1985,
Corollary 4.3.3) we obtain λi(A+B) ≥ λi(A) for i = 1, 2, . . . , d. This implies using Lemma
4.5.2 that

d∑

i=1

((λi(A+B) + ǫ)r − (λi(A) + ǫ)r)

=

d∑

i=1

((λi(A) + ǫ+ λi(A+B) − λi(A))r − (λi(A) + ǫ)r)

≤
d∑

i=1

((λi(A) + ǫ̃+ λi(A+B) − λi(A))r − (λi(A) + ǫ̃)r)

=
d∑

i=1

((λi(A+B) + ǫ̃)r − (λi(A) + ǫ̃)r) .

Noting that the trace of a matrix is the sum of its eigenvalues and that λi(Z+ǫId) = λi(Z)+ǫ
and λi(Z)r = λi(Z

r) for all Z ∈ S
+
d and ǫ > 0, we conclude tr((A + ǫId + B)r) − tr((A +

ǫId)
r) ≤ tr((A+ ǫ̃Id +B)r) − tr((A+ ǫ̃Id)

r). This immediately implies

‖(A + ǫId +B)r − (A+ ǫId)
r‖tr ≤ ‖(A+ ǫ̃Id +B)r − (A+ ǫ̃Id)

r‖tr.

This shows the claimed monotonicity and inequality, choosing ǫ̃ = 0.

Lemma 4.5.18. Let A ∈ S
+
d , ǫ ∈ R

+ and denote by Aǫ the linear operator Md(R) →
Md(R) : X 7→ √

A+ ǫIdX +X
√
A+ ǫId. Then we have for every x ∈Md(R) that ‖A−1

ǫ x‖2̃

is decreasing in ǫ.
Here ‖ · ‖2̃ denotes again the norm on Md(R) given by ‖x‖2̃ = ‖vec(x)‖2 =

√
tr(xxT ),

with ‖ ·‖2 being the Euclidean norm on R
d2

, and the associated operator norm on the linear
operators over Md(R).

We understand ‖A−1
0 x‖2̃ = ∞ in the case A ∈ S

+
d \S++

d above.

Proof. Note first that ‖A−1
ǫ x‖2̃ = ‖

(√
A+ ǫId ⊗ Id + Id ⊗

√
A+ ǫId

)−1
vec(x)‖2 and that√

A+ ǫId⊗Id+Id⊗
√
A+ ǫId ∈ S

+
d2 and in particular self-adjoint. Thus we have ‖A−1

ǫ x‖2̃ =
〈
vec(x),

(√
A+ ǫId ⊗ Id + Id ⊗

√
A+ ǫId

)−2
vec(x)

〉1/2
. Using that taking the inverse re-

verses the ordering on S
+
d2 , this implies that it is sufficient to show that (

√
A+ ǫId ⊗ Id +

Id⊗
√
A+ ǫId)

2 is increasing in ǫ in the ordering on Sd2. But let now U ∈Md(R) be a unitary
matrix such that U∗AU is diagonal, then (U∗⊗U∗)(

√
A+ ǫId⊗Id+Id⊗

√
A+ ǫId)

2(U⊗U)
is diagonal and obviously increasing in ǫ. Observing that U ⊗ U is again unitary and that
such transformations preserve the ordering on S

+
d2 concludes the proof.

Proposition 4.5.19. Let (Xt)t∈R+ be a given adapted càdlàg process which takes values in
S

+
d and can be represented as

dXt = ctdt +

∫

S
+
d \{0}

g(t−, x)µ(dt, dx)
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where c is an Sd-valued, predictable and locally bounded process, µ an extended Poisson
random measure on R

+ × S
+
d \{0} and g(s, x) is Fs × B(S+

d \{0}) measurable in (ω, x) and
càdlàg in s. Moreover, g(s, x) takes values in S

+
d . Let Xt− be the linear operator Md(R) →

Md(R), Z 7→ √
Xt−Z + Z

√
Xt− and assume that the integrals

∫ t
0 X−1

s−csds (in the Lebesgue
sense) and ∫ t

0

∫

S
+
d \{0}

(√
Xs− + g(s−, x) −

√
Xs−

)
µ(ds, dx)

exist a.s. for all t ∈ R
+.

Then the unique positive semi-definite square root process Y =
√
X is representable as

Y0 =
√
X0, dYt = atdt+

∫

S
+
d \{0}

w(t−, x)µ(dt, dx), (4.5.4)

where the drift

at = X−1
t− ct

is predictable and where

w(s, x) :=
√
Xs + g(s, x) −

√
Xs

is Fs × B(S+
d \{0}) measurable in (ω, x) and càdlàg in s. Moreover, w(s, x) takes only

positive semi-definite values and Y is a.s. of finite variation.

Due to the conventions of Lebesgue integration theory we always have at = 0 if ct = 0
above.

Proof. We first show that Y =
√
X is representable by (4.5.4). Recall below that the

integral of an Md(R)-valued function exists if and only if the integral of the norm exists for
one and hence all norms on Md(R).

For any ǫ > 0 we define the process Xǫ,t := Xt + ǫId. Obviously Xǫ,t ≥ ǫId for all t ∈ R
+

and the process Xǫ is of finite variation and hence locally bounded. Observing that for all
δ,K > 0 the set {x ∈ S

++
d : x ≥ δId, ‖x‖ ≤ K} is convex and compact, this implies that

Xǫ is locally bounded within S
++
d and

Xǫ,t = X0 + ǫId +

∫ t

0
csds+

∫ t

0

∫

S
+
d \{0}

g(s−, x)µ(ds, dx).

From Theorem 4.5.15 we obtain that

√
Xt + ǫId =

√
Xǫ,t =

√
X0 + ǫId +

∫ t

0
X−1

ǫ,s−csds (4.5.5)

+

∫ t

0

∫

S
+
d \{0}

(√
Xs− + ǫId + g(s−, x) −

√
Xs− + ǫId

)
µ(ds, dx),

where Xǫ,s− denotes the linear operator

Md(R) →Md(R) : Z 7→
√
Xs− + ǫIdZ + Z

√
Xs− + ǫId.
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For s ∈ R
+ we clearly have that

√
Xs− + ǫ→ √

Xs− and Xǫ,s− → Xs− point-wise as ǫ→ 0.
Moreover, Lemma 4.5.18 ensures ‖X−1

ǫ,s−cs‖2̃ ≤ ‖X−1
s−cs‖2̃ for all ǫ > 0. By assumption

‖X−1
ǫ,s−cs‖2̃ is Lebesgue-integrable over [0, t] and so majorized convergence gives that

∫ t

0
X−1

ǫ,s−csds→
∫ t

0
X−1

s−csds as ǫ→ 0.

From Lemma 4.5.17 we see that ‖
√
Xs− + ǫId + g(s−, x) −√

Xs− + ǫId‖tr is decreasing in
ǫ. So our assumptions and majorized convergence ensure that

lim
ǫ→0

∫ t

0

∫

S
+
d \{0}

(√
Xs− + ǫId + g(s−, x) −

√
Xs− + ǫId

)
µ(ds, dx)

=

∫ t

0

∫

S
+
d \{0}

(√
Xs− + g(s−, x) −

√
Xs−

)
µ(ds, dx).

Combining these results we obtain, from (4.5.5) and by letting ǫ→ 0,

√
Xt =

√
X0 +

∫ t

0
X−1

s−csds+

∫ t

0

∫

S
+
d \{0}

(√
Xs− + g(s−, x) −

√
Xs−

)
µ(ds, dx),

which concludes the proof of the representation for Y .
To establish the finite variation of the process Y it suffices now to argue that both

integral processes
∫ t
0 X−1

s−csds and
∫ t
0

∫
S
+
d \{0}

√
Xs− + g(s−, x)−√

Xs−µ(ds, dx) are of finite

variation. For the second this is immediately clear and for the first we only need to observe
that the existence in the Lebesgue sense implies the existence of

∫ t
0 ‖X−1

s−cs‖ds for any norm
‖ · ‖. The latter is strictly increasing (thus of finite variation) when viewed as a process
in t and its total variation is an upper bound for the total variation of the first integral
calculated using the same norm ‖ · ‖.

Remark 4.5.20. When replacing the square root with an arbitrary continuously differ-
entiable function f : S

+
d → Sd, the above proposition remains valid if ‖Df(x + ǫId)z‖ ≤

K‖Df(x)z‖ and

‖f(x+ ǫId + y) − f(x+ ǫId)‖ ≤ K̃‖f(x+ y) − f(x)‖ (4.5.6)

for all x, y ∈ S
+
d , z ∈ Sd and ǫ ∈ R

+, where K and K̃ are some constants. Then f(X) is
representable by (4.5.4) with at = Df(Xt−)ct and w(t, x) = f(Xt + g(t, x)) − f(Xt).

For general r-th powers with 0 < r < 1 condition (4.5.6) holds due to Lemma 4.5.17.
In particular, this implies that the above theorem applies immediately to the r-th power if
ct = 0 for all t ∈ R

+. Furthermore, the square root can be replaced by the r-th power in all
the following Lemmata 4.5.23, 4.5.24, 4.5.25, 4.5.26 and 4.5.27.

Before giving criteria for the existence of the integrals assumed in the above theorem, we
establish some auxiliary results. The first one establishes that S

+
d -increasing functions are

always of finite variation.

Lemma 4.5.21. Let f : R
+ → S

+
d be an S

+
d -increasing function, i.e. f(a) ≤ f(b) for all

a, b ∈ R
+ with a ≤ b. Then f is of finite variation on compacts.
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Proof. Obviously we are free to choose any norm on Md(R). Let thus ‖ · ‖tr again denote
the trace norm and recall that ‖A‖tr = tr(A) for all A ∈ S

+
d . For s, t ∈ R

+, t ≥ s we obtain

‖f(t) − f(s)‖tr = tr(f(t) − f(s)) = tr(f(t)) − tr(f(s)),

due to the linearity of the trace. From this we can immediately conclude that the total
variation of f over any interval [a, b] with a, b ∈ R

+, a ≤ b calculated in the trace norm is
given by tr(f(b))− tr(f(a)), which is finite. Hence, f is of finite variation on compacts.

The trace norm has also been used in Barndorff-Nielsen and Pérez-Abreu (2007) and
Pérez-Abreu and Rocha-Arteaga (2005) and thus seems to be very well adapted to the
structure of matrix subordinators. The lemma could alternatively be easily established
using the theory for general cones developed in Duda (2007) and the properties of the trace
functional/norm.

Moreover, we need to consider an appropriate matrix extension of the inequality
√
a+ b−√

a ≤
√
b for all a, b ∈ R

+. Actually, the question whether
√
A+B −

√
A ≤

√
B for

A,B ∈ S
+
d seems not to have been discussed in the literature yet. However, the following

norm version suffices for our purposes.

Definition 4.5.22. Let A,B ∈Md(R) then |A| = (A∗A)1/2 is called the modulus (absolute
value) of A.

A norm ‖ · ‖ on Md(R) is said to be unitarily invariant, if ‖UAV ‖ = ‖A‖ for all unitary
matrices U, V ∈Md(R).

For more information see e.g. Bhatia (1997) and for unitarily invariant norms also Horn
and Johnson (1985).

Lemma 4.5.23 (Ando (1988, Corollary 2)). Let A,B ∈ S
+
d and ‖ · ‖ be any unitarily

invariant norm. Then
‖
√
A−

√
B‖ ≤ ‖

√
|A−B|‖.

This result has originally been obtained in Birman, Koplienko and Solomjak (1975).
We can simplify the result somewhat by using the operator norm associated to the usual
Euclidean norm on R

d.

Corollary 4.5.24 (cf. Bhatia (1997, Section X.1)). Let A,B ∈ S
+
d and let ‖ · ‖2 denote the

operator norm associated with the Euclidean norm. Then

‖
√
A−

√
B‖2 ≤

√
‖ (|A−B|) ‖2.

In particular, ‖
√
A+B −

√
A‖2 ≤

√
‖B‖2.

Armed with these prerequisites we can now state criteria for the existence of the integrals
in Theorem 4.5.19.

Lemma 4.5.25. The integral
∫ t
0

∫
S
+
d \{0} w(s−, x)µ(ds, dx) exists a.s. for all t ∈ R

+ in the

usual sense if the integrals
∫ t

0

∫

S
+
d \{0}

√
‖g(s−, x)‖2µ(ds, dx) or

∫ t

0

∫

S
+
d \{0}

√
g(s−, x)µ(ds, dx)

exist a.s. for all t ∈ R
+ or there is some S

++
d -valued random variable C such that Xt ≥ C

for all t ∈ R
+.
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Due to the equivalence of all norms one can actually use any other norm instead of ‖ · ‖2.
Moreover, the second case corresponds to Theorem 4.5.15.

Proof. First of all we note that
∫ t
0

∫
S
+
d \{0}

√
‖g(s−, x)‖2µ(ds, dx) exists if and only if the

integral
∫ t
0

∫
S
+
d \{0}

√
g(s−, x)µ(ds, dx) exists. This follows immediately, since according

to the definition of integration with respect to Poisson random measures the integral∫ t
0

∫
S
+
d \{0}

√
g(s−, x)µ(ds, dx) exists if and only if

∫ t

0

∫

S
+
d \{0}

‖
√
g(s−, x)‖µ(ds, dx)

exists for one and hence all norms ‖ · ‖, and ‖√x‖2 =
√

‖x‖2 for all x ∈ S
+
d .

Noting that Corollary 4.5.24 gives ‖w(s−, x)‖2 ≤
√

‖g(s−, x)‖2, a simple majorization

argument establishes the existence of
∫ t
0

∫
S
+
d \{0} w(s−, x)µ(ds, dx) in the first case.

Assume now that Xt ≥ C for all t ∈ R
+ holds with some C ∈ S

+
d . Then we once

again argue ω-wise. The square root function is Lipschitz on any set A ⊂ S
++
d for which

there is some C0 ∈ S
++
d such that C ≥ C0 for all C ∈ A (see, for instance, Bhatia

(1997, p. 305)). Thus there exists a constant K (possibly depending on C) such that∥∥√Xs− + g(s−, x)−√
Xs−

∥∥ ≤ K
∥∥g(s−, x)

∥∥. This implies the existence of the integral, as∫ t
0

∫
S
+
d \{0} g(s−, x)µ(ds, dx) exists due to our assumptions on the process X.

Lemma 4.5.26. The integral
∫ t
0

∫
S
+
d \{0} w(s−, x)µ(ds, dx) exists a.s. for all t ∈ R

+ in the

usual sense provided ct ∈ S
+
d for all t ∈ R

+, i.e. the process X is S
+
d -increasing.

Proof. The S
+
d -increasingness of X is clear. Since the square root preserves the ordering on

S
+
d , the process

√
X is S

+
d -increasing, as well. Thus, Lemma 4.5.21 ensures that

√
X is of

finite variation.
Now, we first assume ct = 0 for all t ∈ R

+. Denoting the total variation (in the trace
norm) of a function f over a time interval [t1, t2] with 0 ≤ t1 ≤ t2 by var(f ; t1, t2), one
deducts that var(

√
X, t1, t2) = tr(

√
Xt2) − tr(

√
Xt1) =

∑
t1<s≤t2

‖∆
(√
Xs

)
‖tr. But,

∑

t1<s≤t2

∥∥∆
(√

Xs

)∥∥
tr

=

∫ t2

t1

∫

S
+
d \{0}

∥∥√Xs− + g(s−, x) −
√
Xs−

∥∥
tr
µ(ds, dx)

obviously and hence the finite variation of
√
X implies the existence of the integral.

If ct does not vanish, we obtain tr(
√
Xt2)− tr(

√
Xt1) ≥

∑
t1<s≤t2

‖∆
(√
Xs

)
‖tr and can

argue as before.

For the following recall that we refer to S
+
d -increasing Lévy processes as matrix subordi-

nators.

Lemma 4.5.27. Suppose the function g(s, x) = g(x) is deterministic and independent of s
and the extended Poisson random measure µ is the jump measure of a matrix subordinator
with Lévy measure ν. Then the integral

∫ t

0

∫

S
+
d \{0}

(√
Xs− + g(x) −

√
Xs−

)
µ(ds, dx)

is indeed a.s. defined for all t ∈ R
+ provided

∫
0≤‖x‖2≤1, x∈S

+
d \{0}

√
‖g(x)‖2ν(dx) is finite.



4.5. Roots of positive semi-definite processes 83

Again we can use any other norm instead of ‖ · ‖2.

Proof. Recall that E(µ(ds, dx)) = ds × ν(dx) in the given set-up. The existence of the
integral follows immediately by combining Lemma 4.5.25 and the fact that

∫

‖x‖2≤1

√
‖g(x)‖2ν(dx) =

∫

‖x‖2≤1
‖
√
g(x)‖2ν(dx) <∞

implies the existence of ∫ t

0

∫

S
+
d \{0}

√
g(x)µ(ds, dx)

for all t ∈ R
+ (cf. Marcus and Rosinski (2005, p. 113)). Here we note that

∫ t

0

∫

S
+
d \{0}

min (‖g(x)‖2, 1) ν(dx)ds ≤ t

(
ν
(
{x ∈ S

+
d : ‖x‖2 > 1}

)
+

∫

‖x‖2≤1

√
‖g(x)‖2ν(dx)

)

is finite.

Regarding the existence of the integral with respect to the Lesbesgue measure, we only
restate the criterion of Lemma 4.5.9 for the multivariate case.

Lemma 4.5.28. Assume that there exists a (possibly random) function f : R
+ → R

+ with∫ t
0 f(t)dt < ∞ a.s. such that ‖X−1

t− ct‖ ≤ f(t) for all t ∈ R
+. Then the integral

∫ t
0 X−1

t− ctdt
exists in the Lebesgue sense. The latter is in particular the case, if there are (possibly
random) constants C ≥ 0 and α > −1 such that ‖X−1

t− ct‖ ≤ Ctα.

After these general considerations we shall now turn to studying the roots of matrix
subordinators.

Corollary 4.5.29. Let (Lt)t∈R+ be a matrix subordinator with initial value L0 ∈ S
+
d , as-

sociated drift γ and jump measure µ. Then the unique positive semi-definite process
√
L is

of finite variation and, provided that either L0 ∈ S
++
d or γ ∈ S

++
d ∪ {0},

d
√
Lt = L−1

t− γdt+

∫

S
+
d \{0}

(√
Lt− + x−

√
Lt−

)
µ(dt, dx),

where Lt− is the linear operator on Md(R) with Z 7→ √
Lt−Z + Z

√
Lt−. The drift L−1

t− γ is
predictable, and additionally locally bounded provided L0 ∈ S

++
d or γ = 0.

Proof. As the square root preserves the ordering on S
+
d ,

√
L is S

+
d -increasing and thus of

finite variation by Lemma 4.5.21.
In the case L0 ∈ S

++
d the Corollary follows from Theorem 4.5.15.

Else we know from Lemma 4.5.26 that the integral
∫ t
0

∫
S
+
d \{0}

(√
Ls− + x−√

Ls−
)
µ(ds, dx)

exists a.s. for all t ∈ R
+. Next we show that the integral

∫ t
0 L−1

s−γds exists for all t ∈ R
+.

For γ = 0 this is trivial. For γ ∈ S
++
d , we have that Ls ≥ γs ∈ S

++
d . Using the variational

characteristics of the eigenvalues as in the proof of Theorem 4.5.15 we get

min
‖x‖2̃ 6=0

(‖Ls−x‖2̃

‖x‖2̃

)
= min (σ(Ls−)) = 2min

(
σ(
√
Ls−)

)
≥ 2

√
s
√

min (σ(γ)).
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Therefore ‖L−1
s−‖2̃ ≤

(
min

(
σ(Ls−)

))−1 ≤
(
2
√

min
(
σ(γ)

))−1
s−1/2. Hence, ‖L−1

s−γ‖ ≤
Cs−1/2 for all s ∈ R

+ with some constant C ∈ R
+ and so Lemma 4.5.28 establishes

the existence of
∫ t
0 Ls−csds for all t ∈ R

+ in the Lebesgue sense. Therefore Proposition
4.5.19 concludes the proof.

Remark 4.5.30. If the Lévy process is supposed to have initial value in ∂S
+
d (e.g. zero, as

is usual) and non-zero drift γ ∈ ∂S
+
d , then there appears to be basically no hope to obtain a

representation of the above type.

4.6. Roots of Ornstein-Uhlenbeck processes

Now we turn to studying the behaviour of the roots of positive Ornstein-Uhlenbeck processes
as defined in Section 4.4. Recall in particular that the driving Lévy process L is assumed
to be a (matrix) subordinator.

Straightforward calculations based on Theorems 4.5.1 and 4.5.4 establish the following
result for a univariate OU process dXt = −λXt−dt + dLt.

Proposition 4.6.1. Let (Xt)t∈R+ be a positive univariate process of Ornstein-Uhlenbeck
type driven by a Lévy subordinator L with drift γ and associated Poisson random measure
µ. Then for 0 < r < 1 the unique positive r-th power Y = Xr is of finite variation and has
the following representation:

dYt =
(
−λrXr

t− + γrXr−1
t−
)
dt +

∫

R+\{0}
((Xt− + x)r − (Xt−)r)µ(dt, dx)

=
(
−λrYt− + γrY

1−1/r
t−

)
dt +

∫

R+\{0}

(
(Y

1/r
t− + x)r − Yt−

)
µ(dt, dx),

provided that the process X is locally bounded away from zero or the integrals
∫ t
0 γrX

r−1
s− ds

and
∫ t
0

∫
R+\{0}

(
(Xs− + x)r −Xr

s−
)
µ(ds, dx) exist a.s. for all t ∈ R.

Before showing that the conditions are actually satisfied for all positive OU processes,
we show this for stationary ones, as this case is of particular interest and the proof is very
straightforward. Recall in particular that a stationary OU process can be represented as∫ t
−∞ e−λ(t−s)dLs, where the driving Lévy process has a finite logarithmic moment.

Proposition 4.6.2. Let X be a stationary positive process of OU type with driving Lévy
process L (having drift γ and non-zero Lévy measure ν). Then it is locally bounded away
from zero.

The same holds for any positive Ornstein-Uhlenbeck process X with X0 > 0 a.s.

Proof. Let us first consider the stationary case. If γ > 0, we see from Proposition 4.4.6 that
Xt ≥ γ/λ > 0 for all t, which implies thatX is locally bounded away from 0. Otherwise note
first that Xt ≥ e−λtX0 for all t ≥ 0 and that the stationary distribution is self-decomposable
(cf. Sato (1999, Theorem 17.5)). As the driving Lévy process has a non-zero Lévy measure
the stationary distribution must be non-trivial and thus by Sato (1999, Example 27.8)
absolutely continuous with respect to the Lebesgue measure. Therefore we have X0 > 0
a.s. Hence, there is a.s. a sequence of stopping times (Tn)n∈N increasing to infinity such
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that Xt ≥ 1/n for all t ∈ [0, Tn) (actually we can set Tn = ln(X0n)
λ ), which gives that X is

locally bounded away from the origin.

Obviously, the same arguments apply in the non-stationary case.

Proposition 4.6.3. Let (Xt)t∈R+ be a positive univariate process of Ornstein-Uhlenbeck
type driven by a Lévy subordinator L with drift γ and associated Poisson random measure
µ. Then the integrals

∫ t
0 γrX

r−1
s− ds and

∫ t
0

∫
R+\{0}

(
(Xs− + x)r −Xr

s−
)
µ(ds, dx) exist for all

t ∈ R and 0 < r < 1.

Proof. To show this we introduce the auxiliary process Zt = X0 +
∫ t
0 e

λsdLs for t ∈ R
+.

It holds that Zt = eλtXt for all t ∈ R
+, the process is monotonically increasing and

dZt = eλtγdt+
∫

R+\{0} e
λtxµ(dt, dx).

The increasingness implies the existence of the integral

∫ t

0

∫

R+\{0}

(
(Zs− + eλsx)r − Zr

s−
)
µ(ds, dx)

=

∫ t

0

∫

R+\{0}
eλrs

(
(Xs− + x)r −Xr

s−
)
µ(ds, dx).

Since 0 < min{1, eλrt} ≤ eλrs ≤ max{1, eλrt} for all s ∈ [0, t], this shows that the integral∫ t
0

∫
R+\{0}

(
(Xs− + x)r −Xr

s−
)
µ(ds, dx) exists for all t ∈ R.

Obviously, Zt ≥
∫ t
0 e

λsγds = γ
λ

(
eλt − 1

)
. Assuming first λ ≥ 0, this gives

∫ t

0
γrXr−1

s− ds =

∫ t

0
rγe−λ(r−1)sZr−1

s− ds ≤
∫ t

0
rγrλ1−re−λ(r−1)s

(
eλs − 1

)r−1
ds

= rγrλ1−re−λ(r−1)t

∫ t

0

(
eλs − 1

)r−1
ds.

Noting that eλs − 1 ≥ s for all s ∈ R
+, this implies the existence of

∫ t
0 γrX

r−1
s− ds for all

t ∈ R
+ immediately. In the case λ < 0 one calculates

∫ t

0
γrXr−1

s− ds ≤ rγr|λ|1−r

∫ t

0
(e−λs − 1)r−1ds,

which likewise implies the existence of the integral for all t ∈ R
+.

Remark 4.6.4. For a driftless driving Lévy process we see from

dYt = −λrYt−dt+

∫

R+\{0}

(
(Y

1/r
t− + x)r − Yt−

)
µ(dt, dx) (4.6.1)

for 0 < r < 1 that the drift part is again that of an Ornstein-Uhlenbeck process.

Moreover, observe that (4.6.1) gives a stochastic differential equation (cf. Applebaum
(2004) for information on this type of SDEs) for the r-th power, 0 < r < 1, of the OU

process. Since the derivative of y 7→ (y1/r + x)r is given by y 7→
(
y1/r/(y1/r + x)

)1−r
and

is thus obviously bounded by one for all x ∈ R
+, the function y 7→ (y1/r + x)r is (globally)

Lipschitz. This implies that for any initial value Y0 the SDE (4.6.1) has a unique solution.
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If γ > 0 one likewise has the SDE

dYt =
(
−λrYt− + γrY

1−1/r
t−

)
dt+

∫

R+\{0}

(
(Y

1/r
t− + x)r − Yt−

)
µ(dt, dx)

for the r-th power of the OU process. In this case one has only local Lipschitz continuity in
R

+ for y 7→ γry1−1/r. In such a set-up results on the existence of unique solutions are still
obtainable, but as these would require a rather lengthy discussion, we refrain from giving
any details.

From the following proposition we see that the r-th power of a positive OU process X
with γ = 0 has a representation quite similar to the one for the OU process given by
Xt = e−λtX0 +

∫ t
0

∫
R+\{0} e

−λ(t−s)xµ(ds, dx):

Proposition 4.6.5. Assume that γ = 0, 0 < r < 1 and X0 ≥ 0 a.s. Then the process
Y = Xr can be represented as

Yt = e−λrtXr
0 +

∫ t

0

∫

R+\{0}

(
(e−λ(t−s)Xs− + e−λ(t−s)x)r − (e−λ(t−s)Xs−)r

)
µ(ds, dx)

= e−λrtXr
0 +

∫ t

0

∫

R+\{0}
e−λr(t−s)

(
(Xs− + x)r −Xr

s−
)
µ(ds, dx).

Proof. As in the proof of Proposition 4.6.3 we use the auxiliary process Zt = X0 +∫ t
0

∫
R+\{0} e

λsxµ(ds, dx). For the process Zr
t we obtain from Proposition 4.5.4

dZr
t =

∫

R+\{0}

(
(Zs− + eλsx)r − Zr

s−
)
µ(ds, dx)

=

∫

R+\{0}

(
(eλsXs− + eλsx)r − (eλsXs−)r

)
µ(ds, dx).

Thus,

Zr
t = Xr

0 +

∫ t

0

∫

R+\{0}

(
(eλsXs− + eλsx)r − (eλsXs−)r

)
µ(ds, dx).

This implies the assertion via Yt = Xr
t = e−λrtZr

t .

Finally let us improve the representation of Proposition 4.6.5 for a stationary Ornstein-
Uhlenbeck process.

Proposition 4.6.6. Let X be a stationary process of OU type with driving Lévy subordi-
nator L (having non-zero Lévy measure) with a vanishing drift γ. Then for 0 < r < 1 the
stationary process Y = Xr can be represented as

Yt =

∫ t

−∞

∫

R+\{0}

(
(e−λ(t−s)Xs− + e−λ(t−s)x)r − (e−λ(t−s)Xs−)r

)
µ(ds, dx)

=

∫ t

−∞

∫

R+\{0}
e−λr(t−s)

(
(Xs− + x)r −Xr

s−
)
µ(ds, dx).
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Proof. Note that as in Proposition 4.6.5 we have that

Yt = e−λr(t−τ)
√
Xτ +

∫ t

τ

∫

R+\{0}
e−λr(t−s)

(
(Xs− + x)r −Xr

s−
)
µ(ds, dx)

holds for all τ ∈ (−∞, 0]. Letting τ go to −∞ we see that e−λr(t−τ)Xr
τ goes to zero, since

for any stationary OU process e−λ(t−τ)Xτ converges to zero. As, moreover, the left hand
side is independent of τ , the integral

∫ t

τ

∫

R+\{0}
e−λr(t−s)

(
(Xs− + x)r −Xr

s−
)
µ(ds, dx)

exists for all τ ∈ (−∞, 0] and is increasing for decreasing τ , the limit of the integrals for
τ → −∞ exists. This implies the result immediately.

Having analysed the univariate positive Ornstein-Uhlenbeck processes in depth, let us
now turn to multivariate positive definite ones and see which results can be extended. Here
we state all results again only for the square root, but extensions to more general powers are
immediate. The general result on the representation of the square root follows immediately
from the results of Section 5.2.

Proposition 4.6.7. Let (Xt)t∈R+ be an S
+
d -valued process of Ornstein-Uhlenbeck type

driven by a matrix subordinator L with drift γ ∈ S
+
d and associated Poisson random mea-

sure µ. Then the unique positive square root Y =
√
X is of finite variation and has the

following representation:

dYt = X−1
t− (AXt− +Xt−A

∗ + γ) dt+

∫

S
+
d \{0}

(√
Xt− + x−

√
Xt−

)
µ(dt, dx)

= Y−1
t−
(
AY 2

t− + Y 2
t−A

∗ + γ
)
dt +

∫

S
+
d \{0}

(√
Y 2

t− + x− Yt−

)
µ(dt, dx),

provided that the process X is locally bounded within S
++
d or the integrals

∫ t

0
X−1

s− (AXs− +Xs−A
∗ + γ) ds and

∫ t

0

∫

S
+
d \{0}

(√
Xs− + x−

√
Xs−

)
µ(ds, dx)

exist a.s. for all t ∈ R. Here, Xt− is the linear operator Z 7→ √
Xt−Z + Z

√
Xt− and Yt−

the map Z 7→ Yt−Z + ZYt−

For stationary OU processes one can again establish local boundedness, provided the
driving Lévy process is non-degenerate.

Proposition 4.6.8. Let X be a stationary positive semi-definite OU process and assume
that the driving Lévy process L has drift γ ∈ S

++
d or Lévy measure ν such that ν(S++

d ) > 0.
Then the process X is locally bounded within S

++
d .

The same holds for any positive definite OU process with initial value X0 ∈ S
++
d a.s.
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Proof. In the stationary case Theorem 4.4.9 implies X0 ∈ S
++
d a.s. From (4.4.6) we thus

always obtain that Xt ≥ eAtX0e
A∗t ∈ S

++
d for all t ∈ R. As min

(
σ
(
eAtX0e

A∗t
))

is
continuous in t and strictly positive, minσ

(
eAtX0e

A∗t
)

is locally bounded away from 0; in
particular, Tn := inf{t ∈ R

+ : eAtX0e
A∗t < 1

nId} defines a sequence of stopping times that
a.s. increases to infinity. But this implies Xt ≥ 1

nId for all t ∈ [0, Tn). Together with the
local boundedness of X and the fact that sets of the form {x ∈ S

+
d : x ≥ ǫId, ‖x‖ ≤ K}

with ǫ,K > 0 are convex and compact, this establishes the local boundedness of X within
S

++
d .

In general we cannot obtain the existence of the relevant integrals for all positive definite
OU processes, but the following proposition covers many cases of interest.

Proposition 4.6.9. Let X be a positive definite OU process driven by a matrix subordinator
L with drift γ and Lévy measure ν.Then the integral

∫ t

0
X−1

s− (AXs− +Xs−A
∗ + γ) ds

exists a.s. for all t ∈ R provided γ ∈ S
++
d or γ = 0, X0 = 0 and L is a compound

Poisson process with ν(S+
d \S++

d ) = 0. Furthermore, the integral
∫ t
0

∫
S
+
d \{0}

(√
Xs− + x −

√
Xs−

)
µ(ds, dx) exist a.s. for all t ∈ R, provided L is compound Poisson (with drift) or∫

0≤‖x‖2≤1

√
‖x‖2ν(dx) is finite.

Proof. Let us first consider the second integral. Then
∫
0≤‖x‖2≤1

√
‖x‖2ν(dx) < ∞ is triv-

ially satisfied for any compound Poisson process and so Lemma 4.5.27 gives the result.
If γ = 0, X0 = 0 and L is a compound Poisson process, Xt = 0 for all t ∈ [0, T ) where T

denotes the first jump time of L. So the integral

∫ t

0
X−1

s− (AXs− +Xs−A
∗ + γ) ds

exists a.s. for all t ∈ [0, T ). The condition ν(S+
d \S++

d ) = 0 ensures that the first jump
∆LT is a.s. strictly positive definite and hence XT ∈ S

++
d a.s. Using basically the same

arguments as in Proposition 4.6.8 this shows that the integral
∫ t
0 X−1

s−
(
AXs−+Xs−A∗+γ

)
ds

exists also a.s. for all t ∈ [T,∞), which concludes the proof of this case.
Assume now that γ ∈ S

++
d . We have

Xt ≥
∫ t

0
eA(t−s)γeA

∗(t−s)ds ≥
∫ t

0
min

(
σ
(
eA(t−s)γeA

∗(t−s)
))

Idds.

But eA(t−s)γeA
∗(t−s) ∈ S

++
d for all t, s ∈ R

+ and so for any M ∈ R
+ continuity and

compactness ensures the existence of a constant kM > 0 such that

min
(
σ
(
eA(t−s)γeA

∗(t−s)
))

≥ kM

for all t, s ∈ [0,M ]. Hence, Xt ≥ kM t for all t ∈ [0,M ]. Using the same matrix analytical
arguments as in the proof of Corollary 4.5.29, this implies ‖X−1

t− ‖2̃ ≤ 1
2
√

kM
t−1/2 for all

t ∈ [0,M ]. Moreover, as X is locally bounded there is a.s. a constant KM such that
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‖Xt‖2̃ ≤ KM for all t ∈ [0,M ]. (Here we have fixed ω ∈ Ω, but recall that we can

argue path-wise.) Since
∫ t
0

‖A‖2̃KM+‖γ‖2̃

2
√

kM
s−1/2ds is finite for all t ∈ [0,M ], where A is

the linear operator Md(R) → Md(R), Z 7→ AZ + ZA∗, majorized convergence gives that∫ t
0 X−1

s− (AXs− +Xs−A∗ + γ) ds exists a.s. for all t ∈ [0,M ]. As M ∈ R
+ was arbitrary,

this concludes the proof.

However, one can again show that the square root of a positive definite OU process X
with γ = 0 has a representation similar to the one for the OU process given by Xt =
eAtX0e

A∗t +
∫ t
0

∫
S
+
d \{0} e

A(t−s)xeA
∗(t−s)µ(ds, dx):

Proposition 4.6.10. Assume that γ = 0 and X0 ≥ 0 a.s. Then the process Y =
√
X can

be represented as

Yt =
√
eAtX0eA

∗t

+

∫ t

0

∫

S
+
d \{0}

(√
eA(t−s)(Xs− + x)eA∗(t−s) −

√
eA(t−s)Xs−eA

∗(t−s)

)
µ(ds, dx).

Proof. Let (Zu)u∈R+ be the auxiliary process given by Zu = eA(t−u)Xue
A∗(t−u) where t ∈ R

+

is fixed. Then Zu = eAtX0e
A∗t+

∫ u
0

∫
S
+
d \{0} e

A(t−s)xeA
∗(t−s)µ(ds, dx) is S

+
d -increasing. Using

Theorem 4.5.19 and Lemma 4.5.26 this implies that

√
Zu =

√
eAtX0eA

∗t +

∫ u

0

∫

S
+
d \{0}

(√
Zs− + eA(t−s)xeA

∗(t−s) −
√
Zs−

)
µ(ds, dx).

Since Xt = Zt and Zs− = eA(t−s)Xs−eA
∗(t−s), this immediately concludes the proof.

Finally let us improve the above representation for a stationary positive definite Ornstein-
Uhlenbeck process.

Proposition 4.6.11. Let X be a stationary process of OU type with driving matrix subor-
dinator L with a vanishing drift γ. Then the stationary process Y =

√
X can be represented

as

Yt =

∫ t

−∞

∫

S
+
d \{0}

(√
eA(t−s)(Xs− + x)eA∗(t−s) −

√
eA(t−s)Xs−eA

∗(t−s)

)
µ(dx, ds).

Proof. Follows from Proposition 4.6.10 using the same arguments as in the proof of Propo-
sition 4.6.6.
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5. A Multivariate Generalization of the
Ornstein-Uhlenbeck Stochastic Volatility
Model

5.1. Introduction

A wide range of different univariate continuous-time stochastic volatility models has been
developed in the financial literature aiming at capturing the most distinct features of the
price process of a single financial asset. The adequacy of such models is essential for appli-
cations such as risk management and derivative pricing for which closed form expressions
of the integrated variance process are desirable.

In a multivariate context modelling becomes even more challenging. Next to capturing
the individual dynamics the model also needs to reproduce the comovements and spill-over
effects across different assets. In particular, knowing the correlation structure is crucial for
financial decision-making, such as portfolio risk management, asset allocation or the pricing
of multi-asset options. In addition to those requirements, there also arise some technical
issues in the multivariate setting. One is given by the necessity of a positive semi-definite
covariance matrix. For stochastic volatility models this implies that the instantaneous
covariance should be specified as a positive semi-definite process. Moreover, if the dimension
of the return vector increases the number of parameters in the model should not explode.
Hence, a parsimonious but at the same time accurate and flexible specification is needed.

Given these challenges the theoretical literature on multivariate stochastic volatility mod-
els has developed over the last few years, where the main focus was on discrete-time models
as an alternative to the multivariate GARCH models, see e.g. Chib, Nardari and Shephard
(2006) and Harvey, Ruiz and Shephard (1994). In contrast to the discrete time models,
however, the continuous-time specification allows to infer the implied dynamics and prop-
erties of the estimated model at various frequencies differing from the one used in the
estimation. This is important, inter alia, for forecasting the covariance over short term
intervals, where the estimates can be based on lower frequent data. Moreover, the con-
tinuous time specification is very important from the asset pricing perspective. Despite
these advantages, however, we are aware of only a few papers considering continuous time
multivariate stochastic volatility models. In particular, Hubalek and Nicolato (2005) and
Lindberg (2005) adopt a factor approach in which the volatility factors are independent
and follow univariate positive non-Gaussian Ornstein-Uhlenbeck type (OU type hereafter)
processes. But the flexibility of these models is accompanied by the difficulty to achieve
identification, which is complicating the empirical application of these models. In Gourier-
oux (2006) the stochastic volatility is not driven by univariate factors, but the full covariance
matrix is specified as the sum of outer products of Gaussian vector OU processes, which
is referred to as a Wishart autoregressive process. Although this model provides closed
form expressions for many applications, it also lacks a closed form representation for the
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integrated covariance process.
In this chapter we therefore introduce a new continuous-time multivariate stochastic

volatility model that is shown to meet the above mentioned requirements while providing
a closed form and very simple structure for the integrated covariance process. We assume
the general d-dimensional stochastic volatility model to be given by

dYt = (µ+ Σtβ)dt+ Σ
1/2
t dWt, Y0 = 0, (5.1.1)

where Y denotes the d-dimensional logarithmic stock price process, µ, β ∈ R
d are the instan-

taneous drift and risk premium parameters, respectively, (Wt)t∈R+ denotes a d-dimensional
standard Brownian motion and (Σt)t∈R+ is an adapted, stationary and square-integrable
stochastic volatility process with values in the positive semi-definite matrices S

+
d being in-

dependent of (Wt)t∈R+ . Throughout the remainder of this chapter we refer to this model
when we write “stochastic volatility model”. Observe that this is a more restrictive use
of the term “stochastic volatility (model)” than in all other parts of this thesis. The
same general model has also been stated in e.g. Barndorff-Nielsen and Shephard (2001b),
Barndorff-Nielsen, Nicolato and Shephard (2002) and Lindberg (2005). In the following
the stochastic volatility process (Σt)t∈R+ is usually given by a Lévy-driven positive semi-
definite OU type process which was introduced in Chapter 4 and which is a multivariate
extension of the positive non-Gaussian OU type process used in the context of univariate
stochastic volatility models in Barndorff-Nielsen and Shephard (2001b, 2002). We therefore
refer to this model as the “multivariate Ornstein-Uhlenbeck stochastic volatility model” in
the sequel. Whereas the existing models mentioned above are factor models of some kind,
the stochastic volatility process of our model is directly specified as a process in the positive
semi-definite matrices.

It turns out that our model possesses many attractive features which are mainly a result
of our stochastic volatility specification. First, let us note that similar to Barndorff-Nielsen
and Shephard (2001b) our general multivariate specification as given in equation (5.1.1)
implies that returns are scaled mixtures of multivariate normals with the scaling given by
the integrated covariance matrix, so that the observed (semi-)heavy-tailedness can be repro-
duced. In addition, specifying the stochastic volatility by Lévy-driven positive semi-definite
OU type processes provides a flexible dependence structure for the volatility, which can be
made even more flexible by considering superpositions of these processes. Furthermore, we
show that the vectorized outer product of the returns (the “squared returns” in a multivari-
ate setting) of the multivariate OU type stochastic volatility model follows an ARMA(1,1)
process. Furthermore, the first and second order moments of this variable are available in
closed form – a result that facilitates the estimation of our model.

The remainder of the chapter is structured as follows. The next section establishes
our notation. As our model builds on the positive semi-definite matrix process of OU type,
Section 5.3 presents some important properties of these processes recalling and considerably
extending the results of Section 4.4. The multivariate OU type stochastic volatility model
is introduced in Section 5.4 and its properties are analysed in detail. Section 5.5 presents
an empirical illustration and Section 5.6 finally concludes.

5.2. Notation

Throughout this chapter we write R
+ for the positive real numbers including zero, R

++

when zero is excluded and we denote the set of real m× n matrices by Mm,n(R). If m = n
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we simply write Mn(R) and denote the group of invertible n× n matrices by GLn(R), the
linear subspace of symmetric matrices by Sn, the (closed) positive semi-definite cone by
S

+
n and the open (in Sn) positive definite cone by S

++
n . In stands for the n × n identity

matrix, σ(A) for the spectrum (the set of all eigenvalues) of a matrix A ∈Mn(R) and ρ(A)
for its spectral radius. The natural ordering on the symmetric n × n matrices is denoted
by ≤, i.e. for A,B ∈ Sn we have that A ≤ B, if and only if B − A ∈ S

+
n . The tensor

(Kronecker) product of two matrices A,B is written as A⊗B. vec denotes the well-known
vectorisation operator that maps the n× n matrices to R

n2
by stacking the columns of the

matrices below one another. For more information regarding the tensor product and vec
operator we refer to Horn and Johnson (1991, Chapter 4). Likewise vech : Sd → R

d(d+1)/2

denotes the “vector-half” operator that stacks the columns of the lower triangular part of
a symmetric matrix below another. Finally, AT is the transpose of a matrix A ∈ Mn(R).
For a matrix A we denote by Aij the element in the i-th row and j-th column and this
notation is extended to processes in a natural way.

Regarding all random variables and processes we assume that they are defined on a given
appropriate filtered probability space (Ω,F , P, (Ft)) satisfying the usual hypotheses. For
random functions and measures we usually do not state the dependence on ω ∈ Ω explicitly.

Norms of vectors or matrices are denoted by ‖ · ‖. If the norm is not specified, then it is
irrelevant which particular norm is used.

Furthermore, we employ an intuitive notation with respect to the (stochastic) integra-
tion with matrix-valued integrators referring to any of the standard texts (e.g. Protter
(2004) or Øksendal (1998) regarding Brownian motion) for a comprehensive treatment
of the theory of stochastic integration. Let (Lt)t∈R+ in Mn,r(R) be a semi-martingale
and (At)t∈R+ in Mm,n(R), (Bt)t∈R+ in Mr,s(R) be adapted integrable (w.r.t. L) pro-

cesses. Then we denote by
∫ t
0 AsdLsBs the matrix Ct in Mm,s(R) which has ij-th el-

ement Cij,t =
∑n

k=1

∑r
l=1

∫ t
0 Aik,sBlj,sdLkl,s. Equivalently such an integral can be un-

derstood in the sense of Métivier and Pellaumail (1980b), resp. Métivier (1982), by
identifying it with the integral

∫ t
0 AsdLs with At being for each fixed t the linear op-

erator Mn,r(R) → Mm,s(R), X 7→ AtXBt. Moreover, we always denote by
∫ b
a with

a ∈ R ∪ {−∞}, b ∈ R the integral over the half-open interval (a, b] for notational con-
venience. If b = ∞ the integral is understood to be over (a, b).

For a set A the indicator function is denoted by IA and the function log+ is defined as
max(log(x), 0).

5.3. Positive semi-definite matrix processes of
Ornstein-Uhlenbeck type

In this section we briefly review the positive semi-definite OU type processes introduced
in Chapter 4 where detailed proofs have been given. Additionally we present some new
results for this class of processes which are particularly relevant in the context of our OU
type stochastic volatility model, viz. properties of the stationary distribution and the
marginal dynamics of the individual components.

5.3.1. Definition and probabilistic properties

In the following we first provide a definition of the positive semi-definite OU type processes
and characterize their stationary distribution.
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The construction of these processes is based on a special type of matrix-valued Lévy
processes studied in detail in Barndorff-Nielsen and Pérez-Abreu (2007). For the relevant
background on Lévy processes we refer to any of the standard references, for instance, Sato
(1999).

Definition 5.3.1. An Sd-valued Lévy process L = (Lt)t∈R+ is said to be a matrix subordi-
nator, if Lt − Ls ∈ S

+
d for all s, t ∈ R

+ with t > s.

Matrix subordinators are a generalization of the concept of univariate Lévy subordinators
to the matrix case, in particular, they are simply the same as Lévy subordinators for
d = 1. As in the univariate case there are a lot of very different concrete examples of
matrix subordinators. Barndorff-Nielsen and Pérez-Abreu (2007), for example, discuss
matrix subordinators which are generalizations of stable, tempered stable and Gamma
subordinators. These are examples having infinite activity. Of course, compound Poisson,
i.e. finite activity, matrix subordinators can easily be constructed using any probability
distribution on S

+
d (see e.g. Gupta and Nagar (2000) for some examples) for the jumps.

In this context it should be noted that the outer product XXT of any vector random
variable X is positive semi-definite. Specifying the diagonal elements of the matrix process
as (possibly dependent) univariate subordinators forming together a d-dimensional Lévy
process and setting the off-diagonal elements to zero, leads to another simple example of a
matrix subordinator (referred to as a diagonal matrix subordinator).

Importantly, it can easily be shown that the paths of a matrix subordinator are S
+
d -

increasing and of finite variation. Moreover, the trace tr(L) is a one-dimensional (Lévy)
subordinator.

Based on matrix subordinators the existence of OU type processes assuming values in the
positive semi-definite matrices is ensured by the following theorem, where the Lévy process
L is extended to a Lévy process (Lt)t∈R starting in the infinite past in the usual way.

Theorem 5.3.2 (Theorem 4.4.5 of Chapter 4). Let L be a matrix subordinator with
E(log+ ‖L1‖) < ∞ and A ∈ Md(R) such that σ(A) ⊂ (−∞, 0) + iR. Then the stochas-
tic differential equation of OU type

dΣt = (AΣt− + Σt−A
T )dt+ dLt

has a unique stationary solution

Σt =

∫ t

−∞
eA(t−s)dLse

AT (t−s)

or, in vectorial representation,

vec(Σt) =

∫ t

−∞
e(Id⊗A+A⊗Id)(t−s)dvec(Ls).

Moreover, Σt ∈ S
+
d for all t ∈ R.

Remark 5.3.3. It is shown in Appendix A that the linear operator A : Sd → Sd given by
X 7→ AX+XAT with A ∈Md(R) uniquely identifies A. Actually, to identify A it is already
sufficient to know the values of AEii for i = 1, . . . , d where Eii are the d× d matrices with
only zero entries except for one entry of one at the i-th diagonal element.
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Moreover, the above mentioned appendix establishes that all linear operators A which
satisfy exp(At)(Sd) = S

+
d (∗) for all t ∈ R are necessarily of the form X 7→ AX +XAT for

some A ∈ Md(R). The property (∗) is important for the well-definedness of positive semi-
definite OU type processes. As already noted in Chapter 4 it seems to be rather problematic
to characterize linear operators which satisfy exp(At)(Sd) ⊂ S

+
d (∗). Obviously the equality

also immediately implies that the distribution of the OU type process Σ is not concentrated
on any proper linear subspace of Sd when the distribution of the driving Lévy process Lt is
not concentrated on any proper linear subspace.

Recall from Barndorff-Nielsen and Pérez-Abreu (2007) that any matrix subordinator
(Lt)t∈R can be represented as

Lt = γLt+

∫ t

0

∫

S
+
d \{0}

xµ(ds, dx) (5.3.1)

where γL ∈ S
+
d is a deterministic drift and µ(ds, dx) an extended Poisson random measure

on R
+ × S

+
d (regarding the definitions of random measures and the integration theory

with respect to them we refer to Jacod and Shiryaev (2003, Section II.1)). Note also,
that the integral exists without compensating. Moreover, the expectation of µ factorises,
i.e. E(µ(ds, dx)) = Leb(ds)νL(dx), Leb denoting the Lebesgue measure and νL the Lévy
measure of L. The above equation (5.3.1) can be restated in a differential form as

dLt = γLdt+

∫

S
+
d \{0}

xµ(dt, dx). (5.3.2)

The obvious extension of this to a Lévy process (Lt)t∈R having been started in the infinite
past gives another representation of the above stationary OU process.

Proposition 5.3.4 (Theorem 4.4.6 of Chapter 4). The positive semi-definite Ornstein-
Uhlenbeck process Σ given in Theorem 5.3.2 can equivalently be represented as

Σt =

∫ t

−∞

∫

S
+
d \{0}

eA(t−s)xeA
T (t−s)µ(ds, dx) +

∫ t

−∞
eA(t−s)γLe

AT (t−s)ds

=

∫ t

−∞

∫

S
+
d \{0}

eA(t−s)xeA
T (t−s)µ(ds, dx) − A−1γL

where A−1 is the inverse of the linear operator A : Md(R) → Md(R), X 7→ AX + XAT

which can be represented as vec−1 ◦ ((Id ⊗A) + (A⊗ Id))
−1 ◦ vec.

Next we provide a characterization of the stationary distribution of the matrix OU pro-
cess. To this end observe that tr(XTY ) (with X,Y ∈ Md(R) and tr denoting the usual
trace functional) defines a scalar product on Md(R) (respectively, Sd). Moreover, note that
the vec operator links the scalar product on Md(R) (Sd) with the scalar product on R

d2
via

tr(XTY ) = vec(X)T vec(Y ) and that the norm on Md(R) induced by this scalar product is
the Froebenius norm.

This, in particular, implies that the driving matrix subordinator L at time t ∈ R
+ has

characteristic function (cf. also Barndorff-Nielsen and Pérez-Abreu (2007))

µLt(Z) = exp

(
tψL(Z)

)
, Z ∈ Sd, where (5.3.3)

ψL(Z) := itr(γLZ) +

∫

S
+
d \{0}

(eitr(XZ) − 1)νL(dX). (5.3.4)
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Proposition 5.3.5 (Proposition 4.4.7 of Chapter 4). The stationary distribution of the
positive semi-definite Ornstein-Uhlenbeck process Σ is infinitely divisible with characteristic
function

µ̂Σ(Z) = exp

(∫ ∞

0
ψL

(
eA

T sZeAs
)
ds

)
(5.3.5)

= exp

(
itr(γΣZ) +

∫

S
+
d \{0}

(eitr(XZ) − 1)νΣ(dX)

)
, Z ∈ Sd,

where
γΣ = −A−1γL (5.3.6)

with A defined as in Proposition 5.3.4 and

νΣ(E) =

∫ ∞

0

∫

S
+
d \{0}

IE(eAsxeA
T s)νL(dx)ds (5.3.7)

for all Borel sets E in S
+
d \{0}.

Assume that the driving Lévy process is square-integrable. Then the second order moment
structure is given by

E(Σt) = γΣ − A−1

∫

S
+
d \{0}

yνL(dy) = −A−1E(L1) (5.3.8)

var(vec(Σt)) =

∫ ∞

0
e(A⊗Id+Id⊗A)tvar(vec(L1))e

(AT ⊗Id+Id⊗AT )tdt

= −A−1var(vec(L1)) (5.3.9)

cov(vec(Σt+h), vec(Σt)) = e(A⊗Id+Id⊗A)hvar(vec(Σt)), (5.3.10)

where t ∈ R and h ∈ R
+ and A : Md2(R) →Md2(R), X 7→ (A⊗ Id + Id ⊗A)X +X(AT ⊗

Id + Id ⊗AT ). The linear operator A can be represented as

vec−1 ◦ ((Id2 ⊗ (A⊗ Id + Id ⊗A)) + ((A⊗ Id + Id ⊗A) ⊗ Id2)) ◦ vec.

Remark 5.3.6. (i) Equation (5.3.9) can alternatively be restated as

−var(vec(L1)) = (A⊗ Id + Id ⊗A)var(vec(Σt)) + var(vec(Σt))(A
T ⊗ Id + Id ⊗AT ).

(ii) We used the vec operator above, as this clarifies the order of the elements of the
(co)variance matrix. One might wonder why one does not use the “vector half” opera-
tor vech that stacks the columns of the lower diagonal part (including the diagonal) of a
symmetric matrix below one another. Although this would avoid the redundancies in the
covariance matrices var(vec(L1)) and var(vec(Σt)) caused by the symmetry of L1 and Σt,
it seems to be rather disadvantageous when seeking explicit expressions, since, to the best of
our knowledge, there are far less results from linear algebra available for the vech operator
than for the vec-operator. Hence, we will use the vec operator throughout most of this paper
and merely note that one can, of course, switch to the vech operator by simply picking the
relevant components.

However, when it comes to the existence of a density or estimation it is sometimes easier

or necessary to resort to the vech operator, vech : Sd → R
d(d+1)

2 . Defining Avech := vech ◦
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A ◦ vech−1, where A is understood as linear operator on Sd, we have that dvech(Σt) =
Avechvech(Σt) + dvech(Lt) and that the stationary solution is given by

vech(Σt) =

∫ t

−∞
eAvech(t−s)dvech(Ls).

In principle, it is now straightforward how to adjust all other results to the vech-notation.
Observe, moreover, that if one denotes the d2 × d(d+1)

2 duplication matrix by D and the
d(d+1)

2 × d2 elimination matrix by E (see Lütkepohl (2005, Appendix A.12), for instance)
then Avech = E (A⊗ Id + Id ⊗A)D and eAvecht = E

(
eAt ⊗ eAt

)
D.

In general the finiteness of the moments of the stationary distribution of the OU type
process is completely characterized by the driving Lévy process.

Proposition 5.3.7. Let (Σt)t∈R be a stationary OU type process in S
+
d with driving matrix

subordinator L which has Lévy measure νL and be r ∈ R
++. Then E(‖Σ0‖r) < ∞, if and

only if E(‖L1‖r) <∞ or equivalently
∫

S
+
d ,‖x‖≥1 ‖x‖rνL(dx) <∞.

Proof. Follows by a straightforward adaptation of the proof of Proposition 2.3.30 in Chapter
2 to the matrix case.

Noteworthy, the finiteness of some moment of the Lévy process also ensures that the
stationary OU type process exhibits a very nice dependence structure. Let us thus introduce
the notions of strong and β-mixing:

Definition 5.3.8 (cf. Davydov (1973)). A continuous time stationary stochastic process
X = {Xt}t∈R is called strongly (or α-) mixing, if

αl := sup
{
|P (A ∩B) − P (A)P (B)| : A ∈ F0

−∞, B ∈ F∞
l

}
→ 0

as l → ∞, where F0
−∞ := σ ({Xt}t≤0) and F∞

l = σ ({Xt}t≥l) (σ(·) denoting the generated
σ-algebra).

It is said to be β- mixing (or completely regular), if

βl := E
(
sup

{∣∣P (B|F0
−∞) − P (B)

∣∣ : B ∈ F∞
l

})
→ 0 as l → ∞.

Note that αl ≤ βl and thus any β-mixing process is strongly mixing (see e.g. Doukhan
(1994)), which implies that many results regarding statistics can be applied.

Proposition 5.3.9. Let Σ be an OU type process in S
+
d . Then Σ is a temporally homoge-

neous strong Markov process.
If Σ is stationary and the driving Lévy process L with Lévy measure νL satisfies addi-

tionally ∫

S
+
d ,‖x‖≥1

‖x‖rνL(dx) <∞ (5.3.11)

for some r > 0, then the stationary OU type process Σ is β-mixing with mixing coefficients
βl = O(e−al) for some a > 0. In particular, Σ is strongly (or α-)mixing with exponential
rate and ergodic.

Proof. Follows from Protter (2004, Theorem V.32) and Masuda (2004, Theorem 4.3).
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Moreover, it is possible to derive conditions under which the stationary OU type process
Σ is almost surely strictly positive definite.

Theorem 5.3.10 (Theorem 4.4.9 of Chapter 4). If γL ∈ S
++
d or νL(S++

d ) > 0, then the
stationary distribution PΣ of Σ is concentrated on S

++
d , i.e. PΣ(S++

d ) = 1.

The stationary distributions of multivariate Ornstein-Uhlenbeck type processes are oper-
ator self-decomposable. The operator self-decomposable distributions (cf. Jurek and Mason
(1993) for a comprehensive treatment) form an important subclass of the infinitely divisible
distributions and the definition adopted to our matrix case reads as follows:

Definition 5.3.11. Let Q : Sd → Sd be a linear operator. A probability distribution µ on
Sd is called operator self-decomposable with respect to the operator Q, if there exists a
probability distribution νt on Sd such that µ = (eQtµ) ∗ νt for all t ∈ R

+, where ∗ denotes
the usual convolution of probability measures.

Remark 5.3.12. (i) νt is for all t ∈ R
+ infinitely divisible (Jurek and Mason (1993,

Theorem 3.3.5).

(ii) Rephrasing the definition on the level of random variables we call an Sd-valued random
variable X operator self-decomposable with respect to a linear operator Q : Sd → Sd, if there

exists a random variable Yt independent of X such that X
law
= eQtX + Yt for all t ∈ R

+.

For our Ornstein-Uhlenbeck type processes in the positive semi-definite matrices we have
immediately the following result.

Proposition 5.3.13. The stationary distribution of the positive semi-definite OU type
process Σ is operator self-decomposable with respect to the operator A : Sd → Sd, X 7→
AX +XAT .

This observation allows us to use the well-established theory on operator self-decom-
posable distributions to study further properties of our processes. In particular, we can show
that the stationary distribution always has a density (with respect to the Lebesgue measure)
whenever the Lévy measure of the driving Lévy process has a non-degenerate support.
Note that by the Lebesgue measure λSd

on Sd we mean the image of the Lebesgue measure
λ

Rd(d+1)/2 on R
d(d+1)/2 under vech : Sd → R

d(d+1)/2, i.e. λSd
(B) = λ

Rd(d+1)/2(vech(B))
for all Borel sets B ⊂ Sd. (This definition has also been used in Barndorff-Nielsen and
Pérez-Abreu (2007).)

Theorem 5.3.14. Assume that the support of the Lévy measure νL 6= 0 of the driving
matrix subordinator L is contained in a linear subspace V ⊆ Sd, that the smallest A-
invariant linear subspace of Sd containing V is Sd itself and that νL(W ) = 0 for every
proper linear subspace W ⊂ V .

Then the stationary distribution of the Ornstein-Uhlenbeck type process Σ is absolutely
continuous with respect to the Lebesgue measure on Sd. Moreover, the stationary distribution
PΣ of Σ is concentrated on S

++
d , i.e. PΣ(S++

d ) = 1.

Proof. This follows by a straightforward adaptation of Jurek and Mason (1993, Proposition
3.8.6) or Yamazato (1983) to the Sd-case and the fact that λSd

(S+
d \S++

d ) = 0 shown in the
next lemma.
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Observe that actually this result holds for OU type processes in Sd in general and not only
for positive semi-definite ones and that the density can be characterised as the unique weak
solution to a certain integro-differential equation (see Jurek and Mason (1993, Theorem
3.8.10)).

Lemma 5.3.15. The Lebesgue measure on Sd satisfies λSd
(S+

d \S++
d ) = 0.

Proof. It is clear that S
+
d \S++

d ⊆ {X ∈ Sd : det(X) = 0}. The determinant is a polynomial
in the entries of X ∈ Sd. Hence, there exists a d(d+1)/2-variate polynomial P : R

d(d+1)/2 →
R such that det(X) = P (vech(X)) and P is not identically zero. As a polynomial P is a
real analytic function and the set of zeros of real analytical functions not identically zero
has Lebesgue measure zero (Jurek and Mason (1993, Lemma 3.8.4)), we have

λSd
({X ∈ Sd : det(X) = 0}) = λ

Rd(d+1)/2(vech({X ∈ Sd : det(X) = 0}))
= λ

Rd(d+1)/2({x ∈ R
d(d+1)/2 : P (x) = 0}) = 0.

The following is an immediate consequence of Theorem 5.3.14 which will be sufficient in
most cases encountered in practice.

Corollary 5.3.16. Assume that for every proper linear subspace V of Sd the Lévy measure
νL of the driving matrix subordinator satisfies νL(V ) = 0 and that νL 6= 0.

Then the stationary distribution of the Ornstein-Uhlenbeck type process Σ is absolutely
continuous with respect to the Lebesgue measure. Moreover, the stationary distribution PΣ

of Σ is concentrated on S
++
d , i.e. PΣ(S++

d ) = 1.

A particular class of d × d matrix subordinators is given by the discrete part of the
quadratic variation of a d-dimensional Lévy process. Let thus L̃ be a Lévy process in R

d.
Then the discrete part of the quadratic variation is given by

[L̃, L̃]dt :=
∑

0≤s≤t

∆L̃s(∆L̃s)
T

and it is easy to see that ([L̃, L̃]dt )t∈R+ is a matrix subordinator in Sd with the Lévy measure
given by ν[L̃,L̃]d (B) =

∫
Rd IB(xxT )νL̃(dx) = νL̃({x : xxT ∈ B}) where νL̃ denotes the Lévy

measure of L̃. Note that ν[L̃,L̃] is obviously concentrated on the positive semi-definite
rank one matrices and thus highly degenerate. Yet, under mild regularity conditions the
stationary distribution of a positive semi-definite OU type process Σ driven by [L̃, L̃]d is
absolutely continuous.

Proposition 5.3.17. Let L̃ be a Lévy process in R
d with Lévy measure νL̃ 6= 0 and assume

that νL̃({x : xTZx = 0}) = 0 for all Z ∈ Sd\{0}.
Then the stationary distribution of the Ornstein-Uhlenbeck type process Σ driven by

[L̃, L̃]d is absolutely continuous with respect to the Lebesgue measure. Moreover, the sta-
tionary distribution PΣ of Σ is concentrated on S

++
d , i.e. PΣ(S++

d ) = 1.

Proof. Recall that Sd with the scalar product X,Y 7→ tr(XTY ) is a Hilbert space and
denote for a set H ⊂ Sd its orthogonal complement (with respect to this scalar product)
by H⊥.
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Let now H be a proper linear subspace of Sd and Z ∈ H⊥\{0}. Then H ⊆ {Z}⊥. Hence,
ν[L̃,L̃]d (H) ≤ ν[L̃,L̃]d ({Z}⊥) = νL̃({x ∈ R

d : xxT ∈ {Z}⊥}) = νL̃({x ∈ R
d : tr(xxTZ) =

xTZx = 0}) = 0 by assumption.

Since ν[L̃,L̃]d 6= 0 is obviously true, the proposition is implied by Corollary 5.3.16.

For applications the following corollary is usually sufficient:

Corollary 5.3.18. Let L̃ be a Lévy process in R
d with Lévy measure νL̃ 6= 0 and assume

that νL̃ is absolutely continuous (with respect to the Lebesgue measure on R
d).

Then the stationary distribution of the Ornstein-Uhlenbeck type process Σ driven by
[L̃, L̃]d is absolutely continuous with respect to the Lebesgue measure. Moreover, the sta-
tionary distribution PΣ of Σ is concentrated on S

++
d , i.e. PΣ(S++

d ) = 1.

Proof. Let Z ∈ Sd\{0}. Then the function R
d → R, x = (x1, x2, . . . , xd)

T 7→ xTZx is a
quadratic polynomial (in d variables) and thus a real analytic function not identically zero.
The zeros of a real analytic function not identically zero form a set of Lebesgue measure zero
(see Jurek and Mason (1993, Lemma 3.8.4), for instance). Hence, νL̃({x : xTZx = 0}) = 0
for all Z ∈ Sd\{0} and thus Proposition 5.3.17 concludes the proof.

Furthermore, note that the result concerning the existence of an infinitely often differ-
entiable density with all derivatives bounded given in Proposition 2.3.31 of Chapter 2 is
also immediately applicable to our positive semi-definite OU type processes when using the
vech notation.

It is also possible to construct positive semi-definite OU type processes with a prescribed
marginal stationary distribution. The result is a version of Barndorff-Nielsen, Jensen and
Sørensen (1998, Lemma 5.1) adapted to the matrix case considering the matrix subordinator
case especially. “Differentiability” in the following means total differentiability (sometimes
also referred to as Frechet differentiability) and “derivative” refers to the total derivative.
Moreover, we need in the following that a probability distribution µ concentrated on S

+
d is

infinitely divisible if and only if its characteristic function µ̂ is of the form

µ̂(ξ) = exp

(
itr(γµξ) +

∫

Sd

(
eitr(Xξ) − 1

)
νµ(dX)

)
, ξ ∈ Sd, (5.3.12)

where γµ ∈ S
+
d and νµ is a Lévy measure on Sd satisfying νµ(Sd\S+

d ) = 0 and also∫
‖X‖≤1 ‖X‖νµ(dX) < ∞. This follows from Skorohod (1991, p. 156) combined with argu-

ments analogous to the ones in Sato (1999, Remark 24.9).

Theorem 5.3.19. Let A : Sd → Sd be a linear operator such that there is an A ∈ Md(R)
with σ(A) ⊂ (−∞, 0)+iR satisfying AX = AX+XAT for all X ∈ Sd. Furthermore, let µ be
an operator self-decomposable (with respect to A) distribution on S

+
d with associated γµ and

νµ such that (5.3.12) holds and let κ(ξ) = log
(∫

S
+
d
eitr(xξ)µ(dx)

)
, ξ ∈ Sd, be its cumulant

transform (logarithm of the characteristic function µ̂). Assume that −Aγµ − γµA
T ∈ S

+
d ,

that κ(ξ) is differentiable for all ξ 6= 0 with derivative Dκ(ξ) and that

κL : ξ 7→
{

−Dκ(ξ)(AT ξ + ξA) for ξ ∈ Sd\{0}
0 for ξ = 0
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is continuous at zero. Then µ̂L : ξ 7→ exp (κL(ξ)) is the characteristic function of an
infinitely divisible distribution µL on S

+
d .

Let L be a matrix subordinator with characteristic function µ̂L at time one. Then the
positive semi-definite Ornstein-Uhlenbeck type process dΣt = AΣtdt+ dLt driven by L has
stationary distribution µ.

Proof. Since the characteristic functions of infinitely divisible distributions have no zeros
(Sato (1999, Lemma 7.5)), κ is well-defined. The definition of operator self-decomposability

implies together with Remark 5.3.12 (i) that exp(κ(ξ))/ exp
(
κ
(
eA

T tξeAt
))

is for all t ∈
R

+ the characteristic function of an infinitely divisible distribution. Hence the function

ξ 7→
(
exp(κ(ξ))/ exp

(
κ
(
eA

T tξeAt
)))1/t

is for all t ∈ R
+ the characteristic function of an

infinitely divisible distribution. Since obviously

κ(ξ) − κ
(
eA

T tξeAt
)

t
→ −Dκ(ξ)(AT ξ + ξA) as t→ 0

for all ξ ∈ Sd, we have that
(
exp(κ(ξ))/ exp

(
κ
(
eA

T tξeAt
)))1/t

→ exp(κL(ξ)) point-wise

for all ξ ∈ Sd as t → 0. The continuity of κL at zero shows that µ̂L is a characteristic
function. µ̂L belongs to an infinitely divisible distribution on Sd, because infinite divisibility
is preserved under weak convergence (Sato (1999, Lemma 7.8)).

Let (Lt)t∈R now be a Lévy process with characteristic function µ̂L at time one and assume
that dΣt = AΣtdt + dLt is started at time zero with Σ0 being independent of (Lt)t∈R and

having distribution µ. Thus Σt = eAtΣ0e
AT t +

∫ t
0 e

A(t−s)dLse
AT (t−s) and we have from

Rajput and Rosinski (1989) (see also Sato (2006), Jurek and Mason (1993, Lemma 3.6.4)
or the review in Section 2.2.2 of Chapter 2) that

E(exp(itr(Σtξ))) = µ̂
(
eA

T tξeAt
)

exp

(∫ t

0
κL

(
eA

T sξeAs
)
ds

)

= µ̂
(
eA

T tξeAt
)

exp

(∫ t

0
−Dκ

(
eA

T sξeAs
)(

AT eA
T sξeAs + eA

T sξeAsA
)
ds

)

= µ̂
(
eA

T tξeAt
)

exp
(
κ (ξ) − κ

(
eA

T tξeAt
))

= µ̂(ξ).

Hence, Σ is stationary with stationary distribution µ. By Sato and Yamazato (1984, Theo-
rem 4.2) it follows that E(log+ ‖Lt‖) <∞. As the stationary distribution µ is concentrated
on S

+
d , µL has to be an infinitely divisible distribution on S

+
d and hence the Lévy process

L a matrix subordinator. This can be seen in three steps as follows:
(i) Assume that the Lévy measure νL was not concentrated on S

+
d , i.e. νL(Sd\S+

d ) > 0.
Then, using the results of Appendix A, which imply for all s ∈ R

+ that eAsxeAs ∈ S
+
d

if and only if x ∈ S
+
d , and (5.3.7) (which holds also in this general case, see e.g. Section

2.2.2), we have that
∫

Sd
I

Sd\S
+
d
(eAsxeA

T s)νL(dx) > 0 for all s ∈ R
+ and hence νµ(Sd\S+

d ) =
∫∞
0

∫
Sd
I

Sd\S
+
d
(eAsxeA

T s)νL(dx)ds > 0, a contradiction.

(ii) We have for any t∗ ∈ R
++ by (5.3.7) and (5.3.12) that

∫ t∗

0

∫

S
+
d

(
‖eAsxeA

T s‖ ∧ 1
)
νL(dx) ≤

∫

Sd

(‖x‖ ∧ 1)νΣ(dx) <∞.
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Choosing t∗ such that ‖eAsxeA
T s‖ ≥ ‖x‖/2 for all s ∈ [0, t∗] and x ∈ Sd implies that

∫ t∗

0

∫

S
+
d

(
‖eAsxeA

T s‖ ∧ 1
)
νL(dx) ≥

∫ t∗

0

∫

S
+
d

((‖x‖/2) ∧ 1) νL(dx)

= 2t∗
∫

S
+
d ,‖x‖≤2

‖x‖νL(dx).

Hence,
∫

S
+
d ,‖x‖≤1 ‖x‖νL(dx) <∞ and therefore L is of finite variation.

(iii) Combining (i) and (ii) implies that µ̂L is of the form (5.3.12) with γL ∈ Sd. Yet,
(5.3.6) implies that γL = −Aγµ − γµA

T and thus γL ∈ S
+
d by assumption.

Remark 5.3.20. (a) Dκ(ξ) is for each ξ ∈ Sd a linear operator from Sd to R. Since Sd is
a Hilbert space, the Riesz-Frechet theorem ensures that there exists a function D̂κ : Sd → Sd

such that Dκ(ξ)X = tr(D̂κ(ξ)X) for all X ∈ Sd which gives an alternative representation
of κL above.

(b) The condition −Aγµ − γµA
T ∈ S

+
d may appear superfluous at a first sight, since it

obviously is always satisfied for d = 1. However, in general dimensions it need not hold.
For example, for

A =

(
−1/10 −1/3
−1/3 −2

)
and γµ =

(
2 −2/3

−2/3 2

)

we have that

σ(A) =

{
−21

20
± 1

60

√
3649

}
≈ {−0.043,−2.06}, σ(γµ) = {8/3, 4/3},

but σ(−Aγµ − γµA
T ) =

{
169

45
± 1

3

√
130

}
≈ {7.56,−.045}.

If the condition is not satisfied, all assertions of the theorem remain valid except that then
µL is not concentrated on S

+
d and that L is a finite variation Lévy process in Sd with all

jumps in S
+
d but a drift in Sd\S+

d .

Having introduced the positive semi-definite OU processes and given some of its proba-
bilistic properties, we now focus on its integrated version and marginal dynamics.

5.3.2. The integrated process

From a financial point of view the integrated process is of major importance, as it corre-
sponds to the integrated volatility, which is a main variable of interest in financial appli-
cations. Thus, a simple representation as the one for the positive semi-definite OU type
processes below is desirable.

Proposition 5.3.21 (Proposition 4.4.10 of Chapter 4). Let Σ be a positive semi-definite
OU process with initial value Σ0 ∈ S

+
d and driven by the Lévy process L. Then the integrated

OU process Σ+ is given by

Σ+
t :=

∫ t

0
Σtdt = A−1 (Σt − Σ0 − Lt)

for t ∈ R
+, where A is the linear operator defined in Proposition 5.3.5.
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5.3.3. Marginal dynamics

Deriving the marginal dynamics, i.e. the behaviour of the individual components Σij =
(Σij,t)t∈R+ of a positive semi-definite OU type process Σ, facilitates the comparison with
the univariate OU type processes. To this end, we assume that A is real diagonalizable and
σ(A) = {λ1, . . . , λd}. Let U ∈ GLd(R) be such that

UAU−1 =




λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λd




:= D. (5.3.13)

Denoting (UT )−1 = (U−1)T by U−T , it follows that

Σt = U−1

(∫ t

−∞
eD(t−s)UdLsU

T eD
T (t−s)

)
U−T

= U−1

(∫ t

−∞
eD(t−s)d(ULsU

T )eD
T (t−s)

)
U−T . (5.3.14)

Defining L̃t = ULtU
T for t ∈ R we have that L̃ is again a Lévy process in Md(R), or more

specifically it is even a matrix subordinator. Moreover, one obtains that

(∫ t

−∞
eD(t−s)dL̃se

DT (t−s)

)

ij

=

∫ t

−∞
e(λi+λj)(t−s)dL̃ij,s for i, j = 1, . . . , d,

which obviously shows that the individual components of

UΣtU
T =

∫ t

−∞
eD(t−s)dL̃se

DT (t−s) =: Σ̃t

are stationary one-dimensional Ornstein-Uhlenbeck type processes with associated stochas-
tic differential equations

dΣ̃ij,t = (λi + λj)Σ̃ij,tdt+ dL̃ij,t. (5.3.15)

Note further that L̃ii for 1 ≤ i ≤ d is necessarily a subordinator and Σ̃ii has to be a positive
OU type process. These assertions do, however, fail in general for L̃ij and Σ̃ij with i 6= j.

Together with (5.3.14) the above considerations show that the individual components
Σij of Σ are superpositions of (at most d2) univariate OU type processes. However, unlike
in the univariate superposition model, see Barndorff-Nielsen and Shephard (2001b), the
individual OU-processes superimposed are in general not independent. Actually, they can
only be independent when the Lévy measure of L̃ is concentrated on the diagonal matrices.

With the obvious modifications the above results hold also true for general diagonalizable
A ∈Md(R). Then XT has to be replaced by the Hermitian of a matrix X ∈Md(C) and Σ̃
is an OU type processes in the positive semi-definite complex matrices. Note that Σ̃ii still
have to be real (even positive) and L̃ii a real matrix subordinator. Furthermore, (5.3.15)
becomes

dΣ̃ij,t = (λi + λj)Σ̃ij,tdt+ dL̃ij,t.



104 5. Multivariate Ornstein-Uhlenbeck Stochastic Volatility Model

This result adds important insight regarding the behaviour of the autocovariance func-
tions of the volatility of the individual assets. In particular, in order to obtain a more
realistic decay (compared to using a single univariate OU type process in a univariate
model) of these functions it is no longer necessary to consider superpositions of different
OU type processes. So, although it is also possible to build superpositions of positive semi-
definite OU type processes (see Section 5.4.6), we expect them to be less important for
financial applications as in the univariate case where it has been shown that sufficiently
realistic patterns of the autocorrelation functions can only be obtained by superpositions
of OU type processes. As such, the multivariate specification obviously introduces more
flexibility.

5.4. The multivariate Ornstein-Uhlenbeck stochastic volatility
model

Based on the above results for the positive semi-definite OU type process we can now
introduce our multivariate stochastic volatility model. As already stated in the introductory
section of this chapter, the general d-dimensional stochastic volatility stock price model is
given by

dYt = (µ+ Σtβ)dt+ Σ
1/2
t dWt, Y0 = 0, (5.4.1)

where Y denotes the d-dimensional logarithmic stock price process, µ, β ∈ R
d are the drift

and so-called risk premium parameters, respectively, (Wt)t∈R+ denotes a d-dimensional
standard Brownian motion and (Σt)t∈R+ is an adapted, stationary and square integrable
stochastic process with values in S

+
d and independent of (Wt)t∈R+ . As common in the

finance literature, (Σt)t∈R+ represents the stochastic volatility or instantaneous covariance
process.

In this chapter instead we mainly focus on a specification in which the volatility process
is given by a Lévy-driven positive semi-definite OU type process where the driving Lévy
process (Lt)t∈R+ and the Brownian Motion of the price process are independent. We refer to
this model as the “multivariate Ornstein-Uhlenbeck stochastic volatility model”. However,
whenever possible we state our results for the general model given in (5.4.1) and only
assume that Σ is an adapted, stationary and square-integrable process. Note that for the
multivariate OU type stochastic volatility model the formulae turn out to be very explicit.

Following Barndorff-Nielsen and Shephard (2001b) we presume Y0 = 0, which is no real
constraint as it just corresponds to a normalization of the prices at time zero. In the OU
type stochastic volatility model we extend the driving Lévy process to one defined on the
whole real line and write

Σt =

∫ t

−∞
eA(t−s)dLse

AT (t−s). (5.4.2)

Note that this corresponds to starting the OU type process at time zero with Σ0 having
the stationary distribution and being independent of (Lt)t∈R+ .

The subsequent returns over time intervals of length ∆ ∈ R
++ are denoted by Y =

(Yn)n∈N. In many financial applications this time interval, i.e. [(n− 1)∆, n∆] with n ∈ N,
will represent a trading day, for example. So, the logarithmic price increments are defined
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by

Yn := Yn∆ − Y(n−1)∆ =

∫ n∆

(n−1)∆
(µ+ Σtβ)dt +

∫ n∆

(n−1)∆
Σ

1/2
t dWt, n ∈ N.

As already stated in Barndorff-Nielsen and Shephard (2001b) it is easy to see that

Yn |Σn ∼ Nd (µ∆ + Σnβ,Σn) (5.4.3)

where

Σn :=

∫ n∆

(n−1)∆
Σtdt = Σ+

n∆ − Σ+
(n−1)∆

is the integrated volatility over the unit time interval and Nd(m, s) denotes the d-dimension-
al normal distribution with mean m and covariance matrix s.

Note that the multivariate OU type stochastic volatility model can easily be extended to
account for the leverage effect by simply specifying

dYt = (µ+ Σtβ)dt + Σ
1/2
t dWt + ψdLt,

with ψ being a linear operator from Sd to R
d. This is a straightforward generalization

of the univariate OU type models with leverage effect. However, as the derivation of the
properties of the OU type models is markedly complicated by the inclusion of a leverage
effect – even in the univariate case – we solely focus here on the model without leverage
effect.

5.4.1. Second order structure

In this section we study the second order moments of the multivariate stochastic volatility
model. In doing so we consider the general multivariate model whenever possible, but the
most explicit results are obtained for the OU type stochastic volatility model. This analysis
provides a basis for estimation and forecasting in our model.

Henceforth we make the following assumption:

Assumption 5.1. The stationary stochastic volatility process (Σt)t∈R+ has a finite second
moment.

Recall that in the OU-case this means that the driving Lévy process has to be square-
integrable.

Before moving on to the second order properties of our model, we first introduce some
notation regarding the autocovariance function.

Definition 5.4.1. Let (Xt)t∈T (with T being either N0 or R
+) be a second order stationary

process with values in R
d. Then the autocovariance function acovX : T ∪ (−T) 7→ Md(R)

of X is given by acovX(h) = cov(Xh,X0) = E(XhX
T
0 ) − E(X0)E(X0)

T for h ≥ 0 and by
acovX(h) = acovX(−h)T for h < 0.

If (Xt)t∈T is a second order stationary process with values in Md(R) (or Sd) then we set
acovX := acovvec(X).

As the twice integrated autocovariance function of the stationary volatility process Σ will
be of particular importance, we define

r+(t) :=

∫ t

0
acovΣ(u)du and r++(t) :=

∫ t

0
r+(u)du. (5.4.4)
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Theorem 5.4.2. For the general stochastic volatility model with (Σt)t∈R+ being stationary
and square-integrable it holds that:

E(Σ+
t ) = tE(Σ0) (5.4.5)

var(vec(Σ+
t )) = r++(t) + r++(t)T (5.4.6)

E(Yt) = (µ+ E(Σ0)β)t (5.4.7)

var(Yt) = E(Σ0)t+ (βT ⊗ Id)var(vec(Σ
+
t ))(β ⊗ Id). (5.4.8)

Furthermore, the increments of the integrated volatility (Σn)n∈N are stationary and square-
integrable. We have:

E(Σn) = ∆E(Σ0) (5.4.9)

var(vec(Σn)) = r++(∆) + r++(∆)T (5.4.10)

acovΣ(h) = r++(h∆ + ∆) − 2r++(h∆) + r++(h∆ − ∆), h ∈ N. (5.4.11)

Likewise we have that the discretely observed log-price increments (Yn)n∈N are stationary
and square-integrable. It holds that:

E(Yn) = (µ+ E(Σ0)β)∆ (5.4.12)

var(Yn) = E(Σ0)∆ + (βT ⊗ Id)var(vec(Σ
+
∆))(β ⊗ Id) (5.4.13)

acovY(h) = (βT ⊗ Id)acovΣ(h)(β ⊗ Id), h ∈ N. (5.4.14)

Let Σ now be a positive semi-definite OU type process with driving matrix subordinator
L then

E(Σ0) = −A−1E(L1) (5.4.15)

r++(t) =
(
A

−2
(
eA t − Id2

)
− A

−1t
)

var(vec(Σ0))

= −
(
A

−2
(
eA t − Id2

)
− A

−1t
)
)A−1var(vec(L1)) (5.4.16)

acovΣ(h) = eA ∆(h−1)
A

−2
(
Id2 − eA ∆

)2
var(vec(Σ0))

= −eA ∆(h−1)
A

−2
(
Id2 − eA ∆

)2
A−1var(vec(L1)), h ∈ N, (5.4.17)

where A and A are defined in Proposition 5.3.5 and A := A ⊗ Id + Id ⊗ A. Observe that
A and A commute (as linear operators over Md2(R)).

Proof. It is immediate from the definitions that the stationarity of (Σt)t∈R+ implies the
stationarity of (Σn)n∈N and (Yn)n∈N. So it remains to verify the above stated formulae.

Equations (5.4.5) and (5.4.9) follow immediately from the integral representation Σ+
t =
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∫ t
0 Σtdt and (5.4.6) can be obtained by using a straightforward Fubini argument:

var(vec(Σ+
t )) = E

(∫ t

0
vec(Σs)ds

∫ t

0
(vec(Σu))T du

)

−E
(∫ t

0
vec(Σs)ds

)
E

(∫ t

0
(vec(Σu))T du

)

=

∫ t

0

∫ t

0

(
E(vec(Σs)vec(Σu)T ) − E(vec(Σs))E(vec(Σu)T )

)
duds

=

∫ t

0

∫ t

0
acovΣ(s− u)duds =

∫ t

0

∫ s

0
acovΣ(s− u)duds

+

∫ t

0

∫ t

s
acovΣ(u− s)Tduds = r++(t) + r++(t)T .

As Σn is equal to Σ+
∆ in distribution this implies (5.4.10) immediately.

Equation (5.4.7) is an immediate consequence of Yt =
∫ t
0 (µ+ Σsβ)ds +

∫ t
0 Σ

1/2
s dWs and

E
(∫ t

0 Σ
1/2
s dWs

)
= 0. This also establishes (5.4.12).

Regarding (5.4.8) elementary arguments imply

var(Yt) = var

(∫ t

0
(µ+ Σsβ)ds +

∫ t

0
Σ1/2

s dWs

)
= var

(∫ t

0
Σsβds

)

+var

(∫ t

0
Σ1/2

s dWs

)
+ cov

(∫ t

0
Σsβds,

∫ t

0
Σ1/2

s dWs

)

+cov

(∫ t

0
Σsβds,

∫ t

0
Σ1/2

s dWs

)T

.

The standard Itô isometry implies

var

(∫ t

0
Σ1/2

s dWs

)
= E(Σ+

t ) = tE(Σ0).

For all matrices A ∈Mm,n(R), B ∈Mn,p(R) and C ∈Mp,q(R) with arbitrary m,n, p, q ∈
N it holds that vec(ABC) = (CT ⊗A)vec(B) (see Horn and Johnson (1991, Lemma 4.3.1)).
Thus

var

(∫ t

0
Σsβds

)
= var

(∫ t

0
vec(Σsβ)ds

)
= var

(∫ t

0
(βT ⊗ Id)vec(Σs)ds

)

= (βT ⊗ Id)var(vec(Σ
+
t ))(β ⊗ Id).

Moreover, the independence of (Σt)t∈R+ and (Wt)t∈R+ gives

cov

(∫ t

0
Σsβds,

∫ t

0
Σ1/2

s dWs

)
= E

(∫ t

0
Σsβds

∫ t

0
dW T

s Σ1/2
s

)

= E

(∫ t

0
ΣsβdsE

(∫ t

0
dW T

s Σ1/2
s

∣∣∣∣ (Σs)s∈[0,t]

))

= E

(∫ t

0
Σsβds · 0

)
= 0.
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Combining the above formulae gives (5.4.8) which in turn implies (5.4.13).
Formula (5.4.11): For h ∈ N we have:

acovΣ(h) = E

(∫ (h+1)∆

h∆
vec(Σs)ds

∫ ∆

0
vec(Σu)Tdu

)

−E
(∫ ∆

0
vec(Σs)ds

)
E

(∫ ∆

0
vec(Σu)Tdu

)

=

∫ (h+1)∆

h∆

∫ ∆

0

(
E
(
vec(Σs)vec(Σu)T

)
− E (vec(Σs))E

(
vec(Σu)T

))
duds

=

∫ (h+1)∆

h∆

∫ ∆

0
acovΣ(s− u)duds

= r++(h∆ + ∆) − 2r++(h∆) + r++(h∆ − ∆).

Formula (5.4.14): Arguments analogous to the ones given for (5.4.13) imply

acovY(h) = cov

(∫ (h+1)∆

h∆
Σtβdt,

∫ ∆

0
Σtβdt

)
= (βT ⊗ Id)acovΣ(h)(β ⊗ Id)

which is (5.4.14).
Turning to the positive semi-definite OU type stochastic volatility model (5.4.15) has

already been given in (5.3.8). For the twice integrated covariance r++(t) formula (5.3.10)
and elementary integration shows (5.4.16):

r+(t) =

∫ t

0
eA svar(vec(Σ0))ds = A

−1
(
eA t − Id2

)
var(vec(Σ0))

r++(t) = A
−1

∫ t

0

(
eA s − Id2

)
var(vec(Σ0))ds

=
(
A

−2
(
eA t − Id2

)
− A

−1t
)

var(vec(Σ0)).

Together with (5.3.9) this shows (5.4.16).
Regarding equation (5.4.17) a combination of (5.4.11) and (5.4.16) implies:

acovΣ(h) =
(
A

−2
(
eA (∆h+∆) − 2eA ∆h + eA (∆h−∆)

)

−A
−1 (∆h+ ∆ − 2∆h+ ∆h− ∆)

)
var(vec(Σ0))

= A
−2eA ∆(h−1)

(
e2A ∆ − 2eA ∆ + Id2

)
var(vec(Σ0))

= eA ∆(h−1)
A

−2
(
Id2 − eA ∆

)2
var(vec(Σ0)).

This shows the first equality in (5.4.17) and the second follows immediately by (5.3.9).
Finally observe that

A AX = ((A⊗ Id) + (Id ⊗A))2X

+ ((A⊗ Id) + (Id ⊗A))X
(
(AT ⊗ Id) + (Id ⊗AT )

)
= AAX

for all X ∈Md2(R) and thus A and A commute.
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Remark 5.4.3. (a) The above formulae imply that for β = 0 the log-price increments
(Yn)n∈N form an uncorrelated sequence and are thus white noise (in the second order sense).

(b) Note that for a second order stationary causal m-dimensional ARMA(1,1) process
(Xt)t∈Z given by Xt − ΦXt−1 = Zt + ΘZt−1 with Φ,Θ ∈ Mm(R) and (Zt)t∈Z being m-
dimensional white noise with covariance matrix ΣZ the following autocovariance function
can be obtained using the general formulae of Brockwell and Davis (1991, p. 420) (see also
Wei (1990, Section 14.3.5)):

acovX(0) = ΣZ + (Im −B)−1(Φ + Θ)ΣZ(Φ + Θ)T

acovX(1) = (Φ + Θ)ΣZ + Φ(Im −B)−1(Φ + Θ)ΣZ(Φ + Θ)T

acovX(h) = Φh−1acovX(1), h ≥ 1

where B : Mm(R) → Mm(R), X 7→ ΦXΦT . Since we consider a stationary causal ARMA
process, ρ(Φ) < 1. Hence, as vec(BX) = (Φ ⊗ Φ)vec(X), it is obvious that ρ(B) < 1 and
thus Im −B is invertible.

Comparing equation (5.4.17) with the general autocovariance function of an ARMA(1,1)
process, immediately reveals that in the positive semi-definite OU type stochastic volatility
model the process (vec(Σn))n∈N is an ARMA(1,1) process with autoregressive parameter
eA ∆.

Moreover, since we assume σ(A) ⊂ (−∞, 0)+iR, we have from Horn and Johnson (1991,
Theorem 4.4.5) that σ(A ) ⊂ (−∞, 0) + iR and thus all elements of σ(eA ∆) are less than
one in modulus, which implies that this ARMA(1,1) process is causal.

The ARMA(1,1) structure of Σ might seem to provide a natural starting point for making
inference on the OU type stochastic volatility model. However, usually Σ is unobservable
and so inference can only be based on the observed returns Y. But the second order
structure of the returns obviously does not allow for an in-depth analysis of the latent
stochastic volatility model. Yet, the squared log-price increments YYT := (YnY

T
n )n∈N are

not only observable, but also exhibit a useful second order structure, which is no surprise,
since their sum converges in probability to the integrated volatility when letting the time
increment ∆ go to zero.

Theorem 5.4.4. In the general stochastic volatility model with µ = β = 0 the second
order structure of the squared log price process is given by

E(YtY
T
t ) = var(Yt) +E(Yt)E(Y T

t ) = E(Σ0)t (5.4.18)

var(vec(YtY
T
t )) = (Id2 + Q + PQ)

(
r++(t) + (r++(t))T

)

+(Id2 + P) (E(Σ0) ⊗ E(Σ0)) t
2 (5.4.19)

and the one of the squared log return increments (YnY
T
n )n∈N is given by

E(YnY
T
n ) = var(Yn) + E(Yn)E(YT

n ) = E(Σ0)∆ (5.4.20)

var(vec(YnY
T
n )) = (Id2 + Q + PQ)

(
r++(∆) + r++(∆)T

)

+(Id2 + P) (E(Σ0) ⊗ E(Σ0)) ∆2 (5.4.21)

acovYYT (h) = acovΣ(h) for h ∈ N (5.4.22)

where

P : Md2(R) →Md2(R), (5.4.23)

(PX)i,(p−1)d+q = Xi,(q−1)d+p for all i = {1, 2, . . . , d2}, p, q = {1, 2, . . . d},
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Q : Md2(R) →Md2(R), (5.4.24)

(QX)(k−1)d+l,(p−1)d+q = X(k−1)d+p,(l−1)d+q for all k, l, p, q = {1, 2, . . . d}

are linear operators. Obviously P−1 = P, Q−1 = Q and P is representable as X 7→ XP
with P ∈ Md2(R) being a permutation matrix. Moreover, Q(vec(X)vec(Z)T ) = X ⊗ Z for
all X,Z ∈ Sd.

Component-wise we have for the variance

cov (Yi,nYj,n,Yk,nYl,n) = var(vec(YnY
T
n ))(j−1)d+i,(l−1)d+k (5.4.25)

=

∫ t

0

∫ z

0
(cov(Σij,z,Σkl,u) + cov(Σij,u,Σkl,z)) dudz

+

∫ t

0

∫ z

0
(E(Σjl,zΣik,u) + E(Σjl,uΣik,z) + E(Σjk,zΣil,u) + E(Σjk,uΣil,z)) dudz

In the OU stochastic volatility model the process (vec(YnY
T
n ))n∈N is thus a causal AR-

MA(1,1) process with autoregressive parameter eA ∆.

Proof. The first equation in (5.4.18) is standard and the second then follows immediately
from (5.4.7) and (5.4.8). This in turn implies (5.4.20).

Observe that (5.4.19) implies immediately (5.4.21), since YnY
T
n and Y∆Y

T
∆ are equal in

law. Turning to the proof of (5.4.19) we have from Lemma 4.5.11 in Chapter 4 that

YtY
T
t =

∫ t

0
Σ1/2

s dWs

∫ t

0
dW T

s Σ1/2
s =

∫ t

0

(∫ s

0
Σ1/2

u dWu

)
dW T

s Σ1/2
s

+

∫ t

0
Σ1/2

s dWs

(∫ s

0
dW T

u Σ1/2
u

)
+

[∫ t

0
Σ1/2

s dWs,

∫ t

0
dW T

s Σ1/2
s

]M

t

=

∫ t

0

(∫ s

0
Σ1/2

u dWu

)
dW T

s Σ1/2
s +

∫ t

0
Σ1/2

s dWs

(∫ s

0
dW T

u Σ1/2
u

)
+ Σ+

t (5.4.26)

referring to Lemma 4.5.11 in Chapter 4 for the definition of the matrix covariation [·, ·]M
and observing that we do not have to take left limits as integrals with respect to Brownian
motion are necessarily continuous.

This stochastic integral representation implies that

var(vec(YtY
T
t )) = var(vec(Σ+

t )) + var

(
vec

(∫ t

0

(∫ s

0
Σ1/2

u dWu

)
dW T

s Σ1/2
s

))

+ var

(
vec

(∫ t

0
Σ1/2

s dWs

(∫ s

0
dW T

u Σ1/2
u

)))

+ Dcov

(
vec(Σ+

t ), vec

(∫ t

0

(∫ s

0
Σ1/2

u dWu

)
dW T

s Σ1/2
s

))
(5.4.27)

+ Dcov

(
vec(Σ+

t ), vec

(∫ t

0
Σ1/2

s dWs

(∫ s

0
dW T

u Σ1/2
u

)))

+ Dcov

(
vec

(∫ t

0

(∫ s

0
Σ1/2

u dWu

)
dW T

s Σ1/2
s

)
, vec

(∫ t

0
Σ1/2

s dWs

(∫ s

0
dW T

u Σ1/2
u

)))

setting D : Md2 →Md2 , X 7→ X +XT
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In the following we will now calculate the individual summands above in order to obtain
an explicit expression for the variance of YtY

T
t . To this end we first of all note that

E

(∫ t

0

(∫ s

0
Σ1/2

u dWu

)
dW T

s Σ1/2
s

)
= E

(∫ t

0
Σ1/2

s dWs

(∫ s

0
dW T

u Σ1/2
u

))
= 0.

Moreover, we already know from (5.4.6) that

var(vec(Σ+
t )) = r++(t) + r++(t)T .

Next we use the independence of (Σt)t∈R+ and (Wt)t∈R+ to obtain

E

(
vec(Σ+

t )

(∫ t

0

(∫ s

0
Σ1/2

u dWu

)
dW T

s Σ1/2
s

)T
)

= E

(
vec(Σ+

t )E

(∫ t

0

(∫ s

0
Σ1/2

u dWu

)
dW T

s Σ1/2
s

∣∣∣∣ (Σs)s∈[0,t]

)T
)

= E
(
vec(Σ+

t ) · 0
)

= 0. (5.4.28)

Thus

cov

(
vec(Σ+

t ), vec

(∫ t

0

(∫ s

0
Σ1/2

u dWu

)
dW T

s Σ1/2
s

))
= 0

and likewise

cov

(
vec(Σ+

t ), vec

(∫ t

0
Σ1/2

s dWs

(∫ s

0
dW T

u Σ1/2
u

)))
= 0.

In order to calculate the remaining covariances we have to study the individual entries. In
the following let k, l,m, n ∈ {1, 2, · · · d}, g := (k − 1)d + l, g := (m − 1)d + n and we write

moreover Σ
1/2
ij,s for (Σ

1/2
s )ij .

E

(
vec

(∫ t

0

(∫ s

0
Σ1/2

u dWu

)
dW T

s Σ1/2
s

)
vec

(∫ t

0

(∫ s

0
Σ1/2

u dWu

)
dW T

s Σ1/2
s

)T
)

g,h

= E



∫ t

0

∫ s

0

d∑

p=1

d∑

q=1

Σ
1/2
pk,sΣ

1/2
lq,udWq,udWp,s

∫ t

0

∫ s

0

d∑

a=1

d∑

b=1

Σ1/2
am,sΣ

1/2
nb,udWb,udWa,s




(∗)
=

∫ t

0

d∑

a=1

E



∫ s

0

d∑

q=1

Σ
1/2
ak,sΣ

1/2
lq,udWq,u

∫ s

0

d∑

b=1

Σ1/2
am,sΣ

1/2
nb,udWb,u


 ds

(∗)
=

∫ t

0

∫ s

0

d∑

a=1

d∑

b=1

E
(
Σ

1/2
ak,sΣ

1/2
lb,uΣ1/2

am,sΣ
1/2
nb,u

)
duds

=

∫ t

0

∫ s

0

d∑

a=1

d∑

b=1

E
(
Σ

1/2
ka,sΣ

1/2
lb,uΣ1/2

am,sΣ
1/2
bn,u

)
duds

=

∫ t

0

∫ s

0
E
(
(Σ1/2

s ⊗ Σ1/2
u )(Σ1/2

s ⊗ Σ1/2
u )

)
(k−1)d+l,(m−1)d+n

duds

=

∫ t

0

∫ s

0
E (Σs ⊗ Σu)(k−1)d+l,(m−1)d+n duds.
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The (∗) above indicates that we have used the Itô isometry and the fact that stochastic
integrals with respect to two independent Brownian motions are uncorrelated.

Thus we have established that

var

(
vec

(∫ t

0

(∫ s

0
Σ1/2

u dWu

)
dW T

s Σ1/2
s

))
=

∫ t

0

∫ s

0
E (Σs ⊗ Σu) duds

and calculations analogous to the above ones give

var

(
vec

(∫ t

0
Σ1/2

s dWs

(∫ s

0
dW T

u Σ1/2
u

)))
=

∫ t

0

∫ s

0
E (Σu ⊗ Σs) duds.

Using again the Itô isometry twice and the uncorrelatedness of integrals with respect to
independent Brownian motions we have with g := (k − 1)d+ l, h := (m− 1)d+ n:

cov

(
vec

(∫ t

0

(∫ s

0
Σ1/2

u dWu

)
dW T

s Σ1/2
s

)
, vec

(∫ t

0
Σ1/2

s dWs

(∫ s

0
dW T

u Σ1/2
u

)))

g,h

= E

(
vec

(∫ t

0

(∫ s

0
Σ1/2

u dWu

)
dW T

s Σ1/2
s

)
vec

(∫ t

0
Σ1/2

s dWs

(∫ s

0
dW T

u Σ1/2
u

))T
)

g,h

= E



∫ t

0

∫ s

0

d∑

p=1

d∑

q=1

Σ
1/2
pk,sΣ

1/2
lq,udWq,udWp,s

∫ t

0

∫ s

0

d∑

a=1

d∑

b=1

Σ1/2
na,sΣ

1/2
bm,udWb,udWa,s




=

∫ t

0

d∑

a=1

E



∫ s

0

d∑

q=1

Σ
1/2
ak,sΣ

1/2
lq,udWq,u

∫ s

0

d∑

b=1

Σ1/2
na,sΣ

1/2
bm,udWb,u


 ds

=

∫ t

0

∫ s

0

d∑

a=1

d∑

b=1

E
(
Σ

1/2
ak,sΣ

1/2
lb,uΣ1/2

na,sΣ
1/2
bm,u

)
duds

=

∫ t

0

∫ s

0

d∑

a=1

d∑

b=1

E
(
Σ

1/2
ka,sΣ

1/2
lb,uΣ1/2

an,sΣ
1/2
bm,u

)
duds

=

∫ t

0

∫ s

0
E
(
(Σ1/2

s ⊗ Σ1/2
u )(Σ1/2

s ⊗ Σ1/2
u )

)
(k−1)d+l,(n−1)d+m

duds

=

∫ t

0

∫ s

0
(PE (Σs ⊗ Σu))(k−1)d+l,(m−1)d+n duds.

Thus

cov

(
vec

(∫ t

0

(∫ s

0
Σ1/2

u dWu

)
dW T

s Σ1/2
s

)
, vec

(∫ t

0
Σ1/2

s dWs

(∫ s

0
dW T

u Σ1/2
u

)))

= P

∫ t

0

∫ s

0
E (Σs ⊗ Σu) duds.

Observing that

(P(A ⊗B))T(k−1)d+l,(m−1)d+n = amlbnk = almbkn = (P(B ⊗A))(k−1)d+l,(m−1)d+n,
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i.e. (P(A⊗B))T = P(B ⊗A), for all A = (aij), B = (bij) ∈ Sd, we finally obtain

(
cov

(
vec

(∫ t

0

(∫ s

0
Σ1/2

u dWu

)
dW T

s Σ1/2
s

)
, vec

(∫ t

0
Σ1/2

s dWs

(∫ s

0
dW T

u Σ1/2
u

))))T

=

(
P

∫ t

0

∫ s

0
E (Σs ⊗ Σu) duds

)T

= P

∫ t

0

∫ s

0
E (Σu ⊗ Σs) duds.

Inserting all the obtained results into (5.4.27) leads to

var
(
vec
(
YtY

T
t

))
= r++(t) + r++(t)T (5.4.29)

+ (Id2 + P)

(∫ t

0

∫ s

0
E (Σs ⊗ Σu) duds+

∫ t

0

∫ s

0
E (Σu ⊗ Σs) duds

)
.

Component-wise this gives (5.4.25). As we have that for any X = (xij), Z = (zij) ∈ Sd

(
Q(vec(X)vec(Z)T )

)
(k−1)d+l,(m−1)d+n

= (vec(X)vec(Z)T )(k−1)d+m,(l−1)d+n

= xmkynl = xkmyln = (X ⊗ Y )(k−1)d+l,(m−1)d+n,

it is immediate that Q(vec(X)vec(Y )T ) = X ⊗Y for all X,Y ∈ Sd. Using this property we
get from (5.4.29):

var
(
vec
(
YtY

T
t

))
= r++(t) + r++(t)T

+ (Id2 + P)

(∫ t

0

∫ s

0
(E (Σs ⊗ Σu) − E(Σ0) ⊗ E(Σ0)) duds

+

∫ t

0

∫ s

0
(E (Σu ⊗ Σs) − E(Σ0) ⊗ E(Σ0)) duds

)

+ 2 (Id2 + P)

∫ t

0

∫ s

0
E(Σ0) ⊗ E(Σ0)duds

= r++(t) + r++(t)T +

(Q + PQ)

(∫ t

0

∫ s

0

(
E
(
vec(Σs)(vec(Σu))T

)
− E(vec(Σ0))E(vec(Σ0))

T
)
duds

+

∫ t

0

∫ s

0

(
E
(
vec(Σu)(vec(Σs))

T
)
− E(vec(Σ0))E(vec(Σ0))

T
)
duds

)

+ (Id2 + P) (E(Σ0) ⊗ E(Σ0)) t
2

= r++(t) + r++(t)T + (Q + PQ)

(∫ t

0

∫ s

0
(acovΣ(s− u) + acovΣ(u− s)) duds

)

+ (Id2 + P) (E(Σ0) ⊗ E(Σ0)) t
2

Together with (5.4.4) this finally shows (5.4.19).



114 5. Multivariate Ornstein-Uhlenbeck Stochastic Volatility Model

It remains to show (5.4.22). Applying (5.4.26) we have for h ∈ N:

acovYYT (h) = cov
(
vec
(
Yh+1Y

T
h+1

)
, vec

(
Y1Y

T
1

))

= cov

(
vec

(∫ (h+1)∆

h∆

Σ1/2
s dWs

(∫ s

h∆

dWT
u Σ1/2

u

))
, vec

(∫ ∆

0

Σ1/2
s dWs

(∫ s

0

dWT
u Σ1/2

u

)))

+ cov

(
vec

(∫ (h+1)∆

h∆

Σ1/2
s dWs

(∫ s

h∆

dWT
u Σ1/2

u

))
, vec

(∫ ∆

0

(∫ s

0

Σ1/2
u dWu

)
dWT

s Σ1/2
s

))

+ cov

(
vec

(∫ (h+1)∆

h∆

Σ1/2
s dWs

(∫ s

h∆

dWT
u Σ1/2

u

))
, vec (Σ1)

)

+ cov

(
vec

(∫ (h+1)∆

h∆

(∫ s

h∆

Σ1/2
u dWu

)
dWT

s Σ1/2
s

)
, vec

(∫ ∆

0

Σ1/2
s dWs

(∫ s

0

dWT
u Σ1/2

u

)))

+ cov

(
vec

(∫ (h+1)∆

h∆

(∫ s

h∆

Σ1/2
u dWu

)
dWT

s Σ1/2
s

)
, vec

(∫ ∆

0

(∫ s

0

Σ1/2
u dWu

)
dWT

s Σ1/2
s

))

+ cov

(
vec

(∫ (h+1)∆

h∆

(∫ s

h∆

Σ1/2
u dWu

)
dWT

s Σ1/2
s

)
, vec (Σ1)

)

+ cov

(
vec (Σh+1) , vec

(∫ ∆

0

Σ1/2
s dWs

(∫ s

0

dWT
u Σ1/2

u

)))

+ cov

(
vec (Σh+1) , vec

(∫ ∆

0

(∫ s

0

Σ1/2
u dWu

)
dWT

s Σ1/2
s

))
+ cov (vec (Σh+1) , vec (Σ1)) .

The independence of the increments of Brownian motion over distinct time intervals imply
that the first, second, fourth and fifth covariance terms above vanish. Likewise conditioning
on (Σt)t∈R+ and using the independence of (Σt)t∈R+ and (Wt)t∈R+ (i.e. arguing basically
as in (5.4.28)) show that the third, sixth, seventh and eighth covariance term are actually
zero. Thus only the last term remains which gives

acovYYT (h) = cov (vec (Σh+1) , vec (Σ1)) = acovΣ(h).

Combining this with the ARMA(1,1) property of the process (vec(Σn))n∈N
we see that

in the OU type stochastic volatility model the process (vec(YnY
T
n ))n∈N has a causal

ARMA(1,1) structure with autoregressive coefficient eA ∆.

Note that the ARMA(1,1) structure of vec(YYT ), of course, means that YYT itself
is an ARMA(1,1) process. Its autoregressive coefficient is given by the linear operator
Sd → Sd, X 7→ eA∆XeA∆.

For the positive semi-definite OU type stochastic volatility model the closed form expres-
sions for the first and second moments can be obtained by applying Theorem 5.4.4 and by
using the expression for the autocovariance, integrated autocovariance and for the mean as
given in Theorem 5.4.2.

Moreover, recall that a d-dimensional sequence (ǫn)n∈N is said to be generated by a
weak GARCH(p, q) process, if the best linear predictor of ǫn with respect to ǫn−1, ǫn−2,
. . . , ǫn−1ǫ

T
n−1, ǫn−2ǫ

T
n−2, . . . is zero and the best linear predictor of ǫnǫ

T
n with respect to

ǫn−1, ǫn−2, . . . , ǫn−1ǫ
T
n−1, ǫn−2ǫ

T
n−2, . . . is a (strong) GARCH(p, q) process. In the univariate

case this definition goes back to Drost and Nijman (1993) and in the multivariate case it
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has been given in Hafner (2007). As it is easy to see that cov(vec(YnY
T
n ),Ym) = 0 for

n,m ∈ N and n 6= m (actually this holds also true for n = m as shown in the proof of
Proposition 5.4.8), combining the last theorem with Brockwell and Davis (1991, Example
11.4.1) gives the following result.

Proposition 5.4.5. In the OU-type multivariate stochastic volatility model with µ = β = 0
the log-return sequence (Yn)n∈N is generated by a weak GARCH(1,1) process.

In order to obtain consistency results and central limit theorems for the estimation of the
multivariate OU type model based on the moments of Y and YYT , we need to show that
the discretely observed stationary log-returns Y form a strongly mixing and, thus, ergodic
sequence. For µ = β = 0 strong mixing in the univariate OU type stochastic volatility
model has been obtained in Sørensen (2000) and Genon-Catalot, Jeantheau and Larédo
(2000). For details on mixing we refer again to Doukhan (1994) and regarding ergodicity to
Ash and Gardner (1975) or Krengel (1985). In our set-up the most important implication
of ergodicity is that the usual empirical moments converge almost surely (and in L1) to the
true moments (provided they are finite) as the number of observations goes to infinity.

Proposition 5.4.6. (i) Assume that in the general stochastic volatility model the station-
ary and square integrable process Σ is strongly mixing with the mixing coefficients being
(αk(Σ))k∈N. Then the process Y is strongly mixing with mixing coefficients αk(Y) ≤ αk(Σ)
for all k ∈ N. Thus Y is ergodic.

(ii) In the positive semi-definite OU type stochastic volatility model the process Y is
always strongly mixing with mixing coefficients (αk)k∈N decaying at least at an exponential
rate. Thus Y is ergodic.

Proof. Part (i) follows from an immediate adaptation of the proof of Sørensen (2000, Lemma
6.3) to the multivariate case and the case µ, β 6= 0. (ii) results from combining (i) with
Proposition 5.3.9.

Based on these results and the closed form expression for the second moments a simple
moment matching estimator within the framework of the generalized method of moment
(GMM) estimation of the model can be implemented, which is consistent and asymptotically
normal. However, this involves the determination of an optimal number of lags to be
included, as well as the specification of an optimal weighting scheme of the different lags.
Moreover, the estimation procedure does not allow to filter the current volatility states. To
overcome these problems we derive a state-space representation for the joint series of the
returns and squared returns, which allows us to use the Kalman recursions for estimation
and filtering.

5.4.2. State-space representation

The aim of this section is to establish a state-space representation for the joint process
(Yn,YnY

T
n )n∈N. Throughout we assume β = 0. As before, we first analyse the general

stochastic volatility model and then focus on the OU type specification.

Recall that

Yn = ∆µ+

∫ n∆

(n−1)∆
Σ1/2

s dWs,
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which immediately implies

YnY
T
n = ∆2µµT +

∫ n∆

(n−1)∆
Σ1/2

s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

+∆

∫ n∆

(n−1)∆
Σ1/2

s dWsµ
T + ∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s . (5.4.30)

Setting

un =

(
u1,n

u2,n

)
(5.4.31)

u1,n =

∫ n∆

(n−1)∆
Σ1/2

s dWs (5.4.32)

u2,n =

∫ n∆

(n−1)∆
Σ1/2

s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s + ∆

∫ n∆

(n−1)∆
Σ1/2

s dWsµ
T

+∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s − Σn, (5.4.33)

it follows that

Yn = ∆µ+ u1,n (5.4.34)

YnY
T
n = ∆2µµT + Σn + u2,n. (5.4.35)

The martingale property in the following theorem is, of course, understood w.r.t. the filtra-
tion (Ft) which we assume to be given. Recall that all processes (in particular, Lt,Σt,Wt, Yt,
Yn,Σn) are adapted with respect to this filtration. Moreover, (Ws−Wt)s≥t is independent
of (Σs)s∈R+ as well as of Ft for all t ∈ R

+. For technical reasons this is, however, not fully
sufficient. Thus, we henceforth assume:

Assumption 5.2. (Ws −Wt)s≥t is independent of σ(Ft, (Σs)s∈R+) for all t ∈ R
+ (σ(·)

denoting the generated σ-algebra).

Remark 5.4.7. In the OU type stochastic volatility model this assumption is satisfied if
the σ-algebras Ft, σ((Ls −Lt)s≥t) and σ((Ws −Wt)s≥t) are independent for all t ∈ R

+ and
not only pairwise independent.

Clearly the last condition will usually be satisfied. In particular, it is satisfied when
the pair (L,W ) of the driving Lévy process and Wiener process forms a Lévy process in
S

+
d × R

d.

Recall further that a sequence (Xn)n∈N is said to be a martingale difference sequence
with respect to a filtration G = (Gn)n∈N if it is adapted to G and E(Xn|Gn−1) = 0. It is
straightforward to see that a martingale difference sequence is uncorrelated provided the
second moments are finite.

Proposition 5.4.8. The sequence (un)n∈N is a (second order) stationary zero-mean mar-
tingale difference sequence w.r.t. the filtration (Gn)n∈N := (Fn∆)n∈N and thus in particular
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white noise. It holds that

var(u1,n) = E(Σn) = E(Σ0)∆ (5.4.36)

var(vec(u2,n)) = ∆2
(
E(Σn) ⊗ (µµT ) + (µµT ) ⊗ E(Σn) + µT ⊗ E(Σn) ⊗ µ

+µ⊗ E(Σn) ⊗ µT
)

+ (Id2 + P) (E(Σn) ⊗ E(Σn))

+(Q + PQ)var(vec(Σn)) (5.4.37)

= ∆3
(
E(Σ0) ⊗ (µµT ) + (µµT ) ⊗ E(Σ0) + µT ⊗ E(Σ0) ⊗ µ

+µ⊗ E(Σ0) ⊗ µT
)

+ ∆2(Id2 + P) (E(Σ0) ⊗ E(Σ0))

+(Q + PQ)
(
r++(∆) + (r++(∆))T

)

cov(u1,n, vec(u2,n)) = ∆
(
E(Σn) ⊗ µT + µT ⊗ E(Σn)

)

= ∆2
(
E(Σ0) ⊗ µT + µT ⊗ E(Σ0)

)
(5.4.38)

Proof. The stationarity follows immediately from the stationarity of the processes involved
in the definition. For the martingale difference sequence property observe

E(u1,n|Gn−1) = E

(
E

(∫ n∆

(n−1)∆
Σ1/2

s dWs

∣∣∣∣∣σ
(
Gn−1, (Σs)s∈[(n−1)∆,n∆]

)
)∣∣∣∣∣Gn−1

)

= E(0|Gn−1) = 0, (5.4.39)

since obviously σ

(
Gn−1, (Σs)s∈[(n−1)∆,n∆]

)
⊆ σ (Gn−1, (Σs)s∈R+) and thus the Brownian in-

crements (Ws−W(n−1)∆)s∈[(n−1)∆,n∆] are independent of the σ-algebra we are conditioning
upon, and likewise

E(u2,n|Gn−1) = E

(∫ n∆

(n−1)∆
Σsds+ 0 + 0 − Σn

∣∣∣∣∣Gn−1

)
= 0. (5.4.40)

Taking unconditional expectations above gives that un has mean zero. The Itô isometry
immediately implies (5.4.36).

Turning to (5.4.38) we observe that

cov(u1,n, vec(u2,n)) (5.4.41)

= E



∫ n∆

(n−1)∆
Σ1/2

s dWsvec

(∫ n∆

(n−1)∆
Σ1/2

s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)T



+ E



∫ n∆

(n−1)∆
Σ1/2

s dWsvec

(
∆

∫ n∆

(n−1)∆
Σ1/2

s dWsµ
T

)T



+ E



∫ n∆

(n−1)∆
Σ1/2

s dWsvec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)T



− E

(∫ n∆

(n−1)∆
Σ1/2

s dWsvec (Σn)T
)
.

Conditioning upon (Σs)s∈[(n−1)∆,n∆], it is once again easy to see that the last expectation

in (5.4.41) vanishes. Set now for a moment X = (xi)1≤i≤d :=
∫ n∆
(n−1)∆ Σ

1/2
s dWs. Then X is
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conditionally upon (Σs)s∈[(n−1)∆,n∆] a d-dimensional normal random variable and assume
for a moment that the components of X|(Σs)s∈[(n−1)∆,n∆] are moreover independent. For

any i, k, l,∈ {1, 2, . . . , d} we have that
(
Xvec(XXT )T

)
i,(k−1)d+l

= xixkxl thus clearly has

zero expectation conditional upon (Σs)s∈[(n−1)∆,n∆] due to the conditional independence

and Gaussianity. Hence E(Xvec(XXT )T |(Σs)s∈[(n−1)∆,n∆]) = 0. If the components of
X|(Σs)s∈[(n−1)∆,n∆] are not independent, then due the conditional Gaussianity there is a
matrix C ∈Md(R) such that CX|(Σs)s∈[(n−1)∆,n∆] has independent components. Therefore

E(Xvec(XXT )T |(Σs)s∈[(n−1)∆,n∆])

= C−1E(CXvec(CX(CX)T )T |(Σs)s∈[(n−1)∆,n∆])(C
−T ⊗ C−T ) = C−10(C−T ⊗ C−T ).

Thus also the first term in (5.4.41) above vanishes.
Let us now calculate the remaining expectations:

E



∫ n∆

(n−1)∆
Σ1/2

s dWsvec

(
∆

∫ n∆

(n−1)∆
Σ1/2

s dWsµ
T

)T



= ∆E



∫ n∆

(n−1)∆
Σ1/2

s dWs

(
(µ⊗ Id)

∫ n∆

(n−1)∆
Σ1/2

s dWs

)T



= ∆E



∫ n∆

(n−1)∆
Σ1/2

s dWs

(∫ n∆

(n−1)∆
Σ1/2

s dWs

)T

 (µT ⊗ Id)

= ∆E (Σn) (µT ⊗ Id) = ∆ (1 ⊗ E (Σn)) (µT ⊗ Id) = ∆
(
µT ⊗ E (Σn)

)
and

E



∫ n∆

(n−1)∆
Σ1/2

s dWsvec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)T



= ∆E



∫ n∆

(n−1)∆
Σ1/2

s dWs

(
(Id ⊗ µ)vec

(∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))T



= ∆E



∫ n∆

(n−1)∆
Σ1/2

s dWs

(∫ n∆

(n−1)∆
Σ1/2

s dWs

)T

 (Id ⊗ µT )

= ∆ (E (Σn) ⊗ 1) (Id ⊗ µT ) = ∆
(
E (Σn) ⊗ µT

)
.

Combining these formulae with (5.4.41) and (5.4.9) establishes (5.4.38).
It remains to show (5.4.37). Let D be defined as in the proof of Proposition 5.4.4

var(vec(u2,n)) = var

(
vec

(∫ n∆

(n−1)∆
Σ1/2

s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))
+ var (vec (Σn))

+ var

(
vec

(
∆

∫ n∆

(n−1)∆
Σ1/2

s dWsµ
T

))
+ var

(
vec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))

+ Dcov

(
vec

(∫ n∆

(n−1)∆
Σ1/2

s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)
, vec

(
∆

∫ n∆

(n−1)∆
Σ1/2

s dWsµ
T

))
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+ Dcov

(
vec

(∫ n∆

(n−1)∆
Σ1/2

s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)
, vec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))

− Dcov

(
vec

(∫ n∆

(n−1)∆
Σ1/2

s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)
, vec (Σn)

)

+ Dcov

(
vec

(
∆

∫ n∆

(n−1)∆
Σ1/2

s dWsµ
T

)
, vec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))

− Dcov

(
vec

(
∆

∫ n∆

(n−1)∆
Σ1/2

s dWsµ
T

)
, vec (Σn)

)

− Dcov

(
vec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)
, vec (Σn)

)
. (5.4.42)

The only term we already know above is var(vec(Σn)) = r++(∆)+ r++(∆)T . Therefore we
will now calculate the remaining covariances. As we assumed µ = 0 in Theorem 5.4.4, we
can use (5.4.21) and obtain

var

(
vec

(∫ n∆

(n−1)∆
Σ1/2

s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))
=(Id2 + Q + PQ)var(vec(Σn))

+ (Id2 + P) (E(Σn) ⊗ E(Σn)) .

Using the Itô isometry once again gives:

var

(
vec

(
∆

∫ n∆

(n−1)∆
Σ1/2

s dWsµ
T

))
= ∆2var

(
(µ⊗ Id)vec

(∫ n∆

(n−1)∆
Σ1/2

s dWs

))

= ∆2(µ⊗ Id)E(Σn)(µT ⊗ Id) = ∆2(µ⊗ Id)(1 ⊗ E(Σn))(µT ⊗ Id)

= ∆2(µµT ) ⊗ E(Σn)

and

var

(
vec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))
= ∆2var

(
(Id ⊗ µ)vec

(∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))

= ∆2(Id ⊗ µ)E(Σn)(Id ⊗ µT ) = ∆2E(Σn) ⊗ (µµT ).

Defining X as in the discussion of the first summand in (5.4.41) and applying the result
obtained there we get

cov

(
vec

(∫ n∆

(n−1)∆
Σ1/2

s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)
, vec

(
∆

∫ n∆

(n−1)∆
Σ1/2

s dWsµ
T

))

= ∆E(vec(XXT )((µ⊗ Id)X)T ) = ∆E(vec(XXT )XT )(µT ⊗ Id) = 0

and likewise

cov

(
vec

(∫ n∆

(n−1)∆
Σ1/2

s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)
, vec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))
= 0.
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Furthermore, the standard conditioning argument and the independence of (Σt)t∈R+ and
(Wt)t∈R+ imply

cov

(
vec

(∫ n∆

(n−1)∆
Σ1/2

s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)
, vec (Σn)

)

= E

(
vec

(
E

(∫ n∆

(n−1)∆
Σ1/2

s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

∣∣∣∣∣ (Σs)s∈[(n−1)∆,n∆]

))
(vec(Σn))T

)

− vec

(
E

(∫ n∆

(n−1)∆
Σ1/2

s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))
E(vec(Σn))T

= E(vec(Σn)(vec(Σn))T ) − E(vec(Σn))E(vec(Σn))T = var(vec(Σn)).

Next we observe that

cov

(
vec

(
∆

∫ n∆

(n−1)∆
Σ1/2

s dWsµ
T

)
, vec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))

= ∆2(µ⊗ Id)var

(∫ n∆

(n−1)∆
Σ1/2

s dWs

)
(Id ⊗ µT )

= ∆2(µ⊗ Id)E(Σn)(Id ⊗ µT ) = ∆2µ⊗ E(Σn) ⊗ µT ,

since

(
(µ⊗ Id)E(Σn)(Id ⊗ µT )

)
(i−1)d+j,(k−1)d+l

= µiE(Σjk,n)µl

=
(
µ⊗ E(Σn) ⊗ µT

)
(i−1)d+j,(k−1)d+l

for all i, j, k, l ∈ {1, 2, . . . , d}.
Finally using again the conditioning and independence it is immediate that

cov

(
vec

(
∆

∫ n∆

(n−1)∆
Σ1/2

s dWsµ
T

)
, vec (Σn)

)
= 0 and

cov

(
vec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)
, vec (Σn)

)
= 0.

Inserting all these results into (5.4.42) gives

var(vec(u2,n)) = (Id2 + Q + PQ)var(vec(Σn)) + (Id2 + P)E(Σn) ⊗ E(Σn)

+ ∆2
(
E(Σn) ⊗ (µµT ) + (µµT ) ⊗ E(Σn) + µ⊗ E(Σn) ⊗ µT +

(
µ⊗ E(Σn) ⊗ µT

)T)

+ var(vec(Σn)) − var(vec(Σn)) − var(vec(Σn))T

= (Q + PQ)var(vec(Σn)) + (Id2 + P)E(Σn) ⊗ E(Σn)

+ ∆2
(
E(Σn) ⊗ (µµT ) + (µµT ) ⊗ E(Σn) + µ⊗ E(Σn) ⊗ µT + µT ⊗ E(Σn) ⊗ µ

)
,

which is (5.4.37).
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Remark 5.4.9. For the commutation matrix Kd as defined in Magnus and Neudecker
(1979), for instance, it can be shown that Kd(X ⊗ Z) = P(X ⊗ Z) for all X,Z ∈ Sd.
Thus, the operator P can be replaced by the commutation matrix Kd in Theorem 5.4.4 and
Proposition 5.4.8. Note, however, that for X ∈ Md2(R) multiplication by Kd is in general
not the same as applying P.

Although the noise un is independent of Σn, we are still confronted with the problem
that inference is infeasible, as the latent process Σn still appears in the equations for our
observables (5.4.34) and (5.4.35). Clearly, it would be desirable for the process (Σn)n∈N to
be also representable as a linear process, preferably with a noise sequence that is uncorre-
lated with (un)n∈N, because then the equations (5.4.34) and (5.4.35) could be extended to
a state-space model (for a detailed treatment see e.g. Brockwell and Davis (1991, Chapter
12)) and all the tools developed for these models would be available.

In the following we show that at least for the OU type stochastic volatility model such a
state-space representation is indeed available.

To this end, define

η1,n :=

∫ n∆

(n−1)∆
eA(n∆−s)dLse

AT (n∆−s), η2,n :=

∫ n∆

(n−1)∆
dLs = Ln∆ − L(n−1)∆

and ηn := (η1,n, η2,n). Then for all n ∈ N it is obvious that

Σn∆ = eA∆Σ(n−1)∆e
AT ∆ + η1,n and Ln∆ = L(n−1)∆ + η2,n.

Before showing that this leads to a helpful state-space representation we first study the
properties of the noise sequence (ηn)n∈N.

Proposition 5.4.10. The sequence of random variables (ηn)n∈N is i.i.d. and uncorrelated
with (un)n∈N. Moreover, it has finite second moments and

E(η1,n) = −A−1
(
E(L1) − eA∆E(L1)e

AT ∆
)

= E(Σ0) − eA∆E(Σ0)e
AT ∆ (5.4.43)

E(η2,n) = ∆E(L1) = −∆AE(Σ0) (5.4.44)

var(vec(η1,n)) = −A−1
(
var(vec(L1)) − eA ∆var(vec(L1))e

A T ∆
)

= var(vec(Σ0)) − eA ∆var(vec(Σ0))e
A T ∆ (5.4.45)

var(vec(η2,n)) = ∆var(vec(L1)) = −∆Avar(vec(Σ0)) (5.4.46)

cov (vec(η1,n), vec(η2,n)) = −A
−1
(
var(vec(L1)) − eA ∆var(vec(L1))

)

= A
−1A(Id2 − eA ∆)var(vec(Σ0)). (5.4.47)

Proof. The i.i.d. property immediately follows from the i.i.d. property of the increments of
a Lévy process over disjoint intervals of common length. To see that (ηn)n∈N and (un)n∈N

are uncorrelated, it suffices to note that

E(un|(Ls)s∈R+) = 0 for all n ∈ N

and (ηn)n∈N is measurable with respect to the σ-algebra generated by (Ls)s∈R+.
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The second equalities in all the above formulae are immediate consequences of Proposition
5.3.5 and the commutativity of A and A (see Theorem 5.4.2). Let us thus proof the first
equalities now. Regarding (5.4.43) we have

E(η1,n) =

∫ n∆

(n−1)∆
eA(n∆−s)E(L1)e

AT (n∆−s)ds = −A−1
(
E(L1) − eA∆E(L1)e

AT ∆
)

and (5.4.44) follows analogously. Turning to (5.4.45) we obtain

var(vec(η1)) = var

(∫ n∆

(n−1)∆
eA (n∆−s)dvec(Ls)

)

=

∫ n∆

(n−1)∆
eA (n∆−s)var(vec(L1))e

A T (n∆−s)

= −A−1
(
var(vec(L1)) − eA ∆var(vec(L1))e

A T ∆
)

and (5.4.46) is again shown along the same lines. Finally, (5.4.47) follows from

cov(vec(η1,n), vec(η2,n)) = cov

(∫ n∆

(n−1)∆
eA (n∆−s)dvec(Ls),

∫ n∆

(n−1)∆
dvec(Ls)

)

=

∫ n∆

(n−1)∆
eA (n∆−s)var(vec(L1))ds

= −A
−1
(
var(vec(L1)) − eA ∆var(vec(L1))

)
.

Proposition 5.3.21 implies

Σn = Σ+
n∆ − Σ+

(n−1)∆ = A−1
(
Σn∆ − Σ(n−1)∆ − Ln∆ + L(n−1)∆

)

for all n ∈ N. Recalling the definition of ηn one thus obtains

AΣn = eA∆Σ(n−1)∆e
AT ∆ − Σ(n−1)∆ + η1,n − η2,n.

Combining this with the representation (5.4.34) and (5.4.35) of the observable log price
Yn and its “square” YnY

T
n and setting α1,n = AΣn and α2,n = Σn∆ yields the desired

state-space representation:

Yn = ∆µ+ u1,n (5.4.48)

YnY
T
n = ∆2µµT + A−1α1,n + u2,n. (5.4.49)

where

α1,n = eA∆α2,n−1e
AT ∆ − α2,n−1 + η1,n − η2,n (5.4.50)

α2,n = eA∆α2,n−1e
AT ∆ + η1,n (5.4.51)
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or in pure vector notation with αn :=

(
vec(α1,n)
vec(α2,n)

)

(
Yn

vec(YnY
T
n )

)
=

(
∆µ

∆2(µ⊗ µ)

)
+

(
0Md,d2 (R) 0Md,d2 (R)

A −1 0Md2,d2 (R)

)
αn +

(
u1,n

vec(u2,n)

)
(5.4.52)

where

αn =

(
0Md2 (R) eA∆ ⊗ eA∆ − Id2

0Md2 (R) eA∆ ⊗ eA∆

)
αn−1 +

(
vec(η1,n − η2,n)

vec(η1,n)

)
. (5.4.53)

Observe that 0Md,d2 (R) denotes the zero matrix in Md,d2(R).

As regards the noise terms we have that (un)n∈N and (ηn)n∈N are uncorrelated. Fur-
thermore (ηn)n∈N is an i.i.d. sequence and (un)n∈N a martingale difference sequence. This
state-space representation can be used to conduct model inference. Moreover, the volatility
states can be inferred straightforwardly using the Kalman filter.

5.4.3. Realised quadratic variation

As in Barndorff-Nielsen and Shephard (2003) we will now show that we can determine
the second-order structure of the realised quadratic variation as well as a state space rep-
resentation for it. Note that a detailed asymptotic distribution theory for the realised
quadratic variation and its generalizations has been provided in Barndorff-Nielsen and
Shephard (2004), Barndorff-Nielsen, Graversen, Jacod and Shephard (2006) and Barndorff-
Nielsen, Graversen, Jacod, Podolskij and Shephard (2006). In the following we start again
with the general stochastic volatility model and focus on the OU type model later on.

Let us thus assume that we do not only observe the price increments Yn over increments of
length ∆, but also for each n ∈ N the price increments Yj,n := Y((n−1)+ j

M )∆−Y((n−1)+ j−1
M )∆

with j = 1, . . . ,M over subintervals of length ∆/M for some M ∈ N (for example, ∆ might
be one day and ∆/M ten minutes). Moreover, we aggregate the M ∈ N consecutive

squared increments over a period of length ∆ to realised variation [Y ]
(M)
n and set Σj,n =

Σ+

((n−1)+ j
M )∆

− Σ+

((n−1)+ j−1
M )∆

with n ∈ N, j = 1, . . . ,M . Precisely, we have for n ∈ N:

Yn = Yn∆ − Y(n−1)∆ =

M∑

j=1

Yj,n (5.4.54)

[Y](M)
n :=

M∑

j=1

Yj,nY
T
j,n (5.4.55)

Σn = Σ+
n∆ − Σ+

(n−1)∆ =

M∑

j=1

Σj,n. (5.4.56)

Note that in law Yj,n and Σj,n are just the same as Yn and Σn calculated not over intervals

of length ∆ but over intervals of length ∆/M , whereas the realised variation [Y]
(M)
n is

distinct from the squared increments over intervals of length ∆.
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Theorem 5.4.11. Consider the general stochastic volatility model with µ = β = 0. Then

the sequence ([Y]
(M)
n )n∈N is (second order) stationary and

E
(
[Y](M)

n |Σn

)
= Σn (5.4.57)

E
(
[Y](M)

n

)
= E(Σn) = ∆E(Σ0) (5.4.58)

var
(
vec
(
[Y](M)

n

))
= var(vec(Σn)) +M(Q + QP)

(
r++

(
∆

M

)
+

(
r++

(
∆

M

))T
)

+
∆2

M
(Id2 + P)(E(Σ0) ⊗ E(Σ0)) (5.4.59)

= r++(∆) + (r++(∆))T

+M(Q + QP)

(
r++

(
∆

M

)
+

(
r++

(
∆

M

))T
)

+
∆2

M
(Id2 + P)(E(Σ0) ⊗ E(Σ0))

acov[Y](M)(h) = acovΣ(h) (5.4.60)

= r++(h∆ + ∆) − 2r++(h∆) + r++(h∆ − ∆), h ∈ N.

In the Ornstein-Uhlenbeck case the realised quadratic variation (vec([Y]
(M)
n ))n∈N is thus

a causal ARMA(1,1) process with autoregressive parameter eA ∆.

Proof. Formulae (5.4.57) and (5.4.58) are immediate as is the stated (second order) sta-
tionarity.

Using the operator D as defined before we have:

var
(
vec
(
[Y]

(M)
1

))

=

M∑

j=1

var(vec(Yj,1Y
T
j,1)) +

M∑

j=1

M∑

k=j+1

Dcov(vec(Yj,1Y
T
j,1), vec(Yk,1Y

T
k,1))

= Mvar(vec(Y1,1Y
T
1,1)) +

M∑

j=1

M∑

k=j+1

Dcov(vec(Σj,1), vec(Σk,1))

= Mvar(vec(Y1,1Y
T
1,1)) + var(vec(Σ1)) −Mvar(vec(Σ1,1))

= var(vec(Σ1)) +M(Q + QP)
(
r++ (∆/M) +

(
r++ (∆/M)

)T)

+
∆2

M
(Id2 + P)(E(Σ0) ⊗ E(Σ0))

= r++(∆) + (r++(∆))T +M(Q + QP)
(
r++(∆/M) + (r++(∆/M))T

)

+
∆2

M
(Id2 + P)(E(Σ0) ⊗ E(Σ0))

and

acov[Y](M)(h) = cov
(
vec
(
[Y]

(M)
h+1

)
, vec

(
[Y]

(M)
1

))
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=

M∑

j=1

M∑

k=1

cov
(
vec(Yj,h+1Y

T
j,h+1), vec(Yk,1Y

T
k,1)
)

=
M∑

j=1

M∑

k=1

cov (vec(Σj,h+1), vec(Σk,1))

= cov(vec(Σh+1), vec(Σ1)) = acovΣ(h).

In the OU case the structure of the autocovariance function now implies immediately that
the realised quadratic variation follows an ARMA(1,1) process with AR parameter eA ∆.

Moreover, we can also generalize the state space representation of the last section by
simple addition.

Assuming again given the general stochastic volatility model with β = 0 we define for
n ∈ N and j = 1, 2, . . . ,M

u(M)
n =

(
u

(M)
1,n

u
(M)
2,n

)
(5.4.61)

u
(M)
1,j,n =

∫ (n+ j
M )∆

((n−1)+ j−1
M )∆

Σ1/2
s dWs (5.4.62)

u
(M)
2,j,n =

∫ (n+ j
M )∆

((n−1)+ j−1
M )∆

Σ1/2
s dWs

∫ (n+ j
M )∆

((n−1)+ j−1
M )∆

dW T
s Σ1/2

s + ∆

∫ (n+ j
M )∆

((n−1)+ j−1
M )∆

Σ1/2
s dWsµ

T

+∆µ

∫ (n+ j
M )∆

((n−1)+ j−1
M )∆

dW T
s Σ1/2

s − Σj,n (5.4.63)

u
(M)
1,n =

M∑

j=1

u
(M)
1,j,n (5.4.64)

u
(M)
2,n =

M∑

j=1

u
(M)
2,j,n. (5.4.65)

Then the sequence
(
u

(M)
j,n

)
n∈N

:=
(
u

(M)
1,j,n, u

(M)
2,j,n

)
n∈N

is in law equal to the sequence

(un)n∈N with ∆ replaced by ∆/M . It is straightforward to see that

Yn = ∆µ+ u
(M)
1,n (5.4.66)

[Y](M)
n =

∆2

M
µµT + Σn + u

(M)
2,n (5.4.67)

and (u
(M)
n )n∈N := (u

(M)
1,n , u

(M)
2,n )n∈N is a (second order) stationary zero-mean martingale

difference sequence with respect to the filtration Gn := Fn∆, n ∈ N. Moreover,

var(u
(M)
1,n ) = E(Σn) = ∆E(Σ0) (5.4.68)
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var(vec(u
(M)
2,n )) = Mvar(vec(u2,1,n)) =

∆3

M2

(
E(Σ0) ⊗ (µµT ) + (µµT ) ⊗ E(Σ0)

+ µT ⊗ E(Σ0) ⊗ µ+ µ⊗ E(Σ0) ⊗ µT
)

+
∆2

M
(Id2 + P) (E(Σ0) ⊗ E(Σ0))

+M(Q + PQ)
(
r++(∆/M) + (r++(∆/M))T

)
(5.4.69)

cov(u
(M)
1,n , vec(u

(M)
2,n )) =

∆

M

(
E(Σn) ⊗ µT + µT ⊗ E(Σn)

)

=
∆2

M

(
E(Σ0) ⊗ µT + µT ⊗ E(Σ0)

)
. (5.4.70)

In the Ornstein-Uhlenbeck type stochastic volatility model we can use equations (5.4.50)
and (5.4.51) to obtain a recursion for (AΣn,Σn∆). Hence, we obtain the following state
space representation

Yn = ∆µ+ u
(M)
1,n (5.4.71)

[Y](M)
n =

∆2

M
µµT + α1,n + u

(M)
2,n (5.4.72)

where

α1,n = eA∆α2,n−1e
AT ∆ − α2,n−1 + η1,n − η2,n (5.4.73)

α2,n = eA∆α2,n−1e
AT ∆ + η1,n. (5.4.74)

Alternatively in pure vector notation with αn :=

(
vec(α1,n)
vec(α2,n)

)
:

(
Yn

vec([Y]
(M)
n )

)
=

(
∆µ

∆2

M (µ⊗ µ)

)
+

(
0Md,d2 (R) 0Md,d2(R)

A −1 0Md2,d2 (R)

)
αn +

(
u

(M)
1,n

vec(u
(M)
2,n )

)
(5.4.75)

where

αn =

(
0Md2 (R) eA∆ ⊗ eA∆ − Id2

0Md2 (R) eA∆ ⊗ eA∆

)
αn−1 +

(
vec(η1,n − η2,n)

vec(η1,n)

)
. (5.4.76)

Furthermore, recall that the sequence (ηn)n∈N := (η1,n, η2,n)n∈N is i.i.d. and note that it is

uncorrelated with (u
(M)
n )n∈N. The further second order properties are given by equations

(5.4.43) to (5.4.47).

5.4.4. Identifiability

In this section we discuss conditions ensuring that the second order structure of YYT

uniquely identifies A,E(L1) and var(vec(L1)) in the OU type stochastic volatility model
with µ = β = 0. Note that the identification can already be obtained by using only
E(Y1Y

T
1 ), acovYYT (1) and acovYYT (2). Intuitively, one may think that one can improve

upon our results below by using also var(vec(Y1Y
T
1 )). However, we have not been able do

this so far due to the rather complicated expression for var(vec(Y1Y
T
1 )).



5.4. The multivariate Ornstein-Uhlenbeck stochastic volatility model 127

In the following we consider vech(Σ) and vech(YYT ) rather than vec(Σ) and vec(YYT ),
because otherwise we would necessarily be dealing with singular covariance matrices as the
symmetric d× d matrices are a proper subspace of Md(R).

Thus we need to use the set-up of Remark 5.3.6 (ii) which we are recalling now. Defining
Avech := vech ◦ A ◦ vech−1 with A : Sd → Sd, X 7→ AX +XAT it is easy to see that

dvech(Σt) = Avechvech(Σt)dt + dvechLt, (5.4.77)

with the stationary solution being given by vech(Σt) =
∫ t
−∞ eAvech(t−s)dvechLs. Observe,

moreover, that, if D denotes the d2 × d(d + 1)/2 duplication matrix and E the d(d +
1)/2 × d2 elimination matrix by E (see Lütkepohl (2005), for instance), then Avech =
E (A⊗ Id + Id ⊗A)D and eAvecht = E

(
eAt ⊗ eAt

)
D. Furthermore, in Appendix A it is

shown that the linear operator A on Sd uniquely identifies A. Actually, to identify A it
is already sufficient to know the values of AEii for i = 1, . . . , d where Eii are the d × d
matrices with zero entries except for one entry of one at the i-th diagonal element. Thus,
there is a one-to-one correspondence between A and Avech.

Note that basically all formulae obtained so far in this chapter can be rewritten using
vech instead of vec in a straightforward manner. For example, the second order structure
of Σ can also be expressed using vech:

var(vech(Σ0)) = −A−1
vechvar(vech(L1)) (5.4.78)

where Avech : Md(d+1)/2(R) →Md(d+1)/2(R), X 7→ AvechX +XAT
vech

acovvech(Σ)(h) = acovvech(YYT )(h) (5.4.79)

= eAvech∆(h−1)A−2
vech

(
Id(d+1)/2 − eAvech∆

)2
var(vech(Σ0)), h ∈ N.

Proposition 5.4.12. Assume that the OU type stochastic volatility model with µ = β = 0
and ∆ ∈ R

++ are given and that the possible A ∈ Md(R) and matrix subordinators L are
restricted such that:

(i) σ(A) ⊂ (−∞, 0) + iR.

(ii) eAvech∆ uniquely identifies Avech.

(iii) var(vech(Σ0)) = −A−1
vechvar(vech(L1)) ∈ GLd(d+1)/2(R).

Then A,E(L1) and var(vech(L1)) are uniquely identified by E(Y1Y
T
1 ), acovYYT (1) and

acovYYT (2).

Proof. By construction σ(Avech) ⊆ σ(A) = σ(A)+σ(A) and thus (i) ensures that the matrix

A−2
vech

(
Id(d+1)/2 − eAvech∆

)2
is invertible. Using also (iii) this gives that acovvech(YYT )(1)

is invertible and that eAvech∆ = acovvech(YY)(2)(acovvech(YY)(1))
−1. Using (ii) Avech is

therefore identified from acovvech(YY)(1) and acovvech(YY)(2). Hence, Avech and A can be
treated as known and so

var(vech(L1)) = −Avech

(
Id(d+1)/2 − eAvech∆

)−2
A2

vechacovvech(YYT )(1)

and E(L1) = −A∆−1E(Y1Y
T
1 ) conclude.
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The Assumption (ii) from above is crucial for the identifiability of the OU type stochastic
volatility model. It requests that exp(Avech∆) has a unique real logarithm. Other statistical
papers where it was necessary to assume the existence of a unique real logarithm of a matrix
in order to obtain identifiability are Kessler and Rahbek (2004) and Bladt and Sørensen
(2005), for instance.

The following results deal with criteria ensuring the existence of a unique real logarithm
of exp(Avech∆).

Lemma 5.4.13. Assume that A is required to satisfy σ(Avech∆) ⊆ (−∞, 0) + i(−π, π).
Then eAvech∆ uniquely identifies Avech.

Proof. This follows immediately from Horn and Johnson (1991, Section 6.4).

Lemma 5.4.14. Assume that A is required to satisfy σ(Avech) ⊆ (−∞, 0) and that all
Jordan blocks belonging to the same eigenvalue of Avech have to be of a different size. Then
eAvech∆ uniquely identifies Avech for all ∆ ∈ R

++.

Proof. Combine Culver (1966, Theorem 2), σ(eAvech∆) = eσ(Avech)∆ and the fact that the
matrix exponential preserves the Jordan block structure (Horn and Johnson (1991, Theorem
6.2.25)).

The last lemma is comparable to the identifiability restrictions of Kessler and Rahbek
(2004) and Bladt and Sørensen (2005). However, it appears to be preferable to have a
condition involving only restrictions on A, such that Avech does not have to be computed
first. To this end we give the following purely linear algebraic lemma which we state for real
diagonalizable matrices. Its generalization to diagonalizable matrices is straightforward.
Below we denote by SKd the d× d skew-symmetric matrices (i.e. the matrices X ∈Md(R)
with XT = −X).

Lemma 5.4.15. Let A ∈Md(R) be real diagonalizable with (not necessarily distinct) eigen-
values λ1, λ2, . . . , λd.

Then the linear operator A : Md(R) → Md(R), X 7→ AX + XAT satisfies A(Sd) ⊆ Sd

and A(SKd) ⊆ SKd. Moreover, A has d(d + 1)/2 linearly independent eigenvectors in Sd

with associated eigenvalues {λi + λj : i = 1, . . . , d; j = 1, . . . , i} and d(d − 1)/2 linearly
independent eigenvectors in SKd with associated eigenvalues {λi + λj : i = 1, . . . , d; j =
1, . . . , i − 1}, which are also linearly independent of the eigenvectors in Sd. Hence, every
eigenvalue has an eigenvector in Sd ∪ SKd.

Proof. That A preserves (skew-)symmetry is trivial. Assume that U ∈ GLd(R) is such that
U−1AU =: D is diagonal. Then

AX +XAT = U
(
DU−1XU−T + U−1XU−TDT

)
UT

and Md(R) → Md(R), X 7→ U−1XU−T is an invertible linear map on Md(R) preserving
both Sd and SKd and having inverse Md(R) →Md(R), X 7→ UXUT . This implies that we
can without loss of generality take A to be diagonal, i.e.

A =




λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λd



.
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Let {Eij}i,j=1,...,d be the standard basis of Md(R), i.e. Eij is a matrix having only zero
entries except for one entry of one in the i-th row and j-th column. We then have AEii = 2λi

for i = 1, . . . , d and A(Eij +Eji) = (λi +λj)(Eij +Eji) for i = 1, . . . , d and j = 1, . . . , i−1.
These are d(d + 1)/2 linearly independent eigenvectors in Sd. Likewise A(Eij − Eji) =
(λi +λj)(Eij −Eji) for i = 1, . . . , d and j = 1, . . . , i−1 gives d(d−1)/2 linearly independent
eigenvectors in SKd.

Since A has d2 eigenvalues, the fact that Sd ∩ SKd = {0} and both are linear subspaces
of Md(R) implies that every eigenvalue has an eigenvector in Sd ∪ SKd.

Lemma 5.4.16. Assume that A is required to be real diagonalizable with eigenvalues
λ1, . . . , λd and that the set {λi + λj : i = 1, . . . , d, j = 1, . . . , i} has to consist of d(d + 1)/2
pairwise distinct elements. Then eAvech∆ uniquely identifies Avech for all ∆ ∈ R

++.

Proof. Avech corresponds to the restriction of A : Md(R) → Md(R), X 7→ AX + XAT to
Sd. Hence, Lemma 5.4.15 implies that the d(d+ 1)/2 real eigenvalues of Avech are pairwise
distinct. Thus Culver (1966, Theorem 2) gives that eAvech∆ uniquely identifies Avech for all
∆ ∈ R

++.

Thus, if Lemma 5.4.16 holds, Assumption (ii) for the identifiability of our model is fulfilled.

5.4.5. The covariance structure of subordinators

A topic related to identifiability is the characterization of the second order structure of
matrix subordinators, i.e. which positive semi-definite d2 × d2 matrices appear as covari-
ance matrices of d × d matrix subordinators. Until now we have not been able to find a
useful characterization of the covariance matrices of matrix subordinators in general. Thus
we discuss only an important tractable subclass which we shall also use in our empirical
examples later on.

Let L1, L2, . . . , Ld be d univariate Lévy subordinators forming together a d-dimensional
Lévy process. Then the process

L =




L1 0 · · · 0

0 L2
. . .

...
...

. . .
. . . 0

0 · · · 0 Ld




is a matrix subordinator with non-zero elements only on the diagonal. Such matrix sub-
ordinators are referred to as diagonal matrix subordinators in the following. Obviously, all
information about L, in particular the second order structure, is already contained in the
diagonal

(
(L1,t, L2,t, . . . , Ld,t)

T
)
t∈R+ . It should be noted that

(
(L1,t, L2,t, . . . , Ld,t)

T
)
t∈R+ is

increasing in the usual order of the cone (R+)d and thus the d-dimensional Lévy process(
(L1,t, L2,t, . . . , Ld,t)

T
)
t∈R+ is another generalization of a subordinator. In the following we

call a d-dimensional Lévy processes with all components being univariate subordinators a
multivariate subordinator.

For the analysis of the second order structure of multivariate subordinators (and thus of
diagonal matrix subordinators) we need the following notions from linear algebra referring
to Berman (1988), Berman and Shaked-Monderer (2003) or Xu (2004) and the references
therein for further details.
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Definition 5.4.17. A matrix A ∈Md(R) is called completely positive if there exist a k ∈ N

and a B ∈Md,k(R) with all entries being non-negative such that A = BBT .
A matrix A ∈ Md(R) is called doubly non-negative if A is positive semi-definite and all

entries are non-negative.

Proposition 5.4.18. (a) If L is a d-dimensional multivariate subordinator with finite
second moments, var(L1) is completely positive.

(b) If C ∈Md(R) is completely positive, there exists a d-dimensional multivariate subor-
dinator L such that C = var(L1).

(c) For C ∈ Md(R) there exists a d-dimensional multivariate subordinator L such that
var(L1) = C if and only if C is completely positive.

(d) Provided d ≤ 4, there exists a d-dimensional multivariate subordinator L such that
var(L1) = C if and only if C ∈Md(R) is doubly non-negative.

Proof. Regarding Part (a) observe that var(L1) =
∫

Rd xx
T νL(dx) (cf. Sato (1999, p. 163))

and that the Lévy measure νL of L is necessarily concentrated on (R+)d. Thus approxi-
mating

∫
(R+)d xx

T νL(dx) by a sequence of integrals of simple functions (fn)n∈N of the form

fn(x) =
∑k

i=1 xi,nx
T
i,nIAi,n(x) with appropriate xi,n ∈ (R+)d and Ai,n ⊂ (R+)d converging

to x 7→ xxT gives that var(L1) is the limit of a sequence of completely positive matrices
using Berman and Shaked-Monderer (2003, Proposition 2.2). Since the set of completely
positive matrices is closed (cf. Berman and Shaked-Monderer (2003, Theorem 2.2)), this
implies that var(L1) is completely positive.

For Part (b) let k ∈ N and B ∈Md,k(R) with only non-negative entries be such that C =
BBT . Let further (Li,t)t∈R+ with i = 1, 2, . . . , k be k independent univariate subordinators

with finite second moments and var(L̃1) = Ik where L̃t = (L1,t, L2,t, . . . , Lk,t)
T for t ∈ R

+.
Then L := (BL̃t)t∈R+ is a d-dimensional multivariate subordinator with var(L1) = BBT =
C.

Combing (a) and (b) gives (c) and, finally, (d) follows by from (c), because for d ≤ 4
a matrix is doubly non-negative if and only if it is completely positive (cf. Maxfield and
Minc (1962) or Berman and Shaked-Monderer (2003, Theorem 2.4)).

Part (d) provides a very nice complete characterization of the covariance matrices of
multivariate subordinators for d ≤ 4. However, it does not extend to higher dimensions,
since for dimensions five and greater there exist examples of doubly non-negative matrices
which are not completely positive (see e.g. Berman (1988)). In general dimensions it should
thus be noted that there are easy to check sufficient conditions for complete positivity, but
the necessary and sufficient conditions known until now are more involved (cf. Xu (2004)).

To conclude this discussion of the second order properties of multivariate subordinators,
we strengthen Part (b) of the last theorem by considering also the expected value.

Proposition 5.4.19. Let C ∈ Md(R) be completely positive and µ ∈ R
d have only strictly

positive entries. Then there exists a d-dimensional multivariate subordinator L such that
E(L1) = µ and var(L1) = C.

Proof. W.l.o.g. assume C 6= 0. (In the case C = 0 simply take L as the deterministic Lévy
process with drift µ.) Let k ∈ N and B ∈ Md,k(R) with only non-negative entries be such
that C = BBT . Denote by e ∈ R

k the vector (1, 1, . . . , 1)T and set

λ = min
i=1,2,...,d

{
µi

(Be)i

}
and r =

λ3

2
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where the well-definedness of the minimum follows from C 6= 0. Defining now γL = µ −
0.5λBe the choice of λ ensures that γL has only strictly positive entries.

Let further (Li,t)t∈R+ with i = 1, 2, . . . , k be k independent univariate compound Poisson
processes with rate r and the jump distribution being the exponential distribution with
parameter λ. Define a k-dimensional Lévy process L̃ by L̃t = (L1,t, L2,t, . . . , Lk,t)

T for
t ∈ R

+. Then elementary calculations imply E(L̃1) = 0.5λe and var(L̃1) = Ik.

Hence, defining L by Lt = γLt+BL̃t for t ∈ R
+ concludes the proof.

5.4.6. Superpositions of Ornstein-Uhlenbeck type processes

In this section we modify our multivariate OU stochastic volatility model by using a super-
position of independent positive semi-definite OU type processes for the volatility process.
As in the univariate case this makes the model more flexible without loosing much of its
tractability.

Let K be a natural number, (L(1))t∈R, (L
(2))t∈R, . . . , (L

(K))t∈R be independent matrix
subordinators which are jointly independent of the Brownian motion (Wt)t∈R+ of our gen-
eral stochastic volatility model and let A(1), A(2), . . . , A(K) ∈ Md(R) be matrices with all
eigenvalues in (−∞, 0)+iR. Then we defineK independent stationary positive semi-definite

OU type processes by Σ
(i)
t =

∫ t
−∞ eA

(i)(t−s)dL
(i)
s eA

(i)T
(t−s) with i = 1, 2, . . . ,K and the sta-

tionary stochastic volatility process Σt =
∑K

i=1 Σ
(i)
t . Due to the independence it is clear

that the expected value, variance, autocovariance function and integrated volatility of Σt

are simply the sum over the respective quantities of the individual processes Σ
(i)
t . Thus

closed form formulae for these quantities follow immediately from the results of Section 5.3.

Moreover, also the results on the second order structure of the increments of the integrated
volatility generalize.

Proposition 5.4.20. Define r(i)+(t) =
∫ t
0 acovΣ(i)(u)du, r(i)++(t) =

∫ t
0 r

(i)+(u)du, A(i) :

Md(R) →Md(R), X 7→ A(i)X+XA(i)T , A (i) = (A(i)⊗Id)+(Id⊗A(i)) and A(i) : Md2(R) →
Md2(R), X 7→ A (i)X+XA (i)T for i = 1, 2, . . . ,K. Then we have for the stochastic volatility
model with a superposition of positive semi-definite OU processes as volatility process:

E(Σ0) = −
K∑

i=1

(A(i))−1E(L
(i)
1 )

var(vec(Σ0)) = −
K∑

i=1

(A(i))−1var(vec(L
(i)
1 ))

r++(t) =
K∑

i=1

(
(A (i))−2

(
eA

(i)t − Id2

)
− (A (i))−1t

)
var(vec(Σ

(i)
0 ))

= −
K∑

i=1

(
(A (i))−2

(
eA

(i)t − Id2

)
− (A (i))−1t

)
(A(i))−1var(vec(L

(i)
1 ))

acovΣ(h) =
K∑

i=1

eA
(i)∆(h−1)(A (i))−2

(
Id2 − eA

(i)∆
)2

var(vec(Σ
(i)
0 ))

= −
K∑

i=1

eA
(i)∆(h−1)(A (i))−2

(
Id2 − eA

(i)∆
)2

(A(i))−1var(vec(L
(i)
1 )), h ∈ N.



132 5. Multivariate Ornstein-Uhlenbeck Stochastic Volatility Model

Thus we obtain very explicit formulae whenever they are also available in the simple
multivariate OU type stochastic volatility model. However, the integrated volatilities Σ and
the logarithmic price increments YYT are no longer multivariate ARMA(1,1) processes.

But it is easy to see that the state space representations presented in Sections 5.4.2 and
5.4.3 generalize to the case of superpositions. We illustrate this for the realised quadratic
variation. We have

Yn = ∆µ+ u
(M)
1,n (5.4.80)

[Y](M)
n =

∆2

M
µµ∗ + Σn + u

(M)
2,n (5.4.81)

=
∆2

M
µµ∗ +

K∑

i=1

Σ(i)
n + u

(M)
2,n (5.4.82)

This immediately gives rise to a state space representation of

(
Yn, [Y](M)

n

)
,
(
A(1)Σ(1)

n ,Σ
(1)
n∆

)
,
(
A(2)Σ(2)

n ,Σ
(2)
n∆

)
, . . . , ,

(
A(K)Σ(K)

n ,Σ
(K)
n∆

)

using equations (5.4.50) and (5.4.51) to obtain independent recursions for (A(i)Σ
(i)
n ,Σ

(i)
n∆).

As in the univariate case (cf. Barndorff-Nielsen (2001b), Barndorff-Nielsen and Shep-
hard (2001b)), one can also model long-range dependence by superimposing infinitely (but
countably) many appropriate positive semi-definite OU type processes. This follows from
a straightforward generalization of the arguments in Barndorff-Nielsen (1998b, Section 4).

5.5. Empirical illustration

In this section we provide a small empirical application of the multivariate OU type stochas-
tic volatility model using two bivariate data sets in order to illustrate the features of the
model developed further.

5.5.1. Data

Our empirical illustration is based on daily prices of four major US stocks, viz. Applied
Materials Inc. (AMAT), Amgen Inc. (AMGN), Pfizer Inc. (PFE) and Wal-Mart Stores
Inc. (WMT). The sample covers the period from January 2nd, 1985 to December 29th,
2006. Note that splits and dividends are incorporated into the prices. Moreover, the con-
tinuously compounded returns are mean-adjusted. Figure 5.1 presents the time evolvement
of the corresponding return series exhibiting the usual empirical characteristics. Moreover,
apparently the stocks tend to move similarly.

5.5.2. Estimation methods

The estimation of continuous-time stochastic volatility models is complicated by the un-
availability of the likelihood function. However, based on the theoretical results derived
in the foregoing Section 5.4, the multivariate OU type stochastic volatility model can be
estimated either by using the second order dependence structure of the squared returns or
by exploiting its state-space representation.
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Figure 5.1.: Daily returns. Time series plots of the daily returns (January 2nd, 1985 until
December 29th, 2006) of the four stocks under consideration.

5.5.2.1. Estimation via the second order dependence structure

Based on the ergodicity of the discretely sampled returns in our model a simple estimator
can be obtained by matching a set of empirical moments with their model implied coun-
terparts given in Theorem 5.4.4. Using the identification results natural candidates are
vech(E

(
YYT

)
, acovvech(YYT )(1) and acovvech(YYT )(2). However to gain efficiency we in-

clude lags of the autocovariance function of different order such that our objective function
is finally given by

SSR(L) =
∥∥m− E

(
vech(YYT )

)∥∥
F

+
∑

l∈L

∥∥∥al − acovvech(YYT )(l)
∥∥∥

F
(5.5.1)

with L denoting the selected lags of the autocovariance function and m and al for l ∈ L the
empirical mean and autocovariance function of vech(YYT ), respectively. Although several
matrix norms can be considered we use here the Frobenius norm, i.e.

‖C‖F =
d∑

i=1

d∑

j=1

c2ij = tr(CCT ),

such that the objective function (5.5.1) leads to a non-linear least squares problem.
As noted in Barndorff-Nielsen and Shephard (2001b, Section 5.3), who apply this proce-

dure for the estimation of a univariate OU type stochastic volatility model, the estimator
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is independent of the assumption of a particular OU type process. More precisely, based
on the results discussed in Section 5.4.4, we know that this estimator generally identifies
the mean and the variance of the Lévy process L driving the OU type process (referred
to as the background-driving Lévy process or BDLP, for short, in the following), as well
as the matrix A. So, rather than assuming a specific parametric model for the BDLP,
we optimize over the first and second moments of L1. Often the parameters of a specific
BDLP can be identified solely from the mean and the variance of the BDLP. In this case,
the autocovariance fit also identifies these parameters.

Although this estimator is computationally very fast it lacks from the perspective of
optimal weighting, especially the autocovariance terms have usually a higher variance as
the empirical mean of the time series, which is not incorporated in the estimation by
minimizing the objective function (5.5.1). We account for these effects by applying the
GMM estimation proposed by Hansen (1982) using the previous estimates based on (5.5.1)
as starting values. For our weighting matrix we use a HAC estimator of the long run
covariance matrix with Parzen kernel and a lag of 25, which is continuously updated.

Although a large number of moment conditions would improve the asymptotic effi-
ciency of the estimator it lacks from the fact that the weighting matrix is estimated
with less precision. Given this trade-off in a finite sample set-up our moment condi-
tions are given by the mean and the autocovariances of the time series vech(YYT ) at
lags (1, 3, 5, 7, 9, 15, 20, 30, 40, 60, 80, 100).

5.5.2.2. Estimation via the state-space representation

Based on the state-space representation for the squared returns (see Section 5.4.2) the
Kalman recursions can be used to obtain the quasi-likelihood function of the model. This
estimation approach has also been considered in Barndorff-Nielsen and Shephard (2001b)
for the univariate OU type stochastic volatility model. In that paper they also show that the
Kalman filter is suboptimal but provides consistent and asymptotically normal estimators.
The state-space representation also illustrates once more that the multivariate model can
again be estimated without the need of a prespecified parametric BDLP. So, estimates
of the mean and variance of the BDLP as well as of the elements of the matrix A can
straightforwardly be obtained by the Kalman filter. Moreover, in contrast to the above
GMM approach, the latent volatility process can be inferred.

5.5.3. Estimation results

In the following we estimate the multivariate OU type stochastic volatility model as given
in equations (5.4.1) and (5.4.2), where we follow Barndorff-Nielsen and Shephard (2001b)
by assuming that µ = β = 0, i.e. the means of the returns are set to zero. Recall in
this context that we use mean-adjusted returns and note that for µ 6= 0 and β = 0 one
can still use our state space representation of Section 5.4.2. Moreover, we assume that the
off-diagonal elements of the matrix subordinator are zero, i.e. we restrict the BDLP to be
a diagonal matrix subordinator as introduced in Section 5.4.5. The vector of the diagonal
elements (L1, L2, . . . , Ld)

T of L is to be denoted by diag(L). The d elements of diag(L)
may not exhibit negative correlations due to Proposition 5.4.18 which is incorporated as a
restriction into our estimation procedure. Hence, in the model estimated the correlation
between the variances of the different assets is determined by both the correlation structure
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of diag(L) as well as by the entries of A. Although this specification seems rather restrictive
it turns out that even this model can quite adequately describe the joint dynamics.

In the following we mainly present the estimation results obtained by the GMM method.
From the results obtained using the Kalman filter we only show the estimates of the latent
stochastic volatility process.

Before presenting the estimation results of the multivariate OU type stochastic volatility
model, we first consider its univariate counterpart. This allows for a more detailed analysis
of the multivariate model. We therefore start with a discussion of the univariate estimation
results.

The upper two panels in Table 5.1 present the univariate estimation results for the four
assets. The first panel gives the parameter estimates of the univariate models with one
OU type process as the stochastic volatility process, whereas the middle panel shows the
estimates of a univariate model with a superposition of two OU type processes where the
parameters of each individual OU type process are given in a separate line and where wi is
the weight of the individual OU type processes in the superposition. As we can see for the
models with a single OU type process the magnitudes are comparable to the ones obtained
in the existing literature, see e.g. Barndorff-Nielsen and Shephard (2001b, 2002).

Figure 5.2 depicts the empirical and estimated autocovariance functions. In particular,
the upper four panels show the estimated model-implied autocovariance functions of the
squared daily returns along with the empirical one (given by dots) for AMAT, AMGN,
PFE and WMT, respectively. In particular, the solid line refers to the daily autocovariance
function implied by the estimated univariate model and the dotted lines depict the auto-
covariance function implied by the superposition model with two processes superimposed.
Obviously the superposition model provides a better fit than the simple model. More pre-
cisely, in contrast to the simple models its autocovariance function decreases faster for short
lags (up to the 10th or 20th lag, depending on the asset) and slower for longer lags, because
it is the weighted sum of two exponentials decreasing at different rates. These results are
in line with the findings of Barndorff-Nielsen and Shephard (2001b, 2002), who encourage
the use of superposition models in the univariate case.

We now turn to the estimation of the bivariate OU type stochastic volatility model for
the two systems (AMAT, AMGN) and (PFE, WMT) where we ensure identifiability using
Lemma 5.4.13 noting that ∆ = 1 equals one day. Table 5.1 presents the bivariate GMM
estimation results in its last panel. Obviously, the parameter estimates are somewhat
similar (in magnitude) to those of the univariate models. Note in this connection that
the eigenvalues of A are −0.0148± 0.1036i for (AMAT, AMGN) and −0.0482, −0.0107 for
(PFE,WMT).

The estimated autocovariance functions of the daily squared returns are also depicted in
the upper four panels of Figure 5.2 (dashed lines). The bottom panels show the empirical
and estimated autocovariance function of the cross product of the returns of the two stocks
used in the respective bivariate models. Two effects of our multivariate model stand out.
The results for the first system (AMAT and AMGN), see left panels, illustrate that our
model does not necessarily impose monotonically decreasing autocovariance functions. This
behaviour is mainly due to the exponentially damped sinusoidal behaviour of the matrix
exponential induced by eigenvalues with non-vanishing complex part. The results for the
second system (PFE and WMT), see right panels, nicely illustrate the property derived
in Section 5.3.3 that the multivariate model is able to mimic the behaviour of univariate
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Table 5.1.: Estimation Results
asset wi A E (diag (L1)) var (diag (L1))

u
n
iv

ar
ia

te AMAT -0.0109 0.3301 2.0453
AMGN -0.0118 0.2843 1.8324

PFE -0.0158 0.1658 0.7718
WMT -0.0066 0.0564 0.4999

su
p
er

p
os

it
io

n
AMAT 0.9222 -0.0837 0.9101 5.9075

0.0773 -0.0060 0.4685 4.2608
AMGN 0.8324 -0.0719 0.5452 6.2873

0.1676 -0.0008 0.0243 0.6591
PFE 0.6231 -0.0998 0.4499 2.9555

0.3768 -0.0061 0.0717 0.5223
WMT 0.9961 -0.0059 0.0265 0.4561

0.0039 -0.1806 16.2901 29.2314

b
iv

ar
ia

te AMAT & AMGN

(
−0.0527 0.1320
−0.0921 0.0230

) (
0.7838
0.0002

) (
2.5501 0.7026
2.3626 4.4340

)

PFE & WMT

(
−0.0396 0.0183

0.0135 −0.0193

) (
0.2864
0.0719

) (
1.9126 0.7241
0.8522 0.7240

)

In the upper two panels the estimates for a univariate model with one (univariate) and a superposition of two Ornstein-
Uhlenbeck type processes as the stochastic volatility process are shown. The lower panel shows the estimation results for
the bivariate data sets.
The first column states the company of the stock(s) considered, the second the weight of the OU type processes superimposed
(only relevant for the superposition of univariate OU type processes), the third the estimate of the matrix A and the third
and fourth the expectation and variance of the driving Lévy process L at time one. In the bivariate case the lower left
element of var(diag(L1)) gives the covariance and the upper right the corresponding correlation.
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Figure 5.2.: Autocovariances. Estimated and empirical (black dots) daily autocovariance
functions of the squared returns (upper four panels) and of the cross products
of the returns of the two bivariate systems (bottom panels). The left panels
show the result of the first system (AMAT, AMGN) and the right panels those
of the second system (PFE, WMT). The autocovariance functions based on
the different models are characterized by different line styles: the continuous
line refers to the fit of the univariate model, the dotted line corresponds to the
univariate superposition model with two OU type processes, and the dashed
line corresponds to the autocovariances based on the bivariate system.
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Figure 5.3.: Filtered integrated variances. Note that Σ̂∗
n(A,B) denotes the filtered cor-

relation instead of the filtered covariance between asset A and B.
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superpositions. Especially the autocovariance function of PFE in the bivariate model is
remarkably close to the autocovariance function of the univariate superposition model.

Note that these properties of our model already emerge empirically within our rather
simple specification of the matrix subordinator, viz. a diagonal subordinator. But we
conjecture that the flexibility of our model can even be further improved by considering
more sophisticated specifications of the background-driving Lévy process or by allowing for
superpositions.

As the knowledge of the latent stochastic volatility process (Σn)n∈N is important for many
financial applications, we also present here the model-implied volatility states (Σ̂n)n∈N

that can straightforwardly be obtained using the Kalman filter. Figure 5.3 depicts the
filtered volatility and correlation states of the two bivariate models. Obviously, in both
systems the volatilities tend to move together. Moreover, the correlations, especially the
one between AMAT and AMGN, show a relatively constant mean. Note that the volatilities
and correlation of AMAT and AMGN are themselves quite volatile.

5.6. Conclusion

Given the relevance of a joint modelling of the dynamics of multiple assets for portfolio
and risk management decisions, we have generalized the non-Gaussian OU type stochastic
volatility model proposed by Barndorff-Nielsen and Shephard (2001b) to the multivariate
case. It turns out that our model possesses many attractive features which are mainly a
result of our stochastic volatility specification.

Specifying the stochastic volatility by Lévy-driven positive semi-definite OU type pro-
cesses provides a flexible dependence structure for the volatility. In particular, we show that
the increments of the integrated covariance and the outer product of the returns (“squared
returns”) of a stochastic volatility model based on a single positive semi-definite OU type
process follow ARMA(1,1) processes. Furthermore, closed form expressions are given for
the first and second moments of these variables. These results facilitate the implementation
of financial decisions, such as the choice of e.g. a minimum-variance portfolio or other types
of risk assessment, and the estimation of our model. Moreover, we derived a state-space
representation for the joint process of the returns and the outer product of the returns,
which provides an additional approach for the estimation of the model as well as for the
estimation and forecasting of the volatility states using the Kalman recursions.

Since our model is defined in terms of a matrix subordinator its particular specification
may depend on the application at hand. In the empirical part of this chapter we focused
on models with a simple diagonal matrix subordinator, which already exhibit some nice
properties, see Section 5.5.3. However, studying the empirical relevance of alternative
classes of matrix subordinators deserves more attention in future research.

Further improvements in the estimation of the model may be obtained by incorporating
the high-frequency based and thus more informative realized covariation measure using the
results of Section 5.4.3. We are currently working on this extension.
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6. Multivariate Continuous Time Lévy-driven
GARCH Processes

6.1. Introduction

Since the introduction of the ARCH process in Engle (1982) and the extension to GARCH
by Bollerslev (1986), these processes have been widely used to successfully model discretely
observed time series. In particular, they have often been used in financial econometrics to
model the returns of stocks, currencies and other assets, since they are capable of reproduc-
ing several of the “stylized facts” of financial data, viz. stochastic volatility (=variance),
volatility clusters, tail-heaviness and dependence without autocorrelation. In order to be
able to treat irregularly spaced data and to use continuous time financial theory, already
Nelson (1990) started to study diffusions which appear as the limit of rescaled GARCH
processes. Thereafter, such diffusion limits have been further studied by various authors
(see Corradi (2000) and references therein). However, many of the desirable features of
GARCH are lost in these limits. Thus, Klüppelberg et al. (2004) introduced a continuous
time analogue of GARCH processes – the COGARCH(1,1) process – by using a Lévy pro-
cess and generalizing the GARCH recursions. This process inherits many of the appealing
features from the GARCH process.

As can be seen from Klüppelberg et al. (2004, Equation 3.8), the COGARCH(1,1) process
can be defined as the solution of

dGt =
√
vt−dLt (6.1.1)

dvt = −β(vt− − c)dt + αvt−d[L,L]dt (6.1.2)

using the discrete quadratic variation [L,L]d of a univariate Lévy process L, parameters
α, β, c > 0 and initial values G0 = 0, v0 > 0. The process G is referred to as the COGA-
RCH(1,1) process and v as the COGARCH(1,1) volatility process. To be in line with what
follows we have defined v to be càdlàg instead of càglàd and changed the parametrization
compared to Klüppelberg et al. (2004). In a financial context G is understood to resemble
a log-price and v its stochastic volatility.

By now the COGARCH process has been investigated in several papers. Klüppelberg,
Lindner and Maller (2006) studied the COGARCH(1,1) process further in comparison to
the popular stochastic volatility model of Barndorff-Nielsen and Shephard (2001b) and
Fasen et al. (2006) presented a detailed analysis of the extremal behaviour. Moreover,
Brockwell et al. (2006) introduced univariate COGARCH processes of arbitrary orders (p, q)
with q > p by using insight from the theory of CARMA processes. Different estimation
procedures for the COGARCH(1,1) process were discussed and successfully applied to data
in Haug, Klüppelberg, Lindner and Zapp (2007), Müller (2006) and Maller et al. (2006).
The latter paper also constructed sequences of discrete time GARCH(1,1) processes on a
finite time interval converging to the COGARCH(1,1) process in the Skorokhod metric in

141



142 6. Multivariate Continuous Time Lévy-driven GARCH Processes

probability. A similar but weaker result is to be found in Kallsen and Vesenmayer (2006)
who also obtained the infinitesimal generator of (G, v). Furthermore, the volatility process
in the COGARCH(1,1) model is a particular example of a generalized Ornstein-Uhlenbeck
process (cf. Lindner and Maller (2005) and references therein). The asymptotics of the
sample autocovariance functions of such processes are discussed in Fasen (2007) with a
special emphasis on the COGARCH case.

In this paper we introduce a multivariate version of the COGARCH(1,1) process, to be
dubbed “MUCOGARCH(1,1)”, and analyse its properties (Markov properties, existence of
moments, stationarity and second order structure) in detail. In analogy to Brockwell et al.
(2006) we use a d-dimensional Lévy process and define the volatility process using a “self-
exciting” autoregressive structure of order one and the discrete quadratic variation of the
Lévy process. Clearly multivariate models are needed in order to model and understand
the joint behaviour of several time series (e.g. the prices of assets) which exhibit non-
trivial interdependencies. But in a financial context they are also necessary to obtain a
reasonable basis for portfolio optimization or the pricing of multi-asset options. So far
only few multivariate stochastic volatility models have been discussed in the literature.
Lindberg (2005) and Hubalek and Nicolato (2005) introduced different factor models where
the volatility is driven by factors which are univariate positive Ornstein-Uhlenbeck (OU)
type processes as used in the works of Barndorff-Nielsen and Shephard. In Chapter 4 we
introduced positive semi-definite OU type processes which were used in Chapter 5 to define
a multivariate extension of the popular model of Barndorff-Nielsen and Shephard (2001b).

In the discrete time GARCH world the general multivariate model (known as vec-model)
seems to have been first stated in Bollerslev, Engle and Wooldridge (1988). The first
comprehensive study of multivariate GARCH models is Engle and Kroner (1995) where the
so-called BEKK model was introduced which provides an easy parametrization ensuring
positive semi-definiteness of the variance process. Until now various variants of multivariate
GARCH processes have been proposed, analysed and fitted to data. For a comprehensive
review paper we refer to Bauwens, Laurent and Rombouts (2006).

Generally the analysis of multivariate GARCH models is considerably more involved than
the univariate case due to the non-linearity of the variance equation and the “noise” being
concentrated on the rank one-matrices, for example, explicit results for the moments are
only obtainable under certain restrictions. Similar problems are appearing in our analysis
of the MUCOGARCH processes which will be defined via a stochastic differential equation
(SDE) which is only defined on the positive semi-definite matrices and has only locally Lip-
schitz coefficients. However, we are able to show that the MUCOGARCH process inherits
many nice features from the univariate COGARCH processes. Yet, to do this we often need
to establish technical results first and the formulae obtained are more complicated.

The remainder of this paper is structured as follows. First we summarize important
notation to be used throughout this paper below.

In Section 6.2 we review discrete time multivariate GARCH processes, multivariate Lévy
processes and positive semi-definite processes of Ornstein-Uhlenbeck processes, because
they are intrinsically related to the MUCOGARCH process to be defined.

Thereafter we introduce and study the MUCOGARCH(1,1) process in Section 6.3 starting
with the definition and establishing well-definedness in Part 6.3.1. In the next part of
this section we turn to presenting a univariate COGARCH(1,1) process that bounds the
volatility process in a norm intrinsically related to the autoregressive parameter and use this
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bound to give sufficient conditions for the finiteness of moments. This is followed by showing
that the volatility process alone and the MUCOGARCH process together with its volatility
are strong Markov processes. Moreover, we establish conditions for the existence of a
stationary distribution of the volatility in Subsection 6.3.3. In the last part we calculate the
second order structure of the volatility process explicitly under certain assumptions on the
moments of the driving Lévy process and establish (asymptotic) second order stationarity.

In the following brief Section 6.4 we turn our focus on the increments of the MUCO-
GARCH process itself showing that it has stationary increments provided the volatility is
stationary. Thereafter we calculate the second order moment structure of the increments
(i.e. the returns in a financial context) observed on a regularly spaced discrete grid. Here
we obtain in particular that the returns have zero autocorrelation but their “squares” have
non-vanishing autocorrelation.

In Section 6.5 we study several illustrative examples and show simulations of them.

Finally, we present in the last section an idea how to define MUCOGARCH processes of
general orders higher than (1, 1). As it is based on multivariate CARMA processes, this is
preceded by a brief review of those processes.

In the appendix of this chapter we present results on stochastic differential equations
which are only defined on an open subset of R

d and which have only locally Lipschitz coef-
ficients. After establishing existence and uniqueness of solutions we turn to their Markovian
properties where we also recall the necessary notions from the theory of Markov processes
needed. Additionally, several other auxiliary results needed are to be found in the appendix.

6.1.1. Notation

We denote the set of real m×n matrices by Mm,n(R). If m = n, we simply write Mn(R) and
denote the group of invertible n×n matrices by GLn(R), the linear subspace of symmetric
matrices by Sn, the (closed) positive semi-definite cone by S

+
n and the open positive definite

cone by S
++
n . In stands for the n×n identity matrix. The natural ordering on the symmetric

n×n matrices shall be denoted by ≤, i.e. for A,B ∈Mn(R) we have that A ≤ B if and only
if B −A ∈ S

+
n . The tensor (Kronecker) product of two matrices A,B is written as A⊗B.

vec denotes the well-known vectorisation operator that maps the n× n matrices to R
n2

by
stacking the columns of the matrices below another. For more information regarding the
tensor product and vec operator we refer to Horn and Johnson (1991, Chapter 4). Likewise
vech : Sd → R

d(d+1)/2 denotes the “vector-half” operator that stacks the columns of the
lower triangular part of a symmetric matrix including the diagonal below another. The
spectrum of a matrix is denoted by σ(·) and the spectral radius by ρ(·). Finally, A∗ is the
transpose (adjoint) of a matrix A ∈Mm,n(R).

For a matrix A we denote by Aij the element in the i-th row and j-th column and this
notation is extended to processes in a natural way.

For some set B the indicator function is denoted by IB(·) and operations on sets are
defined element-wise as usual, for instance, if A,B ⊆ C we have A+B = {a+ b : a ∈ A, b ∈
B} and ℜ(A) = {ℜ(a) : a ∈ A} where ℜ denotes the real part of a complex number.

Norms of vectors or matrices are denoted by ‖ · ‖. If the norm is not specified, then it is
irrelevant which particular norm is used.

Throughout we assume that all random variables and processes are defined on a given
filtered probability space (Ω, P,F , (Ft)t∈T ) with T = N in the discrete time case and
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T = R
+ in the continuous one. Moreover, in the continuous setting we assume the usual

conditions to hold.

Furthermore, we employ an intuitive notation with respect to the (stochastic) integration
with matrix-valued integrators referring to any of the standard texts (e.g. Protter (2004))
for a comprehensive treatment of the theory of stochastic integration. Let (At)t∈R+ in
Mm,n(R), (Bt)t∈R+ in Mr,s(R) be càdlàg and adapted processes and (Lt)t∈R+ in Mn,r(R)

be a semi-martingale. Then we denote by
∫ t
0 As−dLsBs− the matrix Ct in Mm,s(R) which

has ij-th element Cij,t =
∑n

k=1

∑r
l=1

∫ t
0 Aik,s−Blj,s−dLkl,s. Equivalently such an integral

can be understood in the sense of Métivier and Pellaumail (1980b), resp. Métivier (1982),
by identifying it with the integral

∫ t
0 As−dLs with At being for each fixed t the linear

operator Mn,r(R) → Mm,s(R), X 7→ AtXBt. Moreover, we always denote by
∫ b
a with

a ∈ R∪{−∞}, b ∈ R the integral over the half-open interval (a, b] for notational convenience.
If b = ∞ the integral is understood to be over (a, b). If (Xt)t∈R+ is a semi-martingale in
R

m and (Yt)t∈R+ one in R
n then the quadratic variation ([X,Y ]t)t∈R+ is defined as the

finite variation process in Mm,n(R) with components [X,Y ]ij,t = [Xi, Yj]t for t ∈ R
+ and

i = 1, . . . ,m, j = 1, . . . , n.

6.2. A review of related processes

In this section we briefly review some processes which are related to the multivariate contin-
uous time GARCH (MUCOGARCH) process to be introduced in this chapter. The insights
gained from these processes will be of use for the definition of the MUCOGARCH processes
in particular.

6.2.1. Discrete time multivariate GARCH

The well-known one dimensional GARCH(p, q) model with p, q ∈ N is defined via an i.i.d.
sequence (ǫn)n∈Z and the equations

Xn =
√
vnǫn (6.2.1)

vn = α0 +

p∑

i=1

αiX
2
n−i +

q∑

j=1

βjvn−j (6.2.2)

where the parameters satisfy α0, . . . , αp, β1, . . . , βq ≥ 0.

When one moves from a scalar X to a multidimensionalX, the variance process v becomes
a covariance matrix process V . The most general d-dimensional discrete time GARCH(p, q)
model based on an i.i.d. sequence (ǫn)n∈Z in R

d thus is the following:

Xn = V 1/2
n ǫn (6.2.3)

Vn = C +

p∑

i=1

AiXn−iX
∗
n−i +

q∑

j=1

BjVn−j. (6.2.4)

Here V
1/2
n denotes the unique square root defined by functional calculus. Moreover, Ai and

Bj are linear operators that map the positive semi-definite d× d matrices into themselves
and C ∈ S

+
d .
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This model is implicit in most multivariate GARCH models studied so far. In particular,
it is obviously equivalent to the vec-model (Engle and Kroner (1995)) which is given by:

Xn = V 1/2
n ǫn (6.2.5)

vec(Vn) = vec(C) +

p∑

i=1

Ãivec(Xn−iX
∗
n−i) +

q∑

j=1

B̃jvec(Vn−j). (6.2.6)

Ãi and B̃j are now d2 × d2 matrices mapping the vectorized positive semi-definite matrices
into themselves.

Establishing conditions for the existence of stationary multivariate GARCH(p, q) pro-
cesses is considerably more involved than in the univariate case (see e.g. Bougerol and
Picard (1992)), since one cannot utilize the theory of linear random recurrence equations.
We refrain from giving details and refer the interested reader to Boussama (1998 or 2006).

Moreover, the restrictions on the linear operators Ai and Bj necessary to ensure positive
semi-definiteness led to the introduction of the so-called BEKK model (see again Engle and
Kroner (1995)), which automatically ensures positive semi-definiteness:

Xn = V 1/2
n ǫn (6.2.7)

Vn = C +

p∑

i=1

li∑

k=1

Āi,kXn−iX
∗
n−iĀ

∗
i,k +

q∑

j=1

sj∑

r=1

B̄j,rVn−jB̄
∗
j,r, (6.2.8)

with li, sj ∈ N0 for i = 1, 2, . . . , p, j = 1, 2, . . . , q and where Āi,k, B̄j,r are now arbitrary
elements of Md(R).

The BEKK model corresponds to the vec model with Ãi =
∑li

k=1 Āi,k ⊗ Āi,k and B̃j =∑sj

r=1 B̄j,r ⊗ B̄j,r with ⊗ denoting the tensor (Kronecker) product. Conversely, all vec-
models with Ãi(S

+
d ) = S

+
d and B̃j(S

+
d ) = S

+
d for i = 1, . . . , p, j = 1, . . . , q can be represented

as BEKK models with li = sj = 1 and in dimension two all vec-models have BEKK
representations (see Appendix B for details). Thus, it is not too restrictive to look only at
BEKK models with li = sj = 1 as we shall do in the following.

6.2.2. Multivariate Lévy processes

Later on we shall use both Lévy processes in R
d and in the symmetric matrices Sd. Thus

we briefly recall the relevant basic facts on them now. For a comprehensive treatment of
Lévy processes confer Applebaum (2004), Protter (2004) or Sato (1999), for instance.

We consider a Lévy process L = (Lt)t∈R+ (where L0 = 0 a.s.) in R
d determined by its

characteristic function in the Lévy-Khintchine form E
[
ei〈u,Lt〉] = exp{tψL(u)} for t ∈ R

+

with

ψL(u) = i〈γL, u〉−
1

2
〈u, τLu〉+

∫

Rd

(ei〈u,x〉− 1− i〈u, x〉I[0,1]({‖x‖)) νL(dx), u ∈ R
d, (6.2.9)

where γL ∈ R
d, τL ∈ S

+
d and νL is a measure on R

d that satisfies νL({0}) = 0 and
∫

Rd(‖x‖2∧
1) νL(dx) < ∞. The measure νL is referred to as the Lévy measure of L. Moreover, 〈·, ·〉
denotes the usual Euclidean scalar product on R

d and ‖ · ‖ the associated norm.
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We always assume L to be càdlàg. It is a well-known fact that to every càdlàg Lévy
process L on R

d one can associate a random measure µL on R
+ × R

d \ {0} describing the
jumps of L. For any measurable set B ⊂ R

+ × R
d \ {0},

µL(B) = ♯{s ≥ 0 : (s, Ls − Ls−) ∈ B}.

The jump measure µL is an extended Poisson random measure (see Jacod and Shiryaev
(2003, Section II.1) for a definition and the relevant integration theory) on R

+ × R
d \ {0}

with intensity measure E(µL(ds, dx)) = ds νL(dx). By the Lévy-Itô decomposition we can
rewrite L almost surely as

Lt = γLt+Bt +

∫

‖x‖>1,s∈[0,t]

xµL(ds, dx) + lim
ε↓0

∫

ε≤‖x‖≤1, s∈[0,t]

xµ̃L(ds, dx) (6.2.10)

for all t ∈ R
+. Here µ̃L(ds, dx) = µL(ds, dx) − dsνL(dx) is the compensated jump measure

and (Bt)t∈R+ is a driftless Brownian motion in R
d with var(B1) = τL. Furthermore, the

terms in (6.2.10) are independent and the convergence in the last term is a.s. and locally
uniform in t ≥ 0.

In the sequel we will sometimes work with a two-sided Lévy process L = (Lt)t∈R, con-
structed by taking two independent copies (L1,t)t∈R+ , (L2,t)t∈R+ of a one-sided Lévy process
and setting

Lt =

{
L1,t if t ≥ 0

−L2,−t− if t < 0.
(6.2.11)

Assuming that ν satisfies additionally
∫

‖x‖>1

‖x‖2 νL(dx) <∞, (6.2.12)

L has finite mean and covariance matrix given by

E(L1) = γ +

∫

‖x‖>1
x ν(dx), (6.2.13)

var(L1) = τL +

∫

Rd

xx∗ νL(dx). (6.2.14)

Of particular importance in the following will be Lévy processes with paths of finite
variation. A Lévy process L is of finite variation, if τL = 0 and

∫
‖x‖≤1 ‖x‖νL(dx) < ∞.

Then the Lévy process can be represented as

Lt = γ̃Lt+

∫ t

0

∫

Rd

xµL(ds, dx)

with γ̃L = γL −
∫
‖x‖≤1 xνL(dx). We have for the characteristic function E

[
ei〈u,Lt〉] =

exp{tψL(u)}, t ≥ 0, that

ψL(u) = i〈γ̃L, u〉 +

∫

Rd

(ei〈u,x〉 − 1) νL(dx), u ∈ R
d. (6.2.15)
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An important Lévy process of finite variation in Sd associated to any Lévy process L in
R

d is the quadratic variation

[L,L]t = τLt+

∫ t

0

∫

Rd

xx∗µL(ds, dx) = τLt+
∑

0≤s≤t

(∆Ls)(∆Ls)
∗.

The only stochastic part is the discrete part

[L,L]dt :=

∫ t

0

∫

Rd

xx∗µL(ds, dx) =
∑

0≤s≤t

(∆Ls)(∆Ls)
∗,

which we henceforth call “discrete quadratic variation”. As for any x ∈ R
d one has that

xx∗ ∈ S
+
d , it is easy to see that these processes are examples of matrix subordinators. Matrix

subordinators are Lévy processes in the symmetric d× d matrices (which can be identified
with R

d(d+1)/2) whose paths remain in S
+
d at all times. This class of Lévy processes has

been studied in detail by Barndorff-Nielsen and Pérez-Abreu (2007). For the characteristic
function observe that tr(X∗Y ) (with X,Y ∈ Md(R) and tr denoting the usual trace func-
tional) defines a scalar product on Md(R) (respectively, Sd) and note that the vec operator
links the scalar product on Md(R) (respectively, Sd) with the Euclidean scalar product on
R

d2
via tr(X∗Y ) = vec(X)∗vec(Y ) = 〈vec(Y ), vec(X)〉 and that the norm on Md(R) in-

duced by this scalar product is the Froebenius norm. Thus a matrix subordinator L has
characteristic function (cf. also Barndorff-Nielsen and Pérez-Abreu (2007))

E
(
eitr(L

∗
t Z)
)

= exp (tψL(Z)) , Z ∈ Sd, where (6.2.16)

ψL(Z) := itr(γLZ) +

∫

S
+
d

(eitr(XZ) − 1)νL(dX) (6.2.17)

with drift γL ∈ S
+
d and Lévy measure νL.

Matrix subordinators are necessarily of finite variation and the paths are increasing with
respect to the natural ordering “≥” on Sd (i.e. A ≥ B, if and only if A−B ∈ S

+
d ). Observe

that the Lévy measure is concentrated on S
+
d and thus all jumps are positive semi-definite.

From this it is clear that matrix subordinators are a generalization of the univariate concept
of Lévy subordinators.

Straightforward calculations show that the characteristic function of the discrete quadra-
tic variation of a d-dimensional Lévy process L is given by

E
(
eitr(([L,L]dt )∗Z)

)
= exp

(
tψ[L,L]d(Z)

)
, Z ∈ Sd, where (6.2.18)

ψ[L,L]d(Z) :=

∫

Rd

(eitr(xx∗Z) − 1)νL(dx). (6.2.19)

In particular the Lévy measure of the discrete quadratic variation is given by

ν[L,L]d(B) =

∫

Rd

IB(xx∗)νL(dx) (6.2.20)

for all Borel sets B ⊆ Sd. It is obvious that the Lévy measure of [L,L]d is concentrated
on the rank one matrices, thus all jumps of [L,L]d are rank one positive semi-definite
matrices. Yet, the degeneracy of the Lévy measure does not necessarily imply degeneracy
of the distribution of [L,L]dt at any fixed time t ∈ R

+, since elementary linear algebra
implies that any matrix S

+
d can be written as

∑k
i=1 xix

∗
i with k ∈ N, k ≤ d and xi ∈ R

d\{0}
such that x∗ixj = 0 for i 6= j.
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6.2.3. Positive semi-definite processes of Ornstein-Uhlenbeck type

Before turning to a continuous time GARCH setting, let us briefly recall processes of
Ornstein-Uhlenbeck type assuming values in the positive semi-definite matrices which have
been introduced in Chapter 4. For more details and a statistical analysis of a stochastic
volatility model involving these processes see Chapter 5. As it turns out later on, the in-
sight gained in this section will be very helpful when defining and analysing the multivariate
COGARCH process.

In the univariate case modelling the variance (vt)t∈R+ by Ornstein-Uhlenbeck processes
has become very popular in recent years (see in particular the works of Barndorff-Nielsen
and Shephard). There one assumes given a real Lévy process (Lt)t∈R+ , a parameter λ ∈ R

and considers the SDE
dvt = −λvt−dt+ dLt. (6.2.21)

The solution can be shown to be

vt = e−λtv0 +

∫ t

0
e−λ(t−s)dLs. (6.2.22)

Provided that λ > 0, v0 ≥ 0 and the Lévy process L is a subordinator (a.s. non-decreasing
Lévy process), the unique (càdlàg adapted) solution v is positive and thus can be taken as
a variance process. After extending the Lévy process to (Lt)t∈R, living on the whole real
line, by (6.2.11) one can show that (6.2.21) has a unique stationary solution given by

vt =

∫ t

−∞
e−λ(t−s)dLs,

if the Lévy process has a finite logarithmic moment, i.e. E(log+(L1)) <∞.
Let (Lt)t∈R now be a Lévy process with values in Md(R), A : Md(R) → Md(R) a linear

operator and consider the SDE

dVt = AVt−dt+ dLt. (6.2.23)

As in the univariate case one can show that the unique strong solution is given by

Vt = eAtV0 +

∫ t

0
eA(t−s)dLs.

Provided E(log+ ‖L1‖) < ∞ and σ(A) ∈ (−∞, 0) + iR, there exists a unique stationary
solution given by

Vt =

∫ t

−∞
eA(t−s)dLs.

Provided that the driving Lévy process L is a matrix subordinator and exp(A(S+
d )) ⊆

S
+
d , the process V assumes values in the symmetric positive semi-definite matrices only

(assuming that the starting value V0 ∈ S
+
d , of course).

The main question now is, which possible linear operators A one can actually take to
obtain both a unique stationary solution and positive definiteness. One possible choice is to
take an A representable as X 7→ AX +XA∗ for some A ∈Md(R). Note the close relation
of this kind of operators to Kronecker sums (see Horn and Johnson (1991, Ch. 4)) and that
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Appendix A shows that all linear operators A on Sd satisfying eAt(S+
d ) = S

+
d are necessarily

of this form. In this set-up (6.2.23) becomes

dVt = (AVt− + Vt−A
∗)dt + dLt (6.2.24)

and observing that eAt has the representation X 7→ eAtXeA
∗t we see that the solution is

Vt = eAtV0e
A∗t +

∫ t

0
eA(t−s)dLse

A∗(t−s), (6.2.25)

compare also Horn and Johnson (1991, p. 440) for a related deterministic differential
equation. Obviously, Vt ∈ S

+
d if V0 ∈ S

+
d .

Using the vec transformation and Horn and Johnson (1991, Theorem 4.4.5) we see that
σ(A) = σ(A) + σ(A). Thus

Theorem 6.2.1 (Chapter 4, Theorem 4.4.5). Let (Lt)t∈R be a matrix subordinator with
E(log+ ‖L1‖) < ∞ and A ∈ Md(R) such that σ(A) ⊂ (−∞, 0) + iR. Then the SDE of
Ornstein-Uhlenbeck type

dVt = (AVt− + Vt−A
∗)dt + dLt

has a unique stationary solution

Vt =

∫ t

−∞
eA(t−s)dLse

A∗(t−s),

or in vectorial representation

vec(Vt) =

∫ t

−∞
e(I⊗A+A⊗I)(t−s)dvec(Ls).

Moreover, Vt ∈ S
+
d for all t ∈ R.

We conclude the discussion of positive semi-definite OU type processes by observing
that even if the driving matrix subordinator is the discrete quadratic variation [L,L]d

of a Lévy process L in R
d and the Lévy measure of the driving process is thus highly

degenerated (concentrated on the rank one positive semi-definite matrices), one can easily
have a nice stationary distribution. For instance, Corollary 5.3.18 in Chapter 5 shows that
the stationary distribution has a density whenever the Lévy measure of L is absolutely
continuous with respect to the Lebesgue measure on R

d.

6.3. The multivariate COGARCH(1,1) process

6.3.1. Definition and elementary properties

In order to define a continuous time multivariate GARCH(1,1) process the main idea is to
replace the noise ǫ of a multivariate GARCH(1,1) process by the jumps of a multivariate
Lévy process L and the autoregressive structure of the covariance matrix process by a
multivariate continuous time autoregressive structure (OU structure). So the idea is again
basically the same as in Brockwell et al. (2006) for the univariate case.
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In the simplest BEKK GARCH(1,1) model the volatility process is given by

Σn = C +AΣ
1/2
n−1ǫn−1ǫ

∗
n−1Σ

1/2
n−1A

∗ +BΣn−1B
∗ (6.3.1)

with C ∈ S
+
d , A,B ∈Md(R) and (ǫn)n∈N0 being an i.i.d. sequence in R

d.
This shows that the dynamics of (Σn)n∈N0 are those of a multivariate AR process, which

is “self-exciting” in the sense that we have an AR structure with the noise given by
(
Σ

1/2
n−1ǫn−1ǫ

∗
n−1Σ

1/2
n−1

)
n∈N

.

Replacing (like in the univariate COGARCH(p, q) case) the AR structure with a CAR (OU

type) one, using V
1/2
t− d[L,L]dtV

1/2
t− as “noise” where L is a d-dimensional Lévy process and

using the same linear operators as for positive semi-definite processes of Ornstein-Uhlenbeck
type, leads now to a multivariate continuous time GARCH(1,1) process G (referred to as
MUCOGARCH(1,1) process in the following) with associated volatility process V given by:

Definition 6.3.1 (MUCOGARCH(1,1)). Let L be a d-dimensional Lévy process and A,B ∈
Md(R), C ∈ S

+
d . Then the process G = (Gt)t∈R+ solving

dGt = V
1/2
t− dLt (6.3.2)

Vt = C + Yt (6.3.3)

dYt = (BYt− + Yt−B
∗)dt +AV

1/2
t− d[L,L]dtV

1/2
t− A∗ (6.3.4)

with initial values G0 in R
d and Y0 in S

+
d is called a MUCOGARCH(1,1) process.

The process Y = (Yt)t∈R+ with paths in S
+
d is referred to as a MUCOGARCH(1,1)

volatility process.

As except in the very last section we are only dealing with MUCOGARCH processes of
order (1,1), we often omit the orders (1,1) in the following and write only “MUCOGARCH”
instead of “MUCOGARCH(1,1)”.

For the MUCOGARCH process to be well-defined it is necessary that there exists a
unique solution to the above system of stochastic differential equations and that Yt ∈ S

+
d

for all t ∈ R
+. That this is indeed the case is shown in the following theorems.

We can also directly give a stochastic differential equation for the covariance matrix
process V :

dVt = (B(Vt− − C) + (Vt− − C)B∗)dt +AV
1/2
t− d[L,L]dtV

1/2
t− A∗. (6.3.5)

Obviously this SDE has a “mean reverting structure”, viz. V is returning to the level C
at a rate determined by B. However, since all jumps are positive semi-definite, as we shall
see, C is not a “mean” level but a lower bound.

Equivalently we can use the following representation using the vec-operator:

dGt = V
1/2
t− dLt, Vt = C + Yt

dvec(Yt) = (B ⊗ I + I ⊗B)vec(Yt−)dt + (A⊗A)(V
1/2
t− ⊗ V

1/2
t− )dvec([L,L]dt )

dvec(Vt) = (B ⊗ I + I ⊗B)(vec(Vt−) − vec(C))dt

+(A⊗A)(V
1/2
t− ⊗ V

1/2
t− )dvec([L,L]dt ).
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Remark 6.3.2. (a) The introduction of the process Y may seem to be superfluous. How-
ever, for the following results and calculations it is often advantageous to work with Y rather
than with V .

(b) Likewise one might wonder why we do not use vech instead of vec, as this was an
isomorphism between Sd and R

d(d+1)/2. However, there are much more useful results for
the vec-operator available from linear algebra than for the vech operator. In particular, the
interplay between the vec operator and the Kronecker product is very helpful at numerous
places.

To see the connection between our multivariate COGARCH(1,1) process for d = 1 and
the COGARCH(1,1) process defined in Klüppelberg et al. (2004) set α = A2 and β = −2B.
Then equations (6.3.2)-(6.3.4) become for d = 1

dGt = V
1/2
t− dLt, Vt = C + Yt and dYt = −βYt−dt + αVt−d[L,L]dt . (6.3.6)

Replacing Yt by Ỹt := Yt/α we obtain finally

dGt = V
1/2
t− dLt, Vt = C + αỸt and dỸt = −βỸt−dt+ Vt−d[L,L]dt .

From the last set of equations it is immediate that for d = 1 our definition agrees with the
case p = q = 1 of the general COGARCH(p, q) definition given in Brockwell et al. (2006),
i.e. Ỹt agrees with their process Yt and our Vt with their Vt+ (note that this is simply due
to the fact that for convenience we have defined all processes such that they are càdlàg,
whereas the previous COGARCH papers choose V to be càglàd). Hence, Brockwell et al.
(2006, Theorem 2.2) implies that our definition conforms with the original definition given
in Klüppelberg et al. (2004) which can also be seen from dVt = −β(Vt−−C)dt+αVt−d[L,L]dt
and Equations (6.1.1) and (6.1.2).

The first thing we need to show is that Y and V indeed assume only values in the positive
semi-definite matrices, as long as they do not explode.

Theorem 6.3.3. If the MUCOGARCH(1,1) process is started with a positive semi-definite
initial value Y0, then it assumes values in the positive semi-definite matrices for all t ∈ [0, T )
with T := supn∈N inft∈R+ {Yt ≥ n}.

Moreover, Yt ≥ eBtY0e
B∗t and so Yt ∈ S

++
d for all t ∈ [0, T ) provided Y0 ∈ S

++
d .

Proof. Assume first that L is the zero process. Then we have

Yt = exp(Bt)Y0 exp(B∗t),

From the last representation it is obvious that Yt is positive (semi-)definite for all t ∈ R
+

provided we start the process with a positive (semi-)definite initial value Y0.
Assume now that L is a compound Poisson process. As there are only finitely many

jumps, it suffices to consider the jump times of the Poisson process. Let Γ1 be the first
jump time, then Yt ∈ S

+
d for all t ∈ [0,Γ1) in view of the above result for L = 0. However,

as
YΓ1 = YΓ1− +A(C + YΓ1−)∆[L,L]dΓ1

(C + YΓ1−)A∗,

we immediately deduce from ∆[L,L]dt ∈ S
+
d that YΓ1 ∈ S

+
d and YΓ1 ≥ eBΓ1Y0e

B∗Γ1 . Iterating
the argument we get Yt ∈ S

+
d and Yt ≥ eBtY0e

B∗t for all t ∈ [0, T ). Finally, as eBt ∈ GLd(R),
we have Yt ∈ S

++
d for all t ∈ [0, T ), if Y0 ∈ S

++
d .
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In the general case we note that the driving Lévy process [L,L]d is of finite variation and
thus it is clear that the above path-wise approach carries through to the infinite activity
case.

Implicitly we often use the following property of t 7→ eBtY0e
B∗t in the analysis of the

MUCOGARCH process.

Lemma 6.3.4. Let Y0 ∈ S
+
d and be λmin the eigenvalue of B ∈Md(R) satisfying ℜ(λmin) ≤

ℜ(λ) for all λ ∈ σ(B). Then for any c < ℜ(λmin) there exists a K > 0 such that eBtY0e
B∗t ≥

Kect min(σ(Y0))Id. for all t ∈ R
+.

Proof. Denote the usual Euclidean norm on R
d and the associated operator norm by ‖ · ‖2.

Then for any x ∈ R
d we have x∗eBtY0e

B∗tx ≥ min(σ(Y0))‖eB∗tx‖2. Since ‖eB∗tx‖2 ≥
‖e−B∗t‖−1

2 ‖x‖ and ‖e−B∗t‖2 ≤ Dedt for any d > max(ℜ(σ(−B∗)) = −ℜ(λmin) and an
appropriate D > 0, it follows that

x∗eBtY0e
B∗tx ≥ D−1e−dt min(σ(Y0))‖x‖2

for all t ∈ R
+, which concludes.

Some more subtle issues appear when considering the differential equation (6.3.5).

Proposition 6.3.5. Let V be a solution of (6.3.5) with initial value V0 ∈ S
+
d . If V0 ≥ C, we

have that Vt ≥ C+eBt(V0−C)eB
∗t ≥ C for all t ∈ [0, T ) with T := supn∈N inft∈R+ {Yt ≥ n}.

If 0 ≤ V0 < C, however, then Vt ≥ C + eBt(V0 − C)eB
∗t still holds, but C + eBt(V0 −

C)eB
∗t < C and Vt need not be in S

+
d .

Proof. The case V0 ≥ C follows immediately from Theorem 6.3.3 and the relations between
the processes Y and V .

In the case 0 ≤ V0 < C it suffices to consider the case, when L is the zero process, since
the generalization can be done analogously to the previous proof.

In this case elementary analysis gives

Vt = eBtV0e
B∗t + C − eBtCeB

∗t.

This shows the claimed inequality. Therefore it only remains to give a counterexample
showing that Vt may leave S

+
d . Let us take

C =

(
2 0
0 2

)
, V0 =

(
0.5 0
0 0.5

)
,

B =

(
−0.5 ln(10/9) 0

1 −0.5 ln(10/9)

)
and x =

(
1
1

)
.

Then we obtain that

eB =

√
9

10

(
1 0
1 1

)
and x∗V1x = −11

4
.

So V1 6∈ S
++
d , although V0 ∈ S

+
d . Note that this problem arises also with positive probability,

if the driving Lévy process is compound Poisson, as it then may well happen that there is
no jump until time 1.
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If neither V0 ≥ C nor V0 < C, then Vt ≥ C + eBt(V0 − C)eB
∗t is valid as well, but this

cannot be compared to C.

Remark 6.3.6. The insight gained from positive semi-definite OU-processes suggests that
all eigenvalues of B should have negative real part, if one wants a “stable” COGARCH
volatility process as covariance matrix process. The arguments in the last proof show imme-
diately, that in this case Vt → C as t → ∞, if the Lévy process was zero. Thus, in general
the process V tends to C, as long as the driving Lévy process does not jump. The given
counterexample shows, however, that below C this does not occur in a “straight” manner.
Observe that this behaviour is comparable to the one of the univariate COGARCH(1,1), but
there the tendency to a constant goes “straight” (see Klüppelberg et al. (2006, Proposition
2)).

Now it is time to address the central question, the existence of a unique solution to the
stochastic differential equations (6.3.2), (6.3.4) defining the MUCOGARCH(1,1). Naturally
we are only interested in positive semi-definite solutions and hence restrict ourselves to cases
in which Theorem 6.3.3 or Proposition 6.3.5 ensure this property, as long as there are no
explosions. Moreover, we switch frequently between (6.3.4), respectively (6.3.5), and their
counterparts in vectorial representation choosing the one which it is best to work with.

In the following it is implicitly understood that our processes and stochastic differential
equations are not living on the whole space Md(R) (respectively R

d2
), but on the linear

sub-space Sd of symmetric matrices (repectively vec(Sd)). The latter can, as usual, be
identified with R

d(d+1)/2, when appropriate. The importance of this lies in the fact that
S

++
d is an open subset of Sd and thus the SDE theory developed in Appendix 6.7.1 of this

chapter applies immediately using the Lipschitz properties of the SDE (6.3.4) studied in
Appendix 6.7.2 of this chapter.

Theorem 6.3.7. Let A,B ∈ Md(R), C ∈ S
++
d and L be a d-dimensional Lévy process.

Then the SDE (6.3.4) with initial value Y0 ∈ S
+
d has a unique positive semi-definite solution

(Yt)t∈R+ . The solution (Yt)t∈R+ is locally bounded and of finite variation.

Proof. Define the maps F,G by F (vec(y)) = (Id ⊗ B + B ⊗ Id)vec(y) and G(y) = (A ⊗
A)
(
(C + y)1/2 ⊗ (C + y)1/2

)
. Then the SDE (6.3.4) can be written as

dvec(Yt) = F (vec(Yt−))dt +G(Yt−)dvec([L,L]dt ).

Moreover, we define the set UC,ǫ = {x ∈ Sd : x > −ǫId} for some ǫ with 0 < ǫ < minσ(C).
Then the set UC,ǫ (and thus vec(UC,ǫ)) is open and for each x ∈ UC,ǫ we have x + C >
(minσ(C) − ǫ) Id ∈ S

++
d . Being a linear map F is trivially Lipschitz and Lemma 6.7.16

shows that G is Lipschitz on any set of the form vec(UC,ǫ ∩ {x ∈ S
+
d : ‖x‖ ≤ c}) with

c > 0, thus locally Lipschitz on vec(UC,ǫ). Applying Theorem 6.7.3 with Un = vec({x ∈
Sd : x ≥ (1/n − ǫ) Id}) implies the existence of a unique solution Yt in UC,ǫ to the SDE
up to a random stopping time T . Theorem 6.3.3 ensures that any solution necessarily
stays in S

+
d ⊂ UC,ǫ. Hence, on T < ∞ the only thing that can happen is an explosion, i.e.

lim supt→T ‖Yt‖ = ∞. However, the linearity of F and Lemma 6.7.16 imply that both F and
G grow at most linearly, i.e. (6.7.3) holds, and so Theorem 6.7.3 shows that T is infinite.
This establishes the existence of a unique solution on [0,∞) and the local boundedness of
Y .
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Since the SDE implies that (Yt)t∈R+ is the sum of an integral with respect to time and
one with respect to a finite variation Lévy process, it is straightforward to see that (Yt)t∈R+

is of finite variation on compacts.

When considering only initial values in S
++
d , we can relax the condition C ∈ S

++
d . More-

over, we need a replacement for the concept of local boundedness.

Definition 6.3.8 (Ch. 4, Def. 4.3.1). Let (W, ‖ · ‖W ) be either R
d,Md(R) or Sd(R) with

d ∈ N and equipped with the norm ‖ · ‖W , U ⊆ W open and let (Xt)t∈R+ be a U -valued
stochastic process. We say that the process X is locally bounded within U if there exists
a sequence of stopping times (Tn)n∈N increasing to infinity almost surely and a sequence
of compact convex subsets Dn ⊂ U with Dn ⊂ Dn+1 ∀n ∈ N such that Xt ∈ Dn for all
0 ≤ t < Tn.

Theorem 6.3.9. Let A,B ∈Md(R), C ∈ S
+
d and L be a d-dimensional Lévy process. Then

the SDE (6.3.4) with initial value Y0 ∈ S
++
d has a unique positive definite solution (Yt)t∈R+ .

(Yt)t∈R+ is locally bounded within S
++
d and of finite variation.

Proof. As S
++
d is an open set Theorem 6.7.3 (with Un = {x ∈ Sd : x > (1/n)Id}, for

instance) gives the existence of a unique solution Yt in S
++
d up to a stopping time T , at

which it either explodes, jumps out of S
+
d or reaches the boundary of S

++
d . Yet, as Theorem

6.3.3 ensures that any solution Yt satisfies Yt ≥ eBtY0e
B∗t, it cannot happen that it hits

the boundary or jumps out of S
+
d and arguing as before there can be no explosions in finite

time. Therefore, we have again T = ∞.
The proof of Theorem 6.7.3 shows that (Yt)t∈R+ is locally bounded within S

++
d and the

finite variation follows as in the last theorem.

Likewise we could have considered the SDE (6.3.5). Using the relationship between (6.3.5)
and (6.3.4) we obtain the following.

Corollary 6.3.10. Let A,B ∈ Md(R), C ∈ S
+
d , and L be a d-dimensional Lévy process.

Assume that the initial value satisfies V0 ≥ C and either C ∈ S
++
d or V0 > C holds. Then

the SDE (6.3.5) has a unique positive definite solution (Vt)t∈R+ .

Remark 6.3.11. It is immediate to see that all results stated for the stochastic differen-
tial equations (6.3.4) and (6.3.5) remain valid when replacing the differential d[L,L]dt with
the differential dL̃t of a matrix subordinator L̃t (see Barndorff-Nielsen and Pérez-Abreu
(2007)).

For the sake of simplicity we state the following two theorems only for C ∈ S
++
d noting

that the analogues for C ∈ S
+
d and Y0 ∈ S

++
d are obvious.

That positive semi-definite OU type processes and MUCOGARCH volatility processes
are related is also reflected in the following representation of (Yt)t∈R+ and Equation (6.2.25).

Theorem 6.3.12. Let C ∈ S
++
d and Y0 in S

+
d . Then the MUCOGARCH(1,1) volatility

process Y satisfies

Yt = eBtY0e
B∗t +

∫ t

0
eB(t−s)A(C + Ys−)1/2d[L,L]ds(C + Ys−)1/2A∗eB

∗(t−s) (6.3.7)

for all t ∈ R
+.
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Proof. Define Mt =
∫ t
0 A(C + Ys−)1/2d[L,L]ds(C + Ys−)1/2A∗. Then M is S

+
d -increasing

and of finite variation and Y obviously solves the stochastic differential equation dXt =
(BXt− +Xt−B∗)dt+ dMt (∗). Standard theory implies that this differential equation has a
unique solution and the same elementary calculations as for Ornstein-Uhlenbeck processes
show that the solution of (∗) with initial value Y0, which is necessarily equal to Y , is given
by

eBtY0e
B∗t +

∫ t

0
eB(t−s)AdMsA

∗eB
∗(t−s) =

eBtY0e
B∗t +

∫ t

0
eB(t−s)A(C + Ys−)1/2d[L,L]ds(C + Ys−)1/2A∗eB

∗(t−s).

Recently Reiß, Riedle and van Gaans (2007) studied univariate equations of the form
X(t) = J(t) +

∫ t
0 g(t − s)f(Xs−)dZs and their relation to certain SDEs. In particular,

they obtained uniqueness of the solutions under uniform Lipschitz assumptions on f . Our
equation (6.3.7) is basically a multivariate equation of this type with f being only locally
Lipschitz. From the arguments given in Reiß et al. (2007) it is clear that their Theorem
5.2 has a straightforward multivariate extension. Using a localization procedure as in the
proof of Theorem 6.7.3 this uniqueness result can then be easily extended to f being only
defined on an open subset and locally Lipschitz. Hence, (6.3.7) provides an alternative
characterization for the MUCOGARCH volatility process.

So far we have excluded the MUCOGARCH process G itself from the analysis. However,
the following result should be obvious by now.

Theorem 6.3.13. Let C ∈ S
++
d , B,A ∈ Md(R) and L be a d-dimensional Lévy process.

Then the system of SDEs (6.3.2), (6.3.4) has a unique solution (Gt, Yt)t∈R+ with paths in
R

d × S
+
d for any initial value (G0, Y0) in R

d × S
+
d .

The solution (Gt, Yt)t∈R+ is a semi-martingale and locally bounded.

6.3.2. Univariate COGARCH(1,1) bounds and finiteness of moments

In this section we show that similar to the COGARCH(p, q) case (cf. Brockwell et al. (2006,
Lemma 9.1)) the norm of a MUCOGARCH(1,1) volatility process can be bounded by a
univariate COGARCH(1,1) volatility process. This will first be shown for processes driven
by compound Poisson processes and then for the general case using an approximation by
compound Poisson processes which is of interest in its own. It should be noted that all
processes, i.e. the majorizing and approximating ones, can all be defined on the original
probability space.

The majorization will then immediately imply sufficient conditions for the existence of
moments and in the next section it will be utilized to obtain criteria for the existence of
stationary distributions.

To see that the processes defined in the following are indeed univariate COGARCH
processes, we need the following general lemma saying that any driftless Lévy subordinator
is the discrete quadratic variation of a Lévy process.

Lemma 6.3.14. Let (Lt)t∈R+ be a driftless Lévy subordinator. Then there exists a Lévy
process (Lt)t∈R+ in R such that Lt = [L,L]dt for all t ∈ R

+.
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Proof. Denote the jump measure associated to L by µL, i.e. Lt =
∫ t
0

∫
R+ xµL(ds, dx), and

its Lévy measure by νL. Set

Lt =

∫ t

0

∫

0<x≤1

√
x(µL(ds, dx) − dsνL(dx)) +

∫ t

0

∫

x>1

√
xµL(ds, dx)

noting that the existence of the first integral is ensured by the fact that the integral∫
0<x≤1

√
x

2
νL(dx) =

∫
0<x≤1 xνL(dx) is finite, since L is of finite variation. Obviously

(Lt)t∈R+ is a Lévy process and Lt = [L,L]dt .

It should be noted that this result cannot be generalized to matrix subordinators and
d-dimensional Lévy processes.

In the following we shall consider a special norm that fits particularly well to our model.
Again, ‖ · ‖2 denotes the operator norm on Md2(R) associated to the usual Euclidean norm.
Assume now that B is diagonalizable and let S ∈ GLd(C) be such that S−1BS is diagonal.
Then we define the norm ‖ · ‖B,S on Md2(R) by ‖X‖B,S := ‖(S−1 ⊗ S−1)X(S ⊗ S)‖2 for
X ∈ Md2(R). It should be noted that ‖ · ‖B,S depends both on B and on the choice of
the matrix S diagonalizing B. Actually, ‖ · ‖B,S is again an operator norm, namely the

one associated to the norm ‖x‖B,S := ‖(S−1 ⊗ S−1)x‖2 on R
d2

. Besides, ‖ · ‖B,S actually
is simply the norm ‖ · ‖2 provided S is a unitary matrix, since the norm ‖ · ‖2 is unitarily
invariant (cf. Horn and Johnson (1985, p. 308)). As is well-known from basic linear algebra,
S can be chosen to be unitary if and only if B is normal.

A very similar norm has also been used in Brockwell et al. (2006). There, a more general
class of norms, including the Euclidean norm, was used leading to great flexibility. In
principle our results below can be adapted to this more general class of norms. However, it
is very natural to consider only the Euclidean norm for the multivariate COGARCH, since
we need a unitarily invariant norm to deal with the matrix square root and this immediately
restricts the possible operator norms to the one induced by the Euclidean norm (see Horn
and Johnson (1985, Corollary 5.6.35)).

The following elementary results are straightforward to obtain.

Lemma 6.3.15. It holds that ‖S⊗S‖B,S = ‖S‖2
2 and ‖S−1⊗S−1‖B,S = ‖S−1‖2

2. Moreover,

‖x‖B,S ≤ ‖S−1‖2
2‖x‖2 and ‖x‖2 ≤ ‖S‖2

2‖x‖B,S for all x ∈ R
d2
,

‖X‖B,S ≤ ‖S‖2
2‖S−1‖2

2‖X‖2 and ‖X‖2 ≤ ‖S‖2
2‖S−1‖2

2‖X‖B,S for all X ∈Md2(R).

Now we can analyse the norm of compound Poisson driven MUCOGARCH volatility
processes. Recall that in the univariate case the MUCOGARCH volatility process Y is
just a (deterministically) scaled version of the COGARCH volatility process Y defined in
Brockwell et al. (2006).

Theorem 6.3.16. Let C ∈ S
+
d and Y be a MUCOGARCH volatility process with initial

value Y0 ∈ S
+
d and driven by a compound Poisson process L in R

d. Assume further that
B ∈ Md(R) is diagonalizable and let S ∈ GLd(C) be such that S−1BS is diagonal. The
process solving the SDE

dyt = 2λyt−dt+‖S‖2
2‖S−1‖2

2K2,B‖A⊗A‖B,S

(‖C‖2

K2,B
+ yt−

)
dL̃t, y0 = ‖vec(Y0)‖B,S (6.3.8)
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with

L̃t :=

∫ t

0

∫

Rd

‖vec(xx∗)‖B,SµL(ds, dx), λ := max(ℜ(σ(B)))

and K2,B := max
X∈S

+
d ,‖X‖2=1

( ‖X‖2

‖vec(X)‖B,S

)

is the volatility process of a univariate MUCOGARCH(1,1) process and y satisfies

‖vec(Yt)‖B,S ≤ yt for all t ∈ R
+ a.s. (6.3.9)

Moreover,

K2,B ≤ ‖S‖2
2 max

X∈S
+
d ,‖X‖2=1

( ‖X‖2

‖vec(X)‖2

)
≤ ‖S‖2

2.

Proof. Combining Lemma 6.3.14 with (6.3.6) it is clear that the above defined process
(yt)t∈R is a univariate MUCOGARCH(1,1) process.

Let Γ1 be the time of the first jump of L and t ∈ [0,Γ1). Since ‖e(Id⊗B+B⊗Id)t‖B,S = e2λt,
it holds that

‖vec(Yt)‖B,S = ‖e(Id⊗B+B⊗Id)tvec(Y0)‖B,S ≤ ‖e(Id⊗B+B⊗Id)t‖B,S‖vec(Y0)‖B,S

= e2λty0 = yt.

Thus, (6.3.9) is shown for all t ∈ [0,Γ1). At time Γ1 we have

‖vec(YΓ1)‖B,S

= ‖vec(YΓ1−) + (A⊗A)((C + YΓ1−)1/2 ⊗ (C + YΓ1−)1/2)vec(∆LΓ1(∆LΓ1)
∗)‖B,S

≤ yΓ1− + ‖A⊗A‖B,S‖(C + YΓ1−)1/2 ⊗ (C + YΓ1−)1/2‖B,S‖vec(∆LΓ1(∆LΓ1)
∗)‖B,S

≤ yΓ1− + ‖A⊗A‖B,S‖S‖2
2‖S−1‖2

2‖(C + YΓ1−)1/2 ⊗ (C + YΓ1−)1/2‖2∆L̃Γ1

≤ yΓ1− + ‖A⊗A‖B,S‖S‖2
2‖S−1‖2

2 (‖C‖2 + ‖YΓ1−‖2) ∆L̃Γ1

≤ yΓ1− + ‖A⊗A‖B,S‖S‖2
2‖S−1‖2

2K2,B

(
K−1

2,B‖C‖2 + ‖vec(YΓ1−)‖B,S

)
∆L̃Γ1 = yΓ1,

which establishes (6.3.9) for t = Γ1. Iterating these arguments shows (6.3.9) for all t ∈ R
+.

The first inequality for K2,B follows immediately from Lemma 6.3.15 and the second one
by Horn and Johnson (1985, p. 314).

Remark 6.3.17. If S is unitary, K2,B = 1 is easily seen.
Otherwise, an inspection of the proof shows that the inequality (6.3.9) also holds if K2,B

is replaced by ‖S‖2 in (6.3.8) which saves one from calculating the value of K2,B in practice.
Likewise, ‖A⊗A‖B,S can be replaced by ‖A⊗A‖2 = ‖A‖2

2, since ‖(A⊗A)((C +YΓ1−)1/2 ⊗
(C + YΓ1−)1/2)‖B,S ≤ ‖S‖2

2‖S−1‖2
2‖(A⊗A)((C + YΓ1−)1/2 ⊗ (C + YΓ1−)1/2)‖2.

This can be done in all upcoming results involving K2,B or ‖A⊗A‖B,S as well.

In order to extend this result to MUCOGARCH processes driven by general Lévy pro-
cesses, we need to show that we can approximate the MUCOGARCH volatility processes by
approximating the driving Lévy process. The following result is very similar to Brockwell
et al. (2006, Lemma 8.2). Yet, we need to give a detailed proof, since the standard results
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cannot be applied due to the fact that we have only locally Lipschitz coefficients. For the
definition of prelocal convergence in H2 we refer to Protter (2004, Section V.4), as we will
use this technical device only here and later on employ only the ucp-convergence. Observe
that several results we use in the following are stated for one-dimensional SDEs in Protter
(2004), but that they extend immediately to the multidimensional case as remarked on p.
257 of that book (cf. also Protter (1978, p. 346) in this context and for a definition of the
multidimensional H2-norm).

Proposition 6.3.18. Let Y be a MUCOGARCH volatility process with C ∈ S
++
d and

Y0 ∈ S
+
d driven by a Lévy process L in R

d and (ǫn)n∈N a monotonically decreasing se-
quence in R

++ with limn→∞ ǫn = 0. Assume that B is diagonalizable, define for n ∈ N

compound Poisson Lévy processes Ln by Ln,t =
∫ t
0

∫
Rd,‖x‖≥ǫn

xµL(ds, dx) and associated
MUCOGARCH volatility processes Yn by

dYn,t = (BYn,t− + Yn,t−B
∗)dt +A(C + Yn,t−)1/2d[Ln, Ln]dt (C + Yn,t−)1/2A∗, Yn,0 = Y0.

Then Yn → Y as n→ ∞ in ucp and prelocally in H2.

Proof. Using Theorems V.2 and V.12 of Protter (2004) it suffices to show prelocal conver-
gence in H2.

Noting that the existence is ensured by Protter (2004, Theorem V.4), choose a sequence
of finite stopping times (TL,k)k∈N increasing to infinity a.s. such that ([L,L]d)TL,k− ∈ H2

for all k ∈ N. (XT−
t := XtI[0,T )(t) + XT−I[T,∞)(t) for any process X and stopping time

T .) The construction of Ln implies that ([Ln, Ln]d)TL,k− ∈ H2 for all n, k ∈ N and the

definition of the H2 norm gives

‖([L,L]d − [Ln, Ln]d)TL,k−‖H2 =

∥∥∥∥∥

∫ TL,k−

0

∫

Rd,‖x‖<ǫn

xx∗µL(ds, dx)

∥∥∥∥∥
L2

which obviously tends to zero as n→ ∞.
Let S ∈ GLd(C) be such that S−1BS is diagonal and denote for n ∈ N by yn the univariate

MUCOGARCH(1,1) processes constructed in Theorem 6.3.16 satisfying ‖vec(Yn,t)‖B,S ≤
yn,t for all t ∈ R

+. yn,t + K−1
2,B‖C‖ is a univariate COGARCH(1,1) volatility process as

defined in Klüppelberg et al. (2004) where it is denoted by σ2
t+. Since we only add more

jumps in [Ln, Ln]d when we increase n, it is straightforward to see from equations (3.3) and
(3.4) in Klüppelberg et al. (2004) that yn+l,t ≥ yn,t for all n, l ∈ N and t ∈ R

+. Moreover,
defining the process y by

dyt = 2λyt−dt+ ‖S‖2
2‖S−1‖2

2K2,B‖A⊗A‖B,S

(‖C‖2

K2,B
+ yt−

)
dL̃t, (6.3.10)

y0 = ‖vec(Y0)‖B,S

with L̃t :=
∫ t
0

∫
Rd ‖vec(xx∗)‖B,SµL(ds, dx), the same argument implies yn,t ≤ yt for all

n ∈ N and t ∈ R
+. Note (L̃t)t∈R+ is a well-defined Lévy process, because there is a K > 0

such that
∫

Rd

(‖vec(xx∗)‖B,S ∧ 1)νL(dx) ≤ K

∫

Rd

(‖xx∗‖2 ∧ 1)νL(dx) = K

∫

Rd

(‖x‖2
2 ∧ 1)νL(dx) <∞.
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Define now for k ∈ N stopping times Ty,k := inf{t ∈ R
+ : yt > k}, TY,k := inf{t ∈ R

+ :
‖vec(Yt)‖B,S > k} and sets Wk := {x ∈ S

+
d : ‖vec(x)‖B,S ≤ k} which are compact and

convex. From the arguments in the proof of Theorem 6.3.7, it follows that Ty,k, TY,k and,
hence, Tk := min (Ty,k, TY,k, TL,k) are sequences of stopping times increasing to infinity.
Moreover, we have Yn,t, Yt ∈Wk for all t ∈ [0, Tk) and n ∈ N.

Using implicitly the usual scalar product, we denote the orthogonal projection on Wk by
ΠWk

. Then it follows that Y Tk−
n satisfies

dXn,t =(BΠWk
(Xn,t−) + ΠWk

(Xn,t−)B∗)dtTk−

+A(C + ΠWk
(Xn,t−))1/2d[LTk−

n , LTk−
n ]dt (C + ΠWk

(Xn,t−))1/2A∗

with Xn,0 = Y0 and Y Tk− satisfies

dXt =(BΠWk
(Xt−) + ΠWk

(Xt−)B∗)dtTk−

+A(C + ΠWk
(Xt−))1/2d[LTk−

n , LTk−
n ]dt (C + ΠWk

(Xt−))1/2A

with X0 = Y0. Clearly for k ∈ N fixed the functions appearing in the coefficients of the
above SDEs are uniformly bounded and uniformly Lipschitz.

Assume without loss of generality that the semi-martingale with the constant value Y0

and tTk− are in H2 for all k ∈ N and that the Lévy process L ∈ S(1/(2
√

8a) where a
is some finite uniform bound on the Lipschitz coefficients. For the definition of S(·) see
Protter (2004, p. 248). (Otherwise one would just have to take the minimum with three
more sequences of stopping times increasing to infinity whose existence is ensured by Protter
(2004, Theorems V.4 and V.5).)

Combining the above results, Protter (2004, Theorem V.9) implies that

lim
n→∞

‖(Yn − Y )Tk−‖H2 = 0

for all k ∈ N. This shows the prelocal convergence of Yn to Y in H2.

Theorem 6.3.19. For C ∈ S
++
d Theorem 6.3.16 holds with any driving Lévy process L in

R
d.

Proof. Let (Yn)n∈N be the sequence of MUCOGARCH(1,1) processes converging in ucp to
Y constructed in the proof of the last proposition. In that proof it has already been shown
that ‖vec(Yn,t)‖B,S ≤ yt for all t ∈ R

+. Picking a subsequence converging a.s. on compacts
immediately concludes.

Since the finiteness of moments of univariate COGARCH(1,1) processes is well-known
from Klüppelberg et al. (2004, Section 4), we can now give sufficient conditions for the
MUCOGARCH volatility process to have some finite moments.

Proposition 6.3.20. Let k ∈ N, C ∈ S
++
d , Y0 ∈ S

+
d such that E(‖Y0‖k) < ∞ and B be

diagonalizable. Assume further that the MUCOGARCH volatility process Y is driven by a
Lévy process L satisfying E(‖L1‖2k) <∞ and that λ = max(ℜ(σ(B))) < 0.

Then E(‖Yt‖k) <∞ for all t ∈ R
+ and t 7→ E(‖Yt‖k) is locally bounded.
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Proof. Let y be the process constructed in Theorems 6.3.16 and 6.3.19. Then it suffices to
show that E(yk

t ) <∞ and that this is locally bounded in t. By construction E(y0) is finite.
Moreover, let L̄ be the Lévy process constructed in Lemma 6.3.14 such that L̃t = [L̄, L̄]dt .
The finiteness of E(‖L1‖2k) implies that

∫
Rd ‖x‖2k

2 νL(dx) =
∫

Rd ‖xx∗‖k
2νL(dx) < ∞ (with

‖ · ‖ denoting the Euclidean norm in the first integral and the associated operator norm
in the second one). Since the finiteness of the integrals is independent of the particular
norm used, it follows that

∫
Rd ‖vec(xx∗)‖k

B,SνL(dx) =
∫

R
|x|kνL̃(dx) =

∫
R
|x|2kνL̄(dx) <∞.

Hence, E(|L̄1|2k) is finite and using the results of Klüppelberg et al. (2004, Section 4) as in
the proof of Brockwell et al. (2006, Proposition 4.1) concludes.

Some explicit expressions for the first and second moment are presented in the upcoming
Section 6.3.4.

6.3.3. Markovian properties and stationarity

Turning to the study of the Markovian properties of a MUCOGARCH process we refer to
Appendix 6.7.1.2 of this chapter for definitions and necessary general results. Moreover, we
implicitly assume that our given filtered probability space is enlarged as there to allow for
arbitrary initial conditions.

From the general results of Appendix 6.7.1.2 we can immediately deduce important Mar-
kovian properties of the MUCOGARCH, provided we only want to study the volatility
process on the open set S

++
d , i.e. we take only initial values in S

++
d .

Theorem 6.3.21. Let C ∈ S
+
d . The MUCOGARCH process (G,Y ) as well as its volatility

process Y alone are temporally homogeneous weakly Fellerian strong Markov processes on
R

d × S
++
d and S

++
d , respectively.

It is clear that (Gt)t∈R+ alone cannot be Markovian. The above result is, unfortunately,
not sufficient. In order to apply a tightness argument, we do need Y to be a Markov process
on S

+
d , i.e. we also need to allow initial values that are only positive semi-definite and not

strictly positive definite. To achieve this we need to restrict ourselves to C being positive
definite.

Theorem 6.3.22. Let C ∈ S
++
d . The MUCOGARCH process (G,Y ) as well as its volatility

process Y alone are temporally homogeneous weakly Fellerian strong Markov processes on
R

d × S
+
d and S

+
d , respectively.

Proof. Inspecting the arguments of Appendix 6.7.1.2 of this chapter it is clear that to show
the above result it suffices to generalize Lemmata 6.7.9 and 6.7.10 to the closed set S

+
d

instead of the open set U for the volatility process Y .

Reconsider thus the set-up of the proof of Theorem 6.3.7.

Since the approximating processes corresponding to the sets Un as constructed in the
proof of Theorem 6.7.3 can be assumed without loss of generality to be σ(B(Sd)×B(R+)×
F)-measurable, they can be assumed to be σ(B(S+

d ) × B(R+) × F)-measurable when con-
sidering only initial values in S

+
d . The ucp-convergence of the approximating processes to Y

for any initial value in S
+
d and Protter (2004, Theorem IV.62) thus imply that there exists

a version of Y that is σ(B(S+
d )×B(R+)×F)-measurable. Hence, the assertions of Lemma

6.7.10 still hold.
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Likewise Lemma 6.7.9 extends, since the adaptation of the arguments of Protter (2004,
Theorem V.38) as in the proof of Lemma 6.7.9 actually gives that the flow of the volatility
process is continuous on [0, T (x)) (T (x) being the exit time of the volatility process from
the set UC,ǫ when started at x) and T (x) is infinite for all x ∈ S

+
d , as has already been

shown.

In order to show the existence of a stationary distribution of the MUCOGARCH volatility
process Y we need to recall some notions and results from the theory of weak convergence.
For more details we refer to any of the standard texts (e.g. Billingsley (1999), Jacod and
Shiryaev (2003) or Pollard (1984)). Below we denote by M1(E) the set of all probability
measures on the Borel σ-algebra of a Polish space E .

Definition 6.3.23 (Tightness). Let E be a Polish space. A subset I ⊆ M1(E) is said to
be tight if for every ǫ > 0 there is a compact subset K ⊆ E such that µ(K) ≥ 1 − ǫ for all
µ ∈ I.

The following theorem on the existence of a stationary distribution for a Markov process
is called the “Krylov-Bogoliubov existence theorem” in the literature. For a proof see
da Prato and Zabczyk (1996, Section 3.1) or Reiß, Riedle and van Gaans (2006, Theorem
4.6).

Theorem 6.3.24. Let E be a Polish space and (Ps)s∈R+ the transition semi-group of an
E-valued weak Feller Markov process. Assume that there is an η ∈ M1(E) such that the
set {P ∗

t η : t ∈ R
+} is tight. Then there exists a µ ∈ M1(E) such that P ∗

t µ = µ for all
t ∈ R

+, i.e. µ is an invariant measure for (Ps)s∈R+ , and µ is in the closed (w.r.t. to weak
convergence) convex hull of {P ∗

t η : t ∈ R
+}.

Using this result we obtain the following sufficient criterion for the existence of a sta-
tionary MUCOGARCH volatility process Y . Of course, this immediately translates to
stationarity of V . Moreover, for d = 1 it recovers the necessary and sufficient stationarity
condition of Klüppelberg et al. (2004).

Theorem 6.3.25. Let C ∈ S
++
d and B ∈ Md(R) be diagonalizable with S ∈ GLd(C) such

that S−1BS is diagonal. Furthermore, let L be a d-dimensional Lévy process with non-zero
Lévy measure, α1 := ‖S‖2

2‖S−1‖2
2K2,B‖A ⊗ A‖B,S and λ be defined as in Theorem 6.3.16.

Assume that ∫

Rd

log (1 + α1‖vec(yy∗)‖B,S) νL(dy) < −2λ. (6.3.11)

Then there exists a stationary distribution µ ∈ M1(S
+
d ) for the MUCOGARCH(1,1) volatil-

ity process Y such that

∫

Rd

(
(1 + α1‖vec(yy∗)‖B,S)k − 1

)
νL(dy) < −2λk. (6.3.12)

for some k ∈ N implies that
∫

S
+
d
‖x‖kµ(dx) <∞, i.e. that the k-th moment of the stationary

distribution is finite.

Proof. Let λ, L̃ be defined as in Theorem 6.3.16 and L̄ be the Lévy process constructed
in Lemma 6.3.14 such that L̃t = [L̄, L̄]dt . Then

∫
Rd log (1 + α1‖vec(yy∗)‖B,S) νL(dy) =
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∫
Rd log

(
1 + α1y

2
)
νL̄(dy) and thus Brockwell et al. (2006, Theorem 3.1) (see also Klüppel-

berg et al. (2004, Theorem 3.1)) show that the process y satisfying (6.3.8) converges in
distribution to a distribution concentrated on R

+. Assume now that y0 has this stationary
probability distribution and is independent of (Ls)s∈R+ . Setting Y0 = y0

‖vec(Id)‖B,S
Id gives an

initial value for the MUCOGARCH volatility process that is independent of L and, more-
over, ‖vec(Y0)‖B,S = y0. Thus the process y satisfying ‖vec(Yt)‖B,S ≤ yt for all t ∈ R+ (cf.
Theorems 6.3.16, 6.3.19) is stationary. Since for every K > 0 the set {x ∈ Sd : ‖x‖ ≤ K}
is compact in S

+
d , P (‖Yt‖B,S ≤ K) ≥ P (yt ≤ K) and y is stationary with a stationary dis-

tribution concentrated on R
+, it follows that the set {L (Yt) : t ∈ R

+} of laws L (Yt) of Yt

forms a tight subset of M1(S
+
d ). Therefore Theorem 6.3.25 combined with Theorem 6.3.22

implies that there exists a stationary distribution µ ∈ M1(S
+
d ) for the MUCOGARCH

volatility process Y such that µ is in the closed convex hull of {L (Yt) : t ∈ R
+}.

If (6.3.12) holds for some k ∈ N, Brockwell et al. (2006, Proposition 4.1) (cf. also
Klüppelberg et al. (2004, Section 4)) shows that the stationary distribution of y has a finite
k-th moment. This in turn implies that E(‖Yt‖k) ≤ c for some finite c ∈ R

+ and all t ∈ R
+.

Hence,
∫

S
+
d
‖x‖kµ(dx) <∞, because µ is in the closed convex hull of {L (Yt) : t ∈ R

+}.

Remark 6.3.26. (a) From Klüppelberg et al. (2004, Lemma 4.1 (d)) it follows that, if
(6.3.12) is satisfied for k ∈ N, then it is satisfied for all k̃ ∈ N, k̃ ≤ k as well.

(b) Combining results of Section 6.3.2 shows that α1 = ‖A‖2
2 and ‖ · ‖B,S = ‖ · ‖2 if B is

normal.

The following result implies that when C = cId for some c ∈ R
++ then a change in c

affects the stationary distribution of V in a simple multiplicative way. This result is also
new in the univariate case, although the proof is straightforward and thus left out.

Proposition 6.3.27. Let c ∈ R
++, A,B ∈Md(R) and L be a d-dimensional Lévy process.

If V satisfies

dVt = (B(Vt− − cId) + (Vt− − cId)B
∗) dt +AV

1/2
t− d[L,L]dtV

1/2
t− A∗ (6.3.13)

then Z defined by Zt = Vt/c satisfies

dZt = (B(Zt− − Id) + (Zt− − Id)B
∗) dt+AZ

1/2
t− d[L,L]dtZ

1/2
t− A∗, (6.3.14)

which does not depend on c.
In particular, if µ ∈ M1(S

+
d ) is a stationary distribution for (6.3.14), then µc ∈ M1(S

+
d )

defined by µc(W ) = µ(W/c) for all Borel sets W ⊂ S
+
d is a stationary distribution for

(6.3.13).

Establishing uniqueness of the stationary distribution and convergence to the stationary
distribution for arbitrary starting values appears to be a rather intricate question due to
the Lipschitz property holding only locally and the fact that d[L,L]d lives on the rank one
matrices. However, in the next section we obtain asymptotic second order stationarity and
that the stationary second order structure is unique under some technical conditions.

Regarding the relation to the stationarity of univariate COGARCH processes let us con-
sider the following example. Assume that A,B,C and Y0 are diagonal, the components of
Y0 are independent and that the components of the Lévy process are completely indepen-
dent, i.e. whenever L has a jump then only one of the d components jumps. In this case it is
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easy the see that Y or V , respectively, consists of d independent univariate COGARCH(1,1)
processes. It is clear that if each of the d univariate COGARCH(1,1) processes converges in
distribution to a stationary distribution then Y or V , respectively, converges in distribution
to a stationary distribution. In this example Condition (6.3.11) can be shown to imply the
necessary and sufficient stationarity condition of Klüppelberg et al. (2004, Theorem 3.1) for
all components simultaneously. Actually, Condition (6.3.11) is easily seen to be stronger
than requiring that the univariate stationarity condition be satisfied for all components.

However, it should be noted that the picture is very different when Y0 is not diagonal,
because then jumps in one component of L may affect all components of Y , as can easily
be seen. Hence, it is not clear if one still has convergence to a stationary distribution and
whether this has to be the same distribution as the limit distribution when Y0 is diagonal.
When we have that Y is asymptotically second order stationary (cf. the upcoming Definition
6.3.41) and the limiting distribution for a diagonal Y0 has finite second moments, the off-
diagonal (covariance) elements of Y or V , respectively, necessarily converge to zero in L2

as t→ ∞.

Another degeneracy occurs in the following example. Take d = 2, A = αI2, B = −βI2
with α, β ∈ R

++ and C =

(
1 1
1 1

)
. If one has that Y0 = yC with y ∈ R

+ (possibly random)

then Y is at all times a scalar multiple of C and when L jumps all components (variance
and covariance ones) have a jump of the same height. However, one again has a completely
different picture if Y0 is chosen differently, e.g. Y is in S

++
d at all times, provided Y0 ∈ S

++
d .

6.3.4. Second order properties of the volatility process

Assuming stationarity and the existence of the relevant moments of the stationary solu-
tion we calculate explicit expressions for the moments of a stationary MUCOGARCH(1,1)
volatility process in this section, treat also the non-stationary case along the way and present
results regarding (asymptotic) second order stationarity. Due to the special structure of the
stochastic differential equation (6.3.4), especially due to the presence of the matrix square
root, it is only under certain assumptions on the Lévy process possible to obtain explicit
formulae. Note, however that the assumptions made are natural and that similar ones are
typically made in the discrete time GARCH literature as well (cf., in particular, Hafner
(2003)).

Henceforth we often assume the following in this section.

Assumption 6.1. (Yt)t∈R+ is a second order stationary MUCOGARCH(1,1) volatility
process.

Assumption 6.2. The pure jump part of the driving Lévy process (Lt)t∈R+ has finite vari-
ance which is a scalar multiple of the identity: let Ld

t :=
∫ t
0

∫
‖x‖≤1 x(µL(ds, dx)−dsνL(dx))+

∫ t
0

∫
‖x‖>1 xµL(ds, dx) denote the pure jump part of L, then this means that there exists a

σL ∈ R
+ such that var(Ld

1) =
∫

Rd xx
∗νL(dx) = σLId.

We start the calculation of the moments of Y with the expected value of the volatility
noting that some elementary auxiliary results used are to be found in Appendix 6.7.3 of
this chapter.
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Theorem 6.3.28. Assume that Assumption 6.2 holds.
(i) If the MUCOGARCH volatility process Y has a finite first moment for all t ∈ R

+,
i.e. E(‖Yt‖) <∞∀ t ∈ R

+, and t 7→ E(‖Yt‖) is locally bounded, then

E(vec(Yt)) = eBtE(vec(Y0)) +

∫ t

0
eB(t−s)ds σL(A⊗A)vec(C)

with B := B ⊗ Id + Id ⊗B + σLA⊗A. If B is invertible, then

E(vec(Yt)) =eBt
(
E(vec(Y0)) + σLB

−1(A⊗A)vec(C)
)

− σLB
−1(A⊗A)vec(C) ∀ t ∈ R

+. (6.3.15)

(ii) Under Assumption 6.1 the stationary expected value E(Y0) of the MUCOGARCH
volatility process satisfies

BE(Y0) + E(Y0)B
∗ + σLAE(Y0)A

∗ = −σLACA
∗. (6.3.16)

If B is invertible, the following formulae hold

E(vec(Y0)) = −σLB
−1(A⊗A)vec(C) and (6.3.17)

E(vec(V0)) = E(vec(Y0)) + vec(C) = B
−1 (B ⊗ Id + Id ⊗B) vec(C).

Proof. From the defining stochastic differential equation (6.3.4) we have

Yt = Y0 +

∫ t

0
(BYs− + Ys−B

∗)ds +

∫ t

0
A(Ys− + C)1/2d[L,L]ds(Ys− + C)1/2A∗.

Therefore

E(Yt) = E(Y0) +

∫ t

0
(BE(Ys) + E(Ys)B

∗)ds+ σL

∫ t

0
AE(Ys +C)A∗ds (6.3.18)

using a Fubini argument, Lemmata 6.7.20 and 6.7.21 and observing that

E([L,L]d1) =

∫

Rd

xx∗ν(dx) = var(Ld

1) (6.3.19)

is implied by equations (6.2.13) and (6.2.20). Thus

vec

(
E

(∫ t

0
A(Ys− + C)1/2d[L,L]ds(Ys− + C)1/2A∗

))

= E

(∫ t

0
(A⊗A)

(
(Ys− + C)1/2 ⊗ (Ys− + C)1/2

)
dvec([L,L]ds)

)

=

∫ t

0
(A⊗A)E

(
(Ys− + C)1/2 ⊗ (Ys− + C)1/2

)
vec(E([L,L]d1))ds

= σL

∫ t

0
(A⊗A)E

(
(Ys− + C)1/2 ⊗ (Ys− + C)1/2vec(Id)

)
ds

= σLvec

(∫ t

0
AE (Ys− + C)A∗ds

)
.
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Equation (6.3.18) therefore implies the following differential equation after vectorizing:

d

dt
E(vec(Yt)) = BE(vec(Yt)) + σL(A⊗A)vec(C).

Solving this ODE establishes (i).
Turning to (ii) the assumed second order stationarity and (6.3.18) immediately imply

BE(Y0) +E(Y0)B
∗ + σLA(E(Y0) + C)A∗ = 0.

The rest is just rewriting this linear equation.

Remark 6.3.29. (a) Observe that the stationary expectation is the limit of the expected
value in (i) for t→ ∞ provided σ(B) ⊂ (−∞, 0) + iR.

(b) Of course, for d = 1 the formulae agree (after the relevant transformations and
substitutions) with those of the univariate COGARCH(1,1) (see especially Brockwell et al.
(2006)).

(c) The existence of a positive semi-definite solution of (6.3.16) is ensured by our as-
sumptions. Results from linear algebra (Ran and Reurings (2002)) imply that (6.3.16) has
a positive definite solution, if there is an X ∈ S

++
d such that −BX −XB∗ − σLAXA

∗ is
positive definite.

Theorem 6.3.25 cannot only be used to show that Assumption 6.1 is satisfied, but also
to ensure the invertibility of B.

Lemma 6.3.30. Assume that (6.3.12) is satisfied with k = 1 for the MUCOGARCH volatil-
ity process Y and that Assumption 6.2 holds. Then B as defined in Theorem 6.3.28 is
invertible and σ(B) ⊂ (−∞, 0) + iR.

Proof. We have from Assumption 6.2 that

σL‖vec(Id)‖B,S =

∥∥∥∥
∫

Rd

vec(xx∗)νL(dx)

∥∥∥∥
B,S

≤
∫

Rd

‖vec(xx∗)‖B,SνL(dx). (6.3.20)

For k = 1 condition (6.3.12) becomes

‖S‖2
2‖S−1‖2

2K2,B‖A⊗A‖B,S

∫

Rd

‖vec(xx∗)‖B,SνL(dx) < −2λ.

Using (6.3.20), ‖S‖2‖S−1‖2 ≥ 1 and that K2,B‖vec(Id)‖B,S ≥ ‖Id‖2 = 1 due the defini-
tion of K2,B , one obtains

σL‖A⊗A‖B,S = σL‖(S−1 ⊗ S−1)(A⊗A)(S ⊗ S)‖2 < −2λ.

Let µ now be any eigenvalue of B and note that (S−1 ⊗S−1)(B⊗ Id + Id ⊗B)(S ⊗S) is
diagonal. Thus, the Bauer-Fike theorem (see Horn and Johnson (1985, Theorem 6.3.2 and
its proof), for instance) gives that there exists a µ̃ ∈ σ(B ⊗ Id + Id ⊗B) such that

|ℜ(µ) −ℜ(µ̃)| ≤ |µ− µ̃| ≤ ‖(S−1 ⊗ S−1)(B −B ⊗ Id − Id ⊗B)(S ⊗ S)‖
= σL‖(S−1 ⊗ S−1)(A⊗A)(S ⊗ S)‖2 < −2λ.

Hence, ℜ(µ) < max{ℜ(µ̃) : µ̃ ∈ σ(B⊗ Id + Id ⊗B)}−2λ = 0, because the maximum equals
2λ due to σ(B ⊗ Id + Id ⊗ B) = σ(B) + σ(B) and the definition of λ = max(ℜ(σ(B))).
Therefore σ(B) ⊂ (−∞, 0) + iR and B is invertible.
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Before analysing the variance, let us study the autocovariance function.

Definition 6.3.31. Let (Xt)t∈T (with T being either N0 or R
+) be a second order stationary

process with values in R
d. Then the autocovariance function acovX : T ∪ (−T) 7→ Md(R)

of X is given by acovX(h) = cov(Xh,X0) = E(XhX
∗
0 ) − E(X0)E(X0)

∗ for h ≥ 0 and by
acovX(h) = (acovX(−h))∗ for h < 0.

If (Xt)t∈T is a second order stationary process with values in Md(R) (or Sd) then we set
acovX := acovvec(X).

Theorem 6.3.32. (i) Under Assumptions 6.1 and 6.2 the autocovariance function of the
MUCOGARCH volatility process satisfies

d

dh
acovY (h) = (B ⊗ Id + Id ⊗B + σLA⊗A)acovY (h) (6.3.21)

for h ≥ 0. Hence,

acovY (h) = acovV (h) = e(B⊗Id+Id⊗B+σLA⊗A)hvar(vec(Y0)), h ≥ 0. (6.3.22)

(ii) If Assumption 6.2 is satisfied and E(‖Yt‖2) is finite for all t ∈ R
+ and t 7→ E(‖Yt‖2)

is locally bounded, it holds that

cov(Yu+h, Yu) = cov(Vu+h, Vu) = e(B⊗Id+Id⊗B+σLA⊗A)hvar(vec(Yu)) (6.3.23)

for all u, h ≥ 0.

Proof. We only proof (i), because the proof of (ii) proceeds along the same lines
The equality acovY (·) = acovV (·) is obvious. Due to the second order stationarity we

have

acovY (h) =cov

(
vec

(
Y0 +

∫ h

0
(BYs− + Ys−B

∗)ds

+

∫ h

0
A(Ys− + C)1/2d[L,L]ds(Ys− + C)1/2A∗

)
, vec(Y0)

)

=var(vec(Y0)) + E

(∫ h

0
(B ⊗ Id + Id ⊗B)vec(Ys−)vec(Y0)

∗ds

)

− E

(∫ t

0
(B ⊗ Id + Id ⊗B)vec(Ys−)ds

)
E(vec(Y0)

∗)

+ E

(∫ h

0
(A⊗A)

(
(Ys− + C)1/2 ⊗ (Ys− + C)1/2

)
dvec([L,L]ds)vec(Y0)

∗
)

− E

(∫ h

0
(A⊗A)

(
(Ys− + C)1/2 ⊗ (Ys− + C)1/2

)
dvec([L,L]ds)

)
E(vec(Y0)

∗)

=var(vec(Y0)) +

∫ h

0
(B ⊗ Id + Id ⊗B)E (vec(Ys)vec(Y0)

∗) ds

−
∫ t

0
(B ⊗ Id + Id ⊗B)E (vec(Ys)) dsE(vec(Y0)

∗)

+ σL

∫ h

0
(A⊗A)E

((
(Ys− + C)1/2 ⊗ (Ys− + C)1/2

)
vec(Id)vec(Y0)

∗
)
ds

− σL

∫ h

0
(A⊗A)E

((
(Ys− + C)1/2 ⊗ (Ys− + C)1/2

)
vec(Id)

)
dsE(vec(Y0)

∗)
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=var(vec(Y0)) +

∫ h

0
(B ⊗ Id + Id ⊗B)acovY (s)ds

+ σL

∫ h

0
(A⊗A)E (vec(Ys + C)vec(Y0)

∗) ds

− σL

∫ h

0
(A⊗A)E (vec(Ys + C))E(vec(Y0)

∗)ds

=var(vec(Y0)) +

∫ h

0
(B ⊗ Id + Id ⊗B + σLA⊗A)acovY (s)ds

where we used a Fubini argument, Lemmata 6.7.19 and 6.7.21 and E([L,L]d1) = σLId.
Regarding the use of Lemma 6.7.21 we observe that ‖(Ys− + C)1/2 ⊗ (Ys− + C)1/2‖2 =
‖Ys− + C‖2 and hence the required local boundedness is ensured by the second order
stationarity of Y .

The ordinary differential equation (6.3.21) is now immediate and to conclude the proof it
suffices to note that acovY (0) = var(vec(Y0)) and thus solving the ODE gives acovY (h) =
acovV (h) = e(B⊗Id+Id⊗B+σLA⊗A)hvar(vec(Y0)), h ≥ 0.

The autocovariance function of the volatility process Y is thus exponentially decreasing
and it is also easy to see that there is an OU type process having the same second order
structure. This corresponds to the univariate COGARCH(p, q) volatility process having
the same second order structure as a certain CARMA(q, p− 1) process (cf. Brockwell et al.
(2006, Section 4)). However, we are so far lacking an explicit expression for var(vec(Y0)).
Unfortunately, our Assumption 6.2 on the second moment of the driving Lévy process Ld

made so far seems not to be sufficient to obtain an explicit expression for the variance.
As we shall see, the discrete quadratic variation of the vectorized discrete quadratic

variation of the driving Lévy process

[vec([L,L]d), vec([L,L]d)]dt =
∑

0≤s≤t

vec(∆Ls(∆Ls)
∗)vec(∆Ls(∆Ls)

∗)∗

=

∫ t

0

∫

Rd

vec(xx∗)vec(xx∗)∗µL(ds, dx)

which is again a pure jump Lévy process of finite variation will appear in our calculations
of the second moment and we need it to have finite expectation and even to make specific
assumptions on its expectation

E([vec([L,L]d), vec([L,L]d)]d1) =

∫

Rd

vec(xx∗)vec(xx∗)∗νL(dx). (6.3.24)

To see what are reasonable assumptions, let us assume for a moment that L is a d-
dimensional compound Poisson process with rate one and the jump distribution being the d-
dimensional standard normal distribution. This implies that [L,L]d is a compound Poisson
process with rate one and the jump distribution being a Wishart distribution. Then denot-
ing the d-dimensional normal distribution by N(dx) and noting that vec(xx∗)vec(xx∗)∗ =
(x⊗ x)(x∗ ⊗ x∗) = (xx∗) ⊗ (xx∗) we have

E([vec([L,L]d), vec([L,L]d)]d1) =

∫

Rd

(xx∗) ⊗ (xx∗)N(dx)

= Id2 +Kd + vec(Id)vec(Id)
∗ (6.3.25)
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from Magnus and Neudecker (1979, Theorem 4.1). Here Kd ∈ Md2(R) denotes the com-
mutation matrix which can be characterized by Kdvec(A) = vec(A∗) for all A ∈ Md(R)
(see Magnus and Neudecker (1979) for more details). This can be easily generalized to the
following result:

Lemma 6.3.33. Let L be a d-dimensional compound Poisson process with rate c and the
jumps being distributed like

√
ǫX where X is a d-dimensional standard normal random

variable and ǫ is a random variable in R
+ with finite variance and independent of X. Then

E([vec([L,L]d), vec([L,L])d]d1) = cE(ǫ2) (Id2 +Kd + vec(Id)vec(Id)
∗) . (6.3.26)

Moving away from a Lévy process of finite activity, a similar result holds for the following
variant of type G processes, a special kind of a normal mixture.

Definition 6.3.34 (Type G̃). Let L be a d-dimensional Lévy process. If there exists an
R

+-valued infinitely divisible random variable ǫ independent of a d-dimensional standard

normal random variable X such that L1
L
=

√
ǫX, then L is said to be of type G̃. (Here

L
=

denotes equality in law.)

We have chosen the term “type G̃” above, because these processes correspond to a par-
ticular case of multG laws as defined in Barndorff-Nielsen and Pérez-Abreu (2002, Def.
3.1). Actually, many interesting Lévy processes are of type G̃, for instance, the multivari-
ate symmetric GH (NIG) ones with the parameter Σ set to Id (cf. Blæsild and Jensen
(1981) or Prause (1999)). For details on distributions/Lévy processes of type G in general
we refer to Barndorff-Nielsen and Pérez-Abreu (2002), Maejima and Rosiński (2002) and
the references therein.

Lemma 6.3.35. Let L be a d-dimensional Lévy process of type G̃ with a finite fourth
moment. Then E([vec([L,L]d), vec([L,L]d)]d1) = ρL (Id2 +Kd + vec(Id)vec(Id)

∗) with ρL ∈
R

+.

Proof. Let ǫ be as in the definition of type G̃ and νǫ its Lévy measure. Then by Barndorff-
Nielsen and Pérez-Abreu (2002, Prop. 3.1) L has Lévy density u(x) =

∫
R+ φd(x; τId)νǫ(dτ)

denoting the density of the d-dimensional normal distribution with variance Σ by φd(·; Σ).
Hence,

E([vec([L,L]d), vec([L,L]d)]d1) =

∫

Rd

(xx∗) ⊗ (xx∗)u(x)dx

=

∫

R+

∫

Rd

(xx∗) ⊗ (xx∗)φd(x; τId)dxνǫ(dτ)

=

∫

R+

τ2νǫ(dτ) (Id2 +Kd + vec(Id)vec(Id)
∗)

using Magnus and Neudecker (1979, Th. 4.3). Now set ρL :=
∫

R+ τ
2νǫ(dτ) and note that

the finiteness follows from the definition of type G̃ and the assumed finiteness of the fourth
moment of L.

These results motivate the following assumption.
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Assumption 6.3. The pure jump part of the driving Lévy process (Lt)t∈R+ has a finite
fourth moment, i.e.

∫
Rd ‖x‖4νL(dx) < ∞, and there is a real constants ρL such that

E([vec([L,L]d), vec([L,L]d)]d1) = ρL (Id2 +Kd + vec(Id)vec(Id)
∗) .

To state our next result, we need to introduce some additional special linear operators
and matrices. Define

Q : Md2 →Md2 , (6.3.27)

(QX)(k−1)d+l,(p−1)d+q = X(k−1)d+p,(l−1)d+q for all k, l, p, q = {1, 2, . . . d},

then Q−1 = Q obviously and Q(vec(X)vec(Z)∗) = X ⊗ Z for all X,Z ∈ Sd (cf. Theorem
5.4.4 in Chapter 5). Furthermore, we define Q ∈ Md4(R) as the matrix associated to the
linear map vec ◦ Q ◦ vec−1 on R

d4
and Kd ∈ Md(R) as the matrix associated to the linear

map vec
(
Kdvec

−1(x)
)

for x ∈ R
d4

where vec : Md2(R) → R
d4

. It is easy to see that both

Q and Kd simply permute the entries of a vector x ∈ R
d4

. Since thus both Q and Kd

are permutation matrices, we have ‖Q‖2 = ‖Kd‖2 = 1 where ‖ · ‖2 is the operator norm
associated with the usual Euclidean norm on R

d4
.

Theorem 6.3.36. Assume that Assumptions 6.2 and 6.3 hold.
(i) If the MUCOGARCH process Y has a finite second moment for all t ∈ R

+, i.e.
E(‖Yt‖2) <∞∀ t ∈ R

+, and t 7→ E(‖Yt‖2) is locally bounded, then

d

dt
vec(E(vec(Yt)vec(Yt)

∗)) =
d

dt
E(vec(Yt) ⊗ vec(Yt)) (6.3.28)

= C vec(E(vec(Yt)vec(Yt)
∗)) + (σL(A⊗A) ⊗ Id2 + A R) vec(C) ⊗ E(vec(Yt))

+ (σLId2 ⊗ (A⊗A) + A R)E(vec(Yt)) ⊗ vec(C) + A Rvec(C) ⊗ vec(C)

where

A =(A⊗A) ⊗ (A⊗A); R = ρL (Q + KdQ + Id4) (6.3.29)

C :=(B ⊗ Id + Id ⊗B) ⊗ Id2 + Id2 ⊗ (B ⊗ Id + Id ⊗B) (6.3.30)

+ σL ((A⊗A) ⊗ Id2 + Id2 ⊗ (A⊗A)) + A R.

(ii) Under Assumption 6.1 the stationary second moment E(vec(Y0)vec(Y0)
∗) of the

MUCOGARCH volatility process satisfies

BE(vec(Y0)vec(Y0)
∗) + E(vec(Y0)vec(Y0)

∗)B∗ (6.3.31)

+ (A⊗A)RE(vec(Y0)vec(Y0)
∗)(A∗ ⊗A∗)

= −σL [(A⊗A)vec(C)E(vec(Y0))
∗ + E(vec(Y0))vec(C)∗(A∗ ⊗A∗)]

− (A⊗A)R (E(vec(Y0))vec(C)∗ + vec(C)E(vec(Y0))
∗ + vec(C)vec(C)∗) (A∗ ⊗A∗)

with R := ρL(Q +KdQ + Id2).
Provided C is invertible, vec(E(vec(Y0)vec(Y0)

∗)) is given by

vec(E(vec(Y0)vec(Y0)
∗)) = −C

−1 [A R(vec(C) ⊗ vec(C)) (6.3.32)

+ (σL(A⊗A) ⊗ Id2 + A R) vec(C) ⊗ E(vec(Y0))

+ (σLId2 ⊗ (A⊗A) + A R)E(vec(Y0)) ⊗ vec(C)] .
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Proof. From the definition of the quadratic variation (cf. Protter (2004, Section 2.6) and
Lemma 4.5.11 for a special version in the context of matrix/vector multiplication) it follows
that

vec(Yt)vec(Yt)
∗ = vec(Y0)vec(Y0)

∗

+

∫ t

0

(
(B ⊗ Id + Id ⊗B) vec (Ys−) vec (Ys−)∗

+ vec (Ys−) vec (Ys−)∗ (B∗ ⊗ Id + Id ⊗B∗)

)
ds

+

∫ t

0
(A⊗A)

(
(C + Ys−)1/2 ⊗ (C + Ys−)1/2

)
dvec([L,L]ds)vec(Ys−)∗

+

∫ t

0
vec(Ys−)dvec([L,L]ds)

∗
(
(C + Ys−)1/2 ⊗ (C + Ys−)1/2

)
(A∗ ⊗A∗)

+ [vec(Y ), vec(Y )]t.

Moreover, since vec(Yt) is the sum of an absolutely continuous component and a pure jump
process of finite variation, setting Vt =

(
(C + Yt)

1/2 ⊗ (C + Yt)
1/2
)

[vec(Y ), vec(Y )∗]t =

∫ t

0
(A⊗A)Vs−d

(
[vec([L,L]d), vec([L,L]d)]ds

)
Vs−(A∗ ⊗A∗)

=

∫ t

0

∫

Rd

(A⊗A)Vs−vec(xx∗)vec(xx∗)∗Vs−(A∗ ⊗A∗)µL(ds, dx).

Using a Fubini argument, obvious variants of Lemmata 6.7.18 to 6.7.21 and the made
Assumptions 6.2, 6.3 on the moments of νL we obtain

E(vec(Yt)vec(Yt)
∗) = E(vec(Y0)vec(Y0)

∗)

+

∫ t

0

(
(B ⊗ Id + Id ⊗B)E(vec(Ys)vec(Ys)

∗)

+ E(vec(Ys)vec(Ys)
∗)(B∗ ⊗ Id + Id ⊗B∗)

)
ds

+ σL

∫ t

0
(A⊗A)E(vec(C + Ys)vec(Ys)

∗)ds

+ σL

∫ t

0
E(vec(Ys)vec(C + Ys)

∗)(A∗ ⊗A∗)ds

+

∫ t

0
(A⊗A)E (Vs−ρL (Id2 +Kd + vec(Id)vec(Id)

∗)Vs−) (A∗ ⊗A∗)ds.

With the definition of Vt it follows that

E(Vs−Id2Vs−) = E(V2
s ) = E((C + Ys) ⊗ (C + Ys−)) = QE(vec(C + Ys)vec(C + Ys)

∗)

E(Vs−vec(Id)vec(Id)
∗Vs−) = E(vec(C + Ys)vec(C + Ys)

∗)

E(Vs−KdVs−) = KdE((C + Ys) ⊗ (C + Ys)) = KdQE(vec(C + Ys)vec(C + Ys)
∗)

using Magnus and Neudecker (1979, Theorem 3.1 (xii)) in the last identity. Inserting these
formulae in the above result and noting that in the stationary case the integrands need to
sum up to zero gives (6.3.31). Vectorizing then immediately establishes (6.3.32).
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Likewise we obtain (6.3.28) in the non-stationary case by inserting the formulae above,
vectorizing and differentiating.

Remark 6.3.37. The differential equation (6.3.28) is an inhomogeneous linear differential
equation with constant coefficients. Hence, it is standard to obtain an explicit solution. We
refrain from stating it, as the stationary case seems to be of most importance.

Again condition (6.3.12) of Theorem 6.3.25 ensuring the existence of moments of the
there obtained stationary distribution also implies invertibility of C under an additional
technical assumption.

To state the result we set S = S ⊗ S ⊗ S ⊗ S and define a new norm ‖ · ‖gB,S
on

R
d4

by setting ‖x‖gB,S
= ‖S−1x‖2. The associated operator norm on Md4(R) is given by

‖X‖gB,S
= ‖S−1XS‖2.

Lemma 6.3.38. Assume that (6.3.12) is satisfied with k = 2 for the MUCOGARCH volatil-
ity process Y and that Assumptions 6.2 and 6.3 hold. Provided also

‖Q + KdQ + Id4‖gB,S
≤ K2

2,B‖vec(Id2 +Kd + vec(Id)vec(Id)
∗)‖gB,S

(6.3.33)

holds, σ(C ) ⊂ (−∞, 0) + iR and C is invertible.

Proof. We have

ρL‖vec(Id2 +Kd + vec(Id)vec(Id)
∗)‖gB,S

=

∥∥∥∥
∫

Rd

vec((xx∗) ⊗ (xx∗))νL(dx)

∥∥∥∥gB,S

≤
∫

Rd

‖vec((xx∗) ⊗ (xx∗))‖gB,S
νL(dx) =

∫

Rd

‖vec(xx∗)‖2
B,S νL(dx), (6.3.34)

since the definition of ‖ · ‖gB,S
implies ‖vec((xx∗) ⊗ (xx∗))‖gB,S

= ‖S−1(x⊗x)⊗ (x⊗x)‖2 =

‖(S−1 ⊗ S−1)(x⊗ x)‖2
2 = ‖vec(xx∗)‖2

B,S using that ‖z ⊗ z‖2 = ‖z‖2
2 for all z ∈ R

d2
.

For k = 2 Condition (6.3.12) becomes

2‖S‖2
2‖S−1‖2

2K2,B‖A⊗A‖B,S

∫

Rd

‖vec(xx∗)‖B,SνL(dx)

+ ‖S‖4
2‖S−1‖4

2K
2
2,B‖A⊗A‖2

B,S

∫

Rd

‖vec(xx∗)‖2
B,SνL(dx) < −4λ.

Using (6.3.34) and results from the proof of Lemma 6.3.30 gives

2σL‖A⊗A‖B,S +K2
2,B‖A⊗A‖2

B,SρL‖vec(Id2 +Kd + vec(Id)vec(Id)
∗)‖gB,S

< −4λ.

Combining ‖(A⊗A)⊗ Id2 + Id2 ⊗ (A⊗A)‖gB,S
≤ 2‖A⊗A‖B,S and ‖A⊗A⊗A⊗A‖gB,S

=

‖A⊗A‖2
B,S , which are elementary to prove, with (6.3.33) leads to

‖C − B ⊗ Id2 − Id2 ⊗ B‖gB,S
< −4λ.

Since S−1 (B ⊗ Id2 + Id2 ⊗ B)S is diagonal and

max (ℜ (σ (B ⊗ Id2 + Id2 ⊗ B))) = 4λ,

the Bauer-Fike theorem and arguments as in the proof of Lemma 6.3.30 conclude.
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A rather unpleasant feature of this lemma is that we need the technical condition (6.3.33).
The following lemma shows that it is always true if S is unitary and we believe that it is
satisfied in (almost) all cases.

Lemma 6.3.39. If S is unitary, then (6.3.33) is satisfied.

Proof. That S is unitary implies that K2,B = 1 and all the norms used are actually the
Euclidean norm or the operator norm induced by it. Hence, we have to show

‖Q + KdQ + Id4‖2 ≤ ‖vec(Id2 +Kd + vec(Id)vec(Id)
∗)‖2.

For d = 1 one calculates both sides to be equal to three.

In general we know from the fact that Kd and Q are permutation matrices that the
operator norms are one. Hence, ‖Q + KdQ + Id4‖2 ≤ 3. Furthermore, the entries of Kd

and vec(Id)vec(Id)
∗ are either one or zero. Therefore, ‖vec(Id2 +Kd + vec(Id)vec(Id)

∗)‖2 ≥
‖vec(Id2)‖2 = d. This shows the inequality for d ≥ 3.

In the remaining case d = 2 we have

‖vec(Id2 +Kd + vec(Id)vec(Id)
∗)‖2 ≥ ‖vec(Id2 + vec(Id)vec(Id)

∗)‖2 =
√

12 > 3,

which again establishes the claimed inequality.

We end our comprehensive calculations for the second order moment structure of the
MUCOGARCH volatility process by turning to the stationary variance.

Corollary 6.3.40. Assume that Assumptions 6.1, 6.2 and 6.3 hold and that C is invertible.

Then the stationary variance var(vec(Y0)) = var(vec(V0)) of the MUCOGARCH volatility
process is given by

vec(var(vec(Y0))) = −C
−1
[(
σ2

LC (B−1 ⊗ B
−1)A + A R

)
(vec(C) ⊗ vec(C))

+ (σL(A⊗A) ⊗ Id2 + A R) vec(C) ⊗ E(vec(Y0))

+ (σLId2 ⊗ (A⊗A) + A R)E(vec(Y0)) ⊗ vec(C)] . (6.3.35)

Proof. Combine (6.3.32),

vec(E(vec(Y0))E(vec(Y0)
∗)) = σ2

L(B−1 ⊗ B
−1)A (vec(C) ⊗ vec(C))

and the elementary formula var(vec(Y0)) = E(vec(Y0)vec(Y0)
∗)−E(vec(Y0))vec(Y0)

∗))∗.

At a first sight (6.3.35) is rather complicated. However, it can be easily implemented
on a computer and for d = 1 it becomes formula (4.8) of Brockwell et al. (2006, Theorem
4.4) for p = q = 1, of course. Under specific moment assumptions on the driving Lévy
process we have thus calculated the second order structure of a stationary MUCOGARCH
volatility process completely.

Finally, we give conditions ensuring (asymptotic) second order stationarity starting with
a precise definition.
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Definition 6.3.41. Let X = (Xt)t∈R+ be a stochastic process in R
d with finite second

moments. If there are µ ∈ R
d, Σ ∈ S

+
d and f : R

+ →Md(R) such that

lim
t→∞

E(Xt) = µ, lim
t→∞

var(Xt) = Σ,

lim
t→∞

sup
h∈R+

{‖cov(Xt+h,Xt) − f(h))‖} = 0,

then X is called asymptotically second order stationary with mean µ, variance Σ and
autocovariance function f .

A stochastic process X in Md(R) or Sd is said to be asymptotically second order stationary
if vec(X) is asymptotically second order stationary.

Theorem 6.3.42. Let Assumptions 6.2 and 6.3 be satisfied. Assume further that B is
diagonalizable and σ(B), σ(B), σ(C ) ⊂ (−∞, 0) + iR.

(i) If Y0 satisfies (6.3.17) and (6.3.35), then the MUCOGARCH volatility process Y is
second order stationary.

(ii) If E(‖Y0‖2) < ∞, then the MUCOGARCH volatility process Y is asymptotically
second order stationary with mean, variance and autocovariance function given by (6.3.17),
(6.3.35) and (6.3.22).

Proof. (i) follows by combining Proposition 6.3.20 and Theorems 6.3.28, 6.3.32 and 6.3.36.

Regarding (ii) Proposition 6.3.20 ensures that E(‖Yt‖2) <∞ for all t ∈ R
+. The conver-

gence of the expectation has already been noted in Remark 6.3.29, the convergence of the
variance follows from (6.3.28) and the next lemma and then (6.3.23) immediately implies
the convergence of the autocovariance.

Above we need the following general lemma on differential equations.

Lemma 6.3.43. Let f : R
+ → R

d be continuous and A ∈Md(R) with σ(A) ⊂ (−∞, 0)+iR.
If limt→∞ f(t) = ξ with ξ ∈ R

d then for any initial value x0 ∈ R
d the solution x to the

differential equation
dx(t)

dt
= Ax(t) + f(t)

satisfies limt→∞ x(t) = −A−1ξ.

Proof. It holds that

x(t) = eAtx0 +

∫ t

0
eA(t−s)f(s)ds.

Since

lim
t→∞

∫ t

0
eA(t−s)ξds = −A−1ξ and lim

t→∞
eAtx0 = 0,

it suffices to show that limt→∞
∥∥∥
∫ t
0 e

A(t−s)(f(s) − ξ)ds
∥∥∥ = 0. Fix ǫ > 0. There exist

t∗, t∗∗ > 0 with t∗ ≤ t∗∗ such that ‖f(t) − ξ‖ < ǫ for all t ≥ t∗ and

∥∥∥∥∥

∫ t∗

0
eA(t−s)(f(s) − ξ)ds

∥∥∥∥∥ < ǫ for all t ≥ t∗∗.
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Hence,

∥∥∥∥
∫ t

0
eA(t−s)(f(s) − ξ)ds

∥∥∥∥ ≤
(

1 +

∫ t

t∗
‖eA(t−s)‖ds

)
ǫ ≤

(
1 +

∫ ∞

0
‖eAs‖ds

)
ǫ ∀ t ≥ t∗∗.

Since the last integral is finite and ǫ was arbitrary this concludes.

6.4. The increments of the MUCOGARCH(1,1) process

So far we have mainly studied the MUCOGARCH volatility process Y or V , respectively.
However, in practice one cannot observe the volatility but only the process G (which in a
financial context, for instance, resembles log-prices) at finitely many points in time. In the
following we presume that G is observed on a discrete time grid starting at zero and with
fixed grid size ∆ > 0. It is obvious how the upcoming results of this section generalize to
non-equidistant observations or the set-up considered in Klüppelberg et al. (2004, Section
5) and Brockwell et al. (2006, Section 6).

In financial time series one commonly observes that returns itself are uncorrelated, but
“squared returns” (i.e. the return vector times its transpose in a multivariate setting) are
considerably correlated. The following results show that the MUCOGARCH model can
reproduce this feature.

We define the sequence of returns G = (Gn)n∈N by setting

Gn =

∫ n∆

(n−1)∆
V

1/2
s− dLs. (6.4.1)

Moreover, we shall throughout most of this section presume the following.

Assumption 6.4. C ∈ S
++
d and Y (or equivalently V ) is stationary.

Proposition 6.4.1. If Assumption 6.4 holds then G is stationary.

Proof. Employing Theorem 6.3.22 the same arguments as for Klüppelberg et al. (2004,
Corollary 3.1) show that G has stationary increments.

In order to be able to obtain explicit expressions for the moments of G we need to
strengthen Assumption 6.2 as follows.

Assumption 6.5. Assumption 6.2 is satisfied and, moreover,

E(L1) = 0 and var(L1) = (σW + σL)Id with σW ≥ 0.

We start by giving conditions for the finiteness of the second moments of G and thus of
G without requiring stationarity and explicit expressions for the moments in the stationary
case.

Proposition 6.4.2. Assume that E(L1) = 0, E(‖L1‖2) < ∞, B is diagonalizable, C ∈
S

++
d , λ = max(ℜ(σ(B))) < 0 and E(‖Y0‖) <∞. Then E(‖Gt‖2) <∞ for all t ∈ R

+.
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If also Assumptions 6.4 and 6.5 are satisfied then the stationary sequence G has the
following second order structure:

E(G1) = 0 (6.4.2)

var(G1) = (σL + σW )∆E(V0) (6.4.3)

vec(var(G1)) = (σL + σW )∆B
−1(B ⊗ Id + Id ⊗B)vec(C) (6.4.4)

acovG(h) = 0 for all h ∈ Z\{0}. (6.4.5)

Proof. Proposition 6.3.20 ensures that E(‖Yt‖) and therefore E(‖Vt‖) is finite and locally

bounded. Since E(‖V 1/2
t ‖2

2) = E(‖Vt‖2), the standard L2 stochastic integration theory (cf.
Applebaum (2004, Section 4.2.1), for example) establishes E(‖Gt‖2) <∞ for all t ∈ R

+.
Let now Assumptions 6.4 and 6.5 be satisfied, then (6.4.2) is clear and (6.4.5) is a straight-

forward consequence of the Itô isometry. The latter also implies

var(G1) = E(G1G
∗
1) = E

(∫ ∆

0
V

1/2
s− E(L1L

∗
1)V

1/2
s− ds

)
= (σL + σW )E

(∫ ∆

0
Vs−ds

)

= (σL + σW )∆E(V0).

Remark 6.4.3. Straightforward extensions of the above arguments show that if Y is not
stationary but only (asymptotically) second order stationary, then G is (asymptotically)
second order stationary.

For the squared returns GG∗ = (GnG
∗
n)n∈N we get:

Proposition 6.4.4. Assume that E(L1) = 0, E(‖L1‖4) < ∞, B is diagonalizable, C ∈
S

++
d , λ = max(ℜ(σ(B))) < 0 and E(‖Y0‖2) is finite. Then E(‖Gt‖4) < ∞ and likewise
E(‖GtG

∗
t ‖2) <∞ for all t ∈ R

+.
If also Assumptions 6.4 and 6.5 are satisfied then the stationary sequence GG∗ has the

following second order structure:

E(G1G
∗
1) = (σL + σW )∆E(V0) (6.4.6)

acovGG(h) = eB∆h
B

−1
(
Id2 − e−B∆

)
(σL + σW )cov(vec(Y∆), vec(G1G

∗
1)), (6.4.7)

for h ∈ N.

Proof. (i): We first show the finiteness of the moments. Using the Euclidean norm and its
operator norm, it is clear that E(‖Gt‖4) < ∞ if and only if E(‖GtG

∗
t ‖2) < ∞. Denoting

the d components of G by Gi with i = 1, . . . , d we have that E(‖Gt‖4) < ∞ is equivalent
to E(|Gi,t|4) <∞ for all i ∈ {1, . . . , d}. But the Burkholder-Davis-Gundy inequalities (see
e.g. Protter (2004, p. 222)) give that E(|Gi,t|4) < ∞ provided E([Gi, Gi]

2
t ) < ∞. The

latter is in turn ensured by E(‖[G,G]t‖2) <∞ simultaneously for all i ∈ {1, . . . , d}.
Next we observe that [L,L]t = Σt +

∫ t
0 xx

∗µL(ds, dx) for some Σ ∈ Sd and [G,G]t =∫ t
0 V

1/2
s− d[L,L]sV

1/2
s− . Hence,

‖[G,G]t‖2 ≤ ‖Σ‖2

∫ t

0
‖Vs−‖2ds +

∫ t

0

∫

Rd

‖Vs−‖2‖xx∗‖2µL(ds, dx)

≤ K

(∫ t

0
(ys− + ‖C‖B,S)ds+

∫ t

0
(ys− + ‖C‖B,S)dL̃s

)
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where K ∈ R
+ is a finite constant and y and L̃ are the processes defined in Theorems

6.3.16 and 6.3.19. Thus it suffices to show that the expectations E

((∫ t
0 ys−ds

)2
)

and

E

((∫ t
0 ys−dL̃s

)2
)

are finite noting that E(‖L1‖4) <∞ immediately implies the finiteness

of the second moment of
∫ t
0 ‖C‖B,SdL̃s.

0 ≤E
((∫ t

0
ys−ds

)2
)

= E

(∫ t

0

∫ t

0
ys−yu−dsdu

)
=

∫ t

0

∫ t

0
E (ys−yu−) dsdu

≤
∫ t

0

∫ t

0
E(y2

s)
1/2E(y2

u)1/2dsdu <∞,

because E(‖Y0‖2) < ∞ and E(‖L1‖4) < ∞ ensure that E(y2
t ) is finite for all t and locally

bounded in t (cf. Proposition 6.3.20 and its proof). Turning to the second term we have

∫ t

0
ys−dL̃s =

∫ t

0
ys−(dL̃s − E(L̃1)ds) +

∫ t

0
ys−E(L̃1)ds,

where the second summand has already been treated above. Hence, noting that E(|L̃1|2) <
∞ is a consequence of E(‖L1‖4) <∞ the Itô isometry gives

E

((∫ t

0
ys−

(
dL̃s − E(L̃1)ds

))2
)

=

∫ t

0
E(y2

s)var(L̃1)ds <∞,

which concludes.

(ii): Let now Assumptions 6.4 and 6.5 be satisfied. Then (6.4.6) has already been shown
in the last proposition.

So it remains to establish (6.4.7). Let h ∈ N. The definition of the quadratic (co)variation
(see Lemma 4.5.11, in particular) implies

Gh+1G
∗
h+1 =

∫ (h+1)∆

h∆
V

1/2
s− dLs

(∫ s

h∆
dL∗

uV
1/2
u−

)
+

∫ (h+1)∆

h∆

(∫ s

h∆
V

1/2
u− dLu

)
dL∗

sV
1/2
s−

+

[∫ (h+1)∆

h∆
V

1/2
s− dLs,

∫ (h+1)∆

h∆
V

1/2
s− dLs

]

with
[∫ (h+1)∆

h∆
V

1/2
s− dLs,

∫ (h+1)∆

h∆
V

1/2
s− dLs

]
=

∫ (h+1)∆

h∆
V

1/2
s− d[L,L]sV

1/2
s−

= σW

∫ (h+1)∆

h∆
Vs−ds+

∫ (h+1)∆

h∆
V

1/2
s− d[L,L]dsV

1/2
s− .

Now we condition upon F∆ and denote by Y (y, (Lr − Lt0)r≥t0 , t0, t) with t0 ∈ R
+ the

solution of

dYt = (BYt− + Yt−B
∗)dt +A(Yt− + C)1/2d[L,L]dt (Yt− + C)1/2A∗
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for t ≥ t0 with Yt0 = y. Furthermore, we denote by EL,t0(·) the expectation taken with
respect to (Lr − Lt0)r≥t0 only. Using Theorem 6.3.22, E(L1) = 0 and that the increments
of (Lr)r≥∆ are independent of F∆ one obtains

E

(∫ (h+1)∆

h∆
V

1/2
s− dLs

(∫ s

h∆
dL∗

uV
1/2
u−

)∣∣∣∣∣F∆

)

= E

(∫ (h+1)∆

h∆
V

1/2
s− dLs

(∫ s

h∆
dL∗

uV
1/2
u−

)∣∣∣∣∣Y∆

)

= EL,∆

(∫ (h+1)∆

h∆

∫ s

h∆
V

1/2
Y∆,s−dLsdL

∗
uV

1/2
Y∆,u−

)
= 0

where VY∆,t := Y (Y∆, (Lr − L∆)r≥∆,∆, t) + C and likewise

E

(∫ (h+1)∆

h∆

(∫ s

h∆
V

1/2
u− dLu

)
dL∗

sV
1/2
s−

∣∣∣∣∣F∆

)
= 0.

Moreover, using the moment assumptions and the compensation formula

E

(
σW

∫ (h+1)∆

h∆
Vs−ds+

∫ (h+1)∆

h∆
V

1/2
s− d[L,L]dsV

1/2
s−

∣∣∣∣∣F∆

)

= (σL + σW )

∫ (h+1)∆

h∆
EL,∆(VY∆,s)ds.

Equation (6.3.15) implies

∫ (h+1)∆

h∆

EL,∆(vec(VY∆,s))ds

=

∫ (h+1)∆

h∆

(
vec(C) + eB(s−∆)

(
vec(Y∆) + σLB

−1(A⊗A)vec(C)
))
ds

−
∫ (h+1)∆

h∆

σLB
−1(A⊗A)vec(C)ds

= ∆vec(C) + B
−1eB∆h(Id2 − e−B∆) (vec(Y∆) − E(vec(Y0))) + ∆E(vec(Y0)).

Combining the above results, we get

E
(
vec(Gh+1G

∗
h+1)(vec(G1G

∗
1))

∗) = E
(
E
(
vec(Gh+1G

∗
h+1)

∣∣F∆

)
(vec(G1G

∗
1))

∗)

= E(vec(G1G
∗
1)) (E(vec(G1G

∗
1)))

∗ + (σL + σW )eB∆h
B

−1(Id2 − e−B∆)

· (E(vec(Y∆)(vec(G1G
∗
1))

∗) − E(vec(Y0)) (E (vec(G1G
∗
1)))

∗) .

Using the stationarity of Y this establishes (6.4.7).

Thus, the squared returns GG∗ have like an ARMA(1,1) process an exponentially de-
creasing autocovariance function from lag one onwards.

In the univariate case Haug et al. (2007) obtained under additional assumptions on
L expressions for var(vec(G1G

∗
1)) and cov(vec(Y∆), vec(G1G

∗
1)). As these are, however,
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already rather lengthy and complicated explicit formulae, we do not calculate these values
in our multivariate model. Moreover, it seems to be interesting to compare our results
with those of Chapter 5 where explicit calculations for the second order structure of an OU
type stochastic volatility model are presented. There independence of the volatility and
the Wiener process in the log-prices eases the computations considerably compared to our
MUCOGARCH setting where we have no such independence.

6.5. Illustrative examples and simulations

In this section we show some illustrative simulations of MUCOGARCH(1,1) processes in di-
mension d = 2. We restrict ourselves to driving Lévy processes having a compound Poisson
jump part, as this allows us to simulate the Lévy process and the MUCOGARCH volatility
process exactly and it is no crucial restriction, since for an infinite activity Lévy process
one would have to use some kind of approximation with only finitely many jumps (e.g. a
compound Poisson approximation or the usual Euler approximation). In the simulation of
the MUCOGARCH process G itself we need to approximate the Brownian part, which is
done in a standard way by

∫ t2
t1

√
Vs−dWs ≈

√
(t2 − t1)σWVt1Z where W is the Brownian

part of the Lévy process L and Z a two-dimensional standard normal random variable.
In all examples the Brownian part of L has variance Id (i.e. σW = 1, see Assumption

6.5) and the jumps of L are two-dimensionally normally distributed with mean zero and
variance chosen such that var(L1) = 2Id (i.e. the components of the jumps are uncorrelated
and σL = 1, see Assumption 6.2). This means that all components of L and therefore of
[L,L]d jump at the same time, but the jump sizes of the components of L are independent.
Furthermore, Assumptions 6.2, 6.3 and 6.5 hold.

Example 1

In the first example we choose the compound Poisson jump part of the driving Lévy process
to have rate four and furthermore A = I2, B = −1.6I2 and

C =

(
1 0
0 1.5

)
.

Moreover, the initial values are chosen to be Y0 = 0 (i.e. V0 = C) and G0 = 0. For the
following pictures depicting V , G, G or GG∗ we simulated the processes G and V at times
0 ≤ t ≤ 2000 and used ∆ = 0.1 for G and GG∗ (i.e. considered the increments over periods
of length 0.1), whereas the upcoming estimation of the autocorrelation functions (acfs) is
based on discrete observations by sampling every 0.1 time units from a simulation for times
0 ≤ t ≤ 100 000. Hence, in the autocorrelation functions “lag 1” corresponds to 0.1 time
units.

Figure 6.1 shows the components of the MUCOGARCH log-price process G and of its
stochastic volatility V . One should note that after a jump the volatility process goes rather
fast towards C which can in particular be seen from Figure 6.2 depicting the components
of V for 0 ≤ t ≤ 200. For the variance components C provides a lower bound (1 and
1.5, respectively) and for the correlation component a kind of “mean level” (of zero). This
reflects the “mean-reverting” behaviour already discussed after Definition 6.3.1. Moreover,
the volatility appears to exhibit heavy-tailed behaviour and extremal clusters, as is to be
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Figure 6.1.: Simulations for the first example: log price processes G1 and G2 (upper left),
first variance process V11 (upper right), second variance process V22 (lower left)
and correlation process V12/

√
V11V22 (lower right).
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Figure 6.2.: Simulations for the first example: components of the stochastic volatility pro-
cess V for 0 ≤ t ≤ 100.
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Figure 6.3.: Simulations for the first example: log price increments G1 (upper left) and
G2 (upper right), components of the “squared returns” (realized variation)
(GG∗)11 (middle left), (GG∗)22 (middle right) and (GG∗)12 (lower).
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Figure 6.4.: Simulations for the first example: Autocorrelation functions (acf) of the incre-
ments of the first G1 (left) and second log price G2 (right). (Lag 1 corresponds
to 0.1 time units and the horizontal lines coinciding almost with the axis are
standard 95% confidence intervals for zero autocorrelation.)

expected, since in the univariate case Fasen et al. (2006) have shown this to be usually the
case.

Since the matrix B is already diagonal, we can use the usual Euclidean norm for ‖·‖B,S (cf.
Section 6.3.2) and obtain

∫
R2

(
(1 + ‖x‖2

2)
2 − 1

)
νL(dx) = 6. From this it is straightforward

to see that (6.3.12) is satisfied for k = 2 and hence there exists a stationary distribution
for the volatility with finite second moments. Furthermore, Theorem 6.3.42 combined with
Lemmata 6.3.30, 6.3.38 and 6.3.39 show that V is asymptotically second order stationary.
This is reflected in the following: The formula of Theorem 6.3.28 implies that the (second
order) stationary MUCOGARCH volatility process with the above parameters and driving
Lévy process has mean (

16/11 0
0 24/11

)

and for our simulation (up to time 2000) the empirical mean is

(
1.4368 −0.0060
−0.0060 2.1670

)

and thus already rather close to the asymptotic value. Returning to the existence of mo-
ments, elementary calculations establish that (6.3.12) is not satisfied for k = 3, so we cannot
show that the stationary distribution of V has moments of orders higher than two. This
may mean that the usual standard normal limit theory for the acf, for instance, is not valid
(cf. Fasen (2007)). Yet, (CO)GARCH processes with such a behaviour are often found to
be reasonable for empirical data. To obtain reliable estimates of the acfs we thus use very
long simulations in the following and note that the standard confidence intervals shown
later on need to be treated with care.

Also the discrete returns G and the squared returns GG∗, which can be understood as
“realized variation”, over intervals of length 0.1 display GARCH like features (stochastic
volatility, heavy tails, extremal clusters), see Figure 6.3.
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Figure 6.5.: Simulations for the first example: Acfs for the components of the squared
log-price increments (GG∗)11 (upper left), (GG∗)22 (upper right), (GG∗)12
(middle left) and of the volatility process V11 (middle right), V22 (lower left),
V12 (lower right). (Lag 1 corresponds to 0.1 time units and the horizontal lines
coinciding almost with the axis are standard 95% confidence intervals for zero
autocorrelation.)
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Figure 6.6.: Simulations for the second example: log price processes G1 and G2 (left) and
correlation process V12/

√
V11V22 (right).

Finally, the increments G of the MUCOGARCH process exhibit zero autocorrelation,
whereas the squared increments GG∗ (from lag one onwards) and the volatility process V
exhibit exponentially decreasing autocorrelations, as is illustrated in Figures 6.4 and 6.5
(note that we refrain from depicting the off-diagonal elements of the autocovariance matrix
functions). As usual this is much clearer to see for the stochastic volatility process V , where
the exponential decay starts immediately at lag 0, but for GG∗ the autocorrelations are
also clearly non-zero for the first lags and decay exponentially from lag 1 onwards. This
resembles formulae (6.3.22) and (6.4.7) which imply that acovV (h) = e−2.2I4hvar(vec(V0))
for h ∈ R

+ and acovGG∗(h) = e−2.2I4∆hK for h ∈ N and some K ∈Md(R). These formulae
also imply that all acfs decay with the same rate and thus the acfs are actually the same
for all components of GG∗ or V , respectively. The autocovariance functions, however, are
different, since the components have different variances, as can be seen by using Corollary
6.3.40 or estimating the variances from the simulated data.

Example 2

Let us now change C to

C =

(
1 0.5

0.5 1.5

)
.

and keep everything else as in the first example. Thus we can see the effect of changing
the lower bound on the covariance matrix recalling from Proposition 6.3.5 that Vt ≥ C
for all t ∈ R, since we start with a positive semi-definite Y0. The above chosen matrix C
corresponds to a correlation of c. 0.41.

Figure 6.6 shows the components of the MUCOGARCH log-price process G and the (nor-
malized) covariance component V12 of its stochastic volatility. The qualitative behaviour
is very similar to the first example except that the correlation tends to be higher and the
price processes tend to move more often in the same direction. However, this tendency
is not very strong, as is to be expected for moderately correlated processes. Changing C
does not affect condition (6.3.12) and hence there again exists a stationary distribution for
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Figure 6.7.: Simulations for the third example: log price processes G1 and G2 (left) and
correlation process V12/

√
V11V22 (right).

the volatility with finite second moments. Likewise one again has asymptotic second order
stationarity.

In this and the following examples, we only show pictures were the qualitative behaviour
is different compared to Example 1. The returns G and the squared returns GG∗ over
intervals of length 0.1 again display GARCH like features (stochastic volatility, heavy tails,
extremal clusters) and the behaviour of the autocorrelation functions is completely the same
as in the first example.

Example 3

To see the effect of further increasing the correlation we change now C to

C =

(
1 0.97

0.97 1.5

)
.

and keep everything else as before. This choice of C corresponds to a correlation of c. 0.79
The features of the MUCOGARCH process and its volatility process are basically the

same as in the previous two examples. However, as is to be seen from Figure 6.7, the
stochastic correlation now tends to be rather high and thus the two log-price processes
evolve very much alike. Again the acfs are the same as in Example 1.

Example 4

With this example we illustrate the effect of a change in the parameter B. Hence, we choose
all parameters as in the first example except for

B =
128

85

(
−21/16 1

1 −81/16.

)

The matrix B is symmetric which implies that we again do not need to use some ‖ · ‖B,S -
norm but can simply work with ‖ · ‖2 again. Its eigenvalues are −1.6 and −8 and hence
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Figure 6.8.: Simulations for the fourth example: log price processes G1 and G2 (upper left),
first variance process V11 (upper right), second variance process V22 (lower left)
and correlation process V12/

√
V11V22 (lower right).
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Figure 6.10.: Simulations for the fourth example: Acfs for the components of the squared
log-price increments (GG∗)11 (upper left), (GG∗)22 (upper right), (GG∗)12
(middle left) and of the volatility process V11 (middle right), V22 (lower left),
V12 (lower right). (Lag 1 corresponds to 0.1 time units and the horizontal lines
coinciding almost with the axis are standard 95% confidence intervals for zero
autocorrelation.)
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condition (6.3.12) is clearly again satisfied for k = 2. Thus we have the existence of a
stationary distribution for the volatility with finite second moments and likewise we again
have asymptotic second order stationarity.

As is to be seen from Figures 6.8 and 6.10, the behaviour of the MUCOGARCH process
and its volatility process is principally the same as in the previous examples. The main
difference is that the exponential decay of the individual components takes part at different
rates now which is best seen from Figure 6.9 depicting the components of the volatility
process for 0 ≤ t ≤ 100. This is also reflected in the acfs (see Figure 6.10) and it is the
reason behind the second variance process tending to be smaller than the first one despite

having the larger lower bound as given in C. Calculating eBt

(
v11 v12
v12 v22

)
eB

∗t explicitly

shows that the decay of the first variance component is dominated by e−(16/5)t whereas
e−16t dominates the decay of the second variance component. So B mainly affects the
decay to C (as long as there is no jump) and the autocorrelation structures.

Example 5

Finally, we analyse the influence of the parameter A. To do this we choose all parameters
as in the first example except for

A = 0.6I2.

Once more condition (6.3.12) is clearly satisfied for k = 2. Thus we have the existence of
a stationary distribution for the volatility with finite second moments. Moreover, we also
have asymptotic second order stationarity.

As is to be seen from Figures 6.11 and 6.12, the qualitative behaviour of the MUCOGA-
RCH process and its volatility process is principally the same as in the previous examples,
but jumps are considerably smaller, as are the values of the volatility process and the
(squared) increments of the log-price processes. To be precise compared to the previous
examples the jumps are scaled down to 0.36 of their size. So the processes appear to be
much “tamer”. This is also reflected in a lower expected volatility

E(V0) ≈ 1.13C =

(
1.13 0
0 1.695

)
.

Moreover, the autocorrelation functions decay faster now than in Examples 1 to 3, since
B ⊗ I4 + I4 ⊗B + σLA⊗A = −(71/25)I4.

So A affects the jump sizes and the autocorrelation structures in particular.

6.6. Possible extension to higher orders

So far we have only considered multivariate COGARCH(p, q) processes of orders p = q =
1. Now we discuss how one may use multivariate CARMA processes in order to define
multivariate COGARCH processes of general orders (p, q) with p, q ∈ N, q ≥ p. However,
we do not know how to restrict the parameters in order to ensure the positive-definiteness
of the volatility process for q > 1 so far.

6.6.1. Multivariate CARMA processes

As the name “continuous time ARMA” (CARMA) already suggests, these processes are the
continuous time analogue of the well-known ARMA processes. For a review of the existing
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Figure 6.11.: Simulations for the fifth example: log price processes G1 and G2 (upper left),
first variance process V11 (upper right), second variance process V22 (lower
left) and correlation process V12/

√
V11V22 (lower right).
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Figure 6.12.: Simulations for the fifth example: Acfs for the components of the squared
log-price increments (GG∗)11 (upper left), (GG∗)22 (upper right), (GG∗)12
(middle left) and of the volatility process V11 (middle right), V22 (lower left),
V12 (lower right). (Lag 1 corresponds to 0.1 time units and the horizontal lines
coinciding almost with the axis are standard 95% confidence intervals for zero
autocorrelation.)
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literature see the references given in Chapter 2. The d-dimensional CARMA(q, p) processes
are defined in that chapter and can be viewed as the solution to the formal differential
equation:

Q(D)Xt = P (D)DLt (6.6.1)

where L = (Lt)t∈R is a Lévy process in R
d and D the differential operator with respect to

t.

Q(z) = zq +Q1z
q−1 +Q2z

q−2 + . . .+Qq (6.6.2)

P (z) = P1z
p + P2z

p−1 + . . .+ Pp+1 (6.6.3)

with P1, . . . , Pp+1, Q1, . . . , Qq ∈Md(R) and Qq, P1 6= 0 are referred to as the autoregressive
and moving average polynomials, respectively. In order to be able to define CARMA
processes properly one needs q > p and that the zeros of det(Q(z)) have all strictly negative
real part. Then the CARMA(q, p) process X is defined as the unique stationary solution of

Xt = (Id, 0, . . . , 0)Yt (6.6.4)

dYt =




0 Id 0 · · · 0
0 0 Id · · · 0
...

...
...

. . .
...

0 0 0 · · · Id
−Qq −Qq−1 −Qq−2 · · · −Q1



Ytdt+DdLt, (6.6.5)

where D = (D∗
1,D

∗
2 , . . . ,D

∗
q)

∗ is a d× d matrix with elements

Dq−j = −
q−j−1∑

i=1

QiDq−j−i + Pp+1−j

(setting Pi = 0 for i ≤ 0). The process Y is usually called state space representation. In
the univariate case d = 1 the representation by (6.6.4), (6.6.5) can be replaced by

Xt = (Pp+1, Pp, . . . , Pp−q+2)Ỹt (6.6.6)

dỸt =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−Qq −Qq−1 −Qq−2 · · · −Q1



Ỹtdt+




0
...
0
1


 dLt. (6.6.7)

(Setting Pi = 0 for i ≤ 0)
The equivalence (in L2, i.e. the driving Lévy process L has to have a finite second

moment) of the two representations of univariate CARMA processes has been shown in
Chapter 2 using Fourier methods. The following result provides an alternative approach
for p = 0 and (q, p) = (2, 1) and does not need a finite variance of L. Therefore, it will later
on generalize immediately to COGARCH(p, q) processes

Lemma 6.6.1. a) Representations (6.6.4), (6.6.5) and (6.6.6), (6.6.7) are equivalent for
a one-dimensional CARMA(q,0) process. In particular, Ỹt = Yt/P1.
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b) Assume that we are given a one-dimensional CARMA(2,1) process with the autoregres-
sive polynomial Q(z) and the moving average polynomial P (z) having no common zeros.
Then representations (6.6.4), (6.6.5) and (6.6.6), (6.6.7) are equivalent. In particular,
Yt = SỸt with

S =

(
P2 P1

−Q2P1 −Q1P1 + P2

)

being invertible.

Proof. The proof of a) is immediate by substituting the variables as prescribed by the
relationship Ỹt = Yt/P1.

Turning to b) we first observe using P1 6= 0:

det(S) = P 2
2 −Q1P1P2 +Q2P

2
1 = P 2

1

(
(P2/P1)

2 −Q1(P2/P1) +Q2

)
= P 2

1Q(−P2/P1)

But this is different from zero, as −P2/P1 is the unique zero of P (z) and Q(z), P (z) have
no zeros in common. Hence, S is invertible with

S−1 =
1

P 2
2 −Q1P1P2 +Q2P

2
1

(
−Q1P1 + P2 −P1

Q2P1 P2

)
.

Rewrite now (6.6.6) and (6.6.7) to

Xt = (P2, P1)S
−1SỸt (6.6.8)

dSỸt = S

(
0 1

−Q2 −Q1

)
S−1SỸtdt+ S

(
0
1

)
dLt. (6.6.9)

Substituting Yt = SỸt and multiplying everything out the last two equations become (6.6.4)
and (6.6.5). This shows the equivalence of the two representations.

Note, however, that it is not possible to extend the result to general dimension d, as
the proof above needs multiplicative commutativity of the ARMA coefficients Pi, Qj and
matrices are in general not commutative.

6.6.2. Multivariate COGARCH(p, q) processes

In order to define a continuous time multivariate GARCH process of general order (p, q) the
main idea is again to replace the noise ǫ of a general order multivariate GARCH process by
the increments of a multivariate Lévy process L and the ARMA structure of the volatility
process by a multivariate CARMA structure as just recalled.

Regarding the multivariate GARCH model in its vectorized form, observe that (6.2.6)
can be rewritten as

vec(Σn) = vec(C) +

p∑

i=1

Ãi(Σ
1/2
n−i ⊗ Σ

1/2
n−i)vec(ǫn−iǫ

∗
n−i) +

q∑

j=1

B̃jvec(Σn−j). (6.6.10)

This shows that the dynamics of (the vectorized) Σ are those of a multivariate ARMA(q,
p− 1) process, which is “self-exciting” in the sense that the noise is given by

(
(Σ

1/2
n−1 ⊗ Σ

1/2
n−1)vec(ǫn−1ǫ

∗
n−1)

)
n∈Z

.
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Replacing (like in the univariate case) the ARMA(q, p − 1) structure with a CARMA(q,

p − 1) one and using (V
1/2
t− ⊗ V

1/2
t− )vec(d[L,Ld]t) as “noise” where L is a Lévy process,

leads from the discrete vec representation to a continuous time GARCH process G with
parameters A1, . . . , Ap, B1, . . . , Bq ∈Md2(R), C ∈ S

+
d given by:

dGt = V
1/2
t− dLt (6.6.11)

Vt = C + (Id, 0, . . . , 0)Yt (6.6.12)

dvec(Yt) = Bvec(Yt−)dt +D(V
1/2
t− ⊗ V

1/2
t− )vec(d[L,L]dt ), (6.6.13)

B :=




0 Id2 0 · · · 0
0 0 Id2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Id2

−Bq −Bq−1 −Bq−2 · · · −B1



, (6.6.14)

where D = (D∗
1,D

∗
2 , . . . ,D

∗
q)

∗ is a d2q × d2 matrix with elements

Dq−j = −
q−j−1∑

i=1

BiDq−j−i +Ap−j (setting Ai = 0 for i ≤ 0).

Finally, observe that the state space representation Y assumes values in Mdq,d(R) and

thereby vec(Y ) lives on R
d2q.

An important question is when V
1/2
t− is well defined, i.e. when Vt− is positive semi-definite.

A path-wise analysis considering the jumps and the time in between jumps separately shows
that

D1(vec(S
+
d )) ⊆ (S+

d ) and (Id2 , 0, . . . , 0)eBt
(
vec(S+

d ) × R
(q−1)d2

)
⊆ vec(S+

d ) ∀ t ∈ R
+

are sufficient to ensure Vt ≥ C for all t ∈ R
+ provided V0 ≥ C. This result is comparable

to Brockwell et al. (2006, Theorem 5.1).
Yet, practical conditions ensuring this have yet to be developed. For the time being we

can only assume that the parameters are chosen such that Vt− is always positive semi-
definite. Characterizing the feasible parameter sets ensuring positivity is already in the
univariate case rather involved (cf. Brockwell et al. (2006), Tsai and Chan (2005) and Tsai
and Chan (2006)), in particular for general order (p, q).

At a first sight we have a different model than Brockwell et al. (2006) in the univariate
case. Yet, this is due to the fact that we used the multivariate CARMA representation of
Chapter 2. However, under L2 conditions this CARMA representation gives as shown in
Chapter 2 the same CARMA process in the univariate case as the representation used by
Brockwell et al. (2006). This leads us to conjecture:

Conjecture: In the univariate case the above defined COGARCH(p, q) process is the
same as the one defined in Brockwell et al. (2006), i.e. our processes (Gt)t∈R+ and (Vt)t∈R+

agree with their processes (Gt)t∈R+ and (Vt+)t∈R+ .
Unfortunately, the proof of the equivalence of the CARMA representations given in Chap-

ter 2 uses Fourier methods and thus cannot be extended to the COGARCH case. However,
we have the following.
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Proposition 6.6.2. The above conjecture is at least true for (p, q) = (2, 2) and (p, q) =
(1, q) with q ∈ N.

Proof. Obvious from Lemma 6.6.1 and its proof.

We conjecture Lemma 6.6.1 (b) holds for general orders with an appropriate matrix S,
but so far we have not been able to prove this.

6.7. Appendix to Chapter 6

6.7.1. Stochastic differential equations on open sets

In this appendix we derive general results for solutions to stochastic differential equations
which are only defined on an open subset U of R

d.

6.7.1.1. Existence and uniqueness of solutions

It is common knowledge to experts in stochastic differential equations that one needs a
local Lipschitz property to obtain existence and uniqueness up to the first exit time of the
set U and that a linear growth condition is needed to ensure that no explosions happen
(see e.g. Jacod (2007)). However, since this issue seems not to have been dealt with in any
sufficiently detailed manner in the literature, we present the relevant results in detail in
the following. Note that one can, of course, immediately replace R

d by Md(R), Sd or any
other finite-dimensional vector space over R and that “solution” implicitly means a strong,
adapted and càdlàg solution.

Thus let U ⊆ R
d be an open set, f : U → Mdm(R) a function and Z = (Zt)t∈R+ a

semi-martingale with values in R
m. Then we are interested in the stochastic differential

equation
dXt = f(Xt−)dZt, t ∈ R

+ (6.7.1)

with initial value X0 being an F0-measurable random variable with values in R
d.

For the relevant standard results on stochastic differential equations defined on R
d we

refer to any of the standard texts, Ikeda and Watanabe (1989), Jacod and Shiryaev (2003),
Métivier (1982), Métivier and Pellaumail (1980b) or Protter (2004), for instance.

Definition 6.7.1. Let (U, ‖ · ‖U ), (V, ‖ · ‖V ) be two normed spaces and W ⊆ U be open.
Then a function f : W → V is called locally Lipschitz, if for every x ∈W there exists an
open neighbourhood U(x) ⊂W and a constant C(x) ∈ R

+ such that

‖f(z) − f(y)‖V ≤ C(x)‖z − y‖U ∀ z, y ∈ U(x).

C(x) is said to be a local Lipschitz coefficient.
If there is a K ∈ R

+ such that C(x) = K can be chosen for all x ∈ W , f is called
(globally or uniformly) Lipschitz.

The following implication is standard.

Proposition 6.7.2. Let (U, ‖ · ‖U ), (V, ‖ · ‖V ) be two normed spaces, W ⊆ U be open and
K ⊂W be compact. If a function f : W → V is locally Lipschitz, then f is Lipschitz on K,
i.e. there exists a constant C(K) ∈ R

+ such that ‖f(x)−f(y)‖V ≤ C(K)‖x−y‖U ∀x, y ∈ K,
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The main result on the existence of unique solutions of stochastic differential equations
on open sets is given by the following theorem. The condition imposed on the open set U
below implies that U is connected, clearly a natural condition, and is obviously satisfied by
most open sets one might be interested in.

Theorem 6.7.3. Let U ⊆ R
d be an open set and (Un)n∈N a sequence of convex closed

sets such that Un ⊂ U , Un ⊆ Un+1 for all n ∈ N and
⋃

n∈N
Un = U . Assume that f :

U → Mdm(R) is a locally Lipschitz function and Z = (Zt)t∈R+ is an m-dimensional semi-
martingale. Then for each U -valued F0-measurable initial value X0 there exist a stopping
time T and a unique U -valued solution X to the stochastic differential equation

dXt = f(Xt−)dZt (6.7.2)

up to the time T , i.e. on the stochastic interval [0, T ).
On T < ∞ we have that either X hits the boundary ∂U of U at T , i.e. XT− ∈ ∂U ,

jumps out of the set U , i.e. XT− ∈ U and XT− + f(XT−)∆ZT ∈ R
d\U , or explodes, i.e.

lim supt→T,t<T ‖Xt‖ = ∞. If f satisfies the linear growth condition

‖f(x)‖2 ≤ K(1 + ‖x‖2) (6.7.3)

with some constant K ∈ R
+, then no explosion can occur.

Proof. The idea of the following proof is to first obtain unique solutions on the sets Un∩{x ∈
R

d : ‖x‖ ≤ n} up to stopping times Tn. This sequence of solutions is then utilized as in
standard analysis to establish the existence of a unique solution on the whole of U up to a
stopping time.

In the following we presume that ‖ · ‖ denotes the Euclidean norm and the induced
operator norm, as we shall need a Hilbert space structure. Note that due to the equivalence
of all norms on finite dimensional spaces this can be done without loss of generality.

First we set Wn = Un ∩ {x ∈ R
d : ‖x‖ ≤ n} for all n ∈ N. It is immediate that all Wn

are compact convex sets, Wn+1 ⊇Wn and
⋃

n∈N
Wn = U .

Let ΠWn : R
d → Wn for all n ∈ N denote the unique orthogonal projection onto the set

Wn (see e.g. Werner (2002, Satz V.3.2)). For later use recall that ΠWn is a contraction, i.e.
‖ΠWn(x) − ΠWn(y)‖ ≤ ‖x− y‖ ∀ x, y ∈ R

d (Werner (2002, p. 215)).
Consider now the functions fn := f ◦ ΠWn defined on R

d and the stochastic differential
equations

dXn,t = fn(Xn,t−)dZt, t ∈ R
+ Xn,0 = X0, (6.7.4)

on R
d. It is clear that any solution Xn,t to (6.7.4) must equal a solution Xt to (6.7.2), as

long as it stays in Wn, and vice versa, since f and fn agree on Wn.
Since the function f is Lipschitz on the compact sets Wn, we have from Proposition 6.7.2

‖fn(x) − fn(y)‖ ≤ C(Wn)‖ΠWn(x) − ΠWn(y)‖ ≤ C(Wn)‖x− y‖ ∀ x, y ∈ R
d

and hence the functions fn are globally Lipschitz on R
d. Moreover, the global Lipschitz

property implies linear growth. Hence, by Métivier and Pellaumail (1980b, Chapter 3,
Sections 6.10, 7.2) or Protter (2004, Chapter V, Theorem 7) the stochastic differential
equations (6.7.4) have unique solutions Xn = (Xn,t)t∈R+ defined for all times t ∈ R

+.
Setting Tn := inf{t ∈ R

+ : Xn,t 6∈ Wn} gives a sequence of stopping times using Protter
(2004, Chapter I, Theorem 3), since R

d\Wn is open. Of course, we have that Xn stays in
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Wn for all t ∈ [0, Tn), where in the case Tn = 0 we understand [0, Tn) = ∅, and that Xn

provides a solution to (6.7.2) on [0, Tn). Moreover, from the increasingness of the sequence
of sets (Wn)n∈N it is clear that for any n, k ∈ N the processes Xn and Xn+k agree, as long
as they stay in Wn, i.e. for all t ∈ [0, Tn). (Actually an elementary argument gives even
Xn,Tn := Xn,Tn− + f(Xn,Tn−)∆ZTn = Xn+k,Tn for all k ∈ N, but this value may already be
outside of Wn.) This implies that Tn is an increasing sequence of stopping times and that
the following is well-defined:

Xt :=





X0 for t = 0,
X1,t for t ∈ (0, T1),
Xn,t for t ∈ [Tn−1, Tn), n ∈ N\{1}.

(6.7.5)

Since (Tn)n∈N is an increasing sequence, T := limn→∞ Tn is a well-defined, possibly infinite,
stopping time. Due to the above construction X = (Xt)t∈[0,T ) is a solution of (6.7.2) on
[0, T ). Therefore the existence has been established.

The uniqueness of the solution X to (6.7.2) in U defined until T is clear, since until
T̃n = inf{t ∈ R

+ : Xt 6∈ Wn} any solution must agree with the unique solution Xn to
(6.7.4) for all n ∈ N.

It remains to verify the limiting behaviour of X at t → T for T < ∞. But from our
construction of the process X it is clear that T <∞ can only happen, if the process X hits
the boundary of U , jumps out of U or explodes at time T (all for the first time, of course),
as otherwise we would still have to be in the interior of some set Wn with the process Xn

at time T and would thus stay in Wn in the time interval [T, T + δ) for some stopping time
T + δ > T due to the right continuity of Xn, which is a contradiction to the definitions of
Tn and T .

That under the linear growth condition (6.7.3) the process X does not explode in finite
time can be shown using the arguments of Métivier and Pellaumail (1980a) (see also Métivier
and Pellaumail (1980b)).

Remark 6.7.4. (i) The stopping time T , until which a solution exists, cannot be zero. The
latter would only be possible, if the process could jump out of U immediately after time 0,
but this is not possible, since both the driving semi-martingale Z and the solution X are
càdlàg and thus in particular continuous from the right.

(ii) It is obvious that the above proof can easily be extended to non-autonomous random f ,
i.e. functions f depending also on time t and being random, as considered in Métivier and
Pellaumail (1980b), for instance. We have opted not to state our theorem in this generality,
as the generalization should be obvious and would only make the above proof notationally
very cumbersome. The same comment applies to SDEs in general Hilbert spaces.

A combination of Theorems II.6 and V.7 in Protter (2004) implies immediately the fol-
lowing result.

Proposition 6.7.5. Assume that for the sequence of stopping times (Tn)n∈N constructed
in the proof of Theorem 6.7.3 one has that limn→∞ Tn = ∞ almost surely. Then the unique
solution X on R

+ to the SDE (6.7.2) is a semi-martingale.

The following convergence result adds some more insight into the nature of the approxi-
mation done.
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Proposition 6.7.6. Assume that for the sequence of stopping times (Tn)n∈N constructed in
the proof of Theorem 6.7.3 one has that limn→∞ Tn = ∞ almost surely. Then the sequence
of processes (Xn,t)t∈R+ converges uniformly on compacts in probability (ucp) to (Xt)t∈R+

for n→ ∞.

Proof. For any t ∈ R
+ and ǫ > 0 the construction implies P (sup0≤s≤t ‖Xs −Xn,s‖ > ǫ) ≤

P (Tn ≤ t). Observing that limn→∞ P (Tn ≤ t) = 0 concludes.

6.7.1.2. Markovian properties

The aim of this subsection is to show that the solution of the SDE (6.7.2) exhibits important
Markovian properties, if the driving semi-martingale Z is actually a Lévy process L.

Throughout the remainder of this section we again assume that U ⊆ R
d is an open set

such that there is a sequence of convex closed sets (Un)n∈N with Un ⊂ U , Un ⊆ Un+1 for
all n ∈ N and

⋃
n∈N

Un = U . Furthermore, f : U →Mdm(R) is a locally Lipschitz function
and L = (Lt)t∈R+ is an m-dimensional Lévy process. Then we consider the stochastic
differential equation

dXt = f(Xt−)dLt (6.7.6)

and assume that for any initial value X0 = x ∈ U the stopping time T (which depends on x,
of course) constructed in the proof of Theorem 6.7.3 is infinite (almost surely). Furthermore,
we assume that the sequence Wn = Un ∩ {x ∈ R

d : ‖x‖ ≤ n} satisfies Wn ⊂ W ◦
n+1 for all

n ∈ N where W ◦
n denotes the open kernel of Wn.

Let us briefly recall some standard notions regarding Markov properties. For further
details on Markov processes we refer to any of the standard books (e.g. Dynkin (1965),
Ethier and Kurtz (1986), Gihman and Skorohod (1975)).

Definition 6.7.7. Let Z = (Zt)t∈R+ be a process with values in U which is adapted to a
filtration (Ft)t∈R+ .

(i) Z is called a Markov process with respect to (Ft)t∈R+ , if

E(g(Zu)|Ft) = E(g(Zu)|Zt)

for all t ∈ R
+, u ≥ t and g : U → R bounded and Borel measurable.

(ii) Let Z be a Markov process and define for all s, t ∈ R
+, s ≤ t the transition functions

Ps,t(Zs, g) = E(g(Zt)|Fs) with g : U → R bounded and Borel measurable. If Ps,t = P0,t−s =:
Pt−s for all s, t ∈ R

+, s ≤ t, Z is said to be a time homogeneous Markov process.
(iii) A time homogeneous Markov process is called a strong Markov process, if

E(g(ZT+s)|FT ) = Ps(ZT , g) for all g : U → R bounded and Borel measurable and a.s. finite
stopping times T .

As stated in the beginning, we are assuming given an appropriate filtered probability
space (Ω,F , P, (Ft)t∈R+). In order to be able to have arbitrary initial conditions we need
to enlarge our probability space as in Protter (2004, p. 293). Define thus

Ω = U × Ω, F0
t = σ(U × Ft), P

y
= δy × P

where U is the Borel σ-algebra of U , σ(U × Ft) is the σ-algebra generated by U × Ft and
δy the Dirac measure with respect to y ∈ U . In order to have the usual conditions satisfied
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again, let F t =
⋂

u>t F
0
u. A random variable Z defined on Ω is extended to Ω by setting

Z((y, ω)) = Z(ω) for all (y, ω) ∈ Ω. Furthermore, we define the random variable X0 by
X0((y, ω)) = y.

Theorem 6.7.8. Under the above assumptions the unique solution (Xt)t∈R+ to

Xt = X0 +

∫ t

0
f(Xt−)dLt

is a temporally homogeneous strong Markov process on U under all P
y

with y ∈ U .

Proof. Using the following lemmata ensuring the continuity of the flow and the joint measur-
ability, the proof of Protter (2004, Theorem V.32) generalizes in a straightforward manner
to our set-up noting that the independence of the components of the Lévy process assumed
there is actually not needed in the proof.

In the following we denote the space of all càdlàg functions from R
+ to U by DU and

equip this space with the topology of uniform convergence on compacts. For an SDE
Xt = x+

∫ t
0 f(Xs−)dZs having a unique solution (Xt)t∈R+ in U for all x ∈ U the function

φ : U → DU mapping the initial condition to the solution is called the flow of the SDE.

Lemma 6.7.9. Under the above assumptions the flow of

Xt = x+

∫ t

0
f(Xt−)dLt

is almost surely a continuous mapping from U to DU (with respect to the topology of uniform
convergence on compacts).

Proof. The proof follows by the same arguments as in Protter (2004, Theorem V.38) using
the functions fn constructed in the proof of Theorem 6.7.3 instead of gl, the sets W ◦

n instead
of Λl and observing that T ◦

n(x) := inf{t ∈ R
+ : Xn,t(x) 6∈W ◦

n or Xn,t−(x) 6∈ W ◦
n} increases

almost surely to infinity for all x ∈ U . To see the last claim, it suffices to note that by
the above made assumptions the sequence Tn(x) := inf{t ∈ R

+ : Xn,t(x) 6∈ Wn} increases
almost surely to infinity and Tn(x) ≤ T ◦

n+1(x) ≤ Tn+1(x).

In the next lemma we denote by X = X(x, t, ω) the mapping from U × R
+ × Ω to U

which maps (x, t, ω) to the solution of Xt = x +
∫ t
0 f(Xt−)dLt at time t ∈ R

+ for ω ∈ Ω.
Moreover, B(R+) stands for the Borel σ-algebra over R

+.

Lemma 6.7.10. Under the above assumptions there exists a version of X : U×R
+×Ω → U,

(x, t, ω) 7→ X(x, t, ω) that is σ(U × B(R+) × F)-measurable and such that X(x, ·, ·) is an
adapted càdlàg solution to Xt = x+

∫ t
0 f(Xt−)dLt for each x ∈ U .

Proof. Protter (2004, Theorem V.31) implies the existence of mappings Xn(x, t, ω) which
are σ(U × B(R+) × F)-measurable and such that Xn(x, ·, ·) is an adapted càdlàg solution
to Xn,t = x +

∫ t
0 fn(Xn,t−)dLt for each x ∈ U . Combining Proposition 6.7.6 with Protter

(2004, Theorem IV.62) concludes.
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Another important property of Markov processes is the weak Feller property. Since there
are various variants of the definition in the literature, we start with our definition. The
definition we shall give agrees with that of da Prato and Zabczyk (1996) and it has also
been given in Dynkin (1965) and Gihman and Skorohod (1975), for instance.

For a Markov process Z in U , x ∈ U and a set A ∈ U we set Ps(x,A) = E(IA(Zs)|Z0 = x)
and note that this is the transition probability for the Markov process X to move from the
initial state x to the set A at time s ∈ R+. Ps(·, ·) is referred to as the Markov transition
function. Moreover we denote by Bb(U) the space of all measurable and bounded functions
f : U → R and by Cb(U) the set of all functions f : U → R that are bounded and
continuous.

The Markov transition function Ps(·, ·) gives rise to a Markov (transition) semi-group
of bounded linear operators Ps : Bb(U) → Bb(U) with s ∈ R

+ by setting Psf(x) =∫
U f(y)Ps(x, dy) for all f ∈ Bb(U) and x ∈ U . Moreover, we define M1(U) to be the

set of all probability measures on (U,U) and operators P ∗
s for s ∈ R

+ on M1(U) by setting
P ∗

s µ(A) =
∫
U Ps(x,A)µ(dx).

Definition 6.7.11. Let (Ps)s∈R+ be the transition semi-group of a time homogeneous
Markov process Z on U .

(i) (Ps)s∈R+ (respectively the associated Markov process Z) is called stochastically con-
tinuous, if

lim
t→0,t≥0

Pt(x,U(x)) = 1

for all x ∈ U and open neighbourhoods U(x) of x.
(ii) A stochastically continuous semi-group (Ps)s∈R+ (respectively its associated Markov

process Z) is called weakly Feller, if

Ps(Cb(U)) ⊆ Cb(U) for all s ∈ R
+.

(iii) A probability measure µ ∈ M1(U) is said to be an invariant (stationary) measure
for the Markovian semi-group (Ps)s∈R+ (respectively for its associated Markov process Z),
if P ∗

s µ = µ for all s ∈ R
+.

Remark 6.7.12. Regarding our general definitions for Markov processes the open set U ⊆
R

d can be replaced by any Polish space.

Having set up the necessary technical details we can return to our stochastic differential
equation.

Proposition 6.7.13. Under the above assumptions the solution to

Xt = x+

∫ t

0
f(Xt−)dLt

with x ∈ U is a weak Feller process on U .

Proof. Above we have already shown that the process is a time homogeneous Markov pro-
cess. In the following we denote by (Ps)s∈R+ its transition semi-group. Since the paths
of X are càdlàg, the process is stochastically continuous. Let now f be a function in
Cb(U) and t ∈ R

+. Then Xt(x) is a.s. a continuous function of the initial value x by
Lemma 6.7.9. Hence, f(Xt(x)) is a.s. a continuous function of x. Thus the boundedness
of f ensures that Ptf(x) = E(f(Xt(x))) is a continuous function of x ∈ U and obviously
supx∈U |Ptf(x)| ≤ supx∈U |f(x)| for all t ∈ R

+.
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6.7.2. Lipschitz and growth properties of the SDE defining the
MUCOGARCH(1,1) volatility process

This appendix deals with some matrix analytic results analysing the Lipschitz properties
of the map V 7→ V 1/2 ⊗ V 1/2 used in the definition of the MUCOGARCH(1,1) volatility
process. We denote by ‖ · ‖2 the operator norm associated with the usual Euclidean norm
on R

d.

Lemma 6.7.14 (Bhatia (1997, Problem I.6.11)). For all A,B ∈Md(R) we have

‖A⊗A−B ⊗B‖2 ≤ 2max {‖A‖2, ‖B‖2} ‖A−B‖2.

In particular, the mapping ⊗ : Md(R) → Md2(R), X 7→ X ⊗X is uniformly Lipschitz on
any set of the form {x ∈Md(R) : ‖x‖ ≤ c} with c > 0.

The proof is obvious from the ideas given there.

Lemma 6.7.15 (Bhatia (1997, p. 305)). Let A,B ∈ S
+
d and a > 0 such that A,B ≥ aId.

Then

‖A1/2 −B1/2‖2 ≤ 1

2
√
a
‖A−B‖2.

Hence, the mapping S
+
d → S

+
d , X 7→ X1/2 is uniformly Lipschitz on any set of the form

{x ∈ S
+
d : x ≥ cId} ⊂ S

++
d with c > 0.

For a variant of the above statement see Horn and Johnson (1991, p. 557).

Lemma 6.7.16. Consider the map F : S
+
d → S

+
d , X 7→ X1/2 ⊗X1/2 = (X ⊗X)1/2. F is

continuous and uniformly Lipschitz on any set of the form {x ∈ S
+
d : x ≥ cI, ‖x‖ ≤ c̃} with

c, c̃ > 0. Moreover, we have that ‖A1/2 ⊗A1/2‖2 = ‖A‖2 for all A ∈ Sd.

Proof. The identity X1/2 ⊗ X1/2 = (X ⊗ X)1/2 is an immediate consequence of basic
properties of the tensor product (see Horn and Johnson (1991, Ch. 4)) and the continuity of
F follows from the one of the tensor product and the positive definite square root (see Horn
and Johnson (1991, Theorem 6.2.37)). The Lipschitz property follows from a combination
of the previous two lemmas. Finally, ‖A1/2 ⊗ A1/2‖2 = ‖A‖2 is established by noting that

‖A1/2 ⊗ A1/2‖2 = ‖A1/2‖2
2 (cf. Bhatia (1997, p. 15)) and ‖A1/2‖2 = ‖A‖1/2

2 . The latter
follows immediately from the fact that ‖A‖2 =

√
ρ(A∗A) = ρ(A) for all A ∈ S

+
d .

Finally we show that the global Lipschitz property is not satisfied for this map, not even
if we restrict it to sets being bounded away from zero.

Lemma 6.7.17. For the map F defined in the previous lemma there exists no finite K ∈ R
+

such that
‖F (x) − F (y)‖ ≤ K‖x− y‖ (6.7.7)

for all x, y ∈ S
++
d . The same holds for all x, y ∈ {z ∈ Sd : z ≥ C} with arbitrary C ∈ S

++
d .

Proof. From the following proof it is clear that we can take d = 2 w.l.o.g. Let x =
diag(x1, x2) and y = diag(y1, y2) with x1, x2, y1, y2 ∈ R

++ and diag(x1, x2) being as usual
the diagonal matrix with diagonal entries x1 and x2. We have F (x) = diag(x1,

√
x1x2,√

x1x2, x2). Assume (6.7.7) is true with a finite K ∈ R
+. Then there is a finite k ∈ R

+
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such that |√x1x2 −
√
y1y2| ≤ k (|x1 − y1| + |x2 − y2|) for all x1, x2, y1, y2 ∈ R

++. Choosing
x2 = y2 = 1 this gives |√x1−

√
y1| ≤ k|x1−y1| for all x1, y1 ∈ R

++ which is a contradiction
to the well-known fact that the square root is not globally Lipschitz on R

++. Regarding
the case x, y ∈ {z ∈ Sd : z ≥ C} we can w.l.o.g. restrict ourselves to C = cId with c ∈ R

++.
Choosing x2 = y2, x1 = 9c and y1 = 4c gives |√cx2| ≤ 5kc. As x2 can be taken arbitrarily
large this is a contradiction.

6.7.3. Auxiliary results regarding the calculation of moments

In the following we present some elementary but important lemmata used in the calculation
of the second order structure of MUCOGARCH(1,1) processes. Observe that we state some
of them for processes in R

d for notational ease, but the generalization to the matrix case is
immediate.

The first three lemmata are stated without a proof, because they follow immediately
from the stochastic continuity properties of Lévy processes.

Lemma 6.7.18. Let s, t ∈ R
+ with t > s and let (Xr)r∈R+ be an adapted càdlàg process in

R
d which satisfies ∆Xr = Ar∆Lr for all r ∈ R

+ with (Ar)r∈R+ being a process taking values
in Md(R) such that Ar is Fr− measurable and (Lr)r∈R+ being an R

d-valued Lévy process.
(Here Fr− denotes the σ-algebra generated by ∪0≤u<rFr.) Let furthermore f : Rd → Rd be a
Borel-measurable function such that E(‖f(Xr)‖2)) <∞ for all r ∈ R

+. Assume finally that
E(‖Xr‖2) < ∞ for all r ∈ R

+. Then E(f(Xs)X
∗
t−) = E(f(Xs)X

∗
t ) and these expectations

are finite.

Applied to the MUCOGARCH(1,1) volatility process this lemma and an obvious variant
of it imply immediately the following, since ∆Yt = A(C + Yt−)∆Lt(∆Lt)

∗(C + Yt−)A∗ and∑
0≤s≤t ∆Lt(∆Lt)

∗ is a Lévy process.

Lemma 6.7.19. Let s, t ∈ R
+ with t > s and let Y be the volatility process of the

MUCOGARCH(1,1) process as given in (6.3.4). Be f : W → W a Borel-measurable
function defined on W = Sd or W = R

d2
, respectively, such that E(‖f(Yr)‖2)) < ∞ or

E(‖f(vec(Yr))‖2)) < ∞, respectively, for all r ∈ R
+. Assume furthermore that the process

Y has a finite second moment.

Then E(f(Ys)Yt−) = E(f(Ys)Yt) or E(f(vec(Ys))vec(Yt−)∗) = E(f(vec(Ys))vec(Yt)
∗),

respectively, and these expectations are finite.

Lemma 6.7.20. Let t ∈ R
+ and let Y be the volatility process of the MUCOGARCH(1,1)

process as given in (6.3.4). Be f a measurable (with respect to the Borel-σ-algebra) function
defined on Sd such that E(‖f(Yt)‖)) <∞.

Then E(f(Yt−)) = E(f(Yt)) and this expectation is finite.

Finally let us state a version of the so called compensation formula (cf. Kyprianou (2006,
Section 4.3.2), for instance) which is suitable for our purposes.

Lemma 6.7.21. Assume that (Xt)t∈R+ is an adapted càdlàg process in Md(R) satisfying
E(‖Xt‖) < ∞ for all t ∈ R

+, t 7→ E(‖Xt‖) is locally bounded and that (Lt)t∈R+ is a
driftless pure jump Lévy process in R

d of finite variation with finite expectation E(L1).

Then E
(∫ t

0 Xs−dLs

)
=
∫ t
0 E(Xs−)E(L1)ds for t ∈ R

+.
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Proof. Since Lt =
∫ t
0

∫
Rd zµL(ds, dz) the compensation formula (see Kyprianou (2006, Sec-

tion 4.3.2)) implies

E

(∫ t

0
Xs−dLs

)
= E

(∫ t

0

∫

Rd

Xs−zµL(ds, dz)

)
= E

(∫ t

0
Xs−

∫

Rd

zνL(dz)ds

)

= E

(∫ t

0
Xs−E(L1)ds

)
.

Observing that
∫ t
0 E(‖Xs−‖)‖E(L1)‖ds is finite for every t ∈ R

+ an application of Fubini’s
theorem concludes the proof.
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7. Absolute Moments of Generalized
Hyperbolic Distributions and Approximate
Scaling of Normal Inverse Gaussian Lévy
Processes1

7.1. Introduction

The generalized hyperbolic (GH) distribution was introduced in Barndorff-Nielsen (1977)
in connection to a study of the grain-size distribution of wind-blown sand. Since then it has
been used in many different areas. Before outlining the contents of the present chapter, we
now give a brief overview of various applications of the GH laws and the associated Lévy
processes.

The original paper by Barndorff-Nielsen (1977) was focused on the special case of the
hyperbolic law. That law and its applicability have been further discussed, inter alia, in
Barndorff-Nielsen, Blæsild, Jensen and Sørensen (1983), Barndorff-Nielsen, Blæsild, Jensen
and Sørensen (1985) (particle size distributions of sand), Barndorff-Nielsen and Christiansen
(1988), Hartmann and Bowman (1993), Sutherland and Lee (1994) and references therein
(coastal sediments), Xu, Durst and Tropea (1993) and their list of references (fluid sprays).
In Barndorff-Nielsen (1982) the appearance of the three dimensional hyperbolic law in
relativistic statistical physics was pointed out. Other areas, where hyperbolic distributions
have been employed, include biology (e.g. Blæsild (1981)) and primary magnetization of
lava flows (cf. Kristjansson and McDougall (1982)). Furthermore, in Barndorff-Nielsen,
Jensen and Sørensen (1989) the hyperbolic distribution is employed to model wind shear
data of landing aircrafts parsimoniously. See also Barndorff-Nielsen (1979) for applications
in turbulence.

Moreover, Barndorff-Nielsen, Blæsild and Schmiegel (2004) recently demonstrated (fol-
lowing an indication in Barndorff-Nielsen (1998a)) that the normal inverse Gaussian (NIG)
law, another important special case of the GH law, is capable of describing velocity data
from turbulence experiments with high accuracy. Eriksson, Forsberg and Ghysels (2004)
employ the NIG distribution to approximate other (unknown) probability distributions.

In recent years many authors have successfully fitted generalized hyperbolic distributions
and in particular normal inverse Gaussian (NIG) laws to returns in financial time series;
see Eberlein and Keller (1995), Prause (1997, 1999), Barndorff-Nielsen (1997), Barndorff-
Nielsen and Shephard (2001a, 2001b, 2007) and references therein, Schoutens (2003). Benth
and Šaltytė-Benth (2005) have recently put forth a model for Norwegian temperature data
driven by a GH Lévy process.

1The contents of this chapter appeared in Barndorff-Nielsen, O.E. and Stelzer, R. (2005), Absolute Moments
of Generalized Hyperbolic Distributions and Approximate Scaling of Normal Inverse Gaussian Lévy
Processes, Scand. J. Statist., 32(4), 617–637
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This has, in particular, led to modelling the time dynamics of financial markets by
stochastic processes using generalized hyperbolic or normal inverse Gaussian laws and asso-
ciated Lévy processes as building blocks (e.g. Rydberg (1997), Bibby and Sørensen (1997),
Barndorff-Nielsen (1998b), Rydberg (1999), Prause (1999), Raible (2000), Barndorff-Nielsen
(2001a), Barndorff-Nielsen and Shephard (2001a, 2007) and references therein, Eberlein
(2001), Schoutens (2003), Cont and Tankov (2004), Rasmus, Asmussen and Wiktorsson
(2004), Emmer and Klüppelberg (2004) and Mencia and Sentana (2004)).

One of the reasons, why the GH distribution is used in such a variety of situations, is
that it is not only flexible enough to fit many different data sets well, but also is rather
tractable analytically and many important properties (density, characteristic function, cu-
mulant transform, Lévy measure, ...) are known. Some of these properties are recalled
in Section 7.2. Yet, until now, no details on absolute moments of arbitrary order r > 0
are known, except for r = 1. Thus we derive, in Section 7.3, formulae for the (absolute)
moments of arbitrary order r > 0 of the generalized hyperbolic distribution in terms of
moments of the corresponding symmetric GH law. For µ–centred (absolute) moments, i.e.
moments centred at the location parameter µ, we are able to give explicit formulae using
Bessel functions. From these general formulae we will then, as special cases, obtain formu-
lae for the absolute moments of the NIG law and NIG Lévy process. We especially focus
on the NIG case because of its wide applicability and tractability. In particular, the NIG
Lévy process has a marginal NIG distribution at all times, an appealing feature not shared
by the general GH Lévy process.

Due to Kolmogorov’s famous laws for homogeneous and isotropic turbulence (see, for
instance, Frisch (1995)) scaling is an important issue when considering turbulence data and
models. Ongoing research indicates that the time transformation carried out in Barndorff-
Nielsen et al. (2004) leads to a process with NIG marginals and very strong apparent
scaling.

The question of the possible relevance of scaling in finance was raised by Mandelbrot
(1963) and has since been discussed by a number of authors, see, in particular, Müller,
Dacorogna, Olsen, Pictet, Schwarz and Morgenegg (1990), Guillaume et al. (1997) and
Mandelbrot (1997). More recently the question was taken up by Barndorff-Nielsen and
Prause (2001), who showed that an NIG Lévy process may exhibit moment behaviour
which is very close to scaling. However, they solely studied the first absolute moment and
obtained analytic results only in the case of a symmetric NIG Lévy process. As part of this
chapter we generalize their findings to the skewed case and higher order moments.

Based on the explicit general formulae for µ-centred moments of the NIG law, resp. NIG
Lévy process, we are able to deduce analytic results for the approximate scaling of an NIG
Lévy process, namely explicit expressions for the derivative of the logarithm of the µ-centred
absolute moments of the NIG Lévy process with respect to the logarithm of time.

In the final sections we discuss the numerical implementation of the formulae obtained
and give numerical examples for the apparent scaling present in NIG Lévy processes.

Our results show that, in particular, the occurrence of empirical scaling laws is not bound
to necessitate the use of self-similar or even multifractal processes for modelling, since this
type of behaviour is already exhibited by such simple a model as an NIG Lévy process,
when looking at the relevant time horizons. For a survey of the theory and (approximate)
occurrence of self-similarity and scaling see Embrechts and Maejima (2002).

Throughout this chapter R>0 denotes the strictly positive real numbers and R≥0 the
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positive real numbers including zero.

7.2. Generalized hyperbolic and inverse Gaussian distributions

In this chapter we consider the class of one-dimensional generalized hyperbolic (GH) distri-
butions and the subclass of normal inverse Gaussian (NIG) distributions in particular. The
GH law was, as already noted, introduced in Barndorff-Nielsen (1977) and its properties
were further studied in Barndorff-Nielsen (1978a), Barndorff-Nielsen and Blæsild (1981)
and Blæsild and Jensen (1981). Some recent results, in particular regarding the multivari-
ate GH laws, can be found in Prause (1999), Eberlein (2001), Eberlein and Hammerstein
(2004) and Mencia and Sentana (2004).

We denote the (one-dimensional) GH distribution by GH(ν, α, β, µ, δ) and characterize
it via its probability density given by:

p(x; ν, α, β, µ, δ) =
γ̄νᾱ1/2−ν

√
2πδKν(γ̄)

(
1 +

(x− µ)2

δ2

)ν/2−1/4

·Kν−1/2

(
ᾱ

√
1 +

(x− µ)2

δ2

)
eβ(x−µ) (7.2.1)

for x ∈ R and where the parameters satisfy ν ∈ R, 0 ≤ |β| < α, µ ∈ R, δ ∈ R>0, and
γ :=

√
α2 − β2, ᾱ := δα, β̄ := δβ, γ̄ := δγ. Here α can be interpreted as a shape, β as a

skewness, µ as a location and δ as a scaling parameter; finally, ν characterizes subclasses
and primarily influences the tail behaviour.

Furthermore, Kν(·) denotes the modified Bessel function of the third kind and order
ν ∈ R. For a comprehensive discussion of Bessel functions of complex arguments see
Watson (1952). Jørgensen (1982) contains an appendix listing important properties of
Bessel functions of the third kind and related functions. Most of these properties can also
be found in standard reference books like Gradshteyn and Ryzhik (1965) or Bronstein,
Semendjaev, Mühlig and Musiol (2000). For the following we need to know that Kν is
defined on the positive half plane D = {z ∈ C : ℜ(z) > 0} of the complex numbers and is
holomorphic on D. From Watson (1952, p. 182) or Jørgensen (1982, p. 170) we have the
representation

Kν(z) =
1

2

∫ ∞

0
yν−1e−

1
2
z(y+y−1)dy, (7.2.2)

which shows the strict positivity of Kν on R>0. The substitution x := y−1 immediately
gives K−ν = Kν . Furthermore, Kν(z) is obviously monotonically decreasing in z on R>0.
From the alternative representation

Kν(z) =

∫ ∞

0
e−z cosh(t) cosh(νt)dt (7.2.3)

(cf. Watson (1952, p. 181)) one reads off that, for fixed z ∈ R>0, Kν(z) is strictly increasing
in ν for ν ∈ R≥0 .

There are several popular subclasses contained within the GH laws. For ν = 1 the hyper-
bolic and for ν = −1/2 the normal inverse Gaussian distributions are obtained. The normal,
exponential, Laplace, Variance-Gamma and Student-t distributions are among many others
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limiting cases of the GH distribution (cf. Eberlein and Hammerstein (2004) for a compre-
hensive analysis).

Alternatively one often uses

ρ :=
β

α
=
β̄

ᾱ
, ξ := (1 + γ̄)−1/2 and χ := ρξ

to parametrize the GH law, since these quantities are invariant under location-scale changes
and χ, resp. ξ, can be interpreted as a skewness, resp. kurtosis, measure. Moreover, the
parameter restrictions imply 0 < |χ| < ξ < 1. For fixed ν this gives rise to the use of
shape triangles as a graphical tool to study generalized hyperbolic distributions (see e.g.
Barndorff-Nielsen et al. (1983, 1985), Barndorff-Nielsen and Christiansen (1988), Rydberg
(1997) and Prause (1999)).

A very useful representation in law of the generalized hyperbolic distribution can be
given using the generalized inverse Gaussian distribution. The generalized inverse Gaussian
distribution GIG(ν, δ, γ) with parameters ν ∈ R, γ, δ ∈ R≥0 and γ+δ > 0 is the distribution
on R>0 which has probability density function

p(x; ν, δ, γ) =
(γ/δ)ν

2Kν(δγ)
xν−1 exp

(
−1

2
(δ2x−1 + γ2x)

)

=
γ̄ν

2Kν(γ̄)
δ−2νxν−1 exp

(
−1

2
(δ2x−1 + γ̄2δ−2x)

)
. (7.2.4)

For more information on the GIG law we refer to Jørgensen (1982) and for an interpretation
in terms of hitting times to Barndorff-Nielsen, Blæsild and Halgreen (1978). The following
normal variance-mean mixture representation of the generalized hyperbolic law holds.

Lemma 7.2.1. Let X ∼ GH(ν, α, β, µ, δ), V ∼ GIG(ν, δ, γ) with γ =
√
α2 − β2 and

ε ∼ N(0, 1), where V and ε are independent, then:

X
D
= µ+ βV +

√
V ε.

(For a general overview over normal variance-mean mixtures see Barndorff-Nielsen, Kent
and Sørensen (1982).)

Furthermore, the cumulant function of the generalized hyperbolic law X ∼ GH(ν,
α, β, µ, δ) is given by

K(θ ‡X) =
ν

2
log

(
γ

α2 − (β + θ)2

)
+ log



Kν

(
δ
√
α2 − (β + θ)2

)

Kν

(
δ
√
α2 − β2

)


+ θµ. (7.2.5)

Obviously K(θ ‡ X) is defined for all θ ∈ R with |β + θ| < α. From this fact and
Barndorff-Nielsen (1978b, Corollary 7.1) we immediately obtain:

Lemma 7.2.2. Assume X ∼ GH(ν, α, β, µ, δ). Then X ∈ Lp for all p > 0, i.e. E(|X|p)
exists for all p > 0.
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One immediately calculates the expected value and variance of a GH distributed random
variate X to be

E(X) = µ+ β
δKν+1(γ̄)

γKν(γ̄)
,

V ar(X) = δ2

(
Kν+1(γ̄)

γ̄Kν(γ̄)
+
β2

γ2

(
Kν+2(γ̄)

Kν(γ̄)
−
(
Kν+1(γ̄)

Kν(γ̄)

)2
))

.

Higher order cumulants can also be calculated, but the expressions become more and more
complicated.

In the GH law the existence of moments of all orders is combined with semi-heavy tails

p(x; ν, α, β, 0, δ) ∼ C|x|ν−1 exp ((∓α+ β)x) as x→ ±∞ (7.2.6)

for some constant C.

In Figure 7.12 the densities of NIG distributions fitted to turbulent velocity increments
(from data set I of Barndorff-Nielsen et al. (2004); for a detailed description of the data see
that paper) at different lags are plotted on a logarithmic scale together with histograms
of the original data. The graphs were obtained using the programme “hyp” (Blæsild and
Sørensen (1992)). They exemplify the rich variety of distributional shapes one can already
get from the NIG law. Letting ν vary offers the possibility to get even more different shapes
(see e.g. Eberlein and Özkan (2003) for some hyperbolic fits). Note especially the marked
differences in the centre of the distributions and the difference in how the asymptote given
by (7.2.6) is approached. For a lag of 9000 the shape is already very close to the quadratic
one of the Gaussian law.

Moreover, the GH law is infinitely divisible (in fact, self-decomposable) and leads thus to
an associated Lévy process. Yet, the GH distribution is not closed under convolution, but
the NIG distribution has this property, so that all marginal distributions of a Lévy process
associated to an NIG distribution belong to the NIG class.

The above facts and the analytical tractability due the existence of explicit expressions for
the density, the cumulant function and related functions makes using the GH law appealing
in many different areas, as already pointed out in the introduction.

7.3. Moments and absolute moments of GH laws

In this section we give expressions for different (absolute) moments of arbitrary GH distri-
butions in terms of moments of corresponding symmetric GH distributions. Based upon
this we obtain explicit expressions for µ-centred (absolute) moments of GH distributions,
employing the variance-mean mixture representation.

Theorem 7.3.1. Let X ∼ GH(ν, α, β, µ, δ), Y ∼ GH(ν, α, 0, µ, δ), then for every r > 0

2The graphs in this figure have been kindly provided by Jürgen Schmiegel, Århus.



210 7. GH Distributions and NIG Lévy Processes
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Figure 7.1.: Log-density (solid line) of NIG distribution fitted to velocity increments at lags
12 (upper left), 500 (upper right) and 9000 (lower centre) and log-histogram
(only top end points are given (×))
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and n ∈ N:

(i) E(Xn) =
( γ̄
ᾱ

)ν Kν(ᾱ)

Kν(γ̄)

∞∑

k=0

βk

k!
E(Y n(Y − µ)k)

(ii) E(|X|r) =
( γ̄
ᾱ

)ν Kν(ᾱ)

Kν(γ̄)

∞∑

k=0

βk

k!
E(|Y |r(Y − µ)k)

(iii) E((X − µ)n) =
( γ̄
ᾱ

)ν Kν(ᾱ)

Kν(γ̄)

∞∑

k=0

β2k+m

(2k +m)!
E((Y − µ)2k+m+n)

(iv) E(|X − µ|r) =
( γ̄
ᾱ

)ν Kν(ᾱ)

Kν(γ̄)

∞∑

k=0

β2k

(2k)!
E(|Y − µ|2k+r),

where m := nmod 2. All moments above are finite.

Note that from the cumulant function we have

E(Y ) = µ and E(X) = µ+ βδKν+1(γ̄)/(γKν(γ̄)),

as stated before. Hence, we have that E((Y −µ)r) are central moments, whereas E((X−µ)r)
are in general just µ–centred moments. Note also that sgnE((X−µ)n)) = sgnβ for all odd
n.

Proof. We will only prove (ii), since the proofs of the other formulae proceed along the
same lines, except that to obtain (iii) and (iv) one notes in the final step that odd central
moments of Y vanish, since the distribution of Y is symmetric around µ.

The series representation of the exponential function gives

E(|X|r) =

∫

R

γ̄ν ᾱ1/2−ν

√
2πδKν(γ̄)

(
1 +

(x− µ)2

δ2

)ν/2−1/4

·Kν−1/2

(
ᾱ

√
1 +

(x− µ)2

δ2

)
eβ(x−µ)|x|rdx

=

∫

R

∞∑

k=0

γ̄νᾱ1/2−ν

√
2πδKν(γ̄)

(
1 +

(x− µ)2

δ2

)ν/2−1/4

·Kν−1/2

(
ᾱ

√
1 +

(x− µ)2

δ2

)
βk

k!
(x− µ)k|x|rdx.

The integrals exist (cf. Lemma 7.2.2) and the same is true with β changed to −β. This
implies that the integrals

∫ ∞

µ

γ̄ν ᾱ1/2−ν

√
2πδKν(γ̄)

(
1 +

(x− µ)2

δ2

)ν/2−1/4

Kν−1/2

(
ᾱ

√
1 +

(x− µ)2

δ2

)
e|β(x−µ)||x|rdx

and

∫ µ

−∞

γ̄νᾱ1/2−ν

√
2πδKν(γ̄)

(
1 +

(x− µ)2

δ2

)ν/2−1/4

Kν−1/2

(
ᾱ

√
1 +

(x− µ)2

δ2

)
e|β(x−µ)||x|rdx
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and hence the integral

∫

R

γ̄νᾱ1/2−ν

√
2πδKν(γ̄)

(
1 +

(x− µ)2

δ2

)ν/2−1/4

Kν−1/2

(
ᾱ

√
1 +

(x− µ)2

δ2

)
e|β(x−µ)||x|rdx

exist. Using the last one as majorant, Lebesgue’s convergence theorem gives

E(|X|r) =

∞∑

k=0

∫

R

γ̄νᾱ1/2−ν

√
2πδKν(γ̄)

(
1 +

(x− µ)2

δ2

)ν/2−1/4

·Kν−1/2

(
ᾱ

√
1 +

(x− µ)2

δ2

)
βk

k!
(x− µ)k|x|rdx

=
∞∑

k=0

βk

k!

( γ̄
ᾱ

)ν Kν(ᾱ)

Kν(γ̄)

∫

R

ᾱν ᾱ1/2−ν

√
2πδKν(ᾱ)

(
1 +

(x− µ)2

δ2

)ν/2−1/4

·Kν−1/2

(
ᾱ

√
1 +

(x− µ)2

δ2

)
(x− µ)k|x|rdx.

From this we immediately conclude

E(|X|r) =
( γ̄
ᾱ

)ν Kν(ᾱ)

Kν(γ̄)

∞∑

k=0

βk

k!
E
(
|Y |r(Y − µ)k

)
.

Corollary 7.3.2. Let X ∼ GH(ν, α, β, µ, δ), V ∼ GIG(ν, δ, α) and ε ∼ N(0, 1) with V
and ε independent, then for every r > 0 and n ∈ N:

(i) E((X − µ)n) =
( γ̄
ᾱ

)ν Kν(ᾱ)

Kν(γ̄)

∞∑

k=0

β2k+m

(2k +m)!
E
(
V k+(m+n)/2

)
E
(
ǫ2k+m+n

)

(ii) E(|X − µ|r) =
( γ̄
ᾱ

)ν Kν(ᾱ)

Kν(γ̄)

∞∑

k=0

β2k

(2k)!
E
(
V k+r/2

)
E
(
|ǫ|2k+r

)
,

where m := nmod 2.

Proof. Combine Theorem 7.3.1 with Lemma 7.2.1.

Note that we obtain the (absolute) moments of X provided µ = 0 and the (absolute)
central moments if β = 0. For β = 0 the above series are in fact just a single term or vanish
completely.

Using the explicit expressions for the moments of GIG and normal laws, given in Ap-
pendix 7.8.1, it is now straightforward to obtain more explicit expressions for the µ–centred
(absolute) moments of GH laws.

Theorem 7.3.3. Let X ∼ GH(ν, α, β, µ, δ), then for every r > 0 and n ∈ N:

(i) E((X − µ)n) =
2⌈n

2 ⌉γ̄νδ2⌈ n
2 ⌉βm

√
πKν(γ̄)ᾱ

ν+⌈ n
2 ⌉

∞∑

k=0

2kβ̄2kΓ
(
k +

⌈
n
2

⌉
+ 1

2

)

ᾱk(2k +m)!
Kν+k+⌈n

2 ⌉(ᾱ)

(ii) E(|X − µ|r) =
2

r
2 γ̄νδr

√
πKν(γ̄)ᾱν+ r

2

∞∑

k=0

2kβ̄2kΓ
(
k + r

2 + 1
2

)

ᾱk(2k)!
Kν+k+ r

2
(ᾱ),
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where m := nmod 2.

Proof. Combine Corollary 7.3.2 with Lemmata 7.8.1 and 7.8.2 observing that we have
(n+m) mod 2 = 0 and (m+ n)/2 = (nmod 2 + n)/2 = ⌈n/2⌉.

The absolute convergence of the series on the right hand sides is obviously implied by
the finiteness of E((X − µ)n), resp. E(|X − µ|r), and the positivity of all terms involved.
Yet, one can also immediately give an analytic argument, which adds further insight into
the convergence behaviour and is useful when one implements the above formulae on a
computer (see Section 7.6). Let

ak :=
2kβ̄2kΓ

(
k + r

2 + 1
2

)

ᾱk(2k)!
Kν+k+ r

2
(ᾱ).

From Kν(z) ∼
√

(π/2)2ννν−1/2e−νz−ν for ν → ∞ (Ismail (1977), Jørgensen (1982, p. 171))
we obtain

ak+1

ak
∼

4β̄2
(
k + r

2 + 1
2

) (
k + ν + r

2

) (
1 + 1

k+ν+ r
2

)k+ν+ r+1
2

ᾱ2e(2k + 2)(2k + 1)

k→∞→
(
β̄

ᾱ

)2

< 1 (7.3.1)

and thus the quotient criterion from standard analysis implies absolute convergence. Lemma
7.8.4, which we give in Appendix 7.8.2.2, and its proof add some further insight into the
behaviour of the series.

As a side result of Theorem 7.3.3 we also obtain two identities for modified Bessel func-
tions of the third kind.

Corollary 7.3.4. Let x, y, z ∈ R>0 s.t. z =
√
x2 − y2 and ν ∈ R. Then

(i) Kν(z) =
zν

xν

∞∑

k=0

1

2k · k!
y2k

xk
Kν+k(x)

(ii) zKν(z) + y2Kν+1(z) =
zν+1

xν

∞∑

k=0

2k + 1

2k · k!
y2k

xk
Kν+k(x).

Proof. Combine Theorem 7.3.3 with

E(X) =
δβ̄

γ̄

Kν+1(γ̄)

Kν(γ̄)
and E(X2) = δ2

(
Kν+1(γ̄)

γ̄Kν(γ̄)
+
β̄2

γ̄2

Kν+2(γ̄)

Kν(γ̄)

)

for X ∼ GH(ν, α, β, 0, δ) and use Γ(n+1/2) = (2n)!
√
π/(22n ·n!). Finally identify x, y, z, ν

with ᾱ, β̄, γ̄, ν + 1.

7.4. Moments of NIG laws

We now turn to the normal inverse Gaussian subclass of the generalized hyperbolic law.
For an overview see especially Barndorff-Nielsen (1998b). Recall that the NIG(α, β, µ, δ)
law with 0 ≤ |β| < α, µ ∈ R and δ ∈ R>0 is the special case of the GH(ν, α, β, µ, δ) law
given by ν = −1/2, as already mentioned when summarizing the properties of the GH law
previously. Hence, our above calculations for (µ–centred) moments immediately lead to the
following.
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Corollary 7.4.1. Let X ∼ NIG(α, β, µ, δ), Y ∼ NIG(α, 0, µ, δ), then for every r > 0 and
n ∈ N:

(i) E(Xn) = eγ̄−ᾱ
∞∑

k=0

βk

k!
E(Y n(Y − µ)k)

(ii) E(|X|r) = eγ̄−ᾱ
∞∑

k=0

βk

k!
E(|Y |r(Y − µ)k)

(iii) E((X − µ)n) =
2⌈n

2 ⌉+ 1
2 δ2⌈ n

2 ⌉βm

πᾱ⌈n
2 ⌉− 1

2

eγ̄
∞∑

k=0

2kβ̄2kΓ
(
k +

⌈
n
2

⌉
+ 1

2

)

ᾱk(2k +m)!
Kk+⌈n

2 ⌉− 1
2
(ᾱ)

(iv) E(|X − µ|r) =
2

r+1
2 δr

πᾱ
r−1
2

eγ̄
∞∑

k=0

2kβ̄2kΓ
(
k + r+1

2

)

ᾱk(2k)!
Kk+ r−1

2
(ᾱ),

where m := nmod 2. All moments above are finite.

Proof. Follows immediately from Theorems 7.3.1 and 7.3.3 by using the identity K1/2(z) =

K−1/2(z) =
√

(π/2)z−1/2e−z (see e.g. Jørgensen (1982, p. 170)).

Formulae (iii) and (iv) for r equal to an even natural number can be given more explicitly
using

Kn+ 1
2
(z) = K 1

2
(z)

(
1 +

n∑

i=1

(n+ i)!

i!(n − i)!
2−iz−i

)
(7.4.1)

for all n ∈ N (see e.g. Jørgensen (1982, p. 170)). But in order to avoid making the above
formulae even more complex, we omit this.

7.5. Moments of NIG Lévy processes and their time-wise

behaviour

Based on the above results our aim now is to generalize the findings of Barndorff-Nielsen
and Prause (2001) regarding the time-wise approximate scaling behaviour of NIG Lévy
processes.

7.5.1. Moments of NIG Lévy processes

Let Z(t), t ∈ R>0, be the NIG(α, β, µ, δ) Lévy process, i.e. the Lévy process for which
Z(1) ∼ NIG(α, β, µ, δ). Owing to the closedness under convolution of the NIG law, the
marginal distribution of the NIG Lévy process at an arbitrary time t ∈ R>0 is given by
NIG(α, β, tµ, tδ). For more background on NIG Lévy processes see in particular Barndorff-
Nielsen (1998b). From our previous results we can immediately infer:
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Corollary 7.5.1. Let Z(t), t ∈ R>0, be an NIG(α, β, µ, δ) Lévy process, then for every
r > 0 and n ∈ N:

(i) E((Z(t) − µt)n) =
2⌈n

2 ⌉+ 1
2 δ2⌈ n

2 ⌉βm

πᾱ⌈n
2 ⌉− 1

2

etγ̄
∞∑

k=0

2kβ̄2kΓ
(
k +

⌈
n
2

⌉
+ 1

2

)

ᾱk(2k +m)!
tk+⌈n

2 ⌉+ 1
2

·Kk+⌈n
2 ⌉− 1

2
(tᾱ)

(ii) E(|Z(t) − µt|r) =
2

r+1
2 δr

πᾱ
r−1
2

etγ̄
∞∑

k=0

2kβ̄2kΓ
(
k + r+1

2

)

ᾱk(2k)!
tk+(r+1)/2Kk+ r−1

2
(tᾱ)

where m := nmod 2.

In Appendix 7.8.2.2 it is shown that the moments above are analytic functions of time
(Lemma 7.8.4). This fact is later needed to calculate derivatives of log moments.

7.5.2. Scaling and apparent scaling

Before we now turn to discussing the scaling properties of an NIG Lévy process, let us
briefly state what scaling precisely means. Let X(t) be some stochastic process. We say
some moment of X obeys a scaling law, if the logarithm of this moment is an affine function
of log time, i.e., for the r-th absolute moment, lnE(|X(t)|r) = sr ln t+cr for some constants
sr, cr ∈ R. Here sr is called the scaling coefficient. If all (absolute) moments of X, or
at least those one is interested in, follow a scaling law, we say that the process itself
obeys one. For example, in the case of Brownian motion X(t) with drift µ we know from

X(t) − µt
D
=

√
t(X(1) − µ) that lnE(|X(t) − µt|r) = (r/2) ln t + constant for all r > 0,

i.e. all absolute moments exhibit scaling. More generally all self-similar processes, e.g.
the strictly α-stable Lévy processes (cf. Samorodnitsky and Taqqu (1994, Chapter 7) and
Sato (1999, Chapter 3)), obey a scaling law. When looking only at small changes in time
the local scaling behaviour is determined by d lnE(|X(t)|r)/d ln t (in the case of the r-th
absolute moment). In the presence of scaling the latter derivative is constant and equals
the value of the scaling coefficient. Provided some log moment of a process X(t) exhibits a
very close to affine dependence on log time over some time horizon of interest, we speak of
approximate or apparent scaling. This is equivalent to the local scaling varying only little
over the time spans considered. When working with real empirical data, it is often not
possible to distinguish between apparent and strict scaling due to the randomness of the
available observations. Hence, it is of interest, from a statistical point of view, whether
some given theoretical process shows approximate scaling.

7.5.3. The time-wise behaviour of µ-centred moments

Let us now examine the scaling behaviour exhibited by the NIG(α, β, µ, δ) Lévy process
Z(t). For the following discussion of the time dependence of E(|Z(t)−µt|r) we will abbre-
viate the time independent terms:

c(r) :=
2

r+1
2 δr

πᾱ
r−1
2

(7.5.1)

ak(r) :=
2kβ̄2kΓ

(
k + r+1

2

)

ᾱk(2k)!
(7.5.2)
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If we define

ψ(t) := exp(tγ̄)

∞∑

k=0

ak(r)t
k+(r+1)/2Kk+(r−1)/2(tᾱ) (7.5.3)

and
φ(t) := lnψ(et), (7.5.4)

we have from Corollary 7.5.1 that

E(|Z(t) − µt|r) = c(r) · ψ(t) (7.5.5)

and
lnE(|Z(t) − µt|r) = ln c(r) + φ(ln t). (7.5.6)

Thus:
d lnE(|Z(t) − µt|r)

d ln t
= φ′(ln t) (7.5.7)

Lemma 7.5.2. Let φ : R>0 → R be defined by (7.5.4), then

φ′(t) = 1 + γ̄et − ᾱet

∞∑
k=0

ak(r)e
tkKk+(r−3)/2(e

tᾱ)

∞∑
k=0

ak(r)etkKk+(r−1)/2(etᾱ)

. (7.5.8)

Proof. Using
K ′

ν(z) = −Kν−1(z) − νz−1Kν(z) (7.5.9)

(see e.g. Jørgensen (1982, p. 170) or Bronstein et al. (2000, p. 528)), we obtain for ψ(t) as
defined in equation (7.5.3):

ψ′(t) = exp(tγ̄)

(
γ̄

∞∑

k=0

ak(r)t
k+(r+1)/2Kk+(r−1)/2(tᾱ) +

∞∑

k=0

ak(r)

(
k +

r + 1

2

)

·tk+(r−1)/2Kk+(r−1)/2(tᾱ) −
∞∑

k=0

ak(r)t
k+(r+1)/2ᾱ

·
(
Kk+(r−3)/2(tᾱ) +

(
k +

r − 1

2

)
(tᾱ)−1Kk+ r−1

2
(tᾱ)

))

= γ̄ψ(t) + t−1ψ(t) − ᾱeγ̄t
∞∑

k=0

ak(r)t
k+(r+1)/2Kk+(r−3)/2(tᾱ).

That we may interchange differentiation and summation above is an immediate conse-
quence of Lemma 7.8.4 and Weierstraß’s theorem for sequences of holomorphic functions
(see Appendix 7.8.2.1). Hence, we get from (7.5.4)

φ′(t) =
etψ′(et)
ψ(et)

= 1 + γ̄et − ᾱet

∞∑
k=0

ak(r)e
t(k+(r+1)/2)Kk+(r−3)/2(e

tᾱ)

∞∑
k=0

ak(r)et(k+(r+1)/2)Kk+(r−1)/2(etᾱ)

.
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Now we can formulate our main result on the scaling behaviour of NIG-Lévy-Processes.

Theorem 7.5.3. Let Z(t), t ∈ R>0, be an NIG(α, β, µ, δ) Lévy process, then

d lnE(|Z(t) − µt|r)
d ln t

= 1 + γ̄t− ᾱt

∑∞
k=0 ak(r)t

kKk+(r−3)/2(ᾱt)∑∞
k=0 ak(r)tkKk+(r−1)/2(ᾱt)

for every r > 0.

Proof. The result follows by combining Lemma 7.5.2 and (7.5.7).

When comparing the above results with Barndorff-Nielsen and Prause (2001) note that
they looked at the derivatives with respect to ln(ᾱt), whereas we look at the derivative
with respect to ln t. The difference is related to the fact that Barndorff-Nielsen and Prause
(2001) only consider the case β = 0. In the general case the parameters ᾱ and β̄ of the
marginals at time t are both scaled with t. Hence, it is most natural and convenient to
consider the change of the log moments versus the change of log time directly.

The expression for the local scaling behaviour derived in Theorem 7.5.3 is in general not
constant in time, hence, the absolute µ-centred moments of an NIG Lévy process do not
obey a strict scaling law. Later we shall see from numerical examples that apparent scaling
is common. If we look at the symmetric NIG Lévy process, i.e. β = 0, the above formula
becomes

d lnE(|Z(t) − µt|r)
d ln t

= 1 + ᾱt− ᾱt
K(r−3)/2(ᾱt)

K(r−1)/2(ᾱt)
. (7.5.10)

From this one deducts using Kν = K−ν that the second µ-centred moment obeys a scaling
law with slope one, which is the same as for Brownian motion.

The aggregational Gaussianity of NIG Lévy processes (due to the central limit theorem
the marginal distribution at time t of any Lévy process with finite second moment gets
more and more Gaussian as t increases) becomes visible in the asymptotic scaling of the
symmetric case for large times. For r = 1 it was already noted in Barndorff-Nielsen and
Prause (2001) that the local scaling approaches 1/2 for t → ∞ and hence for large t the
first absolute µ-centred moment of the process seems to scale like Brownian motion. Using
formula (ii) in Corollary 7.5.1, which for β = 0 becomes

E(|Z(t) − µt|r) =
2

r+1
2 δr

πᾱ
r−1
2

exp (tᾱ) Γ

(
r + 1

2

)
t(r+1)/2K r−1

2
(tᾱ), (7.5.11)

and Kν(x) ∼
√

(π/2)x−1/2e−x for x→ ∞ (cf. Jørgensen (1982, p. 171) or Bronstein et al.
(2000)) we get that lnE(|Z(t)−µt|r) ∼ (r/2) ln t+ c for t→ ∞, where c ∈ R is a constant.
Note that, as usual, ”∼” denotes asymptotic equivalence. Hence, E(|Z(t) − µt|r) obeys a
scaling law with slope r/2 for t→ ∞, i.e. the symmetric NIG Lévy process approaches the
exact scaling behaviour of Brownian motion. This result can also be easily deduced from
(7.5.10) using an asymptotic expansion of K(r−3)/2(z)/K(r−1)/2(z) for z → +∞ (see e.g.
Jørgensen (1982, p. 173)).

Studying the limiting behaviour of the absolute µ-centred moments analytically for β 6= 0
seems hardly possible. Yet, numerical studies indicate that a skewed NIG Lévy process does
not scale like Brownian motion for large times in general. For example, when computing
d lnE((Z(t))2)/d ln t of the NIG(100, 30, 0, 0.001) Lévy process for times from 1/2 to 1024



218 7. GH Distributions and NIG Lévy Processes

the values increase monotonically from 1.004 to 6.268. If we are, however, close to the
symmetric case, i.e. if |β|/α is small, then basically the same approximate scaling behaviour
is obtained as in the symmetric case. This can, in particular, be seen in the numerical data
presented in Section 7, where for large times the value of d lnE(|Z(t) − µt|r)/d ln t is very
close to the Brownian motion scaling slope of r/2.

To see from (7.5.11) what happens in the symmetric case for t ց 0 we employ the fact
that

Kν(x) ∼
{

Γ(ν)2ν−1x−ν for ν > 0, xց 0
− lnx for ν = 0, xց 0

(7.5.12)

(see e.g. Jørgensen (1982, p. 171)). For r = 1 and t ց 0 we obtain that lnE(|Z(t) − µt|)
becomes ln t+ ᾱeln t + ln(− ln(tᾱ)) + c with c ∈ R being a constant. From this we conclude
that for small values of t the first absolute µ-centred moment approximately scales with
slope one, as already noted in Barndorff-Nielsen and Prause (2001). The same asymptotic
scaling slope of one holds for r > 1, since lnE(|Z(t) − µt|r) ∼ ln t+ ᾱeln t + c(r) for tց 0.
Yet, a different result is obtained for 0 < r < 1. In this case one obtains again using (7.5.12)
and the identity K−ν = Kν that lnE(|Z(t) − µt|r) ∼ r ln t + ᾱeln t + c(r) and so there is
asymptotic scaling with slope r.

7.6. Notes on the numerical implementation

We will now briefly discuss some issues related to the implementation of formula (ii) in
Corollary 7.5.1 and Theorem 7.5.3 on a computer. Similar results hold for formula (i) of
Corollary 7.5.1. First note that (ii) in Corollary 7.5.1 can be reexpressed using (7.5.2) as:

E(|Z(t) − µt|r) =

(
2δ2t

ᾱ

)r/2 √
2tᾱ

π
exp (tγ̄)

∞∑

k=0

ak(r)t
kKk+ r−1

2
(tᾱ). (7.6.1)

The value of the infinite series can only be approximated. Yet, note that the analytic con-
vergence discussion of the series in Section 7.3, especially formula (7.3.1), implies asymp-
totically geometric convergence of this series, which is the faster, the smaller |β| is relatively
to α. We suggest to compute the individual summands recursively as discussed below, add
them up and stop, when summands become negligible compared to the current value of the
approximation. To calculate the individual summands recursively note that

a0(r) = Γ

(
r + 1

2

)
(7.6.2)

and

ak(r)t
k =

2β̄2(k + (r − 1)/2)

ᾱ(2k − 1)(2k)
t · ak−1(r)t

k−1, (7.6.3)

which is obtained using the functional equation Γ(z + 1) = zΓ(z) of the Gamma function,
and that the recursion formula for Bessel functions (Jørgensen (1982, p. 170)) gives

Kk+ r−1
2

(tᾱ) = 2 ·
(
k − 1 +

r − 1

2

)
(tᾱ)−1Kk−1+ r−1

2
(tᾱ) +Kk−2+ r−1

2
(tᾱ). (7.6.4)

The latter formula implies that we can calculate the values of the Bessel functions needed
from a two term recursion, for which we only need to calculate K−1+(r−1)/2(tᾱ) and
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K(r−1)/2(tᾱ) as starting values. Hence, the calculation of the value of the series involves,
apart from basic manipulations, only one evaluation of the Gamma function and two of the
Bessel functions.

The series in the denominator in Theorem 7.5.3 is the series just discussed above and the
numerator is of the same type, only the index of the Bessel functions is changed, and can
hence be calculated analogously. Actually, both series can be calculated simultaneously
using only the recursion for ak(r)t

k and the two term recursion for the Bessel functions
described above.

There is, however, one possible problem when using the two term recursion. If the starting
values are zeros up to numerical precision, then only zeros will be calculated as summands.
For example when using Matlab and the built in function for Kν one gets K0(z) = 0 for
z > 697. Hence, one needs to take care of this possible case. Provided the recursion works,
the numerical results obtained are usually almost identical to the numerical results one
gets when using a built in Bessel function routine of e.g. Matlab for each summand, but
the recursion may save computing power. Furthermore, it should now be obvious, how
numerical evaluations of the formulae for µ-centred (absolute) moments of GH laws given
in Theorem 7.3.3 can be organized efficiently.

The Matlab code we used to produce the numerical results in this chapter is available from
www.ma.tum.de/stat/Papers. It is based upon the above considerations and can be used
to compute µ-centred moments of the NIG distribution/Lévy process and the derivatives
of the log moments with respect to log time.

7.7. Apparent scaling behaviour of NIG Lévy processes

The aim of this section is to show that NIG Lévy processes may well exhibit a behaviour very
close to strict scaling over a wide range of orders of moments. We exemplify the possible
apparent scaling of absolute µ-centred moments of NIG Lévy processes using the parameters
from Barndorff-Nielsen and Prause (2001). They considered the USD/DEM exchange rate
from the whole of 1996, contained in the HFDF96 data set from Olsen & Associates,
and fitted an NIG Lévy process to the log returns by maximum likelihood estimation.
The estimates obtained based on the three hour log returns are α = 415.9049, β = 1.512,
δ = 0.0011 and µ = 0.000026. For further details on the data, the estimation procedure and
the relevance for finance we refer the interested reader to the paper by Barndorff-Nielsen and
Prause. Note especially that, as is typical for returns of exchange rate series, µ is very close
to zero and therefore there is practically no difference between moments and µ–centred
moments. Figure 7.2 (left), which depicts the logarithm of the first absolute µ–centred
moment versus the logarithm of time in seconds, is therefore optically indistinguishable
from the figure in Barndorff-Nielsen and Prause (2001) showing the first absolute moment
calculated via numerical integration. The estimated regression line of the log moments
against log time, fitted by least squares, has slope 0.5863, which is slightly higher than the
slope 0.5705 reported in Barndorff-Nielsen and Prause (2001), and d lnE(|Z(t)−µt|)/d ln t
decreases from 0.7853 to 0.5011 over the time interval depicted, which is 5.625 minutes to
32 days. This is significantly different from the Brownian motion case, where it is exactly
1/2 (cf. above). The behaviour of d lnE(|Z(t)−µt|)/d ln t over the time interval considered
indicates that for t → ∞ the slope asymptotically becomes about 1/2, the exact Gaussian
scaling coefficient. This is related to the fact that |β| is relatively small, as already pointed
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Figure 7.2.: Approximate scaling law for the first (left) and 0.9th µ-centred absolute mo-

ment of the NIG Lévy process fitted to the USD/DEM exchange rate: moments
(•) and regression line log moments against log time

out earlier in the discussion of the scaling asymptotics.

With our results obtained above it is possible to study the behaviour of moments other
than the first. Figures 7.2 (right), 7.3 (left), 7.3 (right) and 7.4 (left) show the time
behaviour of the 0.9th, 1.1th, 0.5th and 1.5th µ–centred absolute moments over the same
time horizon. All figures exhibit apparent scaling, which improves with the order of the
moment. The fitted regression lines have slope 0.53535, 0.63536, 0.31322 and 0.81327
respectively, which are all higher than the corresponding values for Brownian motion, which
are 0.45, 0.55, 0.25 and 0.75. The values of d lnE(|Z(t) − µt|r)/d ln t decrease from 0.7316
to 0.4509, 0.8316 to 0.5512, 0.4499 to 0.2503 and 0.9499 to 0.7515 respectively. So again
they seem to converge to some value close to the Brownian motion scaling slope.

Figure 7.4 (right) shows that the second µ–centred moment seems to exhibit perfect linear
scaling. Yet, there is in fact no strict scaling law holding. The values of the regression
coefficient 1.0001 and d lnE(|Z(t) − µt|2)/d ln t are very close to one with d lnE(|Z(t) −
µt|2)/d ln t increasing very slowly from 1 to 1.0015. Such a result is to be expected, since
|β| is small (compared to α) and for β = 0 we have that the variance, which is in this case
identical to the second µ-centred moment, obeys a strict scaling law with slope one, as for
Brownian motion.

The third µ–centred absolute moment still exhibits apparent scaling behaviour with a
regression slope of 1.2966, but the values of d lnE(|Z(t)−µt|3)/d ln t are now increasing from
1.0134 to 1.5007 rather than decreasing and the slope is lower than the scaling coefficient
1.5 for Brownian motion. However, d lnE(|Z(t) − µt|3)/d ln t still seems to converge to
some value close to 3/2 at large times. It generally seems to be the case that d lnE(|Z(t)−
µt|r)/d ln t increases with time for r > 2, whereas it decreases for r < 2. Actually, further
calculations indicate that this change takes place marginally below 2 at about 1.9995. Some
more numerical calculations hint that in the symmetric case lnE(|Z(t) − µt|r) is concave
as a function of ln t for 0 < r ≤ 2 and convex for r ≥ 2.
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Figure 7.3.: Approximate scaling law for the 1.1th (left) and 0.5th µ-centred absolute mo-
ment: moments (•) and regression line log moments against log time
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Figure 7.4.: Approximate scaling law for the 1.5th (left) and second µ-centred absolute
moment: moments (•) and regression line log moments against log time
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For very high values of r, i.e. ten and greater, no apparent linear scaling is observed over
the time horizon considered. Looking at the slopes of the apparent scaling of the µ-centred
absolute moments (of orders 0.2 to 4, for instance, as we have done in further calculations),
the relationship between scaling coefficient and order is apparently not simply linear as,
for example, in the case of an α-stable Lévy process (see Samorodnitsky and Taqqu (1994,
Chapter 7) and Sato (1999, Chapter 3)), but a concave one.

Our results obtained above, show that NIG Lévy processes may exhibit something close
to scaling. These findings are particularly interesting, since both in finance, especially when
dealing with foreign exchange returns, and turbulence there is on the one hand empirical and
for turbulence also theoretical evidence of scaling laws, and on the other hand models based
on NIG Lévy processes have been put forth in the literature. Compared to Brownian motion
the NIG Lévy process does in general not exhibit exact linear scaling, but approximate
scaling over wide time horizons and for a practically interesting range of (absolute) moments
is demonstrated here.

7.8. Appendix to Chapter 7

7.8.1. Moments of GIG and normal laws

For completeness we provide below the well-known formulae for the moments of the GIG
and normal laws.

For the GIG law the following result is given in Jørgensen (1982, p. 13), who uses a
slightly different parametrization.

Lemma 7.8.1. Let X ∼ GIG(ν, δ, γ) with δ, γ > 0. Then

E(Xr) =

(
δ

γ

)r Kν+r(γ̄)

Kν(γ̄)

for every r > 0.

Proof.

E(Xr) =

∫ ∞

0

γ̄ν

2Kν(γ̄)
δ−2νxν+r−1 exp

(
−1

2
γ̄
(
(γ̄δ−2x)−1 + γ̄δ−2x

))
dx

y:=γ̄δ−2x
=

=
γ̄−rδ2r

Kν(γ̄)

1

2

∫ ∞

0
yν+r−1 exp

(
−1

2
γ̄(y−1 + y)

)
dy=

(
δ

γ

)r Kν+r(γ̄)

Kν(γ̄)
,

where in the last step we employed the integral representation of Kν+r stated earlier when
introducing the modified Bessel function of the third kind (Equation (7.2.2)).

The absolute moments of the normal distribution N(0, 1) are well known and given in
many standard texts on probability theory, viz.:

Lemma 7.8.2. Let X ∼ N(0, 1) and r > 0 then

E(|X|r) =
2r/2Γ

(
r+1
2

)
√
π

.
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Proof.

E(|X|r) = (2π)−1/2

∫

R

|x|re−x2

2 dx =

(
2

π

)1/2 ∫ ∞

0
xre−

x2

2 dx
t:= x2

2=

=
2r/2

√
π

∫ ∞

0
t

r+1
2

−1e−tdt =
2r/2

√
π

Γ

(
r + 1

2

)

7.8.2. Analyticity of the moments of an NIG Lévy process as a function of
time

In this appendix we show that the µ-centred (absolute) moments of an NIG Lévy process Z,
given in Corollary 7.5.1, are analytic functions of time. To this end we employ some complex
function theory, so we start with a brief review of the needed result, viz. Weierstraß’s
convergence theorem.

7.8.2.1. Convergence of sequences of holomorphic functions

Recall that a function f : D → C, D ⊆ C, is called holomorphic, if it is complex differen-
tiable on D, i.e.

lim
h∈C,h→0

f(z + h) − f(z)

h

exists for all z ∈ D (confer textbooks on complex function theory, e.g. Remmert (1991)
or Freitag and Busam (2000), for a thorough discussion of holomorphicity and related con-
cepts). Holomorphic functions have many useful properties that real differentiable functions
lack in general and thus it is often preferable to use holomorphic functions when possible.
One of the nice implications of holomorphicity is that any once complex differentiable
function is automatically infinitely often complex differentiable and another is that locally
uniform convergence commutes with differentiation:

Theorem 7.8.3 (Weierstraß’s convergence Theorem). Let fn : D → C, n ∈ N, be a
sequence of holomorphic functions, defined on an open subset D ⊆ C, which converges
locally uniform to a function f : D → C. Then f is holomorphic on D and for every k ∈ N

the sequence of k-th derivatives f
(k)
n converges locally uniform to f (k) on D.

For a proof and related results see one of the books mentioned above. The crucial
difference to the real differentiable case is that complex differentiation has an integral
representation.

7.8.2.2. Holomorphicity of some series

The following lemma gives in particular that the µ-centred (absolute) moments of an NIG
Lévy process Z (cf. Corollary 7.5.1) are analytic functions of time.

Lemma 7.8.4. Let ᾱ > 0, |β̄| < ᾱ, 1 < ǫ < ᾱ2/|β̄|2, ν ∈ R, r > 0, n ∈ N, m = nmod 2,
D = {z ∈ C : ℜ(z) > 0, |z| < ǫℜ(z)},

f : D → C, z 7→
∞∑

k=0

2kβ̄2kΓ
(
k + r

2 + 1
2

)

ᾱk(2k)!
zk+(r+1)/2Kν+k+ r

2
(zᾱ)
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and

g : D → C, z 7→
∞∑

k=0

2kβ̄2kΓ
(
k +

⌈
n
2

⌉
+ 1

2

)

ᾱk(2k +m)!
zk+⌈n

2 ⌉+ 1
2Kν+k+⌈n

2 ⌉(zᾱ).

Then both series are locally uniformly convergent and f , g are holomorphic on D.

Note that ν is −1/2 in the series of Corollary 7.5.1.

Proof. It is sufficient to show the locally uniform convergence, since this implies the holo-
morphicity via Weierstraß’s convergence theorem (see Appendix 7.8.2.1). Furthermore it is
obvious that the result for g follows from the one for f .

Let us now prove the uniform convergence of the series f(z) =
∑∞

k=0 fk(z) on D ∩ {z ∈
C : a < ℜ(z) < b} for arbitrary 0 < a < b <∞, where

fk(z) =
2kβ̄2kΓ

(
k + r

2 + 1
2

)

ᾱk(2k)!
zk+(r+1)/2Kν+k+ r

2
(zᾱ).

An immediate consequence of the integral representation for Kν given in (7.2.2) is |Kν(z)| ≤
Kν(ℜ(z)) for z ∈ D and thus

|fk(z)| =

∣∣∣∣∣
2kβ̄2kΓ

(
k + r

2 + 1
2

)

ᾱk(2k)!
zk+(r+1)/2Kν+k+ r

2
(zᾱ)

∣∣∣∣∣

≤ 2k|β̄|2kΓ
(
k + r

2 + 1
2

)

ᾱk(2k)!
(ǫℜ(z))k+(r+1)/2Kν+k+ r

2
(ℜ(z)ᾱ)

x:=ℜ(z)

≤ 2k|β̄|2kΓ
(
k + r

2 + 1
2

)

ᾱk(2k)!
(ǫx)k+(r+1)/2Kν+ r

2
+k(xᾱ)

for all k ∈ N0. Note that we defined x ∈ (a, b) to be the real part of z. Using equation
(7.5.9) we obtain

d

dx
xk+ν+ r

2Kν+ r
2
+k(xᾱ) = −ᾱxk+ν+ r

2Kν+ r
2
+k−1(xᾱ) < 0.

This implies for x ∈ (a, b):

xk+(r+1)/2Kν+ r
2
+k(xᾱ) ≤ dak+(r+1)/2Kν+ r

2
+k(aᾱ)

where d := aν−1/2·max{a−ν+1/2, b−ν+1/2}. Applying this inequality to the above expression,
we get for all k ∈ N0

|fk(z)|≤
2kd|β̄|2kΓ

(
k + r

2 + 1
2

)

ᾱk(2k)!
(ǫa)k+(r+1)/2Kν+ r

2
+k(aᾱ).

From the finiteness of the r/2th absolute moment of the GH(ν, aᾱ, a|β̄|√ǫ, 0, 1) law and
Theorem 7.3.3 follows that

∞∑

k=0

2kd|β̄|2kΓ
(
k + r

2 + 1
2

)

ᾱk(2k)!
(ǫa)k+(r+1)/2Kν+ r

2
+k(aᾱ)

= d(ǫa)
r+1
2

∞∑

k=0

2k(|β̄|a√ǫ)2kΓ
(
k + r

2 + 1
2

)

(aᾱ)k(2k)!
Kν+ r

2
+k(aᾱ)

converges absolutely. Hence, the uniform convergence of
∑∞

k=0 |fk(z)| on D ∩ {z ∈ C : a <
ℜ(z) < b} is established.



A. Linear Operators on the Real Symmetric
Matrices whose Exponentials Preserve
the Inertia

A.1. Introduction

Let Sd be the space of real symmetric d × d matrices and denote for a matrix A ∈ Sd its
inertia by In(A) = (r, s, t) where the triplet of natural numbers r, s, t means that A has r
strictly positive, s strictly negative and t zero eigenvalues (counted with their respective
algebraic multiplicities).

In this appendix we show that the exponential group generated by a linear operator
B : Sd → Sd preserves the inertia, i.e. In(eBtA) = In(A) for all t ∈ R and A ∈ Sd, and
that eBt maps the positive (semi)-definite matrices onto themselves for all t ∈ R, if and
only if there is a d × d matrix B such that B is representable as X 7→ BX +XBT . That
the exponential of linear operators of this form preserves the inertia is not hard to be seen
(cf. the upcoming Theorem A.2.2) and well-known. Thus the main contribution of this
appendix is to establish the converse. The proof given is based on results on the linear
preservers of the inertia and the positive (semi-)definite matrices, respectively. For an
overview over linear preserver problems and references to the original literature see Pierce
et al. (1992), in particular its third chapter Loewy (1992), or Li and Pierce (2001).

The complete characterization of linear operators having the above mentioned properties
is of particular interest in applications, since one often wants to construct models for the
time evolution of a positive definite matrix based on (stochastic) differential equations
whose solution involves the exponential of a given linear operator.

As regards stochastic processes, Ornstein-Uhlenbeck type processes taking values in the
positive (semi-)definite matrices were introduced in Chapter 4. These processes can be used
as a flexible and very tractable model for the stochastic evolution of some covariance matrix
in continuous time, as can be seen from Chapter 5 where we presented a detailed analysis of
the second-order moment structure and an application to the modelling of financial data.
In Chapter 4 we used linear operators B on the symmetric d × d matrices of the form
X 7→ BX +XBT for some d× d matrix B in order to construct Ornstein-Uhlenbeck type
processes in the positive (semi-)definite matrices. The results of this appendix show that
these are indeed the only linear operators possible when one demands that exp(Bt) maps
the positive semi-definite cone onto itself at all times.

Furthermore linear operators of the type X 7→ BX + XBT have also been used in
ordinary differential equations in order to ensure positive (semi-)definiteness of the solution
(see Dragan, Freiling, Hochhaus and Morozan (2004), for instance). For example, the
elementary differential equation

x′(t) = Bx(t)

225
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in the symmetric d × d matrices has the solution x(t) = eBtx0. In this set-up demanding
that eBt maps the positive semi-definite matrices onto themselves thus means that x(t)
varies over all of the positive semi-definite cone when x0 does so.

Notation

Throughout this appendix we write R
+ for the positive real numbers including zero and we

denote the set of real d × d matrices by Md(R) and the group of invertible d × d matrices
by GLd(R), the linear subspace of symmetric matrices by Sd, the positive semidefinite cone
by S

+
d and the open positive definite cone by S

++
d . Id stands for the d× d identity matrix.

Finally, AT is the transposed of a matrix A ∈ Md(R) and the exponential of a matrix or
linear operator A is denoted by exp(A) or eA.

Moreover, for a matrix A we denote by Aij the element in the i-th row and j-th column
and this notation is extended to matrix-valued functions in a natural way. The standard
basis matrices (i.e. the matrices which have only zero entries except for a one in the i-th
row and j-th column) of Md(R) are denoted by E(ij) for i, j = 1, 2, . . . , d.

A.2. Exponential inertia preservers

Definition A.2.1 (Exponential inertia preserver). A linear operator B : Sd → Sd is said
to be an exponential inertia preserver, if In(eBtA) = In(A) for all t ∈ R and A ∈ Sd.

We start by recalling a well-known result showing that a special class of linear operators
are exponential inertia preservers.

Theorem A.2.2. Assume that a linear operator B : Sd → Sd can be represented as X 7→
BX +XBT for some B ∈Md(R). Then B is an exponential inertia preserver.

Proof. It is easy to see that eBtA = eBtAeB
T t using e.g. Horn and Johnson (1991, pp. 255

and 440). Thus the result follows immediately from the general results on inertia preservers
(see Loewy (1992) or Li and Pierce (2001) and the original articles cited therein), as the
exponential of a matrix is necessarily invertible.

It is important to note that the linear operator B above is uniquely characterized by the
matrix B.

Proposition A.2.3. Let B,C ∈ Md(R). Then the linear operators B : Sd → Sd, X 7→
BX +XBT and C : Sd → Sd, X 7→ CX +XCT are the same, if and only if B = C.

Moreover, for any operator B : Sd → Sd, X 7→ BX + XBT the matrix B is already
uniquely identified by the values {BE(ii)}i=1,...,d.

Proof. It suffices to show the second claim that {BE(ii)}i=1,...,d already uniquely character-
izes B. It is easy to see that

(BE(ii) + E(ii)BT )kl =





2Bii for k = l = i
Bil for k = i and k 6= l
Bik for l = i and k 6= l
0 otherwise

Thus BE(ii) uniquely characterizes the i − th column of B and, hence, {BE(ii)}i=1,...,d

uniquely characterizes B.
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In the following we establish the converse result that all exponential inertia preservers
are of the form given in Theorem A.2.2.

Lemma A.2.4. Let B : Sd → Sd be a linear operator and assume that there exists an ǫ > 0
and a function D :] − ǫ, ǫ[→ Md(R) such that eBtA = D(t)AD(t)T for all t ∈] − ǫ, ǫ[ and
A ∈ Sd. Then there exists an ǫ̃ > 0, a continuously differentiable function D̃ :] − ǫ, ǫ[→
Md(R) and a unique matrix B ∈ Md(R) such that eBtA = D̃(t)AD̃(t)T for all t ∈] − ǫ̃, ǫ̃[
and A ∈ Sd and such that BA = BA+ABT for all A ∈ Sd.

Proof. We first show the existence of a matrix D̃(t) with the stated properties. Observe
that we obtain as a side result that provided

(
exp(Bt)E(11)

)
11

6= 0 the operator exp(Bt) is

already identified by the values exp(Bt)E(11) and exp(Bt)(E(1,j)+E(j,1)) with j = 2, 3, . . . , d
and the fact that it can be represented as X 7→ D(t)XD(t)T .

Note that D(t)XD(t)T = (−D(t))X(−D(t))T for all X ∈ Sd, so the matrix D(t) can
only be unique up to a multiplication by minus one. Elementary calculations give

exp(Bt)E(11) =

(
D2

11 D11D21 D11D31 · · · D11Dd1

∗ ∗ ∗ · · · ∗

)
(A.2.1)

and

exp(Bt)
(
E(1j) + E(j1)

)
= (A.2.2)

(
D11D1j +D11D1j D1jD21 +D11D2j · · · D1jDd1 +D11Ddj

∗ ∗ · · · ∗

)

for j = 2, 3, . . . , d. Here Dkl denotes Dkl(t) for notational convenience and ∗ represents
entries which are of no interest in the following. It is easy to see that the above equations
uniquely characterize the matrixD(t) up to the sign ofD11(t), as long as

(
exp(Bt)E(11)

)
11

=
D11(t)

2 6= 0.

Since exp(B · 0) is the identity on Sd and thus
(
exp(B · 0)E(11)

)
11

= 1, the continuity of

t 7→ exp(Bt) ensures that there exists an ǫ̃ > 0 with ǫ̃ ≤ ǫ such that
(
exp(Bt)E(11)

)
11
> 0

for all t ∈] − ǫ̃, ǫ̃[. Thus it follows from (A.2.1) and (A.2.2) that D̃(t) ∈Md(R) defined by

D̃11(t) =
√(

exp(Bt)E(11)
)
11

(A.2.3)

D̃i1(t) =

(
exp(Bt)E(11)

)
i1

D̃11(t)
for i = 2, 3, . . . , d (A.2.4)

D̃1j(t) =

(
exp(Bt)(E(1j) + E(j1))

)
11

2D̃11(t)
for j = 2, 3, . . . , d (A.2.5)

D̃ij(t) =

(
exp(Bt)(E(1j) + E(j1))

)
1i

D̃11(t)
−
(
exp(Bt)(E(1j) + E(j1))

)
11

(
exp(Bt)E(11)

)
i1

2D̃11(t)3

for i, j = 2, 3, . . . , d (A.2.6)

is well-defined for all t ∈] − ǫ̃, ǫ̃[ and satisfies

exp(Bt)A = D̃(t)AD̃(t)T ∀ t ∈] − ǫ, ǫ[ and A ∈ Sd.
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The continuous differentiability of t 7→ exp(Bt) and the one of the square root function on
R

+\{0} imply together with (A.2.3) to (A.2.6) and the strict positivity of
(
exp(B · t)E(11)

)
11

that the map ] − ǫ, ǫ[→Md(R), t 7→ D̃(t) is continuously differentiable.
Using the notion of Fréchet derivatives (see Rudin (1976) or Bhatia (1997, Section X.4)

for a review in connection with matrix analysis) and denoting the linear operators on Sd

by L(Sd), it follows immediately from

(X +H)A(X +H)T = XAXT +XAHT +HAXT +HAHT ∀A ∈ Sd

for X,H ∈ Md(R) that the map f : Md(R) → L(Sd),X 7→ f(X) with f(X)A = XAXT

for all A ∈ Sd is continuously differentiable and the derivative Df(X) is given by the linear
map Md(R) 7→ L(Sd), H 7→ Df(X)(H) with Df(X)(H)A = XAHT +HAXT for A ∈ Sd.
Thus

(
d

dt
exp(Bt)

)
A =

(
d

dt
f
(
D̃(t)

))
A = Df(D̃(t))

(
d

dt
D̃(t)

)
A

= D̃(t)A

(
d

dt
D̃(t)

)T

+

(
d

dt
D̃(t)

)
AD̃(t)T

for all t ∈] − ǫ, ǫ[ and A ∈ Sd.
Since d

dt exp(Bt) = exp(Bt)B, it follows that B = exp(−Bt) d
dt exp(Bt). Moreover, it is

easy to see D̃(t) ∈ GLd(R) and exp(Bt)−1A = exp(−Bt)A = D̃(t)−1AD̃(t)−T for A ∈ Sd.
Hence

BA = D̃(t)−1

(
D̃(t)A

(
d

dt
D̃(t)

)T

+

(
d

dt
D̃(t)

)
AD̃(t)T

)
D̃(t)−T (A.2.7)

= A

(
D̃(t)−1 d

dt
D̃(t)

)T

+

(
D̃(t)−1 d

dt
D̃(t)

)
A (A.2.8)

for A ∈ Sd and all t ∈] − ǫ, ǫ[. As by construction D̃(0) = Id, setting B = d
dtD̃(t)

∣∣∣
t=0

concludes the proof now noting that Proposition A.2.3 ensures the uniqueness of B ∈
Md(R).

For d ≥ 3 we can use the above Lemma to fully characterize exponential inertia preservers.

Theorem A.2.5. Let d ∈ N with d ≥ 3. Then the following holds:
(i) A linear mapping B : Sd → Sd is an exponential inertia preserver, if and only if there

exists a matrix B ∈Md(R) such that BX = BX +XBT for all X ∈ Sd.
(ii) A linear mapping B : Sd → Sd is an exponential inertia preserver, if there exists an

ǫ > 0 such that In(eBtA) = In(A) for all A ∈ Sd and t ∈] − ǫ, ǫ[.

That we need to restrict ourselves to d ≥ 3 is clear from the proof below and Johnson
and Pierce (1985, Remark 1.3).

Proof. (i): The ’if’ part is given in Theorem A.2.2. Regarding the ’only if’ part we have
that for d ≥ 3 all linear preservers B : Sd → Sd on Sd of the inertia class (d − 1, 1, 0) are
of the form X 7→ CXCT for some C ∈ Md(R) (cf. Loewy (1992) and references therein).
Hence, there is a function D(t) : R → Md(R) such that eBtA = D(t)AD(t)T for all t ∈ R

and A ∈ Sd. Lemma A.2.4 immediately concludes now.
(ii): This follows from Theorem A.2.2 and Lemma A.2.4 in a straightforward manner.
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Moreover, we can now also characterize the linear operators whose exponential group
maps the positive semi-definite matrices onto themselves.

Corollary A.2.6. Let d ∈ N. Then the following holds:
(i) A linear mapping B : Sd → Sd satisfies eBt(S+

d ) = S
+
d for all t ∈ R, if and only if

there exists a matrix B ∈Md(R) such that BX = BX +XBT for all X ∈ Sd.
(ii) A linear mapping B : Sd → Sd satisfies eBt(S+

d ) = S
+
d for all t ∈ R, if there exists an

ǫ > 0 such that eBt(S+
d ) = S

+
d for all t ∈] − ǫ, ǫ[.

Proof. Since all linear maps that map S
+
d onto itself are of the form X 7→ CXCT for

some C ∈ Md(R) (cf. Loewy (1992) or the original article Schneider (1965)), the proof is
analogous to the one of the last theorem.

S
+
d can be replaced by S

++
d in the above corollary. Yet we cannot extend the result to

the case eBt(S+
d ) ⊂ S

+
d , as there are linear operators C such that C(S+

d ) ⊂ S
+
d which are

not representable by X 7→ CXCT for some C ∈Md(R) (cf. Choi (1975)).
Furthermore note that from the characterization of linear preservers of various other fixed

inertia classes (see Loewy (1992) for an overview) many results analogous to the above ones
follow immediately, since we obviously have the following general result:

Theorem A.2.7. Let P be some property of linear maps on Sd and assume that a linear
map C : Sd → Sd has the property P, if and only if there is a matrix C ∈Md(R) such that
CA = CACT for all A ∈ Sd. Then the following holds:

(i) The exponential eBt of a linear map B : Sd → Sd has the property P for all t ∈ R, if
and only if there exists a matrix B ∈Md(R) such that BX = BX +XBT for all X ∈ Sd.

(ii) The exponential eBt of a linear map B : Sd → Sd has the property P for all t ∈ R, if
there exists an ǫ > 0 such that eBt has the property P for all t ∈] − ǫ, ǫ[.
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B. On the Relation Between the vec and
BEKK Multivariate GARCH Models

B.1. Introduction

Multivariate GARCH models have been studied intensively in recent years and many differ-
ent specifications have been used in the literature (cf. Bauwens et al. (2006) for a compre-
hensive overview and Boussama (1998, 2006) for a detailed discussion on strict stationarity
and geometric ergodicity). In this appendix we present some results on the relationship
between the vec and BEKK models. These models have been presented and analysed in
detail in Engle and Kroner (1995). In that paper it has been noted that all BEKK models
are representable as vec ones, but regarding the converse it has only been shown that all
diagonal vec models are representable as diagonal BEKK ones and stated that the BEKK
parametrization “eliminates very few if any interesting models allowed by the vec repre-
sentation”. However, apart from the recent paper by Scherrer and Ribarits (2007), which
came to our attention only after finishing the work on the present appendix, no further
results on the relationship between the two models seem to have been obtained since then,
nor are there simple and tractable examples of vec models which are not representable in
the BEKK form to be found in the literature.

Applying long known results from linear algebra in a straightforward manner, we show
in this appendix that in dimension two the models are actually equivalent and that all vec-
models not representable in the simplest BEKK form with invertible parameter matrices
exhibit necessarily some degeneracy, viz. that one of the matrices appearing in the vec
model is degenerated in the sense that it maps the vectorized positive semi-definite matrices
to a strict subset of themselves. Finally, we present an example of a vec model with no
BEKK representation in dimension three. Comparing our results to those of Scherrer
and Ribarits (2007) they have shown the equivalence in dimension two using semi-definite
programming, whereas we note that it is an immediate consequence of a long known result
in linear algebra. The linear algebra literature we are referring to seems not to have been
used in connection to GARCH models before. But it is obviously intimately connected
to multivariate GARCH models and should be useful to obtain other results as well. For
an example of a vec model having no BEKK representation Scherrer and Ribarits (2007)
refer to Ribarits (2006). The example presented in that thesis on page 61 (stated in a
transformed way only) is of a rather complicated structure and it is argued by numerical
optimization and not an analytical proof that it gives an admissible vec term which cannot
be represented in the BEKK form. In contrast to this we present a very simple example
with interesting properties which is analysed completely analytically.

The remainder of this appendix is organized as follows. We briefly state the necessary
definitions of multivariate GARCH models in the next section and then present our results
in Section B.3.

Regarding notation we denote the set of real d × d matrices by Md(R), the group of
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invertible d× d matrices by GLd(R), the linear subspace of symmetric matrices by Sd and
the positive semi-definite cone by S

+
d . Finally, AT is the transposed of a matrix A ∈Md(R).

B.2. Multivariate GARCH processes

The well-known single dimensional GARCH(p, q) model introduced in Bollerslev (1986) is
defined via an i.i.d. sequence (ǫn)n∈N and the equations

Xn =
√
σ2

nǫn (B.2.1)

σ2
n = α0 +

p∑

i=1

αiX
2
n−i +

q∑

j=1

βjσ
2
n−j (B.2.2)

for n ∈ N. Moreover, the initial values σ2
0 , σ

2
−1, . . . , σ

2
1−q and the parameters α1, . . . , αp,

β1, . . . , βq are non-negative and α0 > 0. X = (Xn)n∈N is referred to as a GARCH(p, q)
process and σ2 is its latent conditional variance process.

When one moves from a scalar X to a d-dimensional X, the variance process σ2 becomes a
d×d covariance matrix process Σ and one uses the vec (or alternatively vech) transformation
in order to specify the model. The vec transformation maps the d× d matrices bijectively
to R

d2
by stacking the columns of a matrix below one another. This leads to the vec-model

(Engle and Kroner (1995)) which is given by:

Xn = Σ1/2
n ǫn (B.2.3)

vec(Σn) = vec(C) +

p∑

i=1

Ãivec(Xn−iX
T
n−i) +

q∑

j=1

B̃jvec(Σn−j). (B.2.4)

for n ∈ N where (ǫn)n∈N is now an R
d-valued i.i.d. sequence and Σ

1/2
n denotes the unique

positive semi-definite matrix whose square is Σn, i.e. Σ
1/2
n ∈ S

+
d and Σ

1/2
n Σ

1/2
n = Σn. To

ensure the positive semi-definiteness of the process Σ the initial values and C have to be
positive semi-definite and Ã1, . . . , Ãp, B̃1, . . . , B̃q need to be d2 × d2 matrices mapping the
vectorized positive semi-definite matrices into themselves.

For notational convenience we shall not only use the vec-model in the following, but
also an obviously equivalent specification defined directly on the symmetric matrices. This
model, referred to as the “general d-dimensional GARCH(p, q) model” in the following, is
given by

Xn = Σ1/2
n ǫn (B.2.5)

Σn = C +

p∑

i=1

AiXn−iX
T
n−i +

q∑

j=1

BjΣn−j. (B.2.6)

The only difference to the vec-model is that A1, . . . , Ap and B1, . . . , Bq are now linear
operators from Sd to Sd that map the positive semi-definite d× d matrices into themselves,
i.e. Ai(S

+
d ) ⊆ S

+
d and Bj(S

+
d ) ⊆ S

+
d for i = 1, . . . , p and j = 1, . . . , q.

The restrictions on the linear operators Ai and Bj (or Ãi and B̃j in the vec-model)
necessary to ensure positive semi-definiteness led to the introduction of the so-called BEKK
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model (see again Engle and Kroner (1995)), which automatically ensures positive semi-
definiteness:

Xn = Σ1/2
n ǫn (B.2.7)

Σn = C +

p∑

i=1

li∑

k=1

Āi,kXn−iX
T
n−iĀ

T
i,k +

q∑

j=1

sj∑

r=1

B̄j,rΣn−jB̄
T
j,r, (B.2.8)

where Āi,k, B̄j,r are now arbitrary elements of Md(R). It is standard that the BEKK model

is equivalent to the vec model with Ãi =
∑li

k=1 Āi,k ⊗ Āi,k and B̃j =
∑sj

r=1 B̄j,r ⊗ B̄j,r with
⊗ denoting the tensor (Kronecker) product.

B.3. The relationship between the vec and BEKK model

From the definitions of the models it is clear that studying the relationships between the vec
(or general) multivariate GARCH and the BEKK model further is intrinsically related to
characterizing the linear operators on Sd that map the positive semi-definite matrices into
themselves. The latter has been studied for a long time in linear algebra under the general
topic “Linear Preserver Problems” (see, for instance, the overview articles Pierce et al.
(1992) and Li and Pierce (2001)). From the results obtained there we need the following:

Proposition B.3.1. Let A : Sd → Sd be a linear operator. Then:

(i) A(S+
d ) = S

+
d , if and only if there exists a matrix B ∈ GLd(R) such that A can be

represented as X 7→ BXBT .

(ii) For d = 2, A(S+
d ) ⊆ S

+
d , if and only if there is an r ∈ N and B1, B2, . . . , Br ∈Md(R)

such that A can be represented as

X 7→
r∑

i=1

BiXB
T
i .

Proof. (a) was initially proved in Schneider (1965), alternatively a more general proof in
a Hilbert space context may be found in Li et al. (2003). (b) was established in Størmer
(1963) (cf. also Loewy (1992)).

From this we can immediately infer the relations between the general (or equivalently
vec) multivariate GARCH model and the BEKK model:

Theorem B.3.2. (i) For d ≤ 2 the general (or vec) multivariate GARCH and the BEKK
model are equivalent.

(ii) Every general multivariate GARCH(p,q) model satisfying Ai(S
+
d ) = S

+
d and Bj(S

+
d ) =

S
+
d for i = 1, 2, . . . , p and j = 1, 2, . . . , q can be represented as a BEKK(p,q) model

with li = sj = 1 ∀ i, j and Āi,1, B̄j,1 ∈ GLd(R).

For the vec model Ai(S
+
d ) = S

+
d and Bj(S

+
d ) = S

+
d for i = 1, 2, . . . , p and j = 1, 2, . . . , q

translates into demanding that Ãi and B̃j map the vectorized positive semi-definite matrices
onto themselves.
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The above result means that when a general (or vec) multivariate GARCH model does
not have a BEKK representation with li = sj = 1 ∀ i, j and invertible Āi,1, B̄j,1 it has
to be the case that Ai or Bj map the positive semi-definite matrices into a strict subset
of themselves for some i = 1, 2, . . . , p or j = 1, 2, . . . , q. This is a somehow degenerated
situation, since it may imply that the distribution of Σn − C for all n ∈ N (and thus any
limiting or stationary distribution) is concentrated on a subset of the positive semi-definite
matrices.

Let us now turn to providing an example for a vec model that cannot be represented in
the BEKK form. Consider d = 3 and the linear operator D : Sd → Sd given by



x11 x12 x13

x12 x22 x23

x13 x23 x33


 7→



x11 + 2x22 −x12 −x13

−x12 x22 + 2x33 −x23

−x13 −x23 x33 + 2x11.


 (B.3.1)

It has been shown by Choi (1975) that D(S+
d ) ⊆ S

+
d and that there exist no r ∈ N and

E1, E2, . . . , Er ∈M3(R) such that

DX =

r∑

i=1

EiXE
T
i for all X ∈ Sd.

Hence, using D as some Ai or Bj gives a general three-dimensional multivariate GARCH
model having no BEKK representation. Clearly this means that the corresponding vec
models have no BEKK representation. Since the operator D was defined on Sd only and
not on Md(R), the corresponding 9 × 9 matrix in the vec model is not unique, but the
corresponding vec models are unique. One of the possible 9 × 9 matrices the operator D
corresponds to is 



1 0 0 0 2 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 2
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
2 0 0 0 0 0 0 0 1




.

It should be noted that D is an invertible linear operator, as can easily be seen, and that
Proposition B.3.1 implies D(S+

d ) ⊂ S
+
d . An example for a positive semi-definite matrix not

being the image of another positive semi-definite matrix under D is




1 0 0
0 0 0
0 0 0


 = D




1/9 0 0
0 4/9 0
0 0 −2/9


 .

So we have given an example showing the following:

Proposition B.3.3. For d ≥ 3 there exist general (or vec) multivariate GARCH models
that cannot be represented in the BEKK form.
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cations to turbulence, Uspekhi Mat. Nauk 59: 65–91.

Barndorff-Nielsen, O. E. and Shephard, N. (2001a). Modelling by Lévy processess for financial
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Theory and Applications, Birkhäuser, Basel, pp. 283–318.
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General Notation

Symbols involving letters in alphabetical order:

B(·) Borel σ-algebra
C complex numbers
GLn(·) invertible n× n matrices
ℑ imaginary part
i imaginary unit
In n× n identity matrix
IA(·) indicator function of the set A
log+(·) maximum of logarithm and zero, i.e. log+(a) = max{log(a), 0}
Lp(·) space of p-times integrable functions/random variables
Mm,n(·) m× n matrices
Mn(·) n× n matrices
N natural numbers
N0 natural numbers and zero

O(·) of the same order, e.g. a(t) = O(b(t)), iff limt→∞
a(t)
b(t) = C ∈ R

+\{0}
o(·) of smaller order, e.g. a(t) = o(b(t)), iff limt→∞

a(t)
b(t) = 0

P (·) probability
ℜ real part
R real numbers
R

+ non-negative real numbers
R

++ positive real numbers (zero excluded)
Sn symmetric n× n matrices
S

+
n positive semi-definite n× n matrices

S
++
n positive definite n× n matrices

·T transposed of a matrix/vector
Z whole numbers

Other symbols in alphabetical order of their meaning:

·∗ adjoint of a linear operator, Hermitian of a matrix/vector
[·, ·] closed interval
∼ distributed as, asymptotically equal
∅ empty set
1A(·) indicator function of the set A
∨ maximum, e.g. a ∨ b = max{a, b}
∧ minimum, e.g. a ∧ b = min{a, b}
‖ · ‖ norm
(·, ·) open interval
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Abbreviations

a.s. almost sure
a.e. almost everywhere
cf. confer
ch. chapter
cor. corollary
def. definition
e.g. for example
eq. equation
et al. et alii
etc. et cetera
f and the following one
ff and the following ones
i.e. that is (id est)
iff if and only if
i.i.d. independent and identically distributed
p. page
pp. pages
prop. proposition
resp. respectively
rv random variable
SDE stochastic differential equation
s.t. such that
th. theorem
viz. namely, that is to say (vide licet)
w.l.o.g. without loss of generality
w.r.t. with respect to
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