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Abstract

This thesis is concerned with the valuation of mortgage products with un-
certain time of termination. In particular, we develop new valuation models
for agency mortgage-backed securities (MBS) as they are traded in the US
market. Standard US mortgages feature a prepayment option which is often
not exercised optimally. This causes uncertainty with respect to the time of
termination of a mortgage contract and makes the valuation of mortgage-
backed securities a mathematically challenging task. Building on recently
introduced stochastic prepayment-intensity models for individual mortgage
contracts, we develop new mathematically consistent valuation models for
mortgage-backed securities. This modelling approach can also be considered
as an extension of the more traditional, purely econometric MBS valuation
models which are very popular in practice.

The intensity-based modelling framework also allows us to develop a
closed-form approximation formula for the value of agency MBS. Compared
to existing MBS valuation approaches in the academic and practitioner-
oriented literature, which usually rely on Monte-Carlo simulations or costly
numerical methods to solve multidimensional partial differential equations,
our closed-form approximation approach offers a computationally highly effi-
cient alternative. We apply this approach to some selected portfolio manage-
ment applications with MBS, which require frequent product revaluations
under different scenarios and thus computationally efficient valuation rou-
tines.

Furthermore, we consider the valuation of reverse mortgages in this the-
sis. Reverse mortgages also feature uncertainty with respect to the time of
termination of the contract and their mathematical valuation is thus non-
trivial. We develop a consistent valuation model, again based on a stochastic
termination-intensity, and illustrate our approach with some examples di-
rected towards the German market, where reverse mortgages are not yet
available.
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Zusammenfassung

Die im amerikanischen Markt üblichen Hypothekenkredite beinhalten eine
Option, die es dem Kreditnehmer erlaubt, den Kredit jederzeit vorzeitig und
ohne Vorfälligkeitsentschädigung zu tilgen (prepayment). Die Existenz der
prepayment-Option und die Tatsache, dass viele Kreditnehmer die Option
suboptimal ausüben, erzeugen Unsicherheit hinsichtlich des Terminierungs-
zeitpunktes von Hypothekenkontrakten und machen die finanzmathemati-
sche Bewertung von Hypothekendarlehen (mortgages) und Mortgage-Backed
Securities (MBS) zu einem anspruchsvollen Problem. Aufbauend auf inten-
sitätsbasierten Modellen für individuelle Hypthekenkredite, werden in dieser
Dissertation Bewertungsmodelle für MBS entwickelt, die auch als Erweite-
rung der in der Praxis gebräuchlichen, rein ökonometrischen Modelle inter-
pretiert werden können.

Der intensitätsbasierte Ansatz ermöglicht es zudem, eine approximative,
geschlossene Bewertungsformel für Mortgage-Backed Securities mit festem
Zinssatz herzuleiten. Im Vergleich zu bestehenden MBS-Bewertungsroutinen,
die üblicherweise eine Monte-Carlo Simulation oder aufwändige numerische
Verfahren zur Lösung mehrdimensionaler partieller Differentialgleichungen
erfordern, bietet die entwickelte geschlossene Approximationsformel eine nu-
merisch sehr effiziente Bewertungsalternative. Diese ermöglicht es auch, MBS
im Rahmen einiger ausgewählter Anwendungen im Portfoliomanagement zu
betrachten, die eine wiederholte Produktbewertung unter verschiedenen Sze-
narien erfordern.

Abschließend werden in dieser Dissertation Reverse Mortgages betrach-
tet. Die mathematische Bewertung von Reverse Mortgages ist nicht-trivial,
da deren Terminierungszeitpunkt ebenfalls zufällig ist. Der in dieser Arbeit
entwickelte mathematisch konsistente Bewertungsansatz basiert, wie bereits
die Bewertung von MBS, auf einer stochastischen Terminierungsintensität.
Das Bewertungsmodell wird schließlich mit einigen Beispielen für den deut-
schen Markt illustriert, in dem Reverse Mortgages bisher nicht erhältlich
sind.
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Chapter 1

Introduction

1.1 Motivation

Mortgage loans in general and mortgage-backed securities in particular con-
stitute an important segment of any major debt market. The outstanding
amount of all residential mortgage loans in the US market, on which we will
primarily focus in this thesis, was USD 10.9 trillion at the end of 20061. A to-
tal of USD 6.4 trillion had been securitised and sold to the secondary market
in the form of mortgage-backed securities (MBS) and mortgage trusts (such
as, e.g., real estate investment trusts). The most important segment of the
secondary mortgage market are undoubtedly the so-called agency mortgage-
backed securities, i.e. mortgage-backed securities issued and guaranteed
by three agencies: The Government National Mortgage Association (Gin-
nie Mae, GNMA), the Federal National Mortgage Association (Fannie Mae,
FNMA) and the Federal Home Loan Mortgage Corporation (Freddie Mac,
FHLMC). The cumulative outstanding principal of all agency-MBS added
up to USD 4.0 trillion at the end of 2006. The tremendous importance of
mortgage products in the US fixed-income market becomes even clearer if one
compares these amounts with the total amount of all (marketable, interest-
bearing) outstanding US treasury debt, which equalled USD 4.6 trillion in
2006.

Standard residential mortgages in the US feature full prepayment flexibil-
ity, i.e. the mortgagors are allowed to prepay their mortgages at any time at
a price of 100% of the outstanding notional. This prepayment option embed-
ded in the mortgage contract causes uncertainty with respect to the time of
termination of the mortgage contract and makes the valuation of mortgage

1Source: Statistical Supplement to the Federal Reserve Bulletin, June 2007. Available
at www.federalreserve.gov

1



2 CHAPTER 1. INTRODUCTION

products a mathematically challenging task. This is particularly true for the
valuation of MBS where pools of mortgages have to be evaluated. The first
academic and practitioner-oriented articles which were concerned with the
pricing of mortgages, explicitly taking into account the prepayment option-
ality, appeared in the early 1980s when mathematical finance and the pricing
of financial derivatives had only just emerged as a field of research in its own
right. Since then, a vast body of literature and models on the pricing of
mortgage products has developed. These approaches can in general be clas-
sified as econometric, option-theoretic or, rather recently, intensity-based.
Since there is no consensus, neither in academia nor in practice, which of
these general approaches is the ’best’ or most promising one, research in all
directions remains active.

While we will give a brief overview of the existing literature concerned
with each of the three approaches, we will focus on the intensity-based ap-
proach in this thesis, which has been applied to the pricing of individual
mortgage contracts recently, but not yet explicitly to the pricing of MBS
(to the author’s best knowledge). The intensity-based approach will prove
to be useful to tackle two major challenges regarding MBS valuation. The
first challenge is the mathematical pricing routine which should be consistent
with mathematical and financial theory and, at the same time, must be able
to take into account that mortgagors behave notoriously sub-optimal. The
second challenge is the computational burden associated with most existing
MBS valuation techniques, which often causes problems in practice. This
holds in particular for risk and portfolio management applications where
possibly large portfolios of MBS have to be revaluated frequently under dif-
ferent scenarios.

In addition to MBS, we will consider reverse mortgages in detail in this
thesis. Reverse mortgages are sold to older homeowners who receive either a
lump sum or a fixed annuity from the mortgage lender, for which no interest
payments have to be made during the lifetime of the contract. The reverse
mortgage contract is terminated when the mortgagor dies or sells the house.
At this point of time, all outstanding debt including all accrued interest has
to be paid back, capped at the house sale proceeds. Since, of course, the time
of termination of the contract is random, reverse mortgages also fall into the
category of mortgage products with uncertain time of termination for which a
mathematically consistent valuation model is non-trivial. Reverse mortgages
are still a niche product in the US and are not yet available in most European
countries, among them Germany. Yet, given the demographic development
in these countries, the potential market for reverse mortgages in Europe is
huge. Despite the well-acknowledged potential of the product, the academic
literature on reverse mortgages, in particular concerning a mathematically
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consistent valuation, remains scarce.

1.2 Objectives and structure

The main objective of this thesis is to develop new valuation approaches for
mortgage products with uncertain time of termination, based on stochastic
intensity modelling. It is our aim to use this rather new concept in mathemat-
ical finance, which has become popular in the context of credit risk modelling
recently, and to fine-tune it to the pricing of MBS and reverse mortgages.
Concerning MBS, we want to improve on existing pricing models with re-
spect to the challenges associated with MBS valuation as already stated in
the previous section. Concerning reverse mortgages, it is our aim to develop
a complete and consistent pricing model for different contract specifications,
which has not been done before in the academic literature (to the author’s
best knowledge).

In addition to the theoretical development of the models, we will also ap-
ply the model to real market data where possible. We will thus discuss and
take the reader through the whole model building process, from the theoret-
ical formulation of the model to parameter estimation and calibration. We
will also discuss the performance of our models where this is feasible and con-
sider selected risk and portfolio optimisation topics. In the case of reverse
mortgages, we will provide empirical results directed towards the German
market.

The remainder of this thesis is organised as follows: In Chapter 2 we de-
fine how we understand the term ’prepayment’ in this thesis. Moreover, we
give a short overview of products with prepayment features in general and of
mortgage products in particular. In order to familiarise the reader with the
products considered in this thesis, we will then introduce the basic character-
istics of MBS as they are traded in the US market. Finally, we will introduce
reverse mortgages in more detail. Chapter 3 provides the reader with the
mathematical concepts which we need later in our MBS valuation models.
This chapter is also intended to familiarise the reader with the mathemati-
cal notation used in this thesis. While no substantial new contributions are
contained in Chapter 3 some calculations related to interest-rate theory are
carried out, which we will use in the subsequent chapters.

In Chapter 4 we provide an overview of the existing approaches for mort-
gage and MBS valuation and give a detailed motivation for the need of further
research in this field. Chapters 5 and 6 can be considered as the innovative
core of this thesis concerning MBS valuation. In Chapter 5 we develop a new
MBS valuation model for fixed-rate MBS based on stochastic intensity mod-
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elling. We explicitly consider the relation between option-adjusted spreads
(an excess return measure commonly used in practice) and real-world and
market implied prepayment speed patterns. The theoretical foundation for
this is Theorem 5.1 which adapts results from intensity models in other con-
texts to the modelling of MBS. It offers the necessary mathematical rigour
to extend ideas from previous mortgage and MBS modelling approaches and
embeds them into a mathematically well-defined model framework. We give
empirical calibration examples, consider model sensitivities with respect to
yield curve shifts and model parameters and discuss how the model can be
used to price adjustable-rate mortgage-backed securities and collateralized
mortgage obligations (CMOs). This model, however, has one inconvenience
shared by many previous modelling approaches: the pricing requires a com-
putationally expensive Monte-Carlo simulation. This problem is tackled in
Chapter 6, where we propose a closed-form approximation formula, based
on a slightly different model specification. This new closed-form approxima-
tion formula presented in Theorem 6.6 offers an easy-to-compute alternative
to previous approaches in the literature concerned with MBS valuation in
closed-form. Compared to existing models, our approach has the advantage
that it does not require any numerically complex techniques. Again, we cal-
ibrate and validate the model empirically with historically observed MBS
market prices. Chapter 7 is intended to embed our models into the existing
literature and explicitly discusses the contribution of our MBS modelling ap-
proaches, which naturally completes the discussion in Chapter 4.

In Chapter 8 we present some selected portfolio optimisation problems,
based on simulated scenarios, and include fixed-rate MBS into the universe
of available assets. In an empirical study we show how an asset alloca-
tion strategy including MBS can outperform classical stock/bond portfolios.
These empirical portfolio optimisation studies require a large number of MBS
evaluations under different scenarios and have only become feasible due to
our computationally highly efficient closed-form approximation approach.

Our pricing framework for reverse mortgages is presented in Chapter 9.
We consider both, fixed-rate and adjustable-rate reverse mortgage contracts,
explicitly take into account the possibility of losses for the lender (mainly
resulting from longevity risk) and discuss the maximum payments a home-
owner can receive from the mortgage lender under certain constraints. The
results are illustrated with data from the German market. Finally, Chapter
10 concludes.



Chapter 2

Mortgage products and
prepayment

In the first part of this chapter we will give an overview of the products with
prepayment features, in particular with respect to the US market. Moreover,
we will specify explicitly what we mean by ’prepayment’ and ’prepayment
risk’. These terms are not always unambiguously used, neither in the aca-
demic nor in the practitioner-oriented literature. The second part of this
chapter is concerned with the most important asset class associated with
prepayment risk: Mortgage-backed securities. While we can only provide an
overview of the product characteristics, the most important subtypes and
trading mechanics, this section is intended to familiarise the reader with
the securities for which we will develop valuation models in the subsequent
chapters. Prominent examples of textbooks covering mortgage-backed secu-
rities in a more detailed and extensive way include Fabozzi (2006) and Hu
(1997), where legal, economic, structural, trading and pricing aspects of MBS
are covered. Fabozzi (1998) features practitioner-oriented articles concerned
with various aspects of MBS valuation, while Young et al. (1999) provide
a detailed overview of MBS trading and settlement issues. Finally, reverse
mortgages are introduced in the last section of this chapter.

2.1 Prepayment and prepayment risk: A def-

inition

Prepayment is commonly understood as a borrower’s decision to exercise an
early repayment option in a financial contract. In order to price this option-
ality, the borrower’s call policy must be anticipated correctly. This, however,
is not always possible. The following definition formally establishes how we

5



6 CHAPTER 2. MORTGAGE PRODUCTS & PREPAYMENT

understand prepayment and prepayment risk in this thesis. It generalises the
definition given by, e.g., François (2003) who exclusively considers callable
debt.

Definition 2.1. (Prepayments and prepayment risk)
Prepayments are (contractually permitted) notional cash flows which occur
earlier or later than expected, deviating from the anticipated call or put pol-
icy of the counterparty in a financial contract. Prepayment risk is the risk
resulting from these cash flow deviations.

This definition is very broad and it is able to accommodate both the prepay-
ment risk in a bank’s assets and the prepayment risk in a bank’s liabilities.
In the case of a liability, prepayment risk stems from a lender’s option to
withdraw funds or to deposit money earlier or later than anticipated. Defi-
nition 2.1 also makes clear that we understand prepayment risk exclusively
as a special kind of market price risk resulting from the uncertain time of
termination (or partial termination) of the contract. Occasionally, the term
’extension risk’ is used for the risk of cash flows which occur later than an-
ticipated, increasing the duration of a financial product’s cash flow stream.
The term ’prepayment risk’ is then used for the risk of cash flows which occur
earlier than anticipated, decreasing the duration of the cash flow stream. In
this thesis, however, we will not explicitly make this distinction and use the
term ’prepayment risk’ in its general form as defined in Definition 2.1. The
fact that a counterparty’s call or put policy can not be perfectly anticipated
for some products may have various reasons. First, any prepayment model
which tries to capture the prepayment behaviour may be misspecified due
to, e.g., omission of factors or erroneous assumptions. Second, the counter-
party may simply not behave optimally for lack of financial interest and/or
sophistication.

The most important product class featuring prepayment risk are undoubt-
edly mortgage-backed securities. Mortgage-backed securities (MBS) can be
considered as a particular subtype of asset-backed securities (ABS) where
the assets backing the security’s cash flows are mortgage loans. In general,
ABS which feature call flexibility, e.g. ABS backed by Home-Equity or Re-
tail Auto loans, also belong to the class of prepayment-sensitive assets. Of
course, beside interest-rate and prepayment risk, an ABS investor may also
be exposed to credit risk, which is in many cases the major source of risk and
thus very often the primary focus of an ABS investor. ABS and MBS inherit
their prepayment-sensitivity from the underlying loans. Prepayment risk of
individual loans may in fact serve as the basis for assessing the prepayment
risk of more complex products such as MBS. The prepayment risk in callable
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bonds is explicitly addressed in François (2003), who discusses the theoreti-
cal implications and provides empirical evidence. Yet, in most callable debt
valuation models it is assumed that the borrower does make the optimal call
decision which may be anticipated and priced by an adequate model (see,
e.g., Artzner and Delbaen (1992) or Acharya and Carpenter (2002)).

In addition to the previously described prepayment-sensitive assets one
may also want to consider liabilities with put features in a prepayment
risk context, i.e. products where the depositor has the right to withdraw
funds flexibly. An example are Municipal Guaranteed Investment Contracts
(GICs). In the US, GICs are used by municipalities in conjunction with
social or infrastructure projects. In order to finance these projects munici-
palities issue bonds whose proceeds are then transferred into a GIC agree-
ment to be used for the project development or as a reserve account for the
bond issues. Furthermore, special GIC accounts are usually created for the
project’s proceeds which are then used for interest and principal repayments
to the bondholders. Fund withdrawals and future deposits are often flexible
and may depend on various factors which are usually directly related to the
project which is being financed and to the call features of the corresponding
bonds. As a consequence, the timing and sometimes also the amount of cash
flows is hard to anticipate, which results in prepayment risk.

2.2 Mortgage-backed securities (MBS)

In this section we will briefly present the major structures and features of
mortgage-backed securities. Although MBS are one of the most important
asset classes in the US, they are a unique instrument whose valuation remains
highly complex. This is mainly caused by the prepayment feature inherent in
the mortgage loans underlying a MBS. In the last subsection we will shortly
summarise the basic loan and amortisation calculations for mortgages and
MBS.

2.2.1 Subtypes of MBS and trading mechanics

Residential vs. Commercial MBS

The first criterion to classify the different subtypes of MBS in the US market
is the nature of the underlying mortgage loans. While we focus on securities
backed by residential mortgages in this thesis, securities backed by commer-
cial mortgages (CMBS) also constitute an important part of the MBS market.
However, the structure of a particular CMBS will largely be determined by
the individual characteristics of the underlying commercial mortgage(s) and,
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as a consequence, the prepayment behaviour and risk of these securities can
often be assessed only by taking into account these individual characteris-
tics. Moreover, the primary concern of an investor in CMBS is usually the
credit risk component in view of which the prepayment risk often plays only
a minor or even negligible role.

Term and amortisation schedule

A second, natural classification criterion is the term of the underlying mort-
gages and their amortisation schedule. While 30 year, fully amortising mort-
gages are still the most common type of mortgage, mortgages and MBS with
shorter maturities (e.g., 15 or 20 years) exist as well. More exotic amor-
tisation structures include, for example, balloon mortgages and graduated-
payment mortgages. Balloon mortgages have a 30 year amortisation sched-
ule, but are due in just five or seven years, while the monthly payments of
a graduated-payment mortgage are lower during the first year of the loan
and then rise gradually, so that the loan is fully amortised after the 30 year
term. Because of the low initial payments, a graduated-payment mortgage
may feature negative amortisation in the early years.

Fixed-rate and adjustable-rate MBS

In the early 1980s adjustable-rate mortgages (ARMs) were introduced as an
alternative to the traditional fixed-rate mortgages. Adjustable-rate mort-
gages and adjustable-rate MBS usually have a 6 month or 1 year floating
money market or treasury rate as reference index rate, such as the 6 month
LIBOR rate or the 1 year CMT (constant maturity treasury) rate. Yet, more
exotic indices such as the COFI (cost of fund index) are also common. A
great majority of ARMs have periodic reset Caps and Floors as well as life
time Caps, reducing the impact of interest-rate changes for the borrower.
A combination of fixed-rate and adjustable-rate mortgages are the so-called
hybrids, which are adjustable-rate mortgages with an initial fixed-rate pe-
riod of usually three, five, seven or ten years. For example, the notation
5/1/30 is commonly used for a hybrid mortgage with maturity 30 years and
an annually fixed adjustable rate after an initial tenor of five years.

Pass-throughs, Pay-throughs and CMOs

In a pass-through security, the monthly mortgage payments, which contain
interest, scheduled principal and prepayments, are directly ’passed’ from
mortgagors ’through’ the issuer to the investor. Usually these payments
to the investor are delayed, e.g., by 14 or 19 days in the case of GNMA
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securities (see Table 2.1). A delay of 14 means that the first payment to
the investor is made at the 15th (instead of the first) of the month follow-
ing the record date and every month thereafter. In a pay-through security,
mortgage payments are transformed by the issuer before they are passed on
to the investor. Pay-through structures have particularly gained popular-
ity in the form of collateralized mortgage obligations (CMOs). In a CMO,
payments and especially prepayments of the underlying mortgage pool are
assigned to different tranches. It is thus possible to create tranches with
different expected average lives, prepayment risk exposures and even interest
rate agreements from one underlying pool. CMOs are thus able to satisfy
the increasingly diversified risk appetite of investors. We will discuss some
exemplary CMO structures in more detail in Chapter 5.4.

Agency and Private-label MBS

The Government National Mortgage Association (GNMA, Ginnie Mae) as
well as the government-sponsored Federal National Mortgage Association
(FNMA, Fannie Mae) and the Federal Home Loan Mortgage Corporation
(FHLMC, Freddie Mac) play a crucial role in the US MBS market. These
institutions act as guarantor for mortgage pools, guaranteeing full and timely
payment of interest and principal to the investor. GNMA securities, which
feature the full faith and credit of the US government, can thus be consid-
ered default-free from the investor’s point of view since a possible default of
any of the mortgages in the underlying pool simply results in prepayment of
the outstanding notional of the respective loan by GNMA. GNMA, FNMA
and FHLMC securities are usually called agency MBS, have highly standard-
ised structures, trading and settlement mechanics and constitute the largest,
most liquid and most important part of the MBS market. Private-label MBS
have individual characteristics with respect to structure, credit quality and
liquidity. In the following we will particularly focus on the GNMA I and
GNMA II programs, whose securities we will use in the following chapters
for the empirical validation of our modelling approaches. Table 2.1, which is
adapted from Hu (1997), p. 17 and p. 18, summarises the major features of
these securities.

Trading mechanics

Trading in the US agency pass-through market can be divided into to-be-
announced (TBA) trading and pool-specific trading. While in a pool-specific
trade both parties agree on the exact pool to be delivered, the seller in a



10 CHAPTER 2. MORTGAGE PRODUCTS & PREPAYMENT

Feature GNMA I GNMA II

Issuer Single lender Multiple lenders
Type of loans Newly originated, Newly originated,

backed by federal agencies backed by federal agencies
(e.g., FHA2, VA3) (e.g., FHA, VA)

Minimum USD 1 mio USD 0.25 mio per lender
pool size
Mortgage Rate All must have Must be within 100 bps
Range the same rate of the lowest rate

in the pool
Servicing/ 50 bps 50-150 bps
Guarantee fee
Payment 14 days 19 days
delay

Table 2.1: Major characteristics of GNMA I and GNMA II pass-through
MBS

TBA trade has the right to choose the pool(s), which must satisfy some
requirements of good delivery (see, e.g., Young et al. (1999) for details).
The counterparties only agree on the crucial parameters, i.e. agency, term,
coupon, par amount and price (for example, USD 20 mio of GNMA 30 year
7% pass-throughs at a price of USD 0.9875 per USD 1 face amount). In
the so-called TBA vintage-market, the buyer can also specify the origination
year of the pool(s). In 2005, USD 251 billion of agency MBS were traded on
a daily average4. The market for TBA fixed-rate agency MBS remains the
most liquid and most mature market segment.

2.2.2 Prepayment

As previously discussed, the mortgagors’ right to prepay is a crucial feature of
MBS. A MBS investor is always short the prepayment option which makes
MBS highly complex instruments. The exercise of the prepayment option
by a mortgagor may have several reasons. The first, and most important
reason is usually called refinancing incentive. When mortgage refinancing
rates drop, the mortgagor may have the possibility to refinance the mort-
gage at a lower rate. In this sense, the prepayment option can be compared

2Federal Housing Administration
3Department of Veterans Affairs
4Source: The Bond Market Association (www.bondmarkets.com)
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to an American-style interest-rate option. However, different mortgagors in
a mortgage pool may experience different constraints regarding the ability
to refinance. These constraints may contain, for example, transaction costs
or the opportunity costs that a mortgagor faces when he/she spends time
renegotiating mortgage conditions with possible lenders. These costs are
certainly a reason for the fact that refinancing related prepayment on pool
level is rather heterogeneous. Yet, the relationship between falling interest
rates and rising prepayments is well-established and can also be confirmed
with the data which is available for this thesis. Figure 2.1 shows the develop-
ment of the 10 year US treasury par yield together with prepayment speeds
of some selected GNMA securities with different coupons. The prepayment
speeds are expressed as single monthly mortalities (SMM).

Beside the refinancing incentive, prepayment may be caused by house
sales due to relocation or death of the mortgagor. A mortgagor’s default
equally leads to prepayment for the investor in the case of agency MBS
and, finally, a change in personal wealth (e.g., by an inheritance, an unex-
pected bonus payment, etc.) or simply new loan preferences of an individual
mortgagor may prompt full or partial prepayment of a mortgage. These
non-refinancing related prepayments are usually subsumed under the term
’turnover prepayment’ or ’baseline prepayment’.

Prepayment speeds are usually expressed as single monthly mortality
rates (SMM), as annualised constant prepayment rate (CPR) or as a per-
centage of the Public Securities Association standard assumption (PSA).
The SMM in month t simply measures the percentage of the outstanding
notional which is paid back to the investor after the interest and regular
principal repayment of the corresponding month. Let A(t) be the outstand-
ing notional (after scheduled repayments) of a MBS at time t according to
the original amortisation schedule without any prepayments and let PF (t)
denote the pool factor at time t, i.e. the actual notional amount outstanding
at time t. Then, given the mortgages prepayment history of the MBS up to
time t − 1, we get5:

pSMM(t) =
P̂F (t) − PF (t)

P̂F (t)

where

P̂F (t) := PF (t− 1) · A(t)

A(t − 1)
.

Note that, given the prepayment history up to month t− 1, P̂F (t) would be
the outstanding notional at time t if there were no further prepayments in

5We write pSMM for the single monthly mortality (SMM) due to notational consistency
with the subsequent chapters.
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Figure 2.1: Historical 10yr treasury par yield (top) and prepayment speeds
of some selected MBS of the GNMA II program with coupons of 6%, 7% and
8% respectively (bottom).

month t. The annualised counterpart of the SMM is the CPR, which can be
obtained from the SMM by

CPR(t) = 1 − (1 − pSMM(t))12. (2.1)

Finally, the PSA speed is given by

PSA(t) =

{
100 · CPR(t)

0.2·t for t < 30

100 · CPR(t)
6

for t ≥ 30
.

The PSA speed goes back to the standard assumption of the Public Securities
Association, where prepayment speeds are modelled as a linear function of
the security’s age, rising from 0 to a CPR value of 6% during the first 30
months of the MBS. They are then assumed to remain constant at 6% (CPR).



2.2. MORTGAGE-BACKED SECURITIES (MBS) 13

Multiplied with some scalar, the PSA standard remains a simple, but popular
tool in the markets. Figure 2.2 shows the 100% standard PSA curve and, for
comparison purposes, the 50% standard PSA curve and the 200% standard
PSA curve. Assuming that prepayment speeds are deterministic according
to the PSA standard assumption, the value of any MBS is straightforward
to calculate by simply discounting the deterministic future cash flows to the
present day. These prices are often used for comparison purposes in the
market.
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Figure 2.2: Standard PSA curves

2.2.3 Basic MBS cash flow conventions

In the following we will finally describe the complete cash flow structure of
a mortgage pool with loans that are fully amortising with equal monthly
payments. These cash flows include prepayments, the regular principal pay-
ments according to the amortisation schedule and the interest payments.
The results are also summarised, for example, in the paper by Kariya et al.
(2002). Let i := WAC/12 be the monthly interest rate which corresponds
to the mortgage pool’s weighted average coupon (WAC) and let MP denote
the monthly mortgage payment of the mortgagor, which contains the interest
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payment I(t) and the regular principal repayment RP (t), if we assume that
prepayments are not allowed. For a mortgage with T months to maturity at
time t = 0, we obtain the defining equation for MP by using i as internal
rate of return:

A(0) = MP/(1 + i)1 + MP/(1 + i)2 + ... + MP/(1 + i)T

= MP ·
T∑

j=1

1

(1 + i)j

= MP ·
1

1+i
− 1

(1+i)T+1

1 − 1
1+i

= MP · 1 − (1 + i)−T

i
. (2.2)

Thus,

MP = A(0) · i

1 − (1 + i)−T
.

Equation (2.2) can of course be generalised, so that for any month t, 0 ≤ t ≤
T , the outstanding notional according to the original amortisation schedule
is given by

A(t) = MP · 1 − (1 + i)−(T−t)

i
.

The scheduled interest payment according to the amortisation schedule with-
out any prepayments, which has to be made by the mortgagors in month t,
1 ≤ t ≤ T , is given by

I(t) = A(t−1) · i = MP · (1− (1+ i)−(T−t+1)) = i ·A(0) · 1 − (1 + i)−(T−t+1)

1 − (1 + i)−T
.

Finally, the regular principal payment is given by

RP (t) = MP − I(t) = i · A(0) · (1 + i)−(T−t+1)

1 − (1 + i)−T
.

In a mortgage pool with prepayments, the difference between the outstanding
notional according to the original amortisation schedule without prepayments
and the actual pool factor, i.e. A(t)−PF (t), can be considered as a quantity
which reflects the magnitude of prepayments in the pool’s history up to time
t. This difference, or alternatively the ratio PF (t)/A(t), is commonly referred
to as the pool’s burnout. We will also use the burnout as an explanatory
variable in our hybrid-form model presented in Chapter 5.
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Now, let C denote the monthly coupon of the MBS with a pool of similar
mortgages and let S be the monthly servicing and guarantee spread. By
market convention, the gross coupon i of the MBS is given by i = C + S.
Defining by

Ī(t) := PF (t − 1) · i

the actual interest paid by the mortgagors in month t, the actual cash flow
CF (t) paid to the investor in month t, 1 ≤ t ≤ T , is given by

CF (t) = (PF (t− 1) − PF (t)) +
C

C + S
· Ī(t)

=
PF (t− 1)

A(t − 1)
·
(

A(t − 1) − PF (t)

PF (t − 1)
· A(t − 1)

A(t)
· A(t)

)

+C · PF (t − 1)

=
PF (t− 1)

A(t − 1)
·
(

A(t − 1) − PF (t)

P̂F (t)
· A(t)

)
+ C · PF (t− 1)

=
PF (t− 1)

A(t − 1)
· (A(t − 1) − A(t) + A(t) · pSMM(t)) + C · PF (t− 1).

I.e. the cash flow paid to the investor at time t is given by the sum of
the regular principal payment, prepayment and interest payment (with the
servicing fee deducted).

Remark 2.2. (Monthly mortgage payment)
Since in this thesis we are primarily interested in MBS from an investor’s
point of view, we will use the term ’monthly mortgage payment’ for the quan-
tity

M(t)·∆t := A(t−1)−A(t)+
C

C + S
·I(t) = RP (t)+

C

C + S
·I(t), 1 ≤ t ≤ T,

where ∆t = 1
12

unless explicitly specified otherwise. I.e., M(t) · ∆t is the
monthly payment received by the investor without any prepayments. The
difference between M(t) · ∆t and the earlier defined MP = RP (t) + I(t) is
the servicing spread which has to be paid by the mortgagors, but is not passed
through to the investor. Note that, unlike MP , M(t) · ∆t is not constant.
However, since the servicing spread is usually small (50 basis points in the
case of GNMA I securities), the changes of M(t) · ∆t over time are also
small.
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2.3 Reverse mortgages

Reverse mortgages were first introduced in the US in the late 1980s. While for
most of the time demand for reverse mortgages remained low, the US reverse
mortgage market has experienced considerable growth in the last years and
is now commonly viewed as a market with huge potential. In 2005, 43,131
reverse mortgage contracts were originated in the US, compared to 6,640 in
2001 (see Eschtruth et al. (2006)). A reverse mortgage allows home-rich,
cash-poor older homeowners to access their housing wealth for consumption
without selling the house and without having to take a conventional home
equity mortgage which would require regular interest and loan amortisation
payments. The most popular reverse mortgage program in the US is the
Home Equity Conversion Mortgage (HECM), which is available to home-
owners over the age of 62 who fulfil certain eligibility criteria. In a HECM
loan, payments to the mortgagor are made as a lump sum at origination of
the reverse mortgage contract, as a lifetime income or as a flexible line of
credit. A reverse mortgage loan has to be paid back including all accrued
interest when the mortgagor dies or sells the house or, depending on the
contract, when the mortgagor moves out of the house. The amount which
has to be paid back is, however, capped at the house sale proceeds.

Despite the recent success in the US, reverse mortgages are still not avail-
able in most European countries, among them Germany, on which we will
focus in the empirical examples in Chapter 9. This is particularly surprising
since in Germany the demographic development implies that there will be
more and more elderly people in the near future without children. The access
to home equity for consumption after retirement seems even more attractive
without any direct heirs. The US experience and the demographic develop-
ment in Europe suggest that the potential market for reverse mortgages in
Germany and in other European countries will be huge. The most apparent
reason for the reluctance of financial institutions to offer reverse mortgages
may be the risk of longevity. A mortgage lender experiences losses if at termi-
nation of the contract the total outstanding loan amount exceeds the house
value. This may obviously occur if the mortgagor attains a very high age.
This risk must of course be taken into account for the pricing and subsequent
valuation of the reverse mortgage contract. The question of how to price a
reverse mortgage contract by adequately taking into account the risk that
the total amount of the loan may exceed the house value at termination of
the contract is not trivial. In a very recent paper, Wang et al. (2007) address
this issue and consider survivor bonds and survivor swaps for reverse mort-
gages within an actuarial approach. Apart from this recent contribution the
academic literature on the valuation of reverse mortgage contracts remains
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scarce.
A further reason for the reluctance to offer reverse mortgages may be

the fear of adverse selection and moral hazard effects, which are discussed in
detail in Davidoff and Welke (2005) and Shiller and Weiss (2000). Adverse
selection means that mortgagors expecting an exceptionally long life, a par-
ticularly low mobility or with houses which appreciate at particularly low
rates preferably enter into reverse mortgage contracts. Davidoff and Welke
(2005) also give two dimensions of moral hazard. First, reverse mortgages
may make it less attractive to sell the house. Second, a mortgagor with a
reverse mortgage has less incentive to invest in property maintenance. While
the latter issue is hard to measure empirically, Davidoff and Welke (2005)
come to the conclusion that neither adverse selection nor moral hazard is
guaranteed by the structure of the reverse mortgage industry in the US and
even give empirical evidence for advantageous selection. Advantageous se-
lection means that reverse mortgagors on average move out of their houses
faster (by death or voluntarily) than older people without a reverse mortgage
contract. We thus do not further take adverse selection and moral hazard
effects into account.

Following Definition 2.1, the termination of the reverse mortgage contract
by death or house sale can be considered as prepayment. We do not take
into account the possibility of prepayment due to refinancing of the reverse
mortgage, i.e. the possibility to prepay a reverse mortgage contract in order
to get a new one with lower rates. There are two reasons why we do not con-
sider refinancing prepayment for reverse mortgages. First, we concentrate
on the German market. In Germany, it is still the market convention that
refinancing-related prepayment of conventional mortgage loans is not per-
mitted without penalty payments to compensate the mortgage lender. Thus,
from a mortgage lender’s point of view, it makes little sense to introduce re-
verse mortgages with refinancing-prepayment options as long as the standard
mortgage products do not incorporate these options. Second, even in the US
where mortgagors are used to having prepayment options in their mortgage
contracts, refinancing related prepayment of reverse mortgages is very rare
(see Davidoff and Welke (2005)). This may be explained by the high closing
fees (6.8% on average), which makes refinancing expensive, and by the very
nature of reverse mortgages. Reducing a monthly payment of a conventional
mortgage by refinancing is certainly more attractive than reducing the ac-
crued interest of a reverse mortgage which most of the mortgagors will never
pay back during their lifetime anyway. All prepayment risk associated with
the reverse mortgage contracts considered in this thesis therefore stems from
the mortgagor’s death and mobility. It is important to notice that these
risks are unsystematic and may thus be considered diversifiable. We will,
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however, briefly comment on the modelling consequences which a systematic
prepayment option would imply at the end of Chapter 9.



Chapter 3

Mathematical preliminaries

In this chapter we introduce the basic mathematical concepts which we need
to develop valuation models for mortgage-backed securities and reverse mort-
gages. The first two sections of this chapter are also intended to familiarise
the reader with the mathematical notation which will then be maintained
throughout this thesis. While we cite original articles and further litera-
ture sources where appropriate, notation and presentation of the necessary
preliminaries from interest-rate market theory are mainly based on Zagst
(2002a). Beside Zagst (2002a), Bingham and Kiesel (2004) or Brigo and
Mercurio (2006) are two further examples of textbooks covering stochastic
processes, financial market theory and, in particular, interest-rate theory
in a more detailed way. For the basics of point processes and, in particu-
lar, intensity-based financial modelling the books by Bielecki and Rutkowski
(2002), Schönbucher (2003), Schmid (2004) or Brigo and Mercurio (2006) are
good references where intensity-based models are applied in the context of
credit risk. Schmid (2004) also treats the Kalman filtering method which we
will present in the last section of this chapter.

3.1 The Cauchy problem

While we assume that the basic concepts of probability theory, stochastic
processes and stochastic calculus are known to the reader, we would like to
recall shortly the so-called Cauchy problem and the Feynman-Kac represen-
tation of the Cauchy problem since these concepts will be crucial in some
proofs in the following parts of this thesis. For this purpose let us start with
an n-dimensional Ito-process X(t) on a complete filtered probability space

19
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(Ω,F , {Ft}t≥0, Q) defined by

X(t) = x0 +

∫ t

0

µ(s)ds +

∫ t

0

σ(t)dW (t) (3.1)

for which we write in the usual way

dX(t) = µ(t)dt + σ(t)dW (t) = µ(t)dt +
m∑

j=1

σj(t)dWj(t).

W (t) = (W1(t), ..., Wm(t))′ is an m-dimensional Wiener process, X(0) is F0-
measurable and µ, σ are progressively measurable stochastic processes with

∫ t

0

|µi(s)|ds < ∞ (3.2)

EQ

[∫ t

0

σ2
ij(s)ds

]
< ∞ (3.3)

Q-almost surely for all t ≥ 0, i = 1, ..., n, j = 1, ..., m.

If there exists an n-dimensional stochastic process X of the form (3.1) with
µ(t) = µ(X(t), t) and σ(t) = σ(X(t), t) satisfying (3.2) and (3.3), the pro-
cess X(t) is called the strong solution of the following stochastic differential
equation (see, e.g., Zagst (2002a), p. 36):

dX(t) = µ(X(t), t)dt + σ(X(t), t)dW (t), (3.4)

X(0) = x0.

Theorem 3.1. (Existence and uniqueness)
Let µ and σ in (3.4) be continuous functions such that for all t ≥ 0, x, y ∈ R

and for some constant K > 0 the following conditions hold:

(i) Lipschitz condition:

||µ(x, t) − µ(y, t)||+ ||σ(x, t) − σ(y, t)|| ≤ K · ||x − y||

(ii) Growth condition:

||µ(x, t)||2 + ||σ(x, t)||2 ≤ K2 ·
(
1 + ||x||2

)

Then there exists a unique, continuous strong solution X of the stochastic
differential equation (3.4) and a constant C, depending only on K and T ≥ 0,
such that

EQ

[
||X(t)||2

]
≤ C ·

(
1 + ||x||2

)
· eC·t
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for all t ∈ [0, T ]. Moreover,

EQ

[
sup0≤t≤T ||X(t)||2

]
< ∞.

In Zagst (2002a), p. 36f., some special cases of this theorem are discussed. A
formal proof can be found, for example, in Korn and Korn (1999), p.127-133.

Definition 3.2. (Cauchy Problem)
Let D : Rn → R, r : Rn × [0, T ] → R be continuous and T > 0 be arbitrary
but fixed. The problem to find a function v : Rn × [0, T ] → R which is
continuously differentiable in t and twice continuously differentiable in x and
solves the partial differential equation

vt(x, t) +
n∑

i=1

µi(x, t) · vxi
(x, t)

+
1

2

n∑

i=1

n∑

j=1

aij(x, t) · vxixj
(x, t) = r(x, t) · v(x, t)

v(x, T ) = D(x)

for all x ∈ Rn, where aij :=
∑m

k=1 σik(x, t) · σjk(x, t) and X is the unique
strong solution of the stochastic differential equation (3.4), is called the Cauchy
problem.

Now, define
P0(t, s) := e

R s
t

r(X(u),u)du.

Under sufficient regularity conditions for µ, σ, v, r, D (for details on regularity
conditions see, e.g., Karatzas and Shreve (1991) or Korn and Korn (1999)),
it can be shown that

v(x, t) = EQ[P−1
0 (t, T ) · D(X(T ))|Ft] (3.5)

= EQ[e−
R T
t

r(X(u),u)du · D(X(T ))|Ft]

is the solution of the Cauchy problem (see, e.g., Zagst (2002a), p. 38ff.). The
representation (3.5) is called the Feynman-Kac representation of the Cauchy
problem.

We have introduced the Cauchy problem and the Feynman-Kac represen-
tation in its general form. Applied to interest-rate contingent claims this is
a crucial result which we will frequently need and refer to in the rest of this
thesis.
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3.2 Interest-rate markets

3.2.1 General definitions

We start our overview of interest-rate market theory with the most important
primary asset, the zero-coupon bond. The zero-coupon bond price P (t, T )
at the point of time t is the price one has to pay to get back 1 at maturity
T . The zero-rate is defined in the usual way by

R(t, T ) := − ln P (t, T )

T − t

and its limit as T approaches t by

r(t) := R(t, t) := − lim
∆t→0

ln P (t, t + ∆t)

∆t
= − ∂

∂T
ln P (t, T )

∣∣∣∣
T=t

.

The interest rate r(t) is called the short rate. A contract in which two parties
at time t agree to exchange at a future point of time T1 a zero-coupon bond
with maturity T2−T1 is called a forward starting zero-coupon bond, denoted
by P (t, T1, T2). Buying a number of P (t, T1, T2) zero-coupon bonds for a price
of P (t, T1) at time t and an obligation to reinvest the amount one receives
at T1 into a zero-coupon bond with maturity T2 − T1 results in an identical
portfolio as simply buying a zero-coupon bond P (t, T2) at time t. It is thus
easy to see that the price of the forward starting zero-coupon bond is given
by

P (t, T1, T2) =
P (t, T2)

P (t, T1)
.

The forward zero-rate is given by

R(r, T1, T2) = − ln P (t, T1, T2)

T2 − T1
= − ln P (t, T2) − ln P (t, T1)

T2 − T1

and the forward short rate by

f(t, T ) := R(t, T, T ) := − lim
∆t→0

lnP (t, T + ∆t) − ln P (t, T )

∆t

= − ∂

∂T
ln P (t, T ).

with f(t, t) = r(t). The next instrument we would like to introduce is the
cash account, which is defined in the usual way by

P0(t) := e
R t

0
r(s)ds.
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I.e., the cash account describes a (random) payment of P0(t) which results
from an investment of one dollar today (time 0) into infinitely many consec-
utive forward starting zero-coupon bonds with infinitesimal time to maturity
when the investment is made successively in time.

Our interest-rate market is modelled by a complete filtered probability space
(Ω,F , {Ft}t≥0, Q) where the prices of the primary assets, the zero-coupon
bonds, are driven by an m-dimensional Wiener process W . The zero-coupon
bond prices are described by

dtP (t, T ) = µP (t, T )dt + σP (t)dW (t) = µ(t)dt +
m∑

j=1

σP,j(t)dWj(t) (3.6)

for all t ∈ [0, T ] with progressively measurable stochastic processes µp and
σP such that for all T

∫ T

0

|µP (s, T )|ds < ∞ Q − a.s. (3.7)

EQ

[∫ T

0

σ2
P,j(s, T )ds

]
< ∞ (3.8)

for all j = 1, ..., m. The discounted zero-coupon bond prices are given by

P̃ (t, T ) := P−1
0 (t) · P (t, T ), 0 ≤ t ≤ T.

An important concept in interest-rate market theory and mathematical fi-
nance in general is the concept of an equivalent martingale measure, i.e. a
probability measure Q̃ on (Ω,F) equivalent to Q under which the discounted

price processes P̃ (t, T ) are Q̃-martingales. A major characteristic of interest-
rate markets is the existence of infinitely many primary assets, since there
are infinitely many maturities T with T ≤ T ∗, where T ∗ denotes the maxi-
mum time horizon of our interest-rate market. A probability measure Q̃ is an
equivalent martingale measure if it is an equivalent martingale measure for
any finite interest-rate market, i.e. for any interest-rate market with a finite
number of zero-coupon bonds. The following theorem, which is adapted from
Zagst (2002a), p. 103, states the conditions under which such an equivalent
martingale measure exists.

Theorem 3.3. (Existence of equivalent martingale measure) Suppose that
there exists an m-dimensional progressively measurable stochastic process γ
such that:
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(i) The following Novikov condition holds for γ:

EQ

[
e

1
2
·
R T∗

t0
||γ(s)||2ds

]
< ∞.

(ii) The no-arbitrage condition

µP (t, T ) − σP (t, T )γ(t) = r(t) · P (t, T )

holds for all t0 ≤ t ≤ T ≤ T ∗.

Furthermore let the probability measure Q̃ on (Ω,FT ∗) = (Ω,F) be defined
by

dQ̃

dQ
= L(γ, T ). (3.9)

with L(γ, t) := e
−

R t

t0
γ(s)′dW (s)− 1

2
·
R t

t0
||γ(s)||2ds

. Then, the stochastic process W̃
defined by

dW̃ := γ(t)dt + dW (t), t ∈ [t0, T
∗] (3.10)

is a Q̃-Wiener process and the discounted price processes P̃ (t, T ) have the

following representation in terms of W̃ :

dP̃0(t) = 0

dP̃ (t, T ) = σ̃P (t, T )dW̃ (t)

for t0 ≤ t ≤ T ≤ T ∗. Furthermore,

dP (t, T ) = r(t) · P (t, T )dt + σP (t, T )dW̃ (t).

If the martingale condition

E eQ

[∫ T ∗

t0

||σ̃P (s, T )||2ds

]
< ∞

is satisfied for all t0 ≤ T ≤ T ∗, then Q̃ is an equivalent martingale measure.

Proof. See Zagst (2002a), p. 104f.

The existence of an equivalent martingale measure is important for the pric-
ing of contingent claims. A (European) contingent claim (with maturity

T ) is a random variable D(T ), with e−
R T
t

r(s)ds · D(T ) lower bounded for all
t ∈ [0, T ], on (Ω,FT ).
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In this thesis we will assume that the interest market is complete and that the
equivalent martingale measure Q̃ is unique. Thus, every contingent claim in
our interest-rate market is attainable (i.e. for each contingent claim there ex-
ists a hedging strategy replicating the contingent claim) and the price VD(t)
of the contingent claim D with maturity TD is given by the risk-neutral
valuation formula (see, e.g., Zagst (2002a), p. 107):

VD(t) = P0(t) · E eQ
[
P−1

0 (t) · D(TD)|Ft

]
.

3.2.2 The Vasicek and Hull-White Models

In interest-rate market theory, one of the major challenges is to find a model
which is able to describe the price movements of the universe of zero-coupon
bonds with different maturities, i.e. to find a model which adequately cap-
tures the dynamics of the term structure of interest rates. One-factor models
like the Vasicek model and the Hull-White model, which we present in this
section, or the Cox-Ingersoll-Ross (CIR) model, which will be the topic of the
following section, still play a key role in interest-rate theory. A particularly
appealing feature of these one-factor models is their analytical tractability
which makes it possible to price interest-rate derivatives such as bond op-
tions, Caps and Floors in closed form. This is often not the case in more
complex multi-factor models. The Vasicek model was originally developed
in Vasicek (1977) and extended in Hull and White (1990) to the Hull-White
model. The original paper concerned with the CIR model is Cox et al. (1985).
For a more complete overview of one and multi-factor interest rate models,
also with respect to tests and implementations, see, e.g., Rebonato (1998) or
Brigo and Mercurio (2006).

In the Hull-White model the (risk-free) short rate is given by the dynam-
ics (under the real-world measure Q):

dr(t) = (θr(t) − arr(t))dt + σrdWr(t)

where ar, σr are some positive constants, Wr is a 1-dimensional Wiener pro-
cess and θr(t) is a deterministic function. If θr(t) is a constant, the Hull-White
model reduces to the model considered by Vasicek (1977).

Now assume that there exists a progressively measurable stochastic pro-
cess γ(t) such that

dQ̃

dQ

∣∣∣∣∣
Ft

= e−
R t

0
γ(s)′dW (s)− 1

2
·
R t

0
||γ(s)||2ds.
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Further assume that γ(t) satisfies the Novikov condition (i) in Theorem 3.3
and that there exists a constant λr ∈ R such that

γ(t) = λrσrr(t).

Then, according to Theorem 3.3,

dW̃r := γ(t)dt + dWr(t), t ∈ [t0, T
∗]

is a Q̃-Wiener process. Defining âr := ar + λrσ
2
r the dynamics of the short

rate under the equivalent martingale measure Q̃, also called the risk-neutral
measure, are given by:

dr(t) = (θr(t) − ârr(t))dt + σrdW̃r.

The function θr(t) in the Hull-White model is given by

θr(t) := fT (0, T )|T=t + âr · f(0, t) +
σ2

r

2âr
(1 − e−2ârt). (3.11)

This choice of θr(t) ensures that the Hull-White model is arbitrage-free, i.e.
that the model prices of the zero-coupon bonds replicate the currently ob-
served market prices. In fact, the initial yield curve is a model input for the
Hull-White model via the market forward rates f(0, t) and θr(t) is fitted to
this input yield curve. For a constant θr, as in the Vasicek model, the yield
curve is a model output.

In both the Vasicek model and the Hull-White model the price of a zero-
coupon bond P (t, T ) is given by (see, e.g., Zagst (2002a), p. 136f.)

P (t, T ) = eÂ(t,T )−B̂(t,T )·r(t) (3.12)

with

Â(t, T ) =

∫ T

t

(
1

2
σ2

r B̂(l, T ) − θr(l)B̂(l, T ))dl,

B̂(t, T ) =
1

âr
(1 − e−âr(T−t)),

which yields in the Vasicek case with a constant θr (see, e.g., Zagst (2002a),
p. 126 or Brigo and Mercurio (2006), p. 59)

Â(t, T ) =

(
θr

âr
− σ2

2â2
r

)
[B̂(t, T ) − T + t] − σ2

4âr
· B̂(t, T )2 (3.13)
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and in the Hull-White case (see, e.g., Zagst (2002a), p. 139)

Â(t, T ) = ln

(
P (0, T )

P (0, t)

)
+ B̂(t, T ) · f(0, t)

−1

2
· B̂(t, T ) ·

√
σ2

r

2âr

· (1 − e−2âr ·t). (3.14)

Finally, we want to discuss some distributional properties of the short rate
under the real-world measure Q, which we will need explicitly in Chapter 9.
Since a linear stochastic differential equation (SDE)

dX(t) = (H · X(t) + J(t))dt + V dW (t) (3.15)

with an m-dimensional stochastic process X, H ∈ Rm×m, V ∈ Rm×m, J :
[0,∞)m → Rm continuous, has the unique strong solution

X(t) = eH·tX(0) +

∫ t

0

eH·(t−l)J(l)dl +

∫ t

0

eH·(t−l)V dW (l)

(see, e.g., Karatzas and Shreve (1991), [5.6]), we get by defining m = 1,
X(t) = r(t), H = −ar, J(t) = θr(t) and V = σr:

r(t) = e−ar ·tr(0) +

∫ t

0

e−ar(t−l)θr(l)dl +

∫ t

0

e−ar(t−l)σrdWr(l). (3.16)

In the Vasicek case, (3.16) simplifies to

r(t) = e−ar ·t
[
r(0) +

θr

ar
· (ear ·t − 1) +

∫ t

0

ear ·lσrdWr(l)

]
.

Obviously, the distribution of both r(t) and
∫ T

0
r(t)dt is normal and a straight-

forward calculation yields the formulas for the expectation and variance of∫ T

0
r(t)dt in the Vasicek model, given F0 (see, e.g., Mamon (2004) for a de-

tailed derivation):

EQ

[∫ T

0

r(t)dt|F0

]
=

(
r(0) − θr

ar

)
· B(0, T ) +

θr

ar

· T,

V arQ

[∫ T

0

r(t)dt|F0

]
= V (0, T )

with

B(0, T ) :=
1

ar
(1 − e−ar ·T ) (3.17)

V (0, T ) :=
σ2

r

a2
r

(
T +

2

ar
e−arT − 1

2ar
e−2arT ) − 3

2ar

)
. (3.18)
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In the Hull-White model, (3.16) can be written in the form (see Brigo and
Mercurio (2006), p. 73)

r(t) = α(t) +

∫ t

0

e−ar(t−l)σrdWr(l), (3.19)

where

α(t) := f(0, t) +
σ2

r

2a2
r

· (1 − e−ar ·t)2.

As in the Vasicek model, the distribution of both r(t) and
∫ T

0
r(t)dt in the

Hull-White model is obviously normal and from (3.19) we can calculate the

expectation and variance of
∫ T

0
r(t)dt given F0 under the real-world measure

Q.

Lemma 3.4. In the Hull-White model as previously introduced it holds that
under the real-world measure Q

∫ T

0

r(t)dt ∼ N(aT ; V (0, T )), (3.20)

where

aT := − ln P (0, T ) +
σ2

r

a2
r

· [T − 2B(0, T )

+
1

2ar
· (1 − e−2ar ·T )] (3.21)

and B(0, T ), V (0, T ) are as defined in (3.17) and (3.18), respectively.

Proof. The fact that
∫ T

0
r(t)dt is normally distributed follows directly from

(3.19), as previously stated. For the expectation, given F0, we obtain from
(3.19):

EQ

[∫ T

0

r(t)dt

]
= − ln P (0, T ) +

σ2
r

2a2
r

·
∫ T

0

(1 − e−ar ·t)2dt

= − ln P (0, T ) +
σ2

r

2a2
r

·
[
T − 2 ·

∫ T

0

e−ar ·tdt

+

∫ T

0

e−2·ar ·tdt

]

A straightforward calculation of the integrals yields

EQ

[∫ T

0

r(t)dt

]
= − ln P (0, T ) +

σ2
r

2a2
r

·
[
T − 2

ar

· (1 − e−ar ·T )

+
1

2ar
· (1 − e−2ar ·T )

]
,
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from which (3.21) follows with the definition of B(0, T ).

Moreover, we can calculate the variance of
∫ T

0
r(t)dt from (3.19), using

Fubini’s theorem:

V arQ

[∫ T

0

r(t)dt

]
= V arQ

[∫ T

0

∫ t

0

e−ar(t−l)σrdWr(l)dt

]

= V arQ

[
σr ·

∫ T

0

e−ar ·t ·
∫ t

0

ear ·ldWr(l)dt

]

= V arQ

[
σr ·

∫ T

0

ear ·l ·
(∫ T

l

e−ar ·tdt

)
dWr(l)

]

= V arQ

[
σr ·

∫ T

0

1

ar
· (1 − e−ar ·(T−t))dWr(t)

]

=
σ2

r

a2
r

· V arQ

[ ∫ T

0

(1 − e−ar ·(T−t))dWr(t)

]
.

Due to the Ito isometry (see, e.g., Zagst (2002a), p.24) we finally obtain

V arQ

[∫ T

0

r(t)dt

]
=

σ2
r

a2
r

·
∫ T

0

(e−ar ·(T−t) − 1)2dt

=
σ2

r

a2
r

·
[ ∫ T

0

e−2ar ·(T−t)dt − 2

∫ T

0

e−ar ·(T−t)dt + T

]

=
σ2

r

a2
r

·
[
T +

1

2ar
·
(
1 − e−2ar ·T )− 2

ar
·
(
1 − e−ar ·T)

]

= V (0, T )

3.2.3 The Cox-Ingersoll-Ross Model

One major inconvenience of the Hull-White model, as introduced in the pre-
vious section, is the fact that interest rates may become negative, which is
often considered unrealistic. This is not the case in the model developed by
Cox et al. (1985), which is known as the CIR model. Yet, in its original
version, this model is not able to provide an exact fit of the initially observed
yield curve, similar to the Vasicek model. Arbitrage-free extensions of the
CIR model have been proposed in the literature (see, e.g., Brigo and Mer-
curio (2001) or Schmid (2004)). These efforts, however, lead in general to a
loss in analytical tractability, significantly complicate numerical calculations,
and closed-form pricing of common interest-rate derivatives may become in-
feasible in arbitrage-free CIR extensions. We thus work with the original
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CIR model in this thesis.

In the CIR model the (non-defaultable) short rate is given by the dynamics
(under the real-world measure Q):

dr(t) = (θr − arr(t))dt + σr

√
r(t)dWr(t), (3.22)

where θr, ar, σr are some positive constants with 2θr > σ2
r and Wr(t) is a 1-

dimensional Wiener process. Assuming again that there exists a progressively
measurable stochastic process γ(t) such that

dQ̃

dQ

∣∣∣∣∣
Ft

= e−
R t

0
γ(s)′dW (s)− 1

2
·
R t

0
||γ(s)||2ds,

that γ(t) satisfies the Novikov condition (i) in Theorem 3.3 and that there
exists a constant λr ∈ R such that

γ(t) = λrσr

√
r(t),

then, according to Theorem 3.3,

dW̃r := γ(t)dt + dWr(t), t ∈ [0, T ∗]

is a Q̃-Wiener process and

dr(t) = (θr − ârr(t))dt + σr

√
r(t)dW̃r(t)

are the dynamics of the short rate under the risk-neutral measure Q̃ with
âr := ar + λrσ

2
r .

The CIR model is, as well as the Hull-White model, a short-rate model
with affine term structure and the zero-coupon bond prices in the CIR model
are given by (see Cox et al. (1985))

P (t, T ) = eÂ(t,T )−B̂(t,T )·r(t) (3.23)

with

Â(t, T ) =
2θr

σ2
r

· ln
[

γ · eκ2·(T−t)

κ1 − e−γ·(T−t)

]

B̂(t, T ) =
1 − e−γ(T−t)

κ1 − κ2e−γ(T−t)

and γ :=
√

â2
r + 2σ2

r , κ1 := âr

2
+ γ

2
, κ2 := âr

2
− γ

2
. While in the Vasicek

and Hull-White models, the distribution of the short rate is Gaussian, as



3.3. POINT PROCESSES AND INTENSITIES 31

discussed in the previous section, the distribution of the short rate in the
CIR model is the non-central χ2-distribution. More precisely, if we consider
the distribution under the risk-neutral measure, it holds that given F0 (see
Cox et al. (1985))

2 · c · r(t) ∼ χ2(2q + 2, 2u),

where

c :=
2âr

σ2
r · (1 − e−âr ·t)

, (3.24)

u := c · r(0) · e−âr ·t, (3.25)

q :=
2θr

σ2
r

− 1

and χ2(a, b) denotes the non-central χ2-distribution with degrees of freedom
parameter a and non-centrality parameter b. Of course, if we replace âr by
ar in (3.24) and (3.25) we obtain the short-rate distribution under the real-
world measure Q.

We conclude this section by remarking that, despite the analytical incon-
veniences of the non-central χ2-distribution compared to the normal distribu-
tion, it is possible to derive closed-form formulas for options on zero-coupon
bonds in the CIR model, as well as in the Vasicek and Hull-White models.
(see, e.g., Brigo and Mercurio (2006)). Thus, many common interest-rate
derivatives such as Caps and Floors can conveniently be priced in all short-
rate models which we use in this thesis.

3.3 Point processes and intensities

Since we will need the concepts of point processes and intensities in our
valuation models in the following chapters, we give a brief overview of the
basic ideas and theorems in this section. Applied to financial modelling,
intensity-based models are often labelled ’reduced-form’ models and have
become a popular tool, particularly in the context of credit risk modelling.

3.3.1 Theoretical overview

We start with a point or counting process N(t) which we define on the prob-
ability space (Ω,G, Q) by

N(t) =
∑

i

1{τi≤t},



32 CHAPTER 3. MATHEMATICAL PRELIMINARIES

where {τi, i ∈ N} is a collection of stopping times with respect to some
filtration {FN

t }t≥0, indexed in ascending order. Throughout this thesis, we
will also assume that τi 6= τj for i 6= j (i.e. τi < τi+1 for all i) and that the
point process is nonexplosive, i.e. limn→∞ τn = ∞. The process N(t) can thus
be considered a stochastic process, counting the number of events associated
with the stopping times τi. We assume that (Ω,G, Q) is equipped with three
filtrations {Gt}t≥0, {Ft}t≥0, {FN

t }t≥0. Let {FN
t }t≥0 be the filtration generated

by the counting process N(t) and let {Ft}t≥0 be the filtration generated by all
other considered processes, excluding the counting process. Let furthermore

{Gt}t≥0 = {Ft}t≥0 ∨ {FN
t }t≥0.

The filtration {Ft}t≥0 is called ’background filtration’ by Schönbucher (2003).
We will assume throughout that for any t ∈ (0, T ∗] the σ-fields FT ∗ and FN

t

are conditionally independent (under the martingale measure Q̃) given Ft.
This is equivalent to the assumption that {Ft}t≥0 has the so-called martingale

invariance property with respect to {Gt}t≥0 and for any t ∈ (0, T ∗] and any Q̃-
integrable FT ∗-measurable random variable X we have E eQ[X|Gt] = E eQ[X|Ft]
(see, e.g., Bielecki and Rutkowski (2002), p. 242 for details). The following
definition introduces the concept of intensity.

Definition 3.5. (Intensity)
Let N(t) be a point process as previously introduced, adapted to the filtration
{FN

t }t≥0 and let γ(t) be a nonnegative Ft-progressively measurable process
with ∫ t

0

γ(s)ds < ∞

Q-a.s. for all t. If for all nonnegative Ft-predictable processes C(t) the
equality

EQ

[∫ ∞

0

C(s)dN(s)

]
= EQ

[∫ ∞

0

C(s)γ(s)ds

]

holds, the point process N(t) is said to admit the (Q,Ft)-intensity γ(t).

The following theorems are adapted from Schmid (2004), p.60, and are con-
cerned with crucial properties, existence and uniqueness of intensities.

Theorem 3.6. (Martingale Characterisation)
If N(t) admits the (Q,Ft)-intensity γ(t), then N(t) is nonexplosive and

M(t) := N(t) −
∫ t

0

γ(s)ds (3.26)
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is a (Gt-local) martingale. Conversely, let N(t) be a nonexplosive point pro-
cess adapted to FN

t , and suppose that for some nonnegative Ft-progressively
measurable process γ(t) and for all n ≥ 1,

N(t ∧ τn) −
∫ t∧τn

0

γ(s)ds

is a (Q,Gt)-martingale. Then, γ(t) is the (Q,Ft)-intensity of N(t).

Proof. See Schmid (2004), p. 60, and Brémaud (1981), p.27f.

The integral

Γ(t) :=

∫ t

0

γ(s)ds (3.27)

is usually called the compensator of N(t).

Theorem 3.7. (Existence and Uniqueness of Predictable Intensity)
Let N(t) be a point process with a (Q,Ft)-intensity γ(t). Then one can find
a (Q,Ft)-intensity γ̃(t) which is Ft-predictable. Now, let γ̃(t) and γ̄(t) be
two (Q,Ft)-intensities of N(t) which are Ft-predictable. Then γ̃(t) = γ̄(t)
Q(dω)dN(t, ω) almost everywhere.

Proof. See Schmid (2004), p. 60, and Brémaud (1981), p.31.

Let us assume for the moment that we have only one stopping time τ such
that N(t) = 1{τ≤t}. I.e. N(t) is the indicator function associated with some
event τ , for example the prepayment time of a mortgage. Let us further
assume that N(t) admits the (Q,Ft)-intensity γ(t). Then, recalling that
M(t) as defined in (3.26) is a martingale,

Mt∧τ := N(t) −
∫ t∧τ

0

γ(s)ds

is also a martingale and it is straightforward to see that

EQ[N(t + ǫ) − N(t)|Gt] = EQ[M(t+ǫ)∧τ − Mt∧τ |Gt]

+EQ

[∫ t+ǫ

t

γ(s) · 1{s<τ}ds

]

= Mt∧τ (t) − Mt∧τ (t)

+EQ

[∫ t+ǫ

t

γ(s) · 1{s<τ}ds

]

= EQ

[∫ t+ǫ

t

γ(s) · 1{s<τ}ds

]
. (3.28)
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Furthermore, it can be shown (see, e.g., Schmid (2004), p.61) that

γ(t) · 1{t≤τ} = lim
ǫ→0+

Qτ (t, t + ǫ)

ǫ
, (3.29)

where

Qτ (t, t + ǫ) := Q(τ ∈ (t, t + ǫ]|Gt) = EQ[N(t + ǫ) − N(t)|Gt]

is the probability that the event τ occurs in the time period from t to t + ǫ.
Thus, the intensity γ(t) can be considered as the arrival rate of the event
associated with τ , given all information at time t. If, for example, τ is
associated with prepayment of a particular mortgage loan, we can conclude
that the probability of prepayment over the next infinitesimal time interval
of length ǫ is approximately given by γ(t)·ǫ. From (3.28) and (3.29) it follows
that

Q(τ ∈ (t, T ]|Gt) = EQ

[∫ T

t

γ(s) · 1{s<τ}ds|Gt

]
.

Lemma 3.8. (Survival probability)
Let τ be a stopping time with a bounded intensity γ or with an intensity
satisfying the integrability conditions as stated in, e.g., Duffie (1998), p. 5.
Fixing some time T > 0, let for t < T

Yt := EQ

[
e−

R T
t

γ(s)ds|Ft

]
.

Then, if Yτ − Yτ− is zero almost surely,

Q(τ ∈ (t, T ]|Gt) = (1 − Yt) · 1{τ>t}.

Proof. The lemma is taken from Schmid (2004), p. 62. A proof can be found
in Duffie (1998), p. 4f.

Thus the ’survival’ probability, i.e. the probability that the event associ-
ated with τ has not occurred until time T , is given by:

Q(τ > T |Gt) = EQ

[
e−

R T
t

γ(s)ds|Ft

]
· 1{τ>t}. (3.30)

As a next step we generalise the previously introduced concept of point pro-
cesses and attach a ’marker’ to each event τi. We consider the double se-
quence {(τi, Yi), i ∈ N}, where the stopping times τi are responsible for the
timing of the event(s) and the marker variables Yi, drawn from a measurable
space (E, E), determine the magnitude. The double sequence {(τi, Yi), i ∈ N}
is called a marked point process. In order to formalise the concept of marked
point processes we need to define jump measures, which are special cases of
the more generally defined random measures.
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Definition 3.9. (Random measure)
ν : Ω × E × B(R+) → R+ is a random measure if for every ω ∈ Ω, ν(ω, ·, ·)
is a measure on ((E × R+), E ⊗ B(R+)) and ν(ω, E, {0}) = 0.

Definition 3.10. (Jump measure)
The jump measure of a marked point process {(τi, Yi), i ∈ N} is a random
measure on E × R+ such that for all E ′ ∈ E :

µ(ω, E′, [0, t]) =

∫ t

0

∫

E′

µ(ω, de, ds) :=

∞∑

i=1

1{τi(ω)≤t}1{Yi(ω)∈E′}

for all ω ∈ Ω.

Note at this point that with the previous definitions the counting process
associated with any marked point process, i.e. the number of jumps of a
marked point process until a given time t, is given by:

N(t) =

∫ t

0

∫

E

1 · µ(de, ds).

Before we proceed with the definition of the compensator measure of a
marked point process, we consider the special case more closely, where the
marker space E contains only the element {1}. In this case the marked point
process simply reduces to the earlier defined counting process N(t). If the
intensity γ is constant, N(t) is usually called a Poisson process. If the in-
tensity γ(t) is a (non-constant) deterministic function of time, the process
is usually called a time-inhomogeneous Poisson process. The next step is
the incorporation of stochastic intensities. This yields a doubly stochastic
Poisson process, also called Cox process, which can be defined as follows (see
also Schönbucher (2003), p. 121):

Definition 3.11. (Cox process)
A point process N(t) with intensity process γ(t) is a Cox process if, condi-
tional on the background filtration {Ft}t≥0, N(t) is a time-inhomogeneous
Poisson process with intensity γ(t).

Note that this definition ensures that the Cox process can not be measurable
with respect to {Ft}t≥0. Thus, knowledge of the intensity process does not
reveal any information about the realisation of N(t).

For the extension of the concept of the compensator (see (3.27)) from
point processes to marked point processes, we need to define predictability
in the context of random measures. The analogue to the Ft-predictability
of the process C(s) in Definition 3.5 and of the intensity γ(t) (see Theorem
3.7) is given in the following definition for stochastic functions and random
measures.
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Definition 3.12. (Predictable stochastic function, random measure)
A predictable stochastic function f : (Ω×R+)×E → R is a function which is
measurable with respect to the σ-algebra P⊗E , where P is the σ-algebra gen-
erated by the adapted left-continuous processes on (Ω, {Gt}t≥0, Q). A random
measure ν is called predictable if for every predictable stochastic function f ,
the integral process

X(ω, t) :=

∫ t

0

∫

E

f(ω, e, s)ν(ω, de, ds)

is again a predictable process.

The compensator measure of the jump measure of a marked point process
µ(ω, de, ds), whose existence and uniqueness has been proven by , e.g., Liptser
and Shiryaev (2001), Chapter 18.3, is defined as follows:

Definition 3.13. (Compensator measure)
Let f(ω, e, s) be a predictable stochastic function and let µ(ω, de, ds) be the
jump measure of a marked point process. The compensator measure ν(ω, de, dt)
is the unique (a.s.) predictable random measure with the following property:
M(ω, t), defined by

M(ω, t) :=

∫ t

0

∫

E

f(ω, e, s)µ(ω, de, ds)−
∫ t

0

∫

E

f(ω, e, s)ν(ω, de, ds),

is a martingale for all predictable stochastic functions f .

An easy, but at the same time the most important example for our pur-
poses, is the Cox process which we will use in the following chapters for our
MBS valuation models. If µ(ω, de, ds) is the jump measure of a Cox process
with (stochastic) intensity process γ(t), it is straightforward to see that the
compensator measure of the Cox process is given by

ν(ω, de, ds) = δY =1(de)γ(t)dt,

where Y denotes the marker variable and δY =1 is defined by

δY =1 =

{
1 for Y = 1
0 otherwise

.

In Section 3.2 about interest-rate market theory we have already introduced
the concept of an equivalent martingale measure which we need as a pricing
measure for interest-rate derivatives. Theorem 3.3 states how the Radon-
Nikodym derivative (3.9) determines which processes become Wiener pro-
cesses after a transition from the probability measure Q to the equivalent
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martingale measure Q̃ (see (3.10)). Considering marked point processes, it
is evident that the compensator measure is, in general, affected by such a
change of measure since the compensator measure describes the probabilities
of the marked point process dynamics. So, the question arises which form the
compensator measure takes after the measure change. The answer is given
by the Girsanov theorem for marked point processes, which, in its general
form as given below, is valid for probability spaces supporting marked point
processes and diffusions.

Theorem 3.14. (Girsanov theorem for marked point processes)
Let (Ω,G, {Gt}t≥0, Q) be a filtered probability space which supports an n-
dimensional Q-Wiener process W (t) and a marked point process with jump
measure η(de, dt). The marker e of the marked point process is drawn from
the mark space (E, E). The compensator measure of η(de, dt) is assumed to
take the form νQ(de, dt) = KQ(t, de)γQ(t)dt under Q. Here γQ(t) is the Q-
intensity of the arrivals of the point process and KQ(t, de) is the Q-conditional
distribution of the marker on (E, E).
Let φ be an n-dimensional predictable process and Φ(e, t) a non-negative pre-
dictable function with

∫ t

0

|φi(s)|2ds < ∞,

∫ t

0

∫

E

|Φ(e, s)|KQ(t, de)γQ(s)ds < ∞

for any finite t. Define the process L by L(0) = 1 and

dL(t)

L(t−)
= φ(t)dW (t) +

∫

E

(Φ(e, t) − 1)(η(de, dt) − νQ(de, dt)).

Assume that EQ(L(t)) = 1 for finite t. Define the probability measure Q̃ with

dQ̃

dQ

∣∣∣∣∣Ft = L(t), ∀t ≥ 0.

Then:

(i) The process W̃ with W̃ (0) = 0 and

dW̃ (t) := dW + φ(t)dt

is a Q̃-Wiener process.

(ii) The predictable compensator measure of η under Q̃ is

ν
eQ(de, dt) = Φ(e, t)νQ(de, dt) (3.31)
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(iii) Define µ(t) :=
∫

E
Φ(e, t)KQ(t, de) and LE(e, t) = Φ(e,t)

µ(t)
for µ(t) > 0,

LE(e, t) = 1 otherwise. The intensity of the counting process of the

arrivals of the marked point process under Q̃ is

γ
eQ(t) = µ(t)γQ(t). (3.32)

(iv) The conditional distribution of the marker under Q̃ is

K
eQ(t, de) = LE(e, t)KQ(t, de).

Proof. The theorem is taken from Schönbucher (2003), p. 108. A formal
proof can be found in Jacod and Shiryaev (1987), Chapter III.3.

3.3.2 Application to the pricing of contingent claims

The concepts introduced in the previous subsection are particularly useful
for the pricing of contingent claims whose payoffs depend on a random, ex-
ogenously driven termination time associated with a particular event. As
previously mentioned, intensity-based models have become very popular in
the context of credit risk modelling. In particular, intensity-based models are
often used for the pricing of defaultable bonds and credit derivatives. In this
thesis, we will apply them to the modelling of prepayment. Both applica-
tions have in common that if a particular event occurs a financial contract is
terminated prior to its final maturity. Let us assume that we have a stopping
time τ associated with the termination event and with the first jump of a
counting process N(t) with (stochastic) intensity γ(t). We denote by D the
payoff received by the owner of the contingent claim at the final maturity
T , if τ > t. Moreover, we denote by S(t) the stream of cash flows received
by the owner of the claim until τ and by Z(t) the recovery payoff at τ , if
τ ≤ T . The following two definitions, adapted from Schmid (2004), p. 209f.,
formalise the concept of a contingent claim which can be terminated prior to
its final maturity.

Definition 3.15. (Non-terminable contingent claim)
We call a triple (D,S,T) consisting of a cumulative dividend process S (any Ft

adapted process of integrable variation), the FT -measurable random variable
D and the time T < T ∗ at which D is paid a (European) non-terminable
contingent claim.

Definition 3.16. (Terminable contingent claim)
A (European) terminable contingent claim is a triple [(D, S, T ), Z, τ ] consist-
ing of
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• a non-terminable (European) contingent claim (D,S,T) yielding payoffs∫ T∧τ

0
dS(u) over the time interval [0, T ∧ τ ], and a final payoff D at

time T , provided the event associated with the stopping time τ has not
occurred until time T .

• a Ft-predictable process Z describing the payoff upon occurrence of the
event which leads to termination of the contingent claim.

• a {FN
t }t≥0 stopping time τ valued in [0,∞), describing the stochastic

structure of the arrival time of the event.

Theorem 3.17. (Value of a terminable contingent claim)
If the stopping time τ admits the (stochastic) intensity γ, the value process
V Cl(t) of a terminable contingent claim [(D, S, T ), Z, τ ] admits the following
representation for t ∈ [0, T ]:

V Cl(t) = E eQ

[ ∫

(t,T ]

e−
R u
t

r(s)ds · 1{τ>u}dS(u) +

∫

(t,T ]

e−
R u
t

r(s)ds · Z(u)d1{τ≤u}

+e−
R T

t
r(s)ds · D · 1{τ>T}

∣∣∣∣Gt

]

= 1{τ>t} · E eQ

[ ∫

(t,T ]

e−
R u

t
(r(s)+γ(s))ds(dS(u) + γ(u)Z(u)du)

∣∣∣∣Ft

]

+1{τ>t} · E eQ

[
e−

R T

t
(r(s)+γ(s))ds · D

∣∣∣∣Ft

]
. (3.33)

Proof. The theorem is an adapted version of Theorem 8.2.1 in Bielecki and
Rutkowski (2002), p. 230f. See also Schmid (2004), p. 210.

Now, consider the example of a typical non-defaultable, fully amortising
mortgage, which can be prepaid at any time. The stopping time τ is thus
associated with the time of prepayment, the recovery process is equal to
the (deterministic) outstanding notional A(t) according to the amortisation
schedule as defined in Chapter 2.2.3, and the payoff at the final maturity
T of the contract, if τ > T , is equal to 0. Moreover, if we assume for the
moment that the mortgage payment M(t), comprising interest and scheduled
principal repayments, is made continuously, it follows that

dS(t) = M(t)dt.

According to (3.33), the value of the mortgage V Mo(t) is then given by:

V Mo(t) = 1{τ>t} · E eQ

[ ∫ T

t

(
M(u) · e−

R u

t
(r(s)+γ(s))ds

+A(u) · γ(u) · e−
R u
t

(r(s)+γ(s))ds

)
du

∣∣∣∣Ft

]
. (3.34)
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If the mortgage payments M(tk) · ∆tk are made at discrete points of time
t1,...,tK = T with ∆tk := tk − tk−1, it follows that the value of the mortgage
contract at time t0 ≤ t ≤ t1 is given by

V Mo(t) = 1{τ>t} · E eQ

[ K∑

k=1

e−
R tk
t (r(s)+γ(s))ds · M(tk) · ∆tk

+

∫ T

t

A(u) · γ(u) · e−
R u

t
(r(s)+γ(s))dsdu

∣∣∣∣Ft

]
. (3.35)

If the mortgage payments are made at discrete points of time, the outstand-
ing principal A(t) remains constant between to payment dates. If we then
approximate the integral in (3.35) by sums we obtain

V Mo(t) = 1{τ>t} · E eQ

[ K∑

k=1

(
e−

R tk
t (r(s)+γ(s))ds · (M(tk) · ∆tk

+A(tk) · γ(tk) · ∆tk) + Rtk

) ∣∣∣∣Ft

]
, (3.36)

where Rtk are the error terms resulting from the approximation of the integral
by sums. Note that Rtk is small if ∆tk is small and that Rtk → 0 for ∆tk → 0.
We discuss the error term in more detail in the appendix. Neglecting the error
terms Rtk , we obtain the approximate value of a mortgage, which we denote
by

V Mo
app (t) := 1{τ>t} · E eQ

[ K∑

k=1

e−
R tk

t (r(s)+γ(s))ds · (M(tk) · ∆tk

+A(tk) · γ(tk) · ∆tk)

∣∣∣∣Ft

]
. (3.37)

(3.34) and (3.37) are important and useful results which we will often refer
to in the remainder of this thesis.

3.4 The Kalman filter

This section is concerned with the Kalman filter and with maximum likeli-
hood estimation for state space models, which goes back to Kalman (1960).
For a more extensive and detailed discussion of Kalman filtering techniques
see, for example, Harvey (1989) or the paper by Koopman et al. (1999),
where efficient algorithms for filtering, moment smoothing and simulation
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smoothing in state space models are presented. Kalman filtering is also dis-
cussed and applied to credit spread data in Schmid (2004).

In this thesis we only deal with linear Gaussian state space models, which
consist of a transition equation and a measurement equation. The transition
equation describes the dynamics of an unobservable state vector, while the
measurement equation relates an observable variable to the state vector. The
linear Gaussian state space model (in discrete time) is given by:

αt = ct + T · αt−1 + H · ǫt, t = 1, ..., T (transition equation) (3.38)

Yt = dt + Z · αt + G · ǫt, t = 1, ..., T (measurement equation)

(3.39)

where

αt is the unobservable m × 1 state vector at time t

Yt is the N × 1 observation vector at time t

ct, dt are unknown fixed effects at time t

with dimension N × 1 and m × 1 respectively

ǫt is the r × 1 disturbance vector, where usually r = m + N

T, Z, G, H are the deterministic system matrices

with dimensions m × m, N × m, m × r, N × r.

Here, we only consider the case where the matrices T, Z, G, H are constant
over time. Furthermore, we assume that the disturbance vectors {ǫt}t=1,...,T

are independent identically distributed (iid) multivariate-normal random vec-
tors with expectation 0 and with the identity matrix I as covariance, i.e.

ǫt ∼ Nr(0, I)

and that the initial state vector is drawn from a normal distribution with
expectation a0 and covariance P0, i.e.

α1 ∼ Nm(a0, P0).

When the initial conditions are not explicitly defined, one can assume that
the initial state vector is fully diffuse and choose a0 = 0 and P0 = κ ·I, where
κ is some large scalar (see Koopman et al. (1999), p. 117). The maximum
likelihood estimation of the parameters in the state space model is based on
the Kalman filter which is given in the following:
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Algorithm 1. (Kalman Filter)

(i) Set t = 0. Specify a0, P0

(ii) Set t = t + 1.
Evaluate the prediction equations:

at|t−1 = T · at−1 + ct

Pt|t−1 = T · Pt−1 · T ′ + GG′

(iii) Evaluate the update equations:

at = at|t−1 + Pt|t−1 · Z ′ · F 1

t · (yt − Z · at|t−1 − dt)

Pt = Pt|t−1 − Pt|t−1 · Z ′ · F−1
t · Z · Pt|t−1

with Ft := Z · Pt|t−1 · Z ′ + HH ′.

(iv) If t = T stop, else go back to (ii).

The following theorem states the distributional properties of the quantities
in the Kalman filter.

Theorem 3.18. (Kalman Filter properties)
For t = 1, ..., T it holds that

(
αt

Yt

) ∣∣∣∣y1, ..., yt−1 ∼

Nm+N

((
at|t−1

Z · at|t−1 + dt

)
,

(
Pt|t−1 Pt|t−1 · Z ′

Z · Pt|t−1 Ft

))

and that

αt|y1, ..., yt ∼ Nm(at, Pt).

In particular, at is the minimum mean square estimate of αt, given the data
y1, ..., yt.

Proof. A proof can be found, e.g., in Harvey (1989), p. 109f.

Theorem 3.18 delivers the necessary distributional properties for the cal-
culation of the likelihood function of the model, which can be derived by
prediction error decomposition (see, e.g., Harvey (1989), Chapter 3.4, for
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details). With the observations y1, y2, ..., yT and the model parameter vector
φ, the log-likelihood, up to some constants, is given by

log l(y1, ..., yT ; φ) =

T∑

t=1

log p(yt|y1, ..., yt−1; φ) ∝ −
T∑

t=1

(log |Ft| + v′
tF

−1
t vt).

(3.40)

Thus, maximum likelihood estimates of the parameters φ can be obtained by
maximising the expression

f(φ|y1, ..., yT ) = −
T∑

t=1

(log |Ft| + v′
tF

−1
t vt).
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Chapter 4

Mortgage and MBS valuation

Traditionally, the academic literature on the valuation of mortgage-backed se-
curities could be divided into two general categories: The structural, option-
based approach where prepayment is related to a mortgagor’s rational de-
cision to exercise the prepayment option inherent in the mortgage contract
and the econometric approach where an empirically estimated prepayment
function, often within a proportional hazard framework, is used to forecast
prepayment cash flows. Recently, however, advances in the field of credit
risk modelling have motivated a series of new research papers which are
concerned with the valuation of mortgage loans and MBS using approaches
borrowed from this field. While Nakagawa and Shouda (2005) define an un-
observable prepayment cost process which they compare with the firm value
process in the default risk literature, intensity-based modelling approaches
seem particularly suitable for prepayment modelling and thus for the pricing
of mortgages and MBS. While intensity-based prepayment and mortgage val-
uation models are closely related to the more traditional econometric models,
they offer both mathematical rigour and the flexibility of econometric models
with respect to explanatory factors and variables. Despite the fact that the
purely econometric models are still widely preferred in practice, they have
often been subject to criticism for their lack of mathematical rigour (see, e.g.,
Kagraoka (2002)).

In this chapter we will give an overview of existing mortgage and MBS
valuation models and explain the basic ideas underlying the econometric,
the option-based and the intensity-based modelling approaches. We will
then comment on the shortcomings of the existing models and discuss the
current frontiers and further challenges, in particular concerning MBS valu-
ation, which motivate the subsequent MBS chapters in this thesis.

45
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4.1 The different model classes

4.1.1 Econometric models

The traditional, econometric mortgage and MBS valuation models rely on a
purely statistical modelling of prepayment rates. In this model class, the pre-
payment speed is usually considered as response variable in some regression
model, where the most important explanatory variables are usually some
function(s) of interest rates. Of course, the universe of further potential
explanatory variables for prepayment is huge. The most common further
explanatory variables include loan age, loan size, seasonal and geographic ef-
fects and, if prepayment is considered at pool level, the pool burnout effect.
Spahr and Sunderman (1992) provide a good overview of the early economet-
ric models which were first developed in the late 1980s. Schwartz and Torous
(1989) and Richard and Roll (1989) remain two popular and frequently cited
papers dating back to this period. The Schwartz/Torous model is based on
a proportional hazard framework. In their model, the prepayment speed p(t)
is given by:

p(t; x(t), θ) = p0(t, γ, λ) · ex′

tβ, (4.1)

where t is the time from origination of the mortgage contract,

θ = (γ, λ, β1, β2, β3, β4)
′

is the parameter vector which has to be estimated statistically from historical
prepayment data, p0(t, γ, λ) is the baseline hazard and xt = (x1(t), ..., x4(t))

′

contains the following explanatory variables:

x1(t) := c − l(t − s)

x2(t) := x1(t)
3

x3(t) := ln
PF (t)

A(t)

x4(t) :=

{
1 if t = May-August
0 if t = September-April

.

Here, c is the mortgage contract rate, l is the default-free consol yield, s
accounts for a time lag of three months and PF (t), A(t) are the pool fac-
tor and the outstanding loan amount according to the original amortisation
schedule as already specified in Chapter 2.2.3. The baseline hazard function
p0 is given by the log-logistic hazard function, i.e.

p0(t, γ, λ) =
γλ(γt)λ−1

1 + (γt)λ
,
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In order to value mortgage-backed securities the prepayment speed function
(4.1) is used to simulate cash flows. First, the short rate and the consol
yield are simulated under the risk-neutral pricing measure according to the
interest-rate model developed by Brennan and Schwartz (1979). Then, given
the interest-rate scenario, the prepayment speed is calculated according to
(4.1). Contractually obligatory and prepayment cash flows to the mortgage-
backed security holder can then easily be determined (see Chapter 2.2.3).
The present value of these cash flows gives a realisation of the security value.
Finally, applying the Monte-Carlo principle, averaging over all simulated sce-
narios yields the theoretical price of the mortgage-backed security.

Since the previously introduced early models of the late 1980s many other
statistical specifications of the prepayment speed function (4.1) have been
proposed in the academic and practitioner-oriented literature. On the prac-
titioner side, the available prepayment data and experience has increased
considerably during the last years, in line with the substantial growth of the
MBS market. Nowadays, highly specialised commercial consultancies offer
econometric prepayment models which include an ever-increasing universe of
explanatory variables, in particular loan- and pool-level variables6. More-
over, recent advances in statistics have motivated a series of papers with more
sophisticated regression techniques for the prepayment speed function, par-
ticularly in the academic literature. Two examples are Maxam and LaCour-
Little (2001), who use a nonparametric kernel regression, and Popova et al.
(2007), who specify a Bayesian mixture of regression models. Parameter es-
timation in the latter model is carried out by Markov Chain Monte Carlo
techniques.

Once the theoretical price of a MBS has been calculated (usually applying
a Monte-Carlo simulation as previously described), this theoretical price can
be compared to the market price of the respective security. Usually, it can
be observed for any specification of the empirical prepayment model that
MBS market prices are below the theoretical prices. This price difference
can be expressed as a spread on the benchmark interest-rate curve used for
discounting. The spread is called option-adjusted spread (OAS) and is com-
monly understood as a compensation for prepayment risk in practice. For
a given OAS (continuously compounded), the theoretical price of a MBS in

6Examples of commercial vendors in this field are Andrew Davidson & Co., Inc.
(www.ad-co.com), Interactive Data Corp. (www.bondegde.com) and Applied Financial
Technology (www.aftgo.com). Andrew Kalotay Associates, Inc. (www.kalotay.com) is
another consultancy offering an option-based prepayment model.
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one particular interest-rate and prepayment scenario is given by

VMBS(t0) =

J∑

j=1

CFtj ·
j∏

l=1

e−(R(tl−1,tl−1+∆tl)+OAS)·∆tl, (4.2)

where CFtj are the MBS cash flows corresponding to the remaining payment
dates t1, ..., tJ , R(tl−1, tl−1 + ∆tl) is the (continuously compounded) interest-
rate from time tl−1 to tl−1 + ∆tl as simulated at time tl−1 and ∆tl := tl −
tl−1. The OAS is then adjusted iteratively until the theoretical price (after
averaging over all scenarios) matches the market price of the security. We
will discuss the theoretical justification and the implications of the existence
of the OAS later in Chapter 5.

4.1.2 Option-theoretic models

Option-theoretic models for mortgages and MBS were first introduced in
the early 1980s. The paper by Dunn and McConnell (1981) was the first
publication which explicitly develops a pricing model for fixed-rate mortgages
and GNMA pass-throughs based on option-pricing techniques. The basic
principle underlying the option-based approach is the observation that a
mortgage can be considered as a portfolio of a non-callable mortgage loan
and an American-style call option on the underlying loan with a strike price
equal to par, which the mortgage lender/investor is short. Thus, the value
of a mortgage contract V Mo(t) is given by:

V Mo(t) = V Mo
NC (t) − VPrOp(t), (4.3)

where V Mo
NC (t) denotes the value of the non-callable mortgage and VPrOp(t) is

the value of the prepayment option.
A first critical observation concerning (4.3) is the fact that if the prepay-

ment option is exercised optimally, as assumed in the common mathematical
models for American-style options, the option value will always be larger or
equal to its intrinsic value. Thus, the mortgage value can never exceed par,
assuming that there are no transaction costs. This fact was already noted
in Dunn and McConnell (1981), who allow for sub-optimal prepayment and
are therefore able to obtain mortgage values exceeding par. A further crit-
ical issue in option-theoretic models is the treatment of pool heterogeneity
for the pricing of mortgage pools and MBS. Theoretically, the value of a
mortgage pool (and thus of the corresponding MBS up to servicing fees)
is given by the sum of the values of the individual mortgages in the pool.
The early option-theoretic models commonly assumed that all homeowners
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behave identically. This assumption implies, however, that all prepayments
of mortgages with similar characteristics occur simultaneously, which is, of
course, far from reality (see Chapter 2.2.2). This problem was explicitly ad-
dressed in a couple of subsequent publications, e.g. in Stanton (1995) or
Kau and Slawson (2002) which are two examples of frequently cited papers
concerned with the option-based approach. In the Stanton (1995) model it is
assumed that (1) mortgage holders face heterogeneous transaction costs and
that (2) they make prepayment decisions only at (random) discrete intervals.
Heterogeneous transaction costs alone are not able to explain the empirically
observed prepayment behaviour as described in Chapter 2.2.2. Even with
heterogeneous transaction costs, there would still be a critical level for each
transaction cost at which all mortgagors with the corresponding transac-
tion cost level would prepay immediately. If interest rates then rise and fall
again to this level, there would be no further refinancing-prepayment since
all mortgage holders who would optimally prepay would already have done
so (see Stanton (1995)). Hence the need for the second assumption in order
to obtain a more realistic prepayment model.

Most option-theoretic models derive the price of the mortgage V Mo(t)
at time t by solving the partial differential equation (PDE) for the mort-
gage value with some finite difference, backward-induction method. In the
Stanton-model, interest rates are assumed to follow a 1-factor CIR model as
introduced in Chapter 3.2.3. It can be shown by standard argumentation
(see, e.g., Dunn and McConnell (1981) or Stanton (1995) for details) that
V Mo(t) satisfies the PDE

1

2
σ2

r · r ·
∂2V Mo

∂r2
+ (θr − ârr) ·

∂V Mo

∂r
+

∂V Mo

∂t
+ C = r · V Mo,

subject to appropriate boundary conditions, where C(t) is the (continuously
paid) coupon of the mortgage. The time boundary condition for a fully
amortising mortgage is, obviously V Mo(r, T ) = 0, since all principal has been
repaid when the mortgage matures at time T . Moreover, it is optimal to
refinance the mortgage if

V Mo(r, t) > A(t) · (1 + X),

where A(t) is the loan amount outstanding at time t and X are (proportional)
transaction costs. This yields the typical boundary condition of a callable
bond (see Dunn and McConnell (1981) and Stanton (1995) for further details
on boundary conditions).

Stanton (1995) assumes that the transaction costs X of a mortgagor in a
mortgage pool are random and follow a Beta-distribution. Furthermore, he
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assumes that each month there is a probability

pex = 1 − e−λ/12,

for some parameter λ > 0, that the mortgage is prepaid for exogenous rea-
sons. This corresponds, in some sense, to the baseline prepayment in the
empirical prepayment models. If it is optimal to prepay, the mortgagor does
so only with a probability of

pref = 1 − e−(λ+ρ)/12,

for a further parameter ρ > 0, corresponding to the idea that mortgagors
only decide to refinance at (random) points of time. Denoting by V Mo,u(t)
the value of the mortgage conditional on the prepayment option remaining
unexercised and by x a realisation of X, the mortgage value (to the mortgage
lender/investor) at time t can be calculated by:

V Mo(r, t) =





(1 − pex) · V Mo,u(r, t) + pex · A(t) if

V Mo,u(r, t) ≤ A(t) · (1 + x)

(1 − pref) · V Mo,u(r, t) + pref · A(t) otherwise
(4.4)

The value V Mo(r, t) can be determined by (4.4) at any point of time t working
backwards through the time grid from maturity t = T , once all parameters
have been estimated from historical prepayment data. The value of a MBS
on a pool of similar mortgages can be obtained from adding the values of
the individual mortgages, which differ in their respective transaction cost
realisation x.

Yet, the ability to explain market prices of most option-theoretic models
and thus their success in practice has been limited so far. This fact is dis-
cussed in detail in Kalotay et al. (2004). In this recent paper, it is pointed
out that most option-based models are only able to explain market prices of
premium securities (which clearly exceed par), by ’assigning artificially high
transaction costs to a fraction of the homeowners in the mortgage pool’. The
authors suggest a new approach which, within the class of option-theoretic
models, works with two different yield curves. One for discounting MBS cash
flows and one to model the call strategy of homeowners. Pool heterogeneity
is introduced by dividing the pool into financial engineers (who refinance op-
timally), leapers (who refinance too early) and laggards (who refinance too
late).
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4.1.3 Intensity-based models

Intensity-based prepayment and mortgage valuation models are closely re-
lated to the econometric models as introduced earlier in this chapter. In
fact, they can be regarded as an extension of the hazard-based economet-
ric models. Intensity-based prepayment models do not only consider the
individual risk that a loan will terminate given a statistically determined
hazard-rate, but allow for randomness of the hazard-rate itself (beyond the
possibly stochastic explanatory variables, such as interest rates, in a statis-
tical prepayment model). This general concept is well known and widely
applied in credit risk modelling (for some references see Chapter 3.3), where
these models are usually called reduced-form models. While they offer the
necessary mathematical rigour, intensity-based models also offer flexibility
with respect to the specification of the intensity process for applications in
both credit risk and prepayment risk modelling and are, in general, analyti-
cally well tractable. Intensity-based prepayment modelling was first applied
to the pricing of mortgage contracts by Kau et al. (2004) and Kau et al.
(2006). They develop a pricing model for individual mortgage contracts tak-
ing into account both prepayment and the possibility of default. In Kau et al.
(2004) the (stochastic) baseline prepayment and baseline default processes
are explicitly specified as CIR processes as introduced in Chapter 3.2.3 in
the context of interest-rate modelling.

Another interesting publication concerned with an intensity-based ap-
proach to the pricing of mortgage contracts is Goncharov (2005). Goncharov
(2005) shows that the generic reduced-form pricing formula for a mortgage
contract (3.34) can be written in the form

V Mo(t) = 1{τ>t} ·
(

A(t)

+E eQ

[∫ T

t

(m − r(u)) · A(u) · e−
R u

t
(r(s)+p(s))dsdu

])
, (4.5)

where m is the (continuously compounded) mortgage rate and all other quan-
tities are as previously defined. (4.5) can be used to derive the endogenous
mortgage rate. The endogenous mortgage rate of a fixed-rate mortgage is
the rate m0 for which the mortgage value is equal to the loan amount at
origination of the contract, i.e. for which the mortgage is priced at par. The
endogenous mortgage rate is thus the mortgage rate implied by the current
(at the time of origination) riskless yield curve and by the prepayment be-
haviour of a representative mortgagor. The superscript t in mt denotes the
point of time when the mortgage rate is fixed. From the par value condition



52 CHAPTER 4. MORTGAGE AND MBS VALUATION

V Mo(0) = A(0) it follows immediately from (4.5) that

E eQ

[∫ T

0

m0 · A(u) · e−
R u

0
(r(s)+p(s))dsdu

]
=

E eQ

[∫ T

0

r(u) · A(u) · e−
R u
0

(r(s)+p(s))dsdu

]
,

which yields

m0 =
E eQ

[∫ T

0
r(u) · A(u) · e−

R u

0
(r(s)+p(s))dsdu

]

E eQ

[∫ T

0
·A(u) · e−

R u

0
(r(s)+p(s))dsdu

] . (4.6)

Note, however, that (4.6) is not a formula, but a nonlinear equation since
the outstanding loan amount A(s) (in any case) and p(s) (for any serious
prepayment model specification) depend on m0. In the most general case,
p(s) may depend not only on the contract rate at origination m0, but also
on the future mortgage rates ms. In this case, (4.6) is a functional equation.
Goncharov (2005) also gives a theorem which guarantees the existence of
a solution within his general modelling framework. The calculation of this
solution is, however, numerically challenging. The question of how to calcu-
late m0 in a numerically efficient way is addressed in two subsequent papers
(Goncharov et al. (2006), Goncharov (2007)).

Further contributions in the field of intensity-based prepayment and mort-
gage valuation were made recently (and independently of most of the research
presented in this thesis) by Gorovoy and Linetsky (2007) and Rom-Poulsen
(2007) who develop semi-analytical MBS pricing formulas which we will dis-
cuss in more detail later.

4.2 Current frontiers and further challenges

In the previous section, we have already mentioned that the econometric
models remain highly popular in practice and that the OAS, as defined in
(4.2), is a common and broadly accepted quantity in the MBS markets. Its
interpretation, however, has become subject to discussion. It is a common
view among practitioners that the OAS represents a risk premium for pre-
payment risk. Levin and Davidson (2005) point out, however, that random
oscillations of actual prepayments around the model’s predictions should be
diversifiable and should not lead to any additional risk compensation pre-
mium. They thus interpret the OAS as a compensation for non-diversifiable
uncertainty which is systematic in trend and unexplained by an otherwise
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best-guess prepayment model. Kupiec and Kah (1999) argue in a rather
similar direction and attribute the existence of the OAS to the omission
of important prepayment factors in the risk-neutral Monte-Carlo simulation
process. Indeed, in the risk-neutral pricing framework there is no scope for
economic risk premia since under a risk-neutral pricing measure all traded
assets are expected to earn the risk-free rate. These recent considerations
have directed researchers’ attention to the probability measure associated
with the prepayment process. Kagraoka (2002) points out that, ’surpris-
ingly’, this has not been an issue before despite the fact that practitioners
have been employing the OAS procedure for decades. He emphasizes that it
is, of course, not sure that the prepayment process under the pricing measure
is similar to that under the real-world measure.

The intensity-based modelling approach delivers the necessary mathemat-
ical apparatus to deal with a change of measure for the pricing of mortgages.
In fact, Kau et al. (2006) note that ’each source of randomness in the model
has to be converted from real form to its risk-neutral form’. In their model
specification in Kau et al. (2004), this leads to some additional model param-
eters which they calibrate to a data sample of individual mortgage contracts.

When making the transition from the valuation of individual mortgage
contracts to MBS, however, some additional topics arise. The first aspect
is credit quality. While for the valuation of individual mortgage contracts
default risk is certainly an issue, agency-MBS are guaranteed by their respec-
tive issuer. GNMA securities, as previously discussed, have the full faith and
credit of the US government so that they can be considered default-free for
the investor and the US treasury curve can be used as benchmark curve. For
FNMA and FHLMC securities a AAA corporate curve may the most appro-
priate benchmark curve. The second aspect is liquidity. Since agency MBS
traded on a TBA basis are highly liquid securities, liquidity effects can be ex-
pected to be comparatively unimportant, while this may not be the case for
the pricing of potentially illiquid individual mortgages. Moreover, the treat-
ment of mortgagor heterogeneity is an important issue, as already discussed
in the previous section. While this is a crucial point for any option-theoretic
model, it is an intrinsic feature of econometric and intensity-based models
that mortgagors with identical mortgages behave differently. This is caused
by the fact that the specification of a prepayment probability/intensity auto-
matically implies that, given a certain state of the economy, the prepayment
of an individual mortgage remains random. Yet, it is also a well observed fact
in the mortgage markets that past refinancing incentives due to low mortgage
refinancing rates affect prepayment speeds at pool level in the present and fu-
ture. This effect is commonly referred to as ’burnout’ and called ’an essential
phenomenon of mortgage behaviour’ by Levin (2001). Levin’s model, which
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belongs to the class of econometric models, explicitly separates the pool’s
mortgagors into an active (ready-to-refinance) and a passive, pure turnover
part (including those mortgagors that are not able or not willing to refinance
their loans due to, e.g., individual transaction costs or simply lack of financial
interest). The incorporation of a burnout factor as an additional explana-
tory variable into the prepayment model as, e.g., in the model developed by
Schwartz and Torous (1989) (the variable x3(t) in (4.1)), is the traditional
way of accounting for burnout. This approach, which we will also take in
our model in Chapter 5, has the advantage that a rather ad-hoc a priori as-
sumption of mortgagor heterogeneity in a homogenous mortgage pool is not
necessary.

In addition to the pool heterogeneity and burnout considerations, an MBS
pricing model should be able to establish some relation between OAS levels
and MBS market prices. In the option-theoretic model developed by Kalotay
et al. (2004) the OAS of a MBS is a fixed input to the model, while it is
an output in the common econometric models, calculated according to (4.2).
However, following the argumentation outlined earlier in this section, the
OAS itself is not a theoretically well justified quantity. To the author’s best
knowledge, the paper by Levin and Davidson (2005) is the only paper so far,
where this argumentation is used to develop a prepayment-risk-neutral val-
uation model for agency MBS, which directly targets market prices without
any need for an OAS. They do this by introducing two additional stochastic
prepayment risk factors for pricing purposes (called prepayment multipliers),
which scale the historically estimated refinancing-prepayment and the base-
line prepayment functions respectively. Mean-reverting Vasicek-processes for
these risk-factors are proposed (among other suggestions), with parameters
which can then be calibrated to MBS market prices. While their model has
the desirable feature that MBS market prices can be targeted directly, the
introduction of the two prepayment-risk factors seems rather ad-hoc and in
some sense artificial. In fact, no mathematical connection is made between
the prepayment rates observed in real-world and the expected prepayment
rates implied from market prices. However, as we will show in our own mod-
elling approaches in the subsequent chapters, their basic idea can well be
embedded into an intensity-based model framework which delivers the nec-
essary mathematical apparatus while maintaining all desirable features of the
Levin/Davidson approach.

A further challenge is the computational burden associated with MBS
valuation. In general, this holds for option-based approaches as well as for
intensity-based and traditional econometric approaches. In option-theoretic
models most authors use backward induction valuation approaches on mul-
tidimensional grids to solve the partial differential equation (PDE) which
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the mortgage/MBS value must satisfy, as already discussed in the previous
section. The grid dimension is determined by the number of factors which
enter into the prepayment modelling. Thus, the grid points grow exponen-
tially with the number of factors, making most numerical PDE methods
computationally costly. The computational burden for the pricing of MBS
is particularly high for the econometric models where a computationally ex-
pensive Monte-Carlo simulation is usually used for cash flow projection.

The computational burden of MBS valuation can constitute a serious
problem, particularly when dealing with large portfolios of MBS which have
to be revaluated frequently, e.g. in a risk or portfolio management context.
Yet, in such an environment, a fast-to-compute closed-form approximation
of a security’s value would be sufficient for most purposes. This fact is also
discussed in the papers by Collin-Dufresne and Harding (1999) and Sharp
et al. (2006), which are concerned with closed-form formulas for mortgages
and MBS. The previously mentioned papers by Gorovoy and Linetsky (2007)
and Rom-Poulsen (2007) are two further recent contributions in this direc-
tion. The Sharp et al. (2006) paper, however, only addresses the valuation of
a single fixed-rate mortgage contract by a purely option-theoretic approach
for which a closed-form approximation is derived by the use of singular per-
turbation theory for PDEs. For a generalization of this approach to the
valuation of MBS one would still have to deal with the non-optimal and het-
erogeneous prepayment behaviour of the different mortgagors in a (a priori
homogeneous) MBS pool.

The model developed by Collin-Dufresne and Harding (1999) was origi-
nally set up as an option-theoretic model, too. Rom-Poulsen (2007) shows,
however, that the Collin-Dufresne model can be embedded into an intensity
framework. While with this model Collin-Dufresne and Harding are able
to explain most of the historical price variation of an exemplarily chosen
security, their model has a couple of shortcomings. First, their modelling
framework is limited to one stochastic factor (the risk-free short rate). Sec-
ond, the relation between interest rates and prepayments is strictly linear,
which is not in line with the empirically well established S-curve shape of
the refinancing incentive (see, e.g., Levin and Daras (1998)). Finally, their
model does not allow for any path-dependent explanatory variables such as
the previously explained burnout effect. The intensity-based Rom-Poulsen
model can be considered as an extension of the Collin-Dufresne/Harding
model, allowing for a quadratic interest rate/prepayment relationship which
is somewhat more flexible than a purely linear relationship. Both the Collin-
Dufresne/Harding and the Rom-Poulsen model offer a semi-analytic formula
for the valuation of mortgages and MBS involving systems of partial differen-
tial equations which have to be solved numerically. Numerical complexity is
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also a critical issue in the approach by Gorovoy and Linetsky (2007). While
the authors develop a closed-form formula for the valuation of mortgages
based on eigenfunction expansion techniques, the computation of mortgage
and MBS values requires numerically complex and parameter-sensitive tech-
niques and should thus equally be considered as semi-analytic. We will ad-
dress these issues explicitly in Chapter 6, where we develop a new, easy-to-
compute closed-form approximation formula for the pricing of agency MBS
within an intensity-based framework.



Chapter 5

A new hybrid-form MBS
valuation model

In this chapter we present a new prepayment-risk-neutral valuation model for
MBS which basically extends the proportional hazard model for individual
mortgage contracts presented by Kau et al. (2004). Yet, we use different
mean-reverting processes for the interest-rate and baseline prepayment fac-
tors and explicitly account for the dependence between baseline turnover
prepayment and general economic conditions. This is done by adding a third
factor which is fitted to the quarterly GDP growth in the US, making our
model a hybrid-form model. We label our model ’prepayment-risk-neutral’
since we directly target market prices in the spirit of Levin and Davidson
(2005) without the need of any OAS input. The existence of the OAS is, as
previously discussed, dubious from a theoretical point of view. Nevertheless,
our model also allows for a traditional OAS analysis within the same mod-
elling framework.

In the first section we present our model and provide the necessary math-
ematical background. Details of the parameter estimation and calibration
process are discussed subsequently. We apply our model to data of GNMA
30yr fixed-rate MBS-pass-throughs and discuss the empirical results and their
economic implications. The final two sections in this chapter are concerned
with an extension of our model to the pricing of adjustable-rate MBS and
CMOs.

5.1 The model set-up for a fixed-rate MBS

A crucial part of every valuation model for MBS is an adequate interest-rate
model. We use a 1-factor Hull-White type model, as presented in Chapter

57
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3.2.2, where the non-defaultable short rate r is defined by the dynamics
(under the real-world measure Q)

dr(t) = (θr(t) − arr(t))dt + σrdWr(t). (5.1)

The time-dependent mean-reversion level θr(t) is fitted to the initial term-
structure and its functional form is as given in (3.11). Then, a stochastic
prepayment process p(t) is considered in a proportional hazard framework.
Corresponding to the model set-up of Kau et al. (2004), the basic idea behind
our approach is to capture the turnover component of prepayment in a base-
line hazard process, identical for all MBS of the same type, while the pool-
specific refinancing components are captured through individual explanatory
variables such as the contract rate spread to current mortgage benchmark
rates, the pool burnout, etc. Since we find strong empirical evidence for
the dependence of the turnover component of prepayment and the quarterly
GDP growth in the US (which will be discussed later in this chapter) we use
a 2-factor model for the baseline hazard process and fit the second factor
to the GDP growth data. For both, the baseline hazard, which we incor-
porate into the overall prepayment process in an exponential way to ensure
that prepayment speeds are non-negative, and the general economic condi-
tions represented by the quarterly GDP growth, we assume a mean-reverting
process with constant mean-reversion level following Vasicek (1977). Since
we only consider GNMA securities in the empirical parts of this chapter we
assume one common baseline hazard process for all MBS.

So, for an MBS with individual covariate vector x(t) the prepayment
processes have the form:

p(t) = ef(x(t),β)+p0(t), (5.2)

dp0(t) = (θp + bpww(t) − app0(t))dt + σpdWp(t), (5.3)

dw(t) = (θw − aww(t))dt + σwdWw(t), (5.4)

where f(x(t), β) is some function of the time-dependent covariate vector of
the MBS (containing, e.g., contract rate spread and pool burnout) and of the
regression parameter vector β, p0(t) is the common baseline hazard process,
w(t) represents the quarterly US GDP growth and Wp, Ww are independent
Wiener processes with respect to Q.

To describe the hazard rate or (instantaneous) prepayment speed p(t) of
a mortgage pool we use the intensity framework as introduced in Chapter
3.3. Consider a complete filtered probability space (Ω,G, {Gt}t≥0, Q) which
supports the Wiener processes Wr, Wp, Ww and a counting process N(t),
counting the number of mortgages in a pool that have already been prepaid
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at the point of time t. We define N(t) as a doubly stochastic Poisson process,
i.e. as a Cox process. Of course, in the Cox Process framework there is no
maximum number of jumps, so that we have to assume at this point that there
are infinitely many mortgages in a pool. We will come back to this issue later.
In addition to the filtration {Gt}t≥0 we again consider the filtration {Ft}t≥0

generated by all of the previously considered processes except the counting
process N(t). We assume that N(t) has a {Ft}-measurable intensity γ(t)
with

∫ t

0
γ(s)ds < ∞ for all t ≥ 0. Then,

M(t) := N(t) −
∫ t

0

γ(s)ds

is an (Gt-local) martingale (see Theorem 3.6) and the existence of a unique
Ft-predictable version of the intensity γ(t) is assured (see Theorem 3.7). The
expected increment of the Cox process is given by (see (3.29))

EQ (dN(t)|Gt) = γ(t)dt.

As a next step, we account for the fact that there are only finitely many
mortgages in a pool and approximate dN(t) by

∑K
k=1 dNk(t) where Nk(t)

denotes the one-jump prepayment indicator process of the k-th mortgage in
the pool which, at time t, has a value of 0 if the mortgage has not been
prepaid previously, 1 otherwise, and K is the total number of mortgages in
the pool. Assuming that the time of prepayment of one mortgage does not
influence the probability of prepayment of other mortgages, but that prepay-
ment probabilities of different mortgage are driven by the same background
processes generating the filtration {Ft}t≥0 (an assumption that is maintained
at all stages of our modelling approach), it holds that, as K goes to infinity,

1

K

K∑

k=1

dNk(t)
D−→ γ(t)dt, (5.5)

where ’
D−→’ denotes convergence in distribution. A formal proof of this rela-

tion can be found in Kagraoka (2002) as a consequence of the Central Limit
Theorem for Processes (see Jacod and Shiryaev (1987) [VIII 3.46]). Since in
this thesis we are dealing with large mortgage pools with a large number of
individual mortgages in each pool we can conclude that

p(t)dt ≈ EQ

(
1

K

K∑

k=1

dNk(t)|Gt

)
≈ γ(t)dt, (5.6)

where the first part is a consequence of the law of large numbers and the
second part follows from (5.5).
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So far, we have only considered the dynamics and properties of the pro-
cesses under the real-world measure. The key to the transition from the
real-world measure Q to an equivalent martingale measure Q̃ is the Gir-
sanov theorem for marked point processes which we have already stated in
its general version (Theorem 3.14). With a few structural assumptions we
can derive the form of the processes (5.1) to (5.4) under the risk-neutral pric-
ing measure (uniquely specified by our assumptions and calibration later),
summarised in the following theorem.

Theorem 5.1. Let φ′ = (φr, φp, φw) be a three-dimensional predictable pro-
cess and Φ(t) a non-negative predictable function with

∫ t

0

|φi(s)|2ds < ∞, i = r, p, w,

∫ t

0

|Φ(s)|p(s)ds < ∞

for any finite t. Define the process L by L(0) = 1 and

dL(t)

L(t−)
=
∑

i=r,p,w

φi(t)dWi(t) + (Φ(t) − 1)(dN(t) − p(t)dt).

Assume that EQ(L(t)) = 1 for finite t. Define the probability measure Q̃ with

dQ̃

dQ

∣∣∣∣∣Ft = L(t), ∀t ≥ 0.

Further assume that there are constants λr, λp, λw such that

φr(t) = λrσrr(t)

φp(t) = λpσpp0(t)

φw(t) = λwσww(t)

and assume that
Φ(t) = (p(t))µ−1 (5.7)

for some constant µ ∈ R. Then,

p̃(t) = eµ·(f(x(t),β)+p0(t))

is the intensity of the counting process N(t) under Q̃ and the processes (5.1),

(5.3), (5.4) have the following dynamics under Q̃:

dr(t) = [θr(t) − (ar + λrσ
2
r)r(t)]dt + σrdW̃r(t)

dp0(t) = [θp + bpww(t) − (ap + λpσ
2
p)p0(t)]dt +

+σpdW̃p(t)

dw(t) = [θw − (aw + λwσ2
w)w(t)]dt + σwdW̃w(t),
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where W̃r, W̃p, W̃w are independent Q̃-Wiener processes.

Proof. The proposition follows from the Girsanov theorem as stated in The-
orem 3.14. Recall that our marked point process N(t) is a Cox process with
intensity p(t). Thus, the marker space E contains only the element {1} and,
denoting the marker variable by Y , the compensator measure ν(de, dt) has
the form:

ν(de, dt) = δY =1(de)p(t)dt.

The Girsanov theorem now yields that (see (3.31) and (3.32))

p̃(t) = Φ(t)p(t)

and by the structural assumption (5.7) we get

p̃(t) = eµ·(f(x(t),β)+p0(t)).

Furthermore, the Girsanov theorem ensures that, with dW̃i(t) := dWi(t) +

φi(t)dt, W̃i is a Wiener-process under Q̃ for i = r, p, w and we finally get the

dynamics of the processes r(t), p0(t), w(t) under the (martingale) measure Q̃
by standard argumentation (see, e.g., Zagst (2002a) [4.4-4.5] for details).

Note at this point that the structural assumption (5.7) is a little uncon-
ventional. In most other applications the assumption that Φ(t) = µ∗ for
some constant µ∗ is the norm. In our case, however, it is more convenient to
assume a structure as in (5.7), since this leads to the (multiplicative) risk-
adjustment parameter µ in the overall prepayment process which is clearly
identifiable against the risk-adjustment parameters λp and λw in the base-
line prepayment process p0(t). The convenience of the previously described
structural assumption will become clear in the subsequent section where we
discuss the interaction of the risk-adjustment parameters in their economic
context.

The value V (0) of the MBS at time t = 0 can finally be calculated as
the expectation of the security’s discounted future cash flows under the risk-
neutral pricing measure Q̃. We denote by A(tk) the regular principal amount
outstanding on payment date tk according to the original amortisation sched-
ule without any prepayments. Moreover, if we denote by M(tk) · ∆tk the
original monthly mortgage payment (i.e. the sum of interest and scheduled
principal repayment) and by K the number of payment dates until final ma-
turity of the MBS, we get the following cash flows at each payment date
tk:
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• The monthly mortgage payment M(tk) · ∆tk ·
∏k−1

j=1(1 − pSMM(tj))

• The prepaid principal A(tk) · pSMM(tk) ·
∏k−1

j=1(1 − pSMM(tj)).

Here pSMM(tk) denotes the prepayment speed expressed as single monthly
mortality. The continuously compounded annual prepayment speed p(t) can
be converted to a (discrete) constant prepayment rate by

CPR(tk) = ep(t) − 1,

from which the single monthly mortality is obtained by the relation (2.1).
We can conclude:

Theorem 5.2. The value V (0) of a fixed-rate MBS at time t = 0 is given
by:

V (0) = E eQ

[ K∑

k=1

ctk ·
(

k−1∏

j=1

(1 − p̃SMM(tj))

)

· (p̃SMM(tk) · A(tk) + M(tk) · ∆t)

]
, (5.8)

where ctk = e−
R tk
0 r(s)ds.

Due to the path dependence introduced through the explanatory variables we
have no alternative to a computationally costly Monte-Carlo simulation to
evaluate (5.8) at this point. Note that (5.8) is a version of (3.35) with discre-
tised prepayment rates. In (5.8) the prepayment rates p̃SMM(tk) are expressed
as single monthly mortalities, which is convenient for the Monte-Carlo eval-
uation. If prepayment speeds were expressed as continuous annualised rates,
the overall ’survival probability’ up to time tk−1 inside the expectation would

be given by e−
R tk−1
0 p(s)ds instead of

∏k−1
j=1(1− p̃SMM(tj)) and (5.8) would take

a form similar to (3.35). The Monte-Carlo algorithm used to evaluate (5.8)
is given in the appendix.

5.2 Application to market data

5.2.1 Parameter estimation and model calibration

Interest rate and real-world prepayment model

The available data for this study consists of US treasury strip par rates
and monthly historical prepayment data for large issues of 30yr fixed-rate
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mortgage-backed securities of the GNMA I and GNMA II programs. We
use the historical pool data of a total of eight individual mortgage pools for
the empirical prepayment model (see Table 5.2 for the pool numbers). The
corresponding MBS were issued between 1993 and 1996 with more than USD
50m of residential mortgage loans in each of the eight pools and have coupons
between 6% and 9%, so that both discounts and premiums are included in
our sample. Discount MBS are securities with a low coupon which are traded
below 100% while premiums feature high coupons and market prices above
100%. After the months of very high prepayment speeds in 2002-2004 (com-
pare Figure 2.1) the mortgage pools considered for parameter estimation
in this study were not large enough any more to maintain the assumptions
based on large sample properties. We therefore discard the prepayment data
of these pools in 2005 for parameter estimation in the prepayment model.
Weekly US treasury strip zero rates, obtained from the par rates by stan-
dard bootstrapping, from 1993 to 2005 are used for the estimation of the
parameters of the interest-rate process. Since the focus of our model is not
on explanatory variables for prepayment, we restrict the set of covariates to
those that are usually stated as the most important ones: the spread between
the weighted-average coupon (WAC) of the mortgage pool and the 10yr trea-
sury par yield which is commonly used as proxy for mortgage rates (see, e.g.,
Goncharov (2005) for some discussion concerning this choice of proxy) and
the burnout which we define in line with the definition given in Schwartz and
Torous (1989):

burnout(t) = ln

(
PF (t)

A(t)

)
,

where PF (t) is the actual principal amount outstanding at time t and A(t)
is the remaining principal amount according to the amortisation schedule
without any prepayments, as previously defined. In order to account for the
usual S-curve shape of the influence of the refinancing incentive (see, e.g.,
Levin and Daras (1998) or Figure 5.1), expressed by the spread covariate,
we choose the arc-tangent as functional form. The arc-tangent function was
also used by Asay et al. (1987). Furthermore, our empirical results could be
improved by incorporating the burnout covariate as cubic term in addition
to the linear term. Finally, our covariate function f has the form

f(x(t), β) = β1 · arctan(β2 · (spread(t) + β3)) +

+β4 · burnout(t) + β5 · burnout(t)3. (5.9)

Parameter estimation for the short-rate process.
We estimate the parameters ar, σr, λr of the interest rate model with a
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Kalman filter for state space models as introduced in Chapter 3.4 with mea-
surement and transition equations as given in the following.

Recall that the price of a zero-coupon bond with maturity T at the point
of time t, denoted by P (t, T ), in the Hull-White type short-rate model (5.1)
is given by (see Chapter 3.2.2 ):

P (t, T ) = eA(t,T )−B(t,T )r(t),

A(t, T ) =

∫ T

t

(
1

2
σ2

rB(l, T )2 − θr(l)B(l, T ))dl,

B(t, T ) =
1

âr
(1 − e−âr(T−t)),

where âr = ar + λr · σ2
r . At the point of time tk we observe for maturities

τi, i = 1, ..., n, the treasury strip rates R(tk, tk + τi) = − lnP (tk ,tk+τi)
(T−t)

. With

a(t, T ) = −A(t,T )
T−t

, b(t, T ) = B(t,T )
T−t

the measurement equation of the state
space model is then given by:



R(tk, tk + τ1)
...

R(tk, tk + τn)


 =




a(tk, tk + τ1)
...

a(tk, tk + τn)


+




b(0, τ1)
...

b(0, τn)


 · r(tk) + ǫk, (5.10)

where we assume that the measurement error follows an n-dimensional Nor-
mal distribution with expectation vector 0 and covariance matrix h2

r · In, i.e.
ǫk ∼ Nn(0, h2

r ·In). The transition equation can be derived by the Hull-White
short-rate dynamics which yield (see (3.16)):

rk+1 = e−ar ·∆tk+1rk +

∫ tk+1

tk

e−ar(tk+1−l)θr(l)dl +

∫ tk+1

tk

e−ar(tk+1−l)σrdW (l),

if we define rk := r(tk) and ∆tk+1 := tk+1 − tk. By approximating θr(l) by
θr(tk) in the integral and defining

ηk+1 :=

∫ tk+1

tk

e−ar(tk+1−l)σrdW (l)

we finally get the transition equation of the state space model:

rk+1 = e−ar ·∆tk+1rk +

∫ ∆tk+1

0

e−ar ·lθr(tk)dl + ηk+1 (5.11)

with

ηk+1 ∼ N1

(
0,

σ2
r

2ar
(1 − e−2ar∆tk+1)

)
.
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The results of the parameter estimation for the interest-rate model (and for
the real-world prepayment model described in the subsequent paragraph) are
summarised in Table 5.1. The estimated standard errors of the parameter
estimators are obtained by a moving block bootstrapping procedure as in-
troduced in the appendix for which we choose a block length of 100 for the
weekly interest-rate data and a block length of 20 for the monthly prepayment
data. In the block bootstrapping procedure, the blocks are then randomly
concatenated to obtain series with the same length as the respective original
sample series. The empirical standard deviation of the respective estimator
in a total of 50 bootstrap replications yields the standard error estimates as
given in Table 5.1.

Parameter Estimate (Std. error)

Short-rate process ar 0.11 (0.0044)
σr 0.0088 (8.6 ·10−5)
λr -1380.8 (48.16)
hr 0.0005 (1.6 ·10−5)

GDP growth process θw 0.019 (0.0012)
aw 1.43 (0.087)
σw 0.002 (1.3·10−5)

Baseline prepayment process θp -3.77 (0.30)
ap 1.20 (0.064)
σp 0.88 (0.024)
bpw -88.4 (22.93)
hp 0.70 (0.005)

Regression parameters β1 0.67 (0.10)
β2 0.92 (0.24)
β3 -1.55 (0.12)
β4 0.003 (0.013)
β5 0.007 (0.0015)

Table 5.1: Estimates of the interest-rate model and real-world prepayment
model parameters where hr and hp are the measurement std. errors of the
respective state space models.

The estimates of the interest-rate model parameters yield an average
mean-reversion level of the short rate of 4.8% (i.e. 1

K

∑K
k=1 θr(tk)/ar = 4.8%),

which seems to be a fairly appropriate value given that the average observed
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3-month rate was 5.1% during the time horizon used for parameter estima-
tion. For the estimation of the prepayment parameters we use a two-stage
procedure. We first estimate the parameters θw, aw, σw of the GDP growth
process by Maximum-Likelihood and the parameters θp, ap, σp, bpw again by
a Kalman filter for state space models with the historical prepayment speeds
as observables.

Parameter estimation for the GDP growth process.
The dynamics of the GDP growth process in (5.4) are again given by a SDE
of the form (3.15). Thus, we get

w(tk+1) = e−aw∆tk+1w(tk) +

∫ tk+1

tk

e−aw(tk+1−l)θwdl +

+

∫ tk+1

tk

e−aw(tk+1−l)σwdWw(l)

and it follows that

w(tk+1)|w(tk) ∼ N1(c, d
2),

c = e−aw∆tk+1w(tk) +
θw

aw

(1 − e−aw∆tk+1),

d2 =
σ2

w

2aw

(1 − e−2aw∆tk+1).

We obtain Maximum-Likelihood estimates of the parameters θw, aw, σw by
maximising the likelihood function

L(θw, aw, σw) =

K∏

k=1

ϕw(tk)|w(tk+1),

where ϕw(tk)|w(tk+1) denotes the p.d.f. of the Normal distribution with param-
eters c and d2 as defined above.

Parameter estimation for the prepayment process.
The measurement equation of the state space model is given by (5.2) with
the historically observed prepayment speeds (as SMM) and f as specified in
(5.9):




ln(pSMM,1(tk))
...

ln(pSMM,N(tk))


 =




f(x1(tk), β)
...

f(xN(tk), β)


+




1
...
1


 · p0(tk) + ǫk, (5.12)
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where we assume that ǫk ∼ NN

(
0, h2

p · IN

)
. The transition equation for the

(unobservable) baseline prepayment hazard is given by (5.3). For stability
reasons, we use w(t) as an external input to the model and define X(t) =
p0(t), H = −ap, J(t) = θp +bpww(t), V = σp to get a SDE of the form (3.15).
Similar to the derivation of the transition equation (5.11) of the interest-rate
model the transition equation of the prepayment state space model is

p0(tk+1) = e−ap∆tk+1 · p0(tk) +
θp + bpww(tk)

ap
· (1 − e−ap∆tk+1) + ηk+1

with

ηk+1 ∼ N1

(
0,

σ2
p

2ap
(1 − e−2ap∆tk+1)

)
.

The values for the estimates of the GDP growth process (see again Table 5.1)
yield a mean-reversion level of θw/aw = 1.3% which is identical to the actually
observed average. For all optimisation steps we use a combined Downhill-
Simplex/Simulated Annealing algorithm as described in Press et al. (1992).

Before we discuss the statistical properties of our estimates in the real-
world prepayment state space model and proceed to the calibration and in-
terpretation of the prepayment-risk-adjustment parameters λp, λw, µ in the
following subsection, we want to give some empirical justification for the in-
corporation of the GDP growth rate as a second factor of the prepayment
model. While it is often recognised that the baseline component of prepay-
ment is correlated to general economic conditions, nobody (to the author’s
best knowledge) has made the effort of explicitly modelling such a depen-
dence structure by considering prepayment jointly with a factor such as the
quarterly GDP growth. In order to investigate the value of such an economic
factor, we consider the differences di(t) between the actual, historically ob-
served prepayment speeds pi(t) of the i-th MBS in the sample and those
predicted by the covariates, i.e. not taking into account the baseline hazard
in (5.2):

di(t) = ln pSMM,i(t) − f(xi(t), β), i = 1, ..., M. (5.13)

We consider the average difference d(t) := 1
M

∑M
i=1 di(t) of the M different

MBS pools used for prepayment parameter estimation as an estimate for
the baseline hazard prepayment process p0(t) and investigate the correlation
between the estimated baseline hazard prepayment and the quarterly GDP
growth process (monthly data for the GDP growth process was obtained
by cubic spline interpolation). With the MatLab-function corr, the Pear-
son correlation coefficient for a 6-month lag between GDP growth rates and
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prepayments is estimated as -0.4 with a p-value of 0, clearly rejecting the
hypothesis of no correlation. Since a lag of 6 months results in the highest
significance level (compared to a lag of 3 and 9 months) we incorporate this
time lag into our modelling. Note at this point that, of course, data on GDP
growth are published with some delay. We account for this delay, so that,
when speaking of a 6-month time lag between GDP growth rates and pre-
payments, we compare, e.g., prepayments in July with the quarterly GDP
growth rate in January of the same year, published a few months later.

The negative sign of the correlation (and of the parameter bpw) may be
surprising at first sight. One possible explanation for this may be the fact that
we have not separated prepayment from default. Default is certainly more
likely in times of an adverse economic environment with sluggish growth.
The time lag of 6 months suggests that it takes about half a year from a
worsening of the general economic conditions to a rise in mortgagors’ de-
faults or simply to a mortgagor’s decision to ’downsize’ a mortgage loan by
selling the house and moving to a smaller one (which equally leads to higher
prepayment rates). We leave the explicit modelling of default as a separate
source of prepayment risk (from a GNMA-investor’s point of view) for fur-
ther research.

We finally want to test and verify the statistical assumptions of the pre-
payment state space model and of the Kalman filtering algorithm. It is

Pool t-test Box-Ljung-test ARCH-test Lilliefors-test

GN 354627 0 0 0 1
GN 351408 0 0 0 0
GN 352166 0 0 0 0
G2 2034 0 0 0 1
G2 2054 0 0 0 0
G2 2305 0 1 0 0
G2 2148 0 0 0 1
G2 1856 0 0 0 1

Table 5.2: Tests for the hypotheses 1. E[ut] = 0, ∀t (second column), 2. No
serial correlation in (ut) (third column), 3. No first-order heteroscedasticity
in (ut) (fourth column), 4. (ut) are drawn from a normal distribution (fifth
column). A value of 0 indicates that the respective hypothesis can not be
rejected at the 5% level, a value of 1 indicates that the hypothesis can be
rejected at the 5% level.
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essential to assume that the Kalman filter innovations (i.e. the standardised
residuals; see, e.g., Schmid (2002) [3.6] for further details) are iid random
variables. Furthermore, the model specifications of the state space model
require the residuals to be normally distributed with mean 0. To verify these
assumptions we apply a couple of tests to the innovations

ut :=
ln pSMM(t) − ln p̂SMM(t)√

V ar(ln pSMM(t) − ln p̂SMM(t))
, t = 1, ..., T

of our model where p̂SMM(t) is the prepayment speed predicted by our Kalman
filter. First of all, we test the hypothesis that E[ut] = 0, t = 1, ..., T , with a
simple t-test. We then test for serial correlation by applying the Box-Ljung
test (see Ljung and Box (1978)). First-order heteroscedasticity is tested
with the ARCH-test, which goes back to Engle (1982). We finally apply
the Lilliefors-test to test the Normal distribution assumption (see Lilliefors
(1967)). We use the Matlab implementation of these tests and apply them
to each of the eight mortgage pools whose prepayment history we use for
parameter estimation. Table 5.2 shows the results from which we can con-
clude that, altogether, the assumptions of the Kalman filter algorithm are
sufficiently satisfied for our prepayment data.

In order to illustrate the regression parameter estimates, we show the
historical prepayment rates available for this study (as SMM) and plot the
estimated prepayment speed as a function of the spread covariate and of
the burnout covariate when the baseline prepayment is set to its estimated
mean-reversion level (Figure 5.1). While our observations are quite noisy, the
general S-curve structure of the data can well be recognised. The noise in the
data could of course be reduced, if aggregated data instead of pool level data
are used. This, however, would imply that pool level covariates such as the
burnout could not be incorporated into the prepayment model. While our
estimated prepayment function captures the general structure of the data
well, Figure 5.1 seems to indicate that our estimated S-curve slightly under-
estimates the steepness of the refinancing-incentive. A reason for this may be
the fact that in our state-space model prepayment speeds enter as logarithms
into the measurement equation (5.12) and prepayment observations close to
0 for high values of the spread covariate may thus become quite influential in
the maximum likelihood estimation. The relation between the burnout and
our expected prepayment speed is as expected. For a highly ’burnt-out’ pool
(i.e. a mortgage pool with a low value of the burnout variable), our expected
prepayment speeds are lower than for a comparable fresh pool. This relation
is reflected in the positive sign of the regression parameters β4 and β5.

While the statistical fine-tuning of any empirically estimated prepayment
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function may be an important issue for further research, this is not the pri-
mary focus of this thesis, as we have already pointed out earlier. In this
thesis we are not primarily interested in explaining historically observed pre-
payment rates statistically, but in the pricing of MBS for which we obtain
highly satisfactory results with our estimates, as we will discuss in the sub-
sequent sections.
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Figure 5.1: Historically observed SMM values and estimated prepayment
speed (SMM) as a function of the covariates spread and burnout when the
baseline hazard process is set equal to its mean-reversion level.
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Prepayment-risk-neutral model

In general, there is no active and liquid market for an individual mort-
gage pool. One obvious reason for this is the limited size of individual
pools. For the calibration of the prepayment-risk-adjustment parameters
we therefore consider market prices of generic GNMA 30yr fixed-rate MBS
as quoted in Bloomberg (Bloomberg ticker GNSF) for trading on a TBA
(to-be-announced) basis. We consider coupons between 4.5% and 8%, so
that both discounts and premiums are included. GNMA securities which are
traded on a TBA basis are highly liquid securities, so that we do not have to
worry about liquidity effects/premia. Even for those securities with a coupon
well below or well above the current coupon, Bid-Ask spreads are usually not
higher than 2 ticks with a tick size of USD 1

32
. When we speak of market

prices we refer to the Ask-prices.
We estimate the prepayment-risk-adjustment parameters µ, λp, λw by min-

imising the Euclidean norm of the vector of differences between the market
prices and model prices of the securities on each sample day. All calculations
are carried out without accounting for any OAS, i.e. with an OAS equal to
0 for all securities. By setting the OAS-target equal to 0, we price with the
treasury curve as benchmark curve, which seems to be the most appropriate
curve for GNMA securities since these securities feature the full faith and
credit of the US Government. Of course, any other curve could be used as
benchmark curve if desired. Once the parameters have been calibrated, one
can hardly expect all theoretical prices to match market prices exactly for all
MBS securities. The OAS equivalent in a risk-neutral valuation framework
(with a target of 0 in the calibration procedure) could be compared to the
’prOAS’-measure recently introduced by Levin and Davidson (2005). We will
also use their ’prOAS’-term in the following and point out that the prOAS
should not be regarded as any kind of risk premium, but simply as a measure
of unsystematic residual pricing error.

Levin and Davidson (2005) emphasize the necessity of a two-risk factor
model in order to account for the two distinct market fears in the MBS
market: refinancing understatement and turnover overstatement. These two
distinct market fears explain why, in the traditional OAS valuation approach,
it is not uncommon to observe higher OAS levels for both discounts and pre-
miums compared to MBS around the current-coupon level. On the one hand,
an investor in discounts experiences losses if the turnover component is over-
estimated and pure turnover-related prepayment is slower than expected. In
this case the average life of the security is extended, decreasing the cash flow
stream’s present value. On the other hand, the refinancing component is
the major concern of an investor in premiums since the average life of pre-
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miums decreases if refinancing-related prepayment is faster than originally
estimated, pulling the security’s present value towards 100%. This would
evidently result in a loss for the holder of a premium MBS.

These considerations are fully accounted for in our model since we have
the (multiplicative) risk-adjustment parameter µ and the two (additive) risk-
adjustment parameters λp and λw. For parameter values of µ larger than 1,
the refinancing S-curve is stretched, i.e. the prepayment incentive induced
by higher spreads between the WAC and the 10yr treasury par yield is ac-
celerated. The parameters λp and λw only affect the baseline prepayment
speed. Note that the mean-reversion level of the Vasicek process for p0(t) is
negative in real-world when we set the GDP growth process w(t) to its mean-
reversion level. Thus, for values of µ larger than 1 (as in our estimates in
Table 5.3), the process p0(t) will take much smaller values (larger in absolute
terms), potentially reducing the overall prepayment speed for both discounts
and premiums. Now, for positive values of λp and (with much less signif-
icant consequences) λw, the mean-reversion level of the process p0 will be
pulled back into the positive direction, bringing back the overall prepayment
speed to sensible levels for discounts and premiums in the same (additive)
way. With our structural assumption for the prepayment intensity under
the risk-neutral pricing measure as given in (5.7) we can therefore accelerate
prepayments for premiums while, at the same time, decelerate prepayments
for discounts under the risk-neutral pricing measure. We can thus account
for both, the market fear of turnover overstatement for discounts and the
market fear of refinancing understatement for premiums, in our prepayment-
risk-neutral pricing approach.

Figure 5.2 illustrates how the prepayment-risk-adjustment parameters

Parameter 18-Oct-2005 04-Nov-2005 12-Dec-2005

µ 2.2 2.4 2.0
λp 2.7 3.0 2.2
λw -10.2 -8.1 -7.0

Table 5.3: Estimates of the prepayment-risk-adjustment parameters on three
(arbitrarily chosen) dates.

account for the two types of prepayment risk as previously discussed. Under
the risk-neutral pricing measure prepayment speeds are slower for low spreads
which extends the average life of discounts. Contrarily, prepayment speeds
for high spreads rise under the risk-neutral pricing measure, shortening the
average life of premiums and thus clearly reflecting the market fear of refi-
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Figure 5.2: Expected prepayment speed as a function of the two covariates
spread (in %) and burnout in real-world and under the risk-neutral pricing
measure when the baseline hazard process is set equal to its mean-reversion
level.
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nancing understatement.
Note also at this point that a traditional OAS valuation is of course easy

to perform within our modelling framework by simply setting µ = 1 and
λp = λw = 0. In this case prepayments would be forecast under the real-
world measure and the OAS would be needed to equate the model prices to
the observed market prices.

5.2.2 Prices and option-adjusted spreads

Figure 5.3 shows the traditional OAS and the prOAS values of our model
and for a sample of GNMA securities on three arbitrarily chosen sample
days. On each of the three days the current coupon was between 5.5% and
6%. For comparison purposes we also show the OAS levels as quoted in
Bloomberg based on the Bloomberg prepayment model. Of course, it is hard
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Figure 5.3: OAS according to our model, OAS as quoted in Bloomberg and
’prOAS’ according to our model on 18-Oct-2005 (top), 04-Nov-2005 (centre)
and 12-Dec-2005 (bottom) for a series of generic 30yr fixed-rate MBS of the
GNMA I program with different coupons (Bloomberg ticker GNSF).
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to compare OAS levels derived from different prepayment models. As already
discussed in Kupiec and Kah (1999), it is very common in the MBS markets
that OAS estimates of different brokers vary widely, attributable to different
interest-rate and prepayment model assumptions. This fact may provide a
further line of argumentation for prepayment-risk-neutral models like the one
presented here. In addition to the prOAS levels in Figure 5.3 we also show the
market prices of the GNMA securities in our sample directly compared to the
risk-neutral model prices in Figure 5.4. These plots confirm that, generally,
our model successfully explains market prices of generic fixed-rate GNMA
pass-throughs (see also Chapter 6 and in particular Figures 6.5 and 6.6 for
further empirical evidence on the performance of our model). Note that this
is also true if we calibrate the risk-adjustment parameters only once to the
data on 18-Oct-2005 and leave the parameters unchanged for our additional
sample dates 04-Nov-2005 and 12-Dec-2005. As a quantitative measure of
the accuracy of our pricing approach we consider the linear regression model

V market
i = a + b · V model

i + ǫi, ǫi
iid∼ N(0, σ2

ǫ ), i = 1, ...I (5.14)

where V market denotes the market prices of the MBS, V model the prices of the
MBS according to our prepayment-risk-neutral valuation model and I = 24
is the total number of observed market prices in our sample (we consider
8 securities on 3 different days). Obviously, the estimates of the regression
parameters a and b should be close to 0 and 1 respectively. The actual
estimates together with the R2 value of the regression are reported in Table
5.4 in comparison to the values which we obtain with a 1-factor baseline
model (i.e. without the GDP factor).

Parameter Estimate 95%-Conf.Int.

Regression (11) with 2-factor a 0.023 [-0.030;0.077]
baseline prepayment model b 0.982% [0.929;1.035]

R2 = 98.5%

Regression (11) with 1-factor a 0.0069 [-0.082;0.096]
baseline prepayment model b 0.985 [0.898;1.072]

R2 = 96.2%

Table 5.4: Parameter estimates and R2 of the regression model (5.14) when
the model prices are calculated with the 2-factor baseline prepayment model
and when the model prices are calculated with a 1-factor baseline prepayment
model without the GDP growth process.
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Since in the 2-factor baseline prepayment model the confidence intervals for
a and b are narrower around 0 and 1 respectively and the R2 value is higher,
these results indicate that the GDP growth factor adds explanatory power
to our prepayment-risk-neutral pricing model. The (in-sample) average ab-
solute pricing error of our model, i.e. the mean of the absolute differences
between the model prices and the market prices, is 59 basis points in our sam-
ple compared to 105 basis points for the 1-factor baseline prepayment model.
When we consider out-of-sample prices, i.e. we use the risk-adjustment pa-
rameters calibrated to the data of 18-Oct-2005 for pricing on the two other
sample days, we obtain an average absolute pricing error of 61 basis points
for our model while the average absolute pricing error of the 1-factor baseline
prepayment model is 76 basis points. These results provide further evidence
for the usefulness of the GDP growth rate factor.
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Figure 5.4: Market prices and model prices on 18-Oct-2005 (top), 04-Nov-
2005 (centre) and 12-Dec-2005 (bottom) for a series of generic 30yr fixed-
rate MBS of the GNMA I program with different coupons (Bloomberg ticker
GNSF). Out-of-sample calibration means that we do not recalibrate the risk-
adjustment parameters on the respective day, but use the parameter values
of 18-Oct-2005 instead.
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5.2.3 Effective duration, convexity and

parameter sensitivities

Effective duration and convexity are two important quantities to measure
the interest-rate risk exposure of a mortgage-backed security with respect to
parallel shifts of the yield curve. Since these quantities are easy to determine
they are very popular in practice, particularly in the context of MBS portfolio
management. A regular bond’s duration is defined as the price sensitivity
of the bond with respect to parallel shifts of the yield curve and can easily
be calculated as the weighted average of the times when payments are made
with the weights being equal to the proportion of the bond’s total present
value provided by the payment of the respective payment time (see, e.g., Hull
(2003), p. 112f. for details). For a mortgage-backed security, however, the
basic duration concept can not be readily applied since a shift of the yield
curve inevitably leads to changes in the prepayment behaviour and therefore
changes the cash flows of the security. The modified cash flows resulting
from changes in interest rates are accounted for in the effective duration
Deff which can be defined as follows (see, e.g. Hu (1997), p. 46):

Deff =
V− − V+

2 · V · ∆y
, (5.15)

where V is the security’s present value, V− is the security’s value after a
parallel downward shift of the zero-rate curve of ∆y and V+ is the security’s
value after a parallel upward shift of the yield curve of the same size. Anal-
ogously, the effective convexity Ceff , i.e. the second-order sensitivity of the
value of a mortgage-backed security with respect to parallel shifts of the yield
curve can be defined as (see again Hu (1997), p. 47):

Ceff =
V− − 2 · V + V+

V · (∆y)2
· 1%, (5.16)

where the scaling by 1% is done due to market convention. While the con-
vexity of a regular bond is usually positive, most mortgage-backed securities
(with the possible exception of very deep discounts and very high premium
securities) feature negative convexities. Negative convexity means that, with
respect to parallel shifts of the yield curve, an MBS has more downside risk
in the case of rising interest rates than upside potential in the case of falling
rates. This can easily be explained by the prepayment feature inherent in
MBS. If interest rates rise, prepayments tend to slow down, which extends the
cash flow stream’s average life. Thus, the negative effect of the rising rates on
the present value of the security’s cash flow stream is intensified. Contrarily,
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prepayments accelerate if interest rates fall, counteracting the effect of falling
rates on the present value of the security. In Figure 5.5 we show the effective
durations and convexities across the whole coupon range according to our
prepayment-risk-neutral valuation model for our sample date 12-Dec-2005.
For comparison purposes we also show the values as provided by Bloomberg
based on the Bloomberg prepayment model. Note that the effective dura-
tions and convexities were calculated with a parallel shift of the yield curve
of 50 basis points, i.e. ∆y = 0.005.

In addition to the sensitivities of the MBS prices to parallel shifts of
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Figure 5.5: Effective durations and convexities of some GNMA MBS with
different coupons on the sample day 12-Dec-2005 according to our model and
according to Bloomberg.

the yield curve, we also investigate the price sensitivities with respect to
changes in some of the model parameters on the same sample date 12-Dec-
2005. For this purpose we gradually increase each model parameter from
60% of its value as stated in Tables 5.1 and 5.3 to 140%. Note that in the
scenarios where we change the volatility parameters σr, σp and σw we also
change λr, λp and λw so that the parameters âr, âp and âw remain unchanged.

The effect of the interest-rate volatility parameter σr. Figure 5.6 shows that
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MBS prices across the whole coupon range decrease if σr increases. This
can easily be explained by the prepayment option which an MBS investor
is short. Consistent with basic option theory, the value of the mortgagors’
prepayment option increases if the interest-rate volatility increases. Thus,
MBS prices decrease.

The effect of the parameter âr. Figure 5.6 shows that changes of the mean
reversion speed parameter âr within the analysed scope do not significantly
affect MBS prices. Recall that the interest-rate model we use is a Hull-White
model, where the function θr(t) ensures that for any parameter value of âr the
current term structure is perfectly fit. Thus, if âr changes, so does the func-
tion θr(t), so that the model remains arbitrage-free as already discussed in
Chapter 3.2. Yet, if âr increases, the average speed with which the short-rate
reverts to its mean reversion level increases. However, within the analysed
scope, the effect of an increased mean-reversion speed of the short rate seems
negligible.

The effect of the parameter µ. As already discussed in the previous para-
graphs, the prepayment-risk adjustment parameter µ inversely scales the
overall prepayment intensity. Thus, the larger µ the lower the overall pre-
payment intensity and the longer the average lives of the MBS. Hence, in
general, an increase in µ can be expected to increase the value of premiums
and, at the same time, decrease the value of discounts. Very large values
of µ, however, imply that there is virtually no prepayment, i.e. that the
prepayment option is never exercised and thus worthless. For large values of
µ, the MBS prices therefore equal the prices of a security without any pre-
payment feature. These prices are, obviously, higher than the regular MBS
prices across the whole coupon range. This explains the sensitivity pattern
as shown in Figure 5.6.

The effect of the parameter β1. Figure 5.6 shows that MBS prices across
the whole coupon range decrease if β1 increases. An increase of β1 means
that the intensity of prepayment increases if rates rise. Thus, more people
exercise their prepayment option when it is advantageous to do so, which
reduces the value of both discount and premium MBS.

The effect of the parameter β2. Figure 5.7 shows that MBS prices across the
whole coupon range decrease if β2 increases. The parameter β2 determines
the shape of the refinancing S-curve, modelled via the arctangent-function in
our model. If β2 increases, the S-curve is jolted. I.e., prepayment intensities
react more sensitively to changes in interest-rates and refinancing incentives,
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reducing the value of MBS across the whole coupon range.

The effect of the parameters θp and âp. Both parameters θp and âp determine
the mean-reversion level of the baseline prepayment process p0(t). The larger
the absolute value of θp (remember that θp is negative, see Table 5.1) and
the smaller âp, the higher the average baseline prepayment. Then, the same
reasoning as for the effects of changes in the overall prepayment speed by
changes of the parameter µ applies. The previously discussed effects for the
parameter µ explain the patterns in Figure 5.7 for the parameters θp and âp.

The effect of the parameter σp. Figure 5.7 shows that changes in the pa-
rameter value of σp do not have any major effects on the MBS prices within
the analysed scope. This may be explained by the fact that the baseline pre-
payment is not a systematic prepayment component. E.g., a higher volatility
of baseline prepayment may lead to some particularly high or particularly low
prepayment rates when this is advantageous for the investor as well as in sit-
uations when this is not advantageous for the investor. I.e., a slightly higher
or lower volatility of baseline prepayment rates does not systematically affect
MBS prices.

The effect of the parameter bpw. Figure 5.8 shows that if bpw increases (in
absolute terms; recall that bpw is also negative) premiums appreciate while
prices of discounts slightly decrease. This can again be explained by the fact
that if bpw increases (in absolute terms), baseline prepayment on average de-
creases, increasing the value of premiums and reducing the value of discounts
as expected.

The effect of the parameters θw and âw. The parameters θw and âw de-
termine the mean-reversion level of the GDP growth process and, through
the bpw term the average mean-reversion level of the baseline prepayment.
The larger the value of θw and the smaller the value of âw, the smaller the
average baseline prepayment. While the effects on the MBS prices are gen-
erally small within the analysed scope, Figure 5.8 shows that the expected
effects can at least be confirmed for premium securities.

The effect of the parameter σw. Figure 5.8 shows that changes in the pa-
rameter value of σw do not have any major effects on the MBS prices within
the analysed scope. Since the GDP growth process only affects the base-
line prepayment, which is an unsystematic source of prepayment, the same
reasoning as previously discussed for the parameter σp applies.
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Figure 5.6: MBS price sensitivities with respect to changes in model param-
eters (I).
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Figure 5.7: MBS price sensitivities with respect to changes in model param-
eters II).
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Figure 5.8: MBS price sensitivities with respect to changes in model param-
eters (III).
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5.3 Adjustable-Rate MBS

Our model as introduced in the previous section for fixed-rate MBS can quite
easily be extended to the pricing of adjustable-rate MBS. In Chapter 2.2.1
we have already mentioned that adjustable-rate MBS usually have a 6 month
or 1 year floating money market or treasury rate as reference index and that
they have periodic reset Caps and Floors as well as life time Caps, reducing
the impact of interest-rate changes for the borrower. In the case of GNMA
adjustable-rate MBS, which we will focus on in this study, the reference in-
dex is the 1 year constant maturity treasury (CMT) rate and the net margin
(i.e. the spread above the index the adjustable-rate MBS adjusts to) is 150
basis points. Moreover, all GNMA adjustable-rate MBS (GNMA ARMs in
the following) have a coupon reset frequency of 1 year, a lifetime Cap of
5% above the initial rate and an annual periodic reset Cap and Floor of 1%.
Thus, the coupon adjustment at any fixing date can never exceed 1%, neither
upward nor downward. Initial rates of adjustable-rate mortgages are often
lower than the fully indexed rate. These low initial rates are usually labelled
’teaser-rates’.

Evidently, a pure floating-rate mortgage does not feature any prepay-
ment risk since the coupon of the mortgage always reflects current market
conditions and prepayment does not lead to any losses for the investor. Yet,
GNMA ARMs are not pure floaters, as previously discussed. The embed-
ded Caps and Floors, the long tenor and the existence of teaser rates are
the reasons why an investor in GNMA ARMs is exposed to prepayment risk
which can not be neglected entirely (see also, e.g., Ambrose and LaCour-
Little (2001)).

For the valuation of GNMA ARMs we can straightforwardly extend our
approach for fixed-rate MBS as described in the previous section. The only
change we have to make is the refinancing-prepayment function, as given in
(5.9) for fixed-rate MBS, since reasons for prepayments of ARMs differ from
those of fixed-rate mortgages. Following Davis (2004) we consider pool age,
ARM-to-ARM refinancing incentive and ARM-to-FRM refinancing incentive
as possible explanatory variables. We do not consider seasonality effects,
allow, however, for interaction effects between the ARM-to-ARM and the
ARM-to-FRM refinancing incentives. The data sample for the statistical
modelling in this section consists of historical prepayment and coupon data
of a total of 18 GNMA ARMs during the time interval April 2001 to March
2006.

Ambrose and LaCour-Little (2001) report that ARM prepayments are
low directly after origination, peak around the first rate reset date and re-
main constant afterwards (with some smaller peaks around subsequent rate
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reset dates in their sample). This behaviour can easily be explained by the
teaser rates. A teaser rate terminates with the first rate reset (after 13-15
months for GNMA ARMs) and the incentive to refinance, possibly to a new
adjustable-rate contract with a new teaser rate, peaks. This general pattern
can also be observed in our data (see Figure 5.9). We therefore define the
first explanatory variable in our GNMA ARM refinancing-prepayment model
by

z1(t) =

{
pool age if pool age ≤ 14

14 if pool age > 14
.

Similar to Davis (2004) we consider the spread between the current weighted
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Figure 5.9: Observed GNMA ARM prepayment speeds (as SMM) vs. pool
age.

average coupon (CWAC) and the current 1 year CMT rate as a proxy for the
ARM-to-ARM refinancing incentive. The ARM-to-FRM incentive is mod-
elled via the spread between the 10 year CMT rate (which we again consider
to be a proxy for long-term mortgage refinancing rates) and the current 1
year CMT rate. We thus have the explanatory variables

z2(t) = CWAC(t) − 1-year CMT (t) [ in %],

z3(t) = 10-year CMT (t) − 1-year CMT (t) [ in %].
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We also include the explanatory variable

z4(t) = z2(t) · z3(t)

which allows us to account for interaction effects between z2(t) and z3(t).
Such an interaction effect is useful since ARM-to-ARM refinancing and ARM-
to-FRM refinancing influence each other. In fact, the regression surface in
Figure 5.10 shows that the highest prepayment rates can be expected if either
the spread between the CWAC and the 1-year CMT rate is high (indicating a
clear ARM-to-ARM refinancing incentive) or if the slope of the yield curve is
low (indicating an ARM-to-FRM refinancing incentive). With the covariate
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Figure 5.10: Observed GNMA ARM prepayment speeds (as SMM) vs. fit-
ted regression surface if the baseline prepayment process is set to its mean-
reversion level and z1 = 14.

vector z(t) = (z1(t), z2(t), z3(t), z4(t)) and the regression parameter vector
α = (α1, α3, α3, α4), our refinancing-prepayment function for GNMA ARMs
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has the form

fARM(z(t), α) = α1z1(t) + α2z2(t) + α3z3(t) + α4z4(t). (5.17)

The overall prepayment speed is thus given by

pARM(t) = efARM (z(t),α)+p0(t),

where p0(t) is the baseline prepayment process as defined in (5.3). We assume
for simplicity that the baseline prepayment process is the same for fixed-rate
and adjustable-rate mortgages. The components of the regression parameter
vector α can again be estimated by Kalman filtering techniques, as already
discussed for our fixed-rate MBS model in the previous section. The results
of the parameter estimation are shown in Table 5.5. Since regression pa-

Parameter Estimate

α1 0.1124
α2 -0.4377
α3 -1.0515
α4 0.2697

Table 5.5: Estimates of the regression parameter vector in our GNMA ARM
model.

rameters in a model with interaction effects between explanatory variables
(reflected in our variable z4(t)) can not be interpreted directly, we illustrate
them with respect to the spread covariates in Figure 5.10. For any given
value of the prepayment-risk-adjustment parameters µ, λp and λw, we can
now price GNMA ARMs by Monte-Carlo simulation. The Monte-Carlo esti-
mation procedure, as described in the appendix for fixed-rate MBS, has to be
adapted only slightly. Instead of the fixed-rate MBS refinancing-prepayment
function f(x(t), t) we have to use the function fARM (z(t), t) as given in (5.17).
Furthermore, the weighted average coupon does of course not remain con-
stant but has to be adjusted according to the simulated index rate, taking
into account the Caps and Floors embedded in the contract.

The prepayment-risk-adjustment parameters µ, λp and λw can again be
calibrated to market data. In order to give an empirical example, we con-
sider market data of 20-Aug-2006. On this particular day, prices for GNMA
ARMs with current coupons of 4%, 4.5% and 5% were actively quoted on a
TBA basis. Calibrating the prepayment-risk-adjustment parameters to the
prices of these securities (by minimising the Euclidean norm of differences
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between model and market prices) yields the estimates as given in Table
5.6. These results are line with the estimates obtained in our fixed-rate MBS
model and the same interpretations apply. In Table 5.7 we show the market

Parameter Estimate

µ 2.7
λp 3.1
λw -14.4

Table 5.6: Prepayment-risk-adjustment parameters calibrated to GNMA
ARM prices on the sample day 20-Aug-2006.

prices and our model prices. These results indicate that our model is able to
explain market prices of GNMA ARMs successfully. Yet, further empirical
evidence, in particular with respect to parameter stability over time, would
be interesting. This is however, beyond the scope of this thesis and remains
a topic for further research.

Coupon 4% Coupon 4.5% Coupon 5%

Market price 0.9800 0.9841 1.0059
Model price 0.9847 0.9912 0.9995

Rel. pricing error 0.5% 0.7% 0.6%

Table 5.7: GNMA ARM market and model prices according to our
prepayment-risk-neutral GNMA ARM pricing model on the sample day 20-
Aug-2006.

5.4 Collateralized Mortgage Obligations

In this section we will apply our model to the pricing of Collateralized Mort-
gage Obligations (CMOs). We have already introduced CMOs briefly in
Chapter 2 and have mentioned that the cash flows of the underlying mortgage
pool are assigned to different tranches. Depending on the individual securi-
tisation scheme, these tranches may have very different characteristics. The
most basic type of CMO is the sequential-pay CMO, sometimes also called
plain-vanilla or clean CMO. In a sequential-pay CMO each tranche receives
regular interest payments. Principal payments (scheduled payments and pre-
payments) are, however, assigned sequentially to the different tranches, usu-
ally labelled A-Tranche, B-Tranche, etc. I.e., principal payments are assigned



5.4. COLLATERALIZED MORTGAGE OBLIGATIONS 89

to the Tranche A alone until it is completely retired. Once this is the case,
all principal payments are assigned to Tranche B, etc. Figure 5.12 illustrates
the cash flow pattern of a sequential-pay CMO with three tranches.

More complex CMO structure may include Planned Amortization Class
(PAC) tranches and Targeted Amortization Class (TAC) tranches. PAC
tranches guarantee a fixed principal repayment schedule as long as prepay-
ment rates remain in a certain corridor, e.g. 75% PSA to 300% PSA. TAC
tranches have a designated target speed. If prepayments are equal or above
the target speed, e.g. 100% PSA, the principal allocation to the TAC tranche
follows a prespecified schedule. Thus, PAC tranches offer protection against
prepayment risk up to a certain degree. Unlike the PAC tranches, a TAC
tranche is not protected from extension if prepayments are slower than ex-
pected and therefore offer only one-sided prepayment variability protection.
Excess prepayments which are above the PAC and TAC tranche schedules are
absorbed by so-called companion or support tranches. These tranches feature
a very high uncertainty with respect to cash flow timing and therefore bear
a large part of the prepayment risk associated with the underlying mortgage
pool. In addition to PAC, TAC and support tranches, complex CMOs may
also have accrual tranches (usually labelled Z-tranche), which do not receive
interest payments during a certain lockout period, Interest-Only tranches,
Principal-Only tranches, Floating-Rate Tranches and Inverse Floating-Rate
tranches. Finally, residual tranches collect remaining cash flows from the
underlying pool after the obligations to the other tranches have been met.

The pricing of these tranches within our modelling framework is per-
fectly possible. The Monte-Carlo simulation used to price the underlying
pass-through security according to (5.8) simply has to be changed to ac-
commodate the cash flow structuring rules of the CMO. Since virtually ev-
ery CMO features individual characteristics, liquid market prices of CMO
tranches are not readily available. Since we do not have liquid market data,
it is impossible at this stage to validate our model empirically using CMO
market prices. We will however, briefly illustrate how our model works for
an easy sequential-pay CMO structure with three tranches as illustrated in
Figure 5.12. We assume that all tranches are equally large (i.e. 1/3 of the
underlying pool’s total notional amount) and that the underlying pool is the
GNMA 5.5% generic pool on the sample day 12-Dec-2005 as already used in
Chapter 5.2.2. Furthermore, we assume that the coupon for each of the three
tranches is equally 5.5%. Our prepayment-risk neutral model prices of the
tranches (with respect to a notional of 1), as well as the respective expected
average lives, are given in Table 5.8.

In addition to the different expected average lives, CMO tranches also
differ with respect to their model risk exposure. The different model risk
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Tranche A B C

Model Price 1.0081 0.9866 0.9866
Exp. Average Life (yrs.) 1.98 7.72 17.02

Table 5.8: Model prices and expected average lives of the three tranches in
the sequential-pay CMO example.

exposure of the three tranches in our CMO example is illustrated exemplar-
ily in Figure 5.11. Analogously to Chapter 5.2.3, we gradually scale the
interest-rate volatility parameter σr. The price sensitivity with respect to
changes of the parameter σr evidently increases from Tranche A to Tranche
C. This can again be explained by the value of the prepayment option which
increases when the interest-rate volatility increases. Since the tranches with
lower principal repayment priority have longer average lives, the value of the
prepayment option inherent in these tranches is evidently more sensitive with
respect to changes in interest-rate volatility than the value of the prepayment
option inherent in tranches with a higher principal repayment priority. This
should be taken into account when investing in CMO tranches.
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Figure 5.11: Price sensitivities of the three tranches in the sequential-pay
CMO example with respect to changes in the interest-rate model volatility
parameter σr.
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Figure 5.12: Cash flow structure of a sequential-pay CMO with three
tranches.



Chapter 6

A closed-form approximation
for fixed-rate MBS

The valuation of mortgage-backed securities is usually considered a com-
putationally expensive problem. This holds for both the option-theoretic
approaches and the traditional econometric approaches, as already discussed
in Chapter 4. In this chapter we develop an approximate closed-form formula
for the value of fixed-rate (agency) MBS and, as corollaries, for Interest-Only
and Principal-Only securities. The valuation is again based on a stochastic
prepayment intensity approach similar in spirit to the approach presented in
Chapter 5.

In many intensity-based modelling approaches for the valuation of default-
able bonds and credit derivatives closed-form pricing formulas are available.
It is our aim in this chapter to apply these techniques to prepayment-sensitive
MBS. Interestingly, in our intensity-based model we find that a closed-form
solution of the MBS valuation problem leads to rather similar challenging
calculations as in the approach developed by Collin-Dufresne and Harding
(1999). As already discussed in Chapter 4.2, the Collin-Dufresne/Harding
model, as well as its extension developed by Rom-Poulsen (2007), has a couple
of shortcomings. In our framework, however, we are able to address some of
the previously mentioned shortcomings which may be problematic in certain
situations and for certain types of MBS. It is straightforward to incorporate
additional stochastic factors into our model. Similar to the approach taken
in Chapter 5, we do this by modelling the (non refinancing-related) baseline
prepayment process via two stochastic factors, where the second factor is
fit to the GDP growth in the US. We thus account for the dependence be-
tween general economic conditions and turnover-related prepayment in our
model. The baseline prepayment is also supposed to capture defaults which,
in the case of agency MBS, simply result in prepayment for an investor. In

93
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addition to this, we account for the usual S-curve shape of the refinancing-
incentive/prepayment relation by a sectionwise linear approximation. This
is quite similar to the approach presented in Gorovoy and Linetsky (2007)
(which was developed independently from the research presented here). We
find that this approximation does have an important effect across the whole
coupon range.

While in our modelling framework it is straightforward to conduct a clas-
sical OAS valuation, we are again primarily interested in a prepayment-risk-
neutral valuation. This also allows us to assess the performance of our model
quantitatively by directly comparing market to model prices.

6.1 The model set-up

Our starting point here is the valuation of a single mortgage contract. We
assume that the time of prepayment of one mortgage does not influence the
probability of prepayment of other mortgages and that the pool is homoge-
neous (w.r.t. mortgage maturity, coupon, etc. and thus w.r.t. individual
prepayment probabilities). Thus, the value of the MBS can be calculated as
the value of an individual mortgage multiplied with the number of mortgages
in the pool. While this assumption is problematic in option-based models
where one would have to establish some additional features accounting for
heterogeneous prepayment-option exercise behaviour, this is not the case in
the reduced-form framework. We further assume that partial prepayment is
not possible.

Consider a mortgage contract with payment dates t1, ..., tK , define ∆tk :=
tk − tk−1 (years) and set t0 = 0. On each payment date tk, k = 1, ..., K, the
mortgage payment M(tk) · ∆tk, containing both interest and regular repay-
ments, has to be made until the time of prepayment. At the time of prepay-
ment tτ (or at the final maturity of the mortgage), the remaining principal
balance according to the amortization schedule A(tτ ) is paid back in a lump
sum. Thus, all cash flows depend on the time of prepayment. Following
(3.35) and (3.37), the approximate value V Mo

app (0) of the mortgage contract
at time 0 admits the representation

V Mo
app (0) = E eQ

[
K∑

k=1

(M(tk) · ∆tk + A(tk) · π(tk) · ∆tk) · e−
R tk
0

(r(s)+π(s))ds

]
,

(6.1)

where r(t) is the (risk-free) short-rate process, π(t) is the (continuous, an-

nualised) prepayment intensity/prepayment speed process and Q̃ is the risk-
neutral pricing measure. Formula (6.1) can also be considered a discretised
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version of the continuous time valuation formula in Goncharov (2005). Note
that (6.1) implies that A(tk) is to be understood here as the outstanding
balance according to the amortisation schedule before the regular principal
repayment has been made on the payment date tk. In the credit risk liter-
ature, where formulas such as (6.1) are common, the process π(t) is usually
the default intensity. If the default intensity process can be set up within
a Gaussian framework, a closed-form representation of formula (6.1) is, in
general, possible. In many models and applications in practice the default
intensity is modelled independently from r(t). In the case of prepayment
modelling, however, the prepayment intensity process π(t) can not be as-
sumed to be independent of the interest-rate process r(t) since it is a well
known fact that mortgage borrowers are more likely to refinance their loans
and thus prepay their mortgages when interest rates decline, as previously
discussed. In the following we will again decompose the overall prepayment
intensity into the two independent components refinancing-related prepay-
ment πrefi(t) and baseline prepayment π0(t), i.e. we get for the continuous,
annualised prepayment speed

π(t) = πrefi(t) + π0(t). (6.2)

Note that we have specified the prepayment intensity here in a slightly dif-
ferent way than in the model presented in the previous chapter. The prepay-
ment intensity π(t) in our closed-form model presented here is the analogue
of ln p(t) in the previous chapter.

Following the argumentation in Chapter 5 based on the Girsanov theorem
for marked point processes, we again introduce a multiplicative prepayment-
risk adjustment parameter µ so that, under the risk-neutral pricing measure
Q̃, the prepayment process has the dynamics

dπ̃(t) = µ · (dπrefi(t) + dπ0(t)). (6.3)

Note that (6.3) implies that we assume that the intensity under the risk-

neutral pricing measure Q̃ is given by the intensity under the real-world
measure, multiplied with some constant µ. I.e., we assume that

Φ(t) = µ

instead of Φ(t) = (p(t))µ−1 in Theorem 5.1. We will discuss the refinancing
component and the turnover component of prepayment separately in the
following before we finally put all components together for our closed-form
formula.
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The short-rate model and the refinancing component

A crucial component of every MBS valuation model is an adequate model
for the interest-rate term structure. For our closed-form formula we use a
1-factor CIR model as introduced in Chapter 3.2.3, which has proven to
be better suited for our closed-form approximation approach than the Hull-
White model used in Chapter 5. While an extensions to a two-factor CIR
model is possible in our modelling framework, we leave this for further re-
search. Recall that in the basic CIR model, the risk-free short-rate dynamics
under the risk-neutral measure Q̃ are given by

dr(t) = (θr − ârr(t))dt + σr

√
r(t)dW̃r(t), (6.4)

where W̃r is a Q̃-Wiener process, âr := ar + λrσ
2
r with the market price

of risk parameter λr and some positive constants θr, ar, σr with 2θr > σ2
r .

Recall also that the zero-coupon bond prices in the CIR model can be calcu-
lated analytically. They are comprised in the following, more general, lemma:

Lemma 6.1. In the CIR short-rate model and with rc(t) := c · r(t) for some

constant c ≥ − â2
r

2σ2
r
, it holds that

P c(t, T ) := E eQ[e−
R T

t
rc(s)ds|Ft] = eAc(t,T )−Bc(t,T )r(t) (6.5)

where

Bc(t, T ) = c · 1 − e−γc(T−t)

κ1 − κ2e−γc(T−t)
,

Ac(t, T ) =
2θr

σ2
r

log

[
γceκ2·(T−t)

κ1 − κ2 · e−γc·(T−t)

]

with γc :=
√

â2
r + 2σ2

rc, κ1 := âr

2
+ γc

2
and κ2 := âr

2
− γc

2
.

Proof. For c = 1 we have the well-known formulas for zero-coupon bond
prices in the CIR model. For c ≥ 0 in general, we get the dynamics of rc(t)

under Q̃ by a simple application of the Ito-formula and obtain:

rc(t) = (θc
r − ârr

c(t))dt + σc
r

√
rc(t)dW̃r(t)

with

θc
r = c · θr,

σc
r =

√
c · σr
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and the statement follows directly from, e.g., Zagst (2002a), p.126/127. For

− â2
r

2σ2
r
≤ c < 0, however, the result is less straightforward. We therefore

explicitly give the detailed proof in the following.
From the Feynman-Kac representation of the Cauchy-Problem (see (3.5))

we know that P c(t, T ) must satisfy:

P c
t + (θr − ârr)P

c
r +

1

2
· σ2

r · r · P c
rr = c · r · P c (6.6)

with boundary condition P c(T, T ) = 1. Since

P c
r = −Bc · P c,

P c
t = P c · (Ac

t − r · Bc
t ),

P c
rr = (Bc)2 · P c,

it follows from (6.6) that

Ac
t(t, T ) − θrB

c(t, T ) − r · (c − 1

2
· σ2

r · (Bc(t, T ))2

+Bc
t (t, T ) − âr · Bc(t, T )) = 0

with Ac(T, T ) = Bc(T, T ) = 0. This leads to the Riccati-style equations

c − 1

2
· σ2

r · (Bc(t, T ))2 + Bc
t (t, T ) − ârB

c(t, T ) = 0

with Bc(T, T ) = 0 and
Ac

t(t, T ) = θrB
c(t, T )

with Ac(T, T ) = 0. Thus, it remains to show that

Bc(t, T ) = c · 1 − e−γc(T−t)

κ1 − κ2e−γc(T−t)
,

Ac(t, T ) =
2θr

σ2
r

log

[
γceκ2·(T−t)

κ1 − κ2 · e−γc·(T−t)

]

with γc :=
√

â2
r + 2σ2

rc, κ1 := âr

2
+ γc

2
and κ2 := âr

2
− γc

2
solve the Riccati

equations for c ≥ − â2
r

2σ2
r
. Since (for c 6= 0)

1
2
· σ2

r · (Bc(t, T ))2

c
− Bc

t (t, T )

c
+

ârB
c(t, T )

c
=

1
2
σ2

rc · (1 − e−γc(T−t))2

(κ1 − κ2e−γc(T−t))2

−(κ1 − κ2e
−γc(T−t))(−γce−γc(T−t)) − (1 − e−γc(T−t))(−κ2γ

ce−γc(T−t))

(κ1 − κ2e−γc(T−t))2

+
âr(1 − e−γc(T−t))(κ1 − κ2e

−γc(T−t))

(κ1 − κ2e−γc(T−t))2
:=

Z

N
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it remains to show that Z = N .

Z =
1

2
σ2

rc − σ2
rce

−γc(T−t) +
1

2
σ2

rce
−2γc(T−t) + κ1γ

ce−γc(T−t) −

κ2γ
ce−2γc(T−t) − κ2γ

ce−γc(T−t) + κ2γ
ce−2γc(T−t) + ârκ1 −

ârκ1e
−γc(T−t) − ârκ2e

−γc(T−t) + ârκ2e
−2γc(T−t)

=
1

2
σ2

rc − σ2
rce

−γc(T−t) +
1

2
σ2

rce
−2γc(T−t) +

âr

2
γce−γc(T−t) +

1

2
γc2e−γc(T−t) − âr

2
γce−γc(T−t) +

1

2
γc2e−γc(T−t) +

â2
r

2
+

âr

2
γc − â2

r

2
e−γc(T−t) − âr

2
γce−γc(T−t) − â2

r

2
e−γc(T−t) +

âr

2
γce−γc(T−t) +

â2
r

2
e−2γc(T−t) − âr

2
γce−2γc(T−t).

Simplifying further, we obtain:

Z =
â2

r

2
+

1

2
ârγ

c +
1

2
σ2

rc +

e−γc(T−t)(−σ2
rc + (â2

r + 2σ2
rc) − â2

r −
âr

2
γc +

âr

2
γc)

e−2γc(T−t)(
1

2
σ2

rc +
â2

r

2
− âr

2
γc)

=
â2

r

2
+

1

2
ârγ

c +
1

2
σ2

rc +

e−γc(T−t) · σ2
rc + e−2γc(T−t)(

1

2
σ2

rc +
â2

r

2
− âr

2
γc).

Now, since

κ2
1 =

â2
r

4
+

1

2
ârγ

c +
1

4
(â2

r + 2σ2
rc) =

â2
r

2
+

1

2
ârγ

c +
1

2
σ2

rc,

−2κ1κ2 = −2(
â2

r

4
− 1

4
γc2) = − â2

r

2
+

â2
r

2
+ σ2

rc = σ2
rc;

κ2
2 =

â2
r

4
− 1

2
ârγ

c +
1

4
(â2

r + 2σ2
rc) =

â2
r

2
− 1

2
ârγ

c +
1

2
σ2

rc,

we get:

N =
â2

r

2
+

1

2
ârγ

c +
1

2
σ2

rc

+e−γc(T−t) · σ2
rc + e−2γc(T−t)(

1

2
σ2

rc +
â2

r

2
− âr

2
γc)



6.1. THE MODEL SET-UP 99

and thus Z = N .
For Ac(t, T ) we get by comparing the original form of A(t, T ) in the CIR

model

Ac(t, T ) = −
∫ T

t

θrB
c(s, T )ds

= c · 2θr

σ2
rc

log

[
2γce

1

2
(âr+γc)(T−t)

(âr + γc)(eγc(T−t) − 1) + 2γc

]

=
2θr

σ2
r

log

[
2γce

1
2
(âr+γc)(T−t)

(âr + γc)(eγc(T−t) − 1) + 2γc

]
,

which completes the proof.

If c = 1 in Lemma 6.1, P c(t, T ) is the price of a zero-coupon bond in the CIR
model and we will write P (t, T ), γ, B(t, T ) and A(t, T ) instead of P c(t, T ),
γc, Bc(t, T ) and Ac(t, T ) in this case.

As already mentioned earlier, the refinancing incentive is usually modelled
as a function of the spread between a security’s weighted-average coupon
(WAC) and current long-term interest rates which serve as a proxy for mort-
gage refinancing rates. While in some models (e.g., Levin and Daras (1998)
or our approach in Chapter 5) the 10yr par yield is used, we use the 10yr zero
yield here since this is a more convenient choice for our closed-form formula.
Note that within the CIR framework the 10yr zero yield R10 is given by

R10(t) = −a10 + b10 · r(t), (6.7)

where a10 := A(t,t+10)
10

and b10 := B(t,t+10)
10

. Contrarily to Collin-Dufresne and
Harding (1999) we do not use a purely linear functional form, but approxi-
mate an S-curve shape by defining

πrefi(t) = β · max(min(WAC − R10(t), α), 0), (6.8)

for some constant α > 0, which results in a spread-refinancing prepayment
relationship as shown in Figure 6.1. This functional form offers two major
advantages compared to a purely linear functional form:

• The S-like relationship between the spread and the refinancing-driven
prepayment, which has been confirmed empirically by, e.g., Levin and
Daras (1998), is accounted for.

• Refinancing-driven prepayment can never become negative.
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Figure 6.1: Assumed functional form of the relationship between the contract
rate spread (i.e. the spread between the WAC and the current 10yr treasury
zero rate) and the refinancing-related (annualised) prepayment speed. The
parameter β in (6.8) is set to 5.6 as estimated later and α is set to 0.04.

These advantages also hold if we compare our approach to the model de-
veloped by Rom-Poulsen (2007). The quadratic interest-rate/refinancing re-
lationship in the Rom-Poulsen model offers more flexibility than a purely
linear functional form. Yet, it is not guaranteed that refinancing prepayment
is always positive. Moreover, a quadratic relationship may yield non-sensical
prepayment patterns in extreme situations (i.e. for very low or very high
spread values).

Using (6.7) and noting that for some constants a, b, c ∈ R, b > c, we have

max(min(a − x, b), c) = a − x + max(x − (a − c), 0) − max(a − b − x, 0),

formula (6.8) gets:

πrefi(t) = β · WAC + βa10 − βb10r(t)

+βb10 · max

(
r(t) − WAC + a10

b10

, 0

)

−βb10 · max

(
WAC + a10 − α

b10
− r(t), 0

)
. (6.9)
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Now, consider the term E eQ

[
e−

R tk
0 (r(s)+πrefi(s))ds

]
. Defining

r̃(t) := r(1−βb10)(t) = (1 − βb10) · r(t)

we get by using (6.9):

E eQ

[
e−

R tk
0 (r(s)+πrefi(s))ds

]
= E eQ

[
e−

R tk
0 β·WAC+βa10+er(s)ds·

e
−

R tk
0 βb10·max

“
r(s)−WAC+a10

b10
,0

”
ds ·

e
R tk
0 βb10·max

“
WAC+a10−α

b10
−r(s),0

”
ds

]
.

(6.10)

The following theorem shows how we can calculate this quantity, up to an
error term which will be discussed in more detail in the appendix.

Theorem 6.2. Defining

C(tk) := e−tk ·(β·WAC+βa10),

the expression

P refi(0, tk) := E eQ

[
e−

R tk
0 (r(s)+πrefi(s))ds

]

in the previously introduced model setting can be written in the following way:

P refi(0, tk) = C(tk) · P̃ (0, tk) − C(tk) · βb10 · C̃ap(r, 0, tk, rCap, ∆t)

+C(tk) · βb10 · F̃loor(r, 0, tk, rF loor, ∆t)

+C(tk) · E eQ

[
R̃
(
∆t, v2

k, w
2
k, zk · vk, zk · wk, vk · wk

)]
,

(6.11)
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where, corresponding to Lemma 6.1,

P̃ (0, tk) = P (1−βb10)(0, tk)

rCap :=
WAC + a10

b10

rF loor :=
WAC + a10 − α

b10

C̃ap(r, 0, T, rX, ∆t) :=

T/∆t∑

k=1

∆t ·
[
q + 1 + uk

ck
− uk

ck
· χ2(2ckrX , 2q + 6, 2uk)

−q + 1

ck

· χ2(2ckrx, 2q + 4, 2uk) − rX + rX · χ2(2ckrX , 2q + 2, 2uk)

]

F̃loor(r, 0, T, rX, ∆t) :=

T/∆t∑

k=1

∆t ·
[
rX · χ2(2ckrX , 2q + 2, 2uk)

−uk

ck

· χ2(2ckrX , 2q + 6, 2uk) −
q + 1

ck

· χ2(2ckrX , 2q + 4, 2uk)

]

ck :=
2âr

σ2
r · (1 − e−âr ·k·∆t)

uk := ck · r(0) · e−âr ·k·∆t

q :=
2θr

σ2
r

− 1,

and χ2(·; a, b) denotes the cdf of the non-central Chi-square distribution with
degrees of freedom parameter a and non-centrality parameter b.
R̃ (∆t, v2

k, w
2
k, zk · vk, zk · wk, vk · wk) is a term containing residual terms of

the order O(∆t, v2
k, w

2
k, zk · vk, zk · wk, vk · wk). vk, wk, zk are defined as:

vk := −
∫ tk

0

βb10 · max(r(s) − rCap, 0) ds

wk :=

∫ tk

0

βb10 · max(rF loor − r(s), 0) ds

zk :=

∫ tk

0

r̃(s) ds

Proof. After factoring out C(tk) in (6.10) we apply the approximation

ezk+vk+wk = ezk + vk + wk + R̄, (6.12)
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where the term R̄ contains residual terms of the order O(v2
k, w

2
k, zk · vk, zk ·

wk, vk · wk). If we then approximate the integrals by sums, we obtain:

E eQ

[
e−

R tk
0 (r(s)+πrefi(s))ds

]
= C(tk) · P̃ (0, tk)

−βb10 · C(tk) · ∆t ·
⌈ tk
∆t

⌉∑

k=1

E eQ

[
max

(
r(k · ∆t) − WAC + a10

b10
, 0

)]

+βb10 · C(tk) · ∆t ·
⌈ tk

∆t
⌉∑

k=1

E eQ

[
max

(
WAC + a10 − α

b10
− r(k · ∆t), 0

)]

+C(tk) · E eQ

[
R̃(∆t, v2

k, w
2
k, zk · vk, zk · wk, vk · wk)

]

= C(tk) · P̃ (0, tk)

−βb10 · C(tk) · ∆t ·
⌈ tk
∆t

⌉∑

k=1

∫ ∞

rCap

(r(k · ∆t) − rCap) f(r(k · ∆t))dr(k · ∆t)

+βb10 · C(tk) · ∆t ·
⌈ tk

∆t
⌉∑

k=1

∫ rF loor

0

(rF loor − r(k · ∆t)) f(r(k · ∆t))dr(k · ∆t)

+C(tk) · E eQ

[
R̃(∆t, v2

k, w
2
k, zk · vk, zk · wk, vk · wk)

]
(6.13)

where f(·) denotes the pdf of the short rate and where the residual term R̃
also contains the error terms of order O(∆t) resulting from the approximation
of integrals by sums (see Appendix for a general discussion). Since we work
with a CIR model here, we know from Cox et al. (1985) that the distribution
of 2 · ck · r(k · ∆t) is the non-central χ2-distribution with parameters 2q + 2
and 2uk, with ck, uk and q as previously defined (see also Chapter 3.2.3).
From the recurrence relation (see Johnson et al. (1995), p. 442)

λ · χ2(x; µ + 4, λ) = (λ − µ) · χ2(x; µ + 2, λ)

+(x + µ) · χ2(x; µ, λ) − x · χ2(x; µ − 2, λ)

(6.14)

(for µ > 2) and from the relation (see Johnson et al. (1995), p. 443)

∂χ2(x; µ, λ)

∂x
= f(x; µ, λ) =

1

2
(χ2(x; µ − 2, λ) − χ2(x; µ, λ)) (6.15)

it follows with some easy calculations that
∫ b

0

xf(x; µ, λ)dx = µ · χ2(b; µ + 2, λ) + λ · χ2(b; µ + 4, λ). (6.16)
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Applying (6.16) to the first integral in (6.13), we obtain:

∫ ∞

rCap

(r(k · ∆t) − rCap) f(r(k · ∆t))dr(k · ∆t) =
1

2ck

[
E eQ[2ckr(k · ∆t)] −

−(2q + 2) · χ2(2ckrCap; 2q + 4, 2uk) − 2uk · χ2(2ckrCap; 2q + 6, 2uk)

]

−rCap · (1 − χ2(2ckrCap; 2q + 2, 2uk)).

Similarly,
∫ rF loor

0

(rF loor − r(k · ∆t)) f(r(k · ∆t))dr(k · ∆t) =

rF loor · χ2(2ckrF loor; 2q + 2, 2uk) −
1

2ck

[
(2q + 2)

·χ2(2ckrF loor; 2q + 4, 2uk) + 2uk · χ2(2ckrF loor; 2q + 6, 2uk)

]
.

Noting that
E eQ[2ckr(k · ∆t)] = 2q + 2 + 2uk,

formula (6.11) follows directly after rearranging of terms.

Note that the error term in Theorem 6.2 can be expected to be reasonably
small, in particular for small values of tk. The error term will be discussed
in more detail in the appendix. Note also that the notation ’C̃ap’ has not
been chosen without motive. If one equates the linear interest rate at time t
for the period from t to t + ∆t with the short rate r(t), the expression

max

(
r(k · ∆t) − (WAC + a10)

b10
, 0

)
· ∆t

in (6.10) is simply the payoff of a standard caplet from k ·∆t to (k + 1) ·∆t
with cap rate rCap := (WAC + a10)/b10. A similar consideration applies for

the notation ’F̃loor’. We typically have ∆tk = 1/12 (i.e. 1 month) for all
k = 1, ..., K. Hence, ∆t = 1/12 is a natural choice for the interval length of
the discretisation in (6.11).

The baseline prepayment

We model the baseline or turnover component of prepayment within a two-
factor Gaussian process framework where both factors follow Vasicek pro-
cesses, similar to the specification of the baseline prepayment process in
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Chapter 5. The second factor is fit to the GDP growth in the US, accounting
for the dependence between general economic conditions and turnover pre-
payment. Of course, any other observable factor, e.g. a suitable house price
index, could be used instead of or in addition to the GDP growth factor.
While our empirical results have turned out to be satisfactory with the GDP
growth as second factor in the baseline prepayment model, house prices have
been used for example by Kariya et al. (2002), Sharp et al. (2006) or Down-
ing et al. (2005). Our baseline prepayment processes are thus again given

by their Q̃-dynamics

dπ0(t) = (θp + bpww(t) − âpπ0(t))dt + σpdW̃p(t), (6.17)

dw(t) = (θw − âww(t))dt + σwdW̃w(t),

where W̃p, W̃w are independent Q̃-Wiener processes (independent of the pre-

viously defined W̃r) and âi := ai + λiσ
2
i , i = p, w, for the two prepayment-

risk-adjustment parameters λp, λw.
In order to be able to calculate (6.1) we have to evaluate the expression

P̃ d(t, T ) := E eQ[e−
R T
t

(er(s)+π0(s))ds|Ft]

= E eQ[e−
R T
t

er(s)ds|Ft] · E eQ[e−
R T
t

π0(s)ds|Ft]

=: P̃ (t, T ) · P base(t, T ),

where r̃(t) := r(1−βb10)(t), P̃ (t, T ) := P (1−βb10)(t, T ). The letter d in the

superscript of P̃ d(t, T ) is used in analogy to the reduced-form credit risk
literature.

Theorem 6.3. In the model set-up as previously introduced it holds that

P base(t, T ) = eAd(t,T )−Cd(t,T )π0(t)−Dd(t,T )w(t)

with

Cd(t, T ) =
1

âp

(
1 − e−âp(T−t)

)
,

Dd(t, T ) =
bpw

âp

(
1 − e−âw(T−t)

âw

+
e−âw(T−t) − e−âp(T−t)

âw − âp

)
,

Ad(t, T ) =

∫ T

t

1

2

(
σ2

pC
d(l, T )2 + σ2

wDd(l, T )2
)

−θpC
d(l, T ) − θwDd(l, T )dl.
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Proof. From the Feynman-Kac representation of the Cauchy-Problem (see
(3.5)) we know that P base(t, T ) must satisfy:

P base
t + (θw − âww)P base

w + (θp + bpw · w − âpπ0)P
base
π0

+
1

2
· (σ2

p · P base
π0π0

+ σ2
w · P base

ww ) = π0 · P base

Calculating the derivatives of P base it follows that

Ad
t (t, T ) − π0(1 − âpC

d(t, T ) + Cd
t (t, T ))

−w(Dd
t (t, T ) − âwDd(t, T ) + bpwCd(t, T ))

+1
2
· (σ2

pC
d(t, T )2 + σ2

wDd(t, T )2) − θpC
d(t, T ) − θwDd(t, T ) = 0.

Thus, we obtain the system of linear differential equations

1 − âpC
d(t, T ) + Cd

t (t, T ) = 0

bpwCd(t, T ) − âwDd(t, T ) + Dd
t (t, T ) = 0

Ad
t (t, T ) +

1

2
· (σ2

pC
d(s, T )2 + σ2

wDd(s, T )2)

−θpC
d(s, T ) − θwDd(s, T ) = 0

with Ad(T, T ) = 0, Cd(T, T ) = Dd(T, T ) = 0. With some easy calculations
it is straightforward to verify that the formulas as stated in Theorem 6.3 are
the solutions of the linear differential equations above.

Note, that we have associated the prepayment speed π(t) with the intensity
of prepayment. In our model specification in this chapter, however, π(t)
can have negative values, albeit, in general, with only small probabilities.
Prepayments for ordinary fixed-rate MBS can, of course, never be negative.
Furthermore the association of the process π(t) with the prepayment intensity
(and likewise the association of the baseline prepayment process π0(t) with
the corresponding default intensity process in the credit risk literature) is not
unproblematic from a technical point of view for the same reason: intensities
can never be negative. We thus consider the processes π(t) and π0(t) as
proxies for the respective intensity processes. The fact that both π(t) and
π0(t) are negative only with small probabilities justifies this approach. With
the parameter values as estimated in the following section (see Table 6.1),
the probability that after one year the baseline prepayment is negative is
just 2%, if we set the GDP growth constant and equal to its mean-reversion
level and the initial baseline prepayment level to its mean-reversion level of
approx. 17% (see also Schönbucher (2003), p. 167, for a further discussion
of this topic in the context of credit risk modelling).
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The closed-form approximation

With the ingredients developed in the previous subsections the expressions

• E eQ

[
M(tk) · e−

R t1
0

r(s)ds
]

= M(tk) · P (0, t1)

• E eQ

[
M(tk) · e−

R tk
0 (r(s)+π(s))ds

]
= M(tk) · P refi(0, tk) · P base(0, tk)

in (6.1) can readily be evaluated for all k, if the error term R̃ is neglected.
This is not yet the case for the terms involving π(tk) as a factor.

Lemma 6.4. It holds that in the previously introduced model set-up

E eQ

[
π0(tk) · e−

R tk
0

(r(s)+π(s))ds
]

= C(tk) · P̃ d(0, tk) · f̃d(0, tk)

−C(tk) · βb10 · P base(0, tk) · f̃d(0, tk) · C̃ap(r, 0, tk, rCap, ∆tk)

+C(tk) · βb10 · P base(0, tk) · f̃d(0, tk) · F̃loor(r, 0, tk, rF loor, ∆tk)

+C(tk) · βb10 · P base(0, tk) · f̃d(0, tk)

·E eQ

[
R̃(∆t, v2

k, w
2
k, zk · vk, zk · wk, vk · wk)

]

where f̃d(0, tk) is the ”baseline spread forward rate”, i.e.

f̃d(0, tk) = − ∂

∂tk
ln P base(0, tk)

and all other quantities are as previously defined.

Proof. As a first step, recall the well-known result (see, e.g., Schmid (2004),
p. 243) saying that

E eQ

[
e−

R T

0
r(l)dlr(T )|F0

]
= −E eQ

[
e−

R T

0
r(l)dl|F0

]
· ∂

∂T
lnP (0, T ). (6.18)

Now, if we use the independence between (r(t), πrefi(t)) and π0(t), apply (6.18)
to

E eQ

[
π0(tk) · e−

R tk
0

(r(s)+π(s))ds
]

= E eQ

[
e−

R tk
0

(r(s)+πrefi(s))ds
]
·

E eQ

[
π0(tk) · e−

R tk
0 π0(s)ds

]
,

the lemma follows directly if we recall (6.11).

This leaves us with the term E eQ

[
πrefi(tk) · e−

R tk
0

(r(s)+π(s))ds
]
.
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Lemma 6.5. Within the previously introduced model set-up it holds that:

E eQ

[
πrefi(tk) · e−

R tk
0 (r(s)+π(s))ds

]
= −P base(0, tk) · P refi(0, tk)

· ∂

∂tk
ln

[
P refi(0, tk)

P (0, tk)

]
. (6.19)

Proof. If we define the tk-forward measure Qtk in the usual way via its Radon-
Nikodym derivative L(T ) with respect to Q̃ by

L(t) =
dQtk

dQ̃

∣∣∣∣Ft =
P (t, tk)

P (0, tk) · e
R tk
0 r(s)ds

for t ∈ [0, tk] and use (6.18) we obtain:

E eQ

[
πrefi(tk) · e−

R tk
0

(r(s)+π(s))ds
]

= E eQ

[
πrefi(tk) · e−

R tk
0

(r(s)+πrefi(s))ds
]
·

P base(0, tk)

= P (0, tk) · EQtk

[
πrefi(tk) · e−

R tk
0

πrefi(s)ds
]
· P base(0, tk)

= −P (0, tk) · EQtk

[
e−

R tk
0 πrefi(s)ds

]
·

∂

∂tk
ln EQtk

[
e−

R tk
0

πrefi(s)ds
]
· P base(0, tk)

= −P refi(0, tk) ·
∂

∂tk
ln

[
P refi(0, tk)

P (0, tk)

]
· P base(0, tk)

Note that by using Theorem 6.3 and Theorem 6.2, it is straightforward to
evaluate the terms in (6.19), if the error term R̃ is neglected.

We can finally summarise our results in the following theorem, where we
use Ṽapp as the value of a mortgage-backed security, if the error term R̃ as
previously defined is neglected.

Theorem 6.6. For a fixed-rate mortgage-backed security with K outstanding
payment dates at time 0 within the model specification as previously intro-
duced it holds that:

Ṽapp(0) = S1 + S2 + S3 − ∆1 + ∆2 (6.20)
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with

S1 =
K∑

k=1

M(tk) · ∆tk · C(tk) · P̃ d(0, tk)

S2 =

K∑

k=1

C(tk) · P̃ d(0, tk) · A(tk) · ∆tk · f̃d(0, tk)

S3 = −
K∑

k=1

C(tk) · P̃ d(0, tk) · A(tk) · ∆tk ·

∂

∂tk
ln

[
P refi(0, tk)

P (0, tk)

]

and

∆1 =
K∑

k=1

C̃ap(r, 0, tk, rCap, ∆tk) · C(tk) · P base(0, tk) ·

βb10 ·
[
M(tk) · ∆tk + A(tk) · ∆tk · f̃d(0, tk) − A(tk) · ∆tk ·

∂

∂tk
ln

[
P refi(0, tk)

P (0, tk)

] ]

∆2 =

K∑

k=1

F̃loor(r, 0, tk, rF loor, ∆tk) · C(tk) · P base(0, tk) ·

βb10 ·
[
M(tk) · ∆tk + A(tk) · ∆tk · f̃d(0, tk) − A(tk) · ∆tk ·

∂

∂tk
ln

[
P refi(0, tk)

P (0, tk)

] ]
.

Formula (6.20) can readily be evaluated once the model parameters have been
estimated and calibrated. From Theorem 6.6 it is also easy to see how the
most common mortgage derivatives, i.e. Interest-Only (IO) and Principal-
Only (PO) securities, can be priced within our modelling framework. If we
split up the mortgage payment M(tk) into the interest payment M I(tk) and
regular principal repayment MP (tk), so that M(tk)=M I(tk) + MP (tk), and
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denote

SI
1 := M I(tk) · ∆t1 · P (0, t1) +

K∑

k=2

M I(tk) · ∆tk · C(tk) · P̃ d(0, tk)

∆I
1 :=

K∑

k=1

C̃ap(r, 0, tk, rCap, ∆tk) · C(tk) · P base(0, tk) · βb10 · M I · ∆tk

∆I
2 :=

K∑

k=1

F̃loor(r, 0, tk, rF loor, ∆tk) · C(tk) · P base(0, tk) · βb10 · M I · ∆tk

SP
1 := S1 − SI

1

∆P
1 := ∆1 − ∆I

1

∆P
2 := ∆2 − ∆I

2

we obtain the following two corollaries, where the notation Ṽ IO
app(0) and

Ṽ PO
app (0) is again used for the calculation of values neglecting the error term

R̃. The two corollaries conclude this section.

Corollary 6.7. The value Ṽ IO
app(0) of an Interest-Only security with K out-

standing payment dates at time 0 is given by:

Ṽ IO
app(0) = SI

1 − ∆I
1 + ∆I

2

Corollary 6.8. The value Ṽ PO
app (0) of a Principal-Only security with K out-

standing payment dates at time 0 is given by:

Ṽ PO
app (0) = SP

1 + S2 + S3 − ∆P
1 + ∆P

2

6.2 Application to market data

6.2.1 Parameter estimation and model calibration

For the empirical evaluation of our closed-form approximation approach we
use again the monthly historical prepayment data of the 30yr fixed-rate
mortgage-backed securities of the GNMA I and GNMA II program which
we have already used for parameter estimation in our model presented in
Chapter 5. In addition to this we now use monthly historical prices of generic
GNMA 30yr pass-through MBS with different coupons as traded on a to-be-
announced (TBA) basis from 1996 to 2006 in order to assess the performance
of our model. All data were obtained from Bloomberg.
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Weekly US treasury strip zero rates, obtained from the par rates by stan-
dard bootstrapping, from 1993 to 2005 are used for the estimation of the
parameters of the CIR interest-rate model. We estimate the CIR interest-
model parameters with a state-space approach which integrates time-series
information of different maturities, similar to the approach described in Geyer
and Pichler (1999). Estimation of the unobservable state variables (i.e. of
the short rate) is done with an approximative Kalman filter where the tran-
sition densities are supposed to be normal. For the maximisation of the log-
likelihood we use again the combined Downhill Simplex/Simulated Annealing
algorithm as described in Press et al. (1992). The parameters θp, ap, σp, bpw

can again be estimated by Kalman filtering techniques, similar in spirit to
the approach in Chapter 5. The measurement equation of the prepayment
state space model is given by (6.2) with the historically observed annualised
(continuous) prepayment rates π(tk) and πrefi as specified in (6.8). We obtain:




π1(tk)
...

πN (tk)


 =




π1,refi(tk)
...

πN,refi(tk)


+




1
...
1


 · π0(tk) + ǫk, (6.21)

where we assume that ǫk ∼ NN

(
0, h2

p · IN

)
. Since in 2002-2004 prepayment

speeds were very high, we only use the data until 2004 for parameter esti-
mation in the prepayment model in order to avoid noise in our observations
caused by small pool sizes after 2004. The transition equation for the (un-
observable) baseline prepayment process is again given by

π0(tk+1) = e−ap∆tk+1 · π0(tk) +
θp + bpww(tk)

ap
· (1 − e−ap∆tk+1) + ηk+1

with

ηk+1 ∼ N1

(
0,

σ2
p

2ap

(1 − e−2ap∆tk+1)

)
.

The estimates of the interest-rate model parameters and of the (real-world)
prepayment model parameters for our closed-form approximation model are
given in Table 6.1. The standard errors are again estimates obtained from a
moving block bootstrap procedure.

In order to illustrate the parameter estimates in our closed-form approx-
imation prepayment model, we plot again the historical prepayment rates
(as SMM) in Figure 6.2, similar to the presentation in Figure 5.1 for our full
Monte-Carlo valuation model. We also show the estimated single monthly
mortalities according to our closed-form approximation model when the base-
line prepayment process is set equal to its mean-reversion level. Note that
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Parameter Estimate (Std. error)

Short-rate process θr 0.014 (0.0056)
ar 0.41 (0.12)
σr 0.059 (0.0073)
âr 0.20 (0.10)
hr 0.0044 (4.8·10−4)

GDP growth process θw 0.019 (0.0099)
aw 1.43 (0.79)
σw 0.002 (4.3·10−4)

Baseline prepayment process θp 0.43 (0.20)
ap 0.75 (0.56)
σp 0.12 (0.057)
bpw -22.6 (5.03)
hp 0.085 (0.012)

Regression parameter β 5.6 (0.90)

Table 6.1: Estimates of the interest-rate model and real-world prepayment
model parameters in our closed-form approximation approach where hr and
hp are the measurement std. errors of the respective state space models.

the burnout is not an explanatory variable in this model and the expected
prepayment rates are thus independent of the burnout. Moreover, note that
the spread is defined as the difference between the WAC of the mortgage pool
and the 10yr CMT zero-rate here, while the 10yr CMT par rate was used in
Figure 5.1. For the illustration in Figure 6.2 the continuously compounded
annual prepayment speed π(t) as given by (6.2) in our closed-form approxi-
mation model had to be converted to a single monthly mortality. This can
easily be done by calculating the (discrete) constant prepayment rate

CPR(t) = eπ(t) − 1,

from which the single monthly mortality is obtained by the relation (2.1).
In the next step, we turn our attention to the prepayment-risk adjust-

ment parameters µ, λp, λw. By simply setting µ = 1 and λp = λw = 0 we can
conduct a classical OAS analysis, similar to Chapter 5, since in this case the
prepayment speed enters with its real-world dynamics into the overall model
and the OAS is needed to equate model prices to actually observed market
prices. Yet, we are again primarily interested in a prepayment-risk-neutral
valuation following the argumentation in Levin and Davidson (2005) and our
own discussion in Chapter 5. Using price data of different coupon levels of
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Figure 6.2: Historically observed SMM values and estimated prepayment
speed (SMM) in our closed-form approximation model as a function of the
covariates spread and burnout when the baseline hazard process is set equal
to its mean-reversion level.

GNMA TBA pass-through securities we calibrate the prepayment-risk ad-
justment parameters in such a way that the Euclidean norm of the vector
of differences between the market prices and model prices of the securities
on a particular sample day is minimised. In this study we consider monthly
price data of five generic GNMA TBA pass-throughs with coupons between
6% and 8% from 1996 to 2006. We recalibrate the risk-adjustment parame-
ters once a year in October in order to account for changing perceptions of
prepayment risk over time.

At this point we would like to recall briefly how the prepayment-risk
adjustment parameters are able to account for the two distinct types of pre-
payment risk. The fact that there are two distinct types of prepayment risk,
refinancing understatement and turnover overstatement, was already men-
tioned in Levin and Davidson (2005) and discussed in detail in Chapter 5.



114 CHAPTER 6. A CLOSED-FORM APPROXIMATION

On the one hand, an investor in discounts experiences losses if the turnover
component is overestimated and pure turnover-related prepayment is slower
than expected. In this case the average life of the security is extended,
decreasing the cash flow stream’s present value. On the other hand, the re-
financing component is the major concern of an investor in premiums since
the average life of premiums decreases if refinancing-related prepayment is
faster than originally estimated. This would evidently result in a loss for
the holder of a premium MBS. For µ > 1 both, refinancing and baseline
prepayment, is accelerated under the risk-neutral pricing measure, compared
to the real-world measure. The parameters λp and λw, however, only affect
the baseline prepayment. The higher λp the slower the expected prepayment
rates under the risk-neutral pricing measure. For the estimates calibrated to
the data of Oct-1996 we obtain µ = 1.28, λp = 10.0 and λw = −165. For
these estimates Figure 6.3 shows the expected prepayment rates under the
risk-neutral pricing measure as a function of the spread variable. Compared
to the real-world measure, higher prepayment rates are expected under the
risk-neutral pricing measure in the premium area (i.e. for high spread val-
ues), while slower prepayment rates are expected in the discount area (i.e. for
low values of the spread variable). In some sense, the expected prepayment
speeds under the risk-neutral pricing measure could be considered as ’im-
plied expected prepayment rates’, implied by MBS market prices. Figure 6.4
shows how these ’implied expected prepayment rates’ evolve over time when
we re-estimate the prepayment-risk adjustment parameters once a year. The
parameter µ varies around its mean 1.24 (with a standard deviation of 0.21),
the parameter λp around 16.9 (std. dev. 18.0) and the parameter λw around
−84 (std. dev. 68).

6.2.2 Model performance, prices & sensitivities

The main contribution of the modelling approach presented in this chapter is,
as previously mentioned, to provide a closed-form (and thus computationally
very efficient) approximation of the value of fixed-rate mortgage-backed secu-
rities. This is particularly useful for risk and portfolio management purposes
where other valuation methods may not be feasible due to their computa-
tional burden. Yet, a closed-form approximation of the securities’ values is
only useful if the model is able to track major price movements of actually
traded securities. In order to assess our model’s performance and adequacy
empirically, we use the price data of the GNMA TBA pass-throughs from
1996 to 2006. In order to simplify the analysis we assume that each MBS
was issued 6 months before the valuation month. Since in our model we do
not account for loan age effects anyway, this is not a major restriction. In
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Figure 6.3: Expected prepayment rates under the real-world measure and
under the risk-neutral pricing measure as a function of the spread variable
with the prepayment-risk adjustment parameters calibrated to GNMA mar-
ket prices of Oct-1996.

a first step, we price the securities with the risk-adjustment parameters re-
calibrated once a year, as described in the previous section. The results are
shown in Figures 6.5 and 6.6 (together with the market prices for comparison
purposes and the model prices of our full Monte-Carlo simulation model as
presented in Chapter 5, obtained by Monte-Carlo simulation). The average
absolute pricing error for each coupon is shown in Table 6.2. The overall
average absolute pricing error over the entire sample is 159 basis points, i.e.
just above 1.5%. In general our approach seems to work slightly better for
premium securities than for discounts. The average absolute pricing error for
all discount observations (i.e. observations with market prices below 100%)
is 169 basis points in our sample, compared to 153 basis points for all pre-
mium observations (observations with market prices above 100%). If we only
consider those observations with market prices between 98% and 102% (i.e.
observations of MBS around the respective current coupon), we get an aver-
age absolute pricing error of 153 basis points.

In the same empirical setting, we want to compare the results of our
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Figure 6.4: Expected prepayment speeds under the risk-neutral pricing
measure from 1996 to 2006 as a function of the spread variable when the
prepayment-risk adjustment parameters are recalibrated once a year.

modelling approach with some selected alternatives. First of all, we test
the usefulness of the stochastic baseline prepayment factors compared to a
constant prepayment parameter assumption as in the model developed by
Gorovoy and Linetsky (2007). For this purpose we reformulate our model so
that instead of (6.2) the overall prepayment intensity is given by

π(t) = c0 + πrefi(t),

where c0 is a constant and πrefi(t) is as given in (6.8). Similar to the approach
in Gorovoy and Linetsky (2007) we do not estimate c0 historically but leave
it free for calibration. The empirical results are shown in the third column
of Table 6.2. The overall average absolute pricing error of 166 basis points
(with a yearly recalibration) indicates that the two stochastic factors only
add little to the pricing accuracy. However, a stochastic baseline prepayment
specification has another advantage. In our model it is theoretically well
justified to consider the baseline prepayment process in real-world, e.g. for
real-world prepayment scenario generation for example in an asset-liability
management study, and prepayment-risk-adjusted for MBS pricing purposes.
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It is hard to justify theoretically that a constant baseline prepayment has a
different value for real-world and pricing considerations. It is, however, highly
likely that a historically estimated baseline prepayment constant would have
a different value than the one calibrated to MBS market data.

In a second experiment we want to discuss the value of our piecewise
linear approximation of the refinancing S-curve compared to a purely linear
functional form like in the model developed by Collin-Dufresne and Harding
(1999). In the Collin-Dufresne/Harding model, the refinancing (annualised)
prepayment speed for a fixed-rate MBS with maturity T is given by

πrefi(t) = a0 + a1 · ln
P (0, T )

P (t, T )

for some constants a0, a1. Thus, the spread explanatory variable is defined
in a slightly different way compared to our model. This difference, as well as
the fact that Collin-Dufresne and Harding (1999) use a Vasicek process for
the short-rate, can be considered as minor differences between the models.
Apart from the restriction to one stochastic factor, the major restriction in
the Collin-Dufresne/Harding model is the purely linear form for the approxi-
mation of the refinancing S-curve. Within our model framework, we want to
test empirically whether the piecewise linear approximation presented here
does add explanatory power to the pricing model. For this purpose we re-
estimate our model with a purely linear functional form. I.e., instead of (6.8)
we set:

πrefi(t) = β · (WAC − R10(t)).

Note that there is no need for an intercept here since we still incorporate
the baseline prepayment process π0(t). This, of course, makes the formula
much easier since we do not have to deal with the rather complex formulas
of Theorem 6.2. We also re-calibrate the risk-adjustment parameters once a
year and price the five different coupon securities with this model from 1996
to 2006. The results as shown in the fourth column of Table 6.2 indicate
that the piecewise linear approximation yields indeed better results than the
purely linear functional form, almost across the whole coupon range. The
overall average absolute pricing error is 266 basis points in the model with a
purely linear functional form, compared to 159 basis points in our full model.

In a third step we compare our closed-form model with our full Monte-
Carlo valuation model. Pricing with the model as presented in Chapter 5
requires a full Monte-Carlo procedure such that parameter (re-)calibration
becomes computationally very expensive. The results are shown in the fifth
column of Table 6.2. While, as expected, the full Monte-Carlo model is able
to reduce the average absolute pricing error significantly, this improvement
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will have to be traded off against the elevated computational burden in prac-
tice. While on our regular personal computer one Monte-Carlo simulation for
pricing the five MBS with different coupons simultaneously (using antithetic
paths for variance reduction) takes approximately 15 minutes, all of the pre-
viously presented versions of our closed-form approximation approach only
require a couple of seconds. Note also at this point that our closed-form ap-
proximation approach does not require any numerically complex procedures,
in contrast to the models presented by Collin-Dufresne and Harding (1999),
Rom-Poulsen (2007) and Gorovoy and Linetsky (2007).

The general idea of approximating the usual S-curve shape of the refi-
nancing incentive by a piecewise linear function was also used by Gorovoy
and Linetsky (2007), as previously mentioned (developed independently of
the approach presented in this thesis). Their model, however, only intro-
duces a floor to the refinancing incentive equal to 0 (similar to our approach)
and does not cap refinancing prepayment for high spread values. In addi-
tion to this, the spread variable involves the short-rate, instead of the 10yr
rate used here. The 10yr rate is certainly a more realistic proxy for mort-
gage rates which refinancing decisions are usually based on. A comparison of
the accuracy of the Gorovoy/Linetsky approach and of our approach for the
real-life TBA prices in this study would be highly interesting. Unfortunately,
we were not able to produce comparable results with the Gorovoy/Linetsky
model for our data. Taking the WAC minus some constant as parameter
k in their definition of the spread variable, we encountered numerical prob-
lems in the eigenfunction expansion leading to unstable and, in some cases,
non-sensical results when applied to our data. The numerical complexity
of the Gorovoy/Linetsky model and the problems resulting from this have
unfortunately made a consistent comparison based on our data infeasible.
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Average absolute pricing error
Coupon Closed-form Constant Linear refi- Full MC val.

approx. model baseline incentive model

6% 226 223 380 112
6.5% 187 167 142 115
7% 141 150 165 104

7.5% 116 126 230 98
8% 121 139 402 97

Overall 159 166 266 105

Table 6.2: Average absolute pricing errors of our closed-form approximation
model, of reduced versions of our closed-form approximation model and of
our full Monte-Carlo valuation model for a series of generic GNMA TBA
pass-throughs (Bloomberg ticker GNSF) with different coupons from 1996
to 2006 when the prepayment-risk adjustment parameters are recalibrated
once a year.
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Figure 6.5: Market and model prices for a series of generic GNMA TBA
pass-throughs (Bloomberg ticker GNSF) with different coupons from 1996
to 2006 when the prepayment-risk adjustment parameters are recalibrated
once a year (I).
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Figure 6.6: Market and model prices for a series of generic GNMA TBA
pass-throughs (Bloomberg ticker GNSF) with different coupons from 1996
to 2006 when the prepayment-risk adjustment parameters are recalibrated
once a year (II).
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Finally we give an empirical example of MBS effective durations and ef-
fective convexities calculated with our closed-form approximation model. In
Chapter 5.2.3 we have already calculated effective durations and convexities
for a sample of GNMA MBS with different coupons on the sample day 12-Dec-
2005, based on our full Monte-Carlo valuation model (see Figure 5.5). Figure
6.7 shows the effective durations and convexities calculated with our closed-
form approximation model for the same securities. Note, however, that the
effective durations and convexities in Figure 6.7 are short-rate sensitivities
since we work with a CIR short-rate model in our closed-form approximation
approach. The effective durations in Figure 5.5 are durations/convexities in
the proper sense (i.e. sensitivities w.r.t. parallel shifts of the whole yield
curve) since in the Hull-White interest-rate model as used in Chapter 5
the whole yield curve is used as a model input via the function θr(t) (see
(3.11)). This data example provides further evidence that our closed-form
approximation yields consistent results and is indeed able to capture the
basic characteristics of MBS, such as negative convexities.
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Figure 6.7: Effective (short-rate) durations and convexities of some GNMA
MBS with different coupons on the sample day 12-Dec-2005 according to our
closed-form approximation. Bloomberg effective durations and convexities
are shown for comparison purposes.



Chapter 7

The contribution of our MBS
pricing models

’All models are wrong, but some are useful.’ (Box (1979))

In Chapter 4 we have motivated the need for further research concerning MBS
valuation. In this chapter we will briefly summarise what has been achieved
in this thesis. In particular, we will comparatively assess the contribution of
our MBS pricing models and discuss the implications for their use in practice.

7.1 A comparative assessment

In the previous two chapters we have presented pricing models for agency
MBS within an intensity-based modelling framework. In particular, we have
extended the general model framework presented by Kau et al. (2004) for
individual mortgage contracts to the pricing of MBS. Moreover, our model
explicitly accounts for the general economic environment by the incorpora-
tion of a factor into the baseline hazard process which is fitted to the GDP
growth rate. We have called our model ’prepayment-risk-neutral’ since we are
able to directly target market prices and thus do not need the theoretically
dubious OAS in the pricing procedure. This is achieved by the introduction
of prepayment-risk adjustment parameters which stem from the change of
measure from the real-world measure to a risk-neutral pricing measure. We
have shown that these prepayment-risk adjustment parameters can be cal-
ibrated to MBS market prices to obtain ’implied’ prepayment patterns, in
the sense of Levin and Davidson (2005). Our model therefore has the desir-
able features of the Levin/Davidson model combined with the mathematical
rigour of the intensity-based modelling framework.

123
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Furthermore, we have derived a closed-form approximation formula for
the pricing of fixed-rate agency MBS with a slightly adjusted model speci-
fication. Our closed-form approximation is computationally highly efficient
and reduces the computational burden of MBS valuation drastically. Our
approach may thus be particularly useful for risk and portfolio manage-
ment purposes where portfolios of MBS have to be revaluated frequently
(see also the application in Chapter 8). Our approach offers a couple of ad-
vantages compared to previous models concerned with closed-form valuation
of MBS. Compared to the closed-form formula for MBS by Collin-Dufresne
and Harding (1999), our model offers two major extensions. First, we are
not restricted to a single stochastic factor. In addition to our 1-factor CIR
interest-rate model we introduce two additional stochastic factors to model
the baseline prepayment. Moreover, we do not approximate the usual S-
like relation between coupon spread and refinancing-related prepayment by a
purely linear functional form but introduce a piecewise linear approximation.
Our results indicate that this contributes to a significant improvement of the
model performance. While these two issues are also explicitly addressed in
a recent extension of the Collin-Dufresne/Harding model by Rom-Poulsen
(2007), we do not encounter the (theoretical) weaknesses of the quadratic
interest-rate/refinancing relation in the Rom-Poulsen model for certain sce-
narios. Moreover, both the Collin-Dufresne/Harding and the Rom-Poulsen
model require numerical techniques to solve systems of partial differential
equations. These models can thus only be considered as semi-analytic. Nu-
merical complexity is also a problem in the recently developed model by
Gorovoy and Linetsky (2007), as previously mentioned. While their approach
offers an ’exact’ solution within a quite similar model set-up compared to our
approximation, the computation of this formula involves highly complex nu-
merical evaluations related to eigenfunction expansion techniques.

Applied to historical price data of 30yr GNMA pass-throughs traded on
a TBA basis, our closed-form approximation formula proved to be able to
track market price movements for a wide range of coupons with an overall
average absolute pricing error of 159 basis points (with a yearly recalibra-
tion of prepayment-risk adjustment parameters as described in the previous
chapter). We consider this a highly satisfactory accuracy, in particular for
risk and portfolio management purposes.

A direct quantitative comparison of the performance of different MBS
pricing models across the different model classes is a hardly feasible task.
Such a comparison would require a well-defined criterion how model perfor-
mance can be measured. A natural choice for such a criterion would of course
be the models’ ability to explain market prices in the spirit of our empiri-
cal evaluation in Chapter 6.2.2. Yet, the traditional econometric models do
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not target market prices directly, but calculate the OAS as a model output.
As previously mentioned, OAS levels derived from different prepayment and
interest-rate model assumptions may differ substantially and it is impossible
to say what the ’correct’ OAS is. Econometric models, however, aim to pre-
dict real-life prepayment behaviour. Different traditional econometric mod-
els, such as the models developed by Schwartz and Torous (1989) or Richard
and Roll (1989) could thus be quantitatively compared by some purely sta-
tistical goodness-of-fit criterion applied to historically observed and fitted
prepayment rates. However, prepayment-risk-neutral models like the model
developed by Levin and Davidson (2005) or like our modelling approach, are
not primarily meant to predict prepayment in real-life. They are in line with
common derivative pricing principles, where implied parameter patterns (and
thus implied prepayment patterns in our case) are obtained after calibrating
the model to market data. This fact is also discussed in Levin and Davidson
(2005). A pure look at the ability of a model to explain market prices (possi-
bly in-sample and out-of-sample) may equally be too single-minded, since it
would not take into account another issue which is of critical importance in
practice: computational burden. The computational burden is, however, in
itself not an easily comparable criterion. As previously discussed, MBS val-
uation models, except the ones concerned with closed-form approximations,
usually rely on either Monte-Carlo simulation or on backward induction tech-
niques on multidimensional grids. The CPU time required for a Monte-Carlo
simulation depends heavily on the concrete implementation, e.g. on the vari-
ance reduction technique(s) used in the Monte-Carlo algorithm. And vice
versa, the success of one particular variance reduction method will heavily
depend on the model specification. While, generally speaking, backward
induction methods are usually faster than Monte-Carlo simulations, a well-
implemented Monte-Carlo simulation can of course be faster than a poorly
implemented backward induction scheme. This also depends substantially
on the number of stochastic factors in the model.

Due to the lack of comparison criteria and consistent comparison stan-
dards, a quantitative model comparison is hardly feasible. Yet, in the re-
mainder of this section, we want to assess our modelling approach quali-
tatively with respect to certain criteria compared to some selected models
from each of the three model classes. Of course, this assessment can only
be general in nature and has to be based on subjective perceptions to a cer-
tain extent. Within the econometric model class we choose the Schwartz
and Torous (1989) model. We furthermore include the Stanton (1995) model
as a representative example of the option-theoretic model class and the re-
cently developed Gorovoy and Linetsky (2007) model from the intensity-
based model class into this qualitative assessment. We finally include the
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Levin and Davidson (2005) and Collin-Dufresne and Harding (1999) models
since we have frequently cited them in the previous chapters. The results of
our qualitative assessment, based on the author’s best and honest judgement
according to the discussions in the Chapters 4-7, are presented in Table 7.1.
As comparison criteria we consider the mathematical rigour of the pricing
routine, the numerical complexity, the computational burden for the pricing
of MBS pass-throughs, the flexibility of the models to include further ex-
planatory factors or variables into the prepayment specification and finally,
the flexibility with respect to extensions of the model to non-standard struc-
tures such as adjustable-rate securities and CMOs. The mathematical rigour
of the Schwartz and Torous (1989) model is arguable since this model im-
plicitly needs the assumption that a prepayment function estimated under
the real-world measure can be used for pricing purposes. This is a highly
problematic assumption as our empirical results in Chapter 5 indicate. The
Collin-Dufresne and Harding (1999) model has the undesirable feature that
refinancing prepayment can become negative in a high interest-rate envi-
ronment. While we consider our closed-form approximation mathematically
sound, it is still an approximation and can thus not be preferred to ’exact’
approaches if mathematical rigour is the only selection criterion. We have
already discussed the issue of numerical complexity extensively. Apart from
the closed-form pricing approaches, all other models are rather straightfor-
ward to implement so that numerical complexity should not be an issue. The
remaining three criteria are particularly important for potential uses in prac-
tice. While the closed-form approaches are of course particularly appealing
with respect to computational burden of pass-through pricing, they can not
easily be extended to include new factors or explanatory variables which a
particular user of the model may want to include. Nor can they be used
straightforwardly for the pricing of non-standard MBS structures. The same
holds in general for option-theoretic models which work with pricing routines

on grids. The only group of models where these extensions are rather
straightforward is the one based on Monte-Carlo simulation routines, such
as our full Monte-Carlo valuation model presented in Chapter 5.
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of pricing logic
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complexity
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pass-through pricing

Flexibility w.r.t.
new factors/variables ++ − 0 ++ − ++ 0
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Table 7.1: Qualitative assessment of different agency MBS pricing models with respect to some desirable model
features. Grades range from ++ (very good), 0 (some good, some problematic aspects) to −− (highly problematic).
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7.2 Implications for the use in practice

After the analysis in the previous chapters, the question of which model is
the ’best’, in particular with a view towards the use in practice, still remains
open. In the previous section we have already highlighted that the question
is, in its general sense, highly problematic. This is due to the lack of a con-
sistent optimality criterion which is needed to be able to select the ’best’
among all MBS pricing models.

From the previous discussion we can conclude that the choice of a pric-
ing model in practice should be based on the purpose, i.e. the application
the MBS model is used for. With our closed-form approximation formula as
presented in Chapter 6 we have developed a computationally very efficient
and thus very useful tool for applications in risk and portfolio management
of fixed-rate agency MBS in practice. An example of how our model can
be applied to portfolio management with MBS will be given in Chapter 8.
However, the closed-form formula can not be extended straightforwardly to
the pricing of complex pay-through structures, i.e. of CMOs. For these se-
curities, a computational more expensive valuation method, such as Monte-
Carlo simulation based on, e.g., our model presented in Chapter 5, can not
be avoided. Also, if time is not a critical factor and the valuation should be
as accurate as possible, we recommend to use our full Monte-Carlo valuation
model, which may be enhanced and statistically fine-tuned with additional
explanatory variables, if desired.

Both, our prepayment-risk neutral valuation model as presented in Chap-
ter 5 and the closed-form approximation in Chapter 6 offer the possibility to
target market prices directly. This is a desirable feature in risk management
since it eliminates the discussion of whether the OAS must be treated as
a risk factor. Many risk measures commonly used in the MBS market are
usually calculated with a constant OAS assumption (e.g., the calculation of
the effective duration and effective convexity of a MBS with a traditional
econometric valuation model). Yet, the question whether the OAS should
be considered as a constant or not is of course equivalent to the question
of parameter stability (in particular, w.r.t. the prepayment-risk adjustment
parameters) in our modelling approach.

Finally, it should be pointed out that MBS where the mortgagors can
be assumed to prepay optimally should definitely be valued with an option-
theoretic model based on pricing routines for callable bonds. Optimal pre-
payment can, however, only be expected in the institutional market, e.g.,
when the mortgages are not residential but commercial. The treatment of
commercial MBS is beyond the scope of this thesis.



Chapter 8

Optimal portfolios with MBS

As already mentioned in the first chapters of this thesis, mortgage-backed
securities constitute a large and important segment of the US fixed-income
market. The total outstanding volume of MBS in the US has surpassed by
far the outstanding volume of US treasuries. MBS are thus an important
asset class and are in fact very popular among institutional investors. While
agency MBS feature nearly the same credit quality as US treasuries - in par-
ticular, GNMA securities have the full faith and credit of the US government-
they often offer higher yields. Hence their popularity with investors.

Going back to the seminal work of Markowitz (1952), the question of how
to build an optimal portfolio from a given set of different assets, considering
different constraints and optimality criteria, is a well-studied problem (see,
e.g., Meucci (2005) for a textbook covering a wide range of aspects of modern
portfolio optimisation). In the majority of studies, however, the asset classes
considered were stocks and regular bonds. More recent publications have
also included alternative assets such as hedge funds or real estate investment
trusts (REITs) (see, e.g., Krokhmal et al. (2002) or Höcht et al. (2007)).
Yet, an inclusion of MBS into portfolio optimisation problems remains rare.
One exception is the work based on Zenios (1993), Zenios and Kang (1993)
and McKendall et al. (1993) who consider portfolio optimisation with MBS,
mainly in an asset-liability management context. The major reason why
MBS are usually not considered in portfolio optimisation problems is the
computational burden associated with MBS valuation. Since most modern
portfolio optimisation problems are also computationally expensive and re-
quire frequent evaluation of the assets under different scenarios, the inclusion
of MBS into portfolio optimisation problems has often been infeasible. McK-
endall et al. (1993) use a recombining tree to create interest-rate scenarios,
so that for a buy-and-hold static optimisation problem, the number of re-
quired MBS valuations is limited due to the limited number of nodes in the

129
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tree. However, when considering other correlated asset classes, such as equi-
ties, the nodes in the tree grow exponentially and the optimisation problem
may again become computationally infeasible. This is particularly true if one
wants to consider the possibility of asset reallocation during the investment
horizon.

Our closed-form approximation approach as presented in Chapter 6 now
offers a possibility to overcome the computational burden associated with
portfolio optimisation with MBS. It is the main objective in this chapter
to consider some selected portfolio optimisation approaches based on sim-
ulated scenarios and to extend their usual application by including fixed-
rate agency-MBS with different coupons. We thereby hope to close a gap
in the applied portfolio optimisation literature where MBS have long been
neglected. Within a consistent simulation framework, we show how the inclu-
sion of MBS into a classical stock/bond portfolio can enhance total returns.
For this purpose we also apply our approach to real historical market data
in an empirical case study. We show how optimal portfolios according to an
expected utility criterion and to a conditional value-at-risk (CVaR) criterion
develop and perform over time, respectively, based on a static multi-period
asset allocation strategy with a rolling one year investment horizon.

In the following section we present the available assets for our study and
give details of the scenario simulation procedure used for portfolio optimisa-
tion. We then consider the expected utility optimisation approach and the
portfolio optimisation with CVaR constraints and apply these concepts to
historical data in an empirical study.

8.1 The set-up: assets and scenarios

Of course, there are countless ways of combining possible assets and portfolio
optimisation settings. Concerning the assets, we therefore concentrate on a
specific set of assets which we believe to be quite representative. We assume
that the investor has the choice between a total of six assets. The S&P 500
index represents the equity class, non-defaultable zero-coupon bonds with 3
and 10 years to maturity constitute the available bonds. In addition to these
instruments we allow the investor to invest in three different 30yr fixed-rate
GNMA pass-through MBS with coupons of 6%, 7% and 8%, respectively.
While we will consider different optimisation problems in the following sec-
tion, we always restrict the investment horizon to one year. We do not
consider transaction costs, which is not a too unrealistic assumption since
we only deal with very liquid instruments for which transaction costs for in-
stitutional investors may indeed be negligible.
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Since we work with optimisation approaches based on simulated scenar-
ios, we have to specify the distributional assumptions for the processes un-
derlying the assets. We model the evolution of the equity index S(t) with
a geometric Brownian motion in the usual way, correlated to interest rates.
For the interest-rate dynamics we use a one-factor CIR model as in Chapter
6 where the short-rate r(t) has the dynamics (under the real-world measure
Q)

dr(t) = (θr − arr(t))dt + σr

√
r(t)dW (t) (8.1)

for some positive constants θ, ar, σr with 2θ > σ2
r . The (real-world) equity

index dynamics are given by

dS(t) = µS(t)dt + σSS(t)dZ(t) (8.2)

for some positive constants µ, σS and we assume that the Wiener processes
W (t) and Z(t) are correlated such that

Cov[dW (t), dZ(t)] = ρdt.

By Cholesky decomposition (see, e.g., Brigo and Mercurio (2006), p. 886),
we can rewrite (8.1) and (8.2) in the following way:

dr(t) = (θr − arr(t))dt + σr

√
r(t)dŴ (t)

dS(t) = µS(t)dt + σSρS(t)dŴ (t) + σSS(t)
√

1 − ρ2dẐ(t) (8.3)

for two uncorrelated Wiener processes Ŵ (t), Ẑ(t). For the estimation of
the parameters in (8.3) we use historical weekly return data of the S&P 500
index from 1996 to 2005 and weekly US treasury strip rates, obtained from
par rates by standard bootstrapping, of the same time period. We use a two-
stage procedure for parameter estimation, similar in spirit to the approach
taken in Zagst (2002b). In the first stage we determine the parameters of the
interest-rate process and of the stock index process. For the parameters of
the CIR interest-rate model we use the values as already reported in Table
6.1. For the estimation of the parameters of the stock index process, note
that it follows from the Ito-formula that a discretised version of the dynamics
of the log-returns of the stock index is given by:

ln
S(t + ∆t)

S(t)
= (µ − 1

2
σ2

S) · ∆t + σSρ
√

∆t · N1 + σS

√
1 − ρ2

√
∆t · N2,

where N1, N2 are two independent standard-normal random variables. Thus,
the log-returns of the stock index are normally distributed with

E

[
ln

S(t + ∆t)

S(t)

]
= (µ − 1

2
σ2

S) · ∆t (8.4)

V ar

[
ln

S(t + ∆t)

S(t)

]
= σ2

Sρ2 · ∆t + σ2
S(
√

1 − ρ2)2 · ∆t = σ2
S · ∆t. (8.5)
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Using our historical return data sample, we can estimate the parameters µ
and σS by simple moment estimators, i.e. equating empirical moments with
the theoretical moments as given in (8.4), (8.5).

In the second stage we estimate the correlation parameter ρ. For this
purpose we consider the shortest observable treasury strip rate (the 3 month
rate in our sample) as a proxy for the unobservable short rate. The correlation
parameter can then be estimated from the sample residuals. If we observe
the 3 month rate and the log-returns of the stock index at discrete points of
time tk, k = 0, ..., K and define ∆tk = tk − tk−1 we get the sample residuals

εr(k) := r(tk) − r(tk−1) − (θr − ar · r(tk−1)) · ∆tk

εS(k) := ln
S(tk)

S(tk−1)
− (µ − 1

2
σ2

S) · ∆tk

for k = 1, ..., K. Since (see Zagst (2002b) for a detailed discussion in the
multi-asset case)

Cor(εr, εS) = ρ,

we can estimate the correlation parameter by the empirical correlation of
εr(k) and εS(k), k = 1, ..., K. All parameter values are summarised in Table
8.1. With the given parameters it is now easy to generate scenarios with a

Parameter Estimate

Short-rate process θr 0.014
ar 0.41
σr 0.059
âr 0.20

Stock index process µS 0.089
σS 0.179

Correlation parameter ρ 0.122

Table 8.1: Parameter estimates for scenario generation. The parameter âr is
the mean-reversion speed parameter in the CIR model (8.1) if the dynamics
of the short-rate is considered under the risk-neutral measure for pricing
purposes.

straightforward Monte-Carlo simulation. In this study we consider a monthly
discretisation and an investment horizon of one year. I.e., given a current
state of the economy S(t0), r(t0), we generate Monte-Carlo paths with 12
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(monthly) grid points using the discretised version of (8.3)

r(tk) = r(tk−1) + (θ − arr(tk−1))∆tk + σr

√
r(tk−1) ·

√
∆tk · N1

S(tk) = S(tk−1) · e(µS− 1
2
σ2

S
)·∆tk+σS ·ρ·

√
∆tk·N1+σS ·

√
1−ρ2·√∆tk·N2 ,

for k = 1, ..., 12, where N1, N2 are again two independently drawn standard-
normal random variables. Note that the discretisation method for r(t) used
here is the simple Euler scheme as also used in, e.g., Zagst (2002b).

Given a state of the short rate r(t), the price

P (t, T ) := E eQ[e−
R T
t

r(s)ds|Ft]

of a zero-coupon bond with maturity T at time t and notional 1 is given
in the CIR interest-rate model by (3.23). For the pricing of the mortgage-
backed securities and for the generation of prepayment scenarios we use the
closed-form approximation approach developed in Chapter 6. Due to its com-
putational efficiency, the closed-form pricing approach makes an integration
of MBS into a scenario-based portfolio optimisation feasible within a reason-
able time frame. For the prepayment scenarios, we first have to generate
scenarios for the (annualised, continuous) baseline prepayment process π0(t).
We obtain from (6.17) after Euler discretisation:

π0(tk) = π0(tk−1) + (θp + bpww(tk) − apπ0(tk−1))∆tk + σp ·
√

∆tk · N3,

w(tk) = w(tk−1) + (θw − aww(tk−1))∆tk + σw · N4,

where N3, N4 are two independently drawn standard-normal random vari-
ables. In addition to the baseline prepayment, we obtain the (annualised,
continuous) refinancing prepayment speed

πrefi(t) = 5.6 · max(min(WAC − R10(t), 0.04), 0),

where WAC is the security’s weighted average coupon and R10(t) is the 10-
year treasury zero rate calculated according to the CIR interest-rate model.
The overall prepayment speed

π(t) = πrefi(t) + π0(t)

has to be converted into the usual constant prepayment rate (CPR) by

CPR(t) = eπ(t) − 1

and we finally obtain the overall single monthly mortality by

SMM(t) = 1 − (1 − CPR(t))
1
12 .
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With the parameters as given in Table 6.1 the single monthly mortalities vary
in the range between 1% and 6% for the three different MBS in 1000 simulated
interest-rate and prepayment scenarios (if we take the short-rate level as
of March 2001 and the mean-reversion level of the baseline prepayment as
starting values for the scenario generation). Recall that since the pricing
approach targets market prices directly, no OAS input is required for the
MBS valuation. We calibrate the prepayment-risk-adjustment parameters of
our closed-form approximation model to market prices of GNMA securities
with different coupons, traded on a to-be-announced (TBA) basis, on the
start date of the scenario generation.

8.2 Scenario-based portfolio optimisation

with MBS

For the empirical part of this study we focus on the time horizon from spring
2001 to spring 2003, since this was an interesting time period in the US fixed-
income market in general and in the MBS market in particular. Interest
rates decreased sharply during this time period, the 1yr treasury zero-rate
dropped from levels around 4.2% in March 2001 to about 1.1% in March
2003. The 10yr rate slid from 5.3% to 4.1% during the same time period.
This decrease in interest rates triggered a significant increase in prepayments
(see also Figure 2.1). MBS which were traded in the discount area in spring
2001 became premiums in the subsequent months. E.g., a 6% coupon GNMA
security was traded at 98.14% in March 2001 and at 103.94% in March 2003
(see Figure 8.1). The development of the S&P 500 index and of the 3 month
treasury strip rate during the same time period is shown in Figure 8.2. By
leaving the universe of available instruments for our portfolio optimisation
procedure unchanged, we can see the effects of these changes in the economic
environment on the optimal portfolios. We select an optimal portfolio each
month, between March 2001 and February 2003 with an investment horizon
of one year in any case. Our empirical case study is thus equivalent to an
optimal portfolio allocation strategy with monthly rebalancing, based on a
rolling one year investment horizon from March 2001 to March 2003.

The returns of the assets along each scenario path are calculated by
taking into account the prices, amortisation factors and cash flows of the
instruments. Similar to McKendall et al. (1993) we calculate the (scenario-
dependent) total return of an investment of 1 in the j-th instrument over the
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Figure 8.1: Market prices of GNMA pass-through MBS with different
coupons, traded on a TBA basis, from 2001 to 2003.

1-year horizon by

TRj
s :=

αj(s) · V j
final(s) + κj(s)

V j
initial

, (8.6)

where V j
initial denotes the initial value of the j-th instrument , V j

final(s) is the

value of the instrument at the end of the 1-year horizon, αj(s) is the amorti-
sation factor and κj(s) is the cash flow factor in the scenario s, s = 1, ..., S.
The amortisation factor is the fraction of the notional which remains out-
standing at the end of the investment horizon. Of course, αj(s) = 1 for the
stock index investment and for the zero-coupon bonds, for all scenarios s.
Moreover, for these instruments κj(s) = 0 for all s since neither the stock in-
dex nor the zero-coupon bonds generate any cash flows during the investment
horizon. For the MBS, however, the amortisation factor has to be calculated
according to the prepayment model, taking into account prepayments and
scheduled principal repayments along each scenario path. The cash flow fac-
tor is calculated accordingly, taking into account principal repayments and
prepayments and all interest received by the investor. All cash flows occur-
ring prior to the end of the 1-year investment period are assumed to earn the
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Figure 8.2: Development of the S&P 500 index (dotted line, left-hand scale)
and of the 3 month treasury strip rate (solid line, right-hand scale) from 2001
to 2003.

risk-free rate from a money-market account until the end of the investment
horizon. Figure 8.3 shows the histograms of the total returns of our portfo-
lio instruments based on 1000 simulated scenarios with starting values as of
March 2001. Consistent with basic asset pricing theory, those instruments
with higher expected returns also feature a higher return variance. This
holds particularly for the stock index, but also for the lowest coupon MBS,
which offers a slightly higher expected total return than the MBS with higher
coupons. Furthermore, the return distributions of the MBS instruments are
asymmetric, as expected. In particular, the 7% and 8% GNMA securities
feature more downside risk (with respect to deviations from the expected
return) than upside potential. This is a typical feature of MBS caused by
the prepayment option inherent in the underlying mortgages and also ex-
plains the negative convexities of MBS, which is a commonly observed and
well-studied characteristic of MBS as already discussed in Chapters 5 and 6.
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Figure 8.3: Histograms of the total returns of our portfolio instruments based
on 1000 scenarios.
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8.2.1 Expected utility approach

The first optimality criterion for our portfolio selection problem which we
want to consider in this study is the expected utility criterion. This concept
is well-known and is discussed in detail in, e.g., Meucci (2005). Expected
utility was also used by McKendall et al. (1993). In this study we use the
exponential utility function

U(v) := −e−γ·v,

for some constant γ, which belongs to the class of CARA-utility functions
(Constant Absolute Risk Aversion). If we denote by J the total number of
available assets, by x = (x1, ..., xJ) the portfolio weight vector and by TRs(x)
the total return of the portfolio x in the scenario s, the expected utility ξU(x)
of the portfolio x is given by

ξU(x) :=
S∑

s=1

q(s)U(TRs(x)), (8.7)

where s = 1, ..., S is the set of scenarios and q(s) is the probability of scenario
s. Since in this study we work with a Monte-Carlo simulation for scenario
generation we assume that all scenarios have the same probability, i.e. (8.7)
reduces to

ξU(x) =
1

S

S∑

s=1

U(TRs(x)). (8.8)

In this study we do not want to allow short-selling and we limit the maximum
investment in any particular asset to 80% of the portfolio value. I.e., we
require that 0.8 ≥ xj ≥ 0 for all j. The portfolio optimisation problem
within the expected utility framework is thus given by

(P1) :





−ξU(x) −→ min
x

∑J
j=1 xj = 1

0.8 ≥ xj ≥ 0

(P1) can be solved with standard optimisation software, e.g. with the fmin-
con function in Matlab.

Figure 8.4 shows the expected utilities ξU and the variances σ2 of the
optimal stock/bond/MBS portfolios for different values of the risk aversion
parameter γ. For lower values of γ, the investor is less risk averse and the
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variance of the total return of the optimal portfolio increases. The ξU -σ2

line can be compared to the efficient frontier in the classical mean-variance
concept as introduced by Markowitz (1952). Figure 8.5 shows this efficient
frontier for the portfolio optimisation with the stock index and bonds only
and the efficient frontier for the portfolio optimisation problem with the stock
index, bonds and MBS. The picture confirms that the inclusion of MBS into
the portfolio optimisation problem can substantially enhance the expected
utility of the optimal portfolio for the same degree of risk aversion. Figures
8.6 and 8.7 show how the composition of the optimal portfolio changes over
time for γ set equal to 2. Note that it is not surprising that the optimal
portfolio weight of the stock index increases from March 2001 to October
2001 and remains at its maximum level afterwards, since interest rates slid
to historical lows during this time period. When the short rate is very low
the CIR interest-rate model implies that the short rate has a strong upward
drift back to the long-term mean-reversion level. Thus, most of the interest-
rate paths generated with low starting values of the short rate end with
substantially higher rates, resulting in losses for bond and MBS investors.
Both bonds and MBS therefore become less attractive compared to stocks.
Finally, Figure 8.8 shows how the wealth of an investor develops over time,
if the initial wealth is 1 and the investor follows our optimal asset allocation
strategy from March 2001 to March 2003. Since the amount of prepayment
for the MBS depends on the individual pools delivered to the investor in
the TBA trades it is unclear which historical prepayment rates to use for
this historical study (average realised GNMA prepayment rates would be an
option here, but unfortunately aggregated data were not available for this
study). We thus assume for simplicity that the prepayment rates are equal
to the expected values according to the prepayment model. Consistent with
our previous results, the optimal asset allocation strategy with MBS outper-
forms the strategy with the stock index and bonds only. Of course, the overall
performance of both strategies is negative due to the unfavourable market
conditions during the time horizon considered in this study, in particular
with respect to the stock index.
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Figure 8.4: Expected utility-variance efficient frontier of a stock/bond/MBS
portfolio (dotted line, left-hand scale) and relation to the risk-aversion pa-
rameter γ (solid line, right-hand scale).
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Figure 8.6: Optimal portfolio weights from 2001-2003 in a stock/bond port-
folio.
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8.2.2 Portfolio optimisation with CVaR constraints

The concept of portfolio optimisation with Conditional Value-at-Risk (CVaR,
sometimes also called Tail Conditional Expectation or Expected Shortfall),
was originally introduced by Krokhmal, Palmquist, and Uryasev (2002) and
is summarised in, e.g., Krokhmal, Uryasev, and Zrazhevsky (2002). In our
set-up, let f(x, y) be the loss function defined by

f(x, ys) := 1 − TRs(x)

where the stochastic vector y with probability density function q(y) contains
all uncertainty factors regarding the portfolio’s total return, and let Ψ(x, ζ)
be the cumulative distribution function defined by

Ψ(x, ζ) := Q(f(x, y) ≤ ζ) =

∫

f(x,y)≤ζ

q(y) dy.

Similar to Krokhmal, Uryasev, and Zrazhevsky (2002), we define the value-
at-risk V aR(α, x) with respect to the confidence level α by

V aR(α, x) := min{ζ ∈ R : Ψ(x, ζ) ≥ α}

and the CVaR as the α-tail expectation of the loss function, i.e.

CV aR(α, x) :=
1

1 − α
·
∫

f(x,y)≥V aR(α,x)

f(x, y) · q(y) dy.

Denoting by

ξ(x) :=
1

S

S∑

s=1

TRs(x) (8.9)

the expected total return of the portfolio x and by ω some pre-specified
CVaR limit (e.g. a certain fraction of the initial portfolio value), our general
portfolio optimisation problem can be written as

(P2) :





−ξ(x) −→ min
x

CV aR(α, x) ≤ ω

∑J
j=1 xj = 1

0.8 ≥ xj ≥ 0

(8.10)
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It is a major result of Krokhmal, Palmquist, and Uryasev (2002) that (8.10)
is equivalent to a much easier-to-handle optimisation problem in which the
function F (α, x, ζ) defined by

F (α, x, ζ) := ζ +
1

1 − α
·
∫

max[f(x, y) − ζ, 0] · q(y) dy

on (0, 1) × X × R plays a crucial role. Its most important properties are
collected in the following theorem.

Theorem 8.1. As a function of ζ, F (α, x, ζ) is convex and continuously
differentiable. The Conditional Value-at-Risk with respect to the level α of
the loss associated with any x ∈ X can be determined from the formula

CV aR(α, x) = min
(x,ζ)∈X×R

F (α, x, ζ).

In this formula, the set consisting of the value of ζ for which the minimum
is attained, namely

A(α, x) := argmin
ζ∈R

F (α, x, ζ)

is a non-empty, closed, bounded interval (perhaps reducing to a single point),
and the V aR(α, x) is given by

V aR(α, x) = left endpoint of A(α, x).

In particular, one always has

V aR(α, x) ∈ argmin
ζ∈R

F (α, x, ζ)

and

CV aR(α, x) = F (α, x, V aR(α, x)).

Proof. The theorem is taken from Krokhmal, Palmquist, and Uryasev (2002).
A proof can be found in Rockafellar and Uryasev (2000).

The following theorem gives the theoretical justification why one can use
the function F (α, x, ζ) instead of CV aR(α, x) for the purpose of determining
a vector x that yields the minimum CV aR(α, x).
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Theorem 8.2. Minimising the Conditional Value-at-Risk with respect to the
level α of the loss associated with x over all x ∈ X is equivalent to minimising
F (α, x, ζ) over all (x, ζ) ∈ X × R, in the sense that

min
x∈X

CV aR(α, x) = min
(x,ζ)∈X×R

F (α, x, ζ),

where moreover a pair (x∗, ζ∗) achieves the right hand side minimum if and
only if x∗ achieves the left hand side minimum and ζ∗ ∈ A(α, x∗). In par-
ticular, therefore, in circumstances where the interval A(α, x∗) reduces to a
single point (as is typical), the minimisation of F (α, x, ζ) over (x, ζ) ∈ X×R

produces a pair (x∗, ζ∗), not necessarily unique, such that x∗ minimises the
Conditional Value-at-Risk and ζ∗ gives the corresponding α-Value-at-Risk.
Furthermore, F (α, x, ζ) is convex with respect to (x, ζ) and CV aR(α, x) is
convex with respect to x when f(x, y) is convex with respect to x, in which
case, if the constraints are such that X is a convex set, the joint minimisation
is an instance of convex programming.

Proof. The theorem is also taken from Krokhmal, Palmquist, and Uryasev
(2002) and proven in Rockafellar and Uryasev (2000).

We finally obtain the useful result:

Theorem 8.3. The minimisation problem (P2) as given in (8.10) is equiv-
alent to the minimisation problem

(P3) :





−ξ(x) −→ min
x,ζ

F (α, x, ζ) ≤ ω

∑J
j=1 xj = 1

0.8 ≥ xj ≥ 0

(8.11)

in the sense that their objectives achieve the same minimum values. More-
over, a pair (x∗, ζ∗) achieves the minimum of (P3) if and only if x∗ achieves
the minimum of (P2) and ζ∗ ∈ A(α, x∗). In particular, when the interval
A(α, x∗) reduces to a single point, the minimisation of −ξ(x) produces a pair
(x∗, ζ∗) such that x∗ maximises the expected return and ζ∗ gives the corre-
sponding Value-at-Risk.

Proof. See Krokhmal, Palmquist, and Uryasev (2002).
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If we use the Monte-Carlo approximation of the function F (α, x, ζ), de-
fined by

F̃ (α, x, ζ) := ζ +
1

1 − α
· 1

S

S∑

s=1

max[f(x, ys) − ζ, 0],

where ys denotes the realisation of the uncertainty vector y in scenario s we
can rewrite (P3) as

(P3′) :





−ξ(x) −→ min
x,ζ

F̃ (α, x, ζ) ≤ ω

∑J
j=1 xj = 1

0.8 ≥ xj ≥ 0

(8.12)

If we finally introduce the dummy-variables φs, s = 1, ..., S and replace
F̃ (α, x, ζ) by the linear function

F̄ (α, φ, ζ) := ζ +
1

1 − α
· 1

S

S∑

s=1

φs,

and the constraints
φs ≥ f(x, ys) − ζ, φs ≥ 0

for all s = 1, ..., S, we obtain the equivalent linear optimisation problem

(P4) :





−ξ(x) −→ min
x,ζ

F̄ (α, φ, ζ) ≤ ω

φs ≥ f(x, ys) − ζ, φs ≥ 0, s = 1, ..., S

∑J
j=1 xj = 1

0.8 ≥ xj ≥ 0, ζ ∈ R

(8.13)

which can be solved with standard software. E.g., with the linprog function
in Matlab.

In the empirical examples of our portfolio optimisation approach with
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CVaR constraints we set α = 0.95. Figure 8.11 shows the expected returns
and the variances of the optimal stock/bond portfolios and of the optimal
stock/bond/MBS portfolios for different values of ω. Note that the higher
ω, the higher the willingness to accept risk for higher expected returns. The
ξ-σ2 line can again be compared to the efficient frontier in the classical mean-
variance concept of Markowitz (1952). Similar to the expected utility max-
imisation approach of the previous subsection, the expected return of the
optimal portfolio can be substantially enhanced by including MBS with the
same CVaR constraints. Figures 8.9 and 8.10 show the optimal portfolio
composition over time when ω = 0.1. The portfolio weight of the stock index
is about 50% in March 2001, at the beginning of the time period considered.
This is roughly the same as in the expected utility maximisation approach
(see Figures 8.6 and 8.7). Yet, in contrast to the maximum utility approach,
the stock index portfolio weight remains almost constant over time. This can
be explained by the nature of the CVaR as a portfolio risk measure. Even
if interest rates decline and the risk/return profile of fixed-income securities
becomes less attractive compared to an investment in equities, the stock in-
dex is still the most risky asset and very large portfolio losses can almost
exclusively be caused by losses from the equity investment. Thus, the CVaR
constraint implies a limit for the portfolio weight of the stock index which
does not change substantially over time. It is also interesting to note that,
in contrast to the maximum utility approach, for almost all points of time
the optimal portfolio does not contain any zero-coupon bonds at all if MBS
are allowed.

Finally, Figure 8.8 shows how the wealth of an investor develops over
time, if the investor follows our optimal asset allocation strategy from March
2001 to March 2003 according to the portfolio optimisation approach with
CVaR constraints. The optimal asset allocation strategy with MBS again
outperforms the optimal stock/bond strategy clearly. The overall perfor-
mance looks of course better than the maximum utility equivalent in Figure
8.8 due to the lower equity exposure.
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Figure 8.9: Optimal portfolio weights from 2001-2003 in a stock/bond port-
folio.
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Figure 8.11: Expected return-variance efficient frontier for a stock/bond port-
folio (dotted line) and for a stock/bond/MBS portfolio (solid line).
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Chapter 9

Valuation and Pricing of
Reverse Mortgages

We have already introduced reverse mortgages in Chapter 2 and we have al-
ready pointed out that the risk that the total amount of the loan may exceed
the house value at termination of the contract is crucial for the valuation
and pricing of reverse mortgages. Yet, the question of how to take into ac-
count this risk for a consistent valuation approach is not trivial. In a recent
paper, Wang et al. (2007) address this issue and consider survivor bonds
and survivor swaps for reverse mortgages within an actuarial approach. It
is the main contribution of this chapter to develop a consistent framework
for the pricing of reverse mortgages with different characteristics under (lim-
ited) default risk. Limited default risk means that, making reasonable model
assumptions, we calculate the maximum payment(s) to the mortgagor such
that the mortgage lender does not experience any losses with a given proba-
bility or that the losses of the mortgage lender do not exceed a given amount
with a certain probability. These considerations may justify the pricing of
a reverse mortgage contract with a particular interest-rate curve (e.g. the
EURIBOR/Swap curve, which we use in the empirical examples).

Our mathematical model is again based on a stochastic intensity frame-
work, which we have also used for the valuation of mortgage-backed securities
in the previous chapters. In the following we adapt this modelling framework
to reverse mortgages and develop, in a first step, formulas for the valuation
of fixed-rate and adjustable-rate reverse mortgage contracts in a default-free
setting. By default-free valuation setting we mean that, for pricing pur-
poses, we do not take into account the possibility that the total loan amount
outstanding at termination of the contract may exceed the house value. Sub-
sequently, we extend these concepts for certain contract specifications and
consider the general case where the losses which a mortgage lender may suffer
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are explicitly taken into account. We determine the maximum payment(s)
to the mortgagor such that the total loan amount does not exceed the house
value at termination of the reverse mortgage contract with a prespecified
probability. Alternatively, we propose a Credit-Value-at-Risk criterion in or-
der to determine the maximum loan amounts. We finally illustrate our model
with some examples directed towards the German market and investigate the
sensitivity of the results with respect to some model parameters, e.g., with
respect to the drift parameter of the house price appreciation process.

9.1 The default-free modelling framework

For the sake of simplicity of the presentation, we will assume in the following
that the reverse mortgage is associated with a single person and that there is
a maximum age this person can attain. We explicitly consider two basic types
of reverse mortgages. The payment for the first type of reverse mortgage,
denoted by upfront-payment reverse mortgage in the following, is made as a
lump sum at origination of the mortgage contract. The second type of reverse
mortgage we consider is a lifetime annuity, where the mortgagor receives
regular periodic payments until the contract is terminated. Of course, our
concept can be readily applied to combinations of these two basic types and
can be easily extended to other forms of reverse mortgages, e.g. to lines of
credit, which have become popular in the US. We do not consider any upfront
fees in the following. However, it is straightforward to incorporate upfront
fees into our modelling framework by simply considering them as an upfront
payment which the mortgagor never receives. In any case, we assume that
the reverse mortgage contract is only terminated when the mortgagor dies
or sells the house and that all accrued interest is added to the outstanding
loan amount. For both basic types of reverse mortgages we consider fixed
interest-rate agreements and adjustable-rate agreements, denoted by FRRM
and ARRM respectively.

We assume that we have a probability space (Ω,G, Q) with the three
filtrations {Gt}t≥0, {Ft}t≥0, {FN

t}t≥0 as already introduced in Chapter 3.3.
In this chapter we use again a Hull-White interest-rate model. I.e., the short-
rate dynamics under the risk-neutral measure Q̃ are given by

dr(t) = (θr(t) − ârr(t))dt + σrdW̃r (9.1)

where W̃r is a Q̃-Wiener process, âr := ar + λrσ
2
r with the market price

of risk parameter λr and ar, σr are some positive constants. The short-rate
dynamics under the real-world measure Q are given by

dr(t) = (θr(t) − arr(t))dt + σrdWr. (9.2)
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Recall from Chapter 3.2.2 that the zero-coupon bond prices

P (t, T ) := E eQ[e−
R T
t

r(s)ds|Ft]

in the Hull-White model are given by:

P (t, T ) = eÂ(t,T )−B̂(t,T )·r(t) (9.3)

where

Â(t, T ) =

∫ T

t

(
1

2
σ2

r B̂(l, T ) − θr(l)B̂(l, T ))dl

B̂(t, T ) =
1

âr
(1 − e−âr(T−t)). (9.4)

Now let us assume that until the maximum age which the mortgagor can at-
tain (in the calculations later we assume a maximum age of 125 years), there
are K remaining mortgage payment dates. For simplicity let the payment
dates be equidistant (e.g., there are regular monthly payments) and denote
them by t1, ..., tK with ∆t := tk+1− tk for all k ≥ 1. We also assume that the
reverse mortgage contract is written in such a way that when the mortgagor
dies or sells the house, the contract is only terminated on the next payment
date. At the time of termination of the reverse mortgage contract τ , i.e.
when the mortgagor dies or sells the house, the outstanding notional plus all
accrued interest has to be paid back in a lump sum. We denote this amount
by A(τ, i), where i is the contract rate, determining the accrued interest at
the time of termination of the contract. The total amount which has to be
paid back is, however, capped at the house sale proceeds (i.e. the house
value) which we denote by H(τ). Thus, all cash flows depend on the time of
termination τ . If we denote by p(t) the risk-neutral (annualised, continuous)
termination intensity process, we can recall from (3.29) that

Q̃(τ ∈ (t, t + dt]|Gt) = p(t)dt (9.5)

for an arbitrarily small interval dt, if the contract has not been terminated
prior to time t. Furthermore, it follows from (3.30) that the probability that
the contract is still alive at time tk (given that the contract has not been
terminated prior to time t) can be calculated by

Q̃(τ > tk|Ft) = E eQ[e−
R tk

t p(s)ds|Ft] · 1{τ>t}

Applying this result, we can conclude that

1{τ>t} · E eQ

[∫ tk

tk−1

p(u) · e−
R u
t

p(s)dsdu

∣∣∣∣Ft

]
= Q̃(τ ∈ (tk−1, tk]|Gt) (9.6)
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is the probability of termination between tk−1 and tk, resulting in the ’recov-
ery payment’ at the payment date tk. Thus, the value V (t) of the mortgage
contract at time t0 ≤ t ≤ t1 admits the representation

V (t) = 1{τ>t} · E eQ

[ K∑

k=1

(
− M(tk) · ∆t · e−

R tk
t (r(s)+p(s))ds

+e−
R tk
t r(s)ds · min(H(tk), A(tk, i)) ·

∫ tk

tk−1

p(u) · e−
R u

t
p(s))dsdu

)∣∣∣∣Ft

]
,

(9.7)

where M(tk) · ∆t is the payment to the mortgage borrower on the payment
date tk. Note that Formula (9.7) is an application of (3.35) to reverse mort-
gage contracts.
Approximating the integral

∫ tk

tk−1

p(u)e−
R u

t
p(s)dsdu ≈ p(tk) · e−

R tk
t p(s)ds · ∆t (9.8)

and noting that

min(H(t), A(t, i)) = A(t, i) − max(A(t, i) − H(t), 0),

(9.7) can be written in the form

V (t) ≈ 1{τ>t} · E eQ

[ K∑

k=1

(
− M(tk) · ∆t · e−

R tk
t (r(s)+p(s))ds

+∆t · min(H(tk), A(tk, i)) · p(tk) · e−
R tk

t (r(s)+p(s))ds

)∣∣∣∣Ft

]

(9.9)

= 1{τ>t} ·
{

E eQ

[ K∑

k=1

−M(tk) · ∆t · e−
R tk

t (r(s)+p(s))ds

∣∣∣∣Ft

]

+E eQ

[ K∑

k=1

∆t · A(tk, i) · p(tk) · e−
R tk

t (r(s)+p(s))ds

∣∣∣∣Ft

]

−E eQ

[ K∑

k=1

∆t · max(A(tk, i) − H(tk), 0) · p(tk)

·e−
R tk

t (r(s)+p(s))ds

∣∣∣∣Ft

]}
(9.10)

=: 1{τ>t} · (V ND
app (t) − V D

app(t))

=: Vapp(t), (9.11)
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where V ND
app (t) is the value of a reverse mortgage contract without the pos-

sibility of loss for the mortgage lender and V D
app(t) is the term capturing the

’value of the default risk’. The approximation error in (9.9) is again of the
kind Rtk as already introduced in (3.36) and discussed in detail in the ap-
pendix. We will concentrate on the reverse mortgage value Vapp(t) in the
following since the difference between (9.7) and (9.11) is negligible for rea-
sonably small ∆t (e.g., for ∆t = 1/12, indicating monthly payments). In the
remainder of this section we will assume that the last term in (9.10), i.e. the
’value of the default risk’ V D

app(t), is small enough so that

V ND
app (t) = 1{τ>t} · E eQ

[ K∑

k=1

(
− M(tk) · ∆t · e−

R tk
t (r(s)+p(s))ds

+A(tk, i) · p(tk) · ∆t · e−
R tk
t (r(s)+p(s))ds

)∣∣∣∣Ft

]
(9.12)

is a good approximation of V (t). Evidently, this is only justified if the proba-
bility that the house value is smaller than the total loan amount outstanding
at termination of the contract is negligibly low. We will extensively discuss
this topic and, in particular, the implications for the maximum payments
which can be made to the homeowner later in the subsequent section. The
more general case, where we have to evaluate (9.11) will also be discussed in
the subsequent section for the analytically tractable contract specifications.

We decompose the overall termination intensity p(t) into the two inde-
pendent parts, pd(t) and ps(t) with

p(t) = pd(t) + ps(t),

where pd(t) denotes the ”death intensity process” and ps(t) denotes the home
sale intensity. The separation of the overall contract termination intensity
into two independent parts was already used in Chapters 5 and 6 in the
context of prepayment modelling for MBS. While pd can be extracted from life
expectancy tables (and is thus assumed to be deterministic in the following),
we assume that the home sale intensity process follows a Vasicek process,
with dynamics

dps(t) = (θp − âpps(t))dt + σpdW̃p(t) (9.13)

under the risk-neutral pricing measure Q̃ and by

dps(t) = (θp − apps(t))dt + σpdWp(t) (9.14)

under the real-world measure Q, where W̃p (Wp) is a Q̃ (Q)- Wiener pro-

cess (independent of the previously defined W̃r (Wr)). With these model
specifications we can explicitly calculate the expectations in (9.11).
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Lemma 9.1. In the model set-up as previously introduced it holds that

P d(t, T ) := E eQ[e−
R T
t

(r(s)+p(s))ds|Ft]

= P (t, T ) · e−
R T
t

pd(s)ds · eÂd(t,T )−Ĉd(t,T )·ps(t)

with

Âd(t, T ) =

∫ T

t

1

2
σ2

pC
d(l, T )2 − θpĈ

d(l, T )dl,

=

(
θp

âp
− σ2

2â2
p

)
[Ĉd(t, T ) − T + t] − σ2

4âp
· Ĉd(t, T )2

Ĉd(t, T ) =
1

âp

(
1 − e−âp(T−t)

)
,

Proof. Since the short-rate process r(t) is independent of the termination
intensity p(t) and since pd(t) is deterministic, the lemma follows from the
bond pricing formulas in the Vasicek model (see (3.12) and (3.13)).

Lemma 9.2. In the model set-up as previously introduced it holds that

E eQ[p(T ) · e−
R T

t
(r(s)+p(s))ds|F t] = P d(t, T ) · fd(t, T )

where

fd(t, T ) := − ∂

∂T
ln

P d(t, T )

P (t, T )

is the ”termination spread forward rate”.

Proof. The lemma follows directly from the well-known result (see, e.g.,
Schmid (2004), p. 243) saying that

E eQ

[
e−

R T
t

r(l)dlr(T )|Ft

]
= −E eQ

[
e−

R T
t

r(l)dl|Ft

]
· ∂

∂T
ln P (t, T ),

which we have already used earlier in this thesis.

As a further ingredient of our pricing model we need to model the collateral,
i.e. the house value, in order to be able to determine the maximum monthly
payment to the mortgagor so that the mortgage is adequately collateralised
and the pricing with the default-free valuation formula (9.12) is justified. Let
us assume that the house price H(t) has the dynamics

dH(t) = µHH(t)dt + σHH(t)dWH(t) (9.15)
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where µH and σH are some positive constants, WH(t) is a Wiener process
(w.r.t. the real-world measure Q), independent of the previously defined
Wr, Wp, and H(0) = H0 is the value of the house at origination of the reverse
mortgage contract. Thus, the house price H(t) follows a geometric Brownian
motion and it follows that the distribution of H(t)/H0 is lognormal with
parameters (µH − 1

2
σ2

H) · t and σ2
H · t, i.e.

H(t) ∼ H0 · LN((µH − 1

2
σ2

H) · t, σ2
H · t),

where LN(·, a, b) denotes the cdf of the lognormal distribution with param-
eters a and b.

9.1.1 Fixed-rate reverse mortgages

If the interest-rate agreement of the reverse mortgage contract is a fixed-
rate agreement with interest rate i (expressed as annual rate with discrete
compounding), we obtain:

Theorem 9.3. The value at time t0 ≤ t ≤ t1 of a ”default-free” upfront-
payment FRRM with initial payment M0 and fixed interest rate i is given
by:

V UP
FRRM(t, i) = 1{τ>t} ·

(
− M0 · P d(t, t1)

+M0 ·
K∑

k=1

(1 + i · ∆t)k−1 · ∆t · P d(t, tk) · fd(t, tk)

)
.

Proof. Noting that

A(tk, i) = M0 · (1 + i · ∆t)k−1

for k = 1, ..., K, the theorem follows directly from (9.12).

Theorem 9.4. The value at time t0 ≤ t ≤ t1 of a ”default-free” lifetime
annuity FRRM with a periodic payment of M ·∆t and fixed interest rate i is
given by:

V LA
FRRM(t; i) = 1{τ>t} · M · ∆t ·

K∑

k=1

(
− P d(t, tk)

+
(1 + i · ∆t)k − 1

i
· P d(t, tk) · fd(t, tk)

)
.
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Proof. Noting that

A(tk, i) = M · ∆t ·
k−1∑

j=0

(1 + i · ∆t)j

= M · ∆t · (1 + i · ∆t)k − 1

i · ∆t
, (9.16)

the theorem follows again directly from (9.12).

9.1.2 Adjustable-rate reverse mortgages

In an adjustable-rate contract, the interest rate is not constant, but is ad-
justed at given fixing dates, so that it reflects prevailing market conditions
during the whole lifetime of the product. For simplicity, we assume in the
following that the fixing dates coincide with the payment dates and that on
the payment date tk the interest rate is fixed for the subsequent interest-rate
period from tk to tk+1. Usually, for adjustable-rate contracts the reference
index rate is a LIBOR (or EURIBOR) rate. LIBOR rates are simple money-
market interest rates and can be considered as short-term riskless rates. We
denote by L(tk) := L(tk, tk+1) the LIBOR rate for the time period from tk
to tk+1, by sL some spread on the LIBOR rate. In the following, we use the
approximation

(1 + (L(tk) + sL) · ∆t) ≈ e(r(tk)+sL)·∆t. (9.17)

Theorem 9.5. The value at time t0 ≤ t ≤ t1 of a ’default-free’ adjustable-
rate reverse mortgage with initial payment M0, i.e. A(t1) = M0, and fixed
spread sL on the (simple) reference index rate is given by

V UP
ARRM (t, ∆t, sL) ≈ 1{τ>t} ·

(
− M0 · P d(t, t1) + M0 · ∆t · P (t, t1)

·
K∑

k=1

fd(t, tk) ·
P d(t, tk)

P (t, tk)
· esL·(tk−t1)

)
.

Proof. Note that using (9.17) we get

A(tk, s
L) = M0 ·

k−1∏

j=1

(1 + (L(tj) + sL) · ∆t)

≈ M0 · e
Pk−1

j=1
(r(tj )+sL)·∆t)

≈ M0 · e
R tk
t1

r(s)ds · esL·(tk−t1).
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Then, it follows from (9.12) that

V UP
ARRM (t, ∆t, sL) = 1{τ>t} ·

(
− M0 · P d(t, t1) + E eQ

[ K∑

k=1

M0

·
(

k−1∏

j=1

(1 + (L(tj) + sL) · ∆t)

)
· p(tk) · ∆t · e−

R tk
t (r(s)+p(s))ds

∣∣∣∣Ft

])

≈ 1{τ>t} ·
(
− M0 · P d(t, t1) + E eQ

[ K∑

k=1

M0 · ∆t

·e
R tk
t1

r(s)ds · esL·(tk−t1) · p(tk) · e−
R tk
t (r(s)+p(s))ds

∣∣∣∣Ft

])
,

which further simplifies to

V UP
ARRM (t, ∆t, sL) ≈ 1{τ>t} ·

(
− M0 · P d(t, t1)

+M0 · ∆t ·
K∑

k=1

{
esL·(tk−t1) · E eQ

[
e

R t1
t r(s)ds|Ft

]

·E eQ

[
p(tk) · e−

R tk
t p(s)ds|Ft

]})

= 1{τ>t} ·
(
− M0 · P d(t, t1) + M0 · ∆t · P (t, t1)

·
K∑

k=1

fd(t, tk) ·
P d(t, tk)

P (t, tk)
· esL·(tk−t1)

)
.

Theorem 9.6. The value at time t0 ≤ t ≤ t1 of a ’default-free’ adjustable-
rate reverse mortgage with a periodic payment of M · ∆t and a fixed spread
sL on the (simple) reference index rate is given by

V LA
ARRM (t, ∆t, sL) = 1{τ>t} ·

K∑

k=1

(
− M · ∆t · P d(t, tk) + P (t, tk) · M · ∆t

·
K∑

m=k

∆t · esL·(tm−tk) · fd(t, tm) · P d(t, tm)

P (t, tm)

)
.
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Proof. For notational convenience, we define

V (t) := V LA
ARRM(t, ∆t, sL).

Then, according to (9.12)

V (t) = 1{τ>t} ·
K∑

k=1

{
− M · ∆t · P d(t, tk)

+E eQ

[( k−1∑

l=0

M · ∆t

k−1∏

j=k−l

(1 + (L(tj) + sL) · ∆t)

)

·∆t · p(tk) · e−
R tk

t (r(s)+p(s))ds

∣∣∣∣Ft

]}

≈ 1{τ>t} ·
K∑

k=1

{
− M · ∆t · P d(t, tk) + M · ∆t

·
k−1∑

l=0

P (t, tk−l) · esL·(tk−tk−l) · E eQ

[
∆t · p(tk) · e−

R tk
t p(s)ds|Ft

]}
.

By applying Lemma 9.2 we get

V (t) = 1{τ>t} ·
K∑

k=1

(
− M · ∆t · P d(t, tk) + M · ∆t

·
k−1∑

l=0

P (t, tk−l) · esL·(tk−tk−l) · fd(t, tk) ·
P d(t, tk)

P (t, tk)
· ∆t

)
.

Noting that
K∑

k=1

k−1∑

l=0

ak−l,k =

K∑

k=1

K∑

m=k

ak,m

finally yields

V (t) = 1{τ>t} ·
K∑

k=1

(
− M · ∆t · P d(t, tk) + M · ∆t

K∑

m=k

P (t, tk) · esL·(tm−tk) · ∆t · fd(t, tm) · P d(t, tm)

P (t, tm)

)
.
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Note that it follows directly from Theorem 9.5 and Theorem 9.6 that if
sL = 0, i.e. if there is no spread on the index rate, the value of the reverse
mortgage contract is equal to the outstanding loan amount on any (next)
payment and fixing date t1 (up to a very small discretisation error resulting
from the discretisation in (9.11)). In order to see this, note that with t = t1
the term

K∑

k=1

P (t, t1) · fd(t, tk) ·
P d(t, tk)

P (t, tk)
· ∆t · esL·(tk−t1)

reduces to

K∑

k=1

fd(t1, tk) ·
P d(t1, tk)

P (t1, tk)
· ∆t ≈

K∑

k=1

Q̃(τ = tk|Ft1) = 1,

given that τ > t0. Furthermore, note that with sL = 0 and t = t1 for the
lifetime annuity ARRM, the term

K∑

k=1

P (t, tk) · M · ∆t ·
K∑

m=k

∆t · esL·(tm−tk) · fd(t, tm) · P d(t, tm)

P (t, tm)

reduces to
K∑

k=1

P (t1, tk) · M · ∆t ·
K∑

m=k

Q̃(τ = tm|Ft1)

=
K∑

k=1

P (t1, tk) · M · ∆t · Q̃(τ ≥ tk|Ft1)

=

K∑

k=1

P d(t1, tk) · M · ∆t,

given that τ > t1. I.e., the net present value of the sum of all future payments
is equal to 0 and it follows that

V LA
ARRM (tj, ∆t, 0) = 0

The fact that the present value of an ARRM with sL = 0 is equal to the out-
standing loan amount on any fixing date is perfectly consistent with the valu-
ation principles of ordinary floating rate notes. The value of any floating-rate
note (independent of the maturity) must always be equal to the outstanding
notional on any fixing date, as long as the total notional is fully recovered at
termination, i.e. as long as the floating-rate note is default-free.
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9.2 Introducing default risk

In the first part of this section we address the question of how much a mort-
gagor can borrow, so that the ”default-free” considerations are justified. Re-
call that this is only the case if the probability that the total outstanding
loan amount exceeds the house value at termination of the contract is negli-
gibly low. Let us assume that the house value exceeds the total loan amount
outstanding at termination of the contract with a probability of at least
q ∈ (0, 1). Given such a probability q, at the time of origination of the
contract t0, the mortgage lender has to limit the initial payment M0 (for
an upfront-payment FRRM) or the periodic payment M · ∆t (for a lifetime
annuity FRRM) in such a way that

Q(H(τ) < A(τ, i)) =
K∑

k=1

Q(H(τ) < A(τ, i)|τ = tk) · Q(τ = tk) ≤ 1 − q

(9.18)

holds (we will call this criterion ’q-criterion’ in the following). Since

Q(H(τ) < A(τ, i)|τ = tk) = LN(
A(tk, i)

H0
; (µH − 1

2
σ2

H) · tk, σ2
H · tk),

it follows that (9.18) is equivalent to

K∑

k=1

LN(
A(tk, i)

H0

; (µH − 1

2
σ2

H) · tk, σ2
H · tk) · Q(τ = tk) ≤ 1 − q.

(9.19)

We can calculate Q(τ = tk) using the following theorem.

Theorem 9.7. In the model set-up as previously introduced it holds that

Q(τ = tk) ≈
(

∆t · pd(tk) · e−
R tk
t pd(s)ds · P s(t, tk)

−∆t · e−
R tk
t pd(s)ds · P s(t, tk) ·

∂

∂tk
ln P s(t, tk)

)
· 1{τ>t},

where
P s(t, tk) := EQ[e−

R tk
t ps(u)du] = eAd(t,T )−Cd(t,T )·ps(t)

with

Ad(t, T ) =

(
θp

ap
− σ2

2a2
p

)
[Cd(t, T ) − T + t] − σ2

4ap
· Cd(t, T )2

Cd(t, T ) =
1

ap

(
1 − e−ap(T−t)

)
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Proof. First, recall (9.6) and the approximation (9.8). Noting that pd(t) is

deterministic we have to calculate EQ[e−
R tk

t ps(u)du], where the expectation
is taken under the real-world measure Q. This expectation can directly be
calculated using solely the distribution of the home sale intensity implied by
its real-world dynamics as given in (9.14). Since the distribution of ps(t)
is normal, it can be shown that the distribution of

∫ tk
t

ps(u)du is also nor-

mal. Thus, the distribution of e−
R tk
t ps(u)du is lognormal and its expectation

follows from the expectation and variance of
∫ tk

t
ps(u)du, which yields the

formulas as stated above (for a detailed derivation see, e.g., Mamon (2004)).

Furthermore, if we assume as usual that EQ[e−
R tk
t ps(u)du] < ∞ and note that

e−
R tk
t ps(u) is continuously differentiable w.r.t. tk (for almost all ω ∈ Ω, it

holds that

∂

∂tk
lnP s(t, tk) =

1

P s(t, tk)
· EQ

[
∂

∂tk
e−

R tk
t ps(u)du

]

= − 1

P s(t, tk)
· EQ[ps(tk) · e−

R tk
t ps(u)du].

I.e., we obtain

EQ[ps(tk) · e−
R tk
t ps(u)du] = −P s(t, tk) ·

∂

∂tk
ln P s(t, tk).

Note that we have already used a similar result earlier for the short-rate
process under the risk-neutral martingale measure. This completes the proof.

Since the left-hand side of (9.19) is a strictly increasing function in M0

and M for an upfront-payment FRRM and a lifetime annuity FRRM respec-
tively, we get the maximum initial payment M∗

0 and the maximum periodic
payment M∗ if we replace ”≤” with ”=” in (9.19) and solve the equation for
M0 and M respectively. This can be done by standard methods, e.g. with
the fzero function in Matlab.

The question of how much a mortgagor can borrow so that (9.19) holds
for a certain probability q, is much more difficult for ARRM contracts than
for FRRM contracts since in a contract with a floating interest rate the quan-
tity A(tk) is stochastic. Within our Hull-White interest-rate model frame-
work, the quantity A(tk) in a lifetime annuity ARRM is basically a sum of
correlated lognormal random variables. We would thus have to compare a
sum of correlated lognormal random variables with the house value, which
is also lognormally distributed. It is a well known fact, e.g. from the pric-
ing of arithmetic average Asian options that the sum of lognormal random
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variables is not lognormally distributed. While some closed-form approxima-
tions have been suggested in the literature (see, e.g., Milevsky and Posner
(1998)), these can not be used for our problem since we would finally have
to find a distribution for the difference between the lognormally distributed
house value and the approximate distribution of A(tk), which is infeasible.
Thus, for a lifetime annuity ARRM, the only way to determine the maxi-
mum periodic payment M∗ is by simulation. The situation looks better for an
upfront-payment ARRM. For an upfront-payment ARRM we can reasonably
approximate the outstanding loan amount at time tk by

A(tk) ≈ M0 · e
R tk
0 r(s)ds · esL·tk .

We already know from Lemma 3.4 that the distribution of
∫ tk
0

r(s)ds is nor-
mal in the Hull-White model and we obtain:

∫ tk

0

r(s)ds ∼ N(ak; V (0, tk)), (9.20)

where

ak := − ln P (0, tk) +
σ2

r

2a2
r

· [tk − 2 · B(0, tk)

+
1

2ar
(1 − e−2ar ·tk)]

V (0, tk) :=
σ2

r

a2
r

(
tk +

2

ar

e−artk − 1

2ar

e−2artk − 3

2ar

)
(9.21)

and B(0, tk) is as given in (3.17).
Now, note that (9.18) is equivalent to

K∑

k=1

Q

(
log

H(τ)

H0

− log
A(τ)

M0

< log M0 − log H0

∣∣∣∣ τ = tk

)

·Q(τ = tk) ≤ 1 − q.

Thus, in order to get the maximum initial payment M∗
0 we have to solve the

equation

K∑

k=1

Φ

(
log M0 − log H0 − ((µH − 1

2
σ2

H) · tk − ak − sL · (tk − t1))√
σ2

H · tk + V (0, tk)

)

·Q(τ = tk) = 1 − q,
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where Φ(·) denotes the cdf of the standard normal distribution and Q(τ = tk)
can be calculated as stated in Theorem 9.7.

All calculations so far have been based on ”default-free” considerations.
This, as previously explained, is only justified if the maximum payments
to the homeowner are sufficiently low. This, however, may make a reverse
mortgage unattractive to some homeowners. When taking into account the
potential losses the mortgage lender faces if the total loan amount exceeds
the house value at termination of the contract, we have to work with the
exact (up to the very small discretisation error) valuation formula (9.11).
The following considerations are, however, only analytically well tractable
for fixed-rate contracts. We will thus focus on these contracts and point out
that for adjustable-rate contracts formula (9.11) can, of course, always be
evaluated by simulation7.

If we assume that the house price dynamics under the risk-neutral pricing
measure are given by

dH(t) = r(t)dt + σHdW̃H(t) (9.22)

we obtain the following versions of Theorems 9.3 and 9.4:

Theorem 9.8. The value at time t0 ≤ t ≤ t1 of an upfront-payment FRRM
with initial payment M0, fixed interest rate i and recovery capped at the house
value is given by:

V UP
dFRRM (t, i) = 1{τ>t} ·

(
− M0 · P d(t, t1) +

K∑

k=1

{
M0 · (1 + i · ∆t)k−1

·∆t · P d(t, tk) · fd(t, tk)

−∆t · P d(t, tk)

P (t, tk)
· fd(t, tk) · PUT (t, tk, A(tk, i))

})
,

7An alternative to simulation is the use of another approximation. The term

E eQ[max(A(tk) − H(tk), 0) · p(tk) · e
R t

k

t
(r(s)+p(s))ds|Ft]

can be written as

E eQ[max(A(tk) − H(tk), 0) · e
R t

k

t
r(s)ds|Ft] · E eQ[p(tk) · e

R t
k

t
p(s)ds|Ft],

where the first expectation can be calculated using Margrabe’s exchange option formula,
if one assumes that the interest rates for discounting are independent of those used for
determining the outstanding loan amount A(tk) (see Margrabe (1978)) and the second
expectation can be calculated using previously developed results.
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where

PUT (t, tk, A(tk, i)) := A(tk, i) · P (t, tk)

·Φ
(
−

ln H(t)
A(tk ,i)·P (t,tk)

− 1
2
v2(t, tk)

v(t, tk)

)

−H(t) · Φ
(
−

ln H(t)
A(tk ,i)·P (t,tk)

+ 1
2
v2(t, tk)

v(t, tk)

)
,

v(t, tk) := V̂ (t, tk) + σ2
H(tk − t)

and V̂ (t, tk) is similar to V (t, tk) as defined in (9.21) if ar is replaced with
âr.

Proof. Recalling Lemma 9.2 and Theorem 9.3 it remains to show that

E eQ[max(A(tk, i) − H(tk), 0) · e−
R tk

t r(s)ds] = PUT (t, tk, A(tk, i))

with PUT (t, tk, A(tk, i)) as defined above. The expression max(A(tk, i) −
H(tk), 0) is, however, simply the payoff of a European put option w.r.t. the
underlying H(t), strike price A(tk, i) and maturity tk. We can thus apply the
put option formula in the Black-Scholes framework with stochastic interest
rates (see, e.g., Brigo and Mercurio (2006), p. 888, for the case when interest
rates follow the Hull-White 1-factor model, as we assume in our model).

Theorem 9.9. The value at time t0 ≤ t ≤ t1 of a lifetime annuity FRRM
with a periodic payment of M · ∆t, fixed interest-rate i and recovery capped
at the house value is given by:

V LA
dFRRM (t; i) = 1{τ>t} ·

K∑

k=1

{
− M · ∆t · P d(t, tk)

+M · ∆t · (1 + i · ∆t)k − 1

i
· P d(t, tk) · fd(t, tk)

−∆t · P d(t, tk)

P (t, tk)
· fd(t, tk) · PUT (t, tk, A(tk, i))

}
,

where PUT (t, tk, A(tk, i)) is defined as in Theorem 9.8.

Proof. The Theorem follows directly from Theorems 9.4 and 9.8.

If we explicitly take into account the losses the mortgage lender possibly
suffers, it seems appropriate to limit the maximum payments to the home-
owner in such a way that the lender’s losses do not exceed a certain amount
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with a given probability. In some sense, this is equivalent to setting a Credit
Value-at-Risk (CreditVaR) limit.

The CreditVaR of a reverse mortgage contract could, e.g., simply be a
fraction of the initial house value. If we set this fraction to, say, 0.1 and
the CreditVaR-probability level to α we have to limit the payments to the
homeowner in such a way that

Q(A(τ, i) − H(τ) > 0.1 · H0) =
K∑

k=1

Q(A(τ, i) − H(τ) > 0.1 · H0|τ = tk) · Q(τ = tk) ≤ 1 − α.

I.e. we have to solve

K∑

k=1

LN(
max(0, A(tk, i) − 0.1 · H0)

H0

; (µH − 1

2
σ2

H) · tk, σ2
H · tk)

·Q(τ = tk) = 1 − α

to obtain the maximum initial payment M∗
0,d or the maximum periodic pay-

ment M∗
d .

In the last part of this section we briefly investigate the difference between
the valuation formulas in the ”default-free” setting of Chapter 9.1 and the
formulas in this section where we explicitly take into account the possibility
of losses for the mortgage lender. This difference is, of course, the quantity

V D
app(t) =

K∑

k=1

∆t · P d(t, tk)

P (t, tk)
· fd(t, tk) · PUT (t, tk, A(tk, i))

which we have labelled ”value of the default risk”. Note that, assuming
a complete market where the dynamics of the house price process under
the risk-neutral pricing measure are given by (9.22), the value of the PUT
options does not depend on the parameter µH . However, it does depend
on the volatility of the house price process, i.e. on σH . If the volatility σH

increases, as in the current housing turmoil in the US, the value of the default
risk increases. We will exemplarily illustrate this in the following section.

9.3 Results and implications

In this section we discuss the available data and shortly comment on the
techniques which we need to estimate the model parameters. With the ob-
tained parameter estimates (and assumptions where there is no reliable data
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in order to estimate the parameters statistically) we then illustrate the pre-
viously introduced modelling approach.

Let us start with the ”default-free” model set-up as discussed in Chapter
9.1 and with the probability q. Recall that q has to be chosen close to 1 in
order to justify the ”default-free” considerations. As risk-free interest-rate
curve we use the LIBOR/Swap curve in this paper. In practice loans are of-
ten priced with the LIBOR/Swap curve since this is the common benchmark
curve for a bank’s or mortgage lender’s liabilities. The Global Average One-
Year Rating Transition Rates for global corporates as of 2006 (with data from
1981-2005; Source: Standard & Poor’s CreditPro 7.02) yield that a 25-year
loan of a AAA-rated company defaults with a probability of approximately
4%. Thus, we can conclude for our purposes that by setting q = 96.5% a
reverse mortgage loan can be considered as virtually default-free and that
the use of the LIBOR/Swap or the EURIBOR/Swap curve as risk free curve
is adequate. We have historical EURO EURIBOR/Swap rates from 1999
to 2007 for maturities from 6 months to 30 years for the estimation of the
parameters in the Hull-White interest-rate model. We estimate the param-
eters with Kalman filter techniques as described in Chapter 5. By using
the Kalman filter with historical data we can estimate the dynamics of the
short-rate under the real-world measure Q and under the risk-neutral pricing
measure Q̃ simultaneously. The results are reported in Table 9.1.

The mortality rates which we need to determine the (deterministic) mor-

Parameter Estimate
ar 0.0518
âr 0.0177
σr 0.0065
hr 0.0003

Table 9.1: Estimates of the interest-rate model parameters where hr is the
measurement std. error.

tality intensity process can easily be extracted from life expectancy tables.
In this paper we use the 2004 R mortality rates of the first order published
by the Deutsche Aktuarsvereinigung [association for actuaries in Germany]
which are the current standard for pension insurance calculations in Ger-
many. We thus obtain a piecewise constant mortality intensity pd(l) from
year l to l + 1 given by

pd(l) = log(1 − Q(τd ∈ (l, l + 1]|τd > l)), (9.23)
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where τd is the stopping time associated with the death of the mortgagor
and the probability on the right hand side in (9.23) is the value published
by the Deutsche Aktuarsvereinigung. So far, we have only considered reverse
mortgages for a single mortgagor. If the reverse mortgage is associated with
two persons, all conclusions remain valid if we consider the supremum of
the stopping times τ

(1)
d and τ

(2)
d , associated with the death of person 1 and

person 2 respectively, instead of τd for a single person. The survival and
termination probabilities associated with sup(τ

(1)
d , τ

(2)
d ) are straightforward

to calculate from the same mortality table as long as τ
(1)
d can be assumed

to be independent of τ
(2)
d . This is certainly not a too restrictive assumption

when the reverse mortgage is, e.g., related to a couple.
In order to fully specify the overall intensity process p(t) we need to have

values for the parameters θp, ap, âp and σp, which determine the dynamics
of the home sale intensity process (under the real-world measure and under
the risk-neutral pricing measure). Unfortunately, we do not have any reliable
data available to estimate these parameters for the German market. For the
US market, some rough numbers for mobility rates of the elderly are avail-
able (see Davidoff and Welke (2005) and the references therein, who report
an annual mobility rate of approximately 4% among older single women).
However, whether any of these data can be used to estimate the house sale
intensity process in Germany is highly questionable. We therefore have to
resort to reasonable assumptions at this stage. Noting that the lower the
house sale intensity, the higher the probability that the mortgage lender ex-
periences a loss, we make conservative assumptions for the parameters and
set θp = 0.01, ap = âp = 0.5 and σp = 0.002. These parameter values yield a
mean-reversion level of θp/ap = 0.02, i.e. we assume that the long-term aver-
age of the house sale intensity is just 2%. Note also that by setting ap = âp

we assume that the house sale intensity process has the same dynamics under
the real-world and under the risk-neutral pricing measure.

In general, the parameters µH and σH of the house value process can
be expected to vary according to the specific characteristics and location of
the house. It is thus highly recommended that these parameters incorpo-
rate expert assumptions based on the individual property. In this paper,
we estimate the parameters from the quarterly house price index of newly
constructed single-family homes in Germany from 2000-2006, published by
the German Federal Statistical Office. The simple moment estimators yield
µH = 0.0037 and σH = 0.0047 (note that house price appreciation has been
very low in Germany since the mid-1990s). It is possible to combine these
parameter estimates obtained from general data with individual expert as-
sumptions, e.g., via a Bayesian approach or with the well-known method
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proposed by Black and Litterman (1992).
With the previously given parameter values we will discuss some exam-

ples in the following. Table 9.2 shows how a reverse mortgage contract could
look like for a female and for a male person at the age of 65 and 70. In
this example our calculations are based on the EURIBOR/Swap curve as
of 05-Feb-2007 (with money market/par rates from approximately 3.78% for
the 3-month EURIBOR to 4.40% for the 30yr Swap rate). Furthermore, we
assume that the house, which the reverse mortgage contract is related to, is
worth EUR 500,000 at the time of origination of the mortgage contract. In
Table 9.2, i∗0 and i∗ denote the interest rate, which would make the reverse
mortgage contract ”fair” according to the ”default-free” formulas as devel-
oped in Chapter 9.1, i.e. for which V UP

FRRM(0, i∗0) = 0 and V LA
FRRM(0, i∗) = 0

hold respectively. Hence, i∗ can be considered in some sense as the internal
rate of return of the contract. M∗

0 and M∗ are the maximum payments as
defined previously (with q = 96.5% and H0 = 500, 000) in the default-free
setting using the internal rate of return of the corresponding contract plus a
spread of 150 basis points. Note that M∗

0 is rounded to the nearest multiple
of EUR 5,000 below the actual value and that M∗ is rounded to the nearest
multiple of 10 below the actual value. Of course, the maximum payments are
sensitive to the model parameters and inputs. Sensitivity tests have shown
that the maximum payments depend in particular on the expected house
price appreciation (i.e. on the parameter µH) and on the initial yield curve.
This result is not surprising and perfectly in line with Eschtruth et al. (2006)
who report that a 65-year old reverse mortgagor in the US could expect to re-
ceive only 5% of the house value as a lump sum in 1981, when interest rates
were at historical highs, and as much as 51% in 2002 when interest rates
dropped to historical lows. In order to illustrate the sensitivity of the maxi-
mum payments with respect to µH and with respect to the initial yield curve
at origination of the contract, we consider the case of an upfront-payment
FRRM for a 70-year old female homeowner more closely. We recalculate the
maximum payment M∗

0 in this case for different values of µH and for different
parallel shifts of the initial yield curve. The results are shown in Figures 9.1
and 9.2. E.g., for an expected yearly house price appreciation of 3% and
an initial yield curve between 2.8% and 3.4% (corresponding to a 100 basis
points downward shift of the yield curve) the 70-year old homeowner could
get a maximum upfront-payment of 252,500, i.e. more than 50% of the cur-
rent house value.

We finally calculate the value of the contract at time 0 with the max-
imum payments (corresponding to the originally estimated parameters and
initial yield curve) if the interest rate is chosen to be 150 basis points above
the ”fair” interest rate, which is a common profit margin for retail mortgage
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products in Germany. This quantity can, in some sense, be considered as
the mortgage lender’s (marked-to-market) profit for a contract with such an
interest-rate agreement. In Figure 9.3 we show how the loan amount devel-
ops over time in the examples as given in Table 9.2 and compare it to one
exemplary (simulated) path of the house price process.

For comparison, we calculate the same quantities as in Table 9.2 if we
use the valuation formulas in Chapter 9.2, explicitly taking into account the
possibility of losses for the lender, with a 5%-CreditVaR limit set to EUR
0.1 · 500, 000 = EUR 50,000. The results are shown in Table 9.3.

In order to illustrate the value of the default risk, i.e. the difference be-
tween the ”default-free” valuation formulas and the valuation formulas with
the PUT options, we re-visit the example of the 70-year old female home-
owner. Let us assume that the homeowner receives EUR 250,000.- in an
upfront-payment FRRM. This huge quantity evidently implies a consider-
able risk of losses for the lender. The probability that the outstanding loan
amount exceeds the house value at termination of the contract is approx.
65% and the critical point for the lender is reached after 144 months (with
the previously simulated path of the house price process), i.e. when the
mortgagor is 82 years old. If we calculate with the interest rate i∗0 = 4.37%
and add a spread of 150 basis points, the value of the default risk V D

app is
EUR 15,016.- in this example, yielding a net present value of 63,734.- for
this contract (compared to EUR 78,750.- for the same contract priced in the
default-free setting). The ”fair” interest rate in this example, which would
make the contract value equal to 0 at origination is 4.42%, i.e. 5 basis points
above the fair interest rate in the default-free setting. If the house price
volatility parameter σH increases from 0.47% to 5% (which may be a real-
istic value in the current US market environment), the value of the default
risk rises to EUR 19,551.- in the previous example.

Let us now consider an adjustable-rate contract in the default-free model
setting. As previously discussed, the outstanding loan amount of an ARRM
is stochastic. If interest rates rise, the outstanding loan amount of an ARRM
will grow faster than the outstanding loan amount of a fixed-rate agreement.
It is thus not surprising that the maximum payments M∗

0 and M∗ (accord-
ing to the q-criterion) are smaller for an ARRM compared to the respective
quantities for a FRRM. We will give some examples for an upfront-payment
ARRM, where we can calculate all quantities analytically. If we leave all pa-
rameters as in the examples for the fixed-rate agreements above and choose
the 1-month EURIBOR rate as reference index rate, we obtain the results
as given in Table 9.4. The spread sL∗, which makes the contract ”fair” at
origination is of course 0, as shown in Chapter 9.1. In Figure 9.4 we illustrate
the risk of rising interest rates. We show two different simulated paths of
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Figure 9.1: Sensitivity of the maximum upfront-payment M∗
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old female homeowner with respect to µH and with respect to parallel shifts
of the initial yield curve in our example calculations. The highlighted grid
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Male Female
Age i∗0 = 4.37% i∗0 = 4.39%
65 i∗ = 4.36% i∗ = 4.36%

M∗
0 = 60, 000 M∗

0 = 50, 000
M∗ = 330 M∗ = 260

V UP
FRRM(0, i∗0 + 0.015) = 19, 918 V UP

FRRM (0, i∗0 + 0.015) = 19, 001
V LA

FRRM(0, i∗ + 0.015) = 10, 973 V LA
FRRM (0, i∗ + 0.015) = 10, 412

Age i∗0 = 4.35% i∗0 = 4.37%
70 i∗ = 4.35% i∗ = 4.35%

M∗
0 = 80, 000 M∗

0 = 65, 000
M∗ = 450 M∗ = 370

V UP
FRRM(0, i∗0 + 0.015) = 21, 754 V UP

FRRM (0, i∗0 + 0.015) = 20, 475
V LA

FRRM(0, i∗ + 0.015) = 10, 923 V LA
FRRM (0, i∗ + 0.015) = 11, 119

Table 9.2: Examples of possible fixed-rate reverse mortgage contracts in the
’default-free’ model setting with q = 0.965 and H0 = 500, 000.

Male Female
Age i∗0,d = 4.37% i∗0,d = 4.39%
65 i∗d = 4.36% i∗d = 4.36%

M∗
0,d = 70, 000 M∗

0,d = 55, 000
M∗

d = 400 M∗
d = 320

V UP
dFRRM(0, i∗0,d + 0.015) = 23, 153 V UP

dFRRM (0, i∗0,d + 0.015) = 20, 797
V LA

dFRRM (0, i∗d + 0.015) = 12, 487 V LA
dFRRM(0, i∗d + 0.015) = 11, 923

Age i∗0,d = 4.35% i∗0,d = 4.37%
70 i∗d = 4.35% i∗d = 4.35%

M∗
0,d = 95, 000 M∗

0,d = 80, 000
M∗

d = 550 M∗
d = 440

V UP
dFRRM(0, i∗0,d + 0.015) = 25, 784 V UP

dFRRM (0, i∗0,d + 0.015) = 25, 127
V LA

dFRRM (0, i∗d + 0.015) = 12, 757 V LA
dFRRM(0, i∗d + 0.015) = 12, 482

Table 9.3: Examples of possible fixed-rate reverse mortgage contracts in
the model setting of Section 3 with a 5%-CreditVaR limit of 50,000 and
H0 = 500, 000.
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Figure 9.3: Evolution of the outstanding loan amount and of an exemplary
path of the house price process in the examples of Table 9.2.

the 1-month EURIBOR rate together with the outstanding loan amount. In
scenario 1, the loan amount grows rapidly and the loan amount of a contract
for a 65-year-old male person exceeds EUR 500,000 (i.e. the house value at
origination) after 351 months, i.e. when the mortgagor is 94 years old.

Finally we want to discuss the implications for the contract design from

Male Female
Age M∗

0 = 35, 000 M∗
0 = 25, 000

65 V UP
ARRM (0, 1/12, 0.015) = 11, 775 V UP

ARRM (0, 1/12, 0.015) = 9, 601
Age M∗

0 = 55, 000 M∗
0 = 40, 000

70 V UP
ARRM (0, 1/12, 0.015) = 15, 048 V UP

ARRM (0, 1/12, 0.015) = 12, 668

Table 9.4: Examples of possible upfront payment ARRM contracts.

a mortgage lender’s point of view. First, a mortgage lender has to decide
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Figure 9.4: Evolution of the outstanding loan amount and of an exemplary
path of the house price process for two different interest-rate scenarios and
for the contract examples of the right-hand side of Table 9.4.

which criterion to choose in order to determine the maximum payment(s) to
the homeowner. Of course, the CreditVaR criterion and the ”q-criterion”,
which stems from a possible requirement that a reverse mortgage should be
virtually ”default-free” in the previously discussed sense, can not be com-
pared directly. However, if one allows reasonable CreditVaR levels it can be
expected that, in general, the maximum payments can be higher than those
determined by the ”default-free” criterion (if the contract spreads are iden-
tical). This follows directly from the fact that the amount of the mortgage
lender’s potential loss depends primarily on the survival probabilities which
decrease as the mortgagor gets older, resulting in a low probability for large
losses. Tables 9.2 and 9.3 also indicate this result.

Furthermore, we have seen that the possible maximum payments for fixed-
rate agreements are higher than those for adjustable-rate agreements. Con-
sequently, fixed-rate agreements may be more appealing to potential new
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mortgagors. This is particularly true when long-term interest rates are low.
Moreover, due to the higher maximum payments, the mortgage lender’s profit
opportunities are larger (compare the examples in Tables 9.2 and 9.4). How-
ever, these advantages of fixed-rate contracts do have a price: interest-rate
risk. A mortgage lender issuing potentially long-term fixed-rate loans is obvi-
ously exposed to considerable interest-rate risk when marking-to-market the
mortgage contracts. The hedging of this interest-rate risk is not straightfor-
ward since the time of termination of the contracts is not known. A hedging
strategy based on duration may constitute an easy first approach. Since a
detailed discussion of this topic is beyond the scope of this thesis, we just add
at this point that from a mortgage lender’s point of view, the interest-rate
risk associated with fixed-rate contracts must be monitored carefully.

So far, we have excluded the possibility of systematic prepayment. We
have already explained why this is not a restriction, particularly in the Ger-
man market. Yet, we would like to mention at this point that if an explicit
prepayment option is a desired contract feature, the valuation of the reverse
mortgage contract is still feasible, yet much more complex. The prepayment
intensity would, in this case, depend on the refinancing rates and a rela-
tionship between (long-term) interest rates and prepayment would have to
be established. The valuation of reverse mortgage contracts would then fol-
low the same lines as the intensity-based valuation of regular mortgages and
mortgage-backed securities (see Chapters 5 and 6). Depending on the as-
sumed relation between interest rates and prepayment, the modelling frame-
work would, however, lose a considerable part of its analytical tractability.



Chapter 10

Summary and conclusion

In this thesis we have first developed new valuation techniques for mortgage-
backed securities. MBS constitute a tremendously important segment of the
US fixed-income market and are widely accepted as an interesting asset class
among institutional investors, although their valuation and risk management
is in general a challenging and computationally expensive task.

In Chapter 5 we have presented a new valuation model based on a stochas-
tic prepayment-intensity specification, which extends the more traditional
econometric MBS models based on proportional hazard techniques. Our
model explicitly accounts for the general economic environment by the in-
corporation of a factor which is fitted to the GDP growth rate. Applied to
a series of GNMA MBS with different coupons we were able to successfully
explain market prices across different coupons. While recognizing that a 1-
factor model for the baseline prepayment process in the spirit of Kau et al.
(2004) also produces good empirical results, we have found that the GDP
factor adds explanatory power to our model when applied to market prices.
Both the risk of refinancing understatement (for premiums) and the risk of
turnover overstatement (for discounts) are accounted for in our prepayment-
risk-neutral setting by three prepayment-risk adjustment parameters which
can be calibrated to market data. The intensity-based modelling framework
offers the necessary mathematical rigour to target MBS market prices di-
rectly, without the need of any OAS input. The OAS has become subject
to criticism in the academic literature lately due to its lack of a theoretical
foundation. Yet, it remains perfectly possible to conduct a classical OAS
analysis within our modelling framework by simply setting the prepayment-
risk adjustment parameters to those values for which the prepayment inten-
sity dynamics are identical under the real-world and under the risk-neutral
pricing measure. This may be a particularly appealing characteristic of our
model with respect to its use in practice where the OAS is still a widely
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accepted quantity. It is also important to note that our model is of course
flexible enough to allow for further statistical fine-tuning by incorporating
additional exogenously given covariates in a straightforward way. This may
be an interesting path to follow for further research, particularly with a view
towards applications in practice. Furthermore, we have shown that our mod-
elling approach can be easily adapted for the valuation of adjustable-rate
MBS and CMOs. The valuation of more complex CMO structures, possibly
incorporating both prepayment and default risk (e.g., CMOs without agency
guarantees) may also be a fruitful field for further research.

We have then presented a closed-form formula which approximates the
value of fixed-rate MBS in Chapter 6. While the model set-up is slightly dif-
ferent for our closed-form approximation model in order to achieve a better
analytical tractability, the approach is based on the same stochastic prepay-
ment intensity techniques as the model presented in Chapter 5. Tackling
some of the inconveniences of previous approaches to calculate MBS prices
in closed or semi-analytic form, our model proves to be able to explain ma-
jor market price movements successfully for a wide range of coupons. The
overall average absolute pricing error is 159 basis points in our sample (with
a yearly recalibration of prepayment-risk adjustment parameters). The time
periods where deviations between model and market prices were rather large
were in some cases characterised by unusually flat or even inverse shapes
of the yield curve. A way to further improve the empirical performance of
our closed-form approximation may thus be the incorporation of a second
interest-rate factor, representing long-term rates, into the CIR model. With
an overall of four stochastic factors in this case, however, one would have to
carefully analyse and weigh up the potential improvement in the empirical
fit against the danger of model overfitting. Obviously, an overparameterised
model may cause problems in the model calibration procedure and produce
less reliable out-of-sample results. We leave this point for further research.

The closed-form formula is computationally highly efficient and reduces
the computational burden of MBS valuation drastically. It may thus be par-
ticularly useful in risk and portfolio management. In Chapter 8 we have
considered selected scenario-based portfolio optimisation problems and ex-
tended their usual application by including prepayment-sensitive fixed-rate
agency MBS into the universe of available assets. In a case study with his-
torical data from an interesting time period in the US fixed-income markets
from 2001 to 2003, when rates dropped to 40-year lows, we have empirically
tested our optimal asset allocation strategies. Our results indicate that a
portfolio with MBS is indeed able to outperform a classical stock/bond port-
folio significantly. We have therefore provided further empirical evidence for
the attractiveness of MBS from a quantitatively-oriented investor’s point of
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view.
Finally, we have presented a consistent framework for the valuation of

reverse mortgages in Chapter 9. Within our modelling framework we have
also calculated explicitly the probability that, at termination of the contract,
the outstanding loan amount exceeds the house value. This probability can
be considered as ’default probability’ for the mortgage lender and by deter-
mining the maximum payment(s) to the homeowner in such a way that this
default probability is very low, the pricing of the contract with a default-free
model set-up and a riskless benchmark curve can be justified. We have shown
that for all fixed-rate reverse mortgages and for upfront-payment adjustable-
rate reverse mortgages the ’default probabilities’ in a default-free setting can
be calculated analytically. In the case of a fixed-rate contract this is also
possible if the valuation framework is extended to account for default and
loss given default. In this extended set-up the maximum payment(s) to the
homeowner can be determined by a CreditVaR criterion. Applied to data
from the German market, we have provided a couple of examples of how
reverse mortgage contracts could look like in practice. While, due to the
limited availability of data, some assumptions are necessary, we have also
pointed out that it is possible to combine individual expert assumptions
with available data. By comparing different types of reverse mortgages and
interest-rate agreements we have also discussed implications for the design
of reverse mortgage contracts from a lender’s perspective.

In a nutshell, the overall contribution of this thesis and its relation to the
recent academic literature may be regarded as threefold: First, we have fur-
ther developed and justified the intensity-based approach in the modelling
of prepayment and in the valuation of MBS (introduced recently by, e.g.,
Kau et al. (2006), Goncharov (2005)), taking into account the particulari-
ties of a simultaneous consideration of discount and premium securities. In
the spirit of an earlier model presented by Levin and Davidson (2005), we
have targeted prices directly by the introduction of prepayment-risk adjust-
ment parameters. Second, we have presented a new concept to approximate
the value of fixed-rate MBS in closed-form. This has become an active field
of research recently with some notable contributions by, e.g., Rom-Poulsen
(2007) (extending a concept developed earlier by Collin-Dufresne and Hard-
ing (1999)) and Gorovoy and Linetsky (2007). Our approach offers a com-
putationally easy-to-handle alternative to these approaches which rely on
numerically complex techniques to evaluate semi-analytic pricing formulas.
We have applied this approach in some selected asset allocation case studies,
which would not have been feasible with more traditional, computationally
expensive pricing routines. Third, this thesis aims to make a contribution to a
better understanding of valuation, pricing and risk issues associated with re-
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verse mortgages. Despite some publications and discussions in the economic
and practitioner-oriented literature, a mathematically rigorous treatment of
reverse mortgages has so far remained scarce (with the possible exception
of the recent contribution by Wang et al. (2007)). We thus hope that this
thesis may help to spread the popularity of reverse mortgages. Despite the
obvious economic benefits of reverse mortgages, they are not yet available in
many European countries such as Germany.



Appendix A

A Monte-Carlo algorithm

In the following we present the major implementation steps needed in a
Monte-Carlo simulation to evaluate (5.8) at time t0 = 0 for a 30yr fixed-rate
agency-MBS pass-through security with monthly payment dates. Antithetic
paths are used as a method of variance reduction (see, e.g., Glasserman (2004)
for a discussion of variance reduction techniques in general and antithetic
paths in particular).

Algorithm 2. Monte Carlo simulation

(i) Determine the number K of payment dates/remaining months (exclud-
ing the settlement month) until maturity of the MBS.

(ii) Calculate:

burnout(0) := ln
PF (0)

A(360 − K)
,

where PF is the current pool factor and A is the outstanding notional
of the security according to the original amortisation schedule without
any prepayments.

(iii) Let Z denote the (even) number of Monte-Carlo paths. Draw K · Z
2

iid
r.v. from a standard normal distribution and arrange them arbitrarily
in a K × Z/2 matrix NIR.

(iv) Use antithetic interest-rate paths for variance reduction in the MC sim-
ulation and define the K × Z matrix

NAP := [NIR ,−NIR].

(v) Moreover, draw a further K · 2Z iid r.vs. from a standard normal
distribution and also arrange them arbitrarily in a K×2Z matrix Nbase.
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(vi) Get r(0), Rpar(0, 10) from current yield curve, set w(0) equal to quar-
terly GDP growth rate 6 months ago. Calculate

spread(0) := WAC − Rpar(0, 10),

p0(0) =
θp + bpw · w(0)

âp

and p(0) according to (5.2). Also, calculate the discount rates R(0, tsettle)
and R(0, t1) from the current yield curve, where tsettle and t1 correspond
to the settlement date and the first payment date respectively.

(vii) Set the option-adjusted spread to the value OAS to be used in the val-
uation routine.

(viii) Calculate the discount factors

DF (i) = e−(R(0,ti)+OAS)·ti i = settle, 1

(ix) Start MC simulation:
for z=1:Z
for k=1:K

• Get f(0, tk), fτ (0, τ)|τ=tk from current yield curve, calculate θr(tk)
according to (3.11).

• With ∆tk := tk − tk−1, calculate

r(tk) = e−âr ·∆tk · r(tk−1) +
θr(tk)

âr
· (1 − e−âr ·∆tk)

+

√
σ2

r

2âr

· (1 − e−2·âr ·∆tk) · NAP (k, z)

• Calculate R(tk, tk + τ) for τ = 0.5, 1, 1.5, ..., 10 and the 10yr par-
yield Rpar(tk, tk + 10) from R(tk, tk + τ) as given in, e.g., Hull
(2003), p. 96.

• From r(tk), calculate the discount rate R(tk, tk + ∆tk) and the
discount factor from tk+1 to 0:

DF (tk+1) = e−(R(tk ,tk+∆tk)+OAS)·∆tk · DF (tk)

• Calculate

spread(tk) = WAC − Rpar(tk, tk + 10)
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• Calculate PF (tk) given PF (tk−1) and p(tk−1) according to the for-
mulas as stated in Chapter 2.2.3 and calculate

burnout(tk) = ln
PF (tk)

A(360 − K + k)
.

• Calculate

w(tk) = e−âw ·∆tk · w(tk−1) +
θw

âw
· (1 − e−âw·∆tk)

+

√
σ2

w

2âw
· (1 − e−2·âw·∆tk) · Nbase(k, z)

• Calculate

p0(tk) = e−âp·∆tk · p0(tk−1) +
θp0

+ bpw · w(tk)

âw
· (1 − e−âp·∆tk)

+

√
σ2

p

2âp
· (1 − e−2·âp·∆tk) · Nbase(k, Z + z)

• Calculate p(tk) according to (5.2) and (5.9)
end (loop over k)

• With prepayment vector p = (p(1), ..., p(tK−1))
′ calculate MBS

cash flows (e.g., with mbscfamounts - function in Matlab), in-
cluding accrued interest, for a face amount of 1.

• Discount cash flows occurring at dates tsettle, t1, ..., tK with the re-
spective discount factors and calculate the sum of the discounted
cash flows to obtain the value Vz(0) of the MBS.
end (loop over z)

(x) Average over MC paths to obtain the value of the MBS

V (0) =
1

Z
·

Z∑

z=1

Vz(0)
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Appendix B

The moving block bootstrap

The bootstrap technique is a computer-intensive resampling method, which
is usually applied to statistical inference problems for level-two (or higher-
level) parameters, such as, e.g., the standard error or bias of an estimator
for a parameter of interest in a statistical model. In many cases, standard
analytic methods, for example based on likelihood theory, can be applied
to obtain estimates of the model parameters. Yet, these standard methods
often become infeasible for an assessment of the accuracy or the quality of
the inference based on the estimator. Bootstrap techniques were originally
introduced by Efron (1979) and have since then been applied to many statis-
tical problems, e.g. to the estimation of level-two parameters in time-series
models. In this thesis we have applied a moving block bootstrap to estimate
standard errors of maximum likelihood parameter estimators in state space
models. In this section we will give a brief overview of the moving block
bootstrap algorithm. For further details on the moving block bootstrap and
on bootstrap methods in general, the reader is referred to Lahiri (2003).

Suppose we have a sequence of random variables Y1, Y2, ... and that we
observe a realisation of the first T variables {Y1, ...., YT}. We assume that the
process (Yt)t=1,...,T is stationary and features weak dependence. Weak depen-
dence means that the process has limited memory. At an informal level, the
limited memory condition can be said to be satisfied if the dependence be-
tween Yt and Yt+h vanishes as h becomes large (for a more formal treatment
of memory properties and weak dependence of time series see, e.g., Beran
(1994), p.6ff.). The moving block bootstrap is a resampling technique which
resamples blocks of consecutive observations (Yi, Yi+1, ..., Yi+l−1), where l is
the block length. Let

Bi := (Yi, ..., Yi+l−1) (B.1)

denote the block of length l starting with the i-th observation for i = 1, ..., N
where N := T − l + 1. The moving block bootstrap sample of size m = k · l
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is then obtained by concatenating the blocks B∗
1, ...,B∗

k which are drawn with
replacement from the collection {B1, ...,BN}. Usually, the sample size m is
chosen to be of the same order as the original sample size T , i.e. m ≈ T
(see Lahiri (2003), p. 26). The resampled sequence of random variables is
denoted by {Y ∗

1 , ...., Y ∗
m}. Now, let

θ̂∗l,m := t(Y ∗
1 , ..., Y ∗

m) (B.2)

denote one bootstrap realisation of the estimator of the parameter of interest
θ, where t(·) is some function/statistic of the data used as an estimator for
θ. Repeating the resampling procedure B times, let

θ̂
∗,(j)
l,m := t(Y

∗,(j)
1 , ..., Y ∗,(j)

m ), (B.3)

j = 1, ..., B, denote the bootstrap replicates of θ̂∗l,m. Applying the Monte-

Carlo principle, an estimate θ̂ of the quantity of interest θ is finally obtained
by averaging over the bootstrap replicates:

θ̂T =
1

B

B∑

j=1

θ
∗,(j)
l,m . (B.4)

The moving block bootstrapping procedure can be summarised in the follow-
ing algorithm:

Algorithm 3. (Moving block bootstrap)

(i) Given a data sample YT := (Y1, ..., YT ) of size T , choose the block
length l and the number of blocks k to be concatenated in the resampling
procedure such that m = k · l ≈ T .

(ii) Randomly draw k blocks from the collection {B1, ...,BN} (with replace-
ment) with Bi as defined in (B.1) to obtain a bootstrap sample
{B∗

1, ...,B∗
k}. Calculate θ̂∗l,m as given in (B.2).

(iii) Repeat (ii) B times to obtain bootstrap replicates θ
∗,(j)
l,m , j = 1, ..., B, of

the quantity of interest.

(iv) Average over the bootstrap replicates to obtain the estimate of the quan-
tity of interest as given in (B.4).

For a theoretical justification of the moving block bootstrap, the reader is
referred to Lahiri (2003). Yet, it has to be mentioned that the moving block
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bootstrap principle is partly based on heuristic arguments only. In addi-
tion to this, the theoretical foundation holds only asymptotically (i.e. as
the number of observations T → ∞) and it is hard to assess the quality of
the approximation for finite samples. The choice of the block length, which
potentially optimises the bootstrap procedure, is also a non-trivial problem.
Lahiri (2003) discusses all these topics and further challenges concerning
bootstrap techniques in detail. Since we have only used the bootstrap prin-
ciple in order to obtain estimates for level-two parameters (which is not our
main concern in this thesis), we rely on the results generated by this method
while keeping in mind that they should only be considered as rough estimates.
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Appendix C

Discussion of approximation
errors

The error term Rtk

In (3.36) we have introduced the error terms Rtk , k = 1, ..., K resulting from
the approximation of an integral by sums. From (3.35) and (3.36) it follows
that for k = 1, ..., K:

|Rtk | =

∣∣∣∣∣

∫ tk

tk−1

γ(u)e−
R u
t

γ(s)dsdu − γ(tk) · e−
R tk
t γ(s)ds · ∆tk

∣∣∣∣∣

=
∣∣∣e−

R tk−1
t γ(s)ds − (1 + γ(tk) · ∆tk) · e−

R tk
t γ(s)ds

∣∣∣

= e−
R tk
t γ(s)ds ·

∣∣∣∣e
R tk
tk−1

γ(s)ds − (1 + γ(tk) · ∆tk)

∣∣∣∣

= e−
R tk
t γ(s)ds ·

∣∣∣∣∣∣

∫ tk

tk−1

γ(s)ds − γ(tk) · ∆tk + O



(∫ tk

tk−1

γ(s)ds

)2


∣∣∣∣∣∣

≤ e−
R tk
t γ(s)ds · R∆tk

k ,

where

R∆tk
k := max

ξ∈[tk−1,tk]
|γ(ξ) − γ(tk)| · ∆tk + O



(∫ tk

tk−1

γ(s)ds

)2

 .

Note that R∆tk
k → 0 and consequently |Rtk | → 0 as ∆tk → 0.
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The error terms R̃, R̄

In Theorem 6.2 we have first introduced the error terms

R̃(∆t, v2
k, w

2
k, zk · vk, zk · wk, vk · wk), k = 1, ..., K.

These terms contain residual terms of the order O(∆t) resulting from the
approximation of integrals by sums, similar to the error term Rtk as discussed
in the previous section, with

R̃(∆t, v2
k, w

2
k, zk · vk, zk · wk, vk · wk) → R̄(v2

k, w
2
k, zk · vk, zk · wk, vk · wk)

for ∆t → 0. R̄(v2
k, w

2
k, zk · vk, zk · wk, vk · wk) contains the residual terms

from the series expansion of the exponential function in (6.12). The size of
this error term primarily depends on vk and wk. Following the definition of
these quantities in Theorem 6.2, vk can be expected to be small for premiums
and wk can be expected to be small for discounts. The empirical results as
discussed in Chapter 6 indicate that our closed-form approximation model
performs slightly better for premiums than for discounts.
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