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Abstract

Recently the field of chiral magnetism gained renewed scientific interest as it was found
to be of crucial importance in multiple fields of condensed matter physics. E.g. in the
domain of multiferroics helical magnetic order has been successfully identified as driving
mechanism for the magneto-electric (ME) effect in several materials like e.g. RMnOjg
(with R=Tb, Gd) [KGST03] and RMnyO5 (R=Tbh, Dy, Ho) [HPST04a, [HPST04b] (s.
also references [Kim07, [CMO07]). The ME effect is the coupling of electric and magnetic
fields in matter and is therefore interesting both scientifically and as well for technologi-
cal applications (e.g. sensors, new magnetic memory devices). A further prominent field
where chiral magnetism is of current interest are magnetic surfaces or interfaces in layered
magnetic systems that naturally break inversion symmetry. The broken inversion sym-
metry allows for the existence of the Dzyaloshinsky-Moriya interaction [Dzy58, Mor60)]
that may stabilise helical magnetic order (s. references in [BHvBT07, BRO1]). An in-
teresting realisation of such a system is a monolayer of Mn atoms grown on a tungsten
(110) substrate. The magnetic moments of the Mn ions in the surface form a magnetic
helix as recently observed by Bode et al. [BHvBT07] via spin-sensitive scanning tunnelling
microscopy (STM). A promising application of chiral magnetism in a two-dimensional sys-
tem is the construction of a spin field effect transistor(SFET) as it is discussed in reference
[HBBBO06]. As last example we want to mention the superconductor CePt3Si in which
long-range magnetic order and superconductivity persist simultaneously [BHM™04]. A
recent theory developed by Kaur et al based on the non-centrosymmetric chemical struc-
ture of CePt3Si claims that the observed magnetic order is possibly helical [KAS05].
Despite the vital interest in chiral magnetism there is still a lack of general concepts
that may yield a more collective understanding of the various research topics that are
related to chiral magnetism. Therefore it is highly desirable to undertake both further
experimental and theoretical studies of systems that display magnetic chirality in order
to reveal common properties of chiral magnets. An experimental technique that is highly
suitable to investigate chirality in magnetism is neutron scattering. Due to the magnetic
moment carried by neutrons the method of neutron scattering generally proves to be a
powerful tool to examine magnetic structures and excitations in condensed matter. This
is especially true in the case of chiral magnetism, as the use of polarised neutrons provides
the unique possibility to directly probe chiral magnetic correlations. Taking advantage
of this powerful method we investigated two different magnetic compounds that display
magnetic chirality within the framework of this thesis, namely the multiferroic compound
NdFe3(1'BO3), and the itinerant helimagnet MnSi.

The compound NdFez(1'BO3), was recently identified as a multiferroic that shows mag-
netic field induced ferroelectric phases via the ME effect [ZKKT05, ZVKT06]. It is a
member of the family of borates RM3(BO3), (R = Y,La-Lu, M = Al, Ga, Cr, Fe, Sc)
that currently attract much attention because of their special optical properties (e.g.
generation of infrared laser action) [Jaq01, HCCT02, [CLJT01] that are important for
laser techniques (e.g. for self-frequency-doubling, self-sum-frequency-mixing). Our work
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focused on the microscopic magnetic properties and structure that have been investi-
gated only sparsely so far. However, their knowledge is a prerequisite for understanding
the ME effect. We investigated the magnetic structure of NdFe3(BOj3)4 by unpolarised
and polarised neutron scattering. As a result of this investigation we identified that
NdFe3("'BO3), orders antiferromagnetically below Ty = 31 K. Neutron single crystal
and powder diffraction revealed a hexagonal magnetic propagation vector k" = [0, 0,
%] corresponding to antiferromagnetic order parallel to the hexagonal ¢ axis. However,
below T;opn =~ 13.5 K the magnetic structure becomes slightly incommensurate with a
propagation vector k* = [0, 0, % + ¢] with (1.6 K) = 0.00667. By combined magnetic
symmetry analysis and Rietvield fits of the powder diffraction data we identified two mag-
netic models for the commensurate magnetic phase that fitted our data equally well. By
the use of spherical neutron polarimetry we finally revealed that for the correct magnetic
model the magnetic moments of both Fe?* and Nd3* are oriented parallel to the basal
hexagonal plane and couple antiferromagnetically along the hexagonal c-axis. Addition-
ally the polarised neutron data yields that in the incommensurate magnetic phase below
T;cm the magnetic structure is transformed into a long-period antiferromagnetic spiral
that propagates parallel to the c-direction with a pitch of approximately 1140 A. Hence,
our investigation clearly showed for the first time that NdFez(*'BOs3), is also a chiral
magnet. Furthermore, a high resolution neutron diffraction experiment showed the pres-
ence of third order harmonics of the propagation vector in the incommensurate magnetic
phase and suggests the evolution of a magnetic soliton lattice below the commensurate to
incommensurate phase transition without the application of external forces like magnetic
fields or pressure. A soliton is the appearance of localised or topological effects in periodic
structures due to the presence of non-linear forces. As the experiment was carried out
without the application of external magnetic fields or pressure our results indicate that
the antiferromagnetic spiral in NdFe3('BO3), is distorted by the magnetic anisotropy in
the hexagonal basal plane that was recently reported in reference [TKHT07].

Further we report our work on the cubic itinerant helimagnet MnSi. In zero field the
lack of inversion symmetry in MnSi results in a weak Dzyaloshinsky-Moriya interaction,
that stabilises a long-wavelength spin spiral with a period of approximately 180 A along
the cubic diagonals below T.=29.5 K [SCM*83, IEM*85]. Above 6.2 kOe, a ferro-
magnetic structure is induced, with an ordered magnetic moment of 0.4 ug on each Mn
site [ISTKT7]. Apart from this well understood helical phase MnSi displays a rich mag-
netic phase diagram showing many peculiarities. This includes a non Fermi-liquid (NFL)
phase that was observed above a pressure p. ~ 14.6 kbar [PJLO1]. Above p. a partially
ordered magnetic phase was observed using neutron scattering, which revealed strong
magnetic scattering intensity on the surface of a sphere in reciprocal space, with a radius
corresponding to the modulus of the wave vector of the helical order [PRP704]. This par-
tial order was interpreted as the unpinning of the helix wave-vector and was found to exist
below a characteristic temperature T that vanishes at a pressure py ~ 21 kbar. A similar
sphere of magnetic scattering is also observed at ambient pressure at T 2 T, [GMO™05].
Recent theoretical studies by Roessler et al. [RBP06] suggest that the Dzyaloshinsky-
Moriya interaction may not only stabilise simple helical order, but even more complex
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multidimensional, magnetic textures, when the amplitude of the local magnetisation is
soft and supports strong longitudinal fluctuations, e.g. near critical phase transitions. It
was speculated that the observed magnetic scattering on the sphere at T 2 T, in MnSi
originates from such a magnetic texture. However, Grigoriev et al. have interpreted this
experimental result as critical scattering from a helimagnet [GMOT05]. We carried out
extensive unpolarised and polarised elastic neutron scattering experiments in the temper-
ature regime where the sphere of magnetic intensity is observed in order to clarify the issue
of a possible intermediate phase. Our data suggests that the cubic anisotropy energy that
locks the direction of the helix decreases significantly above T, and therefore supports
the scenario that the propagation vector of the helix unlocks when the sphere is observed.
Further, the fits of the data indicate that the observed magnetic intensity on the sphere
can be interpreted as critical scattering of a helimagnet as proposed in [GMOT05].

In addition we have carried out extensive measurements of the dynamical magnetic suscep-
tibility in the helically ordered phase by means of inelastic neutron scattering. Startlingly,
despite the extensive measurements of the collective magnetic excitations in the field in-
duced ferromagnetic phase, relatively little attention has been given to the helical phase.
For the helical magnetic phase a novel magnetic excitation spectrum has been suggested
independently by two theory groups [BKR07, [Mal06]. The proposed magnetic excitations
emerge in the helical phase as new Goldstone modes - the so-called helimagnons. Both
groups find an anisotropic dispersion with soft modes linear in q parallel to the propaga-
tion vector k and quadratic in q perpendicular to it for small wave vectors near the helical
propagation vector. In our measurements we effectively identified a new type of magnetic
excitations that show an anisotropic dispersion that is very similar to the prediction by
theory. Therefore our results clearly support the existence of the proposed helimagnons.
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Table 1: Physical constants

Quantity | Name Value (Unit)

M, neutron mass 1.675-10727 (kg)
m, proton mass 1.673-10727 (kg)

me electron mass 9.109-1073! (kg)

e elementary charge 1.602-10719 (C)

h Planck constant over 2 6.582-10716 (eV s)
LB Bohr magneton 9.274-1072* (J T71)
LN nuclear magneton 5.051-1072" (J T~1)
Lo vacuum permeabilty, magnetic constant | 1.256-107% (Vs A1 m™1)
To classical electron radius 2.82:107% (m)

v gyromagnetic ratio of the neutron 1.913 (-)

Table 2: Notation for most imortant physical quantities that were used throughout this thesis

work.

Notation Name

ki, k¢ incident and final wave vector of the neutron
Q scattering vector

hw energy transfer

V(r) neutron scattering potential

ba nuclear scattering length of nucleus d
Ng nuclear structure factor

l lattice vector

T reciprocal lattice vector

exp(—Wy(Q)) | Debye-Waller factor of ion d in unit cell
Fn(Q) nuclear unit cell structure factor

o Pauli matrices

M, q magnetic interaction vector

Fiy(Q) magnetic form factor of magnetic ion d
Sia magnetic moment of magnetic ion (I, d)
k magnetic propagation vector

Skv magnetic Fourier component

P, P’ incident and final polarisation vector
P;; polarisation tensor

g irreducible representation (IR) v

yhv magnetic basis function for IR v

Sky magnetic Fourier component for IR v and ion d

Xaﬁ(Qv t)

magnetic dynamic susceptibility
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Chapter 1

Motivation: Chirality and
Magnetism

Chirality is a property widely spread among entities in nature. The expression chirality
itself is derived from the Greek root xerp (kheir) that signifies hand. Looking at our
pair of hands we recognise immediately that the left hand is different from the right
one. Imagining that we had a left hand instead of our right one that difference becomes
even more significant: we would not be able to shake hands with other human beings.
However, despite this significant difference between our left and right hand, they also have
something in common, they are both hands, e.g. there is no obvious relationship between
our right hand and left foot! The special relationship between our two different hands is
easily understood if we look at their mirror image. In the mirror our right hand becomes
a left hand and vice versa as demonstrated in Fig. [I.1(a)] Therefore, the mirror image of
one of our hands can not be superimposed with the original hand. This is actually the
general definition for handedness or chirality. An object that can be superimposed to its
mirror image is then called achiral, e.g. a simple bottle.

Already in our every day life we are sourrounded by many objects that are chiral, e.g.
screws, or the piglets’ tails or snail shells shown in Figll.2] However, it turns out that
chirality is not only a mere geometrical property but a feature that proved to be of critical
importance in major scientific fields. Here we give some selected examples:

e Material science: Carbon nanotubes are tubes that are produced by rolling up mono-
atomic layers of graphite into tubes. By different choices of the direction along
which the tube is rolled up chiral or achiral carbon nanotubes can be produced,
respectively. It emerges that several physical properties of carbon nanotubes are
completely different if the tube is chiral or not. E.g. the electrical conductance of
chiral nanotubes is similar to metals whereas the achiral counterparts behave like
semiconductors [SDD9S].

e Biology & chemistry: molecules that exist in a left-handed and a right-handed
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version are called enantiomers. In ordinary chemical reactions both behave similar,
however, when interacting with other chiral objects they behave different depending
on their chirality. E.g. many substances used as drugs are chiral; in some cases they
only work when the substance is provided in the proper chirality state but often the
substance is even toxic when provided with the wrong chirality . Examples for such
chiral drugs are penicillin and ethambutol [FL06, wik]. In 2001 the Nobel price for
chemistry was assigned to William S. Knowles, Ryoji Noyori and K. Barry Sharpless
for their work on chiral catalysts that allow for the production of enantiomers in one
pure chirality state [nob01]. Obviously this technique is an important prerequisite
for the production of chiral drugs.

e Physics: The weak interaction breaks the conservation of parity as it was shown by
Chien-Shiung Wu via the measurement of the directionality of emitted electrons in
the B-decay 52Co——$9Ni + e~ + v, with respect to the direction of the nuclear Co-
spins [WMG66]. This experiment showed that all neutrinos have their spins always
antiparallel to their direction of movement whereas for antineutrinos the contrary
is true. Thus all existing neutrinos are left-handed. Tsung-Dao Lee and Chen
Ning Yang who developed the theory for the weak interaction that explains the
experimental result received the Nobel price for this achievement in 1957 [nob57].

In this work chirality in magnetism was investigated for selected samples. In this chapter
we will first give a proper scientific definition of chirality. Further this property will be
introduced into magnetism and a brief historic overview over chirality in magnetism will

(a) (b)

Figure 1.1: (a) The left (right side of photograph) and right hand (centre) of the author are
shown together with the mirror image of his left hand (left side). It is immediately clear that
the mirror image of the left hand is similar to the right hand. However, the mirror image of the
left hand, namely the right hand cannot be superposed with the original left hand. Thus, our
hands are chiral objects. (b) A photograph of Lord Kelvin who defined the property chirality
for the first time.
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Figure 1.2: Chiral objects in our daily life.

be given. We will conclude the chapter with a set of examples to illustrate the importance
of chirality in magnetism that was a major motivation for this work.

1.1 Chirality

1.1.1 Definition of chirality

The first scientific definition of chirality goes back on Lord Kelvin (s. Fig. [I.1( - In
1884 he stated in the Baltimore Lectures [Kel04]:

I call any geometrical figure, or group of points, chiral, and say that it has
chirality, if its image in a plane mirror, ideally realised, cannot be brought to
coincide with itself.

Here he also introduced the expression chirality for the first time. A demonstration of
this statement is shown in Fig. [I.1(a)| for the hands of this author. A mathematically
more strict definition that is commonly used today is (e.g. [Bar86]):

An object is chiral if it cannot be transformed into itself by any improper
rotation.

An improper rotation is any proper n-fold rotation about an axis followed by an inversion
operation E| where the point of inversion is a point on the rotation axis. Such a symme-

! An inversion operation in a Cartesian coordinate frame with respect to the origin is the transformation
(x,,2) — (-X,-y,-z). In physics this symmetry transformation is generally referred to as parity.
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try operation is called a rotoinversion operation ﬂ An improper rotation of an object
generates a rotation of its mirror image. We note that the mirror reflection Lord Kelvin
used in his defintion is equivalent to a rotoinversion where the angle of rotation is 180°
and therefore a special case of our more recent definition.

1.1.2 Spins and chiral symmetry

Special care has to be taken when vectors instead of point like objects are transformed
by improper rotations. There are two type of vectors with respect to improper rotation.
This is most easily seen if we consider a physical quantity like the angular momentum of
a particle at position r that moves with momentum p. Thus the angular momentum of
the particle will be

L=rxp. (1.1)

This is shown in Fig. [I.3] Now we apply an inversion symmetry operation to the particle.
The position of the particle after the transformation will be " = —r and its momentum
will be p’ = —p. If we consider the angular momentum after the transformation we get:

L'=r"xp' =(—r)x(-p)=rxp=L. (1.2)

Hence, the angular momentum of the particle does not change its sign under the inversion
transformation whereas its position and momentum do. This is explained in a more
descriptive fashion in Fig. [[.3] Vectors that do not change their sign under a inversion
operation are called pseudovectors or axial vectors. In the more general context of all
improper rotations a pseudovector is defined as a quantity that transforms like a vector
under a proper rotation, but gains an additional sign flip under an improper rotation.
All vectors that behave like usual vectors under both proper and improper rotations are
called true or polar vectors.

For this work this is rather important as we deal with chirality in magnetism. Magnetic
fields in condensed matter systems are mainly generated by the angular momentum and
spins of unpaired electrons that are both pseudovectors.

1.2 Chiral magnetism

Magnetic fields in a crystal are mainly generated by the spins and angular momenta of
unpaired electrons of magnetic ions. In order to establish a specific arrangement of the

2Equivalently an improper rotation also can be defined as any normal rotation about an axis followed
by a mirror reflection with the mirror plane perpendicular to the rotation axis. Such a symmetry operation
is called rotoreflection. However, rotoinversions and rotoreflections are identical if they differ in the angle
of rotation by 180°, and the point of inversion is in the plane of reflection. Therefore any rotoreflection
can be mapped to a rotoinversion.
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Figure 1.3: In the left viewgraph a particle at position r (red arrow) and with momentum p
(blue arrow) is shown. Further the angular momentum of the particle is shown by the arrow
in green. The right viewgraph shows the same particle after a parity transformation (inversion)
P was applied to it. We immediately see that the positional vector and the momentum of the
particle have changed their sign but the sign of the sense of the rotation of the particle remained
unchanged. Thus the angular momentum of the particle did not change its sign under the parity
transformation. A vector that does not change its sign under improper rotations (thus including
the parity transformation) is called a pseudovector.

magnetic moments carried by these spins and angular momenta two conditions have to

be fulfilled:

e the arrangement of the magnetic moments has to be in agreement with the symmetry
of the underlying atomic crystal structure, e.g. the symmetry of the magnetic
configuration has to be equivalent or lower than the crystal symmetry (we will
consider this fact in more detail in chapter |3]).

e the competition of different interactions in the crystal must lead to a minimum in
the free energy that stabilises this specific magnetic configuration.

From the definition of chirality in section we immediately see that for a chiral ar-
rangement of magnetic moments we need to break any improper rotation symmetries. If
we imagine the most obvious chiral spin arrangement it will be a magnetic spiral as it is
shown in Fig.[I.4l In order to comply with the above conditions a further term in the free
energy is required that favours a canted spin arrangement between neighboring moments.
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Figure 1.4: A magnetic helix is shown. Such a magnetic ordering is obviously chiral when the
definition of section [1.1.1] is applied as shown by the inversion symmetry operation. We note
that neighboring moments are mutually canted.

1.2.1 The Dzyaloshinsky-Moriya interaction

The usual magnetic Heisenberg exchange or superexchange [Hei28, [And59] interactions
described by the Hamiltonian
H=JS;S;, (1.3)

that drive magnetic long range ordering, obviously lead to parallel or antiparallel align-
ment of neighboring moments depending on the sign of the exchange integral J, as
is minimal for these spin arrangements. Hence, an additional type of interaction would
be necessary to stabilise a magnetic structure like in Fig. [[.4, In 1958 Dzyaloshinksy
published an article about his PhD thesis work that reported a phenomenological deriva-
tion of a term in the free energy that was able to explain the effect of observed weak
ferromagnetism in certain otherwise antiferromagnetic crystals like e.g. Hematite (a-
Fey,O3)|Dzy58]. This effect might seem unrelated to our problem of chiral magnetic or-
dering at first sight but as we will see immediately it is closely connected. The weak fer-
romagnetism in antiferromagnets was a major problem during this period. The observed
ferromagnetic moments in these compounds were extremely small and were experimen-
tally found to vary between the limits of 1072-10~° of the nominal values. The smallness
of the spontaneous ferromagnetic moment, however suggested that usual exchange ferro-
magnetism could not be the source of the observed behaviour. In his work Dzyaloshinsky
showed that for Hematite the antiferromagnetic spin arrangement had exactly the same
symmetry as a different spin arrangement with mutually canted spins. Then he derived
all possible terms in the free energy depending on the spin variables that were consis-
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tent with the symmetry class he found before. He was able to prove that one of these
terms favours the canted spin arrangement over the antiferromagnetic one and thus is a
prerequisite for the observed weak ferromagnetism. The term found by Dzayloshinsky is

where D is a constant vector. Obviously, an interaction between two neighboring spins
that would lead to a term like in Eq. in the free energy that favours spin canting would
also be a good candidate to explain a magnetic spiral like the one in Fig. [1.4l However,
Dzyaloshinsky did not clarify the nature of the vector D and how it could be derived.
In 1960 Moriya [Mor60] extended the Anderson theory [And59] for superexchange to
include spin-orbit coupling that had been neglected so far. Moriya identified Eq.
found by Dzyaloshinsky from symmetry arguments as the antisymmetric partﬂ in his new
model of anisotropic superexchange. As Eq. was introduced by Dzyaloshinsky in a
phenomenological approach and was identified later by Moriya as a relativistic correction
of the superexchange interaction due to spin-orbit coupling it is now commonly known as
Dzyaloshinsky-Moriya interaction (DMI).

In his publication Moriya also calculated an estimate for the strength of the DMI to
be of the order of (Ag/g) times the isotropic superexchange interaction, where g is the
Landé g-factor and Ag is the deviation from the value for a free electron. Apart from this
consideration about the magnitude of D), that is generally referred to as Dzyaloshinsky-
Moriya vector (DM vector), he additionally emphasised that (as Dzyaloshinsky already
pointed out) the crystal symmetry is of particular importance for the asymmetric coupling
[1.4] as it vanishes in crystals of high symmetry. He considered two single magnetic ions
1 and 2 that are located at the positions A and B, respectively. The point bisecting the
straight line AB is denoted as C. He summarised the following symmetry rules:

1. When a centre of inversion is located at C,
D =0.
2. When a mirror plane perpendicular to AB passes through C,
D || mirror plane or D 1 AB.
3. When there is a mirror plane including A and B,
D 1 mirror plane.
4. When a two-fold rotation axis perpendicular to AB passes trough C
D | two-fold axis.
5. When there is a n-fold rotation axis (n > 2) parallel AB
D || AB.

3antisymmetric under exchange of two spins
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When thinking of the definition of chirality in section it seems natural at first sight
that an inversion centre situated in the centre between two spins does not allow the DMI
to be present, as inversion is also an improper rotation. We note, however, that Moriya’s
symmetry rules do not prohibit the presence of neither an inversion centre nor any other
improper rotation in the crystal symmetry as they only constrain the symmetry elements
that are present in the environment of the two spins that are considered. In other words
this means that the presence of the DMI in a magnetic crystal does not necessarily lead
to a global chiral magnetic ordering like e.g. the magnetic spiral in Fig.

1.2.2 The Bak-Jensen model

Let us consider a real crystal of simple cubic structure, and therefore only one magnetic
ion (and magnetic moment) per crystallographic unit cell. If we now assume the magnetic
structure to be a magnetic spiral like in Fig. we recognise that the periodicity of the
lattice (distance between two neighbouring spins) and the magnetic structure are very
different: we have to translate through 10 crystallographic unit cells until the magnetic
moment is oriented along the same direction as at the starting point. The helical spin
arrangement could be thought of as ten different magnetic sublattices where in each of
them the moments are rotated about a certain angle 2{@ (A is the period of the helix
and a the lattice constant of the cubic crystallographic lattice) around the helix axis and
therefore this model is still similar to antiferromagnetic sublattices as in a Néel state only
that the period is longer and hence the number of sublattices is bigger (In a Néel state A
would be equal to 2a which is equivalent to two sublattices).

However, we also could image a long period spiral where the magnetic lattice does not
match the period of the crystal lattice at all even if we would translate through an in-
finite number of unitcells. Such a structure is called incommensurate with respect to
the underlying lattice and is shown in Fig. In 1959 Villain [Vil59], Kaplan [Kap59]
and Yoshimori [Yosh9] independently came up with the idea that such an incommensurate
long period superstructure would be possible in antiferromagnetic substances. All of them
based their considerations on the symmetric part of the (super-)exchange interaction in
Eq. . Dzyaloshinsky showed in 1964 [Dzy64] that such an incommensurate long period
magnetic arrangement is only possible when the DMI is included in order to destabilise
the (anti-)ferromagnetic order that is favoured by the exchange interactions. Additionally
the crystal has to lack an inversion centre. But there was no real magnetic system for
which it could be shown that the mechanism proposed by Dzyaloshinsky was the origin
of helical incommensurate long range magnetic ordering.

In 1980 Bak and Jensen [BJ80] were able to explain the long-period ferromagnetic spiral
(A~ 180 A) found experimentally by Ishikawa et al [TBR76] in the itinerant weak ferro-
magnet MnSi by including the DMI in the free energy. MnSi crystallises in the cubic P2,3
structure that possesses no inversion centre. According to the theory of phase transitions
of Landau and Lifshitz they expanded the free energy in terms of a slow-varying spin
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density S(r) that is in agreement with the symmetry of MnSi:

1 1
F(r) = §A(S§ + 57 +52)+DS(V x S) + 5B’l[(VSx)Q +(VS,)? + (VS.)?] +

1 95, 2 aSy 2 95, 2 1 2 2 2\2
+ 232[((%) +(ay) +(az)]+20(sx+5y+sz) +
1
+ 5E(S;*+S§+S§) (1.5)

Here the term A is the ferromagnetic exchange energy, the term D represents the DMI
and By and By are first and second order anisotropy terms. Near to T. the free energy is
then usually minimised by periodic structures of the form

S(r) = %[Sk exp(tkr) + S, exp(—ikr)). (1.6)

By substituting Eq. into EqJL.5 we get (to second order in Sk)
1 1
F(k) = SAIS? +iDk(Sk x Si) + 5 BIk*|Sil* +

1
+ 532(1@%’5@\2+k5|5ky‘2+k3|5kz\2)- (1.7)

By choosing Sy = ax + ibx Eq. can be minimised when ap L bg, |ag| = |bk| and k
parallel or antiparallel to ax X bg for D < 0 or D > 0, which describes a left- and right-
handed spiral, respectively. As the D term has full rotational symmetry it does not give
any preferred direction for the wavevector k. However, it can be fixed by the anisotropic
second order term with the coefficient Bs:

By<0 : k| (111)
By>0 : k| (001).

On the basis of the experimental results [ITBR76] it was concluded for By in MnSi that
By < 0 and that it is relatively small in magnitude as the wavevector can experimentally

MyNVICARRDRERR
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Figure 1.5: A magnetic helix that is incommensurate with respect to the underlying crystal
lattice, the lattice periodicity A of the helix can not be expressed as n times the lattice spacing
a.
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be moved into any direction by applying a magnetic field. The free energy is then finally
described by

1 1 1
F(k) = (§A— |D|k)|Sk|* + (§Bl+632)k2|5k\2 (1.10)

which is minimised by

k=|D|/(B; + %32). (1.11)

The long period of the magnetic spiral in MnSi (equivalent to a small magnitude of k)
then follows from the smallness of D compared to B; + %Bg. In Fig. the free energy of
Eq. is plotted versus k and shows clearly that the ferromagnetic structure with £ =0
is unstable. For comparison, the free energy for systems without inversion symmetry
(D=0) is also shown (dashed line). We want to point out that a left- and a right-handed
magnetic spiral are energetically degenerate. This is immediately clear from Fig. [1.6]
However, this means that a further interaction is needed to lift this degeneracy in order
to get a system that is completely left- or right-handed. Otherwise this degeneracy must
lead to left- and right-handed domains.

The model we described above can be considered as the standard model of long period
ferromagnetic helices driven by the DMI and is often referred to as the Bak-Jensen-Model
for helical magnetic structures.

d

Figure 1.6: Free energy as a function of wavevector k for left-handed and right-handed spirals.
The dashed line shows the free energy for a system with inversion symmetry (D=0). The figure
is taken from [BJS0].
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1.2.3 Magnetic frustration and chirality

There is another possibility that leads to chirality in magnetism that does not involve the
DMI. If we consider spins that are located on a triangular lattice this leads to a frustrated
magnetic order. This is explained in Fig. that shows a triangular lattice in two
dimensions with spins on each corner of the triangle. When the magnetic interaction
between neighboring spins is antiferromagnetic there is no solution that allows all three
spins to be aligned antiparallel with both of its neighbours. This is called magnetic
frustration. In order to minimise their magnetic energy the spins tend to align in a so-
called 120° spin structure where all the angles between two neighboring spins are arranged
to be 120° [} Obviously there are two different 120° arrangements and they have different
handedness, respectively, as it is shown in Fig. . This kind of chirality that is
induced by magnetic frustration was introduced for the first time by Villain in 1977 in a
model for a two dimensional spin glass [Vil77].

The chirality in such a system can be mathematically defined by the vector-chirality

2
R = —— SiXS'za 1.12
75 2[5 % 5] (112

where one averages the vector product of two spins over three spin pairs (s. e.g. the re-
view article [Kaw98| about frustrated antiferromagnets). For a left-handed triangle x > 0

40f course this solution is only possible if the spins are allowed to move freely in the plane of the
triangle. E.g. in case of one-component Ising type spins (system possesses easy axis type of magnetic
anisotropy) the ground state can not be uniquely determined.

C )

(a) (b)

Figure 1.7: (a) A triangular lattice is shown. If the magnetic interaction between the two
neighboring spins is assumed to be antiferromagnetic, there is no possibility to arrange all three
spins on the corners of the triangle in such a way that each spin is antiparallel to both of its
neighbours. Such a spin configuration is called frustrated. (b) The classical 120° spin structure
is shown. There are two such structures. In the first one the spins are rotated clockwise if we
proceed from one corner of the triangle to the next one in a clockwise direction and the structure
is left-handed. In the second the spins are rotated counterclockwise and we call it right-handed.
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whereas for a right-handed x < 0.

This kind of magnetic frustration appears in layered system, where the triangular lay-
ers are stacked on top of each other. Within the layers the magnetic interactions are
XY antiferromagnetic type whereas the interaction between the layers is often negligible
due to their large distance. A typical example is the stacked triangular antiferromagnet
CsMnBr3[PMK™99).

Apart from the magnetic frustration discussed above, in magnetic systems that show non-
negligible next-nearest-neighbour interaction frustration can also occur. If the magnetic
interactions between nearest neighbours and and next nearest neighbours have a differ-
ent sign and similar orders of magnitude this obviously leads to frustration as the spin
cannot align properly with respect to both interactions. This is illustrated in Fig. [I.§
Such a situation also can lead to helical magnetical ordering. We assume a simple model
Hamiltonion on a simple cubic lattice in order to demonstrate this. We consider a fer-
romagnetic nearest-neighbour interaction in all directions and an antiferromagnetic next-
nearest-neighbour interaction along one particular direction, e.g. the z-axis. The Hamil-
tonian then may be written as

H = —Jnn Z S;S; — Jnnn Z S:Sj, (1.13)

<i,j> <<ij>>

where the first sum is taken over all nearest-neighbour sites whereas the second sum is
only taken over next-nearest-neighbour sites that are situated along the z-direction. The
competition between the isotropic ferromagnetic Jyy and axial antiferromagnetic Jyyy
gives rise to spiral magnetic ordering along the z-axis when the ratio |‘]N NN | reaches a
critical value. As for the magnetic helices driven by the DMI also here the perlod of the
helix is usually incommensurate with respect to the lattice.

Examples for such systems are the rare-earth metals Ho, Dy and Th [KCWC63|, [Koe65),
KCWW66l, DAN67, [JM91], [Jen96]. They crystallise in the hexagonal-close-packed (hcp)
structure and form magnetic spirals along the hexagonal c-axis with the magnetic mo-
ments confined inside the basal hexagonal plane. The origin for the frustration in these
systems is the long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [Kit54,
Kas50, [Yosh7, VIe62] that drops as 1/r® and additionally oscillates in sign with distance
r which leads to a different sign for nearest and next nearest neighbour interactions.

1.3 Chiral magnetism, ’quo vadis’?

In the preceding sections we have reviewed the mechanisms driving chiral magnetic struc-
tures. The occurrence of chiral magnetism by itself seems to be quite well understood.
However, in recent years it appears that the formation of chiral magnetism plays a promi-
nent role in multiple related research topics in condensed matter physics. Here we want
to give a short overview.
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Figure 1.8: Frustration due to non-negligible next nearest neighbour interaction is shown. The
exchange integrals for the nearest-neighbour interaction Jy and for the next-nearest-neighbour
interaction Jyny are assumed to be of comparable magnitude but of opposite sign. Thus the
third spin on the right side is clearly frustrated.

1.3.1 Chiral universality class

Phase transitions of magnetic systems have been studied in great detail both theoretically
and experimentally. Due to this extensive work a good understanding of phase transi-
tions of standard ferromagnets and antiferromagnets has been established. The expres-
sion 'standard’ here denotes that only regular collinear and unfrustrated magnets without
quenched disorder are considered. The renormalisation group (RG) theory introduced by
Wilson [WK'4, Wil83] provided a framework for the calculation of the critical exponents
for quantities that indicate a phase transition, e.g. the susceptibility, the specific heat
and the order parameter. A central finding within this framework was the concept of
universality that states that a variety of second-order phase transitions in magnets can
be divided in a number of universality classes determined only by a few characteristic
properties of the systems, namely the spatial dimension d, the symmetry of the order
parameter and the range of the considered interaction, but do not depend on the detailed
form and magnitude of interactionsﬂ Magnetic materials that belong to one single uni-
versality class have the same critical exponents independent of their otherwise distinct
properties. If only bulk magnetic materials are considered (d = 3) the number of spin
components n determine the universality class. More physically the index is interpreted
as the dimension of the magnetic anisotropy: n = 1 (Ising), n = 2 (XY) and n = 3
(Heisenberg) signify magnets with easy-axis-type anisotropy, easy-plane-type anisotropy
and no anisotropy, respectively. The theoretical predictions for these n-component mag-
nets were found to be correct in many experiments (A good overview for the predicted

5 A nice introduction is given in section 5.4 of reference [CL95).
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and measured critical exponents is given in table 5.4.2 of reference [CL95].).

However, for frustrated, canted or non-collinear magnets the experimental results for
the critical exponents are less clear and do not comply with the universality classes in
many cases. Further, the theoretical analysis were often somehow inconclusive and some-
times gave conflicting results concerning the nature of the critical behaviour (s. refer-
ence [Kaw98|] for a clear historical presentation). In the 1980s Kawamura first claimed
from symmetry analysis and Monte Carlo simulations that stacked-triangular antiferro-
magnets like the previously mentioned CsMnBr; may belong to a novel kind of chiral
universality class that differs from the standard universality class predicted by RG the-
ory [Kaw85| [Kaw86|, Kaw87, [Kaw86]. Also the helimagnets Ho, Th and Dy were argued
to exhibit identical chiral critical behaviour by the same author [Kaw80, Kaw86]. De-
spite early experimental studies that agreed with the critical exponents predicted from
the new chiral universality scenario for e.g CsMnBrs there are still both theoretical and
experimental issues that do not allow for a final decision about the existence of a chiral
universality class. A detailed presentation of these issues is beyond the scope of this work
and we refer to the excellent review article [Kaw98| for a complete view of the still active
research field (compare [PMK™T99, VPSBT01) icvevITO1].

1.3.2 Magnetic surfaces and interfaces

One emerging field in chiral magnetism are magnetic surface structures or layered mag-
netic systems. The presence of surfaces or interfaces between layers often breaks the
inversion symmetry of a crystal structure and therefore enables the existence of chiral
magnetic structures through the DMI. Bogdanov et al. developed a phenomenological
theory of chiral symmetry breaking in magnetic nanostructures in 2001 [BRO1]. They
state that surfaced induced chiral symmetry breaking should have a strong impact on the
magnetic properties. The chiral symmetry breaking may lead to chiral spatially modulated
or localised magnetic structures which were previously associated only with low-symmetry
crystals.

First experimental evidence of a magnetic spiral that is established via the DMI on a
surface was reported for a monolayer of manganese atoms grown on a tungsten (110)
substrate by Bode et al. [BHvBT07| via spin-sensitive scanning tunnelling microscopy
(STM). As we have seen before the DMI can select magnetic structures of a specific chi-
rality when the inversion symmetry of the complete system is broken. Thus, such surface
magnetic structures could become useful in the context of spintronics, as this would en-
able interaction with a spin-current.

First principle calculations of Heide et al. [HBBBO06] demonstrate the potential of lay-
ered magnetic heterostructures with missing inversion symmetry as future candidates for
spin field-effect transistors (compare reference [DD90]). In a two-dimensional electron gas
(2DEG) relativistic spin-orbit coupling (DMI) in the presence of an inversion asymmetric
electric potential V'(r) can give rise to a Rashba spin-splitting [Ras60] of an otherwise
spin-degenerate electron gas. We note that for this kind of spin-splitting no external mag-
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netic field is necessary as the missing inversion symmetry lifts the degeneracy of spin-up
and -down energy levels in the 2DEG and therefore e;(k) # ¢(—k). Additionally the
relativistic movement of the electron transforms the electrical field into a magnetic field
in the local frame of reference of the electron. In a classical analogon, the local mag-
netic field imposes a torque 7 = s X B on the spin s of the electron and the spin will
precesses around the field while moving through the potential V() (for the full quantum-
mechanical derivation see reference [HBBB06]). The precession speed will depend on the
strength of the potential and therefore the direction of the spin current passing through
the potential can be controlled via an electrical field. This can be used to construct a
spin field-effect transistors when ferromagnetic materials for the source and drain of the
transistor are used. This is demonstrated in Fig. [1.9]

1.3.3 Magneto-electric effect

The magneto-electric (ME) effect is the coupling of electric and magnetic fields in matter.
It was originally discovered by Rontgen in 1888 who observed that a moving dielectric
became magnetised when placed in an electric field [Ron88]. Wilson observed the reversed
effect, namely the electric polarisation of a moving dielectric in a magnetic field in 1905

FM Gate FM

\9DEG

Figure 1.9: A scheme of the a spin field-effect transistor (SFET) is shown (the picture is taken
from reference [HBBBO0G]). The source (spin injector) and the drain (spin analyser) are ferro-
magnetic metals or semiconductors, with parallel alignment of magnetic moments. The injected
spinpolarized electrons with wave vector k move through the 2DEG in the presence of an inver-
sion asymmetric electric potential V (r) (e.g. formed by a strained InGaAs/InP heterojunction).
As the electrons move from source to drain their spins precess about a precession axis, which
arises from spin-orbit interaction (compare text). The precession speed is tunable via the gate
voltage that changes the potential V(). The current through the device is large if the electron
spin at the drain points in the initial direction and thus parallel to the spin analyser, and small
if the direction is reversed. Here an intermediate situation is depicted. We emphasise that
for a given gate voltage the spins form a stationary magnetic helix even though the electrons
propagate through the potential.
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[Wil05]. Already in 1894 it was argued by Curie from symmetry considerations that the
ME effect should also exist for non-moving materials [Cur94]. As electric and magnetic
fields are not invariant under (space) inversions and time reversal, respectively, we can
deduce that if an electric and and a magnetic field should couple inside a crystal neither
inversion nor time reversal can be symmetry operations (compare [KhoO6 [Fie05]). The
time-reversal symmetry can be broken by movement (as in the historic Rontgen experi-
ment), by application of an external field or intrinsically via long-range magnetic ordering
in the crystal. Dzaloshinskii [Dzy59] derived for the first time the explicit violation of time-
reversal for the specific system CroO3 and predicted a ME effect that was subsequently
experimentally confirmed by Astrov [Ast60]. Even though the potential of the ME effect
for new applications in electronics, e.g. as electrical field controlled magnetic memory
devices, was immediately recognised after this observation (compare [WAT3|), there are
still relatively few materials that are known to display a ME effect and additionally the
observed effect is generally weak. This is because for a strong ME coupling the material
must be a strong ferroelectric and ferromagnetic material (compare e.g. [Fie05]). The
class of materials showing this property is commonly referred to as multiferroicsﬂ [Sch94].
However, ferroelectricity and magnetism seem to be mutually exclusive in many materials.
Most of the materials that display ferroelectricity are transition metal oxides in which the
transition metal ions have empty d shells because they like to form covalent bonds with
neighboring oxygens. This bonds involve a shift of the ions that leads to electric polarisa-
tion. In contrast, magnetism implies partially filled d shells, since the spins of completely
field shells cancel each other and hence do not lead to the formation of magnetism. This
matter is discussed in more depth in the references [Hil00, [KhoO6].

However, the (ME) effect was subject of renewed interest in recent years [Kho06, Fie05].
This is due to the discovery of new materials that display large ME effects via a change of
direction or sign reversal of the electric polarisation when a magnetic field is applied. Ex-
amples for these materials are different manganates RMnOj3 (with R=Tb, Gd) [KGST03]
and RMnyO5 (R=Tb, Dy, Ho) [HPST04a, HPST04b] but also NizV,Og|[LHKT05] and
MnWO,[TATT06]. Interestingly enough all these systems have in common that the
large ME effect is observed within magnetic phases with spiral magnetic structures. E.g.
ThbMnOj3 undergoes a paraelectric to ferroelectric phase transition at T¢ &~ 28 K when its
magnetic structure changes from a sinusoidally modulated collinear to a spiral magnetic
structure [KHJT05]. As the absence of inversion symmetry is a necessary prerequisite
for ferroelectricity this can be understood qualitatively as the former magnetic structure
possesses inversion symmetry whereas it is broken by the latter.

In 2005 Katsura, Nagaosa, and Balatsky (KNB) suggested a mechanism to explain ferro-
electricity induced by the magnetic ordering of a material [KNBO05]. In this model electric
polarisation

B =A- €;; X (Sz X Sj), (114)

is generated by the overlap of electronic wave functions of neighbouring atomic sites i and

SWe note that the term multiferroic is not limited to (anti-)ferromagnets and ferroelectrics but also
involves ferroelastics. A multiferroic displays two or more of this ferroic ordering phenomena.
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j which possess mutually canted spins S; and S;. e;; denotes the vector between both
atoms and A is a coupling constant determined by the spin exchange interaction and the
spin-orbit interaction (DMI). Recently, Yamasaki et al. demonstrated by means of po-
larised neutron diffraction that the chirality of the spiral magnetic structure of ThMnOs3
in the ferroelectric phase can be switch from right-handed to left-handed by applying
an electrical field along the crystallographic ¢ axis [YSGT07]. This electric field induced
change of the magnetic structure could be completely explained within the KNB model.
The KNB model does not involve lattice degrees of freedom in order to explain the de-
velopment of electric polarisation in ThMnOQOg in the spiral magnetic phase. The arising
polarisation is explained in terms of polarised electronic orbitals. In a more recent theo-
retical treatment by Sergienko et al. [SD06] it was shown that the presence of the DMI
may also lead to a shift of the oxygen with respect to the Mn ions in ThMnOj3 which
would explain the strong coupling between ferroelectric and magnetic degrees of freedom
in this compound.

In 2006 Mostovoy [Mos06] introduced a phenomenological theory motivated by symme-
try considerations that explains not only the observed polarisation in ThMnOg3 but also
reproduces the phase diagram observed by Kimura et al. [KGST03]. In a system without
inversion symmetry a coupling term that is linear in the gradient of the magnetisation
M (V - M) is allowed and the magnetically induced polarisation i{]:

PxyM(V-M)—- (M- -V)M]. (1.15)
We assume that the magnetisation forms a spiral of the form
M(r) = Me, cos(kr) + Mse, sin(kr), (1.16)

where k is the propagation vector of the spiral and e; with i=x, y, z are unit vectors in
a Cartesian coordinate frame. For the electric polarisation induced by the magnetisation
we therefore find

P x yM;Ms(e, x k). (1.17)

Here e, is obviously equal to e, x e,. This signifies that only when the propagation
vector of the helix is parallel to the plane in which the magnetisation rotates a electric
polarisation is observed. This corresponds to the situation observed for ThMnO3;. We
note that in this model the electrical polarisation has not to be driven by the DMI but
also can rise from helical ordering due to frustration (compare section [1.2.3)).

For a detailed overview of systems showing a ME effect that is driven by helical magnetic
ordering we refer to the two review articles [Kim07, [CMOT].

1.3.4 Helical Goldstone modes and skyrmion condensate in MnSi

MnSi is an itinerant helimagnet that crystallises in the cubic P23 structure that pos-
sesses no inversion symmetry. In zero field, its magnetic structure below T,.=29.5 K is

"The given expression is for cubic crystal symmetry.
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a long-period ferromagnetic spiral with the propagation vector k = (27/a)({, ¢ () with
¢ = 0.016 resulting in a period of approximately 180 A [SCMT83, RBFE02] along the
[111] direction. Above 6.2 kOe, a ferromagnetic structure is induced, with an ordered
magnetic moment of 0.4 up on each Mn site [ISTK77].

The magnetic excitation spectrum of MnSi has been studied extensively in the field-
induced ferromagnetic [ISTK77, [ TBET98, ISBET99] and the paramagnetic phase [INFS82,
INUT85]. The observed collective spin-waves that merge into the so-called Stoner con-
tinuum of single particle spin flip excitations are well explained when MnSi is considered
as a weakly ferromagnetic Fermi liquid (FL) [LT85, Mor85]. Startlingly, to the best of
our knowledge no investigations of the excitations of the helical magnetic ground state at
ambient pressure and low temperature have been reported.

However, recently a novel magnetic excitation spectrum has been suggested independently
by two theory groups for the helical magnetic phase in MnSi [BKR07, [Mal06]. They pre-
dict that the presence of the DMI leads to a new type of helical Goldstone modes coupled
to the emergence of the helical state which they called helimagnons, in analogy to fer-
romagnons and antiferromagnons. Both groups find an anisotropic dispersion with soft
modes linear in q parallel to the propagation vector k and quadratic in q perpendicular
to it.

Besides to the helical magnetic order that is well understood (compare e.g. section
MnSi displays many peculiarities that are so far unexplained. Belitz et al have stated
[BKROT] that the only obvious difference of MnSi with respect to other itinerant ferro-
magnets is the presence of the weak DMI that gives rise to the helical magnetic ordering.
Therefore the presence of the proposed helimagnons may explain these non-understood
features. They include a non-Fermi-liquid (NFL) phase above a critical pressure p. of
14.6 kbar [PJLOI] that extends from a few mK to a crossover temperature of approxi-
mately 12 K and a partial magnetic order that only exists in a pocket of the NFL phase
above p.[PRPT04]. The partial order was interpreted as the unpinning of the helix wave-
vector. A detailed review of the non-understood properties of MnSi will be given in
chapter [5]

A further experimental result on MnSi that currently attracts a lot of interest is that
in SANS measurements at T 2 T. a sphere of intensity is observed with a radius corre-
sponding to the propagation vector k of the helix. The appearance of the sphere may be
interpreted as the unpinning of the helix propagation vector. This fact presently attracts
high interest and triggered theoretical considerations that explain the sphere of magnetic
intensity by an intermediate phase between the helical and the paramagnetic phase. In
MnSi the intermediate phase may be triggered by soft longitudinal magnetic fluctua-
tions, that favour the appearance of multi-dimensional magnetic textures. Rofler et al.
[RBPO6] predict that the magnetic state may form skyrmion patterns in this phase, i.e.
complex multidimensional, magnetic textures. Their calculations show that the skyrmion
condensate may only be stable when a variation of the amplitude of the magnetisation is
allowed. The helimagnons predicted above might be the soft modes leading to this new
intermediate phase.

We emphasise that even though MnSi that is generally considered as good candidate for
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a model system of a helical magnet, it shows many features that are not well-understood.
However, theoretical models described above predict that the majority of them is directly
connected to the DMI and therefore to the inherent chiral magnetism of MnSi. Ulti-
mately, if the proposed helimagnons are identified as the typical excitation spectrum of
a helimagnet this will help to elucidate the properties of other helical magnets as well.
Therefore further experimental studies to resolve these issues are desirable.

1.3.5 Summary

We showed that the concept of chiral magnetism is of relevance in a wide range of research
topics in condensed matter physics that are interesting both for technological reasons
as well as for fundamental research. Apart from the fields described above, where the
relevance of chiral magnetism was already clearly identified, there is also indication that
magnetic chirality is of importance in the field of non-centrosymmetric superconductors
like e.g. CePt3Si (s. references [BHM™T04, [FAKSO04, [KAS05]. This example underlines
that the futher understanding of magnetic chirality is of rather general importance.
Despite the obvious key role of chirality within the different domains so far little attention
has been given to magnetic chirality in a more general view. A more detailed study of
chiral magnetic systems may reveal common properties or mechanisms that would lead
to a better understanding in all research topics that involve chiral magnetism.

In the next two chapters we will demonstrate that unpolarised and polarised neutron
scattering (chapter [2)) in combination with magnetic symmetry analysis (chapter [3)) is
an ideal tool to study chiral magnetism. During this work we carried out extensive
investigations on two compounds that involve magnetic chirality by means of neutron
scattering: the multiferroic NdFe3(BO3)4 (chapter [4) and the itinerant helimagnet MnSi
(chapter [5)).
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Chapter 2

Neutron scattering

Since the 1960s elastic and inelastic neutron scattering have been proved to be an in-
valuable tools to study static and dynamic microscopic properties in condensed matter
systems. This success is due to the characteristic properties of cold to thermal neutrons:

e Due to their wavelength A\ being of the same order as interatomic distances in solids
and liquids (typically a few A), interference effects occur in the scattering process
which yield information on the structure of the scattering system.

e Being uncharged particles, neutrons only interact with the scattering system via
nuclear forces. Therefore there is no Coulomb barrier to overcome. Neutrons can
penetrate deeply in the sample and therefore provide information about bulk proper-
ties. In difference to X-ray scattering the scattering length is no monotonic function
of the atomic number. It varies strongly for neighbouring nuclei in the table of
elements. This is advantageous when light elements are of interest.

e Energies of thermal neutrons (E, = £ [meV] with A in A) and of elementary

excitations in condensed matter are of the same order of magnitude. By analysing
the energy transfer of neutrons onto the sample in the scattering process, sample

dynamics can be studied easily.

e Due to its magnetic moment the neutron interacts with the magnetic fields generated
by the electrons of a magnetic sample. On account of this the neutron scattering
cross-section does not only include nuclear contributions but also magnetic ones and
thus neutrons are highly suitable probes to investigate magnetic properties.

In this chapter we will introduce the basic concepts in neutron scattering. In the field
of magnetism the use of polarised neutron beams, i.e. all neutron spins in the beam are
mutually parallel, even adds to the amount of information that can be extracted from
a neutron scattering experiment. We will see that this is especially usefull in the field
of chiral magnetism. Hence, special attention will be given to the method of neutron
polarisation analysis.

21
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2.1 The neutron scattering cross-section

In a typical neutron scattering experiment a beam of neutrons with well-defined incident
momentum hk; is impinged on the sample to be investigated. Due to the interactions
between the sample and the neutrons will be scattered to a different state with final
momentum hk;. The conservation laws for momentum and energy consequently result in
the equations

hQ = h(k; —k;)

h2
m

(k7 — k), (2.1)
n

for the momentum and the energy transfer that are experienced by the neutrons in the
scattering process, respectively. m,, is the mass of the neutron. By measuring the prob-
ability that neutrons are scattered from an initial state with neutron wave vector k; into
a final state with wave vector ks for a number of different combinations of (Q, w), con-
clusions about the special form of the interaction potential of a distinct sample can be
drawn. This probability can be derived by means of Fermi’s golden rule and is described
by the partial differential neutron scattering cross-section [Lov84. [Squ78] given by

d*c ky ( m
dQdE' k;

2
k; 27Th2) anpoz |<kf0'f,n/|V|kZ,O'“n>|2($(hw+En—En/)(22)

n,o; n/,of

Here we use k;/o; and ky/os to describe the wave number and spin of the neutrons before
and after the scattering process, respectively, whereas the initial and final state of the
scattering system (sample) are given by the quantum numbers n and n’. The initial states
n of the scattering system occur with the probability p, = e EVksT /S e=En/ksT gt 5
distinct temperature T. If a beam of unpolarised neutrons is assumed, the probabilities
for the up and down states of the neutrons spins are equal. Therefore p, = % for all o.
Averaging over n and o takes into account all possible initial states before the scattering
process, while summing over n and o’ considers all possible final states after the scattering
process. The matrix element (...) describes the transition probability from initial states
(n, k;, 0;) of the total system (neutron & sample) to final states (n’, ks, o) due to
the interaction potential V' according to Fermi’s golden rule. The J-function assures the
conservation of energy during the scattering process. The factor k;/k; is due to the fact
that the cross-section is defined as the ratio of the outgoing and incoming neutron cur-
rents. We note that therefore the partial differential cross-section is the neutron intensity
scattered into a solid angle d) and with energies between E’ and £’ + dE'.
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2.2 Nuclear scattering

2.2.1 The Fermi pseudopotential

A neutron interacts with matter via the nuclear force. The range of the nuclear interaction
is of the order of 1-10 fm. The scattering potential of a nucleus j situated at position R;
is described via the Fermi pseudopotential given by

27::213 S(r — R;), (2.3)

Vi(r) =

where m is the mass of the neutron and b; the scattering length of this nucleus [Lov&4,
Squ78]. The potential therefore is described by an point-like interaction which is well
justified by the fact that the wavelength of cold to thermal neutrons is much larger than
the range of the nuclear force, namely A = 1-10 A. The wave function of a neutron
scattered via the nuclear interaction can be consequently entirely described by S-waves
(1=0) when analysed in terms of partial waves.

The scattering potential of an ensemble of several nuclei (e.g. in a liquid or crystal) then
can be described by a sum over the potentials of individual nuclei j

_ 27:52 S bd(r — Ry). (2.4)

We see that due to the short range nature of the nuclear force ks - 1o < 1 (ro the range
of the nuclear force) is always satisfied and the kinematic Born approximation can be
applied to calculate the matrix element in Eq. Hence, the wave functions for the
scattered neutrons are approximated as plane waves e*/". Together with Eq. the
matrix element can be evaluated to be (s. e.g. [Squ7§| for a complete derivation)

o,V () ) = (2”h2)

('] exp(iQ - R;)n)| (2.5)

where @Q is the scattering vector as defined by Eq. and we have neglected the spin
state of the neutron as appropriate for an unpolarised beam. The d-function for the energy
conservation in the cross-section can be rewritten in an integral form via

(hw+ E, — Ey) = % / dt exp{i(E, — E,)t/h} exp(—iwt). (2.6)

Using additionally the fact that the states n of the scattering system are eigenfunctions
of H with the eigenvalues E,, (H|n) = E,|n)) the position operators R; can be written
as time-dependent Heisenberg operators R;(t) = exp(iHt/h)R;exp(—iHt/h) [SquTs].
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The final expression obtained for the nuclear partial differential neutron scattering cross-
section is then
d20 . k f 1
dQdE  k; 2rh

Zb b /dt exp{—iQ - R;/(0)}exp{iQ - R;(t)}) exp(—iwt), (2.7)

where (A) = > pn(n|AJn) denotes the thermal average over an operator A at tempera-
ture T (remember p, = e~ E/keT /S o=En/kpT)

Finally we define the nuclear structure factor No(t) = >, by exp{iQ - R;(t)} that will be
used in later chapters and allows to rewrite Eq. in the short form

d20' kf 1
dQdE' ~ k; 27h

dt(N5(0) Ng(t)) exp(—iwt). (2.8)

2.2.2 Coherent and incoherent scattering

The scattering length b; depends on the distinct nucleus and additionally on the spin
state of the nucleus-neutron system. A neutron has a spin o = % and a nucleus may have
a spin I and consequently the total spin of the system can take two values I + % or I — %
and the scattering length is written as

b7 =b;+ Bo -1, (2.9)

where the term Bo - [ is the dipole interaction between the neutron and the nuclear spin.
We see that for isotopes with non-zero spin I two distinct scattering lengths exist for
o= il, respectively. Further, the scattering length b; varies for different isotopes of
an element as different isotopes possess different spin I. In a real sample an a priori
unknown distribution of different nuclei and isotopes is present and we have to average
over all possible scattering lengths b;

d20 k,‘f 1
dQdE K 27h

Zb b /dt exp{—iQ - R;/(0)}exp{iQ - R;(t)}) exp(—iwt). (2.10)

The average b;b;; can be separated into two parts, namely

d*c _ Ocoh kf 1 ' ‘ ‘
(dai),, = e S [ dew(@ R0} ev(i@ Rt ex(—ien

(2.11)
and

d? inc ke 1 . ‘ ‘
(deUE’)mC - ihr k:f 2rh Z / dt{exp{—iQ - R;(0)} exp{iQ - R;(t)}) exp(—iwt),

(2.12)
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that are called the coherent and incoherent cross-section, respectively [Squ78]. Here we
have defined oo, = 47(b)? and 0y, = 47{b? — (b)?}. The coherent cross-section describes
correlations between the same nucleus at different times and different nuclei at different
times and hence gives rise to interference effects. The incoherent cross-section describes
only correlations of the same nucleus at different times and therefore does not lead to
interference effects.

The information that is of interest in condensed matter systems, namely the correlations
between different particles at the same time (structural information) and at different
times (information about excitations) are contained only in the coherent part of the cross-
section. The incoherent cross-section gives rise to scattering intensity that is isotropic and

adds to the experimental background. Therefore, we will only consider the coherent part
in the following[T|

2.2.3 Bragg scattering from crystals

All specimen investigated in this work are single or polycrystals (powders) and therefore
it is interesting to analyse Eq. for the case of crystals. For simplicity we will consider
only Bravais crystals with one atom per unit cell. The vectors a;, a, and as define the
unit cell and we can write any lattice vector I as a linear combination of them:

l = llal + lzag -+ l3€l3, (213)

with [; being integers. The volume of the unit cell is vg = a4 - (as X a3). Additionally we
define reciprocal lattice vectors 7; that fulfil the equation a; - T; = 2md;; as

T = 2_7T(a2 X as), To= 2—7T(a3 X ay), T3= 2—7T(al X as). (2.14)

Vo Vo Vo

We take into account the thermal movement of the atoms in the lattice by writing their
positional operators as R;(t) = I + w;(t) where u; denotes the displacement from the
equilibrium position I.
In a Bravais lattice the correlation between nuclei at positions 1 and 1’ only depends on
their distance I — I’ and the sum over 1 in the cross-section is identical for each I’ [Squ7§].
Thus we may put 1 = 0 and find

> (exp{—iQ - Ry(0)} exp{iQ - Ry(t)})

Ll

= NZ exp(iQ - 1) {exp{—iQ - ug(0)} exp{iQ - u;(t)})

= NZexp(iQ ) {expUexpV), (2.15)

'However, in some cases even the incoherent cross-section is useful, e.g. to determine the density of
states of phonons (compare [Squ78]).
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where N is the number of nuclei in the crystal and in the last step we defined U =
—iQ-uo(0) and V = iQ-w(t). Here we only considered the coherent cross-section [2.11] If
the interatomic forces are assumed to be linear the theory of normal modes can be applied
to describe the motion of the atoms in the crystal. We will not consider this in detail here
and only use the result (exp U exp V') = exp(U?) exp(UV) that can obtained by the theory
of normal modes [Squ7g|. The term exp(U?) = exp((—Q - uo(0))?)) = exp(—2W(Q)) is
called the Debye-Waller or B factor and describes uncorrelated thermal motion of atoms
[Deb13|, Wal23]. It leads to a reduction in scattering intensity towards large Q. The term
exp(UV) can be expanded in

exp(UV) =1+ (UV) + %(UV)Q 4. (2.16)

The zeroth order term gives rise to elastic scattering (atoms do not move) and the nth
term for n#0 gives the cross-section for n-phonon processes. In this work phonons will
not be considered and we will only write out the cross-section for the zeroth order term.
For zeroth order the scattering is elastic and thus |k;| = |ks| and the cross-section is

() = Gevencar@)Y ey

= %N% exp(—2W(Q)) Z I(Q —T), (2.17)

where in the last step the identity >, exp(iQ - 1) = % 3. 6%(Q — 7) was used [Squ7g].
From Eq. we see that scattering is only observed when Q = k; — k; = 7. This
condition is an equivalent description of Bragg’s law in reciprocal space (s. Fig. for
details)

7 = 2ksiné. (2.18)

If we write k = k; = ky = 2{ and 7 = n%” where )\ is the wavelength of the neutron and

d the lattice spacing of the crystal we obtain Bragg’s law
nA = 2dsin6. (2.19)

We note that for non-Bravais crystals the derivation above is easily extended by intro-
ducing the nuclear unit-cell structure factor [Squ78] given by

Fn(Q) =) baexp(iQ - d) exp(—Wy), (2:20)

into the cross-section. Here the vector d describes the position and exp(—Wy(Q)) =
exp{(—Q-u4(0))?)) the Debye-Waller factor of the dth atom in the unit cell. Hence, the co-
herent cross-section for a non-Bravais crystal is obtained by replacing et exp(—2W (Q))

47
(s. Eq. by FL(Q)Fn(Q).
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Figure 2.1: Bragg scattering in reciprocal space is illustrated. If d is the lattice constant of
the scattering plane in real space then we can write Q = 7 = 27“. Further, with k; = ky = k we
find § = ksin(0).

2.3 Magnetic scattering

2.3.1 The magnetic scattering potential

The magnetic interaction of the neutron with the sample is the interplay between the
magnetic dipole moment of the neutron carried by its spin and the magnetic fields gener-
ated by the electrons of the sample. The operator corresponding to the magnetic dipole
moment of the neutron is given by

Pn = —7YUNO, (2.21)
eh

where puy = (2.22)
2m,,

is the nuclear magneton. m,, is the mass of the proton and e its charge. v = 1.913 is the
gyromagnetic ratio of the neutron. & are the Pauli-matrices defined by

. 01\ . (0 —=i\. (10
O’x—<10),0y—(i 0),02—(0_1>. (2.23)

The interaction of the magnetic dipole moment of the neutron with a magnetic field B is
V,, = —py - B. (2.24)

The magnetic field generated by the sample is composed of two parts. We imagine an
electron with spin s = %6’ and with momentum p (compare Fig. [2.2)):

e The magnetic dipole moment of the electron p. = —2ups produces the magnetic

field R
B.—VxA A=HMHkX

2.2
I STR (2.25)
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at a distance R from the electron (s. Fig . Here pp = % is the Bohr magneton
and m, is the mass of the electron.

e Since the electron represents a moving charge of magnitude e it additionally gener-
ates the magnetic field
_ _fo2nppx R
P um n R
at the point R. Here L = R X p is the angular momentum of the electron and we
consequently denote this field by By,.

(2.26)

In total the magnetic interaction potential is then given by

Vi = _Z_;VNNZMB&'<WS+WL% (2.27)

where W, = V x (£8) and W, = 1B gSR [Squ78]. Equivalent to the nuclear cross-section
the matrix element in Eq. [2.2 can be evaluated for the magnetic potential V,,,. We consider
electrons at positions r; with spin s; and momentum p;. The expression found for the

matrix element is then [Lov8&4]
<k',f|Wsi + WLz|kz> = 47TMJ_Q,
. . i .
M = € 1Q - r; X (8; X —(Pi X s 2.28
o = Lea@ i {@x (e x @+ o< @) 229

where M | g is called the magnetic interaction vector, and Q is an unit vector parallel to
Q and we only considered the position dependent part of V,,.
A more demonstrative representation of Eq. can be derived (s. chapter 7.2 of reference
[Squ78]) where the magnetic interaction vector is expressed as a function of the local
magnetisation density M (r) of the sample at the point r:

Mig = Qx(MgxQ) (2:29)
Mg = —i M (r) exp(iQr)d°r. (2.30)
B

Mg is called the magnetic structure factor and is proportional to the Fourier transform
of M(r). Hence, information about the microscopic magnetisation of a sample can be
obtained by measuring the distribution of magnetic neutron scattering intensity.

In a last step it can be shown (s. chapter 7.2 in [Squ7§|) that if the evaluation of the
sum over final neutron spin states and the average over initial spin states (s. Eq. for
unpolarised neutrons (p, = % for both spin states, up and down), the following identity
is obtained

~ 2 « (e
> pollogn'|e - Miglosn)|” =) (n|MIHn') (0| MS gln), (2.31)

03,0 f «



2.3 MAGNETIC SCATTERING 29

where a = x, 4y, z. The complete magnetic cross-section for unpolarised neutron beams is

finally obtained by inserting Eqs. and into the general Eq.

d*c Qkf ot LNy e
qoam — (V5 2 2 (eIMigln') (' |Mgln) (i + B — Fuv)
k A A «
= (/7740)2?]‘0 Z(éaﬁ - QaQﬁ) Z}%(n\MQTm/) <n/|Mg’n>5(ﬁw + F, — En’)
’ a,B n,n’

(2.32)

ro = 2.82-107'%m is a collection of all the multiplying factors in Eqns. [2.27], and
and corresponds to the classical electron radius.

unﬂ R

/'u..

He.
n -

Figure 2.2: Magnetic Scattering: The neutron at position r is scattered by the magnetic field
in the sample generated by the spin s and momentum p of electrons at r;

2.3.2 The magnetic selection rule

From Eq. a useful geometric selection rule can be easily derived. The evaluation of
Eq. shows that the magnetic interaction vector M | ¢ is the projection of the magnetic
structure factor Mg onto a plane that is perpendicular to the scattering vector Q. This
proofs that only components of Mg perpendicular to @ contribute to the scattering
process as shown in Fig. The magnetic selection rule is a natural consequence of
the magnetic interaction being a dipole interaction. When magnetic scattering is analysed
it is therefore useful to define a local frame of reference that rotates together with the

scattering vector Q:

z | Q
y L @ in the scattering plane (2.33)

z 1 @ out of the scattering plane
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The coordinate frame is defined in Fig. . In that frame of reference M| g has only
non-zero components along the y- and z-axis. In this work it will be further denoted
as analysis frame. We will see later that this coordinate frame is especially helpful for
polarisation analysis experiments.

(Mg X Q)

(a)

Figure 2.3: (a) The magnetic selection rule: Only components of Mg perpendicular to Q
contribute the scattering process. (b) The basic frame of reference for polarization analysis: k;
and k; are the initial and final wavevectors of the neutrons; the coordinates are defined with
respect to Q.

2.3.3 Magnetic form factors

We consider a non-Bravais crystal with magnetic atoms at the positions R4, where [ and
d signify the unit cell and the position of the ion within this unit cell respectively (s.
Eq. . Then, we can write the position of the vth unpaired electron with spin s, of
the ion at Ry, as

ri=l+d+r,=Ry+r,, (2.34)

where 7, is the relative distance of the electron to the ion. Additionally we make the
following assumptions:

e The Heitler-London model is valid, therefore the umpaired electrons are close to the
equilibrium positions of the magnetic ions.

e The total angular momentum L and the total spin S are good quantum numbers
and therefore LS coupling is assumed.

We want to distinguish between two cases. First we look at the situation when the total
angular momentum is L:0.E| Then the magnetic structure factor Mg is only characterised

2This is a valid assumption for the magnetic elements in the iron group where the orbital momentum
is quenched by crystal fields.
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by its spin part and [Lov&4]

('|Mgln) = ('] exp(iQ- Rig) > _exp(iQ - 7,)s,|n)

v(d)
= FuQ)(n'|Y_ exp(iQ - Rig)Sia|n) (2.35)
where Fy(Q) = /sd(r)exp(iQ-r)d3r. (2.36)

Here s4(7) is the density of the unpaired electrons in the ion d normalised to their number.
Fy4(Q) is called the magnetic form factor. The introduction of the magnetic form factor
allows to consider all electrons of one magnetic ion at position R;; together and regard
S1q as the total spin of this ion.

For magnetic ions with L # 0 E| a similar result can be derived. In this case the magnetic
form factor in Eq. is replaced by:

1 1 1
§ng(Q) = 595%0 + §9L(%0 + Sa), (2.37)

where g = gs+gr,
S(S+1)—L(L+1)

~ 1
95 L O T DR
L(L+1)—8(S+1)

— 1
L Ty

S, = 47T/ Gn(Qr)ridr.
0

Here g is the Landé splitting factor and j,,(Qr) are nth order spherical Bessel-functions. In
the case of L # 0 the operator Sj; has to regarded as the total angular momentum of the
considered magnetic ion [Squ78| [Lov84]. The magnetic form factors can be approximated
by analytical functions. The functions are (s = %)

(jo(s)) = Aexp(—as?)+ Bexp(—bs®) + Cexp(—cs®) +D for =0
Gi(s)) = As®exp(—as?) + Bs? exp(—bs?) + Cs? exp(—cs?) + Ds*> for [ #0.
(2.38)

The corresponding parameters for 3d and 4d transition metal electrons, the 4f and 5f
electrons of rare-earth and actinide ions, respectively are tabulated in [Bro04]. We see
that due to the magnetic form factors the neutron intensity falls of exponentially as a
function of Q% and therefore magnetic scattering is only observable in a limited Q-range.
This is demonstrated for the magnetic ion Mn3* in Fig. [2.4]

3e.g. ions of the rare earth group.
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~
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Figure 2.4: The magnetic form factor Fjy(Q) of the magnetic ion Mn3* is shown.

2.3.4 Magnetic correlation functions

Similar to the nuclear cross-section time-dependent Heisenberg operators can be intro-
duced into the magnetic cross-section when the J-function for energy conservation is
rewritten in correspondence with Eq. [2.60 The expression obtained for the magnetic
cross-section is [Squ78]

d20' ’}/T
AE 27roh ki Z o8 — QaQs) l;ld ~gargaly (Q)Fu(Q)
X / (exp{—iQ - Ry (0)} exp{iQ - Rig(t)}) (S, (0)S2(t)) exp(—iwt),

(2.39)

where the time dependent spin operator was defined as Sf(t) = exp(iHt/h)Sy; exp(—iHt/h)
and we used the expression for the magnetic form factor derived in the previous section.
We define the following nuclear and magnetic correlation functions

Liy(@Q,t) = (exp{—iQ Rya(0)}exp{iQ - Riu(t)})
= Ljj(Q,00) + I};(Q,1) (2.40)
T (1) = (Sph(0)Si(t)) = Jj(00) + Jj(). (2.41)

Here j stands for the combination of [, d. In a second step we divided both correlation
functions in a time-independent part at ¢ = oo|7_f] and a time-dependent part. From this
separation into time-dependent and -independent part four different kind of scattering
processes can be distinguished:

1. The term [;;(Q, 00).J;;(00) leads to elastic magnetic scattering. By probing this
scattering term the magnetic structure of the sample can be determined by measur-

4At the time ¢ = co all excitations are faded out.
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ing the magnetic Bragg intensities and comparing them with the intensities calcu-
lated from different magnetic models.

2. The term I;;(Q,t)J;;(c0) is the origin for magneto-vibrational scattering. Here
phonons are excited in the sample during the scattering process via the magnetic
interaction instead of the nuclear interaction. It will not be considered further in
this work.

3. 1;(Q,t)J;;(t) gives rise to scattering that is inelastic in both the spin and the
phonon system. This term will also not be considered in this work.

4. Purely magnetic inelastic scattering is generated via the term I;;(Q, 00)J;; (t). No
lattice vibrations are excited in this case. Hence, the measurement of this scattering
contribution allows to investigate magnetic excitations in a sample.

We consider the first and the last expressions in more detail as they will be used troughout
this work.

2.3.5 Magnetic Bragg scattering

We will now derive a general expression for elastic magnetic scattering described by the
term 1;;/(Q, 00).J;;:(00). We have already mentioned in section that magnetic struc-
tures can be incommensurate with the underlying chemical lattice. The periodicity A of
a magnetic structure in real space can be expressed via the so-called propagation vector k
where k = 2% [INO91] and an expansion in Fourier modes. We will specify the concept of
the propagation vector further in chapter . The total spin (or total angular momentum)
of a magnetic ion on the site d in the unit cell 1 is then expressed as

(Si) = RFcos(k-1+¢q)+ IFsin (k- 1+ ¢4)

R: . . Ik . .
_ 7cl (ez(k-z+¢d) 4 eﬂ(k-twd)) 4 2_62 (ez(k-l+¢>d) _ efz(k-lwd))

k -1k k Tk
_ (B ;ZId)ewd ikl +Me—m okl (2.42)
5 =s;*

RE and I¥ are the real and imaginary part of the magnetic Fourier mode S% for the
propagation vector k. ¢4 defines a phase with respect to the origin. By different choices
of 8% and k different magnetic structures with different periodicities can be modelled.
The expression for the cross-section is generally evaluated separately for the two distinct
Fourier components for the two propagation vector k and —k, respectively [INO91]. For
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k we find (for the magnetic structure we replace I by Ry, compare EqJ2.15))

> 1;(Q,00) J;5(c0)

= > (exp{—iQ - Rua(0)} exp{iQ - Ria(o0)})(Sgte " Fra 0) gl uulox))

rd'ld

= NZexp{zQ+k 1} exp(—Wa(Q)) exp(—Wa(Q)) exp(—iQ - d') exp(iQ - d) Sy Sy’

dd’

= 25 Q+k—7)> exp(—-Wa(Q)) exp(—Wa(Q)) exp(—iQ - d') exp(iQ - d)Sy"' S},

dd’
(2.43)
and for —k respectively
25 Q—-k—1) Zexp —Wa(Q)) exp(=Wy(Q)) exp(—iQ - d’) exp(iQ - d) S, TS
" (2.44)

We used the results in Eqgs [2.15] [2.17] and [2.20] obtained for nuclear scattering in order
evaluate the sum over 1 and I’. The full expression for both terms taking into account the
magnetic form factors and all prefactors is given by

_dU kat kg

(dQ) . N(yro)* ZE:E: Sas — QuQp) FxfTFY6(Q — k — ),
e T {k}

where Fj\’} = ngFd ) exp(—=Wqu(Q)) exp(iQ - d)S(’;, (2.45)

is the magnetic structure factor. The sum over {k} is over both propagation vectors.
From the J-function we see that when neutrons are scattered from an incommensurate
magnetic structure the magnetic intensity appears at satellite positions Q = T4k relative
to the nuclear Bragg peaks at 7 (s. Fig . When several k-vectors are present in
the magnetic structure the sum over {k} is extended over all of them. If the magnetic
structure is commensurate with the chemical lattice k = 0 (e.g. for a simple ferromagnet)
and the magnetic scattering appears at Q = 7 and in Eq. we will have SY = R)

(compare Eq. and 6(Q —k—7) — d(Q —T).
2.3.6 Inelastic magnetic scattering

We will relate the inelastic term I;;(Q, 00)J;;:(t) to the magnetic dynamic susceptibility
and to the magnetisation of a magnetic sample. The corresponding inelastic magnetic
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Figure 2.5: A incommensurate magnetic structure with propagation vector k is illustrated in
reciprocal space.

cross-section is

d’o 77“0
dQdE' . 2mh K Z (dap — QaQs) Z gwngd/ ) Fa(Q)
mag,ine

l’d’ld

X / (exp{—iQ - Rya(0)} exp{iQ - Ria(00)}){ Sz (0)Sj(1)) exp(—iwt).
(2.46)

We will quickly review some results of statistical quantum mechanics which we will use in
the following. We consider a quantum mechanical system whose ground state is described
by the Hamiltonian Hy. If an external force F'(t) couples to the operator B of the system
we can write the new Hamiltonian H of the system like

H=Hy+H'(t) = Hy— F(t)B, (2.47)

where F(t) = 0 for t < o. It can be shown [Sch97] that the response of the system in the
observable (A) due to the perturbation is given by

AAW) = (A(0) = (A= [ dtxanlt - O)F(E) (2.45)
Here the dynamic susceptibility or linear response function is defined by

i
xap(t = 1) = 20t =) {[A(t). B{t')])o, (2.49)
namely the expectation of the commutator of the two Heisenberg operators A(t) and
B(t") (with respect to the Hamiltonian Hy). The introduced Heavyside step-function ©
conserves causality. Finally we will use the fluctuation-dissipation-theorem [Lov84l [Sch97|

Im(xap(w)) = FrGap(w) {exp (—k%) - 1] , (2.50)
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here Gap(t) = (A(0)B(t)). xap(w) and G 4p5(w) are the Fourier transforms of x 45(t) and
Gagp(t). From Eq. we can define an operator (s. reference [Lov84] for details)

Q.1 =Y %ngd(Q) exp(—Wa(Q)) exp {—iQ - (L — d)} Spa(?) (2.51)

and therefore find for
Gap(Q,1) = (TS(0)TZ o (1)) (2.52)

Together with Eq. and by taking into account the integration in time the inelastic
magnetic cross-section can be rewritten as

d? (yro)* k A
(deO;E/)mgml == ﬂ% k—f {n(w) +1} ;(%5 — QuQs)Im(xap(Q,w)), (2.53)

-1
where we defined n(w) = {exp (kBﬂT) — 1} as the Bose-FEinstein function. The factor

{n(w) + 1} takes into account the Bose-Einstein statistics of excited quasi-particles. We
note that we have related the magnetic inelastic cross-section to the magnetic dynamic
susceptibility

(2pp)* i 3

Xasl@.1) = “HEL L (T(0)T7 (1) (2:54)
that is the response of the magnetisation of the sample to an applied magnetic field B.
Through this relationship the microscopic information obtained in a neutron scattering
experiment can be compared to the results of macroscopic probes that measure the sample
magnetisation or the magnetic susceptibility.

2.4 Polarized neutron scattering

2.4.1 Polarisation of a neutron beam

A neutron spin represents a spin—%—system that is generally expressed as the state vector

1 0
X:aXT"'in:a(O)"'b(l) (2.55)

which describes the superposition of eigenstates being parallel or antiparallel to the chosen
quantisation axis in a two-dimensional Hilbert space Hs. From now on they will be called
the up and down states, respectively. |a|> and |b|* are the probabilities of the system being
in the up or the down state. Because the probability that the system is in any of these
two state is 1 the normalisation condition

X'x = laf® +[b]* = 1 (2.56)
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has to be fulfilled.
The polarisation of a single neutron is defined as a unit vector pointing in the direc-
tion of the neutron spin, given by the expectation value of the Pauli-matrices defined in
Eq. (s. also [Lov&4]):
P = <6>=x'6x="Tr(06),
2 *
. b la*  ab
where 0 XX ( ba* [bf? (2.57)

is the density matrix operator which defines the probability of a certain spin state [Fan57].
If the following valid choice

RS-

a = cos §ei b = sin 56_2% (2.58)

is used then we find for the polarisation of the neutron

2R(a*b) sin 6 cos ¢
P = 23(a*d) = | sinfsing | =n, (2.59)
la]? — |b|? cos

where n is a unit vector defined in spherical coordinates (0, ¢). This geometrical inter-
pretation of a general spin—%—state is called the Bloch-representation. We see that a single
neutron is always fully polarised. The polarization of a neutron beam is then

1 .
P = N ZP,- =<< O >>peam, (2.60)

where N is the number of neutrons in the beam and P; is their corresponding polarization.
Therefore the polarization is defined as a property of a neutron beam. This statistical
quantity will be measured by averaging over all neutrons in the beam. For an unpolarised
beam Py is then zero; for a completely polarised beam | Py| = 1; and for a partially polarised
beam 0 < |Pp| < 1.

The direction of the polarisation vector can be manipulated by means of magnetic fields:

e In a homogeneous magnetic field B the components of the polarisation that are per-
pendicular to the field direction start to precess around the field axis (s. e.g [Wil88|
Mez93|) as described by the action

dP(t)
dt
This is called Larmor-precession. The precession frequency is called Larmor fre-
quency and is given by wy, = ;—ZB = B where v, = 27 - 2913%.

—1(P(t) x B). (2.61)

e From Eq.[2.61] we see that the direction parallel to the magnetic field B is conserved.
If the direction of the magnetic field is rotated slowly with respect to Larmor fre-
quency w < wy, then the component of the polarisation vector that is parallel to B
will be turned with the field direction [Giit32, [Cyw06]. This is called an adiabatic
transition and is illustrated in Fig. [2.6]
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Figure 2.6: An adiabatic transition of the polarisation vector: the polarization vector precesses
with wy, around the magnetic field that is turned with a frequency w < wry..

A

2.4.2 The Blume-Maleyev equations

If the incident beam of neutrons is polarised new terms in the equations for the neutron
cross-section derived in the previous sections appear. In Eq. the average over the spin
states of the neutrons incident of the sample has to be evaluated taking into account the
polarisation of the neutron beam properly. The cross-section we want to evaluate is

d20' k?f 1

dE K 2nh dt§p0<0i|vgz(0)|0f><0fa\VQ(t)|0i)eXp(—iwt),
where Vo(t) = (ks|V (t)|ki) = Ng(t) + (vr0)& - Mig(t). (2.62)

Here we already expressed the scattering potentials in terms of Heisenberg operators (s.
section [2.2.1)) with help of Eq. and used the results obtained for the evaluation of
nuclear and magnetic potentials before. The density matrix in Eq. can be expressed

through

6= polo)al, (2.63)

0,0 f

if it is diagonal [Lov84]. The sum and average over the spin states then are represented
by

Y 2olon, [VhO0)lop) oy Vab)lo:) = Y (ol V(0)Va(t)alos) = Tr(aV5(0)Va(t))

0i,0f o
(2.64)
and therefore we can rewrite the cross-section as
d20' k?f 1
= = [ atTr(oVE0)Valt —iwt). 2.65
i = o [ ATV OVa(®) exp(—iwn (2.65)

This expression was evaluated in the 1960s by various contributors [IM62, [Blu63, [Izy63,
Blu64l, [SB68] by use of the density matrix formalism that allows to calculate the mean
values of properties of systems, such as neutron beams, which consist of an incoherent
superposition of particles in different pure states. The formalism is described in [Fan57].
Here we only give the result of this complex derivation:
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d20' k‘f 1
= Lo [
dQdE' k; 2mh
(NQN(E) + pure nuclear contribution
+(7r0)2(MLQMIQ) + pure magnetic contribution
+(vro)Po [(NEM 1Q) + (MIQNQ>] — nuclear-magnetic interference
—i(yro) Po(M g X MIQ) chiral magnetic contribution
} exp(—iwt), (2.66)

where Py is the polarization vector of the incident beam. We readily divided the cross-
section in four different terms. The first two are independent of the initial polarisation
vector Py and therefore are also non-zero for an unpolarised beam. They are the pure
nuclear and magnetic contribution. The last two terms are linearly dependent on Py and
are only non-zero if Py # 0. The third term is known as the nuclear-magnetic interference
term and appears when nuclear and magnetic contributions appear at the same position
in (Q, w)-space (e.g. for a ferromagnet). The last term is the chiral contribution that is
only present when helical magnetic structures or fluctuations exist in the sample. This
will be demonstrated later. We note, that by using a polarised beam more information
can be gained compared to the unpolarised situation.
Additionally the spin state of the neutrons may change during the scattering process due
to the magnetic interaction and consequently the polarisation of the beam Py = (&)
is changed. The expectation of & after the scattering process and therefore the final
polarisation is given by

Tr(0VhoVa)

Tr(oVaVa) |
where the denominator normalises the expression to the probability that any scattering
process takes place. The full expression is then

o by 1
dQdE  k; 2rh

Again the evaluation of the trace over the neutron spin states [IM62, Blu63|, [zy63], Blu64,
SB6§| leads to the expression for the final polarization vector after the scattering process:

’ d20' kfi

4

(2.67)

dtTr(6V5(0)6Vg(t)) exp(—iwt). (2.68)

dQdE' ~—  k; 27h
(7o) (PoM ! o(t)) ML) + (yr0)* (M o(t)(PoM_q)) +

(7o) ((NM1q(t) + (M oNo(1))) +
o) Po x (M gNo(t) — (NGM.o(t))) +

i(
i(yr0) (Mg % MIQ(t)>} exp(—iwt). (2.69)

dt{P0<NQNg(t)> — (y70)*Po(M oM (1)) +

+ + + o+
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The Eqs [2.66] and are known as the Blume-Maleyev equations. Before we discuss the
different contributions present in Eq. we will rewrite it in tensor form for convenience
[Bro01l, JKR*07]:

P’ = PP,+ P", (2.70)

where Py and P’ are again the initial polarisation vector before the scattering process
and the final polarisation vector after the scattering process, respectively. P and P’ are
given by the following equations:

~ (N—MY—M?) iI* —iIY C
oP = | —i (N+MY—M?)  Mmis , oP"=1 RY |. (2.71)
iy Monis (N—MY4+M?) R

o denotes the neutron cross-section for polarised neutrons from Eq. and is rewritten
as

dQO' 2 T Z Dz
= fap - YEMIAAE -RCHRR 4R (2.72)
independent of p dependent on P,

All the terms included in Egs. 2.7 are determined by the nuclear structure factor
Ng(t) and the magnetic interaction vector M q(t) and are summarised in Table [2.1]
They are given in the analysis frame defined in Eq. [2.33]
By investigating this new form for the final polarisation vector in Egs. and we
can directly identify that P describes the rotation of Py due to the interaction with the
sample whereas and P” takes into account that the sample can also polarise the neutron
beam.
The measured quantity is the polarization matrix, namely the components of the final
polarization vector after the scattering process for all three directions of the incident beam
polarization, .

Pij = (Polsi + P) /| Pol, (2.73)

where i and j (i,j = x,y, z) denote the directions of the incident and final polarization
vectors, respectively.

A polarization analysis experiment gives additional information compared to just mea-
suring the neutron scattering cross-section in Eq. 2.72] The additional data can be used
to disentangle the different contributions to the scattering cross-section for each point
in (Q,w)-space. In an unpolarised neutron scattering experiment the purely nuclear and
purely magnetic contributions are superposed whereas all the other contributions are can-
celled due to the unpolarised incident beam (s. Eq. .

In order to demonstrate the meaning of the polarisation tensor we investigate it for a
simple case. We assume that we determine the polarisation tensor on a pure magnetic
reflection of a simple collinear antiferromagnet. Then, without loss of generality the
magnetic interaction vector has the form

M, g =mlé,cos(a) + é,sin(a)], (2.74)
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where the é; (i =z, y, z) are unit vectors in the analysis frame defined in Eq. and «
is the angle between M | g and the y-axis as also denoted in Fig. . m is a real number
denoting the magnitude of the interaction vector on the specific reflection. Further on a
pure magnetic reflection all terms in Eqgs. 2.7 including the nuclear structure factor
Ng are equal to zero, namely N, RY/# and I¥/#. The other terms can be easily calculated
(for a more clear presentation we will set (y79)? = 1 for the calculation):

o MY+ M?* =m?cos?(a) + m?sin?(a) = m?.
o — MY+ M?=—(MY— M?*) = —m?cos?(a) + m?sin?(a) = —m? cos(2a).
o M, = m?cos(a)sin(a) + m?sin(a) cos(a) = m? sin(2a).

e C' =0 as M, g is real and therefore M g || MjQ.

In conclusion we obtain the polarisation tensor

-1 0 0
oc=m? and P= | 0 cos(2a) sin(2a) : (2.75)
0 sin(2a) —cos(2a)

The interpretation of this polarisation tensor is that the component of the initial polari-
sation vector that is parallel to z, and thus to @Q, is always perfectly flipped, whereas the
y and z components are rotated by 180° around the magnetic interaction vector M q.
This is summarised in Fig. 2.7 We see that by evaluating the polarisation tensor the
direction of the magnetic interaction vector with respect to the crystallographic axis can
be determined. By doing so for a for a few magnetic reflections the direction of the mag-
netic moments often can be extracted. However, it contains no information about the
magnitude of the moments’|

Figure 2.7: The change of the polarisation vector in the scattering process on a pure magnetic
reflection with a magnetic interaction vector of the form denoted in Eq. is shown. The three
view panels show the effect on the polarisation for the z-, y- and z-component of the polarisation
vector (from left to the right), respectively.

®Remember in this frame the x-component of M | g is per definition equal to zero.
6 At least on pure magnetic reflections.
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Table 2.1: Terms contained in Eqs. [2.71 2.72|; <AQEIQ>W =51 [dt exp(—iwt)(/lQBTQ(t)) (e.g.
s. [Mal99])are inelastic correlation functions; @ is the scattering vector and fw the energy
transfer; k; and £y denote the magnitude of the wavevector of incident and scattered neutrons,
respectively; z, y, z denote the three directions in space according to Eq. By performing
the limit Iimt_,oo<AQB£?(t)> = (AQ)(BZ?> the terms used for elastic scattering can be obtained.

Item correlation functions description

N IZ—’: (NN, (J[)>w nuclear contribution

Mvy/* (77"0)2% (M qu_gMchéz>w y- and z-components of the magnetic con-
tribution.

RY* (1) ]Z—f (N, TQMi/QZ%} + <MI%ZNQ>M real parts of the nuclear-magnetic interfer-
ence term.

v () k—’: (N, ng ig)w — (M j_%ZNQ) w imaginary parts of the nuclear-magnetic

interference term.

¢ i(’YT’0>2%(<M3QMIZQ>w — jQMf’Q)w) chiral contribution
f

M iz (’)/Tg)z% ((MJ?J_QMI’E)UJ + <MJZ_QMIyQ>w) mixed magnetic contribution or magnetic-
magnetic interference term

2.4.3 Polarised neutron scattering on chiral magnets

In order to demonstrate the usefulness of polarisation analysis for the investigation of
helical magnets we now consider the neutron scattering cross-section for a single magnetic
helix as it was calculated from the Bak-Jensen model in section For this purpose we
consider a cubic lattice with one single magnetic ion situated at the origin of the chemical
unit cell, so we will neglect the index d used for non-Bravais lattices here. Furthermore,
we will not take into account a magnetic form factor in this example. The magnetic
helix is chosen to have a magnetic propagation vector k = ké,. According to Eq.
we choose Ry, = aé, and I = be, and ¢ = 0. Here ¢; with i = x, y, z are unit vectors
in the Cartesian coordinate system that is spanned by the cubic crystallographic axes.
Therefore the magnetic helix is defined by:

(S)) = aéycos(k-1l)+bé,sin(k-1)
(aéy —ibey) iy | (aly +ibey) iy

= T ey S TP (2.76)
—_—— —_—
=Sk =S5—Fk

We note that for a = b or a # b we have a circular or elliptical helix, respectively. For
educational reasons we will consider two more cases, namely:

e a = 1 and b = 0: This corresponds to a simple amplitude modulated structure,
where the magnetic moment is not turned when one propagates through the crystal.

o R* = qé, and I* = bé,: This corresponds to a cycloidical magnetic structure, where
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the magnetic moments also rotates as for a helix, however in a plane that is parallel
to the propagation vector.

All the different cases are demonstrated in table 2.2l We will now calculate the cross-
section and polarisation tensor for the different structures for illustration. As the magnetic
scattering is dependent on the orientation of the magnetic structure factor with respect to
the scattering vector @ we will do so for a specific position in reciprocal space. We chose
to calculate the relevant quantities for the special case of the two magnetic satellites
around the nuclear Bragg reflection (0,0,1), namely Q+ = (0,0,1 £+ k) and Q will be
parallel to the propagation vector k = ké, for both reflections. Hence, according to the
magnetic selection rule (s. section the magnetic interaction vector M g will only
have non-zero components in the x and y direction in the crystal coordinate frame. From
Eq. we see that

M,q = Q x (8% x Q)a (2.77)

for a Bravais lattice (the Debye-Waller-factor and the magnetic form factor are neglected).
For the further calculation in terms of the Eqgs. 2.70] and M o needs to be
expressed in the polarisation analysis reference frame defined in Eq. [2.33], where we define
the scattering plane to be parallel to the crystallographic x and z directions. Finally, we
note that as we consider pure magnetic Bragg reflections here, all terms containing the
nuclear structure factor Ng are zero: N = Rv/* = Jv/* = .

All the terms necessary for the calculation together with the results are summarised in
table for both reflections Q+ = (0,0, 1 & k) and we only discuss the results here:

e From the calculated expressions for the cross-sections we see that using unpolarised
neutrons (Py = 0) the four distinct structures would give identical terms for both
reflections. Therefore it would not be possible to distinguish the structures from
each other. The calculated intensities are not identical for different models, however,
the difference is only a scale factor. This indicates that to get identical intensities
for all models the size of the magnetic moment would have to be different for each
model. Further, we note, that by measuring the intensities on multiple magnetic
Bragg reflections one may distinguish between the models due to different mutual
orientation of S* and Q

e For the amplitude modulated structure and the cycloid the chiral term is equal to
zero whereas for the circular helix and the elliptical helix it is non-zero. The chiral
term is not generally zero for the cycloid; here it only vanishes due to the orientation
of Stk = @ with respect to Q = Q4 = (0,0,1 & k): the z-component of
S** is removed due to the magnetic selection rule. Measuring the polarisation
tensor on a different magnetic reflection where Q is nearly perpendicular to S**, i.e
Q = (0,5,+k) would reveal a chiral term. However, for the amplitude modulated
structure C' = 0 always. Hence, measuring the cross-section on both satellites
around one or two distinct nuclear Bragg reflections with different orientations of

Q and with a incident neutron beam that is polarised parallel to Q (x direction)
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Table 2.2: Four different modulated structures are demonstrated for a simple cubic
crystal. The corresponding magnetic Fourier components S** and magnetic interaction
vectors are summarised for the two magnetic satellite reflections Q+ = (0,0, 1£k). Finally,
the cross-section and the polarisation tensor are provided, together with the quantities
used to calculate them (s. Eqs [2.70} [2.71) and [2.72| and table .

Name | Ampl. modulated | Circular helix Elliptical helix Cycloid
z L Z J§
/k X y J\ X
Figure X y X y y
| Q. =(0,0,1+k)
Sk % (aéz —2iaéy‘) (aéI;ibey)b (aenc—zaez)
MJ-Q (07 %7 O>2 <O7 %7 _2%1) (07 %7 _:E) (07 ;7 O)
MY (yr0)*% (77“0)2%2 (77“0)2%2 (yr0)*%
M= |0 (yro)*4 (yro)*% 0
M™® 10 0 0 0
c o ()’ (0’2 0
& (yro)*% (o)’ 1+ P) | orrierge) | (yro)?%
-1 0 O -1 0 0 1 0 0
P;; 0 1 O -1 0 0 pol. tensor pro- 1 O
0 0 -1 -1 0 0 vided in table 0
| Q_ =(0,0,1—k)
Sk aéy (aéxtiaéy) (aéz+ibéy,) (aéy tiaéz)
a 2 a 'L'a2 a ib2 a2
MJ-Q (07570>2 <07 §7+25) (0>§7+2§) (07 270)2
MY (vr0)*% (77‘0)2%2 (77”0)2%2 (yr0)*%
M= 0 (yro)* % (77“0)2% 0
M™F 10 0 0 0
C 0 —i—(w‘o)Q; +(vro)? 2L 0
% Om*y (o) S (L = Pg) | eror22-psh) | (yr0)* %
-1 0 O 100 -1 0 O
P;; 0O 1 O 100 pol. tensor pro- 0 1 0
0 0 -1 100 vided in table 0 0 -1
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Table 2.3: The missing polarisation tensor in table [2.2| for the elliptical helix is provided

for the two magnetic Bragg reflections Q4+ = (0,0,1 + k). We denote o = ¢

b

Q_=1(0,0,1+k) Q_=(0,0,1—k)
—(a?+1)P7 —2a —(a?+1)PF+2a
a?4+142aPF 0 0 a?+1-2aPf 0 0
P.. _ 2 a?-1 2a a’-1
Y a’+1 a?+1 0 +a2+1 a’+1 0
_ 2 0 1—a? + 2a 0 1-a?
a?+1 a?41 a?+41 a?+1

allows to identify whether the structure exhibits a magnetic chirality or not.

Additionally, we note that the chiral term changes sign for the two corresponding
satellites Q@+ = (0,0,1 £ k). This is not due to a different chirality of the two
satellites but rather corresponds to a single-handed screw that is screwed and un-
screwed’| This means that by measuring the intensities on both satellites one can in
principle conclude whether the helix is left- or right-handed. However, as we need
to pay attention to domains: often right- and left-handed magnetic spirals are en-
ergetically degenerate in centrosymmetric crystals. This leads to equally populated
chiral domains and the observed chiral term becomes equal to zero in this case, as
left- and right-handed spirals have a different sign in the chiral term on a specific
reflection.

If additionally the polarisation tensor is measured it is even possible to distinguish
between the different helices shown. The circular helix always perfectly polarises the
beam along the z-direction in the polarisation coordinate frame. For the elliptical
helix additional yy and zz elements are observed and the final polarisation along
the r-axis depends on the ratio a = §. By comparing the yy and zz elements with
Egs. and we additionally see that the respective sign of the two terms also
determines along which axis a and b are oriented. Finally, if the polarisation tensor
is measured on different magnetic satellites with distinct orientations of S** with
respect to Q allows to identify in which plane the magnetic moments rotate when
the helix propagates through the crystal.

In conclusion we have demonstrated that polarised neutrons and most of all full polarisa-
tion analysis are highly suitable tools to investigate chiral magnetism. We note, that the
power of polarisation analysis lies in determining the direction of the magnetic moments.
In order to get additional information of their respective size additional integrated inten-
sities have to be determined by powder or single crystal neutron diffraction. Also, if more
than one magnetic ion is present in the unit cell chiral terms can be observed even if the
moments on each single site do not form a helical structure, since in neutron scattering
the total magnetic moment of the unit cell is observed and this may form a magnetic
spiral even for such cases. Finally, we want to highlight that in case magnetic domains (s.

"For the process of unscrewing the sense of rotation is changed with respect to the observer, however
also the propagation direction changes and therefore the chirality is identical for both processes.
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chapter (3) or multiple magnetic ions are present in a magnetic crystal, the determination
of magnetic structures can be challenging even with the use of polarised neutrons.

2.4.4 Experimental polarisation

The neutrons produced in a neutron source have no preferred direction for their spins,
i.e. a general neutron beam is unpolarised. There are basically three methods, which are
commonly used to polarise a neutron beam.

3He polarisers polarise the neutron beam via the spin-dependent absorption cross-
section of spin-polarised *He gas for neutrons oy = 0 & 0, where the +-cases
denote the orientation of the neutron spin with respect to the spin-polarisation of
the gas. The transmission of such a *He filter is described by

t* = exp[—Nd(og + 0, /00)], (2.78)

where N and d are the atomic concentration of the gas and the thickness of the
filter, respectively [TR95].

Single crystal polarisers make use of the presence of the term o P” in Eq. that
polarises the beam E.g. non-zero terms RY/? are present for centrosymmetric
ferromagnetic single crystals without ferromagnetic domains. A mono-domain state
is generally achieved by applying a magnetic field to the crystal. If they additionally
have the property (yro)|M_g| = |Ng| on a specific Bragg reflection then the beam
is fully polarised parallel to the direction of the applied field after the reflection at
the crystal [Wil88]. Examples for crystals with this property are the (111) reflection
of the Heusler compound CuyMnAl (d-spacing 3.43 A) and the the (200) reflection
of the alloy CoggoFegos (d-spacing 1.76 A).

Polarising (super-)mirrors. The angle of total reflection for neutrons from a magne-
tised ferromagnetic thin film is given by

6= = \/N(b+p)/, (2.79)

where A is the neutron wavelength, NV is the nuclear density and b and p are the
nuclear and magnetic scattering length, respectively. The + and — case describe
the reflection angle for neutrons having spin antiparallel or parallel to the direction
of the magnetisation of the film. For the ideal case b = p all reflected neutrons
are polarised. Reflection angles are very small for thermal and cold neutrons and
depend on the wavelength of the neutrons (e.g. 6 ~ 0.4° for A = 4 A and FesyCousVs
as magnetised film). This problem is usually solved by producing films of multiple
magnetic and non-magnetic layers, called supermirrors. Typical combinations of
materials are Fe/Si, Co/Si and Fe;gCoysVy/TiNi,. Often multilayers are used in

8For an unpolarised incident beam (P,) the part Pin Eq. does not contribute.
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devices called benders. Multiple multilayer-wafers (up to a few hundred) are pressed
in a curved shape, e.g. S- or C-form, in order to polarise the beam completely by
multiple reflections. As wafers transparent substrate material (e.g. Si) is used, on
which the supermirror is deposited by sputtering techniques. Such a device is placed
downstream of the monochromator of the experiment (compare also [Bén00]).

After the scattering process at the sample, the final polarization can be measured with
a similar device as is used for polarising the beam. Since different components of the
Pauli-operators do not commute, i.e.

(64,0, =216, and cyclical, (2.80)

only the projection of the polarization vector on the quantisation axis of the analyser can
be measured. E.g. for a supermirror the magnetisation direction of the film represents
the quantisation axis for the neutrons spins. Without loss of generality we define that
this axis is parallel to the z-axis. Then all the spins will collapse to states being parallel
(up) or antiparallel (down) with respect to the z axis. The distribution of the spins into

these two states will fulfil the condition (s. Eq.[2.59)
Pl =<6, >=|a]* — |b? (2.81)

where |a|? and [b]* are the probabilities for the spins being in the up or down state

respectively. We define the neutron intensities scattered into a detector situated behind

the supermirror for the magnetisation being parallel or antiparallel to the z-axis as I and

I~. Then the ratios between the two intensities /™ and I~ determine the probabilities for

the neutrons being in up and down state and therefore also the experimental polarisation:
It I~ It —1I-

2= d pf=—— =P =——-.
|a| an || ]++_[_ z [++[_

2.82
It +1 (2.82)

Thus, experimentally, the polarization is defined as the projection of the polarization
vector on an axis defined by the applied quantisation axis of the measurement device. We
note that often instead of reversing the magnetisation direction of the supermirror a -
flipper is used. This device is installed upstream of the polarisation-analyser and rotates
the polarization vector by 7 around an axis perpendicular to the quantisation axis of the
analyser by using a magnetic field (s. Eq. [2.61)) and therefore has an identical effect.
When non-ideal polarises, analysers and flippers are used in an experiment this has to be
considered when comparisons to a model for a magnetic structure are performed. This is
done by calculating the general polarisation dependent intensities that are corrected for
the polarising and flipping efficiencies for all devices and then calculating the intensities
by

Jriti _ [tied 3 J g
e e A ey e (283)

+
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where P™ and P~ are the experimental polarisations for the initial polarisation before
the scattering process being up or down respectively and i,j = x,y,z according the defined
analysis frame (s. Eq.[2.33]). The intensities are calculated via

I+t = fo[Py(PiotHi+(1=Py)o =)+ (1= Po)(Piot =+ (1-P1)o~i77)]
[
[
[

I7777 = [o|Pea(Prero "I+ (1—Pier)oti™ ])+(1—P2€2)(P15107i+j+(1_P151)‘7H+j)]' (284>

[7i4 = [o[Py(Pie1o™ "4+ (1=Pre1)ot ) +(1-Py) (Prero ™ 4 (1=Pier)o 7))

Iti-i = Io| Poceo }:'1¢:7'+Z J+(1 Pl) —i= ])+(17P2€2)(P10'+7’+3+(17P1)a'_1+3)]

Py (1) and P, (e9) are the polarising (flipping) efficiencies of the polarisers (flippers) before
and after the sample, respectively, and o/ = |(0;|Ng(t) + (yro)o M g(t)|o:)|*[Bro06]. In
the Eqs. the efficiencies for the polarisers (flippers) take into account that the beam is
not fully polarised (flipped) by the devices and therefore mix the corresponding "up’ and
"down’ channels for the polarisation correctly via the adequate transition matrix elements
0. We note that 0.5 < P;, P»,e1,62 < 1 must be true always. For P, = P, =¢; =y =1
the method above is equivalent to calculating the polarisation tensor via the Blume-
Maleyev equations defined in Egs. 2.70] R.71] and 2.72)F]

2.5 MuPAD

As the major technique used during the course of this work was neutron polarisation anal-
ysis we will review the device used for the experiments here. The additionally employed
types of neutron scattering instruments are summarised in appendix [A]

In the previous sections we have considered all necessary elements to carry out a po-
larisation analysis experiment. However, we additionally have to take into account that
careful control of the polarization vector throughout the whole experimental setup is nec-
essary in a polarization analysis experiment as magnetic stray fields in the environment
of the instrument may depolarise or rotate the polarization vector. This fact becomes
more evident when we consider a polarised neutron beam with wavelength of 1 A (corre-
sponding to a velocity of 3956 ™) travelling a distance of 0.5 m (in the range of typical
distances between polariser and sample) through a homogeneous field of 300 mG (mag-
nitude of Earth’s magnetic field!). In this case the components of the polarization vector
perpendicular to the field axis will be already rotated by ~ 40° (s. Eq. . In classical
longitudinal polarization analysis [MRKG9], the depolarisation of the beam by residual
magnetic fields is prevented by the application of a magnetic guide field along the polarised
neutron beam. However, this setup only allows the projection of the final polarization
vector onto the direction of the guide field to be determined. Any component of the
polarization turned into a direction perpendicular to the guide field upon the scattering
process will be depolarised. Hence only the three diagonal terms of the polarization tensor
may be determined. However, in order to handle the scientific cases presented above the

9For a more detailed discussion of the efficiencies see appendix
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information of the six off-diagonal terms is additionally needed.

As an alternative the neutron polarization can be conserved when any residual fields are
removed from the sample environment by a zero field chamber. Then any component of
the final polarization vector may be determined and the full polarization tensor can be
measured. This method is known as spherical neutron polarimetry (SNP) (For a complete
introduction see reference [Bro(5]). The first device using this technique to perform rou-
tine SNP measurements at finite scattering angles was CryoPAD (Cryogenic Polarization
Analysis Device), presented by Tasset et al. [Tas89] in 1989. It is based on a zero field
chamber, realised through a double superconducting Meissner-shield.

However, for all polarisation analysis experiments conducted within this work a new al-
ternative SNP option was used that employs a mu-metal sample chamber to create a zero
field environment that conserves the direction of the polarization vector throughout the
instrument. The device was developed by Janoschek et al. and is called MuPAD (Mu-
Metal Polarisation Analysis Device)[Jan04, .JKR707]. The chamber mainly consists of a
double layered mu-metal cylinder in which a standard ILL orange cryostat or a FRM-II
closed cycle cryostat can be hosted inside the zero field region. With this setup a shielding
factor S = B,/B; = 1000 — 3000 depending on the direction can be achieved inside the
zero field chamber, where B, and B; are the fields outside and inside of the chamber,
respectively. An overview of the chamber is given in Fig. 2.9

As a polarised neutron beam cannot traverse a mu-metal layer of several mm thickness
without serious losses in intensity and polarization the beam has to enter the zero field
chamber through apertures in the mu-metal. To avoid depolarisation when the neutrons
travel through these apertures and additionally to avoid that magnetic residual fields can
penetrate into the zero field chamber through the entrance and exit apertures coupling
coils (CCs) are used. Neutrons reach the zero field region with their spins parallel to the
guide field of the coupling coil. The transition from the outer guide field to the field of the
coupling coil is adiabatic, whereas the transition from the field of the coupling coil into
the screened area is strictly nonadiabatic, in order to conserve the spin direction inside
the zero field region. The non-adiabatic transition is achieved by passing the neutrons
through the wires of the coupling coil; outer stray fields are avoided by a mu-metal yoke
closely wrapped around the coupling coil. Variation of the scattering angle requires a
splitting of the double mu-metal cylinder. The gap between the two cylinder parts can be
closed section by section by an automated pneumatic system of mu-metal lamellas (see
Fig. according to the scattering angle.

To control the polarization vector of the incident and scattered neutrons a set of two
precession coils (PCs) is used for the incoming and outgoing beam, respectively. They
are hosted in two extensions to the zero field chamber, called arms in the following. The
double mu-metal shields of the arms are connected mechanically and magnetically to the
inner and outer mu-metal cylinder of the central chamber, respectively, assuring a zero
field environment for these coils (Fig. [2.9). The arm at the entrance side of MuPAD is
fixed with respect to the mu-metal cylinders, whereas the arm at the exit side moves
on a rail system together with the opening for the scattered neutrons provided by the
automatic mu-metal lamella system. The two CCs are mounted inside the zero field arms
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(Fig. 2.9)). The PCs are installed inside the zero field arms and special care was taken to
ensure that the return fields of the precession coils cannot influence the polarization vector
of the neutron beam (s. references [Jan04, . JKR707] for technical details). This way, a
precise control of the polarization vector in all directions is achieved. The interplay of all
precession and coupling coils is shown in Fig. 2.8 A neutron beam polarised along the
z-direction enters the zero field region via the entrance CC. The two outer PC’s control
the orientation of the polarization with respect to the scattering plane. The two inner
PC’s turn the polarization within the scattering plane either along and/or perpendicular
to Q. This setup allows full and precise control of the polarisation vector of the neutron
beam incident on the sample and of the scattered neutron beam as well. Hence, all terms
of terms P;; of the polarisation tensor (s. Eq. can be measured. A photograph of
MuPAD is shown in Fig. [2.10]
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Figure 2.8: The setup of MuPAD is shown schematically. A neutron beam polarised along the
z-direction enters into the zero field chamber denoted by the grey shaded area through the inci-
dent coupling coil. The polarization vector is turned by two precession coils with homogeneous
fields perpendicular to each other in order to be aligned along the x-direction. It is scattered
on a non-magnetic Bragg peak of a sample (this case was chosen due to the simplicity of the
picture). Therefore the polarization vector is not changed during the scattering process. Now
the second pair of precession coils downstream of the sample is used to turn the x-component
of the final polarization in the direction of the analyser axis (z-axis). This component is guided
out of the zero field chamber to the analyser by the exit coupling coil. Thus in this configuration
the term P, of the polarization tensor is measured. By using other combinations of precession
angles in the coils all terms P;; of the polarisation tensor (s. Eq. are measured.
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Figure 2.9: A technical drawing of the MuPAD device is shown. (a) n denotes the direction
of the neutron beam. The following details are specified: (1) outer mu-metal shield (2) inner
mu-metal shield (3) primary fixed arm out of double mu-metal shielding hosting all coils for
the incoming neutron beam (4) precession coils for manipulation of the polarization vector
incident on the sample (5) coupling coil to conserve the polarization vector of the incoming
beam (6) mu-metal lamellas for automatic closure of the beam slit when the scattering vector
is changed (7) top hole for insertion of standard ILL orange or FRM-II closed cycle cryostats
(8) non-magnetic pneumatic cylinders which move mu-metal lamellas (9) sample position in
chamber (10) secondary moving arm which hosts coils for the outgoing neutron beam; arm
is moved together with the host spectrometer (11) precession coils for manipulation of the
final polarization vector (12) coupling coil to conserve the polarization vector of the outgoing
beam (13) non-magnetic rail system on which the moving secondary arm is mounted. (b) A
detailed view of the pneumatic lamella system for automatic closure of the zero field chamber is
shown: (1) pneumatic cylinder which moves lamellas up and down (2) inner mu-metal lamella to
magnetically close inner cylinder of chamber (3) cylinder which spreads inner and outer lamella
towards the inner and outer mu-metal shield to assure good magnetic contact when the chamber
is closed (4) outer mu-metal lamella.
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Figure 2.10: A photograph of MuPAD installed on the triple-axis spectrometer TASP [SRBO01]
at the continuous spallation neutron source SINQ of Paul Scherrer Institut is shown.



Chapter 3

Magnetic symmetry analysis

In this work polarised and unpolarised neutron diffraction techniques were used to deter-
mine the microscopic magnetic structure of two different compounds. The determination
of magnetic structures by means of neutron scattering is significantly facilitated when
symmetry considerations are employed in the analysis of the data. In this chapter the use
of group theory in the analysis of magnetic structures will be established. Additionally
we use this theoretical framework to discuss the possible emergence of different types of
magnetic domains when the symmetry of the magnetic structure is lower compared to the
symmetry of the chemical structure.

3.1 Group theory

3.1.1 Definition of groups

Magnetic symmetry analysis is based on group theory. In the mathematical sense a group
is defined as follows [Cot90):

A group (G, *) is a set G with a binary operation * that satisfies the following
four axioms:

[

Closure: For all elements g;, g2 in G, the result of g; * ¢, is also in G.

. Associativity: For all g1, g and g3 in G, (g1 * g2 ) * g3 = g1 * (g2 * g3).

3. Identity element: There exists an element e in G such that for all g in
G,exg=g*xe=g.

4. Inverse element: For each g; in G, there exists an element g» in G such

that g1 * go = g2 * g1 = e, where e is the identity element.

[\V]

23
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All (chemical) crystal structures can be grouped into the so-called 230 space groups. A
space group is a group of symmetry operations, e.g. rotations, rotation-inversions, trans-
lations, that describe the symmetry of a given crystal. All space groups are tabulated
in reference [HahO6]. It turns out that the space groups form groups in a mathematical
sense since their elements, namely the symmetry operations, rigorously satisfy the group
axioms. Hence, the mathematical framework of group theory is also applicable to space
groups.

3.1.2 Irreducible representations

A symmetry operation is most conveniently represented in terms of a matrix. E.g. it
may be expressed by a 3 x 3 matrix that transforms the coordinates of an atom according
to the symmetry operation. Any system of matrices I'(g) related to each element g
that complies with the same multiplication rules as they are valid for the group G is
called a representation of the group G. The dimension of the matrices I'(g) signifies the
dimension of the representation. For a given group generally a multitude of equivalent
representations exists that are related to each other via unitary transformations U}

UT(g)U~" = D(g). (3.1)

If a unitary transformation exists that transforms the matrices I'(g) in such a way that the
resulting matrices f‘( g) have block-diagonal form, then the resulting blocks in the matrices
multiply independently and hence fulfil the same multiplication rules then the original
matrices. Therefore the blocks form themselves a representation of the group g that has
a reduced dimension compared to the original representation. In the case that no unitary
transformation exists that can reduce I'(g) to block-diagonal form the representation is
called a irreducible representation [INO91]. The original reducible representation can be
expanded into the irreducible representations via

r=Snr, (32)

where n, denotes how often the vth irreducible representations is contained in I'.

When a physical problem is considered it is expressed in terms of some variables ¢\ (A=1, ...

that correspond to the specific problem, e.g. in our case the positions of the atoms in the
crystal or the direction of the magnetic moments. The action of a symmetry operation g
upon some function of the coordinates f]is defined by [INO91]

T(g)e(r) = plg~'r) = ¢'(r), (3-3)

'Representations that cannot be transformed into each other via unitary transformations are termed
nonequivalent.

2These a not necessarily the coordinates of space but rather the coordinates of the coordinate frame
that was defined for the specific physical problem.
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where T'(g) denotes the operator corresponding to the symmetry operation g in the space
of the functions ¢,. Hence, the functions ¢, are the unit vectors of the p-dimensional
space of functions W related to the specific physical problem. The physical quantities
©(r) that correspond to vectors in W can be expressed as linear combinations of the p
unit vectors ¢,. Therefore, we can rewrite Eq. as

T(9)or(r) = ¢'(r) = > Tn(g)eu(r), (3.4)

where I';,1(g) is a representation of the group G in the space of functions W. The functions
©x(r) can be transformed into each other via the symmetry operations and the specific
form of the transformation in the space W is given by the matrices I',»(g).

This signifies that if an unitary transformation U exists that reduces the matrix represen-
tations I',x(g), also the functions ¢y (r) split up into independent subsystems of functions

(1) = 3 Unnpulr). (3.5)

that do not intersect in the case of symmetry transformations. Hence, finding the irre-
ducible representations I'V is equivalent to expressing the initial physical variables @, (r)
through the symmetrized linear combinations in Eq. [3.5]that are called the basis functions
of the irreducible representation of the group G in the basis space W.

We emphasise that due to this method the number of free physical parameters is often
significantly reduced as the parameters that are found to be related by symmetry are
no longer independent. E.g. in the case of structure determination with neutrons no
longer all possible atomic positions are fitted independently but only those, that are not
related by symmetry. In group theory a method called the projection operator is used to
obtain the basis functions of the irreducible representations (for a complete derivation see
[INO91]). The projection operator is defined as:

U= Po= s @I (=1L, (3.
geG

where n(G) is the total number of symmetry elements of the group G and [, is the
dimension of irreducible representation I'V. Thus, for a given space group the problem can
always be reduced via the projection operator that projects the original problem onto the
lower dimensional space of the symmetric basis functions of the irreducible representations.

3.2 Magnetic representation analysis

For the symmetry analysis of magnetic structures two facts have to be taken into account
additionally. In section we have already learned that spins and thus also magnetic
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moments are pseudo vectors and therefore behave different under improper rotations. Fur-
ther, many magnetic structures are long-periodic modulated structures (compare sections
[1.2.2] and table I in reference [Izy84]) that are difficult to describe within the normal
crystallographic space groups as the magnetic unit cells are then often incommensurate
with the chemical lattice. This problem is circumvented by using the concept of magnetic
propagation vectors that we will describe in the following. The consequent application of
the concept then allows the construction of symmetrized basis functions for the magnetic
structure.

3.2.1 The propagation vector

We have already used the concept of a magnetic propagation vector in sections
and to describe magnetic structures with a periodicity A that is different from the
underlying chemical lattice without specifying it in detail. Generally periodic physical
variables U¥(r) that have to comply with the underlying crystal lattice that is defined
by lattice translation I (compare section m and especially Eq. have to fulfil the
following condition [INO91]

T()V*(r) = exp(—ik - 1)VU*(r), (3.7)

where T'(1) is the action of a lattice translation operation on the space of functions W. This
is equivalent to Bloch’s theorem for wave functions of electrons in a periodic potential.
The most general solutions for Eq. and therefore the basis functions for the group of
translations are the Bloch functions

Uk (1) = ug(r) exp(ik - 1), (3.8)

where ug, denotes a periodic function with the periods of the non-inverted lattice. We see
from Eq. that the function W*(r) is transformed into itself with the accuracy of the
numerical phase exp(—ik - 1) under the action of a pure translation operation 7'(1). Thus,
the propagation vector is used to propagate the function U*(r) that is periodic in 7 from
the zeroth to the nth cell, where 1 is the translational vector interconnecting the two cells.

3.2.2 The little group

We have seen in the preceding section that the translation operations contained in the
elements of a space group G do not change the function ¥*(r). Now, we want to inves-
tigate the action of the remaining rotational symmetry operations. For convenience we
will express the symmetry operations in the Wigner-Seitz notation in which all symmetry
operations g that belong to a given space group are divided into two distinct parts, namely
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the rotational part h and its accompanying translation T[] The symmetry operation is
then denoted as g = {h|m,}. The multiplication the of elements is then defined via

{a|T HBlTs} = {aBlats + 7o} and {h|7,} ' ={h7 —h 7} (3.9)

The most general form of a symmetry operation g is then {h|7, + l,,} where I,, is an
additional lattice translation from the zeroth to the nth cell. We therefore find that
{h|T, +1,}¥*(r) = ¥'(r). To understand the nature of this new function we will apply
a pure translation to it [INO91]:

T (r) = {1V(r) = {177 + 1.} (r) =
= {hlm, + LH1RTHYUR(r) = {h|1, 4 1.} exp(—ik - b)) UF(r) =
= exp(—ikh™' - D){h|7, +1,}0*(r) = exp(—ihk - 1)¥'(r). (3.10)

Here 1 is the identity operation. By comparison with Eq. we see that /() is also
a Bloch function. Instead of the propagation vector k a new propagation vector hk
generated from symmetry appears in the phase of the Bloch function and we can rewrite
the former expression for W'(r) to

{h|T +1,} 0% (r) = Uhk, (3.11)

Consequently, the Bloch functions in Eq. also serve as basis functions for the whole
space group G containing translational and rotational symmetry operators.
Additionally, Eq. demonstrates that all pure rotational operators hy contained in G
generate a set of propagation vectors 1k, hik, hok, ... from the original propagation vector
KT This set is called the star of the propagation vector (denoted by {k}) and contains
all nonequivalent propagation vectors that are generated from the rotational elements of
the space group G. The propagation vectors contained in {k} are called the arms of the
star ky, = hpk and [, denotes the number of arms. The number of arms cannot be larger
than the number of elements in the point group G° of the crystal, that is the subgroup of
G that only contains the pure rotational operators.

All symmetry elements g in G that leave the propagation vector unchanged are elements
of the little group that is generally denoted by Gg. Naturally Gy is a subgroup of G (and
not of GY) that contains all translational operators but only rotational operators that
leave k invariant. We can expand G in terms of Gy.

Uk
G=> g.Gh, (3.12)
L=1

3Some of the symmetry elements, e.g. screw-rotations or gliding reflections inherently contain trans-
lations. Additionally a translation may be present, when the symmetry operation is not centred at the
origin.

4Translations are not considered since the propagation vector starts from the centre of the Brillouin
zone and thus are not affected by translations.
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where gj, is the element-representative of the expansion.

Similarly to the procedure for the space group G described in section irreducible
representations for the littel group by Gj can be derived that we will denote with v**
and its dimension with [,. Hence, for each irreducible representation [, basis functions
Uhv(p) = uy, (r)exp(ik - 1) (A = 1,...,1,) exist. However, Eq. compromises that
elements g of the space group G that are applied to such a basis function (Bloch function)
generate new basis functions with a distinct propagation vector k; that belongs to the
same star. Therefore the space group is characterised by an irreducible representation of
the entire star {k} that is called I't*}*. This signifies that each irreducible representation
vk of a little group Gy induces an irreducible representation 'k} of the entire space
group. The basis functions of the space group are formed of the basis functions of all arms

of the star \Il’fly, ce \IJZ“’, \Ilfz”, cee \Iflkf”, ce \I/Tl’“y, cee \IJ;?’“V. The relation between <
and T1*} is expressed mathematically via [INO91] the formula
e 1
{k}v _ k(-1 _ )L it gr99m € Gi
FL)\,MM(Q) — fYAu(gL ggM) - { 0’ otherwise, (313)
where \,u=1,...,1, and L and M are numbers of the according arm of the star. Thus,

it sufficient to know the irreducible representations of the little group G and map them
via Eq. to the irreducible representation of the space group. The matrices v** are
tabulated for all 230 space groups in reference [Kov65| via the projective representation
7, that is only valid for the zeroth block (no translation, i.e. for the little group GY, of
the point group G°) but that can be converted back by the equation [INO91]:

7*(g) = () exp(—ik - ) (9= {hlT}). (3.14)

3.2.3 The magnetic representation

The projection operator defined in Eq. together with the relation defined in Eqgs. [3.13
easily allows the construction of the basis functions for a given physical function ¢(r) for
all 230 space groups. However, we still do not know the action of the symmetry operators
T(g) in Eq. onto the specific physical function that describes a magnetic structure.
This will be derived in the following.

A magnetic structure is described by magnetic moments that are situated at the positions
of the magnetic ions in the crystal. We introduce a 30, N-dimensional vector (o, is the
number of magnetic ions in the unit cell) that describes the magnetic structure

o = Z® ot exp(ik - 1,,), (3.15)

where the sum over n is a direct sum over all N cells of the crystal. o2 is a 30-dimensional
vector in which only the component that denotes the S-component (e.g. f = x, vy, z) of
the magnetic moment of the dth magnetic ion in the zeroth cell is equal to one whereas
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all other components are equal to zero. The phase factor exp(ik - 1,,) accounts for the
propagation of the structure in accordance with Eq.

Now we can investigate the action of 7'(g) on the functions in Eq. [3.15] This action will
be two-fold as it will move the position of the magnetic ion and additionally will change
the direction of the magnetic moment. The application of g = {h|7,} on the position 74
of the magnetic ion d in the zeroth cell gives

grq = hrg+ 1, =ro + a,(g, d), (3.16)

where ry is the position of magnetic ion d’. The magnetic ion will be generally moved
to a position outside the zeroth cell which is denoted by a,(g, d) that is the connection
vector between the zeroth cell and the new cell and is called the return translation. Thus
the function Eq. will receive an additional phase factor exp|—ik - a,(g, d)] upon ap-
plication of ¢ in accordance with Eq.

For the action of T'(g) on the magnetic moment we have to consider that magnetic mo-
ments are pseudo vectors and therefore behave different under improper rotations. We
will denote the component 3 of the magnetic moment of the magnetic ion d as Sg . Since
according to Eq. the magnetic ion d is transformed into the magnetic ion d’ the same
is valid for the respective moments and in addition to the rotation the magnetic moment
will collect the phase factor exp[—ik - a,(g, d)]. Thus, we find for the application of g

985 = 0,R" ;S5 exp[—ik - a,(g, d)], (3.17)

where Rhﬁ is a rotation matrix corresponding to the rotational part of ¢ and ¢; is the
determinant of R o that takes into account the transformation properties of pseudo vectors

under improper rotatlonﬂ
This allows us to formulate the action of T'(g) on Eq3.15{as [INO9]]

T9)e = Y {19} vaasei (3.18)

where  {v¥(9)}vaas = exp[—ik - ay(g,d)]6n R s0a ga- (3.19)

Here the Kronecker symbol d4 44 describes the permutation of the magnetic ions due to
Eq. with gd being a short form of gry. Finally, by introducing Eqs. and
into the projection operator in Eq. the basis functions of the magnetic irreducible
presentation are obtained as [INO91]

vk = Z ZUM@ Sk exp(ik - 1,), (3.20)
By
kv .
where SJY = Z 7/\[/4 )exp[—ik - a,(g, d)|0q gadn Ry[ﬁ] : (3.21)
hEGO R];[ﬁ}

5The determinants of the rotation matrices corresponding to proper and improper rotations are equal
to 1 and -1 respectively.
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where the two direct sums are over all N cells of the crystal and over each magnetic ion
i in the unit cell. The indices in square brackets are fixed. The S*¥ have the physical
meaning of magnetic moments forming a magnetic structure with propagation vector k.
Therefore they can be identified with the magnetic Fourier modes that we already defined
in section in order to describe a magnetic structure.

We note that for the calculation of the basis functions U5 only the knowledge of the prop-
agation vector k (that can be experimentally observed in neutron scattering, s. section
, the position of the magnetic ions in the primitive cell of a magnetic structure and
the space group of the crystal (in order to know the irreducible presentations of the little
group v (g) from the tables in [Kov63]) are necessary. The set of magnetic basis function
Wk then describes all magnetic structures that are in agreement with the symmetry of the
crystal structure. The real magnetic structure can be described as a linear combination
of these magnetic basis functions with complex mixing coefficients C¥. The magnetic
structure of the crystal then can be found by fitting the magnetic model corresponding
to the linear combination of the basis functions to the observed magnetic diffraction pat-
tern. Thus, the only task that has to be performed in order to identify the real magnetic
structure is to find the proper irreducible representation v and the corresponding mixing
coefficients C¥” that give the best agreement with the observed data.

Nowadays the magnetic basis functions that give an initial model for fitting the magnetic
structure can be calculated by computer programs that only need the propagation vector,
the position of the magnetic ions and the space group of the crystal as input parameters,
examples are the programs MODY [SBP04] and BASIREPS [RC06].

We emphasise that the basis functions in Eq. are in general complex. However, as a
physical quantity the magnetic structure is real. This is no inconsistency since in general
the propagation vectors k and —k exist in a pair (compare e.g. reference [lzy84]) and
their related basis functions are considered together as we already used it in section [2.3.5]
which leads to a real magnetic structure (compare Eq. .

3.3 Magnetic Domains

We have seen that the symmetry of a magnetic structure that develops in a crystal has
in general lower symmetry compared to the symmetry of the crystal. This leads to the
formation of magnetic domains. Here we will summarise the different types of possible
domains and some of their consequences on magnetic structure determination.

3.3.1 Configuration domains

In section we have shown that some of the rotational symmetry elements in the point
group G° belonging to a crystal do not leave the propagation vector invariant. These point
group elements generate a new arm of the star {k} and lead to so-called configuration or
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k-domains, that is domains linked to another arm k; of the star.

As an example we can consider the compound MnSi that was also investigated in this
work. The crystal structure of MnSi belongs to the cubic spacegroup P2;3. The cor-
responding point group is 23 and contains 12 symmetry operations. The application of
these symmetry operations on the magnetic propagation vector of MnSi that is equal to
k = (2r/a)[¢, (] with ¢ = 0.016 leads to an overall number of four different propagation
vectors. This is demonstrated in table. 3.1

Since configuration domains only lead to additional reflections they do not hinder the
determination of a magnetic structure.

Table 3.1: In table we show the action of the 12 elements of point group 23 of MnSi onto
the magnetic propagation vector of MnSi k = [(,( (] with ( = 0.016. The point group oper-
ators are given in the Jones-Faithful notation (JFN) and names are given in the notation of
Kovalev [Kov65] and the International tables of Crystallography (IT)[HahO6].

Kovalev IT | Symm. Op. (JFN) | Action on k

hy 1 X,y,Z [0.0160, 0.0160, 0.0160]
hgy 3111 | 2,X,¥ [0.0160, 0.0160, 0.0160]
his 371 | y2,x [0.0160, 0.0160, 0.0160]
hy 2, -X,-Y,Z [-0.0160, -0.0160, 0.0160]
hio 30 | xy 0.0160, -0.0160, 0.0160]
hy 30y, | -yz,-x :0.0160, -0.0160, 0.0160]
Iy 2, | xy.-z [:0.0160, 0.0160, -0.0160]
his 3.1 | 2y 0.0160, 0.0160, -0.0160]
h 3,17 | V,-2,-x :0.0160, 0.0160, -0.0160]
ho 2; | XY,z [0.0160, -0.0160, -0.0160]
by, 371 | 2 xy [0.0160, -0.0160, -0.0160]
h 31 | -y2zx [0.0160, -0.0160, -0.0160]

3.3.2 180° domains

When the magnetic moments in different parts of a crystal are related via a time reversal
symmetry operation 18(° domains will be observed. The time reversal symmetry implies
that all the moments in one part of the crystal have reversed direction compared to the
moments in the other part. This is because the emergence of spontaneous magnetisation
in a crystal breaks the time inversion symmetry, however, in the absence of an external
magnetic field both directions related via the time reversal are energetically degenerate.
If all signs of the magnetic moments in a magnetic structure are reversed also the sign
of the magnetic interaction vector in Eq. is reversed. For a magnetic structure with
a non-zero propagation vector the two domains cannot be distinguished in a neutron
scattering experiment since for this case only terms of the form MiQMIjQ (i,j=y,z) are
observed, that are identical regardless of the sign of the moment. However, for a magnetic
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structure with zero propagation vector nuclear and magnetic scattering appear at the same
position. When the experiment is performed with polarised neutrons nuclear-magnetic
interference terms of the form N Mi , appear in both the polarised cross-section and as
. . . Q LQ . .
well in the polarisation tensor (compare Eqgs. and [2.72)) that change their sign when
the direction of the magnetic moments is reversed. If real or imaginary nuclear-magnetic
interference terms will be observed depends on the exact magnetic structure and we refer
to reference [Bro05] for a complete discussion.

3.3.3 Orientation domains

The little group Gy defined in section [3.2.2|is the group of all symmetry operations that
leave the propagation vector invariant. The real magnetic structure of a crystal has a
magnetic space group M that is a subgroup of Gg. Therefore M has the same or lower
symmetry than Gg. It has lower symmetry when some of the mixing coefficients C§¥” of the
magnetic basis functions W4 have to be set equal to zero in order to describe the magnetic
structure via the basis functions for a single irreducible representation v. Consequently,
all the symmetry operations contained in Gg but not in M will transform the magnetic
structure in a new magnetic structure and hence generate additional domains. These
domains are called orientation domains or spin domains (s-domains).

Regardless of the fact that the magnetic structure will be different for each domain, the
magnetic scattering from all orientation domains will be observed at identical positions
in reciprocal space, since they all possess the same periodicity. Thus, when the magnetic
cross-section or the the polarisation tensor are calculated from a magnetic structure with
present orientation domains this has to be considered and we have to average over the
domains via [Bro05]

Py =Y mPl =Y m(PoPh+ P)/|Py| (3.22)
l l

where 7, is the population of the domain [ and ), 7 = 1 has to be fulfilled. Generally
the presence of orientation domains leads to a depolarisation of the neutron beam. This
is demonstrated in Fig. 3.1 Therefore, the polarisation tensor is a useful quantity to
determine the presence of magnetic orientation domains.

3.3.4 Chirality domains

In section we demonstrated that a helical magnetic structure breaks the spatial inver-
sion symmetry due to its chirality. Thus the magnetic space group M of such a structure
will not contain the inversion symmetry element. If the underlying crystal structure
is centrosymmetric and therefore does contain the inversion symmetry element chirality
domains can occur that correspond to a situation where in one part of the crystal the
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magnetic structure is right-handed whereas it is left-handed in a second part (compare
Fig. [1.4]).

If a magnetic structure that has a unique handedness is investigated with polarised neu-
trons the chiral term C' in Eqgs. 2.71 and [2.72] will be non-zero as has been discussed in
section [2.4.3] But as the chiral term reverses its sign when a right-handed structure is
changed to be left-handed it will be equal to zero if both chirality domains are equally
populated. If the two domains are however unequally populated the chiral term will be
only reduced and the population of both domains can be determined [Bro05].

v<

Figure 3.1: From section we know that on a pure magnetic reflection the polarisation
vector rotates around Mg (for Mg || MIQ) We assume a magnetic structure that has
two orientation domains that are related via a two-fold rotation axis parallel to the y-axis
in the figure. Consequently the magnetic interaction vectors M, and M5 are also related
via the same two fold rotation as it is shown in both figures. The polarisation vector P will
rotate around the corresponding magnetic interaction vector for each of the domains and two
distinct final polarisation vectors Pj and Pj are obtained, respectively. When they are averaged
according to Eq. with equal domain populations 7 the total final polarisation vector P’ is
obtained. It is significantly reduced compared to the initial polarisation vector P and therefore
depolarised. In (a) the situation is shown for the initial polarisation vector P being parallel to
the two-fold rotation axis whereas in (b) it is perpendicular to it. The drawings were adapted
from reference [Bro05].
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Chapter 4

Single chirality in the multiferroic
NdFe3(BO3)y

NdFe3(BO3)4 is a highly fascinating material because it displays a range of interesting
physical properties. It is a member of the family of borates RM3(BO3)4 (R = Y,La-Lu, M
= Al, Ga, Cr, Fe, Sc) that currently attract much attention because of their special optical
properties. Rare earth ions in general and Nd3* in particular have excellent characteristics
to generate infrared laser action and to serve in nonlinear optics. Nd** doped YAl3(BOs3),
(YAB)or GdAl3(BOg3)s (GAB) crystals or the concentrated crystal NdAl;(BO3), (NAB)
are of great interest as they show strong optical absorption around 750 and 800 nm so that
they can be easily pumped by commercial laser diodes [Kam81, [Kam96]. When pump
and laser radiation are propagating in a nonlinear host, they may interact with each other
providing the possibility of generating visible laser radiation [Boy92|. E.g. for YAB, GAB
and NAB it was shown that they perform excellent as self-frequency-doubling, self-sum-
frequency-mixing and, thus as microchip laser materials [Jaq01, HCCT02,ICLJ"01]. These
materials are interseting for scientific applications like quantum computing but also for
commercial devices like compact red, green and blue (RGB) laser devices that may be
used in highly portable video projectors or similar devices. Further it was speculated that
the replacement of the nonmagnetic AI** ion by the magnetic Fe?* may result in new
optoelectronic applications like e.g. Faraday devices [CKPT04].

The two members GdFe3(BO3), and NdFe3(BO3), of this borate family are additionally in-
teresting with respect to there magnetic properties due to competing magnetic sublattices.
This is especially fascinating as both materials were recently identified as multiferroics
showing magnetic field induced ferroelectric phases via the ME effect [ZKK™05, |[ZVK™06].
However the magnetic properties of the borates were much less studied than the optical
ones.

The knowledge of the microscopic magnetic properties and structure is thus highly de-
sirable for the family of RFe3(BOj),, especially for the understanding of the ME ef-
fect. In this chapter we present our experimental investigation of the magnetic struc-

65
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ture of NdFe3(BOj3), by mainly neutron scattering. We have chosen NdFe3(BOj), over
GdFe3(BO3)4 as model for group of materials RFe3(BO3), as Gd has a large absorption
cross-section for neutrons and therefore is rather unsuitable for structure determination.

4.1 Basic properties

Before we start with the description of our experiments and results we will briefly discuss
the basic properties of the family of iron borates RFes(BOs)s,.

4.1.1 Crystal structure

The iron borates RFe3(BOj3), (R = Y,La-Lu) crystallise in the trigonal space group R32
(group no. 155 in the international tables of crystallography), that is they belong to the
structural type of the mineral huntite CaMgz(BO3), [CCGPT97|. This structure is missing
a centre of inversion. In table we give the structural parameters for NdFe3(BO3),
obtained from our sampldﬂ The structure is composed of isolated ROg4 distorted trigonal
prisms and smaller FeOg octahedra that form layers with a R-Fe distance of ~ 3.78 A. The
ROg polyhedra are interconnected inside the layers by corner sharing with triangular BO3
groups of two different types and the FeOg groups. The FeOg groups form one-dimensional
helical chains along the c-axis with Fe-Fe distances of ~ 3.18 A. The layers formed from
the FeOg and ROg polyhydra are shown in Fig.[4.1] Rare earth iron borates of heavy rare
earth atoms (Eu-Ho,Gd,Tb) and of Y undergo a structural phase transition to the space
group P3,21 at a temperature T,. The temperature T, of the phase transition was found
to increase with the ionic radius of the rare earth atom from T, = 88 K for Eu to 445 K
for Y by following an anomaly in the specific heat that was associated to the structural
phase transition [HDIT03].

4.1.2 Magnetic properties

Measurements in a SQUID revealed a peak in the magnetic susceptibility for the entire
group of iron borates. The peak was attributed to the onset of antiferromagnetic or-
der [HDIT03|. The corresponding ordering temperature Ty at which the peak is ovserved
depends on the ionic radius of the R site and varies from 22 K for R = La to 40 K for R
= Th.

Up to now the most detailed studies were performed on GdFe3(BO3),. For GdFe3(BO3),
the structural phase transition from P3,21 to R32 is observed at Ty = 156 K [KFM™05].
The magnetic ordering temperature is Ty = 36 K and results in antiferromagnetic or-
dering of the magnetic moments of the Fe?* ions in adjacent hexagonal ab-planes. The

'We will discuss the table in more detail in the experimental section.
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Figure 4.1: (a) The crystal structure of RFe3(BO3)4 is shown. We only display the ROg
and FeOg polyhedra present in the structure, the B ions are neglected. The polyhedra in light
pastel colours are situated in the top ab layer shown in the viewgraph. We see that three

FeOg octahedra are interconnected by one common ReOg prism. The FeOg groups form helical
chains along the ¢ axis as illustrated in (b) ((a) is taken from [PCS*07] whereas (b) is from

[CaGPFaT)).

magnetic moments are confined in the basal plane and form a 120°-structure. A second
magnetic transition is observed at Tgr = 9 K where it is assumed that the Fe3™ magnetic
moments reorient along the hexagonal ¢ axis. They couple still antiferromagnetically
between adjacent hexagonal planes but magnetic moments are oriented ferromagnetically
for neighboring helical iron chains. Additionally they are aligned antiferromagnetically
with respect to the moments of the Gd** ions within each layer [BBGT03, [PPBB04].
However, this magnetic structure is just based on modelling magnetic susceptibility and
antiferromagnetic resonance data.

Even though the neutron powder diffraction results of Ritter et al [RBVT07] on ThFe3(BO3),4
were published after our experimental work was finished we want to briefly discuss them
here for completeness of our description. They find an ordering temperature Ty of 40 K
in agreement with [HDI*03]. The magnetic structure derived from the neutron scattering
data is equivalent to the one for GdFe3;(BO3), below the spin orientation transition tem-
perature Tgr: both Fe3™ and Th3T moments align parallel to the crystallographic c-axis
and order antiferromagnetically along this direction. Within one ab-layer the moments in
all three helical Fe? chains are aligned mutually ferromagnetic, but the alignment with
respect to Th3* is antiferromagnetic. The values found for the ordered magnetic moments
are Upes+ = 3.94 pup and prs+ = 8.54 upg.

Campa et al performed DC magnetic susceptibility measurements using a SQUID on
NdFe3(BO3), [CCGP*97]. They found two peaks in the magnetic susceptibility at 32 K
and 6 K respectively. They proposed that the higher temperature is connected to the
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onset of ordering within the Fe3* sublattice whereas below 6 K they assumed that both
Fe3™ and Nd3* possess three-dimensional antiferromagnetic order. Later the Neél tem-
perature Ty = 33(1) K was confirmed by Chukalina et al by means of infrared absorption
spectroscopy [CKPT04]. However, they were unable to observe any anomaly at lower
temperatures and therefore proposed simultaneous magnetic ordering of both sublattices
at Tn. We see that the existing results on the magnetic structure of NdFe3(BOs3), are
limited and additionally contradictionary. Therefore, the performance of neutron diffrac-
tion experiments in order to find the exact magnetic structure of NdFe3(BOj3), is highly
desirable.

4.1.3 Magneto-electric effect

In two members of the family of iron borates a ME effect has been observed recently.
For GdFe3(BO3), a strong enhancement of the dielectric constant measured along the
crystallographic a-axis was observed when a magnetic field was applied along the a- or
c-axis [YLST06] as shown in Fig. . The enhancement is observed between Ty and Tgr
and between T); and Tgpg if the field is applied along the a-axis or c-axis, respectively.
Here, Tj; = 10K is an anomaly in the dielectric constant that is observed upon heating
the crystal. Additionally, Zvezdin et al reported that below Tsr a magnetic field induced
ferroelectric polarisation develops that is accompanied by a jump in the magnetostric-
tion [ZKKT05].

The same authors reported an equivalent effect for NdFe3(BOj3),. Below a temperature
Ty e =~ 25 K a high ferroelectric polarisation along the a-axis was observed when a mag-
netic field was applied parallel to the a or b axis. A value of about -320 uC/m? of electric
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Figure 4.2: The dielectric constant &, of GdFe3(BO3)4 measured along the a-axis is shown as
a function of temperature for different magnetic fields applied parallel to (a) the a-axis and (b)
the c-axis [YLST06].
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polarisation for magnetic fields above 80 kOe was measured. This is about 30 times larger
than for GdFe3(BO3),4)[ZVKT06]. The experimental data is shown in Fig. [£.3] We note
that Tj;p does not correspond to any magnetic transition temperature observed so far
unlike for GdFeg(B03)4.
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Figure 4.3: The electric polarisation of NdFe3(BO3)4 measured along the a-axis as a function
of magnetic field for different isotherms is shown for (a) the magnetic field parallel to the a-axis
and (b) parallel to the b-axis|ZKK™05].

4.2 Experimental work and results

All the experimental work performed within the framework of this thesis was performed
only on one member of the family of iron borates, namely on NdFez(BO3),. We inves-
tigated the magnetic structure of this compound mainly by unpolarized and polarized
neutron diffraction.

4.2.1 Sample preparation

Because of the strong neutron absorption by natural boron, samples with 'B enriched to
99% were prepared at the Institute of Physics at Krasnoyarsk by the group of Prof. Pe-
trakovskii. The single crystals NdFes (' BO3)4 were grown from solution in a melt [BKT04]
of 75 mass% (Biy Mos Oz + 3"By03 + 0.6Ndy03) + 25 mass% NdFes(1'BO3)s. The
saturation temperature was Ts ~ 920 °C, and the concentration (n) dependence of T
was dT/dn = 5 °C/mass%. The flux with mass of 150 g was prepared by melting at the
temperature of 1100 °C of the oxides BiyO3, MoQOs3, 'By03, Fe,O3 and NdyOs, using a
platinum crucible. The flux was kept at this temperature for 10 h for homogenization.
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Afterwards the temperature of the flux was decreased to T = Ty + 7 ° C, the platinum
rod with four seeds was settled down in the flux and the rotation of 30 revolutions per
minute of the rod was switched on. After 10 min the temperature was decreased to T =
Ty -10 ° C. Then the temperature was decreased with velocity of 1-3 °C/24 h. The total
duration of the crystal growth was about 14 days. Thus crystals with linear dimensions
up to 12 mm were prepared.

Some of the crystals were used to produce powder samples for the neutron powder diffrac-
tion experiments by grinding them into fine powder in a mill.

4.2.2 Chemical structure refinement

The quality of the sample that was enriched with 'B was verified by determining its
chemical structure by neutron, laboratory X-rays and synchrotron radiation. All struc-
tural refinements described hereafter were performed with a recent version of the program
suite Fullprof [RC06] where the internal scattering lengths were used.

We investigated a small fraction of the NdFe3(*'BO3), powder sample at room temper-
ature on a Siemens D-500 laboratory x-ray powder diffractometer available at the Paul
Scherrer Institut (PSI). For the measurement the /260 geometry with rotating flat sample
and Cu K, radiation were used. The measured x-ray diffraction pattern can be excel-
lently fitted in the powder profile matching mode [RC06](goodness of fit x* = 3.5) on the
basis of space group R32, yielding the lattice parameters listed in table [4.1] Still, close to
the first Bragg peak (1, 0, 1), there is additional intensity which is visible as a shoulder
towards higher scattering angles that may be due to a trace of Nd(OH)s. Otherwise the
sample seems to be the expected single-phase borate material. On the other hand, fits
with the chemical structure model published in [CCGPT97] reveal very strong preferred
orientation along the direction [1, 0, 1] and produce only moderate agreement between
observation and calculation.

In order to further investigate these issues measurements on the high resolution powder
diffractometer at the Swiss SLS synchrotron of PSI were undertaken. The powder sample
was filled into a cylindrical glass capillary of approximately 0.3 mm diameter and 0.9
mm length and was measured at 308 K with synchrotron radiation of wavelength A =
0.708 27(5) A. The sample had been rotating during the measurement. The final average
diffraction pattern covers the scattering angle range from 3.519° to 70.151° with an an-
gular step of 0.004°. Surprisingly, the synchrotron measurements showed no evidence for
the presence of other phases or additional line splittings. The observed Bragg peaks could
be will indexed on the basis of space group R32 with the hexagonal lattice parameters
given in table [4.1]

Finally also neutron powder diffraction measurements at room temperature were per-
formed at the high resolution powder neutron diffractometer HRPT [FFKT00| at the
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Table 4.1: Structural parameters of NdFe3(BO3)4, refined from the HRPT neutron diffraction
data (A = 1.8857(5) A) at room temperature (n), compared to laboratory (x) and synchrotron
x-rays (s) as well as to the single-crystal x-ray results of reference [CCGP™97] (ref). Space group
R32 (no. 155). B = isotropic temperature factor. Within brackets estimated standard devia-
tions are given. Agreement values [RC06] concerning weighted profile intensities R, = 6.8%,
statistically expected value Regp = 2.2%, goodness of fit x? = 10.3 and concerning integrated
nuclear neutrons intensities Rg, = 7.5%

Lattice parameters (A): Anexn =  9.589(1)  Cpezn =  T7.612(1)
Apere =  9.5878(3) Cherr =  7.6103(3)
fhess =  9.588(1)  Cpess =  T.611(1)
Ahex,ref — 9578(1) Chex,ref = 7605(3) [CCGP+97J

Atom Site X y z B (A?)

Nd 3a 0 0 0 0.38(7)

Fe od 0.5500(2) 0 0 0.1

[CCGPT97] 0.5511(1)

B1 3b 0 0 0.5 0.47(4)

B2 9e 0.4463(3) 0 0.5 0.47(4)
0.446(1)

01 9e 0.8539(4) 0 0.5 0.66(3)
0.8557(6)

02 9e 0.5948(3) 0 0.5 0.66(3)
0.5903(8)

03 18f 0.4546(2) 0.1448(2) 0.5174(3) 0.66(3)
0.4511(6) 0.1453(6) 0.5188(6)

* Fixed, as it tended to negative values.

continuous spallation neutron source SINQ at PSI. A cylindrical vanadium containelﬂ of
8 mm diameter was filled with the powder sample to 55 mm in height under He gas at-
mosphere. For the neutron wavelength of 1.8857(5) A the sample transmission has been
measured, yielding the product of linear absorption coefficient ;1 and sample radius r: pr
= 0.344. Due to the used Ge monochromator of HRPT higher order contamination of the
neutron beam were negligible. As neutrons are, in contrast to x-rays, particularly sensi-
tive to light atoms such as boron and oxygen, a powder profile refinement of the HRPT
data for room temperature was also made starting from the structure model published in
[CCGPT97]. Corresponding refined structural parameters are summarised in table .
In addition the neutron powder diffraction patterns suggest certain problems related to
preferred orientation or insufficient powder averaging even though the sample was ro-

2The coherent neutron scattering cross-section for vanadium is 0.01838(12) b and therefore negligible.
Tt scatters neutrons mainly incoherently (incoherent cross-section ¢;,. = 5.08(6). As incoherent scattering
is independent from the scattering angle (s. section and only will add a constant background,
vanadium is generally used as container material in neutron powder diffraction.
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tated during the measurements. Usually the former effect is negligible in neutron powder
diffraction. By employing the March approach for preferred orientation [RC06], we were
able to improve the fits significantly. However, in contrast to the x-ray refinement no well
defined preferred orientation direction could be identified and finally it has been fixed
to the direction [0, 0, 1]. 101 reflections contribute to the neutron diffraction pattern,
compared to 27 parameters used in the refinement (six for the background polynomial).
Within error limits, the lattice parameters of the present NdFe3(11B03)4 sample deter-
mined by x-ray and neutron diffraction agree, but are somewhat larger than the values
published in [CCGPT97] for NdFe3(BO3), . The positional parameters are in reasonable
agreement with those published by Camp4d et al [CCGPT97].

4.2.3 Bulk measurements

In addition to the neutron scattering experiments we also performed bulk measurements.
The temperature dependence of specific heat C, of polycrystalline NdFes('BO3), was
determined using a PPMS measurement system from Quantum Design at Paul Scherrer
Institut in the temperature range from approximately 3 to 152 K. From about 15 to 43
K a measurement in an external magnetic field of 9 T has also been performed. The
results are shown in Fig. There is a clear peak observed in C, at approximately
Tx = 30.1(2) K which we attribute to the onset of magnetic long-range order in agreement
with [CCGPT97, (CKPT04]. The peak position does not change upon cooling or heating
and is also independent of magnetic fields up to 9 T. This implies that the coupling
between the magnetic structure of NdFez(*'BO3), and external magnetic fields is relatively
weak compared to the exchange interactions that stabilise the magnetic ordering.
Magnetic susceptibility measurements were made by means of a SQUID at the Institute of
Physics at Krasnoyarsk on a single crystal of NdFe3(BOs3), in the temperature range from
4.2 to 224 K. The magnetic field was applied parallel and perpendicular to the hexagonal
c-axis in order to determine the magnetic anisotropy of the system. The data are presented
in Fig. and demonstrate that the magnetic anisotropy in NdFe3(BO3), has easy plane
character inside the hexagonal ab-plane. The peak seen in both curves at approximately
31(1) K also suggests the onset of antiferromagnetic order. Below approximately 15 K
there is again an increase of the magnetic susceptibility for lower temperatures. Both
temperatures are marked with a red doted line in Fig. The observed increase of the
magnetic susceptibility indicates that the magnetic structure may change at 15 K. Finally,
the peak at 6 K, reported in [CCGP*97], is not seen.

4.2.4 Investigation of the magnetic structure by neutron diffrac-
tion

In order to study the magnetic structure of NdFe3('*BO3)4 below the magnetic phase
transition at Ty ~ 31 K that was observed in the bulk measurements the powder sample
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was cooled down to T = 1.6 K inside a standard ILL orange cryostat [oral. The low-
temperature measurements were made on the cold-neutron powder diffractometer DMC
[FKSKO00] at the SINQ spallation source at the PSI that is dedicated to magnetic struc-
ture determination. The experiments were performed with the neutron wavelength \ =
2.4526(5) A and a pyrolytic graphite filter was used in order to eliminate higher order
contamination in the neutron beam. A stationary sample was used in a first set of mea-
surements, however, in order to reduce preferred orientation effects or rather to obtain a
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Figure 4.4: Temperature dependence of the specific heat of polycrystalline NdFez('BOs3).4,
measured on the PPMS (Quantum Design) at Paul Scherrer Institut. For clarity the data points
in an external magnetic field of 9 T have been shifted by -10 units. T > and < indicate increasing
and decreasing temperature, respectively. The figure has been published in reference [FPST06].
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Figure 4.5: Anisotropy of magnetic susceptibility, measured by means of a SQUID at the
Institute of Physics at Krasnoyarsk on a NdFe3(BOs)y single crystal with magnetic field H
applied parallel and perpendicular to the hexagonal c-direction. The red lines denote the position
of the peak associated with antiferromagnetic ordering and the increase of the susceptibilities
inside the antiferromagnetic phase, respectively (s. text) [FPST06].
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better powder averaging over crystallite grains a second set of measurements were con-
ducted with a rotating sample. In the latter case the sample was cooled in a closed cycle
refrigerator from CTI-Cryogenics [cti]. This procedure improved the quality of the data
and the fits considerably.

In addition a single crystal of approximate dimensions 8 x 8 x 8 mm?® of NdFe3(*'BO3),
was investigated on the thermal four-circle neutron diffractometer TriCS [SKM™T00] at
SINQ in the single-detector mode of operation at temperatures down to approximately 5
K, using a neutron wavelength A = 1.1809(4) A. Here also the sample was cooled inside
a closed cycle refrigerator.

The same single crystal was reinvestigated on the triple-axis spectrometer TASP [SRBO1]
situated at the end position of a cold super mirror guide of SINQ. The spectrometer was
operated in its elastic mode in a high resolution setup with fixed incident and final wave
vector ky = 1.2 A~ Additionally 20’ Soller collimators were installed in the incident
beam, in front of the analyzer and the detector. The second order contamination was
removed from the beam by means of a beryllium filter that was inserted between the sam-
ple and the analyser. The use of a triple-axis spectrometer for diffraction experiments is
justified by the excellent signal-to-noise ratio that is achieved by the use of an additional
analyser crystal.

Similar to the refinement of the chemical structure, again all diffraction data were anal-
ysed with the program FullProf [RC06] where the internal tables for the magnetic form
factors (compare section were used.

4.2.4.1 Determination of the propagation vectors

The powder diffraction patterns measured at DMC show additional magnetic peaks for
temperatures T < 30 K, that is clear evidence for magnetic long-range ordering in
NdFe3(*'BO3),. This is demonstrated in Fig. where the measured powder diffrac-
tion patterns are shown as a function of temperature. Fig. (a) shows a single pattern
as observed at T = 20 K. Powder profiles that only contain the magnetic intensities were
obtained by substracting the intensities that were observed at T = 50 K which is well
above the magnetic phase transition at Ty. As example we show the profile for T =1.6 K
in Fig.[4.7(b). The additional magnetic peaks could be well indexed with a commensurate
magnetic propagation vector kpe, = [0,0,%] for all temperatures below Ty .

The single crystal diffraction data measured at TriCS yields the same magnetic propa-
gation vector Kpe, = [0,0,g] for temperatures T = 19 K. The identified magnetic peaks
such as (-1, 0, 1) = (-1, 0, 2) are observed as satellites +kje, of nuclear Bragg peaks that
comply with the triganal R lattice condition -H + K 4+ L = 3n, n = integer.

For temperatures T < 19 K a splitting of the magnetic peak (-1,0, %) was observed in
w-scan. This is illustrated in Fig. [£.8] Due to the limited Q-resolution of Trics operated
at A = 1.1809(4) A and the observed small splitting we reinvestigated the temperature
dependence of the propagation vector on TASP with the high resolution setup described
above. The crystal was oriented in scattering plane containing the reciprocal axis b*(K)
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Figure 4.6: The temperature dependence of the neutron diffraction profiles measured at DMC
are shown. The red line marks the temperature T < 30 K where additional magnetic peaks are
observed due to long-range magnetic order.

and c*(L). We performed elastic @Q-scans along the reciprocal L-direction for different
values of K around the reciprocal space position (0,0,%) at T = 1.6 K. The result is shown
in Fig. and clearly demonstrates that the slight incommensurability associated to
the observed splitting corresponds to a propagation vector ki_ = [0,0,% + ¢] where the
value of the splitting was determined to be ¢ = 0.00667.

Additionally we performed elastic @-scans along the reciprocal L-direction (for K = 0) as a
function of temperature as shown in Fig.. The propagation vector is commensurate
down to the temperature T;cp; ~ 13.5 K and the magnetic Bragg reflections splits into two
incommensurate satellite peaks. Here we estimated T ;¢ as the temperature in F ig
where the maximum intensity of the commensurate magnetic reflection is reached and then
starts to decrease as the reflection splits up into the two incommensurate satellite peaks.
The observed splitting of magnetic Bragg reflection is temperature dependent and can be
well described via k, = % + ¢ where

e=1.6-10"%(Trca — T)|*%5. (4.1)

Hence, from now on, we will denote the temperature regimes between Ty and Tiop
commensurate magnetic (CM) phase and the temperature range below T;ops as incom-
mensurate magnetic (ICM) phase. We note that the temperature Ty &= 13.5 K that was
determined for the CM to ICM phase transition is in good agreement with the tempera-
ture where the magnetic susceptibility increases again for low temperatures (s. Fig. .
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Figure 4.7: (a) Observed (points, angular step 0.1°), calculated (black line) and differ-
ence neutron diffraction pattern (difference of observed and calculated intensity, red line) of
NdFe3(1'BO3), at 20 K. The upper and lower vertical bars show nuclear and magnetic Bragg
peak positions, respectively. (b) Here the neutron diffraction pattern measured at 50 K in the
paramagnetic phase was subtracted from the pattern observed at 1.6 K in order to obtain a
diffraction pattern containing only magnetic peaks.
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Figure 4.8: An w-scan (turning around the b-axis) over the (-1, 0, ) magnetic reflection of
NdFe3(1'BO3), is shown for T = 24.8 K (left panel) and for T = 5 K (right panel), respectively.
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Figure 4.9: (a) The figure shows a contour map of the neutron intensity around the position
(0,0,%) in reciprocal space determined at T = 1.6 K by means of elastic Q-scans along the
reciprocal L-direction for different values K on the triple-axis spectrometer TASP. (b) he figure
shows a contour map of the neutron intensity around the reciprocal lattice position (0,0,%) in
elastic Q-scans along the reciprocal L-direction as a function of temperature determined on the
triple-axis spectrometer TASP. The red points are the peak positions of the incommensurate
magnetic Bragg reflections as determined by fits of Gaussian peaks to the measured scans.
The black curves below the splitting of the propagation vectors are described by the formula
k. =3+ where e = 1.6 - 1073|(Tycar — T')|*%8. Here PM denotes the paramagnetic phase, CM
the commensurate magnetic phase and ICM the incommensurate magnetic phase, respectively.
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Further elastic Q-scans were carried out around the reciprocal space position (0,-1,0.5)
along L. They are presented in Fig. [£.10] In addition to the principal magnetic satellites
also reflections at higher order harmonics were observed as emphasised in the Figs. (b)
o (d). Their shift with respect to ke, was found to be 3 ¢ = 0.02. The integrated intensity
of the third order harmonics is largest near the transition temperature T ;o and decreases
fast as a function of decreasing temperature. We note that the integrated intensity of the
principle satellites remains approximately constant down the lowest temperature.

20-20-NdFe3("'BO3)-20-20, TASP, k; = 1.2 A~!
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Figure 4.10: (a) Q-scans over the (0,-1,0.5) magnetic Bragg for different temperatures are
shown. In the panels (b) to (d) the development of third order satellites is observed. Their shift
from the commensurate position is three times larger than for the first order peaks. The solid
lines are fits to the data with multiple Gaussian profiles.
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4.2.4.2 Magnetic representational analysis

We have seen in section that with the knowledge of the propagation vector k, the
position of the magnetic ions in the primitive cell of a magnetic structure and the space
group of the paramagnetic phase all possible magnetic structures that are in agreement
with the symmetry of the chemical structure can be calculated. We obtained the basis
functions for NdFe3(''BO3), by means of the programs MODY [SBP04] and BASIREPS
[RCO6]. For the calculation of the basis functions the primitive cell has to be considered
[IN79]. For NdFe3('BO3), the primitive cell is rhombohedral as the unit cell of the space
group R32 is described in a hexagonal setting together with three rhombohedral lattice
centering translations R (+(0,0,0; 2/3, 1/3, 1/3; 1/3, 2/3, 2/3)). We note that this is
also the reason why we indexed the magnetic reflections with a propagation vector k"e*
= [0, 0, %] that is larger than a single hexagonal reciprocal lattice translation along the
crystallographic c-axis. With respect to the rhombohedral cell the propagation vector
is k., = [%, %, %] which corresponds to antiferromagnetic ordering along the hexagonal
c-axis. Further the magnetic Fourier modes S¥(0) (s. Eq. for the corresponding
basis functions W5 that are consequently only valid for the zeroth primitive cell can be
propagated to the nth cell via the relation

Sk (t) = Sk (0) exp(i2rkt), (4.2)

where t is the translational vector interconnecting the zeroth and the nth cell and k is the
propagation vector (compare Eq. [3.7). This involves that the magnetic ions related by
the rhombohedral translations R are not longer equivalent as in the paramagnetic phase
but differ by phase factors 27ky,.,t according to these translations. Keeping this in mind,
we discuss in the following only the symmetry relations for the first of these three R
sublattices in the hexagonal frame as the others can then be easily obtained via Eq.
The primitive thombohedral cell of NdFe3(1'BO3), contains for magnetic ions: three Fe3*
ions situated at the positions (x,0,0), (0,x,0) and (1-x,1-x,0) with x = 0.55 (they are
correlated via the two three-fold rotation axes parallel to the x-axis, and are therefore
in the same orbit) and one Nd** ion at (0,0,0). The program MODY [SBP04] provided
with these positional parameters calculated the magnetic basis functions. In tables
and we present the results for the commensurate and incommensurate propagation
vectors respectively in the form of the magnetic Fourier modes that are associated with
the basis functions Wk,

The representational analysis for the commensurate propagation vector k" = [0, 0, %]
yields three irreducible representations I'', I'? and I'®. T'! and I'? are one-dimensional
whereas I'? is a two-dimensional representation. We want to briefly describe the magnetic
structures that are described by the corresponding magnetic Fourier modes (s. table .
Before we start the discussion we want to remind of the definition of the indices associated
with the magnetic Fourier modes S (s. also Section. Here v denotes the number of
the irreducible representation, d the number of the associated magnetic ion in the zeroth
cell and A is the number of the corresponding basis function. As we know from the bulk
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Table 4.2: Irreducible representations I'V and magnetic Fourier modes S C’l“f (with components
along the hexagonal basic translations), as obtained from the program MODY [SBP04] for ke,
= [0,0,3], a = exp(in/3), b = exp(im/6). Note that the irreducible representation I'® is two
dimensional. We consider this by introducing the index m via A — Am.

(a) Character table for the irreducible representations I'”

Sym. op. 1 3t 3 2(010] 2(100] 2[110)

rt 1 1 1
2 -1 -1 -1

1 1 1
1 1 1
3 (1 0) (—a 0) (-a 0) (o 1) (O—a*)
0 1 0 -a* 0 -a* 10 - 0

(b) Fe sublattice (there is only one orbit): representation I' = I'* + 2I'? 4 3I'

atom 1 atom 2 atom 3
(x,0,0) (0,%,0) (1-x, 1-x, 0)
) S S5\ i
1 (1,0,0)  (0,L,0)  (-1-1,0)
A (%) S S3x S3x
1 (%7170) (_1’_%’0) (%’_%70)
2 0,01)  (0,0,1)  (0,0,1)
Am (%) S Sy Sy (modes multiplied by 2)
la (1,0,0) (0,-a,0)  (a*,a*,0)
1b (-a%,0,0)  (0,-a,0) (-1-1,0)
2a (0,1,0) (a,a,0)  -(a*,0,0)
2h (a*,2*,0)  (-a,0,0) (0,1,0)
3a (0,0,1) (0,0,-a) -(0,0,-a%)
3b (0,0,2*)  (0,0,a)  (0,0,-1)

(c) Nd sublattice: representation I' = I'? +T'®

atom 1
(0, 0, 0)
) ST
0 (0.0,1)
Am (I?) SEs (modes multiplied by 2v/3)
la (b*-1,0)

1b (-b*,-b,0)
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measurements in section that the magnetic easy directions are perpendicular to the
hexagonal c-axis, we will only consider Fourier modes with moments inside the ab-plane.

e The magnetic modes S¥' for the representation I'! are real for the Fe sublattice and
for the Nd sublattice this representation does not occur. The basis function for the
three Fe*T ions form a 120°-structure in the ab-plane (the basis functions are given
in the hexagonal crystal coordinate frame).

e The basis functions for I'? are also real. The magnetic modes S¥ for the Fe sub-
lattice also form a 120°-structure but are rotated by 60° with respect to I'*. The
magnetic modes S% for the Fe sublattice and S¥? for the Nd sublattice describe
structures which have the moments parallel to the hexagonal c-axis. Consequently
these will not be considered here.

e For I'® all magnetic modes apart from S% and S% (that describe configurations
with moments parallel to the c-axis and will not be considered) describe general
spiral configurations with moments confined in the ab-plane.

Due to the propagation vector k"** = [0, 0, %] the magnetic moments are ordered anti-
ferromagnetically between adjacent ab-layers for all irreducible representations.

For the incommensurate case with propagation vector kzex = [0,0,% + ¢], similarly three
irreducible representations, namely I'!, I'? and I'®, exist. All of them are one dimensional:
I'! is real, and the other two are conjugate complex. The basis functions of I'! describe
a magnetic structure with moments that are now amplitude modulated along the c-axis
instead of simple antiferromagnetic structure due to the slightly incommensurate propa-
gation vector for both Fe and Nd sublattices. I'? and I'"® both describe spiral structures
(s. table [4.3)).

As the irreducible representations that yielded the best fits for the commensurate and
incommensurate phase were I'* and I'? respectively, we will consider their corresponding
magnetic structures in more detail. We first investigate the incommensurate phase. For
the Nd sublattice there is only one magnetic Fourier mode associated with I'?, namely Sk
that only has non-zero components parallel to the hexagonal basal plane. As the basis
function corresponding to S% for the Fe sublattices describes a magnetic structure with
moments parallel to the c-axis we will only use S¥* and S%2. Because of the incommen-
surate propagation vector the basis function for both +k and —k are given in table 4.3
However, in the present case we can always make the magnetic modes associated with
—k complex conjugated to the ones associated with +k by using the following linear
combinations for both Fe and Nd sites:

k2 k2
Sa = —aSy

Sk = a(S;F + 8, (4.3)

where a = exp(ir/3). Now we can construct the magnetic Fourier modes for the Fe
sublattice from a linear combination of the modes S and S%7 as

S(’ZFG = C18% + 8% (4.4)
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with complex mixing coefficients C; and Cs. Thus, the general solution for the magnetic
moments on the Fe sublattice generated from the irreducible representation I'? is then

Sire(t) = SC’ZFee:cp(iQWkt)+S;7’;€exp(—i27rkt)
= R}, cos(2nkt) + If . sin(2rkt), (4.5)
where we defined Rf, = 2Re(S}p,.) and I}, = —2Im(S}.) in accordance with

Eq. 2.42] This defines a general elliptical spiral for all three Fe moments with moments
confined in the ab-plane that propagates along the c-axis (k = ki_, = [0,0,% + ¢]) and

hex
whose specific appearance depends on the choice of Cy and C; via Rf ;,, and I}, (com-

pare section [2.4.3]).

There is one choice of C; and C, that appears to be especially appealling. If we choose
Cy = Cyexp(—im/3) = a* the magnetic moments of all three Fe3" ions are parallel (s.

Eq. and also table :

Stre = C1[(1,0,0) +a*(0,1,0)] = C1(1,a*,0)

S;Fe = (1[(0,—-a,0)+a*(a,a,0)] = Cy(1,a",0) (4.6)

S;Fe = (1 [(a*,a",0)+a"(a",0,0)] = Cy(1,a",0)
By introducing this result in Eq.[4.5|and by using the coefficient C; = Sp. exp(—im/6) exp(—iape |
we obtain the following magnetic structure for all three Fe moments:

Sre(t) = Sre [(\/3, 0,0) cos(2wkt + ape) + (1,2,0) sin(2nkt + ozpe)]
= Spe [\/gex cos(2mkt + ape) + (e, + 2e,) sin(2rkt + ape)} , (4.7)

where e, and e, are unit vectors along the crystallographic a and b directions (remember
the basis functions were given in the hexagonal coordinate frame). We also introduced
an arbitrary phase angle ap. that determines the direction of the moments inside the
hexagonal plane. Eq. describes a spiral with constant moment amplitude in the
orthogonal basis.

For the Nd sublattice the result can be obtained more easy as there is only one magnetic
Fourier mode associated with I'?, namely

S]lffd = C?)Sfﬂ = (b*7 _iu O)a (48)

where b = exp(in/6) and we dropped the subscript d since there is only one Nd** ion.
By defining C3 = Syqexp(—iayg) and R, = 2Re(S%,) and I¥, = —2Im(S%,), similar
to the case for the Fe3*, we get the magnetic configuration for the magnetic moments on
the Nd site as

Snat) = &w[@6ﬁ4nmqmmt+aN@+4L2¢nwxmmt+aN@}

= Snd [\/5633 cos(2mkt + ayq) + (e, + 2e,) sin(2rkt + osz)] . (4.9)

3The choice of the additional imaginary phase exp(—im/6) is just for convenience as then the moments
for ap,=0 are parallel to a-axis for t=0.
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Table 4.3: Irreducible representations I'V and magnetic Fourier modes S 5;’ (with components
along the hexagonal basic translations) for the incommensurate phase, as obtained from the
program MODY [SBP04] for ki, = [0,0,3 + ¢], a = exp(im/3), b = exp(in/6).

hex —

(a) Character table for the irreducible representations I'”

Sym. op./Irred. rep. 1 3T 3
! 1 1 1

2 1 -a* -a
s 1 -a -a*

(b) Fe sublattice (there is only one orbit): representation I' = 3I'! + 312 + 31®

! ? r

Atom d (position) X Skl S Sk2 S Sks S

1 (x0,0) T (L0.0) (1L,0,0) (1L0.0) (@00 (1,00) (00
2 (0,1,0) (-1-1.0) (0,1,0) (a%,a%0) (0,1,0)  (0,a,0)
3 (0,0,1) (0,0,-1) (0,0,1)  (0,0,a*) (0,0 1) (0,0,a)

2 (0, x, 0) 1 (0,1,0) (0,1,0) (0-a,0) (0-a,0) (0-a%,0) (0,-a*,0)
2 (-1,-1,0) (1,0,0) (a,a,0)  (-a,0 O) (a*,a*,0) (-a*,0,0)
3 (001) (0,0-1) (00-a) (0,0,a) (0,0-a%) (0,0,a%)

3 (1-x, 1-x, 0) 1 (-1,-1,0) (-1,-1,0) (a*,2*,0) (-1,-1,0) (a,a,0)  (-1,-1,0)
2 (1,00) (01,00 (-a400) (0.0.0) (-2.00) (0,1,0)
3 (0,01) (0,0-1) (00-a") (0,0-1) (0,0-a) (0,0-1)

(¢) Nd sublattice (modes multiplied by v/3): representation I' = T'* + I'? 4T3

It I? I
Atom d (position) A Sk S Sk2 S Sk Sk
1(0,0,0) 1 (0,0,1) (0,0-1) (b*-1,0) (b*b,0) (b,i,0) (b,b*,0)

We see that the Nd ions always form a spiral with constant moment amplitude in contrast
to the Fe sublattice.

For the commensurate case we anticipate the results of our fits and will not go in much
detail with the possible configurations through mixing all possible basis functions in ta-
ble . We only note that by using the irreducible representation I'* and only considering
a linear combination of the Fourier modes S% and S% and setting the mixing coeffi-
cients Cl,,, for all other basis functions to zero the same magnetic configurations as for
the incommensurate structure can be constructed. The only difference is that due to
the commensurate propagation vector the magnetic spiral configurations in Eqs. and
reduce to magnetic structures where the moments inside one ab-layer are arranged
ferromagnetically but order antiferromagnetically between adjacent layers.

Before we start to describe the fits to the identified magnetic models we want to deal
with a subtlety concerning the calculation of magnetic intensities in the CM phase. Two
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vectors Q1 and @) in reciprocal space are considered as equivalent if Q; — Q2 = T where
T is a reciprocal lattice vector. In the CM phase the propagation vector is k = k"** =
[0, 0, 3/2] and k" — (—kh*) = [0,0,3] = 3¢*, that is indeed a reciprocal lattice vector.
Hence k"** is equivalent to —k"* and we find that the equation

can be always fulfilled for this case. Additionally, as we will show in the following, the
magnetic structure factor is different from what we derived in Eq. 2.45] We consider a
general periodic magnetic structure as in Eq. but under the assumption that Eq.
holds true. The expression for elastic magnetic scattering is then (cf. section :

> 1;(Q, 00)J5(c0)

= ) (exp{—iQ - Ryy(0)} exp{iQ - Rya(c0)})
I'd'ld
x <(S§a’[e—ik~Rl/d/(O) + S{;kaTeile/d/(O))(Sgﬁeik:.Rld(oo) + Sd—kﬁe—ik-de(oo)»

= > (exp{—iQo - Ruar(0)} exp{iQy - Rua(00)}) (S5 + S (54” + 5,5

I'd'ld
= ) 6(Q Qo) exp(—Wu(Qo)) exp(—Wu(Qo)) exp(iQq - d) exp(iQq - d)
T dd’
x (Shot 4 g katy(ghB | g k0, (4.11)

For the details of evaluating the sums over | and 1" we refer again to Eqgs. [2.15]2.17] and
2.20, With the definitions for §* and S~ made in Eq. we obtain

_ (RE —iIk) ., (RE+iI¥)

Si+8;" = gt

= RFcos(pg) + I¥sin(¢y). (4.12)

e*i%

Finally by resubstituting Qo = 7 — k we obtain the elastic magnetic cross-section for the
case of k being equivalent to —k as

d 273 o
<£>ma9,el = N(7T0)2( ﬂ(-)) Z Z((Saﬁ - Qa@ﬁ)F]\,}aTFﬁ[ﬁé(Q —k— 7-)’ (4.13)

U,
T o0

where the sum over k and —k has to be explicitly removed (compare Eq. [2.45]) and the
magnetic structure factor has changed to

Fy = ) 9aFu(Q) exp(—Wa(Q)) exp(iQ - d){ Rf cos(¢a) + I sin(¢a)}. (4.14)

The results in Egs. and imply that only one magnetic satellite exists exactly as
has been observed in the neutron diffraction experiments in the CM phase. The single
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satellite reflection corresponds to the observed collinear antiferromagnetic ordering where
the magnetic moments in adjacent hexagonal planes are aligned antiferromagnetically.
We note that even though we have described this structure in spiral configuration (s.
Eqgs and the commensurate propagation vector describes an antiferromagnetic
order along the ¢ axis with a real magnetic structure factor.

The program FullProf used for the fits of the neutron powder diffraction data considers
the Egs. and properly in case of k and —k being equivalent in order to calculate
the intensities for the magnetic Bragg reflections.

4.2.4.3 Magnetic structure determination

The magnetic models for the magnetic structure of NdFe3(11B03)4 obtained in the pre-
vious section by symmetry analysis were fitted to the measured powder diffraction data
by the program Fullprof [RC06]. The models we used to fit the data at 2 K (difference
I(2 K)-I(50 K), s. Fig. are defined in the Eqs.[4.5land[1.9] We used a general approach
were both C and (5 defining the magnetic structure of the Fe sublattice were allowed to
vary. We will call this model the ‘free Fe moment model’ in the following. The imaginary
phase of (] was fixed to zero as one cannot determine the phase shift of the modulated
magnetic structure with respect to the crystal lattice from powder diffraction data which
is averaged over all direction. The fit with five free parameters Re(C}), Re(Csy), Im(Cs),
Re(C3) and Im(C3) gave the ratio Cy / €7 = 1.02exp(—i0.447), which is quite close to
the value of exp(—im/3) expected for the parallel Fe moments. The angles between the
Fe moments amount to =~ 10°, while the sizes of the magnetic moments are 1, 0.8 and
0.75 for the three Fe sites, respectively, normalised to the magnetic moment of the first
atom. The direction of the Nd-moment with respect to the Fe moments in the hexagonal
basal plane was refined to 83° , 64° and 70° for the three Fe moments. The goodness of
fit [RCO6] yielded by this magnetic model is x* = 15.4. However, the assumption of equal
Fe moments is physically more reasonable for a non-metallic compound and does not con-
tradict to the measured powder neutron diffraction data. By fixing Cy = C exp(—im/3),
the goodness of fit only decreased marginally to x?> = 16.8. In this constant magnetic
moment case there are only three adjustable parameters, two values of the ordered mag-
netic moments and an angle between them. Both corresponding commensurate magnetic
structures are shown in Fig. 4.12] This second model will consequently be denoted as
‘constant Fe moment model’.

Ultimately, we used Eq. for the Fe sublattice, and therefore the ‘constant Fe moment
model’, for the profile analyses of the DMC powder neutron intensities of NdFes(*'BO3),.
This approach resulted in good fits of the magnetic neutron intensities, however, it was
limited by the previously mentioned texture problems (in particular of the strongest nu-
clear Bragg peak). In view of the rather limited g-range of the DMC patterns at the
long neutron wavelength A = 2.453 A, we fixed the positional parameters at the values
summarised in table 4.1 with an overall temperature factor B = 0 and used only 10 and 14
parameters (three for the background polynomial) for nuclear and magnetic refinements,
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respectively. Best agreements were obtained by using separate preferred orientation pa-
rameters for the nuclear and magnetic intensities. As these corrections are smaller in the
case of magnetic intensities, the discussed problems of the nuclear fits are probably par-
tially associated with deviations in the distributions of the boron and oxygen atoms from
the assumed structure model. In the case of a nonoscillating sample we therefore worked
with magnetic difference neutron diffraction patterns, visually determined background
values and used the lattice parameters determined at 15 K. Typical corresponding fits are
illustrated in Fig. 4.7, The temperature dependence of the resulting ordered magnetic Fe
and Nd moments of NdFe3(1'BOj3), are illustrated in Fig. [l.11] The final parameters for
both magnetic model as obtained in the fits and the corresponding agreement factors are
summarised in table [£.4]

We want to emphasise that the fit of the powder diffraction data was performed with
a fixed commensurate propagation vector kp., = [0,0,%] even in the temperature range
below Trcar where the incommensurate propagation vector ki = [0,0,% + €] was ob-
served in the single crystal diffraction experiments. At T = 1.6 K an attempt was made
to refine the incommensurate propagation vector ki = [0, 0, k, | resulting in the value
k., = 1.5058(1). Even though the other free model parameters (size of the Fe and Nd
moments and the angle between the two sublattices in the hexagonal plane a™?) did not
change within the precision of the analysis (compare the last two lines of table [4.4)) y?
increased from 13 to 18. This indicates that within the resolution of DMC at neutron
wavelength A = 2.453 A the magnetic structure appears to be still as commensurate.

ooan, Fe
ooon, Nd
000 X; Cp
— m(S=5/2)

40 50

Figure 4.11: Temperature dependencies of the ordered magnetic Fe and Nd moments with
error bars according to estimated standard deviations for the ‘constant Fe moment model’, see
table The black solid and blue dashed lines are the expected magnetisation (m) curve for S
= 5/2 [Dar67] and a guide to the eye, respectively.
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Figure 4.12: The hexagonal magnetic unit cell of NdFe3(!BO3)4 at 20 K, plotted with the
program ATOMS [Dow06]. We note that it is doubled along the crystallographic ¢ axis with
respect to the chemical unit cell. In (a) the magnetic structure corresponding to the ‘constant Fe
moment model’ is illustrated (C2 = Cy exp(—in/3)) whereas (b) shows the magnetic structure
where C; and Cy were fitted independently (‘free Fe moment model’). The difference between
the two structures can be seen most clearly if a hexagonal basal plane is considered as shown
in the respective lower view graphs for the layer z = 0. The magnetic moments on the three Fe
positions have all slightly different angles.
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Table 4.4: Experimental details, resulting ordered magnetic moments p and agreement values
of the neutron powder profile fits of NdFe3(1'BO3),4 as a function of temperature, measured on
DMC, based on the commensurate magnetic unit cell. In (a) the parameters are summarised for
the ‘constant Fe moment model’. The angle ap. of the Fe sublattice has been fixed at zero. At
15 K the lattice parameters have been determined as aje, = 9.594(1) A and cpe, = 7.603(1) A.
Note the essential improvements of fits to the nuclear structure (Rpy) due to sample oscillation.
With respect to Eqgs. and Sk = . Rpyn and Rp,, are conventional R-factors concerning
integrated nuclear and magnetic neutron intensities, respectively [RC06]. (b) For comparison we
also give the parameters of the ‘free Fe moment model’. For convenience the magnetic moment
size calculated from the fit parameters C; is added for this model.

(a) ‘constant Fe-moment model’

T Sample i, N a x2  Rp, Ram
(K) motion (up) (k) (deg)

50 No 0 0 176 15.0

30  Osc. 1.4(2) 0.5(1.1) 77 77 89 479
25 Osc.  327(8) 1.1(5) 77(3) 61 81 115
20 Osc. 3.93(7) 1.2(4) 75(3) 57 7.9 7.8
15 Osc. 4.34(6) 1.3(4) 69(4) 55 7.8 6.3
10 No 481(4) 2.3(2)  58(1) 20 9.8
1.6 No 4.89(3)¢ 2 7(1) 47(1) 15 8.0
a 489(4) 27(2)  46(2) 18 10.7
“k .. =100k, |, reﬁned to k, = 1.5058(1) at 1.6 K.

bFixed value.
“Note the expected value g, = 5 pup for free Fe3* ions.

(b) ‘free Fe-moment model’

T C1 Re(Cy) Im(Ch) Re(Cs) Im(C3) piper  prex fres Hna X Ribm
(K) (nB) (pB) (B) (kB)

20 2.7(2) -03(2) -27(2) 08(7) 142) 29 19 34 12 546 7.62
1.6 3.7(1) 0.7(2) -3.7(1) 12(7) 2.7(1) 34 31 41 23 154 814
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4.2.5 Spherical Neutron Polarimetry

Even though the assumption of equally sized Fe moments is physically more reasonable
for a non-metallic compound such as NdFez(*'BO3),, only more detailed measurements
by means of spherical neutron polarimetry (SNP) may allow to decide for the correct
structure. These measurements seem to be especially desirable as the agreement factors
were better for the fits of the free moment model compared to the constant moment
model. As we have seen in the section 2.4 SNP allows to obtain the maximum amount of
information about a magnetic structure.

The SNP option MuPAD [JKRT07] (compare also section [2.5]) available at the continuous
spallation source SINQ at the PST was mounted on TASP [SRBOI] in order to perform
full polarisation analysis on NdFe3('BO3)s. A photograph of this setup is shown in
Fig. 2.10] In order to polarise the neutron beam and to analyse the final polarisation
of the beam two polarising supermirror benders were used as spin polariser and analyser
after the monochromator and in front of the analyser, respectively. A final wave vector
k=197 A=1 (corresponding to a wavelength A of 3.18 A) was chosen to maximise both
the intensity and the polarisation of the neutron beam. No additional filter for second
order suppression was used because the benders already act as filters.

For this measurement the single crystal was oriented the same way as for the unpolarised
diffraction experiments, namely with the reciprocal axis b*(K) and ¢*(L) within the scat-
tering plane.

4.2.5.1 Polarisation matrices in the commensurate magnetic phase

In the CM magnetic phase we measured polarisation tensors for all accessible magnetic
reflections for the temperatures T = 20, 25 and 30 K in NdFe3('BO3)4. Since the polari-
sation tensors do not depend on temperature for T' > 20 K only the data for T = 20 K is
given in table [1.5] All magnetic polarisation tensors shown in table [4.5 are measured on
purely magnetic reflections (i.e. the propagation vector k # 0) and therefore the terms
including nuclear contributions are equal to zero (N =R, =R, =1, =1, =0, s. also sec-
tion [2.4.2). From the measured polarisation tensors several constraints on the magnetic
structure can be derived:

1. For the magnetic reflection (0,0,-1.5) the scattering vector @ is directed parallel to
the crystallographic ¢ direction. Hence, the magnetic interaction vector only con-
tains components in the basal plane. P/ (=(-M,-M,)/(M,+M,)) is fully polarised
whereas P, (=(M,-M.)/(M,+M.)) and P/, (=(-M,+M.)/(M,+M.)) are fully de-
polarised. This would foremost lead to the assumption M, ~ M, but as the elements
P;Z and Pz’y are also equal to zero it also suggests the presence of spin domains in
the basal plane (cf. section for the meaning of the tensor elements).

2. On the magnetic reflection (0,4,0.5) the scattering vector @Q is approximately parallel
to the reciprocal b* axis. As the z axis which is perpendicular to the scattering plane
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lies always within the basal hexagonal plane in the chosen scattering geometry the
y-axis is approximately parallel to the crystallographic ¢ axis (<(y, c) ~ 15°). The
polarisation tensor shows P, ~ P/ =~ — P, which indicates that M, ~ 0 and hence
the magnetic interaction vector is directed along z. Therefore the magnetic moments
are confined in the basal plane which is also in agreement with measurements of the
magnetic susceptibility and the magnetic model found by neutron powder diffraction

(compare Figs. and [4.12)).

3. On all measured Bragg peaks the elements yx and zx are equal to zero. This implies
that the magnetic structure is not chiral at all or that it is a chiral structure with
equally populated chiral domains.

These constraints are in agreement with both magnetic structures that yielded good fits
of neutron powder diffraction data as described in the previous section, namely (1) the
‘constant Fe moment model” and (2) ‘free Fe moment model’. Therefore to decide between
the two models we will need to calculate the polarisation tensors from the models and
compare them to the measured values.

4.2.5.2 Possible magnetic domains

As the measurements were performed on a single crystal specimen we also have to consider
possible magnetic domains. The presence of such domains in the basal plane is evident
due to the constraint (i) in the previous section. In section we have seen how the
reduction of the symmetry of the magnetic structure compared to the chemical structure
can lead to different types of domains.

The point group 32 (C,) corresponding to the space group R32 of NdFe3(**BO3), contains
six symmetry elements, namely 1 (identity), 3%, 37 (3-fold rotation around c-axis), 2/p1j,
2n100) and 2p10) (2-fold rotations). The commensurate propagation vector kje, = [0, 0,
%] of NdFe3("*BO3), is invariant with respect to all six symmetry elements and therefore
there is only one k-domain and the little group Gy associated with kj., includes all 6
point group elements.

As the magnetic structure of NdFes(*'BO3), has a non-zero propagation vector 180°-
domains cannot be distinguished and therefore will not be considered in the following (s.
section [3.3.2)).

In Fig. the action of all six symmetry elements onto the three Fe3T-ions and the single
Nd?**-ion in the thombohedral primitive cell is shown for the constant moment model. We
see that basically all symmetry elements lead to an orientation domain (depending on the
angle ayg between the Fe and Nd magnetic moments). E.g. the two 3-fold axes lead to
orientation domains with spins that are rotated by 120° in the basal plane. The same is
valid for the Nd sublattice. This finally means that six orientation domains have to be
taken into account when our models are compared to the data.
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Table 4.5: Polarisation tensors on all accessible magnetic Bragg reflections of NdFez(!BO3),
are shown for T = 20 K. The column Py and P’ denote the direction of the initial and final
polarisation vector, respectively. The subscripts of P’ signify the polarisation tensors that were
measured (meas) and calculated (calc) from the two distinct magnetic models models. The
errors provided for the measured values are statistical errors that were calculated via Eq.
Further (1) denotes the ‘constant Fe moment model” whereas (2) is the ‘free Fe moment model’.
The polarisation tensor elements marked in red demonstrate where model (2) does not match the
data. The shown polarisation tensors were calculated as an average over the present orientation
domains. This is demonstrated for the reflection ( 0.0, 40.0, —1.5) in table

P7Ineas Pc/alc(l) Pc/alc(z)
H K L| P X y z X y zZ X y zZ
+0.0 +2.0 —0.5|+x|—0.861(3) +0.073(6) +0.042(6) | —0.870 +0.000 —0.000|—0.867 +0.000 +0.000
+y|—0.059(6) —0.659(4) —0.050(6)|—0.012 —0.665 —0.031|—0.013 —0.568 —0.200
+z|40.043(6) —0.050(6) 40.655(4)|—0.012 —0.031 40.665|—0.013 —0.200 40.568
-x | 4+0.876(3) —0.026(6) —0.031(6) | +0.867 -+0.000 +0.000 | +0.862 +0.000 —0.000
-y | +0.034(6) +0.659(4) +0.059(6) | —0.012 +0.665 +0.031|—0.013 +0.568 +0.200
-7|—0.081(6) +0.043(6) —0.655(4)|—0.012 +0.031 —0.665|—0.013 +0.200 —0.568
+0.0 +0.0 —1.5|4x|—0.872(2) +0.057(4) +0.119(4) | —0.869 +0.000 +0.000 | —0.869 +0.000 +0.000
+y|—0.010(4) 40.010(4) +0.019(4)|—0.000 4+0.000 —0.000|+0.000 40.000 +0.000
+z|—0.032(4) 40.020(4) —0.007(4)|40.000 —0.000 —0.000|40.000 +0.000 —0.000
-x | +0.872(2) —0.058(3) —0.115(3) |+0.869 +0.000 +0.000|+0.869 +0.000 +0.000
-y | —0.043(4) —0.018(4) —0.017(4) | —0.000 —0.000 +0.000 | +0.000 —0.000 —0.000
-z|—0.019(4) —0.023(4) +0.017(4)|40.000 40.000 +0.000|40.000 —0.000 +0.000
+0.0 +4.0 +0.5|+x|—0.853(7) +0.06(1) +0.01(1) | —0.868 +0.000 +0.000|—0.869 +0.000 +0.000
+y| —0.05(1) —0.837(8) —0.05(1) |+0.006 —0.869 +0.006|—0.005 —0.866 +0.060
+z| 40.03(1) —0.02(1) +40.826(8)|+0.006 +0.006 +0.869|—0.005 +0.060 +0.866
-x | 4+0.850(7) +0.02(1) +40.03(1) |+0.869 -+0.000 +0.000|+0.868 +0.000 +0.000
-y| —0.01(1) +0.807(8) +40.08(1) |+0.006 +0.869 —0.006 | —0.005 +0.866 —0.060
-z| —0.08(1) +40.08(1) —0.851(7)|+0.006 —0.006 —0.869 | —0.005 —0.060 —0.866
+0.0 —2.0 —2.5|4+x|—0.871(4) +0.068(7) +0.107(7)|—0.874 —0.000 +0.000|—0.821 —0.000 +0.000
+y|—=0.092(7) —0.081(7) —0.012(7)|—0.054 —0.093 —0.013|+40.099 —0.108 —0.055
+z|—0.017(7) —0.006(7) 40.100(7)|—0.054 —0.013 40.093|+0.099 —0.055 +0.108
-x | +0.876(4) —0.045(7) —0.102(7) | +0.858 +0.000 —0.000|+0.875 —0.000 —0.000
-y | —0.005(7) +0.085(7) +0.030(7)|—0.054 +0.093 +0.013|40.099 +0.108 +0.055
-z —0.064(7) 40.030(7) —0.087(7)|—0.054 40.013 —0.093|+40.099 +0.055 —0.108
+0.0 +1.0 —2.5|+x|—0.860(8) +0.07(2) +0.11(2) | —0.870 +0.000 +0.000|—0.860 +0.000 —0.000
+y| —0.04(2) —0.08(2) +0.01(2) | —0.008 —0.028 +0.000|—0.043 —0.264 +0.263
+z| —0.04(2) —0.01(2) +0.11(2) |—0.008 +0.000 +0.028|—0.043 +0.263 +0.264
-x | 4+0.851(8) —0.07(2) —0.10(1) |+0.868 —0.000 +0.000 | +0.847 +0.000 +0.000
-y| —0.02(2) +0.10(2) +40.02(2) | —0.008 +0.028 —0.000| —0.043 +0.264 —0.263
-z| —0.03(2) +0.02(2) —0.05(2) |—0.008 —0.000 —0.028|—0.043 —0.263 —0.264
+0.0 +1.0 40.5|4+x|—0.876(3) +0.037(7) +0.084(7)|—0.867 +0.000 +0.000|—0.868 +0.000 —0.000
+y|—0.078(7) —0.485(6) —0.083(7)|+40.015 —0.395 —0.001|—0.055 —0.472 —0.329
+2z|40.069(7) —0.062(7) 40.481(6)|+0.015 —0.001 40.395|—0.055 —0.329 +0.472
-x | 4+0.880(3) —0.009(7) —0.044(7)|+0.870 —0.000 —0.000 | +0.847 +0.000 +0.000
-y | +0.010(7) +0.495(6) +0.079(7)|+0.015 +0.395 +0.001|—0.055 +0.472 +0.329
-z | —0.101(7) 40.070(7) —0.478(6)|+0.015 4+0.001 —0.395|—0.055 +0.329 —0.472
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Figure 4.13: The action of all six symmetry elements that leave the propagation vector kj,
= [0, 0, %] in the CM phase invariant is shown. The axes e, and e, are unit vectors parallel
to the hexagonal crystallographic axes a and b. e, is a unit vector that is antiparallel to the
reciprocal axis b*. The red arrow indicates the magnetic moment of the Nd?* ion whereas the
black arrows are the magnetic moments of the three Fe3T-ions in rhombohedral primitive cell
of NdFe3(1'BO3)4. The magnetic structure corresponds to the ‘constant Fe moment model’ as
it was refined from the neutron powder diffraction results.
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We note, however, that in the incommensurate phase only the two three-fold rotations
and the identity are members of the little group as the two-fold rotations transform the
incommensurate propagation vector kj,., = [0, 0, 2 + ¢] into —kj,., = [0, 0, -( + ¢)].
In the incommensurate phase we consequently only have to consider three 120°-domains

generated by these symmetry operations.

4.2.5.3 Fit of the polarisation tensors

Before we start to discuss the fits to the measured polarisation tensors we want to ex-
plain the implications of k and —k being equivalent in the CM phase. As we have seen
in Eq. the magnetic structure factor is real for this case. Since the chiral term is
C = i(vrg)QZ—f“MfQMIZQ)w — (MjQMI%>w) it can be only non-zero when the magnetic
structure factor is complex and M, g K MIQ. In other words, due to the antiparallel
alignment of magnetic moments on consequent magnetic layers no chiral contribution can
be generated in the cross-section, which is in accordance with (iii). This is valid from
both possible magnetic models.

In order to fit the two possible magnetic models that were identified in the preceding sec-
tions to the experimentally observed polarisation tensors the program spfit was used. It
was written in PYTHON [vRDO01] by the author of this work. The program can calculate
the polarisation tensor on multiple reflections from a chemical and magnetic structure de-
fined in an input file. The program is able to distinguish between the magnetic structure
factors for non-equivalent and equivalent k as they were defined in Eqs[2.45| and .14,
respectively. A least-squares algorithm is used within the program to fit the magnetic
structure to the data. The program is described in more detail in appendix [D}

Further we need to cope with the reduced modulus of the polarisation vector due to
non-ideal polarisers and flippers as it was described in section [2.4.4, The polarisation
tensor for the purely nuclear Bragg reflection (0,0,-3) presented in table shows that
the maximum polarisation of the beam is 0.87. On a pure nuclear peak the polarisation
vector should be unchanged. If we assume that the polariser and analyser perform equally
well we can estimate that each of the devices generates a beam polarisation P, = +/0.87
= 0.93. Using Eq. the polarisation efficiencies of both benders is then calculated as
P, =P, = (2P, — 1) = 0.966. The polarisation tensors were therefore calculated within
the used program via Eqs. and with P; and P; set to the estimated value. The
influence of the flipping efficiency of the four precession coils used in the SNP-option Mu-
PAD (s. section are difficult to determine as the magnetic fields generated in the coils
in order to turn the polarisation vector are different for each polarisation tensor element
P;; and additionally depend on the position in reciprocal space of the host spectrometer.
Therefore we assumed the flipping efficiencies to be €1 = 9 = 1 what leads to good
results.

Finally we carried out least-squares fits for both the ‘constant Fe moment model’ and the
‘free Fe moment model’. We employed the exact models as established by the powder fits
for T =20 K in the previous section as a starting point of the fits (s. table for param-
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eters). Parameters that cannot be determined from the polarisation tensors, e.g. lattice
constants and atomic positions and Debye-Waller factors, were consequently fixed in the
fits. Since SNP is generally insensitive to absolute moment sizes in case of pure magnetic
reflections the magnitude of the magnetic moments for the Fe and Nd ions obtained in the
powder fits were used and fixed. Both models completely failed to explain the SNP-data
when no orientation domains were considered. Therefore, the six orientation domains with
equal population were assumed for the calculation of the polarisation tensors according to
Eq.[3.:22] This increased the agreement between the data and calculation significantly as
demonstrated for the magnetic reflection (0, 0, -1.5) and the ‘constant Fe moment model’
in table 4.8, The rotation matrices that were used to generate the magnetic structure for
each orientation domain from the original structure are given in table [4.6]

The results of the fits are shown together with the measured polarisation tensors in ta-
ble The ‘free Fe moment model’ was not able to explain the measured polarisation
tensors on the two magnetic reflection (0, 2, -0.5), (0, 1, -2.5) and (0, 1, 0.5) as marked
by the red entries in table 4.5 The agreement between model and data could not be
improved by fits. Here we note that our general experience with fits of SNP data during
this work was that, when the model was not already near to the proper solution it was
not possible to improve it significantly.

For the ‘constant Fe moment model” the angle a g was set to the starting value of 75° as
obtained in the powder fit and then was allowed to vary. The fit yielded a systematic de-
pendence of the ‘yy” and ‘zz” elements of the polarisation tensor of the magnetic reflection
(0, 1, 0.5) on the angle ag as demonstrated in Fig. . A similar but weaker depen-
dence is also found in the ‘yz’ and ‘zy’ elements of the reflection (0, 2, -0.5), (0, 4, 0.5)
and (0, 1, -2.5). The angular dependence of the polarisation tensor elements in Fig. [4.14
shows that the best agreement between data and model is obtained when the angle ayg
between the Nd and Fe moments is either 0° or 180°. Here the latter is physically more
reasonable. The resulting polarisation tensors on all magnetic reflections can be found in
table 4.5

Attempts to additionally determine the orientation of the Fe magnetic moments via the
angle a g, gave no conclusive results. The angle a g, describes the absolute orientation of
the magnetic moments in the crystallographic ab-plane with respect to chemical struc-
ture. Thus, the indeterminacy of ap, is most probabably related to the presence of the
six orientation domains in the hexagonal basal plane. Finally, all fits were performed with
ar. fixed at zero.

In summary our SNP data is in perfect agreement with the ‘constant Fe moment model’
in the commensurate phase when the angle between the magnetic moments of the Nd and
Fe ions is set to zero. Concerning the six orientation domains we want to emphasise that
in the case of ang = 0 the magnetic configurations obtained by application of the three
symmetry operations 2(g10), 2[100] and 2(;10) are identical to the configurations obtained by
1, 3" and 37 as can be seen in Fig. [4.13| Hence, in this case it is enough to consider
the three orientation domains associated with 1, 37 and 3~ as the degree of symmetry
reduction is lower.

In consideration that ayg = 0° is favoured by our SNP data that is more sensitive on the
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Table 4.6: The table shows the symmetry matrices corresponding to the six symmetry operators
of the point group C, that were used to generate the orientation domains for the calculation of
the polarisation tensors. The matrices are given in a right-handed Cartesian coordinate system
where the x and z axes are parallel to the crystallographic a and ¢ axes, respectively.

1 3F 3~
100 —1 =0 —1
010 IV S _v3 1o

2 2 2 2
00 1 0 0 1 0 0 1
2/010] 2[100] 2[110]
1
Y 10 0 —1 ¥
_¥3 1 0 01 0 V31
2 2 2 2
0 0 -1 00 -1 0 0 -1

Table 4.7: The polarisation tensor measured on the pure nuclear Bragg reflection (0,0,-3) is
shown. The polarisation elements on the diagonal of the polarisation tensor are reduced from 1
due to non-ideal polarisers.

P/

Py X y Z

+x | +0.882 —0.090 —0.133
+y | +0.072 +40.874 —0.102
+z | +0.152 +0.024 +40.872
-x | —0.873 +0.011 +0.165
-y | —0.013 —0.882 +0.121
-z | —0.102 —0.087 —0.890

Table 4.8: The measured and calculated polarisation tensor for the magnetic Bragg reflection
(0,0,-1.5) is shown. The calculated polarisation tensor is averaged over the polarisation tensors
for each of the six present magnetic orientation domains according to Eq. The domains
were assumed to be equally populated and hence the population factors 7; were set equal to 1/6.

Sym. Op./P;; ‘ XX Xy Xz yX vy vz ZX zy 77

1 —0.869 +0.000 +0.000 —-0.000 —-0.859 —0.128 +40.000 —0.128 +0.859
3t —0.869 +0.000 +0.000 —0.000 +0.319 +0.808 —0.000 +0.808 —0.319
3~ —0.869 +0.000 +0.000 —0.000 +40.541 —0.679 —0.000 —0.679 —0.541
2(010] —0.869 +0.000 +0.000 +0.000 —0.859 —0.128 +0.000 —0.128 +0.859
2(100] —0.869 +0.000 +0.000 —-0.000 +40.541 —-0.679 —0.000 —0.679 —0.541
2[110] —0.869 +0.000 +0.000 +0.000 +40.319 +40.808 +0.000 +0.808 —0.319
sum —-0.869 +0.000 +0.000 —0.000 +40.000 40.000 —0.000 +0.000 —0.000
measured: —-0.872 +0.057 +0.119 -0.010 +40.010 +40.019 —-0.032 +0.020 —0.007
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Figure 4.14: The figure shows the dependence of the polarisation tensor elements of the
magnetic reflection (0, 1, 0.5) on the angle ayg for the ‘constant Fe moment model’. The red
line denotes the measured value whereas the blue dots are the calculated values.

direction of the magnetic moment we repeated the Rietvield refinements of the powder
data for the ‘constant Fe moment model’ (compare section , however, the magnetic
moments on the Fe and Nd sublattices were fixed to be parallel. The result of the fits are
summarised in table4.9, The agreement factors are essentially unchanged by this measure.
The major difference is that the magnetic moment on the Nd sublattice is reduced from
2.7 up to 1.51 pup at 1.6 K. The magnetic moments as a function of temperatures are
shown in Fig. We conclude that the ‘constant Fe moment model’ with the angle set
to ang = 0° provides the best description for the combination of the neutron powder and
SNP data.

4.2.5.4 Incommensurate phase

The Q-resolution of the polarised setup on TASP is naturally limited since the benders
perform significantly worse with respect to transmission and also polarising efficiency at
wave vectors smaller than ky = 1.97 A~'. In order to be able to observe the small splitting
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Table 4.9: The table shows the results of the Rietvield refinement of the powder data for the
‘constant Fe moment model’ that were carried out in section |4.2.4.3} however with the constraint
that the angle between the magnetic moments on the Fe and Nd sites is fixed at ayg = 0°.

T  Sample pp. N x> Rpn Ram
(K) motion  (up) )

30 Osc.  1.46(6) 0.1(1) 77 8.9 487
25  Osc.  3.43(3) 0.14(6) 62 8.2 9.8
20 Osc.  4.00(3) 023(5) 57 7.9 7.7
15 Osc.  4.41(3) 0.36(5) 55 7.8 6.4
10 No 5.07(3) 0.98(3) 18 8.9
1.6 No 5.00(3)° 1.51(1) 14 8.0

“Note the expected value jp, = 5 pup for free Fe?* ions.

(e = 0.00667 (r.Lu.) = 0.0055A~") of the magnetic Bragg reflections in the ICM phase
of NdFe3("'BO3);s an excellent Q-resolution is necessary. The relatively moderate Q-
resolution associated with k; = 1.97 A~ is not sufficient to measure seperate polarisation
tensors on the magnetic satellites +k!® and consequently a superposition of intensities
from both satellites will be observed. However, by performing polarised Q-scans over the
magnetic satellites around the position (0,0,-1.5) in reciprocal space it is still possible to
extract some important information about the magnetic structure in the ICM magnetic
phase.

From Eq. we know how the observed contributions in neutron scattering depend on
the the direction of the initial polarisation vector of the neutron beam P,. By turning
the initial polarisation vector Py parallel (antiparallel) to the x direction (thus parallel or
antiparallel to @) the following scattering cross-sections are obtained:

o(Ph=xe,) = N+M+M*FC
=o0(Py=4e,)—c(P=-e,) = (N+M+M*"—C)—(N+M'+M*+C)
= —2C. (4.15)

Hence, the difference between the intensities, which are measured with the initial po-
larisation parallel and antiparallel to x is proportional to the chiral contribution to the
cross-section, which only appears if the magnetic structure is chiral (compare section
. We carried out elastic Q-scans along the L direction around the reciprocal space
position (0, 0, -1.5) as shown in Fig. . In our experimental setup the second polariser
downstream of the sample that is employed as polarisation analyser was still mounted.
Therefore, four polarised Q-scans with corresponding intensities I;; (i,j=incident/final po-
larisation vector direction) instead of two like in Eq. had to be performed and the
respective cross-sections are related via

o(Py=+e;) = (L) + (Io-2)
_e:c) = (I—mx)+([—z—$) (416)

2
s
I
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Figure 4.15: Temperature dependence of the ordered magnetic Fe and Nd moments as obtained
from the Rietvield refinement of the powder data for ay, fixed at 0° is shown (s. text for details).
The black full and blue dashed lines are the expected magnetisation (m) curve for S = 5/2 [Dar67]
and a guide to the eye, respectively.

As shown in Fig. [£.16{a) the polarised scans allow to separate the resolution limited
peak at (0,0,-1.5) in two satellites (0,0,0)-k!* (I_,,) and (0,0,-3)+k!* (I,_,). The scans
were performed at T = 1.5 K where the second order satellites are negligible (compare
Fig. and hence are not considered here. The difference o(Py = +e,) — o(Py =
—e;) = (Ip) + (Io—z) — (I_se) + (I_4—z) is provided in Fig. [£.16[(b). Since two distinct
extrema with opposite signs for the two satellites can be distinguished in the observed
difference several constraints for the magnetic structure below T;cys can be derived:

e First, the observation of chiral terms on the satellites proves that the magnetic struc-
ture that we have shown to be a collinear antiferromagnet along the crystallographic
c-axis with moments in the hexagonal basal plane transforms to a antiferromagnetic
long-period spiral. The moments are therefore almost antiferromagnetic in adjacent
ab-layers and are slightly rotated by a small angle from layer to layer.

e The chiral term on the satellite associated with the propagation vector +k!* has
a different sign with respect to the chiral term on the satellite associated with the
propagation vector -k** which is typical for a helix. We have seen in chapter
that dependent on the handedness of the spiral the chiral term will have positive
and negative sign on the satellite associated with k and —k respectively, or vice
versa. This implies that if magnetic spirals with both handednesses would exist in
equally populated chiral-domains then we would see zero intensity in the difference
scan shown Fig. [£.16(b). Therefore we conclude that we have at least unequally
populated chiral domains where one handedness is preferred over the other one.

In order to investigate this further we performed calculations of the magnetic intensities
where we assumed the ‘constant Fe moment model’ for the calculation of the intensities,
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Figure 4.16: (a) Q-scans in the polarised mode over the magnetic Bragg satellites (0,0,0)-k?”
and 0,0,-3)+k* at T = 1.5 K are shown. (b) The difference for intensities with the initial
polarisation vector directed parallel and antiparallel to @ for the same Q-scan are shown. This
difference is directly proportional to the chiral contribution to the scattering cross-section as

shown in Eq.

however together with the incommensurate k" that leads a small rotation of the magnetic
moments between neighbouring layers. We calculated the integrated intensities for the
four measured polarisation channels ‘xx’; ‘x-x’, ‘-xx’ and ‘-x-x’ for both satellites (0,0,0)-
kP and (0,0,-3)+k[", where we used € = 0.0667 in kj,, = [0, 0, 2 + ¢] as deduced from
our high resolution diffraction data. The calculated integrated intensities are given in
table (a) for the case of only one single chirality domain. For comparison we give the
measured integrated intensities from the scans for the four polarisation channels in table
4.10[(b). First of all the calculated values reproduce the correct sign for the difference of
the intensities that represents the chiral contribution to the cross-section. But due to the
limited resolution of the setup the measured values are integrated over both peaks and
cannot be compared directly to the calculations. This is especially true for the difference of
the intensities. However, we can make some assumptions that will allow for a comparison.

We will assume that

e the measured integrated intensity in the channel ‘-xx’ is only due to the peak at
(0,0,0)-kl*. This assumption is justified as the measured points (red in Fig. [4.16{a))
are shifted towards the direction of this peak.

e the measured integrated intensity in the channel ‘x-x’ is only due to the peak at
(0,0,-3)+khe*. This assumption is justified by an identical argument (blue points in

Fig. [L.16/a)).
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e the channels ‘xx’ and ‘-x-x’ are equally contributed from both satellite reflection as
they are centred on top of each other and between the other two channels (green

and black points in Fig. [4.16(a)).

With these assumptions we compare intensity ratios for both peaks. For instance the cal-
culated ratio I¢__/I¢, for the magnetic Bragg reflection (0,0,-3)+k"* amounts to 23.98.
The measured ratio with respect to our model assumptions is I'* /(IS,./2) = 28.22 (the
division by 2 is due to the last assumption). For the second satellite (0,0,0)-kl** we
find the calculated ratio 1¢,,/I1¢, . = 24.11 and the measured ratio ™, /(I¢,_,/2) =
28.33. This signifies that our model of a sinlge antiferromagnetic helix with the magnetic
moments parallel to the hexagonal basal plane that propagates along the hexagonal ¢ axis
reproduces our data well.

In addition we verified our assumptions by performing a convolution of the calculated
integrated intensities with the resolution of the spectrometer in a simulation. For this
purpose the intensities were multiplied with delta-functions positioned at the satellite po-
sitions and we calculated the intensities in the four polarisation channels via convoluting
these Bragg peaks with the spectrometer resolution. The resolution of the spectrometer
was calculated with the program tasresfit for each point in the scan. The program was
written by Florian Bernlochner and the author of this work and is described in the ap-
pendix [D] The result of the simulations are the solid lines in Fig. [£.16 To match the
intensity a scale factor was introduced in the calculation. The only parameters varied in
the calculation were the populations of the two chiral domains described above and the
scale factor. The best agreement was found with populations of 15 and 85%. However,
this deviation from a 100% populated is probably due to the difficulties we had to match
the peak shape of reflections in the scan properly, which affects especially the difference
calculated therefrom. Therefore, we think that within our experimental resolution the
assumption of a single chiral domain is justified.

Table 4.10: (a) Integrated intensities for the magnetic satellite reflections in the ICM phase
as calculated from the constant Fe moment model, however, with the incommensurate kzhex.
For the calculation we assumed that only one single chiral domain is populated. (b) Measured
integrated intensities for the @Q-scan in Fig. [4.16|a) in the different polarisation channels. For
the comparison see the text.

()

Peak e, e, I, I, . | o(Py=+e;) —o(P=—e,;)
0,000k | 570 024  137.07 5.71 1136.84
(0,0-3)+kle* | 5.73 13744 024  5.73 137.20

(b)

66.2 934.0 946.0 65.9
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4.3 Discussion

Our investigation on NdFez(*'BO3), combines the results of macroscopic measurements
and a detailed neutron diffraction study with unpolarised and polarised neutrons. The
magnetic susceptibility results showed that the magnetic anisotropy is of easy plane type
with the magnetic moments confined in the hexagonal basal plane. Below Ty =~ 30 K,
additional Bragg reflections were observed in neutron powder diffraction that could be
well indexed by means of a magnetic propagation vector k"* = [0, 0, %] This is a clear
signature of the long range magnetic ordering present in NdFe3(1'BO3), below Ty. The
magnetic transition temperature derived from the neutron scattering data is in good agree-
ment with the transition temperature observed in the magnetic susceptibility as well as in
the specific heat. An additional magnetic phase transition at T;cy &~ 13.5 K, where the
commensurate magnetic structure becomes incommensurate could be identified in high
resolution diffraction experiments via the observed splitting of the magnetic reflections.
The splitting yields an incommensurate propagation vector k!* = [0, 0, % + &| where
£(1.6 K) was determined to be 0.00667.

In the CM phase, two models for the magnetic structure of NdFes("'BO3), that explain
the neutron powder diffraction data equally well were established by means of combined
magnetic representation analysis and fits to the powder data. The additional application
of spherical neutron polarimetry allowed to decide that the correct model for the magnetic
structure is given by equally-sized and directed magnetic moments on all three Fe sites
that are parallel to the hexagonal basal plane. Magnetic moments in adjacent planes are
collinear and antiferromagetically coupled. Further our SNP data suggests that the mag-
netic moments on the Nd sites are parallel to the moments on the Fe ions. This mutual
magnetic orientation of Fe and Nd magnetic moments is also in agreement with recent
measurements of the magnetic susceptibility and corresponding theoretical calculations
(s. reference [VDKOT| and references 1-4 therein). However, we note that the preliminary
analysis of more recent data measured on a second sample at HEIDI at FRM-II (that has
not been considered in this work) favour a non-zero angle of approximately 45° at 1.6 K
between the magnetic moments of the Fe and Nd ions within the hexagonal basal plane.
Yet, the result from the single crystal experiments suffer from problems with extinction
due to a rather large crystal and additionally the SNP data is more sensitive to the ori-
entation of magnetic moments. Moreover, the angle between the moments of the Fe and
Nd sublattices may is sample dependent.

At T = 1.6 K the magnetic moment of the Fe?" ions amounts to approximately 5.1 up
(4.9 up if a non-zero angle between Fe and Nd sublattices is assumed), which is closed
to the value for free Fe3™. The temperature dependence of the magnetic moments for
the FeT ions is approximately described by the magnetisation curve for S = 5/2 [Dar67].
The magnetic moment of the Nd3* sublattices saturates at 1.51 up (2.7 up if a non-zero
angle between Fe and Nd sublattices is assumed), and is therefore reduced from the value
3.3-3.7 up for free Nd** (s. e.g. [Blu0l]), which is supposable due to the crystal fields
that were observed and calculated in reference [PCST07|. Further it is interesting to note
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that the temperature dependence of the magnetic moments for Nd3* displays a sudden
jump below 15 K. On the one hand this increase may be associated with the commensu-
rate to incommensurate phase transition at T;cpr = 13.5 K. On the other hand it might
indicate a small paramagnetic contribution of the Nd sublattice as proposed in [TKHT07|
which would be agreement with the increase observed in the magnetic susceptibility data
in 15 K.

Due to the tiny splitting of the propagation vector, the CM and ICM phase cannot be
distinguished within the resolution of the powder diffractometer DMC that was employed
for the measurements. Hence no statement about the change of the magnetic structure
in the ICM phase can be made from the neutron powder data. But the polarized Q-scan
performed in the ICM phase clearly demonstrates the presence of a chiral contribution
in the magnetic cross-section. The intensities on the incommensurate magnetic peaks
could be well explained via the magnetic model that was found for the CM phase simply
by introducing the incommensurate propagation vector. This suggest that the magnetic
structure transforms into a long-period antiferromagnetix helix that propagates along the
hexagonal c axis. The incommensurate magnetic propagation vector k! = [0, 0, % + ¢ is
therefore associated with a rotation of the magnetic moments about 180° + + around the
¢ axis between adjacent hexagonal planes that are interrelated via trigonal translations.
The measured value of the splitting ¢ = 0.00667 corresponds to v &~ 0.8° and the full
period of the helix amounts to approximately 1140 A. The mere observation of a chiral
contribution signifies unequally populated chirality domains (s. section . Our data
shows suggest that only one of the two chirality domains exists. The antiferromagnetic
helix in the ICM phase of NdFe3('BO3), therefore exists with a unique handedness. A
single chirality domain is in principle not expected, since left- and right-handed spirals are
energetically degenerate (compare section [3.3.4), however in the case of NdFe3(1'BO3),
this might be related to the fact that the chemical structure is non-centrosymmetric. This
is similar to the magnetic helices in MnSi or UPtGe [Bro01] that both possess no inversion
symmetry.

The observation of third order harmonics of the magnetic satellites at the positions
(0, 0, 3/2 £ 3¢) additionally suggest the formation of a magnetic soliton lattice in
NdFe3(1*'BO3)s. A soliton is the appearance of localized or topological defects in pe-
riodic structures due to the presence of non-linear forces. Such non-linear forces can be
due to a external magnetic field that interacts with the magnetic moments or due to mag-
netic anisotropy. The free energy for a regular magnetic helix that includes an anisotropy
energy of order n in the basal plane perpendicular to the propagation vector parallel to z
direction has the form [IL83]

1 d d
F= v /dr {7772(61—25)2 + 07720%5 + wn” cos(ngb)} , (4.17)
where n and ¢ are the modulus and phase of the two-component magnetic order parameter
that describes the magnetic moments that are parallel to the basal plane. Here the first
term describes the exchange interaction, the second term is the Dzyaloshinsky-Moriya
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interactionﬁ and the last term is the n-th order crystallographic anisotropy energy.

Until now no explicit statement about the existence of the DMI in NdFe3(*BOj3), has
been made. However, as NdFes(*'BQ3), is non-centrosymmetric the presence of the DMI
is allowed from symmetry. Therefore, the formation of the observed magnetic helix is
possibly driven by the DMI.

The Euler-Lagrange equation for Eq. is given by the so-called sine-Gordon equation:

d? .
@(ngb) + vy, sin(ng), (4.18)
n—2
where v, = %77 5 L (4.19)

The solution of this equation is expressed in terms of elliptic function
1/2

( ) Un/
n—=amlgz, Kk = .
9 qz,KR), ( -

Here  is the modulus of the elliptic function. For small v, (£ — 0) this solution can

(4.20)

be expanded in an asymptotic series [IL83]

O =kz+ % sin(kz) + % sin(nkz) + ..., (4.21)
and additionally one obtaines the following expression for the propagation vector:
2.3 2 .3
po ol v vy (4.22)

v 2P 2ol

In the absence of a magnetic anisotropy Eqgs. and describe a regular helix with
propagation vector of modulus k£ that propagates parallel to the z-directions. However, if
the anisotropy energy is switched on the helix is distorted by additional sine modulations
parallel to z. This is illustrated in Fig. for a second order magnetic anisotropy.

The neutron scattering cross-section from a magnetic soliton lattice is expressed by [IL83]:

do 2 T 2 2 §3
= S RRP1- @)@+

+ YN ) - Q) + (k)1 - Q1) H(Q £ pk — 7).
+—- 7 p=1
where Jy (k) = —%,
1 3v? v2 B
T2 321 8(nk)t Tik) =
Tit(k) = £

2 2
vy v

1
2 32k 8(nk)*’

Ji (k)

(4.23)

4For the two component order parameter this form is equivalent to Eq. This is demonstrated in
reference [Boe02].
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Figure 4.17: Transformation of a regular magnetic helix (a) into a magnetic soliton lattice

(b),(c) due to the action of an increasing 2nd order magnetic anisotropy.
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Eq. shows that third order harmonics of the magnetic propagation vector can only be
observed in a neutron scattering experiment if a 2nd (n=2) or 4th (n=4) order magnetic
anisotropy is present in the plane perpendicular to the propagation vector. Tristan et
al. have recently reported the observation of an anisotropy of the magnetic susceptibility
for NdFe3(BOj), within the hexagonal basal plane in addition to the easy plane charac-
ter that was found in our measurements [TKHT07]. They have measured the magnetic
susceptibility parallel to crystallographic a axis and the b’ axis (b’ is perpencicular to
crystallographic a and ¢ axes) and found x,(7) > xw (1) below T. This suggest the
presence of a 2nd order anisotropy in the hexagonal basal plane.

In Figs. (b) to (d) we see that the intensities of the second order satellites are highest
for temperatures T < 13.5 K and the distortions of the incommensurate periodic struc-
tures seem to be largest near to the CM to ICM phase transition. We therefore assume
that at T;ops the interaction that favours a magnetic order that is incommensurate with
respect to the underlying crystal lattice becomes non-negligible and leads to non-linear
forces onto the magnetic subsystem slightly below T oy, as it still wants to remain in
its commensurate magnetic order. Within a small temperature regime below T;cy, the
magnetic structure consequently is not yet completely incommensurate but can be rather
viewed as a distorted commensurate magnetic structure with domain walls (cf Fig. [4.17)).
Alternating periods of commensurate parts and domains walls then lead to the observed
third order harmonics. The observation of magnetic soliton lattice without the application
of external forces like magnetic fields or mechanical stress are rather unlikely and to the
best of our knowledge the only other compound for which a magnetic soliton lattice was
reported without the application of an external magnetic field is CuB;O, [RSPT01]. The
observed temperature dependence of the splitting of the propagation vector k, = % + €
where € o |(Trea — T)|%%® is close to k(T) o< |(Trenr — T)|%* reported in reference
[RSPT01]. In addition, similar to CuB2O4 the commensurate phase is realised when
the temperature is increased, which is in contradiction to the prediction of the theory
[IL83]. For CuBy0y it was proposed that the difference to the theory can be explained
by assuming that the change of the propagation vector is not due to a temperature de-
pendent magnetic anisotropy as in reference [IL83] but rather due to the magnitude of
the DMI that decreases as a function of increasing temperature [Boe02]. We assume that
is is similarly true for NdFe3(*'BO3)4. The principal difference is that for NdFez(*'BO3),
the observed helix is ‘antiferromagnetic’ whereas for the compound CuB5Oy4 the helix is
regular. in summary our experimental results are well described by the assumption of a
magnetic soliton lattice.

Finally, we also want to briefly discuss the magneto-electric effect observed in NdFes(BOs3)4
by Zvezdin and co-workers|ZVK™T06| in the light of the observed chirality. Even though
the magnetic structure of NdFe3 (' BO3)4 that we observed in the ICM phase shows mag-
netic chirality none of the models discussed in section [1.3.3] in which a spontaneous
electric polarisation arises due to chiral magnetic ordering is adequate for this sample.
The magnetic spirals that drive a spontaneous electric polarisation are cycloids where
the magnetic moments rotate in a plane parallel to the propagation vector which is not
the case for NdFe3(''BO3),. In addition the electric polarisation due to the ME effect
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did not develop spontaneously for NdFe3(BOj3), but was observed under application of a
magnetic field. Apart from this, the temperature intervall below approximately 13.5 K
where we observed the antiferromagnetic helix in NdFe3(BO3)4 is not compatible with the
observation of the ME effect below 25 K. Hence, new theoretical efforts for NdFe3(BOs3)4
that consider the influence of a magnetic field on the magnetic structure we have found in
this investigations are highly desirable and may yield a better understanding of the ME
effect in this material.



Chapter 5

The Helimagnet MnSi

We have already seen in section [I.3.4]that the itinerant helimagnet MnSi currently attracts
a great deal of scientific interest as it displays exotic magnetic phases [PRPT04] and a
metallic non-Fermi-Liquid (NFL) phase that is not driven by a quantum critical point
[PBK™07]. In this chapter we will describe our experimental findings obtained by means of
elastic and inelastic neutron scattering experiments with both unpolarised and polarised
neutrons. Our experiments concentrate on the investigation of a possible intermediate
phase between the helimagnetic and paramagnetic phase and the magnetic excitations in
the helimagnetic phase. The intermediate phase was recently proposed by Roessler et al.
based on experimental observations in the specific heat and neutron scattering [RBP0G].
For the helical magnetic phase a novel magnetic excitation spectrum has been suggested
independently by two theory groups [BKR07, [Mal06]. The proposed magnetic excitations
emerge in the helical phase as new Goldstone modes - the so-called helimagnons - due
to the broken inversion symmetry in MnSi. Until now the excitation spectrum in the
helical phase has not been explored in detail to the best of our knowledge and therefore
no experimental confirmation of the helimagnons has been reported so far.

Before we will discuss the results we will summarise the known properties of MnSi and
give an overview over recent theoretical developments that motivated our experimental
work.

5.1 Properties

5.1.1 Chemical and magnetic structure
The 3d intermetallic compound MnSi crystallises in a cubic structure with the lattice

constant a = 4.558 A. The structure lacks inversion symmetry and is described by the
space group P2;3. Four Mn and four Si ions are situated at the symmetry related sites

107



108 CHAPTER 5: THE HELIMAGNET MNSI

Figure 5.1: The chemical unit cell of MnSi is illustrated.

(z,z,2), (5 + 2,5 — z,—x), (% —x,—, % + ) and (—z, % -+ :c,% — x) with x7, = 0.138
and xg; = 0.814, respectively. The chemical unit cell of MnSi is shown in Fig. [5.1]

MnSi is an itinerant-electron helimagnet with the ordering temperature 7, of 29.5 K and
an ordered magnetic moment of 0.4 up on each Mn atom. In absence of external magnetic
fields the magnetic structure is a left-handed long-period ferromagnetic spiral with the
propagation vector k = [(,( (] with ( = 0.016 resulting in a period of approximately
180 A as has been shown by means of polarised neutron scattering [SCMT83, TEMT83].
Bak and Jensen [BJ80] have shown theoretically that the magnetic helix in MnSi can
be explained in terms of the Dzyaloshinsky-Moriya interaction (s. section for a
complete derivation). The handedness of the spiral is fixed to be left-handed due to the
left-handed arrangement of the atoms in the chemical structure [[EM™85]. As we have
already demonstrated in the symmetry operators contained in the point group of
MnSi (23) generate four configuration domains from the magnetic propagation vector k
(s. also table and therefore helices propagating parallel to all four cubic diagonal
[111] directions are observed.

Alltogether the magnetic ground state of MnSi is a result of the complex interplay between
three competing magnetic energy scales:

e On the largest energy scale, the ferromagnetic exchange interaction between the Mn
ions leads to the ordered magnetic moment of 0.4 pp and favours parallel arrange-
ment of neighbouring magnetic moments.

e The lack of inversion symmetry in MnSi allows for the weak antisymmetric DMI.
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Thus, on the intermediate energy scale the DMI leads to mutually canted neighbour-
ing spins (s. section [I.2 and Eq. [1.4)). The interplay of the ferromagnetic exchange
interaction and the DMI drive the formation of the observed magnetic spiral.

e The lowest magnetic energy scale is represented by crystal field interactions. They
lead to cubic magnetic anisotropy that locks the propagation direction of the helix
parallel to the [111] directions.

The described energy scales can be identified qualitatively with the phase boundaries in
the magnetic phase diagram that is shown in Fig. as a function of external magnetic
field H and temperature T at ambient pressure. Below T. and below external magnetic
fields of H,; =~ 80 mT the magnetic spirals are locked along the [111] directions. Above
the critical field H.; the helix is transformed in a conical helix that tends to orient its
propagation direction k parallel to the field direction as shown by Ishikawa et al.[ITBRT6].
With increasing magnetic field the helices align more and more with the direction of
the applied magnetic field and a magnetic state with only one of the four configuration
domains is generated. Simultaneously the cone angle o decreases and becomes zero at
Heo = 600 mT. Above Hgy the helical structure has transformed into a ferromagnetic
arrangement of the spins with a spontaneous moment of of 0.4 g per Mn ion. We note
that the period of the helix only varies slightly below magnetic field Hs.

An additional magnetic phase develops as pocket inside the conical helical phase slightly
below T.. The intensity of the Bragg reflections of helices oriented parallel to the applied
field strongly decreases in a narrow range 130 mT < H < 200 mT, which is assumed
to be caused by a rotation of the propagation vector perpendicular to the field [[A84]
GMO™06b, IGMO™07]. Moreover, a signature of this phase was observed in magnetic
susceptibility measurements [TPSF97]. This magnetic phase is called A-phase and will
not be considered further in this work.

5.1.2 Non-Fermi-liquid phase and partial magnetic order

At ambient pressure and low temperature MnSi is well described as a weakly ferromag-
netic Fermi liquid (FL) [LT85, Mor85]. The magnetic transition temperature T, to the
helical ordered phase decreases by application of hydrostatic pressure and vanishes at a
critical pressure p, = 14.6 kbar as demonstrated in the phase diagram in Fig.[5.3(a)] The
suppression of the helical magnetic order may is of first order as suggested by ac suscep-
tibility data[PMJL97]. The resistivity shows a sharp dip at the same pressure p. from a
FL temperature dependence T* with o &~ 2 to a non-FL (NFL) [Sch99] dependence with
a ~ 3/2. The NFL behaviour is observed over a temperature range of three orders of
magnitude from a few mK to a crossover temperature of approximately 12 K (compare
Trg in Fig. and « in Fig. [PJLOI, DLWT].

In addition magnetic scattering intensity distributed over the surface of a sphere in recip-
rocal space with a radius k = 0.038 A was observed by neutron scattering experiments
even above p. [PRPT04]. This radius corresponds to the periodicity of the magnetic helix
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Figure 5.2: The graph shows the phase diagram of MnSi as a function of external magnetic
field H and temperature T at ambient pressure.

that exist below p. as shown in the left and right view graphs of Fig. The intensity
distribution with a broad maximum at [110] suggests that the direction of the helix that
is fixed by crystal field interactions below p. is unlocked above p.. The intensity pattern
is usually referred to as partial magnetic order due to its similarity to scattering patterns
observed in liquid crystals. As the partial magnetic order appears at the same pressure
pe, where the FL phase of MnSi vanishes, the depinning of the helical order may be seen
as a good candidate to drive the FL to NFL transition. However, the partial magnetic
order is not observed for the complete NFL temperature range but only below a crossover
temperature T that vanishes at the pressure pg &~ 21 kbar. We note that the anomalies
associated with T are not seen in the resistivity and susceptibility and hence the partial
magnetic order may fluctuate on time scales relevant for transport measurements. For an
interpretation of the appearance of the observed neutron intensity pattern in the partial
magnetic order phase, it has been speculated about several candidates for the magnetic

structure:

1. The partial order consists of distinct regions with helices propagating in distinct
directions that are independent from each other (similar to blue phases in liquid

crystals, cf. [TBKO6]).
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2. Topological defects such as domains or vortex lattices (compare e.g. [BH94,[RBP06]).

3. Spin crystals that are linear superpositions of spin spirals with different wave vectors
[BVAQG].

4. The helices remain intact, but meander through the crystal without being restricted
to a specific direction [RBP06].

In recent SR measurements performed by Uemera et al. [UGGM™07] no magnetic signal
was observed above p.. This suggests that the partial order below T is not static on
the slower timescales probed by the muon and hence is dynamic on a time scale between
1071 to 107" s. Further, the uSR data yield that the helical order below p. occurs
in a decreasing volume fraction for T, — 0 (s. Fig. and dark blue shaded area
in Fig. 5.3(a)). The abrupt drop at p. of the zero field moun spin precession frequency
shown in Fig. additionally supports that the magnetic phase transition at p. is first
order. The combined results of decreasing volume fraction and the fluctuating partial
magnetic order have been interpreted as metastable droplets of helimagnetic order of
several 1000 A diameter that form within a paramagnetic sea as remains of the first
order transition.

A key question that has been discussed extensively until recently is whether the transition
from the FL to the NFL regime is driven by a quantum critical point (QCP). For a
three-dimensional metal like MnSi the breakdown of Fermi liquid theory is generally only
expected at QCPs [Sch99]. A QCP is defined as zero-temperature second-order phase
transition that is controlled by a nonthermal order parameter such as magnetic field or
hydrostatic pressure. Since T. — 0 at p. it has been initially argued that the phase
transition is only weakly first order and therefore has been been explained in terms of
a ferromagnetic quantum critical point (QCP) [PMJLI7] leading to the observed NFL
behaviour in the resistivity. However, this explanation is contradicted by

e the previously mentioned signatures of a first order transition in the ac-susceptibility
and pSR experiments .

e the fact that ferromagnetic exchange is only the strongest of the three magnetic
energy scales present in MnSi. The existence of partial magnetic order clearly
suggests that only the weakest energy scale, namely the cubic anisotropy energy
is suppressed.

Pfleiderer et al. [PBKT07| recently performed measurements of the thermal expansion
in MnSi under pressure by means of Larmor diffraction. The thermal expansion is the
conjugate variable to the control parameter pressure that is used to tune the system across
the phase transition in question. Hence, it provides a unique handle to investigate the
nature of the FL. to NFL phase transition. Their results show no singularity of the thermal
expansion at p. and therefore demonstrate that the transition cannot be explained by a
QCP. They also obtained similar results for the transition at py. This suggest that the
NFL phase is rather a novel metallic state far from quantum criticality.
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Figure 5.3: (a) Phase diagram of MnSi as a function of pressure is shown. The blue and
green shaded areas represent the FL. and NFL phases. The insets show the distribution of
the magnetic neutron scattering intensity of the helically ordered magnetic phase below p.
(blue) and in the partial ordered phase between p. and po (green), respectively [PRPT04]. The
consequent subfigures highlight the experimental findings summarised in the phase diagram. (b)
The exponent « of the resistivity o(T) = AT? is shown as a function of pressure [PJLOI]. (c)
Volume fraction of the helical magnetic phase and zero field moun spin precession frequency
as observed in uSR [UGGM¥07]. (d) Distribution of magnetic neutron scattering intensity as
observed by SANS at ambient pressure for T < T, and for T 2 T, respectively. The position
of the experiment is marked by the red circle in (a).
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Finally small angle neutron scattering (SANS) results obtained under pressure and mag-
netic field show hysteresis effects in the magnetic scattering intensity. The observed
hysteresis excludes the assumption of metastable magnet droplets as remains of the first
order transition at p. in the partial ordered phase and favours that the system is actively
driven away from the helical ordered state above p. [PRPHOT7]. However, the nature of
the driving mechanism was not yet identified.

5.1.3 Possible intermediate phase and specific heat

A further experimental result that currently attracts a lot of interest is that in SANS
measurements performed at ambient pressure a sphere of magnetic intensity is observed
at T > T. [GBLT04,/[GMO™05| Lam06] (s. Fig.[5.3(d)). The sphere is observed as a ring in
the SANS measurement since only a single two-dimensional cut through reciprocal space
can be observed at a time. Therefore, we will often also refer to the observed scattering
as ring of magnetic intensity in the following. Again the radius of the sphere in reciprocal
space corresponds to the periodicity of the helix below T, and may be interpreted as the
unpinning of the propagation vector of the helix similar to the partial magnetic order
above p.. The ring of intensity has been interpreted in different ways by different authors.
Grigoriev et al. have discussed their SANS results in terms of paramagnetic critical
fluctuations that appear at T. [GMOT05]. In contrast Lamago et al. [LGB05] observed
a peak in the specific heat at 28.5 K with a change of slope in the wing of the peak at
28.8 K. Additionally they observed a kink in the integrated magnetic neutron intensity
data at the same temperature of 28.8 K. They suggested that the observed ring of magnetic
intensity may be due to an intermediate phase between the helical magnetic phase and
the paramagnetic phase.

In Fig. we show the specific heat data for MnSi from 2 K to 35 K as measured by
Pfleiderer [Pfl06]. It shows two significant features around 30 K: (i) a Lambda-shaped
peak at T.; = 29 K that can be associated with the breakdown of the helical magnetic
order (ii) a shoulder to the peak. We define T., = 30.4 K via the entropy conserving
construction shown in the inset of Fig. [5.4l In the two lower view graphs we summarise
again the results from small angle neutron scattering on MnSi for the helical magnetic
phase and the possible intermediate phase for T,; < T < T,.

In order to clarify whether such an intermediate magnetic phase may exist in MnSi several
issues need to be investigated experimentally.

e If an intermediate magnetic phase exists we should be able to distinguish the asso-
ciated magnetic structure experimentally. As we have seen in chapter [2| spherical
neutron polarimetry is suitable to examine this question. However, we note that the
observed magnetic intensity pattern may simply be interpreted as different regions
in the crystal persisting with helices propagating in distinct directions as shown in
the lower right viewgraph of Fig. [5.4]

e The exact structure of the sphere of scattering was not reported so far. It is unknown
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T=21 K

Figure 5.4: The specific heat for MnSi is shown for 2-35 K. It shows two significant
features around 30 K: (i) a Lambda-shaped peak at T.; = 29 K that can be associated
with the breakdown of the helical magnetic order (ii) a shoulder to the peak. We can
define Ty = 30.4 K via the entropy conserving construction shown in the inset. The two
lower view graphs show the results from small angle neutron scattering on MnSi below T
(left) and for T,y < T < Teo (right). The ring-shaped magnetic intensity for the second
case may be interpreted as the unlocking of the magnetic propagation vector of the helix
as denoted by the distinct magnetic helices.

whether the magnetic intensity forms an isotropic sphere or if there are maxima of
scattering on the sphere equivalent as for the partial magnetic order above p..

e Finally one may speculate that the partial magnetic order above p. and the possible
intermediate phase are not independent from each other. The intermediate phase
could be imagined to be present along the whole phase transition line of T, for all
pressures up to pc and to emerge into the partial magnetic order.

The possible existence of an intermediate phase also triggered theoretical efforts to explain
the sphere of magnetic intensity that will be review in the theoretical section [5.2]

5.1.4 Magnetic excitations

The magnetic properties of 3d weak itinerant ferromagnets are governed by the conduc-
tion electrons. Hence, the magnetism in these compounds has to be described within
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a band theory as opposed to insulating ferromagnets, where the magnetic properties
are determined by local magnetic moments due to localised electrons that are treated
within a Heisenberg model. Originally the difference between itinerant and local mo-
ment magnetism has been discussed quite controversially. The first model for itinerant
ferromagnetism, namely the Stoner model [Sto38], was successful in the prediction of the
saturation magnetisation per atom of ferromagnetic 3d metals like Fe, Co and Ni. How-
ever, it failed to explain the observed Curie-Weiss (CW) magnetic susceptibility above T
that is observed in almost all ferromagnets. Moreover the predicted Curie temperatures
were too high compared with the experimental values. Similar observations were made for
ZrZny and Scsln that were identified as weakly ferromagnetic metals[MB58, MCWT61].
On the one hand they possess very low Curie temperatures (25 K and 6 K) and small
magnetisations (0.12 up and 0.04 pup per atom) which clearly excludes local magnetic
moments, however, on the other hand the observed magnetic susceptibilities above T, ex-
actly obeyed the CW law for T. < T < 10T, which could not be explained by the Stoner
model. Additionally, the effective moments derived from the Curie constant by assuming
the existence of local moments are much larger than those of the spontaneous moments.
This discrepancy of the Stoner model in explaining the high temperature properties of
itinerant magnets can be qualitatively understood by taking into account its magnetic
excitations. In the Stoner theory of band magnetism the thermal excitations are spin
flip excitations of single electrons across the Fermi surface or equivalently excitations of
electron-hole pairs with opposite spins that move independently through the common
mean field. Hence, only small spin density fluctuations are generated by thermal smear-
ing out of the Fermi level and the high temperature magnetic properties derived from this
model are inherently underestimated (s. e.g. [Mor85]).

The inability of band theory to describe the high temperature magnetic properties of 3d
ferromagnetic metals was overcome by Moriya and Kawabata [Mor85] by means of their
self-consistent renormalisation (SCR) theory. In addition to the single electron excitations
of the Stoner theory they also considered mutually coupled modes of exchange enhanced
spin flip fluctuations in a self-consistent way. Here the self-consistency indicates that the
renormalisation of the thermal equilibrium state due to the presence of fluctuations is
taken into account, which consequently also influences the excitation spectrum. For a
complete review of this topic we refer to the book of Moriya [Mor85].

Historically, MnSi played a prominent role in the development of SCR theory for weak
itinerant ferromagnets as it was the first compound for that the theory could be employed
successfully. In spite of its helical magnetic structure in the absence of external magnetic
fields MnSi is widely regarded as weak itinerant ferromagnet. This is (i) due to the spon-
taneous magnetic moment of 0.4 pp that is considerably smaller compared to the effective
paramagnetic moment of 2.2 up estimated from the CW law of the susceptibility in the
paramagnetic regime [LLST2] and (ii) due to the fact that MnSi is ferromagnetic for exter-
nal fields larger than 0.6 T. SCR theory predicts three types of magnetic excitations that
are characteristic for a weak itinerant ferromagnet. For MnSi all of them were identified
by Ishikawa et al. by means of inelastic neutron scattering experiments that were carried
out in the ferromagnetic or paramagnetic phase:
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e Single particle spin flip excitations in the so-called Stoner continuum are observed
above the Stoner boundary that was found to be Egg = 2.6 meV for MnSi. The ex-
citations in the Stoner continuum are only weakly temperature dependent [ISTKT7T7].

e Collective spin-waves with the dispersion € = Dg>4+A (D = 23.5 meVA2, A = 0.2meV)
are present in the ferromagnetic phase below Egp and merge tangentially into the

Stoner continuum. They renormalise with increasing temperature and collapse into
critical scattering above T, at approximately 30 K [ISTK77, TBE™98, SBE™99].

e Low-energy paramagnetic excitations (critical scattering) with a unique ¢ depen-
dence of the linewidth I'(¢) were identified. This linewidth is given by

Cq _ Co{[s(T)P +¢*}
x(q) Xo ’

which is different from the usual linewidth of critical scattering for local moment

Heisenberg magnets that is described by a ¢?-dependence with T'(q) = %[INFSSZ

INUT85]. In both cases the magnetic coherence length is given by [r(T)]* = k2(T —
T.).

The different contributions to excitation spectrum are illustrated in Fig.

We emphasise that despite the success of the SCR to describe the magnetic excitations
in the ferromagnetic and paramagnetic phase and also the basic magnetic properties (e.g.
T., CW susceptibility) of MnSi, it fails to reproduce the complex and non-understood
magnetic phases and transport properties, that were described in the previous section.
This is quite natural as SCR theory was proposed to explain the properties of weak
ferromagnets and therefore ommits the Dzyaloshinsky-Moriya interaction. However, the
unconventional magnetic and transport properties of MnSi are observed in regimes were
MnSi is influenced by the Dzyaloshinsky-Moriya interaction and should be rather treated
as a helimagnet. This is supported by the experimental work of different authors who
demonstrated the existence of chiral magnetic correlations in the magnetic excitation
spectrum by means of polarised neutron scattering. Shirane et al. reported that the
lack of inversion symmetry in MnSi not only leads to a helical magnetic structure in zero
external field but additionally to a chirality in the magnetic excitation spectrum in the
ferromagnetic phase [SCMT83|. Moreover, Roessli et al observed critical chiral magnetic
fluctuations above T, in the paramagnetic phase [RBFE02]. The maxima of the critical
scattering lie on a sphere with a radius that corresponds to the pitch of the magnetic helix
in the helimagnetic phase.

The presence of chiral fluctuation even outside the helical magnetic phase suggest that the
magnetic chirality in MnSi is a key feature in order to understand its complex properties.
However, to the best of our knowledge no detailed study of the excitations in the helical
magnetic phase have been reported so far. In contrast to the experimental situation two
theory groups have independently developed models for the a novel kind of excitation
spectrum for the helical phase of MnSi that take into account the Dzyaloshinsky-Moriya
interaction [BKROT, Mal06]. They will be reviewed in the next section.

I'(q) = (5.1)
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Figure 5.5: (a) A schematic view of the spin wave excitation (red) and the Stoner continuum
(green) in MnSi is given (The figure is adapted from reference [I[ISTKT77]) (b) The magnetic
excitation spectrum of MnSi in the ferromagnetic phase at T =5 K and H = 1 T as reported
by Ishikawa et al. [ISTKT77| is shown. The solid lines are contour lines with equal intensities.
The red line denotes the collective spin wave excitation. (c¢) The critical scattering at T = 33 K
is shown. The figure is taken from reference [INUT85].

5.2 Theoretical models

Before we will review our experiment results we would like to introduce the theories that
are relevant for our work. The section is organised in three parts. In the first part new
models that have been proposed to explain the existence of the possible intermediate
magnetic phase are introduced. This is followed by section that describes a theory which
explains the sphere-shaped magnetic intensity above T, as paramagnetic critical scattering
in a helimagnet. In the last part we present the models that cope with the magnetic
excitation spectrum in the helical magnetic phase.

5.2.1 Intermediate magnetic phase and skyrmions

Due to former theoretical studies [WM89, BH94] it was commonly believed that only
one-dimensional helical modulation as those shown in Fig. [5.6(a)| may form spontaneous
ground states in condensed matter systems. However, Rofller [RBP0OG] et al. showed
by means of a phenomenological model that soft longitudinal magnetic fluctuations may
stabilise multi-dimensional twisted modulations as well. They calculated the position
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Figure 5.6: (a) A one-dimensional magnetic helix propagating along the x-direction with a
constant magnitude m of the magnetic moments is shown. (b) A so called skyrmion structure
is shown. For such a magnetic structure the propagation axis is not fixed in one direction but
the structure is helical modulated radially in all directions from the centre. (c) The presented
structure is similar to the skyrmion in (b) with the difference that additionally the amplitude
m of the magnetic moment is allowed to vary. m has a maximum at the centre and decreases
with increasing distance. All pictures are taken from reference [RBPOG].

dependent energy density for several two-dimensional chiral structures (s. Fig. and
compared the results to a normal one-dimensional helix.

For the one-dimensional helix the energy density is a constant and independent of the
position as shown in Fig. . Fig. shows a two-dimensional magnetic structure
where a helical modulation propagates circularly in all directions g of a cylinder from
the centre. Such a structure is called a skyrmion. The energy density of the skyrmion
is no longer uniform and lower in the centre compared to the helical state. However,
at a distance of the order of the pitch of the helix the energy density excess outweighs
the initial reduction (s. Fig. [5.7(a)). Therefore, these kinds of skyrmion textures are
not expected to form a spontaneous magnetic groundstate. However, if the amplitude of
the magnetic moments in the skyrmion structure is allowed to vary as a function of the
distance ¢ from the centre (5.6(c)|), the energy density is lower with respect to the one-
dimensional helix for all distances (cf. Fig. |5.7(a)) and a spontaneous skyrmion ground
state can be realised. The temperature interval in which a magnetic skyrmion lattice may
form is determined the longitudinal stiffness n of the magnetisation. If 7 is reduced from 1
(n = 1 = amplitude is not allowed to vary) the skyrmion phase is expected to be stable
over a finite temperature range between the helix phase and the paramagnetic phase (see
Fig. (D).

In the electronic supplement to reference [RBP0G] 1 is estimated to be n ~ 0.4 from
experimental parameters to the theory. This implies a temperature range of ~ 1K for
the skyrmion phase which is consistent with the temperature interval of the shoulder
appearing in the specific heat (compare . However, we emphasise that the model
presented by Rofller et al. is for two-dimensional structures only. Yet, Fischer et al.
[ESRO§| proposed a three-dimensional magnetic structure that is formed by cylinders of
skyrmions as illustrated in Fig. [5.8] This model also allows for an intermediate magnetic
phase.
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Figure 5.7: (a) Comparison of the local energy densities for the one-dimensional helix and
two-dimensional skyrmions with fixed and varying amplitudes of magnetisation [RBP06]. o is
the distance from the centre of the structure and R is the pitch of the helical structure in real
space. (b) Phase diagram as a function of longitudinal moment stiffness n for a chiral magnet.
The skyrmion phase is stable between two temperatures 7; and T that depend on 7. Below Tp
a double twisted texture is able to form, and below T}, a one-dimensional helix is stable [RBP06].

Figure 5.8: A three-dimensional magnetic structure constructed from skyrmions is illustrated.
Each of the cylinders represents two-dimensional skyrmions (cf. Fig. The skyrmions are
stacked along the cylinder axis, i.e. the magnetic moments do not change when moving parallel
to the cylinder axis.

5.2.2 Critical scattering above T,

Maleyev et al. developed a mean-field model that explains the appearance of the sphere-
shaped magnetic intensity above T, by means of paramagnetic critical scattering [GMOT05].
Based on the Bak-Jensen model (cf. section |1.2.2)) they derived the following expression
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for the free energy of MnSi above T.:

Fla) = 3 (500 + )0 + iDeanst, ) $55% + 3 (IS5 + Iy + 2158)
a,l

(5.2)
Here q is the reduced wave vector measured from the neighbouring reciprocal lattice
vector. Additionally the non-renormalised inverse correlation length k2 = C(T — Tco)ﬂ
was introduced according to mean-field theory. Further the indices «, 6 = x,y, z denote
the components of the Fourier transform of the magnetic order parameter S4. We remind
that A, D and B, are associated with the strength of the ferromagnetic exchange, the DMI
and the cubic anisotropy, respectively. A is also called the spin wave stiffness constant.

Using Eq. the magnetic susceptibility tensor can be derived via X;é(q) = 85(2282 — (s
q —q

e.g. [CL95|). After several approximations (s. reference |[GMOT05| for the complete
derivation) the authors obtain the final expression for the susceptibility tensor as

T 2 2 2 |D| (2qk)2 RN
XQB = E ((q + K° + k )504,8 — 226]6(]76&67 — mQQQQ s
k2| B . 1
Z = [(q+k)+r [(q — k)2 + KA+ % ({q4} — 3)] : (5.3)
Here k = %’r = % and d is the pitch of magnetic spiral below T.. The renormalised

inverse correlation length is defined by x* = k3 — k* = C(T — T.;). The expression
{*Y=q*+ (j;l + ¢} is a cubic invariant that has a maximum for 1/3 in the case of MnSi
and locks the helix propagation direction along the diagonals of the cubic unit cell if
By > 0.

From the magnetic susceptibility in Eq. the magnetic scattering cross-section for the
critical scattering above T, can be derived as shown in the appendix [C] Here we only
provide the final result [GMO™05]:

do _, (yroFun(Q)°T K +q 4k - 2kq- By (5.4)
A TA(q+RP R (= k)2 +r2+ (Bt g+ gh — 1/3) |

Here Fy,(Q) is the magnetic form factor of the Mn ions (compare section [2.3.3)). We note
that this expression for the critical scattering depends on the initial polarisation vector
P, due to the DMI. Eq. leads to a sphere of magnetic scattering with the radius k in
reciprocal space and reproduces the data of Grigoriev et al. well.

For our measurements it is additionally important to consider how the polarisation vector
of the neutrons scattered by paramagnetic critical fluctuations is changed. The expression
for the final polarisation vector due to the critical scattering is also derived in appendix

'Here T,y and T.; (s. later in the text) are not necessarily connected to T.; and T, that we have
defined in section from the specific heat. In reference |[GMO™05] no statement is made about the
exact meaning of the two temperatures!
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[C] and is given by

202 + K2+ k3)[(0ap — Gals) — 1] - Py + 4kq}
2(k? 4+ ¢®> + K?) — 4kq - P,

o |

5.2.3 Goldstone modes in the helical phase

In 2006 the group of Belitz et al.[BKRO7] and Maleyev[Mal06] independently developed
theoretical models for the magnetic excitation spectrum in the helically ordered magnetic
phase below T.. We will introduce them here in separate sections and will compare them
afterwards.

5.2.3.1 The model of Belitz

The theory of Belitz et al. [BKROT| was motivated by the strange properties of MnSi, e.g.
the temperature dependence of the specific heat near T (compare section and the
NFL behaviour above p. that is not observed in other metallic low-temperature magnets.
The authors argue that the only significant difference between these other materials and
MnSi is the existence of the DMI in the latter. They concluded that it is natural to
assume that the exotic transport properties of MnSi are related to the helical order in
MnSi.

In ferromagnetic metals (e.g. Fe, Ni) the spontaneous breaking of rotational symmetry
in spin space leads to massless soft modes according to Goldstone’s theorem. The soft
modes are propagating ferromagnetic magnons with a dispersion relation w(q) o< g*. TIs
the rotational symmetry additionally broken explicitly due to external magnetic fields or
due to spin-orbit coupling of the electronic spin to the underlying lattice the Goldstone
modes additionally obtain a mass that corresponds to a gap of the excitation at g = 0.
In systems where the lattice possesses no inversion symmetry additional effects should be
observed that are not related to the rotational symmetry of the spins. That is due to
the DMI term DM (V x M) (cf. section in the free energy that is invariant under
simultaneous rotations of real space and M but breaks spatial inversion symmetry. Here
M is the magnetisation. Belitz et al. predict a new helical Goldstone mode coupled to
the emergence of the helical state which they call helimagnon, in analogy to ferromagnons
and antiferromagnons.

In their paper Belitz et al. develop a theory for itinerant quantum helimagnets like MnSi
based on Ginzburg-Landau theory that also permits to calculate other properties like
transport properties or the specific heat as shown in reference [BKR06]. However, as a
starting point they use a classical phenomenological Ginzburg-Landau theory in which
they introduce the additional DMI term. We will briefly describe this approach as it is
quite educational and refer to references [BKR07, BKROG| for the complete quantum-
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mechanical derivation. The Hamiltonian they use for their model is given by
u
4

and directly compares to the Bak-Jensen model (Eq. . As we have already seen in
Eq. [1.7 a helical field configuration of the form

H= iM2(a:) + g[VM(a;)]2 + QM(.@) [V x M(x)] + —[M?(x)]? (5.6)

2 2

M, (x) = mo(cos kz,sinkz,0) (5.7)

is the stable saddle-point solution of the corresponding action S[M| = [ d*zH. Here k is
the pitch vector and the coordinate frame was chosen so that the helix propagates parallel
to the z direction. This solution for the magnetisation breaks the translation symmetry
of the lattice and leads to a new soft Goldstone mode that is called helimagnon.

As stated by Belitz an obvious guess for soft fluctuations about this saddle point associated
with the soft mode are phase fluctuations of the form

M (xz) = mo(cos(kz + ¢(x)),sin(kz + ¢(x)), 0) =~ M,,(x) + mop(x)(—sinkz, cos kz, 0),

(5.8)
where an expansion in ¢(x) has been performed and only terms up to first order are
taken into account. By substituting this epression in Eq. one obtains for the kinetic
energy of the mode H e = const X [ d*x[V¢(x)]?. However, they also demonstrate that
this solution can not be correct, by considering a simple rotation of the planes containing
the spins perpendicular to the propagation vector, (aj, s, k), which corresponds the
the phase fluctuation ¢(x) = ai;x + agy. This rotation should not cost any energy
because a rotation of the spiral does not change its state due to the incommensurability
of the spiral with respect to the underlying chemical lattice. But the evaluation of H
yvields [Vo(z)]> = o + a3 > 0. This is due to the dependence of H e on V¢, with
V = (V_.,0,). Belitz et al. proposed that the proper solution is obtained if the soft mode
is a generalised phase u(x) of the form u(x) = ¢(x) + V  ¢(x) that gives

Hyuer = [ da(c0a@)? + ca[V2u@)/), (5.9)

where ¢, and ¢, are elastic constants. The corresponding dispersion relation of the heli-
magnons derived by the authors is given by

wolg) = const - g/ Je.q2 + crqt /2, (5.10)

with ry being the Goldstone mass of the g = 0 mode and the damping coefficient ~ is
given by v(q) = rol'¢?>. The Goldstone mode has an anisotropic dispersion relation with
fluctuations that are softer in the direction perpendicular to the pitch vector. As demon-
strated in Fig. the longitudinal mode corresponds to an excitation that squeezes and
relaxes the period of the helix locally. The transverse modes correspond to an excita-
tion where the direction of the helix fluctuates. Therefore it is quite intuitive that the
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transverse mode is softer as rotating the complete helix should cost less energy compared
to squeezing it. H Further it is interesting to note that magnons in ferromagnets have a
quadratic dispersion in ¢ whereas antiferromagnets have a linear dispersion. For the he-
limagnon the branch of the dispersion that is parallel to the magnetic propagation vector
k therefore shows antiferromagnetic character whereas the branch parallel to k can be
associated with ferromagnetic fluctuations. This is expected as spins that are situated in
the planes that are perpendicular to the propagation direction k of the helix are indeed
coupled ferromagnetically. In the direction parallel to k neighbouring spins are mutu-
ally rotated and form the magnetic helix which corresponds to rather antiferromagnetic
coupling when modes with small wave vectors ¢ are considered (corresponding to large
distances in real space).

Finally the magnetic susceptibility associated with the helimagnons is also anisotropic
and described by the transverse and the longitudinal components

1 N 1
xaw) wi(q) — w? — iwy(q) (5:11)
Hqw) ~ (5.12)

wi(q) — w? —iwy(q)
As we have seen in section the imaginary part of the magnetic susceptibility can be
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Figure 5.9: Left side: The longitudinal mode of a helimagnon that corresponds to a fluctuation
of the magnitude of the propagation vector is demonstrated. Right side: The transverse mode
of a helimagnon is shown. In this case the direction of the propagation vector is fluctuating.

2Compare this to a mechanical spring that you squeeze or rotate.
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probed by magnetic neutron scattering and will allow us to verify the existence of the
proposed helimagnons in our experiments.

One serious limitation of the Egs. [5.10] and is that the model is only valid for
q < k, which is a region that is experimentally difficult to access as we will see in the
experimental section.

5.2.3.2 The model of Maleyev

Originally the theoretical model for the excitation spectrum in the helical phase by
Maleyev [Mal06] was developed to explain the intensities of the magnetic satellite reflec-
tions in MnSi as a function of magnetic field that were observed in small angle neutron
scattering experiments by Grigoriev |[GMOT06b, GMO™06a]. The experimental data of
Grigoriev et al., especially the appearance of a second-order magnetic satellite peak at 2k
is well explained when a gap is introduced in the spin wave spectra. The gap stabilises
the helices with respect to an external magnetic field that is applied perpendicular to the
helix propagation direction k. Maleyev finds that the gap originates microscopically due
to the interaction between the spin waves and the small cubic anisotropy in MnSi. How-
ever, apart from the gap the proposed spin wave spectra are similar to the helimagnons
that were proposed by Belitz et al. as they are also anisotropic.

Maleyev introduces a local three component spin operator Sg on each magnetic ion and
derives the excitation spectrum in a linear spin-wave approximation. The following inter-
actions are taken into account for the Hamiltonian of the spin system

H = Hgx+ Hpy+Hug+ Hp+ Hy (5.13)
Hpx = %%:Jqsq-s_q, (5.14)
Hpy = i) _ Dgq-[Sqx S_g], (5.15)

q
Hap = % > FelSS” (5.16)
P

Hp = 3 [(Sq-0)(S-q-d) —1/3(Sq- S-q)l (5.17)

H; = VNH-S,, (5.18)

they are the conventional isotropic exchange Hgx, the DMI Hpy;, the anisotropic inter-
action H 4, the magnetic dipolar interaction Hp and the Zeeman term Hy. Here S, =
VN Y Sgexp(—q - R) is the Fourier transform of the spin operator. wy = po(gpug)?/a®
is the characteristic energy of the dipolar interaction. H is the magnetic field.

As all experiments within this work have been performed without the application of ex-
ternal magnetic fields we will consequently only consider the parts of Maleyev’s work for
H = 0. Similar to Belitz, Maleyev also finds different dispersions parallel and perpendic-
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ular to the propagation direction of the helix. For q || k he derives

€2 = \ AUk & q)2[Ak & 0)2 + AR + Swy). (5.19)

Here A is the spin wave stiffness constant for ¢ > k and S = 0.2-4 is the spin of the unit
cell of MnSi. The '+’ and -’ branches emerge from =+k, respectively (see Fig. [5.10(a)).
The corresponding magnetic susceptibility parallel to the propagation direction is given
by

a PN Z Z_
X’ = —(5aﬂ—ca0ﬂ)z( s p ) (5.20)

2 2
w” — € w* — €
I+ I

where Zy = A(k+q))* + Sw,

For g L k the dispersion is more complicated as umklapp processes mix the modes with
q + k and q — k. The corresponding dispersion is described by

2 ¢, dl R
Here the '+’ and ’-” branches have a different meaning, they correspond to the gaped and
ungaped mode. The value of the gap is Ae = ¢, ;(0) — e, _(0) = Ak?>\/2. The dispersion
is shown in Fig.|5.10(b). For the magnetic susceptibility perpendicular to the propagation
direction we have

S A Z_
af Oon— ¢ ¢ . + 5.22
X1 (das Cacﬁ)4(€2l7+ _ Ei,—) <w2 _ Ei,+ + W2 _ 2 > > )
where Zp = 24%1 (2K +¢7) + A(L — )k + ¢1),

6% = 2A2k'4 + Su)oAk’2 + S2ngCCNL/2,

where N, and N, are components of the demagnetisation tensor parallel and perpendic-
ular to k. ¢ is a unit vector that is parallel to the propagation vector k.

Maleyev also derived the asymmetric part of the magnetic susceptibility (compare also
appendix that gives rise to an inelastic chiral contribution to the neutron scatter-
ing section. However, as we have seen in section the chiral contribution is always
zero for unpolarised neutron scattering and we have neglected it here as all our inelas-
tic experiments have been performed with unpolarised neutrons. The dispersion relation
corresponding to the model of Maleyev is illustrated in Fig|5.10

5.2.3.3 Comparison of the models of Belitz and Maleyev

We have seen that both models predict a dispersion for the helimagnons that is anisotropic
with respect to the propagation direction of the helix. For the limit of small values of ¢
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Figure 5.10: The dispersion relation of the magnetic excitations in MnSi as derived by Maleyev
[Mal06] are shown. (a) The two dispersion branches parallel the propagation vector of the helix
k are shown. Here '+’ and -’ correspond to branches emerging from +k, respectively. (b) The
dispersion of the two excitations perpendicular k are illustrated. Here the meaning of the '+’
and ’-’ branches is different, they correspond to the gaped and non-gaped modes, respectively.
(¢) To illustrate that the dispersion is anisotropic we show one parallel and the two perpendicular
branches in one graph.

(g, << k) Maleyev also derived an expression for the dispersion for arbitrary directions
for the case of the gapless mode, namely

4
q
e = AP+ Ly, (5.23)

This is similar to the Eq. by Belitz et al. if we identify ¢ = const’rgA%k* and
c, = % However, the value of the gap of the e, modes remains obviously unchanged in
the Maleyev model. In contrast to this, Belitz argues that within low-energy theory all
momenta are of the order of k, and umklapp scattering would only occur for a process of
order n 2 G /k =~ 40, where G is the modulus of a reciprocal lattice vector. Therefore,
the resulting gap will be experimentally unobservable and negligibly small.

In summary we see that both models share the common feature of an anisotropic disper-
sion that can be directly compared for ¢ << k but differ with respect to the prediction
of a spin-wave gap.

5.3 Experimental work and results

The experimental section is organised in three parts. The first two sections report on our
investigation of the possible intermediate phase in MnSi by means of elastic neutron scat-
tering techniques with unpolarised and polarised neutrons, respectively. The third section
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focuses on inelastic neutron scattering experiments that were conducted in the helimag-
netic phase of MnSi in order to examine the dispersion of the proposed helimagnons.

5.3.1 Samples used for the investigation

For our experiments two different single crystal samples were used. The first sample is
a big single crystal of cylindrical shape with a volume of approximately 8 cm?®. It was
grown by the Bridgeman method starting from high purity materials. This crystal is well
characterised as it was used in several previous experiments [RBFE(2, and has
a crystal mosaic n & 1.5°. It will be referred to as sample A from now on and is shown
in Fig. [5.11(a)

The second sample is a single crystal disc of 2 mm thickness at approximately 20mm
diameter. It was cut from sample A and was used already in the reference [Lam06]. We

will call the sample that is depicted in Fig. |5.11(b)[sample B. The mosaic of sample B is
n ~ 0.15° [Lam06].

(a) (b)
Figure 5.11: The MnSi single crystal samples that were used in this work are shown mounted
onto the holders that were employed in the experiments: (a) Sample A (b) Sample B.

5.3.2 Investigation of the possible intermediate phase by SANS

We examined the magnetic scattering intensity of MnSi near the transition from the
helical phase to the paramagnetic phase at T, by means of small angle neutron scat-
tering (SANS) (s. also appendix for more details on this instrument type) on the
very cold neutron multipurpose beamline MIRA [GBJT07] at the research reactor FRM-
IT in Germany. MIRA is equipped with a two-dimensional position sensitive detector
(PSD) with an active area of 20 x 20 cm? and 256 x 256 pixels for the SANS geome-
try. The experiment was performed with the neutron wavelength A = 9.7 A that was
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defined via a multilayer bandpass monochromator. The instrumental resolution was de-
fined by a computer-controlled variable source aperture of rectangular cross-section that
was installed after the monochromator and a cadmium aperture of approximately 15 mm
diameter that was mounted directly on the sample holder. A moderate resolution was
chosen in order to maximise the intensity for the detection of the faint magnetic scattering
intensity above T.. We will consider this in detail later. Additionally a flight tube filled
with helium gas was used in front of the sample in order to minimise the experimental
background due small angle scattering from air.ﬂ The two-dimensional data sets measured
by means of the PSD were exclusively treated with the program GRAS,,sP [Dew03].
For the experiment sample B has been used in an orientation where a [112] zone axis
was directed upwards. The sample was inserted into the standard toploading closed cycle
cryostat available at FRM-II [CCR] in order to cool it into the magnetic phase.

5.3.2.1 Temperature dependence of the magnetic intensity

The sample was first cooled down to the lowest available temperature of approximately
1.8 K in order to orient it with respect to the magnetic reflections[f] The orientation with
the [112] zone axis directed vertically allows to fulfil the Bragg condition for two pairs of
satellites around the (0,0,0) position simultaneously, i.e. the satellites for k; = [(, (, (] and
ke =1[(, ¢ ,Z] The sample was oriented to have similar intensities on magnetic satellites
associated with the same propagation vector as shown in Fig. [5.12

Consequently we followed the magnetic intensities as a function of temperature in order to
identify the temperature interval where the ring of magnetic intensity is observed. This is
illustrated in Fig.[5.12] The influence of the intensity of the direct beam was significantly
reduced by covering the direct beam spot with a sheet of cadmium. Further a dataset
measured at T = 31.5 K above T, was subtracted from all datasets in order to consider
background scattering and the remains of the direct beam intensity. At low temperature
only the magnetic satellites are visible due to the helical magnetic order of MnSi. When
the temperature is increased the magnetic Bragg peaks slowly move to larger values of q.
Further, when T, is approached the magnetic Bragg peaks start to broaden azymuthally
and start to merge into a ring of intensity at approximately 29 K. The radius of the
ring approximately corresponds to the pitch of the magnetic helix below T.. As we have
mentioned earlier in section the magnetic intensity forms a sphere in reciprocal space
and the observed ring is a two-dimensional cut through the sphere. The complete sphere
will be investigated later in more detail. Accordingly, we will here often refer as ring to
the intensity distribution. The magnetic scattering intensity is distributed more and

3Unfortunately no appropriate flight tube was available for the flight path between sample and detector
at the time the experiment was performed.

4The usual approach of orienting the sample with respect to the nuclear reflections is not possible on
MIRA as the neutron wavelength is to high to reach the reflections.

°It is possible to fulfil the Bragg condition for several Bragg reflections simultaneously in the SANS
geometry due to the finite beam divergence and the finite magnetic mosaic spread of the sample.
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Figure 5.12: The magnetic scattering intensity of MnSi as function of temperature is shown.
A dataset measured at T = 31.5 K has been subtracted for all temperatures. The data has
been smoothed with a two-dimensional Gaussian smoothing kernel with 5 pixels full width
half maximum. The magnetic satellites first move to slightly larger values of q. Then they
begin to broaden azymuthally before they merge into a ring of magnetic scattering intensity at
approximately 29 K. The ring finally disappears at approximately 30.5 K.
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more isotropically on the ring while simultaneously the overall intensity decreases when the
temperature is increased further. At T ~ 29.5 K the magnetic Bragg intensity disappears
completely.

In order to investigate the appearance of the ring-shaped magnetic intensity further we
performed integrations over the measured intensity as a function of temperature. We
defined circular regions of integration for the satellites and the ring, respectively, where
only scattering of one kind was observed as illustrated in the top panels of Fig. |5.13
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Figure 5.13: The figure shows the integrated intensity for the magnetic satellites and the ring
as a function of temperature. The integration for the satellites and the ring were performed over
the red and white circular box sectors shown in the top panels of figure, respectively. To compare
the two integrated intensities each of them was normalised with respect to the arc length the
corresponding circular box section cover, respectively (s. text for detailed explanation). The
horizontal broken line signifies the background level below T.;. The blue hexagons denote the
intensity on the ring extrapolated to a sphere. This is explained in detail in section
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Hence, we were able to examine both types of magnetic scattering independently as func-
tion of temperature. Both integrated intensities were normalised with respect to the
summed arc length that the corresponding circular box sections cover, respectively. This
allows a comparison of both intensities on a absolute scale. The blue hexagons in Fig. [5.13
denote the intensity on the ring extrapolated to a sphere. This will be discussed in detail
later in section [5.3.2.3] Fig.[5.13] demonstrates that at T.; = 29 K the magnetic intensity
on the satellites drops abruptly while the magnetic intensity on the ring section simul-
taneously makes a sharp upward jump from the background level towards the intensity
level of the satellites. This indicates that at the temperature T,.; the intensity on the
ring and the satellites is approximately identically and thus the ring of magnetic intensity
has emerged. Above of T,.; both intensities decrease together. As shown in the inset of
Fig. the intensity on the magnetic satellites is still slightly higher compared to the
intensity on the ring up to the temperature Tr ~ 29.7 K. This signifies that the intensity
on the ring is not yet isotropically distributed between T, and Tpg. That is consistent
with the contour plots of Fig. 5.12] and shows that our normalisation is correct. Both
intensities reach the level of the background intensity that is observed below T, at the
temperature T ~ 30.5 K. The intensity still decreases above this temperature which is
because the overall background is significantly lower in the paramagnetic phase compared
to the helimagnetic phase. We note that the temperatures T.; and T., are in very good
agreement with the temperatures defined from the specific heat data (cf. Fig. .

5.3.2.2 Fits of the magnetic intensity

We followed the temperature dependence of the pitch of the helix by means of g-scans
in radial direction through the magnetic intensityﬁ The g-scans were extracted from
the two-dimensional detector images in Fig. by performing radial bins (see reference
[Dew03] for an exact explanation of the binning procedure) with an azimuthal width of
20° which corresponds to the azimuthal width of the magnetic satellite reflections at low
temperature. The result, namely the intensity as function of ¢ = |q| and temperature is
shown in the Figs. and Fig. [5.15 The arrow in the small inset shows the direction
of the respective g-scans shown in each view graph.

The magnetic intensity on the satellite reflections below T, in the helical phase could be
well fitted with Gaussian profiles of the form

L [n@2) {_41n(2)(Q—k)2

{g) =24 N

BCK .24
oV }+C, (5.24)

where the given normalisation of the profile ensures that Iy and Ak describe the integrated
intensity and the full width at half maximum (FWHM), respectively. k is the peak centre

6We note that we use the reduced scattering vector q here as we are only interested in the scattering
around the reciprocal lattice position (0,0,0) (direct beam) in the SANS geometry. @ and g are related
via the relationship @ = 7 + g where 7 is a reciprocal lattice vector and for 7 = (0,0,0) we have Q = q.
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Figure 5.14: @Q-scans through the magnetic satellite reflections parallel to the direction denoted
in the insets are shown for T < T.; in the helical phase. The scans were fitted with Gaussian
profiles (s. Eq. . The data sets were shifted by a constant offset of 50 for clarity.
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Figure 5.15: g-scans through the magnetic ring-shaped intensity for T > T,.; are shown for
four directions that are denoted in the small insets of each subfigure. All four scans were fitted
simultaneously with Eq. The data sets were shifted by a constant offset of 1.5 for clarity.
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and BCK describes a constant background. The position of the peak k in each data set
corresponds to the modulus of the propagation vector k of the magnetic helix for the
associated temperature. The fits were performed independently for the magnetic satellite
reflections corresponding to ki and ks. As the results of the fits are similar for both
directions only the respective ones for k; are shown in Figs. [5.16] (a)-(c). Fig. [p.16[a)
shows clearly that the modulus of the propagation vector increases already within the
helical magnetic phase. Before we discussed this in more detail we are going to describe
the fits to the data above T,;.

For temperatures larger than T.; the g-scans through the ring of magnetic intensity were
better described by Lorentzian profiles as given by Eq. 5.4l We emphasise that the cubic
invariant term (cjﬁ+d§+cj§—1 /3) in the denominator of Eq. is dependent of the direction
of the performed g-scan. Consequently the proper expression has to be introduced for each
respective scan. As shown in Fig.[5.15 we fitted g-scans for the four directions [110], [0,0,1],
[1,1,1] and [1,1,1 ]. The first two and last two directions correspond to the azimuthal
positions with weakest and strongest magnetic intensity on the ring, respectively. Here
the cubic invariant term describes the observed azimuthal dependence together with the
coefficient By that gives the magnitude of the cubic anisotropy energy. The larger B,
the more anisotropic is the intensity distribution on the sphere of magnetic scattering
described by Eq. 5.4 The correct expressions for the cubic invariant term for each of the
four directions is given by

e [110]: 4o =G, = G/q and ¢. = 0 with § = ¢/V/2,
e [001]: ¢, =1and ¢, = ¢, =0,
e [111] and [L,1,T]: ¢, =g, = ¢. = G/q with § = ¢//3.

As we have already discussed before (compare Fig. the magnetic intensity on the ring
becomes more and more isotropic with increasing temperature. In order to determine the
cubic anisotropy energy coefficient By as a function of temperature we performed least-
squares fits to the data where we fitted the four g-scans in Fig. [5.15| simultaneously.
Additionally the inverse magnetic correlation length s and the radius of the sphere given
by k were correlated for all four scans. Similar to the fits for T < T, we introduced
a constant background in the fit. The magnetic form factor for the Mn ions Fy,(Q)
does not differ significantly from 1 for the small values of @ in this experiment and was
therefore neglected in the fits (s. also Fig. . Further we fixed the value of the spin wave
stiffness constant to A = 52 meVA? as given in references [Mal06, [GMOT05]. Of course
the incident polarisation vector was set to Py = 0 in Eq. as non-polarised neutrons
were used in the experiment. For T > 29.3 K this model fitted the data well. However,
for T = 29.1 K and 29.3 K Eq. could not describe the g-scans that were performed
parallel to the [1,1,1] and [1,1,1 ] directions as the intensities in the fits were always to
low. These are the positions where the magnetic satellites are observed below T.; in the
helical phase. We therefore interpreted these findings as a cross-over regime where both
the magnetic satellites due to the helical order and the magnetic critical scattering are
observed simultaneously. The fits were significantly improved (x? = 5.1 instead 10.1) by
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introducing an additional Gaussian profile in the fits for both directions and the data is
described well due to this measure. The final fits are shown as the solid lines in Fig. |5.15
and the corresponding results for all parameters are summarised in Fig. [5.16

The integrated intensities for magnetic satellites below T.; and the critical scattering
above T, shown in Fig. [5.16(a) are in good agreement with the intensities shown in
Fig. . In Fig. (b) we see that the modulus of the propagation vector k of the
magnetic helix in the helical phase increases smoothly as a function of temperature from
k = 0.035 A~! to 0.039 A—'. Additionally a distinct change of slope in this increase is
observed at the temperature T,;. The radius of the sphere of magnetic scattering (not
the satellites!) that is observed for T > T, is found to be k = 0.038 A1 at T, and
increases up to approximately Ty = 29.6 K where it stabilises at k ~ 0.040 A='. Thus,
the temperature behaviour of the modulus of the helical propagation vector indicates that
the period of the helix decreases smoothly as a function of increasing temperature in the
helical magnetic phase and makes a sudden jump to an even smaller period at T,; in the
cross-over regime, where the magnetic satellites and the critical scattering are observed
simultaneously. The width of the magnetic satellites in radial direction remains almost
constant at Ak ~ 0.009 A~! below T, as shown in in Fig. (c) The inverse correlation
length of the critical scattering is found to be £ = 0.0051 A~! at 29.1 K and diverges fast
when the temperature is increased. For better comparison with the results obtained by
Grigoriev et al. [GMO™05] that are given in Fig. [5.16/f) we have plotted x as a function
of k2 = C7® in Fig. |5.16(d). The solid line in the viewgraph is described by x* = Ot
where v = 0.62 as obtained by Grigoriev. In contrast to our approach Grigoriev et al.
have determined the inverse correlation length x independently for g-scans parallel to the
[0,0,1] and [1,1,1] and refer to them as hard and easy magnetic axis, respectively. If this
difference is considered our results are in good agreement with the result of Grigoriev.
In addition, we note that only our approach of fitting the g-scans in different directions
simultaneously allows to determine B, as a function of temperature. The result obtained
for B, is demonstrated in Fig. [5.16(e) and show that Bs is not a constant. At T = 29.1 K
we find By = 6.60(8) meVA? and it decreases for increasing temperature when the intensity
on the ring is distributed more and more isotropically. The temperature dependence of
Bs could be well fitted by the power law By = a7~¢ with ¢ = 0.840(9). Grigoriev et al.
found that B, = 4 meV A% at T = T,; + 0.3 K, which is also in good agreement with our
findings. In Fig. [5.13| we estimated that at Tg ~ 29.7 K the scattering on the observed
ring is distributed isotropically. The values identified for Bs; show an identical trend since
above Tp the anisotropy energy has decreased to B, < 1 meVA? and the intensity is
therefore indeed distributed isotropically on the ring.

It is interesting to compare the obtained values with the instrumental resolution. In the
case of the simple setup used in this experiment the experimental resolution is mainly
defined by the aperture system installed in front of the sample. The resolution can be
approximated by Eq. that is provided in the appendix. In the present experiment the
distance between the sample and the source aperture was 800 mm and the sample-detector
distance was 1180 mm. The rectangular source aperture was adjusted to a cross-section
of 16 x 16 mm?. We will approximate it as a circular aperture with a radius r; = 8 mm.
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Figure 5.16: The results of the fits in Figs. and are summarised as a function
of temperature: (a) the integrated intensities for the magnetic satellite [(,(, (] and for the
critical scattering along the [110], (b) the position of magnetic satellite [(, (, (] and the critical
scattering. (c) the width of the magnetic satellite Ak and the inverse correlation length x of
the critical scattering. (d) A detailed view of the inverse correlation length x as a function of
7 = (T —T.)/T.1. The black line denotes the result of reference [GMOT05] x? = C7?” where
v = 0.62. (e) The constant Bs describing the cubic anisotropy energy as extracted from the
fits as a function of temperature. The black line is a fit to the power law Bs = a77¢ with o =
0.840(9). (f) The results for the inverse correlation length as they were obtained by Grigoriev
et al.|GMO™05].
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The radius 75 of the sample aperture is also 7.5 mm. The mean wave vector is (K) = % A1
= 0.64 A~'. Therefore the values of the angular and Q-resolution amount to A3, = 0.439°
and AQ; = 0.0049 A~'. We want to emphasise that this is a lower limit for the experi-
mental resolution that is probably slightly larger in reality due to additional effects caused
by a finite wavelength spread. However, as can be seen by the red line in Fig. |5.16{d)
the calculated value seems reasonable when compared with our data below T.. The
calculation demonstrates that the values found for the width of the peaks in the fits is
certainly accurate. In addition, the position of the peaks is determined accurately, even
though the shift of the peak is much smaller compared to the experimental resolution,
since the width of the peaks has the same order of magnitude as the resolution.

In order to demonstrate that our results for the temperature dependence of the modulus of
the magnetic propagation vector k, the inverse correlation length x and the magnitude of
the cubic anisotropy energy B obtained by fitting the model in Eq.[5.4]to one-dimensional
g-scans also describe the two-dimensional data well, we performed the simulations that
are shown in Fig. [5.17, The parameters that are shown in Fig. [5.16| were used in Eq.
to generate the simulations of the intensity patterns. Fig.[5.16|also demonstrates that for
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Figure 5.17: A comparison between the measured data (bottom row) and a simulation (two
upper row) of the model for critical scattering as described by Eq. is shown for different
temperatures. For the simulation the parameters as obtained by the fits shown in Figs. [5.15]and
were used. For the simulation II two-dimensional Gaussian profiles have been added to the
critical scattering intensity at the position of the magnetic satellite reflections. See the text for
details.
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T = 29.1 K the critical scattering described by Eq. does not completely reproduce
the data. However, if similar to the g-scans in Fig. two-dimensional Gaussians are
inserted at the position of the magnetic satellite reflections the two-dimensional SANS
data is described well by the simulation. This supports our assumption that there is a
small temperature regime above T.; where the magnetic critical scattering and the mag-
netic satellites due to the helical order coexist. Ultimately, we want to highlight, that for
the simulation exactly the same expression was used, even without the use of a scale factor.

5.3.2.3 Rocking scans

Finally we carried out rocking scans at constant temperature, i.e. rotating the sample
around the zone axis [112] and measuring a detector image for several rocking angles w.
The result of the rocking scans is shown in Fig. [5.1§for 16.4 K and 29.4 K. For T = 16.4 K
we observed that the magnetic satellite reflections associated with the propagation vector
ki1 = [¢,(, (] decrease rather fast as a function of increasing rocking angle whereas the
magnetic satellite reflections corresponding to ky = [, ¢, (] only fade away at large rocking
angles w. This is expected as in the rocking scan the component of the scattering vector
that is parallel to the rocking axis (g,) is not changed. Further the modulus of the
component of the scattering vector @ that is perpendicular to the rocking axis (¢, ) remains
constant, but its direction is varied with respect to the reciprocal lattice. As for the
reflections corresponding to ks ¢, = 0.0012 A~! is small compared to gy = 0.0036 At
the scattering vector for the two corresponding magnetic reflections is only rotated slowly
out of the condition for magnetic Bragg scattering.

In the second data set for T = 29.4 K the ring of magnetic intensity is visible for all
measured rocking angles. Due to restrictions with the cryostat supply lines the maximum
range of angles that could be covered with the used experimental setup was limited to
-35° < w < 35° In Fig. .19 we show the intensity integrated within circular regions
around the two magnetic satellites corresponding to k; as a function of the rocking angle
for several temperatures. The used integration regions are denoted by the red lines in
the detector images for w = 0° in Fig. [5.18 The integration regions were chosen to be
independent of the intensity on the magnetic satellites associated with ks and thus allow
an easy comparison between the angular distribution of the magnetic intensity on the
satellites in the helical phase and the ring above T, respectively. The plots demonstrate
that the intensity increases significantly at large rocking angles w as soon as the ring
shaped intensity arises at T.; = 29 K. Further the intensity is almost independent of the
rocking angles above T,.;. The small decrease of the intensity at large rocking angles has
several reasons that we believe are not caused by the real intensity distribution of the
sample but are due to experimental limitations:

e The circular sample aperture was fixed on the sample holder and therefore changes
its size as a function of the rocking angle like cos(w). At w £ 35° the aperture is
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Figure 5.18: The figure shows the detector images for a rocking scan around the axis
[112] for rocking angles -35° < w < 35° for the two temperatures T = 16.4 K (left) and
T = 29.4 K (right), respectively. The maximum intensity in the view graphs is set to the
same value for both temperatures for the sake of better comparison. The real scans were
made with half the step size (s. Fig.|5.19).
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therefore reduced by 20%. This effect was alread taken into account in the graphs
in Fig. by normalising each point by cos(w). However, additionally the instru-
mental resolution changes with the size of the aperture, therefore also the intensity
within the integration region. This effect cannot be considered easily. A decon-
volution of resolution effects has to be performed with measured data which is an
extensive task[]

e The used sample B is a disk that was mounted approximately perpendicular to the
neutron beam. When the sample is rocked the effective path length of the neu-
trons through the samples increases and the neutron absorption due to the sample
increases. This can be described by the Beer-Lambert law I(l) = Iy exp(—oapsN1),
where [ is the path length in the sample, N = {: is the number density of absorbers
(n number of absorbers, V' volume of sample) and o, is their corresponding ab-
sorption cross-section. This correction was also applied to the curves in Fig. by
normalising them to the angle dependent transmission 1" = I(l)/I, (for comparison
one uncorrected curve is also shown).ﬁ For the correction we only used the additional
path length due to the rocking of the sample that amounts to logq = d(cos™ (w) —1),
where d is the thickness of the used sample. The effect is however tiny and the cor-
rection at w = 35° is only about 2.5%.

e The sample was not perfectly centred as can be seen by the asymmetric shape of
the curves in Fig. [5.19| with respect to w = 0°. This effect also cannot be corrected
properly. A better centering of the sample was not possible on MIRA as no nuclear
Bragg reflections could be measured due to its long wavelength. With the magnetic
reflections that were used to orient the sample the accuracy of the adjustment is
limited within a view degrees.

If we take into account the above considerations we can conclude that the ring of magnetic
intensity can be observed for all possible rocking angles. This indicates that between T
and T, the magnetic intensity is distributed over a sphere in reciprocal space whose
radius is similar to the pitch of the magnetic helix below T.;. The slight decrease of the
intensity on the sphere for large rocking angles can be probably attributed to the fact
that the magnitude of the anisotropy energy B, is not yet negligible for all measured
temperatures (compare Fig. [5.16(e)). Therefore the intensity on the sphere is still slightly
peaked at the direction of the cubic diagonals that correspond to the propagation direction
of the magnetic helix in the helical phase.

In Fig. [5.13] we have compared the intensity of the magnetic satellites associated with k;
and ko with the intensity of the observed ring above T.,. However, as the intensity is
distributed on a sphere the comparison should be also made for the intensity spread out
on the whole sphere. As we have not measured the whole sphere a direct comparison is
difficult, though. Nevertheless it is possible to extrapolate the intensity on the ring to

72562=65536 data points and for each point one has to integrate numerically over the size of the
resolution function
8We have used o, = 13.3 barn, og; = 0.017 barn, N=4/a3 where a is the lattice constant of MnSi.
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obtain an estimate about the complete intensity above T.;. From rocking scans of the
magnetic satellites the magnetic mosaic was found to be approximately dw = 4.5° = 0.0257
(FWHM). If we assume that in a rocking scan the angular resolution is characterised by
dw we can calculate the portion of the sphere that is covered by a single position of w.
The surface of a spherical segment on a unit sphere is given in spherical coordinates by

dS = sin(6)dfdep. (5.25)

Therefore the spherical segment covered in our measurements is

™ ow
S = 2/ sin(@)d@/ dyp = 26w[— cos(0)]; = 4ow. (5.26)
0 0

Here the factor 2 is because we have to cover spherical segments on both sides of the sphere.

Finally, in order to extrapolate the intensity observed on the ring we consequently have to
multiply the intensity on the ring by a factor ﬁs—z = 7-=40. The blue hexagons in Fig.[5.13
were obtained by scaling the intensity integrated over the ring by this factor 40. We note

that for the comparison with the intensity on the magnetic satellite reflections we have
to consider that the intensity of the magnetic satellites shown in Fig. [5.13| were obtained
from measurements of only two pairs of magnetic satellites out of four. In conclusion our
approximation for the magnetic intensity on the sphere shows that the magnetic intensity
observed in the helical phase below T is redistributed on the sphere when the direction

of the propagation vector is unlocked.
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Figure 5.19: (a) Integrated intensities as a function of rocking angle are shown for different
temperatures (s. text for details). (b) The same plots as in (a) are shown with a zoom on the

lower intensities.
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5.3.3 Spherical neutron polarimetry above T,

A further experiment was conducted with polarised neutrons on MIRA in order to inves-
tigate in which way the magnetic structure of MnSi behaves in the temperature interval
between T, and T.. The measurements were performed with the option MuPAD for
spherical neutron polarimetry [JKRT07] (compare also section installed on MIRA.
The same neutron wavelength A\ = 9.7 A as for the unpolarised measurements has been
used. The neutrons were polarised by means of a polarising supermirror bandpass that
simultaneously operated as a monochromator. For the analysis of the polarisation after
the scattering process a polarising supermirror bender was employed. With MuPAD the
change of the polarisation vector can be only measured correctly at a single position in
reciprocal space. Therefore the PSD was replaced by a single *He counting tube for the
polarised measurements. Similar as for the experiment with unpolarised neutrons sample
B has been used in an orientation where a [112] zone axis was directed upwards. Also the
same cryostat was used to cool the sample.

MIRA can only be operated with a single detector tube when MuPAD is installed”] and
therefore only the two satellite reflections associated with the magnetic propagation vec-
tor k; could be accessed experimentally (both MIRA and MuPAD do not support to lift
the detector out of the horizontal scattering plane). In order to maximise the intensity
on the magnetic reflections the experiment was not performed in a SANS geometry where
the sample is oriented in such a way that the Bragg condition is fulfilled for both satel-
lites concurrently but in a small angle diffraction geometry where the sample is rotated
(rocking scan) in such a way that the intensity is maximal for a single reflection at a time
only. The two magnetic reflections +k; = [¢,(, (] and -k; = [(,(,(] on which the SNP
experiment was carried out are shown in Fig. as they were observed in a 6-260-scan.

5.3.3.1 Temperature dependence of the polarisation tensor

We measured polarisation tensors on both magnetic satellite peaks +k; and -k; as a
function of temperature. The tensors were measured with the initial polarisation vector
P, directed parallel (+) and antiparallel (-) to the x,y and z-direction of the analysis
frame defined in Fig. 2.3(b)]| respectively. As we have seen in section a circular
magnetic helix completely polarises the beam parallel to the x-direction independent of
the direction of the initial polarisation vector P, if the scattering vector Q is parallel
to the magnetic propagation vector k (compare the polarisation tensors in table .
Therefore the polarisation tensor in the helical phase of MnSi on both satellite reflections

9As described in section the experimental coordinate frame used for SNP is rotated together
with the scattering vector. Further MuPAD itself has only one exit channel which can be only oriented
with respect to one scattering at a time (cf. section [2.5).
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Figure 5.20: The 6-260-scan shows the two magnetic satellite reflections +k; and -k; on which
the SNP experiment was carried out, as observed on MIRA in the single detector mode. The
reflections are situated around the reciprocal space position (0,0,0), i.e. the direct beam position.

+k; and -k; should be

0
0. (5.27)
0

The sign is reversed with respect to the tensor in table since the helix in MnSi is left-
handed. Further the tensor is identical for +k; and -k; because in contrast to the example
in table the scattering vector @ changes its direction between the measurements on
the positions (0,0,0) = k;. Hence, the coordinate frame for the measurement of the
polarisation tensors is not identical for +k; but rotated by m around the z-axis since the
analysis frame for SNP measurements is defined by the direction of @ (s. Fig.[2.3(b)). In
the example in table this is not the case as the polarisation tensors were calculated for
the reflections Q@+ = (0,0, 1 £ k) where the direction of @ is identical for both satellites.
For T < T, the polarisation matrices that were observed in the experiment have the form
of Eq. as demonstrated in table [5.1] for T = 5 K. The reduction of the elements of
the polarisation tensor P;, (x-component of the final polarisation vector P’ is analysed,
compare Eq. is due to the non-ideal supermirror benders used in the experiment.
We note that the matrices show a deviation from zero on all elements P,,. It has been
discussed in detail in reference [Ber(6] that the observed deviation in the elements is due
to a stray field parallel to the y-axis of the MuPAD coordinate frame in the MuPAD zero
field chamber. The stray field is located upstream of the MnSi sample and rotates the
x-component of the final polarisation vector towards the z-direction. In this regard, we
also want to highlight that for neutrons with a wavelength of A = 9.7 A already tiny fields
have a significant impact on the polarisation vector. E.g. if neutrons with A = 9.7 A travel
over 1.5 m (length of the MuPAD device) in a field of 5mG (approximately 1/100 of the
Earths magnetic field) they are already rotated by 20°. Therefore, the performance
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Table 5.1: Polarisation tensors for MnSi measured at T = 5 K on the two magnetic satellite re-
flections +k; for the incident polarisation vector being Py polarised parallel (4) and antiparallel
(-) to the x,y and z-direction of the analysis frame defined in Fig. [2.3(b)|, respectively

P'(+k1) P'(—k)

Py X y zZ X y zZ

+x| +0.77(2) +0.02(3) 40.28(3)| +0.71(4) —0.09(5) —0.32(5)
+y | +0.778(7) —0.03(1) +0.27(1)|+0.816(8) —0.00(1) —0.35(1)
+2|+0.788(9) +0.01(1) +0.25(1)|+0.811(8) —0.01(1) —0.32(1)
-x |4+0.783(7) —0.01(1) +0.29(1) |+0.819(6) +0.02(1) —0.33(1)
-y| +0.79(1) —0.04(2) +0.29(1)|+0.814(9) —0.02(2) —0.32(2)
-z +0.769(8) —0.01(1) +0.31(1)| +0.81(1) +0.01(2) —0.32(2)

of MuPAD is still quite impressive under these tough conditions. Finally, as we are
interested in measuring a change of the polarisation matrix as a function of temperature
we can neglect this problem anyway as we will see in the following.

The elements of polarisation tensor P;, remain at about 0.8 for both magnetic satellites
until the transition temperature is approached at around 29.8 K as demonstrated in
Fig. 5.21] The elements P;, show a temperature dependence that follows exactly the
behaviour for the elements P, however scaled to the smaller value of approximately
0.25. This supports our statement in the previous section that there is a stray field in the
zero field chamber of MuPAD downstream of the sample that rotates the x-components of
the polarisation vector towards z. The elements P;, are approximately equal to zero over
the whole temperature region. From here on, we will neglect the elements P;, and P;, and
focus on the elements P;, that show a significant change around the critical temperature
interval.

Within the helical magnetic phase the polarisation tensor stays essentially unchanged and
the interesting temperature interval is in the vicinity of the transition temperature. The
temperature interval between 20 and 32 K is shown in a detailed view in Fig. [5.22] where
for convenience only the elements P;, are presented. For the (-)-polarisation tensor the
three elements are identical below T.; = 29 K. Above T,; they start to decrease and it
seems that the elements yx and zx decrease slightly faster compared to the element zx.
We note that at T, additionally the magnetic intensity drops significantly similar to the
unpolarised experiment. Above T, = 30.5 K all elements are reduced to zero within the
errorbars and all magnetic intensity has vanished. For the (4)-polarisation tensor the
differences between the element xx and the other two are more significant. As for the
(-)-tensor yz and zy do not change below T.;, however, the za-element already starts to
decrease from its original value at T ~ 22 K and reaches P,, ~ 0.6 at T.;. At T,; also
the yx- and zy-elements start to decrease and the zx-element drops with a steeper slope.
On the (+)-tensor the elements behave inverted with respect to the (-)-tensor and zz is
reduced faster. The temperature behaviour of the yx and zy elements is however identical
for both the (+) and (-) tensors. Similarly to the (-)-tensor all elements are reduced to
zero at Teo.
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Figure 5.21: The temperature dependence of the polarisation tensors for MnSi measured on the
two magnetic satellite reflections +k; and -k; around the direct beam position. The polarisation
tensors have been measured with the initial polarisation vector Py being directed parallel (4) and
antiparallel (-) to the x,y and z-direction of the analysis frame defined in Fig. respectively
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Two independent experiment have been carried out to verify the observed temperature
dependence of the polarisation tensor. The figures shown so far have been measured in
2007 and will be referred to as 2007 experiment from now on. In a previous experiment
carried out in 2006 we have observed an identical temperature dependence of the polar-
isation tensor as shown in Fig. [5.23] In 2006 we have only measured the polarisation
behaviour on the magnetic satellite reflection —k; though, and additionally the measure-
ment was limited to the polarisation tensor with positive incoming polarisation vector
(+). The temperatures 7" and T, identified in 2006 are identical to the ones found in
2007. However, the temperature T, is found to be 31 K in 2006, and additionally the
difference between the elements yx/zy and xx is much more pronounced compared to
2007.

Both measurements were carried out under identical conditions (both on MIRA; same
wavelength, same cryostat). The only significant difference between the two experiments
is the setting of the apertures used in front of the sample, hence, the C_j-resolution in the
respective experiments was different.
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Figure 5.22: A detailed view of the temperature dependence of the relevant polarisation
tensor elements P;, in the interesting temperature interval is shown. The complete observed
temperature range and all elements are provided in Fig/5.21]
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Figure 5.23: The temperature dependence of the polarisation tensor as observed in second
experiment performed in 2007 is provided. The tensor was only measured on the satellite —kq
and with the initial polarisation vector Py directed parallel to the x, y, and z-direction (+).

5.3.3.2 Considerations concerning the Q-resolution

Before we discuss the temperature dependence of the polarisation tensor with respect to
possible models we want to clarify the difference between the experiments carried out
in 2006 and 2007, respectively. Similar to the SANS experiment performed with unpo-
larised neutrons on MIRA (compare section the neutron beam was collimated by
a computer-controlled variable source aperture of rectangular cross-section that was in-
stalled directly after the monochromator and a cadmium aperture of approximately 15 mm
diameter that was mounted directly on the sample holder. In table an overview over
the used distances and aperture sizes is provided.

We will approximate the resulting Q-resolution in an identical manner as for the SANS
experiment, since the only difference is the replacement of the area detector with a single
3He counting tube. Based on the Eq. presented in appendix according to reference
[PPM90] we calculated the resolution for both experiments. For the calculation for the
experiment in 2006, we have treated the problem in two cases for the different horizontal
and vertical extent of the source aperture, respectively. Eq. is derived for circular
apertures, however the difference for apertures where only the extent in one dimension is
considered at a time is negligible for our case (compare e.g. Fig. 3 in reference [PPM90]).
This is because we are only interested in the order of magnitude of the difference between
the 2006 and 2007 experiments. The results are presented in table. [5.3] Here horizontal
denotes the resolution parallel to scattering vector and wvertical the resolution perpendic-
ular to the scattering plane.

We see that the Q-resolution parallel to the scattering vector is almost identical for both
experiments. In contrast to this the transverse resolution AQ); is more than a factor 2
larger for the experiment in 2006 compared to the experiment in 2007. We will see in the
following that this difference qualitatively explains the difference in the two experiments.
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Table 5.2: Instrument parameters that determine the Q-resolution for the two SNP measure-
ments performed with MIRA/MuPAD in 2006 and 2007.

Instrument Parameter Variable 2006 2007
Incoming wave vector (A1) K 0.64 0.64
Scattering angle (degrees) 0 1.7 1.7
Source aperture horizontal (mm) T1h 8 5
Source aperture vertical (mm) 1 21 5
Defining aperture horizontal (mm) T2.h 7.5 7.5
Defining aperture vertical (mm) 20 7.5 7.5
Distance Source aperture - defining aperture (mm) L 750 800
Distance Defining aperture - detector (mm) 1 2100 2100

Table 5.3: Results for the approximation of the @Q-resolution for the two SNP measurements
performed with MIRA/MuPAD in 2006 and 2007.

Resolution parameter Variable 2006 2007
horizontal angular resolution (degrees) ABy 1.4 1.4
vertical angular resolution (degrees) ApB, 3.0 14
horizontal Q-resolution, FWHM (A1) AQ, 0.015  0.016
vertical Q-resolution, FWHM (A~1) AQ, 0.034  0.016

5.3.3.3 Interpretation of the polarisation tensor

As has been discussed in section the appearance of magnetic intensity on a sphere
in reciprocal space above T. may be interpreted as unpinning of the helix vector. Our
results with unpolarised neutrons presented in section [5.3.2] are also in agreement with
this assumption since we have observed that the cubic anisotropic energy that fixes the
direction of the helix along the cubic diagonals decreases significantly above T;.

In terms of the skyrmion model that was introduced in section we can imagine the
underlying magnetic structure as magnetic helices that propagate in multiple directions
simultaneously (s. Fig. [5.6(c)). Alternatively one could think that the crystal splits up
in many domains with a unique propagation direction k; of the magnetic helix in each of
them. This was already illustrated in the lower right inset of Fig.[5.4] These two models for
the magnetic structure can hardly be distinguished in neutron scattering as configuration
domains that only differ with respect to their propagation vector (cf. section just
show up as additional magnetic satellite reflections. The same is true for a magnetic
structure with multiple propagation vectors within one domain (multi-k-structure). The
only difference might be due different domain populations in the case of the configuration
domains. Therefore we will not distinguish between the two models in the following.

In Fig. such a magnetic structure is depicted schematically in reciprocal space around
the position (0,0,0) that corresponds to the direct beam. Each of the magnetic helices
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Figure 5.24: A possible toy model with multiple magnetic helices for the magnetic structure
of MnSi above T is shown in reciprocal space around the (0,0,0) position. Each of the black
arrows denotes the propagation vector k; of the helix i. Each of the helices polarises the beam
parallel to its propagation vector as illustrated by the blue arrows. On the right side it is
demonstated that an average over the different final polarisation vectors P/ associated with

each helix in the SNP analysis frame leads to a final propagation vector P’ = % Yo, P/ that is
parallel to the z-direction of the analysis frame.

¢ will polarise the beam parallel to its propagation vector k; as denoted by the blue arrows
in the figure. In our experiment we would average over a certain number of the magnetic
satellite reflections depending on the resolution perpendicular to the direction x in the
drawing. Hence, we would also average over the final polarisation vectors P/ associated
with each of the reflections. Our measurements have been performed in the analysis frame
defined via the original reflection k; = [, (, (] (cf. Fig. [2.3(b)|) in the helical phase that
is also denoted in the figure. As shown on the right hand side of Fig. the average
over the corresponding final polarisation vectors P’ = % > i, P! always results in a final
polarisation vector that is parallel to the z-direction. We note that this result is indepen-
dent of the number of different helices over that we average. Consequently, this toy-model
for the magnetic structure above T.; does not explain our results. This has also been
verified in a numerical integration.

In section we have successfully described our results obtained by unpolarised SANS
measurements by the model for helical critical scattering as derived by Maleyev [GMO™05].
Starting from the magnetic susceptibility proposed by Maleyev we have additionally de-
rived the expression for the final polarisation vector due to this model provided in Eq. [5.5]
In Fig. [5.25 we have plotted the magnetic intensity as function of q as described by Eq.
that already has been used in section [5.3.2l However, here we have considered an incident
neutron beam that is polarised parallel to the x—,y— and z-direction of the analysis frame
(top row of subfigures) in contrast to e.g. Fig.[5.17, Further the polarisation values for
all terms of the polarisation tensor described by Eq. are illustrated (three lower rows
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Figure 5.25: The upper row of subfigures shows a simulation of the magnetic intensity dis-
tributions according to Eq. for the initial polarisation vector Py being directed parallel to
the z—,y— and z—direction of the analysis frame of the magnetic reflection +k;. The remain-
ing subfigures show a simulation of the polarisation values for all elements of the polarisation
tensor as described by Eq. For the simulation we have considered |Py| = 0.9. Further the
simulation has been performed with the parameters By = 1.61 meVA? and x = 0.00743 A~ for
Egs. [5.4] and as they have been found by fits in section for T = 29.4 K.
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of subfigures). For the plots of the polarisation we have additionally considered that
if no magnetic scattering is observed at a distinct position in reciprocal space also the
polarisation has to be equal to zero. The plots presented in Fig. have been simulated
using the values for the parameters that have been obtained in the fits of the magnetic
intensities to Eq. for T = 29.4 K in section These are By = 1.61 meVA? and
k = 0.00743 A='. Otherwise the same parameters as in section have been used.
We have set the magnitude of the incident polarisation vector to |Py| = 0.9 to take into
account that the used polariser is non-ideal and does not polarise the beam perfectly. The
plots correspond to the polarisation tensor in the (4) setting.
By inspecting the values of the polarisation for the different elements of the polarisation
at the reciprocal lattice position corresponding to the magnetic satellite k; (the position is
denoted by the white circles in Fig.|5.25)), we see that they are qualitatively very similar to
what we have observed in the experiments. The elements P;, and P;, are equal to zero. In
addition the elements yx and zz are fully polarised, whereas the element xx is significantly
reduced. In order to verify if the model for the helical critical scattering can reproduce our
experimental results we calculated the polarisation tensor for different temperatures with
the help of Eq. by using the values for B, and s that were obtained in the fits of the
magnetic intensities in section The polarisation values were consequently averaged
over the size of the Q-resolution that has been calculated in the previous paragraph. The
resolution for the two experiments carried out in 2006 and 2007 are denoted by the red
and white rectangular in the upper left subfigure in Fig. [5.25] respectively. The result of
this calculation is shown in Fig. for 29.1 < T < 31.5 K and for the elements P;,.
The other elements are not shown for the clarity of the presentation as they are equal to
zero for all temperatures. This averaging calculation has been performed for positive and
negative incident polarisation vector.

For the (+) polarisation tensors the polarisation values in Fig. describe the observed
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Figure 5.26: A simulation of the polarisation tensor elements P, as a function of temperature
is shown. The resolution of the two experiments performed in 2006 and 2007 has been taken
into account. The respective resolutions for 2006 and 2007 are denoted by the red and white
rectangle in the upper left subfigure in Fig. [5.25].
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effect that the element zx is smaller than the other two elements yz/zx already for
T, well. Similar to the experiment this is not the case for the (-) polarisation tensor.
Additionally the xx element decreases fast as function of increasing temperature for the
(4) tensor, whereas the other two elements decrease slowly. The temperature dependence
of the yz/zx elements is identical for both the (+) and the (-) polarisation tensor, as
it was also observed in the experiment. Additionally the xx element for the (-) tensor
decreases slower as a function of temperature compared to the yx/zx elements, which
is also very similar to the experiment. Thus, we conclude that the main features of the
experiments are described qualitatively by the model for the helical critical scattering.
The main difference is that the decrease of the elements yx/zx for the (4) and (-) cases
and for zz in the (4) case is too slow as a function of increasing temperature.

Finally we also want to review the difference between the experiments performed in 2006
and 2007 with respect to the Q-resolution. The simulation summarised in Fig. for
both experiments shows that due to the better Q-resolution in the experiment of 2007
the xz term decreases faster as a function of temperature when compared to the 2006
experiment. However, the calculated effect is much smaller than the difference that has
been observed between the two experiments. Yet, our calculations based on the theory
for helical critical scattering proposed by Maleyev [GMO™05] reproduce the change of
the polarisation tensor in the critical temperature interval above T, qualitatively well.
In contrast, the first model for the magnetic structure (s. Fig. does not predict
any change of the polarisation tensor in the critical temperature interval. Therefore, we
conclude that the model of Maleyev provides the correct description of our experimental
findings.

5.3.4 Investigation of the helical Goldstone modes

We examined the existence of the proposed helimagnons (cf. section using the
triple-axis spectrometer TASP [SRBOI] situated at the end position of a cold supermirror
guide of the continuous spallation neutron source SINQ at Paul Scherrer Institut. In order
to avoid second order contamination of the neutron beam a beryllium filter was inserted
between the sample and the analyser. For the experiment the single crystal sample A (s.
section was inserted in an ILL-type orange He-cryostatfora] and was oriented with
the [1,1,0] and [0,0,1] crystallographic directions within in the scattering plane.

5.3.4.1 Experimental constraints and setup

As mentioned earlier in section [5.2.3] the specific anisotropic shape of the excitations
in the helical phase is expected to become visible for small magnitudes of the reduced
scattering vector g. This constraint of small ¢ can be understood qualitatively as follows.
Due to the long period of the magnetic helix in MnSi (180 A), its magnetic structure is
locally, i.e. over length scales corresponding to a few lattice constants (a = 4.558 A),
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almost ferromagnetic. If magnetic correlations over such small distances, that correspond
to rather large reduced scattering vectors ¢, are measured, a ferromagnetic dispersion
will be observed. Consquently, in order to investigate the characteristic properties of
helimagnetic fluctuations, we have to probe magnetic correlations over length scales of
the order of the period of the helix. Hence, the experiment is basically restricted to a
relatively small portion of reciprocal space around a magnetic satellite reflection that
fulfils the constraint ¢ ~ k.

The experiment was performed around the nuclear Bragg reflection (1, 1, 0) due to the
large magnetic structure factor of the corresponding magnetic Bragg reflections (compare
e.g. table Iin reference [[STK77]). The reciprocal lattice in the proximity of this reflection
is illustrated in Fig. together with the positions where constant-@ scans have been
carried out to probe the magnetic excitations. We emphasise that the constraint ¢ ~ k
requires an excellent instrumental resolution in both @ and energy. E.g. from Maleyev’s
model we can estimate that the energy of the dispersion branch that propagates parallel
to the propagation vector at ¢ = k = 0.035 A~! is €,— = 97.8 ,ueV Thus a high energy
resolution is essential to be able to resolve the excitations from the incoherent scattering
at fiw = 0 (cf. section [2.2.2).

Finally all scans were performed in two setups that had their respective emphasis on
resolution and intensity. For setup I the triple-axis spectrometer was operated with fixed
final wave vector k; = 1.2 A-1. Additionally 20’ Soller collimators were installed in the
incident beam and in front of the analyser whereas 40" have been used in front of the
detector. For setup II the resolution was slightly relaxed in favour of higher intensity.
The final wave vector was fixed at k; = 1.4 A~' and the collimation in front of the sample
and the analyser was replaced by 40’ and in front of the detector by 80’, respectively. The
energy resolution in setup I and I is approximately 70 ueV and 90 peV, respectively. The
corresponding Q-resolution is depicted in Fig. [5.27]

5.3.4.2 Measurements and results

All scans that will be shown in the following have been performed at a temperature of
20 K. This choice for the temperature assures on the one hand that the intensity is not
unduly suppressed due to the Bose factor (cf. Eq and on the other hand that the
measurements have been performed significantly below T. and therefore in the helical
phase. Both theories by Maleyev and Belitz propose magnetic excitations in the helical
phase with an anisotropic dispersion for the directions parallel and perpendicular to the
magnetic propagation vector of the helix. We have therefore carried out inelastic scans at
reciprocal lattice positions, where the reduced scattering vector g was parallel or perpen-
dicular to the propagation vector k; = [(, (, (] of configuration domain 1. The reciprocal
lattice positions where scans have been performed are denoted by the red squares and

10Here, we measure ¢ from the magnetic satellite.
"Here we used the parameters estimated in Maleyev’s paper [Mal06], namely: A = 52 meVA2 S =
0.8, wo = 28.5 peV, k = 0.035 AL
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7200
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Figure 5.27: The reciprocal lattice in the proximity of the (110) nuclear Bragg reflection, where
all inelastic scans were performed is illustrated to scale. Black circles denote nuclear Bragg reflec-
tions whereas the blue hexagons denote magnetic satellite reflections. White hexagons illustrate
the positions of the out of plane satellites. For clarity of the presentation the interesting region
is displayed magnified on the right hand side. Red squares and green circles indicate positions
on the reciprocal lattice corresponding to to the directions that are parallel and perpendicu-
lar to the propagation vector ki, respectively. On these positions constant-@) scans have been
performed in order to probe the dispersion of the helimagnons. The cyan and and magenta
ellipsoids denote the @-resolution of setups I and II, respectively (s. text for detail).

green circles in Fig. for the parallel and perpendicular directions, respectively. How-
ever, we note that in the orientation of the sample used for this experiment additionally
the magnetic satellite reflections due to configuration domain 2 associated with the mag-
netic propagation vector ko are present in the scattering plane (compare section and
section and additional contributions from magnetic excitations emerging from this
magnetic configuration domain might be expected.

We probed the dispersion of the excitations in the helical phase by means of constant-Q-
scans. This allowed for easy separation of the dispersion branches with respect to their
energy. Some typical scans are shown in Fig. [5.28] Before we discuss the results of the
measurements we want to emphasise that the flux of the SINQ neutron source was about
170% [Roe06] for the scans parallel to k when compared to scans perpendicular to kE|
The intensity of the observed magnetic excitations was weak and the couting time per
point was approximately 25 mins. In order to compensate for the smaller source flux we
used setup II (s. proceeding section) with a slightly relaxed resolution setting for the
scans along the perpendicular direction.

We discuss now the data shown in Fig. |5.28, The strong elastic peak at 0 meV is due
to incoherent scattering (s. section . The scans with q || k1 clearly show only one

12The solid lead target of the SINQ neutron source at the PSI was temporarely replaced by the liquid
metal target MEGAPIE|GFJK™04] in the year 2006 for test purposes, which led to an increase of the
neutron flux by 70%.
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dispersion branch is visible. Further, in the direction perpendicular to k; two distinct
peaks corresponding to two dispersion branches are observed. This already demonstrates
that the dispersion of the magnetic excitations in the helical magnetic phase is anisotropic
as it was proposed by theory.

5.3.4.3 Fits with the model of Maleyev

We have performed fits of our data to the model of Maleyev by using Eq. for scans
in the direction parallel to ki, whereas Eq. has been employed for the perpendicular
direction. Here the respective expressions for the inelastic neutron scattering cross-section
have been obtained by inserting the imaginary parts of the corresponding magnetic suscep-
tibilities Eqs. [5.20] and in Eqf2.53] For the fits of the scans the neutron cross-section
has been convoluted with the four-dimensional resolution function of the spectrometer
with the help of the program tasresfit (s. appendix @ We note that the imaginary
part of the magnetic susceptibilities calculated by Maleyev are obtained by substituting
[Mal07] (s. also reference [Mal02])

-1 T
Since d-functions are difficult to model in the numerical four-dimensional resolution de-
convolution we have replaced them by damped harmonic oscillator (DHO) profiles with

a finite linewidth I':
wI’

(@ =T = (WD)

The parameters that were varied in the fits were the spin wave constant A, the linewidth
I' and an overall scale parameters to match the intensities. The components of the de-
magnetisation tensor parallel and perpendicular to k, namely N.. and N, were fixed at
zero as the experiment was carried out without an external field. The dipolar energy was
fixed at its values wy = 28.5 peV. For the modulus of the propagation vector we employed
the value we found in the experiments by Q-scans over the magnetic satellites, namely k
= 0.037 A~!. Finally we introduced a constant background and a Gaussian profile centred
at hw= 0.01 meV to describe the incoherent scattering.

Each scan was fitted individually with the obtained cross-section. The resulting best fits
are shown as solid lines in Fig. [5.28| and the obtained value for the spin wave stiffness
constant A is provided for each scan. The dispersion that was calculated from the fitted
values is shown for both the parallel and perpendicular directions in Fig. . The
differences of the spin wave stiffness between distinct scans might appear rather large,
however, we note that the observed deviations only lead to small differences in the shape
of the dispersions represented by Eqgs. and [5.21] To obtain a single value of the spin
wave stiffness constant A we fitted Eqgs. [5.19 and to the peak positions as defined by
the fitted parameters A found in the individual scans. The resulting dispersion curves are

(5.29)
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Figure 5.28: The results of the inelastic scans performed on TASP at T = 20 K in the
helical magnetic phase are shown. The left and right hand side show scans that were performed
at reciprocal lattice positions, where the reduced vector q is parallel and perpendicular to the
propagation vector k, respectively. The solid lines are fits to the data with the model of Maleyev
(s. section . The large peak at fiw = 0 is due to incoherent scattering (s. section .
For clarity of the presentation we have omitted its upper part. We note that the counting time
per point was approximately 25 min.

given by the black and the green/blue lines in Fig. [5.29(a)| for the parallel and perpen-

dicular directions, respectively. The value for the spin wave stiffness constant obtained
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from this fit amounts to A = 43.7(7) meVA2. In reference [GMO¥06a] the temperature
dependence of the spin wave stiffness constant was determined to be

A(T) = A, {1 e (%H | (5.30)

with 4y = 50 meVA2 ¢ = 0.35 and z = 2.4. Our measurements were performed at
T = 20 K and by using T, = 29 K we obtain A(20 K) = 43.8 meVA?, which is in excellent
agreement with our result based on the helimagnons. For comparison the magenta line
in Fig. shows the dispersion € = Ag® of ferromagnetic magnons as observed in
the ferromagnetic phase of MnSi [SBET99, 'TBET98]. For large values of the wave vector
q > k (ferromagnetic limit) we expect that all the observed dispersion branches converge
to follow this ferromagnetic dispersion. However, for ¢ > k the spectral weight of the
observed modes becomes weak (cf. Fig. , because the collective magnetic excitations
merge into the Stoner continuum of single particle excitations (s. also section , since
MnSi is an itinerant magnet.

Further, our data indicate, that the branch €, ; of the dispersion indeed shows a small
gap as predicted by Maleyev [Mal06]. From the fitted value of A it can be estimated to
be Ae = Ak?v/2=85 peV (s. section . As can be seen from the experimentally
obtained positions of the €, ,-branch (green triangles in Fig. this value is probably
underestimated.

The linewidth found in the fits is provided in Fig. . For the direction parallel to
k, it is of the order of 2 ueV for all points apart for the two lowest values of ¢q. This
value is beyond the resolution limit of the used spectrometer, however this shows that
the resolution deconvolution calculations in the fits were performed correctly. For the
perpendicular directions it is significantly larger and of the order of 100 peV. Here also
the scans with smaller ¢’s show a tendency to larger values of I'. However, we believe
that this is no systematic dependency, but rather a result of our approach for the fits.
The equations derived by Maleyev only provide the shape of the dispersion branches
for the directions that are exactly parallel and perpendicular to the propagation vector,
and the dispersion for general directions are not known. Therefore, the Q-resolution of
the spectrometer in directions deviating from the special directions are not taken into
account properly. The good agreement for the dispersion branches found via the fits and
the theoretical model nevertheless justifies our approach. In addition a better procedure
for the fits is only possible if appropriate theoretical equations for general directions are
available. Another interpretation of the apbrupt changes of the linewidth, especially in
the perpendicular direction, is that we see contributions from the second configuration
domain. However, it is difficult to fit the data with both domains, due to the low statistics
in the scans.
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Figure 5.29: The figure summarises the results of the fits of the scans in Fig. with the
model of Maleyev (s. section[5.2.3). (a) The dispersion as found in the fits of the inelastic scans
in Fig. [5.28is illustrated. The green, black and blue lines are fits of the Egs. and that
describe the dispersions calculated by Maleyev, to the dispersions found in the measurements.
For comparison the magenta line shows the dispersion € = Dg? of ferromagnetic spin waves with
an identical spin wave stiffness D = 43.8 meVAZ2. (b) The linewidth as function of ¢ that we
obtained in the fits.

5.3.4.4 First results with the model of Belitz

All the inelastic scans have been performed at reciprocal lattice positions, where ¢ > k.
Hence, Eqs. [5.10, [5.11]and [5.12]that provide the dispersion and magnetic dynamic sus-
ceptibility for the model of Belitz are not suitable to fit the measured scans since they
were derived in the limit ¢ < k [Ros08]. However, based on the same model that we
have introduced in section [5.2.3.1] Rosch also calculated numerical expressions for the
dispersions of the helimagnons for ¢ > &k [Ros08]. Similar to the analytical calculations
of Maleyev presented in section this numerical calculations take the occurance
of umklapp processes into account. The interaction of the modes with wave vectors q,
g tnk (n =1,... co0) also leads to a gap at ¢ = 0. The calculations of Maleyev are
limited to a single umklapp interaction, whereas Rosch et al. consider a finite number of
interactions. This essentially leads to much more modes with different spectral weights
(depending on the number of umklapp interactions) that, however, still show the char-
acteristic anisotropic shape. The presentation of these numerical derivations is rather
involved and here we only show result of the calculations in Fig. [5.30. The size of the
poins in the figure denotes the spectral weight of the corresponding mode.

The four dimesional convolution of the spectrometer resolution with the large number of
dispersion branches, including the calculations of the respective spectral weights is rather
complicated and time consuming and not completely finished. As a first result we show
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the constant-Q scan carried out at the reciprocal lattice position (1.058, 1.058, -0.067),
where Rosch has convoluted his theory with the spectrometer resolution. The result is
shown by the solid line in Fig. .31} It shows that the agreement between measurement
and theory is reasonable. The analysis of the other scans with respect to this model is
still in preparation. However, this first result is already rather promising.
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Figure 5.30: The dispersion relation for the the helimagnons for ¢ > k obtained in numer-
ical calculations by Rosch [Ros08] for the directions (a) parallel and (b) perpendicular to the
propagation vector k. The size of the points corresponds to their respective weight.
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Figure 5.31: The solid line in the figure denotes the convolution of the dispersion of the

helimagnons shown in Fig with the spectrometer resolution for the reciprocal lattice position
(1.058, 1.058, -0.067).
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5.4 Discussion

In chapter [5] we investigated the existence of an intermediate magnetic phase in MnSi
between the helically ordered and the paramagnetic phase that was recently proposed by
theory [RBP0G]. Additionally, extensive measurements of the collective magnetic exci-
tations in the helical ordered phase were performed, as a new type of Goldstone mode
for helimagnets without a centre of inversion has been recently discussed extensively
[BKRO7, Mal06].

We have carried out a detailed neutron scattering study of the diffuse magnetic scatter-
ing intensity that is observed in MnSi in a small temperature interval of approximately
2 K above T, =~ 29 K with both unpolarised and polarised neutrons. This magnetic
scattering intensity is distributed over a sphere in reciprocal space that has a radius cor-
responding approximately to the pitch of the magnetic helix in the helical phase below
T.;. The appearance of this sphere is widely interpreted as the unlocking of the helix
vector above T.;. However, there is an ongoing discussion whether the magnetic intensity
on the sphere can be regarded as a new intermediate magnetic phase formed by magnetic
skyrmion patterns (cf. sections and or represents the critical scattering from a
helimagnet (s. section [5.2.2).

Our unpolarised SANS results are well-fitted with the model for critical scattering from a
helimagnet developed by Maleyev [GMOT05]. The data clearly illustrates, that the mag-
netic intensity on the sphere is not distributed isotropically. Distinct maxima are visible
on the sphere at the reciprocal lattice positions where the magnetic satellites are situated
in the helical phase below T.. The intensity smears out more and more isotropically
on the sphere when the temperature is increased. In our fits we were able to show that
the parameter By that describes the strength of the cubic anisotropy energy vanishes fast
as function of temperature above T.; described by the power law By, = a77¢ with p =
0.840(9). Since the cubic anisotropy locks the direction of the helix below T,y this result
clearly supports the scenario that the emergence of the sphere of magnetic intensity is
linked to the unlocking of the propagation direction of the helix. Our data also indicates
that the magnetic intensity observed on the magnetic satellite reflections in the helical
phase is redistributed on a sphere above T, which additionally supports this unlocking
scenario. The fits to the model of Maleyev also showed that for a small temperature
interval of approximately 0.3 K the observed anisotropic intensity on the sphere is not
solely explained by the yet finite cubic anisotropy energy in the magnetic neutron cross-
section described by Eq. 5.4l Additional intensity is observed on the sphere, indicating a
cross-over regime, where both the magnetic satellite reflections due to persisting helical
magnetic order and critical scattering coexist. Therefore, the theory of Maleyev, which is
based on the model of a 2nd order phase transition, describes the experimental findings
well in a first approximation, however, it has to be adapted to explain the coexistance of
the magnetic Bragg reflections and the critical scattering in the cross-over regime.

In connection with this behaviour we also observed that the modulus of the propagation
vector of the helix increases from k = 0.035 A~' at T = 6.4 K to 0.039 A~! at T.,.
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Thus, the pitch of the helix decreases from approximately 180 A at low temperature to
161 A at T.;. This indicates that the second strongest energy scale in MnSi, namely the
Dzyaloshinsky-Moriya interaction, becomes more significant with increasing temperature.
Therefore, the angle between neighbouring spins in the helix increases, i.e. the system
becomes less ferromagnetic. In the intermediate phase the radius of the sphere saturates
at k &~ 0.04 A~ corresponding to a period of 157 A. The coexistence of the magnetic
satellites and the critical scattering, together with the saturation of the propagation vec-
tor indicate a first order phase transition.

Further we have performed full polarisation analysis of the magnetic intensity above T.;.
The results indicate that a model of magnetic spirals propagating in multiple directions
does not explain the observed polarisation tensors. Similar as for the unpolarised data,
the temperature dependence of the measured polarisation tensors is in qualitative agree-
ment with the model for critical magnetic scattering. We note that in the model for the
skyrmions [RBP06] so far the term for the cubic anisotropy energy has been neglected be-
cause it is the weakest energy scale in MnSi. However, the fits and calculations for both
the unpolarised and polarised neutron data clearly indicate that the cubic anisotropy
energy is the decisive energy scale that drives the observed behaviour of MnSi between
the temperatures T.; and T.. A further interesting detail is that the element zx of the
polarisation tensor measured on the magnetic satellites of MnSi already starts to deviate
from its maximal value of approximately 0.8 at T* ~ 22 K. As we identified that this
decrease is at least qualitatively explained by the presence of magnetic critical scattering,
indicating that already between T* and T, critical magnetic fluctuations that drive the
unlocking of the helix direction are present. This assumption is also in agreement with the
unpolarised SANS data that shows that the magnetic satellite reflections already start to
broaden azymuthally below T;. It will be interesting to characterise these fluctuations by
measuring the corresponding quasielastic neutron scattering intensities by neutron spin
echo methods.

In section [5.4f we have illustrated that the shoulder observed in the specific heat of MnSi at
T. = 30.5 K may be interpreted as a second phase transition. Here we propose, based on
our experimental findings, that the Lambda-shaped peak at T.; = 29 K can be associated
with the melting of the propagation direction of the helical magnetic order. However, the
order breaks down due to transversal fluctuations of k that essentially leaves the mag-
netic helices intact but alters their propagation direction, which leads to the observed
intensity on the sphere. The shoulder to the peak observed at T., = 30.5 K may then be
interpreted as the temperature, where additionally the helical order of the spins breaks
down. This is supported by the observation that the magnetic intensity from the magnetic
satellites is redistributed on the sphere above T.;. Therefore, it will be useful to carry out
a more detailed study of the magnetic intensity on the sphere were the whole intensity is
mapped out in rocking scans over a larger angular range and with finer steps compared
to this work. Furthermore, such experiments will provide additional information about
the cross-over regime, where both the helical magnetic order and the critical scattering
coexist,.

Finally we also investigated the dynamic magnetic susceptibility below T.; by means
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of inelastic neutron scattering. Our experiments clearly demonstrate that the specific
magnetic excitations that were proposed independently by Belitz et al. [BKRO7] and
Maleyev [Mal06] for a helimagnet with Dzyaloshinsky-Moriya interaction are present in
MnSi. The observed helimagnons show the distinct anisotropic dispersion with respect
to the propagation direction of the magnetic helix as it was calculated by theory. The
data could be well fitted by the dispersion relations calculated by Maleyev and a spin
wave stiffness constant A = 43.7(7) meVA? was obtained for T = 20 K. This is in excel-
lent agreement with the value A(T = 20 K) = 43.8 meVA? calculated from the relation
A(T) = Ag[l —¢(T/T.)?] published in reference [GMO™06a]. In addition our results
indicate the existence of a small gap Ae = Ak?v/2=85 pueV for the dispersion branch
perpendicular to the propagation vector. This gap is a result of the interaction between
different helimagnon modes due to umklapp processes. The size of the gap is small due to
the small size of the propagation vector k, as k/G ~ 40 (G is the modulus of a reciprocal
lattice vector). This leads to the occcurance of a large number of umklapp interactions
that renormalise the size of the gap.

For the model of Belitz et al. only preliminary fits have been performed and the analysis
is still going on. The first results presented in this work are promising, though. They
essentially agree with the results obtained by the fits to the model of Maleyev.

Our experiments show that one mode of the helimagnons perpendicular to the propaga-
tion vector k is softer compared to the modes parallel to k. This indicates that soft modes
with ¢ L k are related to the unlocking of the propagation directions of the magnetic
spirals that is observed in the SANS experiments at T.; = 29 K, whereas the hard mode
with g || k is responsible for the destruction of the helical order at T., = 30.5 K. The
hardest mode perpendicular to k is related to the transition from the helical phase to the
ferromagnetic phase in an applied external field. Hence, the observation of the proposed
helimagnons also provides an intuitive explanation for the appearance of consecutive mag-
netic phase transitions in a rather small temperature interval of 1.5 K in MnSi.

A question that remains unanswered so far is the influence of the four different configu-
ration domains that in principle should give four distinct contributions to the magnetic
excitations in the helical magnetic phase. This issue is difficult to overcome with our
current data set that suffers from relatively low statistics. However, we plan to over-
come these difficulties by further experiments that will be carried out on the triple-axis
spectrometer PANDA situated at the cold source of the high flux neutron source FRM-II
in Munich. For the proposed experiment we will field-cool the MnSi crystal in a weak
magnetic field, which is larger than 80 mT (H 2 H,, see section [5.1.1)). This procedure
will prepare the sample in a state with a single configuration domain without destroying
the magnetic helix. The data shall also provide more accurate estimates for the gap. The
proposal for this experiment has already been accepted and the experiment is planned for
October 2008.
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Chapter 6

Conclusion and Outlook

The chiral magnetism in the multiferroic compound NdFe3('BO3)4 and the itinerant he-
limagnet MnSi has been investigated by neutron scattering. In the first chapter we give
an overview over the domain of chiral magnetism, which currently attracts a great deal of
scientific interest in various fields of condensed matter physics, e.g. magnetic surfaces and
interfaces [BHvB™07, [BRO1], spintronics [HBBBOG], multiferroics[Kim07, [CMQ7] and su-
perconductivity [BHM™04, [FAKS04, [KAS05]. In chapter [2| we establish the basic theory
of neutron scattering that was used as primary tool for the investigations in this work.
The high potential of this microscopic probe for the investigation of chiral magnetism was
highlighted, especially when polarised neutron scattering techniques are applied. Further,
we summarise how the use of symmetry analysis facilitates magnetic structure analysis
based on magnetic neutron diffraction data in chapter [3]

In chapter [4] the results of bulk properties combined with a detailed neutron diffraction
study with unpolarised and polarised neutrons on the non-centrosymmetric multiferroic
compound NdFez(*'BO3), were presented. This compound is a member of the family of
borates RM3(BO3)4 (R = Y,La-Lu, M = Al, Ga, Cr, Fe, Sc) that currently attract much
attention because of their special optical properties [Jaq01, [HCCT02, [CLJT01] that are
important for laser techniques. Our study identified that NdFez(1BO3), displays antifer-
romagnetic long-range order below Ty ~ 30 K in agreement with the literature, however,
we could additionally establish that below T;cy =~ 13.5 K the antiferromagnetic order
becomes incommensurate with respect to the underlying chemical structure. By means
of magnetic representation analysis and Rietvield refinement of the powder diffraction
patterns two different magnetic models for the commensurate phase could be identified
that explain the data sets measured with unpolarised neutrons equally well. The use of
spherical neutron polarimetry ultimately allowed to exclude one model. For the correct
structure the magnetic moments of both magnetic ions Fe3* and Nd3* are oriented par-
allel to the hexagonal basal plane. Magnetic moments in adjacent hexagonal planes are
coupled antiferromagnetically corresponding to a magnetic propagation vector k** = [0,

163



164 CHAPTER 6: CONCLUSION AND OUTLOOK

0, %] The magnetic moments of all three Fe sublattices have the same amplitude and are
mutually parallel. Further the SNP data suggests that also the magnetic moments of the
Nd ions are parallel to the Fe magnetic moments. However, we note that the preliminary
analysis of more recent data measured on a second sample at HEIDI at FRM-II (that
has not been considered in this work) favour a non-zero angle of approximately 45° at
1.6 K between the magnetic moments of the Fe and Nd ions within the hexagonal basal
plane. Yet, the result from the single crystal experiments suffer from problems with ex-
tinction due to a rather large crystal and additionally the SNP data is more sensitive to
the orientation of magnetic moments. Moreover, this suggests that the angle between the
moments of the Fe and Nd sublattices is sample dependent.

Below Trcas the observed incommensurate propagation vector amounts to k' = [0, 0,
% + €] where ¢(1.6 K) was determined to be 0.00667 at 1.6 K. By means of polarised
neutron diffraction below T;cys we identified that the magnetic structure is transformed
into a long-period antiferromagnetic spiral that propagates parallel to the c-direction with
a pitch of approximately 1140 A. In addition our data suggests that there is only a single
chirality domain in NdFe3(*BOj3),. This is quite interesting as generally both chirality
domains are expected to be present and thus this might be related to the fact that the
chemical structure is non-centrosymmetric, similar to the magnetic helices in MnSi or
UPtGe [BroOl] that both possess no inversion symmetry.

At T = 1.6 K the magnetic moment of the Fe?* ions amounts to approximately 5.1 up
(4.9 pp if a non-zero angle between Fe and Nd sublattices is assumed) which is closed to
the value for free Fe3*. The magnetic moment of the Nd** sublattices saturates at 1.51 up
(2.7 pp if a non-zero angle between Fe and Nd sublattices is assumed), and is therefore
reduced of the value 3.3-3.7 up for free Nd** (s. e.g. [BIuO1]), which is presumably due
to the crystal fields that were observed and calculated in reference [PCST07].

The observation of third order harmonics of the magnetic satellites at the positions
(0, 0, 3/2 + 3¢) additionally indicates the formation of a magnetic soliton lattice in
NdFe3("*BO3),. A soliton is the appearance of localised or topological defects in periodic
structures due to the presence of non-linear forces. Such non-linear forces can be due to
an external magnetic field that interacts with the magnetic moments or due to magnetic
anisotropy in the plane perpendicular to the propagation vector. A magnetic soliton
lattice can be imagined as a magnetic helix that is not yet completely incommensurate,
e.g. a distorted commensurate magnetic structure with domain walls (cf. Fig. .
Alternating periods of commensurate parts and domain walls then lead to the observed
third order harmonics. The observation of magnetic soliton lattice without the applica-
tion of external forces like magnetic fields or mechanical stress are rather unlikely and to
the best of our knowledge the only other compound for which a magnetic soliton lattice
was reported without the application of an external magnetic field is CuB,O4 [RSPT01].
For NdFe3(1'BO3), we propose that the magnetic soliton lattice arises due to a magnetic
anisotropy in the basal hexagonal plane that is presumably of second order type. This
assumption is based on the magnetic susceptibility data reported in reference [TKH™07].
However, the assumption of the appearance of a magnetic soliton lattice is only based on
the observation of the third order harmonics of the magnetic satellites and we have no de-
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tailed knowledge of the spin-Hamiltonian leading to the observed behaviour. Consequently
it would be interesting to carry out further inelastic neutron scattering experiments in
order to probe the magnetic interactions being responsible for the magnetic ground state
of NdF63(11B03)4.

In chapter |5| we reported on our experiments on the helimagnet MnSi. We investigated the
magnetic intensity that is spread over a sphere in reciprocal space in a small temperature
interval of approximately 2 K above the magnetic ordering temperature T.; by means
of unpolarised and polarised neutron diffraction experiments. The sphere has a radius
corresponding approximately to the pitch of the magnetic helix in the helical phase below
T, and is usually interpreted as the unlocking of the helix propagation vector above
T.. Roessler et al. [RBP06] recently demonstrated theoretically that the Dzyaloshinsky-
Moriya interaction may not only stabilise straight-forward helical order, but additionally
complex magnetic textures, when the amplitude of the local magnetisation is soft and
supports strong longitudinal fluctuations, e.g. near critical phase transitions. It was
speculated that the observed magnetic scattering on the sphere at T 2 T, in MnSi may
originate from such a magnetic texture. In contrast, Grigoriev et al. have interpreted this
experimental result as critical scattering from a helimagnet [GMOT05]. Our experimental
results are partly compatible with the latter scenario. The theory proposed by Maleyev
[IGMOT05] for the critical scattering in MnSi above T, explains the observation of the
magnetic intensity on the sphere, however, it fails to explain a cross-over regime, that was
identified in our measurements. In the cross-over regime the magnetic Bragg reflections
from the helical magnetic order and the critical scattering coexist in a small temperature
interval of 0.3 K. Further the fits of our data to the model for the critical scattering
published in reference [GMOT™05] illustrate that the magnetic anisotropy energy quickly
decreases above T, as a function of temperature described by the power law By, = at7¢
with o = 0.840(9). This clearly supports the scenario that the emergence of the sphere
of magnetic intensity is linked to the unlocking of the propagation direction of the he-
lix. Furthermore this illustrates that the magnetic anisotropy in MnSi is the decisive
energy scale that drives the observed behaviour of MnSi between the temperatures T
and T., despite being the smallest magnetic energy scale. Hence, it has to be included
in the theoretical models. For instance the calculations in reference [RBP06] do not take
the cubic anisotropy energy into account. In this context it is also interesting to note
that the pitch of the helix decreases from approximately 180 A at low temperature to
161 A at T,;. This indicates that the second strongest energy scale in MnSi, namely the
Dzyaloshinsky-Moriya interaction, becomes more significant with increasing temperature
and the angle between neighbouring spins in the helix increases, i.e. the system becomes
less ferromagnetic.

The decrease of the element xx of the polarisation tensor measured on the magnetic satel-
lites of MnSi already T* ~ 22 K additionally indicates that already between T* and T,
critical magnetic fluctuations that drive the unlocking of the helix direction are present.
This assumption is also in agreement with the unpolarised SANS data that shows that
the magnetic satellite reflections already start to broaden azymuthally below T.. The
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neutron resonance spin echo spectrometers TRISP and RESEDA situated at the FRM-II
provide a unique possibility to study the critical dynamics in MnSi. First measurements
on TRISP have already been performed but the analysis of the corresponding data is
not yet finished. Additionally a project has been started with a new master student on
RESEDA in order to further investigate the dynamics of the critical scattering in MnSi.
Finally we have also carried out extensive inelastic measurements on a triple-axis spec-
trometer in the helical phase. Our experimental observations clearly demonstrate that the
specific magnetic excitations that were proposed independently by Belitz et al. [BKROT|
and Maleyev [Mal06] for a helimagnet with Dzyaloshinsky-Moriya interaction occur in
MnSi. The observed helimagnons show the distinct anisotropic dispersion with respect
to the propagation direction of the magnetic helix as it was calculated by theory. The
data could be well fitted to the equations calculated by Maleyev and a spin wave stiffness
constant A = 43.7(7) meVA? was obtained for T = 20 K, which agrees perfectly with the
value A = 43.8 meVA? published in reference [GMOT06a]. Moreover, our results show
the existence of a small gap Ae = Ak?>\/2=85 peV that was also predicted by theory of
Maleyev [Mal06]. For the model of Belitz et al. only preliminary fits have been performed
and the analysis is still going on. The first results presented in this work are promising
and essentially agree with the results obtained by the fits to the model of Maleyev.

The mode of the helimagnons perpendicular to the propagation vector k is softer com-
pared to the mode parallel to k. This suggests that soft modes with q L k are related to
the melting of the propagation directions of the magnetic spirals that is observed in the
SANS experiments at T.; = 29 K. In contrast the hard mode parallel to the propagation
directions is responsible for the destruction of the helical order at T,y = 30.5 K. Finally
the transition from the helical phase to the ferromagnetic phase in an applied external
field then is related to the hardest mode perpendicular to k. Hence, the observation of
the proposed helimagnons also provides an intuitive explanation for the appearance of
consecutive magnetic phase transitions in a small temperature interval of 1.5 K in MnSi.
In further experiments we plan to investigate the dispersion of the identified helimagnons
in more detail. In order to resolve possible problems in our fits due to the presence of the
four configuration domains in MnSi we will carry out experiments with a MnSi crystal
that will be field-cool in a weak magnetic field. This procedure will prepare a crystal
with a single configuration domain without destroying the magnetic helix. The proposal
for this experiment has already been accepted and the experiment is planned for October
2008. In addition we intend to examine the influence of temperature and pressure on
the dispersion of the helimagnons. This will allow to determine whether these magnetic
excitations that are characteristic for a helimagnet are able to explain some of the peculiar
properties of MnSi.

As we have seen in section chiral magnetism was identified as an essential driving
mechanism in different fields of condensed matter physics. The theoretical concepts that
lead to the proposition of the helimagnons are not limited to the specific case of MnSi but
can be transferred to other compounds that display the Dzyaloshinsky-Moriya interac-
tion. Therefore the experimental identification of the helimagnons may be of fundamental
importance in a whole series of materials.



Appendix A

Neutron scattering instruments

Here we will briefly describe the different types of neutron scattering instruments that
were used during this work.

A.1 Powder diffractometer

Neutron powder diffraction is used for the determination of chemical and magnetic struc-
tures of specimen. The method relies on the specific preparation of the samples that
consists of milling crystalline samples into fine powders with typical crystallite sizes of
mm-pm. The orientation of the crystallites in the powder is assumed to be completely
random. A monochromatic beam prepared by a monochromator crystal is scattered at
the powder sample. Due to the large number of crystallites and their respective random
orientation a part of them will always fullfil the Bragg condition in Eq. for a specific
conditions. This gives rise to a so-called Debye-Scherrer cone for each Bragg reflection as
it is shown in Fig. . To observe these cones generally large multi-detector arrays
that cut the cones in one plane (denoted by the cylinder in Fig. [A.1(a)) are used. A
schematic layout of a powder diffractometer is shown in Fig[A.1(b)]

A.2 Single crystal diffractometer

In a single crystal diffraction setup monochromatic neutrons prepared by a monochro-
mator crystal are impinged on a single crystal sample. A movable detector that can be
positioned around the sample and only covers a small part of the solid angle is used to
detect neutrons scattered by the sample (s. Fig . Consequently only specific orienta-
tions of the sample with respect to the detector fulfil the condition for Bragg scattering
in Eq. for a given Bragg reflection reflection. The sample is therefore mounted on a
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Figure A.1: (a) Debye-Scherrer cones as they appear from the diffraction of a monochromatic
beam from a powder sample are shown. The grey cylinder schematically displays the position
of a multi-detector array that will be used to experimentally observe the cones. The picture is
taken from the webpage: http://www.matter.org.uk/diffraction/x-ray/powder_method.
htm. (b) A schematic of the powder diffractometer DMC at Paul Scherrer Institut that was used

for this work is shown [FKSKOQ].
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Figure A.2: A schematic layout of a single crystal diffractometer is shown.
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Eulerian cradle that allows for almost free orientation of the sample with respect to the
detector and allows to rotate it into the Bragg condition. For chemical or magnetic
structure determination one needs to compare the relative intensities on a large set of
different reflections. For a precise comparison integrated intensities of Bragg reflections
are measured by rotating the sample through the Bragg condition. There are two modes
of operation that are typically used:

e w-scans: only the sample is rotated with respect to the detector. The angle for this
rotation is generally called w. In such a scan the modulus of the scattering vector is
not changed but its direction is changed as the Bragg reflections are rotated through
the Ewald sphere (approximately a transverse Q-scan).

e w/20-scan or 0/20: 26 is the angle between the incident and final neutron wave
vectors (s. also Fig[2.14)) and therefore corresponds to the orientation of the detector
with respect to the incident beam. Both angles are changed simultaneously in the
same direction, where the angular steps of 20 are chosen to be twice as large as in
w. Such a scan corresponds keeping the direction of the scattering vector fixed but
changing its modulus (longitudinal Q-scan).

A.3 Triple-axis spectrometer

Triple-axis spectroscopy (TAS) is in general used to measure the dispersion of excitations
in condensed matter systems. Two well-characterised crystals up- and downstream of
the sample are used as monochromator and analyser, respectively. Both can be rotated
in order to select a specific incident wave vector k; and a specific final wave vector ky
via Bragg’s law in Eq. 2.19} Additionally the mutual orientation between k; and ky,
and thus the scattering vector Q, can be chosen via a third axis on which the specimen
to be investigated is mounted. A schematic layout and a photograph of a triple-axis
spectrometer (TAS) are shown in Fig. [A.3(a)| and [A.3(b), respectively. By a distinct
choice of orientations between the three axes for the monochromator, sample and analyser
a specific momentum transfer AQ and energy transfer iw (compare Eq. on the sample
is selected and the neutron scattering cross-section is determined at the corresponding
point in (Q,w)-space.

There a two typical operation modes for a TAS:

e constant-@Q scan: the instrument is adjusted to a specific scattering vector @ and
the energy transfer Aw is varied throughout a scan. This is achieved by leaving
e.g. k; fixed and varying the modulus of k; during the scan. However, in order to
fulfil the condition of momentum and energy conservation (compare Eq. the
orientation of k; with respect to k; has to to be changed (for a constant modulus!)
by changing the sample angle 205 (s. Fig. [A.3(a)).

e constant-energy scan: the situation is reversed, in a scan the scattering vector is
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varied for a constant energy transfer iw. A constant-energy scan is realised by fixing
the modulus of k; and ks and changing their mutual orientation.

In Fig. a constant-@) scan is shown in reciprocal space. The result of both types of
scans in a measurement to determine the dispersion of a phonon is shown in Fig. [A.4(b)|
Fig.|A.4(b)|also illustrates that the resolution of a TAS in (Q,w)-space is finite due to the
finite mosaicity of the crystals employed as monochromator andanalyser and the finite
beam divergence. The resolution function of a TAS is a four-dimensional ellipsoid whose
shape depends on the actual spectrometer configuration [Pop75]. A nice introduction
to the complex calculation of the resolution function and to the deconvolution of it from
experimental data is provided in [Ber06]. We note that also the type of scan that will be
performed mostly depends on the orientation of the resolution ellipsoid with respect to the
dispersion of the excitation and is chosen in such a way that the resolution is optimised.

\{i)chromator
T

Neutron
Source

. e
Collimators

Sample

(a)

Figure A.3: (a) A schematic layout of a triple-axis spectrometer. (b) The triple-axis spec-
trometer TASP [SRBOI] at the Paul Scherrer Institut that was used for this work is shown.

A.4 Small angle neutron scattering

Small angle neutron scattering (SANS) is an elastic scattering method that allows to
probe spatial correlations in a sample on a rather large length scale (compared to inter-
atomic distances) that ranges between nm and pm. We have seen in chapter 2| that in
neutron scattering spatial correlations in real space lead to an intensity distribution 7(Q)
in reciprocal space. As distances in real space d and reciprocal space 7 are related via
dr =27 (s. Eq. , spatial correlation over large distances in real space are observed
at small scattering vectors Q. For elastic scattering the modulus of the scattering vector
can be described as a function of the neutron wavelength A\ and the scattering angle 6 (cf.
Fig. as

4m
Q= 5N sin(0). (A.1)
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w = const
—-

Figure A.4: (a) A constant-Q scan with fixed modulus of ks is demonstrated (b) The result
of a constant-Q scan (red) and a constant-energy scan (green )over over the acoustic branch of
a phonon a demonstrated.

Consequently small values of QQ are achieved in an experimental setup by either increasing
the neutron wavelength or decreasing the scattering angle. To improve the angular reso-
lution in order to perform scattering experiments with small scattering angles generally
the flight path between the sample and the detector is increased. The simple SANS setup
on the instrument MIRA at the research reactor FRM-II in Munich that was used during
this work is displayed in Fig. [A5]

In the case of the simple setup shown in Fig. the experimental resolution in the de-
tector plain is mainly defined by the aperture system installed in front of the sample.
Given that the distance between the source aperture and the sample is denoted by L, the
distance between the sample and detector denoted by [, and the radii r; and ry of the
source and sample apertures, respectively, are known, the angular FWHM resolution on
the detector parallel to the scattering vector Q@ can be approximated by the analytical
expression (s. [PPM90])

r 1rjcos*(26)

2 2
— — >
Apy T 3m EL (L +1/cos*(20))°, for 1 =1y,
1 cos?(20) 1r2 1 1
A = 92 — 4 = _ -1 f
O " (L T ) 219 L cos?(20) (L + 1/ cos?(20))’ or =Ty

(A.2)
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where (26) is the mean scattering angle for which the resolution is calculated. Similarly
the angular resolution perpendicular to the scattering vector Q is given by:

r 175 cos®(26)

2
pu— —_— e >
Ap, I 2rn PL (L+1/cos(20))”, for 14>,
1 cos(26) 1721 1
AB, = 2m (= _ont ot (A3
b " <L T > 279 L cos(20)(L + 1/ cos(20)) or 1 <2 (A3)

The corresponding longitudinal (radial) and transverse Q-resolutions are further given by

AQ, = (K)cos(d)Ap,
AQ; = (K)ABs. (A4)

Here (K) = k; = ky is the mean modulus of the experimental wave vector. Of course
this is only a lower limit for the approximation of the resolution function as there are
additional effects due to a finite wavelength spread.

_[112]
[117] '
detetector

supermirror- source- sample-

monochromator 2Perture aperture
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— g ; 0
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from source .

Figure A.5: (a) A schematic layout of small angle neutron scattering (SANS) setup is demon-
strated. The instrumental resolution of the instrument can be generally tuned by changing the
radii r; and ry of the source and sample aperture and the sample-detector distance 1. The right
panel shows a typical image measured by a position-sensitive detector (PSD) in a SANS exper-
iment in one of the experiments on MnSi described in this work. On usual SANS instruments a
velocity selector is used as a monochromator; the supermirror monochromator is specific to the
instrument MIRA [GBJF07] used in our experiments.



Appendix B

Useful mathematical relationships
concerning the neutron polarisation

In this short paragraph we want to summarise some useful mathematical formula that
concern the experiments with polarised neutrons.

B.1 Statistical errors and background

In section we have defined the experimentally measured polarisation in Eq. as

It —1I
where I™ and I~ are the intensities for the neutron flipper being switched on or off
(neutrons with spins parallel and antiparallel to the quantisation axis). First we want to
derive the statistical error of the measured polarisation. Neutron detectors are generally
assumed to show Poisson statistics and therefore the error for the neutron count rate is
given by AI = /T where I is the number of neutron counts. Therefore it is straightforward
to calculate the statistical error of the experimental polarisation by using Gaussian error

propagation:
OP! 2 )z 2
/ — + z — z
P \/(AI 8l+> +(AI af—>

_ /%. (B.2)

If the polarisation is measured on a signal that is contaminated by a strong background
signal (e.g. incoherent scattering, that may also be polarised) then it can be helpful to
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subtract the background scattering from the signal of interest. The background can be
estimated e.g. by measuring the intensities for both polarisation channels on a position
in reciprocal space near to the signal of interestﬂ This can be achieved by rotating
the sample by 2-3° from the position where the signal was measured. We denote the
intensities measured on the background as B* and B~ for the flipper being switched
on and off, respectively. Additionally, as the background signal and the signal are often
not measured with the same monitor we will consider this and will consequently call the
corresponding monitor counts with M+, M~ M7} and Mg, where the B in the subscript
indicates the monitor for measurement of the background. The correct expression for the
polarisation is then given by

(- 85) - (- )
+ —_ —
P = Ajﬂ o ]I” el (B.3)
A+ T A+ + e —
(7= = ) + (= - %)

Again we can calculate the statistical error of the polarisation via the Gaussian error
propagation where we will denote AB* = \/ZBi) as the statistical errors of the respective
background counts. We will not consider the statistical error of the monitor. The error
is then described by:

OP\* or \? or\? OP \*
/ — + z + z — z — z
P! \/(AI 8I+) +<AB s +(AI m—) +(AB 5 _)

I+ B+ I+ B+ \?2
e Tz ) (o T g

(B.4)

B.2 Relationships between the polarisation, flipping
ratio and polarisation efficiency

Often the polarisation of the beam is expressed in terms of the so-called flipping ratio that
is defined as the ratio between the intensities of the neutrons with spins being parallel
and antiparallel to the chosen quantisation axis, respectively:

I+
R=—. B.5
- (B.5)
It is obvious that the relationship between the value for the experimental polarisation in
Eq. and the the flipping ratio is given via the expression
P R—-1
* R+1

'We note that incoherent scattering is generally isotropic.

(B.6)
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In addition we have defined the value of the polarisation efficiency P; and P, for the
polariser and polarisation analyser in Eq. 2.84] respectively. As the meaning of this two
values is less clear we will review it here. If the polarisation efficiency of a polariser is
P, = 0.5 it signifies that the neutrons that leave the device are not polarised at all, and
therefore It = I~. Further if P; = 0.9 this means that 90% of the neutrons are in the spin
up and 10% in the spin down state. This means that from a given polarisation efficiency
P, we can calculate the flipping ratio as

Py

R = : B.7
—p (B.7)
Consequently the experimental polarisation amounts to
Py
-1 -1
A 2P, — 1. (B.8)

z: - P
R+1 5 t1

We emphasise that if this equation for the conversion between P; and |Pp| is used, also
the Blume-Maleyev-equations (Eqs, can be used to calculate the polarisation
tensor for the case that the modulus of the initial polarisation vector | Pp| is reduced from
one instead of Egs. and [2.84] However, if also the flipping efficiencies of the flippers
are considered Egs. and have to be employed.
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Appendix C

Final polarisation due to the critical
scattering in MnSi

Here we want to derive the results given in Egs. and [5.5] that describe the magnetic
quasi-elastic neutron cross-section and final polarisations of neutrons scattered from crit-
ical paramagnetic fluctuations above T, in MnSi as derived in reference [GMOT05]. In
section we already have derived that the inelastic magnetic neutron cross-section
can be expressed via the the imaginary part of the magnetic susceptibility x.5(Q,w) (s.
Eq. [2.53). In reference [Mal02] Maleyev showed that also the Blume-Maleyev equations
(s. Eqs. that take into account the polarisation of the neutron beam can be
expressed through the magnetic susceptibility. For simplicity we only provide the terms
of these equations that contain pure magnetic parts and neglect the nuclear contributions
and the nuclear-magnetic interference terms that are non-existent in MnSi.

Maleyev introduces a symmetric and an antisymmetric part of the magnetic susceptibility
as follows:

Xas(Q.w) = X (Q,w) + x5 (Q.w), (C.1)

where XSB) (Q,w) = Xgi)(Q,w) and X&%)(Q, w) = —ng)(Q, w). The antisymmetric part is
uniquely related to an axial vector and can thus be written as

X (Q.w) = ~ieas, 01 (Qw). (C.2)

The pure magnetic cross-section that takes into account the incident polarisation vector
P, is then given by

d20 _ (7710)2]{: 2
aE — now F@) {n() + 1)
< St @.00m (@) <27 @) (@ mmic@)|
a,B

(C.3)
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where n(w) is the Bose-Finstein function (compare Eq. , Q is a unit vector parallel to
the scattering vector and F'(Q) is the magnetic form factor. Further the final polarisation
vector is given by

’ d*o . (7T0)2 kf 2
Pt = U (@) ) +1)
< [2im (Quw)) - P~ Im (x0,(@0) P - 2Q (@ Im (C(Q.))) |
(C4)
where the tensor X(f) (Q,w) has the components
Xj_aﬂ(Qv w) = Z(am QaQa1)Xalﬁl(5ﬁ1B Q&Qﬁ) (C.5)

a1,B1

and is always perpendicular to the scattering vector: X L Q=Q- X f ) = 0. This is
because due to the magnetic selection rule only components of the magnetisation that are
perpendicular to the scattering vector contribute to the magnetic cross-section (compare
section [2.3.2)).

Starting out from the magnetic susceptibility tensor for the critical magnetic scattering
that was derived in reference [GMOT05] and is given in Eq. we can now derive the
magnetic cross-section and final polarisation vector for the critical scattering in MnSi. By
investigating Eq. we see that the symmetric part of the susceptibility Xffﬁ) and the
axial vector C' are defined as

T 2qk)*
X((xsﬂ)(Q) = Az ((q + K%+ k) dag m@xqﬂ) (C.6)
T |D| T

where we have taken into account that D is negative, since the helix in MnSi is left-
handed[IEM™85]. We note that in the above equations the reduced scattering vector q
is used as we are only interested in the scattering around the reciprocal lattice position
(0,0,0) (direct beam) in the SANS geometry. @ and q are related via the relationship
Q = 7 + q where T is a reciprocal lattice vector and for 7 = (0,0,0) we have @ = q.
Consequently we will replace the scattering vector @ by g for our calculations.

To proceed we need the imaginary parts of X&Sﬁ) and C. According to reference [Mal02]
the full expression for the magnetic susceptibility taking into account also the energy
dependence is given by multiplying Eq. by the expression 51_i)1£1+ (hw — hwo +16)7! =

P/(hw — hwy) — ihmd(w — wy), where P is the Cauchy principal value. Therefore the
O-function in energy describes the imaginary part and we have wy = 0 as the expression
is for quasi-elastic scattering. Therefore to consider the imaginary part we just multiply

Egs. and by hrd(w).

Now we will evaluate the expression ), 5(dap — Gags)Im (Xt(xs)(q, w)) and Eq. [C.5|before
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we write down the full Eqgs. and [C.4] To simplify the presentation we will not write
the constant factor % and the d-function in energy.

D~ (8us = dads)Im (x5 (g )

a,B
_ PN 2 2 2 (2qk)2 A
= azﬁ(éaﬁ — (ads) <(q + K"+ k%) dap — m%%

S G- R - | R0 - | )

5 q* + K% + k2
1
= =1
= 2+ K+ k) (C.8)

Here we used that ¢ is a unit vector and consequently > ¢> = 1. Further we have for

Eq.

S N s JN
5@ w) = > (Guar — dada)XS 5, (0515 — G5, 5)
1,61
. (2gk)* . . .
— Z (6acs = Gafas) ((q2 + k2 + k*)00y, — mqal%l (6,8 — 45,45)
1,61

= Z(éaal - qAanal) X

aq

- 2gk)* (. . N
(q2+/<;2+k;2)(5a15—ngal) - m Qa1QB_Qa1q/BZqzl
B1

= (4K +E) | bap— Qs — Gals + dads Y 2 | —
a1
=1
(2qk)? Y 1Y TR s 2 s -2
T ArR iR dadp — dadp — qadp Z Qoy T dadp Z Qo

aq (o5}
g

~~
=0

= (" + K+ k) (0ap — 4sda) (C.9)

Inserting the obtained expressions in the Egs and we can write down the polar-
isation dependent cross-section

do (YroFam(Q))*T k*+ ¢* + k* — 2kq - P,

A AW+ R+ (- k)2 s+ () gt gt gt - 1/3)

(C.10)
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and the final polarisation vector

2((]2 + /432 + k’2)[(5aﬁ — Cjanﬁ) — 1] . Po + 4]6(]}

P/:{
2(k? 4+ ¢®> + K?) — 4kq - P,

(C.11)

for the critical scattering in MnSi. We have thus derived the Egs. and given in
section [.2.2



Appendix D

The neutrons python package

The neutrons python package is an extension for the python scripting language [vRDO1]
that was essentially written by the author in order to treat different types of neutron

data.

The reasons why python was used for this project are:

Python is distributed freely by the Python Software Foundation (PSF) under a GPL
compatible open source license (s. http://www.python.org/psf/license/).

Python is available for many operating systems (Windows, Linux, other *NIXes,
Mac OS X, to name a view) and therefore porting of the code to other systems
should be possible with minor efforts. The current version of the python package
was however only developed for the use with Linux.

Python has a big standard library that allows to perform many tasks with a stan-
dard python distribution. Additionally a huge number of third party packages are
available for all kinds of tasks (s. http://pypi.python.org/pypi/).

Python is a scripting language and all extension and packages written for python
can be used interactively in the python shell. Hence, it is possible to do fast data
analysis by writting scripts that import the neutrons package functionality. In ad-
dition development is much faster since the usual compilation cycle can be skipped.
Of course a scripting language performs worse in terms of speed when compared
to compiled languages as C, C++ or FORTRAN, however with today’s modern
computers this becomes less and less important and we think that the advantages
outweight this minor drawback.

Python is object-oriented, which allows to model data types as objects and therefore
complex tasks can be realised more easily.

The current version of the package that was also used during this thesis is 0.3.9. The

package consists of different submodules that are dedicated to distinct tasks. This is
illustrated in Fig. [D.1]
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neutrons/

l,data/ ..............

| SCaNS.Py ........

| polardat.py ....

| tasdat.py ......

| miradat.py .....

| general.py .....

| graspdat.py ....

| crystal/ .........

| atoms.py ........

| magsymmetry.py .

| structure.py ...

| symmetry.py ....

| unitcell.py ....

| instruments/ .....
| snp/ ...

mucurrents.py

polar.py ......

| tas/ ...l
l,tasres.py cee

L fit/
fit.py ..........
snpfit.py ......

intensfit.py ...

| tables/............

elements.py ....

magformfac.py

L 10/ e

read.py .........

write.py ........
format.py ......

Submodules to load data from different instrument data files and to convert
them to internal formats for further treatment.

Classes to save data for further treatment of data (e.g. summing two scans,
normalisation, flipping ratio correction,...). There is on class for one
dimensional scans and a second one that is able to treat four-dimensional scans
(H, K, L, energy) from a triple-axis spectrometer correctly.

Class to save polarisation data from MuPAD for further treatment (e.g. summing

two polarisation tensors, normalisation, background correction,...).

Importfilters to import data from different triple-axis spectrometers.
Currently the data formats of the following instruments are supported: TASP,
PANDA, IN14 and TRISP.

Importfilters to import data from the multi-purpose beamline MIRA including

polarisation data.

This is the most important submodule for the loading of instrument data. It
contains the function load(filename) that loads the data contained in the file
filename . The function automatically detects which import filter from the
other specialised submodules needs to be used to load the data and returns an
error in case the data file format is unknown.

Importfilters to import binned data from the program GRASu,sP [DewO3ll for the
treatment of SANS data.

Submodules dedicated to crystallography.

Class that describes the properties of atoms and magnetic atoms for a crystal
structure.

Functions to treat magnetic symmetry operations.

Class to describe a crystal structure and calculate nuclear and magnetic
structure factors.

Functions to treat symmetry operations in a crystal. Further the symmetry
operations associated with a specific space group can be generated from
the space group number or name. Not all space groups have been tested for
correctness yet.

Class to describe the unitcell of a crystal and perform calculations in real
and reciprocal space.

Instrument specific submodules.
Submodules for spherical neutron polarimetry.
Contains functions to calculate the currents in the coils of MuPAD.

Contains functions to calculate the polarisation tensor from given nuclear
and magnetic structure factors, and polarising efficiencies of polariser and
analyser.

Contains submodules for triple-axis spectrometers.

Contains functions to calculate the resolution function of a triple-axis
spectrometer. Further a function to perform the four-dimensional convolution
of a given scattering cross-section and the resolution is available.

Contains submodules that are used to perform fits.

Class that wraps the least-squares and simulated annealing fit algorithms from
scipy for more a comfortable handling of fit parameters and fits.

Functions devoted to the fits of spherical neutron polarimetry data.

Functions devoted to the fit of single crystal diffraction data. They are
still under development.

Submodules containting different tabulated information.

Contains tables with information about all elements such as atomic weight,
scattering factors and so on.

Contains tabulated magnetic structure factors for magnetic ioms.
Submodules that are devoted to input and output functions.

Functions to read the different input files that contain information for
different tasks performed by the neutrons package.

Functions to write information into different output file formats.

Functions to format information before it printed or saved.

Figure D.1: The different submodules of the neutrons package and their features.
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The package makes extensive use of some other python packages, these are:

e matplotlib [Hun07]: All plotting functionality is handled via the functions included
in this package. It provides the possibility to do publication-quality image genera-
tion. Many of the images and graphs shown in this thesis work have been produced
by means of python and matplotlib.

e scipy/numpy [JOPT01]: These packages provide powerful object-oriented array
and matrix types that are implemented in fast C code. Therefore complex array and
matrix calculations can be performed easily and fast. This functionality is mainly
used to handle the neutron scattering data (summing of scans, data normalisation
and so on).

The submodule tasres.py has been developed in collaboration with Florian Bernlochner
(s. also reference [Ber06]). This module contains the functions to calculate the resolution
function of a triple-axis spectrometer for a given instrument setup and to perform the
four-dimensional convolution of the resolution with a provided cross-section. To large
extent this submodule has been ported from the octave program of Bertrand Roessli
that performs the identical tasks. Parts of the modules for crystallography (s. subfolder
crystal in Fig. have been ported from the Crystallographic Fortran Modules Library
(CrysFML) written primarily by Juan Rodriguez-Carvajal (http://www.ill.eu/sites/
fullprof/php/programs24b7.html?pagina=Crysfml).

Based on the functionality that is available in the modules of the neutrons package several
programs that have been used to treat parts of the data presented in this thesis have
been written. Here we will introduce the two most important ones. The entire neutron
package and programs based on it are distributed freely to interested persons. Please mail
to marc.janoschek@frm?2.tum.de if you are interested.

D.1 spfit

spfit is a program to fit a magnetic structure to spherical neutron polarimetry data. The
magnetic structure is defined in a input file. The most important parameters in the file
are:

e orientation of the crystal,
e unitcell dimensions and angles,
e atom types, positions, Debye-Waller factors and occupancy,

e magnetic moments defined directly as magnetic moments or Fourier components (s.
e.g. chapter [3]),

e magnetic domains.


http://www.ill.eu/sites/fullprof/php/programs24b7.html?pagina=Crysfml
http://www.ill.eu/sites/fullprof/php/programs24b7.html?pagina=Crysfml
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In Fig. we show the input file for the ‘constant Fe moment model’ that gave the best
fits of the SNP data in chapter [dl The input was designed to be as similar as possible
to the imput file for the program Fullprof [RC06] for the fit of powder diffraction data.
This approach makes it easier to fit the SNP data with the same model as for a preceding
powder fit. The definition of fit codes works identical to Fullprof. Of course much less
options are available for the definition of the structure. The program reads in the input
file and then calculates the nuclear and magnetic structure factors via the Eqs. 2.20 and
2.45| The polarisation tensors for given reflections are then determined via Egs. [2.83] and
2.84] Finally a least-squares fit to refine the model parameters can be performed.

D.2 tasresfit

tasresfit was developed in collaboration with Florian Bernlochner to perform four-dimensional
resolution deconvolution fits that are necessary to treat triple-axis spectrometer data (s.
also . The program internally uses the approach developed by Popovici [Pop75| to
calculate the four dimensional resolution function of a triple-axis spectrometer for a given
instrument setup (e.g. collimation, focussing options, sample size and form, monochro-
mator and analyser sizes, ...). To fit the measured data the following steps are performed:

e calculation of the resolution function at EACH data point with the given spectrom-
eter congurations and sample parameters,

e transformation of the resolution function into the appropriate coordinate frame,

e numerical convolution of this resolution function and a provided theoretical cross
sections via a monte-carlo integration,

e fitting the convoluted cross section to the provided data sets.

Additionally tasresfit was developed to perform standard tasks without signicant effort.
Therefore it allows for direct import of instrumental data files through the import fil-
ter framework provided by the neutrons package (currently: TASP, IN14, PANDA and
TRISP). The import filter system is powerful and easily extendable and hence new instru-
ments can be added without significant effort. Moreover, the loaded data can be treated
further within the program (e.g. correct monitor, flipping ratio, sum and merge scans).
This makes it straight forward to start fits to the data immediately. The user interface
is command line based. After the acquisition of some simple commands the program can
be therefore controlled in an extremely simple and fast way. Additionally this makes it
even easy to install the program on a more powerful, external computer and to do the fits
over a network connection. Further features are:

e The neutron cross-section to be fitted to the data can be easily loaded into the
program.
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#instrument related stuff
#Flipping Efficiencies of benders/polarizers
PE 0.966 0.966
#zone vector for polarisation frame
zone 1.0 0.0 0.0
#Hcrystal structure input file for neutrons library
#Spacegroup or structure
SPG R 3 2
#nuclear structure
# Label Sym x y z biso occ
atom ND1 ND 0.00000 ©0.00000 0.00000 0.200 0.16670
0.00 0.00 0.00 0.00 0.00
atom FE1 FE 0.55000 0.00000 0.00000 0.200 0.50000
0.00 0.00 0.00 0.00 0.00
atom BO1 B 0.00000 0.00000 0.50000 0.200 0.16667
0.00 0.00 0.00 0.00 0.00
atom B02 B 0.44630 0.00000 0.50000 0.200 0.50000
0.00 0.00 0.00 0.00 0.00
atom 001 O 0.85390 0.00000 0.50000 0.500 0.50000
0.00 0.00 0.00 0.00 0.00
atom 002 O 0.59480 0.00000 0.50000 0.500 0.50000
0.00 0.00 0.00 0.00 0.00
atom 003 0] 0.45460 0.14480 0.51740 0.500 1.00000
0.00 0.00 0.00 0.00 0.00
#nuclear unitcell
# a b ¢ alpha Dbeta gamma
unit 9.5946 9.5946 7.6037 90.00 90.00 120.00
0.00 0.00 0.00 0.00 0.00 0.00
#magnetic structure (asumes basic unit cell)
#Domains (if two populations are given chiral domains are assumed)
# SymOp Phase Pop Code
dom 1 0 0 0 1 0 00 1 0.0 0.16667 0.000
dom —0.5 —0.8667 0 0.8667 —0.5 O 00 1 0.0 0.16667 0.000
dom —0.5 0.8667 0 —0.8667 —0.5 0O 00 1 0.0 0.16667 0.000
dom 1 0 0 0 -1 0 00 —1 0.0 0.16667 0.000
dom —0.5 —0.8667 0 —-0.8667 0.5 0 00 —1 0.0 0.16667 0.000
dom —0.5 0.8667 0 0.8667 0.5 0 00 —1 0.0 0.16667 0.000
#magnetic symmetry operators
sym Xx,y,z
msym u,v,w 0.00
sym —y,x—y,z
msym u,v,w 0.00
sym —x+y+1,—x+1,2z
msym u,v,w 0.00
sym x+2/3,y+1/3,z+1/3
msym u,v,w 0.00
sym —y+2/3,x—y+1/3,z+1/3
msym u,v,w 0.00
sym —x+y+1+2/3,—x+1+41/3,z+1/3
msym u,v,w 0.00
sym x+1/3,y+2/3,z+2/3
msym u,v,w 0.00
sym —y+1/3,x—y+2/3,24+2/3
msym u,v,w 0.00
sym —x+y+1+1/3,—x+14+2/3,2+2/3
msym u,v,w 0.00
#coordinate system (0 = crystal, 1 = spherical)
sys 1
#phi is angle in xy plane and theta angle between moment and z axis
# Label FF x y z biso occ
# positional codes
# knr onr m r phir thetar mi phii thetai phas
# magnetic codes
matom Fel MFE3 0.55030 0.00000 0.00000 0.000 1.00000
0.00 0.00 0.00 0.00 0.00
1 1 3.926 0.000 90.000 3.936 90.000 90.000 0.00000
0.00 0.00 0.00 0.00 0.00 0.00 0.00
matom Nd1 JND3 0.00000 0.00000 0.00000 0.000 0.33333
0.00 0.00 0.00 0.00 0.00
1 1 0.277 0.000 90.000 0.277 90.000 90.000 0.000000
0.00 0.00 0.00 0.00 0.00 0.00 61.00
#magnetic unitcell
# a b ¢ alpha beta gamma
munit 9.5946 9.5946 7.6037 90.00 90.00 120.00
0.00 0.00 0.00 0.00 0.00 0.00
#kvecs (0 = not k and —k are not equivalent, 1 = they are)
# h k 1 equiv
kvec 0.0 0.0 1.5 1

Figure D.2: The input file for the ‘constant Fe moment model’ that gave fits of the SNP

data in chapter [ for the program spfit is shown .
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Fit parameters for the cross-section can be easily changed or fixed within the pro-
gram without the need to edit an input file.

The changes to the cross-section that were conducted within the program can be
saved to a cross-section file.

Simulation of scans taking into account the loaded cross-sections can be performed,
e.g. for the preparation of an experiment.

Most of the resolution parameters (e.g. collimators) can be changed from within
the program without the need to edit configuration files.

The resolution function can be simulated and plotted at single positions in reciprocal
space or over a scan.

A complete program session can be saved to a session file to continue fits and
calculations at a later time.

After successful execution of a command the last state of the session is saved auto-
matically and can be restored whenever needed.

Successful fits can be saved together with the cross-section and fit parameters in a
human-readable ASCII-file to be used in other programs.

Plots of data and fits can be directly printed on printer connected to the computer.

Fig. illustrates a typical tasresfit session.
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Figure D.3: A typical tasresfit session is shown. The upper left window shows the plot of
a resolution function. On the upper right side the main window where the commands can be
entered can be seen. The lower right window shows a successful fit to a data set.



188 CHAPTER D: THE NEUTRONS PYTHON PACKAGE



Appendix E

Publications

During this work different projects were persued. Here we list the resulting publications:

1. H. Nozaki, J. Sugiyama, M. Janoschek, B. Roessli, V. Pomjakushin, L. Keller, H.
Yoshida and Z. Hiroi. Neutron diffraction study of layered Ni dioxides: AgsNiOs,
J. Phys.: Condens. Matter 20, 104236 (2008)

2. Y. Bodenthin, U. Staub, M. Garcia-Fernandez, M. Janoschek, J. Schlappa, E. 1.
Golovenchits, V. A. Sanina, and S. G. Lushnikov. Manipulating the magnetic struc-
ture by electric fields in multiferroic ErMnyOs, Phys. Rev. Lett. 100, 027201 (2008)

3. A. Cervellino,M. Janoschek, L. Keller, V. Pomjakushin, J. Schefer, G. Schuck, D.
Sheptyakov, U. Stuhr, O. Zaharko. 10 years of neutron diffraction at the Swiss
spallation neutron source SINQ, SGK/SSCr Newsletter No. 73 (2007)

4. H. Nozaki , M. Janoschek, B. Roessli, J. Sugiyama, L. Keller, J. H. Brewer, E. J.
Ansaldo, G. D. Morris, T. Takami, and H. Ikuta. Antiferromagnetic spin structure
in BaCoOj3 below 15 K determined by neutron and muSR, J. Phys. Chem. Sol. 68,
2162-2165 (2007)

5. H. Nozaki , M. Janoschek, B. Roessli, J. Sugiyvama, L. Keller, J. H. Brewer, E. J.
Ansaldo, G. D. Morris, T. Takami, and H. Ikuta. Neutron diffraction and muSR
study on the antiferromagnet BaCoOgs, Phys. Rev. B 76, 014402 (2007)

6. T. Lancaster, S. J. Blundell, D. Andreica, M. Janoschek, B. Roessli, S. N. Gvasaliya,
K. Conder, E. Pomjakushina, M. L. Brooks, P. J. Baker, D. Prabhakaran, W. Hayes,
and F. L. Pratt. Magnetism in geometrically frustrated YMnO3 under hydrostatic
pressure studied with muon spin relaxation, Phys. Rev. Lett. 98, 197203 (2007)

7. R. Georgii, P. Boni, M. Janoschek, C. Schanzer and S. Valloppilly. MIRA A flexible
instrument for VCN, Physica B: Condensed Matter 397(1), 150-152 (2007)

8. M. Janoschek, S. Klimko, R. Gahler, B. Roessli and P. Boni. Spherical neutron
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polarimetry with MuPAD, Physica B: Condensed Matter 397(1), 125-130 (2007)

P. Fischer, V. Pomjakushin, D. Sheptyakov, L. Keller, M. Janoschek, B. Roessli,
J. Schefer, G. Petrakovskii, L. Bezmaternikh, V. Temerov and D. Velikanov. Si-
multaneous antiferromagnetic Fe3* and Nd** ordering in NdFe3(1'BO3)4, J. Phys.:
Condens. Matter 18, 7975-7989 (2006)

S. Gvasaliya, L. Keller, M. Kenzelmann, B. Roessli, J. Schefer, K. Conder, E. Pom-
jakushina, M. Janoschek, B. Harris, S. Jonas, C. Broholm, O. Vajk, Jeff W. Lynn,
S. B. Kim, C.L. Zhang and S.-W. Cheong. Low temperature magneto-ferroelectrics,
PSI Scientific Report 2005, Vol. I, p. 42-43

M. Janoschek, B. Roessli, L. Keller, S.N. Gvasaliya, K. Conder and E. Pom-
jakushina. Reduction of the ordered magnetic moment in YMnO3 with hydrostatic
pressure, J. Phys.: Condens. Matter 17, 425-430 (2005)
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