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Abstract

The theory of multidomains is given. A fixed point semantics

for a nondeterministic, applicative programming language working

with fipite and infinite streams is based on it. An operational
semantics for the parallel evaluation of expressions of this language
is defineq ip phe form of the term rewrite rules. Systema of ex-
pressions comunicating by streams are introduced by mutually re—
cureive fixed point equations for streams. The fixed point theory

on multidomainas is complemented by a second theory sllowing for the
definition of McCarthy's ambignity operator which is needed for the
definition of nonstrict merging. The resulting language can be taken
as foundation of semantics for data flow languages as well as for dis-
cussing nonconventional hardware architectures such as reduction
machines and data flow mechines. ¥Fipally dirvections of futwre research

are outlined.
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1. Introduction

The last two decades of computer science are characterised by

an enormous progress in the formal toundations of programming
languages and their semantics. In sequential, deterministic
programming, most of the remaining questions are of quantitative
(questions of programming in the large) rather than of gqualitative
nature. In the field of nondeterministic, perallel, communicating,
concurrent prograws the state of the art is less satisfactory.
Although drastic efforts have been undertaken to investigate

this field leading to a considersble amount of knowledge, we

are far from having extensive, widely accepted theories for con-
current programming. Most existing theories do not cover all im-

portant aspects and/or they are too complex and complicated.

Nevertheless numerous papers have been published which suggest
language constructs for concurrent programming. These papers have
had a considerable impact on the field of concurrent programming,
and in many cases helped in developing & better understanding.
However, the lack of proper formal definitions of the semantics
of such languages must be considered as a severe drawback. On
the one hend, it seems impossible to enlarge on a programming
methodology for the construction of concurrent software without
having well~explored theoretical foundations. On the other hand,
a properly designed programming language presumes a complete
understanding of the underlying concepts, which is also im—
possible without having a formal theory. And last not least,
mathematical foundations are an indispensable requirement for
teaching concurrent programming. Therefore I strongly believe
that it is necessary to investigate the concepts of concurrent
programming in a joint consideration of both mathematical
(denotational) semantics and its corresponding operational

semantics. Here, fixed point theory seems to be the most adequate
framevork.



So in the sequel we try to develop a strictly fixed-point-
oriented approach to the semantics of applicative multiprogramm-
ing. It should be noted, that the restriction to applicative
languages is not a profound one. It only helps in concentrating
on the central issues. The approach is based on a simple non-
deterministic programming language. For this language both
mathematical and operational semantics are given. The operational
semantics consists of a set of computation rules which model the
behavior of a simple reduction machine. Based on & thorough dis-
cussion, the language is stepwise extended to allow more general
patterns of communication leading to systems of communicating

expressions.

Before going deeper into the theory of applicative multi-
programming it seems useful to recall some of the most important

notions, namely: nondeterminism, parallelism, communication,

and concurrency.

Considering these notions isolated from each other (as far
as this is possible) already causes some problems. However,
combining these notions into the concepts of one language multi-
plies the difficulties. For example there are different concepts
of nondeterminism (cf. /Kennaway, Hoare 80/, /Broy, Wirsing 81a/)
which, taken for themselves, can be treated quite satisfactorily.
In concurrent programming, however, some of these concepts are
used side by side. For instance the scheduling of simple communi-~
cation actions may be mapped onto straightforward-choice nondeter-
minism (“erratic” nondeterminism), while disjunctive (“multiple")
vaiting has to be mapped onto some kind of nondeterminism which
delays the choice until one of the ppssibilities yields a defined

way of resuming (local "angelic’ nondeterminism).



So nondeterministic, parallel, communicating, concurrent systems raise
& number of severe theoretical and practical questions which have

to be mnswered before a proper methodology for the construction of
concurrent software and distributed hardware systems can be envisag-
ed. In particular a number of key questions has to be tackled the
solutions to which may give proper formal foundations for software

und hardwarc architectures for "computers of the fifth generation”
(et. /Japan 81/). In the sequel a brief overview is given on

some of these questions and solutions suggested in this paper:

The Domain Problem: Multiprogrems abstract from time and schedulers

and hence describe rather a {possibly infinite) class of (determi-
nate) programs than one particular program. This is modelled by in-
troducing nondeterminism. The combinatorial complexity of the class
of programs described by & multiprogram makes it practically impos-
sible to reason about the single courses of computation separately.
So one tries to consider a multiprogram as an unit and to reason a-—
bout it in e way such that the results hold for all feasible courses
ot computation. Hence one fixed point is associated with & multipro-
gram, rather than a set of fixed points, containing all feasible
courses of computation. However, this way of proceeding beares the
risk of unwanted identifications and confusions between operationally
separated courses of computations, especially, if nonflat domains includ-
ing tinite and infinite elements have to be considered in connection
with communications. If the possible sequences of communicated
values are taken as defining the meaning of a process, then ob-
vicusly a process cannot be considered as a nondeterministic function
over flat domains. However, on nonflat domains the classical
poverdomain construction does not work {cf. /Plotkin 76/, /Smyth
78/), because there the "Egli-Milner ordering" represents only

a quasiordering. So a domain construction is needed that, in
contrast to the powerdomain, works sufficiently well in this case.

As a partial solution to this problem the multidomain construction

is defined. As a most fundamental example the multidomain of

tinite purtial, finite total and infinite streams is introduced.



Systems of Expressions Communicating by Streams: Formally a system of

communicating expressions is defined by a mutually recursive system of
fixed point equations for streams with the resp. stream processing func-
tions on the right-hand side. In order to obtain not always trivially
undefined as fixed points of such systems one has to use nonstrict
constructor functions for streams and additionally specific computation
rules. This includes in straightforward manner infinite objects. For
solving the so-called "merge-anomaly” in cases of nondeterministic
systems, which is the result of confusing different well-separated
courses of computations, nondeterministic recursive equations for streams
have to be considered as (multi-)sets of deterministic equations for

streams rather than as equations for (multi-)sets of streams.

Accordingly a system of communicating expressions can be considered as
a purely applicative description of a network (a directed graph) of
stresm-processing functions (in the nodes) and streams of communications

between them (as the arcs).

Decision Systems: As already mentioned a system of concurrent, com-
mnicating agents is generally nondeterministic for modelling the dif-
ferent options of executions in particular abstracting from concrete
time and schedulers. So the evaluation of the resp. nondeterminstic
programs generally requires decisions to obtain one concrete computa-

"gi-

tion. This leads to the important problem at which particular
tuation" a decision is taken. Since time is replaced by "causality
flow", which is formally represented by the approximation principle
in fixed point theory, this is equivalent to the following question:
how good have the approximations for the input to be for carrying

enough information to take a decision consistently. So appropriate

choice operators have to be selected very carefully.

In order to model a really distributed system all these decisions should
be made locaily (i.e. within one agent) without regarding the global
state of the systems or any of the states of other agents. This re-
quirement is fulfilled by the nondeterministic systems of communicating

expressions.



In such systems decisions are taken in time (consistently, modelled
by the sufficiently good approximations) and place (locally, model-

led by the "context—independence" of decisions).
Y

Concurrency: In order to introduce real concurrency into applicative
languages it is necessary to include MeCarthy's ambiguity operator.

Such an operator is necessary for defining a nonstrict, nonsequential
merge function for streams such that merge( L, s) = merge(s, + ) = s
and merge(x1&s1, x2&s2) = ((x1&merge(s1, x2&s2)) D (x2&merge(x1&s1, s2)))

which is an inevitable prerequisite for networks of communicating agents.

Thus concurrency does not only require a free straightforward choice
between concurrent computations, but it reqires a choice depending on
particular termination properties of the concurrent computations. This
brings all the problems of unbounded nondeterminism, its nonconti-
nuity as found in the fairness discussion (ef. /Park 80/, /Broy 81a/,
/Apt, Plotkin 81/) and even worse problems concerning monotonicity.
For solving these problems a fixed point for recursive equations con-
taining the ambiguity operator is characterized by combining two partial
orderings. In the first step only an approximation (in the sense of
partial correctness) is defined and based on these approximations the
precise semantics is given specifying a second fixed point (based on

inclusion ordering) as a sub(multi)set of the approximation.

Computability: One of the most important guestions when switching
from "sequential” programming to multiprogramming concerns the ex-—
pressive power: Can we define certain functions by multiprograms

which cannot be expressed by sequential programs? Or more specific:
Are there functions which are not partially recursive, but are asso-
ciated with a concurrent system? This question is not only of theore-
tical interest, but also of high practical importance, since it helps
to answer the question, whether the methods of specification, verifi-
cation and modelling for sequential programs may suffice also for con-

current programs.



The switch to concurrent communicating programs does not only include

a necessity to consider general nonstrict functions and even nonsequen-—
tial functions (in the technical sense of /Vuitlemin 75/, p. 55),

which all can be mapped intc the domein of purtial recursive functions,
but it also requires the consideration of the aforementioned ambiguity
operator leading to unbounded nondeterminism end hence to functions where

the sets of arguments for which nonterminating computations exist are 2::.

Computational Models: It is the very nature of notions like "paral-
lism" that they not only correspond to abstract functional (input/
output—) behaviours of program systems but alsc characterize how a
program is evaluated. So a close relationship to operational seman-
tics is to be established. 1In this paper an operational semantics
is defined in form of computation rules (term rewrite rules). In ad-
dition to classical operational semantics the following five aspects

are of major importance when dealing with multiprograms:

(1) Nondeterminism implies nonconfluent term rewrite systems {(cf.

"decision systems" and "concurrency" above).

{2) Evaluations of communicating processes generally have to start
before all information about the input is available; so one has
to cope with computations with incomplete information leading to

the concept of partial evaluation or mixed computation.

(3) A commnicating process consumes its input piecewise and produces

its output piecewise. So respective computation rules for communi-

cation have to be used.

(4) A communicating process that does not terminate may produce an
infinite stream of output and thus compute an infinite object. So

techniques of lazy or enforced evaluation have to be used.

(5) The possibilities of inherent parallelism and of compulsory

parallelism have to be expressed by parallel evaluation rules.

In a function application all actual arguments can be evaluated in paral-
lel end even the body expression of the function can be partially
evaluated by mixed computation techniques in parallel. The basic



idea is to split the substitution step for an application of an

n-ary function. Conventionally the function identifier is substitut-

ed by the resp. expressions and all formal parameters are replaced

by the resp. actual paramecter in one indivisible action. This action can
be split into up to n+! separated substitution (“communication"-) steps
such that the arguments can be computed and substituted independently.

Thus & deta driven reduction semantics is defined.

Reduction, Data Flow, and Networks of Distributed Agents: In contrast to

the very general concept of data driven reduction and data flow the classi-
cal von Neumann computer architecture is essentially based on sequen-

tial control. %This is why all attempts to extend it to an architecture

for parallel computations lead to extremely complicated hardware

and software structures. So people try to suggest non-von-Neumann
architectures such s functional machines, data flow machines, reduction
machines, cellular processors, reconfigurable ("programmable") hardware

structures etc.

However, to overcome the basie problems of von-Neumann-machines, such
innovative architectures should be based on a proper theory (concern—
ing their logicael structure, not their physical representation) which
also can be taken as the basis for a software engineering discipline
including the specification, development, and verification of software
tor such systems. It is briefly discussed and outlined how the language
defined in this paper can be taken as formal foundations for such
concepts. In particuler a tormal definition for the semantics of a
data flow language is given. So data rlow graphs can be specified in
terms of the given language for applicative multiprogramming. Such
graphs can be used to represent networks of communicating agents or
muchines as well as integrated switching circuits and even machine
architectures. The von Neumann concept of sequential stored program

architectures eppears just as an extreme case.



In the following an attempt is undertaken to give a solution to these
problems in one integrated approach completely based on fixed point

theory. In particular the paper is structured as follows.

Section 2 establishes the theory of multidomains constructed by the

ideal completion of the set of finite multisets over the set of finite
elements of an given algebraic complete partial ordering {(cpo)}. As an

important example the multidomain of streams is considered.

Section 3 gives a simpie applicative nondeterministic language and its

mathematical semantics based on multidomains and fixed point theory.

Section b considers a nondeterministic computation ruie for the parallel
evaluation of nondeterministic recursive programs modelling data driven

reduction.

Section 5 extends the possibilities of communication between processes
that evaluate expressions by the introduction of expressions which

mutually communicate by streams. Thus networks of expressions communi-

cating by streams cen be defined. The mathematical semantics is again
based on fixed point theory. The operational semantics is given by

term rewrite rules.

Seviiun 6 introduces an ambiguity operator leading to real concurrency.

This operator allows to suppress certain "less defined” nondeterministic
alternatives and in particular serves as a basis for defining disjunctive
(alternative, parallel, multiple) waiting. However, the introduction of this
operator causes & radical change of our domain and our notion of computa-—
bility. Besides that the notions of strictness and sequentiality of
functions are discussed in detail and related to classical notions of

partial recursive functions.

Section 7 investigates and compares several nonconventional

computational models like reduction and data flow. For data flow

networks a formal semantics is defined. Several properties and
examples for stream-processing networks and functions are discussed.

Finally a comparison to classical procedural programs is given.

Section 8 contains a brief discussion of related work. A list

of topics of possible directions of future research is presented.



2. Multidomains

For giving semantics to nondeterministic programs, /Plotkin 76/
suggests the use of powerdomains, which are particular subsets

of fhe given domains representing the sets of possible values
(cf. also /Smyth 78/). However, for nonflat domains the well-
known Egli-Milner ordering doces not work, since the induced
ordering generally is only a quasiordering. Therefore in /Lehmann
76/ as en alternative to fixed point theory, category theory is

suggested for giving meaning to nondeterministic programs.

In the sequel a different approach is given which uses multisets
(ef. for instance /Dershowitz, Manna 79/) as suitable represen-
tations of the (multi-)set of possible results. Roughly speaking,
a multiset is a "set, where multiple occurrences of elements
are allowed". A nondeterministic program can be viewed as a
finitary, possibly infinite tree. In the powerdomain ccnstruction

the set of terminal nodes {including L for infinite paths) is
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associated with the program. In our approach of multidomains,
the multiset of terminel nodes is associated with the program

(including 1 for every infinite decision path).

All proofs are given in the appendix.

2.1 Multisets

Given a set S , a multiset M over S is a total mapping
M: S-’IN+

where IN' N U {=} . The set of multisets over a given

“det
set S 1is denoted by M (S). Every multiset M defines elso
a set

SET(M) = {x € 8 : M(x) > 1}

The cardinality of a multiset M is denoted by |M| where

r M(x)

Mf =
Qef % € SET (M)

Trivially, every set S1 € S denotes a multiset M with
1 x € 51

M{x) =
[¢] otherwise

Therefore we often use the set-notation for representing multi-

sets.

For multisets M1, M2 we define the multisetswm M1 4 M2 and
multiset difference Mi-)M2 by

(M1\:jﬂ2) {2} = M1(x} + M2{x)
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ML (x) - M2(x) 1if MI1(x) > M2{x)
(ML - M2) (x) =

0 othervise
The set union and set intersection are extended to multisets by

(M1 U M2) (x) max {M1{x), M2(x)}

(M1 N M2) (x) = win {M1(x), M2(x)}

Given a multiset M , we define a multiset (# F(x) where F:S-+M(S)

xEM
M(x)
(W F)) () =4 b3 I F(x)(y)
x€H def L eser(m) i=1
In analogy to the set notation, we write
ML © M2 iff ¥ x € 8: M1(x) < M2(x)

Multisets can be viewed as a "natural" extension of set
theory. Although it seems interesting to study the properties
of multisets much more deeply, we restrict ourselves to the
definition of multidomains as particular subsets of the set
of multisets.

2.2 Multidomains

In this section multisets over a complete countable algebraic

pertially ordered set are considered.

A poset (DOM, C) 1is a cpo (complete partially ordered set) iff

(1) DOM has a least element 1
(ii) every directed subset X has a least upper
bound lub(X)



An element a € DOM is called finite if for every directed
subset X < DOM : a [lub(X) = I x € Xx: af_x

DOM 1is called countably algebraic if

(i) the set of finite elements is countable ,
(ii) every element in DOM is the lub of a directed set

of finite elements.
We shall refer to countably algebraic cpo's simply as domains.

In a domain DOM an element x € DOM is called partial
if 3y€poM, y #x: x [y, total if x is not partial,

i.e. x is maximal in DOM, infinite if x 1is not finite.

As a generalisation of the well-known Egli-Milner ordering
on sets over DOM (cf. /Egli 75/, /Milner 73/) the relation
L is defined on M(DOM) by :

Let M1, M2 € M(poM) :
M1 C M2 iff 3 G : SET(M1) - M(DOM) :

(1) V x € SET(M1) : Ml(x) < |G(x)| A
VyE€SET(G(x)) : x Ly
(2) (Y Gly) = M2
y € SET(M1)

Intuitively speaking, M1 £ M2 holds, i.e. Ml eapproximates
M2, if M2 can be obtained from M1 by substituting every
element x of Ml by nonempty multisets G(x) which consist
only of elements which can be approximated by x . This immedia-

tely gives:

If M1 L M2, then SET(Mi) [, SET(M2) where the Egli-Milner
ordering (cf. /Egli 75/, /Milner 73/, /de Bakker 76/) is
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derined by

510,52 iff (vx€513y€s82:xLy) A (Vy€s23x€sl: xL y).
Like the Egli-Milner ordering, the relation £ in general does not
define an ordering but cnly a quasiordering.

A multiset M can also be represented by a set S, of pairs.

M
Sy mey be defined by

s = {(n, x) €N xDOM : 1 <n < M(x)]

as C : . .
Lemmay M1 L M2 iff 3 H: SM2 -+ SMl :

(1) H is surjective

(2) ¥ (i,y) € Sy, P =B,y = xLy

(8 is right-monotonic) [}

Lemma: The relation "(" defines a quasiordering on

M(Dom) . 0

However on a subset of M(DOM) the relation "{" even defines
a cpo . To isolate this subset the cpo 1is constructed in

the classical way as ideal completion of the finite elements.

Following the ideal-theory of /Scott 80b/, at first the finite
elements of M(DOM) are considered, i.e. the finite nonempty
multisets of finite elements of DOM. The set of these multisets
is denoted by FM(FDOM) where FDOM € DOM denotes the finite
elements in DOM and for each set S FM(S) denotes the multi-

sets represented by the functions

£: SN where {x € DOM : £(x) > o} is finite and nonempty.
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In contrast to the powerdomain, where the Egli-Milner ordering
generally aefines only a quasi-ordering even on finite sets of
finite elements, the relaticn £ denotes a partial ordering on
FM(FDOM) .

Lemma: (FM(FDOM), L ) forms a poset with minimal element {l} a

How FM(FDOM) is extended to a complete partial ordering (cpo) by
taking its ideal completion. A nonempty subset I < FM(FDOM) is
called an ideal iff

(1) MICM2 AM2 ETI = M1 €I
(2) M1, M2 € T =3I M3 € I: M1 [ M3 AM2CM3

So I is an ideal if it is (1) downward closed and (2) directed.
Let TD(FDOM) denote the set of ideals. As well-known (ID(FDOM),

<) forms a countably algebraic cpo.

Since it seems more convenient to talk about multisets than about
ideals, we isolate a subset MD(DOM) of M(DOM), such that
(MD(DOM), £ ) is isomorphic to {ID(FDOM), <). So every ideal is
represented by 5ne particular multiset. For every M € M(DOM) we

define
y= M e FM(FDOM) : M1 [ M}
If M € FM{(FDOM) trivially I, forms an ideal.

On the other hand we may associate a multiset M

T < FM(FDOM) by

1 with every subset

MI'(x) = glb lub {M2(z)M1 EM2 € I Ay 2z Zx)

MI1€T
yLx
y€EFDOM



Here lub and glb denote the least upper bound and greatest

. +
lower bound in IN .

Lemma: (1) For every ideal I with M = M  we have I = L.
(2) For ideals I1, I2 we have [1 g I2 = Mo L Mo, a

Accordingly we defipe the multidomain (MD(DOM), L) by

MD(DOM) = (M € M(DUM): 3 [ € [D(FDOM}: M =MaTL = 1}
Of course FM(FLOM) < MD(DOM).

Since the multidomain is not closed under the usual multiset sum,

we define a new sum operator for elements from the multidomain:

M \U'MP = My where I = (MEFM{FDOM) : MIET1, M2EI2:M L M1 ¢ M2}

Obiviously on rfinite multisets:
ML MU AM2 DM » MY+ M2 QMY o+ M2
Similary we define for I € ID(FDOM), Ff: DOM - ID(FDOM)
B Mf(y) = HI. where
y € MI

I'= (€ FM(FDOM) : M' € I,My€ fly): ML + My)
yeu!

For simplicity we write ¢y ror (' in the sequel and use \t/

also for ideals.
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Due to the results above the following proposition holds:

Lemma : The multi@omain MD(DoM) forms a countably algebraic

cpo, i.e. it forms a domain.

Note that the particular subset MD(DOM) of M(PoM) is deter-
mined by the fact, vhat orly muitisets are to be considered, which
are approximable by finite multisets of finite elements, and the
notion of approximability is determined by the particular choice
of the ordering, which is defined such that the most important
constructs which one wents to have in s programming language ,
such as function applicetion, finite choice , and conditional

are monotonic end contiauous.
Now the continuity of scme basic functions is established.
Lemma: Punction extension is continuous :

Let the function

€ : poM" - DOM
be given and the functicn

F : DOM" = MD(DOM)
be defined by

F(x) = {£(x)}
then if

(1) £ is monotonic, then F is monotonic, too,

(2) £ is continuous, then F is continuous, too. a

Lemma :

The multiset- sum is monotonic and continuous - C]
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As is well-known, the ordering on multidomains induces an

ordering on multiple—valued functions. Let

£, g : DOM1 - MD(poM2)

then we define

£CLg if V¥V x €poMt £(x) [ g(x)

Let [ be a functional
r : (DoMt - MD(poM2)) - (DOM1 -~ MD(DOM2))
then T 1is called monétonic, if

£ £ g implies TI{£]l ¢ rigl

' is called continuous, if for every chain of continucus

functions {fi}i en

I‘[lub(fi}] lub(I‘[fi]}

Let I : (DOM - MD(DOM)) — (DOM - MD(DOM))
be defined by
rle]l ) = &y £{y)
y€TIE1(x)
where T :(DOM - MD(DOM)) - DOM - MD(DOM))
then T is

(1) monotonic, provided T is monotonic

(2) continuous, provided T 1is continuous.

Tc give an example how the multidomain construction works in
a particular case, the multidomain of streems is considered in

the follewing section.
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2.3 The Multidomein of Streams

As an important example for a nonflat, algebraic domain for multi-
programming the domain of streams is considered (cf. /Landin
65/, /Burge 75/, /Dennis, Weng 79/). Let a countable set A of
atoms be given, such that 4 # A. As usual AL denotes the
corresponding flat domain.
The domein As of streams over A is defined by

2% =a*u @t x uhua”
Here A* denotes the set of finite streams, i.e. finite se-
quences of atoms from A , and includes ¢ , the empty stream.
a* x {1} denotes the set of partial strzams, i.e. finite
sequences of atoms ending with L , and includes L& , the
totally undefined stream. A denotes thas set of <infinite
streams, i.e. infinite saquences of atoms (which mey slso be

represented by total functions IN - A}.

The following four functicns are used on streams:

ap : A'L x AS - AS
rest H As-t AS
first As» A'L

s

isempty: A" - {tt, ff}l

defined by

s
<a>os if a €A, s €A

ep(e,s) 4 otherwise

Let a €A, s€EA°, s' =<a>os, then
rest(s') = s, rest(€) = rest(l) = L,

L,
isempty(s') = ff, isempty(€) = tt, isempty(l) = 1 .

first(s') = a, first{e) = first(l)



By <a> the one-element sequence is denoted, and by sos' the
concatenation of two sequences. Of course, tos=s=so& and if
s is infinite, i.e. s€A® then sos' =s for all s*€a% .
Note, however, that AS is not closed with respect to concate—

nation since for s€A* x {1} and s'€A*~{¢} : sos'¢AS .

To make As into a domain, an ordering is needed. So we define

for s1, s2 €As :

slg s2 iff sl =s2 or 3s3, s4 €A° such that

sl = 83 0 <1> and s2 = 53 o s4

Intuitively, sl [ s2 holds, i.e. sl "approximates" s2, if

st = 52 or it sl 1is a partial stream which is a prefix of s2
if L is dropped at the end of si. With this ordering Iy

forms a countable algebraic cpo. Note that al can be viewed

as a proper subdomain of AS.

Lemua: The functions ap, rest, top, isempty are monotonic

and continuous.
Proof: omitted

According to the results of section 2.2, the functions ap, rest,

top, isempty can be trivially extended to multisets of streams.
s . . .

MD (™) is called the multidomain of streams.

Note: One might also use mappings DOM - [0,1] instead of
mltisets and interprete this as the probability of a
result {cf. /Francez, Rodeh 80/). Note, however, that
this would lay severe restrictions on the implementations

to assure that all probabilities are properly realized.

end of note
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3. A Simple Language for Applicative Multiprogramming

In this section we define a simple nondeterministic programming
language and its mathematical and operational semantics. By

studying specific computation rules we analyse the possibilities
of inherent perallelism leading to an (operational) data driven

reduction semantics.

3.1 Syntax

The syntax of the language is close to A-notation. However,
only first-order functions are considered and the fixed point
operator is replaced by the possibility of defining a system

of mutually recursive functions.

< program >::=[{funct < function identifier > & < funct abstract >, }*
< expr > J
< expr > ::= < funct appl > | < cond > | < choice> |
< object >

< funct appl > ::= < function > ({< expr > {, < expr > }* })
< cond > ::= if < expr > then < expr > else < expr > fi
< choice > ::= < expr > ] < expr >

< object > ::= < primitive object > | < identifier >

< funct abstract > ::= A {< identifier > {, < identifier M3* } :
< expr >
< function > :;:= < funct abstract > | < function identifier > |

< primitive function >
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Here we assume a domain DOM of semantic values called primitive
objects including £f and tt for the boolean values and the
natural numbers. Furthermore we assume a set P of primitive
function symbols where for every g € P an arity n 1is given
and an n-ary partial function

2 : DoM™ > DOM

where }\x‘,..-, x,) = 1, if one of the x; is partial, and gis

strict, monotonic, and continuous.

An expression is closed, if no free identifiers occur in it. An
expression is called primitive, if it is a term built from primitive
functions and objects only.

3.2 Mathematical Semantics

In this section we derine a mathematical sementics by giving a
function (cf. /Broy et al. T8/):

B : EXP -~ MD(DOM)

where EXP denotes the set of closed expressions, i.e. the
set of expressions in which no free identifiers or nonprimitive

function symbols ocecur.

B [if C then E1l else E2 fi] =

(@& BlEID@WO Wy BlE2]) (¢, ( 4y teh,
tt€ Bl ¢} fresfc } Leslc]

8 {1 [ =2} = BIE1) (&) BIE2],

Bl x., ..., x_ 3

1 n En+1) ( El""'En)l =

el [el/xl. cas ,en/xnll

w P U:J B(E
€ B[E ] e € a(an]

Ble] = {e} for e€ DOM
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Blg®, ..., Epl= W ... W {gte,, ..., e}
n 1 n
e € B[Ell enes[zn]

for n-ary g€P

Given an expression E in which the nonprimitive function

symbols £ ey fn occur in n,-~-ary function applications,

ll
then for each set

i

?1, veey ?n of nj-ary functions ?i: poM™ - MD(DOM) by
Blr. (E ,..., E )] = \&J LW Fo(e ,...pe)
MY o ele ] eenle] Y 1
1 1 n ni

the semantics B[E] is fixed. To express that the function ?i

is to be taken for the symbol £, we often write

B[E[fl/fl,...,fn/fn]]

Given an expression E in which the free identifiers XyreoeiX
occur, in principle one might consider arbitrary closed ex-

pressions E,...,E  and the multiset B[E(El/xl,...,En/xn]].

However, since we would like to consider free identifiers as
identifiers for values rather than as identifiers for expressions,
ve restrict ourselves to the substitution of semantic values

for free identifiers (cf. the remark on call-by-value versus
call-by-name in section &).

According to the propositions in section 2, all the functions
defined so far are monotonic and continuous and therefore

we may define the semantics of programs:

llﬂ“n,mmt%l%,E“=

B[E[fllfl,...,fn/fn]]

B{f funct ¢
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where -~ ) n
&,ﬁ];mui»MHmm

are defined by

(o)
£/ (el,...,eni) = (L}
_(3+1) B (3), (1)
£ (eyrmuve ) = Bl(F (€778 ,....8) /fn])(el,...,eniy]
f = lub (fi(j)}
JEN

The continuity of the operations of our language guarantees

- _ ~ ~
(*) fi(el,...,eni) B[Fi[ fl/fl,...,fn/fn] (el,...,eni)]

and that ?1,...,?; are the least fixed points of the equation (*).

Note, that for the language considered so far it is not necessary
to work with sultidomains, if DOM is flat, since powerdomains
are sufficient for flat domains (cf. /Broy et el. 78/). However,
working with multidomains, we need not necessarily restrict

ourselves to flat domains.

4, Operational Semantics: A Nondeterministic Computation Rule
for Parallel Eveluation

Now we consider the program

ffunce £, = F,,..., funct £ = F , E}
_ — "n n

1 1

and give e number of rewrite rules which serve as basic computation

steps.



To give a proper definition, at first the predicate ismaximal is
defined. Intuitively , an expression is maximal if none of the
rewrite rules can be immediately applied, i.e. it is

maximal, iff one or more free identifier occur in all decisive
positions. The maximality is specified by the following axioms,
i.e. ismaximal is the least (weakest) predicate fullfilling the

following axioms:

ismaximal (x) for every identifier X.
(Vi, 1< i < n: (ismaximel(E;) v E; € DOM) A

3i, 1< i <n: ismaximal(Ei))-s ismaximal(g(E],...,En))

ismaximal (C) = ismaximal (if C then E1 else 2 ri)

)

ismaximal (E,) A...A ismaximal(En”)aismaxima.l((Xx‘,.,.,x[l:E
(E],...,En))

n+1

Note, that one might be less restrictive in defining the
maximality of the conditional.

The computation rule call-in-parallel (parallel evaluation) is

specified by the following rewrxite rules:

(1) Evaluation of conditional expressions

4if tt then El else E2 fi - EL,
if £f then El else E2 fi » E2,
C -+ C'=if C then El else E2 fi - if C' then El else E2 fj,

(2) Evaluation of choice

(1 J E2) -~ E1,
(1 | E2) - E2,

(3) Unfold of recursively defined functions

fi(El' ceey En) - Fi(El, e En),
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(k) Evaluation of function applications

Vi, 124 < n: (8 - Ei v ((ismaximal(Ei) v E; € DOM) A Ei=E£)))A
. s . L [} 1
(3i, 1<i<n : E, - Ei) »»g(El,...,Eu) - g(Ei""’En)’
]
(Vi, 1si<n+1 ¢ (B » E; v (ismaximal(E;) A E;=E)))a
(31, 1sisn* 18 >E) =

(Axl,...,x : E )(E1""’En) - (Ax1,...,xn:Eu+1

1 13
n n+1 )(El""’En)

(5) Communication of computed arguments

E; € DOM = ()\}cT,...,x E ) (B

n'Ta+l "En) =

120
(Axi,...,x]_1, Xigqoeneaky : En+1 [Ei/xi])
‘(E1,...,Ei_l, Eiﬂ,...,En).

(6) Termination of the evaluation of function applications

E 4 €DM = (.\x1,...,xn : Enﬂ)(El,...,En) - Ehﬂ,

(A:E_ ) {()>E

n+i n+1?

(7) simplification of primitive expressions

B primitive, E € DOM, B[E] = {e} » E -+ e.

Note that this rule can even be applied to expressions containing
free identifiers, as far as these identifiers do not become

decisive, i.e. ismaximal (E) does not hold (cf. partial evaluation

mixed computation in ,/Ershov 78/).

A computation rule R is called

- consistent, if for every pair of programs

P = frunct £, 2 Fi,..., funct f = F , EJ,
Pt = [funct f1 = F},..., funct fn = Fn, By
we have

ERE' = B[P']cB(P],
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i.e.. if P' is descendant (e¢f. /McCarthy 63/, or implementation
ef. /Broy et al. 78/, /Broy et al. 80/) of P.

- complete, if for every program P with e € SET(BIP]) there

exists a finite sequence of expressiouns [Ei}o <i<n such
that

E=E RE, ... RE = ¢
o 1 n

holds, provided e is total and finite.

- finitary, iff for every program P there exists only a

finite number of expressions E' such that E R E' ,

-~ effective, iff for every program P there exists an infinite

sequence (Ei}:. € of expressions with ERE_ and

Ei R Ei+1’

at most if e€B[P) with e infinite or partial.
Due to Kbnig's Lemma, a finitary, effective rule can only compute

programs P with (provided DOM is flat, ci. /Kdnig 50/):

| B[P} | <= or 1€ B[P}

This notion is directly related to the nozion of finite approxima-

bility (cf. section 2) of multidomains over flat domains.

Letma The rule "»" is

(1) consistent
(2) complete
(3) tinitary
(%) effective

Sketch of oproof:

pxetch ol prool
°_

Let £, be defined by fj

i+l
j Axl,...,x s 4, £, =

ny 3

i i
Fj[fl /:1,..., fn/fnl.



(n

(2)

(3)
(4)

According to the definition of our language all rules are

consistent.

According to the definition of fixed points, there exists
i €N such that for e € B[E[f?/fl,...,f:/fn]] appropriate

application of the rules leads from
i, i
E[tl/rl,..., tn/fn] to e .
Proof by structural induction on E .
Assume all e € B[Pl are finite and total, then there

exists an 1€ IN such that
i i
B{P] = B[E[fllfl,...fn/fn]].

Every computation step reduces

- the number of occurring "\'"-symbols or

- the number of if-fi constructs or

~ the number of formal parameters or

- the number of primitive function symbols or

~ the number of )\-symbols
and only a finite number of them may occur.

Since E itself cannot become maximal (since all e € B[E]
are total), after a finite numbar of computation steps the
computation must terminate with e € BIE], at least if all

e € 8[E) are finite and total. o

Example:

Let us consider the recursive program:

[Eunct f =F, f(l,l)j

with the abbreviation:

F& ax,y:RI[E, x, v

R{f,x,y] 2 if x=o0 then 2 sy else f(x-1, £(x-1, y+1))fi



For the function application £(1,1) we cbtain the computation

sequence:
£(1,1) -
F(1,1) =

Ay : R[E, 1, yh (1) -

r(E, 1, 1] ~

if f£f then 2*1 else £(1-1, £(1-1, 141)) £1 =

£(1-1, £(1-1, 1+1)) - F(1-1, f(1-1, 1+1)) -

Flo, F(1-1, 1+1))~

(A y s RIE, 0, yD (F(1-1, 141)) =

(A y s if tc then 2 * y else £(0-1, £(0-1, y+1)) f£i) (F(0,2)) »
Ay : 2% y) (if tt then 242 else £(o~1, £(o-1, 2+1)) £i) = ...
(Ay: 2%y) (4 -

2 x4 -

8

end of example

The main difference between the computation rule "-»" and the

rules given in /Manna et al. 73/ is found in the different sub-
stitution mechanism. In /Manna et al. 73/ all substitutions are
UNFOLDINGs rxeplacing an identifier fi for a recursively defined

function in one indivisibla action (where F = A KypveorX s E)

i
£(E,,....B) » E [El/";""""‘n/"nl

where the E ..o all are deterministic (since in /Manna et
.

al. 73/ only deterministic expressions are considered), while in

the rule "-" this indivisible action is divided in up to at+l

independent substitution steps.

Note, that guarded expressions (as a counterpart to guarded commands
in /Dijkstra 76/) can be expre=ssed as a notational extension

by the rules (cf.also /Bauer, Wdssner 81/, page 69):



if C then E fi = if C then E else 1 fi,

ifc thenk [ ... [Jc thene fi= (5 0...06),

where

G,=if C

" then E, else if C, then E, ﬂ...ﬂ Ciq then E,

i -1

0c;, thenk,  [...0c thene fifi

Thus guarded expressions can be seen as a notational combination

of choice and conditional expression.
Remark: Call-by-Value versus Call-by-Name Revisited

As is well-known, for recursively defined functions call-by-value
and call-by-name rules may produce different results, if ex-
pressions with undefined values occur as arguments. Then the
function corresponding to call-by-value may be strictly less
defined than the function defined by call-by-name . In particular
one can give proper fixed point theories for each of these rules
("smash product" of domain (sn)l versus "cartesian product"
(Sl)n , c¢f. /Bauer, Wossner 81/).

For nondeterministic functions still another difference between

call~by~value and call-by-name becomes apparent. Consider the

examples:
(#1)  [funce £, 3 x x: x+x, £ (o 1)
(®2)  [funct £, = A x : 2*x, f,00 [ 1]

In strict call-by-value we obtain B{P1} = B[P2] = {0,2}, while
(as pointed out in /Hennessy, Ashcroft 76/) in straightforward
call-by-name semantics we cbtain B[P1] = {0, 1, 1, 2} and
B{P2] = {0, 2}, although from the mathematical noint of view
the functions £, and £, are (in e deterministic environment)
equivalent. So in straightforward call-Ly-name semantics one is

forced to consider functions as mappings MD(sL)® - MD(sl)



whereas in call-by-value it suffices to take (Sn)L - MD(SL)
(cf. /Astesiano, Costa 79/, /Benson 79/, /Hennessy 80/).

In our definition of mathematical semantics a mixture of call-by-
value and call-by-name is used which is called call-time choice
in /Hennessy, Ashcroft 77/. It can be evaluated by an extension

of delayed evaluation (cf. /Vuillemin T4/) or call-by-need

(ef. /Wadsworth 71/) to nondeterministic functions. It allows one
to consider nondeterministic functions as elements from
(SL)D*MU(SL). The parallel evaluation rule (call-in-parallel) as
defined in this section contrasts the implementaticn of call-time-
choice (and thus of call-by-name in the deterministic case) by
delayed evaluation (call-by-need) by a method which does not
delay the evaluation of the arguments until they become decisive
and thus are needed, but starts the evaluation of the body of the
function and of the arguments in parallel, simply eliminating
computations of arguments which apparently are no longer needed.

So one might, in analogy, talk of enforced evaluation.

With the computation rule "-»" a function application

(A L En+l) (E1""’En)
is evaluated by n independent processes evaluating E, which
communicate their results under the identifier x; to the
process E . If the eveluation of E needs a value for

n+1 n+1
some identifer X; , then its evaluation stops and waits until
the value is communicated. If the value is never communicated,

i.e. if the evaluation of Ei fails or does not terminate,

than the process waits rorever.

Here an important difference between call-by-value and call-by-

name (or more precisely call-time-choice) can be seen. In the
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case of call-by-name the whole system of processes (of evaluations)
terminates iff the process terminates which evaluates E (which
needs the termination of all processes evaluating the expressions

E, for which X is actually needed in En+1)’ while in the

case of call-by-value the whole system of processes terminates, iff
all processes terminate themselves. For parallel evaluation

using call-by-value see /Broy 80a/.

end of remark

The evaluation rule described in this section can be seen as

operational semantics for a kind of a data flow language where,

however, in contrast to the straightforward concept of demand
driven evaluation (cf. /Dennis 74/, /Kosinski 73, 77/) much
more is done in parallel. Of course, the programs of our lan~
guages can also be represented as graphs (cf. function graphs
in /Keller 80/), such that the evaluation rule describes a

graph reduction process.

One may also think of a reduction machine for an efficient im~
plementarion of the evaluation rule. Note, that the classical
straightforward transformation of applicative programs (see
/Bauer, Wossner 81/) generally means a transitiom to strict
innermost evaluation and destroys the possibilities of inherent

parallelism {cf. /Broy 80a/) when going to procedural versions.

5. Applicative Communicating Systems

Parallel evaluations of sub-expressions {such as parsmeters of a
function) which do not interfere do not cause any problems.

They can be specified, considered, computed and snalysed separa—
tely. Ir, however, there is some possibility of communication,
i.e. the possibility of transmitting (intermediate) results

from one =xpression to the other, and if the "behavior"

of the expreasions is influenced by these communi-



cated results, then it is more difficult to consider the meaning

of such expressions.

5.1 Specific Rewrite Rules for Communications

The phenomenon of communication can even be observed in the
computation rules of the preceding section. A function appli-

cation

(x Kyeeewr X3 E ) (B, E))

n
can be considered as a system of n+l expressions, the
evaluations of which can be viewed as communicating processes.
If one of the processes evaluating EL has successfully
terminated with result e then this result is communicated

to the process evaluating E . and we obtain

1

Oxpeeeixy oxp oot B gle /D (BB 0 By B D)

Obviously this is only a very restricted type of communication,
which only occurs if the sending process has already terminated

and the communication is its last action.

To obtain more general types of communication, it seems adequate

to consider a particular domain
poM = (aToM U sEQ)*

where SEQ = ATOM'. We use the functions isempty, first, rest

as defined in section 2 and the function

1 L 1
app : ATOM x SEQ — SEQ

defined by

apple, s) = { ap(e,s) if e # 1, s % 1

1 otherwise

where ap 1is defined as in section 2.
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With this definition, DOM is a tlat domain, provided ATOM
is flat. It is a proper subdomain of the domain of streeams.
In contrast to the usual primitive functions, we define an

application app(e, s) as maximal iff ismaximal(e) holds.

Now specific computation rules for evaluating stream processing
tfunctions can be given:

Vi, 1 €1 <n+l s (E,»E! v (ismaximal(E ) A E; =E{})Ae€ ATOM =

i

O xpueayx sE DBy, By app(e,B ) E v B

. + L}
[0} P E$+1[app(e,xi)/xi])(El,...,En)

and for e € ATOM

sB

(A xl,...,xn:app(e.En+l))(El,...,En) ~ app(e,(lxl,...,xn.

n+l)

(Ey,..c /B

Lemma ;- If the computation rules of the preceding sections
are complemented by the rules above, the resulting
rule is also consistent, complete, finitary and

effective.

Proof': The consistency of the rules immediately follows
from the language definition and the definition
of the function app. Finitarity and completeness
is trivial. The effectiveness follows from the
fact that all elements s € SEQ are of
finite length.

Note that the rule above allows to shorten the computations be-

cause if En+1 is maximal because Xy is decisive, a substitution

of *; by apple, xi) should allew En+1 to proceed.
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Example: The producer/ consumer problem

rﬁgﬁ produce @ A x : if x=o0 then empty

else app(product(x),produce(x-1)) £i

funct consume % A s : if isempty(s) then t

else g(first(s),consume(rest(s)
consume (produce (n) )

for some n €N, arbitrary functions product and g, t€ ATOM.

In this example we obtain, assuming product(i) = pi€ ATOM

consume (produce(10)) -+

(As: ...) {((Ax: ...) (10)) » ...

(A s : ...) (app(product(i0), produce(9))) - ...

(A s : ...) (app(plo, ap(pg, (A x : ...) (8)))) »

(A s s if isempty(app(plo, s)) then ... fi) (ap(pg,...)) - ...

However we cannot conclude in this step

isempty{ap(p, , s}) » £f
since s may be 1 . Therefore in our example the consumer
process has to wait until the producer process has successfully

terminated. So the benefits of the two rules of communication

cannot be fully exploited.

end of example

So one really has to consider sie non rlat domain of streams

instead of the flat domain used sc far.
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5.2 Streams

To cope with this problem we would like to have rules like

isempty(ap{e, s))= £f,
first (apfe, s))= e ,

rest (ap(e, s))=1s ,

for all s € STREAM , e € ATOM i.e. we need a nonstrict con-
structor tunction like the one used in lasy evaluation (cf.
/Henderson , Morris 76/, [Friedmann, Wise 76/. So we define now

for DOM = ATOM U STREAM where STREAM = SEQ U (ATOM*x{1}) UATOM™

.&. : ATOM'L x STREAM - STREAM
first.: STREAM - 1-\T0M‘L
rest. ; STREAM -» STREAM
isempty. : STREAM - {tt, f.f}"L
empty : -+ STREAM

BlE & 5] = &y N {ap(e, s)}
e €B[E] s € Bls]

Blfirst 81 = &y  {first(s)}
s€nls]

Blrest s8] = (+ {rest(s)}
s%B[S]

Blisempty sl = (&) {isempty(s)}
s € Bls]

Blempty] = { ¢}
where ap, first, rest, isempty are defined as in section 2,

From the results of section 2 the continuity of the contructs
%, first, rest esnd isewpty immediataly follows. Now our compu-

tation rules can be complemented by the rules:
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first (E & S8) - E,

rest (e &8) -+8 for e € DOM, o # L
isempty (e & 3) - ff for e € DOM, o % L

E-E' = E&S - E' &S,

E-»E' = first E - frfirst B' ,
E-E' - rest E - rest E' ,

E -+ B = 1sempty E - isempty F' ,

isempty empty - tt,

ismaximal (E & 3) = ismaximal (E},
ismaximal (first S) = ismaximal (rest 35) = ismeximal (isempty S)=

ismaximal (3).

Using these rules one obtains really systems of communicating
expressions, however, the communication paths are still nomcyelie.
For expressing real "feed back" we introduce systems of mutualiy

recursively defined streams.

5.3 Systems of Expressions Communicating by Streams

For allowing cyclic communication paths, systems of expressions
which mutually communicate via streams are considered using the

following syntax:

< c~program > = [{funct <function identifier>s<funct abstract>,}”

{stream<stream identifier>s<expr>,}* <expr> ]
Throughout this section we consider the scheme R of the from:

[funct f1 = F .., funct fn = F |

17 n

Stream s, & S

i 1,...,stream sm =3 , EJ

m
where s; does not oecur in F,.
To define a semantics for R again fixed point theory is

applied.
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A system of expressions communicating by streams corresponds to
a mutually recursive definition of streams. This coincides with
the result of /Broy 80b/, where it is shown that every tail-
recursive system of concurrent processes working on shared
variables within conditional critical regions can be transformed
into & system of mutually recursive nondeterministic procedures.
If the right-hand side E of a stream equation consists of a
deterministic expression  functionally no difference can be
found between the stream equation stream s s E and the re-
cursive definition of a nullary function funct s ® A : E

(cf. the proposal of /Kahn T4/, /Kahn, MacQueen T7/).

Note, however, that for instance the system S1

[gunct € % 2 : (1] 2) & empty, first £()=first £()]

is different from the system 82

[stream s= (1{]2) & empty, first s = first s}

since functions are treated by simple substitution ("call-by-name"-~
like with respect to the body of the function), while streams are
to be substituted (elementwise) only after evaluation ("call-by-
value® or more precisely "call time choice”), such that

SET(B[S1]) = {tt, ff} while SET(B{S2]) = {tc}.

So to avoid mixing alternative possibilities of behavior {cf.
the "merge anomaly" described in /Keller 78/, /Brock, Ackermann 81/)

we have to consider the stream equations as multisets of fixed

point equations rather than one fixed point equation for a multi-
set-valued ("nondeterministic") function. To explain these problems

let us consider the following example:
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Example: Consider the two programs

Pl : [funct £ =X : (0 & £()f ((1 + first £()ar()), firsc £()]
P2 ; [stream s = (0 & s) I <1 + fizrst s) & 8) , first s ]

OQur definition gives SET(B{P1]) =mU (1}, however for the
stream we would like to obtain SET(B[P2)]) = {0} U {1}

end of example

Intuitively speaking, a stream equation defines a process with

one determinate identity for each of its applications in one

particular instance of evaluation, while a fuaction equation
defines a nondeterminate function where for evary application

a new individual choice can be taken.

Therefore we introduce a new semantic function BF , associating
with every expression E in which at most the free stream
identifiers s = (Sl""’sm) oceur a functional which gives

for every m-tuple of streams a multiset of detsrministic

partial functions, which can be taken as functions for defining

streams a3 their least fixed points.

BF : ExP[s] -+ (STREAM® -+ MD(STREAM" ~ STREAM))

Now we define:

BF [if C then El else E2 fil (§) =

(\J . flcond(p,£)} if p(8) = tt
£ € BR[E1] (s)
&)
p € BF[CI(S) W {cond(p,0)} 1f p(H) = ££

£ € BF[E2](5)

{q} otherwise
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BF(s;] (3) = (1 Spaeeaas 58]
sr(Er [ E2) (3) = BIE1] SV siEel (3)
aFfe] (3) = (A Spaeeeasy e} for ¢ € DOM

BF((A x ,...,x : E ) (E ,...,En)] (5) =

1 n n+1 i

N .t & 8F[Eu+l [fl(s)/xl e gl(s)/xn]](g)
£,€ BF[sll(s) £€ BE‘[ED](;)

BF[g(El....,En)] (5 =

. €§ZE](§).'£€\:’[E]('§) s+ glE (s),... 5 (s)))
1 1 n n
where Q denotes the totally undefined function and cond:
(sTREAM™ — {tt, fr, L} x (STREAM" - DOM) - (STREAM™ - DOM)
is defined by cond (p, £)(3) = iz o(5) then £(3) else L.
So given the system R, we assoclate with fi the least fixedpoint
BF[fi] = BF[Ei] where F; = x,,...,x i E.

nj 1

So we may define

BF[fi(E],...,Eni)] )= @&y _ 7, .
h €BF(E 1(s) "*~ ‘nniEBF[Eni](s)
oy . . (ls:f(h1(s),...,nni(s))}.
fﬁBF[fi](hi(sl),...,hni(sn

We assoclate with s = Sysee-Sy the multiset S:

s = ¢y * {8} 1f s=v§ 2y (8),...,0 (3))
s € STREAMT hIEBF[SIJ(s)

# otherwise
(N
hmEBF[sm](s)

where Y denotes the least~-fixed-point operator for streams.
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In particular systems of expressions communicating by streams
can be used to represent networks of processes as considered

for instance in /Arnold 79/.

Again a number of computation rules can be given to evaluate

such systems of communicating expressions.

Now we define U4 rewrite rules. We use the abbreviations:

Rl = (stream s, = 51,..., stream s = Sm, Sm )

1 +1

= = M 1 .
R2 (stream s1 Sl""’ stream so - Sm, Sm+1)

(1) Perallel computation

Yi, 1 54i<ml s (Si-oS' v (1smax1mal(si) A S

i =Si))-Rl»R2

i

{2) Communication

(S, =e &S, AVL, 1 SL<mtl : (1#)=S] =S

3 3 [e&sj/sj])/\

i

'55 = sj[e&sj/sj]) = R1 - R2

(3) Termination of single processes

(S, mempty AVi, 1 St <m#l : (1%J=S] = Si[empty/sj]) -

3
Ri - (stream s, = S!, ...; stream sj_1 = S:'j__1 A
<e., Stream s, = Sl;‘, s'..)

stream s n+1

341 7 Sjar

(4) Termination of the system

where e€&DOM
Sm+l = e= Rl »e

The first 2 of these rules can be combired into one rule which
guarantzes the simultaneous progress of the evaluations of the
single processes (pote that this is just one possibility for a
ccmputation rule assuring the continuous computation and communi-

cation progress for all processes).
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Vi, 1 <i<m+ 1 :
@bi +5; v (1smax1mal(bi)A 8, = Si)) AC; = Si) v
g = 3 = . . 1
(oi ey & Si AC; Se; &s; Al +m+ 1)) A

(-3
8! =5 [C1/s‘,...,Cm/sm] = Rt - R2

For communicating intermediate results to the outside world

one might add rules like (ef. rule (4)):

S =e & S' - Rl - e & R2

Again the computation rule resulting from adding this rewrite
rule to the previous rules is effective, finitary, consistent

and complete.

Similar rules may be considered as an extension of the technigue
of eall-by-need (c¢f. /Wadsworth 72/) or delayed evaluation (cf.
/Vuillemin T4/) to primitive functions which previously have
always been assumed to be strict (cf. /Manna et al. 73/) leading
to the concept of lazy evaluation (cf. /Friedman, Wise 76/ ,
/Henderscn, Morris 76/, /Bauer 79/). This allows a treatment of
infinite objects such as infinite streams by particular compu-
tation rules. The rules given above, however, then could be

called "speedy evaluation", or also "busy evaluation" or,

extending the notion of section 4 to primitive functions,

parallel evaluation, since the evaluation of an infinite stream

is not delayed until a selector function is applied as in lazy
evaluation, but the evuluation is continucusly enforced such

that an infinite stream is consecutively generated.
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Example:
Let the function £ be defined by :

funct £ = A t, n : if n = O then empty

else (first x+1) & f(rest x, n-1) £,

and the interactive system E by :

E & [stream t = 0 & £(t, 2), t ] .

We obtain a computation sequence for E by our computation rule.
UNFOLDING f and simplifying the result we get:

[stream t = 1 & £(t, 1), 0 & t]

Applying the rule again we get :

[etream t = £(1 &£, 1), 021 &t}
and: [stream t = 2 ¢ f£(t, 0), 064 1 & t]
and: [stream t= f£(2at,0,081824t]

and: [stream t = empty, 0 &1 & 2 & tf
and finally : 0 & 1 & 2 & empty

Since no nondeterminism is involved, we can use simple iteration

to compute the fixed point of the stream function: The iteration

gives
£ -
M . (oa 1}
¥ . {os 1 s&ll}
¥ sost1e2a1)
k@ = {081 & 2 & emptyl
K® K(A«m) - K(4)

end of example
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Example: Applicative Loops

|hpplicative loops"(the name is due to Keller) can be seen as
specific "iterative" programs producing an (eventually infinite)
stream. They can conveniently be used to compute sequences of
results of a function given in the form of course-of-value re-

cursion. Consider for instance

functfikfi:i_f_n=0thenEO
else if n=1 then El
else g(f(n-2), f(n-1), n) f£fi

then with

stream s ® EO & (El & h(s, 2))

where

funct h = A s, n : g(first s, first rest s, n) & h(rest s, n+l)

One simply proves, that

Eirst rest i s = £(i)

This is a simple example for a formally justified transformation
from :lassical applicative programs to stream processing pro-

grams. Note that the progrem above consists of an "inner most"
recursive definition of the stream s (in contrast to "outermost"-
recursion or tail~recursion for recursive functions representing

loops).

end of example
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Eaample
If a program is required which generates the infinite stream

of all numbers >1 of the form 2 x33x 5% (ce./Dijkstra T6/),

in ascending order one may use three communicating streams:

[ funct streammult = A n, s : (nx first s) & streammult(n,rest s},
funct merge ® A s1, s2 : if first sl < first s2

then first sl & merge(rest s1, s2)

else first s2 & merge(sl, rest s2) fi,
stream sl # streammult(S, 1 & sl),
stream s2 ® merge (streammult(3, 1 & s2), si),

stream s3 = merge(streammult(2, 1 & s3), s2), s3 J

The correctness of this program may quite straightforwardly be

proved using induction.

end of example

6. Concurrency

One of the most intricate issues in multiprogramming is that
of concurrency. Analogously to everyday life one may talk of
two (or more) concurrent candidates (processes, expressions,
programs), if these two candidates both compete for something
(for instance to be served or to be elected). For resolving a

competition a choice has to be made.

6.1 Ambiguity Operator and Nonstrict Merging

One may consider an expression (El {| E2) as a competition of the
expressions E1 eand E2 for being chosen. However, in contrast
to everyday life, this choice is performed in a totally arbitrary
way without taking into account any of the particular properties

of El or E2. Therefore in the expression



- 48 -

[stream s = S1, stream s2 = S2, if C(s1,s2)

then first sl else first s2 fi]

there is no way to formulate the predicate C such that the first
alternative is chosen if first sl # 1 and the second one is
chosen, if first s2 * L (and ambiguously one of them is chosen

if both are # L). If such a predicate would be definable, then

functions g would be definable, such as the parallel or

g(tt, 1) = tt, g(li, tt) = tg, g({ff, £f) = £f

According to /Hennessy, Asheroft 80/ such a function is not
definable in a nondeterministic language like the one defined

in section 3. Note that all definable functions are either
constant or strict in at least one argument. But cven the “paral-
lef‘or would not solve the above problem.

However, one mey use a more strongly defined choice operator,
such as McCarthy's ambiguity operator, the meaning of which is
specified in /McCarthy 63/ as follows:

"We define a basic ambiguity operator amb(x, y), whose
possible values are x or y when both are defined,

otherwise, whichever is defined."

Formally the definition mey be written:

<y if x#*L, y#.1
X if x*1l, y=1
amb(x, y) = Y if x =1, y#* 1
4 if x =1, y=1

and C(sl, s2) in the program above may be expressed by

amb{— isempty sl , isempty s2),

This is a nonstrict extension (and so not a natural one) of the
choice cperator.
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However, the ambiguity operator causes several problems:

- it allows writing noncontinumus functions such as
funct £ ¢ A x : amb(x, £(x+1))

where £(0) represents a multiset which is not finitely
approximable, i.e. it is not a member of the multidomain

(cf. also the discussion on fairness in /Park 80/, /Broy 81/,
/Apt, Plotkin 81/, /Broy, Wirsing 81b/)

~ it is not even monotonic, neither in the Egli-Milner ordering
nor the multiset-ordering, since {1} C. {1}, {1} C_ {2}, but
amb(1, 1) = {1} 5_ {1,2} = amb(1,2).
This is even worse since in the case of noncontinuity but
monotonicity (like in the fairness-discussion) one can still

work with least fixed points (cf. /Apt, Plotkin 81/).

Moreover one cannot hope to obtain finitary, consistent, complete,
and effective computation rules which compute £(o) , since, due
to Kdnig's Lemma, a finitary tree (i.e. a tree with a finite
number of branches at each node) may only contain an infinite
number of nodes if there exists an infinite path (i.e. the tree
is infinite) and therefore a nonterminating computation for

£(o) can not be excluded by a complete, finitary rule.

8o one has to choose between dropping completeness or finitarity.
Since infinitary rules do not seem very realistic, because

no real machine can be assumed which makes an infinite number

of choices within finite time, we drop the requirement of complete-
ness and rather consider an infinite set of finitary, effective
and consistent computation rules, such that for each feasible

value X there exists at least one rule which computes x .



This very clesrly reflects the needs of software for parallel
processsing. For every program p any implementation or system
S does not guarantee that every feessible value x of P can

be the result of running P on S, but every result x computed
by § when applied to P 1is a feasible value. Thus one might
talk of "loose" nondeterminism here (as an interpretation of

this notion as found in /Park 80/).

In accordence with McCarthy's ambiguity operator a choice
operator V is used in infix notaticn speciried by

B{E1 ¥ E2] = \J/ &) B [amb(el, e2)]
et € B{E1] e2€ B[E2]

Note: The use of a special element none as advocated in
/Henderson 80/ corresponds to backtracking on finite
errors and reflects a much simpler concept, causing no

problems with continuity.
end of note

As a consequence, "V" is not continuous and not even mono-

tonic.

Theretfure we use another approach, sxploiting the following

two racts:

Lemma: All language constructs are monotonic with respect

to the descendent relation, i.e. multiset-inclusion:

B{e] c BlE'] implies Blcu[E]) < BlcN[E']]  for all

contexts CN .

Proof: Structural induction (cf. /Broy et al. T78/)



This property is in particular of interest for program develop-

ment by refinement. Now we define a second choice operator A :

B{E1 A E2] = \J \J {e1, e2}
et € B{E1] e2 € B[E2]

Trivially A 1is monotonic and continuous.

Lemma : Let E be an expression and ¥ be the expressiong
resulting from replacing all occurrences of V in E by A then
B(E] < B(E]

Proof: B[EIVE2] < (E14E2] for all E1, E2.

Given a program P:

[funct £, a F ,..., funct £ = F_,
D 1 T

1

stream s, = 8,5+, Stream Sy ® 8, E}
and the program P resulting from substituting all occurrences
of "V" in P by "A". The sementics of P is well-defined.
So functions ?i can be associated with the recursive definitions
in P by taking least fixed points

n,

F. :poM ' - MD (DoM)

of the equations f; (x],...,xni) = B[(Fi[fllfy"“'fn/fu])

(xl,...,xn_)]. Now we associate functions fi' with the runctions

i
in P by taking the > -least(i.e. < -greatest) fixed points

n.
£7: DOM © ~ M (DoM)
of the equations
i‘]{ (x

1,...xni) =BI[ (Pi[f;/fl,..., f‘r'l/fn])(xw...xn)]

' . T
where f! (x,,. 'xni) c ¥ (x1, , x“i)'
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Due to the < - monotonicity and Tarski's fixed point theorem
such fixed points exist andare uniquely defined.

Note, that the definition of the constructs of our language
{apart from fixed point definitions) alsc works for arbitrary

multisets not contained in MD{DOM).

Similarly we define

. 1,52} iz b1 (3) * 4, B2 (§) = 1

ey vez] (o) = fh1} irht (3) L, n2 (3) = 1
) (87 {n2} it ht (3) =1, h2 (3) & L
hi € BF{B1]1{5)n2 € BF(E2](5) (@) irnt (3) =L, n2 () =L

Now in systems of recursively defined streams .o may associate
with the S muliiset of functions BF[fi] as the < - maxi-

mal fixed point of

BF[fi} = BF[Ei] vwhere Fi = Xx],...,xni : Ei and

BFif;] < BF{F,]
and the BFf?i] are the fixed points associated with B.
So we may define

8 = @B A\
n
s € STREAM . € BF[S,]1 (s)

& Do4ls} e suﬁ':h‘(?).. .. shy(8)
h €BP[S 1({s)
= m @ otherwise

Note, that the functions in BF[fi](E) are still monotonic

and contipnuous in spite of using the ambiguity operstor.

Finally

+ , , .
B{P] = (s;,}?ﬁ,gu)E.S B[E[s‘/sj,..., smlsn’ f‘/fT,...,f;/fn]}

where the f; in B sre defined by the fixed points above.
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For lack of space we restrict ourselves to one particular rewrite
rule for the operator V , At first a condition for the maximality

is given (note that the expression (E1 || E2) is never maximal)

ismaximal (E1) A ismaximal({E2) = ismaximal(El V E2)

As a rewrite rule one may use

- ismaximal(E1 V E2) A

(E1»Ei' v (lemaximal(El) A El = E1*,) A

(E2+E2' v (ismaximal(E2} A E2 = £2')) = (E1V£2) - (Ei' VE2') ,

e€DOM ~ {Ll} =» (aVE)— e, (EVea&)- e,

and in addition for streams
e €RTOM ~ {L] = ((e & s1)V 32) » (e &sl) (slV (a & 32))~» (& & 32).

Complenenting the computation rule of the preceding section by these
rewrite rules leads to an effective, consistent and finitary rule,
which is no longer complete, however., Mote that replacing
El-El' and E2 » E2' by Et 3 E1' end El 3 E1' resp.,

n, m €N~ {o}, vhere B 3 E' means: there exist expressions
El""'En—l such that E -~ By v ...~ En-—l - E' holds,
immedistely leads to an infinite family of effective, consistent
and finitary rules, such that for esch feasible value x there is
& rule which pussibly computes x . We like to talk about "loose
implementations of nondeterminism® interpreting the notion "loovse
nondeterminism" in /Park 80/ (cf. also /Broy, Wirsing 81a/).

fhe introduction of the V-operator into the nondeterministic
programning language essentially changes our notion of computa~
bility. According to the results of /Chandra 78/ now all sets

. 1

in z] may occur as Jdomains of nonterminating computations.
This fact is no longer surprising, if one adapts the notion of

loose rondsterminism (coined in /Park 80/) to computation rules
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for nondeterministic functions. Let CR be the set of tinitary,
consistent and erfective computation rules. A computation rule

r € CR may be considered as a recursive multiset function

r : PROGRAM - M(DOM)

A function
£ : poy™ —+ M. (DOM)

ia called definsable iff thers exists a program Hxl,...,xn)
Y BpoeoesXy € DoM
SE.'J.‘(B[t(x foeesk )]) ={y€DOM: I r€ECR: POX,,..a0k)) 5 y}

Accordingly not oné complete cgmputation rule is considered, but
an infinite number of computation rules, each of which is not
complete, but vhich together are "“complete”. This properly

wodels the (in principle) infinite number of implementations

of @ concurrent programming langusge, each of which is not
required to be complete, but consistent, effective and {according
to the impossibility to do an infinite number of decisions in
finite time) finitary.

Note, that the introduction of @)— and - nodes into
procedural proyming languages &8 used in /Manna TO/ has
some similarities to our V - and ﬂ—operator resp. However,
in our nondeterministic programming language, we can prove
clEet ' g2} = cle1l ﬂ cle2] for each context C , however
c(e1 v 2] = c{e1] V clet] does pot hold, while in /Manna 70/
one elways has c{s1 @ 52} = c(su ‘C [s2] as well as
clst s2) = cls1] Gad) cis2). For this simpler case

vith more convenient algebraic properties, /Chandra T4/ proves
that both concepts are independent, i.e. that cannot be
expressed by and vice versa. In our language we have:
if tt V Zf then El else B2 f1 is equivalent to (E1 [ E2)



and not to El V E2 , vhich would be the case if one systemati-
cally translated the concept of alternation (as the other

approach is called in /Chandra et al., 81/) into our language.

Note, that the ambiguity operator V can also be used to
specify the logical "parallel or" (and "parallel and"):

funct paror = X x, y :

if x then tt else y fi V if y then tt else x fi

Interestingly the function paror can be viewed as a determinate
function (in the powerdomain approach) with paror(tt,x) =
paror(x, tt) = tt, paror(ff,ff) = ££f, paror(l, 1) =41 for all
x € {tt, £ff, 1}, while in the multidomain approach it is non-

deterministic.

In a similar way the ambiguity operator V can be used to
specify disjunctive (multiple) waiting. Given a guarded wait

commend :

await B, then E

V ... VB_ then E_endwait
1 n ——— n ———

1

which can be defined by

else await b, then E_ V ...

2 2
V b then E_endwait fi) (B,,..., B))
n ——— p ———— = 1 n

where

B, = if b, then ff else L £i V ...Vis b then ff else L fi

One proves easily, that in the await - construct the pairs

(B, then EL) can be arbitrarily permuted without changing the
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semantics, i.e. that in spite of the unsymmetric expression

above the await - construct is symmetric in its guards.

Exemple: Disjunctive Waiting

[Efunct table ® A s:g(firsts) & table (rest s),
stream sl = table(l & sl), stream s2 & table(2 & sZ),merge(sl,sZ)J

where

funct merge = A si, s2 :
await v isempty sl then (first sl)& merge(rest si,s2)
v ™ isempty s2 then (first s2) & mexge(sl, rest s2)
v isempty sl A isempty s2 then empty endwait

end g is some recursive or primitive function. The result of
this program is an infinite streem, iff at least one of the
streams sl or 82 is infinite. Note that it is not a fair
merging in the sense of /Keller 78/, since if both sl and s2
ere infinite, s1 as well as s2 may be & possible result,
vhere s2 {or sl resp.) do not contribute anything. Fair
merging seems only to be a fair concept (cf. /Broy8la/), if we

switch to real time processing.

end of example

Our system is completely free of global nondeterminism , i.e.
all decisions can be made by the single processes without any
feedback of other processes. Of course, certain decisions

can only be recognized as feasible after a number of communi-
cation steps, however, when the communication has taken place,

the decision can be made locally.



In Milner's CCS (cf. /Milner80a/) or Hoare's CSP (c¢f. /Hoare 78/)
the communication is generally coupled with a nondeterministic
choice. However, a single process camnot decide by itself which
alternative for communication is to be chosen. The “rendezvouz" -
concept needs some coordination before an actual communication
oceurs. In particular, if no priorities between the processes
are given, a global instance is needed to resolve conflicts.

As outlined in /Francez, Rodeh 80/ there is no way of getting a
fully distributed, symmetric implementation without using
probabilistic computation techniques. These techniques, however,
may not be satisfactory, since they may restrict possible

implementations on real computing systems in an inadequate way.
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6.2. Nonstrict and Nonsequential Functions

As it has been seen from the previous sections nonstrict functions
play a prominent role in applicative multiprogramming. So it seems

worthwhile to relate these functions to classical notions.

In the mathematical theory of partial recursive functions a partial

recursive function f is a recursively defined, partial mapping

£ I —iN

vhere for each tuple X., ..., X € IN the application f(xl, vees xn)

‘l’
is either not defined or yields a natural number Yy € |N. This can

simply be modelled by a total function f°'
£ v
where
f(xl,...,xn) if f(x1,...,xn) is defined
f'(xl,...,xn) =

n otherwise

Here 1 is just introduced as a symbol for "undefined". Now let

us consider a function

g ¢ (N)"—s b

The function g is called strict if

g(xl, vees xn) =L if xi=-‘- for some i, 1$i<n,

otherwise g 1is called ponstrict. BEvery partial recursive func-
tion can be simply associated with a strict function. However, how

are the nonstrict functions related to partial recursive functions?

Following /Vuillemin 75/, page 55, we define:

= ioustant (g
g is callea seguentiﬁ, if' n=0Dor if there is an index i, 1<ifn,
such that

(1) for all x ...,xnem'-:

1?
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=L = = L
X5 g(x], cees xn)

(2) for all x € IN-;

. n-1 L -
hx.(NL) —s N where hx(y1, v yn_])

By qs wees Yy ys X5 ¥is eeen ¥ )

n-1

is a sequential function
otherwise g 1is called nonsequential.

Clearly strict functions are sequential. Classical examples for non~
strict but sequential functions are if-then-else, "sequential and" and
"sequential or" (cf. /Bauer, Wossner 81/). Classical examples for non-
sequential (but monotonic) functions are "parallel or" and "parallel
and". Generally one considers only monotonic functions, which (in

the case of flat domains) is equivalent to considering functions with

regular tables as defined in /Kleene 52/, page 33k:

A function
g : () —ind

has a regular table,if for all i, 1<ifn, Xqs sees Xy € with

glay, wons X 45 O # 4 the function h where

h I N

e Xip vevs X

where
i’ n—

h(x) = g(x‘, cees Xi_ga Xy Kg, eees X 1)

is constant. On flat domains every monotonic function has a regular
table and even the reverse holds: functions with regular table are

monotonic,

Note, thet for nonsequential functions g an evaluation of a func-
tion application g(E1, vees En) requires the parallel (or at least

the quasi-parallel) evaluation of (a subset of) the arguments.

Let us consider the applicative language as given by the syntax in
section 2, just leaving away the nondeterministic choice. A partial

recursive interpretation (represented as a total function):

1 : Bxp—s vt
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(for simplicity we consider just arithmetic functions) is defined by

I[E] = x iff BlE} = {x} Of course, I associates a function f
£ ()P
with every function abstraction

A=%Nx, .00, X T E
by

f(m], cees mn) I[('\xl, cees X E)(m], vees mn)]

since I is homomorphic
I[(’)xl,...,xn : E)(E],...,En) 1= f(I[EI],...,I[En]).

Thus every function abstraction defines a monotonic function.

All recursively definable functions are sequential iff all primitive
functions on which they are based are sequential (note, that the con-
ditional is a nonstrict, but sequential function). If we add, however,
a "nonstrict, nonsequential conditional" (cf. /Plotkin 77/, /Friedman,
Wise 78b/), defined by

1[E1] if 1[c] = tt v I[E1] = 1[E2]
I[nif C then El1 elsge E2 g] =4 I1[E2} if 1{C] = ffr v I[E1) = I[E2]
1 otherwise

then all computable functions g : (NL)®— ¥, i.e. all monotonic
functions g, which are 1lub's of a recursively enumerable direct-
ed set of monotonic (finite) functions, asre definable.

Note, that this conditional nif is the deterministic counterpart to

funct nif =9e¢, el, e2 :

if el = e2 then el else 4 fi V if C then el else e2 fi
i.e. for deterministic expressions C, E1, E2 we have
{1[nif C then E1 els€ E2 fi]} = SET(BInif(C,E1,E2)]).

Nonsequential functions are of interest in multiprogramming for sev-—

eral reasons: They need an at least quasi-parallel evaluation (see de-
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mand-driven evaluation in section 7). And they are related to the
ambiguity operator, which can be seen as the "ultimate” nonsequential

function.

For nondeterministic functions

g+ (W) - Pal)
the derinitions cen be extended in a straightforward way:
g 1is called nd-striet, if

1 ég(x1, ...,xn) ir xi=-L tor some i, 151iX%n.
§« ccn.atm*ﬂ(c-:j\
g 1is called nd-sequential, irt n=0 )or if there is an index

i, 1£iSn, such that

(1) for all x ceen X el

1)
=1 = 1
x5 = €g(x1, cees xn)
(2) for all x € |N:

n: )"l Py
where
ho(yys cven ¥ ) = 8yqs coes ¥ g0 X s eeen Yy y)

is a nd-sequential function.
Otherwise g 1is called nd-nonseguential.

Note, that in /Péppinghaus, Wirsing 81/ nd-sequential functions

are called "hereditarily guarded".

We detine: g has a nd-reguler table, if for all i, 1<i<n,

i L 4
Xqs vens X €N with ¢g(x1, T TR TTIRTPN xn_1) the

1
function h where

h o N-PlNL)
where

h{x) = g(x], cees Xggs Xy Xy oeeey xn-I)

is constant.
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From these definitions we easily obtain the following classifications:

On the powerset over flat domains in the Egli-Milner ordering mono-

tonic functions have nd-regular tables. The reverse does not hold.

The choice operator "[J' is nd-strict and hence also nd-sequential.
Combinations of this choice operator with monotonic nonstrict functions
may lead to nd-nonstrict functions; the same holds for monotonie
nonsequential functions. But the resulting functions still have

nd-regular tables and are monotonic in the Egli~Milner ordering.

The ambiguity operator '"v", however, is nd-nonstrict and nd-non-
sequential. It does not have a nd-reguler table and it is not mono-

tonic in the Egli-Milner ordering.

Note, that applicative languages that allow only for sequential
functions are not "definitionally complete", since they do not allow to
define directly all functions by abstraction and recursion which

are recursively computable.

Interestingly most languages and theories for applicetive programming
are sequential, i.e. they do not consider nonsequential functions

and therefore can be restricted to purely sequential operational
semantics. For instance, in /Manna et al. 73/ besides the if-then-
else and constants all primitive functions are assumed to be naturally
extended, i.e. strict. This is why the leftmost-outermost rule is

safe in this theory and thus a fixed point rule. If one considers
non-left-strict or even nonsequential functions, the leftmost-—

outermost rule is not safe, of course.
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7. Nonconventional Computational Models

For the classical "von Neuman" architecture, a sequential, stored
program computer, it is very difficult to obtain simple extensions

to parallel computations for the following reasons: The computati~
onal model on which the von Neuman architecture is fundamentally
based is an optimized, strict, innermost evaluation principle for
simple tail-recursive, sequential functions (ectf. /Broy 80a/, p. 138).
Only this way the classical notion of program variables can origin-
ate {cf. /Landin 65/; for a comprehensive diescussion see /Bauer,
Wossner 81/). All extensions to parallel executions such as multi-
processors, array processors or vector processors have to combine

the inhereﬁtly sequential basic computational model in some (rather
artificial) way with concepts of parallelism. This leads to an over-
head of synchronization primitives, such that the actual logical flow
of a purallel computation is hidden behind a mess of unimportant

details,

Consequently it seems worthwhile to look for other computational
models than that used for the von Neuman architecture as theoretical
foundations of innovative hardware architectures, especially if one
thinks of & large number of processors (possibly on one chip) running
in parallel.

For computations which are not driven by straightforward strict seque-
ntial control we may, in principle, consider two other evaluation con-

cepts: Demand driven evaluation and data driven evaluation,

In demand driven evaluation the evaluation of & subexpression Ei is

started during the evaluation of a given expression E(E1), only if

it turns out that the value of E} is actually needed for the com—
putation of the value of E(E1). So demand driven evaluation leads

to (quasi-)parallel evaluations only if nonsequential functioms occur.

In the case of sequential functions it corresponds to a purely sequential
technique to handle nonstrict, recursively defined functions, i.e. opti-

wized call-by-name, and nonstrict primitive functions (infinite objects).
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In particular it is the basis for concepts such as call-by-need
/Wadsworth 71/, delayed evaluation /Vuillemin T4/ and finally lazy

evaluation /Henderson, Morris 76/.

In data driven evaluation a subexpression is evaluated as soon as all

decisive data are available. It is the basis for the evaluation concept
where operations are enabled as soon as sufficient data have arrived.
Since generally several operations are enabled simultaneously, this
technique enforces & lot of parallelism. It allows to treat even non-—
sequential functions in a straightforward way. In particular, it in-
cludes unbounded parallelism, because the maximal number of parallel
actions going on in one computation can generally not be counted by

syntactic considerations only.

In the computation rule described in the previous sections sll con~
structs are treated by data driven evaluation apart from conditional
expressions which (in respect to its alternatives) are evaluated in a
demand driven mode. For a concrete hardware architecture with a high
number of processors the evaluation strategy should always be mixed:
Data driven as long as enough processors are available, switching

pertly (locally) to demand driven as soon as all processors are busy.

7.1. Reduction

Reduction is probably the most general way to describe operational
semantics. It simply corresponds to textual substitution rules. So it
describes a concrete implementation of the process reducing the program
given in one particular representation by a number of steps into

some “normal form" (cf. "textual substitution machine" and "Herbrand-

Kleene-machine" in /Bauer, Wissner 81/, p. 51/).

Since practically everything: programs, control states, data states,
etc., can be repreéented by terms, every computational model can be

described abstractly by a reduction model.

In spite of this reduction is used in a more technical sense as a

sketchword for a number of attempts to get hardware organisations
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where the term rewriting process for some applicative language is im-
plemented directly. In all these approaches the key question centres
arround the problem finding an adequate internal representation for
the intermediate terms. So generally two reduction techniques are dis-
tinguished with respect to implementation details: string reduction

and graph reduction.

In string reduction the programs are represented by a string of literals
and semantic values. Sometimes string reduction is connected to a "by
value" call mechanism (/Treleaven et al. 81/), because in string re-
duction multiple occurrences of identifiers are often simply substi-
tuted by copies of the corresponding expression and this process is
only efficient, if the corresponding expressions are reduced to values,

first (cr. /Berkling 75/, /Mago 79/).

In gruph reduction one introduces "references” to the resp. expres-
sions for ecach occurring identifier. So if the value of the corres-
ponding identifier is actually needed, then the expression is eva-
luated and the resulting value is kept (stored) under the reference
so that it can be accessed whenever it is needed (cf. /Keller 80/,
/Turner 79/). If no further accesses may occur the corresponding
reference and value may be deleted ("garbage collection"). Graph
reduction is considered just suited to outermost mechanisms (cf.

/Preleaven et al. 81/, p. 24).

As shown by the parallel evaluation rule one may use a string repre-
sentation snd nevertheless have a fully parallel evaluation rule and
also nonstrict functions (which generally are the result of outer-
most evaluastion rules). It is the result of -notation and of an
appropriate combination of techniques of mixed computation (partial
evaluation), parallel reduction and the separation of an applica-
tion of an n-ary fuuncting into n+l1 processes, in particular into

n slave-processes evaluating the arguments and one master process
evaluating the body expression by partial eveluation (ef. also /Broy
8Ca/, p. 18).



The enforced computation rule ("speedy" or "busy" evaluation) as defined
in section 3 is neither a pure outermost nor a pure innermost rule. As
shown in /Manna et al. T3/ innermost rules are not safe for nonstrict
functions. However, an innermost substitution step is only unsafe, if

it is done within an application of a nonstrict function. It seems even
dubiocus to use just the terms outermost and innnermost for classifying
computation rules. If one allows d-abstraction f(f(e)) can equivalently
be written (% x. £(x))(f(e)). For the latter term the classification

innermost call does not make much sense.

The evaluation rule can also be applied to expressions containing
free variables both for objects and functions leading to partial
evaluations or mixed computations (as suggested in /Ershov 78/).

In particular one may apply the rule to the bodies of the recursive-
ly defined functions to get optimized versions (cf. /Turner 79/,
/Bauer, W3ssner 81/).

Doubtless the most decisive problem for a reduction machine archi-
tecture is the efficient representation of the program and its in-
termediate versions. In the reduction process the program is step
by step changing its shape and its seize such that one may think of
a pulsating graph. A reduction machine, however, is a static device

which has to store the pulsating graph in a most efficient way.

As far as no infinite, recursively defined objects occur the program
expressions can be represented as trees (cf. Kantorovic-tree in
/Bauer, Wossner 81/). Certain reduction steps may simplify and de-
crease the seize of the trees, whereas other steps (like unfold for
recursively defined functions) may increase the seize of the trees. If
the evaluation process is to be executed on a network of processors
(for instance on a cellular automaton, cf. /Mago 79/), then a net-
structure has to be found, such that the distribution of the elements
of the trees all over the network as well as the communications of the

intermediate results can be performed in an efficient way.
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If the reduction process is to be executed sequentially, then of course
demand driven evaluation techniques are appropriate. Efficient strategies
are needed for finding the subexpression where the next reduction steps
ure to be performed. /Turner 79/ suggests to use combinators from com-—
binutory logic for this purpose. /Berkling 75/ uses an organisation of
three stacks through which linearized versions of the trees are pushed

and stepwise evaluated (reduced).

T1.2. Data Flow Concepts

A concept that works with a static graph and therefore is much closer
to concrete hardware architectures is the data flow concept. May be
this is the reason why it has obtained even more attention than the
reduction idea. It has been suggested t'irst in the form of the
"single assigument approach" in /Tesler, Enea 68/. There the

concept of a program veriable, which can dynamically change its

value an unbounded number of times, is replaced by identifiers

which can be attached at most to one value ("single assign-

ment"). However, this restriction makes it impossible to use iter-
ation and loops as in procedural programs, because for loops in pro-
cedural programs the repeated assignment to program variables is es-—
sential (cf. /Bauer, Wdssner 81/}. The introduction of recursive
definitions, however, destroys the static character of the flow

graph and leads to reduction concepts. An approach which keeps the
static tlow graph but allows for a specific form of iteration are
data flow graphs with loops. They are proposed in numerous papers
(cf. /Kosinski 73, 77/, /Dennis Th/, /Arvind, Gastelow 78/), but at
least in the case of nondeterminism the formal definition of their se-
mantics has not been solved satisfactory so far. Therefore a completely
formal definition of the semantics of a simple graphical data flow

languege is given in the sequel.

A deta flow program is & directed graph G = (V, A, I, O, L, OUT)

where
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- V is a finite set of nodes,

- A is a finite set of arcs called streams,

~ 1 and O are functionality functions I : V—‘A*, O: A—=+Vu {INS
- & labelling function L : V- SPF

~ & subset OUT S A .

where SPF is a set of function identifiers, the corresponding stream
processing functions are recursively defined, and for all nodes x
the function L{x) is n-ary iff I(x) is a word of length n,

and O is injective.

The arcs a with O{(a) = IN are called input streams, the arcs
in OUT are called output streams.

The meaning of a data flow program is given by the set of mutually

recursive stream equations
stream s_ = f (s ceey 8
=== "a &( a ? [ )

for each arc a with a = 0(x), T, = L{x), (al1 an) = I{x).

For each set of input streams thus a recursively defined system of

streams is given.

Example: With the following simple data flow graph:

x0 yo
T e )
36
c* s8
switch 3 switch ,
sk 2
s7
pro‘ =9 con*
\_ 35 ] T
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one associntes the sutually recursive system of streams:

stream
stream

stream

stream :

stream
stream

stream

stream s

stream s

where

funct pfilt

o 13
O
n n

er =

= merge(sxo, s9)

nfilter(s3, s1) ,
cXs1)
pfilter(s3, s1) ,
prof(s2) ,
merge(syo, s8) ,
ntilter(s3, s6) ,
con*(s2, s7) ,

pfilter(s3, s1) .

% e, s : if isempty(c) then empty else

if first c then first s & pfilter(rest c, rest s)

%
funct C = X s

funct nfilt

er =

else filter(rest ¢, rest s) £fifi,

: if isempty(s) then empty

if first c

X
funct pro =

funct con*=

A

w

else C{first s) & C*(rest s) fi ,

Ve, s 1 if isempty(c) then empty else
then nfilter(rest c, rest s)

else first s & nfilter(rest e, rest s) fi fi

: if isempty(s) then empty

else pro(first s) & pro (rest s) fi ,

1 51, 52 : if isempty(s?) isempty(s2)

then empty
else con(first s1, first s2) &

con*(rest 81, rest s2) fi .

s!'
Note, that the harmless looking junction s-——i of arcs is used as an

abbreviation for
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where merge is the "nonstrict" form using the V-operator (see
page 56). For the filtering network

< s

nfilter

The data flow graph implements the function procon:

funct procon = N\ x, ¥t

if C(x) then y else procon(pro(x), con(x, y)) fi

If we initialize sX = X & 1, ay, =y & 4, then procon(x, y) =
first s9. For making the network into a correct stream processing
function one has to provide the net with gates making sure that a
new argument is not allowed to enter the network before a result has

been produced. So the function

*
funct procon = x s8X, sy @

procon(first sx, first sy) & procon*(rest sx, rest sy)

is implemented by the following net:

sx' sy'

procon®
tt&. gate gate tté&.




stream sxo = guate(Lt&sy, sx'),

Stream syo = gate{tt&sy, sy'),

funct gate = l)\ s, s2
ir isempty(s1) or isempty(s2)

then eupty else first s2 & gate( rest si, rest s2) fi

This frame guarantees, that a "new" value enters the flow network

only when the old computation has finished.

However, the gute cean also be combined with the merge to an

"inbound switch"

\

funct iuswiteh = ‘& ¢, 81, s2:

where

if first c then rirst sl & inswiteh(

else first s2 & inswitch(

-est ¢, rest si, s2)

rest c, s, rest s2) fi.

Thus we obtain the deterministic data flow program:

sx?

3y

—

(xnswitch

a1

tt&k.

s3
switch
32

procon™

innnit;;’;\\

86

switch

9

s8

end of example
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Vice versa a mutually recursive system of stream equations defines
a data flow program. The one for the example at the end of section 5

reads:

streammult(3,.

streammult(2,.)




In particular, the elements of microelectronics can be seen as such
date flow networks. Let us consider a flip~flop. A straightforward

attempt to model rlip-flops by data flow graphs could look like:
Example: Flip-Flops (Bistable Circuits)

A representution of an abstract flip~flop by a data flow network

looks like (cf. /Bauer et al. 65/, p. 272):

sl s2

flip-flop

NoR®

]

D?Ri
BN

vi v2

where

tunct nor* - s1, s2 : - (first s1v first s2) & nor®(rest s1, rest s2).

The semantic definition for data tlow nets givec immediately

stream vi = x1 & norf{(s1, v2) ,
stream v2 = x2 & nor®(s2, vi) .

The boolean values x1 and x2 correspond the initialization of

the flip-tlop {of course we assume x1 # x2 ).



T

first s1 first s2 first vl first v2 first rest vl first rest v2

] 0 0 o] L I, _forbidden

o] 0 o] L [¢] L ead

0 o L 0 L o T

[} 0 L L 0 0 excluded
internal

4] L 0 & L ] state

g i g g 2 g set left

0 L L L o] (o] excluded
internal

L 4] 4] 0 4] L state

E g g g g g set right
excluded

L 4] L L o} o} internal
state

L L 0 o o 6]

L L 0 L (6] o forbidden

L L L o] 0 0o input

L L L L 0 [¢]

However, as can be seen from the table above the function does not
react like a flip-flop, since a reset operation always changes the
state of the flip-flop (the output) to ( 0,0 ). However, a repeated
input gives the right output. This simply means that the flip-flop
is idle in switching and that there is some "time" needed to reset the
£1ip-flop. 7This can be modelled by adding two functions to the flip-
flop, just doubling the elements of the input and taking away each

second element of the output:

L

Idouble [;oublel

| l

flip-flop

S

del



where

funct double = '\ s : first s & first s & double(rest s)

funct del = X s : first s & del(rest rest s)
Obviously del(double(s)) = s for all infinite and partial streams s.

Note, that doubling the input leads to stable states for all feasible
inputs; 1.¢. using three times or more times the same input would
not change the resulting state. This is not true for the unfeasible

input which may lead to unstable states.

endofexample

Of course, it is also possible to design hierarchical data flow net-
works, i.e. networks where certain which are again (hierarchical)

data flow networks., We even may allow recursion here, too, which leads
to infinite networks or (following reduction concepts) to dynamic

networks.

In data flow networks and especielly hierarchical networks the
generalization to nodes with several output arcs seems convenient.
Also functions with tuples of streams as result should be consider-
ed, which does not cause any additional problems. More examples for
stream-processing data flow graphs and networks are given in the

following section.
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1.3. Properties of Stream Processing Functions and Networks

In & network of communicating agents the nodes are associated with
stream processing functions, which are needed to define the streams
of communications in the net. For giving a proper foundation

for the specificetion and classification of stream-processing
functions in such networks as ‘well as for a design methodology
different classes of streem-processing functions have to be
distinguished, analysed, and their particular role in stream
processing has to be figured out. It seems impossible to do

this in this framework In a comprehensive way, but nevertheless

a first brief approach is given, showing in which way such a

classification can be done.
Let
SMF_ € STREAM" — P (STREAM)

where f € SMFn iff f is submonotonic, i.e. for all

s;» 8] € STREAM" :

It siEs{ for 1< i< n then

Vye f(s1,...,sn)] y' € f(s;,..., sx'l) cyey?
All recursively defined functions

T : STREAM" — M(STREAM)
of our language define submonotonic functions f by
f(s1, P sn) = SET(f(s1, ey sn)).

The resumption res of a n-ary submonotonic stream-processing funec-—
tion

res : SMF x STREAM™ — SMF,



is deflned by

res(f, 815 vees sn)(s;, vees s!')) =

{y € STREAM : 3 x € STREAM : x @ y ¢ f(s1 ®s], ...,y snos;l)
and x € (s, ..., s,) and x is partial }
where for x, y € STREAM
x if x is total (finite or infinite)
x'e y it x = x' e (&)
Obviously res and @ are homomorphic in the following sense:

[ vy = t t
res(res(f, Sis eres sn), S1s eees sn) res(f, s, 863, ....8 @ sn)

The validity of this equation follows immediately from the submono-

tonicity property of the stream processing functions.

Resumptions cen be used very conveniently to discuss properties of

submonotonic stream processing functions,

At first we want to look at synchronous functions f € SMFn. £ is

called synchronous iff
length(y) = min(length(sI ) IR lengch(sn))
for ull y € i‘(sl, cers sn) where

length(€) = length(+) = O
length(ap(e, s)) = 1 + length(s) .

£ is called k-local, if for all partial s; € STREAM,
leng‘th(si) =k, 1€1i<n :

res(f, Sys sees Sn) =f
otherwise f is called accumulative.

Of course every n-ary function g on atoms defines a 1-local straam

processing function g' by
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funct g*= A Sys sees S 0
if isemtpy(s]) or ... or isempty(sn)
then empty
else g(first s

..., first sn) & g¥(rest s,, ..., rest sn) fi

1’ 1?

Given a (n+1)ary function g on atoms and a (possibly neutral) ele-

ment e, we immediately get generally an accumulation function E;

versus
funct Eé =1 Sps eees S h(s1, cevs Sos e),
funct h = ‘A S5 cees S, XS
if isempty(s,) or ... or isempty(s )

then empty
else x & h(rest S,s
glfirst s

eeey rest sn,
3 e first S x)) £fi .

If in & stream processing network only 1-local functions occur and
the graph is free of cycles, then the network just defines a composi-
tion of 1-local functions and implements a 1-local function, too.

But if cycles occur, even in the case of 1-local functions the

resulting functions may be accumulative.

Example: We consider the accumulative function addo, defined by

funct add) = s : aux(s, 0),

funct aux = s, x : x & aux{ rest s, x + first s),
This definition can be used in a nonrecursive stream definition:
stream sum = EEEb(s),
We have Eﬁﬁb(s) =0& addt(s, ;ﬁab(s)) and we obtain:
stream sum = 0 & add.(s, sum),

That corresponds to the data flow program:
s

l

[o&add(.,.)

Sum



In this example the recursion in the definition of addo is
transformed into a recursion for the stream sum {(cf. also

S . bl
/Bauer, Wossner 81/, p. 295). end of example

The operator turning e function g into the stream-processing
tunction E; may be seen as an example of a combinator for

writing such functions without explicit recursion:

Example: Given the infinite stream s = 1 & s which consists of an
inrinite sequence of 1 and addition add and multiplication mult,
then

mult, (add,(s))

defines the stream of m! for m =0, 1, ...

An appropriate choice of a number of basic functions obviously allows

for writing a large number of stream processing functions simply by

combinators. This leads to languages like suggested in /Backus 78/.
end of example

An important example of a stream-processing accumulative function is

obtained by embedding the stack-principle into stream-processing:

Exemple: LIFO-nodes. Since streams are very similar to stacks, it

is very easy to program a LIFO-like mechanism

funct reverse = A s : store(s, empty)
funct store = ‘% s1, s2 :
if B{first s1) then first s1 & clear(rest si, s2)

else store(rest si, first s1 & s2) fi

funct clear = X st, s2 :
if isempty(s2) then reverse(s1)

else first s2 & clear(s1, rest s2) fi

We assume, that B denotes a deterministic predicate. Obviously

reverse is an accumulative function. Por some stream

s = (s &(...(so&s')...) with —vB(si) for all i, 1<is<n and
n

some s_ with B(s ) we have
o o

reverse(s) = (so & (s1 & (...(sn & reverse(s')...) .



The funciion reverse can be used to transform general linear

recursion into tail-recursion:

funct £ = '\ x : if B(x) then T(x) else g(f(h(x)), x) fi

using the auxiliary functions:
funet down = )\ x :

if B(x) then x & empty else x & down(h(x)) fi ,

funct up = ')s,x,y:
t first s = x then y

else up(rest s, x, g(y, first rest s)) fi

We have:

f(x) = up(reverse{down{x)), x, T{ first reverse(down(x)) )),
or eliminating the common subexpression:

f{x) = (At : uplt, x, T(first t))(reverse(down(x))

and
M(s) = (0t : up'(t, s, T(first t))(reverse(down'(s)))
where
funct down' = N a:
if B(first s) then first s & down'(rest s)

else first s & down'{(h(first s) & rest s) fi

funct up' = 'XS, SX, ¥ i
if first s = first sx
then y & up'(rest s, rest sx, T(first rest s))

else up'(rest s, sx, g(y, first rest s)) fi

In particular the following equx;tion holds:
reverse(down'(e & s)) = reverse(down(e)) conc reverse(down'(s)).
Here conc denotes the concatenation of streams.

Based on this functions and some additional simple transformetions
one obtains a general data flow scheme for implementing linear

recursion:
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f.4. Comparison to the Conventionai Procedural Computational Model

For understanding the adventages and drawbacks of nonconventional

(i.e. non-von~Neuman) computational models we now compare the von-

Neumann model with reduction and especially with data flow.

We just use an example. Consider the applicative tail recursive

program:

Trunct £ = 4 x : if c(x) then £(F(x)) else T(x) ri , £(E))

__J

Applying our parallel computation rule to f(Eo) we may obtain for

instance

f(EO) -

()% x : if C(x) then f(F(x)) else T(x) fi)(e )
if C(eo) then I‘(F(eo)) else T(eo) fi -
(F(... F(eo) Lee))

A corresponding while program looks like

x := E 3
0)

while C(x) do x := F(x) od ;

x := T(x);

A data flow version may look like

switch

stream sx
stream sy
stream sb
stream sz

stream r

merge(Eo & 4, F‘(S)')) »
pfilter(sb, sx) ,
c*¥(sx) ,

nfilter(sb, sx) ,

T (sz) .
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The control—-flow diagram of the procedural version has the form

The procedural program may slso be represented by & data flow program
with explicit control arcs:

control unit arithmetic atore
unit

merge

instruction stream
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In this date flow graph the instructions are labelled by numbers.

"control unit" for the

The instruction stream is tested by the
occurrence of the resp. label. The corresponding instruction

is activated then and the label of the successive instruction is
added to the instruction stream. The actual data flow consists
trivially of a merge-node for the variable x with input arcs from
all nodes corresponding to assignments to x and ouput arcs to all
nodes corresponding to statements evaluating x. An assignment

x := f(x) is then replaced by a node f*(filter(c, sx)) where ¢

is the control stream and sx is the stream of the variable. If the
control stream contains ff the corresponding value of x is sim-

ply ignored, otherwise it is taken; the node becomes "active",

With the program variable x the stream sx is associated (the
output stream of the resp. merge-node), which just represents the
stream of values (in order of time) "flowing through" the variable x
during the computation. This stream is of course identical to the
stack that the variable substituted via recursion removal (cf.
/Broy 80a/, p. 133, and /Bauer, Wossner 81/, p. 323). Note, that
the "control unit" with its labels defines the structure of the
graph of the control flow diagram, while the data flow is not
graphically represented in the control diagram, but given by the
string representation of the statements. Of course, the data flow
program above does not model & classical von Neumann architecture
where there is only one arithmetic unit and the statzments are
encoded like data in a stream flowing through this unit. However,

this can also be modelled by a data flow graph.

Along the lines outlined above procedural programs cean be turned into
data flow programs meking control flow and actual data flow explicit.

A less schematic treatement, however, eliminating superflucus lines of
control flov mey lead to much simpler data flow programs, more efficient

and easier to comprehend.
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The translation of a given data flow program into & classical pro-

cedural program is less straightforward. A data flow program cor-

responds to a network of computing agents connected by the streams.
Viewing this network as a system of procedural