
A POWER EFFICIENT REGISTER FILE ARCHITECTURE USING MASTER LATCH
SHARING

M. Wrdblewski', M. Mueller'p2, A. Wortmann2, S. Simon', U! Piepe?, J. A. Nossekl

Munich University of Technology
Marek.Wroblewsla @ei.tum.de

ABSTRACT

This paper introduces a method of reducing area and power con-
sumption of a synthesizable register tile by using a single master
latch shared by a number of slaves. It investigates potential timing
problems and discusses possible solutions. Presented simulation
results show that, depending on the size of the register tile, reduc-
tion of power consumption of more than 50% is achievable.

1: INTRODUCTION

The reduction of power dissipation in modem VLSI circuits is one
of the most important.challenges. With increased die size and ad-
vanced process technologies, whole systems with an ever-growing
number of transistors are integrated on a single chip. The prob-
lem of heat dissipation in low cost packages of high performance
systems [4] and a growing demand for portable consumer prod-
ucts with an independent power supply drive the development and
application of low-power design techniques [I] .

Data stores are awimportant power critical part of resource
sharing architectures (21 or processing units, like application spe-
cific instruction set processors (ASPS). They are preferably im-
plemented as a synthesizable register file described as part of the
design on register transfer level, because of a high effort required
for timing verification of RAM.

Therefore, in this paper we consider data stores implemented
in this manner. In general. they consist of a number of word level
registers. The data inputs of the registers are connected to the data
bus and represent a high capacitive load. This results in a high
power consumption per signal transition. While the number of un-
necessary transitions can he kept low by integration of glitch bar-
riers into the signal path, further improvements can be achieved
by reduction of the capacitance of the data bus, e. g. as proposed
in 131. A rearrangement of the registers in the register tile is per-
formed, reducing the number of registers connected directly to the
data bus.

This paper presents a method which also aims at reduction of
capacitance connected to the data bus. This is achieved by splitting
up the master-slave flip-flops into the master latches and the slave
latches. If clock gating is applied, slave latches of registers in
the register tile can share one master latch. Thus the number of
master latches connected to the data bus is decreased. Additionally
savings in area can he expected.

The paper is organized as follows: In Section 2, the moditied
register tile is denved and explained. Section 3 addresses timing-
related issues involved in application of this method. In Section 4
experimental results are presented.

Hochschule Bremen
Matthias.Mueller@hs-biemen.de

4
D Q

CK

Wold-level Regmter

h, DI &I

Dz Q2

i i
D,,,

C K

Figure I : a) Master-slave D-flip-flop. b) Word-level register.

2. MODIFIED REGISTER FILE

Storage elements found in libraries of semicustom technology pro-
viders are frequently realized as edge-triggered master-slave D-
flip-flops as shown in Figure 1 a). They consist of a master and a
slave latch. If a value is to he stored into the flip-flop, the master
latch freezes the value with the triggering edge of the clock signal
and the slave latch becomes transparent. The value is visible at the
outpur of the flip-flop. At the other edge of the clock signal, the
slave latch stores the value and the master latch gets transparent.
For data stores, w flip-flops are grouped to word-!eve1 registers,
where w denotes the number of bits of the data signal. Each bit
of the data signal is connected to one flip-flop of the word-level
register, as shown in Figure I b). Register files, in which r data
values can be stored, consist o f r word-level registers, as shown in
Figure 2a). Since the data inputs of all registers are connected to
the data bus this leads to a high bus capacitance.

TWO approaches are commonly used to update data stored in
registers. First, a feedback loop from the output is connected via
a multiplexer to the input of the flip-flop. If a new value is to

v-393 0-7803-7761-3/03/517.00 02003 IEEE

mailto:ei.tum.de
mailto:Matthias.Mueller@hs-biemen.de

G

I

..-...... -

c.n

Figure 2 a) Conventional register file with flip-flops. b) Modified register file with shared master latches.

be stored it is routed via the multiplexer to the input. Otherwise
the output of the flip-flop is connected to the input and the stored
information is rewritten in every clock cycle. Additional enable
logic is responsible for controlling the multiplexer.

The second approach is the application of clock gating. Due to
significantly reduced power consumption this is usually preferred
and in the following we only consider this case. This method was
applied to the register file shown in Figure 2. Here, logic and possi-
bly sequential cells (represented as blockCC in Fig. 2) are inserted
into the clock path. The same enable logic as in the previous case
is used, this time however to decide whether to clock a given reg-
ister. Thus data is written only when it changes and clock signals
of not selected registers are disabled.

As consequence however every master latch is transparent all
the time except when new data is written into its slave. Every
transition on the data bus is repeated by all master latches, although
most of them (usually all but one) do not need to pass the new
state to their slaves. This requires that internal capacitances of
these latches (and input capacitances of slaves) be recharged and
increases power consumption.

In the following we limit our investigations to architectures
where only a single piece of data can be stored per clock cycle. It
may he stored into many registers simultaneously, but all registers
with clock signal enabled receive the same value.

Under this assumption it is possible to replace all r master
latches connected to a specific bit-line of the data bus by one single
master latch. The corresponding slave latches share this master
latch. This is shown in Figure 2 b).

This configuration has the following advantages:
Since there is only one master latch connected to the data
bus, the capacitive load is reduced. Hence, a reduction of
power dissipation in driving modules can be expected.

a Transitions seen on the data bus cause only the internal ca-
pacitances of a single latch to be recharged, and this only
during second half of clock period (the shared master latch
is clocked in every clock period). This reduces power con-
sumption of the register file.

e Less area is required for the register file (and possibly for
the driving blocks).

3. TIMING

Obviously the reduction of power consumption comes at a cost.
By splitting up the master and slave latches of a flip-flop we give
up the main advantage of the foundry-designed flip-flop - the well
defined timing conditions. The master and the slave placed in a
single cell are adjacent and any clock signal delays can be com-
pensated when designing the cell. When using clock gating in this
scenario both the master and the slave are clock gated.

It is not so in the proposed approach. We only apply clock
gating to the slave latches, as master is shared and operates in every
clock cycle. As the slaves' clock signal is delayed by the clock
gating cells it cannot arrive at the clock inputs of the slaves at the
same instant as the clock signal of the master arrives at its clock
input. This may lead to serious functionality problems as we show
later.

v-394

I l a ' I I b l I 2a I 2b '
Figure 3: Enable signals of master and slave latches of a split-up
flip-flop. I

GK

Secondly we have vittually no control over the physical place-
ment of the components of a single flip-flop. In a large design the
delays introduced by careless placement may render the design un-
usable. We discuss this issue in section 3.2.

3.1. Clock gating related timing issues

Let us first evaluate the effects of the delay introduced by clock
gating cells.

For sake of the following discussion let us assume that we use
rising-edge triggered flip-flops and their slave latches are transpar-
ent when their enable signalsG are low. We consider the following
cases:

1. G O m a S t e r follows G O s l a v e (cf. lefl portion of the dia-
gram in Fig. 3).

(a) Short before the rising edge of Gemaster both
latches are transparent and glitches of the data sig-
nal appear at the output of the flip-flop. However, we
do not deem this a serious functionality issue if the
setup-time condition of the flip-flop is set appropri-
ately. With the rising edge of Gemaster the value
of the data signal is captured by the master latch and
the output of the flip-flop does not change.

(b) After the falling edge ofGOmas ter the master latch
becomes transparent again. The slave however has
already been shut for some time and the value from
the previous clock cycle is safely latched.

2. Gemaster leads Gaslave (cf. right portion of the dia-
gram in Fig. 3).

Figure 4 Synchronization of clock signals of master and slave
latches.

is the critical case that we address in the following in
more detail.

From the above said it becomes evident that if we can avoid
case 2b (i. e. G e m a s t e r leads G a s l a v e) then we should be able
to guarantee the proper function of the split-up flip-flop. As ex-
plained it is not imperative that G e m a s t e r and G@slave be
perfectly synchronous. In order to achieve this we may delay
Gemaster by inserting a quasi clock gating cell as shown in
Fig. 4. We use ORed enable signals of the slaves as the enable
signal for the master. Assuming modest logic depth of the slaves'
enable logic, the latch in the cell is able to suppress any glitching
activity generated there, as it is closed during the first half of a
clock cycle. The master clock signal is delayed by a simple two-
input gate, exactly as is the case with the clock signal of slaves.
For these reasons we prefer this solution to one where the clock
input of the master latch is connected directly to the output of the
OR gate driven by the gated clocks of the slaves.

3.2. Timing issues related to physical placement

While if is not particularly difficult to compensate for delays in-
troduced by well defined blocks, the impact of uncontrolled place-
ment on timing is unpredictable. We consider it therefore neces-
sary to limit the degrees of freedom of the placement and synthesis
tools.

This could be achieved by treating every block containing a
master latch and all its slaves as an entity. Supplied with neces-
sary information the tool could then optimize the wire delays in a
manner such that the conditions postulated in Section 3.1 are sat-
isfied, While this approach offers the designer most flexibility, it
currently requires manual intervention during writing HDL code,
synthesizing and routing the

Taking this idea a step further, one could conceive of a family
of library cells, each consisting of a master latch and a fixed num-
ber of r slaves, which for sake of brevity we call in the following
I-to-r cells. This number corresponds to register count in the reg-
ister file. Designing e. g. a register tile with 8 registers, 32 bit wide
each, the designer would utilize 32 cells, each containing a mastei

(a) At the time when Gemaster changes
into the

high for Some time

high the
value of the data signal 's

come and
after it becomes low, the value is visible at the output
of the flip-flop.

(b) After G @ m a s ter is set to low both latches are trans-
parent until GBslave becomes high again. If during
this time a signal change occurs at the input of the
master it will be passed down to the slave and incur-
rectly latched as soon as Geslave goes high. This

v-395

Figure 5 : Simulated architecture

and 8 slaves (32 1-10-8 cells).
This kind of cell obviates the need for controlled placement

because all the timing requirements are fulfilled internally by the
cell and assured at the time when the cell is designed. This closely
matches the usual situation when complete flip-flops are used.

The obvious disadvantage of this method is that the designer
is Limited to a fixed number of registers in the register file. Com-
bining two cells e, g. a 1-to-8 and a I-to-4 cell in order to create a
I-10.12 cell is not possible without enlarging the cell by additional
logic, Even if it were implemented, we would give up the main
advantage of the approach -the controlled timing.

Furthermore such a cell crosses the boundaries of logical
blocks. Designers usually think in terms of functional blocks as
units, e. g. ALU, register file, register, flip-flop, etc. A single
I-to-r cell belongs to many of those blocks, because every slave
latch constitutes a bit of a different register. While it might be
possible to hide this problem from the designer. modifications to
existing synthesis tools may be necessary in order to enable auto-
matic instantiation of this kind of cells,

4. SIMULATION RESULTS

We used the design shown in Fig. 5 to test the impact of the method
on the power consumption of the register file. We limited our in-
vestigations to this simple architecture because it enables us to
study the effects of the transformations without unnecessary over-
head in terms of simulation times and complexity, that a more elab-
orate design would entail.

The design was described in VHDL, synthesized using com-
mercial synthesis tool and a 0 . 1 8 p process standard cell library.
All simulation results presented in Table 1 were obtained by power
simulations on transistor level and do not take into account any
placement or routing information.

For register files containing more than 4 registers power sav-
ings can be achieved. As expected, not only the register file itself
consumes less power, hut also the unit driving register file's inputs
(in this case Mux) requires less power due to reduced driven ca-
pacitance. Total power savings given in the table are quite high,
because the architecture's power consumption is dominated by the
register file. In designs containing more elaborate ALU the im-
pact of the application of this method is going to be correspond-
ingly lower. Nevertheless the reduction of power consumption of
the register file alone is certainly not to be neglected in power-
conscious designs.

Table I : Power consumption for architecture of Fig. 5 . r denotes
the number of registers in the file, s indicates whether the flip-
flops were split-up (I) or not (0). Dimensionless figures specify
the relation of power consumed by the variant in question divided
by power consumed by corresponding reference variant.

5. CONCLUSION

The presented method offers a possibility of reducing area and
power consumption of the register file in architectures which do
not store more than a single value per clock cycle. Although power
savings of up to approx. 50% Seem promising, some timing-related
issues need lo be resolved. In future we plan to investigate the
solutions proposed in Sec. 3.2 and test their effectiveness by per-
forming placement and routing of our test design. This will also
give us an opportunity to confirm the presented power figures and
estimate area savings.

6. REFERENCES

[I] A. P Chandrakasan and R. W. Broderson. Minimizing power
consumption in digital CMOS. In Pmceedings IEEE, page
498, 1995.

[2] K.K.Parhi. VLSI Digiral Signal Processing Sysrems. Wiley-
Interscience. 1999.

131 M. Mueller, A. Wortmann, S. Simon, S. Wolter, S. Buch,
M. Wr6blewski. and J. A. Nossek. Low power register file
architecture for application specific DSPs. I n Pmc. IEEE
Int. Svmo. on Circuirs and Svsrems. Daees IV/89-IV/92, . I
scottshaie, USA, May 2002. .

141 G. K. Yeap. Practical Low Power VLSI Design. Kluwer Aca-
demic Publishers, 1998

V-396

