
Institut für Informatik
Technische Universität München

Acceleration of
Medical Imaging Algorithms

Using
Programmable Graphics Hardware

Thomas Schiwietz

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Nassir Navab, Ph.D.
Prüfer der Dissertation: 1. Univ.-Prof. Dr. Rüdiger Westermann

2. Univ.-Prof. Dr. Bernhard Preim,
Otto-von-Guericke-Universität Magdeburg

Die Dissertation wurde am 30.01.2008 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 21.05.2008 angenommen.

To my family and friends

Abstract

This thesis presents acceleration techniques for medical imaging algorithms. The rapid
development of medical scanning devices produces huge amounts of raw data. On
the one hand, high-resolution images can be computed from the raw data and, thus,
providing the physicians better basis for diagnosis. On the other hand, the amount of
raw data leads to longer processing times. About three years ago, graphics processing
units (GPUs) have become programmable and can be used for other tasks than graphics.
GPUs are very suitable for medical imaging algorithms – they are fast, relatively cheap,
the instruction set is powerful enough for many of algorithms, and with standard APIs
easy to program. In this work, medical imaging filtering, reconstruction, segmentation,
and registration algorithms are accelerated using GPUs. Averagely a 10-times speedup
is achieved compared to optimized SSE3 CPU implementations. Some implementa-
tions run 100 times faster than their CPU counterparts. The results are already used
successfully in products by Siemens Medical Solutions.

i

ii

Zusammenfassung

Diese Arbeit behandelt die Beschleunigung von Algorithmen aus der medizinischen
Bildverarbeitung. Durch die schnelle Entwicklung bei medizinischen, bildgebenden
Aufnahmegeräten wächst auch die Rohdatenmenge. Einerseits lassen sich dadurch im-
mer schärfere Bilder rekonstruieren, die den Ärzten genauere Diagnosen ermöglichen,
andererseits steigt mit der Datenmenge auch die Verarbeitungszeit rapide an. Seit ca.
3 Jahren lassen sich spezielle Grafikprozessoren relativ frei programmieren und damit
zweckentfremden. Grafikprozessoren bieten sich sehr gut für medizinische Bildverar-
beitung an - sie sind schnell, das Instruktionsset reicht aus um eine Vielzahl von Algo-
rithmen von der Grafikhardware ausführen zu lassen und durch mehrere Programmier-
schnittstellen (APIs) relativ leicht zu programmieren. In dieser Arbeit wird die kom-
plette medizinische Bildverarbeitungs-Pipeline bestehend aus Filterung, Rekonstruk-
tion, Segmentierung, und Registrierung durch Grafikhardwareunterstützung beschle-
unigt. Im Durchschnitt wird eine Beschleunigung gegenüber einer hochoptimierten
CPU-Implementierung von Faktor 10 erreicht. Manche Implementierung laufen sogar
100 mal schneller als ihre CPU Gegenstücke. Die Ergebnisse werden bereits von
Siemens Medical Solutions in der Praxis erfolgreich eingesetzt.

iii

iv

Acknowledgements

Prof. Westermann asked me to join his group when I finished my Diploma thesis in
2003 under the supervision of Dr. Jens Krüger about GPU-accelerated fluid simula-
tion. I never thought of doing a PhD so my answer was something like ”Let me think
about it.”. After thinking about it for a while Prof. Westermann offered me an inter-
esting position sponsored by Siemens Corporate Research (SCR). Two years working
in Princeton, NJ at SCR and another 2 years at the Technische Universität München,
Germany. Finally, I accepted the offer. Overall it was an eye-opening experience to
learn from both worlds, the corporate research and the academic research. Therefore,
my biggest thanks go to my advisors at both institutions: Prof. Dr. Westermann (TUM)
and Gianluca Paladini (SCR). Both periods where very interesting, exciting and very
different from each other all together. This thesis contains many images from Siemens
data sets. I thank Siemens for letting me using them. During the last four years I had
the privilege to work with many people from both groups.

• Prof. Westermann’s group at TUM: Dr. Jens Krüger, Dr. Joachim Georgii, Jens
Schneider

• Gianluca Paladinin’s group at SCR: Dr. Shmuel Aharon, Dr. Leo Grady, Dr.
Ti-chiun Chang, Dr. Peter Speier, Dr. Supratik Bose, Christoph Vetter, Thomas
Möller

Thank you very much for your help and inspiration! Further, I’d like to thank all people
who proof-read this text, especially Dr. Martin Kraus and Christian Dick. I certainly
didn’t regret doing the PhD after all.

v

vi

Contents

Abstract i

Zusammenfassung iii

Acknowledgements v

List of Figures xvi

List of Tables xviii

List of Algorithms xix

List of Abbreviations xix

1 Introduction 1
1.1 Programmable Graphics Hardware . 2
1.2 The Medical Imaging Pipeline . 3
1.3 Sponsor-Driven Work . 7
1.4 Contribution of this Thesis . 7

2 Programmable Graphics Hardware 9
2.1 Evolution of Programmable Graphics Hardware 9
2.2 The Shader Model 4.0 Standard . 10

2.2.1 Data Structures . 12
2.2.2 Pipeline . 13
2.2.3 Shaders . 16

2.3 General-Purpose GPU Programming (GPGPU) 18
2.3.1 2D Data Structures and GPU write access 19
2.3.2 3D Data Structures and GPU write access 21

vii

viii CONTENTS

2.3.3 Reductions . 23
2.4 Graphics programming APIs . 26

2.4.1 OpenGL . 26
2.4.2 DirectX 9 / DirectX 10 . 27
2.4.3 CTM / CUDA . 27

3 Solving Systems of Linear Equations Using the GPU 29
3.1 Introduction . 29

3.1.1 Related Work . 30
3.1.2 Matrix Structures . 31
3.1.3 Matrix Properties . 32

3.2 Algorithms . 32
3.2.1 The Jacobi Method . 32
3.2.2 The Gauss-Seidel Method . 33
3.2.3 The Conjugate Gradient Method 34
3.2.4 The Multigrid Method . 35

3.3 Implementation . 38
3.3.1 Vector Data Structures and Operators 38
3.3.2 Matrices . 39

3.4 Results . 43

4 Medical Image Filtering 45
4.1 Linear Filtering . 46

4.1.1 Spatial Domain Filtering . 46
4.1.2 Frequency Domain Filtering 47

4.2 Non-linear Filtering . 51
4.2.1 Curvature Smoothing . 52
4.2.2 Ring Artifact Removal . 56
4.2.3 Cupping Artifact Removal . 59

5 Medical Image Reconstruction 65
5.1 CT Cone Beam Reconstruction . 66

5.1.1 Theory . 66
5.1.2 GPU Implementation . 71
5.1.3 Results . 77

5.2 Magnetic Resonance Reconstruction 78
5.2.1 Physics of Magnetic Resonance Imaging 78

CONTENTS ix

5.2.2 Scanning Trajectories . 79
5.2.3 The Gridding Algorithm . 81
5.2.4 The Filtered Backprojection Algorithm 85
5.2.5 Results . 88

6 Medical Image Segmentation 91
6.1 Introduction . 92
6.2 Classes of Segmentation Algorithms 93
6.3 The Random Walker Algorithm . 94

6.3.1 Theory . 95
6.3.2 GPU Implementation . 96
6.3.3 Validation . 99

7 Medical Image Registration 105
7.1 Related Work . 107
7.2 Physically-correct Deformation . 108

7.2.1 Elasticity Theory . 108
7.2.2 Discretization Using Finite Elements 109
7.2.3 Stiffness Assignment . 110
7.2.4 Implementation and Timings 111
7.2.5 Image Deformation Application 112

7.3 Displacement Estimation . 113
7.3.1 Normalized Cross-Correlation 114
7.3.2 Intensity Gradient . 120
7.3.3 Optical Flow . 120

7.4 A Physically-based Registration Algorithm 124
7.4.1 Results . 127
7.4.2 Discussion . 128

8 Conclusion 133
8.1 Contribution . 133
8.2 Future Work . 134

Bibliography 136

x CONTENTS

List of Figures

1.1 The medical imaging pipeline. Grey boxes represent data while white
ones processes. Note that processes 5.–7. alter the image data 4. 4

2.1 Illustration of the NVIDIA GPU fill rate in million textured pixels per
second. 11

2.2 Illustration of the ATI GPU fill rate in million textured pixels per second. 11

2.3 A graphics card has a GPU and onboard memory. It is connected to the
PCI bus. 12

2.4 The Shader Model 4.0 graphics pipeline. 14

2.5 The three programmable stages vertex shader, geometry shader, and
pixel shader in the Shader Model 4.0 pipeline. The vertex shader oper-
ates on the vertices, the geometry shader on the primitive, and the pixel
shader on each rasterized pixel. 17

2.6 The texture update is illustrated in two examples. A full update using a
quadrilateral in image (a), and a partial (border) update using four lines
on image (b). 19

2.7 A flat texture of a 64× 64× 64 cardiac data set. Eight slices are put in
one row side-by-side. 21

2.8 A reduction operation combines a set of elements (here four) to a new
element. The process is repeated until there is only one element left. . . 24

2.9 Multiple reduction problems are arranged into one texture. The reduc-
tion stops as soon as all original problems have solved. 25

xi

xii LIST OF FIGURES

3.1 A band matrix with 5 bands can be stored in two ways. One option
is to store the band entries line-by-line (a). Another option is to store
each band along the band from top left to bottom right (b). The red
lines indicate the storage scheme. The colored and numbered circles
indicate matrix entries. Equal colors indicates matrix entries belonging
to the same line, equal numbers indicate matrix entries belonging to the
same diagonal. 39

4.1 Both raw data and image data are filtered for reasons such as noise
removal. 45

4.2 A 3x3 filter kernel (blue) on a 5x5 image. 47

4.3 The FFT shader samples the FFT matrix entries of a specific stage.
Then, it samples the two vector components indexed by the table and
performs the dot product of matrix row and vector. The roles of the
input and the output texture are swapped in each stage. 50

4.4 Two ways to handle boundary conditions are illustrated. On the left,
the non-boundaries parts are computed first by rendering two triangles.
Next, four lines and 4 points (P) are rendered. Alternatively, the bound-
ary condition can also be evaluated in the pixel shader by rendering two
triangles covering the entire area (right image). 54

4.5 (a) A noisy input image of a phantom. (b) The same image after 10
iterations of curvature smoothing. Obviously, the noise is gone and the
edges of the bright circles are still sharp. 56

4.6 An MR image of a human head. Image (a) shows the original image,
image (b) is filtered with 10 iterations of curvature smoothing and im-
age (c) with 100 iterations. Note that after 100 iterations the brain stem
and the corpus callosum have still very sharp edges. 57

4.7 The flow diagram of the ring correction filter. The input image is pro-
cessed using a variety of filters in order to extract the ring image. Then,
the input image is corrected by subtraction of the ring image. 58

LIST OF FIGURES xiii

4.8 Image (a) shows the sampling pattern for the median filter. The median
filter samples four additional values in the distances [−2d;−d; d; 2d]

along the radial line connecting the current pixel to the center of the im-
age in the lower right corner. Image (b) shows the sampling pattern for
the circular smoothing: it smoothes along the circular neighborhood.
The circle mid-point is always located in the center of the image while
the radius is the distance to the pixel to be smoothed. The samples are
taken in equidistant angular steps ∆ϕ. 59

4.9 Image (a) suffers from sever ring artifacts. The result of ring correction
is shown in image (b). 60

4.10 (a) An input image. Typical cupping artifacts can be seen in the center
of the image. The contrast falls off towards the center of the image. (b)
The filter response after convolving the input image with the Butter-
worth filter. (c) The image after cupping artifact correction. Now, the
slice has a uniform intensity distribution. 62

5.1 Some scanning modalities require the acquired data to be transformed
to the image domain. This process is called reconstruction. 65

5.2 An X-ray with energy I0 emitted from a source is attenuated by a ho-
mogeneous object (gray circle) of radius d. A detector measures the
remaining energy Id. 67

5.3 An X-ray is attenuated by an object consisting of inhomogeneous ma-
terials (tissues). 68

5.4 The Radon transformation: A function f (gray circle) is Radon trans-
formed to Rf . The lines are spaced at the distance c and rotated about
φ degrees. 69

5.5 A source/detector pair rotates around the patient acquiring a set of 2D
projection images. Later, a 3D volume can be reconstructed from the
2D images. 70

5.6 The Radon transform of the black box is shown under three different
projection angles. The Radon transform is shown as the black lines. . . 71

5.7 The plots of four high-pass filters in frequency domain. 72

5.8 The backprojection of a projection images to the volume is illustrated. . 73

5.9 The output volume is divided into a number of chunks. A chunk is a
stack of slices representing a part of the entire volume. 75

xiv LIST OF FIGURES

5.10 Image (a) shows a front view and image (b) shows a side view of an
MR scanner. 79

5.11 Cartesian and radial sampling trajectories in k-space. 80

5.12 The sinogram of a phantom data set. The magnitude of each complex-
valued measurement sample is visualized as gray value. 81

5.13 A N×3 pixels quadrilateral defined by the vertices v0...v3 is rotated by
the vertex shader according to the measurement angle. Two coordinate
systems are defined: one addressing k-space (TexCoordsKSpace), the
other addressing the measurement data (TexCoordsMeasurement). The
pixel shader performs a grid-driven interpolation from the three nearest
measurement samples with weights computed according to the density
compensation function and the distance. 83

5.14 An overview of our GPU gridding implementation showing shaders and
texture tables. 84

5.15 An overview of our GPU backprojection implementation. 86

5.16 A quadrilateral covering the image domain is rotated by a vertex shader
program according to the measurement angle. Two coordinate systems
are defined: one addressing k-space (TexCoordsKSpace), the other ad-
dressing the measurement data (TexCoordsMeasurement). The pixel
shader samples the measurement data at the interpolated TexCoordsMea-
surement position and writes it to the interpolated TexCoordsKSpace
position. The measurement line is repeated over the entire quadrilateral. 87

5.17 The reconstructed images by using (a) gridding algorithm on the CPU,
(b) gridding algorithm on the GPU, and (c) filtered backprojection which
yields identical results on the CPU and GPU. The measurement data
were obtained from 3 MR coils/channels. For each channel, there are
511 measurement lines with each containing 512 complex samples. We
show the reconstruction speeds in Table 5.2.5. 89

5.18 This first image was reconstructed from 31 measurement lines of 512
(complex) samples in 3 channels to a 256 × 256 image in 8 millisec-
onds. The subsequent images are reconstructed from additional rotated
interleaves. All images were reconstructed using the backprojection
algorithm. Our CPU and GPU implementations yield identical results. . 90

6.1 Medical image segmentation isolates objects by (automatically) finding
the boundaries and removing the background. 91

LIST OF FIGURES xv

6.2 The left column shows the original data sets, the middle column shows
the reference labels and segmentation, and the right column shows the
experimental results. 100

6.3 We used the same set of medical images as in Figure 6.2. Here, we
labeled all pixels of the foreground reference segmentation with fore-
ground labels and vice versa. Using the morphological erosion operator
one shell after another was removed and the random walker algorithm
computed a new segmentation using the reduced labeled pixels. We re-
peated this process until one of the two label groups was removed. The
x-axis shows the ratio of remaining foreground labels to reference fore-
ground labels. As in Figure 6.2, the y-axis shows the amount of pixels
that have switched the label assigned by the random walker algorithm. . 102

6.4 We have measured both the time a user needs to label pixels and the
time the computer takes to compute the segmentation. By user time we
refer to the label placement for the random walker algorithm. It also
includes correction made by the user, if the result was not satisfying.
We compare the timings of our random walker CPU and our GPU im-
plementation based on the user-provided labels. The total time is either
user + CPU or user + GPU. 103

7.1 Medical image registration aligns a set of images into a common coor-
dinate system. 105

7.2 Manual registration using mouse drags. 112

7.3 A displacement field is reconstructed from two images I and J 113

7.4 The blue interrogation window from image I is cross-correlated to a
green interrogation window of image J regarding a displacement vector
(u, v) in white. 115

7.5 A plot of the cross-correlation in a search window of images I and J . . 116

7.6 The gray-valued images I and J are combined into one 4-component
texture with space for imaginary parts. 118

7.7 All Fourier transforms of window size m are computed in parallel. . . . 119

7.8 An optical flow system matrix of a 2D image pair with 64× 64 pixels.
The red lines have been added to visualize the block structure of the
matrix. 123

7.9 Two images of the well-known Hamburg taxi image sequence. The taxi
turning right and the car below is moving to the right. 124

xvi LIST OF FIGURES

7.10 Reconstructed vector fields with resolution 32 × 32 from the taxi se-
quence. The effect of different weights of the regularizer (smoother)
are shown in images (a) through (c). Image (a) was computed with
α = 10, image (b) with α = 100, and image (c) with α = 1000. 125

7.11 A flow diagram of our registration algorithm. 126
7.12 The image gradient displacement field (a) is compared to the optical

flow displacement field (b). The optical flow displacement is smoother
than the one of the intensity gradient. 127

7.13 Two different tissue types are simulated by this images of a synthetic
object. Starting from the template image (a) and reference image (b)
three experiments are conducted with different stiffness distributions.
First, both virtual tissue types are assigned the same hard stiffness. Im-
age (c) shows the result that nothing moves out of the original shape.
In the next experiment hard stiffness was assigned to the inner core,
while soft stiffness was assigned in the darker ring. Image (d) shows
the result computed by our algorithm showing the inner core moving to
the upper right undeformed. Finally, both tissue types are assigned soft
stiffness. The result can seen in image (e) where the outer matches the
shape of the reference image while the inner core deforms. 129

7.14 Again, the template image is shown in image (a) and the reference im-
age in (b). Here, the brain was shrunken manually in the reference
image. The registration result of our algorithm is shown in image (c).
This time, we used a 256 × 256 grid. Further, we specified the fol-
lowing stiffness parameters for various regions of the image: skull 108,
grey matter 106, area between brain and skull 104. The results show
how the skull remains stiff and the soft tissue deforms. The registration
time was about 1 second using 5 iterations of the registration loop and
rest sum of squared differences was 102. 130

7.15 There is a significant contrast difference of the template image (a) and
the reference image (b). Image (c) shows the result of our algorithm. It
ran 0.5 seconds on a 128× 128 grid. 131

7.16 A template image (a) is registered to a reference image (b) that was
artificially deformed using a physically correct deformation algorithm.
Image (c) shows the result of our registration algorithm. 132

List of Tables

2.1 NVIDIA chips sorted by release year. The maximum amount of mem-
ory in MB and the fill rate in million textured pixels per second is
shown. This table is taken from [Wikb]. 10

2.2 ATI chips sorted by release year. The maximum amount of memory in
MB and the fillrate in million textured pixels per second is shown. This
table is taken from [Wika]. 10

2.3 Volume sizes and suggested corresponding flat texture sizes. 22

2.4 Update performance of 3D textures versus flat textures measured in
updates (frames) per second. In the simple scenario the pixel shader
writes a constant in every voxel of the volume. In the complex scenario
the pixel shader write the result from a dependent texture fetch to all
voxels, i.e. the result from one texture fetch is used to address another
one. All timings were taken using a GeForce 8800 GTX graphics card. 22

4.1 Three different 3x3 filter kernels are presented: sharpen, blur, and edge
detect. The filter kernels describe the weighting of an area of samples. . 47

4.2 Four-component texture layout for the precomputed FFT table for the
first matrix on the right hand side of Equation 4.6. Here, ωkr and ωki de-
note, respectively, the real and imaginary parts of ωk defined in Equa-
tion 4.5. 49

4.3 FFT performance in milliseconds. Note that the GPU implementation
transforms two 2D signals at the same time. 51

4.4 Timings in milliseconds for the curvature smoothing algorithm applied
to different image sizes. 10 iterations were measured. 55

4.5 Timings in milliseconds for the curvature smoothing algorithm applied
to different volumes sizes. 10 iterations were measured. 55

xvii

xviii LIST OF TABLES

5.1 Bus transfer for swapping chunks strategy where pn is the number of
projection images and cm is the number of chunks. The size in bytes is
represented by ps and cs respectively. 76

5.2 Bus transfer for swapping projection images strategy where pn is the
number of projection images and cm is the number of chunks. The size
in bytes is represented by ps and cs respectively. 76

5.3 We have measured the runtime of Algorithm 3 without thel pre-processing
stages but with backprojection and post-processing stages. This table
shows timings for three different data sets using our CPU and GPU im-
plementations. The data sets vary in the size and number of projection
images as well as the output volume size. 78

5.4 MR reconstruction time in milliseconds on the CPU and GPU using
backprojection and gridding. 88

7.1 The timings in milliseconds of physically-correct image deformation
using different resolutions of finite element grid. 111

7.2 GPU frequency domain cross-correlation performance in milliseconds. . 120
7.3 The performance of our optical flow implementations in milliseconds.

All timings include matrix rebuild and hierarchy update for the multi-
grid solver. 123

7.4 The performance of our registration algorithm in milliseconds for one
iteration. 128

List of Algorithms

1 The preconditioned conjugate gradient algorithm 35
2 The multigrid method V-cycle (recursive implementation, l denotes the

level). 37
3 Cone beam reconstruction pipeline using swapping of projection images. 77
4 The gridding algorithm for MR measurement data from radial trajectories. 82
5 The filtered backprojection algorithm for MR measurement data from

radial trajectories. 86

xix

xx LIST OF ALGORITHMS

List of Abbreviations

API Application Programming Interface
Cg CC for Graphics
CPU Central Processing Unit
CT Computed tomography
CTM Close-To-Metal (ATI)
CUDA Compute Unified Device Architecture (NVIDIA)
DFT Discrete Fourier Transform
FBP Filtered Backprojection
FFT Fast Fourier Transform
FOV Field of View
GLSL OpenGL Shading Language
GPGPU General-Purpose GPU (programming)
GPU Graphics Processing Unit
HLSL High Level Shader Language
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
PET Positron Emission Tomography
PIV Particle Image Velocimetry
RAM Random Access Memory
RGBA Red/Green/Blue/Alpha
SIMD Single Instruction, Multiple Data
SPECT Single Photon Emission Computed Tomography
SSE Streaming SIMD Extensions

xxi

xxii LIST OF ALGORITHMS

Chapter 1

Introduction

The field of medical imaging is advancing rapidly as both hardware and software are
undergoing steady improvements on all fronts. Devices such as CT (computed tomog-
raphy) and MR (magnetic resonance) scanners are being improved by reducing the
amount of radiation, reducing the time required for scanning a patient, or improving
the scanner’s sampling resolution to visualize finer details of the human body. How-
ever, the growing amount of raw data provided by today’s scanners often exceeds the
amount of RAM (random access memory) in desktop or even server computers; and
with more data, the processing time increases, too. Thus, great challenges are to deal
with high memory consumption and algorithm acceleration. Also, new medical imag-
ing algorithms try to provide better interpretations of the acquired data in the areas of
image filtering, reconstruction, segmentation, registration, and visualization. With the
help of improved scanning devices, the challenge is to develop algorithms and efficient
implementations to compute optimal medical images in terms of sharpness, signal-to-
noise ratio, and highest resolution in a very short amount of processing time providing
the physicians with a better basis for their diagnosis and, thus, faster and more effective
ways to cure patients.

This thesis addresses the processing time issue of modern medical imaging software
by providing a fast tool set of GPU-accelerated algorithms. GPUs (graphics processing
units) have become powerful but cheap general-purpose processors capable of execut-
ing almost any algorithm. This tool set provides efficient implementations of solvers
for systems of linear equations and a large variety of algorithms in all areas of medical
imaging. Furthermore, a novel medical image registration algorithm is presented along
with acceleration strategies. The results are already used in Siemens medical imaging
software products.

1

2 CHAPTER 1. INTRODUCTION

1.1 Programmable Graphics Hardware

In recent years, GPUs have become very popular as co-processors since they are cheap
and fast at the same time. The price of a high-end consumer graphics card is about
$500, which is similar to the price of high-end CPUs (central processing units). The
difference between the two types of processors lies in the architecture and the peak
performance. While CPUs are optimized for serial programs, GPUs are optimized for
parallel programs. Since many medical imaging algorithms are parallel algorithms,
GPUs have clear performance advantages over CPUs in this area.

Two decades ago, expensive dedicated graphics hardware was developed mainly for
the movie industries. During the 1980s, SGI was one of the most famous manufactur-
ers of special graphics hardware. In the mid-nineties, consumer graphics hardware was
introduced with a feature set designed for 3D games. Since the gaming market had very
high growth rates at that time, consumer graphics hardware quickly spread and became
a standard component in the PC world. Nowadays, the feature set of graphics hardware
is much more general and it has surpassed the old dedicated hardware in many aspects
such as price and performance. Since a couple years, the term GPU is used to describe
the graphics chip to account for its programmable structure in contrast to older gen-
erations providing only a set of fixed functions. The programmability is particularly
important if GPUs should be used to execute non-graphics algorithms. Modern GPUs
are capable of executing a large variety of algorithms outside the graphics area. GPUs
have proven to be fast co-processors as shown in successful implementations of algo-
rithms in numerous areas. For example, they have been used as co-processor for sorting
[KW05], data bases [GLW+05], fluid dynamics [KW03, Har03], or deformable bodies
[GW05b] just to name a few.

In this thesis, we investigate the usage of GPUs in the area of medical imaging. Us-
ing modern scanning hardware today’s medical images need large amounts of memory
on both disc and RAM to be stored. Both the image resolution and the dynamic range
increases gradually over the years and scanner generation. And with larger images the
processing time of medical imaging algorithms increases, too. Furthermore, the image
data is processed in floating-point precision for best quality which drives the memory
requirements even further. Since GPUs have a significant higher peak performance
than CPUs and provide 32-bit floating-point precision, they are perfect co-processors
for the acceleration of parallel medical imaging algorithms. Serial algorithms cannot
be adapted to run on the GPU easily without modification.

We present a collection of sophisticated GPU-accelerated medical imaging algo-

1.2. THE MEDICAL IMAGING PIPELINE 3

rithms. We propose to accelerate as many consecutive algorithms as possible in order to
minimize the amount of data transfer time to and from main memory. In particular, we
discuss GPU acceleration techniques for solvers of systems of linear equations, many
GPU-accelerated algorithms from the area of medical image filtering, reconstruction,
segmentation, and registration. Furthermore, we present a novel interactive physics-
based registration algorithm.

Before we discuss algorithms related to medical imaging, we give an introduction
to consumer graphics hardware in Chapter 2. We start with a short history on the im-
pressive performance improvement in the last couple of years. Then, we briefly discuss
the most important components of modern GPUs followed by the programming model
and the most important APIs (application programmer’s interface). An introduction
how to use the GPU as a general-purpose co-processor is discussed in detail after that.
This is usually referred to as GPGPU (general-purpose GPU) programming. Finally, all
commonly used data structures and operators are presented since this is the foundation
for each medical imaging algorithm discussed in the rest of this thesis.

Since many medical imaging algorithms rely on the solution of systems of linear
equations, we investigate selected solvers in Chapter 3. Starting with common ma-
trix types and structures, data structures are presented to store them compactly. Novel
GPU-accelerated implementation strategies of the Jacobi method, the conjugate gradi-
ent method, and the multigrid method are discussed in detail.

1.2 The Medical Imaging Pipeline

The focus of this thesis is on GPU-accelerated algorithms for medical imaging. There-
fore, we assume that raw data from a scanning device is (at least partially) available
in the software system. The transformation of the raw data provided by scanners to
meaningful images is called the medical imaging pipeline as depicted in Figure 1.1.
The pipeline includes steps such as reconstruction, filtering, segmentation, registra-
tion, and visualization. That is, the raw data input of a scanning device is transformed
and processed to compute a filtered, reconstructed, segmented, and/or registered high-
resolution image, which is as meaningful as possible to physicians.

1. Raw Data: Raw data is acquired from a scanning device such as a CT, MR, PET,
SPECT, or ultrasound scanner. Some types of scanners do not acquire raw data in
the image domain. Depending on the modality raw data is acquired in projection
domain or in the k-space domain, for example. The process of transforming the

4 CHAPTER 1. INTRODUCTION

Figure 1.1: The medical imaging pipeline. Grey boxes represent data while white ones pro-
cesses. Note that processes 5.–7. alter the image data 4.

data from the acquisition domain to the image domain is called reconstruction
(see step 3).

2. Filtering: Typically, raw data needs to be filtered before it can be used to recon-
struct an image. The reconstruction theory of many image modalities requires
the raw data to be high-pass filtered. Therefore, we present an efficient GPU-
accelerated implementation of the fast Fourier transform (FFT). Moreover, the
image or volume raw data might contain image artifacts (i.e., errors) arising from
the scanning procedure (e.g., calibration errors), from patient motion, metal in-
lays, or other sources. Some of these artifacts can be removed algorithmically.
We mainly focus on the calibration errors. Three non-linear filter are discussed to
reduce noise, ring artifacts and cupping artifacts with GPU implementations. If
these artifacts are removed before the reconstruction process, the resulting image
quality is improved significantly. We describe all the details in Chapter 4.

3. Reconstruction: The reconstruction process transforms raw data from the acqui-

1.2. THE MEDICAL IMAGING PIPELINE 5

sition domain to the image domain. Also, reconstruction sometimes refers to
computing a higher-dimensional image from a set of lower-dimensional images.
The reconstruction process does not necessarily need a complete set of raw data
since incremental updates from the scanner can be processed immediately without
waiting for the data set to complete. If the reconstruction process is fast enough
to reconstruct a partial image before the next partial raw data set arrives, the data
acquisition and the reconstruction process can run simultaneously. However, the
memory requirements are huge since the projection data and the reconstruction
volume must be kept in memory. We present memory swapping strategies for the
GPU-accelerated CT reconstruction process as both the raw data and the recon-
structed volume might be too big to fit into memory. Besides CT reconstruction
we discuss MR reconstruction from radial measurement lines in detail. Two re-
construction algorithms called filtered backprojection and gridding with GPU im-
plementation are presented. Both the CT and the MR reconstruction algorithms
and GPU acceleration can be found in Chapter 5.

4. Image Data / Volume Data: The reconstructed 2D image or 3D volume defines
one intensity value at each Cartesian grid coordinate. Typical volume sizes de-
pend on the scanning modality. For example, a CT volume can have 20483 voxels.
Also, the dynamic range varies very much depending on the scanning modality. A
12-bit dynamic range [0−4095] is very common for CT detectors. Note that other
modalities than CT have other interpretations of the intensity values. For high-
quality medical image processing the volume data must be stored in floating-point
precision to allow algorithms to perform precisely.

5. Filtering: In Chapter 4 we also describe filters that are applicable to image data.
Obviously, some of the raw data filters can also be applied to image data e.g., the
FFT or noise filtering. We discuss the curvature smoothing algorithm and its GPU
implementation. Curvature smoothing belongs to the class of edge-preserving
noise reduction filtering algorithms. Filtering not only improves the visual quality
for humans but is also used as preprocess for other algorithms such as segmen-
tation and registration. A smoothed image helps segmentation algorithms to find
boundaries more easily. In a similar fashion this is true for registration algorithms,
too.

6. Segmentation: Usually, a medical image contains more information than a viewer
is interested in. Segmentation classifies tissue and material types within a volume.
The term segmentation also denotes each classified part of a volume. Segmented

6 CHAPTER 1. INTRODUCTION

areas can easily be hidden or removed from the volume allowing an unobstructed
view. For example, a physician might be interested in the vascular structure of
a human body only. Using segmentation the vascular structure is classified and
extracted from the rest of the image data. This way, it can be viewed indepen-
dently. Among many other criteria, segmentation algorithms can be divided into
binary and non-binary segmentation algorithms. The former define for each pixel
in the image a binary value that specifies whether to include the voxel into the
segmentation (or not). Contrarily, non-binary segmentation algorithms define a
probability of belonging to the segmentation for each voxel. We discuss a so-
phisticated general-purpose multi-modal non-binary segmentation algorithm in
Chapter 6 including its GPU acceleration.

7. Registration: Image registration matches pairs of images. That is, two images
taken under different circumstances are matched such that the tissues and shapes
overlap each other. Applications are, for instance, comparisons in time, between
different image modalities, or pre- and post-operative comparisons. The amount
of different approaches is huge and we briefly mention the most important ones in
Chapter 7. Furthermore, we present a novel interactive physics-based registration
algorithm allowing realistic deformations. Real-world heterogeneous tissue stiff-
ness distributions are taken into account while the simulation runs interactively.

8. Visualization: The visualization process displays 2D and 3D images on screen.
Nowadays, large volumes, deformable visualization, or importance-driven visu-
alization are active research topics. Since this thesis is about image processing
techniques we leave the discussion to other papers [KSW06, BHW+07].

9. Rendered Image: An image generated by the visualization process from the image
data. The visualization process can also be used as intermediary results for human
guided filtering, segmentation, or registration. The final image is usually given to
a physician for diagnosis.

Arbitrary complex medical imaging systems can be created by building a processing
pipeline built of medical imaging algorithms. For example, the pipeline steps 4–7 may
be executed multiple times during one pipeline run. For example, an image is filtered
to please the segmentation algorithm and afterwards the segmented image is registered
to another image.

1.3. SPONSOR-DRIVEN WORK 7

1.3 Sponsor-Driven Work

This thesis was sponsored by Siemens Corporate Research; thus, only algorithms rele-
vant to Siemens medical products were subject to research. All selected algorithm are
not only of theoretical interest but also of practical relevance in products. The condition
every algorithm had to fulfill in this thesis is its product-ready stability and reliability.
Most of the presented acceleration strategies are already used in Siemens medical prod-
ucts. Therefore, the research conducted for this thesis is not fundamental research but
applied research with a strong focus on applicability to real-world data sets instead of
phantom data sets.

Siemens is holding the copyrights to all data sets used in this thesis. The data sets
were used to create the images shown in this thesis.

1.4 Contribution of this Thesis

This work shows the effectiveness of GPUs in the area of medical imaging. In fact,
GPUs can be used efficiently throughout the medical imaging pipeline. Very often,
several steps of the pipeline can be executed on the GPU without any transfer to main
memory. This provides the fastest performance since additional data transfer signifi-
cantly slows down the processing. Typically, at least a four-times speed-up compared
to a hand-optimized SSE2 CPU implementation is achieved for each algorithm. In
some cases we achieve considerably higher speed-ups; e.g., MR reconstruction. One of
the most important building blocks is our linear algebra library with implementations
of GPU-accelerated conjugate gradient and multigrid solvers. Since several algorithms
rely on the solution of a system of linear equations, we benefit in many areas. Finally,
our novel registration algorithm is capable of registering two images using physical
models. A tissue stiffness distribution on a fine granular level is taken into account
allowing only realistic deformations. At the same time our algorithm is interactive and
provides immediate feedback to the user.

This thesis is supported by the following peer reviewed publications:

1. Interactive Model-based Registration, Thomas Schiwietz, Joachim Georgii, Rü-
diger Westermann; in Proceedings of Vision, Modeling and Visualization 2007
[SGW07].

2. Freeform Image, Thomas Schiwietz, Joachim Georgii, Rüdiger Westermann; in
Proceedings of Pacific Graphics 2007 [TS07].

8 CHAPTER 1. INTRODUCTION

3. GPU-accelerated MR Image Reconstruction From Radial Measurement Lines,
Thomas Schiwietz, Ti-chin Chang, Peter Speier, Rüdiger Westermann; ISMRM
2007: Workshop on Non-Cartesian MRI [SCSW07].

4. A Fast And High-Quality Cone Beam Reconstruction Pipeline Using The GPU,
Thomas Schiwietz, Supratik Bose, Johnathan Maltz, Rüdiger Westermann; in
Proceedings of SPIE Medical Imaging 2007 [SBMW07].

5. MR Image Reconstruction Using The GPU, Thomas Schiwietz, Ti-chin Chang,
Peter Speier, Rüdiger Westermann; in Proceedings of SPIE Medical Imaging
2006 [SCSW06].

6. Random Walks For Interactive Organ Segmentation In Two And Three Dimen-
sions: Implementation And Validation, Leo Grady, Thomas Schiwietz, Shmuel
Aharon, Rüdiger Westermann; in Proceedings of Medical Image Computing and
Computer-Assisted Intervention (MICCAI 2005) [GSAW05b].

7. Random Walks For Interactive Alpha-Matting, Leo Grady, Thomas Schiwietz,
Shmuel Aharon, Rüdiger Westermann; in Proceedings of VIIP 2005 [GSAW05a].

8. Numerical Simulations On PC Graphics Hardware, Jens Krüger, Thomas Schi-
wietz, Peter Kipfer and Rüdiger Westermann; in Proceedings of EuroPVM/MPI
2004, Special Session Parsim [KSKW04].

9. GPU-PIV, Thomas Schiwietz, Rüdiger Westermann; in Proceedings of Vision,
Modeling and Visualization 2004 [SW04].

Chapter 2

Programmable Graphics Hardware

The medical imaging pipeline described in Section 1.2 is computationally very ex-
pensive since it consists of time and space consuming algorithms. A lot of research
has been conducted in the area of GPGPU (general-purpose graphics processing unit)
programming over the last couple of years showing its efficiency [OLG+05, KW03].
The GPUs of consumer graphics hardware (programmable graphics hardware) have
evolved from triangle rasterizers for 3D graphics to full-fledged programmable proces-
sors. Although the instruction set is not as powerful as the one of a CPU, it is sufficient
for many types of algorithms. Consumer graphics hardware has become cheap and
fast at the same time. Roughly every six months a new generation of GPUs is re-
leased outperforming the previous generation considerably. In this section, we give an
overview about the history and evolution of consumer graphics hardware, as well as the
pipeline data structures, shaders, and APIs. Furthermore, a comprehensive introduc-
tion to GPGPU programming is given since all algorithms presented in this thesis are
non-visualization ones.

2.1 Evolution of Programmable Graphics Hardware

For a detailed history of programmable graphics hardware we refer the reader to [Krü06].
Instead, we focus on the performance development. A commonly used comparison to
the evolution of CPUs is based on Moore’s law: Many people say that Moore’s law is
tripled in graphics hardware. Moore’s law is an empirical observation that the num-
ber of transistor doubles within 24 months. Sometimes the time frame is quoted as 18
months. However, Moore’s law is often misquoted as doubling the performance in 18
months. While enormous improvements are made with each generation of hardware,
the number of transistors is usually no accurate indicator of the performance. How-

9

10 CHAPTER 2. PROGRAMMABLE GRAPHICS HARDWARE

NVIDIA Year Memory (MB) Fill rate (MT/s)
Riva TNT 1998 16 180
Riva TNT 2 1999 32 250
GeForce 256 1999 32 480
GeForce 2 2000 64 1800
GeForce 3 2001 128 1920
GeForce 4 2002 128 2200
GeForce FX 2003 256 3200
GeForce 6800 2004 256 5600
GeForce 7900 2005 512 10320
GeForce 8800 GTX 2006 768 36800

Table 2.1: NVIDIA chips sorted by release year. The maximum amount of memory in MB and
the fill rate in million textured pixels per second is shown. This table is taken from [Wikb].

ATI Year Memory (MB) Fill rate (MT/s)
Rage 128 1999 32 206
Radeon 7000 2000 64 550
Radeon 8500 2001 128 2200
Radeon 9700 2002 128 2600
Radeon 9800 XT 2003 256 3296
Radeon X800 XT PE 2004 256 8000
Radeon 1900 XTX 2005 512 10400
Radeon HD 2900 XT 2007 512 11888

Table 2.2: ATI chips sorted by release year. The maximum amount of memory in MB and the
fillrate in million textured pixels per second is shown. This table is taken from [Wika].

ever, huge performance improvements from generation to generation can be observed
doubtlessly. Table 2.1 shows the most important GPU chips by NVIDIA sorted by re-
lease year. The following columns show the maximum amount of memory and the fill
rate measured in million textured pixels per second. Figure 2.1 illustrates the fill rate
as a graph. Accordingly, Table 2.2 and Figure 2.2 show the same information for ATI
GPUs. All numbers are taken from the websites [Wikb] and [Wika].

2.2 The Shader Model 4.0 Standard

The Shader Model 4.0 standard is the latest incarnation of the Shader Model standards
defining all capabilities a chip of graphics hardware has to fulfill in order to call itself
compliant to the standard. It is mainly developed by Microsoft and closely coupled to
the lower operating system layers of Microsoft Windows Vista. A good overview about
the Shader Model 4.0 is described in [Bly06]. We refer the reader to the literature for

2.2. THE SHADER MODEL 4.0 STANDARD 11

Figure 2.1: Illustration of the NVIDIA GPU fill rate in million textured pixels per second.

Figure 2.2: Illustration of the ATI GPU fill rate in million textured pixels per second.

older (and newer) standards [Krü06]. Basically, the Shader Model standard defines the
data structures, the execution processes (the pipeline), and all states and buffers. We
explain in the following sections the data structures and the pipeline in detail. Figure
2.3 depicts a graphics board consisting of a GPU - the processor - and onboard mem-
ory. The onboard memory is often called GPU memory or texture memory. We call it
GPU memory in the following. Next, we describe the data structures available in GPU
memory and the execution pipeline, i.e. the shader programs executed by the GPU.

12 CHAPTER 2. PROGRAMMABLE GRAPHICS HARDWARE

Figure 2.3: A graphics card has a GPU and onboard memory. It is connected to the PCI bus.

2.2.1 Data Structures

All GPU data structures are stored in graphics memory. Usually, the graphics memory
is onboard with the GPU for fast access, but especially in laptop computers it is often
shared with the system memory. There are a limited number of different data types that
can be used by the graphics hardware. The most important ones are:

1. Vertex data: Most importantly, vertex data defines vectors in 4D space. Addi-
tional attributes can be specified such as texture coordinates, normals or colors.
In general, vertex attributes are arbitrarily defined by the programmer.

2. Index data: An index is a pointer to a vertex where one vertex can be indexed sev-
eral times. Very often, vertices are shared among multiple primitives. A primitive
is a point, a line, or a triangle. With the help of an index buffer, multiple copies
of one and the same vertex can be avoided thus reducing the processing time in
the vertex shader due to vertex caching.

2.2. THE SHADER MODEL 4.0 STANDARD 13

3. Texture data: Textures are 1D, 2D, and 3D arrays of data. Each array element is a
tuple of up to four components. Each component is of type char, short, integer or
float. Sometimes the tuple is called RGBA as they were invented to store the red,
green, blue and alpha component of a color. The array elements are often called
texels (texture elements) or voxels (volume elements) in the case of 3D textures.
The fastest read and write access provide 2D textures.

Depending on the creation flags, the GPU data structures are CPU readable, CPU write-
able, GPU readable, or GPU writeable. All access properties can never be active at the
same time. In Shader Model 4.0, a GPU writeable texture is never CPU readable and
writeable. If GPU memory needs to be transferred (copied) to main memory a GPU
memory internal copy to a CPU readable format must be created first. The access prop-
erties are used to optimize performance, especially minimizing the bus transfer times.

2.2.2 Pipeline

The pipeline is a set of stages connected in fixed way as depicted in Figure 2.4. It is
not possible to pick a subset of the pipeline but the whole pipeline is executed from the
beginning to the end. In the following, the individual steps 1 to 7 are discussed briefly.
For an in-depth discussion, we refer the reader to [Bly06].

1. Input Assembler: The input assembler stage consists of four setting groups defin-
ing vertices and attributes. A vertex is a point in space with additional attributes
that are interpolated across the circumscribed primitive. Vertices are described by
the input-layout state:

(a) Vertex layout: Typical components of a layout are position, texture coor-
dinates, surface normals, and color. The Shader Model 4.0 allows a large
number of arbitrary user-defined attributes to be specified. The vertex layout
defines the data structure for the components, i.e. the byte position within
the structure, the length of the component in bytes, and the data type.

(b) Vertex buffer: The vertex buffer is an array of vertices where each array
element has the same vertex layout.

(c) Index buffer: An index points to a vertex in a vertex buffer. A set of indices
is called an index buffer. Index buffers allow reusing shared vertices among
a sequence of primitives. Consider a box consisting of eight vertices. Each
vertex is shared by three triangles. With the help of index buffers, each ver-
tex has to be specified only once. Also, the GPU memory has a vertex cache

14 CHAPTER 2. PROGRAMMABLE GRAPHICS HARDWARE

Figure 2.4: The Shader Model 4.0 graphics pipeline.

holding previously transformed (processed) vertices. This allows fetching
transformed vertices from cache instead of executing the vertex shader sev-
eral times.

(d) Primitive topology: The vertex topology defines how the stream of vertices

2.2. THE SHADER MODEL 4.0 STANDARD 15

and indices are interpreted in terms of the primitive type. Supported primi-
tive types are points, lines, and triangles. Further, the buffers are either in-
terpreted as lists or as strips. While lists describe each primitive separately,
strips reuse the last one or two previously indexed vertices in order to save
processing time by reusing transformed (cached) vertices.

2. Vertex Shader: The (user-defined) vertex shader program is executed for each
vertex entering the pipeline. This shader was the first programmable part of the
pipeline originally intended to transform coordinate systems from one space to
another. Nowadays, the vertex shader is able to perform arbitrary operations on
the vertex data structure. Further, 16 textures can be bound and sampled in this
stage. For example, geometry information can be stored in the textures allowing
the vertex shader program to look up positions.

3. Geometry Shader: The (user-defined) geometry shader stage was introduced in
the Shader Model 4.0 and is the latest addition to the standard. It operates on the
primitive level and has access to the vertex data structures of all primitive vertices.
It can output up to 1024 floats in the form of vertices thus every primitive can be
outputted several times or not at all. Each copy may be altered, i.e., transformed
differently. Furthermore, the primitive type can be changed in this stage, too. For
example, a wireframe render can be implemented easily by sending the triangle
primitives to the pipeline and the geometry shader outputs lines instead of trian-
gles. A line strip is assembled in the geometry shader from the vertex data. Like
the vertex shader, the geometry shader has random access to texture data. Fur-
thermore, the geometry shader is able to stream out its results to buffers in GPU
memory. This way, subsequent passes are able to use this data as input.

4. Clipper: With all vertex positions in projection space, the clipper divides the tri-
angles at the intersection to the frustrum of the semi-unit cube. Clipping leaves
the visible part of a primitive and discards the invisible, i.e., the parts lying out-
side the semi-cube. Once all triangles are clipped, the perspective division is
performed by diving the x, y, z-components by the homogeneous component w.
Now, with the visible part of the primitives determined, the primitives are raster-
ized to the target buffer, which can be the screen (frame buffer) or an arbitrary
buffer in graphics memory.

5. Rasterizer / Interpolator: After clipping and projective division, all vertices have
a 2D position on the target raster and a depth value. The rasterizer interpolates

16 CHAPTER 2. PROGRAMMABLE GRAPHICS HARDWARE

the edges of the primitive from top to bottom and then fills pixels between the
edges scan-line by scan-line. The interpolation unit interpolates all attributes in
the vertex layout according to the programmer chosen method from a set of in-
terpolation schemes. All interpolated values of the vertex layout are available at
each rasterized pixel. The interpolated values are accessible by the subsequent
stage, the pixel shader. Note that the rasterizer discards pixels failing the depth
test (z-test). A z-buffer stores depth values for all pixel and updates values as
soon as a pixel passes the depth test by replacing it with the pixel’s depth value.
Therefore, the pixel’s depth value is also interpolated across the primitive. The
z-comparison function among other states can be set in the depth-stencil state.
Additional states such as cull mode can be set in the rasterizer state.

6. Pixel Shader: A (user-defined) pixel shader program written by a programmer
is executed for each rasterized pixel. It has access to all interpolated vertex at-
tributes. Moreover, it has random read access to all kinds of buffers. Originally,
image data was looked-up in the textures. Today, any information can be stored in
textures since the introduction of the float-type in GPU memory. The pixel shader
determines the result value written to the corresponding pixel in the target buffer.
Furthermore, it can also alter its depth value.

7. Output Merger: The final stage in the pipeline is responsible for merging multiple
output buffers. Sometimes, pixels must not be replaced by the pixels in the target
buffer. For transparency effects the new pixels and the old pixels are combined by
weighted blending. This stage is not yet programmable, but it is also a candidate
for future Shader Models. Today, several predefined states from the blend state
structure can be chosen.

2.2.3 Shaders

Figure 2.5 illustrates the three programmable stages - the shaders - in the Shader Model
4.0 pipeline with a simple example of a triangle rendered orthogonally to the screen.
The vertex shader unit executes a vertex program for each of the three vertices v0, v1, v2.
It can transform the position of vertices to another space or change attributes such
as texture coordinates. Next, the geometry shader receives all vertices belonging to
the primitive pre-processed by the vertex shader. It can transform the vertices again,
but more importantly, it may output multiple primitives from one set of vertices, for
example shifted in space. It may also change the primitive type, for example from
triangle to line. Finally, the pixel shader is executed for each pixel circumscribed by

2.2. THE SHADER MODEL 4.0 STANDARD 17

Figure 2.5: The three programmable stages vertex shader, geometry shader, and pixel shader in
the Shader Model 4.0 pipeline. The vertex shader operates on the vertices, the geometry shader
on the primitive, and the pixel shader on each rasterized pixel.

the primitive (indicated as light gray boxed in the right image Figure 2.5) in the target
buffer.

Today, the graphics hardware is often an unified shader architecture. This means
that a shader unit in hardware is capable of executing vertex, geometry, and pixel shader
programs although the input and output structures differ. Incidently, there is a lot of
common logic among the three shaders justifying the unified architecture. All shaders
have the following common command sets:

• Arithmetic instructions: Apart from the primitive arithmetic instruction such as
addition, multiplication, etc., graphics hardware has special commands for dot
products, cross products and more. Since many 4 × 4 matrix-vector multipli-
cations are required in computer graphics, a hardware accelerated command is
advantageous. A matrix-vector multiplication can be expressed as 4 dot products.
All commands are SIMD (single instruction multiple data) instructions perform-
ing a single instruction on up to four data components at the same time.

• Data access instructions: Data access instructions allow reading values from tex-
tures in GPU memory. A sampler state defines the kind of interpolation when
fetching a texel, which can be nearest neighbor sampling or linear interpolation
(in 2D bilinear, in 3D trilinear). Also, a border mode is specified that determines
the sampling behavior outside the texture. Outside fetches can be redirected to
the border or to mirror, for example. Finally, the mip-map state defines how to
sample different texture resolutions.

• Control flow instructions: Control flow instructions allow branching and loops.

18 CHAPTER 2. PROGRAMMABLE GRAPHICS HARDWARE

Statements such as if-then-else, for-loops, and while-loops can be used in every
shader. Branching used to be inefficient, but has become much faster on newer
hardware. Still, there are cases requiring for-loops to be unrolled. The operating
system vendors want to make sure that no shader program can put the graphics
card into an endless loop hanging the whole system. That’s why Microsoft resets
the driver by deleting and restarting it as soon as one GPU call takes more than 2
second. Fortunately, the timeout can be changed.

A large number of temporary registers is available for intermediate results for every
program. Each shader is processed independently and potentially in parallel. This is
also true for every rasterized pixel. However, no processing order can be assumed by
the programmer. Therefore, algorithms dependent on the processing order cannot be
executed by GPUs without modification.

2.3 General-Purpose GPU Programming (GPGPU)

Since the year 2003 the field of general purpose GPU programming (GPGPU) exists.
The Shader Model 2.0 was implemented in graphics hardware allowing 32-bit floating
point textures and random read access to textures. Non-graphics, therefore, general-
purpose applications can be implemented since. A GPU accelerated algorithm might
result in a multitude of passes each altering different textures. Once the GPU processing
is done, the results are read-back to main memory. Thus, the GPUs can be used as co-
processors for many algorithms. We briefly review the use of the GPU as a co-processor
for arbitrary algorithms; for additional information we refer to the website [GPG].

An algorithm always needs data structures for storage. Therefore, the first question
is how to store data in GPU memory. Second, the algorithmic logic must be executed
using GPU commands manipulating the data structures in GPU memory. We explain
this in the next section in a more detailed way. Finally, the results are read back to
main memory for further processing or storage on disc. A nice by-product of GPU
processing is that intermediate results can be displayed at virtually no extra cost as all
data is already present in GPU memory. This can be used for progressive visualizations
and be useful for better understandings of an algorithm.

As already stated earlier, read access to textures is available in all shader stages.
Unfortunately, GPU write access is not available in a random access manner. We de-
scribed the details in the upcoming sections. First, we discuss 2D data structures and
3D data structure with GPU read and write access. Finally, we review the reduction
operator allowing to compute sum, find minimums and maximums in textures.

2.3. GENERAL-PURPOSE GPU PROGRAMMING (GPGPU) 19

2.3.1 2D Data Structures and GPU write access

As described previously, there are GPU data structures for 1D, 2D, and 3D arrays called
textures. These textures are used in GPGPU programming to store any data required
by the algorithm. Since textures are nothing else but 1D, 2D, or 3D arrays, every data
structure of an algorithm must be mappable to an array. Thus, mapping algorithms
that use arrays only is a straightforward task. On the other hand, algorithms with non-
array data structures have to be adapted to use arrays. As there is no way to store
pointers on the GPU, linked lists, trees, graphs and so forth cannot be implemented
directly. Sometimes, the pointers can be circumscribed using table indices and therefore
represented as textures, but it often requires a redesign of the algorithm. The textures
can be filled by values from main memory for the initial setup. Subsequently, the
textures must be updated by the GPU in order to execute an algorithm using the GPU.
As described above, the pipeline is executed for everything. So it must be used to
update textures, too.

To set values in a texture by the GPU, some stages of the GPU pipeline are pro-
grammed specially to achieve the texture update. First, the texture to be updated is
set as the render target. The render-to-texture functionality was originally intended to
implement multiple cameras within a rendered scene.

(a) (b)

Figure 2.6: The texture update is illustrated in two examples. A full update using a quadrilateral
in image (a), and a partial (border) update using four lines on image (b).

Using render-to-texture the output of the pipeline can be directed to a texture instead

20 CHAPTER 2. PROGRAMMABLE GRAPHICS HARDWARE

of the display. Now, the programmer must cover the area of the texture to write to by
primitives. For example, if the entire texture needs to be updated, two triangles defined
by four vertices (v0, v1, v2, v3) are rendered orthogonally onto the texture. Orthogonal
refers to straight from the top without projective distortion. Figure 2.6 illustrates two
examples for updating a different part of a texture. On the left-hand side, a full texture
update is shown. Using a triangle strip, two triangles (v0, v1, v2) and (v2, v1, v3) are
defined by the vertices (v0, v1, v2, v3). When the two triangles are rasterized, all texel
in the texture are covered and overwritten by the pixel shader result. Another example
of a texture update is illustrated in the image on the right-hand side. Especially in
numerical algorithms, boundary conditions have to be considered separately from the
rest of the domain. In order to update the boundary cells only, a line strip is defined
by five vertices located in the center of the corner cells. Note that the order of the
vertices is now a round trip starting and ending in one vertex, in contrast to the zigzag-
order of the previous example. The line strip results in the following line segments:
(v0, v1), (v1, v2), (v2, v3), (v4, v5). The pixels closest to the ideal line are rasterized.

If the update geometry cannot be described simply by defining some triangles or
lines, multiple geometries can be rasterized in a row or packed into one pass. Another
option for arbitrary sparse updates is to use the z-buffer. The z-buffer was created
to take care of the correct depth order in rendered 3D scenes. Basically, it stores a
normalized depth value for each pixel in the render target. The z-buffer can also be
used as a mask in image processing. By setting the z-buffer to 0 where an update is
allowed and 1 where the update is not allowed, a z-less test will discard all blocked
pixels if the z-plane of the rendered primitive is between 0 and 1. Apart from the z-
buffer, another option to build per-pixel masks is to use the stencil buffer. Since the
idea remains the same, we will not go into detail here. For each rasterized pixel that
survived the z-test, the pixel shader program is executed. By rendering two triangles
covering the entire domain those pixels masked by the z-buffer are discarded.

As mentioned above, a pixel shader program is executed for each rasterized pixel. It
may perform arbitrary arithmetical operations, access interpolated vertex attribute data,
access other textures at random positions for reading, and use control flow instructions.
The length of a pixel shader program is not restricted anymore in the Shader Model
4.0 standard. Further, it can also discard pixels during the execution, for example in
a branch of a control flow block. So far, we have discussed how to write values to
one texture. The Shader Model 4.0 allows writing to 8 textures at the same time with
unique output values each. This is useful whenever more data needs to be stored per
pixel than four values (RGBA). The GPU memory can be filled up with any number

2.3. GENERAL-PURPOSE GPU PROGRAMMING (GPGPU) 21

of textures. Therefore, with the help of multiple textures and multiple passes (pipeline
runs), complex algorithms can be built on the GPU to achieve the desired algorithmic
goal.

2.3.2 3D Data Structures and GPU write access

Figure 2.7: A flat texture of a 64 × 64 × 64 cardiac data set. Eight slices are put in one row
side-by-side.

Especially in medical imaging, 3D data structures are required very often since
most modern scanner types acquire raw data to provide information of the 3D space.
Until recently, a flat texture (sometimes called texture atlas) had to be used in order to
represent GPU-writeable structures. A flat texture is a 2D texture putting 3D slices of
a volume next to each other. Figure 2.7 illustrates a flat texture of a 643 cardiac data

22 CHAPTER 2. PROGRAMMABLE GRAPHICS HARDWARE

set. Flat textures can be updated in a single render pass using two triangles covering the
entire texture. Also, a single slice can be updated by defining two triangles covering
one single slice of the flat texture. Obviously, flat textures have strict size limitations
as there is a maximum limit for the size of 2D textures. Currently, the limit in the
Shader Model 4.0 graphics hardware is 8192 pixels in every dimension. Table 2.3
shows possible flat texture sizes for various 3D volume sizes. A volume of 5122 voxels
is not representable in a flat texture anymore since the maximum 2D texture size is
surpassed.

Volume size 323 643 1283 2563

Flat texture size 256× 128 512× 512 2048× 1024 4096× 4096

Table 2.3: Volume sizes and suggested corresponding flat texture sizes.

With the latest generation of graphics hardware rendering to 3D textures is possible.
Conceptionally, a 3D texture is a stack of 2D textures (slices). That’s why the write
access is restricted to slices perpendicular to the z-axis (w-axis in texture space). Two
triangles have to be defined covering one slice and a geometry shader program specifies
the slice to write to. Naturally, all slices of the volume can be updated in a single
rendering call by batching all triangles into one vertex buffer and one index buffer.

Volume size 323 643 1283 2563

Simple: 3D texture ca. 80000 23700 4338 555
Simple: Flat texture ca. 85000 34360 4560 582
Complex: 3D texture ca. 60000 11400 2053 254
Complex: Flat texture ca. 70000 21305 2840 crash

Table 2.4: Update performance of 3D textures versus flat textures measured in updates (frames)
per second. In the simple scenario the pixel shader writes a constant in every voxel of the
volume. In the complex scenario the pixel shader write the result from a dependent texture
fetch to all voxels, i.e. the result from one texture fetch is used to address another one. All
timings were taken using a GeForce 8800 GTX graphics card.

We have compared the update speed of various volumes using the flat texture rep-
resentation and the 3D representation. Table 2.4 shows the results of our comparison
measuring a full volume update (all voxels) of different volume sizes using a 3D tex-
ture and a flat texture. We have conducted two tests: in the simple test the pixel shader
returns just a constant, in the more complex example a dependent texture is computed.
Considering the more complicated voxel addressing in flat textures, the performance
drawback of 3D textures is surely acceptable, especially for larger volumes. As the
simple test shows, the pure write performance is almost identical in both cases. The

2.3. GENERAL-PURPOSE GPU PROGRAMMING (GPGPU) 23

performance difference in the complex test can be explained by the texture read in-
structions. The flat texture test fetches from a 2D texture whereas the 3D texture test
from a 3D texture. The difference to the simple test indicates that the performance
bottleneck is the 3D texture fetch.

2.3.3 Reductions

Many algorithms require functions that operate on a set of values (array). Typical ex-
amples are computing the sum or finding the minimum or maximum value in an array.
Another example in linear algebra is the vector dot product. Two vectors are multi-
plied component-wise followed by computing the sum over all components. Those
kind of operator are called reduction operators on the GPU. In this section, we discuss
value operators and position operators with GPU implementation for single-valued and
multi-valued results.

2.3.3.1 Value Operators

Some of the most common operators on N elements e(i) with i = 0, , N − 1 are the
following:

sum =
N−1∑
i=0

e(i) (2.1)

avg =
1

N
sum(e) (2.2)

min = min(e) (2.3)

max = max(e) (2.4)

Suppose the number of elements is small N = 4 or N = 16, and the values are
stored in a (1-component) texture. A custom shader can be written that fetches all N
elements and computes the desired operator on the GPU. We will discuss the GPU
implementation for larger N below.

2.3.3.2 Position Operators

Special versions of the min and max operators are often required if not only the mini-
mum or maximum value is of interest, but also the position of them in the array.

24 CHAPTER 2. PROGRAMMABLE GRAPHICS HARDWARE

minpos = {i ∈ [0;N − 1]|e(i) = min(e)} (2.5)

maxpos = {i ∈ [0;N − 1]|e(i) = max(e)} (2.6)

Again, suppose the number of elements is small N = 4 or N = 16 and the values
are stored in a 1-component texture. A new texture with the same size but 4 compo-
nents is created and the contents of the original texture copied to the first component.
The three remaining channels are used to store the position of each value in texture
coordinates. A shader program computes the position operator by performing the min
and max operators as described in the previous section but only on the first component
of this 4-component texture. The last three components are simply copied together with
the min/max in N elements. This way, the position is coupled with the result.

2.3.3.3 Single Reduction

Figure 2.8: A reduction operation combines a set of elements (here four) to a new element. The
process is repeated until there is only one element left.

The principle how to compute these operators using GPUs is based on the idea of
separation. That is, a data set can be split into subsets and the operator is executed on
each subset. Next, the results are fed into the operator again yielding another smaller
result subset. This process is repeated until there is only one result remaining.

There is a hardware feature called mip-mapping that performs the averaging opera-
tor on a texture by generating a sequence of textures each half the size of the previous
one in all dimensions. Figure 2.8 illustrates this hierarchy. In the 2D case, four com-

2.3. GENERAL-PURPOSE GPU PROGRAMMING (GPGPU) 25

ponents are averaged and written to the next smaller texture. This process is repeated
until only a 1 × 1 texture remains where the overall average is stored. The average
operator can be expressed by mip-mapping. Both 2D and 3D textures with all relevant
data types are supported by mip-mapping.

The other operators can be implemented using the same idea implemented manually
with shader programs providing considerably more flexibility. A hierarchy of textures
half the size of the previous one is generated and filled by the reduction operator. The
difference is that the operator is now a shader program allowing arbitrary reduction
operators to be implemented. Furthermore, the reduction hierarchy can be adapted as
well. For example, the hierarchy might consist of textures a quarter the size of the
previous one, if 4 × 4 texture elements are combined in the reduction operator. The
number of elements that are combined in the operator is called the kernel size. On
older hardware 2× 2 is optimal, nowadays longer shader programs are preferable and,
therefore, larger kernel sizes must be taken into consideration. Furthermore, non-power
of two dimensions can be supported by special shaders for each level.

As illustrated in Figure 2.8 for 2D textures, a set of components is fetched, the
desired operator is executed on the set of components, and the result is written to a
smaller texture. This process is repeated until only one texture element remains which
is the result of the reduction. The same principle can be used for 3D textures as well.
In this case, a 3D kernel must be used.

Figure 2.9: Multiple reduction problems are arranged into one texture. The reduction stops as
soon as all original problems have solved.

26 CHAPTER 2. PROGRAMMABLE GRAPHICS HARDWARE

2.3.3.4 Multi Reduction

We call a set of similar single reduction problem multi reduction. Instead of computing
k equal single reduction operations sequentially, a multi reduction computes all single
reductions at the same time. As shown in Figure 2.9, k = 4 reduction problems are
arranged in a 2 × 2 grid. The number of reduction steps depends on the size of the
single reduction. This way, more work load is pushed to GPU minimizing the amount of
CPU-GPU communication. Especially, if there are many single reductions, for example
16× 16 single reductions each of size 32× 32, the combination of all single reduction
into one multi reduction provides huge speedups.

2.4 Graphics programming APIs

Currently, there are two major graphics programming APIs available: DirectX and
OpenGL. Both APIs provide similar functionality for graphics hardware programming.
Recently, pure GPGPU programming languages have surfaced: CTM and CUDA. Most
of our implementations have been written using DirectX 9 and DirectX 10. There a
numerous shading languages to program the shading units as each API has its own.
Only a few shading languages are available for multiple APIs and operating systems,
e.g. Cg by NVIDIA. All shading languages have a close relationship to the C language
in common.

2.4.1 OpenGL

Invented by SGI in 1992, OpenGL is the oldest graphics hardware API still alive today.
It is available under many operating systems and, thus, portable. OpenGL allows the
integration of vendor-specific extensions. Once an extension is accepted by a broader
range of developers and vendors, the extension is eventually accepted into the standard
ARB extensions (architecture review board). OpenGL grows by extensions rarely re-
placing existing functionality. This philosophy makes OpenGL backward compatible to
the first day. Every OpenGL program compiles and runs without changes as extensions
are rarely removed. On the other hand, outdated functionality and extensions bloat the
standard producing a lot of legacy code. Further, newer extensions often provide simi-
lar functionality but execute much faster. A novice programmer might be overwhelmed
with choosing the right extension. OpenGL has its own shading language called GLSL
(OpenGL Shading Language). The famous Red Book [WDS99] describes the OpenGL
API and the Orange Book [Ros06] the shading language.

2.4. GRAPHICS PROGRAMMING APIS 27

2.4.2 DirectX 9 / DirectX 10

The DirectX library was created by Microsoft in the mid-nineties. Contrarily to OpenGL,
the update philosophy of DirectX is fundamentally different. With every major revision,
the API is rebuilt from scratch. This has both advantages and disadvantages, too. First,
a program written with an older revision cannot use any new features from newer re-
visions. It has to be rewritten entirely. On the other hand, the API stays very clean as
no legacy code has to be maintained. Thus, the programmer is forced to use the latest
technology without exceptions. This results in the fastest possible code.

DirectX 9 introduced the HLSL language (high-level shading language) [Gra03].
HLSL was derived from Cg (C for graphics) developed previously by Microsoft and
NVIDIA. The feature sets of GLSL and HLSL are equal but there are some differ-
ences in the language. HLSL allows defining techniques in order to structure sets of
vertex/pixel shader programs into a pass. DirectX 9 allows both fixed function pro-
gramming and shader programming.

DirectX 10 removes the fixed function pipeline in favor of HLSL [Bly06]. It intro-
duces the geometry shader as new pipeline stage. Moreover, the resource management
was redesigned entirely. The different memory pools were discarded, and the concept
of a most general buffer was introduced. With appropriate views a buffer can be treated
as a texture, a vertex buffer, an index buffer, and so forth. DirectX is implementing the
Shader Model 4.0 standard.

2.4.3 CTM / CUDA

As one might think, employing GPUs for non-graphics applications is rather compli-
cated. In-depth understanding of the data structures and the pipeline is required for op-
timal performance. Additionally, many of the stages provide a lot of functionality that
is not needed for GPGPU applications. Therefore, both NVIDIA and ATI have devel-
oped APIs to use the GPUs for non-graphics, GPGPU applications. ATI’s CTM (Close-
to-Metal) provides a very low-level access to the graphics hardware while NVIDIA’s
approach CUDA (Compute Unified Device Architecture) is a more abstract high-level
API. Also, NVIDIA provides a CUDA library for linear algebra operators and it is rel-
atively easy to program although for optimal performance in depth understanding of
the underlying architecture is also required. CUDA supports scattered writing which is
a highly desirable feature for GPGPU applications. Unfortunately, the performance of
the scattered write is far from optimal. Since both APIs are very young, it is difficult to
estimate the acceptance and usage in the community, although CUDA seems to become

28 CHAPTER 2. PROGRAMMABLE GRAPHICS HARDWARE

more and more popular.

Chapter 3

Solving Systems of Linear Equations
Using the GPU

In this section, we discuss systems of linear equations and solution algorithms with
GPU implementation strategies. System of linear equations arise from the discretiza-
tion of partial differential equations in areas such as physics, engineering, or computer
science. In this thesis, the random walker algorithm (see Section 6.3), the physically-
based deformation method (see Section 7.2), and the optical flow algorithm (see Section
7.3.3) are all based on systems of linear equations. Also, CT and MR reconstruction
(see Chapter 5) are further examples though we use different approaches to compute
them.

This chapter is organized as follows. First, we give an introduction to the topic and
discuss basic solution methods with related work. Since more efficient solvers depend
on the structure and properties of the matrix we review those next. Then, we discuss
a selection of efficient solution algorithms, namely the Jacobi, Gauss-Seidel, conjugate
gradient, and multigrid method. Compact data structures to store matrices and imple-
mentations using the CPU and the GPU are presented in the following. Finally, we
conclude with our result.

3.1 Introduction

A system of linear equations is a collection of mutually dependent linear equations that
need to be satisfied simultaneously. It can be written in matrix-vector form

Ax = b, (3.1)

29

30 CHAPTER 3. SOLVING SYSTEMS OF LINEAR EQUATIONS USING THE GPU

where A ∈ Rn×n is a matrix, x ∈ Rn is the solution vector, and b ∈ Rn is a right
hand side vector where n is the number of equations. Generally, the system is not nec-
essarily squared but all the applications we discuss in this thesis have squared matrices.
Furthermore, n is a power of two most of the time. The matrix A and the right hand
side vector b are given, so that Equation 3.1 must be solved for x.

There exist several basic solution methods with an algorithmic complexity ofO(n3).
The Gauss Elimination [Weia] transforms the matrix to upper triangular form with a
new right hand side b′ by exploiting the linearity of the system. Backwards substitution
yields the solution vector x. Another way to compute x is achieved by multiplying
Equation 3.1 with the inverse matrix A−1 from the left or right on both sides. In order
to determine the inverse of matrix A−1, the Gauss-Jordan Elimination [Weib] can be
utilized. This method also has computational complexity O(n3). Without going into
further details, LU-decomposition [Weic] is yet another approach to solve such sys-
tems. The matrix A is decomposed into A = LU , where L is a lower triangular matrix,
and U is an upper triangular matrix. The system is solved using an intermediate solu-
tion to the L-system yielding the right hand side for the U system to solve for x. Here,
the decomposition of the matrix is the most computational intensive part.

Fortunately, there are more efficient solution methods if the matrix is sparse and
satisfies additional properties. Before we go into the details we review related work.

3.1.1 Related Work

The literature on solving systems of linear equations is vast. Good introductions to
many solution algorithms can be found in [PTVF92]. We focus on papers discussing
GPU-accelerated implementations of standard algorithms.

As the Jacobi method is simple and maps to the GPU in a straightforward way it
has been implemented by [Har03] and many others.

Although there exist several parallel implementations of the Gauss-Seidel method
such as [KRF94], none can be ported efficiently to the GPU. We discuss the method
and the problems inherent with it in detail.

One of the first publications on the solution of sparse systems of linear equations
were [KW03] and [BFGS03] using the conjugate gradient method. A detailed intro-
duction to the conjugate gradient method can be found in [She94]. We briefly review
the approach and discuss alternative storage methods for the matrix.

The Multigrid method has been discussed in [Bra77, Hac85, BHM00]. In the GPU
community it appeared in [BFGS03]. Further work on this approach was conducted in
[GST07] showing mixed precision methods.

3.1. INTRODUCTION 31

3.1.2 Matrix Structures

In this section, we discuss different kinds of matrix structures. By structure we refer
to the number and location of zero entries in the matrix. In many applications matrices
are sparse matrices, i.e. many matrix entries are zero. The ratio of non-zero entries to
the total number of entries is called the fill-ratio f = m/n2, where m is the number of
non-zero entries and n2 is the total number of matrix entries.

Typically, three different kinds of matrix structures are distinguished:

• The full matrix has non-zero entries almost everywhere in the matrix. Matrices
with a fill-ratio greater than 80% can also be considered as full matrices. Full
matrices are commonly stored in a 2D array which allows read and write opera-
tions in O(1). On the down side, a system of linear equations with a full matrix
cannot be solved more efficiently than O(n3), so iterative methods will not solve
the system significantly faster. Fortunately, many real-world problems can be
approximated using sparse matrices.

• The random-sparse matrix (or scattered-sparse matrix) has a low fill-ratio (<
20%) with no particular structure. The non-zero entries are scattered at random
positions in the matrix. Commonly, a row-compressed data structure is used to
store the matrix. A pair of position and value is stored in a linked list for each
non-zero entry. Obviously, this kind of data structure complicates all matrix-
vector operators significantly. Many paper discuss efficient data structures and
algorithms for random-sparse matrices [Geo07].

• The band matrix is another special case of the sparse matrix. All non-zero entries
are placed on diagonals of the matrix. We use the term band and diagonal coequal
in the following. In medical imaging algorithms, the system of linear equation of-
ten describes a relationship between neighboring pixels of an image, for example
the left/right/upper/lower neighborhood. For example, the random walker algo-
rithm (see Section 6.3) and the optical flow algorithm (see Section 7.3.3) result
in band matrices. Band matrices are stored space efficiently using 1D arrays for
each diagonal. Again, the matrix-matrix and matrix-vector operators need to be
adapted to work properly on the 1D array data structure. We discuss the details
including a GPU implementation in Section 3.3.

Since most of the problems we deal with result in band matrices we focus on this
kind of structure in the rest of this chapter regarding theory and implementation.

32 CHAPTER 3. SOLVING SYSTEMS OF LINEAR EQUATIONS USING THE GPU

3.1.3 Matrix Properties

Apart from the matrix structure, many different matrix properties can be distinguished.
Most solution algorithms have several preconditions a matrix has to fulfill in order to
work properly. The following list is not complete but sufficient for the algorithms we
discuss:

• A matrix A is symmetric, if AT = A.

• A matrix A is diagonally dominant, if |aii| >
∑

i 6=j |aij|,∀i, j. The absolute sum
all off-diagonals must be smaller than the absolute main diagonal.

• A matrix A is positive definite, if ∀x ∈ Rn, xTAx > 0.

3.2 Algorithms

Today, there are many well-known algorithms to solve systems of linear equations with
sparse matrices in complexity less than O(n3). Most methods rely on an iterative
scheme or on a hierarchical approach. In this section, we review and discuss solvers
for systems of linear equations, namely the Jacobi method, the Gauss-Seidel method,
the conjugate gradient method, and the multigrid method. The selection of the solvers
is by no means complete, but it contains the ones we investigated and optimized our
implementations most.

Most solution algorithm with a runtime less than O(n3) only work efficiently if the
matrix is sparse since the matrix-vector product is assumed to run in O(n). Further,
depending on the solution method, additional requirements to the matrix have to be
fulfilled. Matrices need to be positive definite, symmetric, or diagonally dominant, for
example. Most importantly, the matrices must have full rank otherwise no unique or no
solution can found at all.

3.2.1 The Jacobi Method

The Jacobi method is probably one of the most intuitive and simplest method to solve
a system of linear equations. Linear equation i is solved for xi and computed using the
other (old) values in the vector xj, j 6= i. The algorithm computes each component of
the solution vector independently and then iterates the whole process until convergence.
The Jacobi method converges if the matrix is diagonally dominant.

3.2. ALGORITHMS 33

The matrix A is decomposed into

A = L+D + U, (3.2)

where D is the main diagonal of A, L is the lower triangular matrix, and R is the upper
triangular matrix. With Equation 3.2, Equation 3.1 evaluates to

Lx+Dx+ Ux = b. (3.3)

Solving Equation 3.3 for x yields

x = D−1(b− (L+ U)x). (3.4)

The inverse diagonal matrix D−1 can easily be determined if each entry is non-zero.
By adding an iteration counter k the iterative algorithm is formulated to

x(k+1) = D−1(b− (L+ U)x(k)). (3.5)

The iteration is repeated until the system converges. Two vectors are required to store
x(k) and x(k+1) since all values from the last iteration are needed to compute all new
entries. This also means that the processing order of the components is not important.

3.2.2 The Gauss-Seidel Method

The Gauss-Seidel method is very similar to the Jacobi method. It also requires the
matrix to be diagonally dominant and relies on the same matrix decomposition. By
keeping the lower triangular matrix on the left hand side Equation 3.3 is reformulated
to

(D + L)x(k+1) = b− Ux(k). (3.6)

Exploiting the lower triangular matrix this equation is rewritten using entry indices

x
(k+1)
i =

1

aii
(bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j), i = 1, ..., n. (3.7)

The difference to the Jacobi method is that values before entry k have already been
updated while values behind entry k are still left untouched. A CPU implementation
needs only one vector to store the solution vector because it can overwrite entry k if the
entries are processed sequentially from 1 to n.

Unfortunately, the Gauss-Seidel method does not map to GPU structures efficiently.

34 CHAPTER 3. SOLVING SYSTEMS OF LINEAR EQUATIONS USING THE GPU

The GPU is a parallel processor and no guaranteed processing order can be assumed at
any time. Furthermore, reading and writing from and to the same texture is not allowed
due to the unpredictable processing order. So, there is no direct way to implement
the Gauss-Seidel method on the GPU. There are many papers showing parallelization
strategies for the Gauss-Seidel method [KRF94], but non of them can be ported to the
GPU easily.

3.2.3 The Conjugate Gradient Method

In contrast to the Jacobi or Gauss-Seidel method, the conjugate gradient method re-
quires the matrix to be symmetric and positive definite. Also, each entry of the matrix
must be real-numbered. The conjugate gradient method minimizes

E(x) =
1

2
xTAx− bTx (3.8)

as the gradient of Equation 3.8 is

E ′(x) = Ax− b, (3.9)

and, therefore, the minimum is a solution to Ax = b.
Starting from an arbitrary point x ∈ Rn the minimal point defined by Equation 3.8

in Rn is found by sliding down the n-dimensional surface to the bottom most point.
The minimum can be reached by a series of steps along the steepest gradient. From the
starting point, the steepest gradient is selected as direction. The direction is traveled
until the derivative of the direction becomes zero. From that point the steepest gradient
is selected (which might be a gradient that has been selected before), and the iteration
starts over. The algorithm stops as soon as the residual becomes small enough.

In order to optimize the steepest gradient algorithm, the traveling direction is chosen
so that a direction is never selected twice. That is, for each traveling direction, the
optimal distance is traveled. The explanation of this method requires the definition of
conjugate vectors. Two vectors a and b are conjugate to a matrix A if

aTAb = 0. (3.10)

Instead of choosing the steepest gradient as traveling direction, the traveling di-
rections are chosen conjugate to each other. This allows traveling the exact distance
along each direction and, therefore, the same direction has never to considered twice.
Initially, the residual can be used as the traveling direction.

3.2. ALGORITHMS 35

Before we formulate the algorithm, we briefly describe preconditioners as we use
them in all our applications. Preconditioners are used to lower the number of iterations
the conjugate gradient loop takes to converge. An approximate inverse matrix M−1 of
the matrixA is computed in order to solveM−1Ax = M−1b. In all our implementations
we use the simple Jacobi preconditioner that divides all solution components by its
corresponding diagonal entry of the matrix. It is implemented on the GPU very easily
in contrast to (non-parallel) algorithms such as the incomplete Cholesky factorization.

The preconditioned conjugate gradient algorithm is shown in pseudo code in Algo-
rithm 1. A maximum number of iterations imax and a convergence limit ε is specified
as termination criteria. Generally, the conjugate gradient algorithm has an algorithmic
complexity of O(n2).

Algorithm 1 The preconditioned conjugate gradient algorithm
i⇐ 0
r ⇐ b−Ax
z ⇐M−1r
p⇐ z
ρ⇐ rT z
while i < imax and ρnew > ε do
q ⇐ Ap
α = ρ

pT q
x⇐ x+ αp
r ⇐ r − αq
z ⇐M−1r
ρnew ⇐ rT z
β = ρnew

ρ
p⇐ z + βp
ρ⇐ ρnew
i⇐ i+ 1

end while

3.2.4 The Multigrid Method

Another approach for solving systems of linear equations is provided by the multi-
grid method [Bra77, Hac85, BHM00]. The idea is to compute a hierarchy of systems
describing the original problem reduced in the number of equations in each level. A
V-cycle starting from the finest level going to the coarsest level and up to finest level
again is the iterative solution function.

The hierarchy approach only makes sense, if a vector can be transferred to a coarser
representation without losing information. This condition is true, if the vector does

36 CHAPTER 3. SOLVING SYSTEMS OF LINEAR EQUATIONS USING THE GPU

not contain high frequency components. Therefore, a multigrid approach has to elim-
inate all frequencies not representable by the next coarser level in order to restrict it
without sacrificing information. The high frequency smoothing can be achieved by
employing the Gauss-Seidel method which dampens high frequencies before the low
frequencies. Depending on the matrix structure, the Jacobi method also can be used
for this task. Typically, only a few iterations are performed to reduce the high fre-
quencies even if some are remaining. This is later corrected by multiple V-cycles (see
below). The counter direction (inverse reduction) from the coarse representation to the
fine representation is simply achieved by interpolation. This is also sometimes called
prolongation.

Now, we discuss the construction of the matrix hierarchy. The hierarchy has l levels,
where l denotes the finest level, i.e. the original system of linear equations. A matrix
Ai, where i ∈ [1; l] denotes the level, is reduced to the next coarser level Ai−1 using the
Galerkin property

Ai−1 = Ri · Ai ·RT
i , (3.11)

where Ri ∈ Rni×ni−1 is a restriction matrix. The size of the restriction matrix is de-
termined by the size of the finer level ni and the coarser level ni−1. While Ri is a
restriction matrix, RT

i functions as an interpolation (prolongation) matrix where values
are distributed to nodes on the finer grid. Not only matrices but also vectors can be
transferred to coarser or finer levels by multiplication with restriction matrices.

Basically, geometrically derived restriction matrices average a neighborhood of the
finer matrix such as the following filtering kernels for 2D images

1

8

0 1 0

1 4 1

0 1 0

 or
1

16

1 2 1

2 4 2

1 2 1

 . (3.12)

In contrast, an algebraic multigrid approach computes the restriction matrices from the
Eigenvalues of the system matrices. Since we use the Galerkin property to compute the
matrix hierarchy, which is an algebraic approach to compute the matrices, our approach
is a mixture of the geometric and the algebraic approach.

Algorithm 2 shows the pseudo code for one V-cycle. Note, that all Ac can be pre-
computed if more than V-cycle is calculated. Typically, the number of V-cycles is rather
small in order to compute a converged solution. Generally, the multigrid algorithm has
an algorithmic complexity of O(n). In this recursive representation the multigrid first
computes the residual r = b − Ax which is reduced to the next coarser system. Using

3.2. ALGORITHMS 37

Algorithm 2 The multigrid method V-cycle (recursive implementation, l denotes the level).
procedure Solve(A, x, b, l)

if l > 0 then
Relaxation of x
r ⇐ b−Ax
rc ⇐ Rl · r
ec ⇐ 0
Ac ⇐ Rl ·A ·RTl
Solve(Ac, ec, rc, l − 1)
ef ⇐ RTl · ec
x⇐ x+ ef
Relaxation of x

else
x⇐ A−1b

end if

the restricted residual the error equation Ae = r is solved. Finally, e is transferred to
the finer level and the solution x is corrected accordingly. In the following, we describe
the relationship between the original equation and the error equation.

The solution of the error equation helps computing the solution to original problem.
Suppose an approximate solution x′ has been found for the system

Ax′ = b, (3.13)

then the residual is
r′ = b− Ax′. (3.14)

The correct solution x is derived from the approximate solution x′ corrected by e

x = x′ + e. (3.15)

Exploiting the linearity of the system yields

A(x′ + e) = b. (3.16)

In order to compute the correct solution x using the approximate solution x′ Equation
3.16 is solved for e

Ax′ + Ae = b (3.17)

Ae = b− Ax′. (3.18)

38 CHAPTER 3. SOLVING SYSTEMS OF LINEAR EQUATIONS USING THE GPU

The right hand side is equal to the residual (Equation 3.14) so that

Ae = r′. (3.19)

Therefore, solving the system Ae = r′ allows correcting the approximate solution x′

using Equation 3.15.

3.3 Implementation

In this section, we discuss the CPU and GPU implementation of the solvers described
above. All solution algorithms have in common that they are based on data structures
to represent matrices and vectors as well as a set of operators such as:

1. Vector addition, subtraction, dot product

2. Matrix-vector and matrix-matrix multiplication

As already stated earlier, we focus on band matrices regarding data structures and oper-
ators. In the following, we discuss first vector then matrix data structures and operators.

3.3.1 Vector Data Structures and Operators

In a CPU program the data structure for a vector is a simple 1D array. In a GPU pro-
gram we store the vectors in 2D or 3D textures (see Section 2.3.1 for more details)
as those provide the fastest write performance. Most of our applications are based on
regular 2D or 3D grids, so it is straightforward to represent vectors using 2D or 3D
textures. Regarding 3D data structures, as shown in Section 2.3.2, a 3D texture pro-
vides almost the same write performance as 2D flat textures without having to compute
texture coordinate transformations.

Regarding the operators, component-wise vector additions, subtractions, and mul-
tiplications in 2D textures are easily implemented by rendering two triangles covering
the entire texture (see Section 2.3.1) and using a pixel shader program to operate on
the components of the vectors. Likewise, a stack of double triangles compiled to one
vertex buffer is used to achieve an update of 3D textures in a single rendering pass. The
vector dot product is composed of two separable operators: a component-wise vector
multiplication followed by a sum-reduction (see Section 2.3.3.3).

3.3. IMPLEMENTATION 39

3.3.2 Matrices

The matrix operators are dependent on the matrix structure and representation. First we
discuss two ways to store matrices, then the operators including GPU implementation
are presented.

3.3.2.1 Storage

(a) (b)

Figure 3.1: A band matrix with 5 bands can be stored in two ways. One option is to store
the band entries line-by-line (a). Another option is to store each band along the band from top
left to bottom right (b). The red lines indicate the storage scheme. The colored and numbered
circles indicate matrix entries. Equal colors indicates matrix entries belonging to the same line,
equal numbers indicate matrix entries belonging to the same diagonal.

Figure 3.1 illustrates two different ways to store a band matrix. The diagonals can
either be stored line-by-line as illustrated in the left image or band-by-band as shown
in the right image. We explain the difference in the following.

The line-wise storage of a matrix stores all matrix coefficients of one row in one
data set. Note that the band positions are constant in each row so that these position
need to be stored only once. Generally, this storage scheme is less flexible if the number
of diagonals is not known in advance. We found the line-by-line storage of matrices
very well suited for systems operating on a 2D or 3D regular grid since all diagonal
coefficients can be retrieved directly from the pixel position. We exploited this stor-
age scheme in our random walker implementation (see Section 6.3). Furthermore, the
random walker algorithm is based on a Laplace matrix which allows computing the

40 CHAPTER 3. SOLVING SYSTEMS OF LINEAR EQUATIONS USING THE GPU

main diagonal from the off-diagonals. Therefore, in 2D, storing the four off-diagonal
coefficients of the 5 diagonals is sufficient for every row of the matrix (or pixel). Four
coefficients are efficiently stored in an RGBA texture. In 3D, the additional diagonals
are stored in a second texture.

The band-wise storage is probably a more intuitive storage scheme. Each band is
stored in an 1D data structure from the top-left to the bottom-right together with an
offset describing the signed distance to the main diagonal. We define the main diagonal
offset as 0. Bands to the right have increasing positive numbers and bands to the left
decreasing negative numbers. Figure 3.1 shows the band numbering in both images.
Further, we compute the 2D band starting position (x, y) from the offset where the
main diagonal has the position (0, 0), the x-axis increases to the right and the y-axis
increases to the bottom.

There are several ways to manage a set of bands in a band-wise stored matrix A ∈
Rn×n. If the matrix is full it has 2n bands. The set can be stored (sorted) in an O(n)

array in order to quickly add or remove bands in O(1) though much space might be
wasted if the matrix has only a few bands. Another option is a linked list which is
more memory efficient but adding and deleting bands is O(b) where b is the number
of bands. Addition and deletion of occur during matrix multiplications as described in
Section 3.3.2.2. The most elegant solution is to manage the bands in a hash table. This
way, even very large matrices with only a few bands do not waste too much memory
and band addition and deletion is performed in O(1).

Compared to the line-wise storage, this structure is much more flexible in terms of
band addition and deletion. Especially, if the number of bands is arbitrary the band-wise
storage is superior to the line-wise storage.

3.3.2.2 Operators

The matrix-vector product
u = Av (3.20)

is discussed now assuming the matrix is stored band-wise. In order to exploit the band
structure zero entries must be ignored because computing the dot products of all ma-
trix rows and v is no efficient algorithm. Instead, the matrix-vector multiplication is
rearranged as a set of band-vector multiplications where each band is processed only
once and the matrix entries outside the bands are never accessed. The loop over all

3.3. IMPLEMENTATION 41

components for all bands is shown in Equation 3.21

u[k] = u[k] + bp[i] · v[j], (3.21)

where p denotes band index in the set of bands b, and i, j, k are indices to individual
components of each vector. Obviously, depending on the band offset the indices i, j, k
must be shifted in order to process the correct components. Fortunately, this is simple
using the band starting position (xp, yp) of the band p. The j index is shifted by xp and
k by yp while i remains unshifted. Further improvements are achieved by determining
the minimal index ranges for i, j, k in order to eliminate accesses outside the vectors.
With this algorithm a matrix-vector multiplication is computed in O(|b| · n) since all
bands |b| are multiplied by n components of the vector v

0 A 0 0

0 0 B 0

0 0 0 C

0 0 0 0

a

b

c

d

 =

Ab

Bc

Cd

0

 . (3.22)

Equation 3.22 illustrates the band matrix-vector multiplication in a simple example.
The matrix consists of 1 band with the entries (A,B,C) at offset 1 and starting position
(1, 0). The loop iterates over the three elements of the band applying the shifts 0 and 1

to the vector v and u.

Analogously, a band matrix-matrix multiplication

C = A ·B (3.23)

is computed by multiplying all bands from matrixAwith all bands from matrixB. Each
band-band multiplication result is a band of the matrix C. Let p, q, r be band indices in
the sets of bands in the matrices A,B,C where r results from the multiplication of the
bands p, q. The offset ro (signed distance to the main diagonal) of the resulting band r
is computed from the offsets po, qo of the bands p, q with

ro = po + qo. (3.24)

Following the compact matrix-vector multiplication from above, we apply the same
algorithm to the matrix-matrix multiplication with the inner loop

r[k] = r[k] + p[i] · q[j], (3.25)

42 CHAPTER 3. SOLVING SYSTEMS OF LINEAR EQUATIONS USING THE GPU

where [·] denotes a component of each band indexed by i, j, k. The indices i, j must
be shifted by is, js to account for the location of the bands. With the band starting
positions denoted as (xp, yp), (xq, yq), (xr, yr), the shifts are computed by

is = yr − yp (3.26)

js = xr − xq. (3.27)

The band matrix-matrix multiplication is computed in O(|bA||bB| · n) where |bA|
and |bB| are the number of bands in the matrices A,B respectively, and n is the size of
the matrix in one dimension.

3.3.2.3 GPU Implementation

In this section, we show how to transfer the data structure presented in Sections 3.3.1
and 3.3.2 to the GPU. Furthermore, we present a novel technique allowing to compute
matrix-vector operators with an arbitrary number of bands using the GPU in a single
rendering pass.

Similarly to the GPU storage of vectors, we store the bands of a matrix also in 2D
or 3D textures. With RGBA channels four bands can be stored in each texture.

One way to implement the matrix-vector operator on the GPU is to write a shader
that multiplies one specific band bp and the vector v at a time accumulating to the result
vector u. This shader is executed for each band in the matrix. Nowadays, it is much
more efficient to push as much work as possible to the GPU instead of executing a short
shader multiple times.

A huge performance gain is achieved by writing a shader that multiplies all bands
with the vector in a single pass. Unfortunately, writing a custom shader for each matrix
structure used by an application is tedious work since a new shader must be written as
soon as the number of position of the bands changes.

Especially in the multigrid method a multitude of matrices arises from the hierarchy
and it would be very tedious work to write shaders for each matrix-vector multiplication
taking the number and location of all bands into account. Instead, we propose a novel
technique to automate this process. We propose a system that generates a custom shader
for each band matrix so that the GPU matrix-vector operator is created automatically
as soon as the matrix construction has been finished.

Basically, we create a string with the proper matrix-vector multiplication code. Us-
ing small string building blocks a whole shader is assembled from the structure of the
matrix. The shader takes all bands and all offsets and shifts into account. Therefore,

3.4. RESULTS 43

all band textures containing 4 bands each are fetched as well as the vector texture at
the respective positions. Since all shifts are stored as 1D offset, the 2D texture coordi-
nate is linearized to 1D, then shifted by the offset, and finally transformed to 2D again.
The clamp to border addressing mode sets all texture fetches outside the texture to 0.
Finally, all products are summed and written to the target vector texture.

The shader generator is not limited to matrix-vector multiplications. We have also
created generators for the Jacobi method and the calculation of the residual. Of course,
the conjugate gradient method can be composed with the matrix-vector operator as
well, but we see greater benefit for the multigrid method.

Generally, restriction matrices as they appear in the multigrid method cannot be
stored using the band matrix structure without wasting much space due to their scat-
tered sparse structure. Using a line-wise representation matrix-vector products can be
implemented efficiently anyway. Computing the Galerkin property (see Equation 3.11)
is much more difficult. Even an efficient CPU implementation is a challenging task.
Instead of computing a full product taking every matrix entry into account, the sparsity
of both the restriction matrix and the middle matrix must be exploited, that is, jump-
ing from non-zero entry to non-zero entry. Furthermore, the positions of the non-zero
entries often mismatch when computing the dot products so that a good deal of the
component multiplications can be spared entirely. But this is only possible, if the ma-
trix structures are analyzed thoroughly in an automated processing step. The output is a
stream of matrix indices to multiply during the product. And this is what makes a GPU
implementation difficult since varying streams length are not trivially unpackable using
a GPU. Therefore, we decided to compute the Galerkin property on the CPU following
[Geo07] and leave the GPU implementation to future work.

3.4 Results

Our CPU and GPU matrix operators are very general in the type of band matrices.
We have implemented a library containing CPU implementations of the Jacobi, Gauss-
Seidel, conjugate gradient, and the multigrid method. On the GPU we have imple-
mented the Jacobi, the conjugate gradient, and the multigrid method. Although it de-
pends on the kind of system we are looking at, the GPU conjugate gradient and the CPU
multigrid are among the fastest. We present timings in the section with the applications
of this tool box.

44 CHAPTER 3. SOLVING SYSTEMS OF LINEAR EQUATIONS USING THE GPU

Chapter 4

Medical Image Filtering

Figure 4.1: Both raw data and image data are filtered for reasons such as noise removal.

Image filtering is a very important technique primarily used to reduce noise, but
also to sharpen an image, to enhance the edges of an image, or generally to increase
or decrease certain structures in an image. In the medical imaging pipeline filtering is
used on raw data as well as on image data (see steps 2 and 5 in Figure 4.1). Filtering

45

46 CHAPTER 4. MEDICAL IMAGE FILTERING

is required as a part of most reconstruction algorithms. Similarly, filtering is often used
on images and volumes as a pre-process to segmentation and registration algorithms.
Many of these algorithms produce better results if the input image only contains a low
level of noise. Furthermore, some segmentation and registration algorithms work on the
edges of images extracted by edge filters. Commonly, there are two classes of filtering
algorithms used in medical imaging: linear and non-linear ones. We discuss selected
algorithms for both types of filters regarding theory and GPU implementation. First,
we describe linear filtering in spatial and frequency domain with an efficient GPU-
accelerated implementation of the fast Fourier transform (FFT). After that, non-linear
filters for noise reduction and filters for ring and cupping artifact removal in the CT
reconstruction process are presented.

4.1 Linear Filtering

Linear image filtering is very popular because it is effective, easy to implement, and
provides satisfying results for a number of applications. Basically, a filter kernel k is
convolved with an input image pi resulting in an output image po, where N × N is
the number of pixels in the images and M × M is the filter kernel size where M is
and odd number. The larger the filter kernel size the greater is the global effect of the
filter. Typical filter types are softening, sharpening, or edge detection filters. However,
the filter kernels are principally independent of the image, that is, linear filters are not
controlled by the image data.

There are two ways to apply linear filtering to an image: the spatial domain and the
frequency domain approach. We discuss both approaches in the following.

4.1.1 Spatial Domain Filtering

The spatial domain convolution is expressed by

po(x, y) =
s∑

j=−s

s∑
i=−s

pi(x+ i, y + j) · k(i, j), (4.1)

where s = bM/2c specifying the support of the filter. Since the computational com-
plexity of the spatial domain convolution is O(N2 ·M2), the filter kernel sizes are
usually kept rather small. Table 4.1 shows common 3× 3 filter kernels.

Using the GPU for spatial domain image filtering was one of first applications in
the field of GPGPU programming. An image is uploaded as a texture to GPU memory.

4.1. LINEAR FILTERING 47

1
6

 0 −1 0
−1 4 −1
0 −1 0

 1
9

1 1 1
1 1 1
1 1 1

 1
8

0 1 0
1 4 1
0 1 0

sharpen blur edge detect

Table 4.1: Three different 3x3 filter kernels are presented: sharpen, blur, and edge detect. The
filter kernels describe the weighting of an area of samples.

For best efficiency, the kernel coefficients should be uploaded to the constant registers
of the GPU. Alternatively, a kernel texture could be created. To store the filtered image
another texture with the same size as the image is needed to perform the filter operation.
Two triangles covering the target image are rendered as described in Section 2.3.1. For
each pixel in the output image a pixel shader program fetches all samples from the input
image covered by the filter kernel.

Figure 4.2: A 3x3 filter kernel (blue) on a 5x5 image.

Pixels outside the image might be fetched as depicted in Figure 4.2. In that case,
pixels from the nearest border (clamp) or a predefined default value 0 is used (border
color). The amount of texture fetches can be very high, especially when convolving a
3D kernel on a volumeO(N3M3). Some types of filters are separable such as the Gauss
kernel filter. Those kind of filters are applied in each dimension separately minimizing
the complexity for d dimensions to O(NdM).

4.1.2 Frequency Domain Filtering

An alternative to the spatial domain convolution is the frequency domain convolution

po = F−1(F (pi) · F (k)), (4.2)

where F denotes the Fourier transform, and F−1 the inverse Fourier transform, re-
spectively. Here, the filtering process is reduced to a component-wise multiplication
in the frequency domain if both the input image pi and the filter kernel k have been
transformed to frequency domain previously. This approach is efficiently computed in
O(N2 logN) for 2D images if the fast Fourier transform (FFT) is used. In the follow-

48 CHAPTER 4. MEDICAL IMAGE FILTERING

ing, we review the FFT and an efficient GPU implementation.

4.1.2.1 Fast Fourier Transform

In this section, we review the derivation of the FFT from the discrete Fourier transform
(DFT) as well as an efficient GPU implementation. A performance comparison of our
implementation with the FFTW library [FJ98] is presented afterwards.

The discrete Fourier Transform F (n) of a 1D discrete signal f(k), k = 0, · · · , N−1

with N samples is expressed as a superposition of complex sinusoids

F (n) =
N−1∑
k=0

f(k)e
−i2πkn
N , (4.3)

where 2πn/N, n = 0, · · · , N − 1 are the sampled frequencies in the Fourier plane.

Direct computation of the DFT has the computational complexityO(N2). The FFT
reduces the complexity of the DFT to O(N logN). As described by Brigham [Bri88]
Equation 4.3 can be written as a matrix-vector product

F (0)

F (1)

F (2)
...

F (N − 1)

=

1 1 1 · · · 1

1 ω1 ω2 · · · ωN−1

1 ω2 ω4 · · · ω2N−2

...
...

...
1 ωN−1 ω2N−2 · · · ω(N−1)2

f(0)

f(1)

f(2)
...

f(N − 1)

 (4.4)

where

ωk = e
i2πk
N = cos

(
2πk

N

)
+ i sin

(
2πk

N

)
; (4.5)

and the N ×N matrix is referred to as the DFT matrix.

Due to periodicity ωnk = ωn[k]N , where [k]N denotes k mod N . Consecutively
using this identity and matrix shuffling (column-wise permutation) that groups the even
and odd columns, the DFT matrix in Equation 4.4 can be split into a chain of logN

sparse matrices [Bri88] referred to as the FFT matrices if N is a power of two. Each
row of any FFT matrix contains exactly two non-zero entries with one entry being
always 1 which does not need to be stored explicitly. We illustrate this factorization for
a four-element input signal.

4.1. LINEAR FILTERING 49

F (0)

F (2)

F (1)

F (3)

 =

1 1 0 0

1 ω2 0 0

0 0 1 ω1

0 0 1 ω3

1 0 1 0

0 1 0 1

1 0 ω2 0

0 1 0 ω2

f(0)

f(1)

f(2)

f(3)

 (4.6)

As one can see in Equation 4.6, the output signal F (n) has to be rearranged to yield
the Fourier coefficients in the right order. The 2D FFT can be computed by consecutive
1D FFTs first along the rows and then along the columns or vice versa. Referring to
Equation 4.6, for a 2D signal of size N2, the FFT can be computed in O(N2 logN).

4.1.2.2 GPU Implementation

A GPU-accelerated implementation of the FFT was pioneered by Moreland et al. [MA03].
Concerning the performance this implementation turned out to be slower than the
FFTW library. Schiwietz et al. [SW04] and Jansen et al. [JvRLHK04] presented
different implementations with a performance being comparable to that of the FFTW.

Taking into account the particular structure of the FFT matrices, we employ a spe-
cial representation for the FFT matrices on the GPU. Every FFT matrix is represented
as an 1D RGBA texture containing in the i-th texel the value of wk and the column
index of wk and 1 in the i-th row of the matrix. As an example, Table 4.2 shows the
texture content for the first matrix on the right hand side of Equation 4.6. The real and
imaginary components of wk are stored in the R and G channels and the two column
indices in the B and A channels of the four component texture.

R
G
B
A

1
1
1
0

ω2
r

ω2
i

1
0

ω1
r

ω1
i

3
2

ω3
r

ω3
i

3
2

Table 4.2: Four-component texture layout for the precomputed FFT table for the first matrix on
the right hand side of Equation 4.6. Here, ωkr and ωki denote, respectively, the real and imaginary
parts of ωk defined in Equation 4.5.

The 1D signal to be transformed is stored in one line of a 2D texture with the real
part in the R channel and the imaginary part in the G channel. In this way, a stack of
1D signals can be transformed efficiently. To perform the matrix-vector multiplication
at a particular FFT stage, two triangles covering the entire texture is rendered. The two

50 CHAPTER 4. MEDICAL IMAGE FILTERING

triangles, along with the 2D texture containing the signal and the 1D texture containing
the FFT table, are used as input parameters to the shader program (see Figure 4.3).

Figure 4.3: The FFT shader samples the FFT matrix entries of a specific stage. Then, it samples
the two vector components indexed by the table and performs the dot product of matrix row and
vector. The roles of the input and the output texture are swapped in each stage.

To avoid switching to a different FFT table in every FFT stage, all these textures
are combined into one single 2D texture. The respective row to be accessed in each
stage is specified in a constant parameter to the shader program. In every pass, we
swap the roles of the input texture and the output texture as illustrated in Figure 4.3.
After logN passes, the row-wise FFTs have been computed, and the results have to be
reordered. We precompute the swapping positions and store them in another texture.
This texture stores an index to the untangled position of each vector component. A
pixel shader program queries the reorder texture to get the correct position of the vector
component. Finally, a 2D transformation can be achieved by a consecutive column-
wise 1D transformation.

The FFT performance can be doubled if a second data set of the same size is avail-
able, since both sets can be transformed in parallel by storing the second set in the
BA channels and by using vector instructions on the GPU. This effectively halves the
number of texture fetches and arithmetic instructions.

4.2. NON-LINEAR FILTERING 51

4.1.2.3 Performance

To verify the effectiveness of the proposed FFT implementation, we investigated its per-
formance for different image sizes. In particular, we compare the performance of the
GPU-FFT with that of the FFTW library [FJ98] which is an efficient CPU implemen-
tation of the FFT leveraging various acceleration strategies like SSE parallelization,
cache optimization, and precomputed FFT tables. To conduct a fair comparison, the
FFTW MEASURE setting was enabled and the code was run in 32-bit floating point
precision. In all our experiments, the time it takes to perform the FFT of a discrete
complex 2D signal was measured. Table 4.3 essentially shows the GPU-FFT to be able
to process even high resolution images at interactive rates. The performance doubles
instantly as the two complex signals are stored in one RGBA texture. We measured
the performance using an ATI Radeon 9700 GPU. With these two transformations con-
ducted in parallel, our implementation is clearly superior to that of the FFTW library
[FJ98].

2562 5122 10242

FFTW 2 15 66
GPU-FFT 2 8 38

Table 4.3: FFT performance in milliseconds. Note that the GPU implementation transforms
two 2D signals at the same time.

4.2 Non-linear Filtering

In contrast to linear filters, non-linear filters cannot be expressed by a convolution with
a filter kernel. Typically, non-linear filters are iterative, data-dependent algorithms; for
example, image gradients, non-linear image sampling positions, or additional lookup
tables are used to drive the algorithms. In the following, we describe three non-linear
filter algorithms and the implementation on the GPU. The presented filters reduce noise
artifacts, ring artifacts and low frequency artifacts and are all used in the image recon-
struction pipeline (see Chapter 5).

The first algorithm is a non-linear noise reduction algorithm based on the local
curvature of an image described in Section 4.2.1. Then, a filter algorithm to extract ring
artifacts from an image is presented in Section 4.2.2. Usually, this filter is applied to
reconstructed slices of a volumetric data set as ring artifacts can occur due to calibration
errors of the scanner gantry. Finally, a cupping artifact removal filter is described in
Section 4.2.3 to remove a non-uniform distribution of the lowest frequency band in an

52 CHAPTER 4. MEDICAL IMAGE FILTERING

image. We present efficient GPU implementations for all algorithms.

4.2.1 Curvature Smoothing

In order to improve the image quality noise has to be removed from images. This is
true for both raw data and image data. By applying a noise removal filter to raw data an
image of better quality can be reconstructed. One could apply a linear low-pass filter
to the image but, unfortunately, this type of filter is not suitable because it not only
reduces the noise but smoothes out the edges, too.

A non-linear curvature-based filter for more sophisticated noise reduction was pub-
lished in [NK95]. Iteratively, an image is smoothed depending on the local curvature
and gradient magnitude of the image. In order to preserve the edges, areas of the image
with a high gradient are not smoothed while areas with low gradient are smoothed. In
the following, we describe the details of the algorithm and an efficient GPU implemen-
tation.

4.2.1.1 Algorithm

A continuous scalar field φ is smoothed iteratively by the function

φi+1 = φi + βC|∇φ| (4.7)

where i is the iteration index, β is a free parameter and C is the mean curvature

C =
1

2
(κ1 + κ2) =

|∇φ|2trace(H(φ))−∇φTH(φ)∇φ
2|∇φ|3

, (4.8)

H(φ) denotes the Hessian matrix of φ. Equation 4.8 is derived from the fundamental
forms [Far02, Ebe01]. In 2D, Equation 4.8 evaluates to Equation 4.9 and to Equation
4.10 in 3D.

C =

∂2φ
∂x2 (∂φ

∂y
)2 + ∂2φ

∂y2
(∂φ
∂x

)2 − 2∂φ
∂x

∂φ
∂y

∂2φ
∂x∂y

2|∇φ|3
(4.9)

C =
(∂φ
∂x

)2(∂
2φ

∂y2
+ ∂2φ

∂z2
)+(∂φ

∂y
)2(∂

2φ

∂x2
+ ∂2φ

∂z2
)+(∂φ

∂z
)2(∂

2φ

∂x2
+ ∂2φ

∂y2
)

2|∇φ|3 −
2·(∂φ

∂x
∂φ
∂y

∂2φ
∂x∂y

+ ∂φ
∂x

∂φ
∂z

∂2φ
∂x∂z

+ ∂φ
∂y

∂φ
∂z

∂2φ
∂y∂z

)

2|∇φ|3

(4.10)

4.2. NON-LINEAR FILTERING 53

We discretize Equations 4.9 and Equations 4.10 using central differences

∂φ

∂x
=

pi+1,j − pi−1,j

2
,

∂φ

∂y
=

pi,j+1 − pi,j−1

2
,

∂2φ

∂x2
= pi+1,j − 2pi,j + pi−1,j,

∂2φ

∂y2
= pi,j+1 − 2pi,j + pi,j−1,

∂2φ

∂x∂y
=

(pi−1,j−1 + pi+1,j+1)− (pi−1,j+1 + pi+1,j−1)

4
(4.11)

where pi,j denotes the pixel intensity at the raster location (i, j). The curvature C is
weighted by the gradient magnitude |∇φ| for normalization purposes. In order to pre-
vent a division by zero in Equation 4.9, the algorithm returns 0 if the gradient magni-
tude |∇φ| gets small. Since derivatives cannot be computed accurately in the boundary
region, we use an out-flow boundary condition: the curvature of the direct neighbor
perpendicular to the border tangent is replicated. After that, the image pixels pi,j are
updated by the weighted curvature βC|∇φ|. The free parameter β must be set to a
value in the range of [0; 0.5] for 2D images, otherwise oscillations destroy the image.
3D volumes require β to be between [0; 0.25]. Usually, four to six iterations are suffi-
cient for satisfying results reducing the noise while preserving the dominant structures
of the data set.

4.2.1.2 GPU Implementation

We implement the algorithm using the GPU as follows: Two textures are required to
store the input image φi and the image of the next iteration φi+1. Using the discretiza-
tion presented in Equation 4.11 only direct neighbors have to be accessed. First, the
C|∇φ| is computed which is then used to updated the next image φi+1 with respect to
β.

The boundary conditions can be handled in two ways (see left image of Figure
4.4). One possibility is to split the image into two triangles (one quadrilateral) covering
the interior of the image without boundary and a set of lines and points covering the
boundary pixels and the corners. Since the boundary pixel need to copy the curvature of
the nearest interior pixel, texture coordinates are pre-computed for the lines and points
to address the closest interior pixel. The four lines can be combined into one pass, so

54 CHAPTER 4. MEDICAL IMAGE FILTERING

can the four points. In total, four rendering calls are required: 1) the inner area (two
triangles), 2) boundary sides (four lines), 3) boundary corners (four points), 4) iteration
update (one quadrilateral).

Figure 4.4: Two ways to handle boundary conditions are illustrated. On the left, the non-
boundaries parts are computed first by rendering two triangles. Next, four lines and 4 points (P)
are rendered. Alternatively, the boundary condition can also be evaluated in the pixel shader by
rendering two triangles covering the entire area (right image).

Another option to handle the boundary is to take care of it in the pixel shader that
computes the curvature (see right image of Figure 4.4). The boundary condition re-
quires the boundary pixels to copy the value from their closest inner neighbor. This
is achieved by shifting boundary pixels to the next interior pixel. Since every pixel
is addressed by its 2D texture coordinates, the indices of boundary pixels are altered
accordingly. Texture coordinates in the range of [0;N − 1] are clamped to [1;N − 2]

in order to treat boundary pixels as inner pixels, which is equal to copying the closest
inner pixels to the boundary pixels. A couple of extra instructions are needed for the
boundary check and adjustment for every pixel but it turns out that this method is al-
most two times faster than the method with separate geometries. Furthermore, the latter
method is by far simpler to implement, especially in 3D.

4.2.1.3 Large Volumes

The GPU implementation described previously works only correct if all necessary data
fits into GPU memory all at once. The algorithm requires 2 · voxels · sizeof(float) bytes
of memory. Currently, graphics cards have typically about 640 MB of memory and,
therefore, only volumes up to 2563 voxels can be processed in one piece. To support
larger volumes, a bricking strategy is required that computes the algorithm in parts of

4.2. NON-LINEAR FILTERING 55

the data set sequentially. A large data set is divided into a set of bricks. The brick size
depends on the size of the data set and the algorithm. Two bricking algorithm can be
used:

1. Swap per iteration: The first brick is uploaded to GPU memory, one iteration of
curvature smoothing is computed and the brick is downloaded again. The process
continues for all bricks and for all iterations. This strategy produces high bus
traffic but on the up side only one pixel overlap to neighboring bricks is required.

2. Swap per brick: In order to reduce the bus traffic, it is preferable to compute all
iterations of curvature smoothing on one brick at once before it is swapped out.
Because of the derivatives the amount of overlapping pixels to neighboring bricks
must be the same as the number of curvature smoothing iterations.

The second bricking method is preferable over the first one because of the significantly
lower bandwidth requirement, although the number of bricks increases slightly in the
second method.

4.2.1.4 Performance

Our GPU implementation shows a significant speed-up over an optimized CPU imple-
mentation. We use an Intel Core 2 6600 2.4 GHz CPU, equipped with 2 GB RAM and
an NVIDIA GeForce 8800 GTX graphics card for the timings. Table 4.4 shows the
results for 2D images, Table 4.5 for 3D images.

2D image 2562 5122 10242

CPU 14.74 92.42 213.55
GPU 0.12 0.45 1.80

Table 4.4: Timings in milliseconds for the curvature smoothing algorithm applied to different
image sizes. 10 iterations were measured.

3D volume 643 1283 2563

CPU 1514.14 11127.81 89218.74
GPU 0.2 0.247 0.473

Table 4.5: Timings in milliseconds for the curvature smoothing algorithm applied to different
volumes sizes. 10 iterations were measured.

Figure 4.5 shows an example of curvature smoothing on phantom data. Bright cir-
cles can be seen on the disc with a considerable amount of noise. After 10 iterations
of curvature smoothing the noise is gone and at the same time the bright circle remain

56 CHAPTER 4. MEDICAL IMAGE FILTERING

(a) (b)

Figure 4.5: (a) A noisy input image of a phantom. (b) The same image after 10 iterations of
curvature smoothing. Obviously, the noise is gone and the edges of the bright circles are still
sharp.

sharp. Figure 4.6 demonstrates the effect of curvature smoothing on a real data set. Im-
age (a) is the original unfiltered image. 10 iterations of filtering were applied to image
(b) and 100 iterations to image (c). As one can see, 10 iterations is usually enough
to reduce the noise while keeping the edges and destroying not too much image infor-
mation. Many registration and segmentation algorithms compute considerably better
results on pre-filtered images using the curvature smoothing algorithm.

4.2.2 Ring Artifact Removal

Ring artifacts appear in reconstructed volumes because of detector calibration errors.
Since the detector calibration is never completely accurate, a post-processing filter
helps to reduce the ring artifacts that typically arise. The algorithm is a 2D filter that
is applied to all slices of the volume separately as the ring artifacts appear equally in
each slice and not volumetrically. Basically, the algorithm extracts the ring artifacts and
removes them from the original image. More specifically, the algorithm consists of the
following components (see Figure 4.7).

1. Dynamic Range Restriction: The dynamic range of the image is clamped to a
user defined range. For example, the input image is clamped to 11-bit [0; 2047] to
avoid the introduction of artifacts from objects with high contrast.

4.2. NON-LINEAR FILTERING 57

(a)

(b) (c)

Figure 4.6: An MR image of a human head. Image (a) shows the original image, image (b) is
filtered with 10 iterations of curvature smoothing and image (c) with 100 iterations. Note that
after 100 iterations the brain stem and the corpus callosum have still very sharp edges.

2. Median Filtering: Each pixel is filtered by the median of five samples along the
radial line to the image center. Figure 4.8(a) depicts the radial line intersecting the
image center. The distance d between the sample points is the ring width depend-
ing on the gantry geometry. With a median of five samples the sample position
are located at the distances [−2d;−d; 0; d; 2d] along the radial line. Finally, the
median is subtracted from the original image in order to extract the ring artifacts.

3. Circular Smoothing: The extracted ring artifact image is refined by a circular

58 CHAPTER 4. MEDICAL IMAGE FILTERING

Figure 4.7: The flow diagram of the ring correction filter. The input image is processed using
a variety of filters in order to extract the ring image. Then, the input image is corrected by
subtraction of the ring image.

smoothing filter in order to reduce the noise. The center of the circles is fixed
to the image center and all circles (with arbitrary radius) are smoothed. The fil-
ter averages values along the circular neighborhood. We use a constant angular
distance ∆ϕ between the sample points. In our implementation we use six sam-
ples in both directions on the circle resulting in an average of 13 samples. Figure
4.8(b) depicts the geometry of the circular sampling locations.

4. Correction: The extracted ring artifacts are subtracted from the original image.

The dynamic range is restricted a second time after the median filtering with an-
other user defined range. Also, the circular smoothing is computed twice with different
angles between the samples.

The GPU implementation precomputes the sample locations for both the median
and the circular filter pixel-wise. That is, we use Cartesian coordinates instead of polar
coordinates in the precomputed tables. Furthermore, we store the linear addresses of
the sample locations in the texture components to save memory. The linear address l at
location (x, y) is computed with l(x, y) = (x ·w) + y where w is the image width. The
inverse functions l−1(a) are defined as l−1

x (a) = a mod w and l−1
y (a) = ba/wc.

The median filter requires four additional samples along the radial line for each
pixel. A four component texture is sufficient to store the locations. A pixel shader
program delinearizes the four positions, samples the values and computes the median
by bubble sorting the values and returning the middle element subtracted from the pixel
value in the original image. Similarly, the circular smoothing filter precomputes the
sample locations in textures. Using the same addressing scheme, three textures with
four components each are allocated to store the 12 sample locations. A pixel shader
program samples the 13 values and returns the average. In a final pass, the extracted

4.2. NON-LINEAR FILTERING 59

d

ϕ∆

(a) (b)

Figure 4.8: Image (a) shows the sampling pattern for the median filter. The median filter
samples four additional values in the distances [−2d;−d; d; 2d] along the radial line connecting
the current pixel to the center of the image in the lower right corner. Image (b) shows the
sampling pattern for the circular smoothing: it smoothes along the circular neighborhood. The
circle mid-point is always located in the center of the image while the radius is the distance to
the pixel to be smoothed. The samples are taken in equidistant angular steps ∆ϕ.

ring artifacts are subtracted from the original image. The result of the ring correction
algorithm can be seen in Figure 4.9.

We tested the performance of the ring artifact removal using a data set of 256 slices
with 512× 512 pixels. Both a CPU and GPU implementation were compared in terms
of processing time. Our GPU implementation turns out to be about three times faster
than a multi-threaded CPU implementation using SSE instructions. Note that the GPU
timings include bus transfer times in both directions. In absolute numbers the CPU
implementation took 6.8 seconds (Xeon 3.0 GHz, 2 GB RAM) while the GPU version
took 2.5 seconds to process all 256 slices (NVIDIA Quadro FX 4500).

4.2.3 Cupping Artifact Removal

Cupping artifacts occur where a significant proportion of the lower energy photons in
the beam spectrum have been scattered and absorbed. Typically, these artifacts are
visible as low frequency errors resulting in a non-uniform intensity distribution inside
the image. In order to correct the cupping artifacts the low frequency errors must be
identified and corrected. It can be observed that the cupping artifacts appear in a range

60 CHAPTER 4. MEDICAL IMAGE FILTERING

(a)

(b)

Figure 4.9: Image (a) suffers from sever ring artifacts. The result of ring correction is shown in
image (b).

of 0.4 to 4 cycles per image dimension. This filter band needs to be extracted and
removed from the original image. The cupping artifacts are extracted using Equation

4.2. NON-LINEAR FILTERING 61

4.12.

fc(x, y) = F−1[F [f(x, y)](1 + kW (u, v))] (4.12)

where fc(x, y) denotes the cupping artifacts, f(x, y) is the two-dimensional input
image, F (x, y) is the Fourier transform of the image f(x, y), W (u, v) is a low-pass
filter to extract the cupping artifacts and k is a filter gain scalar. We use the Butterworth
filter for W (u, v)

Wn(ω) =
1√

1 + (ω
ωh

)2n
− 1√

1 + (ω
ωl

)2n
, (4.13)

where ω =
√
u2 + v2 denotes the angular frequency in radians per second, ωl is the

low cut-off frequency, ωh the high cut-off frequency, and n the order of the filter. In
particular, the following parameter values are used:

• Low cut-off frequency ωl: 2 cycles per meter

• High cut-off frequency ωh: 3 cycles per meter

• Filter order n: 2

• Filter gain k: 2.25

The filter response consists of the low-frequency cupping artifacts residing in the
image. Now, the original input image is corrected using the extracted cupping image.
Equation 4.15 describes the correction

f ′(x, y) = f(x, y) + k · (fc(x, y)− β) (4.14)

β = avg(fc) +
1

2
max(fc), (4.15)

where f ′(x, y) is the corrected image, avg and max compute the average and max-
imum value in all values of the argument, and the weighting factor k is the same as in
Equation 4.13.

This algorithm has the following properties:

• Translation invariant: low sensitivity to the location of the object center.

• Low sensitivity to the object size.

62 CHAPTER 4. MEDICAL IMAGE FILTERING

• Little effect when cupping artifacts are not present.

• Very fast as only one forward/backward 2D FFT has to be computed.

(a)

(b) (c)

Figure 4.10: (a) An input image. Typical cupping artifacts can be seen in the center of the
image. The contrast falls off towards the center of the image. (b) The filter response after
convolving the input image with the Butterworth filter. (c) The image after cupping artifact
correction. Now, the slice has a uniform intensity distribution.

In our GPU implementation, we first calculate the Butterworth filter kernel and store
the filter coefficients in a 2D texture. Then, we convolve the filter kernel with the input

4.2. NON-LINEAR FILTERING 63

image using our GPU-based implementation of the FFT (see Section 4.1.2.1). The input
image is transformed to frequency domain, then a component-wise multiplication with
the kernel is computed, and the result is transformed back to the spatial domain. In
order to compute β for the shift, the maximum and average value in the filter response
have to be determined. Therefore, we use two reduce operations on the filter response
texture: a reduce maximum and a reduce average (see Section 2.3.3). With the average
and maximum value β can be computed. Now, the lowest frequency component (DC)
of the filter response is corrected by subtracting β from each pixel weighted by the user-
defined filter gain k. The texture update is easily achieved by rendering two triangles
covering the whole texture and using an appropriate pixel shader program. Finally, the
original image is added resulting in an image without cupping artifacts.

Again, we used a reconstructed volume of 256 slices with 512 × 512 pixels for
testing purposes. As it turns out, our GPU implementation is about twice as fast as our
CPU implementation. It takes about 10 seconds to process all 256 slices on the GPU
(NVIDIA Geforce 8800 GTX) compared to 4.8 seconds on the CPU (Xeon 3.0 GHz, 2
GB RAM).

64 CHAPTER 4. MEDICAL IMAGE FILTERING

Chapter 5

Medical Image Reconstruction

Figure 5.1: Some scanning modalities require the acquired data to be transformed to the image
domain. This process is called reconstruction.

Usually, the raw data acquired from a scanner is not yet a meaningful image to
humans. A process called reconstruction transforms the raw data into a visually com-
prehensive image. While a single projection image of a cone beam scanner can be

65

66 CHAPTER 5. MEDICAL IMAGE RECONSTRUCTION

viewed independently since 2D X-ray images are acquired, a reconstructed 3D volume
provides more spatial tissue type information. The raw data from magnetic resonance
(MR) scanners cannot be viewed without reconstruction at all, since it is acquired in
k-space, a frequency domain. Other modalities such as PET or SPECT require also
reconstruction algorithms. In this chapter, we focus on the reconstruction process of
CT and MR scanners with GPU acceleration.

5.1 CT Cone Beam Reconstruction

A whole new era of medical imaging was introduced with the invention of cone beam
CT scanners in 1972. In the following decades, improvements were achieved in the ar-
eas of reduction of radiation, scanning time, and image quality (details and sharpness).
Today, the amount of scanned data per scanning session is up to several gigabytes, as
the number of projection images (currently around 1000), and the projection image size
(currently up to 4096× 4096) has grown tremendously.

Nowadays, C-arm and spiral CT scanners are commonly used. In contrast to C-
arm scanners spiral scanners move along the patient axis. The reconstruction algorithm
for spiral scannersf is different to C-arm scanners since the acquired data may overlap
along the patient axis. In the following, we discuss the theory of CT image acquisition
and reconstruction from C-arm scanners. First, the physical properties (X-rays) and ge-
ometrical arrangement (source-detector trajectory) are presented along with reconstruc-
tion theory (inverse Radon transform). Then, our GPU implementation is presented in
detail together with strategies for efficient memory management. Finally, results and
timings are given.

5.1.1 Theory

In this section, properties of X-rays radiated from a source, attenuated by an object,
and recorded by a detector are explained with the purpose of generating an image of
the inside of the object. From a set of 2D images a 3D volume is computed with the
help of the inverse Radon transform.

5.1.1.1 Radiation and Attenuation

X-ray images are created by the radiation of an X-ray source towards the object of in-
terest. The source emits energy I0 and it is attenuated by the object while the remaining
energy Id is measured by a detector.

5.1. CT CONE BEAM RECONSTRUCTION 67

Figure 5.2: An X-ray with energy I0 emitted from a source is attenuated by a homogeneous
object (gray circle) of radius d. A detector measures the remaining energy Id.

Figure 5.2 illustrates the energy attenuation of an X-ray by an object of homogenous
material (tissue). The attenuation depends on the type of material or tissue of the object.
For example, hard tissue types, e.g. bones, absorb most of the incoming energy while
soft tissue types let the X-ray pass through without much attenuation. The energy
attenuation follows

Id = I0 · e−µd, (5.1)

where d is the traveling distance of the ray within the object and µ is the attenuation
coefficient. By computing the attenuation coefficient µ from the source energy I0 and
the detector energy Id, conclusions about the material/tissue type can be drawn since µ
is an indicator of tissue density. The material/tissue type cannot be determined uniquely
from the density since most of the human organs fall into the same range of attenuation
coefficients. But bones can be identified accurately since nothing else is as dense as
bones in human bodies besides implants. The attenuation coefficient can be computed
by solving Equation 5.1 for µ.

µ =
1

d
ln(

I0

Id
) (5.2)

Since a human body does not consist of a single homogeneous tissue type, but of
many different types such as bones, organs, etc Equation 5.1 is not sufficient to compute
the variety of tissue types along one ray.

Figure 5.3 illustrates an object with two different tissue types where the black circle
indicates very soft tissue that does not attenuate the X-ray energy very much. Equation

68 CHAPTER 5. MEDICAL IMAGE RECONSTRUCTION

Figure 5.3: An X-ray is attenuated by an object consisting of inhomogeneous materials (tis-
sues).

5.1 extends to multiple tissue types as follows

Id = I0 · e−µ1d1−µ2d2−µ3d3... = I0 · e−
∑
i µidi (5.3)

where di is the traveling distance of the ray through the tissue type with attenuation
coefficient µi. The individual attenuation coefficients cannot be computed from a single
ray. In order to determine all individual coefficients, multiple images from different
view points are necessary. This will be covered in the sections below.

Extending the method depicted in Figure 5.3 to 2D, images are captured where the
superposition of all energy attenuation is visualized. 3D volumes can be computed
using the inverse Radon transform. Before we discuss the inverse Radon transform, the
forward Radon transform is explained in the next section.

5.1.1.2 The Radon Transform

The Radon transform is a projection of an n-dimensional function f to an (n − 1)-
dimensional representation using line integrals. Let a line rotated by angle φ be defined
by its parametric representation ax + by + c = 0 where a = −sin(φ), b = cos(φ) and
c is a signed distance to the origin. Figure 5.4 illustrates a set of parallel lines sharing
the same angle φ. Given a function f(x, y) illustrated by the gray circle in the center of
the figure, the Radon transformation Rf is defined as

Rf (φ, c) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cosφ+ y sinφ− c)dxdy (5.4)

where δ(x) is a delta function with the property

5.1. CT CONE BEAM RECONSTRUCTION 69

Figure 5.4: The Radon transformation: A function f (gray circle) is Radon transformed to Rf .
The lines are spaced at the distance c and rotated about φ degrees.

∫ ∞
−∞

f(x)δ(x− a)dx = f(a). (5.5)

The delta function opens the gate whenever the parametric line equation is 0 so that
the function value f is integrated. The Radon transform is the integral along each line
defined by (φ, c). The result is illustrated by the gray half ellipsoid in the lower left
corner of Figure 5.4. Since an X-ray source is usually a point-based source radiating
rays that are not parallel but share the same starting point, the Radon transform can be
adapted to this trajectory.

The Radon transform can be applied to higher dimensional data sets as well. Start-
ing from a 3D volumetric data set, the Radon transform integrates lines perpendicular
to a plane. The result is a 2D image which is also sometimes called a projection image.
In the field of visualization a volume renderer is a non-parallel Radon transformation.
Starting from an eye point, a view ray is generated through each pixel in the image
plane and traced through the volume data set. Intensities are integrated along the way
following the Radon transform.

70 CHAPTER 5. MEDICAL IMAGE RECONSTRUCTION

5.1.1.3 The Inverse Radon Transform

Figure 5.5: A source/detector pair rotates around the patient acquiring a set of 2D projection
images. Later, a 3D volume can be reconstructed from the 2D images.

Basically, computed tomography is the exact opposite of the Radon transform. After
the acquisition of Radon projection images, the original object is reconstructed from
them. Technically, the X-ray source and the X-ray detector are mounted on a ring
circling the patient (see Figure 5.5). The sequence of projection images is captured by
taking an image followed by rotating the pair a few degrees repeatedly (see Figure 5.6).

Using this set of 2D images, a 3D data set can be computed using the inverse Radon
transform such that at each 3D point in space the energy attenuation coefficient µ and
therefore material/tissue indicators are determined.

The most important algorithms for the inversion of the Radon transform are alge-
braic reconstruction [MYC95] and filtered backprojection (FBP) [SBMW07]. The lat-
ter method smears the line integrals of each projection image back into volume. Math-
ematically, the filtered backprojection is described as

f(x, y) =

∫ 2π

0

(Rf ∗ h)(φ, y · cosφ− x · sinφ)dφ. (5.6)

Before the projections Rf are smeared back into the volume, a high-pass filter must
be applied to the projection data. The filter is expressed as a convolution of Rf and

5.1. CT CONE BEAM RECONSTRUCTION 71

Figure 5.6: The Radon transform of the black box is shown under three different projection
angles. The Radon transform is shown as the black lines.

h in Equation 5.6. Figure 5.7 illustrates several different high-pass filter functions h
in frequency domain, namely the Ram-Lak, Shepp-Logan, Cosine, and the Hamming
filter. The ideal ramp filter (Ram-Lak) leaves the high-frequency region without ma-
jor changes. Since noise is also located in the mid to high-frequency region, the re-
constructed data looks noisy, too. Therefore, other functions decreasing the highest
frequencies in the data produce better results.

Note, that Equation 5.6 is only valid for parallel geometries. Cone beam trajectories
can be reconstructed using a perspective projection matrix to transform world-space
coordinates to the cone beam coordinate system. The projection matrix depends on
the view point, on the viewing angles, and field of view in relation to source/detector
gantry.

5.1.2 GPU Implementation

In this section, we describe the data structures and shader of our GPU implementation.
Since the projection images and reconstructed volumes might get very large, a mem-
ory management strategy is needed. We discuss two approaches with comparisons of
memory consumption and bus traffic.

72 CHAPTER 5. MEDICAL IMAGE RECONSTRUCTION

(a) Ram-Lak (b) Shepp-Logan

h(f) = |f | h(f) = |f | · sin(fπ)
fπ

(c) Cosine (d) Hamming

h(f) = |f | · cos(1
2fπ) h(f) = |f | · (0.54 + 0.46 cos(fπ))

Figure 5.7: The plots of four high-pass filters in frequency domain.

5.1.2.1 Data Structures and Shaders

Principally, the volume and one projection image must be represented in GPU memory
as textures. It is possible to update a 3D texture in a single rendering pass using Shader
Model 4.0 hardware. On older hardware a volume had to be represented slice-by-slice
using a stack of 2D textures. In order to reconstruct volumes with maximum quality,
each voxel must be float-typed. As for the projection images we use 2D textures to
represent them in GPU memory.

We use our GPU-accelerated FFT implementation (Section 4.1.2.2) to filter the pro-
jection images. First, we transform each projection image to the frequency domain,
then we apply the filter kernel h by component-wise multiplication, and finally the re-

5.1. CT CONE BEAM RECONSTRUCTION 73

Figure 5.8: The backprojection of a projection images to the volume is illustrated.

sult is transformed back to the spatial domain. Two projection images can be packed
into an RGBA texture for parallel transformation since complex numbers are generated.

Our backprojection implementation works voxel-driven. That is, we determine for
each voxel in the volume the corresponding pixels in the projection images. As shown
in Figure 5.8 each projection image affects the entire volume. If the volume is rep-
resented as a 2D texture stack, two triangles covering one slice of the volume are
rendered. Using a 3D texture, the double triangles of all slices can be put into one
vertex buffer allowing the GPU to backproject a projection image to the entire volume
at once. Each vertex of the triangles is given a world-space position (xw, yw, zw) that is
transformed to projection space using the projection matrix P , where P ∈ R4×3. The
transformation is performed in the vertex shader.

xpyp
zp

 = P ·

xw

yw

zw

1

 (5.7)

74 CHAPTER 5. MEDICAL IMAGE RECONSTRUCTION

The projection space coordinates (xp, yp, zp) are interpolated across the triangles
and are accessible at the voxel level.

The rasterization units of the GPU fill the interior of the circumscribed triangles with
voxels and for each voxel a pixel shader program is executed. It fetches the interpolated
projection space coordinates (xp, yp, zp) and perform the perspective division yielding
the 2D projection image coordinates (u, v).(

u

v

)
=

(
xp/zp

yp/zp

)
(5.8)

Next, the 2D coordinate (u, v) is checked against the (user-defined) margins of a
valid area in the projection image. If (u, v) is outside the valid area, the voxel does not
receive a contribution from the pixel at (u, v) in the projection image. Otherwise, the
sample is accumulated to the previously projected values of this voxel. It is weighted
by the inverse squared distance 1/p2

z to the origin of the projection space system to
account for the radiation intensity fall-off.

We count the number of rays passing from the valid area of all projection images
through all voxels. Only voxels with a user-defined percentage of valid rays hits are
considered as reconstructed correctly while voxels failing this condition are set to zero
in post-processing.

We execute the backprojection for each projection image onto the volume. That is,
we upload only one projection image at a time and backproject it to all slices of the
volume. So, the slices of the volume and one projection image resides in GPU memory
concurrently. In the following, we discuss memory management strategies if the GPU
memory is not large enough to fit the volume and the projection data in one piece.

5.1.2.2 Memory Management

The above described GPU implementation works only if the output volume and one
projection image (all float-typed) fit into GPU memory completely. To reconstruct
larger volumes, a memory management strategy is necessary that divides the volumes
into chunks. In this section, we discuss two memory management strategies and derive
reconstruction pipeline algorithms from them.

At the time when we wrote our implementation, graphics cards had typically 512
MB of RAM. One can easily see that this is not enough memory to reconstruct a volume
with 5123 voxels in floating-point precision. A volume like this requires 512 MB. This
does not fit into GPU memory since the graphics card driver uses some megabytes for

5.1. CT CONE BEAM RECONSTRUCTION 75

Figure 5.9: The output volume is divided into a number of chunks. A chunk is a stack of slices
representing a part of the entire volume.

internal buffers and, moreover, at least one projection image need to be stored in GPU
memory as well. Therefore, a memory management strategy is required that swaps
data between main memory and GPU memory. In general, both projection images and
slices of the output volume can be swapped. Since the output volume does not fit into
memory in one piece, we divide the output volume into chunks as depicted in Figure
5.9. A chunk is a stack of slices representing a part of the entire volume. The slices
of all chunks resemble the entire output volume. We describe two swapping strategies
for projection images and chunks in the following, but hybrid forms are also possible.
In particular, we are interested in the amount of bus traffic between main memory and
GPU memory. This is a bottleneck and must be minimized for optimal performance.
To quantify the bus traffic we denote the number of projection images as pn and the size
of one image in bytes as ps. Similarly, we denote the number of chunks as cn and the
size of one chunk in bytes as cs. As usual, we call copying data from main memory to
GPU memory upload and vice versa download. Two swapping strategies:

• Swapping chunks: The projection image is the central pipeline element that stays
in GPU memory until it is not needed anymore (pnps bytes upload, 0 bytes down-

76 CHAPTER 5. MEDICAL IMAGE RECONSTRUCTION

load). Each projection image is first pre-processed and then backprojected to the
volume. Since the volume does not fit into GPU memory in one piece, all chunks
have to be swapped in and out for each projection image (pn × cncs bytes upload
and download).

• Swapping projection images: First, all projection images are pre-processed (pnps
bytes upload) and then stored in main memory (pnps bytes download). Next,
the chunks are processed sequentially. For each chunk, all projection image are
backprojected. This means that all projection images have to be uploaded for
each chunk (cn × pnps bytes upload). Once a chunk is reconstructed completely,
post-processing filters can be applied directly before it is downloaded (cncs down-
loads).

Tables 5.1 and 5.2 show the bus transfer for the two memory swapping strategies.
It depends on the size of the projection image and the size of the output volume which
strategy produces the smaller bus traffic. A typical scenario for us looks like this: We
have pn = 360 projection images with 512 × 512 float-valued pixels, i.e., ps = 1 MB
and the desired output volume with 5123 floating-point voxels is divided into cn = 3

chunks. Each chunk takes about cs = 170 MB. Swapping chunks causes about 360 GB
traffic, while swapping projection images causes only 2.25 GB of traffic. Therefore,
our implementation is based on the second approach.

Swapping chunks bytes upload bytes download
Projection images pnps 0
Chunks cncs × pn cncs × pn

Table 5.1: Bus transfer for swapping chunks strategy where pn is the number of projection im-
ages and cm is the number of chunks. The size in bytes is represented by ps and cs respectively.

Swapping projection images bytes upload bytes download
Projection images pnps + cn × pnps pnps
Chunks 0 cncs

Table 5.2: Bus transfer for swapping projection images strategy where pn is the number of
projection images and cm is the number of chunks. The size in bytes is represented by ps and
cs respectively.

As shown in Algorithm 3, all projection images are preprocessed using the GPU. Se-
quentially, the projection images are uploaded to GPU memory, the curvature smooth-
ing filter (see Section 4.2.1) and the high-pass are applied and the results are down-
loaded and saved in main memory. Then, the output volume is reconstructed chunk-

5.1. CT CONE BEAM RECONSTRUCTION 77

Algorithm 3 Cone beam reconstruction pipeline using swapping of projection images.
procedure ReconstructionPipeline(p, c)

for all projection images pi do
Upload pi to GPU memory
Curvature smooth pi

High-pass filter pi

Download pi to main memory
end for
for all chunks cj do

for all projection images pi do
Upload pi to GPU memory
Backproject pi to cj

end for
Ring artifact removal in cj

Cupping artifact removal in cj

Download cj

end for

by-chunk. All projection images are uploaded sequentially to GPU memory and back-
projected to all slices of the chunk. Afterwards, the ring artifact removal (see Section
4.2.2) and the cupping artifact removal (see Section 4.2.3) are applied to the chunk in
post-processing. Finally, the chunk is downloaded to main memory. This procedure is
repeated for all chunks.

5.1.3 Results

All our measurements were done using Windows XP on a Xeon Dual Core Processor
with 3.2 GHz processor and 2 GB RAM. The graphics card is an NVIDIA Quadro FX
4500 with 512 MB RAM. Table 5.3 shows timings on the CPU and on the GPU of three
different data sets. We have reconstructed the data sets with varying output volume
resolutions. Conclusively, our GPU implementation is approximately four times faster
than our multi-threaded SSE2 optimized CPU implementation.

The resulting image quality is virtually the same for both CPU-based and GPU-
based implementations with an average pixel error of 10−5. The GPU is very suitable
not only for backprojection, but for the entire reconstruction pipeline with very high
accuracy. With increasingly growing amounts of data, it is possible that the GPU-based
cone beam reconstruction pipeline will be indispensable in the future.

78 CHAPTER 5. MEDICAL IMAGE RECONSTRUCTION

CPU time (seconds) GPU time (seconds)
input: 360 images (1024× 1024)

178 53
output: 512× 512× 256 voxel
input: 200 images (1024× 1024)

35 18
output: 256× 256× 256 voxel
input: 200 images (1024× 1024)

123 40
output: 512× 256× 256 voxel

Table 5.3: We have measured the runtime of Algorithm 3 without thel pre-processing stages
but with backprojection and post-processing stages. This table shows timings for three different
data sets using our CPU and GPU implementations. The data sets vary in the size and number
of projection images as well as the output volume size.

5.2 Magnetic Resonance Reconstruction

In this section, we present the reconstruction of 2D images from MR measurement
data. After a brief introduction to the physics of magnetic resonance scanners we dis-
cuss scanning trajectories. Then, we present two reconstruction algorithms, namely the
gridding and the filtered backprojection method including GPU acceleration.

5.2.1 Physics of Magnetic Resonance Imaging

Magnetic resonance scanners are one of the youngest scanning modalities available
today. MR scanners have many advantages over CT scanners as they capture soft tis-
sue accurately and provide virtually no danger to the human health. The latter makes
MR scanners applicable for interventional operations. On the other hand, the image
resolution is not as high as in CT images.

Basically, the scanning process works by applying a strong magnetic field to the
object in the scanner as nuclei align themselves to it. Applying radio waves in the
strong magnetic field raises the nuclei of the object to a higher energy level. By turning
off the radio signal the nuclei drop to their original energy level emitting radiation of a
specific frequency that identifies the type of nuclei. The magnetic resonance imaging
process was improved by using a single high-energy pulse instead of searching through
the frequencies looking for responses. Now, multiple nuclei respond to the pulse at
different frequencies. Using the Fourier transform, the recorded frequency information
is transformed to the spatial domain as image.

While the spin of a nucleus is a quantum mechanical property some of the related
phenomena can be understood in classical physics. In such a model, every nucleus
spins around a rotational axis. If an external magnetic field is applied to a nucleus, the

5.2. MAGNETIC RESONANCE RECONSTRUCTION 79

(a) front view (b) side view

Figure 5.10: Image (a) shows a front view and image (b) shows a side view of an MR scanner.

rotational axis spins around the direction of the magnetic field - this is called preces-
sion in classical mechanics. As soon as the magnetic field is turned off, the nucleus
returns to its original state while energy is emitted. By applying a second magnetic
field perpendicular to the first one, the nucleus goes into permanent precession, if the
second magnetic field’s frequency coincides with the resonance frequency of the nu-
cleus. As soon as the second magnet field is turned off, the nucleus drops to its original
configuration and emits energy. The emitted energy gives rise to a magnetic field that
can be transformed to electrical energy by placing a coil near the nucleus. In order to
scan a single arbitrarily aligned slice of a body, magnetic gradients are applied to the
perpendicular magnetic field to restrict it to a plane. Then, the nuclei outside the plane
will not go into precession and, thus, not emit energy. The measured induction is a
frequency and phase signal, which can be transformed to an image using the inverse
Fourier transform. Figure 5.10 illustrates an MR scanner schematically.

5.2.2 Scanning Trajectories

Fast MR image reconstruction has become more and more important for real-time ap-
plications such as interventional imaging. An imaging speed of at least 5 frames per
second is necessary in order to provide immediate feedback to the physicians in opera-
tion situations. This motivates faster image acquisition and reconstruction.

80 CHAPTER 5. MEDICAL IMAGE RECONSTRUCTION

Figure 5.11: Cartesian and radial sampling trajectories in k-space.

In MR imaging (MRI), the complex-valued raw data measured from the scanner cor-
respond to the Fourier coefficients of the target image; and the Fourier space is referred
to as k-space. The switching patterns of the magnetic field gradients applied during the
measurement determine the sampling trajectories in k-space [BKZ04]. Conventional
MRI adopts Cartesian trajectories as illustrated on the left of Figure 5.11. When the
entire k-space is sampled in this fashion, the image is reconstructed by a straightfor-
ward application of the FFT to the raw data. Thilaka et al. [TD05] have implemented
this using the GPU. This scan pattern is relatively slow in the phase encoding direction
[LL00].

Fortunately, higher acquisition speed can be achieved by using a non-Cartesian scan
in k-space such as radial, spiral or Lissajou trajectories. We focus on radial trajectories
(see Figure 5.11 on the right) which offer the following advantages over the Carte-
sian scan. With their high sampling density near the center of k-space (i.e. low fre-
quency components), the reconstructed images achieve relatively high signal-to-noise
ratio (SNR) and contrast. They are also less sensitive to motion and flow; and this pre-
vents from producing unacceptable artifacts. Finally, they allow the scan of tissues or
objects with very short measurement time in the T2 modality.

Each measurement line passing through the center of the k-space consists of n
complex-valued measurement samples. Further, each lines is characterized by the an-
gle φk the line was acquired. Arranging all 1D measurement lines row-by-row in a 2D
structure s(φk, xi) is called the sinogram where k is an index to the set of angles φ and
i is an index addressing individual samples along each line. Note that the measure-
ment lines are acquired in the polar coordinate system and the sample points do not
necessarily correspond to discrete Cartesian points. An example of a typical sinogram

5.2. MAGNETIC RESONANCE RECONSTRUCTION 81

Figure 5.12: The sinogram of a phantom data set. The magnitude of each complex-valued
measurement sample is visualized as gray value.

can be seen in Figure 5.12. The sine waves gave the sinogram its name. Note that the
magnitude of each measurement sample is depicted as gray value.

In the following, we present two reconstruction algorithms for MR images from
radial measurement lines: the gridding and the filtered backprojection algorithm.

5.2.3 The Gridding Algorithm

A popular technique to reconstruct images from non-Cartesian trajectories in k-
space is the so-called gridding method [O’S85, JMNM91]. This is the method of
choice, among various possible MR image reconstruction methods such as iterative
approach [SNF03] and pseudoinverse calculation [dWBM+00] if one considers high
computation efficiency with reasonable reconstructed image quality. The basic idea of
gridding is to resample the raw measurement data on the Cartesian grid. Then, the fast

82 CHAPTER 5. MEDICAL IMAGE RECONSTRUCTION

Algorithm 4 The gridding algorithm for MR measurement data from radial trajectories.
procedure Gridding(m)

for all measurement lines mi do
Density compensation of mi

Interpolation of mi (in polar k-space) to the Cartesian k-space
end for
Inverse FFT of the Cartesian k-space
Deapodization of transformed k-space

Fourier transform (FFT) is used to reconstruct the target image. The density compensa-
tion is necessary to account for the non-uniform sampling. Of particular interest, Dale
et al. [DWD01] proposed a fast implementation which exploits table look-up opera-
tions. This approach is the foundation on which our implementation is based. Given
a reasonable window size for interpolation (usually 3 × 3 or 5 × 5), this algorithm
provides acceptable image quality with high computational efficiency. However, on
currently available MR image reconstruction hardware, this algorithm is still a perfor-
mance bottleneck for real-time imaging applications.

Gridding algorithms [O’S85, JMNM91] are computationally efficient for recon-
structing images from MR measurement data that have arbitrary nonuniform trajec-
tories. The algorithm for radial measurement lines acquired in polar space is sketched
in Algorithm 4. We clarify the notation in the following:

• Density compensation: To account for nonuniform sampling in k-space, each
sample point is weighted by a compensation factor. There are several algo-
rithms that aim at approximating the optimal density compensation functions
[PM99, SN00].

• Interpolation: Each sample point contributes, according to a certain interpolation
window such as the Kaiser-Bessel window [JMNM91] to the neighboring Carte-
sian coordinates. In this step, one can choose to oversample the original k-space
data and make the grid denser than the original. This oversampling can reduce
aliasing significantly and allows for the use of smaller interpolation kernels.

• Deapodization: This is a postprocessing operation to compensate for the non-
ideal roll-off (non-square) of the frequency responses of the interpolation kernels.
This step is sometimes referred to as roll-off correction.

We elaborate the interpolation using a Kaiser-Bessel function in a more detailed
way. As described by Dale et al. [DWD01], the table-based Kaiser-Bessel window

5.2. MAGNETIC RESONANCE RECONSTRUCTION 83

gridding algorithm distributes each measurement sample on a radial line to a small area
(3×3 or 5×5) around the nearest cell on the Cartesian grid. Conceptually, we map the
radial measurement line with a thickness of 3 (or 5) pixels to the Cartesian grid. This
is illustrated by the skewed light gray box on the right hand side of Figure 5.13. Then,
for each covered Cartesian grid cell (kx, ky), we compute the contribution ci(kx, ky)
from the three nearest measurement samples mi(kx, ky) located at Ni(kx, ky), where
i = 0, 1, 2.

Figure 5.13: A N × 3 pixels quadrilateral defined by the vertices v0...v3 is rotated by
the vertex shader according to the measurement angle. Two coordinate systems are de-
fined: one addressing k-space (TexCoordsKSpace), the other addressing the measurement data
(TexCoordsMeasurement). The pixel shader performs a grid-driven interpolation from the three
nearest measurement samples with weights computed according to the density compensation
function and the distance.

• The density compensation factor ρ(DNi(kx, ky)), which is inversely proportional
to the distance DNi(kx, ky) between Ni(kx, ky) and the k-space origin, is multi-
plied with mi(kx, ky).

• Then, we use the distance dmi(kx, ky) between Ni(kx, ky) and (kx, ky) to look
up the precomputed Kaiser-Bessel table and obtain the w(dmi(kx, ky)) weighting
coefficient so that we have

ci(kx, ky) = w(dmi(kx, ky)) · ρ(DNi(kx, ky)) ·mi(kx, ky). (5.9)

84 CHAPTER 5. MEDICAL IMAGE RECONSTRUCTION

Figure 5.14: An overview of our GPU gridding implementation showing shaders and texture
tables.

Contrarily, our GPU implementation gathers surrounding measurement samples for
each Cartesian grid cell since distribution operations were introduced only very recently
on the latest generation of GPUs with inefficient performance. Figure 5.14 shows an
overview about the shaders and textures. We store the sinogram s(φ, x) in a 2D texture
with four channels called measurement texture. Since each measurement sample is
complex-valued, two samples can be stored in each RGBA element. Even-numbered
measurement lines are stored in the RG channels and odd ones are stored in the BG
channels. The gridded results in the Cartesian k-space is represented in the k-space
texture. Again, two channels are required to store this complex-valued signal. The
remaining two channels can be used to represent another set of the gridded results.
This is useful when there are several measurement channels as two sets of data can be
reconstructed in parallel.

We store the Kaiser-Bessel lookup table in a 1D texture (Kaiser-Bessel texture)
as it is computationally inefficient to evaluate the Kaiser-Bessel function on the fly.
This table is precomputed at program initialization. We provide the measurement and
k-space texture as input data to the shader program. Further, a line index parameter
is passed to the shader program in order to index a specific measurement line in the
sinogram.

Two triangles covering N × 3 pixels are rotated by a vertex shader program accord-
ing to the measurement angle in order to rasterize the correct Cartesian grid cells in k-
space. Two coordinate system are required in the pixel shader. One coordinate system
addresses the Cartesian grid of k-space, called the TexCoordsKSpace. The other coordi-
nate system addresses the radial measurement line, called the TexCoordsMeasurement.

5.2. MAGNETIC RESONANCE RECONSTRUCTION 85

Both coordinate systems are fixed at each vertex as attributes and interpolated in each
Cartesian cell bilinearly.

The gridding is performed in the pixel shader program. The pixel shader gets the
interpolated coordinates TexCoordsMeasurement and TexCoordsKSpace. Using Tex-
CoordsMeasurement, we can compute DNi(kx, ky) and thus ρ(DNi(kx, ky)) for each
Cartesian grid cell. Next,Ni(kx, ky) is evaluated and dmi(kx, ky) is calculated. The dis-
tance dmi(kx, ky) is used to index the Kaiser-Bessel texture to retrieve w(dmi(kx, ky)).
Finally, the measurement sample mi(kx, ky) indexed by TexCoordsMeasurement is
weighted to obtained ci(kx, ky) as defined in Equation 5.9. This procedure is repeated
for i = 0, 1, and 2. Using the coordinate system TexCoordsKSpace, these ci(kx, ky) are
accumulated into the k-space texture from different triangles that encompass (kx, ky).
The overall contributions that a Cartesian grid cell (kx, ky) receives are

C(kx, ky) =
∑

v∈R(kx,ky)

2∑
i=0

cvi (kx, ky), (5.10)

where R(kx, ky) denotes the collections of radials lines that contain neighboring
measurement samples of (kx, ky); and cvi (kx, ky) is the ith contribution from the vth
radial line.

After all measurement lines have been gridded, we use our FFT implementation to
transform the gridded samples to obtain an image. Finally, the deapodization is applied
to the image. We precompute the deapodization coefficients on the CPU and store
them in a texture. Then, a pixel-wise multiplication of the image and the deapodization
texture is performed on the GPU to render the final image. Before we present results,
we discuss the filtered backprojection algorithm as alternative.

5.2.4 The Filtered Backprojection Algorithm

Another method to reconstruct MR data from radial measurement lines is the filtered
backprojection algorithm. The difference to the already discussed algorithm in Section
5.1 is that the rays are arranged in a parallel beam instead of a cone beam. According
to the central slice theorem, a line passing through the k-space origin can be inversely
Fourier transformed to obtain projection data in the image domain where the projection
angle is perpendicular to the k-space line. Therefore, the filtered backprojection algo-
rithm can also be used to reconstruct MR images from radial measurement lines. The
algorithm is shown in Algorithm 5.

We discuss the algorithm together with our GPU implementation next. We use

86 CHAPTER 5. MEDICAL IMAGE RECONSTRUCTION

Algorithm 5 The filtered backprojection algorithm for MR measurement data from radial tra-
jectories.
procedure FBP(m)

for all measurement lines mi do
High-pass filter mi

Transform mi to spatial domain m′i
Backproject m′i parallel and accumulate to image

end for

the same texture as in the gridding algorithm to store sinogram s(φ, x). One additional
texture is required to store the accumulation of all backprojection. As we explain below,
this texture needs at least two channels. We call this texture the image texture. Figure
5.15 illustrates the shaders with all inputs.

Figure 5.15: An overview of our GPU backprojection implementation.

As shown in Algorithm 5, each measurement line is high-pass filtered, transformed
to the spatial domain, and backprojected onto the image. We implement the high-pass
filter from Section 5.1.1.3 using a component-wise multiplication of each measurement
sample and the filter kernel coefficient. Therefore, we store the filter kernel in a 1D
texture. Since all measurement lines are stored in a single 2D texture (sinogram) and
the measurement data is already in frequency domain (k-space), a single rendering call
is sufficient to filter all raw data. Note that the high-pass filter step corresponds to the
density compensation in the gridding algorithm.

Next, the filtered measurement data is transformed to the spatial domain using our
GPU-FFT implementation described in Section 4.1.2.2. Again, since all measurement

5.2. MAGNETIC RESONANCE RECONSTRUCTION 87

lines are stored in a single 2D texture, the 1D transformation of all lines is done with one
rendering call per FFT stage. Note that resulting spatial domain data is still complex-
valued.

Finally, each measurement line acquired under an angle φi is backprojected onto
the image domain. That is, each line is smeared across the image under the acquisition
angle. In this step, interpolation is of advantage in order to improve the reconstructed
image quality, for example by linear interpolation of the two closest samples.

Figure 5.16: A quadrilateral covering the image domain is rotated by a vertex shader
program according to the measurement angle. Two coordinate systems are defined:
one addressing k-space (TexCoordsKSpace), the other addressing the measurement data
(TexCoordsMeasurement). The pixel shader samples the measurement data at the interpolated
TexCoordsMeasurement position and writes it to the interpolated TexCoordsKSpace position.
The measurement line is repeated over the entire quadrilateral.

Figure 5.16 illustrates the backprojection implementation on the GPU. Four ver-
tices v0...v3 setup as two triangles covering N × N pixels. The two triangles are ro-
tated according to the measurement angle by a vertex shader program. Similar to the
gridding implementation, two coordinate systems are required. The coordinate system
TexCoordsImage addresses the image domain (image texture) for the accumulation of
the previous backprojections. The other coordinate system TexCoordsMeasurement ad-
dresses k-space samples in the measurement texture. The backprojection is executed
in a pixel shader program. The sinogram s(φk, xi) corresponds to our measurement

88 CHAPTER 5. MEDICAL IMAGE RECONSTRUCTION

texture where φk is the line index and xi is the TexCoordsMeasurement. One measure-
ment line is readdressed inside the rotated quadrilateral to achieve the backprojection
(smearing).

Similar to the implementation of the gridding algorithm, the backprojection results
have to be accumulated. Using TexCoordsImage, the previous backprojected and ac-
cumulated values can be accessed and accumulated. Nowadays, modern GPUs support
the blending of floating-point valued textures so that the accumulation can be achieved
using the blending states.

We like to point out that the backprojection uses complex values. Both the real
and the imaginary part are backprojected separately. The final image is obtained by
computing

p(x, y) =
√
r(x, y)2 + i(x, y)2, (5.11)

where r and i are the real and imaginary values. To conclude this approach we consider
it easy to implement and very GPU friendly. No look-up tables or dependent textures
fetches are required.

5.2.5 Results

All our experiments were run under Windows XP on a Pentium 4 3.0 GHz processor
equipped with an ATI Radeon X1800 XT graphics card. We measure the reconstruc-
tion performance for two sets of MR measurement data, which were obtained from a
Siemens Magnetom Avanto 1.5T scanner using a trueFISP pulse sequence with a radial
trajectory in k-space. For the phantom image shown in Figure 5.17, there are a total of
504 radial lines with 512 samples each. During the MR scanning, three coils/channels
were used; and the scanning parameters are TR = 4.8 ms, TE = 2.4 ms, flip angle =
60◦, and FOV = 206 mm with a resolution of 256 pixels. For the head image depicted
in Figure 5.18 there are a total of 248 radial lines again with 512 samples each. In this
data set, four channels were used; and the scanning parameters are TR = 4.46 ms, TE
= 2.23 ms, flip angle = 50◦, and FOV = 250 mm with a resolution of 256 pixels.

Backprojection Gridding
CPU GPU CPU GPU

Phantom 16700 130 730 200
Head 8400 60 600 170

Table 5.4: MR reconstruction time in milliseconds on the CPU and GPU using backprojection
and gridding.

5.2. MAGNETIC RESONANCE RECONSTRUCTION 89

Table 5.2.5 shows the performance of our various implementations. We have im-
plemented the backprojection and gridding algorithms on both the CPU and GPU for
speed comparisons. The speed up from the CPU to the GPU is about 3.5 times for the
gridding algorithm. For the filtered backprojection, we observe a speed up of about 100
times. Figure 5.17 shows the reconstructed images for the scanned phantom. The re-
sults obtained from our filtered backprojection implementation are identical on the CPU
and on the GPU. For the gridding implementations, the results show slight differences
but comparable image quality.

For the GPU implementations, we measure the bus transfer time between main
memory and GPU memory in both directions. Basically, the measurement data is up-
loaded to GPU memory and one reconstructed image is downloaded. The upload time
for the phantom image is 6.2 milliseconds for 504 measurement lines with 512 samples
each in three channels. For the head image the upload time is 4.4 milliseconds for 248
measurement lines with 512 samples each in four channels. The download time for a
reconstructed 256× 256 image is 0.4 milliseconds.

(a) (b) (c)

Figure 5.17: The reconstructed images by using (a) gridding algorithm on the CPU, (b) gridding
algorithm on the GPU, and (c) filtered backprojection which yields identical results on the CPU
and GPU. The measurement data were obtained from 3 MR coils/channels. For each channel,
there are 511 measurement lines with each containing 512 complex samples. We show the
reconstruction speeds in Table 5.2.5.

Conclusively, our GPU backprojection is the best implementation in these experi-
ments. It computes correct images (identical to CPU implementations) at high perfor-
mance. In order to conduct a fair comparison the GPU gridding implementation must
be removed from the experiments since the image quality differs due to the grid-driven
interpolation on the CPU as compared to the grid-distribution approach on the CPU.
But even comparing the fastest CPU implementation (CPU gridding) with the fastest

90 CHAPTER 5. MEDICAL IMAGE RECONSTRUCTION

(a) (b) (c)

Figure 5.18: This first image was reconstructed from 31 measurement lines of 512 (complex)
samples in 3 channels to a 256 × 256 image in 8 milliseconds. The subsequent images are re-
constructed from additional rotated interleaves. All images were reconstructed using the back-
projection algorithm. Our CPU and GPU implementations yield identical results.

GPU implementation (backprojection) yields a 10 times speedup roughly.

Chapter 6

Medical Image Segmentation

Figure 6.1: Medical image segmentation isolates objects by (automatically) finding the bound-
aries and removing the background.

Medical image segmentation separates objects in an image by finding the bound-
aries of the objects and extracting them from the image. Especially in 3D it is difficult
to see organs inside the body since they might be occluded by tissue in front of them.

91

92 CHAPTER 6. MEDICAL IMAGE SEGMENTATION

Segmentation helps getting a better view on an organ by extracting it from the surround-
ings. The extraction is, of course, only virtual in the medical image. Other applications
besides visualization include finding the boundary of a tumor, measuring volumes of
segmented objects, or guiding computer-controlled surgery robots.

6.1 Introduction

It is tedious work to segment organs manually thus many segmentation algorithms
have been developed in the last decade. A very simple kind of automatic segmenta-
tion is achieved by employing a transfer function. Transfer functions map values, e.g.
Hounsfield units, to other values. For example, parts of a data set are set transparent.
A simple transfer function is a ramp function which sets values below a user-defined
bottom threshold to 0 and above a top threshold to 1. In between the values are mapped
linearly. Obviously, this allows only a rough segmentation of the data set into air, fat,
water and bones. Since most organs contain both fat and water the transfer function is
not capable of providing arbitrary organ segmentations.

Two types of user interaction are distinguished in the field of image segmentation.
While automatic segmentation algorithms find the boundaries of objects in an image
without user guidance, semi-automatic algorithms rely on a few labeled pixels provided
by the user. That is, the user selects some pixels belonging to the object and, depend-
ing on the algorithm, some pixels not belonging to the object separately. User-selected
pixels are referred to as labeled pixels or simply labels. Fully automatic algorithms are
often specialized in finding one specific type of object whereas semi-automatic algo-
rithms can be used to classifying everything in an image. Semi-automatic algorithms
can be made fully-automatic if the labels are computed by an algorithm instead of a
human.

Segmentation algorithms can also be classified by the number of objects (or regions)
an algorithm is able to separate at the same time. Instead of separating only an object
(foreground) and the surroundings (background), multi-segmentation allows separating
an image into a multitude of n regions. For example, multiple organs are segmented
from the rest of a human body in a single run of an algorithm.

Furthermore, segmentation algorithms differ in the kind of output. While binary
segmentation algorithms classify each pixel into one of the n regions uniquely, non-
binary segmentation algorithms assign a probability to each pixel of belonging to each
of the n regions. Non-binary segmentation is considered to be more powerful than
binary segmentation since there exist many ambiguous regions in human bodies.

6.2. CLASSES OF SEGMENTATION ALGORITHMS 93

6.2 Classes of Segmentation Algorithms

There is a very active research community working on novel segmentation algorithms
or on improvements to existing ones. Today, a large variety of different classes of
segmentation algorithm have been developed. The following list describes three classes
briefly.

• Watershed Segmentation: A topological surface is build from the gradients of
an image. If the image were flooded from the minima of the topological map an
image segmentation is achieved by looking at the basins limited by the topological
surface [CCGA07, NWvdB00, dBP07].

• Level Set Segmentation: Level Set methods are based on active contours mini-
mizing a cost function. The cost function is chosen depending on the type of
the desired segmentation and additional smoothing constraints [Set99]. Lefohn
et al. [LCW03] have implemented a GPU-accelerated algorithm for level sets. A
review on statistical level set methods can be found in [CRD07].

• Graph-based Segmentation: The image is represented by a regular graph where
each pixel (voxel) value is living on a node in the regular grid and the edges
represent the gradients. Examples for segmentation algorithms based on graphs
are normalized cuts [SM97], graph cuts [YM01], and the random walker [LG04].

Often, further knowledge is integrated into the algorithms such as histogram equal-
izations, shape priors, flow-based constraints and many more. The desirable goals of a
prefect segmentation algorithm are characterized by the following (incomplete) prop-
erties.

• No limitation to specific types of organs.

• No limitation to specific image acquisition modalities (CT, MR, Ultrasound, ...).

• Non-binary segmentation (probability).

• Manageable amount of parameters.

• Minimal amount of user guidance and labeled points.

• Robust to noise.

• Easy to implement.

94 CHAPTER 6. MEDICAL IMAGE SEGMENTATION

• Interactive real-time performance.

Unfortunately, it is almost impossible to create an algorithm that satisfies all of
the goals above. Nowadays, people focus on a subset of these goals and try to build
special purpose algorithms. The random walker algorithm [LG04] is an exception since
it satisfies many of the above mentioned properties. It is a non-binary segmentation
algorithm that works on many image modalities even with weak boundaries. It is easy
to implement runs very fast on the GPU. Also, Siemens uses it in many applications. In
the upcoming sections, we review the algorithm and discuss its evaluation [GSAW05b].
Further, we present an efficient GPU implementation with timings.

6.3 The Random Walker Algorithm

We briefly review the random walker algorithm. A more detailed explanation can be
found in [LG04]. The random walker algorithm allows segmenting an arbitrary num-
ber K of regions simultaneously. We distinguish the regions by unique colors. The
algorithm is semi-automatic requiring the user to label at least one pixel of the im-
age/volume in each of the K colors.

The algorithm is based on a regular 4-connected grid in 2D and a 6-connected grid
in 3D. Each pixel of the image is represented by a node in the grid. While the edges
are symmetric, we specify an edge weight depending on the pixel gradients. We chose
the edge weight to be large if the gradient is small and vice versa. This way, neigh-
boring pixels with similar intensities have a stronger relationship expressed by the edge
weights. We discuss the edge weight computation below in detail.

A random walker standing at an arbitrary vertex in the previously defined grid
has four or six choices (in the non-boundary region) to move to another vertex. The
edge weighs represent probabilities to chose a direction. Therefore, the random walker
moves easily between pixels with similar intensities while it avoids traveling to pixels
with a large intensity difference.

As stated earlier, at least K pixels have been labeled by the user (or automatically
using an additional algorithm) with K different colors. Suppose a random walk is
started from every unlabeled pixel. Every random walker starts moving according to
the probability distribution and eventually reaches a labeled pixel. Beginning from
the starting point of each random walker, the probability to reach a labeled pixel is
computed by multiplying the edge weights along the path. Therefore, K probabilities
(for each color) are determined by the random walks for each (unlabeled) pixel.

6.3. THE RANDOM WALKER ALGORITHM 95

Finally, an image segmentation is obtained from the random walker paths by look-
ing at the K probabilities of each pixel. We assign to each pixel the color with the
highest probability.

In the following, we discuss the theory of the random walker algorithm, the GPU
implementation, and a validation of the algorithm with timings.

6.3.1 Theory

First, we discuss the computation of the edge weights. As already mentioned, the edge
weights depend on the image gradient since the random walkers are supposed to stay
in homogeneous regions and to avoid stepping over sharp boundaries in the image. A
Gaussian is used to compute the edge weights as follows

wij = exp (−β(gi − gj)2), (6.1)

where gi indicates the image intensity at pixel i. The value of β represents the only
free parameter in this algorithm and was set to β = 1000 in all 2D experiments and
β = 4000 for all 3D experiments.

Fortunately, the random walks do not have to be simulated but the exact same result
is computable by solving a system of linear equations. More precisely, the random
walks are equivalent to the discrete Dirichlet problem [S.45, PL84, RD89] where the
labeled pixels represent boundary conditions. A system of equations is solved for each
of the K regions where the pixels of the boundary condition are fixed to 1 if the label
color corresponds to the current system, otherwise they are fixed to 0.

The random walker problem is expressed by the homogeneous system

Lx = 0, (6.2)

where L is the Laplacian matrix and x the solution vector. The Laplacian matrix L is
defined by its components Lvivj as follows

Lvivj =

∑
wik if vk and vi are adjacent nodes and i = j,

−wij if vi and vj are adjacent nodes,

0 otherwise.

(6.3)

The vertices are separated into two sets VL (labeled vertices) and VU (unlabeled
vertices). Since vertices from VL are fixed and require no solution, the matrix L is

96 CHAPTER 6. MEDICAL IMAGE SEGMENTATION

rearranged

L =

[
LL B

BT LU

]
. (6.4)

Further, the solution vector is split into two sets xL and xU analogously.(
LL B

BT LU

)(
xL

xU

)
= 0. (6.5)

Since xL is fixed Equation 6.5 needs to be solved for xU only

BTxL + LUxU = 0, (6.6)

thus
LUxU = −BTxL. (6.7)

The inhomogeneous system described in Equation 6.7 is solved for all labels c with
1 < c ≤ K. Note that xL must be adapted to account for each label color. If the system
of color c is solved, all pixel xL with label c must be set to 1 whereas all other xL set to
0. Further, the probability vector for each pixel always sums to 1. That is, once K − 1

systems are solved the remaining one is determined from the others.
Equation 6.7 is a sparse, symmetric, positive-definite system of linear equations

with |VU | number of equations and 5 diagonals in 2D and 7 in 3D. In the following
section, we discuss the GPU implementation of the random walker algorithm.

6.3.2 GPU Implementation

We implement the random walker system of linear equations using the GPU solvers
presented in Chapter 3. Specifically, we compare a GPU-accelerated conjugate gradient
and a multigrid solver in the following. First, we describe the vector storage, then the
multigrid and conjugate gradient implementation with a discussions of advantages and
disadvantages. Timings are shown in the next section.

Since GPU textures store up to four channels (RGBA) per pixel we exploit this
data structure to compute four label colors at the same time. That is, we solve four
systems of linear equations simultaneously. If more than four label colors are desired,
more textures can be used. The four channel storage applies to all vectors such as the
solution vector x. Also, all intermediate vectors required by the solution algorithm are
packed the same way. Our GPU implementation computes all linear algebra operators
on four channels in parallel.

6.3. THE RANDOM WALKER ALGORITHM 97

We implemented both a 2D and a 3D version of the random walker systems. In a
2D implementation 2D textures are used to store all vectors since it is straightforward
to correlate vector components to pixel positions. In 3D the same mapping is achieved
by using 3D textures. As described in Section 2.3.2, 3D textures have a slightly slower
writing performance but time consuming coordinate system transformations are saved
in contrast to flat textures. However, when we implemented the 3D version no GPU
supported for writing to 3D textures was available (Geforce 6 series and Radeon X800
series). This is why our timings shown in the next section have been done using a flat
texture layout in 3D.

6.3.2.1 Multigrid

In this section we describe our multigrid implementation of the random walker algo-
rithm as introduced in Section 3.2.4. According to Equation 6.7 labeled pixels are
removed from the system and only unlabeled vertices (pixels) are solved for. There are
two options to account for this.

• The fixed equations are actually removed from the hierarchy leaving a system
with an arbitrary number of equations. But if the number of equations is not a
power of two, care must be taken for the restriction matrices as they have to be
adapted, too. Also, the GPU multigrid implementation gets slower since GPUs
handle power of two texture more efficiently. Another drawback of this approach
is that the hierarchy must be recomputed every time the labeled pixels change.
This prevents the user to change labels while the solver is running in contrast to
our conjugate gradient solver.

• The fixed equations are not removed but the fixed values are reset after every
operator. Using this approach the hierarchy can be pre-computed for one image
and does not change due to the change of pixel labels.

We found the latter method more promising, but overall, we are not satisfied with
the multigrid approach. The main drawback is the difficulty to handle arbitrary label
placement efficiently.

6.3.2.2 Conjugate Gradient

In contrast, the perconditioned conjugate gradient method works very well with the
GPU. The mapping of the vectors and matrices to GPU structures is simple, arbitrary
label placements are handled efficiently and the performance is real-time.

98 CHAPTER 6. MEDICAL IMAGE SEGMENTATION

Since the Laplacian matrix L is a diagonal band matrix and has only a few diagonals
we store the matrix line-by-line (see Section 3.3.2.1). That is, the matrix texture has the
same size as the image or any of the vectors. In 2D we store the four off-diagonal entries
in an RGBA 2D texture representing the edge weights to the four direct neighboring ver-
tices. The main diagonal is computed online by the negative sum over all off-diagonal
elements. Since the matrix is symmetric our representation contains redundancies but
we avoid additional indirect texture fetches this way. In 3D 6 off-diagonals have to be
stored. This time we exploit the symmetry and store only three weights in an RGBA
3D texture or 2D flat texture respectively. The remaining off-diagonals are retrieved
from additional texture fetches to neighboring vertices.

In contrast to the multigrid method, handling labeled vertices is simple. The equa-
tions do not have to be rearranged but the labeled vertices (pixels) are simply fixed
and masked as unalterable using the z-buffer. Therefore, we initialize the z-buffer by
setting 1 were updates are allowed and 0 were updates are forbidden. The z-buffer is
updated every time the labels are changed. This method is very efficient if the number
of labeled pixels is large; the hardware accelerated early-z test discards pixels failing
the z-test before entering the rest of the pipeline.

As mentioned before four systems (colors) are processed simultaneously using RGBA
textures. Once three systems have converged the solution to the remaining system is
calculated trivially since the probability in each pixel sums to 1. This provides typically
a huge speedup since one color is always used for the background and the rest for the
foreground labels. The systems of the foreground labels usually converge relatively fast
since the foreground objects are small compared to the size of the image. Thus, three
systems converge fast and the remaining system is computed directly from the other
systems.

Another advantage of using the GPU to solve the systems of linear equations is that
it is possible to visualize all intermediate vectors of any solution algorithm in real-time.
This kind of progressive visualization is especially useful with the random walker since
it allows the user to watch the probabilities converging to the final solution. Further,
we integrated fully interactive label editing enabling the user to add and remove labels
of any color while the conjugate gradient solver is running. The right hand side vector
is updated with the new label placement instantaneously. This turned out to be a very
useful feature since the user can watch the progress of the random walks and interac-
tively steer the solver by drawing additional labels if the random walker runs into an
undesired direction.

Finally, we discuss the memory consumption of the conjugate gradient random

6.3. THE RANDOM WALKER ALGORITHM 99

walker implementation. At the time when we implemented the random walker a typi-
cal graphics card had 256 MB of RAM. At the time of writing this thesis the average
amount of memory is about 640 MB but 1,5 GB boards are also available. The amount
of required memory is computed with (nd ·K · sizeof(float) · 7), where d is the number
of dimensions and n is the number of pixels in all dimensions. Totally, there are 7 tex-
ture sets required to store the matrix, all conjugate gradient vectors plus intermediate
vectors. A 1283 voxel volume can be segmented with 256 MB of RAM. About 2 GB is
sufficient to segment 2563 volumes.

In the following section we validate properties of the random walker algorithm and
present timings and examples.

6.3.3 Validation

The theoretical properties of the random walker algorithm can be found in [LG04]. It
has been shown that the random walker

• Is robust to noise.

• Finds reasonable boundaries in low-contrast and homogeneous regions.

• Computes good results with many imaging modalities.

In this section, we discuss properties of the algorithm [GSAW05b]. A good algo-
rithm computes good segmentations with just a few labeled pixels. At the same time,
the label placement should not affect the result too much. Specifically, we want to find
answers to the following questions:

1. The influence of label placement to the segmentation result.

2. The influence of the amount of labeled pixels to the segmentation result.

3. The average time to label pixels by the user and runtime of the algorithm using
the GPU.

6.3.3.1 Label Placement Accuracy

A good segmentation algorithm returns similar results if the labeled pixels remain
within the segmented object. We tested the robustness of the random walker algo-
rithm with respect to label placement using the following experiment. The left column
of Figure 6.2 shows the data sets. From top to bottom the imaging modalities are CT,
MR, PET, Ultrasound, and CT in 3D. First, we created a reference segmentation on

100 CHAPTER 6. MEDICAL IMAGE SEGMENTATION

0%

1%

2%

3%

4%

5%

0% 1% 2% 3% 4% 5% 6% 7% 8%

Shift

S
eg

m
en

ta
ti

o
n

 C
h

an
g

e

0%

1%

2%

3%

4%

5%

0% 1% 2% 3% 4% 5% 6% 7% 8%

Shift

S
eg

m
en

ta
ti

o
n

 C
h

an
g

e

0%

1%

2%

3%

4%

5%

0% 1% 2% 3% 4% 5% 6% 7% 8%

Shift

S
eg

m
en

ta
ti

o
n

 C
h

an
g

e

0%

1%

2%

3%

4%

5%

0% 1% 2% 3% 4% 5% 6% 7% 8%

Shift

S
eg

m
en

ta
ti

o
n

 C
h

an
g

e

0%

1%

2%

3%

4%

5%

0% 1% 2% 3% 4% 5% 6% 7% 8%

Shift

S
eg

m
en

ta
ti

o
n

 C
h

an
g

e

Figure 6.2: The left column shows the original data sets, the middle column shows the reference
labels and segmentation, and the right column shows the experimental results.

6.3. THE RANDOM WALKER ALGORITHM 101

all data sets as shown in the middle column. Then, we shifted all foreground seeds
(shown in white) into one random direction with one random magnitude, but did not
allow shifting foreground labels to the background region. Next, the random walker
algorithm computed a new segmentation using the shifted seeds and determined the
number of pixels where the segmentation result differs to the reference segmentation.
We computed the ratio of flipped segmentation pixels to the total number of foreground
pixels in the reference segmentation. This experiments was repeated 1000 times. The
right column of Figure 6.2 shows the results. The x-axis of the diagrams indicates
the ratio of shift magnitude to the image resolution. The y-axis represents the ratio of
pixels with flipped segmentation assignment to the number of foreground pixels in the
reference segmentation. The diagrams show the mean as plotted lines and the error bars
illustrated the one standard errors of the means.

The diagrams show that a larger shift magnitude result also in a larger change in the
segmentation. But as one can see in the scales of the diagrams the segmentation result
never changes more than 5%. The exact numbers also depend on the original input
images. It is obvious that the random walker is more likely to stay in regions surrounded
by sharp boundaries such as the PET image. In contrast, low-contrast boundaries in
images are more sensible to the location of the labeled pixels as can be seen in the MR
image. However, since the maximum segmentation change is always below 5% we
conclude the algorithm to be very insensitive to label placement.

6.3.3.2 Amount of Labels

Concerning how many labeled pixels are actually necessary to get a good segmentation
result we conducted the following experiment. We reused the reference segmentation
created for the last experiment and labeled each pixel of the foreground object as fore-
ground. This corresponds to a purely manual segmentation. All remaining pixels were
assigned the background label. By employing the morphological erosion operator, the
amount of foreground and background labels were removed successively and we com-
puted a new segmentation after each erosion. We compared each new segmentation to
our reference segmentation. Figure 6.3 shows the results from our experiments. The
x-axis show the ratio of removed labels to a fully labeled image and the y-axis shows
the ratio of the number of pixels with switched labels to the total number of pixels with
foreground labels.

Our results indicate that the random walker algorithm is very robust to the number
of labeled pixels. Note that the segmentation changes dramatically only if about 70%
of the labels in the reference segmentation have been removed.

102 CHAPTER 6. MEDICAL IMAGE SEGMENTATION

0%

10%

20%

30%

40%

50%

60%

0% 20% 40% 60% 80% 100%

Seed Reduction

S
eg

m
en

ta
ti

o
n

 C
h

an
g

e

MR
US
CT
PET
CT 3D

Figure 6.3: We used the same set of medical images as in Figure 6.2. Here, we labeled all
pixels of the foreground reference segmentation with foreground labels and vice versa. Using
the morphological erosion operator one shell after another was removed and the random walker
algorithm computed a new segmentation using the reduced labeled pixels. We repeated this
process until one of the two label groups was removed. The x-axis shows the ratio of remaining
foreground labels to reference foreground labels. As in Figure 6.2, the y-axis shows the amount
of pixels that have switched the label assigned by the random walker algorithm.

6.3.3.3 Timings

In our final experiment we have measured the time a user needs to label pixels and the
time the random walker algorithm takes to compute the segmentation result. Figure
6.4 shows the timings divided into three groups. The user time, the time our CPU im-
plementation took, and the time our GPU implementation took. Again, we conducted
this experiment using a multitude of images from different imaging modalities. The
user performing the pixel labeling had little experience with our tool. Typically, the
user time varies between 2 and 5 seconds while the CPU computed between 3 to 83
seconds. The best computer performance was achieved by the graphics card with tim-
ings between 0.3 and 1.5 seconds. Segmenting a 3D volume (not shown) takes about 5
seconds label placement by the user, 35 seconds on the CPU and 1 second on the GPU.
The timings were measured on a Pentium 4 2.8 GHz with an ATI Radeon X800 XT
graphics card.

6.3. THE RANDOM WALKER ALGORITHM 103

Brain tumor Brain Cerebellum
User: 2s User: 2s User: 2s
CPU: 10s CPU: 6s CPU: 83s
GPU: 0.7s GPU: 1.5s GPU: 0.3s

Lung tumor Lung with tumor Left atrium
User: 3s User: 5s User: 4s
CPU: 3s CPU: 23s CPU: 3s

GPU: 0.9s GPU: 1.3s GPU: 0.8s

Figure 6.4: We have measured both the time a user needs to label pixels and the time the
computer takes to compute the segmentation. By user time we refer to the label placement for
the random walker algorithm. It also includes correction made by the user, if the result was not
satisfying. We compare the timings of our random walker CPU and our GPU implementation
based on the user-provided labels. The total time is either user + CPU or user + GPU.

104 CHAPTER 6. MEDICAL IMAGE SEGMENTATION

Chapter 7

Medical Image Registration

Figure 7.1: Medical image registration aligns a set of images into a common coordinate system.

Physicians often take several images of a patient using different devices such as
ultrasound or MR scanners in order to visualize a multitude of aspects of an organ. One
scanning device is good at visualizing soft tissue, others provide better images of brain
or muscle activity. The images are not only different in terms of image modality, or

105

106 CHAPTER 7. MEDICAL IMAGE REGISTRATION

camera position, but are acquired at different times, too. Although patients try to hold
still, the inner organs will certainly move due to heart beat, blood flow, etc. The task of
medical image registration is to (automatically) align two images by transforming one
image so that it matches the other one as closely as possible. Alignment is essentially
image warping according to a displacement field generated by an image registration
algorithm. Registered images allow the physicians to study a multitude of aspects using
a fused visualization.

The challenge for the computer scientists is to build registration algorithm that gen-
erate the displacement field. The number of approaches is vast. An overview can be
found in [MV98, HHH01, HBHH01]. Indirect approaches such as feature-based regis-
tration methods do not register the image data, but extract geometric features such as
curves or surfaces that are aligned using a set of corresponding points in both images.
In contrast, image-based registration uses the image information directly to register
images. Here, image information does not exclude frequency domain or Eigenvalue
decomposition information. The algorithm we present in this chapter is image-based.

Further, image-based registration algorithms rely on the similarity of the two im-
ages. Similarity measures between two images can only be computed correctly, if both
images are present in the same modality domain including transfer function settings.
That is, before a similarity measure can be computed the images must be transformed
into the same image domain. Our algorithm does not deal with this problem assuming
the images are already comparable.

Statistical similarity measures include the sum of squared differences, cross corre-
lation (see Section 7.3.1), or mutual information just to name a few. These statistical
measures per se do not exploit spatial information, thus assuming the image consists
of uncorrelated random values. However, there are numerous techniques to integrate
spatial information into statistical similarity measures such as distance weighting sim-
ilarity. Also very intuitive is the division of the image into disjoint (or regularly over-
lapping) windows in which the measure is computed independently.

From the statistical similarity measure, a single displacement vector or vector field
is generated. This determines the two most common types of spatial image warping:
rigid and non-rigid transformation. Rigid transformation applies the same transforma-
tion to each pixel of an image. A rigid transformation is an arbitrary multi-combination
of translation, rotation, and scaling. It is obviously limited in its applications, however,
usually a lot faster to compute.

A typical rigid registration algorithm yielding a rigid transformation is principle
component analysis registration. The covariance matrix of each image is computed by

7.1. RELATED WORK 107

weighting each pixel position with its intensity value. The mean translation vectors
describe the relation between the image centers. An Eigenvector analysis of the co-
variance matrix yields the relative rotation and scaling of both images. Using a rigid
transformation composed of the translation, rotation, and scaling incorporated from
both images matches the images best from the perspective of the entire images.

By far more flexible are non-rigid transformation methods. Here, a (potentially)
unique transformation is applied to each pixel. This allows accurate deformations
within the image, for example heart pumping. An important feature most non-rigid
registration algorithms rely on is the regularizer, also sometimes called smoothing con-
straint. The regularizer enforces neighboring vectors to point into a similar direction
and have a similar length. This way, the displacement field is prevented from point-
ing to uncorrelated directions. The regularization can be enforces explicitly [AWS00,
RSW99, SKP05] or incorporated as an additional constraint by design.

The algorithm we present in this chapter is a non-rigid algorithm, that further incor-
porates real-world physical deformation properties such as material stiffness and a real-
istic force dynamic range. Since the literature on medical image registration is too vast,
we limit ourselves to publications in the area of non-rigid physically-based algorithms
(see Section 7.1). Our algorithm is composed of several exchangeable components that
we discuss first:

• The theory of elasticity along with implementation strategies and applications is
presented in Section 7.2.

• Various displacement estimation algorithms are presented in Section 7.3 including
cross-correlation and optical flow.

Finally, we present our novel registration algorithm in Section 7.4 composed of the
previously described algorithms.

7.1 Related Work

The field of medical image registration algorithms is huge. Comprehensive surveys can
be found in [MV98, ZF03, Mod04]. As already stated before, we focus this overview
about methods related to our method, namely, physically-based non-rigid registration.

Variational approach have gained much attention in the last couple of years. Non-
linear registration problems are expressed as variational partial differential equations
approximating the problem [CDR02]. Also, much effort has been put into advanced
regularizers that adapt the amount of smoothing locally instead of globally. Since it

108 CHAPTER 7. MEDICAL IMAGE REGISTRATION

is often unrealistic to smooth over tissue boundaries linear elastic and viscous fluid
models have shown great potential to overcome this problem [CRM96, WS01, WS98,
BWF+05]. Curvature-based constraints for non-linear registration problem have been
discussed in [FM03, Hen06]. Only a few approaches have tried to simulate heteroge-
neous tissue stiffness realistically [DDLD04, KFF05, JHHK06].

Concerning the discretization methods, central difference approaches are used widely.
To the best of our knowledge, finite elements approaches have rarely been used due to
the performance impact [HRS+99]. However, the more accurate models can be created
and computed using finite elements especially due to the simple assignment of tissue
stiffness. Using efficient multigrid solvers [GW05a] the performance bottleneck can be
eliminated allowing an efficient and accurate non-rigid registration algorithm.

7.2 Physically-correct Deformation

A crucial part of our registration algorithm is the physically-correct deformation. We
begin this section with a brief description of the elasticity theory (Section 7.2.1) fol-
lowed by the discretization using finite elements (Section 7.2.2). In Section 7.2.3 we
show several ways to assign a unique stiffness to each finite element. Finally, imple-
mentation details are presented in Section 7.2.4.

7.2.1 Elasticity Theory

This section gives a brief overview about the theory of elasticity. A more in depth
description can be found here [GW05a, Geo07]. The theory of elasticity describes the
deformation of an object in equilibrium. It can be formulated as follows [Bat02]

Π =
1

2

∫
Ω

εTσ dx−
∫

Ω

gTu dx−
∫
∂Ω

fTu dx = min (7.1)

where Ω ∈ Rn is the reference configuration in n dimensions. A displacement
function u : Ω → Rn describes the displacement of every point of the reference con-
figuration {x + u(x)|x ∈ Ω}. The potential energy Π is composed of three terms:
the elastic energy inside the body (first term), volume forces (second term) and surface
forces (third term). The correct displacement u is found by minimizing Equation 7.1.
Considering the first term, ε and σ depend on the strain tensor E and stress tensor Σ.
The components of the strain tensor E are computed by

7.2. PHYSICALLY-CORRECT DEFORMATION 109

Eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

∑
k=1

∂uk
∂xi

∂uk
∂xj

, (7.2)

which describes the ratio of stretching along each side of an infinitesimal cube in
all dimensions. The stress tensor Σ describes the forces arising from the displacement
acting on cut planes through the body. It is coupled to the strain tensor via Hook’s law
as follows

Σ = λ

(∑
i=1

Eii

)
· I3,3 + 2µE , (7.3)

where λ and µ are Lamé coefficients derived from traversal contraction and longi-
tudinal stretching.

For performance reasons the strain tensor is simplified (Cauchy strain tensor) by
removing the quadratic terms

Eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (7.4)

Equation 7.4 is not rotationally invariant yielding artificial forces. A good trade-off
between performance and accuracy is the corotated strain which is based on the idea of
computing rotations of the material separately. For more details about it see [GW05a].

7.2.2 Discretization Using Finite Elements

Finite elements are simple geometric bodies with an easy to define interpolation func-
tion. This way, arbitrary points in the interior of the element can be interpolated with
given values at the vertices of the elements. The interpolation function can be chosen
linear or higher-order depending on the desired behavior. The deviation of the interpo-
lation function for a variety of finite elements is described here [Geo07, Bat02]. We use
a regular grid of finite elements to approximate the stiffness distribution of an medical
image. Ideally, one pixel of the image is covered by two triangles of the simulation
grid for maximum accuracy. In reality, we use a coarser grid for the sake of real-time
performance. Usually, a grid of 128 × 128 double triangles is sufficient for accurate
results. Although we haven’t implemented our registration algorithm in 3D yet, the
regular grid extends naturally using tetrahedra.

For the linear Cauchy strain, a stiffness matrix Ke is computed for each finite ele-

110 CHAPTER 7. MEDICAL IMAGE REGISTRATION

ment Ω due to the relationship

∂

∂ue

1

2

∫
Ω

εTσ dx = Keue, (7.5)

where ue is the local displacement vector of the finite element vertices. The finite
element stiffness matrix Ke is derived from the shape matrix of each finite element
[GW05a, Geo07]. All finite element stiffness matrices Ke are assembled into one sys-
tem K sharing all common vertices among the finite elements. Finally, the system

Ku = f (7.6)

with the external forces f on the right hand side can be solved. The forces f contain
vertex, surface, and volume forces simultaneously acting on each vertex of the finite
element grid. So far, Equation 7.6 describes the static equilibrium. The approach is
extended to dynamic behavior following the Lagrangian equation of motion as follows

Mü+ Cu̇+Ku = f, (7.7)

where M is the mass matrix, C is the damping matrix, and K is the stiffness matrix.
Again, the matrices are composed of assembled per-element matrices. The element
damping matrix Ce is computed by Ce = αMe, where α is a damping constant. The
element mass matrix Me is computed by integration over the finite element with its
shape function.

The deviation of the systems using corotated strain, non-linear strain, higher-order
finite elements as well as different kinds of time integration and boundary condition
handling can be found in the literature [GW05a, Geo07, Bat02].

7.2.3 Stiffness Assignment

Depending on the modality the image was acquired, the intensity values of the image
might or might not be a good indicator of tissue stiffness. CT images have the closest
relationship between intensity and stiffness, but ambiguities remain. Other modalities
have no intensity/stiffness relationship at all. In order to assign stiffness values to each
of the finite elements we have implemented various methods.

1. Manual assignment: Given an appropriate user interface the user assigns stiffness
manually element after element using a painting interface. This is very tedious
work for the user since all elements must be assigned a stiffness individually.

7.2. PHYSICALLY-CORRECT DEFORMATION 111

Using stroke and brush tools the process is accelerated, but still requires a lot of
time.

2. Semi-automatic assignment: The manual assignment is assisted by a segmenta-
tion algorithm that extracts objects in the image. The user assigns stiffness values
per object instead of per finite element. We have integrated our Random Walker
implementation from Chapter 6 into our tool chain for fast stiffness assignment.
Since the Random Walker works on many medical image modalities we observe
a significant speedup as compared to manual assignment.

3. Automatic assignment: As stated earlier, if the image modality shows relationship
between intensity and stiffness, the stiffness assignment can be done automati-
cally (or at least as an initial guess). That is, the intensity values are mapped to
stiffness values using a transfer function. The transfer function might be a ramp
allowing to emphasize parts of the intensity distribution while neglecting others.
Of course, other functions are possible too.

We use a combination of the aforementioned methods. Starting with the automatic
assignment using a transfer function, we refine the assignment using our segmentation
and paint tools.

7.2.4 Implementation and Timings

In order to solve the static system using Cauchy strain efficiently, a multigrid solver is
employed (see Section 3.2.4). Since the regular grid results in a regular band matrix in
both 2D and 3D, our band matrix multigrid approach is used to solve the system (see
Section 3.3).

Timings of our CPU solver implementation can be seen in Table 7.1. The CPU is
a Intel Core 2 Duo 6600. A resolution of 128 × 128 double triangular finite elements
provides real-time performance with about 30 updates a second. This is sufficient for
instantaneous updates from the system. Even 256×256 provides acceptable interactive
real-time performance.

grid size 1282 2562 5122

time 28.8 116 478

Table 7.1: The timings in milliseconds of physically-correct image deformation using different
resolutions of finite element grid.

112 CHAPTER 7. MEDICAL IMAGE REGISTRATION

Theoretically, our GPU implementation could be used to solve the system, too, but
the floating precision is not sufficient for stable results. The floating point precision
will certainly improvement in the upcoming years. All large vendors have already
announced double precision GPUs.

7.2.5 Image Deformation Application

So far, we have a physically-correct deformation system that allows applying forces to
the vertices of the grid. The external forces can be applied via user input, i.e. mouse
clicks create a force field scaled by a Gauss kernel. Such a system is useful as a stan-
dalone application for manual image deformation and registration. Suppose a stiffness
distribution has been created and copied to the finite element grid. Our application al-
lows the user to drag and drop objects in a medical image. It guarantees deformation
that is physically correct (no collision detection, though, so far).

Figure 7.2: Manual registration using mouse drags.

Figure 7.2 shows the user interface in action. The blue circle indicates the Gauss
kernel attached to the mouse cursor. By clicking the left mouse button, the user can
drag the selected area to a new position. In this example, the cerebellum was assigned
hard stiffness while everything else was assigned soft stiffness for demonstration pur-
poses. This way, the cerebellum is stiffly moved to a new position while the background

7.3. DISPLACEMENT ESTIMATION 113

deforms. The white arrows visualize the force field showing the Gauss distribution. In
the following section, we discuss displacement estimation algorithm in order to auto-
matically find a force field that matches one image to another one.

7.3 Displacement Estimation

Displacement estimation algorithms allow computing a vector field based on two im-
ages or volumes. This vector field describes a deformation in order to warp the first
image to the second one. There are many well-known methods available today. We
briefly describe the theory and the GPU implementation of the most common ones,
normalized cross-correlation, image gradient and optical flow. All these algorithms are
based on local or global intensity distributions over the medical images.

Let us fix our notation for the displacement estimation algorithms. We define all
notations in 2D, but they can be extended to 3D analogously. The two images are
denoted as I(x, y) ∈ Rn×n and J(x, y) ∈ Rn×n, where image I is displaced so that
it matches image J . The resulting displacement field u(x, y) ∈ Rl×l, where l is the
resolution of the displacement field. For many algorithms, l can be chosen to balance
performance and accuracy. Often l is chosen smaller than the image size n, sometimes
l > n if sub pixel displacement is taken into account.

As we discuss later in Section 7.4 in a more detailed way, the resulting displacement
fields from displacement estimation algorithms are not physically correct deformations.
All algorithm are only based on pixel intensities with no unique physical correspon-
dence. Further, the smoothing constraints do not preserve natural boundaries.

Figure 7.3: A displacement field is reconstructed from two images I and J .

In our registration algorithm we use a displacement field as an estimator and cor-
rect it physically using our physically-correct deformation method. Thus, we apply
the predicted displacement field as external forces to the simulation grid. The elas-

114 CHAPTER 7. MEDICAL IMAGE REGISTRATION

ticity simulation returns – given a good stiffness distribution – a physically plausible
deformation. This way, we automate the process of manually finding external forces.

7.3.1 Normalized Cross-Correlation

Normalized cross-correlation divides both images into interrogation windows of the
same size (see Figure 7.3). All interrogation windows either do not overlap or overlap
regularly. We denote the size of an interrogation window with m (in all dimensions).
Typically, an interrogation window size is 32 × 32. The number of interrogation win-
dows is denoted k = n/m. Note, that the same division pattern is used for both images.

Regardless of the algorithm, preprocessing of the interrogation window data in both
images helps improving the displacement results. It is advantageous to subtract the
mean values µI and µJ from both windows in order to shift the intensity values to the
common basis 0, where µI = 1

m2

∑m
i=1

∑m
j=1 I(x + i, y + j) and µJ analogously. If

the result of the subtraction gets smaller than 0, we clamp it to 0. Implementation-
wise, each image is stored in a texture. Using the avg-multi-reduction operator (see
Section 2.3.3.2 and 2.3.3.4 for more details), the average value in all k×k interrogation
windows is determined and stored in a k × k texture. In a subsequent rendering pass,
the average value texture is subtracted from the original image pixel-wise using nearest-
neighbor sampling and clamping to 0.

One application of the normalized cross-correlation is particle image velocimetry.
This method was developed for the reconstruction of real-world vector fields, such as
air, using particles released into the vector field. Using a high-speed camera and a laser
light, the particles are photographed at fixed time intervals. The recorded sequence
of two images is then used to reconstruct the original vector field from the particle
positions in the images. Normalized cross-correlation is one algorithm for the vector
field reconstruction. The method can easily be extended to record a set of consecutive
images in order to reconstruct time-varying vector fields.

In the following, we discuss the spatial domain cross-correlation and the frequency
domain cross-correlation.

7.3. DISPLACEMENT ESTIMATION 115

Figure 7.4: The blue interrogation window from image I is cross-correlated to a green interro-
gation window of image J regarding a displacement vector (u, v) in white.

7.3.1.1 Spatial Domain Cross-Correlation

Given a 2D displacement vector (u, v), the cross-correlation between image I and J
can be computed as

Cspatial(u, v) =

m/2∑
i=−m/2

m/2∑
j=−m/2

I(i, j)× J(u+ i, v + j), (7.8)

if m is an even number.

In order to find the displacement vector for each interrogation window, the correla-
tion for each displacement vector (u, v) living inside the search window s is computed.
In Figure 7.4, the search window size is s = 2m, since the search window size is mea-
sured from the center of the interrogation windows. The search window size s can be
chosen arbitrarily, but larger search windows account for a more global solution than
small ones. Assumptions about the maximum displacement help optimizing the search
window size, since the larger the search window the slower the computation. Finally,
the displacement vector (u, v) with the largest cross-correlation in the search window
is selected as the resulting displacement vector for each interrogation window.

The likelihood of false maxima can be reduced by normalizing Equation 7.8 with
division by√√√√ m/2∑

i=−m/2

m/2∑
j=−m/2

(I(i, j)− µI)−

√√√√ m/2∑
i=−m/2

m/2∑
j=−m/2

(J(i+ u, j + v)− µJ), (7.9)

116 CHAPTER 7. MEDICAL IMAGE REGISTRATION

Figure 7.5: A plot of the cross-correlation in a search window of images I and J .

where µI and µJ are the mean values of the current interrogation window of the images
I and J .

The spatial domain cross-correlation has complexityO(kd ·md · sd), where d is the
number of dimensions, here d = 2. Assuming that the search window size s is of
similar size as the interrogation window size m, the complexity of the spatial domain
cross-correlation is O(kd ·md+d). In 2D, the dominant term is m, so the complexity is
O(m4).

A GPU implementation allocates a 2D texture with the size (sk) × (sk) to store
all cross-correlations in the search window s for all interrogation windows k. A pixel
shader program computes the current interrogation window index and search direction
from the texture coordinates using modulo operations. Now, Equation 7.8 and 7.9 are
calculated and the resulting cross-correlation written to the texture. Remember, the
equations contain loops over 2D areas, which results in many texture fetches. Finally,
a maxpos multi-reduction operator is used to find the position of the maximum corre-
lation in each search window. See Sections 2.3.3.2 and 2.3.3.4 for more details on the
reduction operator.

7.3.1.2 Frequency Domain Cross-Correlation

In order to reduce the amount of computation time, the cross-correlation can also
be computed in frequency domain. Using the Wiener-Khinchin Theorem, the cross-
correlation can be formulated in frequency domain as

Cfrequency(w) = max(F−1(F(Iw) · F∗(Jw))), (7.10)

7.3. DISPLACEMENT ESTIMATION 117

where F denotes the Fourier transform, F−1 the inverse Fourier transform, F∗ the
complex conjugate of the Fourier transform, Iw and Jw denote an arbitrary pair of
interrogation windows, and the max operator finds the maximum value (peak) in the
window m×m. The max operator is often extended to account for sub-pixel accuracy.

Given an interrogation window in image I , and an interrogation window at the same
position in image J , the cross-correlation can be found by transforming both windows
to the frequency domain, complex conjugate multiplying both, and transforming the
result back to spatial domain, and, finally, searching for the maximum value.

The computational complexity of this algorithm is significantly lower than the spa-
tial domain algorithm with complexity O(m4). The frequency domain approach is
dominated by the two Fourier transforms. A 2D FFT has the computational complexity
O(m2 logm) if applied to a window of size m × m. The complex conjugate multi-
plication and the search for the maximum are all O(m2). So, the total complexity is
O(m2 logm).

It is obvious that Cspatial 6= Cfrequency. Overall the quality of the frequency do-
main approach does not match the spatial domain counterpart. The frequency domain
approach relies on the periodicity assumption of the Fourier transform which is not ful-
filled. Nevertheless, the frequency domain approach is much faster, and the results still
convincing.

Now, we discuss the GPU implementation of this approach. We assume the in-
terrogation window average has already been removed from each window using the
method described in the beginning of Section 7.3.1. First, the two gray-scale images I
and J are copied into one 4-component texture. This enables accessing both images at
one position with one texture fetch. As Figure 7.6 depicts, the odd-components are left
empty for the later storage of the imaginary parts of the complex Fourier transformation
values.

Next, all interrogation windows of both images must be transformed to the fre-
quency domain. It is very inefficient to transform each window separately, instead, we
use the same idea as in multi reductions (see Section 2.3.3.4) by combining all sin-
gle problems into a larger domain and perform all single steps for all windows at the
same time. Referring to Section 4.1.2.2 describing the GPU implementation of the Fast
Fourier Transform, we modify the FFT tables to account for a repeating window struc-
ture. Basically, a Fourier transform of an m×m interrogation window is required. We
build this table and repeat it k times (for each window in a row). As shown in Figure
7.7, a windowed multi-FFT can be computed using logm matrix-vector products. Also
note, that both images are stored in one texture are transformed simultaneously without

118 CHAPTER 7. MEDICAL IMAGE REGISTRATION

extra cost.
The cross-correlation is a complex conjugate multiplication of the previously trans-

formed windowed images. Since two complex values are multiplied to one, two values
are repacked in order to exploit the parallelism of the graphics hardware architecture.
Using the same function as described above, the inverse windowed multi-FFT is exe-
cuted in order to transform the frequency domain response back to spatial domain.

Finally, the displacement vector of each block is determined by finding the peak
(maximum value) in each window. Once again, we use a maxpos-multi-reduction op-
erator (see Sections 2.3.3.2 and 2.3.3.4) to find the position of the maximum in each
block.

For further peak accuracy improvements, sub-pixel displacement has to be taken
into account. The neighborhood around the previously found peak contributes to the
correct solution. We have implemented the most common fitting functions center of
mass and Gauss fit. In 1D, the functions are as follows if vi is the peak location.

• Center of mass: vi−1−vi+1

vi−1+vi+vi+1

Figure 7.6: The gray-valued images I and J are combined into one 4-component texture with
space for imaginary parts.

7.3. DISPLACEMENT ESTIMATION 119

Figure 7.7: All Fourier transforms of window size m are computed in parallel.

• Gauss fit: ln vi−1−ln vi+1

2·(vi−1+2vi+vi+1)

Once the displacement vector of all interrogation windows have been found the set
of vectors forms a vector field. In the following, we optimize each vector with respect
to its neighborhood. Typically, smooth vector fields are desirable.

An outlier vector is a vector that does not share similar orientation or length with
regard to its neighbors. A simple method to correct outliers is replace them by the
average vector in its neighborhood while the support can be chosen arbitrarily. This
process is efficiently implemented using a pixel shader program. More sophisticated
algorithms to correct outliers can, of course, also be implemented.

In order to increase the density of the vector field, additional cross-correlation
passes with equally shifted interrogation windows can be computed. Now, the inter-
rogation windows no longer are disjoint but overlap and special care must be taken at
boundaries of the images. We clamp interrogation windows living partially outside the
image domain to the border. Once all shifted vector fields have been computed, they
are merged into a higher resolution field. Subsequent smoothing passes help reducing
noticeable noise in the vector field.

We have measured the performance of our system on an ATI Radeon 9800 GPU and
Pentium 4 3.0 GHz with 1 GB of RAM. About half of the time is consumed by the FFTs
(forward and backward). A typical particle image velocimetry image has a resolution
of 800 × 600. Since our implementation is restricted to power of two dimensions, we
zero-pad the margins. Table 7.2 shows the performance of our system measured in
milliseconds.

Even so the GPU is very outdated our system already provides performance fast
enough for real-time video signals.

120 CHAPTER 7. MEDICAL IMAGE REGISTRATION

window/image 2562 5122 10242

82 6.62 20.8 76.9
162 7.9 29.4 111.1
322 9.5 35.7 142.8

Table 7.2: GPU frequency domain cross-correlation performance in milliseconds.

7.3.2 Intensity Gradient

Another very simple approach to find a (sparse) displacement field is the intensity gra-
dient. The vector direction depends only on the spatial gradient of image I whereas the
vector length depends on the difference between the two images I and J . The following
equation is the intensity gradient

f(x, y) = (J(x, y)− I(x, y))∇I(x, y). (7.11)

Although the intensity gradient is very simple to compute and the GPU implemen-
tation straightforward, the results are usually not satisfying. The gradient is discretized
using central differences which lead to globally independent vectors. Therefore, the
vector field is sparse and random.

7.3.3 Optical Flow

The third displacement estimation we review is the Horn-Schunck optical flow algo-
rithm [HS81] and implementation strategies. In contrast to previous approaches, the
Horn-Schunck method computes a dense and smooth vector field by enforcing two
constraints. The first constraint forces the vectors to point to pixels with the same in-
tensity as its origin. This constraint can never be solved uniquely since more often than
not there are many pixels with the same intensity in its neighborhood. All vectors are
uncorrelated and point in arbitrary directions. That is why, there is need for a second
constraint, the regularizer or smoothing constraint. The smoothing constraint enforces
neighboring vectors to be similar. That is, they point in a similar direction with a sim-
ilar vector length. The amount of regularization is controlled by a free parameter and,
therefore, can be adjusted as needed.

There is also another popular optical flow method called the Lucas-Kanade optical
flow, which is in contrast to the Horn-Schunck optical flow a local method. Lucas-
Kanade is faster to compute than Horn-Schunck but provides no globally-smoothed
vector field. We leave discussions and implementations (also GPU implementations) to

7.3. DISPLACEMENT ESTIMATION 121

the numerous publications published about this topic [BWF+05, BWKS06].

Since a temporal dependency dt between the two images I and J is required in the
optical flow formulation, we rephrase our previously notation for this approach. Both
images are addressed using the notation E(x, y, t) that stores (continuous or discrete)
intensity values at position (x, y) at time t. Assuming a discrete time difference dt,
then let E(x, y, t) = I(x, y) and E(x, y, t + dt) = J(x, y). As any other method, the
optical flow is not restricted to two dimensions. It generalizes to an arbitrary number
of dimensions. For the sake of simplicity and clearness, we stick to the 2D case.

7.3.3.1 Theory

In the following, we review the two constraints ε1 and ε2 in a formal way and derive the
Horn-Schunck optical flow system of linear equations. After that, we discuss various
CPU and GPU implementations using different solvers from Chapter 3.

The first constraint states that the intensity of an image at time t at an arbitrary
position (x, y) (within the image) is found in image t + dt with a displacement vector
(dx, dy)

E(x, y, t) = E(x+ dx, v + dy, t+ dt). (7.12)

The spatial displacement vector (u, v) is computed by removing the temporal de-
pendency as follows

u :=
dx

dt
(7.13)

v :=
dy

dt
(7.14)

With small enough spatial and temporal differences, the Taylor expansion yields

ε1 =
dE
dx

u+
dE
dy
v +

dE
dt
, (7.15)

which states the first constraint ε1.

122 CHAPTER 7. MEDICAL IMAGE REGISTRATION

Horn and Schunck use the following estimations for the partial derivatives of E:

dE
dx

= 1
4

(E(x,y+1,t)−E(x,y,t)+E(x+1,y+1,t)−E(x+1,y,t)+

+E(x,y+1,t+1)−E(x,y,t+1)+E(x+1,y+1,t+1)−E(x+1,y,t+1))

(7.16)

dE
dy

= 1
4

(E(x+1,y,t)−E(x,y,t)+E(x+1,y+1,t)−E(x,y+1,t)+

+(E(x+1,y,t+1)−E(x,y,t+1)+E(x+1,y+1,t+1)−E(x,y+1,t+1)

(7.17)

dE
dt

= 1
4

(E(x,y,t+1)−E(x,y,t)+E(x+1,y,t+1)−E(x,y+1,t)+

+(E(x,y+1,t+1)−E(x,y+1,t)+E(x+1,y+1,t+1)−E(x+1,y+1,t)

(7.18)

The second constraint ε2, the smoothness constraint, minimizes the derivatives of
the displacement vector along the axes.

ε2 =

(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2

(7.19)

Now, a vector field is computed that satisfies both constraints. In order to find such a
vector field both constraints ε1 and ε2 must be minimized. This can be reformulated in a
system of linear equations. We refer to [HS81] for the details about the transformation.
Ultimately, the system looks as follows:

(
(dE
dx

)2 − α∆ dE
dx

dE
dy

dE
dx

dE
dy

(dE
dy

)2 − α∆

)(
u

v

)
=

(
−dE

dx
dE
dt

−dE
dy

dE
dt

)
(7.20)

Note, that the free parameter α determines the amount of smoothing. A value of 0

disables the regularizer. Typical values range from 100 to 1000. Note, that the matrix
has to be rebuild whenever the images, that is the image derivatives, or the free param-
eter α changes. The system has 7 diagonals in 2D and 11 in 3D. Figure 7.8 illustrates
the matrix for a 2D image pair of 64 × 64 pixels. We have implemented two solvers
for the optical flow system of linear equations: a conjugate gradient solver (see Section
3.2.3) and a multigrid solver (see Section 3.2.4).

7.3.3.2 Implementation

Our GPU-accelerated conjugate gradient solver uses the techniques described in Sec-
tion 3.3. We do not store the matrix explicitly, but compute the matrix entries on-the-fly
every time it is needed. This enables great flexibility if the images or the free parameter
α change. We precompute the image derivatives once new images have been selected

7.3. DISPLACEMENT ESTIMATION 123

Figure 7.8: An optical flow system matrix of a 2D image pair with 64 × 64 pixels. The red
lines have been added to visualize the block structure of the matrix.

by the user. This way, computing the matrix entries becomes only a few arithmetical
instructions.

We have also used our multigrid solver to compare the timings. The implementa-
tion is following the details described in Section 3.2.4. The optical flow system ma-
trix is not diagonally dominant. Therefore, a Jacobi relaxation as presmoothing and
postsmoothing operator does not converge, theoretically. However, according to our
tests it converges anyways. Table 7.3 shows our timings comparing conjugate gradient
and multigrid using the CPU and the GPU.

642 1282 2562 5122

GPU conjugate gradient 35 65 856 -
CPU multigrid 25 102 345 1293

Table 7.3: The performance of our optical flow implementations in milliseconds. All timings
include matrix rebuild and hierarchy update for the multigrid solver.

124 CHAPTER 7. MEDICAL IMAGE REGISTRATION

Figure 7.9: Two images of the well-known Hamburg taxi image sequence. The taxi turning
right and the car below is moving to the right.

7.4 A Physically-based Registration Algorithm

We present a novel interactive physically-based registration method. Figure 7.11 shows
the most important steps of it.

We call the image to deform the template image, whereas the deformation target
is called the reference image. Our method is a predictor/corrector approach. First a
displacement field is estimated which is subsequently corrected according to physical
deformation behavior. We use the algorithms presented previously as basis: A dis-
placement estimation algorithm (Section 7.3) predicts a vector field which is correct by
physically correct deformation (Section 7.2).

Before the physical deformation can be used, the template image is discretized into
a regular grid of finite elements (triangles). Ideally, each finite element covers only
a few pixels. Using stiffness assignment tools (see Section 7.2.3) an individual real-
world stiffness value is assigned to each finite element. Next, a rigid alignment of the
two images (template and reference) is computed to account for large scale shifts and
rotations of the whole images. We employ a principle component analysis for this task.

The iterative main loop consists of the following steps:

1. Displacement field estimation: One of the algorithms described in Section 7.3
is used to estimate a vector field. Since all those algorithms are only intensity-
based and potentially use a regularizer smearing the boundaries of tissue types,
the vector field has to be correct with respect to physical properties.

7.4. A PHYSICALLY-BASED REGISTRATION ALGORITHM 125

(a) (b)

(c)

Figure 7.10: Reconstructed vector fields with resolution 32 × 32 from the taxi sequence. The
effect of different weights of the regularizer (smoother) are shown in images (a) through (c).
Image (a) was computed with α = 10, image (b) with α = 100, and image (c) with α = 1000.

2. Physical correction: The estimated displacement field is applied as external forces
to the simulation grid. For each finite element vertex we bilinearly interpolate
the estimated displacement from the four closest optical flow vectors. Note, that
forces are accumulated in all iterations, although the previous forces are damped.
We compute the average force vector and subtract it from all forces in order to
keep the mesh in place. Care must be taken with the scaling of the displacement
vectors. The scaling can be a user-defined constant, or computed in each itera-

126 CHAPTER 7. MEDICAL IMAGE REGISTRATION

Figure 7.11: A flow diagram of our registration algorithm.

tion from average force strengths, for example. Now, the physical deformation
algorithm is employed to compute a corresponding displacement field from the
forces. The displacement field governs the laws of physics and respects the in-
dividual tissue stiffness. In our tests, we use the Cauchy strain tensor since we
consider deformations to be small.

3. Image warping: The template image is warped according to the displacement field
using the GPU. A shader program is used for this task and the result is written to
a new texture. The new texture replaces the last template image in upcoming
iterations.

4. Convergence: The quality of the warping is measured by an image similarity
measure such as the sum of squared differences computed on the GPU. If the
quality is not satisfactory yet, the warped template image is fed into the loop
again starting from the displacement field estimation.

7.4. A PHYSICALLY-BASED REGISTRATION ALGORITHM 127

Once the difference between the images is below a threshold, the images are con-
sidered registered and the final deformed result is presented.

7.4.1 Results

We have used a computer with an Intel Core 2 Duo 6600 2.4 GHz equipped with an
NVIDIA GeForce 8800 GTX for our experiments. Table 7.4 shows timings of the phys-
ical deformation in various resolutions for one iteration. Timings for the displacement
estimators can be found throughout Section 7.3. For sake of performance we use a 1282

grid in all our examples. We did not observe significant accuracy improvements when
using finer grids.

(a) intensity gradient (b) optical flow

Figure 7.12: The image gradient displacement field (a) is compared to the optical flow dis-
placement field (b). The optical flow displacement is smoother than the one of the intensity
gradient.

A big advantage of our method that is requires no preprocessing and all parame-
ters can be changed during runtime. For example, the stiffness distribution or scaling
parameters can be changed anytime. Our experiments show that typically 30 - 50 it-
erations are required to converge averagely. The images 7.13, 7.14 and 7.15 where
generated using our algorithm. The images show synthetic and real data images and
accurate registration using our algorithm.

128 CHAPTER 7. MEDICAL IMAGE REGISTRATION

Grid size 1282 2562 5122

Physical Deformation 28.8 ms 116 ms 478 ms

Table 7.4: The performance of our registration algorithm in milliseconds for one iteration.

7.4.2 Discussion

We have validated our approach using the registration test framework by Schnabel et
al. [STCS+03]. We have create a series of image pairs and deformed them physically
correct. Then, we used our algorithm to register the images again. Our algorithm is
very accurate (sum of squared differences 10−3) as Figure 7.16 shows. Even large
deformations are no problem with our approach.

Our approach is different to Modersitzki [Mod04] is various aspects. Instead of
using a finite difference discretization, we use finite elements. A better approximation
of the partial derivatives is provided, thus the simulation is more accurate and stable.
Furthermore, we use the optical flow algorithm instead of the image gradient as dis-
placement field predictor. Although the optical flow algorithm has a regularizer which
might contradict the physical corrector, overall we observe better results. Figure 7.12
compares the predicted displacement field of the intensity gradient and optical flow.

Both, the predictor and the corrector stages are black boxes that can be exchanged
with other algorithms. For example, algorithms that take modality specific behaviors
into account. The physical deformation algorithm is especially powerful as it can han-
dle all real-world stiffness values from very soft to very hard. Although only Cauchy
strain is implemented yet, other types of strains such as corotated / non-linear can be
used as well. The system is solved implicitly and is unconditionally stable.

Future work includes the implementation in 3D using hexahedrons. The physical
deformation implementation already supports 3D deformations and a 3D optical flow is
very straightforward from the 2D version. Mixed boundary conditions are also of great
interest. Here, displacements can be fixed on a set of vertices while simulating the rest
further. Multi-modal registration problems can be computed once we integrate a map-
ping between the two modalities so that they can be compared by standard similarity
measures.

7.4. A PHYSICALLY-BASED REGISTRATION ALGORITHM 129

(a) template (b) reference

(c) all hard (d) mixed (e) all soft

Figure 7.13: Two different tissue types are simulated by this images of a synthetic object.
Starting from the template image (a) and reference image (b) three experiments are conducted
with different stiffness distributions. First, both virtual tissue types are assigned the same hard
stiffness. Image (c) shows the result that nothing moves out of the original shape. In the next
experiment hard stiffness was assigned to the inner core, while soft stiffness was assigned in
the darker ring. Image (d) shows the result computed by our algorithm showing the inner core
moving to the upper right undeformed. Finally, both tissue types are assigned soft stiffness. The
result can seen in image (e) where the outer matches the shape of the reference image while the
inner core deforms.

130 CHAPTER 7. MEDICAL IMAGE REGISTRATION

(a) template (b) reference

(c) registered

Figure 7.14: Again, the template image is shown in image (a) and the reference image in (b).
Here, the brain was shrunken manually in the reference image. The registration result of our
algorithm is shown in image (c). This time, we used a 256× 256 grid. Further, we specified the
following stiffness parameters for various regions of the image: skull 108, grey matter 106, area
between brain and skull 104. The results show how the skull remains stiff and the soft tissue
deforms. The registration time was about 1 second using 5 iterations of the registration loop
and rest sum of squared differences was 102.

7.4. A PHYSICALLY-BASED REGISTRATION ALGORITHM 131

(a) template (b) reference

(c) registered

Figure 7.15: There is a significant contrast difference of the template image (a) and the refer-
ence image (b). Image (c) shows the result of our algorithm. It ran 0.5 seconds on a 128× 128
grid.

132 CHAPTER 7. MEDICAL IMAGE REGISTRATION

(a) template (b) physical deformation

(c) registered

Figure 7.16: A template image (a) is registered to a reference image (b) that was artificially
deformed using a physically correct deformation algorithm. Image (c) shows the result of our
registration algorithm.

Chapter 8

Conclusion

In this section, we summarize the benefits and the contribution of this thesis followed
by a section about future work.

8.1 Contribution

The contribution of this thesis is threefold. First, the GPU acceleration of systems
of linear equations solvers are investigated (Chapter 3). Second, a large collection of
medical imaging algorithms with GPU acceleration are discussed (Chapters 4 through
7). And third, a novel registration algorithm is introduced and evaluated (Chapter 7).

1. GPU accelerated solvers for systems of linear equations: Although GPU im-
plementations of solvers for systems of linear equations have been investigated
before, we contribute a much more general framework than any of our predeces-
sors. Our fully automated GPU shader generator creates single pass GPU shaders
of any kind of matrix-vector operator such as multiplications or Jacobi iterations.
Using this generator complex solvers are implemented easily without additional
manual work. Most of the previous work deals with the Jacobi method or the
conjugate gradient method. Using our operators we present a novel GPU imple-
mentation of the multigrid method which shows great potential. Since solvers for
systems of linear equations are extremely important for many tasks, we provide
an important contribution not only to the applications discussed in this thesis but
also for many others.

2. A large collection of medical imaging algorithms: We cover the most important
areas in the field of medical image processing namely medical image filtering,
reconstruction, segmentation, and registration. In all fields except registration

133

134 CHAPTER 8. CONCLUSION

we picked algorithms relevant to Siemens products and describe the theory and
GPU implementation in detail. Thus, many GPU implementations of algorithms
are actually integrated in products and, therefore, are used by physicians in daily
routine. We achieved at least a four times speedup. As some algorithms map to
the GPU structures better than others, the performance we get varies, too. We
found the biggest speedup in the filtered backprojection algorithm for MR im-
ages. Our GPU implementation is about 100 times faster than an optimized CPU
backprojection.

3. A novel physics-based registration algorithm: Finally, we present a novel regis-
tration algorithm combining physical correctness with interactivity. Previous ap-
proaches were only able to favor one of the two. Instead, our approach allows
simulating heterogeneous tissue stiffness distributions on a fine granular level
while performing in real-time. This way, the image deformation obeys the laws
of physics and cannot result in arbitrary synthetic deformations.

8.2 Future Work

Generally, all our GPU implementations would greatly benefit from higher floating-
point precision. Even the DirectX 10 GPU generation does not comply to the IEEE
floating-point standard in every respect although this should have no effect on the pre-
cision. However, double precision GPU processing is what many researchers desire.
Fortunately, NVIDIA has already announced products capable of higher precision. It is
unlikely that double precision will be enabled in mainstream products, though. Prob-
ably, double precision will be provided only in high-end general purpose GPU boards
such as the NVIDIA’s Tesla product line. However, it might eventually become avail-
able in mainstream product.

When we started implementing medical imaging algorithms using GPUs, there were
only graphics APIs available for programming. If one would start doing a PhD about
general-purpose GPU programming today, modern GPGPU languages should be con-
sidered extensively. Especially the language CUDA seems to be a raising star in the
GPGPU community. Although easy to getting started, it is hard to gain optimal per-
formance from it due to the different types of shared memories among the groups of
multi-processors. Anyway, a huge advantage over the graphics APIs is the scattered
writing capabilities allowing even more algorithms to be performed by GPUs. Again,
it is most likely a matter of time until this feature will also appear in graphics APIs.

8.2. FUTURE WORK 135

Above all technical improvements, the algorithms in the medical imaging pipeline
are constantly being improved or replaced by novel algorithms so that novel GPU im-
plementations are required, too. Furthermore, as GPUs become more powerful, the
goal of creating a GPU-only processing pipeline will become more realistic. In this
work we tried to reduce bus transfer times to the minimum but we did not succeed in
keeping the data in GPU memory all the time. Of course, a lot more memory is also
required to achieve this goal.

Conclusively, we achieve convincing results that are already used in products re-
placing older CPU implementations because our GPU implementations run on average
an order of magnitude faster. However, there are many ways to further improve and ex-
tend our foundation of GPU-acceleration for medical imaging algorithms. We believe
that this is just the beginning of a new era in medical imaging.

136 CHAPTER 8. CONCLUSION

Bibliography

[AWS00] Luis Alvarez, Joachim Weickert, and Javier Sanchez, Reliable estima-
tion of dense optical flow fields with large displacements, International
Journal of Computer Vision 39 (2000), no. 1, 41–56.

[Bat02] Klaus-Jürgen Bathe, Finite element procedures, Prentice Hall, 2002.

[BFGS03] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schroeder, Sparse ma-
trix solvers on the GPU: conjugate gradients and multigrid, ACM Trans.
Graph. 22 (2003), no. 3, 917–924.

[BHM00] William L. Briggs, Van Emden Henson, and Steve F. McCormick, A
multigrid tutorial, second edition, SIAM, 2000.

[BHW+07] M.S. Burns, M. Haidacher, W. Wein, I. Viola, and E. Groeller, Feature
emphasis and contextual cutaways for multimodal medical visualization,
EuroVis 2007 Proceedings, May 2007.

[BKZ04] Matt A. Bernstein, Kevin F. King, and Xiaohong Joe Zhou, Handbook of
mri pulse sequences, Elsevier Academic Press, Burlington, MA, USA,
2004.

[Bly06] David Blythe, The direct3d 10 system, SIGGRAPH ’06: ACM SIG-
GRAPH 2006 Papers (New York, NY, USA), ACM, 2006, pp. 724–734.

[Bra77] Archi Brandt, Multi-level adaptive solutions to boundary-value prob-
lems, Mathematics of Computation 31 (1977), no. 138, 333–390.

[Bri88] E. Oran Brigham, The fast fourier transform and its applications,
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[BWF+05] Andrés Bruhn, Joachim Weickert, Christian Feddern, Timo Kohlberger,
and Christoph Schnörr, Variational optical flow computation in real-time,
IEEE Transactions on Image Processing 14 (2005), 608–615.

137

138 BIBLIOGRAPHY

[BWKS06] Andrés Bruhn, Joachim Weickert, Timo Kohlberger, and Christoph
Schnörr, A multigrid platform for real-time motion computation with
discontinuity-preserving variational methods, Int. J. Comput. Vision 70
(2006), no. 3, 257–277.

[CCGA07] Claudia Chevrefils, Farida Cheriet, Guy Grimard, and Carl-Eric Aubin,
Watershed segmentation of intervertebral disk and spinal canal from mri
images., ICIAR (Mohamed S. Kamel and Aurlio C. Campilho, eds.),
Lecture Notes in Computer Science, vol. 4633, Springer, 2007, pp. 1017–
1027.

[CDR02] Ulrich Clarenz, Marc Droske, and Martin Rumpf, Towards fast non-rigid
registration, DFG 1114 (2002).

[CRD07] D. Cremers, M. Rousson, and R. Deriche, A review of statistical ap-
proaches to level set segmentation: integrating color, texture, motion
and shape, International Journal of Computer Vision 72 (2007), no. 2,
195–215.

[CRM96] Gary E. Christensen, Richard D. Rabbitt, and Michael I. Miller, De-
formable templates using large deformation kinematics., IEEE Transac-
tions on Image Processing 5 (1996), no. 10, 1435–1447.

[dBP07] Johan de Bock and Wilfried Philips, Line segment based watershed seg-
mentation., MIRAGE (Andr Gagalowicz and Wilfried Philips, eds.), Lec-
ture Notes in Computer Science, vol. 4418, Springer, 2007, pp. 579–586.

[DDLD04] Valerie Duay, Pierre-François D’Haese, Rui Li, and Benoit M. Dawant,
Non-rigid registration algorithm with spatially varying stiffness proper-
ties., ISBI, 2004, pp. 408–411.

[dWBM+00] Rik Van de Walle, Harrison H. Barrett, Kyle J. Myers, Maria I. Altbach,
Bart Desplanques, Arthur F. Gmitro, Jan Cornelis, and Ignace Lemahieu,
Reconstruction of mr images from data acquired on a general nonregular
grid by pseudoinverse calculation, IEEE Transaction on Medical Imag-
ing 19 (2000), no. 12, 1160–1167.

[DWD01] Brian Dale, Michael Wendt, and Jeffrey L. Duerk, A rapid look-up table
method for reconstructing mr images from arbitrary k-space trajecto-
ries., IEEE Transaction on Medical Imaging 20 (2001), no. 3, 207–217.

BIBLIOGRAPHY 139

[Ebe01] David H. Eberly, 3d game engine design, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2001.

[Far02] Gerald Farin, Curves and surfaces for cagd: a practical guide, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[FJ98] Matteo Frigo and Steven G. Johnson, FFTW: an adaptive software ar-
chitecture for the FFT, 1998, URL: http://www.fftw.org.

[FM03] Bernd Fischer and Jan Modersitzki, Curvature based image registration,
Journal of Mathematical Imaging and Vision (JMIV) 18 (2003), no. 1,
81–85.

[Geo07] Joachim Georgii, Real-time simulation and visualization of deformable
objects, Ph.D. thesis, Technische Universität München, 2007.

[GLW+05] Naga K. Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin, and Dinesh
Manocha, Fast computation of database operations using graphics pro-
cessors, SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses (New York,
NY, USA), ACM, 2005, p. 206.

[GPG] GPGPU, General-purpose computation using graphics hardware,
http://www.gpgpu.org.

[Gra03] Kris Gray, Microsoft directx 9 programmable graphics pipeline, Mi-
crosoft Press, Redmond, WA, USA, 2003.

[GSAW05a] Leo Grady, Thomas Schiwietz, Shmuel Aharon, and Rüdiger Wester-
mann, Random walks for interactive alpha-matting, Proceedings of the
Fifth IASTED International Conference on Visualization, Imaging and
Image Processing (Benidorm, Spain) (J. J. Villanueva, ed.), ACTA Press,
Sept. 2005, pp. 423–429.

[GSAW05b] , Random walks for interactive organ segmentation in two and
three dimensions: Implementation and validation, Proceedings of MIC-
CAI 2005 (Palm Springs, CA) (J. Duncan and G. Gerig, eds.), LNCS
3750, no. 2, MICCAI Society, Springer, Oct. 2005, pp. 773–780.

[GST07] Dominik Göddeke, Robert Strzodka, and Stefan Turek, Performance and
accuracy of hardware-oriented native-, emulated- and mixed-precision
solvers in FEM simulations, International Journal of Parallel, Emergent
and Distributed Systems 22 (2007), no. 4, 221–256.

140 BIBLIOGRAPHY

[GW05a] Joachim Georgii and Rüdiger Westermann, Interactive simulation and
rendering of heterogeneous deformable bodies, Vision, Modeling and
Visualization 2005, 2005, pp. 381–390.

[GW05b] , Mass-spring systems on the gpu, Simulation Modelling Practice
and Theory 13 (2005), 693–702.

[Hac85] Wolfgang Hackbusch, Multi-grid methods and applications, Springer Se-
ries in Computational Mathematics, Springer, 1985.

[Har03] Mark Jason Harris, Real-time cloud simulation and rendering, Ph.D. the-
sis, The University of North Carolina at Chapel Hill, 2003, Director-
Anselmo Lastra.

[HBHH01] D. Hill, P Batchelor, M. Holden, and D. Hawkes, Medical image regis-
tration, Phys. Med. Biol. 26 (2001), R1–R45.

[Hen06] Stefan Henn, A full curvature based algorithm for image registration,
Journal of Mathematical Imaging and Vision (JMIV) 24 (2006), no. 2,
195–208.

[HHH01] J. V. Hajnal, D. L. G. Hill, and D. J. Hawkes, Medical image registration,
CRC Press, 2001.

[HRS+99] Alexander Hagemann, Karl Rohr, H. Siegfried Stiehl, Uwe Spetzger, and
Joachim M. Gilsbach, A biomechanical model of the human head for el-
asitc registration of MR-images, Bildverarbeitung fur die Medizin, 1999,
pp. 44–48.

[HS81] Berthold K. P. Horn and Brian G. Schunck, Determining optical flow,
Artificial Intelligence 17(1-3) (1981), 185–203.

[JHHK06] Florian Jäger, Jingfeng Han, Joachim Hornegger, and Torsten Kuwert,
A variational approach to spatially dependent non-rigid registration,
Proceedings of the SPIE, Medical Image Processing, vol. 6144, 2006,
pp. 860–869.

[JMNM91] John I. Jackson, Craig H. Meyer, Dwight G. Nishimura, and Albert Ma-
covski, Selection of a convolution function for fourier inversion using
gridding, IEEE Transaction on Medical Imaging 10 (1991), no. 3, 473–
478.

BIBLIOGRAPHY 141

[JvRLHK04] Thomas Jansen, Bartosz von Rymon-Lipinski, Nils Hanssen, and Er-
win Keeve, Fourier volume rendering on the gpu using a split-stream-fft,
VMV, 2004, pp. 395–403.

[KFF05] Sven Kabus, Astrid Franz, and Bernd Fischer, On elastic image registra-
tion with varying material parameters, Bildverarbeitung für die Medizin
(BVM), Springer Verlag, 2005, pp. 330–334.

[KRF94] D. P. Koester, S. Ranka, and G. C. Fox, A parallel gauss-seidel algorithm
for sparse power system matrices, Supercomputing ’94: Proceedings of
the 1994 ACM/IEEE conference on Supercomputing (New York, NY,
USA), ACM, 1994, pp. 184–193.

[Krü06] Jens Krüger, A gpu framework for interactive simulation and ren-
dering of fluid effects, Ph.D. thesis, Technische Universität München,
http://mediatum2.ub.tum.de/node?id=604112, 2006.

[KSKW04] Jens Krüger, Thomas Schiwietz, Peter Kipfer, and Rüdiger Westermann,
Numerical simulations on PC graphics hardware, ParSim 2004 (Special
Session of EuroPVM/MPI 2004), 2004.

[KSW06] Jens Krüger, Jens Schneider, and Rüdiger Westermann, ClearView:
An interactive context preserving hotspot visualization technique, IEEE
Transactions on Visualization and Computer Graphics (Proceedings Vi-
sualization / Information Visualization 2006) 12 (2006), no. 5.

[KW03] Jens Krüger and Rüdiger Westermann, Linear algebra operators for
GPU implementation of numerical algorithms, ACM Transactions on
Graphics (TOG) 22 (2003), no. 3, 908–916.

[KW05] Peter Kipfer and Rüdiger Westermann, Improved GPU sorting,
GPUGems 2: Programming Techniques for High-Performance Graphics
and General-Purpose Computation (Matt Pharr, ed.), Addison-Wesley,
2005, pp. 733–746.

[LCW03] Aaron E. Lefohn, Joshua E. Cates, and Ross T. Whitaker, Interactive,
gpu-based level sets for 3d segmentation., MICCAI (1) (Randy E. El-
lis and Terry M. Peters, eds.), Lecture Notes in Computer Science, vol.
2878, Springer, 2003, pp. 564–572.

142 BIBLIOGRAPHY

[LG04] Grady Leo and Funka-Lea Gareth, Multi-label image segmentation for
medical applications based on graph-theoretic electrical potentials,
Computer Vision and Mathematical Methods in Medical and Biomed-
ical Image Analysis, ECCV 2004 Workshops CVAMIA and MMBIA
(Prague, Czech Republic) (Milan Šonka, Ioannis A. Kakadiaris, and
Jan Kybic, eds.), Lecture Notes in Computer Science, no. LNCS3117,
Springer, May 2004, pp. 230–245.

[LL00] Zhi-Pei Liang and Paul C. Lauterbur, Principles of magnetic resonance
imaging, IEEE Press, 2000.

[MA03] Kenneth Moreland and Edward Angel, The FFT on a GPU, HWWS
’03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS confer-
ence on Graphics hardware (Aire-la-Ville, Switzerland, Switzerland),
Eurographics Association, 2003, pp. 112–119.

[Mod04] Jan Modersitzki, Numerical methods for image registration, Oxford uni-
versity press, New York, 2004.

[MV98] J.B.Antoine Maintz and Max A. Viergever, A survey of medical image
registration, Medical Image Analysis 2 (1998), no. 1, 1–36.

[MYC95] K. Mueller, R. Yagel, and J. F. Cornhill, Accelerating the anti-aliased
algebraic reconstruction technique (ART) by table-based voxel backward
projection, Proceedings of IEEE EBMS 17th annual Conference, EMBC
95, 1995, p. 497.

[NK95] Predrag Neskovic and Benjamin B. Kimia, Geometric smoothing of 3d
surfaces and non-linear diffusion of 3d images, 1995.

[NWvdB00] H. Nguyen, M. Worring, and R. van den Boomgaard, Watersnakes:
Energy-driven watershed segmentation, 2000.

[OLG+05] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens
Krger, Aaron E. Lefohn, and Timothy J. Purcell, A survey of general-
purpose computation on graphics hardware, Eurographics 2005, State
of the Art Reports, August 2005, pp. 21–51.

[O’S85] J.D. O’Sullivan, Fast sinc function gridding algorithm for fourier inver-
sion in computer tomography, IEEE Transaction on Medical Imaging
M1-4 (1985), no. 4, 200–207.

BIBLIOGRAPHY 143

[PL84] Doyle Peter and Snell Laurie, Random walks and electric networks,
Carus mathematical monographs, no. 22, Mathematical Association of
America, Washington, D.C., 1984.

[PM99] J. G. Pipe and P. Menon, Sampling density compensation in mri: ra-
tionale and an iterative numerical solution, Magnetic Resonance in
Medicine 41 (1999), no. 1, 179–186.

[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery, Numerical recipes in c: The art of scientific computing, Cam-
bridge University Press, New York, NY, USA, 1992.

[RD89] Courant R. and Hilbert D., Methods of mathematical physics, vol. 2, John
Wiley and Sons, 1989.

[Ros06] Randi J. Rost, Opengl(r) shading language (2nd edition), Addison-
Wesley Professional, January 2006.

[RSW99] Esther Radmoser, Otmar Scherzer, and Joachim Weickert, Scale-space
properties of regularization methods, Scale-Space Theories in Computer
Vision, 1999, pp. 211–222.

[S.45] Kakutani S., Markov processes and the Dirichlet problem, Proc. Jap.
Acad. 21 (1945), 227–233.

[SBMW07] Thomas Schiwietz, Supratik Bose, Johnathan Maltz, and Rüdiger West-
ermann, A fast and high-quality cone beam reconstruction pipeline using
the gpu, Proceedings of SPIE Medical Imaging 2006 (San Diego, CA),
SPIE, Feb. 2007.

[SCSW06] Thomas Schiwietz, Ti-Chiun Chang, Peter Speier, and Rüdiger West-
ermann, Mr image reconstruction using the gpu, Proceedings of SPIE
Medical Imaging 2006 (San Diego, CA), SPIE, Feb. 2006.

[SCSW07] , Gpu-accelerated mr image reconstruction from radial measure-
ment lines, Proceedings of ISMRM 2007: Workshop on non-Cartesian
MRI, 2007.

[Set99] J. A. Sethian, Level set methods and fast marching methods, Cambridge
University Press, 1999.

144 BIBLIOGRAPHY

[SGW07] Thomas Schiwietz, Joachim Georgii, and Rüdiger Westermann, Interac-
tive model-based image registration, VMV, 2007.

[She94] Jonathan R. Shewchuk, An introduction to the conjugate gradient method
without the agonizing pain, Tech. report, Carnegie Mellon University,
Pittsburgh, PA, USA, 1994.

[SKP05] Marius Staring, Stefan Klein, and Josien P.W. Pluim, Nonrigid regis-
tration with adaptive, content-based filtering of the deformation field,
Proceedings of SPIE Medical Imaging: Image Processing, vol. 5747,
February 2005, pp. 212 – 221.

[SM97] Jianbo Shi and Jitendra Malik, Normalized cuts and image segmentation.,
CVPR, 1997, pp. 731–737.

[SN00] Hossein Sedarat and Dwight G. Nishimura, On the optimality of the grid-
ding reconstruction algorithm, IEEE Transaction on Medical Imaging 19
(2000), no. 4, 306–317.

[SNF03] Bradley P. Sutton, Douglas C. Noll, and Jeffrey A. Fessler, Fast, iterative
image reconstruction for mri in the presence of field inhomogeneities,
IEEE Transaction on Medical Imaging 22 (2003), no. 2, 178–188.

[STCS+03] J. A. Schnabel, C. Tanner, A. D. Castellano-Smith, A. Degenhard, M. O.
Leach, D. R. Hose, D. L. G. Hill, and D. J. Hawkes, Validation of non-
rigid image registration using finite element methods: Application to
breast mr images, IEEE Transactions on Medical Imaging 22 (2003),
238–247.

[SW04] Thomas Schiwietz and Rüdiger Westermann, GPU-PIV, VMV, 2004,
pp. 151–158.

[TD05] Sumanaweera Thilaka and Lui Donald, Medical image reconstruction
with the FFT, GPU Gems 2 (Matt Pharr, ed.), Addison Wesley, March
2005, pp. 765–784.

[TS07] R. Westermann T. Schiwietz, J. Georgii, Freeform image, Proceedings of
Pacific Graphics 2007, 2007.

[WDS99] Mason Woo, Davis, and Mary Beth Sheridan, Opengl programming
guide: The official guide to learning opengl, version 1.2, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

BIBLIOGRAPHY 145

[Weia] Eric W. Weisstein, Gaussian elimination,
http://mathworld.wolfram.com/GaussianElimination.html.

[Weib] , Gaussian-jordan elimination,
http://mathworld.wolfram.com/Gauss-JordanElimination.html.

[Weic] , Lu decomposition, http://mathworld.wolfram.com/LUDecomposition.html.

[Wika] Wikipedia, Comparison of ATI graphics processing units,
http://en.wikipedia.org/wiki/Comparison of ATI Graphics Processing Units.

[Wikb] , Comparison of NVIDIA graphics processing units,
http://en.wikipedia.org/wiki/Comparison of NVIDIA Graphics Processing Units.

[WS98] Yongmei Wang and Lawrence H. Staib, Integrated approaches to non
rigid registration in medical images, Proceedings of WACV’98, 1998,
pp. 102–108.

[WS01] Joachim Weickert and Christoph Schnörr, A theoretical framework for
convex regularizers in pde-based computation of image motion, Interna-
tional Journal of Computer Vision 45 (2001), no. 3, 245–264.

[YM01] Boykov Y. and Jolly M.P., Interactive graph cuts for optimal boundary
and region segmentation of objects in n-d images., International Confer-
ence on Computer Vision 1 (2001), no. 1, 105–112.

[ZF03] Barbara Zitova and Jan Flusser, Image registration methods: a survey,
Image and Vision Computing 21 (2003), no. 11, 977–1000.

