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Abstract

We study flavor-changing decays of hadrons and leptons and an extra-dimensional
approach to electroweak symmetry breaking. Specifically,

• We study the framework of Minimal Flavour Violation (MFV) as an expla-
nation of the flavour problem.

• We discuss the impact of a specific extra-dimensional model of the MFV
class on flavour changing neutral currents.

• We derive model-independent upper bounds on rare decays.

• We discuss the extension of the MFV framework from the quark to the lep-
ton sector and show how baryogenesis through leptogenesis can be achieved
and examine if possible correlations with charged lepton flavour violation
exist.

• We discuss the dynamical breaking of the electroweak symmetry in extra
dimensions by unifying gauge and higgs fields and we show that realistic
models are possible once the extra dimension is strongly curved.
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Chapter 1

Introduction

The physical laws provided by the Standard Model (SM) of particle physics are
currently in spectacular agreement with everything that is known about the in-
teractions of elementary particles. Our understanding of these laws, however, is
far from complete. One manifestation of this incompleteness is that the theory
has nineteen free parameters which we are not able to predict or explain but
must be provided by experiment1. For example, the energy scale v at which the
electroweak symmetry SU(2) × U(1) is broken to the electro-magnetic U(1) is
not predicted in the SM: it is set to v ∼ 174 GeV by the measured mass of the
Z gauge boson, which is about MZ = 91 GeV. Another example are the masses
of the quarks and leptons, or more precisely the ratio of the masses to the weak
scale v, the so called Yukawa couplings. Those are also free parameters. The
lack of understanding regarding the origin of these parameters is obvious: the
measured Yukawa couplings for the quarks and leptons show a striking hierarchy
in sizes, from 3× 10−6 for the electron to ∼ 1 for the top quark. There must be
a deeper explanation for this pattern, but this explanation lies beyond the SM.

The SM is incomplete in another important respect. It fails to provide a con-
sistent framework for a quantum theory of gravity. Phenomenologically this is
not a problem, since quantum gravitational effects are not expected to play an
important role until the Planck energy scale MP l = (hc/2πGN)1/2 = 2×1019 GeV,
which is more than sixteen orders of magnitude larger than the highest energies
tested at current and foreseeable particle accelerators. This fact, however, raises
the questions: why are there such large hierarchies in Nature? Why is one funda-
mental mass scale, the Planck scale, so large compared to the other scale known,
the weak scale?

These two puzzling hierarchies, the hierarchy in fermion masses and the hi-
erarchy between the Planck and the electroweak scale, can be reformulated as
questions about awkwardly small dimensionless parameters. Why is the electron
coupling λe ∼ 3× 10−6 and what is the origin of MZ/MP l ∼ 10−17 ?

1Including the neutrino masses, mixing angles and CP violation phases adds nine more
parameters.
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2 CHAPTER 1. INTRODUCTION

Small quark and lepton Yukawa couplings in the SM are at least technically
natural in the sense defined by `t Hooft. As λi is taken to zero, the fermion
becomes massless and left and right helicity states decouple. The theory then
has an enlarged chiral symmetry U(1)iL × U(1)iR, which ensures that at least
perturbative quantum corrections to the Yukawa coupling vanish to all orders.
As a consequence, if λi is small at the classical level, all quantum corrections
are proportional to its tree-level value and therefore even smaller in magnitude.
Small Yukawa couplings are in this sense at least technically natural that quantum
corrections do not significantly change the size of λi. This is, however, little help
in understanding the origin of the small coupling and the pattern of the Yukawa
couplings in the SM in general.

The situation is dramatically different in the case of the hierarchy between
Planck and weak-scale. In the SM, the breaking of the electroweak symmetry is
accomplished by a vacuum expectation value of the scalar Higgs doublet. The
negative mass squared of the Higgs m2

H is a dimensionful parameter put in by
hand which sets (together with the self-coupling) the value of the weak scale. It
is well-known that unlike the Yukawa couplings, this parameter is not protected
from quantum corrections. The theory becomes classically scale invariant if m2

H

is taken to zero and so on first glance one could think that a small Higgs mass
would also be technically natural. Quantum corrections, however, do not respect
the conformal symmetry as it is reflected in the logarithmic running of the gauge
coupling constants. Contrary to the common lore, however, within the SM, m2

H

is not quadratically sensitive to the cut-off, because this would mean a hard
breaking of scale invariance by the regulator beyond the one given by m2

H and the
anomalous running of couplings [1]. The Higgs mass squared becomes unnatural,
as soon as one introduces a new explicit high-energy scale Λ in the theory, say
the scale of a grand unified theory. Quantum corrections then generally pull the
Higgs mass to the value of the new scale and any new physics at a higher energy
scale renders the value of m2

H unnatural. The correct weak scale can then only
result if the tree-level value of m2

H is very finely tuned to precisely cancel all the
huge quantum corrections, up to an accuracy of (v/Λ)2, which has to be as good
as one in 1034 if Λ is of the order of the Planck scale.

Those two hierarchies set the stage for the problems discussed in this thesis.
We expect new degrees of freedom to naturally stabilize the weak scale against
quantum corrections. In order to alleviate the fine-tuning we expect the scale
of new physics Λ at or not far beyond the TeV range. Since the new degrees of
freedom generically couple to the SM quark flavours, they induce new sources of
flavour violation. Together with the specific hierarchy of Yukawa couplings in the
SM, which the new sources of flavour violation need not to respect, this leads to
a tension between the scale of new flavour violation and the scale at which the
quadratic Higgs mass is expected to be regularized.

The SM exhibits the accidental property at tree level that flavour change
happens only in interactions with fermions which differ in their electromagnetic
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charge by one unit. Flavour changing neutral current (FCNC) interactions appear
first at the one-loop level. They are additionally suppressed by the particular
pattern of the Yukawa couplings: mixings within the first two generations are
GIM suppressed and the third generation mixes only weakly with the first two.
Due to the double suppression in the SM, quantum fluctuations of new degrees
of freedom can in principle contribute in an equally important way. Another
particularly interesting property of the SM quark flavour sector is that all CP
violation is determined by one universal phase. This correlates many CP violating
observables in the SM and provides stringent constraints on scenarious beyond
the SM.

Our main interest will be the phenomenological investigation of potential
deviations of quark and lepton flavour observables from their SM expectations.
Currently, the Tevatron and soon the LHC will hunt for direct signatures for new
physics in that they strive to actually produce new particles not contained in the
SM. At the same time, CLEO, Belle and BaBar are probing and spectacularly
confirming the SM quark flavour sector. Even more excitingly, one hopes to
find indirect evidence for new physics in the deviation from SM expectations
due to quantum fluctuations of new degrees of freedom. In the future, LHCb,
SuperBelle, and rare Kaon experiments at J-PARC and CERN will take over and
will herald the era of precision flavour physics.

In the lepton sector, one of the most exciting measurements in the following
years will be the MEG experiment which is trying to achieve a sensitivity of
5 × 10−14 for the branching ratio of the leptonic FCNC µ+ → e+γ, improving
the current bound by two orders of magnitude. Charged lepton flavour violation
in the SM is strongly GIM suppressed by the small neutrino masses. In many
extension of the SM, however, it can be significantly enhanced, even close to
current bounds. We expect that both direct and indirect searches will further
complement and assist each other. We will most probably not be able to exactly
pin down what waits for us beyond the SM on the results of a proton collider
alone.

In the first part of the thesis we will discuss a possible solution to the afore-
mentioned tension between the scale of the new physics solving the hierarchy
problem and the scale that suppresses new sources of flavour violation. We will
assume the most pessimistic scenario in which the only sources of flavour viola-
tion are the SM Yukawa couplings. This is the framework of Minimal Flavour
Violation (MFV). In Section 2, we first introduce the general formalism and then
in Section 2.3 review the analysis of a specific extra-dimensional model. Finally,
in Section 2.4, we discuss a model-independent analysis of minimal flavour viola-
tion. Employing the mild assumption that the dominant contribution originates
from penguin diagrams we find model independent upper bounds on yet to be
measured rare decays.

In Section 3, we show how the MFV framework can be extended to the lepton
sector. After motivating this generalization we show how baryogenesis through
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leptogenesis can be achieved and including flavour effects in the calculation we
show how this compares to the results of a previous analysis. Finally we discuss
correlations with the lepton flavour violating process µ→ eγ.

The third part of the thesis is mainly concerned with a possible solution of the
gauge-hierarchy problem by unifying gauge and Higgs fields in five dimensions.
In Section 4, we first motivate the calculation of the effective potential of the
Wilson line phase in warped extra dimensions by showing the problems of gauge-
Higgs-unification in flat extra-dimensions. We then discuss our calculation of the
effective potential of the Wilson line phase and the Hosotani effect in warped
extra dimensions. Finally we show how warped gauge-Higgs unification can lead
to realistic models of electroweak symmetry breaking. We conclude and give an
outlook in chapter 5.



Chapter 2

Minimal Flavour Violation in the
quark sector

2.1 Motivation

In recent years great progress has been made in the study of flavour changing
neutral (FCNC) decays, leading to an impressively precise extraction of the CKM
parameters and more importantly to tight constraints on new sources of flavour
violation beyond the SM. The biggest unknown of the SM, the nature of elec-
troweak symmetry breaking (EWSB), will most likely be explored in the coming
years at the LHC. The theoretical mystery of EWSB, namely the large hierarchy
between the Planck scale and the EWSB scale, however, seems to imply new
degrees of freedom beyond the ones in the SM. The proposed solutions include
among others supersymmetry [2], technicolor [3, 4], composite Higgs [5], top-
color [6], little Higgs models [7] in 4d and also Arkani-Hamed-Dimopoulos-Dvali
(ADD) [8] and Randall-Sundrum I (RS1) [9] models with extra dimensions.
All of these models have new physics (NP) degrees of freedom around the TeV
scale. The tight experimental bounds and the non-observation of any deviation
from the SM in the flavour sector however generically need this scale to be much
higher. An important constraint for example is ǫK . NP generically induces a
four-fermion operator (s̄d)2/Λ2

NP , where the effective scale ΛNP has to roughly
satisfy ΛNP > 4πS0MW/(g2λ5) ≈ 103 TeV in oder to be compatible with experi-
ment. The actual scale of the NP scenario can be lower, if e.g. the contributions
are loop suppressed or protected by some GIM like mechanism. In any case such
heavy particles can hardly be involved in regularization the quadratic divergency
of the Higgs mass. This tension between scales is the so called flavour puzzle.
If in a model the scale responsible for the mediation of flavour violation is much
higher than the EWSB scale, then the new sources of flavour violation become ir-
relevant at energies around the EW scale and the only relevant sources of flavour
and CP violation come from the Yukawa matrices of the SM. Most of the present

5



6 CHAPTER 2. MFV IN THE QUARK SECTOR

constraints can then be elegantly avoided and the flavour problem is evaded. This
is the framework of minimal flavour violation.

2.2 Basic Framework

2.2.1 Definition

A first definition has been given in [10], where the non-standard contributions
have been reabsorbed into a redefinition of the SM electroweak parameters. In the
MFV models there are no new complex phases and flavour changing transitions
are governed by the CKM matrix. Moreover, the only relevant operators are those
already present in the SM1. Consequently, new physics enters only through the
Wilson coefficients of the SM operators that can receive additional contributions
due to the exchange of new virtual particles beyond the SM ones.
Any weak decay amplitude can be then cast in the simple form

A(Decay) =
∑

i

Biη
i
QCDV i

CKMFi(v), Fi(v) = F i
SM + F i

New (real), (2.1)

where Fi(v) are the master functions of MFV models [11]

S(v), X(v), Y (v), Z(v), E(v), D′(v), E ′(v) (2.2)

with v denoting collectively the parameters of a given MFV model. Examples of
models in this class are the Two Higgs Doublet Model II and the Minimal Su-
persymmetric Standard Model (MSSM) without new sources of flavour violation
and for small or moderate tanβ. Also models with one universal extra dimension
[12, 13] and the simplest little Higgs models are of MFV type [14].
We have the following correspondence between the most interesting FCNC pro-
cesses and the master functions in the MFV models [11, 15]:

K0 − K̄0-mixing (εK) S(v)
B0
d,s − B̄0

d,s-mixing (∆Ms,d) S(v)
K → πνν̄, B → Xd,sνν̄ X(v)
KL → µµ̄, Bd,s → ll̄ Y (v)
KL → π0l+l− Y (v), Z(v), E(v)
ε′, ∆S = 1 X(v), Y (v), Z(v), E(v)
Nonleptonic ∆B = 1 X(v), Y (v), Z(v), E(v), E ′(v)
B → Xsγ D′(v), E ′(v)
B → Xs gluon E ′(v)
B → Xsl

+l− Y (v), Z(v), E(v), D′(v), E ′(v)

1This holds for low and moderate tanβ in Two Higgs Doublet Model II models. For large
tanβ the normalization of the Yukawa couplings changes and operators previously suppressed
by light quark masses may become relevant.
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This table means that the observables like branching ratios, mass differences
∆Md,s in B0

d,s − B̄0
d,s-mixing and the CP violation parameters ε and ε′, can all

be to a very good approximation expressed in terms of the corresponding master
functions and the relevant CKM factors.

ρ
-1 -0.5 0 0.5 1

η

-1

-0.5

0

0.5

1
γ

β

α

sm∆
dm∆

cbV
ubV

ρ
-1 -0.5 0 0.5 1

η

-1

-0.5

0

0.5

1

Figure 2.1: The universal unitarity triangle (UUT) as of 2006 determined by the
UTfit group [16]. The quality of the fit is almost as good as within the SM. The
analysis shown in the plot results in ρ̄ = 0.154± 0.032 and η̄ = 0.347± 0.018

The remaining entries in the formulae for these observables are low-energy
quantities such as the parameters Bi, that can be calculated within the SM and
the QCD factors ηiQCD describing the renormalization group evolution of operators
for scales µ ≤MW . These factors being universal can be calculated, similarly to
Bi, in the SM. The remaining, model-specific QCD corrections can be absorbed
in the functions Fi.
As pointed out in [10], there exists a universal unitarity triangle (UUT) valid in
all these models, that can be constructed independently of the parameters specific
to a given model. A recent determination of the UUT is shown in Fig. 2.1
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2.2.2 Phenomenologically relevant Master Functions

This class of models can be formulated to a very good approximation in terms of
eleven parameters: four parameters of the CKM matrix and seven values of the
universal master functions Fi(v) that parametrize the short distance contributions
to rare decays with v denoting symbolically the parameters of a given MFV model.
However, as argued in [11], the new physics contributions to the functions

S(v), C(v), D′(v), (2.3)

representing respectively ∆F = 2 box diagrams, Z0-penguin diagrams and the
magnetic photon penguin diagrams, are the most relevant ones for phenomenol-
ogy, with the remaining functions producing only minor deviations from the SM
in low-energy processes. Several explicit calculations within models with MFV
confirm this conjecture. We have checked the impact of these additional functions
on our analysis, and we will comment on it in Section 3.4.

Now, the existence of a UUT implies that the four CKM parameters can
be determined independently of the values of the functions in (2.3). Moreover,
only C(v) and D′(v) enter the branching ratios for radiative and rare decays so
that constraining their values by (at least) two specific branching ratios allows
to obtain straightforwardly the ranges for all branching ratios within the class of
MFV models. Analyses of that type can be found in [11, 17, 18].2

2.2.3 Effective Field Theory Framework

For all practical purposes an equivalent result can be derived using an effective
field theory framework [17]. One starts from the observation that without the
Yukawa couplings the SM exhibits a large chiral flavour symmetry G = U(3)5.
Formally, we can recover invariance under G if we promote the Yukawa couplings
to fields transforming under the appropriate subgroups of G. The SM Yukawa
couplings are the vacuum expectation values of these fields 3 which break the
flavour symmetry SU(3)3

q ⊗ SU(3)2
ℓ ⊗ U(1)PQ ⊗ U(1)ER

leading to the standard
Lagrangian

L = Q̄LYDDRH + Q̄LYUURHc + L̄LYEERH + h.c. . (2.4)

Since the SM Yukawa couplings except the top are small, we find that the only
relevant non-diagonal structure is obtained by contracting two YU . We define

2An alternative approach is to extract from rare decays the relevant Wilson coefficients
[19, 20, 21]. However, since in MFV models these coefficients have nontrivial correlations
among themselves, we find it more transparent to express the physical quantities in terms of
the functions in eq. (2.3).

3Since G is spontaneously broken, one generally expects so called familon degrees of free-
dom [22]. In the case of G being a global symmetry the spontaneous breaking would lead to
axion-like particles with a generic coupling of the form 1/F∂µf

aψ̄γµT aψ, with F as the family
breaking scale, fa as the familon and T a as the broken generators of G.
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(λFC)ij ≈ λ2
tV

∗
3iV3j for i 6= j. Higher orders of λFC are still proportional to

λ2
tV

∗
3iV3j due to the unitarity of the CKM matrix. We can therefore parameterize

all FCNC processes with the effective flavour changing coupling λFC.
The construction of the most general, renormalization group invariant, operator
basis up to dimension 6 compatible with G is performed in [17]. We list the
operators in Appendix A. After integrating out off-shell gauge fields and after
breaking the electroweak symmetry the operators with down type quarks relevant
for our phenomenological applications4 are given as
1) Quark-lepton currents:

Qνν̄ = d̄iγµ(1− γ5)dj ν̄γµ(1− γ5)ν

Q10A = d̄iγµ(1− γ5)dj ℓ̄γµγ5ℓ

Q9V = d̄iγµ(1− γ5)dj ℓ̄γµℓ (2.5)

2) Dipole operators:

Q7γ =
1

g2
mdi

d̄i(1− γ5)σµνdj(eFµν)

Q8G =
1

g2
mdi

d̄i(1− γ5)σµνT
adj(gsG

a
µν) (2.6)

We can recover the master formula (2.1) with the identifications given in coeffi-
cients ǫi of the general operator basis as follows (the ǫi are defined in A.1)

δCνν̄ = ǫZ + ǫℓ1 − ǫℓ2 = Xnew

δC10A = ǫZ − ǫℓ1 − ǫℓ2 + ǫℓ3 = Ynew

δC9V = ǫℓ1 + ǫℓ2 + ǫℓ3 −
[
(1− 4 sin2 θW)ǫZ + 2eǫF2

]
= 4 sin2 θWZnew − Ynew

δC7γ =
2g2

e
ǫF1 = −1

2
D′
new

δC8G =
2g2

gs
ǫG1 = −1

2
E ′
new (2.7)

where δCi = Ci(M
2
W )−CSM

i (M2
W ) and ǫZ = (ǫH1+ǫH2)/2. Ignoring the admixture

of the gluon penguin encoded in the E function in the master formula above5,
we see that the number of independent, relevant parameters is the same in the
effective field theory framework as in the original approach given in (2.1). In
MFV we therefore find five independent contributions which govern all di →
djγ, l+l−, ν̄ν processes. We will see in Section 2.4, how one can further reduce
the amount of freedom in order to correlate rare K and B decays with the radiative

4We ignore the electroweak and QCD penguin operators.
5The admixture of the gluon penguin contribution E at NLO into C̃NDR

9 (µ) relevant for
B → Xsl

+l− and KL → π0l
+l− is of the order of O(10−2).
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decays B → Xsγ and B → Xsl
+l−.

Together with the universal contribution to the ∆F = 2 amplitude

H∆F=2
eff =

G2
FM2

W

16π2
(V ∗

3iV3j)
2S(v)

[
d̄iγµ(1− γ5)dj

]2
, (2.8)

we can perform a complete analysis of the MFV flavour interactions.

2.3 A specific model: Universal Extra Dimen-

sions

2.3.1 Introduction

As an example for a specific MFV model we discuss an extension of the SM to
extra spatial dimensions. Models in more than three spatial dimensions (D > 4)
have been with us for more than 80 years beginning with the work of Kaluza and
Klein, who used this idea in an attempt to unify gravity and electromagnetism
in a five dimensional model with the extra compact dimension characterized by
a radius R [23].

While Kaluza, Klein and many authors afterwards considered very small extra
dimensions with the compactification scale 1/R = O(MPlanck), in recent years
there has been an increasing interest in models with large extra dimensions, in
which 1/R = O(1 TeV). A special role is played by models with universal
extra dimensions (UED) in which all the SM field are democratically allowed to
propagate in flat, compact extra dimensions of size 10−18 m or smaller. We will
concentrate on these models assuming one extra dimension in what follows.

Above the compactification scale 1/R a given UED model becomes a higher
dimensional field theory whose equivalent description in four dimensions consists
of the SM fields, the towers of their Kaluza-Klein (KK) partners and additional
towers of KK modes that do not correspond to any field in the SM. Every SM
particle has heavy KK partners similar to the case of the MSSM, providing a
wealth of possible implications for particle physics and cosmology.

The simplest model of this universal type is the Appelquist, Cheng and Do-
brescu (ACD) model [24] with one universal extra dimension. In what follows
we will briefly describe this model and subsequently report on the results of two
papers [12, 13] in which we investigated the impact of the KK modes on FCNC
processes in this model.

2.3.2 The ACD Model

The full Lagrangian of this model includes both the bulk and the boundary La-
grangian. The bulk Lagrangian is determined by the SM parameters after an
appropriate rescaling. The coefficients of the boundary terms, however, although
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volume suppressed, are free parameters and will get renormalized by bulk inter-
actions. Flavor non-universal boundary terms would lead to large FCNCs. In
analogy to a common practice in the MSSM where the soft supersymmetry break-
ing couplings are chosen to be flavour universal we assume negligible boundary
terms at the cut-off scale, which defines what is now called minimal UED or
mUED. With this choice contributions from boundary terms are of higher or-
der and we only have to consider the bulk Lagrangian for the calculation of the
impact of the ACD model.

Since all our calculations are cut-off independent (see below) the only addi-
tional free parameter relative to the SM is the compactification scale 1/R.

Thus all the tree-level masses of the KK particles and their interactions among
themselves and with the SM particles are described in terms of 1/R and the
parameters of the SM. This economy in new parameters should be contrasted
with supersymmetric theories and models with an extended Higgs sector. All
Feynman rules necessary for the evaluation of FCNC processes can be found in
[12, 13].

A very important property of the ACD model is the conservation of KK parity
that implies the absence of tree level KK contributions to low energy processes
taking place at scales µ ≪ 1/R. In this context the flavour changing neutral
current (FCNC) processes like particle-antiparticle mixing, rare K and B decays
and radiative decays are of particular interest. Since these processes first appear
at one-loop in the SM and are strongly suppressed, the one-loop contributions
from the KK modes to them could in principle be important.

The effects of the KK modes on various processes of interest have been investi-
gated in a number of papers. In [24, 25] their impact on the precision electroweak
observables assuming a light Higgs (mH ≤ 250 GeV) and a heavy Higgs led to
the lower bound 1/R ≥ 300 GeV and 1/R ≥ 250 GeV, respectively. Subsequent
analyses of the anomalous magnetic moment [26] and the Z → bb̄ vertex [27]
have shown the consistency of the ACD model with the data for 1/R ≥ 300 GeV.
The latter calculation has been confirmed in [12]. The scale of 1/R as low as
300 GeV would also lead to an exciting phenomenology in the next generation of
colliders and could be of interest in connection with dark matter searches [28].
Particle physics alone does not lead to an upper bound on 1/R, but the thermal
relic density of the lightest Kaluza-Klein particle (LKP) increases with 1/R, and
LKPs would overclose the universe for 1/R > 1.5 TeV [28], providing motivation
for considering weak-scale KK particles.

The question then arises whether such low compactification scales are still
consistent with the data on FCNC processes. This question has been addressed
in detail in [12, 13]. Before presenting the results of these papers let us recall the
particle content of the ACD model that has been described in detail in [12] .

In the effective four dimensional theory, in addition to the ordinary particles
of the SM, denoted as zero (n = 0) modes, there are infinite towers of the KK
modes (n ≥ 1). There is one such tower for each SM boson and two for each SM
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fermion, while there also exist physical neutral (a0
(n)) and charged (a±

(n)) scalars

with (n ≥ 1) that do not have any zero mode partners. The masses of the KK
particles are universally given by

(m2
(n))KK = m2

0 +
n2

R2
. (2.9)

Here m0 is the mass of the zero mode, MW , MZ , mt respectively. For a0
(n) and

a±
(n) this is MZ and MW , respectively. In phenomenological applications it is more

useful to work with the variables xt and xn defined through

xt =
m2

t

M2
W

, xn =
m2
n

M2
W

, mn =
n

R
(2.10)

than with the masses in (2.9).

2.3.3 The ACD Model and FCNC Processes

�ui;Qi;Ui W�; G�; a� uj;Qj;UjW�; G�; a�
q
b

b
q
�ui;Qi;UiW�; G�; a� W�; G�; a�uj;Qj;Uj
q
b

b
q

Figure 2.2: Box diagrams contributing to Sn(xt, xn). We suppress the KK mode
number.

As our analysis of [12, 13] shows, the ACD model with one extra dimension
has a number of interesting properties from the point of view of FCNC processes
discussed here. These are:

• GIM mechanism [29] that improves significantly the convergence of the sum
over the KK modes corresponding to the top quark, removing simultane-
ously to an excellent accuracy the contributions of the KK modes corre-
sponding to lighter quarks and leptons. This feature removes the sensitiv-
ity of the calculated branching ratios to the scale Ms ≫ 1/R at which the
higher dimensional theory becomes non-perturbative and at which the tow-
ers of the KK particles must be cut off in an appropriate way. This should
be contrasted with models with fermions localized on the brane, in which
the KK parity is not conserved and the sum over the KK modes diverges.
In these models the results are sensitive to Ms and for instance in ∆Ms,d,
the KK effects are significantly larger [30] than found by us. We expect
similar behaviour in other processes considered below.
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• The low energy effective Hamiltonians are governed by local operators al-
ready present in the SM. As flavour violation and CP violation in this
model is entirely governed by the CKM matrix, the ACD model belongs
to the class ofmodels with minimal flavour violation (MFV) as defined in
the previous section. This has automatically the following important con-
sequence for the FCNC processes considered in [12, 13]: the impact of the
KK modes on the processes in question amounts only to the modification
of the Inami-Lim one-loop functions [31].

• Thus in the case of ∆Md,s and of the parameter εK , that are relevant for
the standard analysis of the Unitarity Triangle, these modifications have
to be made in the function S [32]. In the case of the rare K and B decays
that are dominated by Z0 penguins the functions X and Y [33] receive KK
contributions. Finally, in the case of the decays B → Xsγ, B → Xs gluon,
B → Xsµµ̄ and KL → π0e+e− and the CP-violating ratio ε′/ε the KK
contributions to new short distance functions have to be computed. These
are the functions D (the γ penguins), E (gluon penguins), D′ (γ-magnetic
penguins) and E ′ (chromomagnetic penguins).

Thus each function mentioned above, that in the SM depends only on mt,
becomes now also a function of 1/R:

F (xt, 1/R) = F0(xt) +
∞∑

n=1

Fn(xt, xn), F = B, C, D, E, D′, E ′, (2.11)

with xn defined in (2.10). The functions F0(xt) result from the penguin and
box diagrams in the SM and the sum represents the KK contributions to these
diagrams.

In the phenomenological applications it is convenient to work with the gauge
invariant functions [33]

X = C + Bνν̄ , Y = C + Bµµ̄, Z = C +
1

4
D. (2.12)

The functions F (xt, 1/R) have been calculated in our papers [12, 13] with the
results given in table 2.1. Our results for the function S have been confirmed in
[34]. For 1/R = 300 GeV, the functions S, X, Y , Z are enhanced by 8%, 10%,
15% and 23% relative to the SM values, respectively. The impact of the KK
modes on the function D is negligible. The function E is moderately enhanced
but this enhancement plays only a marginal role in the phenomenological appli-
cations. The most interesting are very strong suppressions of D′ and E ′, that for
1/R = 300 GeV amount to 36% and 66% relative to the SM values, respectively.
However, the effect of the latter suppressions is softened in the relevant branching
ratios through sizable additive QCD corrections.
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Figure 2.3: Penguin diagrams contributing to Fn(xt, xn).

1/R S X Y Z E D′ E ′ C D
200 2.813 1.826 1.281 0.990 0.342 0.113 −0.053 1.099 −0.479
250 2.664 1.731 1.185 0.893 0.327 0.191 0.019 1.003 −0.470
300 2.582 1.674 1.128 0.835 0.315 0.242 0.065 0.946 −0.468
400 2.500 1.613 1.067 0.771 0.298 0.297 0.115 0.885 −0.469
SM 2.398 1.526 0.980 0.679 0.268 0.380 0.191 0.798 −0.476

Table 2.1: Values of S, X, Y , Z, E, D′, E′, C and D as functions of 1/R in GeV.

2.3.4 The Impact of the KK Modes on Specific Decays

2.3.4.1 The Impact on the Unitarity Triangle

Here the function S plays the crucial role. Consequently the impact of the KK
modes on the UT is rather small. For 1/R = 300 GeV, |Vtd|, η̄ and γ are sup-
pressed by 4%, 5% and 5◦, respectively. It will be difficult to see these effects
in the (¯̺, η̄) plane. On the other hand a 4% suppression of |Vtd| means a 8%
suppression of the relevant branching ratio for a rare decay sensitive to |Vtd| and
this effect has to be taken into account. Similar comments apply to η̄ and γ. Let
us also mention that for 1/R = 300 GeV, ∆Ms is enhanced by 8% that in view
of the sizable uncertainty in B̂Bs

√
FBs

will also be difficult to see.
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2.3.4.2 The Impact on Rare K and B decays

Here the dominant KK effects enter through the function C or equivalently X
and Y , depending on the decay considered. In table 2.2 we show seven branching
ratios as functions of 1/R for central values of all remaining input parameters.
The hierarchy of the enhancements of branching ratios can easily be explained by
inspecting the enhancements of the functions X and Y that is partially compen-
sated by the suppression of |Vtd| in decays sensitive to this CKM matrix element
but fully effective in decays governed by |Vts|.

1/R 200 GeV 250 GeV 300 GeV 400 GeV SM
Br(K+ → π+νν̄)× 1011 8.70 8.36 8.13 7.88 7.49
Br(KL → π0νν̄)× 1011 3.26 3.17 3.09 2.98 2.80

Br(KL → µ+µ−)SD × 109 1.10 1.00 0.95 0.88 0.79
Br(B → Xsνν̄)× 105 5.09 4.56 4.26 3.95 3.53
Br(B → Xdνν̄)× 106 1.80 1.70 1.64 1.58 1.47
Br(Bs → µ+µ−)× 109 6.18 5.28 4.78 4.27 3.59
Br(Bd → µ+µ−)× 1010 1.56 1.41 1.32 1.22 1.07

Table 2.2: Branching ratios for rare decays in the ACD model and the SM as discussed
in the text.

For 1/R = 300 GeV the following enhancements relative to the SM predictions
are seen: K+ → π+νν̄ (9%), KL → π0νν̄ (10%), B → Xdνν̄ (12%), B →
Xsνν̄ (21%), KL → µµ̄ (20%), Bd → µµ̄ (23%) and Bs → µµ̄ (33%). These
results correspond to central values of the input parameters. The uncertainties
in these parameters partly cover the differences between the ACD model and the
SM model and it is essential to reduce these uncertainties considerably if one
wants to see the effects of the KK modes in the branching ratios in question.

2.3.4.3 The Impact on B → Xsγ and B → Xs gluon

The inclusive B → Xsγ decay has been the subject of very intensive theoretical
and experimental studies during the last 15 years. On the experimental side the
world average resulting from the data by CLEO, ALEPH, BaBar and Belle reads
[35]

Br(B̄ → Xsγ) = (3.55± 0.24+0.09
−0.10 ± 0.03) · 10−4 (2.13)

where the first error is statistical, the second one systematical, the third one is
due to the extrapolation from high E0 to the reference value, and the last error
accounts for the subtraction of B̄ → Xdγ background. It is about 1.4 standard
deviations above the recently reported NNLO SM result [36]

Br(B̄ → Xsγ) = (2.98± 0.26) · 10−4 (2.14)
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Figure 2.4: The branching ratio for B → Xsγ and Eγ > 1.6 GeV as a function of
1/R. See text for the meaning of various curves.

The theoretical status can be found in [37].

Due to strong suppressions of the functions D′ and E ′ by the KK modes,
the B → Xsγ and B → Xs gluon decays are considerably suppressed compared
to SM estimates. For 1/R = 300 GeV, Br(B → Xsγ) is suppressed by 20%,
while Br(B → Xs gluon) even by 40%. The phenomenological relevance of the
latter suppression is unclear at present as Br(B → Xs gluon) suffers from large
theoretical uncertainties and its extraction from experiment is very difficult if not
impossible.

In fig. 2.4 we compare Br(B → Xsγ) in the ACD model with the experimental
data. The shaded region represents the data in (2.13) and the two black lines
are the theoretical ranges in the ACD model using the NNLO result for the SM
contribution.

We observe that in view of the sizable deviation of experimental average and
the recently improved theoretical prediction in the SM, the strong suppression
of Br(B → Xsγ) by the KK modes does provide a powerful lower bound on
1/R and values 1/R ≥ 500 GeV have to be chosen to not deviate more than two
standard deviations from the experimental result.

Br(B → Xsγ) provides a very powerful bound on 1/R that is substantially
stronger than the bounds obtained from the electroweak precision data.

The suppression of Br(B → Xsγ) in the ACD model has already been found
in [38]. Our result presented above is consistent with the one obtained by these
authors but differs in details as only the dominant diagrams have been taken into
account in the latter paper and the analysis was performed in the LO approxi-
mation. Their bound is considerably weaker since our strong constraint relies on
the fact that we used the NNLO SM prediction.
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2.3.4.4 The Impact on B → Xsµ
+µ− and AFB(ŝ)

The inclusive B → Xsµ
+µ− decay has been the subject of very intensive theoret-

ical and experimental studies during the last 15 years. On the experimental side
only the BELLE collaboration reported the observation of this decay6 with [39]

Br(B → Xsµ
+µ−) = (7.9± 2.1+2.0

−1.5) · 10−6 . (2.15)

For the decay to be dominated by perturbative contributions one has to remove
c̄c resonances by appropriate kinematic cuts in the dilepton mass spectrum. The
SM expectation [19] for the low dilepton mass window is given by

B̃r(B → Xsµ
+µ−)SM = (2.75± 0.45) · 10−6 (2.16)

where the dilepton mass spectrum has been integrated between the limits:

(
2mµ

mb

)2

≤ ŝ ≤
(

MJ/ψ − 0.35 GeV

mb

)2

(2.17)

where ŝ = (p+ + p−)2/m2
b .

This cannot be directly compared to the experimental result in (2.15) that
is supposed to include the contributions from the full dilepton mass spectrum.
Fortunately future experimental analyses should give the results corresponding
to the low dilepton mass window so that a direct comparison between the exper-
iment and the theory will be possible. The most recent reviews summarizing the
theoretical status can be found in [40, 19].
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Figure 2.5: B̃r(B → Xsµ
+µ−) in the SM (dashed line) and in the ACD model. The

integration limits are discussed in the text.

6The situation on the experimental side has changed since this analysis had been performed.
Belle and BaBar have since measured these decays in various perturbative windows of the
dilepton mass spectrum. The result of these measurements does, however, not impact our
analysis. The recent NNLO SM prediction of the decay Br(B → Xsγ) on the other hand, has
been included and its analysis has been updated for this dissertation.
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In fig. 2.5 we show the branching ratio B̃r(B → Xsµ
+µ−) as a function of

1/R that corresponds to the SM result of (2.16). The observed enhancement is
mainly due to the function Y that enters the Wilson coefficient of the operator
(s̄b)V−A(µ̄µ)A. The Wilson coefficient of (s̄b)V−A(µ̄µ)V , traditionally denoted by
C9, is essentially unaffected by the KK contributions.

Of particular interest is the Forward-Backward asymmetry AFB(ŝ) in B →
Xsµ

+µ− that similarly to the case of exclusive decays [41] vanishes at a particular
value ŝ = ŝ0. The fact that AFB(ŝ) and the value of ŝ0 being sensitive to short
distance physics are in addition subject to only very small non-perturbative un-
certainties makes them particularly useful quantities to test physics beyond the
SM.

The calculations for AFB(ŝ) and of ŝ0 have been done including NNLO cor-
rections [42, 43] that turn out to be significant. In particular they shift the NLO
value of ŝ0 from 0.142 to 0.162 at NNLO. In fig. 2.6 (a) we show the normalized
Forward-Backward asymmetry that we obtained by means of the formulae and
the computer program of [19, 42] modified by the KK contributions calculated
in [13]. The dependence of ŝ0 on 1/R is shown in fig. 2.6 (b).

We observe that the value of ŝ0 is considerably reduced relative to the SM
result obtained by including NNLO corrections [19, 42, 43]. This decrease is
related to the decrease of Br(B → Xsγ) as discussed below. For 1/R = 300 GeV
we find the value for ŝ0 that is very close to the NLO prediction of the SM. This
result demonstrates very clearly the importance of the calculations of the higher
order QCD corrections, in particular in quantities like ŝ0 that are theoretically
clean. We expect that the results in figs. 2.6 (a) and (b) will play an important
role in the tests of the ACD model in the future.

In MFV models there exist a number of correlations between different mea-
surable quantities that do not depend on specific parameters of a given model
[10, 44]. In [13] a correlation between ŝ0 and Br(B → Xsγ) has been pointed out.
It is present in the ACD model and in a large class of supersymmetric models
discussed for instance in [19]. We show this correlation in fig. 2.7. We refer to
[13] for further details.

2.3.4.5 The Impact on KL → π0e+e− and ε′/ε

The impact of the KK modes on the rare decay KL → π0e+e− is at most 10%
but it is substantially larger on ε′/ε. The most recent discussion on ε′/ε can be
found in [45]. As the Z0 penguins are enhanced in the ACD model, the ratio ε′/ε
is suppressed relative to the SM expectations with the size of the suppression
depending sensitively on the hadronic matrix elements. In view of this no useful
bound on 1/R can be obtained from ε′/ε at present.
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Figure 2.6: (a) Normalized Forward-Backward asymmetry in the SM (dashed line)
and ACD for R−1 = 250 GeV. (b) Zero of the forward backward asymmetry AFB in
the SM (dashed line) and the ACD model.

2.3.5 Concluding Remarks

Our analysis of the ACD model shows that all the present data on FCNC pro-
cesses are consistent with 1/R as low as 500 GeV. Possibly, the most interesting
results of our analysis is the suppression of Br(B → Xsγ) which leads to the
strongest lower bound currently available on the compactification scale 1/R. Also
interesting is the enhancement of Br(K+ → π+νν̄), the sizable downward shift
of the zero (ŝ0) in the AFB asymmetry and .

The nice feature of this extension of the SM is the presence of only one addi-
tional parameter, the compactification scale. This feature allows a unique deter-
mination of various enhancements and suppressions relative to the SM expecta-
tions. We find

• Enhancements: KL → π0e+e−, ∆Ms, K+ → π+νν̄, KL → π0νν̄, B →
Xdνν̄, B → Xsνν̄, KL → µ+µ−, Bd → µ+µ−, B → Xsµ

+µ− and Bs →
µ+µ−.
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Br(B → Xsγ) and ŝ0. The straight line is a

least square fit to a linear function. The dots are the results in the ACD model for
1/R = 200, 250, 300, 350, 400, 600 and 1000 GeV and the star denotes the SM value.

• Suppressions: B → Xsγ, B → Xs gluon, the value of ŝ0 in the forward-
backward asymmetry and ε′/ε.

We would like to emphasize that violation of this pattern by the future data
will exclude the ACD model. For instance the measurement of ŝ0 that is higher
than the SM estimate would automatically exclude this model as there is no com-
pactification scale for which this could be satisfied. Whether these enhancements
and suppressions are required by the data or whether they exclude the ACD model
with a low compactification scale, will depend on the precision of the forthcoming
experiments and the efforts to decrease the theoretical uncertainties.
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2.4 Model Independent Upper bounds on rare

B and K decays

Now we discuss model-independent upper bounds and correlations resulting from
the assumption of MFV7. As all information on NP is encoded solely in the
functions listed in (2.2), we will now devise a strategy to identify and to determine
the dominant contributions.

2.4.1 Strategy

In order to find the functions Fi(v) in (2.2), one first looks at various functions
resulting from penguin diagrams: C (Z0 penguin), D (γ penguin), E (gluon pen-
guin), D′ (γ-magnetic penguin) and E ′ (chromomagnetic penguin). Subsequently
box diagrams have to be considered. Here we have the box function S (∆F = 2
transitions), as well as the ∆F = 1 box functions Bνν̄ and Bll̄ relevant for decays
with νν̄ and ll̄ in the final state, respectively.

While the ∆F = 2 box function S and the penguin functions E, D′ and E ′

are gauge independent, this is not the case for C, D and the ∆F = 1 box diagram
functions Bνν̄ and Bll̄. In phenomenological applications it is more convenient to
work with gauge independent functions [33]

X(v) = C(v) + Bνν̄(v), Y (v) = C(v) + Bll̄(v), Z(v) = C(v) +
1

4
D(v).

(2.18)
The formulae for the processes in the SM, given in terms of the master func-

tions and CKM factors can be found in many papers. The full list using the same
notation is given in [47]. An update of these formulae with additional references
is given in two papers on universal extra dimensions [12, 13], where one has to
replace Fi(v, 1/R) by Fi(v) to obtain the formulae in a general MFV model. In
what follows we will use the formulae of [12, 13] except that:

• We will set the functions

Bνν̄(v), Bll̄(v), E(v) (2.19)

to their SM values and we will trade the functions D′(v) and E ′(v) for the
low-energy coefficient Ceff

7 (µb) which enters both b → sγ and b → sl+l−.
In this manner the only free variables are the functions listed in (2.3) plus
the D(v) function. As remarked below, this latter function has only a
minor impact on our analysis. We have also explored the possible impact
of NP contributions to Bνν̄(v) and Bll̄(v), as will be discussed at the end
of Section 2.4.2.

7This section based on our paper [46].
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• In obtaining Br(K+ → π+νν̄) we have included the recently calculated long
distance contributions [48] that enhance the branching ratio by roughly 6%.
This amounts effectively to a charm parameter of Pc = 0.43± 0.07. 8

• We will use the formula for (KL → π0l+l−)CPV from [50, 51].

• We used the complete NLO formulae for B → Xsγ from [52]. This has been
the best available calculation at the time. Now a almost complete NNLO
treatment is available [37, 36].

• We used the complete NNLO formulae for B → Xsl
+l− from [53, 20].

Branching Ratios Formula Reference Parameters
Br(K+ → π+νν̄) (4.24) [12] Br(K+ → π0e+ν), mc

Br(KL → π0νν̄) (4.27) [12] Br(K+ → π0e+ν)
Br(KL → µ+µ−)SD (4.32) [12] mc

Br(KL → π0l+l−)CPV (43) [51] see [51]
Br(B → Xsνν̄) (4.29) [12] Br(B → Xclν̄)
Br(B → Xdνν̄) (4.29) [12] Br(B → Xclν̄)
Br(Bs → µ+µ−) (4.30) [12] FBs

Br(Bd → µ+µ−) (4.30) [12] FBd

Table 2.3: Guide to the formulae. See text for explanations. The dependence of
all branching ratios on CKM parameters and the top quark mass is not explicitly
reported.

In Table 2.3 we indicate where the formulae in question can be found and
which additional input parameters are involved in them. In Table 2.4 we give the
numerical values of all the parameters involved in the analysis.

Finally, for the reader’s convenience, and in order to show the relative impor-
tance of NP contributions to the processes we consider, we report below numerical
formulae for the branching ratios in terms of F i

New in eq. (2.1). These numerical
expressions have been obtained for central values of the parameters in Table 2.4,
as functions of ∆C ≡ C(v) − CSM, ∆Ceff

7 ≡ Ceff
7 − Ceff

7 SM, ∆D ≡ D(v) − DSM,
∆Bll̄ ≡ Bll̄(v)− Bll̄

SM and ∆Bνν̄ ≡ Bνν̄(v)− Bνν̄
SM. With the aid of eq. (2.20), it

is possible to quickly check the impact of NP contributions in any given MFV
model. As a first insight, we see that the dependence of Br(B → Xsl

+l−) on ∆D
is relatively weak, as can be read off from the small prefactors in the formulae
below. From eq. (2.20) one can also check whether the NP contribution to box

8After the completion of this analysis a NNLO calculation of the charm contribution became
available [49].
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Parameter Value Gaussian (σ)
λ 0.2255 0.0014
|Vcb| 0.0415 0.0007
ρ̄ 0.191 0.046
η̄ 0.353 0.028

FBs
230 MeV 30 MeV

FBd
189 MeV 27 MeV

Br(B → Xclν̄) 0.1045 0.0021
Br(K+ → π0e+ν) 0.0487 0.0006

mpole
t 178.0 GeV 4.3 GeV

mb 4.21 GeV 0.08 GeV
mc 1.3 GeV 0.1 GeV

αs(MZ) 0.119 0.003

Table 2.4: Values of the relevant parameters used in the analysis.

diagrams in any given model is large enough as to modify significantly our results
obtained for ∆Bll̄ = ∆Bνν̄ = 0 in the next Section. Finally, these formulae allow
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to understand the structure of our numerical results. We have9:

Br(B → Xsl
+l−, 0.04 < q2(GeV) < 1) = 1.16 · 10−6(1 + 0.38 (∆Bll̄)2

+0.46 ∆Ceff
7 ∆Bll̄ + 0.41 ∆C∆Bll̄ − 3.47 ∆Ceff

7 + 0.56 ∆Bll̄

+4.31(∆Ceff
7 )2 + 0.19 (∆C)2 + 0.38∆C − 0.11 ∆Ceff

7 ∆D) ,

Br(B → Xsl
+l−, 1 < q2(GeV) < 6) = 1.61 · 10−6(1 + 1.33 (∆Bll̄)2

+1.26 ∆Ceff
7 ∆Bll̄ + 1.43 ∆C∆Bll̄ − 0.31 ∆D∆Bll̄ + 2.08 ∆Bll̄

+1.42(∆Ceff
7 )2 + 0.67 (∆C)2 + 1.36∆C − 0.29 ∆Ceff

7 ∆D − 0.18∆D) ,

Br(B → Xsl
+l−, 14.4 < q2(GeV) < 25) = 3.70 · 10−7(1 + 1.18 (∆Bll̄)2

+0.70 ∆Ceff
7 ∆Bll̄ + 0.60 ∆Ceff

7 + 1.27 ∆C∆Bll̄ − 0.27 ∆D∆Bll̄ + 2.18 ∆Bll̄

+0.21(∆Ceff
7 )2 + 0.60 (∆C)2 + 1.24∆C − 0.16 ∆Ceff

7 ∆D − 0.24∆D) ,

Br(Bd → µ+µ−) = 1.08 · 10−10(1 + ∆Bll̄ + ∆C)2 ,

Br(Bs → µ+µ−) = 3.76 · 10−9(1 + ∆Bll̄ + ∆C)2 ,

Br(B → Xdνν̄) = 1.50 · 10−6(1 + 0.65 (∆C + ∆Bνν̄))2 ,

Br(B → Xsνν̄) = 3.67 · 10−5(1 + 0.65 (∆C + ∆Bνν̄))2 ,

Br(K+ → π+νν̄) = 8.30 · 10−11(1 + 0.20(∆C + ∆Bνν̄)2

+0.89(∆C + ∆Bνν̄)) ,

Br(KL → π0νν̄) = 3.10 · 10−11(1+0.65(∆C + ∆Bνν̄))2 ,

Br(KL → µ+µ−) = 8.58 · 10−10(1+0.82(∆C + ∆Bll̄))2 . (2.20)

2.4.2 Numerical Analysis

Our numerical analysis consists of three steps:

1. Extracting CKM parameters using the UUT analysis;

2. Determining the allowed range for ∆C and ∆Ceff
7 from presently available

data;

3. Computing the expectation values of rare decays based on these allowed
ranges.

For the first step, we used the 2005 results of the UTfit collaboration on the UUT
analysis [54]:

ρ̄ = 0.191± 0.046 , η̄ = 0.353± 0.028. (2.21)

Since the UUT analysis is independent of loop functions, the above results are in
particular independent of the top quark mass.

9Notice that we have discarded terms with coefficients smaller than 0.1 in Br(B → Xsl
+l−).
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Branching Ratios MFV (95%) SM (68%) SM (95%) exp

Br(K+ → π+νν̄)× 1011 < 11.9 8.3± 1.2 [6.1, 10.9] (14.7+13.0
−8.9 ) [59]

Br(KL → π0νν̄)× 1011 < 4.59 3.08± 0.56 [2.03, 4.26] < 5.9 · 104 [60]

Br(KL → µ+µ−)SD × 109 < 1.36 0.87± 0.13 [0.63, 1.15] -

Br(B → Xsνν̄)× 105 < 5.17 3.66± 0.21 [3.25, 4.09] < 64 [61]

Br(B → Xdνν̄)× 106 < 2.17 1.50± 0.19 [1.12, 1.91] -

Br(Bs → µ+µ−)× 109 < 7.42 3.67± 1.01 [1.91, 5.91] < 2.7 · 102 [62]

Br(Bd → µ+µ−)× 1010 < 2.20 1.04± 0.34 [0.47, 1.81] < 1.5 · 103 [62]

Table 2.5: Upper bounds for rare decays in MFV models at 95% probability, the
corresponding values in the SM (using inputs from the UUT analysis) and the
available experimental information. See the text for details.

In the second step, to minimize the theoretical input, we have traded D′(v)
and E ′(v) for Ceff

7 , which is the relevant low-energy quantity entering Br(B →
Xsγ) and Br(B → Xsl

+l−). Concerning Br(B → Xsγ), we compare the theoret-
ical value with the experimental results of CLEO [55], Belle [56] and BaBar [57]
in the corresponding kinematic ranges, adding a conservative 10% flat theoretical
error to the theoretical prediction. This error contains both the uncertainties
due to the cutoff in the photon spectrum [58] and the ones related to higher or-
der effects, which are particularly large since we are omitting here model-specific
NLO terms for the NP contribution. For Br(B → Xsl

+l−), we use the exper-
imental data in the q2 regions 0.04 < q2(GeV) < 1, 1 < q2(GeV) < 6 and
14.4 < q2(GeV) < 25 to avoid the theoretical uncertainty due to the presence of
cc̄ resonances.

The second and third steps are carried out using the approach of ref. [63]:
taking C(v), Ceff

7 (µb) and D(v) to have a flat a-priori distribution and using the
available experimental data and theoretical inputs, we determine the a-posteriori
probability density function (p.d.f.) for C(v), Ceff

7 (µb) and all the rare decays
listed in Table 2.5. Concerning D(v), it plays only a marginal role in these
decays and therefore it is not well determined by the analysis. We varied ∆D in
the conservative range ±4DSM. Even this rather large variation has little impact
on the extraction of the allowed range for C(v).

In Figure 2.8 we plot the p.d.f. for ∆C(v) and ∆Ceff
7 , that represent F i

New

in (2.1) and enter eq. (2.20). In Figure 2.9 we plot the p.d.f. for the branching
ratios. The corresponding upper bounds at 95% probability are reported in Table
2.5, where, for comparison, we also report the results obtained within the SM,
using the same CKM parameters obtained from the UUT analysis. Finally, in
Figures 2.10 and 2.11 we plot the branching ratios of the rare decays vs. C(v),
to make the impact of future measurements on the determination of C(v) more
transparent.
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Figure 2.8: P.d.f.’s for ∆Ceff
7 (top-left), ∆C (top-right) and ∆C vs. ∆Ceff

7 (bot-
tom). Dark (light) areas correspond to the 68% (95%) probability region.

Let us now comment on our results. As can be seen from Figure 2.8, we
have two possible solutions for ∆Ceff

7 , one very close to the SM, and the other
corresponding to reversing the sign of Ceff

7 (µb) (recall that Ceff
7 (µb) is negative in

the SM and equal to Ceff
7 (µb) ≈ −0.33). The second solution is disfavoured: it is

barely accessible at 68% probability, in accordance with the results of [21]. This
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Figure 2.9: P.d.f.’s for the branching ratios of the rare decays Br(K+ → π+νν̄),
Br(KL → π0νν̄), Br(KL → µ+µ−)SD, Br(B → Xd,sνν̄), and Br(Bd,s → µ+µ−).
Dark (light) areas correspond to the 68% (95%) probability region.

result is easy to understand. In the case of the second solution for ∆Ceff
7 , the

branching ratio Br(B → Xsl
+l−) becomes larger than the experimental value.

The full results are:

∆Ceff
7 = (0.02± 0.047) ∪ (0.958± 0.002) at 68% probability,

∆Ceff
7 = [−0.039, 0.08] ∪ [0.859, 1.031] at 95% probability. (2.22)

Since we have two separate ranges for ∆Ceff
7 , in the following we will also

present separately the results corresponding to the ”LOW” or ”HI” solution for
∆Ceff

7 (see Figures 2.12 and 2.13).



28 CHAPTER 2. MFV IN THE QUARK SECTOR

Figure 2.10: P.d.f.’s for the branching ratios of the rare decays used to con-
strain ∆C and ∆Ceff

7 as a function of these parameters: Br(B → Xsγ)Eγ>1.8GeV

(top-left), Br(K+ → π+νν̄) (top-right), Br(B → Xsl
+l−)14.4<q2(GeV)<25 (bottom-

left), Br(B → Xsl
+l−)1<q2(GeV)<6 (bottom-center), Br(B → Xsl

+l−)0.04<q2(GeV)<1

(bottom-right). Dark (light) areas correspond to the 68% (95%) probability region.
Very light areas correspond to the range obtained without using the experimental
information.

As can be seen in Figure 2.8 we have two solutions for ∆C, one close to the SM
and the other corresponding to reversing the sign of C. We recall that C ≈ 0.81
in the SM. The ranges obtained are

∆C = (−0.16± 0.53) ∪ (−2.15± 0.08) at 68% probability,

∆C = [−1.25, 0.44] ∪ [−2.39,−1.45] at 95% probability. (2.23)

From the plot of ∆C vs ∆Ceff
7 in Figure 2.8, it is evident that the situation is

different for the HI and LOW solutions for ∆Ceff
7 . Indeed, the two solutions
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Figure 2.11: P.d.f.’s for the branching ratios of the rare decays Br(KL → π0νν̄),
Br(KL → µ+µ−)SD, Br(B → Xd,sνν̄), and Br(Bd,s → µ+µ−) as a function of
∆C. Dark (light) areas correspond to the 68% (95%) probability region. Very
light areas correspond to the range obtained without using the experimental infor-
mation.

correspond to the following ranges for ∆C:

LOW : ∆C = (−0.03± 0.41) ∪ (−2.18± 0.02) at 68% probability,

LOW : ∆C = [−0.75, 0.50] ∪ [−2.49,−1.60] at 95% probability,

HI : ∆C = (−0.68± 0.58) at 68% probability,

HI : ∆C = [−1.98, 0.04] at 95% probability. (2.24)

These results are easy to understand. For the LOW solution the solutions with
∆C being positive and negative are consistent with the data on B → Xsl

+l−.
On the other hand for the HI solution, ∆C < 0 is favoured as with ∆C > 0 the
difficulty with a too high Br(B → Xsl

+l−) becomes more acute.

For the reader’s convenience, we report in Table 2.6 the values of the X, Y
and Z functions obtained by summing SM and NP contributions and by applying
all the available experimental constraints.

The impact of Br(K+ → π+νν̄) on the bounds on NP contributions can
be seen by comparing Figure 2.8 with Figure 2.14, where Br(K+ → π+νν̄)
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Figure 2.12: P.d.f.’s for the branching ratios of the rare decays Br(K+ → π+νν̄),
Br(KL → π0νν̄), Br(KL → µ+µ−)SD, Br(B → Xd,sνν̄), and Br(Bd,s → µ+µ−)
considering only the LOW solution for ∆Ceff

7 . Dark (light) areas correspond to
the 68% (95%) probability region.

was not used as a constraint.10 As can be seen from Figure 2.14, the role of
Br(K+ → π+νν̄) is to suppress the solution with ∆C ∼ −2, which corresponds
to destructive interference with the SM in Br(K+ → π+νν̄) and in the other
rare decays. In this respect, a further improvement of the experimental error on
Br(K+ → π+νν̄) will be extremely useful in further reducing the importance

10In order to fully exploit the experimental information on Br(K+ → π+νν̄), we use directly
the likelihood function obtained by deriving the experimental C The experimental CL can be
found at http://www.phy.bnl.gov/e949/E949Archive/br cls.dat, and the likelihood we use can
be found at http://www.utfit.org/kpinunubar/ckm-kpinunubar.html.
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Figure 2.13: P.d.f.’s for the branching ratios of the rare decays Br(K+ → π+νν̄),
Br(KL → π0νν̄), Br(KL → µ+µ−)SD, Br(B → Xd,sνν̄), and Br(Bd,s → µ+µ−)
considering only the HI solution for ∆Ceff

7 . Dark (light) areas correspond to the
68% (95%) probability region.

of this negative-interference solution for ∆C, which is responsible for the peaks
around zero for all the rare decays in Figure 2.9.

We also note that eliminating ∆C < 0 by means of K+ → π+νν̄ would
basically also eliminate the HI solution for ∆Ceff

7 . We therefore conclude that
finding Br(K+ → π+νν̄) larger than the SM value would help in eliminating the
positive sign of Ceff

7 . To our knowledge this triple correlation between K+ →
π+νν̄, B → Xsγ and B → Xsl

+l− has not been discussed in the literature so
far. It is very peculiar to MFV and is generally not present in models with new
flavour violating contributions.
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Figure 2.14: P.d.f.’s for ∆Ceff
7 (top-left), ∆C (top-right), ∆C vs. ∆Ceff

7

(bottom-left) and Br(K+ → π+νν̄) vs ∆C (bottom-right) obtained without us-
ing Br(K+ → π+νν̄) as a constraint. Dark (light) areas correspond to the 68%
(95%) probability region.

The upper bound on Br(K+ → π+νν̄) in Table 2.5 has been obtained using
the experimental information on this decay. It corresponds to the following 95%
probabilty ranges:

Br(K+ → π+νν̄) = [0, 0.17] ∪ [0.24, 1.19]

(LOW : [0, 0.12] ∪ [0.39, 1.26], HI : [0, 0.81])× 10−10 .(2.25)

If we do not use the experimental result on Br(K+ → π+νν̄), we obtain instead:

Br(K+ → π+νν̄) = [0, 0.15] ∪ [0.28, 1.12]× 10−10 , (2.26)
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Function MFV (68%) MFV (95%)

X [−0.71,−0.55] ∪ [0.86, 1.90] [−0.86, 0.10] ∪ [0.30, 1.95]

Y [−1.23,−1.06] ∪ [0.33, 1.37] [−1.38,−0.44] ∪ [−0.24, 1.43]

Z [−1.51,−1.40] ∪ [−0.25, 1.31] [−1.74,−1.05] ∪ [−0.92, 1.46]

Table 2.6: Values at 68% and 95% probability for the functions X, Y and Z. See
the text for details.

corresponding to an upper bound of 11.2× 10−11 at 95% probability.

We have also analyzed the decays KL → π0e+e− and KL → π0µ+µ− using
the formulae of [50, 51]. In the models with MFV these decays are dominated
by the contribution from the indirect CP violation that is basically fixed by the
measured values of ǫK and KS → π0l+l−. The dependence on C(v) enters only in
the subdominant direct CP-violating component and the interference of indirect
and direct CP-violating contributions. We find that Br(KL → π0e+e−) and
Br(KL → π0µ+µ−) can be enhanced with respect to the SM value by at most
8% and 10%, respectively. In view of theoretical uncertainties in these decays
that are larger than these enhancements, a clear signal of new physics within the
MFV scenario is rather unlikely from the present perspective. Therefore we do
not show the corresponding p.d.f.s.

Figure 2.15: P.d.f. for the branching ratios of the rare decays Br(KL → π0νν̄)
vs Br(K+ → π+νν̄). Dark (light) areas correspond to the 68% (95%) probabil-
ity region. Very light areas correspond to the range obtained without using the
experimental information.
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Concerning Br(KL → π0νν̄), its 95% probability ranges are given by

Br(KL → π0νν̄) = [0, 4.59] (LOW : [0, 4.83], HI : [0, 2.84])× 10−11(2.27)

(see Figures 2.9, 2.12 and 2.13). In Figure 2.15 we see explicitly the correlation
between the charged and neutral Kaon decay modes. We observe a very strong
correlation, a peculiarity of models with MFV [64]. In particular, a large enhance-
ment of Br(KL → π0νν̄) characteristic of models with new complex phases is not
possible [65, 66]. An observation of Br(KL → π0νν̄) larger than 6 · 10−11 would
be a clear signal of new complex phases or new flavour changing contributions
that violate the correlations between B and K decays.

The 95% probability ranges for Br(KL → µ+µ−)SD are

Br(KL → µ+µ−)SD = [0, 1.36] (LOW : [0, 1.44], HI : [0, 0.74])× 10−9 .(2.28)

As in the previous cases, the HI solution corresponds to a much lower upper
bound.

Let us now consider B decays:

Br(B → Xsνν̄) = [0, 5.17] (LOW : [0, 1.56] ∪ [1.59, 5.4], HI : [0, 3.22])× 10−5 ,

Br(B → Xdνν̄) = [0, 2.17] (LOW : [0, 2.26], HI : [0, 1.34])× 10−6 ,

Br(Bs → µµ̄) = [0, 7.42] (LOW : [0, 7.91], HI : [0, 3.94])× 10−9 ,

Br(Bd → µµ̄) = [0, 2.20] (LOW : [0, 2.37], HI : [0, 1.15])× 10−10 . (2.29)

The reader may wonder whether other observables could help improving
the constraints on ∆C and testing MFV models. In particular, the Forward-
Backward asymmetry in B → Xsl

+l− is known to be a very sensitive probe of
Ceff

7 and of C [67]. Indeed, the HI and LOW solutions for ∆Ceff
7 and correspond-

ing possible values of ∆C give rise to different profiles of the normalized ĀFB,
defined as

ĀFB(ŝ) =

∫ 1

−1
d cos θl

d2Γ(b→sµ+µ−)
dŝd cos θl

sgn(cos θl)
∫ 1

−1
d cos θl

d2Γ(b→sµ+µ−)
dŝd cos θl

. (2.30)

This can be seen explicitly in Figure 2.16. Therefore, a measurement of ĀFB(ŝ) at
a Super B factory will be extremely helpful in distinguishing the various scenarios
discussed above [68]. On the other hand, concerning the CP asymmetry in B →
Xsγ decays [69], it turns out that in MFV models its value is reduced with respect
to the SM, once the constraint on the branching ratio is taken into account, so
that it is not expected to play a significant role in present and future analyses
[70].

In Figure 2.12 we show the p.d.f.’s for the branching ratios of rare decays
for the LOW solution. The corresponding result for the HI solution is given in
Figure 2.13. Clearly the branching ratios of various decays are larger in the case
of the LOW solution.
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Figure 2.16: P.d.f.’s for the normalized forward-backward asymmetry in B →
Xsl

+l− for the LOW solution for ∆Ceff
7 with ∆C > −1 (left), for the LOW

solution with ∆C < −1 (center) and for the HI solution for ∆Ceff
7 (right). Dark

(light) areas correspond to the 68% (95%) probability region.

Before concluding this section, let us make a few steps towards the future and
consider a realistic scenario for the projected integrated luminosities of Belle and
BaBar, plus a 10% measurement of Br(K+ → π+νν̄). For concreteness, let us
assume the following 2010 experimental data:

Br(B → Xsl
+l−)0.04<q2(GeV)<1 = (1.13± 0.25)× 10−6 ,

Br(B → Xsl
+l−)1<q2(GeV)<6 =

{
(1.49± 0.21)× 10−6(Belle)
(1.80± 0.18)× 10−6(BaBar)

Br(B → Xsl
+l−)14.4<q2(GeV)<25 =

{
(4.18± 0.48)× 10−7(Belle)
(5.00± 0.93)× 10−7(BaBar)

Br(B → Xsγ) =





(3.51± 0.16)× 10−4(Belle)
(3.67± 0.16)× 10−4(BaBar incl.)
(3.29± 0.16)× 10−4(BaBar semincl.)

(2.31)

corresponding to an integrated luminosity of 1 ab−1 and 700 fb−1 for Belle and
BaBar, respectively. Additionally a reduction to 5% of the theoretical uncertainty
in Br(B → Xsγ) thanks to a complete NNLO computation is assumed [71]. 11

We can see the dramatic effect of these improvements in Figures 2.17-2.19.
B-factory data will completely eliminate the non-standard solution for ∆Ceff

7 ,

11The future results for Br(B → Xsγ) are referred to the same kinematic ranges as the
present results.
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while they cannot distinguish the two solutions for ∆C (considering only branch-
ing ratio measurements), see Figure 2.19. However, this ambiguity is perfectly
resolved by Br(K+ → π+νν̄), leading to the impressive results in Figures 2.17
and 2.18.
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Figure 2.17: P.d.f.’s for ∆Ceff
7 (left) and ∆C (right) in the future scenario spec-

ified by eq. (2.31). Dark (light) areas correspond to the 68% (95%) probability
region.

With so powerful experimental data, one can even think of generalizing our
analysis by allowing for substantial deviations from the SM in box diagrams.
If the size of new physics contributions to box diagrams is comparable to the
SM ones, the results of our ”future” analysis would not change sizably. On
the other hand, a dramatic modification could occur for contributions to box
diagrams much larger than the SM ones; however, it is very difficult to conceive
new-physics models in which this possibility can be realized.

2.4.3 Messages

The main message here is the following one:
The existing constraints coming from K+ → π+νν̄, B → Xsγ and B →

Xsl
+l− do not allow within the MFV scenario of [10] for substantial departures

of the branching ratios for all rare K and B decays from the SM estimates. This
is evident from Table 2.5.

There are other messages signalled by our analysis. These are:

• The decays B → Xs,dl
+l− will not offer a precise value for the function

C even in the presence of precise measurements of their branching ratios,



2.4. MODEL INDEPENDENT UPPER BOUNDS ON RARE B AND K DECAYS37

10
)10νν+π→+

Br(K
0 1 2 3

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.001

0.002

0.003

10
)10νν+π→+

Br(K
0 1 2 3

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.001

0.002

0.003

10
)10νν+π→+

Br(K
0 1 2 3

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.001

0.002

0.003

11
)10νν0π→LBr(K

0 2 4 6 8 10

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.002

0.004

0.006

11
)10νν0π→LBr(K

0 2 4 6 8 10

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.002

0.004

0.006

11
)10νν0π→LBr(K

0 2 4 6 8 10

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.002

0.004

0.006

9
)10l+l→LBr(K

0 0.5 1 1.5 2

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.001

0.002

9
)10l+l→LBr(K

0 0.5 1 1.5 2

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.001

0.002

9
)10l+l→LBr(K

0 0.5 1 1.5 2

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.001

0.002

5
)10ννdX→Br(B

0 0.1 0.2 0.3 0.4 0.5

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.0005

0.001

5
)10ννdX→Br(B

0 0.1 0.2 0.3 0.4 0.5

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.0005

0.001

5
)10ννdX→Br(B

0 0.1 0.2 0.3 0.4 0.5

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.0005

0.001

5
)10ννsX→Br(B

0 5 10 15 20

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.002

0.004

5
)10ννsX→Br(B

0 5 10 15 20

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.002

0.004

5
)10ννsX→Br(B

0 5 10 15 20

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.002

0.004

10
)10-l+l→dBr(B

0 1 2 3 4 5

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.0005

0.001

10
)10-l+l→dBr(B

0 1 2 3 4 5

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.0005

0.001

10
)10-l+l→dBr(B

0 1 2 3 4 5

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.0005

0.001

8
)10-l+l→sBr(B

0 0.5 1 1.5

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.001

0.002

0.003

8
)10-l+l→sBr(B

0 0.5 1 1.5

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.001

0.002

0.003

8
)10-l+l→sBr(B

0 0.5 1 1.5

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.001

0.002

0.003

Figure 2.18: P.d.f.’s for the branching ratios of the rare decays Br(K+ → π+νν̄),
Br(KL → π0νν̄), Br(KL → µ+µ−)SD, Br(B → Xd,sνν̄), and Br(Bd,s → µ+µ−)
in the future scenario specified by eq. (2.31). Dark (light) areas correspond to the
68% (95%) probability region.

unless the theoretical errors in these decays and B → Xsγ and the ex-
perimental error on the branching ratio of the latter decay are reduced
substantially. This is clearly seen in Figure 2.10.

• The situation is considerably better in the case of Bd,s → µ+µ− but as seen
in Figure 2.11, for a given value of Br(Bd,s → µ+µ−) there are generally
two solutions for ∆C and C, that cannot be disentangled on the basis of
these decays alone.

• The great potential of the decays K+ → π+νν̄ and KL → π0νν̄ in measuring
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Figure 2.19: P.d.f.’s for ∆Ceff
7 (top-left), ∆C (top-right) and Br(K+ → π+νν̄)

vs ∆C (bottom) obtained without using Br(K+ → π+νν̄) as a constraint, in the
future scenario specified by eq. (2.31). Dark (light) areas correspond to the 68%
(95%) probability region.

the function C is clearly visible in Figures 2.10 and 2.11, with the unique
value obtained in the case of K+ → π+νν̄ in the full allowed range of C.
In the case of KL → π0νν̄ the two solutions are only present for Br(KL →
π0νν̄) significant smaller that the SM value. Similar comment applies to
B → Xs,dνν̄.

• Assuming that future more precise measurements of the K → πνν̄ branch-
ing ratios will be consistent with the MFV upper bounds presented here,
the determination of C through these decays will imply much sharper pre-
dictions for various branching ratios that could confirm or rule out the MFV
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scenario. In this context the correlations between various branching ratios
discussed in [11] will play the crucial role.

• One of such correlations predicts that the measurement of sin 2β and of
Br(K+ → π+νν̄) implies only two values of Br(KL → π0νν̄) in the full
class of MFV models that correspond to two signs of the function X [64].
Figure 2.15 demonstrates that the solution with X < 0, corresponding to
the values in the left lower corner, is practically ruled out so that a unique
prediction for Br(KL → π0νν̄) can in the future be obtained.

• A strong violation of any of the 95% probability upper bounds on the
branching ratios considered here by future measurements will imply a fail-
ure of MFV as defined in [10], unless an explicit MFV scenario can be found
in which the contributions of box diagrams are significantly larger than as-
sumed here. Dimensional arguments [65] and explicit calculations indicate
that such a possibility is rather remote.

• If the only violation of the upper bounds in Table 2.5 occurs in Bs → µ+µ−

and Bd → µ+µ−, it will be most likely due to new operators beyond the SM
ones. For example, the scalar operators which arise in MFV SUSY models
at large tanβ can enhance Br(Bs → µ+µ−) up to the present experimental
upper bound [17, 20, 72].

• Conversely, a violation of the upper bounds for the other channels in Ta-
ble 2.5 would signal the presence of new sources of flavour and in particular
of CP violation. This can be confirmed observing a violation of the corre-
lations between K and B decays discussed above.

• In particular, recalling that in most extensions of the SM the decays K →
πνν̄ are governed by the single (V − A)⊗ (V − A) operator, the violation
of the upper bounds on at least one of the K → πνν̄ branching ratios,
will either signal the presence of new complex weak phases at work or new
contributions that violate the correlations between the B decays and K
decays.

Assuming that the MFV scenario will survive future tests, the next step will be
to identify the correct model in this class. Clearly, direct searches at high energy
colliders can rule out or identify specific extensions of the SM. But also FCNC
processes can play an important role in this context, provided the theoretical
and experimental uncertainties in some of them will be sufficiently decreased.
In this case, by studying simultaneously several branching ratios it should be in
principle possible to select the correct MFV models by just identifying the pattern
of enhancements and suppressions relative to the SM that is specific to a given
model. If this pattern is independent of the values of the parameters defining the
model, no detailed quantitative analysis of the enhancements and suppressions
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is required in order to rule it out. As an example the distinction between the
MSSM with MFV and the models with one universal extra dimension should be
straightforward:

• In the MSSM with MFV the branching ratios for K+ → π+νν̄, KL → π0νν̄,
B → Xdνν̄ and Bd → µ+µ− are generally suppressed relative to the SM
expectations, while those governed by Vts like B → Xsνν̄, Bs → µ+µ−

and B → Xsγ can be enhanced or suppressed depending on the values of
parameters involved [73].

• In the model with one universal extra dimension discussed in Section 2.3,
the branching ratios for essentially all rare decays are enhanced, the en-
hancement being stronger for the decays governed by Vts than for those
where Vtd is involved. A prominent exception is the suppression of B →
Xs,dγ [13, 74].

Finally, if MFV will be confirmed, and some new particles will be observed, the
rare processes discussed in this work will constitute a most powerful tool to probe
the spectrum of the NP model, which might not be entirely accessible via direct
studies at the LHC.



Chapter 3

Minimal Flavour Violation in the
lepton sector

3.1 Motivation

In the previous chapters we have encountered the framework of MFV applied to
the quark sector. It proved to be a solution to the quark flavour problem: all
new physics models which implement this idea are in a good shape and avoid
fine-tuning in the flavour sector. At the same time these models can maintain a
relatively low new physics scale at around a TeV. This is important if we want
to stabilize the Higgs sector in a natural way (as in the MFV-MSSM or in little
Higgs theories) and if these models are to be tested at the LHC.

If MFV really is nature’s answer to the flavour problem in the quark sector
two questions naturally arise:

• Can we extend the MFV framework to describe lepton flavour violation?

• MFV implies that the only CPV phase in the quark sector is the CKM
phase, which is not enough CPV in order to generate the baryon asymmetry
of the universe (BAU) via electroweak baryogenesis (see e.g. the review
[75]), extending MFV to the lepton sector, can we generate the BAU using
the mechanism of leptogenesis implemented in a MFV framework?

The following chapter tries to answer these two questions. The first drawback
we find is, that we cannot extend the MFV framework in a straightforward way
by just replacing YU by Yν and repeating the construction. The reason is that
the best explanation for the smallness of the observed neutrino masses is the so
called see-saw mechanism, which complicates matters as we shall see. Extending
the SM to include right-handed neutrinos, their quantum numbers tell us, that
they are sterile. Nothing prevents us to include a Majorana mass term for them.
Contrary to a Dirac or Yukawa mass term, no chiral symmetry or Higgs-vev, re-
spectively, sets the natural scale. This possibly large scale, the so-called see-saw
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scale, in turn leads to an elegant explanation of the smallness of the observed
neutrino masses: after integrating out the heavy neutrinos the effective mass of
the light neutrinos is suppressed by this large scale and of the order of v2/Mν .
The Majorana mass term is only a mixed blessing in that it generically introduces
new flavour violation at a high-scale. An attempt to extend MFV to the lepton
sector and to deal with this problem has first been given by [76]. In the following
chapters1 we will first introduce MFV in the lepton sector (MLFV) and describe
its basic assumptions and parameters. We will then discuss two specific realisa-
tions. Then we will discuss radiative corrections and their implications for the
low-scale flavour violation and the see-saw scale CPV relevant for leptogenesis.
Finally we will discuss leptogenesis and possible implications for lepton FCNC.

3.2 Basic Framework

3.2.1 Preliminaries

The discovery of neutrino oscillations provides evidence for non-vanishing neu-
trino masses and leptonic mixing, leading to lepton-flavour violation. In the SM,
neutrinos are strictly massless, since Dirac masses cannot be constructed due to
the absence of right-handed neutrinos, and left-handed Majorana masses are not
generated due to exact (B − L) conservation.

The simplest extension of the SM which allows for non-vanishing but natu-
rally small neutrino masses, consists of the addition of right-handed neutrinos to
the spectrum of the SM. This extension has the nice feature of establishing on the
one hand a lepton quark symmetry and on the other hand being naturally em-
bedded in a grand unified theory like SO(10). Since right-handed neutrinos are
singlets under U(1)× SU(2)× SU(3), Majorana neutrino masses MR should be
included, with a mass scale Mν which can be much larger than the scale v of the
electroweak symmetry breaking. Apart from MR, Dirac neutrino mass terms mD

are generated through leptonic Yukawa couplings upon gauge symmetry break-
ing. The presence of these two neutrino mass terms leads, through the seesaw
mechanism [78], to three light neutrinos with masses of order v2/Mν and three
heavy neutrinos with mass of order Mν . The decay of these heavy neutrinos can
play a crucial role in the creation of a baryon asymmetry of the universe (BAU)
through the elegant mechanism of baryogenesis through leptogenesis [79, 80]. In
the presence of neutrino masses and mixing, one has, in general, both CP viola-
tion at low energies which can be detected through neutrino oscillations and CP
violation at high energies which is an essential ingredient of leptogenesis. The
connection between these two manifestations of CP violation can be established
in the framework of specific lepton flavour models.

1This chapter is based on our paper [77].
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In this chapter, we study lepton-flavour violation in this extension of the SM,
assuming minimal lepton flavour violation (MLFV) but allowing for CP violation
both at low and high energies. The case of no leptonic CP violation either at low
or high energies, was considered in [76] where the suggestion of MLFV was first
presented.

3.2.2 Yukawa Couplings and Majorana Mass Terms

We add then three right-handed neutrinos to the spectrum of the SM and consider
the following leptonic Yukawa couplings and right-handed Majorana mass terms:

LY = −ēRYEφ†LL − ν̄RYνφ̃LL + h.c. (3.1)

LM = −1

2
ν̄cRMRνR + h.c. , (3.2)

where YE, Yν and MR are 3× 3 matrices in the lepton flavour space. In the limit
LY = LM = 0 the Lagrangian of this minimal extension of the SM has a large
flavour symmetry

SU(3)L × SU(3)E × SU(3)νR
× U(1)L × U(1)E × U(1)νR

, (3.3)

which reflects the fact that gauge interactions treat all flavours on equal footing.
This large global symmetry is broken by the Yukawa couplings YE, Yν and by the
Majorana mass terms MR. A transformation of the lepton fields:

LL → VLLL, eR → VEeR, νR → VνR
νR (3.4)

leaves the full Lagrangian invariant, provided the Yukawa couplings and the Ma-
jorana mass terms transform as:

Yν → Y
′

ν = VνR
YνV

†
L , (3.5)

YE → Y
′

E = VEYEV †
L , (3.6)

MR → M
′

R = V ∗
νR

MRV T
νR

, (3.7)

which means that there is a large equivalent class of Yukawa coupling matrices and
Majorana mass terms, related through (3.5)-(3.7), which have the same physical
content. The MLFV proposal [76] consists of the assumption that the physics
which generates lepton number violation, leading to MR, is lepton flavour blind,
thus leading to an exactly degenerate eigenvalue spectrum for MR, at a high-
energy scale. As a result, in the MLFV framework, the Majorana mass terms
break SU(3)νR

into O(3)νR
.
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3.2.3 An Useful Parametrisation

In order to analyse in a systematic way the above phenomena and study the
implied relations among low-energy lepton mixing data, lepton flavour violation
and leptogenesis in different scenarios classified below, it is convenient to choose
an appropriate parametrisation for Yν . Since we are working in the basis where the
charged lepton mass matrix is diagonal and real, leptonic mixing and CP violation
at low energies are controlled by the PMNS matrix Uν [81], which diagonalizes
the effective low energy neutrino mass matrix:

UT
ν (mν)effUν = dν, (3.8)

where dν ≡ diag(m1, m2, m3), with mi being the masses of the light neutrinos
and [78]

(mν)eff = −v2Y T
ν D−1

R Yν, (3.9)

where DR denotes the diagonal matrix MR and v = 174 GeV. In the case of
MLFV, DR = Mν1 and one obtains at Mν ≈ ΛLN

(mν)eff = − v2

Mν

Y T
ν Yν . (3.10)

We use the following parametrisation [82] of the neutrino Yukawa couplings:

(
√

DR)−1 Yν =
i

v
R
√

dν U †
ν , (3.11)

where R is an orthogonal complex matrix (RTR = R RT = 1), dν = diag(m1, m2, m3)
and DR = diag(M1, M2, M3).

It is instructive to count next the number of independent parameters on both
sides of (3.11). The left-hand side of (3.11) is an arbitrary 3× 3 complex matrix
with nine real parameters and six phases, since three of the initial nine phases
can be removed by rephasing LL. It is clear that the right-hand side of (3.11) also
has nine real parameters and six phases. Indeed, R, dν and Uν have each three
real parameters and moreover R and Uν have in addition each three phases. We
consider now the case where the right-handed neutrinos are exactly degenerate,
i.e. DR = Mν1. We will show that three of the real parameters of R can be
rotated away. Note that any complex orthogonal matrix can be parameterised as

R = eA1eiA2, (3.12)

with A1,2 real and skew symmetric. Now in the degenerate case an orthogonal
rotation of νR → ORνR leaves the Majorana mass proportional to the unit matrix
and defines a physically equivalent reparametrization of the fields νR. Choosing
OR = eA1 we see immediately that

Yν → O†
RYν =

√
Mν

v
e−A1 R

√
dν U †

ν =

√
Mν

v
eiA2

√
dν U †

ν , (3.13)
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which shows that the physically relevant parameterization is given by Rdeg = eiA2 .
Using the parameterization in (3.11) one finds that the matrix Y T

ν Yν which
controls low-energy CP-Violation and mixing can be written as follows

Y T
ν Yν = − 1

v2
(U †

ν )
T
√

dν RT DR R
√

dν U †
ν = −Mν

v2
(U †

ν)
TdνU

†
ν , (3.14)

where in the last step we have set DR = Mν1.
On the other hand, the matrix Y †

ν Yν which controls charged LFV, can be
written as follows (see also [83])

Y †
ν Yν =

1

v2
Uν

√
dν R† DR R

√
dν U †

ν =
Mν

v2
Uν

√
dν R†R

√
dν U †

ν . (3.15)

Finally, the matrix YνY
†
ν which enters in leptogenesis when flavor effects are

not relevant is given by (see also [83]):

YνY
†
ν =

1

v2

√
DR R dν R†

√
DR =

Mν

v2
R dν R†. (3.16)

We note that Y T
ν Yν depends only on Uν and dν, while YνY

†
ν relevant for the

leptogenesis only on dν and R. This means that CP violation at low energy
originating in the complex Uν and the CP violation relevant for leptogenesis are
decoupled from each other and only the mass spectrum of light neutrinos sum-
marized by dν enters both phenomena in a universal way. Here we would like
to emphasize that within the RRL this common wisdom has to be modified as
through RGE YνY

†
ν at µ = Mν will eventually depend on the elements of the

PMNS matrix, in particular on its complex phase. In this manner some correla-
tion between low and high energy CP violation could in principle be possible.

In this respect the charged LFV, represented by (3.15), appears also interest-
ing as it depends on dν, Uν and R and consequently can also provide an indirect
link between low energy and high energy CP violations and generally a link be-
tween low and high energy phenomena.

3.3 Radiative corrections in MLFV

3.3.1 Preliminaries

Our MLFV scenario defined in the previous section contains no free parameters
beyond the neutrino masses, the PMNS matrix, a matrix of form Rdeg, an initial,
universal heavy Majorana neutrino mass, and perhaps additional flavour-blind
parameters that depend on the MLFV model. The rates for charged lepton
flavour violation thus follow upon computing radiative corrections due to the
degrees of freedom between the scales MZ and ΛGUT, and with suitable washout
factors also the baryon asymmetry ηB.
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In this section we investigate how the CP- and flavour-violating quantities
relevant to leptogenesis and charged lepton flavour violation, respectively, are
radiatively generated. Since leptogenesis in the present framework can be con-
sidered as a generalization of the setup with two heavy singlets in [84] to the case
of three degenerate flavours, we will also clarify what novelties arise in this case.
This will be important in comparing our results to the existing literature.

An important point will be that, due to the hierarchy between the GUT/flavour-
breaking scale ΛGUT and the neutrino mass scale Mν , large logarithms appear
such that the parameter counting for the coefficients ci of flavour structures that
has been recently presented in [85] should be modified. Rather than being inde-
pendent, the coefficients of structures containing different powers of Yukawa ma-
trices are related by the renormalization group, while any additional independent
effects are suppressed. Although this fact in principle increases the predictivity
of MLFV, in our phenomenological sections it will still turn out insufficient to
have correlations between high-scale and weak-scale observables.

3.3.2 MLFV with a degeneracy scale

We have defined our MLFV scenario to have a scale at which the masses of the
right-handed neutrinos are exactly degenerate, such that the matrix MR has no
flavour structure at all. In general, there will be additional flavoured particles
in the theory. As a specific example, we consider the MSSM. Here the Ni are
accompanied by heavy sneutrinos Ñ c

i , and there are also SU(2) doublet sleptons
l̃i, transforming as

l̃ → VLl̃, Ñ c → V ∗
νR

Ñ c (3.17)

under the transformation (3.4). The Lagrangian then contains soft SUSY break-
ing terms

Lsoft = −Ñ c∗
i m̃2

νijÑ
c
j − l̃∗i m̃

2
lij l̃j + . . . , (3.18)

where the ellipsis denotes further scalar mass matrices and trilinear scalar inter-
actions. In general all matrices in Lsoft have nonminimal flavour structure. The
simplest generalization of our degenerate scenario is then to extend the require-
ment of exact degeneracy to all mass matrices, similar to minimal supergravity.
To be specific, we require all scalar masses to have the same value m0 at the
high scale and also require the A-terms to have the mSUGRA form A = aY with
Y the corresponding Yukawa matrix and a a universal, real parameter of the
theory. This example also provides us with a concrete value for the scale ΛLFV:
LFV processes such as li → ljγ are mediated by loop diagrams involving sleptons
and higgsinos or (weak) gauginos, and unless gaugino masses are very large, the
scalar particles such as l̃i decouple at a scale Λ ∼ m0. Hence the operators gov-
erning charged LFV are suppressed by powers of m0 ≡ ΛLFV. As in the case of
the heavy Majorana masses, the generalized degeneracy requirement is not sta-



3.3. RADIATIVE CORRECTIONS IN MLFV 47

ble under radiative corrections, and for the same reason it is not renormalization
scheme independent.

3.3.3 Radiatively generated flavour structure and large
logarithms

As will be discussed in detail in the following section, the CP asymmetries neces-
sary for leptogenesis require mass splittings between the decaying particles. The
decaying particles are on their mass shell2, but the degenerate initial conditions
are usually specified in a massless scheme3 (MS to be definite [89]).

At one loop, the two mass definitions are related by a formula of the structure

Mos
i = MMS

i (µ) + ciM
MS

i (µ) ln
Mi

µ
+ nonlogarithmic corrections, (3.19)

where µ ∼ ΛGUT is the MS renormalization scale, ci = 2(YνY
†
ν )ii/(16π2) in the

standard-model seesaw, and the nonlogarithmic corrections depend on our choice
of massless (or any other) renormalization scheme. The resulting scheme de-
pendence cannot be present in physical observables such as the BAU. Since this
issue is usually not discussed in the literature on lepton flavour violation, let us
elaborate on how it may be resolved.

First, notice that while the nonlogarithmic terms in (3.19) are scheme depen-
dent, the logarithmic corrections proportional to ci are actually scheme indepen-
dent. If ln ΛGUT/Mν ≫ 1, the logarithmic terms must be considered O(1) and
summed to all orders. This is achieved in practice by solving renormalization
group equations. Similar resummations must be performed for all other param-
eters in the theory (such as Yukawa couplings). Correspondingly, the dominant
higher-loop corrections to LFV observables and leptogenesis are approximated by
using leading-order expressions with one-loop RGE-improved Yukawa couplings
and masses. This is the leading-logarithmic approximation. Nonlogarithmic cor-
rections such as those indicated in (3.19) are then subleading and should be
dropped.

What happens when the logarithms are not large is the following. If the
MLFV framework is an effective theory for some fundamental theory where the
degeneracy is enforced by a flavour symmetry, for instance the group (3.3), then
the degeneracy holds in any scheme (that respects the symmetry) in the full
theory and the scheme dependence observed in (3.19) must be due to unknown
threshold corrections in matching the underlying and effective theories. Since
the flavour symmetry in MLFV, by definition, is broken precisely by the Yukawa

2 We follow the treatment of [86, 87] (see also [88]), where sometimes the on-shell masses
are replaced by thermal masses. (We will employ zero-temperature masses.)

3This is likely appropriate if the degeneracy is true to some flavour symmetry of an under-
lying theory, relating high-energy Lagrangian parameters and broken at the scale ΛGUT.



48 CHAPTER 3. MFV IN THE LEPTON SECTOR

matrices, this matching introduces all possible terms that are invariant under
transformations (3.4,3.5,3.6,3.7). A list of such structures has recently been given
in [85], for instance,

MR = Mν

[
1+c1(YνY

†
ν +(YνY

†
ν )T )+c2(YνY

†
ν YνY

†
ν +(YνY

†
ν YνY

†
ν )T )+ . . .

]
. (3.20)

The coefficients c1 and c2 have been claimed by these authors to be independent
O(1) coefficients. Indeed these terms contain only nonlogarithmic terms and
(small) decoupling logs when MR is taken in the MS scheme, renormalized near
the GUT (matching) scale.

However, when computing the (physically relevant) on-shell MR in the case of
ΛGUT ≫Mν , large logarithms dominate both c1 and c2. The leading logarithmic
contributions are not independent, but are related by the renormalization group.
c2 is quadratic in L ≡ ln ΛGUT/Mν , while c1 is linear, and the RGE for MR

implies c2|L2 = 1
2
[c1|L]2. These logs are summed by RG-evolving MMS

R to a scale
µ ∼ Mν . The additional conversion to on-shell masses is then again a subleading
correction.

Finally, we note that if there is no underlying symmetry, the degeneracy
condition can again be true at most for special choices of scheme/scale, and must
be fine-tuned.

Numerically, the logarithms dominate already for mild hierarchies ΛGUT/Mν >
102, as then 2 lnΛGUT/Mν ≈ 10. Let us now restrict ourselves to hierarchies of at
least two orders of magnitude and work consistently in the leading-logarithmic
approximation. As explained above, in this case nonlogarithmic corrections both
of the threshold type (in the coefficients ci in (3.20) and in physical quantities
(on-shell masses, CP asymmetries, etc.) are subleading and should be dropped.
In this regard our apparently “special” framework of initially degenerate heavy
neutrinos turns out to be the correct choice at leading-logarithmic order.

Finally we recall that the positions of the poles of the Ni two-point functions
contain an imaginary part related to the widths of these particles. While not
logarithmically enhanced, these are also scheme-independent at one loop (as the
widths are physical), and it is unambiguous to include them in applications. In
fact, these widths effects are often numerically important for the CP asymmetries
in Ni decay [86, 87], and we will keep them in our numerical analysis.

3.3.4 Renormalization-group evolution: high scales

For the running above the seesaw scale the relevant renormalization-group equa-
tions have been given in in [90] for the SM and MSSM seesaw models. As the
physical quantities studied below, such as leptonic CP asymmetries, involve mass
eigenstates, it is convenient to keep the singlet mass matrix diagonal during evo-
lution (see, e.g., appendix B of [90]):

MR(µ) = diag(M1(µ), M2(µ), M3(µ)).
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Defining
H = YνY

†
ν , (3.21)

and

t =
1

16π2
ln (µ/ΛGUT) , (3.22)

one obtains for the mass eigenvalues in the SM with right handed neutrinos:

dMi

dt
= 2Hii Mi (no sum). (3.23)

Note that due to the positivity of the right-hand side of (3.23), the running will
always decrease the masses when running from the GUT to the seesaw scale.

The matrix H satisfies the RGEs

dH

dt
= [T, H ] + 3 H2 − 3 YνY

†
EYEY †

ν + 2αH (SM), (3.24)

dH

dt
= [T, H ] + 6 H2 + 2 YνY

†
EYEY †

ν + 2αH (MSSM), (3.25)

where

α = Tr(Y †
ν Yν) + Tr(Y †

e Ye) + 3 Tr(Y †
uYu) + 3 Tr(Y †

d Yd)−
9

20
g2
1 −

9

4
g2
2 (SM),

α = Tr(Y †
ν Yν) + 3 Tr(Y †

uYu)−
3

5
g2
1 − 3g2

2 (MSSM),

Tij =

{
−Mj+Mi

Mj−Mi
ReHij − i

Mj−Mi

Mj+Mi
ImHij (i 6= j),

0 (i = j),
(3.26)

and GUT normalization has been employed for g1. The matrix T satisfies U̇ =
TU , where M

(0)
R (µ) = U(µ)TMR(µ)U(µ) and M

(0)
R satisfies the unconstrained

RGEs given in [90]. Note that α is real and has trivial flavour structure. Note
the different relative signs in (3.24) and (3.25); we will return to this point below.

We now turn to a qualitative analysis of these equations and their impact
on leptogenesis and flavour violation. Ignoring flavour effects in the Boltzmann
evolution of charged leptons, the baryon asymmetry ηB is approximately propor-
tional to the combinations Im((Hij)

2) = 2 ReHij ImHij (i 6= j), evaluated in the
mass eigenbasis. At the scale ΛGUT, degeneracy of MR allows the use of an SO(3)
transformation to make the off-diagonal elements of ReH vanish.4 As explained
above, we should RG-evolve all parameters to the scale µ ∼ Mν to avoid large

4 To see this, notice that H is hermitian, so ReH is real symmetric. That is, it can be diago-
nalized by a real orthogonal (and hence unitary) transformation of the right-handed neutrinos.
Now if all three neutrinos are degenerate, such a rotation affects no term in the Lagrangian
besides Yν . By inspecting the unconstrained RGEs, one finds furthermore that the matrix T
is actually zero at the initial scale, and consequently the commutator [T,H ] absent from (3.24),
(3.25), (3.27), and (3.28).
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logarithms. Let us first consider the formal limit of vanishing charged lepton
Yukawa couplings YE for the SM case. It is instructive to split (3.24) into real
and imaginary parts. The former satisifes

dReH

dt
= [ReT, ReH ]− [ImT, ImH ] + 3

{
(ReH)2 − (ImH)2

}
+ 2αReH. (3.27)

To investigate how ReH can be generated radiatively, assume that it is zero
at some scale (initial or lower). Then (3.27) reduces to

dReH

dt
= −[ImT, ImH ]− 3(ImH)2. (3.28)

Now evaluate this for the (2, 1) element and notice that Tij = 0 and ImHij = 0
for i = j. If there were only two heavy singlets in the theory, each term in each
matrix product would require one (2, 1) element and one (1, 1) or (2, 2) element
from the two matrix factors. For example,

(ImT ImH)21 = ImT21 ImH11︸ ︷︷ ︸
0

+ ImT22︸ ︷︷ ︸
0

ImH21 = 0, (3.29)

and similarly for the other terms. Consequently,

ReH21 = 0⇒ dReH21

dt
= 0. (3.30)

We see that there is no radiative leptogenesis in the two-flavour case when YE = 0.
This is consistent with the approximate equation (12) in [84], where ReH21 was
found to be proportional to y2

τ . It is easy to see that the argument breaks down
in the three-flavour case. For instance,

((ImH)2)21 = ImH21ImH11 + ImH22ImH21 + ImH23ImH31 = ImH23ImH31,
(3.31)

which is in general not zero. The other terms in (3.28) are also proportional to
ImH23ImH31. We see that three generations of heavy neutrinos are necessary and
sufficient to generate leptogenesis without help from charged lepton Yukawas.

Once we restore the charged lepton Yukawas, they will also contribute. The
important qualitative difference is that, whereas the contribution involving the
charged-lepton Yukawas is only logarithmically dependent of the seesaw scale
(as seen in eqs.(3.55)–(3.57) below for the two-flavour case, or from [87] for the
three-flavour case), the pure Yν contribution to the radiatively generated ReHij

scales with Mν because it contains two extra powers of Yν as observed in the
three flavour scenario studied in [85].

In summary, we expect the following qualitative behaviour for the BAU as a
function of Mν :

• For small Yν (small Mν), the dominant contribution to ReHij and hence to
ηB should be due to YE. ηB turns out to be weakly dependent on Mν .
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• For large Yν (large Mν), in the three-flavour case there is a relevant contri-
bution proportional to ((ImH)2)ij . Since it contains two extra powers of Yν
with respect to the contribution proportional to y2

τ , ηB scales linearly with
Mν .

• In the case of only two heavy flavours, ηB is weakly dependent on Mν over
the whole range of Mν . We will therefore include an “effective” two-flavour
scenario in our numerical analysis.

Let us stress that we reached these qualitative conclusions only upon neglecting
flavour effects in the Boltzmann evolution of the products of the Ni decays. We
will return to these points in Section 3.4 and in Section 3.5, where we perform a
detailed quantitative analysis.

Finally, let us briefly discuss li → ljγ. In MLFV these radiative lepton decays
are governed by ∆ij ≡ Y †

ν Yν (and structures involving more powers of Yukawa
matrices). In the case of the SM, the rates are known to be essentially zero due
to a near perfect GIM cancellation among the tiny neutrino masses. From the
point of view of MLFV, this smallness can be traced to the fact that, in the SM,
the LFV scale is equal to the LNV scale ∼Mν .

On the other hand, in the more generic case of the MSSM, there are additional
contributions mediated by slepton-higgsino or slepton-gaugino loops suppressed
only by a scale ΛLFV ∼ ml̃, of order TeV, as discussed in Section 3.3.2. Linearizing
the RG evolution, the charged slepton soft mass matrix acquires the form[91]

m̃2
l (Mν) = m2

01− L
Y †
ν Yν

16π2
(6m2

0 + 2a2
0) + . . . , (3.32)

where the dots denote terms governed by charged lepton Yukawa couplings YE
or conserving lepton flavour. Note that the flavour structure in the soft terms
is generated at a high scale and that, unlike the case of CP asymmetries in Ni

decay, the necessary flavour structure ∆ is already present at the initial scale
ΛGUT. Hence the RGE running of ∆ merely gives a correction. Note also that
there is dependence on the MLFV model beyond the choice of LFV scale due to
the (in general unknown) RGE coefficients in (the relevant analog of) (3.32).

3.3.5 RGE evolution below Mν: PMNS matrix and ∆ij

So far we have ignored renormalization effects in equations such as (3.11), iden-
tifying dν and Uν with the physical (light) neutrino masses and mixing matrix,
while the objects Yν and DR are defined at a high scale. However, to be orthogo-
nal the matrix R has to be defined with all objects given at the same scale. Now
it is well known that using low-energy inputs in dν can be a bad approximation
because there are significant radiative corrections between the weak and GUT
scales. However, as investigated in [92], both in the SM and in the MSSM with
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small tanβ the main effect below Mν is an approximately universal rescaling of
the light neutrino masses. This results in larger magnitudes of the elements of Yν
extracted by means of (3.11) but in a weak running of the matrix Uν . Above the
scale Mν , even though the heavy singlets are now dynamical, one can still define
an effective neutrino mass matrix through the seesaw relation (3.9). However, the
evolution becomes more involved, as in the presence of heavy singlets there are
additional contributions to the running involving Yν . To deal with this situation,
where some of our inputs are specified at the weak scale, while the matrix Rdeg

is defined at the scale ΛGUT, we employ an iterative procedure detailed in our
paper [77]. As was the case for the evolution above Mν , also the RGE effects
below Mν , and consequently the relation of e.g Y †

ν Yν to the input parameters
necessarily depends on the details of the MLFV model.

3.4 Numerical Analysis: B(li → ljγ) and CP

asymmetries in νR decay

3.4.1 Preliminaries

For our numerical analysis we take our input parameters at the weak scale, except
for the matrix Rdeg, which has to be defined at the scale ΛGUT. From these
inputs we find a consistent set of parameters at the seesaw scale Mν , where
the CP asymmetries as well as B(li → ljγ) are calculated, through an iterative
procedure. For the running we use the package REAP [93].
For the PMNS matrix we use the convention:

Uν =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13


 · V (3.33)

and V = Diag(eiα/2, eiβ/2, 1) where α and β denote the Majorana phases and δ
denotes the Dirac phase. We parameterize the complex orthogonal matrix R as
follows:

R =




ĉ12 ŝ12 0
−ŝ12 ĉ12 0

0 0 1








1 0 0
0 ĉ23 ŝ23

0 −ŝ23 ĉ23








ĉ13 ŝ13

0 1 0
−ŝ13 0 ĉ13



 , (3.34)

with ŝij ≡ sin θ̂ij , with θ̂ij in general complex:

θ̂ij = xij + i yij. (3.35)

In the degenerate case, the angles xij can be made to vanish by a redefinition
of the right-handed neutrinos, i.e. a matrix of the form Rdeg is parameterized by
three real numbers yij .
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In the following, we use maximal atmospheric mixing c23 = s23 = 1/
√

2 and
a solar mixing angle θsol = 33◦, with corresponding values for its sine s ≡ s12 and
cosine c ≡ c12. For the sine of the CHOOZ angle s13 and the phases we allow the
ranges

0 ≤ s13 ≤ 0.25, 0 < α, β, δ < 2π, (3.36)

and for the light neutrinos we use the low energy values

∆m2
sol = m2

2 −m2
1 = 8.0 · 10−5 eV2 (3.37)

∆m2
atm = |m2

3 −m2
2| = 2.5 · 10−3 eV2 (3.38)

0 ≤ mlightest
ν ≤ 0.2 eV (3.39)

with mlightest
ν = m1(m3) for normal (inverted) hierarchy, respectively. See [94] for

a detailed discussion of the neutrino masses and mixing. For the heavy neutrino
mass scale, we consider a wide range

106 GeV < Mν < 1014 GeV, (3.40)

and the CP violating parameters yij are all taken in the range [−1, 1] if not
otherwise stated.

3.4.2 Perturbativity bounds

In the MLFV framework the magnitudes of the Yukawa couplings Yν are very
sensitive to the choice of Mν , mlightest

ν and the angles in the matrix Rdeg, as
is evident from (3.11). To render the framework perturbative, we impose the
constraint

y2
max

4π
< 0.3, (3.41)

where y2
max is the largest eigenvalue of Y †

ν Yν . By means of (3.15), it translates
into a bound on R†R = R2 and the angles yij that scales with M−1

ν and hence is
most severe for a large lepton-number-violating scale. Analogous bounds apply
to other dimensionless couplings whose number depends on the precise MLFV
model. For instance, in the SM there is also the Higgs self coupling λH , whereas
in the MSSM there is no such additional coupling.

3.4.3 Lepton Flavour Violation and li → ljγ

Following Cirigliano et al. [76] we consider the normalized branching fractions
defined as

B(li → ljγ) =
Γ(li → ljγ)

Γ(li → ljνiν̄j)
≡ rijB̂(li → ljγ), (3.42)
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where B̂(li → ljγ) is the true branching ratio and rµe = 1.0, rτe = 5.61 and
rτµ = 5.76. Assuming first the heavy right-handed neutrinos to be degenerate
but not making the assumptions of R = 1 and Uν being real as done in [76], the
straightforward generalization of (29) in [76] is

B(li → ljγ) = 384π2e2 v4

Λ4
LFV

|∆ij|2|C|2. (3.43)

Here v = 174 GeV is the vacuum expectation value of the SM Higgs doublet,5

ΛLFV is the scale of charged lepton flavour violation, and C summarizes the
Wilson coefficients of the relevant operators that can be calculated in a given
specific model. They are naturally of O(1) but can be different in different MLFV
models. As we would like to keep our presentation as simple as possible, we will
set |C| = 1 in what follows, bearing in mind that in certain scenarios C may
differ significantly from unity. Thus the true B(li → ljγ) can be different from
our estimate in a given MLFV model, but as C is, within MLFV, independent of
external lepton flavours, the ratios of branching ratios take a very simple form

B(li → ljγ)

B(lm → lnγ)
=
|∆ij|2
|∆mn|2

. (3.44)

The most important objects in (3.43) and (3.44) are

∆ij ≡ (Y †
ν Yν)ij =

1

v2
(Uν

√
dνR

†DRR
√

dνU
†
ν )ij, (3.45)

which in the limit of R = 1, DR = Mν1, and Uν being real reduce to ∆ij as
given in (14) of [76].

With the formula (3.45) at hand we can generalize the expressions for ∆ij

in (24) of [76] to the general case of complex R and Uν . To this end we will
use the standard parametrization of the PMNS matrix Uν in (3.33) and the
parametrization of R in (3.34). We will discuss in our numerical analysis also
the cases for which y13 and y23 are non-vanishing. As mentioned above, setting
xij = 0 is in accord with the degeneracy of the right-handed neutrinos. Once this
degeneracy is broken by RG effects, the xij become non-zero.

Recall from Section 3.3 that ∆ij evolves above the scale Mν and the flavour
structures it affects, such as the slepton mass matrix m2

l̃
, also evolve between Mν

and ΛLFV (and the resulting effective operators below ΛLFV also evolve). More-
over, the flavour-violating piece in, for example, m2

l̃
is not exactly proportional

to ∆ at the scale Mν beyond leading order because these objects satisfy different
RGEs between Mν and ΛGUT. All this running depends, beyond the operator,
also on the details of the model. Below the seesaw scale the flavour-nonuniversal

5v =
√
v2
1 + v2

2 for two-Higgs-doublet models such as the MSSM. Powers of sinβ can be
absorbed into C or into a redefinition ΛLFV → Λeff

LFV
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Figure 3.1: Double ratios of li → ljγ for the MSSM with tanβ = 2. Left plot:
All parameters varied, right plot: no phases and only y12 6= 0. For a discussion,
see the text.

contributions are governed by YE (although trilinear couplings such as the A-
terms in the MSSM can also contribute), which is analogous to the case of the
PMNS matrix. Based on the experience that the running of the PMNS angles is
weak in the SM and the MSSM unless tan β (and hende yτ) is large, we ignore
all these details and evaluate ∆ij at the scale Mν .

That ∆ij has to be evaluated at the high energy scale Mν , and hence Uν and
dν have to be evaluated at Mν by means of renormalization group equations with
the initial conditions given by their values at MZ , has recently been stressed in
particular in [83]. The dominant contributions to the flavour-violating pieces in
the charged slepton masses matrix in the MSSM that is relevant for li → ljγ
are proportional to Y †

ν Yν and come from scales above Mν , as seen for instance
in equation (30) of [95] (where charged lepton Yukawas and A-terms have been
dropped and only contribute at higher orders) and the fact that right-handed
neutrinos and their Yukawa couplings are absent below that scale.

All other parameters of a given MLFV model, hidden in the Wilson coefficient
C in (3.43), like slepton and chargino masses in the MSSM, would have to be
evaluated at the electroweak scale and lower scales if a concrete value for C was
desired.

The ratio B(µ → eγ)/B(τ → µγ) is shown for the case of the MSSM with
tan β = 2 in Fig. 3.1 (left). All other parameters are varied in the ranges given
above. We see that this ratio varies over about six orders of magnitude and
B(µ → eγ) can be a factor 103 larger than B(τ → µγ) in qualitative agreement
with [96, 97]. We have checked that the leptogenesis constraint, as discussed in
Section 3.5, has no significant impact. This contradicts the findings of [85]. Even
when constraining the Dirac and Majorana phases in the PMNS matrix to zero
and allowing only for a single nonvanishing angle y12 at the scale ΛGUT, we can
still have B(µ→ eγ)≫ B(τ → µγ). This is again in agreement with [96, 97]. We
will consider the single ratio B(µ→ eγ) together with the leptogenesis constraint
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Figure 3.2: Impact of iterative vs simplified procedure. Left plot: Simplified
result for the ratio of branching ratios B(µ→ eγ)/B(τ → µγ), normalized to the
one obtained with the iterative procedure. Right plot: Similarly for ∆12.

in Section 3.5.
It is also interesting to compare our elaborate iterative procedure of matching

high- and low-energy parameters to a simpler procedure where we simply impose
the weak-scale PMNS and neutrino mass parameters at the scale ΛGUT (Fig. 3.2
(left), corresponding to the MSSM with tanβ = 2). It turns out that both
procedures agree well for small scales Mν . (This agreement is slightly worse for
tan β = 10.) For large values Mν > 1011 GeV, deviations up to a few orders
of magnitude can occur for some choices of parameters. It appears that this is
usually due accidentally small branching ratios in one of the approaches. This is
supported by the right plot in the Fig. 3.2, which shows a good agreement for the
more fundamental flavour-violating quantity ∆12 up to the (expected) different
overall normalization.

3.4.4 CP asymmetries

We are also in a position to illustrate and check numerically our qualitative dis-
cussion in Section 3.3 of the CP asymmetries relevant for leptogenesis. A thor-
ough investigation of the baryon asymmetry follows in the next section. Fig. 3.3
shows the sum of the three CP asymmetries |∑i ǫi| defined below (3.47), for the
generic three-flavour case (left plot) and the CP asymmetry ǫ1 for the effective
two-flavour case where only y12 6= 0 (right plot). One can see clearly that in
the latter case the dependence on Mν is weak and slightly reciprocal. In fact
this dependence is approximately proportional to ln2 ΛGUT/Mν (black solid line)
in agreement with expectations. The generic case is shown in the left plot for
the SM (black solid) as well as the MSSM for tan β = 2 (red dot-dashed) and
tan β = 10 (blue dotted), with the remaining parameters given in the Figure
caption. In contrast to the two-flavour case, there is strong dependence on Mν
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Figure 3.3: Left plot: Mν dependence of |∑i ǫi| for the generic (3-flavour) case.
Right plot: effective 2-flavour case. Normal hierarchy, mlightest

ν = 0.02 eV ; y12 =
0.8, y13 = 0.2, y23 = 0.6 (3-flavour case), y12 = 1 and y13 = y23 = 0 (effective
2-flavour case). The PMNS phases have been taken to be δ = α = β = π/10.
Right plot: Effective two-flavour case; only ǫ1 is shown, on a linear scale.

for Mν > 1012 GeV, when the contribution due to Yν alone starts to dominate
the RGEs (3.24),(3.25). The precise form of the Mν dependence is quite sensitive
to the “angles” yij, but the roughly linear growth of |∑i ǫi| in the regime of large
Mν appears to be general. However, the figure also clearly shows a strong depen-
dence on the MSSM parameter tanβ particularly for small Mν . Indeed already
for relatively small tan β = 10 the CP asymmetries can be more than an order of
magnitude larger than in the SM. Moreover, in the case of the MSSM we observe

a sign change at some scale Mν
>∼ 1012 GeV, which can be traced to the different

relative signs between the terms on the right-hand sides of (3.24) and (3.25).
This example clearly demonstrates a rather dramatic dependence on details of
the model. Finally, as in the case of the double ratios above, we investigated the
impact of the iterative procedure compared to the simplified approach and found
it to be generically small. Hence we feel justified to use the simplified procedure
in Section 3.5 in order to save computer time.

3.5 Leptogenesis in the extended MLFV Frame-

work

3.5.1 Preliminaries

One of the most plausible mechanisms for creating the observed matter–antimatter
asymmetry in the universe is leptogenesis, where a CP asymmetry generated
through the out-of-equilibrium L-violating decays of the heavy Majorana neutri-
nos leads to a lepton asymmetry which is subsequently transformed into a baryon
asymmetry by (B + L)-violating sphaleron processes [79, 80, 98].
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Unfortunately, even in its simplest realization through the well-known seesaw
mechanism [78], the theory has too many parameters. Indeed, as recalled in Sec-
tion 2.4 in the framework of the standard model (SM) extended with three heavy
Majorana neutrinos Ni (i = 1, 2, 3), the high-energy neutrino sector, character-
ized by the Dirac neutrino (mD) and the heavy Majorana neutrino (MR) mass
matrices, has eighteen parameters. Of these, only nine combinations enter into
the seesaw effective neutrino mass matrix mT

D M−1
R mD , thus making difficult to

establish a direct link between leptogenesis and low-energy phenomenology [99].
Furthermore, there are six CP-violating phases which are physically relevant at
high energies, while only three combinations of them are potentially observable at
low energies. Therefore, no direct link between the sign of the baryon asymmetry
and low-energy leptonic CP violation can be established, unless extra assump-
tions are introduced.

Furthermore, additional assumptions are usually required to completely de-
termine the high-energy neutrino sector from low-energy observables. Typical
examples are the introduction of texture zeros in the Yukawa matrices or the im-
position of symmetries to constrain their structure [100]. On the other hand,
the heavy Majorana neutrino masses can range from the TeV region to the
GUT scale, and the spectrum can be hierarchical, quasi-degenerate or even ex-
actly degenerate [101]. Despite this arbitrariness, the heavy Majorana neutrino
mass scale turns out to be crucial for a successful implementation of the lep-
togenesis mechanism. In particular, the standard thermal leptogenesis scenario
with hierarchical heavy Majorana neutrino masses (M1 ≪ M2 < M3) requires
M1 & 4 × 108 GeV [102], if N1 is in thermal equilibrium before it decays, or
the more restrictive lower bound M1 & 2 × 109 GeV [103] for a zero initial N1

abundance. Since this bound also determines the lowest reheating temperature
allowed after inflation, it could be problematic in supersymmetric theories due
to the overproduction of light particles like the gravitino [104].

It should be emphasized, that the above bounds are model dependent in the
sense that they can be avoided, if the heavy Majorana neutrino spectrum is no
longer hierarchical. For example, if at least two of the Ni are quasi-degenerate in
mass, i.e. M1 ≃ M2 , then the leptonic CP asymmetry relevant for leptogenesis
exhibits the resonant behaviour ε1 ∼ M1/(M2 −M1) [86, 87]. In this case, it is
possible to show that the upper bound on the CP asymmetry is independent of
the light neutrino masses and successful leptogenesis simply requires M1,2 to be
above the electroweak scale for the sphaleron interactions to be effective. The
quasi-degeneracy may also be achieved in soft leptogenesis where a small splitting
is induced by the soft supersymmetry breaking terms [88].

Another possibility which has been recently explored [105, 106] relies on the
fact that radiative effects, induced by the renormalization group (RG) running
from high to low energies, can naturally lead to a sufficiently small neutrino
mass splitting at the leptogenesis scale. In the latter case, sufficiently large CP
asymmetries are generated.
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In the minimal seesaw scenario with only two heavy neutrinos the resulting
baryon asymmetry in the SM turns out to be below the observed value [105]. On
the other hand, this mechanism can be successfully implemented in its minimal
supersymmetric extension (MSSM) [106].

It has been shown [84] that the above problems in the SM can be overcome
in a more realistic scenario where the effects of a third heavy neutrino are also
taken into account. In [84], leptogenesis was studied in the framework of a model
where there are three right-handed neutrinos, with masses M1 ≈ M2 ≪M3. We
will discuss this scenario below as a special limit of the MLFV framework.

In view of the above, it is important to analyze leptogenesis in the extended
MLFV framework, where CP violation is allowed both at high and low ener-
gies. In the MLFV scenario, right-handed neutrinos are assumed to be exactly
degenerate at a high energy scale. In the limit of exact degeneracy, no lepton-
asymmetries can be generated. However, as previously emphasized, even if exact
degeneracy is assumed at a high energy scale, renormalization group effects lead
to a splitting of right-handed neutrino masses at the scale of leptogenesis, thus
offering the possibility of viable leptogenesis in the extended MLFV framework.

3.5.2 BAU in the RRL and Flavour Effects

In leptogenesis scenarios the baryon asymmetry of the universe ηB arises due
to non-perturbative sphaleron interactions that turn a lepton asymmetry into a
baryon asymmetry. The predicted value of ηB has to match the results of WMAP
and the BBN analysis for the primordial deuterium abundance [107]

ηB =
nB
nγ

= (6.3± 0.3)× 10−10. (3.46)

The lepton asymmetry is generated by out-of-equilibrium decays of heavy
right-handed Majorana neutrinos Ni and is proportional to the CP asymmetry
εli with

εli =
Γ(Ni → Ll φ)− Γ(Ni → L̄l φ̄)∑
l

[
Γ(Ni → Ll φ) + Γ(Ni → L̄l φ̄)

] , (3.47)

and l denoting the lepton flavour, that arises at one-loop order due to the inter-
ference of the tree level amplitude with vertex and self-energy corrections.
A characteristic of the MLFV framework is that only admissable BAU with the
help of leptogenesis is radiative and thereby resonant leptogenesis. The mass
splittings of the right-handed neutrinos induced by the RGE are of similar size
∆M ∼ O(Mν YνY

†
ν ) as the decay widths Γ ∼ O(Mν YνY

†
ν ). This is the condition

of resonant leptogenesis. The CP asymmetry is for the lepton flavour l given by

εli =
1

(YνY
†
ν )ii

∑

j

ℑ((YνY
†
ν )ij(Yν)il(Y

†
ν )lj) g(M2

i , M
2
j , Γ

2
j) (3.48)
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where g(M2
i , M

2
j , Γ

2
j) is an abbreviation for the full result given in [87]. The total

CP asymmetries εi are obtained summing over the lepton flavours l.
The baryon to photon number ratio ηB can then be calculated solving the Boltz-
mann equations for the lepton asymmetry and converting it into ηB using suitable
dilution and sphaleron conversion factors. Which Boltzmann equation to use de-
pends on the temperature scale at which leptogenesis takes place. We will follow
a simplistic approach ignoring all subtleties generically coming into play in the
intermediate regime between different mechanisms at work. Our main conclu-
sions, however, will not be affected by this omission. We will simply divide the
temperature scale into a region up to which all three lepton flavours have to be
taken into account and a region above which the single flavour approximation
works.

Below some temperature T µ
eq ≃ 109 GeV muon and tau charged lepton Yukawa

interactions are much faster than the expansion H rendering the µ and τ Yukawa
couplings in equilibrium. The correct treatment in this regime requires the solu-
tion of lepton flavour specific Boltzman equations. In the strong washout regime
ηB is independent of the initial abundances and an estimate including flavour
effects is given by [108]

ηB ≃ −10−2
3∑

i=1

∑

l=e,µ,τ

e−(Mi−M1)/M1 εli
K l
i

K lKi

, (3.49)

with

K l
i =

Γ(Ni → Llφ) + Γ(Ni → L̄lφ̄)

H(T = Mi)
(3.50)

Ki =
∑

l=e,µ,τ

K l
i , K l =

3∑

i=1

K l
i , H(T = Mi) ≃ 17

M2
i

MPl
(3.51)

where MPl = 1.22 × 1019 GeV and K l
i is the washout factor due to the inverse

decay of the Majorana neutrino Ni into the lepton flavour l. The impact of
lepton flavour effects on ηB is discussed in [109, 108, 110, 111, 112]. As we shall
also see below, the inclusion of flavour effects generally leads to an enhancement
of the resulting ηB. This is due to two effects: (1) the washout gets reduced
since the interaction with the Higgs is with the flavour eigenstates only and (2)
an additional source of CP violation arises due to lepton flavour specific CP
asymmetries.

For higher values of T >∼ 1012 GeV the charged lepton Yukawa couplings do not
break the coherent evolution of the lepton doublets produced in heavy neutrino
decays anymore. In this regime flavour effects can be ignored and an order of
magnitude estimate is given by

ηB ≃ −10−2

3∑

i=1

e−(Mi−M1)/M1
1

K

∑

l=e,µ,τ

εli, (3.52)
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with K =
∑

i Ki. This agrees with a recent analytical estimate by [113] up to
factors of O(1) for the region of interest in parameter space, where the estimate
of [113] generally leads to a smaller efficiency and smaller ηB. We have also
compared the analytical estimate of [113] and (3.52) with the numerical solution
of the Boltzman equations using the LeptoGen code [108]6. For the relevant
ranges of the input parameters the analytical estimate of (3.52) and the full
numerical solution agree quite well, whereas the estimate of [113] leads to an
efficiency and ηB generally smaller by a factor of 5 to 10. This is shown in
Fig. 3.8. These estimates, however, do not take into account the potentially large
lepton flavour effects included in (3.49).
Let us remark in passing that in the flavour independent region we are always in
the strong washout regime, since

K = K1 + K2 + K3 =
1

m∗ tr
(
RdνR

†) ≥ (∆m2
atm)1/2

m∗ ≃ 50, (3.53)

where m∗ = O(10−3). This inequality holds since the trace is linear function
of the neutrino masses with positive coefficents, which reaches its minimum for
yij = 0. We also made sure that the estimate (3.49) including flavour effects is
applicable [108] and checked that the inequality

K l
i
>∼ 1 (3.54)

is always satisfied for the points considered in the plots. Since both (3.53)
and (3.54) are satisfied, a simple decay-plus-inverse decay picture is a good de-
scription and the estimates (3.49) and (3.52) independent of the initial abun-
dances give a good approximation of the numerical solution of the full Boltzman
equations.
We have performed the leptogenesis analysis specifically for the SM. We do not ex-
pect large deviations in the MSSM from the SM if the same Yν(Mν) and M i

ν(Mν)
are given. The main differences come (1) from the CP-asymmetries, which now
include contributions from the supersymmetric particles, (2) from the washout,
and (3) from conversion and dilution factors. The supersymmetric CP asymme-
tries have the same flavour structure as in the SM and using [114] one can show
that ǫMSSM ≃ 2 ǫSM for quasi-degenerate heavy neutrinos. We also expect the
correction by the decay widths to be similar in size. Next, the washout in the
strong washout regime is about a factor of

√
2 larger [115] in the MSSM, whereas

the dilution and sphaleron conversion factors stay almost unchanged. Conclud-
ing, we find that in the scenario considered the predicted values roughly satisfy
ηMSSM
B ≃ 1.5 ηSM

B for the same set of input parameters Yν(Mν) and M i
ν(Mν). The

RGE induced values of Yν(Mν) and M i
ν(Mν), however, are model dependent and

lead to in general different Yν(Mν) and M i
ν(Mν) for the same boundary condi-

tions at the GUT and low-energy scale, as discussed in Section 3.3.4. Especially

6http://www.ippp.dur.ac.uk/∼teju/leptogen/
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sensitive is the region Mν
<∼ 1012 GeV where the CP asymmetries are dominantly

generated by the tau Yukawa coupling, which is enhanced by a factor of tanβ in
the MSSM.

3.5.3 Two flavour limit
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Figure 3.4: Resulting ηB for the case in which only y12 6= 0 (effective two flavour
case) as a function of Mν for the normal hierarchy of light neutrinos: the orange
crosses and red triangles show the unphysical limit setting the charged lepton
yukawas Ye = 0 in the renormalization group evolution with and without includ-
ing lepton flavour effects in the calculation of ηB, respectively. Setting the charged
lepton Yukawas to their physical values, the blue circles and the green squares
correspond to including and ignoring lepton flavour effects in the calculation,
respectively.

As a first step we discuss the special case of y12 being non-vanishing at the
GUT scale and all other yij = 0. This corresponds approximately to one of the
scenarios considered in a recent study of radiative leptogenesis [84] with two right-
handed neutrinos quasi-degenerate and a third right-handed neutrino decoupled
M1 ≃ M2 ≪M3. If only y12 6= 0 the calculation of ηB proceeds in the same way
since to a good approximation only ν1

R and ν2
R contribute to the CP asymmetry.

The only difference comes from the enhanced wash-out. Since the third heavy
neutrino is now also contributing, the lower bound on the washout K in (3.53)
is in our case relatively enhanced by a factor (∆m2

atm)1/2/(∆m2
sol)

1/2 ≃ 4 − 5.
We have checked this correspondence for ηB also numerically. Ignoring flavour
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Figure 3.5: ηB for the case in which only y12 6= 0 (effective two flavour case) as a
function of y12 (left) and mν1 (right) for the normal hierarchy. The black circles
are obtained including lepton flavour effects and the red crosses are calculated
ignoring them.

subtleties in leptogenesis for a moment, the CP violating effects due to renormal-
ization group effects are induced only by the charged lepton yukawa couplings, see
Section 3.3.4, and the total CP asymmetries for each heavy Majorana neutrino
take the form [84]

ε1,2 ≃
ε̄1,2

1 + D2,1

, ε3 ≃ 0, (3.55)

and

ε̄j ≃
3y2

τ

32 π

Im(H21) Re [(Yν)
∗
23 (Yν)13]

Hjj(H22 −H11)
=

3 y2
τ

64 π

mj(m1 + m2)
√

m1 m2 sinh(2 y12) Re (U∗
τ2 Uτ1)

(m1 −m2)(m
2
j cosh2 y12 + m1m2 sinh2 y12)

,

(3.56)

Dj ≃
π2

4

H2
jj

(H22 −H11)2 ln2 (Mν/MGUT)
=

[
π

2

m2
j cosh2 y12 + m2m1 sinh2 y12

mj(m2 −m1) ln (Mν/MGUT)

]2

.

(3.57)

where Dj are regularisation factors coming from the heavy Majorana decay
widths. We immediately see that the total CP asymmetries only bare a very mild
dependence on the heavy Majorana scale. The almost negligible dependence on
Mν has to be compared with the power-suppression in Mν in the hierarchical case
(M1 ≪ M2 < M3). We find this expectation confirmed in Fig. 3.4, where the
resulting ηB is shown as a function of Mν .
Fig. 3.4 also nicely illustrates the relative importance of flavour effects in lep-
togenesis. If no cancellations occur, we find, that flavour effects generate an ηB
which is of the same order of magnitude (blue circles), however almost always
larger than the one calculated ignoring flavour effects (green squares).
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If we now consider the unphysical limit of setting Ye = 0 in the renormaliza-
tion group running only, we find that the total CP asymmetries and ηB should
vanish since no CP violation effects are induced by the RGE, see Section 3.3.4.
We confirm this behaviour in Fig. 3.4 (red triangles). A very different picture
emerges once we include flavour effects. The relevant quantity for leptogenesis
is then ℑ((YνY

†
ν )ij(Yν)il(Y

†
ν )lj) with no summation over the charged lepton index

l. Although no total CP asymmetries are generated via the RG evolution in the
limit Ye = 0, the CP asymmetries for a specific lepton flavour are non-vanishing.
Additionally, the resulting ηB now shows a Mν dependence which stems from the
RGE contributions due to Yν only, which are absent in the total CP asymmetries
in the two flavour limit (orange crosses).
All plots have been generated assuming a normal hierarchy of the light neutrino
masses. We have checked that the results for the inverted hierarchy are similar,
although ηB turns out to be generally smaller and below the observed value, in
accordance with the findings of [84]. Including flavour effects it is however still
possible to generate a ηB of the correct order of magnitude. In Fig. 3.5 we addi-
tionally show the dependence of ηB on y12 and mν1. We find that flavour effects
enlarge the y12 range where successful baryogenesis is possible and slightly soften
the upper bound on the light neutrino mass scale. The left panel even demon-
strates that leptogenesis in the MLFV scenario is possible for a real R matrix.
Then lepton flavour effects are essential [110, 111].

3.5.4 General case

Now we consider the general case with all three phases yij non-vanishing. We
have varied the parameters as described in Section 3.4. The regularisation of
the resonant CP asymmetry by the Di turns out to be important for values of
ǫi >∼ 10−6, see Fig. 3.6. As seen there, in the regime where flavour effects are
important we find an upper bound on the light neutrino mass of mν1

<∼ 0.2 eV in
order to generate the right amount of ηB. Beyond the temperature scale where
flavour effects play a role, no relevant bound can be found. This is due to the
enhancement of the CP asymmetry which approximately grow linearly for values
of Mν

>∼ 1012 GeV, see the discussion in Section 3.4.4

In Fig. 3.8, we compare different calculations of ηB:

• the flavour independent estimate of [113] used in Cirigliano et al. [85] (red
boxes),

• the numerical solution of the flavour independent Boltzmann equations us-
ing the LeptoGen package (black circles),

• the recent estimate by Blanchet and Di Bari [112] that includes flavour
effects (green triangles),
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Figure 3.6: (left) ηB for the general case with 0.01 < |yij| < 1 as a function
of mν1 (right). The black circles are obtained including lepton flavour effects
whereas the red crosses are calculated ignoring them. The flavour blind results
(red crosses) reach higher values due to the CP asymmetries growing as Mν gets
bigger in this regime. (right) The total CP asymmetry |ǫ1| for the general case

with 0.01 < |yij| < 0.8 as a function of ytot = (y2
12+y2

13+y2
23)

1
2 for input values that

result in the right oder of magnitude of ηB. The red circles are obtained using
the uncorrected CP asymmetries and the black squares include the corrections
by the decay widths

• the approximate expression of [108] given in (3.49) that also includes flavour
effects (brown crosses).

We find that

• the flavour blind estimate of [113] used in Cirigliano et. al. [85] lies consis-
tently below the numerical solution of the flavour independent Boltzmann
equations. For Mν ≥ 1012 GeV this turns out to be unimportant as flavour
effects in this region are small and we confirm the increase of ηB with Mν

in this region found by these authors.

• Potentially large flavour effects that have been left out in [85] generally
enhance the predicted ηB, in particular for Mν ≤ 1012 GeV, in accordance
with the existing literature.

• Both flavour estimates and the numerical solution of the flavour indepen-
dent Boltzmann equations show solutions with ηB of the measured order of
magnitude without imposing a stringent lower bound on the value of Mν .

The last finding is in contrast to the analysis of Cirigliano et. al. [85] which
using the flavour independent estimate of [113] finds a lower bound on Mν of
O(1012GeV) as clearly represented by the red boxes in Fig. 3.8. The same quali-
tative conclusion holds for ηB using the RGE induced CP asymmetries in the
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Figure 3.7: ηB for the general case with 0.01 < |yij| < 1 as a function of Mν .
The circles are obtained including lepton flavour effects and the red crosses are
calculated ignoring them.

MSSM. The tan β enhancement of the CP asymmetries as discussed in Sec-
tion 3.4.4 even facilitates the generation of an ηB of the right size.

Our analysis that includes flavour effects demonstrates that baryogenesis
through leptogenesis in the framework of MLFV is a stable mechanism and allows
a successful generation of ηB over a wide range of parameters. The absence of a
lower bound on Mν found here has of course an impact on the LFV processes,
which we will discuss next.

In Fig. 3.9 we show Br(µ → eγ) vs. Mν for the parameter ranges described
above and a lepton flavor violation scale of 1 TeV. We highlighted the points where
successful baryogenesis is possible (black squares). We find that Br(µ→ eγ) can
be made small enough to evade bounds from current and future experiments and
one can have successful baryogenesis through leptogenesis at the same time. This
is another finding which is in contrast to a recent analysis [85]. We will summarize
the differences to [85] in the next paragraph.

3.5.5 Comparison with [85]

Recently in an independent analysis Cirigliano, Isidori and Porretti [85] general-
ized MLFV formulation in [76] to include CP violation at low and high energy.
Similarly to us they found it convenient to use for Yν the parametrization of Casas
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Figure 3.8: Different determinations of ηB for the general case with 0.01 < |yij| <
1 as a function of Mν . The black circles are obtained numerically solving the
flavour independent Boltzmann equations using the LeptoGen package, the green
triangles and the brown crosses show estimates including flavour effects of [112]
and (3.49), respectively. Finally the red boxes show the estimate of [113] used
in Cirigliano et. al [85] which ignores flavour effects.

and Ibarra. They have also pointed out that in the MFLV framework the most
natural is the resonant leptogenesis.

On the other hand, these authors neglected flavour dependent effects in the
evaluation of ηB, that we find in agreement with other authors to be impor-
tant [109, 108, 110, 111, 112]. This has important consequences already at the
qualitative level. Their qualitative discussion of the splittings of the M i

ν at the
see-saw scale is similar to ours and we agree with the main physical points made
by these authors in this context. On the other hand, while we have demonstrated
explicitely by means of a renormalization group analysis that a successful RRL
can be achieved, Cirigliano et al confined their analysis to parametrizing possible
radiative effects in terms of a few parameters. In this context a new point made
by us (see discussion Section 3.3.3) is that the coefficients ci in (3.19) are in fact
not independent of each other. Indeed the leading logarithmic contribution to
ci are related by the renormalization group. This can in principle increase the
predictivity of MLFV.
The three most interesting messages of [85] are

• A successful resonant leptogenesis within the MLFV framework implies a
lower bound Mν ≥ 1012 GeV,
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Figure 3.9: B(µ→ eγ) as a function of Mν for ΛLFV = 1 TeV. The black squares
show points where a baryon asymmetry in the range 2 · 10−10 < ηB < 10 · 10−10

is possible.

• With ΛLFV = O(1 TeV), this lower bound implies the rate for µ→ eγ close
to the present exclusion limit,

• MLFV implies a specific pattern of charged LFV rates: B(µ → eγ) <
B(τ → µγ).

For Mν ≥ 1012 GeV, in spite of some differences in the numerics as discussed
above, we basically confirm these findings. Unfortunately, for lower values of Mν

our results differ from theirs. In particular, as we have demonstrated in Fig. 3.8,
the observed value of ηB can be obtained for Mν by several orders of magni-
tude below the bound in [85], in accordance with other analyses of leptogenesis.
Once Mν is allowed to be far below 1012 GeV, ΛLFV = O(1 TeV) does not imply
necessarily B(µ→ eγ) close to the inclusion limit as clearly seen in Fig. 3.9.

One of the reasons for the descrepancy between our result with regard to Mν

and the one of [85] is the neglect of flavour effects in leptogenesis in the latter
paper. Fig. 3.8 illustrates that flavour effects in leptogenesis matter.

Concerning B(µ → eγ) < B(τ → µγ), we confirm the result of [85] in the
limit of very small y12, but as shown in Fig. 3.1, this is not true in general, as
also found in [96, 97]. Consequently, this hierarchy of charged LFV rates cannot
be used as model independent signature of MLFV.
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3.6 Summary and Conclusions

In this chapter we have generalized the proposal of minimal flavour violation in
the lepton sector of [76] to include CP Violation at low and high energy. While
the definition proposed in [76] could be considered to be truly minimal, it appears
to us too restrictive and not as general as the one in the quark sector (MFV) in
which CP violation at low energy is automatically included [10] and in fact all
flavour violating effects proceeding through SM Yukawa couplings are taken into
account [17]. The new aspect of MLFV in the presence of right-handed neutrinos,
when compared with MFV, is that the driving source of flavour violation, the
neutrino Yukawa matrix Yν , depends generally also on physics at very high scales.
This means also on CP violating sources relevant for the generation of baryon-
antibaryon asymmetry with the help of leptogenesis. The first discussion of CP
violation at low and high energy has been presented in [85]. Our conclusions for
Mν ≥ 1012 agree basically with these authors. However, they differ in an essential
manner for lower values of Mν .

Let us conclude this chapter with the following messages:

• A new aspect is the realization that in the context of MLFV the only
admissable BAU with the help of leptogenesis is the one through radiative
resonant leptogenesis (RRL). Similar observations have been made in [85].
In this context our analysis benefited from the ones in [105, 106, 86, 87]. The
numerous analyses of leptogenesis with hierarchical right-handed neutrinos
present in the literature are therefore outside the MLFV framework and
the differences between the results presented here and the ones found in
the literature for M1 ≪ M2 ≪ M3 can be used to distinguish MLFV from
these analyses that could be affected by new flavour violating interactions
responsible for hierarchical right-handed neutrinos.

• We have demonstrated explicitely within the SM and the MSSM at low
tanβ that within a general MLFV scenario the right size of ηB can indeed
be obtained by means of RRL. The important property of this type of
leptogenesis is the very weak sensitivity of ηB to the see-saw scale Mν so
that for scales as low as 106 GeV but also as high as 1013 GeV, the observed
ηB can be found.

• Flavor effects, as addressed by several authors recently in the literature [109,
108, 110, 111, 112], play an important role for Mν

<∼ 1010 GeV as they
generally enhance ηB.

• As charged LFV processes, like µ→ eγ are sensitive functions of Mν , while
ηB is not in the RRL scenario considered here, strong correlations between
the rates for these processes and ηB, found in new physics scenarios with
other types of leptogenesis can be avoided.
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• Except for this important message, several of the observations made by us
with regard to the dependence of charged LFV processes on the complex
phases in the matrix R and the Majorana phases have been already made by
other authors in the rich literature on LFV and leptogenesis. But most of
these analyses were done in the context of supersymmetry. Here we would
like to emphasize that various effects and several patterns identified there
are valid also beyond low energy supersymmetry, even if supersymmetry
allows a definite realization of MLFV provided right-handed neutrinos are
degenerate in mass at the GUT scale.

• One of the important consequences of the messages above is the realization
that the relations between the flavour violating processes in the charged
lepton sector, the low energy parameters in the neutrino sector, the LHC
physics and the size of ηB are much richer in a general MLFV framework
than suggested by [76, 85]. Without a specific MLFV model no general clear
cut conclusions about the scale ΛLFV on the basis of a future observation
or non-observation of µ → eγ with the rate O(10−13) can be made in this
framework.

• On the other hand we fully agree with the point made in [76] that the
observation of µ→ eγ with the rate at the level of 10−13, is much easier to
obtain within the MLFV scenario if the scales ΛLFV and Mν are sufficiently
separated from each other. We want only to add that the necessary size of
this separation is sensitive to the physics between MZ and ΛGUT, Majorana
phases and CP violation at high energy. In this manner the lepton flavour
violating processes, even in the MLFV framework, probe scales well above
the scales attainable at LHC, which is not necessarily the case within MFV
in the quark sector.

• Finally, but very importantly, MLFV being very sensitive to new physics
at high energy scales, does not generally solve possible CP and flavour
problems. This should be contrasted with the MFV in the quark sector,
where the sensitivity to new physics at scales larger than 1 TeV is suppressed
by GIM mechanism.



Chapter 4

Warped Wilson Line Phases

4.1 Introduction

Electroweak symmetry breaking and the hierarchy problem are the central issues
of high-energy physics in the remaining years until the start of the measurements
at the Large Hadron Collider (LHC) at CERN. The leading candidate to sta-
bilize the Higgs mass is the minimal supersymmetric standard model (MSSM).
Direct and indirect measurements, however, have led to a ever-rising scale of the
supersymmetric particle masses to considerable fine-tuning of the parameters,
especially if one wants to reproduce the electroweak symmetry breaking scale.
Within the most popular supersymmetric models experimental constraints have
already excluded large portions of the parameter space (≈ 99% in the case of
universal soft masses [116]). Alternatives to the MSSM have therefore gained
increasing attention. Gauge-Higgs unification (GHU) models are interesting con-
tenders which allow, when embedded in a warped space-time, to dynamically
break the electroweak symmetry and solve the hierarchy problem at the same
time.

The recent years have led to remarkable results in the framework of GHU.
It could be shown that the instability of the electroweak scale under radiative
corrections, the hierarchy problem, can be resolved, if one breaks the electroweak
symmetry by means of new mechanisms in extra-dimensions. It has been known
for a long time [117] that identifying the Higgs as the zero-mode of the fifth
component of a 5 dimensional gauge field renders the effective potential stable
and the Higgs mass is not sensitive to the UV scale anymore. This idea has been
re-inspected in the recent years and has led to realizations in the framework of
higher-dimensional orbifold models. A somewhat minimal model has been given
in [118]. Here, the gauge symmetry is broken by a combination of Z2 projection
and Scherk-Schwarz (SS) twists. Electroweak symmetry breaking then happens
dynamically and non-locally by the so-called Hosotani mechanism [119]. All
properties of the electroweak sector can be derived from the effective potential

71
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and allow a direct test of the models.
Very recently these constructions have been extended to warped extra dimen-

sions and have for the first time resulted in completely realistic predictions[120].
Using the duality between five-dimensional Anti-deSitter space and strongly cou-
pled conformal field theory in 4 dimensions, these models even allow an interpre-
tation reminding of ’walking technicolor’ constructions.

As we will see, GHU in flat extra dimensions is not completely realistic at
the moment. One has to put a lot of effort in raising the scale of the Higgs mass
beyond the weak gauge-bosons scale. Only when adding large kinetic terms on
the branes one can generate a realistic Higgs mass. Large kinetic terms on the
branes, however, are a dynamical consequence of the Randall-Sundrum model in
warped extra-dimensions. This motivates a calculation of the effective potential
in warped extra-dimensions which will be one of the main results of this section.

We will first discuss the minimal model of [118] in flat extra dimensions and
work out the problems. In Section 4.2.2, we briefly review the Hosotani mecha-
nism on the orbifold S1/Z2. In Section 4.3.1, we obtain the Kaluza-Klein (KK)
expansions of the five dimensional gauge and ghost fields with most general twists
in the presence of a gauge field background. Then we will discuss the properties
of the so-called Wilson line phase (WLP) in warped extra dimensions. 1

In Section 4.3.2, we calculate the effective potential for the extra dimensional
component of the background gauge field.

In the last section we summarize and discuss our result and we will give an
outlook and show how it helps to avoid the problems of flat space constructions.

4.2 Flat extra dimensions

4.2.1 Gauge Higgs unification in flat extra dimensions

The simplest possibility allowing an embedding of the Higgs field as an internal
component of a gauge field is a 5D gauge theory with the gauge group G = SU(3)
on the orbifold S1/Z2. The orbifold S1/Z2 has two fixed points and we have to
specify the boundary conditions. Equivalently we can fix the behaviour under
a reflection y → −y (P ) and translation y → y + 2πR (T ) along the internal
coordinate y. Since we want to preserve a SU(2) symmetry we will choose the
following Z2 orbifold projection

P = eiπλ3 =



−1 0 0
0 −1 0
0 0 1


 , (4.1)

where λa are the SU(3) Gell-Mann matrices, normalized as Tr λaλb = 2δab, so
that AM = Aa

Mλa/2.

1The results of this chapter are based on our paper [121],
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In the low-energy 4 D limit the group G is broken to the subgroup H = SU(2)
that commutes with P . The massless degrees of freedom are the 4D gauge bosons
and a charged scalar doublet which stems from the internal components Aa

5 of the
gauge field. A VEV for A5 leads to additional spontaneous symmetry breaking
to E = Û(1). The generators of E are given by Âµ = (A8

µ +
√

3A3
µ)/2. Since a

SU(2) symmetry remains after orbifolding we can always choose 〈A5〉 along the
λ7 component, corresponding to the down component of the doublet, and take

〈Aa
5〉 =

2θ

g5πR
δa7 . (4.2)

The above is a description of electroweak symmetry breaking once we identify
H with the electroweak gauge group, E with the electromagnetic group, and the
zero-mode of A5 with the Higgs field H .

Since we embedded the SM gauge group in a simple gauge-group G = SU(3)
we will get a prediction for the weak mixing angle θW which however turns out to
be too large, θW = π/3. In a more realistic construction this would be avoided by
starting with a different unified group G, namely by adding a U(1) factor to G and
taking the electro-magnetic U(1) as the diagonal of E and the additional U(1)
factor. We will not discuss this further since it does not impact our discussion
of issues related to the effective potential and the extension to include the extra
U(1) is straightforward.

Taking into account the normalization of the zero-mode, (4.2) corresponds to
a VEV for the neutral component of the Higgs doublet H equal to 2θ/(g4πR),
where we have used the relation between the 4 D and 5 D coupling constant

g4 =
g5√
2πR

. (4.3)

It has been known for some time [122] that a VEV for A5 induces a Wilson line
which is equivalent to a Scherk–Schwarz twist, the two situations being related
through a non-periodic gauge transformation. We will discuss this relation further
in the following paragraph for general SU(N) gauge groups. The twist matrix
T (θ) satisfies the consistency condition TPT = P ; for the choice (4.2), it is given
in our simple model by

T (θ) = e2iθλ7 =




1 0 0
0 cos 2θ sin 2θ
0 − sin 2θ cos 2θ


 . (4.4)

The orbifold projection is a soft symmetry breaking of G to H , the masses of the
fields in G/H being of order 1/R, with all the UV Ward identities intact, whereas
the Scherk-Schwarz twist corresponds to a spontaneous symmetry breaking of H
to E, the masses of the fields in H/E being of order θ/(πR).

After spontaneous symmetry breaking induced by (4.2), we have to define a
new basis for the gauge-field modes to diagonalize their mass terms. We will
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choose the complex gauge field A
(1)
µ with charge q(1) = 1 (Ψ

+(1)
0 ) and identify it

with the W boson, the real field A
(2)
µ with q(2) = 2 (Ψ

+(2)
0 ) is identified with the

Z boson and the neutral field A
(0)
µ (Ψ

+(3)
0 ) with the photon. Similarly, the scalar

field A
(0)
5 (Ψ

−(4)
0 ) is identified with the physical component of the Higgs field H

that is left over after the spontaneous symmetry breaking. Due to sec θW = 2,
we find for the masses of the W and Z fields

mW =
θ

πR
, mZ = 2

θ

πR
. (4.5)

The Higgs mass is radiatively induced after electroweak symmetry breaking and
as in the case of the SM Higgs mechanism depends on the second derivative of
the potential evaluated at the minimum:

mH =
g4πR

2

√
V ′′(θ) . (4.6)

This potential, however, is now radiatively generated and flat on tree level.
Its shape and potential minimum will depend on the exact matter content con-
tributing to the radiative corrections.

4.2.2 Wilson lines on flat S1/Z2

We briefly review how twists and background gauge field configurations are re-
lated by large gauge transformations. We consider a five dimensional SU(N)
gauge theory compactified on the orbifold S1/Z2, which is obtained from the
simply-connected space R1 : −∞ < y <∞ by modding with S1 and Z2 identifi-
cations y ∼ y + 2πR and y ∼ −y, where R is the compactification radius.

Under these identifications, the gauge fields AM (M = 0, . . . , 3; 4) are in
general twisted by global SU(N) transformations

AM(−y) = ±P0AM(y)P−1
0 ,

AM(πR + y) = ±P1AM(πR− y)P−1
1 , (4.7)

AM(y + 2πR) = UAM (y)U−1, (4.8)

where the extra ± sign is positive for four dimensions and negative for the extra
dimension.2 We use µ for 0, . . . , 3 and y for both x4 and index “4” such as
Ay = A4.

Note that the consistency conditions U = P1P0 and P 2
0 = P 2

1 = 1 are imposed.
Starting from the most general twists we can always choose the following

basis [123]

2 In principle local identifications are possible but we assume them global for simplicity here.
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P0 = blockdiag (σ3, . . . , σ3, Ir, Is, −It, −Iu),
P1 = blockdiag (σθ1 , . . . , σθq

, Ir, −Is, It, −Iu),
(4.9)

where Ir is r × r unit matrix, σa (a = 1, 2, 3) are Pauli matrices, and

σθ = σ3 cos θ + σ1 sin θ = e−iθσ2σ3 = σ3e
iθσ2 . (4.10)

with 2q + r + s + t + u = N . The Aa
y either within a block of ±I or connecting

different blocks does not have a zero-mode, a mode having vanishing KK mass,
and the dynamics of the corresponding Wilson line is trivial [124].3 Therefore we
can concentrate on a SU(2) subblock with twists

P0 = σ3, (4.11)

P1 = σθ, (4.12)

without loss of generality. In general, only A
(2)
y (AM = A

(a)
M σa/2) has even Z2

parities, hence a zero mode background: gA
(2)
y

c ≡ v. The KK expansions are
given by

A(2)
µ (x, y) =

∞∑

n=1

A(2)
µn(x)

sin ny
R√

πR
, (4.13)

A(2)
y (x, y) = A

(2)
y0 (x)

1√
2πR

+
∞∑

n=1

A(2)
yn (x)

cos ny
R√

πR
, (4.14)

A±
µ (x, y) =

∞∑

n=−∞
Aµn(x)

e±i(mn+v)y

Nn
, (4.15)

A±
y (x, y) = ±i

∞∑

n=−∞
Ayn(x)

e±i(mn+v)y

Nn
, (4.16)

where A±
M =

A
(3)
M

±iA(1)
M√

2
, AMn(x) are real fields,

mn =
n

R
+

θ

πR
− v (4.17)

are KK masses, and

Nn =
√

2πR mn (4.18)

are normalization constants. Here we present a different form as in the literature
in Eq. (4.16) to make the orthogonality of the wave functions transparent.

3 Of course when, say, r < u, we can combine Ir and a part of −Iu to form r additional σθ

blocks with θ = 0.
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Consider the following large gauge transformation that is non-periodic on the
covering space R1:

igAM(y)→ igÃM(y) =
[
Ω
(
igAM −

←−
∂M

)
Ω−1

]
(y) (4.19)

with

Ω(y) = exp
[
iϕy

σ2

2

]
, (4.20)

which results in

gÃ(2)
y

c = v − ϕ/πR. (4.21)

We find that the shift of the background is canceled by the transformation of

A±
M → Ã±

M = e∓iϕy/πRA±
M (4.22)

leaving its KK masses invariant: m̃n = mn. Now the new fields are twisted by
matrices

P̃0 = σ3, (4.23)

P̃1 = σθ−ϕ ≡ σθ̃. (4.24)

Above, the two sets of twists Pi and P̃i with the corresponding backgrounds are
equivalent under the large gauge transformation, by which one may e.g. diago-
nalize the twist θ̃ = 0 or remove the background Ã

(2)
y

c = 0, but not both.

If we choose to take the former (or latter) gauge, different values of Ã
(2)
y

c (or θ̃)
correspond to physically different vacua which are degenerate at the classical level.
Quantum corrections determine whether the symmetry is dynamically broken or
restored, depending on the matter content [122, 123].

4.2.3 Problems of gauge-Higgs unification in flat space

Given the field content one can compute the one-loop Higgs effective potential
V (H). Since the symmetry is broken in a non-local way, it is necessarily finite.
One finds in flat extra dimensions that an EWSB occurs with values of the
Wilson line phase at the minimum which is about θ ∼ 1/2. Qualitatively we
can reproduce all the features of the SM. Quantitatively, flat extra dimensional
models run into problems. These problems are a general characteristic of the
models considered so far and can even be predicted to occur on rather general
grounds.

• The one-loop Higgs effective potential V (H) is radiatively generated and
one would expect a small quartic self-coupling, leading to a small Higgs
mass

mH ∼
√

αW
30

1

R
∼
√

αW
30

πmW

| sin θ| (4.25)
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which typically gives a too small mH ∼ 10 GeV. Of course, θ can be small
as a result of cancellations among contributions from various matter fields.
However, it requires tuning of the matter content. We will argue that
natural resolution of the problem can be found once gauge-Higgs unification
is embedded in Randall-Sundrum space-time.

• The strict relation between the Wilson line phase at the minimum, the
mass of the EW gauge bosons and the compactification scale 1/R given by
MW = θ/(πR) leads to Kaluza-Klein excitations of the SM gauge bosons
of mass

1/R = πMW/θ, (4.26)

which are excluded by current bounds for non-finetuned values of θ, see e.g.
[125].

There are various solutions to these problems. One way is to increase the 5D
gauge coupling constant g5 which is responsible for the size of the Yukawa cou-
plings and the Higgs effective potential. In flat extra dimensions the simple
relation

g5 = g4

√
2πR (4.27)

holds. Since 1/R and g4 are determined by the experimental values of MW and
the SM gauge coupling constant, the only possibility to increase g5 is to introduce
modifications which affect the relation between g5 and g4. Adding kinetic terms
for the 4D gauge fields on the branes is a possibility. One can tune those terms
and make them large enough to increase the Higgs mass to phenomenologically
acceptable values, see e.g. [118]. As an additional benefit, the masses of the KK
excitations get shifted above the current bounds. However, one also pays a price
due to the induced mixing between the Kaluza Klein states by these terms. Two
devastating results are the violation of universality of 4D gauge couplings and a
contribution to the ρ parameter which exceeds the current limit [118].

Motivated by this partial solution in flat space by adding large kinetic terms
to the brane one is lead to consider curved space extra dimensions. In these
so called warped set-ups, localized kinetic terms are dynamically generated and
could offer a solution to the above mentioned problems.

4.3 Warped extra dimensions

4.3.1 Kaluza-Klein expansion in warped space

Warped compactification not only provides a beautiful explanation how the large
hierarchy mweak/MPlanck is generated from the exponential profile of its metric [9]
but also is itself a quite general consequence of string theory due to the fact
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that D-branes generically provide sources for warping (See [126] and references
therein).

In the original Randall-Sundrum model [9], five dimensional spacetime is com-
pactified on the orbifold S1/Z2, along which the normalization of the four dimen-
sional metric is exponentially scaled.4

Eventually, the vacuum expectation value (vev) of the SU(2) gauge field that
is related to the Scherk-Schwarz twist must be determined dynamically by quan-
tum corrections to the effective potential.

To that end, it is important to solve the dynamics of Wilson lines in warped
space, which has not been explored so far.5

We consider a SU(N) gauge theory in the bulk of the Randall-Sundrum ge-
ometry [9], which is a five dimensional Anti de Sitter (AdS) space compactified
on S1/Z2 with the metric:

GMNdxMdxN = e−2σ(y)ηµνdxµdxν + dy2, (4.28)

where ηµν is the Lorentzian metric and σ(y) is defined by

σ(y) = k|y| (4.29)

in −πR < y ≤ πR, with k being the inverse AdS curvature radius. Elsewhere on
the covering space R1, we define σ by the periodicity condition σ(y+2πR) = σ(y).
For later use we also define

ǫ(y) = σ′(y)/k (4.30)

and

z(y) = eσ(y). (4.31)

When there arises an ambiguity at the orbifold fixed point, say, around y = 0, we
can use the regularized form σ(y) = kδ log cosh(y/δ) with an infinitesimal δ = +0
to check the expression. For our purpose we can use

ǫ(y) = θ(y)− θ(−y), (4.32)

ǫ′(y) = 2 [δ(y)− δ(y − πR)] , (4.33)

ǫ(y)2 = 1, (4.34)

at −πR < y ≤ πR. We call the orbifold fixed points at y = 0 and y = πR
ultraviolet (UV) and infrared (IR) branes, respectively, and write

z0 = z(0) = 1 (4.35)

4For a pedagogical introduction to warped extra dimensions, see e.g. [127]. In Appendix B,
we collect the most useful formulae for calculations in warped extra-dimensions.

5 In Ref. [128] a Wilson line in warped space is considered in the context of the
AdS/Conformal Field Theory (CFT) correspondence, where the analysis is confined to a (po-
tentially false) vacuum that corresponds to imposing both diagonal twists and vanishing back-
ground field configurations. See Ref. [129] for further discussions.
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and

z1 = z(πR) = eπkR. (4.36)

Here we assume that the radion is already stabilized e.g. by the Goldberger-
Wise mechanism [130].

We employ the background field method, separating the gauge field into clas-
sical and quantum parts

AM = Ac
M + A′

M , (4.37)

and take the following gauge fixing6

Sf = −1

ξ

∫
d4x

∫ πR

−πR
dy
√
−G tr [ff ] , (4.38)

with

f = z2ηµνDc
µA

′
ν + ξztDc

yz
−tA′

y, (4.39)

where DM is the gauge covariant derivative and the superscript c indicates
that the gauge field is replaced by its classical part, e.g.

Dc
MA′

N = ∂MA′
N + ig[Ac

M , A′
N ]. (4.40)

We consider the pure gauge background F c
MN = 0, being a classical potential

minimum, and assume Ac
µ = 0 since it can be gauged away towards spatial

infinity.
When we choose ξ = 1 and t = 2, the quadratic terms for the gauge and ghost

fields simplify:

S =

∫
d4x

∫ πR

−πR
dy tr

[
ηµνA′

µ(2 + P4)A
′
ν + A′

yz
−2(2 + Py)A′

y + 2z−2ω′(2 + P4)ω
′] ,

(4.41)

where

P4 = Dc
yz

−2Dc
y, (4.42)

Py = Dc
yD

c
yz

−2, (4.43)

and we have put ωc = ωc = 0. The surface terms vanish consistently for the given
boundary conditions below.

Following the same argument as in the flat case, we concentrate on a SU(2)
subblock with twists P0 = σ3 and P1 = σθ, without loss of generality. Again a

6 The choice t = 4 and ξ = 1 makes f manifestly invariant under five dimensional diffeo-
morphisms.
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zero mode resides only in A
(2)
y and we can write gA

(2)
y

c(y) = vz2. (The derivation
of the form of zero mode z2 is given below.)

To obtain the KK expansions, we follow the strategy of Ref. [131].
First, we solve the bulk KK equations at 0 < y < πR in terms of z neglecting

all the boundary effects. Second, we put the boundary conditions at z = z0 and
z1 on the obtained “downstairs” solution to make it consistent with the Z2 twists
so that the “upstairs” field on the covering space is well-defined, i.e. continuous
everywhere.

Let us start with A
(2)
µ and A

(2)
y which have definite odd and even Z2 parities.

We obtain the following KK expansions

A(2)
µ (x, y) =

∞∑

n=1

A(2)
µn(x)ǫ

z[J1(M̂nz) + BnY1(M̂nz)]

Nn
, (4.44)

A(2)
y (x, y) =

∞∑

n=0

A(2)
yn (x)

fn(z)

Nn
, (4.45)

where Nn, Nn are normalization constants,

Bn = −J1(M̂nz0)

Y1(M̂nz0)
= −J1(M̂nz1)

Y1(M̂nz1)
, (4.46)

and the downstairs KK wave functions for vectoscalar

fn(z) = z2[J0(M̂nz) + BnY0(M̂nz)] (4.47)

are defined for later use.
The KK masses

Mn = kM̂n (4.48)

are determined by zeros of the KK mass function:

J1(M̂z1)Y1(M̂z0)− Y1(M̂z1)J1(M̂z0), (4.49)

which we find is exactly the same for both A
(2)
µ and A

(2)
y .

In order to get the KK expansions of A±
M , it is convenient to perform the large

(background) gauge transformation (4.20), which again results in the new twists

P̃0 = σ3, P̃1 = σθ−ϕ ≡ σθ̃ and the background

gÃ(2)
y

c = vz2 − ϕ

πR
=

(
v − 2ka2ϕ

1− a2

)
z2 − ϕ

πR

∞∑

n=1

(1, fn)

N 2
n

fn(z), (4.50)

where a = z0/z1 = e−kπR ≪ 1 and

(1, fn) =

∫ z1

z0

2
dz

kz
z−2fn(z). (4.51)
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Unlike in the flat case, all the higher KK modes are generated, as can be seen in
the last step of Eq. (4.50).

However, these higher modes all vanish when integrated along the extra di-
mension in the Wilson line due to the orthogonality conditions of KK wave func-
tions and one would expect that these modes can be gauged away.

To see this, consider the following background gauge transformation

Ω̌(y) = exp
[
iF(y)

σ2

2

]
, (4.52)

which we require to be normal in the sense that F(y) is continuous everywhere
and periodic F(y + 2πR) = F(y). When F(y) is odd F(−y) = −F(y), twists Pi
are left invariant under this transformation, while gauge fields transform as

gA(2)
y → gÃ(2)

y = gA(2)
y − F ′(y). (4.53)

Again, this shift is canceled by the transformation of A±
M in its KK mass. Let us

take

F(y) = k

∞∑

n=1

ϕnFn(y), (4.54)

with

Fn(y) =

∫ y

0

dy′fn (z(y′)) , (4.55)

where the summation is over all the non-zero modes.
By definition, Fn(y) is odd and its derivative is fn(y). Due to the downstairs

boundary conditions, we find that Fn(y) vanishes at both boundaries, i.e., the
transformation Ω̌(y) is continuous everywhere on the covering space as well as pe-
riodic, as promised. To summarize, all the non-zero mode can always be removed
by taking ϕn appropriately, without changing the twists Pi.

Now we choose ϕ = θ to diagonalize the twist θ̃ = 0 and gauge away all
the resulting non-zero mode background. We then have definite Z2 parity for all
Ã

(a)
M . Hereafter we omit the tilde for notational simplicity. The KK expansions

are obtained as7

A±
µ (x, y) =

∞∑

n=0

Aµn(x)E±iǫv̂z2/2 χ±
1,n(z)

Nn

, (4.56)

A±
y (x, y) =

∞∑

n=0

Ayn(x)ǫE±iǫv̂z2/2 χ±
0,n(z)

Nn
, (4.57)

7 To derive Eq. (4.57) we have used ǫ2 = 1 in A
(1)
y , which can be justified similarly as above.
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where AMn(x) are real fields,

v̂ = v/k − 2θa2/(1− a2) (4.58)

is the dimensionless vev,

E±iǫw ≡ cos w ± iǫ sin w, (4.59)

Nn and Nn are normalization constants, and

χ±
ν,n(z) = z2−ν [α±

n Jν(m̂nz) + β±
n Yν(m̂nz)] (4.60)

are the downstairs KK wave functions with m̂n ≡ mn/k and α±
n , β±

n being dimen-
sionless KK masses and complex constants, respectively. Note that

α±
n =

α
(3)
n ± iα

(1)
n√

2
. (4.61)

The boundary conditions on the downstairs fields can be summarized as

M(m̂n)~V = 0, (4.62)

with ~V = (α
(3)
n β

(3)
n α

(1)
n β

(1)
n )T for Aµ, ~V = (α

(1)
n β

(1)
n α

(3)
n β

(3)
n )T for Ay, and

M(m̂n) =



JC(1) YC(1) ∓JS(1) ∓YS(1)
JC(0) YC(0) ∓JS(0) ∓YS(0)

± sin
v̂z21
2

Jν(m̂nz1) ± sin
v̂z21
2

Yν(m̂nz1) cos
v̂z21
2

Jν(m̂nz1) cos
v̂z21
2

Yν(m̂nz1)

± sin
v̂z20
2

Jν(m̂nz0) ± sin
v̂z20
2

Yν(m̂nz0) cos
v̂z20
2

Jν(m̂nz0) cos
v̂z20
2

Yν(m̂nz0)


 ,

where upper and lower signs as well as ν = 1 and 0 are for Aµ and Ay, respectively,
and

(
JC(i)
JS(i)

)
=

(
cos

v̂z2i
2
− sin

v̂z2i
2

sin
v̂z2i
2

cos
v̂z2i
2

)(
νJν(m̂zi) + m̂nziJ

′
ν(m̂zi)

v̂z2
i Jν(m̂zi)

)
,

and the YC and YS are defined similarly to JC and JS with J replaced by Y . 8

The KK mass function for A± is obtained from the determinant of the boundary
condition matrix:

N(m̂) = det M(m̂), (4.63)

and N(m̂) = 0 determines the KK masses. We find that the N ’s are exactly the
same for Aµ and Ay and that its dependence on v̂ is only through the term

2

π2
cos[v̂(z2

1 − z2
0)]. (4.64)

8Jν and Yν are Bessel functions of order ν.
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Figure 4.1: KK mass function N(ax) vs x with a = 10−15 for v̂/a2 = 0, π
2
, π. The

zeros of N correspond to the KK masses. Note that a massless mode appears
only for v̂ = 0 mod 2π.

The KK expansions for the ghost field is obtained similarly to Aµ. Recall that
the antighost field ω is not necessarily the complex conjugate of the ghost field
ω.

In Fig. 4.1 we plot N(ax) as a function of x = m̂/a within half a period
of v̂, i.e. for v̂(z2

1 − z2
0) = 0, π/2, π from above to below when a = 10−15. The

points where the curve crosses the x-axis give the values of the corresponding KK
masses, with even and odd modes appearing in alternating order. We can see
that there appears an extra massless mode for v̂ = 0, as expected, and that the
dependence on the variation of v̂ is strongest for this would-be zero mode, whose
mass can be easily determined from Eq. (4.63) to be

m0 = ka

√
1− cos(v̂/a2)

kπR
, (4.65)

in the approximation a≪ 1. For the maximal breaking with cos(v̂/a2) = −1, we
find m0 ≈ 0.24 ka for a = 10−15.

4.3.2 One loop effective potential

We perform the dimensional reduction in the coordinate frame where the warp
factor is unity at the UV brane.9 The contribution of a pair of Z2 even and odd

9 The physical effective potential from the point of view of the IR brane will be enhanced
by a−4 [132].
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gauge fields A
(3)
M and A

(1)
M is

Veff =
µ4−d

2

∫
ddp

(2π)d

∞∑

n=0

log(p2 + m2
n) = −1

2

(ka)4

(4π)2

(
4πµ2

k2a2

)ε/2
Γ
(
−2 +

ε

2

) ∞∑

n=0

x4−ε
n ,

(4.66)

per degree of freedom, where d = 4− ε is the number of dimensions with ε being
infinitesimal, µ is an arbitrary scale, and xn = mn/ka is the dimensionless KK
mass. The infinite sum over KK masses can be evaluated utilizing zeta function
regularization techniques [132, 133, 134]

veff(v̂) ≡ −Γ
(
−2 +

ε

2

) ∞∑

n=0

x4−ε
n = −Γ

(
−2 +

ε

2

)∫

C

dx

2πi
x4−εN

′(ax)

N(ax)
, (4.67)

where C is a contour encircling all the poles on the positive real axis counter-
clockwise. Note that these are the only poles in the right half plane since there
is a one-to-one correspondence between the zeros of the KK mass function (4.63)
and the eigenvalues of the operators P4 and Py in Eq. (4.41) which are Hermitian
with respect to our boundary conditions.

After a few manipulations, we find

veff(v̂) = IIR +
IUV

a4−ε + 2

∫ ∞

0

dx x3−ε log

[

1− 1

2

(
K0(x)I0(ax)

I0(x)K0(ax)
+

K1(x)I1(ax)

I1(x)K1(ax)
− K0(x)I1(ax)

I0(x)K1(ax)
− K1(x)I0(ax)

I1(x)K0(ax)

)

+
K0(x)K1(x)I0(ax)I1(ax)

I0(x)I1(x)K0(ax)K1(ax)
− cos

(
v̂
a2

(1− a2)
)

2ax2I0(x)I1(x)K0(ax)K1(ax)

]
,

≃ IIR +
IUV

a4−ε + 2

∫ ∞

0

dx x3−ε log

[
1− I0(x)K1(x)−K0(x)I1(x)− 1

x
cos v̂

a2

2I0(x)I1(x)
(
γ + log ax

2

)
]
,

(4.68)

where divergent integrals IIR and IUV are independent of v and a and can be
absorbed in the renormalization of the IR- and UV-brane tensions, respectively,
as in Ref. [134]. Iν and Kν are the modified Bessel functions. We find that the
effective potential is a periodic function of v̂ with the period

2πa2/(1− a2) (4.69)

as is expected from the shape of the KK mass function. In the last line of
Eq. (4.68), the small a limit is taken, assuming that v̂ is within the first period,
i.e. v̂/a2 = O(1), without loss of generality. We can expand in a with converging
coefficients since for large x, the integrand goes to zero fast enough for the integral
to be finite.
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Figure 4.2: Normalized effective potential veff vs v̂/a2 with a = 10−15.

In Fig. 4.2, we plot veff as a function of v̂/a2 when a = 10−15. Contribution
from the ghost loop is equal to Eq. (4.68) multiplied by −2. The final result
including gauge and ghost field contributions is therefore:

Veff =
3

32π2
(ka)4veff. (4.70)

Note that if we include extra adjoint bulk fermions, they would contribute with
opposite signs to Eq. (4.68) and that if we add more than required to make
the theory supersymmetric, the potential of Fig. 4.2 would be flipped upside
down, realizing a dynamical symmetry breaking vacuum which corresponds to
the maximal twist θ = π/2 in the Ac

y = 0 gauge. This vacuum breaks SU(2)
completely and hence provides a rank reduction of the gauge symmetry. We find
that the symmetry breaking scale is of the order of ka ≃ TeV for this case.

4.3.3 Warped space gauge-Higgs unification

After having calculated the effective potential of the Wilson line phase in warped
extra dimensions we are interested to see if some of the problems of gauge Higgs
unification can be alleviated in the warped framework. The Higgs field corre-
sponds to 4 D vacuum fluctuations of the Wilson line phase θ around the vacuum
value. We can then infer its mass and self-coupling from the effective potential
for θ. Since we would need the full effective potential including fermions in order
arrive at a non-trivial vacuum value for θ, we will be able to just describe how
the general relations are altered in the warped case.
As an example, let us discuss the SO(5)×U(1)B−L model by Agashe et al. [120].
One finds that the phase θ in this particular embedding of the SM gauge group
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is given by

Θ = θ · Λ , Λ =




0
0

0
−i

i




(4.71)

which leads to a mW mass of

mW ∼
√

k

πR
e−πkR

∣∣ sin θ
∣∣ . (4.72)

The relation between the mass of the first KK excitation and the mW mass, which
caused phenomenological problems in the flat case (4.26), because the KK mass
was too low, is now changed to

mKK ∼
mW

θ
π
√

kπR (4.73)

where the extra factor of
√

kπR comes from the warped geometry of the extra
dimension. It is exactly this factor

√
kπR ≈ 6 that makes the KK modes heavy

enough to evade conflict with lower bounds for the KK masss from direct searches,
see e.g. [125].
The second problem, namely the too light Higgs mass is also addressed. The rela-
tion between the Higgs field φ0 and the corresponding extra-dimensional degrees
of freedom of the gauge field A5 is given by

Ay =

√
k

2e2πkR
e2ky φ0(x) · Λ . (4.74)

Finally, the Higgs mass and the self-coupling are given as the 2nd and 4th deriva-
tive of the effective potential, respectively:

mH ∼
√

3αW
8π

v
(2)
eff(θH)

πkR

2

√
2mW

sin θH
, (4.75)

λ ∼ α2
W

4
v

(4)
eff (θH)

(
πkR

2

)2

. (4.76)

The presence of the enhancement factor πkR/2 ∼ 20, which is a consequence of
the warped geometry, together with typical values of θH = (0.1 ∼ 0.3)π leads
to a realistic Higgs mass of mH = (70 − 170) GeV. Note, that this is just an
estimate which lacks a full calculation of the effective potential including fermions.
However, a similar result has also been found in the full calculation of Agashe et.
al [120]
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4.4 Summary and discussions

We have studied the SU(N) pure gauge theory in the bulk of the Randall-
Sundrum geometry and have obtained Kaluza-Klein expansions of gauge and
ghost fields under the presence of the gauge field background with most general
twists Pi.

We find that four dimensional gauge, fifth component and ghost fields have
exactly the same KK masses.

During the course of this calculation we have clarified the notion of a large
gauge transformation that is non-periodic on the covering space and how it is
consistently realized in the warped background.

The effective potential for the background Ac
y is obtained. We find that a

gauge symmetry corresponding to a continuous Wilson line, i.e. a SU(2) subgroup
of Eq. (4.9), which is completely broken for finite θ at the classical level, is
dynamically restored to U(1).

It is straightforward to apply our method to include other fields with or with-
out extra boundary masses and especially to supersymmetrize our setup, where
the symmetry breaking scales due to continuous Wilson lines will be of the order
of ka ≃ TeV according to the analysis presented here.

It is also interesting to pursue the AdS/CFT correspondence generalizing
the analysis of Ref. [128] to our setup, as the Wilson line on the AdS side will
correspond to a quantity that is integrated all the way from UV to IR on the
CFT side.

The techniques developed here can also be applied to the gauge-Higgs uni-
fication models in warped space and we have shown how the warped geometry
solves many of the problems of flat-space gauge-Higgs unification.
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Chapter 5

Summary and Conclusions

In the first part of this this dissertation we have studied hadronic and leptonic
flavour violation in specific models and in a model independent approach.

In particular we have studied the impact of the universal extra dimensional
model of Applequist, Cheng and Dobrescu on FCNC processes. First we inves-
tigated the impact on the unitarity triangle and on ∆F = 2 processes. Here
we found that in light of the still large hadronic uncertainties, the small devia-
tion coming virtual KK excitations do not significantly constrain the parameter
space of the model. Further we studied ∆F = 1 processes and found that the
constraint on the compactification scale from B → Xsγ employing the recently
reported NNLO calculation for the SM prediction is stronger than electroweak
precision tests and much stronger than direct searches. For the future, we found
a very distinct signature of enhancements and suppressions of the various clean
rare decay channels. Two very clean observables stand out to help to discriminate
the model K+ → π+νν̄ is expected to be found enhanced compared to the SM
and the zero (ŝ0) in the AFB asymmetry should be suppressed.

In the model independent framework of MFV we have derived upper bounds
on rare K and B decays. Using the input of the UTfit collaboration for the
universal unitarity triangle, we were able to constrain the Z penguin contribution
using B → Xsγ and B → Xsl

+l−. Due to the flavour universality of NP in MFV
this constraint allowed us to give 95% C.L. upper-bounds on rare K and B decays.
Any deviation from the SM violating these bounds would imply new sources of
CP and flavour violation beyond the ones in the SM with the caveat that a
MFV scenario would be found in which the contribution from box diagrams are
much larger than assumed here. From dimensional arguments and calculations
in specific models we consider this a remote possibility.

In the following chapter we extended the discussion of MFV to the lepton
sector. Extending the original proposal of CIGW to include CP violation at high
energies, we studied a realisation of MFV in the lepton sector in the SM and in the
MSSM. First we showed how baryogenesis through leptogenesis is possible over
large amount of parameter space. Specifically, we found that due to the inclusion
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of flavour effects in the calculation of the Boltzmann equations no lower bound
of the Majorana scale exits. Furthermore, we have discussed the implications for
correlations between µ→ eγ and successful leptogenesis.

In the last part of the dissertation we have studied Wilson line phases and
their dynamics in warped extra-dimensions. Motivated by models of gauge-Higgs
unification we have discussed the Hosotani mechanism and calculated the effective
potential of the Wilson line phase for the first time. In order to do this we first
had to derived the KK expansion in the background of a Wilson line phase, then
we calculated the effective potential resumming the KK contribution using a
zeta-function technique for the pure-gauge case. We have found that the relation
between the mass of the first KK mode is sufficiently high and does not lead to a
phenomenologically excluded scenario. Furthermore, the dynamically generated
Higgs mass is now large enough to allow for realistic models.



Appendix A

MFV Operator Basis

Here we list and classify all possible flavour changing operators up to dimension 6
which are compatible with the SM gauge symmetries. This has first been derived
in [17], we have added one operator omitted in the construction.

Before electroweak symmetry breaking we find the following operators.
∆F = 2. After using Fiertz identities all possible structures turn out to be equiv-
alent to a single independent term

O0 =
1

2

(
Q̄LλFCγµQL

)2
. (A.1)

∆F = 1 Higgs field. Neglecting terms which are suppressed by quark masses
via the equations of motion, we find

OH1 = i
(
Q̄LλFCγµQL

)
H†DµH , OH2 = i

(
Q̄LλFCτaγµQL

)
H†τaDµH .

(A.2)
∆F = 1 gauge fields. The couplings to the gluon field are

OG1 = H† (D̄RλdλFCσµνT
aQL

)
Ga
µν , OG2 =

(
Q̄LλFCγµT

aQL

)
DµG

a
µν .
(A.3)

The only terms relevant for low-energy processes (p2 ≪ v2) are only those in-
volving the photon field and we can ignore the other electroweak bosons, namely

OF1 = H† (D̄RλdλFCσµνQL

)
Fµν , OF2 =

(
Q̄LλFCγµQL

)
DµFµν . (A.4)

∆F = 1 four-fermion operators. The operators involving leptons are given as

Oℓ1 =
(
Q̄LλFCγµQL

)
(L̄LγµLL) , Oℓ2 =

(
Q̄LλFCγµτ

aQL

)
(L̄Lγµτ

aLL) ,

Oℓ3 =
(
Q̄LλFCγµQL

)
(ĒRγµER) . (A.5)
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The operators involving only quarks are as follows

Oq1 =
(
Q̄LλFCγµQL

)
(Q̄LγµQL) , Oq2 =

(
Q̄LλFCγµτ

aQL

)
(Q̄Lγµτ

aQL) ,
Oq3 =

(
Q̄LλFCγµT

aQL

)
(Q̄LγµT

aQL) , Oq4 =
(
Q̄LλFCγµT

aτ bQL

)
(Q̄LγµT

aτ bQL) ,
Oq5 =

(
Q̄LλFCγµQL

)
(D̄RγµDR) , Oq6 =

(
Q̄LλFCγµT

aQL

)
(D̄RγµT

aDR) ,
Oq7 =

(
Q̄LλFCγµQL

)
(ŪRγµUR) , Oq8 =

(
Q̄LλFCγµT

aQL

)
(ŪRγµT

aUR) .
(A.6)

A.1 Operator Basis relevant for Phenomenol-

ogy

After the electroweak symmetry breakdown and after integrating out off-shell
gauge fields, the relevant operators involving down quarks can be derived from
the above using the projection

H∆F=1
eff =

1

Λ2

∑

n

anOn + h.c. −→ GFα

2
√

2π sin2 θW

V ∗
3iV3j

∑

n

CnQn + h.c.

(A.7)
The sum on the r.h.s. contains 13 terms, namely four QCD-penguin opera-
tors (Q3...6), four electroweak-penguin operators (Q7...10), magnetic and chromo-
magnetic dipole operators (Q7γ andQ8G), and three quark-lepton operators (Q9V ,
Q10A and Qνν̄). 1) Quark-lepton currents:

Qνν̄ = d̄iγµ(1− γ5)dj ν̄γµ(1− γ5)ν

Q10A = d̄iγµ(1− γ5)dj ℓ̄γµγ5ℓ

Q9V = d̄iγµ(1− γ5)dj ℓ̄γµℓ (A.8)

2) Non-leptonic electroweak operators:

Q7 = d̄αi γµ(1− γ5)d
α
j

∑

q

eq q̄
βγµ(1 + γ5)q

β

Q8 = d̄αi γµ(1− γ5)d
β
j

∑

q

eq q̄
βγµ(1 + γ5)q

α

Q9 = d̄αi γµ(1− γ5)d
α
j

∑

q

eq q̄
βγµ(1− γ5)q

β

Q10 = d̄αi γµ(1− γ5)d
β
j

∑

q

eq q̄
βγµ(1− γ5)q

α (A.9)

3) Dipole operators:

Q7γ =
1

g2
mdi

d̄i(1− γ5)σµνdj(eFµν)

Q8G =
1

g2
mdi

d̄i(1− γ5)σµνT
adj(gsG

a
µν) (A.10)
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The coefficients ǫi used in the text are given as

ǫi =

(
Λ0

Λ

)2

ai , Λ0 =
λt sin

2 θWMW

α
≈ 2.4 TeV . (A.11)
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Appendix B

Warped Extra Dimensions

This is a collection of useful formulae when performing calculations in the Randall-
Sundrum I model.

B.1 Setup

The total action is given as

S = SG + Sm, (B.1)

where

SG = −M3

∫
d4x

∫ πR

−πR
dy
√
−G

[R
2
− Λ− δ(y)Λ0 − δ(y − πR)Λπ

]
,

Sm = −
∫

d4x

∫ πR

−πR
dy
√
−G

[
1

2
tr
(
FMNFMN

)
+ · · ·

]
, (B.2)

xM = (xµ, y) = (x0, . . . , x3, x5) and y = x5.
The metric is

GMNdxMdxN = e−2σηµνdxµdxν + dy2, GMN∂M∂N = e2σηµν∂µ∂ν + ∂2
y . (B.3)

G = det
M,N

GMN = −e−8σ,
√
−G = e−4σ. (B.4)

B.1.1 Classical Gravity

The Christoffel and Riemann tensor satisfy the following relations

ΓKMN =
GKL

2
(−∂LGMN + ∂MGNL + ∂NGLM) . (B.5)
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RJ
KLM = ∂LΓ

J
KM − ∂MΓJKL + ΓJNLΓ

N
KM − ΓJNMΓNKL,

RMN = ∂KΓKMN − ∂NΓKMK + ΓKMNΓLKL − ΓKMLΓ
L
NK ,

R = GMNRMN . (B.6)

∂yGµν = −2σ′e−2σηµν ,

other derivatives = 0. (B.7)

Γyµν = σ′e−2σηµν ,

Γµyν = Γµνy = −σ′δµν ,

others = 0. (B.8)

∂yΓ
y
µν =

(
−2k2 + σ′′) e−2σηµν ,

∂yΓ
µ
yν = ∂yΓ

µ
νy = −σ′′δµν ,

other derivatives = 0. (B.9)

Ryy = −4k2 + 4σ′′,

Rµy = Ryµ = 0,

Rµν = (−4k2 + σ′′)e−2σηµν . (B.10)

R = −20k2 + 8σ′′. (B.11)

δ
√
−G = −1

2

√
−GGMNδGMN . (B.12)

Solving the gravity part classically,

δSG = −M3

∫
d5x
√
−G

δGMN

2

×
[
RMN −

R
2

GMN + ΛGMN +
(
Λ0δ(y) + Λπδ(y − πR)

)
Gµνδ

µ
MδνN

]
,

(B.13)

we obtain Λ = −6k2, Λ0 = +6k and Λπ = −6k.
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B.1.1.1 vector field

Notation:

DMAN = DMAN + ig[AM , AN ] = DMAN − ΓLMNAL, (B.14)

where

DMAN = ∂MAN + ig[AM , AN ],

DMAN = ∂MAN − ΓKMNAK . (B.15)

Note that

DKGMN = DKGMN = DKGMN = DKGMN = 0, (B.16)

and

[DM ,DN ]V K = RK
JMNV J ,

[DM ,DN ]VK = −RJ
KMNVJ . (B.17)

DMVN = ∂MVN − ΓKMNVK ,

DMV N = ∂MV N + ΓNMKV K . (B.18)

DyVy = ∂yVy,

DyVµ = ∂yVµ + σ′Vµ,

DµVy = ∂µVy + σ′Vµ,

DµVν = ∂µVν − σ′e−2σηµνVy. (B.19)

V y = Vy, V µ = e2σηµνVν , Vµ = e−2σηµνV
ν , (B.20)

FMN = DMAN −DNAM + ig[AM , AN ]

= ∂MAN − ∂NAM + ig[AM , AN ]. (B.21)

Fyy = 0,

Fµy = ∂µAy − ∂yAµ + ig[Aµ, Ay],

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ]. (B.22)
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B.1.1.2 Equation of motion for vector

∂M = e2σηMν∂ν + δMy ∂y. (B.23)

F yν = ∂yA
ν − e2σηνµ∂µA

y + ig[Ay, Aν ],

F µν = e2σ (ηµκ∂κA
ν − ηνκ∂κA

µ) + ig[Aµ, Aν ],

F yy = 0. (B.24)

0 = DM

(√
−GFMN

)
. (B.25)

ηµνDµFνλ + e−2σ(Dy − 2σ′)Fyλ = 0,

ηµνDµFνy = 0. (B.26)

ηµνDµ (∂νAλ − ∂λAν + ig[Aν , Aλ]) + e−2σ(Dy − 2σ′) (∂yAλ − ∂λAy + ig[Ay, Aλ]) = 0,

ηµνDµ (∂νAy − ∂yAν + ig[Aν , Ay]) = 0.
(B.27)

In the axial gauge Ay = 0,

ηµνDµ (∂νAλ − ∂λAν + ig[Aν , Aλ]) + e−2σ(∂y − 2σ′)∂yAλ = 0,

ηµνDµ∂yAν = 0. (B.28)

When Acµ = 0, the classical version of Eq. (B.27) becomes

0 = ηµν∂µ∂νA
c
y, 0 = (Dy − 2σ′)∂µA

c
y. (B.29)

This is trivially satisfied when ∂µA
c
y = 0.

B.1.2 Orbifolding

For −πR < y ≤ πR,

σ = k|y|, σ′ = kǫ(y), σ′′ = kǫ′(y) = 2k
[
δ(y)− δ(y − πR)

]
, (B.30)

where

ǫ(y) =
d|y|
dy

= θ(y)− θ(−y) =

{
+1 0 < y < πR,

−1 −πR < y < 0,
ǫ(y)2 = 1,

ǫ′(y) = 2
[
δ(y)− δ(y − πR)

]
. (B.31)

For y ≤ −πR, πR < y, σ and ǫ are defined by the translational symmetry

σ(y + 2πR) = σ(y), ǫ(y + 2πR) = ǫ(y). (B.32)
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B.2 Background gauge

AM = Ac
M + A′

M . (B.33)

The gauge kinetic Lagrangian is

LA = −1

2
tr
(
FMNFMN

)
, (B.34)

where

FMN = F c
MN + Dc

MA′
N −Dc

NA′
M + ig[A′

M , A′
N ]. (B.35)

The superscript c denotes that the gauge field is replaced by its classical part Ac

so that Dc
MA′

N = ∂MA′
N + ig[Ac

M , A′
N ] etc. When F c

MN = 0,

LA = −1

2
tr (Dc

MA′
N −Dc

NA′
M + ig[A′

M , A′
N ])

2
,

Lquad
A = −1

2
tr (Dc

MA′
N −Dc

NA′
M)

2
, (B.36)

where of course the square is the general coordinate invariant one. We choose
the following gauge fixing function

f = e2σηµνDc
µA

′
ν + Dc

yA
′
y − tσ′A′

y

= e2σηµνDc
µA

′
ν + etσDc

y(e
−tσA′

y). (B.37)

When t = 4, f becomes manifesty general covariant f |t=4 = GMN
D
c
MA′

N . The
Lagrangian,

Lf = −1

ξ
tr(ff) = − 1

2ξ
fafa, (B.38)

is manifestly invariant under the five-dimensional background gauge transforma-
tion:

δAc
M = ∂Mǫ− ig[ǫ, Ac

M ] = Dc
Mǫ,

δA′
M = −ig[ǫ, A′

M ]. (B.39)

where f = faT a and T a = σa/2 for SU(2).
The true gauge transformation:

∆ǫA
c
M = 0,

∆ǫA
′
M = DMǫ− ig[ǫ, Ac

M + A′
M ] = ∂M ǫ− ig[ǫ, Ac

M + A′
M ]

= D
c
Mǫ− ig[ǫ, A′

M ] = Dc
Mǫ− ig[ǫ, A′

M ]. (B.40)
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Note, that the ghosts are scalars under diffeomorphisms. Then the ghost La-
grangian is:

Lgh = (ωc + ω′)a(∆ωc+ω′f)a

= 2 tr
[
(ωc + ω′)e2σηµνDc

µ

(
Dc
ν(ω

c + ω′)− ig[ωc + ω′, A′
ν ]
)

+ (ωc + ω′)(Dc
y − tσ′)

(
Dc
y(ω

c + ω′)− ig[ωc + ω′, A′
y]
)]

. (B.41)

The background gauge transformation acts as follows:

δωc = −ig[ǫ, ωc], δω′ = −ig[ǫ, ω′],

δωc = −ig[ǫ, ωc], δω′ = −ig[ǫ, ω′]. (B.42)

The total Lagrangian,

Ltotal = LA + Lf + Lgh, (B.43)

is invariant under the five-dimensional background gauge transformation of Eqs. (B.39)
and (B.42).
For the case at hand we need to set Ac

µ = ωc = ωc = 0:

√
−GLquad

A = − tr
[
− (A′ ·2A′)− (∂ · A′)2 + e−2σ(Dc

yA
′ ·Dc

yA
′)

− e−2σA′
y2A′

y + 2e−2σA′
yD

c
y(∂ · A′)

]
,

√
−GLquad

f = −1

ξ
tr
[
(∂ · A′)2 + 2e(t−2)σ(∂ · A′)Dc

y(e
−tσA′

y) + e2(t−2)σ
[
Dc
y(e

−tσA′
y)
]2]

,

√
−GLquad

gh = 2 tr
[
e−2σω′

2ω′ + e−4σω′(Dc
y − tσ′)Dc

yω
′]

= 2 tr
[
e−2σω′

2ω′ + e(t−4)σω′Dc
y(e

−tσDc
yω

′)
]
. (B.44)

where (A · B) = ηµν(AµBν) and 2 = ηµν∂µ∂ν . In the gauge ξ = 1 with t = 2,

√
−GLquad

A+f = − tr
[
− (A′ ·2A′) + e−2σ(Dc

yA
′ ·Dc

yA
′)

− e−2σA′
y2A′

y +
[
Dc
ye

−2σA′
y

]2

+ 2Dc
y

[
e−2σA′

y(∂ · A′)
] ]

,
√
−GLquad

gh = 2 tr
[
e−2σω′

2ω′ + e−4σω′(Dc
y − 2σ′)Dc

yω
′]

= 2 tr
[
e−2σω′

2ω′ + e−2σω′Dc
y(e

−2σDc
yω

′)
]
. (B.45)
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