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Chapter 1 

1 INTRODUCTION 

 

The fascinating world of metabolomics is enabling new and important 
discoveries, managing to be at the forefront in the life science like genomics 
together with proteomics. In the midst of this ongoing development, the 
awareness of the importance of metabolomics is being accomplished. Nowadays 
biology, medicine and the environmental sciences for studying living organisms are 
very likely to be studied with metabolomic approaches; because it offers a rapid, 
non targeted and effective way to diagnose illness and to monitor patient therapy. 
Moreover from an environmental point of view it is possible to determine the air 
quality measuring the pollution level, to derive the health state of the 
environment and furthermore to estimate the food quality. While reading this 
thesis, it will be possible to understand and assess the power of the tool of 
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metabolomics applied to different branches of science, opening the possibility to 
address this approach to several problematics without any limits or 
preconceptions, reaching different and new information. Metabolomics is growing 
very rapidly and integrates the knowledge of earlier developed omics-branches 
such as genomics, proteomics and transcriptomics. 

From a traditional definition, in the field of human health, metabolomic 
measures the concentrations of the large number of naturally occurring small 
molecules (called metabolites), that are produced as intermediates and end-
products of all metabolic processes (Bhalla, et al., 2005). They are measured from 
biological samples such as urine, saliva, blood plasma, tissue sample and even the 
simple breath can carry the information about the state of health.  

In environmental issues the same approach can be followed looking holistically 
to all small molecules detectable in a given system in various scale, integrating 
thus metabolites from living organisms and all their biotic/abiotic transformation 
products. 

The total number of different metabolites is still unknown; some estimation 
ranges from 200,000 (Ott, et al., 2006) to about 1,000,000 (Wink, 1988), but even 
this latter estimate may be conservative. Including plant and bacterial metabolites 
that are not necessary to keep the organism alive, also referred to as secondary 
metabolites, the number is enormously larger (Ott, et al., 2006). The probable 
number of metabolites is also considerably larger than the number of 
corresponding genes (Green, et al., 2008), so it seems that the currently available 
databases cover at best 2% of the total number of existing metabolites (Green, et 
al., 2008). 

Low-molecular-weight compounds (<800 amu) are particularly interesting in 
the study of metabolomics, because they serve as substrates and products in the 
various metabolic pathways. These small molecules include compounds like sugars, 
lipids, amino acids, which provide important hints for the state of health. 

Whereas genes and proteins set the stage for what can happen and what makes 
it happen in the cells (see figure 1.1) many of the actual activities, regulated by 
the metabolites, are at the metabolic level, like: 

• cell multiplication 

• energy transfer 

• cell to cell communication 

The information about the actual cellular environment can be retrieved looking 
more closely to the metabolite behavior. The environment of the cell is connected 



17 Introduction 
 

to many exogenous factors like nutrition, drug, pollutant and many others. Thus, 
they can be used as tracers for human health predictions. In a similar manner, it is 
possible to analyze the effects of environmental stress (such as pollution and 
climate changes) in environment and biogeography metabolomic (Green, et al., 
2008) studies, allowing for example mapping of metabolites as a result of organism 
adaption strategies to particular environments (pristine or polluted). 

 
Figure 1.1: This figure, adapted from (Dettmer, et al., 2007), 
represents the technology’s flow from genome to metabolome by 
time, space and under various stresses; (figures adapted from the US 
Department of Energy).  

Figure 1.2 represents the fields in which the ICR-FT/MS is applied and the 
future possible depths, giving the possibility to create an “ICR-FT chain” in 
environment and health. At this point it is anticipated that the application of 
the –omic technologies and especially the study of what is happening will 
contribute to improve molecular diagnostics and will provide ‘deep’ insights 
into the pathogenic alterations in diseases or mechanisms of pharmacological 
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interventions (Bilello, 2005). 

 
 

Figure 1.2: The different fields in which the Metabolomic data 
analysis with ICR-FT/MS is applied. 

Of course all this is possible not only for a simple awareness, but also for 
the availability of always more sophisticated technology. 

Indeed, recent advances in high and ultra-high techniques and 
instrumentations have fundamentally changed how metabolic processes are 
studied. Previously, most analytical methods were targeted to a narrow group 
of compounds (metabolites), usually on the basis of separation technology for a 
specific chemical class of compounds. However, the advance of non-targeted 
analytical methods solves this constraint, and now many different metabolites 
of different metabolic origins and chemical properties can be measured 
simultaneously from a single sample extract. Consequently, the amount of data 
generated in metabolomics studies is very huge and the integration of large 
multi-variant type data can be very complicated to explain. This change in how 
analytical approaches are conducted has eliminated one limitation and is 
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opening a new era, regarding the global metabolic and metabolite studies. The 
major bottleneck is the acquisition and the processing of complex data sets to 
uncover meaningful biological interpretation. Especially when the different -
omics sub disciplines are integrated, as advocated in the ‘systems biology’ 
approach (Davidov, et al., 2003), it can provide an extensive, more holistic 
view on disease and environment. 

The latest technology instrument signs the way of the modern 
metabolomics study. ICR-FT/MS (Ion Cyclotron Resonance Fourier Transform 
Mass Spectrometry) at high magnetic field is a new generation of mass 
spectrometer, with ultra-high resolution and mass accuracy. At present fifteen 
Tesla is one of the highest field strength magnets commercially available in an 
ICR-FT/MS. If the non target approach represents a challenge with the normal 
difficulties, ICR-FT/MS (12 Tesla) represents an absolute novelty (see 
paragraph 2.2.1).  

In June 2005, former GSF, now Helmholtz Zentrum München (German 
Research Center for Environmental Health- Munich) has installed the first 12 
Tesla ICR-FT/MS mass spectrometer in Europe (ICR-FT/MS, Fourier transform 
ion cyclotron resonance mass spectrometer; at present one out of eight of its 
magnet size class worldwide) and the instrument was operating already at the 
end of the year. During its first year of measurements, the instrument was 
equipped with APOLLO I electrospray (ESI), which is characterized by low 
sensitivity. Due to the installation of an APOLLO II electrospray (ESI) device, 
the sensitivity power could be increased. A further step was done when 
adopting the 4 Mega Words (MW, see chapter 2.1 for details) processing size 
quadrupling resolution to the current configuration defined as ultra-high 
resolution. No software was available for handling large datasets and the goal 
was to create and find new approaches for the FT data in metabolomic field. 
Figure 1.3 represents the schema of the thesis structure, where in the last 
chapters are practical examples in which the technology and the analysis are 
applied. The ability was to standardize the process of handling data and to 
apply this to several issues like: 

• environmental-biogeography (the study was done on the extremophilic 
bacterium Salinibacter rubber) 

• food chemistry (the study is focused on the high complexity of the wine) 

• biomedical and diseases diagnosis (pulmonary disease and the study of pre-
diabetic with a high risk to develop type 2 diabetes). 
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Figure 1.3: Schema of the thesis structure and the various 
applications of the method of analysis. 

All analysis presented in this work were made with an ICR-FT/MS 12 Tesla. 
This thesis contains for the first time methods and tools developed exclusively 
for this ultra-high resolution instrument in order to take advantage of the 
enormous potential of this unique instrument. These represent an absolute 
novelty because developed in-house. In target analysis the elements to be 
studied are known to be detected in advance. This predetermines the methods 
and consequently the data analysis. In the non target analysis the numbers of 
metabolites detected are limited only by the instruments resolving power; thus 
we aim to find self consistent relation between these quantities. At the time 
when the ICR-FT/MS had its first light at the GSF in 2005, only one publication 
focusing on non-target analysis with ultra-high resolution was available. 
Therein (“Non-targeted metabolome analyses by use of Fourier transform ion 
cyclotron mass spectrometry”, (Aharoni, et al., 2002)) the authors separate 
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the metabolites via ultra-high mass resolution and the exact chemical 
composition was possible due to accurate mass determination. 

Our method foresees two fundamental steps: the first one consisting in the 
data reduction followed by data analysis and visualization and the second one 
to find the putative structures and the metabolite profiles. The measurements 
of a sample generate an ASCII file containing the mass to charge (m/z) and 
their respective intensity, in two distinct columns. These row data are first 
subject to spectral alignment (see chapter 2). With this algorithm the standard 
data configuration is traced back, suitable for statistical investigation. It is 
used in biology as well as in many other branches of science and technology 
where all the measurements have to be arranged in a data table. Since these 
data are highly multivariate in nature, it is necessary to use analytical 
techniques to cope with challenges regarding the data amount, notably noise 
and collinearity. Such collinearity problems can sometimes lead to serious 
stability problems when statistical analysis methods are applied (Weisberg, 
1985), (Martens, et al., 1990). 

After the usual cleaning and preprocessing (in many analysis it is an 
obligatory step) of the data, it was necessary to design a strategy to describe 
the hidden information and present them in an intuitive visualization. Several 
statistical techniques and visualizations procedure were studied and applied to 
the data, integrated with software which assigns automatically the formulae. 

At the end, the identification of certain metabolite in their given biological 
context was strategic. The use of different databases made it possible to 
obtain detailed information about small molecule metabolites.    

The results derived from this study will be presented here with different 
examples and articles. 
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Chapter 2 

2 METABOLOMICS 

2.1 Metabolomics overview 

Several terms have been derived from metabolite. A decade ago it was used 
for the first time the word metabolome, in order to refer to all low molecular 
mass compounds produced and modified by a living organism (Oliver, 1998), 
(Nicholson, et al., 1999). Metabolomics means “understanding biochemical 
mechanism, identifying biomarkers, quantitatively analysing concentration and 
fluxes, probing molecular dynamics ans interactions”. A summary of all possible 
terms inherent to metabolomic field are given in Table 2.1. Also the possible types 
of investigation are reported. These investigations are imposed by the purposes 
and the goals and/or by the type of available instrumentation present in the 
laboratory (see paragraph 2.2). 
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METABOLITE 

Small molecules (low-molecular-weight (<~1500 Da)) that participate in general metabolic 
reactions and that are required for the maintenance, growth and normal function of a cell. 

  

METABOLOME METABONOME 

The total sums of metabolites of a given 
biological system under particular 

physiological conditions. The metabolome is 
divided into xometabolome (metabolites 
outside the cell) and endometabolome 

(intracellular metabolites) 
(Villas-Bôas, et al., 2007a) 

“The sums, products and interactions of all the 
individual compartments/metabolomes 

(including extra-genomic sources) dispersed in 
a complex organism; the ‘Global’ System” (J. 

Nicholson; Imperial College-London*). 

  

METABOLOMICS METABONOMICS 

Identification and quantification of all 
metabolites in a specified cellular, biofluid or 

tissue section. 

The quantitative measurement of the time 
related multi-parametric metabolic response of 
living system to phatophysiological stimuli or 
genetic modification (Nicholson, et al., 1999). 
It evaluates tissue and biological fluids for 
changes in endogenous metabolite levels 
effects of a disease or a therapeutic 

treatment. 

  
METABOLIC 
 PROFILING 

METABOLIC 
FINGERPRINTING 

METABOLIC 
FOOTPRINTING 

Quantitative analysis of set of 
metabolites or derivative 
products (identify or 

unknown) in a selected 
biochemical pathway or a 

specific class of compounds. 
This includes target analysis, 
the analysis of a very limited 
number of metabolites, e.g. 
single analytes as precursors 

or products of specific 
biochemical reactions. 

Unbiased, global screening 
approach to classify samples 
based on metabolite patterns 
or “fingerprints” that change 

in response to disease, 
environmental or genetic 
perturbations with the 
ultimate goal to identify 

discriminating metabolites. 
Quantification and metabolic 
identification are generally 

not involved. 

Called also exometabolome,it 
is the observation of what a 
cell or system excretes under 
controlled conditions (Kell, et 

al., 2005). 

 

Table 2.1: Glossary related to metabolomics definitions and to the 
different approaches applied in this field. (*) Jeremy Nicholson was 
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among the first to apply the tool of metabolomics analysis to NMR (and 
now to MS) to the assessment of metabolite changes in biofluids over 
time. He is who has coined in 1996 (together with his colleagues) the 
word “metabonomics”. 

Nowadays metabolomics analysis are of interest in a variety of areas such as 
human and animal nutrition (Whitefield, et al., 2004), (Gibney, et al., 2005), 
(Rist, et al., 2006),  cancer diagnosis and therapy (Hartmann, et al., 2006), (Malhi, 
et al., 2006), biomarker discovery (Goodacre, 2005), (Schlotterbeck, et al., 2006), 
toxicology (Robertson, 2005), (Gerner, et al., 2006), obesity studies (Hochberg, 
2006), enzyme discovery, (Saito, et al., 2006), (Villas-Bôas, et al., 2006), drug 
discovery (Harrigan, 2006), transplantation (Wishart, 2005), agriculture (Bender, 
2005), (Dixon, et al., 2006) and bioremediation (Singh, 2006). It has also the claim 
to speed up the functional analysis of genes with unknown function (Villas-Bôas, et 
al., 2007b); in this optic the changes in the metabolite biochemical composition 
could be used to correlate the mutation of a small number of metabolites or 
establish the part of metabolism affected by comparison with profiles of mutants 
of genes of known function (Raamsdonk, et al., 2001). 

2.1.1 One or more crucial metabolites: Biomarkers 

Although the term biomarker historically refers to analytes in biological 
samples, any measurement that predicts an individual’s disease state or response 
to a drug can be called a biomarker (Baker, 2005). A biomarker is defined as “a 
characteristic that is objectively measured and evaluated as an indicator of 
normal biological processes, pathogenic processes or pharmacological responses to 
a therapeutic intervention” (Atkinson, et al., 2001). It is distinguished from a 
clinical end point, which is defined as “a characteristic or variable that reflects 
how a patients feels, functions or survives” or a surrogate end point defined as a 
biomarker that is intended as a substitute for a clinical end point (Atkinson, et al., 
2001). A surrogate end point is expected to predict clinical benefit (or harm, or 
lack of benefit) based on epidemiological, therapeutic, path physiological or other 
scientific evidence (Atkinson, et al., 2001). To expedite the clinical drug 
evaluation process, there is a high demand for biomarkers that adequately, and 
with great specificity, indicate the presence or absence of the desired 
pharmacological response (Lewin, et al., 2004). It has now become evident that a 
broader array of ‘knowledge-based’ (relating to the known mechanism of action), 
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combinatorial biomarkers (Koop, 2003) (or biomarker profiles) can be used for 
better decision-making, i.e. to stop the development of nonviable drug candidates 
as early as possible and transferring the available resources to potentially more 
successful ones (Baker, 2005), (Rolan, et al., 2003). In the long run, scientists are 
looking to metabolomics to fill important gaps in systems biology, a research 
paradigm focused on all the interconnected molecular pathways in cells and 
organisms. Short-term clinical goals for the field are more affected by the search 
for biomarkers, or molecular indicators of pathology. Individual metabolites have 
already been used as disease biomarkers for years, for example: elevated glucose 
is an indicator of diabetes mellitus and cholesterol is a metabolite long conjoined 
with heart problem and stroke. Metabolomics enables the identification of 
biomarkers based on entire groupings of metabolites that are up or down 
regulated in concordant under specific conditions. 

2.2 Different technologies in metabolomics data 

The different types of platforms have developed different approaches in the 
metabolomics study (a general schema is reported in figure 2.1). 

Generally we can summarize the approaches on metabolic study into two 
prevalent strands: separation/mass spectrometry (sep-MS) and NMR 
methodologies.  

The traditional technologies of measuring metabolomics data are Liquid 
chromatography-mass spectrometry (LC-MS), Capillary electrophoresis-mass 
spectrometry (CE-MS) and Gas chromatography-mass spectrometry (GC-MS). These 
are prevalent characteristics for low throughput. They are applied essentially in 
the target analysis for quantitative metabolite profiling. Target analysis is 
restricted to the substrate and/or the direct product of a specific metabolic step 
(Bhalla, et al., 2005). GC-MS technologies allow the identification and robust 
quantification of a few hundred metabolites within a single extract (Roessner, et 
al., 2001), (Halket, et al., 2003). Compared to the gas chromatography 
technologies LC-MS offers several distinct advantages because it is adapted to a 
wider array of molecules including a range of second metabolite (alkaloids, 
flavonoids, isoprenes, glucosinolates, oxylipins, phenylpropanoids, pigments and 
saponins (Aharoni, et al., 2003), (Matuszewski, et al., 2003)). 
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Figure 2.1: The figure shows the different types of instrumentations 
associated with their possible type of analysis. Usually GC-MS, LC-MS, CE-
MS and NMR are applied in the target analysis and in the metabolic 
profiling. 

A second approach is the metabolic profiling, where analysis is restricted to 
the identification and the quantification of a selected number of pre-defined 
metabolites in a biological sample (Bhalla, et al., 2005). Here the targeted 
components are more in number and focused on classes of metabolites (i.e. lipids, 
sugars, peptides, proteins, etc), the information is of a structural basis with 
further possible target quantification (Schmitt Kopplin, et al., 2007).  
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NMR 
 

Mass Spec 

    
LOGISTIC    
Capital cost                                                                               No advantage  
Routine operating costs                                                              No advantage  
Maintenance Advantage   
Per sample cost no advantage                                                     No advantage  
Footprint      No advantage  
Required technical skilla                                                                                                                              Advantage 
Instrument ‘‘up-time’’                                      Advantage   
Instrument life-span                                                                   No advantage  
    
ANALYTICAL CONSIDERATION    
Sensitivity   Big Advantage 
Reproducibility (within lab)                               Advantage   
Reproducibility (across labs)                             Big Advantage   
Quantitation Big Advantage   
Average run speed                                                                     No advantage  
Capacity (samples/day)  No advantage  
Sample preparation requirements                      Advantage   
Sample analysis automation                              Advantage   
Versatilityb   Advantage   
Selectivityc     Advantage 
Nonselectivityc Advantage   
    
METABONOMICS    
Resolvable metabolites                                                                                                    Big Advantage 
Identification of unknowns                                                                                               Advantage 
Potential for sample biasd                                                Big Advantage   
Data analysis automation                                                                                                 Advantage 

 

 

Table 2.2: Comparison of NMR and mass spectrometry for metabolomics 
study, adapted from (Robertson, 2005). (a) Pool of qualified analysts is 
much smaller for NMR than MS. (b) Generally any NMR instrument can be 
configured for most applications while different MS instrumentation may 
be required for specific applications. (c) MS excels at selective 
identification of a molecular entity, while NMR excels at identification of 
all protons containing species in a sample. Therefore, selectivity can be 
an advantage or disadvantage depending on the nature of the 
application. (d) Potential for misleading, incomplete or no reproducible 
data set due to bias inherent to the technology (e.g., ion suppression in 
MS). 

Nuclear magnetic resonance (NMR) is a consolidate technique in the 
metabolomic field for global metabolic fingerprinting and biomarker 
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identification. Being non invasive and associated with high developed software it 
is a fundamental technique in the metabolite profiling, despite to its lower 
sensitivity and resolution compared to mass spectrometry methodologies. The 
study was initiated by Jeremy Nicholson (Imperial College, London) and with the 
publication: “‘Metabonomics’: understanding the metabolic responses of living 
systems to pathophysiological stimuli via multivariate statistical analysis of 
biological NMR spectroscopic data (Nicholson, et al., 1999), he laid the 
groundwork for the metabonomic approach. 

A new up-coming strategy for a non target approach is Ion Cyclotron Resonance 
Fourier Transform Mass Spectrometer (ICR-FT/MS), a rapidly emerging alternative 
to other types of mass spectrometers capable of non-target metabolic analysis and 
suitable for rapid screening of similarities and dissimilarities in large collections of 
biological samples (Aharoni, et al., 2002). 

For these two branches a comparison between advantages and disadvantages is 
reported in table 2.2. 

2.2.1 The novelty in the non-target analysis with ICR-FT/MS 

The concept and application of non-targeted analysis of cellular metabolites in 
a system-wide hypothesis-driven approach has transformed the methodological 
strategies in different areas of life sciences, with ever powerful vigorous. The 
instruments used for this approach are NMR and ICR-FT/MS (see figure 2.2); the 
attention will be focused in particular on the later one, that allows identification 
and quantification of metabolites based on their accurate mass determination.  

The technique of ICR-FT/MS was first presented in the 1950's (Von Hippel, et 
al., 1949) where it was demonstrated using measurements of very small mass 
differences with very high precision. The technique remained a largely academic 
tool until the application of FT methods (Cooley, et al., 1965) by Alan Marshall and 
Melvin Comisarow in the early 1970's (Comisarow, et al., 1974). Since that the 
instrumental evolution continues without stopping. 

The basic FT-MS foresees the ions to be produced in the source itself. By 
entering the cell ions are in an environment having low pressure values around to 
10-11 mBar. 

 This is obtained by cooling processes using liquid helium and liquid nitrogen. 
The cell itself is embedded in a spatial uniform magnetic field. Injecting the ions 
in a magnetic field and according to the magnetodinamics, the charges are subject 
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to a force, referred to as Lorentz Force, which is perpendicular to the magnetic 
field vector and injection velocity vector. This is given by the formula: 

�� = � ∙ �� × �	� 

where �� is Lorentz Force, �� and � are respectively the velocity and charge of 
the ion and  �	� the  magnetic field. The  force to which the ion is subject can also 
be described by the simple Newtonian expression: 

�� = 
 ∙ �� 

where 
 is the mass of the ion and �� its acceleration. 
Equalizing these two expressions it is possible to derive the angulare frequency 

of the orbeting ion, which is given by: 

�
 =  � ∙ �
2 ∙ � ∙ 
 

Each m/z unit must be excited because their orbital radius is too small to be 
detected. Each single ion m/z packet having natural frequency ωc will couple with 
the excitation frequency reaching the resonance. Then it drops back to the ground 
state (natural frequency). Being at higher orbits the m/z packets induce an 
altering current between two detector plates. The current frequency is the same 
of the cyclotron frequency and its intensity is proportional to the number of ions. 
This results in a complex frequency vs. time spectrum produced by all the ions and 
containing all the signals – the FID. Deconvolution of this signal by FT methods 
results in the deconvoluted frequency vs. intensity spectrum which is then 
converted to the mass vs. intensity spectrum (the mass spectrum by the previous 
equation). 

The ICR-FT/MS performance parameters improved in proportion to the strength 
of the magnet, "B" or "B2" (Marshall, et al., 1996). According to this an instrument 
equipped with 12 Tesla the resolving power increases linearly with increasing 
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magnetic field strength (Marshall, et al., 1996). Basically, ICR frequency is 
proportional to B (B is the magnetic field strength which is constant). As B 
increases, all of the ICR frequencies also magnify, as does the difference between 
any two ICR frequencies (see figure 2.2). 

 

 

Figure 2.2: The ultra-high resolution at mass 629 for 7 Tesla compared 
with 12 Tesla is shown. 

The major advantage of ICR-FT/MS is that it enables the assignment of 
thousands of elemental compositions of metabolites in a mass range from 120 to 
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800 kDa (Kilodalton) directly out of complex mixtures by virtue of ultra-high mass 
accuracy (<100 parts per billion, ppb) and ultra-high resolution (500,000 at mass 
500) at high-field strength. It offers experimental mass accuracies of 0.1 part per 
million (ppm), which is nearly an order of magnitude better than the most 
advanced time-of-flight-based mass spectrometers currently available. 

The principal characteristics of the ICR-FT/MS used in metabolomics are: 

• Ultra high resolution (Peak Capacity, figure 2.3) 

• High mass accuracy (elementary composition, figure 2.4) 

• Semi-quantitative approach (relative differentiation, figure 2.5) 

 

 

Figure 2.3: Visualization of high peak capacity of ICR-FT/MS related to 
ION TRAP. 
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Figure 2.4: In order to point out the high resolution we show in this figure 
two examples; the typical negative ion mass spectrum of the sessile and 
pedonculate wood extract samples (extracted averaged wood sample of 
each species); detail on mass 226.90-227.20 with elementary composition 
assignment of the major intensities. 

Due to ultra-high resolution and mass accuracy for one nominal mass it is 
possible to assign dozen of molecular formulae of different constituents derived 
from complex mixture.  

By the use of ICR-FT/MS it is possible to achieve separations (with the ultra-
high resolution) and identification of the metabolites (the accurate mass 
determination permits the determination of the elemental composition), and the 
relative quantification (achieved by comparing the absolute intensities of each 
masses using the internal calibration). 
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Figure 2.5: Visualization of semi quantitative approaches (relative 
differentiation). This figure shows the reproducibility of a measurement. 
Three independent samples are injected in different concentration, but 
the measurement is perfectly reproduced. 

The most problematic things remain the lack of chromatography, which make 
the technique unable to differentiate between isomers, due to their identical 
molecular mass. This could be handled by further fragmentations, which give 
greater accuracy of identification. 

Accurate mass measurement capability of ICR-FT/MS has been proven as a 
significant tool for improving confidence level in metabolomics identification in 
bottom-up approach. However, all of the advantages of ICR-FT/MS could not be 
fully demonstrated because there is a gap between the complexity of ICR-FT/MS 
spectra and capability of interpretation of the information by software. So it is 
still necessary to develop integrated software applicable for interpretation of mass 
spectra of metabolomics obtained from a high-end ICR-FT/MS. 
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2.3 Chemometrics 

Chemometrics is the application of mathematical and statistical analysis to the 
chemistry field. It is closely linked with MS and NMR, and it has as output the 
productions of tools, in order to process the spectra. It starts from the traditional 
correcting baseline effects, smoothing, peak alignment, outlier detection, 
normalization (Deming, 1986), (Lavine, et al., 2004), (each of these steps must be 
evaluated if necessary to apply or not, in relation with the type of instrument 
available). After these preliminary steps normally it proceeds with the search for 
patterns, to track properties of the samples analyzed and to prepare and use 
multivariate classification models. At this point the Chemometrics finishes and the 
Bioinformatics discipline begins. The border between these two sciences is not 
well defined. Anyway the common goals for both are to find structures in 
experimental information and to describe it in an interpretable and easy way: 
“The [metabolic] profile will give you knowledge and information rather than just 
data” (Bruce Hammock University of California, Davis). Technology and the 
modern metabolomics are growing very fast, for this fact MS and NMR suffer from 
well documented technical limitations (Weckwert, 2003). Especially defining the 
molecular composition of complex mixtures is one of the most difficult tasks in 
metabolomics (Markley, et al., 2007). Imperative are the recommendations of the 
Metabolomics Standards Initiative (MSI), it suggests that metabolomics study 
should report all details of: the experimental design, metadata, experimental 
procedures, analytical, data processing and statistical analysis which are applied 
(Lindon, et al., 2005). 

2.3.1 Exploratory data analysis 

Patterns of association exist in many data sets, but the relationships between 
samples can be serious and abstruse to discover when in the data matrices are 
stored complex data with thousands of variables from the biology system. 
Exploratory data analysis can reveal and model hidden patterns in complex data 
by reducing the information to a more comprehensible form.  

Such a Chemometrics analysis for instance can show the reasons why a variable 
in the model is an outlier and indicate whether there are patterns or trends in the 
data, underlying qualitative features (latent structures) from the multivariate 
spectral data. Multivariate analysis such as principal component analysis (PCA) and 
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hierarchical cluster analysis (HCA) are used to reduce large complex data sets into 
a series of optimized and interpretable objects. These views emphasize the 
natural groupings in the data and show which variables are strongly related to 
those patterns. 

2.3.2 Classification modeling 

Many applications require the samples to be assigned to predefined categories 
(classes), a priori information. This may involve determining whether a sample has 
the same chemical property of a specific group or not, or predicting an unknown 
sample as belonging to one of several distinct groups. A classification model is 
used to predict a sample's class by comparing the sample to a previously analyzed 
experience set, in which the classes are already studied, based on the multivariate 
similarity of one sample to others. 

Two different classification models that are commonly used are K-Nearest 
Neighbor (KNN) and Soft Independent Modeling of Class Analogy (SIMCA). When 
these techniques are used to create a classification model, the answers provided 
are more reliable and include the ability to reveal unusual samples in the data. 
Moreover with partial least squares (PLS) technique it is possible to measure the 
degree of predictability. With regression models, the analyst is interested in 
predicting some value (rather than assigning a class designation) for an unknown 
sample. 
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Chapter 3 

3 STRATEGY FOR LARGE DATASET 

3.1 Instruments for the analysis 

Within this chapter we outline the general approach we applied to different 
types of datasets. Several exemplifications and examples are shown too. 

The data analysis of ICR-FT/MS requires the development of sophisticated tools 
and statistical methods in order to extract useful information. For some aspects 
the techniques used for the data analysis are similar to NMR, gas or liquid 
chromatography data processing. Indeed metabolomics studies often require 
multivariate pattern recognition techniques to extract meaningful results. Before 
any statistical analysis it is necessary to prepare the dataset. To this end we have 
developed a data processing pipeline using different programming languages. 
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All measurements were performed with the Bruker Daltonics APEX Qe Fourier 
transform mass spectrometer (ICR-FT/MS) equipped with a 12 Tesla 
superconducting magnet and an Apollo II electro spray source. The spectra were 
zero filled to a processing size of 4 Megaword (MW). 

After the instrument commissioning in 2005 the available processing size was 
of 1 MW which limited the mass resolution. Also the data processing was 
specifically designed for this computer storage capacity. With the advent of 4 MW 
processing size (in 2007) the data analysis needed to be completely re-designed.  

The row data are processed with DataAnalysis 3.4 (Bruker Daltonik) software 
that is hard-coded in the instrument. After our pipeline aligns the spectra and 
chemical formulae are computed by software developed in-house in Python and 
FORTRAN 95. Statistical analyses are done with SIMCA-P 11.5 (Umetrics, Umea, 
Sweden) and SAS version 9.1 (SAS Institute Inc., Cary, NC, USA). Different types of 
database are used to find metabolite annotation from exact mass. The most 
common are present in open sources databases accessible from the web (KEGG: 
Kyoto Encyclopedia of Genes and Genomes, KNApSAcK: A Comprehensive Species-
Metabolite Relationship Database, METLIN: A Metabolite Mass Spectral Database). 
Based on collections of aerosol publications and from wine samples, we have 
developed our own database managed by a database management system. This 
was essential especially at the beginning when we wanted to annotate the type 
and the formula to a list of exact masses. The pathways visualization is performed 
with a tool available on the web only at the end of 2007. This is the reason 
because many elaborations are without this tool. For Van Krevelen and Kendrick 
mass visualization has been prepared an excel sheet. 

The following paragraphs will examine in detail all processes of acquisition, 
processing and elaboration of the data, which are represented in a schematic way 
in figure 3.1. 
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Figure 3.1: General scheme for ICR-FT/MS data processing. After the sample collection 
and preparation, the measurement and the calibration the process of investigation starts. 
It is necessary to align the spectra and store them in an ordered matrix. The spectra are 
exported at different S/N in order to stabilize the process and not to exclude possible 
information. The preprocessing phase (data centering, scaling, etc.) is followed by 
building up of statistical models and their validation. Once a list of possible biomarkers is 
drawn the chemical properties of these are investigated through graphical solutions (i.e. 
Van Krevelen Diagram) and/or cross correlation on existing data bases or with MassTRIX 
in order to submit to find a pathway maps. 
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3.2 Organizing the data 

Being no tools and literature available, our data processing pipeline was used 
for the first time ever. For this reason all the procedures needed to be developed 
from the beginning, and sometimes the experience suggests possible choices. 

The alignment starts with the mass spectra output of the ICR-FT/MS, processed 
by Data Analysis Bruker Software. The mass spectra are exported in ASCII format 
and they are extracted at signal to noise=1 (S/N), S/N=2 and S/N=3. Each ASCII file 
represents a mass spectrum having on x-axis the mass-to-charge ratio and on y-
axis the measured intensities. Both of the observationally determined quantities 
are subject to statistical investigations.  

The spectra extracted by ICR-FT/MS are analyzed as samples in the context of 
the population which they belong to. This requires a preliminary data structure 
design. For this purpose was developed the “Matrix Generator”, an in-house 
software coded in Python. The union of sample files, operated by Matrix 
Generator, is foreseen following the logical scheme visualized in the integration 
flux represented in figure 3.2.  

A first step requires sorting the joined data according to the mass value. To 
this end the data belonging to the same sample are tagged. This way they are 
recognizable over the whole data processing pipeline. Once spectra data are 
tagged, joined, sorted a second step groups the different masses. According to the 
mass error, moving within the range 0.1 – 10 ppm (part per million), a cross-
correlation between the observed mass positions and error template is performed 
leading to averaged masses in case of positive correlation and their abundances 
are reported. The next step restarts the comparison with the previous mass and it 
verifies if it is within the defined range.  

The so obtained masses are used in spectra assigning the respective measured 
intensities or the value 0 (zero) if the element associated to that mass is not 
present. As a result we obtain a data set composed by all the masses (measured 
and calculated) and their respective intensities (if present, otherwise 0), then the 
peaks are aligned between samples so that one mass in a sample corresponds to 
the same compound in the next sample if present. This calculation is admittedly 
not justified by any analytical consideration but only serves as a first step to 
simplify the input lists.  
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In this way The Matrix Generator aims consistent comparison among different 
spectra and it avoids wrong comparison results between different spectra. 

 
 

Figure 3.2: Schematic view of the spectra alignment algorithm. A, B and 
C represent the mass spectra. The window widths, based on it the masses 
will be averaged, are set in advance and it ranges from 0.1 ppm to 10 
ppm. 

The value of the bin (measured in ppm and chosen for the spectra alignment) 
must be defined in order to avoid false assignments. To define the value were 
created different matrices at different values of ppm (from 0.1 to 10 ppm) and 
counted the total masses generated. This process was also done at different value 
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of MW (1 and 4 MW). The ideal value came from after the inspection of the graph, 
an example is given by the figure 3.3a in which we tested the value for 
Pseudomonas Putida samples. This value was always chosen for different type of 
measurement and it brings good results, it limits false assignment and false 
unifications. We have observed the phenomena also for the samples measured at 1 
MW. It was also shown empirically that it no produces false assignment, 
distinguishing different masses and put together the right “double peak events”.  

The figure 3.3 shows the plot of the m/z-values as function of ppm-values in 
log-log scale. The data are fitted with a broken power-law model described by the 
equation here below: 

����
� = � ∙ ��
��                       ��� ��
 ≤  ��
�  

����
� = � ∙ ��
�
��� ∙ ��
��   ��� ��
 >  ��
�  

 

where � is normalization constant, ��
�is the beak value and �,   are the 
spectral indices respectively before and after the beak value. The two different 
indices show the sampled data belonging to two populations different in origin. An 
interesting deepening is taken from literature (Savaglio, et al., 2000). The value 
chosen for the ppm-window is 1 ppm at 4 MW. The best fit resulted in two spectral 
indices respectively of values � = 0.48 below and  = 0.26 before and after the 
��
� fitted value of 1.3. The first leg of the curve (left of 1 ppm) could be 
connected to the type of calibration while the second is more tied to a wrong 
merger, but more investigations are needed for these deductions. 
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Figure 3.3: The upper panel shows the amount of masses derived at 
different levels of ppm (from 0.1 to 10) in comparison with 1 MW and 4 
MW processing sizes. The data came from an experiment aiming to follow 
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the metabolome of Pseudomonas Putida during growth conditions. The 
scale in both axes is logarithmic. For the bin, in Matrix Generator was 
chosen the value 1 ppm. The lower panel of the figure shows the Becher 
4 MW model fitted with a broken law power. The broken power law fit is 
shown in green, which breaks at 1.3. The value 1 ppm was defined as 
good value. 

3.2.1 Formula calculation 

The formula calculation is used in order to assign the chemical composition of 
the masses and to filter those are not assigned.  

The 4 MW processing size required a hardware upgrade on the ICR-FT/MS. Since 
software and memory capacity are related all together also the processing data 
logic was updated in order to achieved the maximum information at 4 MW 
processing size. The Formula Calculation was applied as a filter with the 1 MW 
processing sizes before the advent of the 4 MW one. To validate all processes the 
spectra were computed according to two different significances: S/N=3 and S/N=1.  

Two different statistical models and processing methods were evaluated to 
achieve a robust result. In the case of S/N=1 the formula calculation was applied 
before spectra alignments aiming to filter wrong assignments. These spectra were 
aligned; pattern defined and finally chemical properties and biomarkers derived. 
Simultaneously the spectra computed at significance level S/N=3 were aligned 
with the software Matrix Generator. In this case formula calculation was applied 
at the end of the processing pipeline in order to filter the masses of interest. The 
two models were compared to stabilize the result and to validate the possible list 
of biomarker (a general schema is proposed in figure 3.4). 

For elemental formula calculation, as a prerequisite, all mass spectra need to 
be calibrated to maximum accuracy, either internally or externally. In case of the 
samples presented here, external calibration was done with an appropriately 
concentrated arginine solution in positive and negative mode, while internal 
calibration was accomplished utilizing ubiquitary solvent impurities, either 
phthalate diesters (for positive ESI spectra) or fatty acids (for negative ESI 
spectra). For both external and internal calibration (where the further served as a 
positive control of proper system configuration), a maximum mass error of 0.1 
ppm was accepted. 

From adequately calibrated spectra, peak lists were generated which 
contained up to 10,000 mass/intensity pairs. A portable program written in 
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FORTRAN 95 with a modular graphical user interface and processing front-end 
written in Python/TkInter was used for rapid batch calculation of possible 
elemental formulae. 

 
Figure 3.4: General schema to show in which level the filter is applied. In 
the last step Van Krevelen and/or Data Base searching are in turn 
equivalent to a filter. 
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In principle, formula calculation was performed by subtracting (for positively 
charged peaks) or adding (for negatively charged peaks) an electron mass 
(0.000549 atomic mass unit (amu)) from or to the measured m/z value. This 
formal neutralization was followed by a transformation of the mass value from a 
12C based IUPAC scale to a 1H based hydrogen scale, where H = 1.000000 amu, C = 
12.000000/1.007825 amu, O = 15.994915/1.007825 amu, etc. The purpose of this 
transformation was to reduce the number of necessary calculation steps by a 
reduction of the number of possible elemental combinations that needed to be 
considered for each mass. In this transformed mass, only the heavier elements 
contribute to the fractional part of the number, but not H, which normally is the 
most abundant element in biomolecules. In parallel with this transformation, a 
database consisting of all possible combinations of elements (excluding H but 
analogously H-transformed) that were previously allowed, that fit in the mass 
window of interest, and that match some very basic chemical rules was generated 
(nitrogen rule, minimum and maximum O/C and H/C ratio, presence of a 13C peak 
mass or comparing to theoretical isotope patterns) and only the masses in 
conjunction with their automated generated theoretical isotope pattern 
(existence of the 13Cisotope) were taken into consideration (Hertkorn, et al., 
2007). 

In the next step, the fractional part of the transformed measured mass was 
compared to the fractional parts of the combinations in the database. Whenever a 
match within a previously defined error window (typically with 4 MW 0.1 ppm) was 
found, the integer part of the database mass was subtracted from the integer part 
of the ion mass which directly resulted in the number of hydrogen, as the H mass 
was previously scaled to 1.000000. The formulae generated with this method were 
afterwards subjected to more advanced modular plausibility filtering steps, e. g. 
involving a check for the nitrogen rule, minimum and maximum O/C and H/C 
ratio, presence of a 13C peak mass or comparing to theoretical isotope patterns. 

The validity of the abovementioned algorithm was extensively checked by 
comparing different known, but slower, methods of elemental formula 
calculation. In the algorithm was not found errors of imputation. 
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3.3 Data transformation and normalization 

The choice of the data pretreatment does not depend only on the biological 
information to be obtained, but also on the data analysis method chosen since 
different data analysis method s focus on different aspects of the data (Van den 
Berg, et al., 2006). Normalization techniques scaling and transformation will 
affect the results and the validity of the analysis. It is imperative to choose 
appropriate one, taking care also of these “new” data. 

Data transformation is the process of changing the scale of the data so that it 
is more comparable from high to low. The main goals are to find appropriate 
transformations of the data, which make the data more suitable for multivariate 
analysis. Moreover these transformations stabilize the variance, because for high-
complex assay this tends to rise with the intensities.  

Common transformations, applied to ICR-FT/MS, are the logarithm and 
generalized logarithm: 

• Log transformation 

• Generalized log-transformation 

&�'� = ln �*+ + -*+ + '� 

In the formula of Generalized log-transformation y is the original spectroscopic 
intensity, g the transformed intensity and λ is a transformation parameter, it can 
be estimated using a maximum likelihood method using a set of replicate 
measurements (Box, et al., 1964), (Rocke, et al., 2003). The generalized log 
transformation was used especially with data in which the low intensities values 
have a predominant importance.  

Normalization is the process of adjusting for systematic differences from one 
array to another. This row operation makes the spectra directly comparable with 
each other (Craig, et al., 2006). In the same case the concentration of a specific 
metabolite can be determined by an independent means (e.g., glucose using 
conventional clinical chemistry) and this then provides a reference value 
(Anthony, et al., 1994).  
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One common method of normalization involves setting each observation 
(spectrum) to have unit total intensity by expressing each data point as a fraction 
of the total spectral integral. Normalization may be done before or after 
transformation. 

Scaling is done in the columns of the data. The most convenient normalizations 
to use with these data are: 

• Pareto: the intensity is divided by the square root of the standard deviation: 

./01 = .01 − .30
√50  

• UV (Unite Variance): Variable j is centered and scaled to unit Variance, i.e. the 
base weight is computed as 1/sj, and with sj is the standard deviation of 
variable j computed around the mean. With this normalization variable with a 
very small variance will obtain an equal impact on the results: 

./01 = .01 − .30
50

 

3.4 Similarities and distances between the data 

The task of detecting patterns of relations, trends, and anomalies is made 
considerably easier when “similar” variables are arranged contiguously and 
ordered in a way that simplifies the pattern of relations among variables. This is 
referred to as “main effect ordering”. 

To have a first visualization of the data it was useful many times to design a 
correlation matrix. It computes the correlation coefficients of the columns of the 
matrix. Here it is presented (see figure 3.5) an example taken by the analysis of 
Supernatant Positive of Salina Bacter Ruber (correlation matrix: 37x37). 
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Figure 3.5: Correlation matrix of the Salina Bacter data. In the red the 
outlier samples are represented. They were subsequently detected also 
with multivariate techniques. This symmetric matrix defines possible 
similarities among the samples. 
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3.5 Statistical analysis 

Setting up a matrix is the starting point for the creation of a statistical model. 
It becomes useful for summarizing and visualizing a huge amount of data, for 
classifying and discriminating and finally finding quantitative relationships among 
the variables with the possibility to make also a prevision for new samples. In 
many cases the final aim however is obtaining a plausible list of metabolites or 
biomarkers that explicate the phenomena being studied. The large numbers of 
peaks in the spectra that are all potential biomarkers create modeling and 
validation challenges (Westerhuis, et al., 2008). A multivariate analysis based on 
projection methods represents a number of efficient and useful methods for the 
analysis and modeling of the complex data. These methods include principal 
component analysis (PCA) and partial least –squares (PLS) (Trygg, et al., 2006). 
This modus operandi is robust and efficient for modeling and analysis of 
complicated chemical and biological data, which are characterized by noisy 
missing values and collinear data structure. 

Singularity and collinearity: variables are said to be collinear if they are highly 
correlated. The problematic related with the collinearity are: 

• highly correlated variables (ρ > .9) make matrix inversion unstable and 
problematic and can lead to failures in calculation 

• collinear variables can complicate make models difficult to interpret 

• collinear predictors in a linear model can cause large standard error estimates, 
reducing statistical power 

However it is difficult and still a matter of debate to determine when a model 
has become sufficiently detailed for its task and how confident one can be in its 
predictions. To fully realize the potential of information contained in this 
complexity science much more investigation and software developing is necessary.  

The initial objective in metabonomic is to classify a spectrum based on 
identification of its inherent patterns of peaks and, second, to identify those 
spectral features responsible for the classification, which can be achieved via 
supervised and unsupervised pattern recognition technique (Westerhuis, et al., 
2008).  

When a statistical model is set-up and validated, it is possible to extrapolate a 
list of masses characteristic for the different groups’ object of study. These 
masses are the possible biomarker. Here we give an example of the methods to 
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extrapolate a list of biomarkers; they are represented in figure 3.6b) the chemical 
property are visually represented with the Van Krevelen Diagram (see figure 3.6 
(Rossello´-Mora, 2008)). The variables (single m/z) discriminative for each class 
were chosen according to their correlation coefficient value (Rossello´-Mora, 
2008). Finally we could confirm or figure out the most important metabolite 
ranking them and applying simple univariate analysis of ANOVA (analysis of 
variance), Student t-test or non parametric equivalents can be used to ascertain if 
there is any statistically difference between individual metabolites (Altmaier, et 
al., 2008). 

 

 
 

Figure 3.6: A) Score plot of the PLS-DA of all cellular insoluble fractions 
analyzed with electrospray-positive mode ICR-FT/MS showing the 
differentiation based on geographical origin of the samples; B) loading 
plot of the PLS-DA model correlating the 2099 m/z values of known 
elementary composition (C, H, O, N, S and m/z<550) to the geographical 
origins. The m/z values having a high correlation with geographical origin 
are highlighted with a corresponding color; the no discriminating masses 
are represented in yellow. The chemical properties of the masses have 
been investigated with the van Krevelen diagram and querying the 
general metabolome databases (www.metabolome.jp, 
www.genome.jp/kegg/). 
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3.5.1 Multivariate analysis 

For meaningful interpretation, the appropriate statistical tools must be 
employed to manipulate the large raw data sets in order to provide a useful, 
understandable, and workable format. Different multidimensional and 
multivariate statistical analysis and pattern-recognition programs have been 
developed to distill the large amounts of data in an effort to interpret the 
complex metabolic pathway information from the measurements (Nicholson, et 
al., 1999), (Boutilier, et al., 2005), (Smith, et al., 2006). The multivariate analysis 
up to now is one of the most powerful tools able to interpret natural phenomena. 
This is divided into: unsupervised and supervised analysis. This classification 
depends on whether there is information available when the investigation starts or 
not. Before the statistical investigation it is necessary to transpose the data (see 
figure 3.7). 

 

 

Figure 3.7: Before any statistical investigation it is necessary to transpose 
the matrix of data. The spectra will be the new observations; instead all 
the m/z and the spectra properties will be the new variables. This is the 
possible configuration to analyze complex system. 
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3.5.1.1 Unsupervised analysis 

Principal component analysis (PCA) is a multivariate projection method used to 
compress information contained a data table or matrix X into a few so-called 
“principal components” (see figure 3.8). The objective of the compression is to 
explain as much of the variation in the original data set as possible. This is 
achieved by using the new form of latent variables, the principal components 
(PC). By reducing the dimensionality of the data it becomes much easier to get an 
overview of the variation, so that groups, trends and outliers can be identified 
among the observations. The reason why such a compression is possible is that 
variables are correlated with each other. If the variables were independent 
(uncorrelated), compression using PCA would not be possible. In many cases 
correlations between variables (e.g. metabolites) occur because they change 
according to some systematic underlying common factor. PCA has the ability to 
detect these underlying factors and compress the information based upon them. 
Each principal component consists of one score vector t and one loading vector p. 
The score can be regarded as the new variable and the loadings as the link 
between the original variables. Scores are linear combinations of the original 
variables and the influence of the original variables is represented in their 
loadings. By viewing the score and loading plot simultaneously it is possible to 
interpret the variables that influence the positions of the observations in the 
scores. Another very convenient tool to use with PCA-analysis is to view the 
loading plot and interpret which variables are positively correlated (located in the 
same quadrant) or negatively correlated (located in the opposite diagonal 
quadrant) to each other. 
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Figure 3.8: this figure shows the coordinates for a point in the original 
coordinate system (attributes X1 and X2) and in the PC coordinate system 
(PC1 and PC2). For the PC coordinate system, the majority of points can 
be distinguished from each other by just looking at the value of PC1. 

The PCs define a new basis that is a model for describing the data. The 
projections of the observations onto the axes of the new basis define their 
coordinates in the model. The values of the coordinates are the scores (t). By 
plotting these scores it is possible to get a visualization of the structure of the 
data (see figure 3.3a), in this case there are two natural groups: one follows their 
fulvid fractions characteristic and another one is characterized by humic fractions. 
This example is taken from (Lucio, et al., 2006), in which the implications 
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between the pesticide properties and the humic structures is described. The 
dataset was analyzed with PCA. The score scatter plot of the first two principal 
components is shown in figure 3.9a. Samples close to each other in the plot have 
similar properties with respect to different fractions. Fractions far from each 
other are dissimilar; there were denoted four zones. The first principal component 
(horizontal axis) mainly describes the aromaticity (in the right side) and 
aliphaticity (in the left). Acidity (in upper part of the graph) is negative correlated 
with N-containing functional groups.  

The meaning of the scores, the impact of different variables on the model, is 
given by the orientation of the model with respect to the variables (see figure 
3.9b). 

 

 

Figure 3.9: In the left panel the score scatter plot (t1/t2), and in the 
right panel the loading plot (p1/p2), right part B), from PCA essential 
grouped in two classes constituted of the Fulvic (left) and Humic 
fractions (right), illustrating similarities and dissimilarities among 
samples (Lucio, et al., 2006). 
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In the coordinate transformation the cosines of the angles between the old and 
the new coordinate system are called loadings p.  

Algebraically, they can be explained as how the variables are linearly 
combined to form the scores. 

The values of all observations projected onto the first principal component 
make up the vector t1, and the scores for PC2 another vector, t2. Similarly, the 
loadings calculated between the variables and PC1 constitute the vector p1, and 
between the variables and PC2 the vector p2.  

The decomposition of a mean centered X matrix to the scores, loadings and 
residuals (6) can be written using the following formula: 

7 = 89: + 6 = ;<�<= + ;+ �+= + ⋯ + ;���= + 6 

The data reduction is accomplished by neglecting unimportant directions 
where the sample variation is insignificant. This is repeated until no significant 
direction in the K-dimensional is left, i.e. the residual. The maximum number of 
components (a) is the same as the number of variables. The number of significant 
PCs can be estimated by a number of methods, such as calculating the size of 
eigenvalues (Jackson, 1991) or cross-validation. After all significant variation in X 
has been described by the PCA model the remaining variation, the residual, is non-
systematic and represents the distance between each point in the K-space and its 
point on the plane. 

As previously mentioned, the plot of the scores describes the structure of the 
data. This plot is called a score scatter plot. Observations grouped together in a 
score scatter plot have similar properties, since they are described similarly by the 
principal components. 

Similar to the principal component analysis is the hierarchical cluster analysis 
(HCA). In multivariate analysis HCA is a general approach to cluster analysis. Its 
purpose is to find relatively homogeneous cluster/groups whose members are all 
“close” to one other, based on measured characteristics (an example is given by 
the figure 3.10). 

A key component of the analysis is the repetition of the calculation between 
objects and clusters once objects begin to be grouped into cluster. 
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Figure 3.10: Plot of two clusters of observation (● on the left part and 
● on the right part of the graph) and the different type of distance 
(single and complete linkage, respectively takes the smallest and the 
largest possible distance). 

The single linkage clustering method (or the nearest neighbor method) is a 
method of calculating distance between clusters in hierarchical cluster 
analysis. The linkage function specifying the distance between two clusters is 
computed as the minimal object-to-object distance denoted by: 

?�.0, *1� 

where the objects .0 belong to the first cluster, objects *1 belong to the 
second cluster. In other words, the distance between two clusters is computed 
as the distance between the two closest objects in the two clusters.  

Mathematically the linkage function is described by the following 
expression: 

@�7, A� = minDEF;HIJ ?�., *� 

@�7, A� is the distance between objects . and * and 7 and A are two sets of 
objects (clusters) The complete linkage clustering (or the farthest neighbor 
method) is a method of calculating distance between clusters in hierarchical 
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cluster analysis. The linkage function specifying the distance between two 
clusters is computed as the maximal object-to-object distance. In other words, 
the distance between two clusters is computed as the distance between the 
two farthest objects in the two clusters. Mathematically the linkage function  
is: 

@�7, A� = maxDEF;HEJ ?�., *� 

The output is a dendogramm; it is a tree-like plot (see figures 3.11 and 
3.12), where the branches represent cluster obtained on each step of 
hierarchical clustering. 

 

 
 

Figure 3.11: The upper panel A shows a complete linkage and B shows 
a single linkage. The clusters due to the analysis group perfectly 
according to the origin of the wine (Data from Tonnelerie 2000, 
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measured in negative mode with S/N=1 filtered with the formula 
calculator, CHONS rules). 

 
Figure 3.12: Salina Bacter Ruber, cluster analysis with complete 
linkage, in the right part there are the outliers. 

3.5.1.2 Supervised analysis 

The classification, based on the metabolic profile, is one of the main issues 
in this research. The classical method for this purpose is the partial least 
squares discriminant analysis (PLS-DA) (Vong, et al., 1988), (Barker, et al., 
2003). It is a multivariate method used to classify and it is suitable when the 
number of experiments (in this occasion spectra) is small compared to the 
amount of variables (m/z) and when it is present multicollinearity (Geladi, et 
al., 1986). Unfortunately this method frequently over fits the data and rigorous 
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validation is necessary with the cross validation and permutation testing (see 
paragraph 3.6). Supervised PLS-DA analysis uses independent (expression 
levels: the X block) and dependent variables (classes: the Y block) for class 
comparisons. It is a classical partial least regression (PLS) an example is given 
by the figure 3.13. 

 
Figure 3.13: Four statistical models (PLS-DA) built up for the Salina 
Bacter Ruber (Supernatant/ Pellet Positive and Negative, Cell 
Positive). They are grouped according to their geographical origin 
(Atlantic ●, Peruvian ●, Mediterranean ●). Through the “glog 
transformation” was possible to clarify the association within the 
masses especially in Cell and Supernatant in which at was not clear 
with other tranfrormations. 
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Additionally, PLS-DA provides a quantitative estimation of the 
discriminatory power of each descriptor by regression coefficient. The 
magnitude of the coefficient represents the relative importance of each data 
on the separation of the classes (Brindle, et al., 2002), and measures the 
effect of particular substances identified by m/z value (Lee, et al., 2003). The 
PLS-DA and Partial least squares (PLS) modeling could be used to determine 
the relative metabolite concentration of the metabolites of interest. Partial 
least squares projections to latent structures or PLS is a regression extension of 
PCA, which is used to find the relationship between a predictor matrix X and a 
response matrix Y, where the response matrix contains additional 
characterization of the samples in X. PLS uses the underlying or latent 
variables (scores) of X in order to describe the variation in both X and Y, in 
contrast to PCA which only models X. Therefore, the objective is also different 
when calculating latent variables in PLS, namely to extract the variation in X 
needed to predict the variation in the response Y. PLS-DA with OPLS-DA (see 
chapter 3.4) are often used in metabolomic field for classification (Barker, et 
al., 2003), (Bylesjö, et al., 2006), (Trygg, 2002), (Trygg, et al., 2002), 
(Rossello´-Mora, 2008). The main benefit with OPLS-DA lies in the ability to 
separate predictive variation from variation that is uncorrelated to it, in order 
to facilitate understanding of different sources of variation (Trygg, 2008). 

OPLS-DA provides a solution to identify different sources of variability, both 
predictive and uncorrelated, and also facilitates understanding of any 
sampling, experimental, or preprocessing issues (Trygg, 2008). 

Mathematically the X block is summarized by the X-scores T, and the 
variation in the response block, Y, is described by the Y scores U. Basically PLS 
maximizes the covariance between T and U (Trigg). For each model dimension 
a weight vector w, is calculated, and it reflects the partial contribution of 
each variables X to the modeling of Y. Therefore the matrix of the weights is 
W, reflects the structure in X that maximizes the covariance between T and U. 
The Y-weight instead is represented by the matrix C and parallel is computed 
also the matrix of the X-loadings, P. The P matrix is calculated in order to 
deflate X appropriately. The formulas for the decomposition are shown here: 

7 = 89M + 6            A = 8NM    
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The set of PLS regression coefficients are computed according to: 

� = O�9MO��<NMM 

The *P prediction is given by: 

*P = .MO�9′O��<NMM = .′� 

If it is necessary to remove from X information that is orthogonal to Y, within a 
PLS model, it is possible to apply Orthogonal Signal Correction (OSC). The data are 
transformed (mean-centered) and then OSC can be used to remove one component 
at a time from X using the algorithm for calculating the principal components of a 
data set (NIPALS algorithm: Nonlinear Iterative vartial Least Squares).  

In the context of classification it is important to show the value of sensitivity 
and specificity. Both parameters can be express in the context of a hypothesis 
test, sensitivity is an estimation of (1 − α) × 100, where α is the probability of first 
type error (that is the pr{to reject H0/H0 is true}) and the specificity is (1 − β) × 
100, where β is the pr{reject H0/H0 is false}. Thus, specificity is related to the 
second type error, the power of the test is 1 − β. 

3.6 Data validation 

The validation of the statistical models was crucial during the data analysis of 
the experiments. To this end we applied several methods described here below. 

The use of a single cross validation (CV) may lead to bias and overestimation of 
the true error rate. For this reason it is the method always used for finding the 
optimal model. This procedure, now standard in the multivariate analysis, starts 
from the assumption to exclude from the model development a portion of the data 
and with the rest develop a number of parallel models and predict the omitted by 
the different models. Finally the predicted values are compared to the actual 
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ones. The squared differences between predicted and observed values are 
summed in the predictive residual sum of squares (PRESS), computed as: 

9R6SS =  T T�.0U − .P0U�+ 

For every component (i), the overall PRESS/SS is computed, where SS is the 
residual sum of squares of the previous component, and also (PRESS/SS)k for each 
Y variable (k). These values are good measures of the predictive power of the 
model. Normally the model is also evaluated through two different values: R² 
(goodness of the fit) and Q² (goodness of the prediction), respectively calculate 
as: 

R+ = 1 −  RSS SS7⁄ =X=.  
XYY 

Z+ = 1 −  9R6SS SS7⁄ =X=.  
XYY 

Where RSS are the residual sum of squares and SSXtot.corr represent then total 
variation in the X matrix after mean –centering. They are value in the range [0,1]. 
An excellent model is with Q²>0.9 and the difference between the value of R² and 
Q² may not exceed 0.2/ 0.3 (see figure 3.14a). 

Jack-Knife define the stability of the regression coefficient (Efron, 1982), 
(Martens, et al., 2000) and in the estimation of confidence intervals, it is used in 
the PLS procedure. 
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Figure 3.14: Example of validation. Data come from a study on pre-
diabetic state, which precedes overt type 2 diabetes. Left panel: value of 
Q² and R²(Y). Right panel: a random permutation test (100 permutations) 
was applied to assess the robustness of PLS-DA model. These data do not 
exhibit any characteristics of an overfit model. 

 
In order to asses the discrimination an exact or an approximate permutation 

test can be used (see figure 3.14b), (Efron, et al., 1993), (Manly, 1997), (Mielke, 
et al., 2001). The study was performed using plasma of 47 metabolically 
characterized, non-diabetic individuals at high risk to develop type 2 diabetes. 
The spectra analyzed with ICR-FT/MS were evaluated by an OSC PLS. 

Parallel to these methods, classified as “internal validation”, it is the possible 
to evaluate the model also with an “external validation”. Normally all the dataset 
is dividing in two different groups (they should be representative of the population 
and of the classes present in the model): one is called training set the other one 
validation set. Using the first one a model is created, and this could also predict 
the remaining dataset. This method has been applied when a large number of 
samples are available. 
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3.7 Data evaluation and visualization 

The ability to collect and visualize biochemical relevant information about 
metabolites has only recently become available (Breitling, et al., 2006). Many 
visualizations can be used in metabolomic field. The most common are 
dendogramm from clustering results (Roessner, et al., 2001), and representations 
of samples in principal components analysis (Nicholson, et al., 1999), (Fiehn, et 
al., 2000), (Roessner, et al., 2001). With the non target approach the visualization 
becomes also a tool to describe and summarize the property of a class of objects 
(spectra). Due to the big amount of information present in a dataset it was 
necessary to develop a strategy to summarize the chemical property of a class of 
objects. This was done with different visual approaches. 

So the main goal of a statistical model is to compiling a list of important 
masses (VIP list or regression coefficient list, etc.) which play an important rule 
for the purpose of statistical model. After it is possible to investigate its 
properties in two ways using: 

• Van Krevelen and/or Kendrick mass plots 

• MassTRIX (www.masstrix.org) annotates metabolites in high precision mass 
spectrometry data. 

The chemical property of the list of candidate biomarker can be visualized 
with the Van Krevelen method (1961). It represents a graphical method where the 
atomic hydrogen/carbon (H/C) ratio is plotted as a function of the atomic 
oxygen/carbon (O/C) ratio. In this diagram each molecular formula represents a 
compound is shown as a point whose coordinates are determined by elemental 
composition [Meija, 2006]. 

The same list can be submitted to MassTRIX in order to display on organism 
specific KEGG pathway maps, and optionally add any additional genomic or 
transcriptomics information by highlighting the corresponding enzyme boxes. 

3.7.1 Van Krevelen diagram 

Van Krevelen developed a graphical method to study the process in which the 
atomic hydrogen/carbon (H/C) ratio is plotted as a function of the atomic 
oxygen/carbon (O/C) ratio. Van Krevelen diagram is often used for the 
classification of coals and kerogens. A frequent application of the van Krevelen 
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diagram is to illustrate the changes in elemental compositions that occur during 
the alteration of organic geochemicals in a geologic environment; e.g. H/C and 
O/C ratios have been used to follow the effects of diagenesis on humic substances 
(Hue, et al., 1977), (Reuter, et al., 1984). These diagrams have also been used by 
various authors to illustrate compositional differences between humic acids and 
fulvic acids, and also to show variations in humic substances as a function of 
source. For example, Kuwatsuka  (Kuwatsuka, et al., 1978) used a van Krevelen 
diagram to compare the elemental compositions of soil humic and fulvic acids, 
coals, plant tissues and various classes of organic compounds. 

Visser (Visser, 1983) employed a van Krevelen diagram to compare fulvic and 
humic acids from aquatic and terrestrial sources. The magnitude of the H/C ratio 
has also been used to indicate the degree of aromaticity or unsaturation (a small 
value) or aliphaticity (a large value) of a substance. Perdue (Perdue, et al., 1983) 
has pointed out that the total unsaturation of a humic material cannot be 
obtained solely from the H/C ratio; in addition to unsaturated forms of carbon the 
H/C ratio is also a function of unsaturation present in functional groups, primarily 
carboxyl and carbonyl groups, with lesser contributions from other miscellaneous 
forms of unsaturation. If H/C ratios are calculated for the 21 humic material 
samples in the study of Perdue (Perdue, et al., 1983) and compared to the 
aromatic carbon contents corrected for the various forms of noncarbon 
unsaturation it is seen that, though the actual numbers differ, samples which 
exhibit a high aromatic carbon content also exhibit a small H/C ratio and vice 
versa. The lone exception is a spodosol fulvic acid with high total acidity 
(12mequiv/g), a low corrected aromatic carbon content but a moderate H/C ratio 
(0.85). The H/C ratio thus appears to be a qualitatively useful parameter for 
comparing the aromaticities of humic materials. To date, the number of humic 
samples plotted on a single van Krevelen diagram has been relatively small. The 
value of any such investigation would be enhanced by enlarging the data base and 
by using humic substances from a wider variety of source environments. In 
addition, when a large data set is employed one can justifiably apply statistical 
methods to quantify the relationships between the various groups of humic 
substances by establishing the statistically significant differences.  

For example, the spectrum of a red wine from Burgundy (i.e. Vosnes Romanée, 
1995) can lead up to 17,400 peaks at a signal-to-noise = 2, (115,000 at a signal-to-
noise = 1), which can be unambiguously attributed to 1180 unique elemental 
CHONS compositions with 200 ppb tolerance and confirmation with 13C-signal (3890 
compositions at 500 ppb tolerance), from which only a few hundred may 
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correspond to masses of metabolites such as those gathered in our database (see 
figure 3.15), that have already been observed in model solutions or in wines with 
targeted analyses. 

 
Figure 3.15: Example of van Krevelen representation based on the 
compounds from the database illustrated in figure 6.2 (chapter 6), here 
showing the positioning of various classes of molecules. The glycosylation 
line represents the virtual line along which the (O/C, H/C) values would 
move on the diagram when following successive glycosylations (for 
example: anthocyanins and their corresponding mono and di-glycosylated 
anthocyanins). 
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A graphical representation of the various chemical spaces (CHO, CHOS, CHON, 
CHONS) of wines are then obtained (see figure 3.16), which visually highlight 
specific cluster series of elementary compositions observed within nominal 
masses. Using a home-compiled database of compounds that can exist in model 
wine solutions or that have been actually observed in wines, allows to similarly 
represent the specific contributions of phenolics, peptides, polysaccharides, 
nucleotides and any other classes of compounds present in wines, and which can 
be positively or negatively ionized. It must be noted however, that many of the 
compounds responsible for the aroma of wines, which exhibit m/z values below 
150, are not detected under our experimental conditions. 

 

 

 

Figure 3.16: A): Example of visualisation in van Krevelen diagram (H/C 
versus O/C atomic ratios) of the three series of elemental compositions 
from figure 6.2 (chapter 6) in the light of the chemical space of over 
2.000 cumulated elemental compositions found in the white Chardonay 
Beaune 1998 and Pinot Noir Mercurey 1998 (colour code: CHO, CHOS, 
CHON, CHONS) B): van Krevelen diagram (H/C versus O/C atomic ratios) 
of our home-compiled database of compounds that can exist in model 
wine solutions or that have been actually observed in wines. 
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3.7.2 From masses to database 

Once the interested masses were found it was necessary to find the putative 
structures and the metabolite profile. To this end an approach was identified 
supported by several databases accessible from the web. They give biochemical 
information, and they are able to combine different species and experimental 
condition. 

At the same time we started to build our own laboratory database. This is built 
around the known information achieved by the experimental result, based on the 
literature (inherent with the aerosol) and on the wine database (exemplification in 
figure 3.15, it was done in collaboration with Regis Gougeon, Institut Universitaire 
de la Vigne et du Vin - Jules Guyot, Dijon) or based on the information available in 
data base as KNAP-SACK DB. 

The main structure of the database is presented in figure 3.17. 

 

 
 

Figure 3.17: This is a part of the structure of the database developed in 
our laboratory and computing system.  

Only recently was available MassTRIX which annotates metabolites in high 
precision mass spectrometry data (data coming from ICR-FT/MS). The process 
compares a submitted mass peak list (experimental masses) against all compounds 
of the KEGG chemical compound database, additionally including 13C, 15N and 
other isotopes, and optionally adding selected lipids with variable fatty acid chain 
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lengths. Raw input masses from electrospray ionization (ESI) MS can be corrected 
on-the-fly for the addition or the abstraction of a proton (and optionally a Na ion 
in positive mode). To cope with the requirement of very low measurement errors 
(in the sub-ppm range), exact masses of all KEGG compounds have been 
recomputed from the corresponding chemical formula using high-precision atomic 
mass data (Wapstra, et al., 2003). MassTRIX then calls the KEGG/API 
(http://www.genome.jp/kegg/soap/) to generate pathway maps, where the 
annotated compounds and genes are highlighted using different colors-thus 
differentiating between organism-specific and extra-organism items (Suhre, et al., 
2008). From a list of non characterized components MassTRIX works like a filter 
giving back all of them that are assigned and recognized in KEGG database. But 
there are still many masses that play an important rule in the statistical models, 
but they are unknown and not jet classified jet. On the other hand we can detect 
the formula structure of isomers but we cannot differentiate between each of 
them since ICR-FT is a qualitative method, so we cannot have information about 
their stereoisomer. Only by putting together different technologies it is possible to 
avoid this limit of the analytical techniques. In the case of multiple assignments 
the only information we can achieve is their chemical formula calculated by the 
software. 
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Chapter 4 

4 METABOLIC EVIDENCE FOR BIOGEOGRAPHIC 

ISOLATION OF THE EXTREMOPHILIC BACTERIUM 

SALINIBACTER RUBBER 

4.1 Introduction 

Biogeography constitutes a cornerstone approach for studying biodiversity 
patterns at different taxonomic levels in the prokaryotic world (Ramette, et al., 
2006). 

The biogeography of prokaryotes and the effect of geographical barriers as 
evolutionary constraints are currently subjected to great debate. Some clear-cut 
evidence for geographic isolation has been obtained by genetic methods but, in 
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many cases, the markers used are too coarse to reveal subtle biogeographical 
trends. Until today most of the studies searching for the geographical isolation of 
prokaryotic populations and their divergence have been directed towards genetic 
characters (Green, et al., 2006), (Huges-Martiny, et al., 2006), (Ramette, et al., 
2006), (Whitaker, et al., 2003).  

In this regard, the importance of geographic barriers influencing microbial 
speciation is subjected to great debate (Whitaker, et al., 2003), and the old 
microbiological tenet of ‘everything is everywhere, but, the environment selects’ 
has served as a starting point for research on environmental forces that may lead 
to genetic and phenotypic allopatric segregation (de Wit, et al., 2006). 

The difficulties in retrieving phenotypic information, which is thought to be a 
stepping stone for taxonomic classifications (Staley, 2006), may hamper the 
discovery of divergences in prokaryotic populations at the phenotypic level. Clear 
biogeographic differences have been observed for some prokaryotes, such as 
thermophilic Archaea (Whitaker, et al., 2003) and Cyanobacteria (Papke, et al., 
2005), and for fluorescent pseudomonads (Cho, et al., 2000). 

Contrary to eukaryotic microorganisms, phenotypic evidence for allopatric 
segregation in prokaryotes has never been found. Currently, only phenotypic 
differences matching biogeography have been reported for eukaryotic 
microorganisms (Fenchel, et al., 2006). Prokaryote taxonomy, diversity, and 
ecology have benefited from the developments of molecular techniques. 
Ribosomal RNA – based approaches (Amann, et al., 1995), genomics, and currently, 
metagenomics (Green-Tringe, et al., 2005) are the major sources of information 
for understanding the diversity of the prokaryotic biome. These approaches give 
information of paramount importance, but only at the genetic level. However, 
analyzing the expression of the genotype may lead to a better understanding of 
the interactions microbes have with their environment. A microorganism is not 
only a composite of its genome, but the multiple expressions of its genotype 
(Cavalier-Smith, 2007), and there is a significant part of the genome that might 
never be expressed (Ochman, et al., 2006). Approaches such as functional 
transcriptomics and proteomics may be considered as a dynamic link between the 
genome and the cellular phenotype (Singh, 2006), the real interaction of the 
organism with its environment. We recently showed that the extremely halophilic 
bacterium Salinibacter ruber (Antón, et al., 2000) can be isolated from different 
parts of the world in sites as diverse as Mediterranean coastal solar salterns (Peña, 
et al., 2005) and the remote Andean Peruvian salterns of Maras at 3,380 m above 
sea level (Maturrano, et al., 2006). S. ruber growth is constrained to relatively 
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small water bodies with high salt concentrations in restricted areas on Earth. The 
extreme conditions and geographical isolation of its environments are optimal 
circumstances for observing allopatric speciation, as demonstrated for the 
hypertermophilic archaeon Sulfolobus (Whitaker, et al., 2003), and thermophilic 
Cyanobacteria (Papke, et al., 2005). 

Only a metabolomic approach, based on ultrahigh resolution mass 
spectrometry, was been able to reveal phenotypic biogeographical discrimination. 
This procedure was skillful to demonstrate that strains of the cosmopolitan 
extremophilic bacterium Salinibacter ruber, isolated from different sites in the 
world, can be distinguished by means of characteristic metabolites, and that these 
differences can be correlated to their geographical isolation site distances. The 
approach allows distinct degrees of discrimination for isolates at different 
geographical scales. In all cases, the discriminative metabolite patterns were 
quantitative rather than qualitative, which may be an indication of geographically 
distinct transcriptional or posttranscriptional regulations. ICR-FT/MS enables the 
assignment of thousands of elemental compositions of metabolites in a mass range 
from 120 to 800 Dalton directly out of complex mixtures by virtue of ultra high 
mass accuracy (< 100 ppb) and ultrahigh resolution (>1,500,000 at mass 600) at 
high field strength. This represents the initial, but crucial, step in metabolite 
annotation, for instance, by use of various targeted databases (i.e. KEGG, Kyoto 
Encyclopaedia of Gene and Genome database). This technique is acquiring an 
increasingly important position in “metabolomics” (Want, et al., 2007) together 
with spectroscopic methods, such as nuclear magnetic resonance spectroscopy 
(NMR) (Nicholson, et al., 1999). However, high-field ICR-FT/MS (Marshall, 2004)  
showed to have the highest resolution among all spectrometric methods in 
revealing fine scale diversity in complex mixtures. This method may help in 
revealing phenotypic patterns of geographically isolated organisms at the level of 
the direct interaction with the environment (phenotype) that may not be clearly 
indicated by indirect interaction (genotype). This chapter is based on the article: 
“Metabolic evidence for biogeographic isolation of the extremophilic bacterium 
Salinibacter rubber”  (Rossello´-Mora, 2008). 
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4.2 Materials and methods 

Strain isolation and culture conditions: Brine samples were directly plated onto 
25% SW agar medium supplemented with 0.1% yeast extract (Antón, et al., 2002). 
Plates were incubated at 37ºC until growth was observed. Subsequent colonies 
were isolated in pure cultures, and those corresponding to S. ruber were studied 
further. Liquid 25% SW medium supplemented with 0.2% yeast extract was used to 
grow biomass in liquid conditions with vigorous shaking at 37ºC. For the 
metabolomic studies, all strains were inoculated and incubated for the same time 
under the same conditions. Biomass was harvested by centrifugation. Table 4.1 
indicates the list of strains used in this study, their origin and year of isolation. 
Two growth batches were prepared in order to evaluate two simultaneous 
independent experiments: a complete set of strains from all different locations, 
and a second batch made up with four to five replicates of selected Mediterranean 
strains (i.e. 13 and P18 from Alicante, M8 and M31 from Mallorca and IL3 from 
Ibiza). 

 

Strains Origin Area considered Year of 
isolation 

M8, M31 Mallorca, Llevant salterns Mediterranean  2000 

P13, P18 Alicante, Santa Pola salterns Mediterranean 2000 

E1, E3, E7, E12 Tarragona, Trinidad salterns Mediterranean 2001 

IL3 Ibiza, Ibiza salterns Mediterranean 2001 

ES4 Israel, Eilat salterns* Mediterranean 2001 

C3, C4Rj, C6, C9, C12, C14, C15, 
C17, C22, C25A, C26, C27, C29 

Canary Islands, La Palma salterns Atlantic 2001 

PR1, PR3, PR2, PR6, PR8 Perú, Maras salterns Peruvian 2003 
 

Table 4.1: List of S. ruber strains used in this study and their isolation 
origin. * Eilat Salterns are located by the Red Sea, but we consider it as 
Mediterranean for proximity and climate similarities. 
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Metabolite extract preparation: A total of 3 ml of cell suspension grown on 
liquid media were collected by centrifugation. Two mililiters of cell-free 
supernatant were stored for further chromatographic extraction. Supernatant was 
acidified by the addition of 50 [l of 98-100% formic acid (MERCK KGaA, Darmstadt, 
Germany). Pelleted biomass was then suspended in 1 ml of bidistilled water, and 
sonicated to obtain a clear lysate extract. The lysate was then acidified by the 
addition of 50 [l of 98-100% formic acid. After the acidification, the clear lysate 
formed insoluble aggregates that could be separated from the soluble fraction by 
centrifugation. The clear supernatant was stored for further fractionation, and the 
insoluble pellet was resuspended in 500 [l of methanol. Sample preparation 
resulted in three complementary fractions: the extracellular, cellular soluble and 
cellular insoluble fractions. Solid phase extraction: Both acidified extracellular 
and cellular soluble fractions were solid phase extracted using Bond Elut C18 
columns (Varian Inc.). This chromatography enables the isolation of the organic 
molecules on the basis of their non-specific interaction and retention to the C18 
material. This purification removes the high salt charge of the media and extracts, 
which may interfere during the electrospray procedure by ion-suppression (Li, et 
al., 2006). The retained fraction was recovered by the use of methanol. 

4.2.1 ICR-FT/MS procedure 

Broad scan mass spectra were acquired on a Bruker (Bremen, Germany) APEX 
Qe Fourier transform ion cyclotron resonance mass spectrometer equipped with a 
12 Tesla superconducting magnet and an APOLLO I electrospray (ESI) source, 
whereas high resolution spectra were acquired with an APOLLO II ESI source in 
positive and negative mode. The samples were infused in methanol with a 
microelectrospray source at a flow rate of 120 µl/h with a nebulizer gas pressure 
of 20 psi and a drying gas pressure of 15 psi (200 °C). Spectra were externally 
calibrated on clusters of arginine (10 mg/l in methanol), and calibration errors in 
the relevant mass ranges were always below 100 ppb, which is the prerequisite for 
an adequate elementary composition assignment. Relative standard deviation in 
the intensity values of the peaks was routinely lower than 5% in our analysis 
conditions. The spectra were acquired with a time domain of 1 megaword (1 
million bits in size) with a mass range of 150 – 2,000 m/z. The spectra were zero 
filled to a processing size of 2 megawords. A sine apodization was performed 
before Fourier transformation of the time-domain transient. The ion accumulation 
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time in the ion source was set to 0.2 s and 1024 scans were accumulated for 
samples.  

ICR-FT/MS spectra were exported to peak lists at a signal to noise ratio S/N=1. 
From these lists, possible elemental formulas were calculated for each peak in 
batch mode by a software tool written in-house. The generated formulas were 
validated by setting sensible chemical constraints (nitrogen rule, atomic oxygen to 
carbon ratio O/C≤1, atomic hydrogen to carbon ratio H/C≤(2n+2), element counts: 
carbon C ≤ 100, oxygen O ≤ 80, nitrogen N ≤ 5, sulphur S ≤ 1) and only the masses 
in conjunction with their automated generated theoretical isotope pattern 
(existence of the 13C isotope) were taken into consideration (Hertkorn, et al., 
2007). The obtained reduced peak lists were compared in m/z at 5 ppm and the 
corresponding intensity matrices were generated for further statistical analysis. 

4.3 Targeted approach 

The targeted approach allowed a detailed analysis of specific metabolites 
following a specific chemical structures hypothesis after the previous metabolomic 
screening of the samples. The analysis, especially in high resolution mode, enables 
a detailed description of the natural isotopic abundance that in addition allows 
confirmation of the elementary composition assignments. Figure 4.1 shows the 
assignment of the elementary compositions (including isotopic peaks) to the m/z 
as obtained in negative electrospray ICR-FT/MS in two different resolution modes. 
Mass intensity data related to sulfonolipids were analyzed statistically by one-way 
analysis of variance (ANOVA) with post-hoc Bonferroni's test for multiple 
comparisons (Holm, 1979). Probabilities less than 5% (P<0.05) were considered 
statistically significant. 
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Figure 4.1: Detailed spectra on mass 674.4663 identified as a sulfonolipid 
in negative mode electrospray ICR-FT/MS within the series described in 
Table 4.5 and its corresponding natural abundance isotopic pattern. Mass 
676.4455 was found only in the Atlantic samples 

4.4 Statistical analysis 

The data were imported and analyzed in SIMCA-P 11.5 (Umetrics, Umea, 
Sweden). The statistical model used was Partial Least Squares for Discriminant 
Analysis (PLS-DA), (Sjöstrom, et al., 1986), (Stahle, et al., 1987), (Vong, et al., 
1988), (Kemsley, 1996). PLS-DA is a regression extension of the principal 
component analysis (PCA), (Wold, et al., 1987). It takes advantage of class 
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information (in this case the geographical origin of the samples) in order to 
maximize the separation between groups of masses. A list of masses (m/z) 
discriminative for the different geographical area is produced. The PLS-DA uses 
the X variables (matrix of masses) as predictors, and dummy variables (belonging 
or not belonging to a given class coded as 1/0; i.e. origin of isolation) as response 
variables (Y variables). All three modalities (extracellular, cellular soluble and 
cellular insoluble) were calculated independently and cellular insoluble was 
chosen as the descriptive power of the model. The descriptive power can be 
defined by several terms, most directly the fraction of the Sum of Squares (SS) of 
all the Y explained by the current component (R²Y(cum)) and Q²(cum). R2Y 
provides an estimate of how well the model fits the Y data and Q2 provides an 
estimate of how well the model predicts the Y data.  

m/z 
Insoluble 
cellular 
fraction  

Soluble 
cellular 
fraction 

Extracellular 
fraction 

Sum of all 
masses 

Cumulative 
unique 
masses 

Number of unique 
masses from raw 
data (S/N=1) 

168,444 157,378 161,322 487,144 247,655 

Number of unique 
masses after CHONS 

calculation 
3,456 5,293 5,062 13,811 11,880 

Number of masses 
used for statistical 
analysis (m/z<550)  

2,099 
 

3,559 
 

3,450 
 

9,108 
 

8,873 
 

      

Number of masses 
discriminative for 
Atlantic strains 

181 74 80 335 333 

Number of masses 
discriminative for 
Mediterranean 

strains 

510 655 114 1,279 1,249 

Number of masses 
discriminative for 
Peruvian strains 

287 427 257 971 968 

Number of masses 
from discriminative 

metabolome 
1,121 2,403 2,999 6,523 6,323 

 

Table 4.2: Number of observed masses from the analysis, considered 
masses for statistics, and masses for geographical discrimination (positive 
electrospray analysis). 
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Pareto scaling of the intensity values with a logarithmic transformation of the 
data was chosen in order to consider all masses equally, including those with 
medium and low intensity values (Van den Berg, et al., 2006). The cellular 
insoluble metabolome dataset contained 2,099 variables (see Table 4.2), from 28 
observations measured in the three groups (Atlantic – Mediterranean – Peruvian). 
When analyzing this dataset with PLS-DA using four significant components, 
R²Y(cum) was equal to 0.98 and Q²(cum) was equal to 0.45 both, with values 
indicating high predictive power. 

The score scatter plot and loading plots were presented already in figures 3.6a 
and 3.6b of the third chapter, respectively. The score scatter plot (see figure 
3.6a, chapter 3) presents a view of how well the classes (different geographical 
origin) are separated on the basis of their X variables. In the loading plot (see 
figure 3.6b chapter 3), the different masses characteristic for each of the three 
classes are differently colored (red for Atlantic, green for Mediterranean and blue 
for Peruvian). The variables (single masses) discriminative for each class (origin of 
isolation) were chosen according to their correlation coefficient value. Those 
having the highest coefficients were considered to be relevant (i.e. variables 
(m/z) with a correlation value higher than |0.002|). A total number of 180 out of 
2,099 masses were considered to be discriminative for the classes (values shown in 
Table 4.2).  

Interpretation of the regression coefficients provides information pertaining to 
the metabolic explanation of class differences (Holmes, et al., 2002) based on the 
fact that each coefficient is related to a specific elemental composition. Those 
masses associated with the highest correlation coefficient were represented in the 
van Krevelen projection (H/C versus O/C on the basis of their elementary 
composition values; figure 4.2a and figure 4.2b).  
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Figure 4.2: A) All discriminating m/z values independent of their origin 
but colored only as a function of their attributed elementary composition 
(CHO, CHON, CHOS or CHONS) and visualized in a van Krevelen diagram 
(H/C versus O/C). Most of the discriminative metabolites contain only C, 
H and O (only a few metabolites contain sulfur or nitrogen) and these are 
compared within a van Krevelen type of diagram to the CHONS containing 
metabolites of general metabolome databases (www.metabolome.jp, 
www.genome.jp/kegg/) shown in grey in the figure. Note that the 
triangular region corresponds to peptides (CHON and CHONS); B) CHO 
metabolites in a van Krevelen diagram colored as a function of their 
origin. 

Moreover table 4.3 lists the co-ordinate values along the first and second 
components that numerically represent the similarities and differences among the 
strains. These values represent the distances resulting from the projection of the 
points on the first and second components to the origin (0 value). They explain the 
magnitude (large or small correlation) and the nature (positive or negative 
correlation) of the samples. 
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Figure 4.3: Score plot of the partial least square – discriminative analysis 
(PLS-DA). The interpretation of the figure indicated that each class was 
"tight" and occupied a small and separate volume in Xspace (X represents 
the number of the variable). The discrimination derived from this 
discriminative plane (where the projected observations occur) well 
separated the tree groups according to the differentiation of the 
elementary compositions visualized in the Van Krevelen diagram (see 
figure 4.2b) and their geographic location. 

 

Sites Strains 

Co-ordinate value 
along the first 

component (score 
value) Sites Strains 

Co-ordinate value 
along the second 

component 
(score value) 

Atlantic C27 9.81995 Peruvian PR3 28.1714 

Atlantic C3 9.65824 Peruvian PR8 22.4758 

Atlantic C29 9.63297 Peruvian PR2 19.0242 

Atlantic C22 9.25211 Peruvian PR1 13.2149 

Atlantic C12 8.53592 Peruvian PR6 12.1288 

Atlantic C25A 8.11802 Atlantic C14 -0.254274 

Atlantic C9 7.54702 Atlantic C17 -1.17895 

Atlantic C4_Rj 7.52264 Atlantic C12 -1.28982 

Atlantic C15 7.46169 Atlantic C26 -1.49031 
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Atlantic C6 7.03174 Atlantic C9 -1.53197 

Atlantic C17 5.94576 Atlantic C6 -1.87301 

Atlantic C26 5.91143 Atlantic C4Rj -1.96649 

Atlantic C14 4.65194 Atlantic C15 -2.42006 

Peruvian PR6 0.602852 Atlantic C25A -2.58963 

Peruvian PR1 -1.11698 Atlantic C29 -3.75884 

Peruvian PR2 -4.17265 Atlantic C22 -4.04727 

Peruvian PR8 -5.25783 Atlantic C27 -4.47822 

Peruvian PR3 -7.62429 Atlantic C3 -4.78183 

Mediterranean E1 -9.13346 Mediterranean E1 -4.57788 

Mediterranean E7 -11.6219 Mediterranean M31 -6.4909 

Mediterranean M31 -12.8236 Mediterranean IL3 -6.56391 

Mediterranean P18 -14.623 Mediterranean P18 -8.09294 

Mediterranean E12 -15.1815 Mediterranean E12 -8.61029 

Mediterranean IL3 -16.8664 Mediterranean ES4 -8.76525 

Mediterranean ES4 -20.3118 Mediterranean E7 -9.96454 
 

 

Table 4.3: Co-ordinate value of the first and second components of the 
PLS-DA analysis (score). Strains close to each other have similar 
properties, common metabolites, whereas those far from each other are 
dissimilar with respect to the origin. From the inspection of the second 
component values, one factor that might contribute to the differentiation 
may be related to the geographical location of the origin of the strains. 
Peruvian is far away from Mediterranean but closer to Atlantic, and 
Peruvian is in fact negatively correlated with Mediterranean. 

The scatter plot score of figure 4.3 summarizes the numerical coordinates 
present in Table 4.3 to provide a numerical perception of the group distance. 

The similarity within stains M8, M31, P13, P18 and IL3 (intensities for each m/z 
value), was evaluated first by using the Levene's test (Malins, et al., 2002) which 
evaluates the differences (p-values) in the variances of each group of repetitions. 
Then, we used a one-way analysis of variance (ANOVA), and a Tukey test for 
repeated measures. All differences were considered to be significant when p 
<0.01. The analyses were performed in SAS version 9.1 (SAS Institute Inc., Cary, 
North Carolina). At the p<0.01 level, the population variations were not 
significantly different (Table 4.4). 
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Sample Sum of squares Mean squares F value P value 

M8 6.69x10
17

   4.60x10
13

 0.95         0.4331    (NS) 

M31 7.67x10
17

   5.70x10
13

 0.56         0.6877    (NS) 

Pola13 4.44x10
17

  7.38x10
13

                            2.91         0.0547    (NS) 

Pola18 6.96x10
17

   1.26x10
13

                            2.36         0.0942    (NS) 

Il3 5.27x10
17

   9.67x10
13

                            0.6         0.5469    (NS) 
 

 

Table 4.4: Analysis of Variance (one-way ANOVA) for the sample M8 (five 
replicates), M31 (five replicates), Pola13 (three replicates), Pola18 (three 
replicates) and IL3 (three replicates). For each group of replicates the p-
value was greater that the significance level of 0.01, than at the 0.01 
level, the population means were not significantly different (NS). Where 
the Sum of Squares measures variation present in the data, it is 
calculated by summing squared deviations, the mean square is the sum of 
squares divided by its associated degrees of freedom, the F value is the F 
statistic for testing the null hypothesis (the means are the same) and the 
Pr > F is the probability of obtaining a greater F statistic than that 
observed if the null hypothesis is true. 

The discriminative analysis of the Mediterranean strains shown in figure 4.4 
was undertaken with Orthogonal PLS-DA (OPLS-DA) based on the cellular soluble 
fraction. For this kind of sample, OPLS-DA rendered equivalent but clearer results 
than PLS-DA. In this case, OPLS-DA separates predictive from non-predictive 
(orthogonal) variations (Bylesjö, et al., 2006). Orthogonal-PLS (OPLS): The 
objective of OPLS is to accomplish a predictive model X�Y (X is the matrix of 
spectral data and Y the response variables) where the systematic variation in the 
X-block is divided into two model parts, one part which models the correlations 
between X and Y and another part which expresses the variation in X that is not 
related (orthogonal) to Y (Eriksson, et al., 2006). The logic is of a regular PLS 
model, which, after filtering, has been divided in two parts, a predictive part and 
an orthogonal part. The number of predictive and orthogonal components is 
decided with cross-validation (Wold, 1978). Parallel raw matrices containing all 
variable characters among all strains studied, and coded as absence/presence of 
each peak, were reduced to an informative set by identifying all identical 
metabolites with different isotopic composition, and by reducing the background 
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noise by the use of peak thresholds as described in the Material and Methods 
section. 

Improved binary matrices were analyzed by the use of the parsimony tool in 
the Phylip program package (Felsenstein, 1981) using the default parameters 
(http://evolution.genetics.washington.edu/phylip.html). Clustering analysis of 
binary matrices: Phenetic analyses were carried out by the use of the TREECON 
program version 1.3b (Van de Peer, et al., 1994), and by using UPGMA. 

 
 

Figure 4.4: (a) Orthogonal partial least square – discriminative analysis 
(OPLS-DA) score plots of all cellular soluble fractions in the extracts of 
the Mediterranean strains from the locations of Alicante (P13 and P18), 
Ibiza (IL3) and Mallorca (M8 and M31). These metabolomes can be 
differentiated in a two component model with a high level of prediction 
(R²(Y)=0.99 Q²(cum)=0.47). (b) Representation of the discriminative 
masses in a van Krevelen diagram showing the high importance of 
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nitrogen containing metabolites representative of general metabolic 
pathways (confirmed by searching in public metabolite databases). 

4.5 Inference on the biogeographic isolation 

Biogeographic comparisons at the genetic level: representative members of 
Salinibacter spp. have been reported in several locations in the world either by 
molecular techniques (Antón, et al., 2002), (Mesbah, et al., 2007) or by culturing 
approaches (Antón, et al., 2002), (Maturrano, et al., 2006). These members of the 
Bacteria domain that do not show growth below 15% NaCl concentrations thrive in 
constrained environments that appear dotted on the earth’s surface. An initial 
study based on our strain collection of about 17 strains isolated from several 
locations in Spanish coastal salterns indicated that a slight trend for geographic 
isolation could be discerned at the genetic level (Peña, et al., 2005). Contrary to 
observations for fluorescent pseudomonads (Cho, et al., 2000), ITS sequences were 
not suitable for studying biogeographical segregation due to their high sequence 
similarity. However, both PFGE and RAPD gave weak indications of geographical 
discrimination of genotypes. In no case were the analyses conclusive in proving 
allopatric segregation. 

In this study, we enlarged the collection with about 28 strains isolated from 5 
different locations in the world (Table 4.1). The isolates were obtained from five 
different locations in the Mediterranean area (Mallorca, Alicante, Tarragona, Ibiza 
and Israel), the Atlantic Canary archipelago (from a solar saltern on the island of 
La Palma), and from the 3,500 m high salterns in the Peruvian Andes (Maras). Ten 
of the isolates were selected to undertake MLSA, which represented the three 
main geographical areas in the study (west Mediterranean, Atlantic, and Peruvian 
Andes). The concatenated DNA stretch rendered an alignment of 7,995 
homologous sites, 6,513 of them corresponding to seven protein gene sequences, 
with 129 of them being informative. Phylogenetic analyses were performed by 
including and excluding indels, as well as by using different datasets (including the 
16S rRNA gene in the concatenate, figure 4.5a, or disregarding it, figure 4.5b). In 
general, the trees agreed with regard to their topology, since only M8 acquired a 
stable position when including the 16S rRNA gene sequence in the analysis. 
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Figure 4.5: Phylogenetic reconstruction based on a PHYML algorithm of a 
6,513 nucleotide alignment corresponding to the 7 housekeeping genes. 
Strains of different geographical areas are marked with their respective 
colors. The bar indicates 1% sequence divergence. It is remarkable that 
no geographical trend could be obtained. As indicated in the Material and 
Methods section, the same dataset was used to calculate reconstructions 
with several treeing approaches. Most of the trees gave congruent 
topologies independently of the use of PHYML or ARB (maximum 
likelihood and neighbor joining algorithms). Only ML showed slightly 
different topologies when including the indels in the analysis. In any case, 
none of the obtained tree topologies showed a clear geographic trend. 
Contrary to the same reconstruction where the SSU rRNA gene was 
included, bootstrap values were lower. However, despite a lower 
robustness of the tree topology, there was no doubt about the common 
affiliations between the Peruvian and Atlantic strains, and between C9 
and E3. 

Altogether, the reconstructions did not show clear geographical segregation of 
the selected strains, in contrast to observations made with other extremophiles 
(Whitaker, et al., 2003). Strains from Alicante (P13 and P18) affiliated together 
with that of Mallorca (M8 and M31). However, the Mediterranean strains E3 and E7 
affiliated together with those from the Atlantic (C9 and C14) and Peru (PR1 and 
PR3). Neither our previous studies with fingerprinting techniques (Peña, et al., 
2005), nor here with a MLSA of gene stretches of nearly 8,000 homologous 
positions were informative enough to resolve biogeographical segregation. This 
could be an indication that the process of genetic divergence is still at an early 
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stage and cannot render clearly resolvable trends. However, given that the size of 
the S. ruber genome is about 3,000 ORFs (Mongodin, et al., 2005), and despite the 
fact that we selected the genes to be sequenced from a set of putative 
phylogenetic markers (Sória-Carrasco, et al., 2007), the set of genes may not be 
adequate for understanding subtle geographical segregation. Intraspecific whole 
genome comparisons with S. ruber might in the future indicate which genes could 
be useful for understanding allopatric differentiation based on genetic drift. 

Biogeographic comparisons at the phenotypic level: as stated above, genomic 
data is especially useful for solving the main problems in the classification of 
organisms, as well as understanding speciation processes (Staley, 2006), (Ward, et 
al., 2007). In most of the fields related to prokaryote diversity (taxonomy, 
ecology, speciation), phenotype studies are being relegated in favor of those 
based on genome information, such as MLSA or other genome analyses, due to the 
ease of the latter. However, standard genotyping techniques may not always help 
in clearly resolving intraspecific diversity. As has already been requested 
(Ramette, et al., 2006), there is a need to apply new approaches for 
understanding allopatric segregation of members of the same species. For this 
reason, we have evaluated the adequacy of a non targeted metabolite profiling 
approach, using high field ICR-FT/MS of the chemical extracts of our strain 
collection. Mass spectrometry has acquired a predominant position in 
“metabolomics” (Want, et al., 2007) and, especially, high-field ICR-FT/MS 
(Marshall, 2004). This technique provides ultra-high resolved profiles with 
thousands of accurate mass values (m/z) that can be transformed into real 
elementary compositions.  

For this study, a first experiment with twenty eight isolates of S. ruber from 
seven locations in the world (Table 4.1), divided into three geographical areas 
(Mediterranean (10 strains), Atlantic (13 strains) and Peruvian (5 strains)), were 
studied by ICR-FT/MS. All organisms were grown simultaneously under identical 
environmental conditions to avoid culture-dependent differences. Metabolome 
comparisons rendered a total of over 247,255 discriminative mass signals at S/N=1 
(signal to noise) that could be attributed to distinct elementary compositions 
containing the elements C, H, O, N and S. Single peak occurrence was reduced 
from 11,880 (verified by isotopic assignments of elementary composition) to a 
total of 8,873 metabolites at a m/z lower than 550 amu (highest probable 
assignments). The core metabolome (i.e. common peaks for all extracts) consisted 
of 2,550 single masses, whereas the discriminative metabolome (i.e. peaks not 
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common to all extracts) consisted of 6,323 single metabolites (Table 4.2). In all 
cases, the analyses were performed by using the whole metabolome. 

With the raw information, the first comparative analyses were based on 
qualitative data coded as presence or absence of single metabolites. For this, the 
results were expressed in a binary matrix that was treated either cladistically 
using parsimony, or phenetically, using UPGMA (see figure 4.6). However, in no 
case could the profile analysis, based on independent covariant characters, reveal 
clear geographical trends. Therefore, it seemed that the presence or absence of 
single metabolite comparisons did not reflect geographical isolation. 

 

 
 

Figure 4.6: Cladistic (left) and phenetic (right) analyses of the binary 
matrix compiling all variable peaks that proved not to be common to all 
organisms. The binary matrix contained 9,108 single peaks that were 
treated as independent covariant characters or as homologous positions 
for both analyses, respectively. The matrix had been obtained as a 
reduction of 29,012 peaks from raw spectra by selecting all peaks 
corresponding to masses smaller than 550, unifying single metabolites 
with different isotopic compositions, and by removing background noise, 
as clarified in the Material and Methods section. Colors listed in the 
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legend indicate the origin of the strains: European (or Mediterranean), 
Atlantic (or Canary Islands), and Peruvian. 

In contrast, weighing the relative intensity of each individual peak and treating 
the data by using multivariate analysis, revealed statistically significant 
differences between the different samples. Thus, metabolome comparisons, 
focusing on geographically discriminative data, yielded clear cut allopatric 
differences. The non-targeted analysis revealed unique features for each group of 
isolates (see figures 3.6a, 3.6b chapter 3). In this regard, the most relevant 
markers were CHO molecules (see figure 4a). Furthermore, van Krevelen plots of 
atomic O/C versus H/C ratios (Wu, et al., 2004) and comparisons with the total 
metabolic spaces (see figure 4.2b and table 4.5) showed that the discriminative 
metabolites may be aliphatic in structure and depleted in oxygen. 

 

Mediterranean  Formula Atlantic Formula Peruvian Formula 

122.00322 C3H5O3S 193.13354 C11H16N2O 121.04953 C4H8O4 

122.02703 C3H7NO2S 193.15869 C13H20O 131.14304 C8H18O 

126.09134 C7H11NO 194.04478 C9H7NO4 132.04439 C8H5NO 

130.12264 C7H15NO 194.08117 C10H11NO3 146.06004 C9H7NO 

133.10839 C4H12N4O 195.06518 C10H10O4 146.08117 C6H11NO3 

137.03455 C6H4N2O2 209.05971 C14H8O2 165.13862 C10H16N2 

139.03897 C7H6O3 217.17982 C12H24O3 167.03388 C8H6O4 

157.02438 C5H4N2O4 219.17434 C15H22O 167.04512 C7H6N2O3 

157.12231 C9H16O2 221.13835 C10H20O5 167.05501 C5H10O6 

157.15869 C10H20O 223.09648 C12H14O4 167.07027 C9H10O3 

164.03422 C8H5NO3 233.17474 C10H20O5 177.12337 C7H16N2O3 

167.07027 C9H10O3 237.18491 C15H24O2 182.04478 C8H7NO4 

167.10666 C10H14O2 279.15909 C16H22O4 182.08117 C9H11NO3 

170.99578 C3H6O6S 285.24242 C17H32O3 182.10498 C9H13N2O2 

171.02227 C6H6N2O2S 303.21660 C16H30O5 182.97803 C4H6O4S2 

176.10297 C6H13N3O3 305.23225 C16H32O5 183.02880 C8H6O5 

189.14852 C10H20O3 311.08738 C13H14N2O7 195.06518 C10H10O4 

194.15394 C12H19NO 315.25299 C18H34O4 195.08044 C14H10O 

201.09101 C13H12O2 343.12349 C12H22O11 195.08631 C7H14O6 

201.10224 C12H12N2O 343.28429 C20H38O4 205.09715 C11H12N2O2 

203.03388 C11H6O4 371.31559 C22H42O4 209.18999 C14H24O 

203.10263 C8H14N2O4 381.37271 C25H48O2 213.03936 C9H8O6 

203.10666 C13H14O2 381.40909 C26H52O 218.15731 C11H23NOS 

203.12779 C10H18O4 387.34689 C23H46O4 229.14344 C12H20O4 
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203.24817 C12H30N2 463.45096 C31H58O2 230.13868 C11H19NO4 

204.06552 C11H9NO3 473.16535 C21H28O12 239.12779 C13H18O4 

204.08665 C8H13NO5 493.49791 C33H64O2 243.19547 C14H26O3 

204.08799 C9H9N5O 497.45644 C31H60O4 243.23186 C15H30O2 

204.10190 C12H13NO2 511.47209 C32H62O4 255.06453 C7H14N2O6S 

204.11314 C11H13N3O     263.16417 C16H22O3 

205.11828 C8H16N2O4     265.10705 C14H16O5 

211.11174 C15H14O     269.21112 C16H28O3 

211.16926 C13H22O2     273.18491 C18H24O2 

213.07575 C10H12O5     276.07273 C11H9N5O4 

213.09101 C14H12O2     279.19547 C17H26O3 

215.05501 C9H10O6     279.23186 C18H30O2 

217.14344 C11H20O4     291.14383 C13H22O7 

221.18999 C15H24O     299.20056 C20H26O2 

223.07536 C15H10O2     301.27372 C18H36O3 

223.08123 C8H14O7     303.12270 C17H18O5 

223.15400 C10H22O5     303.19547 C19H26O3 

225.08698 C10H12N2O4     317.21112 C20H28O3 

228.19581 C13H25NO2     319.21151 C16H30O6 

233.18999 C16H24O     325.16456 C17H24O6 

241.14344 C13H20O4     327.21660 C18H30O5 

245.12845 C14H16N2O2     327.23186 C22H30O2 

257.21112 C15H28O3     327.25299 C19H34O4 

262.11006 C17H13N2O     337.18319 C19H28O3S 

263.11789 C17H14N2O     337.27372 C21H36O3 

263.23694 C18H30O     338.19620 C18H27NO5 

285.13326 C14H20O6     343.22677 C22H30O3 

285.20604 C16H28O4     354.13697 C17H23NO5S 

286.13724 C16H19N3S     357.16965 C21H24O5 

293.21112 C18H28O3     359.25807 C23H34O3 

297.24242 C18H32O3     359.33084 C25H42O 

297.31519 C20H40O     365.24751 C25H32O2 

299.29446 C19H38O2     375.25299 C23H34O4 

301.06012 C10H12N4O5S     377.30502 C24H40O3 

301.10705 C17H16O5     379.24790 C22H34O5 

303.23186 C20H30O2     383.18867 C20H30O5S 

307.22677 C19H30O3     399.36214 C28H46O 

309.24242 C19H32O3     401.18597 C25H24N2O3 

309.31519 C21H40O     405.32107 C22H44O6 

313.16724 C19H22NO3     409.33124 C25H44O4 

317.24751 C21H32O2     411.25299 C26H34O4 
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319.19039 C19H26O4     431.29446 C30H38O2 

321.11801 C13H20O9     437.32615 C26H44O5 

324.20704 C20H25N3O     439.28429 C28H38O4 

331.26316 C22H34O2     453.29994 C29H40O4 

334.16240 C22H23NS     460.23432 C26H29N5O3 

335.22169 C20H30O4     473.15010 C17H28O15 

338.18112 C21H25IN2S     475.45096 C32H58O2 

338.18630 C20H23N3O2     481.29485 C30H40O5 

339.32576 C22H42O2     501.43022 C33H56O3 

343.17513 C17H26O7     515.44587 C34H58O3 

347.25807 C22H34O3     524.50372 C33H65NO3 

353.26864 C21H36O4         

355.32067 C22H42O3         

359.29446 C24H38O2         

359.31559 C21H42O4         

360.12238 C14H21N3O6S         

361.16456 C20H24O6         

365.34141 C24H44O2         

367.32067 C23H42O3         

371.25807 C24H34O3         

375.20134 C18H30O8         

376.16557 C22H21N3O3         

385.27372 C25H36O3         

385.29485 C22H40O5         

387.15909 C25H22O4         

387.18021 C22H26O6         

403.17513 C22H26O7         

403.23398 C21H30N4O4         

403.35706 C27H46O2         

405.26355 C24H36O5         

405.37271 C27H48O2         

407.31559 C25H42O4         

421.25846 C24H36O6         

425.43531 C28H56O2         

429.29994 C27H40O4         

429.40909 C30H52O         

431.33084 C31H42O         

431.35197 C28H46O3         

433.33124 C27H44O4         

435.31050 C26H42O5         

435.32576 C30H42O2         
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441.32107 C25H44O6         

443.35197 C29H46O3         

450.26388 C28H35NO4         

451.48734 C31H62O         

455.31559 C29H42O4         

455.38836 C31H50O2         

457.24321 C23H36O9         

467.44587 C30H58O3         

481.46152 C31H60O3         

483.33163 C27H46O7         

485.34728 C27H48O7         

489.22716 C30H32O6         

489.28468 C28H40O7         

501.32107 C30H44O6         

505.22208 C30H32O7         

511.41457 C34H54O3         

513.43022 C34H56O3         
 

 

Table 4.5: List of discriminative m/z values and their corresponding 
metabolite elementary compositions [M+H]+ calculated with a tolerance 
of 1 ppm. These were compared to the available databases 
(www.metabolome.jp and KEGG). 

 

Thus, those components generally associated with cell membranes, such as 
fatty acids and terpenoids, could be responsible for the geographic differentiation. 
Among the two principal components that led to geographical discrimination, we 
could also find, for the second component, a relationship for geographical 
distance between the isolation sites (table 4.3 and figure 4.3). It seemed that for 
the second principal component the Atlantic strains might show intermediate 
differences with those of the Mediterranean and Peruvian strains. 

When specifically directing the recognition of discriminative metabolites 
among geographically distinct metabolomes, we observed that a set of 
conspicuous compounds could be unambiguously assigned to a sulfonolipid family 
(table 4.6 and figure 4.2). 
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 Proposed 

composition 
as [M-H]- 

 
Structural 
variation 

Mediterranean 
(n=6) 

Atlantic  
(n=11) 

Peruvian 
(n=5) 

Exp. m/z tm/z < 0.6 
ppm 

from C35H66NO8S averaged 
intensity (x 106) 

averaged 
intensity (x 106) 

averaged 
intensity (x 106) 

644.4195 C34H62NO8S - CH2  &- H2 1.27 1.14 1.37 

646.4351 C34H64NO8S - CH2 6.40 5.12 5.88 

660.4505 C35H66NO8S (-) 67.20 76.60 92.24 

672.4505 C36H66NO8S  + C 6.42 5.88 7.10 

674.4662 C36H68NO8S + CH2 8.04 6.98 8.88 

676.4454 C35H66NO9S + O n.d. 1.50 n.d. 

684.4508 C37H66NO8S + 2C 0.30 0.24 0.26 

686.4663 C37H68NO8S + C2H2 1.44 1.25 1.42 

688.4455 C36H66NO9S + C & + O n.d. 0.40 n.d. 

688.4819 C37H70NO8S + 2CH2 0.95 0.87 0.97 
 

 

Table 4.6: Proposed elemental compositions of various masses assigned to 
sulfonolipids with their structural variations from C35H67NO8S, originally 
described by Corcelli, (Corcelli, et al., 2004) as C35H66NO8S, where n 
indicates the number of strains. 

The members of this compound family have been observed to be major 
components of the cell envelope of Cytophaga (Godchaux, et al., 1984), a member 
of the same phylum as S. ruber (Antón, et al., 2002). One of these components 
(C35H67NO8S, m/z = 660.4505) has been reported to be characteristic of S. ruber 
(Corcelli, et al., 2004). These compounds, which could account for 10% of total 
cellular lipids, have been proposed as signatures for S. ruber identification. The 
ICR-FT/MS approach, with a mass precision lower than 600 ppb, revealed that S. 
ruber may contain at least nine additional sulfonolipids analogous to C35H67NO8S in 
the mass range 644 to 688. These components differ from the originally described 
sulfonolipid in their elementary composition, with variations in their side chain 
length, insaturation or hydroxylation degree with variations in CH2, H2 and O, 
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respectively, as described in Table 4.6. All these components were found in all of 
the analyzed samples with identical intensity ratios between isolates from the 
same location, except for m/z 676.4454 and m/z 688.4455.  

Both of these compounds (C35H68NO9S and C36H68NO9S, respectively) seemed 
to be exclusive to the Atlantic strains.  

The metabolomic approach allowed the targeted search for special metabolic 
traits considered to be relevant in the organisms’ phenotype. Previous biochemical 
studies on S. ruber type strain M31 revealed the presence of an active, hitherto 
unreported, rhodopsin type of membrane proton translocation system, the 
xhanthorhodopsin, responsible for the putative phototrophy of S. ruber (Balashov, 
et al., 2005). In addition, the genome sequence of the same organism revealed the 
coding of one halorhodopsin (Peña, et al., 2005) and two sensory rhodopsin 
homologous genes (Mongodin, et al., 2005). Searching for an indication of the 
presence of retinal, the chromophore bound to rhodopsins, an experimental 
positive mass 285.22125 (theoretical 285.22129) was present in all samples. 
However, the m/z value was only discriminative for the Mediterranean strains.  

An independent “fine tuning” experiment was undertaken by growing four 
replicates of 5 Mediterranean strains (P13 and P18 from Alicante, M8 and M31 from 
Mallorca and IL3 from Ibiza). Metabolome comparisons validated the replicates by 
first applying a Levene’s test (Malins, et al., 2002) to evaluate differences in the 
variance, and after applying analysis of variance (one-way ANOVA) and the Tukey 
test to evaluate the differences in the means of each replicate group. 
Nevertheless, the results between both latter tests were equivalent. At the p<0.01 
level, population variations were not significantly different (see table 4.4 for the 
ANOVA results). Therefore, the differences observed between different strains 
could be attributed to strain-specific metabolisms rather than sample to sample 
variations. In contrast to previous results (Peña, et al., 2005), when searching for 
discriminative phenotypes at a more reduced geographical scale, we observed a 
phenotypic segregation in individual locations (see figure 4.4a), using the ICR-
FT/MS approach. The main discriminative metabolomic profile features were 
different from those giving resolution at a larger geographical scale. In such cases, 
geographical differences were associated to strain specific compositions of N-
containing molecules (see figure 4.4b). The confrontation of their exact masses 
with the Kyoto Encyclopaedia of Genes and Genomes (KEGG) and the Japanese 
Metabolome Database (metabolome.jp), indicated that the discriminative 
molecules were involved primarily in the core metabolism (i.e. carbohydrate, 
amino acid and fatty acid biosynthesis and metabolism). 
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4.6 Conclusions 

Our findings reveal that intraspecific metabolic diversity of S. ruber can be 
readily detected by the ICR-FT/MS approach and that such diversity can be 
associated with different geographical patterns at different metabolic levels. In 
principle, the standard genetic methods used to assess biogeography (Ramette, et 
al., 2006), (Whitaker, et al., 2003) do not have the resolving power needed for a 
fine geographic discrimination of our model organism. The MLSA approach, based 
on different gene datasets, does not resolve putative genetic-geographic patterns, 
as the genetic divergence may be too subtle for the given selection of genes. 
However, one must take into account that, despite the fact that large sets of 
concatenated genes tend to reflect the organismal phylogeny (Sória-Carrasco, et 
al., 2007), perhaps only full genome sequences may reflect geographical isolation 
in the strain collection of S. ruber, in accordance with taxa segregation that 
correlates with the average nucleotide or amino acid identity of shared genes 
(Konstantinidis, et al., 2005). However, the backlogs in the current state of full 
genome sequencing makes the metabolomic approach a fast and less expensive 
alternative for revealing prokaryotic biogeography, with the added value of being 
discriminative at different levels at the geographical scale. 

It seems clear that different locations led to the isolation of strains sharing 
common metabolic traits, such as, for instance, the distinct production of 
sulfonolipid derivates. However, differences were generally related to 
quantitative composition yields, rather than qualitative production of distinct 
compounds. In addition, the metabolic differences correlated with the 
geographical locations, influenced perhaps by environmental conditions such as 
climate and distance, since in the second component Peruvian and Mediterranean 
strains were shown to be the most different. The discriminative metabolites were 
mainly aliphatic structures related to terpenoids or fatty acids, which might be 
membrane components and these differences, could be related to different 
environmental conditions (Sajbidor, 1997). Altogether, the results seem to 
indicate that the differences found could be attributed to transcriptional or 
posttranscriptional regulations rather than composition changes in genes at the 
genomic level. The major forces for these differences between strains should be 
related to their distinct response to the environmental conditions of the sites 
where they had been isolated, since, for example, the Peruvian salterns are not 
only over 10,000 km away from the rest of our sampling sites, but they are also at 
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an altitude of 3,500 m. At this site the temperature changes and solar radiation 
are clearly different from those at sea level. ICR-FT/MS was shown to have a 
higher resolution in revealing fine scale diversity. This method has a great 
potential for revealing biogeographical patterns in many other non extremophilic 
microorganisms. 
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Chapter 5 

5 EXPRESSING FOREST ORIGINS IN THE CHEMICAL 
COMPOSITION OF COOPERAGE OAK WOODS AND 

CORRESPONDING WINES BY ICR-FT/MS 

5.1 Introduction 

Here, we report the first non targeted chemical characterization approach 
using organic structural spectroscopy/spectrometry, based primarily upon ultra 
high resolution ICR-FT/MS analysis (Hertkorn, et al., 2007) of cooperage oak wood 
extracts and related wines, with the aim of drawing comprehensive "chemical 
pictures", which would allow to establish significant correlations between these 
samples. It must be noted that recently, a similar non-targeted approach, based 
on the "electronic tongue" analysis, has been able to nicely discriminate wines 
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with respect to the origin of oak barrels they were aged in (Parra, et al., 2006). 
However, these discriminations were only based on the high cross-selectivity of 
voltammeter sensors, and provided no structural information on any active 
molecules involved on a molecular level. 

The main goal of this study is to identify families of metabolites that could 
discriminate both the species and the geographical origin of woods. Based on 12 
Tesla ICR-FT/MS of wood extracts, hundreds of mass peaks were identified as 
possible significant biomarkers of the two species, with phenolic and carbohydrate 
moieties leading the differentiation between two wood species (Quercus robur L. 
and Quercus petraea) as corroborated by both FTMS and NMR data. For the first 
time, it is shown that oak woods can also be discriminated on the basis of 
hundreds of forest-related compounds, with a particular emphasis on sessile oaks 
from the Tronçais forest, for which hexoses are significantly discriminant. Despite 
the higher complexity and diversity of wine metabolites, forest-related compounds 
can also be detected in a wine aged in related barrels.  

Initially aimed at serving as suitable wine containers, oak barrels have today 
become practical means of modulating fine sensory characteristics of wine (Garde-
Cerdan, et al., 2006). Several studies have revealed the influence of oak wood on 
the organoleptic properties of wines matured in oak barrels (Waterhouse, et al., 
1994), (Jarauta, et al., 2005). This influence is considered to be due to the 
variation of physical and chemical properties of oak, which mainly depend on both 
the geographical origin and the species (Doussot, et al., 2000), (Doussot, et al., 
2002). So far, attempts to establish correlations between oak wood chemical 
properties and origin or species have relied on targeted analyses of selected 
compounds. These studies particularly revealed significant species effects: for 
instance, it is recognized that among the two predominant west European oak 
species, Quercus robur L. (pedonculate oak) exhibits larger ring widths and 
contains more ellagitannins than Quercus petraea Liebl. (sessile oak), which in 
contrast generally contains more volatile compounds, such as cis-and trans- -
methyl-\-octalactones (whisky-lactones), eugenol, vanillin or furfural, although 
discrepancies can be found in the literature (Doussot, et al., 2000), (Chatonnet, et 
al., 1998). A similar trend, but restricted to ellagitanins and whisky lactones, has 
been generalized to east European pedunculate and sessile oaks (Prida, et al., 
2006). When considering more specifically aromatic whisky-lactones, French 
sessile oaks are generally poorer than American white oaks (Quercus Alba) and 
east European sessile oaks (Prida, et al., 2006), (Towey, et al., 1996). Besides the 
species effect, effects that forests could impose upon the chemical composition of 
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oak wood and ultimately on wines, have also been investigated (Waterhouse, et 
al., 1994), (Mosedale, et al., 1999), (Doussot, et al., 2000), (Doussot, et al., 
2002), (Mosedale, et al., 1996), (Cadahia, et al., 2001). These studies showed that 
forest effects on the chemical composition of wood are less pronounced than 
species effects and significant discriminations, regardless of the species, could 
only be made between American, west and east European forests, on the basis of 
their eugenol, 2-phenylethanol, vanillin and syringaldehyde contents (Prida, et al., 
2006). A huge inter-individual variability of the chemical composition of oak trees, 
even within a given species in a given forest, is actually the major acknowledged 
reason for the current absence of established significant correlations relating a 
forest and its oak woods composition, regardless of the species and location 
(Doussot, et al., 2000), (Doussot, et al., 2002), (Guchu, et al., 2006), (Feuillat, 
2003). 

When considering the further chemical composition correlations that can be 
made between the geographical origin or the species of oaks and wines matured in 
related barrels, the only acknowledged generalization is that the American white 
oak species provides higher amounts of cis- whiskylactone to wines than the 
European sessile oak species (Garde-Cerdan, et al., 2006), (Waterhouse, et al., 
1994). The cis- whiskylactone is often mentioned as the major discriminant 
compound, because its content in wood correlates well with its content in wines 
aged in respective oak barrels and also with the coconut, toasty or vanilla sensory 
descriptors of these wines (Sauvageot, et al., 1999). In contrast, despite the 
abundance of heartwood ellagitanins and their solubility in wines, the 
concentration in oak-aged wines is generally lower than expected (Puech, et al., 
1999). Therefore, in terms of chemical composition, no unambiguous forest effects 
of general validity on wines have been reported yet, and effects on the chemical 
composition of cooperage oak woods have heavily relied upon the species-based 
identification of natural forests (Doussot, et al., 2000). 

Consequently correlations between a forest classification and the wine aged in 
a barrel made of oaks from this forest are at best feeble. In addition, a multi-
stage process operates between the cutting of oaks and the end of the barrel 
ageing period of wines. First, wood staves undergo natural seasoning and then 
toasting, designed to shape barrels. Both of these processes contribute to 
modulate the chemical composition of wood (Doussot, et al., 2002), (Cadahia, et 
al., 2001), (Chatonnet, et al., 1989) and subsequently of wine (Hale, et al., 1999), 
(Spillman, et al., 2004). However, although heating does form new compounds as 
a result of lignin and cellulose degradation, many heartwood constituents are 
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barely or not affected by the heating intensity normally used, and instead of 
eliminating the intrinsic variation between wood samples, heating would rather 
appear to complement it (Mosedale, et al., 1999). Second, several concurrent 
processes do take place during the ageing period of wine (Garde-Cerdan, et al., 
2006), (Jarauta, et al., 2005), (Chassagne, et al., 2005), (Barrera-Garcia, et al., 
2007). This has been recently illustrated by Jarauta et al. (Jarauta, et al., 2005), 
who have identified at least seven processes responsible for the evolution of the 
79 aroma compounds analyzed in wines aged in oak barrels. These authors have 
confirmed that, in addition to the most studied extraction processes from the 
barrel, microbiological transformation, weak oxidation reactions enabled by the 
porosity of this container, condensation reactions and sorption to wood, also 
modulate wine compounds during barrel aging. Another example of the complex 
mechanisms involved in wine chemistry related to barrel ageing has been provided 
by Quideau et al., who highlighted the fact that many ellagitannin derivatives 
would probably exist as a result of nucleophilic substitution reactions with wine 
relevant nucleophiles (Quideau, et al., 2003), (Quideau, et al., 2005).  

All these studies have fundamentally contributed to the knowledge of the 
chemical composition of oak wood related to its species and to a lesser extent to 
its origin, and also to its impact on the composition and flavor of barrel aged 
wine. However, as shown by Jarauta et al. (Jarauta, et al., 2005), most studies 
have failed to consider oak casks as a physical, chemical and biochemical active 
system. Oak wood itself is already a complex living system for which 
environmental conditions, such as the forest ecosystem where it has grown, may 
modulate its chemical composition as extensively as genetic diversity between 
species; genetic analyses have actually shown rather minor differentiation 
between the two species (Quercus robur L. versus Quercus petraea L.) (Mosedale, 
et al., 1999), (Curtu, et al., 2007). 

In 1998, a full-scale integrated study ("Tonnellerie 2000") initially involving 
nine French forests providing twelve lots of 24 trees (5 lots of pedunculate and 7 
lots of sessile oak), was designed to evaluate the influence of both the geographic 
origin and the species of oak on the quality of wines matured in oak barrels 
(Feuillat, et al., 1999). We hypothesized that such sets of wood and wine samples 
would become unique panels of chemical compositions with little variations, and 
as such, ideal candidates for a non-targeted analysis of the correlations that could 
possibly exist among the species and/or the forest origin of oak wood and the wine 
aged in barrels made of this wood. This chapter is based on the article: 
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“Expressing forest origins in the chemical composition of cooperage oak woods and 
corresponding wines in ICR-FT/MS” (in review, Chemistry European Journal, 2008).  

5.2 Wood samples collection 

The "Tonnellerie 2000" experiment (Feuillat, et al., 1999) has been designed to 
particularly take into account the high interindividual variability which had 
already been observed even between trees from a same forest. Therefore, the 
selected procedure was based on the combination of lots of trees considered as 
representative of one species from one forest. 

The detailed procedure followed to select trees has already been described 
elsewhere (Feuillat, et al., 1999). In brief, twelve lots (5 pedunculate and 7 
sessile) of 24 trees were selected from nine French forests. During the cutting of 
trees, a disk was cut at a one-meter height up the bole of each tree, for further 
analyses. From each disk, a radial strip (oriented along the diameter), centered 
around the outer part of heartwood was kept. For this study, we only considered 
the three forests where both the pedunculate (P) and the sessile (S) species were 
represented, i.e. Citeaux (C), Darney (D) and Tronçais (T). Therefore, we had six 
lots of 24 strips at our disposal, which had been stored in plastic boxes in the 
basement of our university building without any further care. After a careful 
examination of the 144 strips, 4 strips per lot, which showed visual traces of 
mould, were excluded. For our study, we therefore had 6 lots of 20 wood samples 
(120 samples), each corresponding to one species from one geographical origin. It 
must be noted that laboratory morphological analyses realized later after the 
original identification on standing trees, revealed that errors had been made on 
the assignment of species from the Darney forest: 3 out of the 20 pedunculate 
oaks were actually sessile oaks, and conversely, 4 out of the 20 sessile oaks were 
actually pedonculate oaks (Feuillat, et al., 1999). Our sets of sawdust samples 
were prepared regardless of these errors, meaning for instance that 15 % of the 
Darney pedunculate set actually corresponds to sessile species. 
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5.2.1 Barrels and wine elaboration 

To one lot of 24 trees corresponded one barrel. Each barrel has thus been 
assembled from 24 trees which stood each for 1/24th of the toasted surface (body) 
and 1/24th of the untoasted surface (head and bottom). After one year of natural 
seasoning of staves, 48 barrels (12 lots x 4 repeats) were assembled and 
subsequently medium toasted for 45 minutes. 

A first set of two experiments was designed during the 1998 harvest; one with 
the appellation "Mercurey rouge 1er cru" with "Pinot noir" variety from Domaine 
Michel Juillot (12 lots x 2 repeats + 1 reference stainless steel tank), and the other 
with the appellation "Beaune blanc 1er cru" with "Chardonnay" variety from Maison 
Bouchard Père et Fils (12 lots x 2 repeats + 1 reference stainless steel tank). At 
the end of the wine ageing period (12 months for the red, and 14 months for the 
white), bottling has been realised after blending of the two repeats for each lot, 
thus providing us with 13 bottles of Mercurey and 13 bottles of Beaune. 

5.2.2 Wood and wine samples preparation 

On each of the 120 wood samples, the outer duramen zone has been planed at 
different locations to obtain few milimeter-thick coarse shavings. Hence, each lot 
was made of 20 sets of wood shavings equally represented and mixed together. 
The 6 lots of wood shavings thus obtained were then ground to powders of less 
than 250 [m granulometry. 

20 mg of each sawdust sample were then extracted with 1 ml ethanol/water 
solution (8:2 v/v) at room temperature for 30 minutes in an ultrasonic bath. Each 
of the six mixtures was then centrifuged (10 mn, 18000 rpm) and further filtrated 
on 0.2 [m filters. Three repetitions were realized for each of the six lots, which 
provided us with 18 hydroalcoholic extracts. Although the hydroalcoholic solution 
does not necessarily exhibit the best extracting efficiency for non-volatile 
compounds, we chose it to minimise the preparation steps prior to the injection to 
the mass spectrometer.  For NMR analysis, deuterated solvent was used for 
extraction and the ethanol extract was analysed after centrifugation. 

Wine was sampled directly from the bottles through the cork using a Hamilton 
needle. Only 20 µL of wine was diluted into 1 mL methanol from which only 50 µl 
was used for one experiment (i.e. only a total aliquot of 2 µL wine was necessary 
to reach the spectral quality presented herein). 
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5.3 ICR-FT/MS analysis 

High-resolution mass spectra for molecular formula assignment were acquired 
on a Bruker (Bremen, Germany) APEX Qe Fourier transform ion cyclotron 
resonance mass spectrometer (ICR-FT/MS) equipped with a 12 Tesla 
superconducting magnet and a APOLO II ESI source in the negative ionisation 
mode. Samples were introduced into the microelectrospray source at a flow rate 
of 120 [l/h with a nebuliser gas pressure of 20 psi and a drying gas pressure of 15 
psi (200 °C). Spectra were externally calibrated on clusters of arginine (10mg/l in 
methanol) and accuracy reached values lower than 0.1 ppm in day to day 
measurements. Further internal calibration was done for each sample using fatty 
acids and accuracy reached values lower than 0.05 ppm. The spectra were 
acquired with a time domain of 1 MW with a mass range of 100–2000 m/z. The 
spectra were zero filled to a processing size of 2 MW and an average resolution of 
250.000 was reached at m/z 200 (100.000 at respectively m/z 600) in full scan. 
Before Fourier transformation of the time-domain transient, a sine apodization 
was performed. The ion accumulation time in the ion source was set to 0.2 s for 
each scan. 1024 scans were accumulated for samples. 

5.4 NMR Spectroscopy 

All experiments in this study were performed with a Bruker DMX 500 
spectrometer and a 13C/1H dual 5 mm cryogenic probe at 283 K on forest-
consolidated wood samples from both species dissolved in 184 mg 99.95% 2H CD3OD 
(reference for 1H/13C -NMR was 3.30/49 ppm; (90o(1H) = 10.1 µs; 90o(13C) = 10.0 
µs). 1D 1H-NMR spectra were also recorded for each of the six lots of hydoalcoholic 
solutions. 1D 1H-NMR spectra were recorded using the first increment of the 
presat-NOESY sequence (solvent suppression with presaturation and spin-lock, 5.0 
s acquisition time, 10.0 s relaxation delay, 320 scans, 1 ms mixing time, 1 Hz 
exponential line broadening). 13C-NMR spectra were acquired, using inverse gated 
WALTZ-16 decoupling (13.75 s relaxation delay; 42153 scans for 13C NMR, 75821 
scans for DEPT-135 and 32768 for DEPT-90) with an acquisition time of 1.25 s and 
an exponential line broadening of 1.5 Hz.  
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The one bond coupling constant 1J(CH) used in 1-D 13C DEPT and proton-
detected 2D NMR spectra was set to 150 Hz. Sensitivity-enhanced, carbon 
decoupled 1H,13C-HSQC (heteronuclear single quantum coherence) NMR spectra 
were acquired under the following conditions: 13C-90-deg decoupling pulse, GARP 
(70µs); F2 (1H): acquisition time: 291 ms at spectral width of 6009 Hz, 1J(CH) = 150 
Hz, 1.21 s relaxation delay; F1 (13C): SW = 22009 Hz (175 ppm); number of scans 
(F2)/F1-increments (13C frequency) for 1H, 13C HSQC experiments: 144/800; for 
absolute value; 1H,13C HMBC (heteronuclear multiple bond correlation): 320/270; 
1H, 1H COSY (correlated spectroscopy): 64/1056;  1H, 1H TOCSY (total correlated 
spectroscopy) (70 msec mixing time): 64/938; 1H,13C HSQC-TOCSY: 160/513 (70 
msec mixing time),  respectively. HSQC and DEPT-HSQC spectra were calculated to 
a 2048 x 512 matrix with exponential line broadening of 2 Hz in F2 and a shifted 
sine bell (π/3) in F1. Gradient sequences (1 ms length, 450 µs recovery) were used 
for all proton detected spectra. 

5.4.1 Analysis of NMR spectra 

NMR integrals were measured manually from printed spectra. Bucket analysis 
(Brindle, et al., 2002) was performed on the experimental 13C NMR spectra of six 
wood extracts; these were decomposed into 87 equidistant integral segments with 
0.1 ppm bandwidth, ranging from 0.4 - 8.1 ppm. 

5.5 Statistical analysis 

Raw data (mass spectra) were normalized, and then transformed to log(X + 
0.00001). The constant 0.00001 was added to provide non-detectable components 
with a small non zero value (Sjödin, et al., 1989). Transformed variables were 
then mean centered and Pareto scaled and represented as an X matrix. Pareto 
scaling gives each variable a variance equal to its standard deviation by dividing by 
the square root of the standard deviation of each column (Eriksson, et al., 2001). 
The sample classification and the prior information about the sample are done 
using the Hierarchical clustering analysis (HCA) unsupervised method. On the other 
hand, partial least square – discriminative analysis (PLS-DA), performed with SIMCA 
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11.5, is used to discover characteristic biomarkers (Quideau, et al., 1996). This 
multivariate procedure provides bioinformatics clues for the selection of a limited 
number of masses most effective in discriminating different species and forests. 

The primary advantage of using targeted profiling as an input to PLS-DA is that 
the resulting variables are combinations of measured metabolites concentrations. 
The positive regression coefficient indicates that there is a relatively greater 
concentration of the considered metabolites with respect to the others, whereas 
the negative value indicates a relatively lower concentration with respect to the 
other samples-classes (Herve du Penhoat, et al., 1991). As such, these variables 
are easier to interpret as factors in the underlying classification model. Thus, 
targeted profiling provides meaningful and interpretable factors describing the 
input data. PLS-DA is a regression extension of PCA that takes advantage of class 
information to attempt to maximize the separation between groups of 
observations. 

The feature selection procedure comprises two steps: i) identification of those 
masses that best describe each classes (a list based on the modeling power of the 
original variables), ii) scoring and ranking of the variables in every class-related 
list according to their abilities to discriminate the class they model from all other 
categories. The ranking and score take place after computation of the minimum 
number of masses through the formula generator (in-house code written in 
FORTRAN). The generated formulas were validated by setting sensible chemical 
constraints (N rule, O/C ratio ≤ 1, H/C ratio ≤ 2n + 2, element counts: C ≤ 100, O ≤ 
80, N ≤ 5, S ≤ 1) and only the masses in conjunction with their automated 
generated theoretical isotope patterns were taken into consideration. 

5.6 Result and discussion 

5.6.1 Wood differentiation 

Figure 2.4 (chapter 2) shows an exemplary full mass spectrum of forest-
averaged oak wood extracts for the two species. Within the 150-1000 m/z range 
explored, these spectra exhibit several thousands of peaks, which represent all 
ionisable metabolites under the selected experimental conditions (electrospray 
negative mode). Although hydroalcoholic solutions do not necessarily provide the 
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best extracting efficiencies for non-volatile compounds, 5727 distinct peaks were 
observed at S/N = 1 for the P species, of which 1045 that could be assigned 
elementary formula containing CHONS. Similarly, 7677 resolved peaks are 
observed for the S species with 1562 assignments of elementary formula. A 
cumulative total of 8354 different peaks and 1797 assignments of detected non-
identical molecular formula indicate the occurrence of both common and 
divergent molecules for P and S species. 

Hierarchical cluster analysis (HCA) readily identifies two major groups (see 
figure 5.1), and shows more uniformity among P oak samples than among S 
samples. Clearly, a correct classification of each of the six sets of three 
repetitions is available upon their negative ion mode ICR-FT/MS in order to assess 
similarity/dissimilarity. The modi employed and the choice of linkage methods 
used for clustering greatly affects the numerical outcome of the HCA results. 
Following careful examinations of available similarity/dissimilarity assessments, 
Pearson correlation coefficient distance (straight line distance between two points 
in c-dimensional space defined by c variables) as similarity descriptor in 
conjunction with the complete linkage method, were found to produce the most 
distinctive grouping, in which each member within the group is more similar to its 
fellow members than to any member from outside the group. This is a 
confirmation that the complete linkage method performs quite well in cases where 
object form naturally distinct “clumps” (Taylor, et al., 2000). 

 

 
 

Figure 5.1: Dendogramm for HCA for classifying 18 sets (3 times 6) of 
samples (Minimum similarity=0.44). 
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HCA does not provide a statistical test of group dissimilarity; however external 
tests like the Kolmogorov-Smirnov test can be applied for this purpose. This 
elaboration was done with SAS version 9.1 (SAS Institute Inc., Cary, NC, USA) with 
the Kolmogorov-Smirnov hypothesis that two groups of observations have identical 
distributions. With this test the difference among S subgroups defined by the HCA 
(see figure 5.1) were determined to be statistically significant for DS and CS 
subgroups (p<0.0001) and for TS and CS (p<0.0001), whereas for subgroups DS and 
TS, the asymptotic p-value (0.0052) indicates rejection of the null hypothesis that 
the distributions were identical also for these two subgroups. The PLS-DA score 
plot of wood species (see figure 5.2) provides a representation of how forests from 
a given species are grouped together. The two predictive components of the PLS-
DA model, R²(Y): 99% and the prediction accuracy Q²(cum): 0.96 were obtained 
though a typical seven-fold cross-validation and guaranteed that this model is 
satisfactory. In agreement with the cluster analysis (see figure 5.1), P oak samples 
exhibit a narrower distribution between the three forests than S oaks. These 
findings corroborate the previously observed higher inter-individual variability in 
whiskey-lactone contents among S oaks in comparison with P oaks in which only 
traces have been found (Feuillat, 2003). 

 
Figure 5.2: Partial least square – discriminant analysis (PLS-DA) score plot 
for the first two components indicating the separation between the two 
species (P: red filled triangles; S: blue filled circles). 
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5.6.2 The species effect 

The mass spectral peaks (m/z values) that drive the differentiation between 
species are extracted according to exceeding given positive values of the 
regression coefficient. For the S group, 159 mass peaks with a regression 
coefficient greater than 0.001, are considered possible significant biomarkers; in 
case of P, 207 mass peaks with a regression coefficient in excess of 0.0004 were 
selected. 

The selected mass range of 334.95-335.30 m/z (see figure 5.3) illustrates the 
remarkable resolution of the 12 Tesla ICR-FT/MS. Within this nominal mass, more 
than a dozen resolved peaks are identified in the S and P samples from the Citeaux 
forest. Only at this extent of resolution, clear and unambiguous differentiation of 
species is feasible. 

Within the frame of a full scale metabolomic approach, both the mass 
resolving power and the mass accuracy should be precise enough to enable an 
unambiguous identification of the elemental compositions at a same nominal 
mass. Even if these two conditions would appear to be fulfilled for most of the 
mass peaks in this study, the lack of experimental databases and the chemical 
complexity of wood would make the task of identifying all of the corresponding 
molecules extremely tedious. Yet, in particular cases, tentative assignment of 
peaks to known wood-related compounds is feasible without the need of other 
analytical tools. As illustrated by the peak at m/z 335.17114 (averaged value), 
found only in the mass spectra of S oaks (see figures  5.3a and b),  the 
corresponding [M-H]- ion C15H28O3 can most likely be assigned from literature data 
to 3-methyl-4-hydroxyoctanoic acid 3-O- -D-glucopyranoside, a common precursor 
of whisky-lactone (Masson, et al., 2000), (Hayasaka, et al., 2007). This attribution 
is acknowledged by the higher contents of both the trans and the cis isomers of 
whiskylactone in S oaks (Masson, et al., 1995). Therefore, along with 
whiskylactone, its precursor can logically be considered as a bio-marker of S oaks. 
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Figure 5.3: A): Details of the mass spectra on the 335.000-335.225 m/z 
range for the 2 species in the 3 forests, spotting the "contamination" of 
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the pedunculate sample from Darney by sessile wood. B) Loading Plot 
with the trend plot of the masses particular for sessile wood, is 
delineated the characterization of the m/z 335.17114 for this type of 
wood as defined in figure 5.3a. 

As already mentioned, errors were made on the original identification of 
standing trees from the Darney forest : three out of the 20 P oaks were actually S 
oaks, and conversely, four out of the 20 S oaks were actually P oaks (Feuillat, et 
al., 1999). Since our sets of sawdust samples were prepared in ignorance of these 
erroneous attributions, we should observe peaks specific of the S species in the 
mass spectra of P samples from Darney, and vice versa. This is illustrated in figure 
5.3a for the m/z 335.17114 peak attributed to the whiskylactone precursor, which 
is only detected for the P sample from Darney, and not for the other P samples. 

It has to be noted that each of the six samples studied actually represent the 
average polled sample of 20 wood pieces (as used for one barrel), each piece 
coming from one distinct tree. In contrast, all of the previously reported studies 
were based upon the detailed analysis of any single trees, which obviously favours 
the detection of singularities, but at the expense of excess instrument time. The 
major consequence of working with "averaged" mass spectra is that singularities at 
the species or forest level (inter-individual variability) might be attenuated 
beyond recognition. On the other hand, any differentiation based upon "averaged" 
spectra will represent more solid evidence of actual tree distinction. To the best 
of our knowledge, this is the first study of non-targeted analysis of "averaged" oak 
metabolites leading to a clear species differentiation between Quercus robur L. 
and Quercus petraea Liebl., and as shown below, to a forest differentiation. 

The 1D 1H NMR analysis confirms this differentiation as shown in figure 5.4. 
Principal component analysis has been found to be a suitable method for the 
comparison of forest-consolidated wood extracts (for both P and S species) on NMR 
data. In the present study, this analysis led to one statistically significant principal 
component accounting for 62% of the data variability, which confirmed the 
chemical characteristic of P and S wood. This conclusion was supported by the 
score plot (see figure 5.5 upper inset) showing positive values only for P and 
negative values for all the S woods. 



111 Expressing forest origins in the chemical composition of cooperage oak 
woods and corresponding wines by ICR-FT/MS 
 

 
 

Figure 5.4: 1H NMR spectra of the different consolidated wood extracts. 
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Figure 5.5: Typical 1H NMR spectrum for the CS wood extract, along with 
the corresponding Principal component analysis over the six lots of 
methanolic extracts. The score plot (upper left inset) and the loading 
plot (bottom) of the first principal component from the analysis of the 6 
spectra are also shown. Only significant variables are colored in the 
loading plot, which highlight discriminant chemical shifts weightings for 
the two species. 

As indicated by the congruence in the line shapes of the one-dimensional 1H 
NMR spectra which indicates molecular environments, the six wood extracts 
investigated showed considerable similarity at the level of coarse molecular 
fragments (see figure 5.4). However, one-dimensional 1H NMR spectra showed 
variation in both the NMR integrals of these coarse substructures and in the fine 
detail of line shapes (see figure 5.5 bottom). Clearly, the proportion of 1H 
chemical shifts that weight for the discrimination of P extracts is higher 
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(comprising the 0.2 – 1.8 ppm, the  3.8 – 5.6 ppm regions and the section 
downfield from 6.4 ppm) than the proportion of chemical shifts which discriminate 
S extracts (1.8 – 3.8 ppm and 5.6 – 6.4 ppm regions). The variance of NMR integrals 
allows quantifying the occurrence of substructures, and pattern analysis in 
multiple 2D NMR spectra aids in structural assignment of classes of molecular 
environments down to individual molecules, nicely complementary to mass 
spectral findings. Accordingly, we considered the selection of a single sample 
sufficient for in-depth NMR characterization by a suite of two-dimensional NMR 
experiments, which in combination, provide single bond (1J), geminal (2J) and 
vicinal (3J) connectivity, allowing the assignment of molecular fragments across 
three bonds (see figure 5.6). 

 

 
 

Figure 5.6: top: 1H,1H COSY (red) and 1H,1H TOCSY NMR spectra (light 
green) of the CS wood extract with 1H NMR projection spectra and 
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(bottom) overlay of 1H,13C HSQC (blue), 1H,13C HMBC (orange), and 1H,13C 
HSQC-TOCSY (bright purple) NMR spectra, together with edited 13C NMR 
projection NMR spectrum: DEPT-135 (methylene CH2 down; red), DEPT-90 
(methine only; green) and standard 13C NMR spectrum (black); no 
appreciable 13C NMR signal intensity was found below ](13C) = 180 ppm at 
this S/N ratio. The dotted box indicates cross peaks derived from 
oxygenated aromatics, while the dashed box denotes cross peaks from 
branched aliphatics. 

In the aromatic region of chemical shifts [](1H) > 6.2 ppm], cross peak 
positions in COSY and HSQC NMR spectra were shielded in both 1H and 13C 
frequencies, indicating predominance of multiply oxygenated aromatic rings 
(Perdue, et al., 2007) in agreement with the 1H,13C HMBC NMR cross peaks (figure 
5.6, dotted box), which showed multiple quaternary carbon atoms in the 13C NMR 
shift range from ](13C): 106-170 ppm (with maximum cross peak amplitude 
between ](13C): 130–150 ppm). Furthermore, the minor contribution of aromatic 
environments to the COSY cross peak integral (see figure 5.6 top) as compared 
with the sizable integrated intensity of aromatic hydrogen obtained from one 
dimensional 1H NMR spectra (see figure 5.5) indicated the occurrence of many 
isolated aromatic protons – suggesting convincingly rather extensive degrees of 
aromatic substitution. All these spectral features are typical of ellagitannins, 
which are well established wood constituents (Quideau, et al., 1996), (Herve du 
Penhoat, et al., 1991), therefore confirming that the 1H NMR spectral region 
downfield from 6.2 ppm, which discriminates P extracts, mostly corresponds to 
ellagitanins. Similarly, the proton NMR resonances in the 5-6 ppm chemical shift 
range were not generated from olefinic protons but were attributed to the 
phenolic ester type because of 1H, 1H COSY, 1H, 13C HSQC and 1H, 13C HMBC cross 
peak positions, which occupied typical shift ranges of phenolic esters rather than 
those of double bonds. The binding partners as identified from 1H, 1H COSY cross 
peaks most likely are various carbohydrates, themselves providing strong 
signatures in all NMR spectra (e.g. > 35 methylene carbon signals (OCH2) with 
](13C): 60-66 ppm as well as methylene-derived HSQC cross peaks). Again, these 
features agree with the 5-5.6 ppm region of the 1H 1D spectra, which contributes 
to the P species discrimination, being correlated to oak tannins, possibly of the 
galloyl ester type (Mämmela, et al., 2000). Conversely, the presence of several 
cross peaks between 1H signals in the 3 – 3.8 ppm region and 13C signals in the 60 – 
80 ppm region of the 1H, 13C HSQC and 1H, 13C HMBC spectra (see figure 5.6 
bottom) indicate that carbohydrates probably participate to the discrimination of 
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the S species by the 2.8 – 3.8 ppm region of the 1H NMR spectra (see figure 5.6). 
Recently, dehydro- and deoxyellagitannins have been identified in toasted oak 
wood (Glabasnia, et al., 2007). In general, extended proton spin systems were 
rather found in the aliphatic section; sizable degrees of branching in purely 
aliphatic structures (](1H) < 1.2 ppm) are also indicated by positions of 1H, 13C 
HMBC cross peaks, with carbon chemical shifts up to 60 ppm (cf. dashed box in 
figure 5.6). 

5.6.3 The forest effect 

Partial least square discriminant analysis (PLS-DA) of three times six sets of 
samples resulted in clear differentiation according to species and to the 
geographic localization of the forests. This is the first time that a molecule-based 
differentiation according to geographical origin is demonstrated between oak 
trees from distinct forests in a given country. Figure 5.7 shows the 3D score plot of 
the three times six sets of samples, which indicates good discrimination of the six 
forests. Most interestingly, the closer correlation between P groups compared to S 
groups, defines a much higher homogeneity among the former group. From this 
analysis, it was possible to draft a list of masses characteristic of each of the six 
forests, based on correlation coefficient values. Although selected for this study, P 
oaks are actually scarce in the Tronçais forest, which is much more renowned for 
the quality of its sessile oaks for wine ageing (Mosedale, et al., 1996). Therefore, 
these findings not only agree with this fame, largely attributed to the higher 
whiskylactone contents and finer grains of S oaks from Tronçais, but they also 
provide molecular evidence for this distinction. Indeed, S oaks from Tronçais can 
be discriminated on the basis of more than 194 mass peaks (Table 5.1), all of them 
being unambiguously associated with absolute formulas. A particular emphasis 
should be put on the differentiation of TS samples on the basis of hexoses as 
discriminating molecules (see figure 5.7). Indeed, the PCA and PLS-DA analyses of 
1H NMR spectra (see figure 5.5) already showed that the 2.8 – 3.8 ppm region was 
weighting for the discrimination of the S species, and that this weight was 
maximum for the Tronçais forest. Bearing in mind that 2D NMR experiments 
supported the correlation of this 1H chemical shift range to carbohhydrates, 
together these results bring insights into a possible sweeteness that would 
particularly characterise oaks from the Tronçais forest. 
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Figure 5.7: PLS-DA score plot of the 18 sets of samples (Q²(cum) = 0.80, 
R²(Y) = 0.98), grouped by forests, with the indication of some of the 
discriminating absolute masses (from negative ESI), the corresponding 
unique formulas (from neutral mass) and possible associated molecules, 
known to be related to wood. 
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stdev 

CS 209.04557 0.0012269 0.0532841 0.1860487 CP 261.13431 0.0016867 0.0159536 0.0216156 

CS 223.02477 0.0012233 0.0592463 0.2120610 CP 310.20947 0.0012681 0.0008400 0.0016207 

CS 223.06114 0.0012206 0.0516499 0.1829567 CP 337.31110 0.0022599 0.0132086 0.0178031 

CS 265.14787 0.0022034 0.0077040 0.0122218 CP 359.07732 0.0016086 0.0178241 0.0208826 

CS 283.04599 0.0010271 0.0106260 0.0122387 CP 382.03010 0.0011505 0.0001859 0.0005414 

CS 295.04604 0.0014965 0.0463954 0.1695424 CP 387.05696 0.0016664 0.0166002 0.0227721 

CS 300.97761 0.0017240 0.0457148 0.1732080 CP 401.01519 0.0016015 0.0173745 0.0223815 

CS 301.00358 0.0020980 0.0983185 0.1497242 CP 411.34803 0.0016311 0.0138563 0.0191180 

CS 301.20211 0.0014966 0.0625165 0.2341163 CP 412.04076 0.0013906 0.0012469 0.0023735 

CS 315.25383 0.0012180 0.0377002 0.1268625 CP 420.05199 0.0030483 0.0004320 0.0012652 

CS 335.17111 0.0015807 0.0367204 0.0486027 CP 483.27578 0.0012014 0.0023743 0.0039558 

CS 339.01461 0.0012459 0.0059080 0.0075186 CP 517.33893 0.0018963 0.0159182 0.0242691 

CS 359.04091 0.0017332 0.0489994 0.1854479 CP 517.36032 0.0026088 0.0043515 0.0067424 

CS 369.04641 0.0012737 0.0643462 0.2337736 CP 533.28266 0.0019880 0.0037731 0.0049320 

CS 389.07261 0.0010613 0.0607169 0.2186562 CP 533.30812 0.0020881 0.0686038 0.1589409 

CS 449.05469 0.0013793 0.0075487 0.0170316 CP 534.04803 0.0013946 0.0005551 0.0012927 

CS 467.21377 0.0011869 0.0608641 0.0846695 CP 550.03223 0.0022100 0.0060335 0.0089751 

CS 468.01847 0.0019012 0.0006294 0.0009693 CP 557.02160 0.0024764 0.0075955 0.0112075 

CS 486.15524 0.0027694 0.0022789 0.0051445 CP 559.29161 0.0023601 0.0007765 0.0018004 

CS 487.14106 0.0022284 0.0043383 0.0076528 CP 577.04779 0.0016513 0.0181509 0.0228962 

CS 487.16418 0.0015638 0.0053006 0.0076645 CP 659.05498 0.0011374 0.0028838 0.0056119 

CS 487.20018 0.0017429 0.0048537 0.0075541 CP 665.35648 0.0022460 0.0013923 0.0023503 

CS 498.13394 0.0022098 0.0064487 0.0107712 CP 667.37178 0.0021849 0.0025413 0.0042765 

CS 506.05318 0.0018477 0.0572406 0.2352967 CP 677.35527 0.0014676 0.0094945 0.0088840 

CS 511.16118 0.0015064 0.0038604 0.0046780 CP 679.28516 0.0010941 0.0051613 0.0060651 

CS 515.41131 0.0010590 0.0119153 0.0131847 CP 681.38822 0.0019168 0.0056089 0.0091718 

CS 523.21848 0.0015176 0.0030385 0.0037300 CP 695.27530 0.0013524 0.0024042 0.0031434 

CS 525.08892 0.0012376 0.0044192 0.0054589 CP 709.37463 0.0022507 0.0010773 0.0025726 

CS 525.12517 0.0015182 0.0035196 0.0043386 CP 722.09564 0.0011215 0.0004584 0.0013788 

CS 529.17180 0.0015162 0.0026698 0.0033376 CP 750.09028 0.0012621 0.0003338 0.0009819 

CS 532.02102 0.0019295 0.0012302 0.0019616 CP 782.95466 0.0033281 0.0011086 0.0021979 
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CS 549.05254 0.0015568 0.0100280 0.0130868 CP 821.04574 0.0012363 0.0143886 0.0236617 

CS 555.13613 0.0017404 0.0034108 0.0047479 CP 831.25355 0.0014553 0.0017152 0.0022323 

CS 558.15527 0.0022063 0.0055236 0.0090203 CP 832.38681 0.0018282 0.0082471 0.0160175 

CS 559.37666 0.0017157 0.0502292 0.1373532 CP 843.08298 0.0011849 0.0018338 0.0037427 

CS 567.04230 0.0018969 0.0220603 0.0829797 CP 843.43449 0.0021892 0.0066168 0.0082570 

CS 595.21887 0.0015007 0.0022934 0.0028000 CP 845.35367 0.0019125 0.0007128 0.0016451 

CS 609.18285 0.0015083 0.0024203 0.0029845 CP 849.38598 0.0012885 0.0024270 0.0046792 

CS 609.48930 0.0015066 0.0021442 0.0026567 CP 860.43822 0.0017274 0.0067240 0.0080929 

CS 613.22938 0.0014851 0.0034026 0.0040580 CP 867.04545 0.0014312 0.0008217 0.0020139 

CS 617.11535 0.0015264 0.0261327 0.0930840 CP 877.02891 0.0022221 0.0006521 0.0015591 

CS 619.20471 0.0012134 0.0045383 0.0053406 CP 891.04528 0.0012160 0.0030237 0.0088571 

CS 619.22509 0.0015478 0.0084680 0.0109094 CP 895.03768 0.0040816 0.0007921 0.0018700 

CS 621.43782 0.0015102 0.0022191 0.0030240 CP 905.02198 0.0018173 0.0008362 0.0019827 

CS 625.17788 0.0015530 0.0028386 0.0042063 CP 940.04226 0.0023076 0.0013750 0.0024320 

CS 629.07922 0.0016984 0.0223969 0.0826541 CP 943.09564 0.0023807 0.0093598 0.0165457 

CS 629.17280 0.0013158 0.0333663 0.1136252 CP 947.03097 0.0013384 0.0088455 0.0173105 

CS 631.16700 0.0014983 0.0031127 0.0037102 CP 961.04853 0.0030347 0.0084774 0.0169710 

CS 633.10966 0.0015217 0.0034604 0.0044579 CP 969.02966 0.0017101 0.0017774 0.0037019 

CS 635.12483 0.0017476 0.0047086 0.0068085 CP 981.03734 0.0011608 0.0008395 0.0024454 

CS 639.19357 0.0015755 0.0174131 0.0229083 CP 982.06049 0.0040674 0.0006312 0.0014704 

CS 639.35472 0.0016031 0.0186053 0.0273154 DP 299.98437 0.0016302 0.0004214 0.0009725 

CS 643.09439 0.0015150 0.0027616 0.0034570 DP 303.00217 0.0032120 0.0332270 0.0641488 

CS 653.39184 0.0022051 0.0022046 0.0039329 DP 332.98860 0.0022482 0.0058883 0.0080909 

CS 655.27481 0.0015770 0.0028619 0.0049050 DP 401.01519 0.0017405 0.0173745 0.0223815 

CS 655.31598 0.0017451 0.0021107 0.0034168 DP 438.02714 0.0033289 0.0028481 0.0077915 

CS 655.38274 0.0028057 0.0012379 0.0031033 DP 439.10709 0.0013281 0.0071691 0.0084135 

CS 679.05837 0.0015164 0.0018896 0.0024640 DP 465.01206 0.0013479 0.0020085 0.0038798 

CS 683.40200 0.0015646 0.0064708 0.0089184 DP 466.00485 0.0015255 0.0043058 0.0094614 

CS 699.08568 0.0012627 0.0245120 0.0729247 DP 497.29124 0.0011513 0.0119058 0.0099282 

CS 707.06317 0.0015317 0.0037530 0.0048609 DP 517.28272 0.0014314 0.0073838 0.0078549 

CS 709.07086 0.0010997 0.0013518 0.0024138 DP 517.36032 0.0019440 0.0043515 0.0067424 

CS 723.04868 0.0017608 0.0019007 0.0031275 DP 518.32115 0.0019567 0.3518602 0.3226987 

CS 725.06431 0.0012806 0.0064346 0.0160024 DP 533.28266 0.0014073 0.0037731 0.0049320 

CS 737.06457 0.0015250 0.0025999 0.0034435 DP 547.32848 0.0011319 0.0075840 0.0065633 

CS 755.07592 0.0015241 0.0027111 0.0035662 DP 608.02708 0.0016982 0.0155053 0.0214343 

CS 757.09157 0.0019186 0.0019890 0.0032013 DP 679.28516 0.0011749 0.0051613 0.0060651 

CS 757.12750 0.0015055 0.0023040 0.0028393 DP 788.10699 0.0018052 0.0059196 0.0086943 

CS 761.08691 0.0014596 0.0031429 0.0043489 DP 806.22154 0.0021139 0.0042061 0.0072405 

CS 767.07656 0.0013831 0.0285138 0.0749425 DP 806.72049 0.0022614 0.0055344 0.0073579 

CS 773.08610 0.0013530 0.0023386 0.0052432 DP 819.32354 0.0016476 0.0101990 0.0140316 

CS 777.73580 0.0014921 0.0022197 0.0027569 DP 829.37055 0.0016621 0.0006556 0.0015406 
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CS 782.96185 0.0031400 0.0008991 0.0025254 DP 833.39047 0.0017967 0.0042773 0.0062779 

CS 789.08234 0.0012917 0.0075358 0.0187259 DP 835.32255 0.0017921 0.0022082 0.0034084 

CS 797.08740 0.0015329 0.0022524 0.0031522 DP 843.44355 0.0018032 0.0040121 0.0060067 

CS 801.41027 0.0012996 0.0793173 0.2150946 DP 845.36327 0.0018819 0.0024317 0.0031736 

CS 805.05454 0.0011405 0.0156528 0.0389879 DP 848.38274 0.0017806 0.0035877 0.0084340 

CS 807.36073 0.0013148 0.0009546 0.0019495 DP 859.43544 0.0012562 0.0207063 0.0151553 

CS 811.06605 0.0012560 0.0029931 0.0036318 DP 872.24284 0.0017930 0.0009661 0.0022736 

CS 817.28631 0.0015686 0.0026266 0.0043445 DP 875.43380 0.0016854 0.0026248 0.0038965 

CS 817.35121 0.0021706 0.0013795 0.0026217 DP 971.34062 0.0016774 0.0015617 0.0036554 

CS 819.40932 0.0017564 0.0112452 0.0166203 DP 990.07304 0.0017115 0.0035878 0.0086051 

CS 831.09283 0.0017438 0.0018011 0.0027341 DP 993.08067 0.0023385 0.0032521 0.0054838 

CS 833.40056 0.0024286 0.0014746 0.0029169 DP 997.37831 0.0020440 0.0012285 0.0020494 

CS 841.14932 0.0015090 0.0022849 0.0028753 TP 261.13431 0.0017859 0.0159536 0.0216156 

CS 847.41361 0.0021502 0.0013264 0.0023619 TP 310.20947 0.0014294 0.0008400 0.0016207 

CS 855.09340 0.0017317 0.0016944 0.0026072 TP 325.23811 0.0046763 0.0065457 0.0151199 

CS 855.23705 0.0015090 0.0022126 0.0027443 TP 332.98860 0.0012463 0.0058883 0.0080909 

CS 861.04503 0.0015279 0.0019348 0.0026325 TP 350.99944 0.0038688 0.0023708 0.0046696 

CS 861.08257 0.0019435 0.0015643 0.0025499 TP 355.08256 0.0029958 0.0027428 0.0086042 

CS 877.04121 0.0017366 0.0019963 0.0030182 TP 359.07732 0.0017743 0.0178241 0.0208826 

CS 885.04482 0.0015391 0.0035880 0.0049579 TP 368.36492 0.0017842 0.0045779 0.0088826 

CS 887.06141 0.0017320 0.0017241 0.0033451 TP 384.04575 0.0032633 0.0001444 0.0004204 

CS 901.04035 0.0017352 0.0017283 0.0025414 TP 385.22329 0.0045791 0.0019436 0.0045513 

CS 905.03750 0.0010685 0.0023226 0.0044913 TP 387.05696 0.0017378 0.0166002 0.0227721 

CS 907.39932 0.0017604 0.0014933 0.0024341 TP 409.40522 0.0014103 0.0301243 0.0331032 

CS 909.10800 0.0019211 0.0140801 0.0534089 TP 411.34803 0.0016971 0.0138563 0.0191180 

CS 909.21787 0.0015545 0.0021769 0.0033953 TP 470.05412 0.0021883 0.0003522 0.0008125 

CS 917.03415 0.0017597 0.0037535 0.0058513 TP 497.29124 0.0013347 0.0119058 0.0099282 

CS 919.09351 0.0019572 0.0011989 0.0021110 TP 499.27103 0.0029786 0.0019666 0.0032821 

CS 921.06754 0.0011862 0.0910058 0.2284956 TP 499.30683 0.0016591 0.0247883 0.0171574 

CS 925.75386 0.0014801 0.0017727 0.0022554 TP 503.30197 0.0017803 0.0147759 0.0137394 

CS 927.73257 0.0022083 0.0010970 0.0019585 TP 517.06264 0.0015559 0.0143094 0.0199886 

CS 929.09462 0.0016149 0.0008125 0.0020592 TP 517.28272 0.0019820 0.0073838 0.0078549 

CS 931.05111 0.0013527 0.0803147 0.2325855 TP 518.27100 0.0011233 0.0067655 0.0083374 

CS 941.09682 0.0011014 0.0012593 0.0024996 TP 518.32115 0.0025396 0.3518602 0.3226987 

CS 945.11721 0.0031785 0.0018026 0.0050390 TP 529.28154 0.0027361 0.0017984 0.0030041 

CS 951.42523 0.0017111 0.0015141 0.0022010 TP 531.31850 0.0031175 0.0054125 0.0087572 

CS 957.09027 0.0019300 0.0265129 0.0733212 TP 533.26785 0.0025536 0.0012252 0.0028229 

CS 957.35701 0.0015930 0.0103947 0.0165065 TP 533.33416 0.0029267 0.0063766 0.0083190 

CS 958.36075 0.0017548 0.0054035 0.0090674 TP 533.35785 0.0029294 0.0018764 0.0031933 

CS 992.07439 0.0022311 0.0089543 0.0162573 TP 534.31629 0.0011675 0.1724440 0.1424947 

DS 449.05469 0.0014349 0.0075487 0.0170316 TP 535.47404 0.0038180 0.0057637 0.0111280 
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DS 773.08610 0.0014060 0.0023386 0.0052432 TP 547.32848 0.0013239 0.0075840 0.0065633 

DS 807.36073 0.0013992 0.0009546 0.0019495 TP 550.04478 0.0033279 0.0004197 0.0012220 

DS 817.35121 0.0011724 0.0013795 0.0026217 TP 565.30301 0.0036399 0.0010653 0.0020603 

DS 847.41361 0.0011866 0.0013264 0.0023619 TP 565.44846 0.0033236 0.0003935 0.0011480 

DS 992.07439 0.0012191 0.0089543 0.0162573 TP 577.04779 0.0017028 0.0181509 0.0228962 

TS 265.14787 0.0009535 0.0077040 0.0122218 TP 579.11500 0.0045147 0.0008590 0.0019950 

TS 283.04599 0.0001351 0.0106260 0.0122387 TP 585.02546 0.0029112 0.0062628 0.0129483 

TS 300.97761 0.0006664 0.0457148 0.1732080 TP 587.36771 0.0045062 0.0007591 0.0017472 

TS 301.00358 0.0006683 0.0983185 0.1497242 TP 595.03773 0.0027678 0.0042104 0.0100045 

TS 301.05646 0.0003238 0.0054314 0.0066780 TP 607.05904 0.0011659 0.0137452 0.0162142 

TS 305.03039 0.0002656 0.0076083 0.0100992 TP 630.98452 0.0011519 0.0029559 0.0034226 

TS 311.16858 0.0003278 0.0071890 0.0096830 TP 659.05498 0.0015478 0.0028838 0.0056119 

TS 311.29553 0.0003310 0.0111191 0.0140187 TP 667.31480 0.0033226 0.0003873 0.0011301 

TS 325.18417 0.0001379 0.0284232 0.0346318 TP 673.06911 0.0012956 0.0329905 0.0757852 

TS 325.31109 0.0001491 0.0161045 0.0171110 TP 686.32868 0.0026091 0.0073597 0.0170485 

TS 335.04084 0.0002602 0.0050183 0.0069534 TP 693.35101 0.0011225 0.0121031 0.0101619 

TS 373.04290 0.0003107 0.0007407 0.0009458 TP 695.27530 0.0016133 0.0024042 0.0031434 

TS 420.98376 0.0002536 0.0030358 0.0045103 TP 698.38607 0.0026802 0.0029494 0.0052892 

TS 438.02002 0.0002364 0.0008288 0.0012317 TP 699.30436 0.0033227 0.0003876 0.0011305 

TS 466.02870 0.0003233 0.4444444 0.5113100 TP 703.33669 0.0025889 0.0006889 0.0016425 

TS 467.21377 0.0001974 0.0608641 0.0846695 TP 709.34636 0.0015846 0.0032479 0.0034992 

TS 468.01847 0.0006116 0.0006294 0.0009693 TP 709.38329 0.0028044 0.0015257 0.0025683 

TS 473.09393 0.0002402 0.0028119 0.0042274 TP 713.37695 0.0020040 0.0026480 0.0031889 

TS 475.07319 0.0002438 0.0029594 0.0044787 TP 725.37945 0.0033461 0.0005693 0.0016578 

TS 477.12521 0.0002515 0.0038276 0.0056731 TP 734.09621 0.0032868 0.0002125 0.0006188 

TS 481.22921 0.0002748 0.0067837 0.0105754 TP 742.06417 0.0014202 0.0004780 0.0009286 

TS 483.07867 0.0001271 0.3616735 0.3793750 TP 762.99120 0.0033379 0.0004971 0.0014486 

TS 487.14106 0.0009153 0.0043383 0.0076528 TP 763.09363 0.0025055 0.0115138 0.0265930 

TS 487.20018 0.0003700 0.0048537 0.0075541 TP 788.10699 0.0027364 0.0059196 0.0086943 

TS 493.11998 0.0002466 0.0038095 0.0056091 TP 799.21438 0.0012718 0.0007870 0.0023577 

TS 495.15106 0.0003304 0.0028300 0.0036798 TP 800.39749 0.0031634 0.0010302 0.0029997 

TS 498.13394 0.0001334 0.0064487 0.0107712 TP 806.20999 0.0022616 0.0041908 0.0064247 

TS 525.08892 0.0001139 0.0044192 0.0054589 TP 806.22154 0.0012544 0.0042061 0.0072405 

TS 532.02102 0.0006090 0.0012302 0.0019616 TP 809.07827 0.0027545 0.0021850 0.0037509 

TS 558.15527 0.0009393 0.0055236 0.0090203 TP 825.25634 0.0033299 0.0004364 0.0012729 

TS 569.18783 0.0003137 0.0023925 0.0028742 TP 829.42420 0.0011866 0.0079873 0.0068787 

TS 575.43217 0.0002599 0.0021925 0.0029662 TP 833.39047 0.0027205 0.0042773 0.0062779 

TS 585.48966 0.0003162 0.0014224 0.0017522 TP 835.32255 0.0026614 0.0022082 0.0034084 

TS 589.19341 0.0003408 0.0025357 0.0035482 TP 843.08298 0.0014848 0.0018338 0.0037427 

TS 619.13064 0.0002514 0.0032279 0.0042826 TP 843.44355 0.0027055 0.0040121 0.0060067 

TS 647.12569 0.0003059 0.0016805 0.0019849 TP 847.05585 0.0011326 0.0086641 0.0106134 
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TS 649.21414 0.0002833 0.0029212 0.0040020 TP 847.37602 0.0012147 0.0297288 0.0248544 

TS 653.39184 0.0009026 0.0022046 0.0039329 TP 849.38598 0.0014610 0.0024270 0.0046792 

TS 657.07404 0.0002552 0.0027250 0.0038326 TP 851.05036 0.0027113 0.0025933 0.0043748 

TS 663.12093 0.0003078 0.0019321 0.0022862 TP 853.06721 0.0027138 0.0023774 0.0039928 

TS 663.19275 0.0003187 0.0028924 0.0035202 TP 859.43544 0.0016283 0.0207063 0.0151553 

TS 667.40707 0.0002623 0.0050046 0.0086129 TP 863.05110 0.0011292 0.0095904 0.0116597 

TS 677.13662 0.0002394 0.0023390 0.0033107 TP 865.08161 0.0015994 0.0293315 0.1059131 

TS 691.15199 0.0002532 0.0033436 0.0044809 TP 867.08282 0.0027494 0.0027558 0.0049568 

TS 725.06431 0.0001170 0.0064346 0.0160024 TP 879.08006 0.0017649 0.0016251 0.0031403 

TS 749.70398 0.0003167 0.0016978 0.0020886 TP 897.06655 0.0012031 0.0093306 0.0174223 

TS 779.07485 0.0002304 0.0020079 0.0030826 TP 905.06045 0.0035171 0.0038715 0.0074937 

TS 787.06894 0.0002397 0.0027684 0.0043919 TP 909.05635 0.0034220 0.0020917 0.0061315 

TS 789.08234 0.0001189 0.0075358 0.0187259 TP 917.55956 0.0032937 0.0002369 0.0006896 

TS 799.39234 0.0002913 0.0101956 0.0119571 TP 926.06322 0.0020077 0.0014569 0.0033910 

TS 805.05454 0.0001200 0.0156528 0.0389879 TP 935.07572 0.0017651 0.0228998 0.0450481 

TS 819.40932 0.0003334 0.0112452 0.0166203 TP 947.03097 0.0014717 0.0088455 0.0173105 

TS 833.40056 0.0004203 0.0014746 0.0029169 TP 951.06356 0.0011587 0.0147818 0.0175322 

TS 837.72026 0.0002400 0.0013325 0.0017898 TP 953.77103 0.0033037 0.0002822 0.0008223 

TS 861.08257 0.0006106 0.0015643 0.0025499 TP 953.78963 0.0029999 0.0051140 0.0181424 

TS 865.75181 0.0003092 0.0012661 0.0015155 TP 963.02703 0.0011162 0.0224662 0.0755017 

TS 877.04121 0.0003395 0.0019963 0.0030182 TP 965.04392 0.0024223 0.0015816 0.0036917 

TS 881.07291 0.0001430 0.0338800 0.0775514 TP 973.06654 0.0021945 0.0009244 0.0022008 

TS 915.05694 0.0001817 0.1518868 0.3303776 TP 977.04098 0.0026864 0.0011804 0.0019730 

TS 917.03415 0.0003275 0.0037535 0.0058513 TP 987.33855 0.0026036 0.0011793 0.0027869 

TS 921.06754 0.0001352 0.0910058 0.2284956 TP 997.36213 0.0017402 0.0007841 0.0015187 

TS 983.79391 0.0002850 0.0012685 0.0014721 TP 997.37831 0.0012562 0.0012285 0.0020494 
 

 

Table 5.1: List of the specific peaks (absolute mass and coefficient) 
specific to the sessile and pedonculate species; additional information on 
the three forests origins (Citeaux, C; Darney, D and Troncey, T). 

5.6.4 Wood-wine correlations 

Based upon the metabolomic differentiation of wood extracts, the 
discrimination of selected wines that were aged in barrels made of the particular 
averaged woods seems very promising. This is illustrated in figure 5.8 by the 
analysis of a Mercurey wine grown in P and S barrels. The different m/z 
distribution in the lower mass range as compared to the wood extract in figure 2.4 
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(chapter 2) is clearly visible; the expansion at nominal mass 227 shows the likely 
presence of resveratrol (not present in figure 2.4 (chapter 2)) that traces its origin 
from the grapevine. 

 
Figure 5.8: Typical negative ion mass spectrum of the mercurey wine 
aged in sessile and pedonculate oak wood barrels from the Tronçais 
forest for 12 months; detail on masses 226.90-227.20 with elementary 
composition assignment of the major intensities (similar intensity of all 
peaks in mass 227 show no influence of wood species for that particular 
m/z). 

Most interestingly, the expansion at nominal mass 335 (see figure 5.9) 
demonstrates the higher molecular diversity of the wine compared with the wood 
extract (see figure 5.3a) but nevertheless allows to verify the presence of oak 
wood biomarkers in the wine. Indeed, only wines aged in barrels made of S oak 
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woods exhibit the peak attributed to the whisky-lactone precursor, considered to 
be a bio-marker of S oaks. Analogous relationships apply throughout the entire 
mass range. 

 
 

Figure 5.9: Details of the mass spectra on the 335.000-335.225 m/z range 
for the wine aged in barrels made of the 2 species in the 3 forests, 
spotting the presence of the m/z 335.17114 peak only in the wine aged in 
barrels made of sessile oaks. 
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5.7 Conclusion 

Many studies of the variability of wood properties have concluded that the 
largest variations are observed between trees within a same forest (Mosedale, et 
al., 1996), (Feuillat, et al., 1997). However, all of these studies have relied upon 
targeted analyses of initially preselected compounds, which in the case of 
cooperage oaks, had been identified as responsible for organoleptic properties. In 
this study, we have applied an advanced ICR-FT/MS technique at the highest 
commercially accessible field strength, to assess the opportunity to molecularly 
discriminate a series of oak wood extracts and corresponding wines on a non-
targeted basis. The major information provided by such an approach is the relative 
quantities of all the molecules that can ionise under the selected experimental 
conditions for any sample. In this context, wood is considered as a complex 
biological system that can evolve because of many environmental conditions 
related to the local ecosystem where it has grown, with the consideration that this 
multiparametric variation will express itself through a particular chemical space. 
Our results demonstrate that ultrahigh resolution ICR-FT/MS allows defining such 
chemical space down to single species in single forests. Furthermore, these lists of 
molecules, allow defining and identifying chemical sub-spaces, which could be 
associated to a forest regardless of the species, and alternatively, selectively 
associated to a species regardless of the forest. 

These results provide insights of considerable novelty, referring to the 
identification of the chemical composition of oak woods as feasible by ultrahigh 
resolution ICR-FT/MS, capable of identifying thousands of distinct molecular 
compositions directly out of mixtures. Even if such full-scale metabolomics 
approach including identification of molecular structures remains at present 
extremely tedious due to the lack of experimental databases, a promising 
alternative approach is metabonomics. Here identification of any single peak 
(molecular structure) is not necessarily required. Instead, whole sub-spaces are 
considered and their variations from one sample to the other are monitored by the 
use of advanced processing tools, able to handle very large data sets. We are 
currently investigating the possibility of applying such metabonomics approach to 
our set of oak wood samples, in order to assess the feasible correlations with the 
sensory attributes that these woods can transfer to wine. 

Finally, we envision general value and applicability in this non-targeted 
molecular level traceability, not only for cooperage, but more generally for vine 
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(beverages) forensics assessments on European or larger scale levels or for 
botanical science and sylviculture to record environmental changes (such as 
climate modifications over decades), and to improve nutritional value and sensory 
properties of agricultural products based upon knowledge of molecular 
composition. 
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Chapter 6 

6 THE CHEMODIVERSITY OF WINES: FROM 
OENOLOGY TO “SYSTEMS OENOLOGY” 

6.1 Introduction 

As far as history recalls, wine has always been an unique beverage for humans, 
acting as dietary, religious, sensory or theapeutic commodity. Its chemical 
composition, the result of a complex interplay history between environmental 
factors (bio-, geo-, pedoclimatic), genetic factors (grape varieties) and viticultural 
practices, is considered to constitute the origin of this fame. Here, we show that 
an unprecedented chemical diversity of wine composition can be unravelled 
through a non-targeted oenolomics approach by ultrahigh resolution mass 
spectrometry which provides an instantaneous image of the thousands of 
metabolites present in exceedingly small quantities in wine, thereby integrating 
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the consequences of gene and enzyme regulation within metabolic pathways in the 
grapes, the yeast fermentation, the barrel-wood ageing, along with influences by 
the “terroir” and viticultural practices. In particular, the statistical analysis of 
series of barrel-aged wines revealed that nine-year old wines still express a 
metabologeographic signature of the forest location where oaks of the barrel they 
were aged in have grown. Beyond oenolomics, these data demonstrate that 
including dynamic changes of a wine chemical composition within the frame of a 
data driven "systems oenology" approach, allows to envision new directions for 
characterising the intricacy of wines, which results from complex interacting 
systems and processes, not easily or possibly resolvable into their unambiguous 
individual contributions. 

Metabolic changes occur throughout the growth and maturation of grape 
berries, and at harvest time the berries contain the major grapevine compounds 
contributing to the body and flavour of the wine (Lund, et al., 2006). During 
winemaking processes and in particular during fermentation, these compounds act 
as carbon, nitrogen and element source for yeasts, and are either further 
metabolised, chemically transformed or directly transferred to the wine. Yeasts 
metabolism will further contribute to the wine enrichment through, for instance, 
the enzymatic liberation of particular volatile organic molecules responsible for 
the aroma of wine. Even if the biochemical and functional-genomics approach of 
enzyme signaling definitely help to clarify how the accumulation of active 
compounds is regulated at the molecular level in the grapevine or the grape (Goes 
da Silva, 2005), (Burns, et al., 2001), it would not be sufficient for providing an 
integrated picture of the actual organoleptic properties or therapeutic activities 
associated with these compounds in wine, because process-related synergistic 
effects certainly modulate these properties, to finally result in an unique beverage 
(Burns, et al., 2001). In traditional winemaking practices in particular, several 
processes can indeed subtly modulate the characteristics of wine, and in most 
cases, these modulations involve 'trace' amounts and interplay of metabolites 
within a complex matrix. As a consequence, it is likely that deeper understanding 
of organoleptic or therapeutic activities of wine will rely on its consideration as a 
complex blend of wine active compounds (WAC, in Wine Active Compounds-
OenoPluri Media, Beaune - France, 2008). Recent findings indicate that similarly to 
red wines, certain white wine extracts could also exert cardioprotective effects on 
rats, with a pronounced antioxydant activity (Cui, 2002), although white wines are 
known to exhibit much lower amounts of antioxydant polyphenolic compounds 
than red wines.  
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Considerable progress has been made in recent years, in the characterisation 
of grape and wine metabolites (Jeandet, et al., 2007). Beyond a basic 
chemotaxonomic approach, today's ambition to understand the subtle aspects of 
wine composition is undoubtly fostered by the various reports on the 
acknowledged therapeutic effects attributed to its moderate consumption 
(Marmot, et al., 1981), (Soleas, et al., 1997). Since the triggering works of Renaud 
(Renaud, et al., 1992), and the so-called 'French paradox', numerous researchers 
have indeed attempted to identify the metabolites or the family of metabolites of 
wine, which could subsequently be considered as biomarkers of therapeutic 
activity (Jang, 1997), (Corder, 2006). 

If therapeutic issues definitely contribute to the current progress in the 
identification of wine metabolites, organoleptic issues have fuelled, by far, the 
largest number of analytical studies over the past decades, because of the crucial 
role played by grapevine and wine macromolecules and secondary metabolites on 
the flavour and stability, and consequently on the wine industry (Bisson, et al., 
2002). Numerous studies have therefore reported the identification of 
anthocyanins, tannins and their combinations that coexist in model wine solutions 
or that have been actually observed in wines, since these compounds are chiefly 
responsible for the colour and taste (Bakker, et al., 1997), (Cheynier, 2006). 
Similarly, and based on the assumption that any WAC may more or less contribute 
to sensory properties, other families of compounds such as organic molecules 
responsible for the aroma, organic acids, polysaccharides, amino acids, peptides 
and proteins have been the object of various studies, in particular tracking their 
way of transfer to wine from the grape or from yeast metabolism or from yeast 
lees (Mongay, et al., 1996), (Doco, et al., 1999). 

To that respect, all of these previous and current analytical results contribute 
to an "oenolomics" approach of wine, which we define, in accordance to the 
“metabolomics” definition of J. Nicholson and co-workers (Nicholson, et al., 1999) 
(Lindon, et al., 2007) as the quantitative description of all low molecular weight 
metabolites in a specified biological sample or compartment (here the local 
system = vine grapes, yeast or wood). The vast majority of wine analyses up to 
date rely on a molecular targeted basis and have assumed and often confirmed the 
presence of molecules in wine, in correlation to the particular property under 
investigation (organoleptic, therapeutic...). Here, we report the non-targeted 
metabolite analysis of a set of wine samples, which reveals the extremely high, 
yet unknown diversity of wine metabolites. In particular, we concentrated our 
analysis on a set of wines which were initially part of a full-scale study involving 
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nine French forests, designed to evaluate the influence of the geographic origin 
and the species of oak wood on the quality of wines matured in oak barrels 
(Feuillat, 2003). 

This chapter is based on the article: “The chemodiversity of wines: from 
Oenology to “System Oenology”” (submitted to Science, 2008) 

6.1.1 Oenolomics: describing the chemical spaces of wine 

The Oenolomic approach, which enables an instant molecular picture of wines, 
requires both the mass resolving power and the mass accuracy of high-field Ion 
Cyclotron Resonance-Fourier Transformed Mass Spectrometry (ICR-FT/MS), up to 
considerable mass ranges. We recorded electrospray ionisation ICR-FT/MS mass 
spectra of samples representative of distinct steps of the elaboration of wine, 
proceeding from vine grape extracts to fully aged wines (see figure 6.1). Within 
the mass range explored (150-2000 m/z), the spectra exhibit several thousands of 
peaks, which correspond to the metabolites that can be ionised under the selected 
experimental electrospray conditions (see figure 6.2). 
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Figure 6.1: ICR-FT/MS spectra of a Mercurey 1999 and Vosne Romanée 
1995 in electrospray negative mode from m/z 200 to 1000. The mass peak 
289.07178 typically dominant in the Mercurey is represented in detail 
with corresponding resolutions of around 160.000 and 650.000 for the 
Mercurey and Vosne Romanée wines, respectively, and compared to the 
simulated spectrum, showing the presence of corresponding 
isotopologues at nominal mass m/z 290, 291 and 292. The presence of the 
isotopologue in the mass spectra is used to confirm the assigned 
elemental compositions of the signals in the spectra and ultrahigh 
resolution combined to high mass accuracy is needed to avoid false 
positive assignments. 



132 The chemodiversity of wines: From Oenology to “Systems Oenology” 
 

 

Figure 6.2: Detail on nominal mass 227 with all major signals and their 
attributions to CHONS elemental compositions from the grape berry to 
the wine. The tartar precipitate shows molecules that co-precipitated 
with the tartaric acid in the Vosnes Romanee 1995 bottle and thus are 
withdrawn from the wine during aging processes. Nitrogen containing 
compounds at mass 227.1037 are a signature of grape seeds and yeast; 
compound at mass 227.0713 attributed to stilbene resveratrol finds its 
origin in the exocarpe of grapes and its sink in the tartar precipitate. The 
chemical space of a wine can already be partially observed in the mass 
distributions within a single nominal mass (made possible by the ultrahigh 
resolution obtained with the 12 Tesla ICR-FT/MS); the 10 different 
elemental formulae shown in line (red, green, black) are related by a 
formal exchange of O by CH4 and represent 59% of the 17 feasible C,H,O-
molecular compositions at this nominal mass. 

Data reduction was followed according to elementary composition assignments 
using isotopic abundance patterns (Kind, et al., 2006) prior to any further data 
treatments (Rossello´-Mora, 2008). For example, the spectrum of a red wine from 
Burgundy (i.e. Vosnes Romanée, 1995) can lead up to 17400 peaks at a signal-to-
noise = 2, (115000 at a signal-to-noise = 1), which can be unambiguously attributed 
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to 1180 unique elemental CHONS compositions (see figures 6.2 and 3.16 chapter 3) 
with 200 ppb tolerance and confirmation with 13C-signal (3890 compositions at 500 
ppb tolerance), from which only a few hundred may correspond to masses of 
metabolites such as those gathered in our database (see figures 6.1c and 6.3), that 
have already been observed in model solutions or in wines with targeted analyses. 

The diversity of chemical spaces of wine can already be observed in the mass 
distributions within the 200 millimass range of a single nominal mass (see figure 
6.1a); the 10 different CHO elemental formulae shown (red, green, black traces) 
vary by a formal exchange of O with CH4 and occupy all possibilities within the 
feasible CHO compositional space in the mass range from 227.02 to 227.16 Dalton. 
For instance, when considering only the compositions based on C, H and O (CHO 
chemical space in figure 6.1a), 7 out of a total of 9 theoretically possible 
combinations appear in the different spectra within this 140 mDa mass range 
(Hertkorn, et al., 2007). The peak at m/z 227.01714, which is present in the 
spectrum of the grape skin extract, but absent from the spectrum of the grape 
flesh extract corresponds to the [M-H]- ion with absolute mass formula [C14H11O3]- 
and can most likely be assigned to resveratrol isomers. This attribution is further 
supported by the presence of an analogous mass peak in the spectrum of the 
Mercurey red wine, whereas it is absent from the spectrum of the Beaune white 
wine (see figure 6.1a). Interestingly, figure 6.1a shows reveratrol along with many 
other metabolites (see the corresponding full spectra in figure 6.2) in tartar 
precipitates that may appear in bottles upon ageing. Finally, figure 6.1a shows 
that, in this mass range, and in particular at the nominal mass 227.1037, nitrogen 
containing molecules are a signature of grape seeds and yeast metabolites. 

We endeavoured to identify or structurally relate as many of these peaks as 
possible to known compounds, by questioning topic related available databases 
(KEGG, MassTRIX, KNApSAcK) (Suhre, et al., 2008) and/or implementing 
seperation/purification techniques for subsequent structural elucidation. 
However, due to the deficiency of current experimental databases and the 
chemical complexity of wine, such task remains still out of range and only limited 
to the elementary composition analysis of a few known wine components (Cooper, 
et al., 2001). An initial interpretation of such compilations is made following 
assignment of elemental compositions with two-dimensional van Krevelen 
diagrams (Rossello´-Mora, 2008), (Wu, et al., 2004), which sort each elemental 
composition onto two axes according to its H/C and O/C atomic ratios (see figure 
2.16a).  
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Figure 6.3: CHO-chemical space in the elaboration history of a wine; 
“from vine to wine” as visualised with the (O/C, H/C) van-Krevelen 
diagrams. Complementarities of the factors are visualised in the 
superimposition of the molecular footprints; interestingly the 
fermentation step has much more importance in the CHON and CHONS 
space. 

 
Unprecedented graphical representations of the various chemical spaces (CHO, 

CHOS, CHON, CHONS) of wines are then obtained, which visually highlight specific 
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cluster series of elementary compositions observed within nominal masses (see 
figure 6.1a). Using a home-compiled database of compounds that can exist in 
model wine solutions or that have been actually observed in wines, allows to 
similarly represent the specific contributions of phenolics, peptides, 
polysaccharides, nucleotides and any other classes of compounds present in wines, 
and which can be positively or negatively ionised (see figures 6.1c 6.3). It must be 
noted however, that many of the compounds responsible for the aroma of wines, 
which exhibit m/z values below 150, are not detected under our experimental 
conditions. 

6.1.2 From oenolomics to oenonomics and systems oenology 

When a wine's spectrum is transposed into van Krevelen diagrams, the result 
not simply reflects the superposition of all separate diagrams that can be 
assembled from each separate steps of its elaboration. Instead, it provides an 
instantaneous metabolite picture of a complex biological system (super organism 
approach), which encompasses all the initial contributions of genetic factors 
modulated by constantly evolving environmental factors (see figure 6.3). When 
analysed separately, each of these steps can be characterised by the potential 
release into the wine of thousands of compounds of extensive molecular diversity 
(see figure 6.3). In the CHO compositional space, seed and skin extracts would be 
dominated by tannins and anthocyanins polyphenolic structures, but many other 
compounds with higher H/C ratios could also be extracted. In contrast, in a 
chemical space restricted to CHO molecules, a flesh extract or a Saccharomyces 
cerevisiae culture medium would appear poorer, though still containing hundreds 
of distinct molecules. However, expanding the chemical space to CHONS 
elemental compositions, as illustrated for the Saccharomyces cerevisiae culture 
medium (see figure 6.3), reveals a much larger chemical diversity of nitrogen 
and/or sulfur containing metabolites typcal of yeast core metabolome (Suhre, et 
al., 2008). It must be borne in mind that, ICR-FT/MS alone does not allow to 
distinguish isomers, therefore, it is likely that in any of the observed chemical 
spaces, the actual chemical diversity is considerably higher than that derived from 
mass peaks alone (Hertkorn, 2007). During the elaboration of wines, barrel aging is 
an important environmental factor. Indeed, initially aimed at being suitable 
containers, oak barrels became practical means of modulation of fine sensory 
characteristics of wine, and several studies have been devoted to the 
modifications undergone by the wine during oak barrel aging, with particular 
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emphasis on the aromatic complexity provided by the contact with more or less 
toasted wood staves, in conjunction with low oxydation conditions enabled by this 
porous container (Garde-Cerdan, et al., 2006). Barrel aging is a striking example of 
the extremely complex modifications that a wine can undergo (Jarauta, et al., 
2005). In addition to natural clarification, colour stabilisation favoured by 
ellagitanins extracted from oak wood and other acid catalysed reactions between 
hydrolysable tannins and wine nucleophiles (Quideau, et al., 2005), oak wood can 
act as a sorbent, with an appreciable selectivity towards hydrophobic metabolites 
of wine (Barrera-Garcia, et al., 2006). Thousands of molecules can actually be 
extracted from oak wood barrels, with a clear distinction on their nature 
according to the level of toasting (see figure 6.3). 

In particular, at increased temperatures of toasting, more extensively oxygen 
depleted derivatives are formed, with molecules of O/C and H/C elemental ratios 
around 0.35 and 1 dominating. As mentioned before, one particular not necessarily 
desired step is the formation of tartar solid precipitate upon aging. In that case, 
although numerous molecules are involved, most of them belong to small acids 
including notably tartaric acid, and polyphenolic molecules such as anthocyanins, 
as can be observed from the red colour of these precipitates. As a whole, ICR-
FT/MS clearly provides an instantaneous chemical picture of a wine, where the 
overall molecular composition is more than the sum of individual molecular 
contributions. 

In that context, the metabolomic approaches in oenology would require the 
analysis of countless samples in order to gather a comprehensive description of 
wine metabolites. Even advanced protocols such as the “Architecture for 
Metabolomics” (Jenkins, 2005), would have to integrate the decisive, yet so 
versatile 'human' factor, since in essence, wine producers are providing a sensory 
experience to the consumer (Bisson, et al., 2002). Alternatively, the non-targeted 
metabonomics approach (Nicholson, et al., 1999), which combines multivariate 
statistics with high-dimensional unannotated variables, offers the possibility to 
integrate all the history of time-related metabolic changes of wine throughout its 
elaboration process. In this context, we define for a given grape genotype, and 
following Nicholson and co-workers (Nicholson, et al., 1999), (Lindon, et al., 
2007), (Nicholson, 2006), (Lindon, et al., 2007), Oenonomics as the sums, products 
& interactions of the individual compartments/metabolomes in a complex 
organism (here the ‘Global’ System = wine). Oenol(n)omics thus becomes a non-
targeted top down approach, non hypothesis-driven in the molecular level analysis 
of wine, and means ‘understanding biochemical mechanisms, identifying 



137 The chemodiversity of wines: From Oenology to “Systems Oenology” 
 

biomarkers, quantitatively analyzing concentration and fluxes, probing molecular 
dynamics and interactions’. Accordingly, the systems oenology goal for a given 
grape genotype is a description of the qualitative and quantitative dynamic and 
multiparametric metabolic response of wine to environmental modifications. 

6.2 When systems oenology witnesses to the story 
that a wine tells 

In 1998, a full-scale integrated study involving 9 French forests and 4 sets of 
French wines was designed to evaluate the influence of the geographic origin and 
the species of oak wood on the quality of wines matured in oak barrels (Feuillat, 
2003). Each of these 4 sets corresponded to 12 repetitions of the same wine, 
which only differed by the oak wood species and origin of the trees used for the 
elaboration of barrels they were aged in. We hypothesised that such sets of 
samples would represent unique panels of wine compositions with subtle 
variations, and as such, ideal candidates for the assessment of a systems approach 
in oenology. 

We recorded the negative and positive-ion electrospray ionisation mode ICR-
FT/MS mass spectra of each of 60 wines and these data were further statistically 
processed in order to identify possible discriminations among wines (only the 
negative ion electrospray data are shown here / positive ion data showed the 
same differentiations). PLS-DA score plots of wines according to their colour or 
geographical origin, and therefore variety provided an illustration of the diversity 
of metabolites that could basically lead to significant discriminations (see figure 
6.4 a, b). The two predictive components of the PLS-DA model, R²(Y)=0.99 (6.4a 
and 6.4b) and the prediction accuracy Q²(cum)=0.96 (6.4a) and Q²(cum)=0.95 
(6.4b) were obtained though a typical seven-fold cross-validation and guaranteed 
that this model is satisfactory. 



138
 
T
he chem

od
iversity of w

ines: From
 O
enology to “System

s O
enology”

 
 

 

Figure 6.4: a to d left: PLS-DA score plots; Classes are (a) white (■) and red (■) wines; 
(b) Gigondas (■), Mercurey (■), Beaune (■), and Côte Rôtie (■) wines; (c) White and 
red wines aged in Sessile (■) and Pedunculate (■) barrels; (d) wines sorted according 
to forests of origin of oaks of barrels they were aged in, regardless of the species: 
(Ju) Jupilles, (SP) Saint Palais, (Be) Bertrange, (Li) Limousin, (SO) Sud Ouest, (Tr) 
Tronçais, (Ci) Citeaux, (Da) Darney, (Bi) Bitsch, along with their location on the map 
of France; a to d right: van Krevelen representations of discriminating masses (highest 
correlation coefficients) for the different classes shown on the left side; e: 3-D van 
Krevelen diagram (H/C vs O/C vs m/z) representing together all of the discriminating 
mass. 
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For instance, within the 150-2000 m/z range explored, 356 signals 
corresponding to unique CHO formulae were found representative for red wines, 
whereas 281 signals were found representative for white wine. From the two-
dimensional van Krevelen representation of the corresponding signals, it can be 
seen that anthocyanins (O/C region between 0.4 and 0.6, and H/C region around 
1.0) obviously discriminate red wines (see figure 6.4a). However, several other 
signals in the regions of fatty acids, amino acids or carbohydrates are also 
discriminant. Similarly, several hundreds of peaks were selectively observed in 
each of the four wines of this study (see figure 6.4b), which led to a clear 
discrimination of the wines according to their geographical origin or to the variety 
of the grape they were elaborated from (see figure 6.4b). Interestingly, Burgundy 
red wines from Mercurey appeared to differ more from their neighbours from Côte 
Rotie (Côte du Rhône North) than from the southern wines of Gigondas. Analytical 
discriminations of wines, based on their colours or on the grapes varieties have 
already been largely reported (Vogels, et al., 1993), and our results clearly appear 
to complement them in terms of the chemical diversity that is responsible for 
these discriminations. Figure 6.4b indeed shows for instance, that signals specific 
to Gigondas wines (made of Grenache grapes) span from the lower left corner of 
the van Krevelen diagram (O/C about 0.2 and H/C about 0.6) up to the upper right 
corner, indicating that molecules ranging from rather condensed weakly 
oxygenated to saturated fully oxygenated are specific to these wines. Similarly, 
the possibility to discriminate wines according to the oak species of the barrels 
they were aged in (see figure 6.4c) has already been demonstrated, with the 
particular identification of significantly higher amounts of aromatic whiskylactones 
in wines aged in European sessile or American white oak barrels (Wu, et al., 2004), 
(Waterhouse, et al., 1994). However, the PLS-DA score plots for both red and 
white wines again provide an enhanced representation of how wines aged in 
barrels from a given wood species are grouped together (see figure 6.4c). Most 
interestingly, these results show a significantly narrower distribution among white 
wines aged in pedonculate barrels than among those aged in sessile barrels, 
whereas no such difference in distribution is observed for red wines. For white 
wines, these findings corroborate the previously observed narrower distribution 
among pedonculate oak wood extracts than among sessile oak extracts (Gougeon, 
submitted). In contrast, the broader distribution among red wines aged in 
pedonculate barrels witnesses to the multiple – yet to discover – products of the 
possible reactions between ellagitannins and wine nucleophiles such as 
polyphenolic compounds characteristic of red wines (Quideau, et al., 2005). The 
major outcome of this non targeted approach is the previously unavailable 
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opportunity to discriminate wines according to the forest origin of the oaks used 
for barrel aging of these wines, and to provide a significance in terms of related 
chemical spaces (see figure 6d), regardless of the colour, the origin of production 
(and grape variety), and the barrel oak species. The three-dimensional van 
Krevelen representation (see figure 6.4d) of the cumulated 3492 discriminant 
signals, to which unique CHO-based chemical formulae could be assigned, 
illustrates the chemical diversity which is responsible for this discrimination. 
Within, the 150-1000 m/z mass range, a major part of the discriminating signals 
correspond to masses lower than 400 Dalton. However, discrimination of all the 
forests is specifically associated with molecule masses up to 1000, with both 
decreased O/C and H/C elemental ratios of the corresponding molecular formulae 
at higher masses (see figure 6.4d). Low H/C values at high m/z values could be 
associated with condensed – possibly aromatic – structures such as derived from 
native lignols (see figure 2.16b chapter 2), subject to further condensation 
reactions during the toasting process of staves. Hence, our approach not only 
allows to integrate the intrinsic cooperage variabilty arising from the fact that all 
of the staves and barrels of the "Tonnellerie 2000" experiment did not undergo the 
same drying procedure and were not made by the same cooper (Feuillat, 2003), 
but also illustrates that the different steps of elaboration of barrels can 
complement the chemical signature of a given forest without necessarily erasing it 
(Mosedale, et al., 1996). 

6.3 Methods 

Tonnellerie 2000 samples: The detailed procedure followed to select trees 
has already been described elsewhere (Feuillat, et al., 1999), and in 
Supplementary Methods. In brief, twelve lots (5 pedunculate and 7 sessile) of 24 
trees were selected from nine French forests. To one lot of 24 trees corresponded 
one barrel. Each barrel has thus been assembled from 24 trees which stood each 
for 1/24th of the toasted surface (body) and 1/24th of the untoasted surface (head 
and bottom). These twelve barrels (representing twelve identified forest/species 
couples) were used for wine ageing experiments with a red Pinot noir wine from 
Mercurey, a white Chardonnay wine from Beaune, a red Syrah wine from Côte 
Rotie and a red Grenache wine from Gigondas. For a given wine, we had therefore 
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twelve bottles (or 24 if duplicates) which only differed by the species and the 
forest origin of oaks used for barrel ageing. 

Grape extracts, yeast fermentation medium, tartar precipitate, oak wood 
extracts: All of the samples were obtained with extraction or dilution in 
methanol. 

ICR-FT/MS analysis: High-resolution mass spectra for molecular formula 
assignment were acquired on a Bruker (Bremen, Germany) APEX Qe Ion Cyclotron 
Resonance-Fourier Transform Mass Spectrometer (ICR-FT/MS) equipped with a 12 
Tesla superconducting magnet and a APOLO II ESI source in the negative ionisation 
mode. Samples (typically 20 to 50 µl diluted into 1 ml methanol) were introduced 
into the microelectrospray source at a flow rate of 120 µl/h with a nebuliser gas 
pressure of 20 psi and a drying gas pressure of 15 psi (200 °C). Other details are 
given in Supplementary Methods. 

High-resolution mass spectra for molecular formula assignment were acquired 
on a Bruker (Bremen, Germany) APEX Qe Ion Cyclotron Resonance-Fourier 
Transform Mass Spectrometer (ICR-FT/MS) equipped with a 12 Tesla 
superconducting magnet and a APOLO II ESI source in the negative ionisation 
mode. Samples were introduced into the microelectrospray source at a flow rate 
of 120 µl/h with a nebuliser gas pressure of 20 psi and a drying gas pressure of 15 
psi (200 °C). Spectra were externally calibrated on clusters of arginine (10mg/l in 
methanol) and accuracy reached values lower than 0.1 ppm in day to day 
measurements. Further internal calibration was done for each sample using fatty 
acids and accuracy reached values lower than 0.05 ppm. The spectra were 
acquired with a time domain of 1 megaword (4 megaword for selected samples) 
with a mass range of 100–2000 m/z. The spectra were zero filled to a processing 
size of 2 megawords and an average resolution of  

250.000 was reached at m/z 200 (100.000 at respectively m/z 600) in full scan. 
Before Fourier transformation of the time-domain transient, a sine apodization 
was performed. The ion accumulation time in the ion source was set to 0.2 s for 
each scan. 1024 scans were accumulated per samples. 

6.3.1 Statistical analyses 

Raw data (mass spectra) were normalised, and then transformed into variables 
which were further mean centered, Pareto scaled and represented as an X 
matrix50 for further processing. 
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Raw data (mass spectra) were normalised, and then transformed to log(X + 
0.00001). The constant 0.00001 was added to provide non-detectable components 
with a small non zero value (Sjödin, et al., 1989). Transformed variables were 
then mean centered and Pareto scaled and represented as an X matrix. Pareto 
scaling gives each variable a variance equal to its standard deviation by dividing by 
the square root of the standard deviation of each column (see chapter 3.3). The 
sample classification and the prior information about the sample were done using 
the Hierarchical clustering analysis (HCA) unsupervised method. On the other 
hand, partial least square – discriminative analysis (PLS-DA), performed with SIMCA 
11.5, was used to discover characteristic biomarkers (Wold, et al., 2006). This 
multivariate procedure provided bioinformatics clues for the selection of a limited 
number of masses most effective in discriminating different species and forests.  

The primary advantage of using targeted profiling as an input to PLS-DA is 
generating variables that represent combinations of measured metabolites 
concentrations. Positive regression coefficients indicate a relatively greater 
concentration of the considered metabolites with respect to the others, whereas 
negative values indicate a relatively lower concentration with respect to the other 
samples-classes (Rossello´-Mora, 2008). As such, these variables are easier to 
interpret as factors in the underlying classification model. Thus, targeted profiling 
provides meaningful and interpretable factors describing the input data. PLS-DA is 
a regression extension of PCA that takes advantage of class information to attempt 
to maximize the separation between groups of observations.  

The feature selection procedure comprises two steps: i) identification of those 
masses that best describe each classes (a list based on the modelling power of the 
original variables), ii) scoring and ranking of the variables in every class-related 
list according to their abilities to discriminate the class they model from all other 
categories. The ranking and score take place after computation of the minimum 
number of masses through the formula generator (in-house code written in 
FORTRAN). The generated formulas were validated by setting sensible chemical 
constraints (N rule, O/C ratio ≤ 1, H/C ratio ≤ 2n + 2, element counts: C ≤ 100, O ≤ 
80, N ≤ 5, S ≤ 1) and only the masses in conjunction with their generated 
theoretical 13C-isotope patterns were taken into consideration. 
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6.4 Discussion and conclusions 

For the analytical chemist, wine is the complex mixture of water, ethanol, and 
countless compounds which represent less than 5% of the composition, but which 
actually govern its identity. For the wine maker and the chemist gourmet, 
altogether these compounds are gathered to form a delicate equilibrium, which 
confers its flavour, aroma, colour, stability, and aptitude for ageing to wine. 
Recent studies also indicate that this equilibrium is likely to define particular 
therapeutic activities of wine (Corder, 2006). We believe that our results 
represent a great step towards a more holistic overview (Dixon, 2006) of this 
unique beverage. Our findings show that approaches aiming at the most 
comprehensive representations of wine through its particular chemical spaces, 
considerably enhance the opportunities of discriminating metabolites related to 
distinct environmental modifications and their impacts on organoleptic or 
therapeutic activities. In the particular case of barrel ageing, this study reveals 
that even after several years in a bottle, a wine can still express a chemical 
imprinting of the forest where the oaks of the barrel have grown. As such, our 
systems oenology approach provides an unprecedented example of 
metabologeography (Green, et al., 2008) translated into the chemical 
representation of the way such noble nectar can shape on the papillas of the wine 
taster some of the outlines of the scene of its birth. 

Through the means made available by this study, we envision general value and 
applicability of this non-targeted molecular level traceability for purposes as 
diverse as wine or other beverages, forensics assessments on European or larger 
scale levels, improvement of the nutritional value and sensory properties, 
understanding of mechanisms responsible for undesired evolutions (untimely 
oxydation) or even recording of environmental changes such as climatic 
modifications over decades. 
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Chapter 7 

7 METABOLOMICS APPROCH IN HEALTH 

7.1 Introduction 

The metabolomics study, applied to the health evaluation, has the main goal 
to diagnose diseases and identify factors that cause them. These studies can 
enhance the understanding of disease mechanisms of drug or xenobiotic effect and 
can lead to new diagnostic markers. Thus, this approach allows increasing the 
ability to predict individual variation in drug response phenotypes (Kaddurah-
Daouk, et al., 2008). 

The final result will be the definition of a list of biomarkers, which is a list of 
relevant masses that measure or indicate the effects or progress of pathology. 
Their biological trend is influenced by many environmental factors. Initial 
metabolomic signatures have already been reported for several disease states, 
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including motor neuron disease (Rozen, et al., 2005), depression (Paige, et al., 
2006), schizophrenia (Holmes, et al., 2006), (Van Der Greef, et al., 2007), 
Alzheimer disease (Han, et al., 2002), cardiovascular and coronary artery disease 
(Sabatine, et al., 2005), (Brindle, et al., 2002), hypertension (Brindle, et al., 
2003), subarachnoid hemorrhage (Dunne, et al., 2005), preeclampsia (Kenny, et 
al., 2005), type 2 diabetes (Van Der Greef, et al., 2007), (Wang, et al., 2005), 
(Yang, et al., 2004), liver cancer (Yang, et al., 2004), ovarian cancer (Odunsi, et 
al., 2005), breast cancer (Fan, et al., 2005), and Huntington's disease (Underwood, 
et al., 2006). 

In this respect the metabolomics field has enormous potential to improve 
human health in a number of ways listed here below: 

• prognostics of risk of disease or diagnose disease 

• determination whether a treatment is working or not 

• monitor healthy people to reveal early signs of disease 

• information about mechanisms of disease 

 

Two different surveys are presented here: the first one dealing with exhaled 
breath condensates (EBC), as non invasive tool to study the pulmonary diseases, 
and the second one dealing with plasma to study the pre-diabetic state in the 
frame of the TULIP study, a project in collaboration with the University  of 
Tuebingen. 

These studies will facilitate a range of integrated profiling analysis, improving 
the understanding of disorder mechanisms and develop new diagnostic, prognostic 
and monitoring strategies in the areas of obesity, diabetes and pulmonary disease. 

7.2 Metabolomic analysis of exhaled breath 
condensate for smokers, no-smokers COPD 
patients with ICR-FT/MS 

Exhaled breath condensate (EBC) is a noninvasive method to collect samples in 
relationship with the airways and the lungs. In EBC samples, a large number of 
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mediators including adenosine, ammonia, hydrogen peroxide, isoprostanes, 
leukotrienes, nitrogen oxides, peptides and cytokines were identified and analyzed 
(Horváth, et al., 2005). The concentration levels of these mediators varied by lung 
diseases and can be modulated by therapeutic interventions. Similarly, the pH –
value of EBC can also change in respiratory diseases. Other publications inform 
about important molecules dealing with lung/respiratory disorders (Bloemen, et 
al., 2007), (Kharitonov, et al., 2001) and (targeted) analysis of these mediators, 
but all methods were limited to few components, using component selective 
methods including for example immuno- and bioassay methods.  

The ESI ICR-FT/MS technique used in our laboratory opens the possibility to 
measure thousands of individual molecules, present in the samples simultaneously, 
with exact molecular weight, with semi-quantitative intensity, allowing the use of 
metabolomic analysis. 

EBC-samples were collected at Helmholtz Zentrum Muenchen, Institute of 
Inhalation Biology, with a commercial instrument Ecosacreen-2 (Filt GmbH, 
Germany). This system gained two separated samples, from the patients: the first 
part (150 ml) of the exhaled air was collected separately as “bronchoalveolar” 
(AW) sample representing the upper airways, and the second part as the 
“alveolar” (AV) sample. The samples taken were stored by minus 20°C in 
Eppendorf vials. The defrosted samples are centrifuged by 30.000 rpm for 15 min. 
50 µl transferred in an another Eppendorf vial, and 50 µl MeOH with 0.2% formic 
acid was added. After the solution was homogenized and the samples were 
transferred into 96 well probe holder of the -chip- Nano ESI instrument (Advion 
TriVersa NanoMate, Advion BioSciences, Inc,  19 Brown Road, Ithaca, NY 14850 
USA). 

Broad scan mass spectra were acquired on a Bruker (Bremen, Germany) APEX 
Qe ICR-FT/MS with 12 T superconducting magnet and an Apollo I electrospray (ESI) 
source, whereas high-resolution spectra were acquired with an Apollo II ESI source 
in positive mode. Spectra were externally calibrated on clusters of arginine (10 
mgl_1 in methanol), and calibration errors in the relevant mass ranges were 
always below 100 ppb, which is the prerequisite for an adequate elementary 
composition assignment. The spectra were acquired with a time domain of 1 MW 
and with a mass range of 150–2000 m/z. A sine apodization was performed before 
Fourier transformation of the time-domain transient. The ion accumulation time in 
the ion source was set to 0.2 s and 1024 scans were accumulated for the samples. 

Overall 60 samples were investigated, which are divided in smokers (28 
samples, 6 of them with chronic obstructive pulmonary disease (COPD)), former 
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smokers (6 samples, all of them with COPD) and no-smokers (26 samples, 2 with 
COPD). From the literature it is known that cigarette smoking reduces life span by 
an average of 7 years, and tobacco consumption accounts for a shortening of 
disease free life by 14 years (Bernhard, et al., 2006). The exact mechanisms by 
which smoking causes disease and death are generally not well understood, but 
evidence continues to mount that cigarette smoking exhausts cellular defense and 
repair functions, leading to an accumulation of damage e.g. mutations and 
malfunctioning proteins. Here we investigate the phenomenon in the view of the 
metabolites-changing. 

7.2.1 Statistical elaboration 

Spectra were exported to a peak list at different levels of S/N. According to 
these different ratios, a possible approach for standard analysis method was set up 
(see chapter 3.2). The first step is to fix the level of S/N equal to 1, subsequently 
the data are processed and submitted to the formula calculation program. 
Through this software tool we obtain only the realistic masses (see chapter 3.2.1). 
Mass signals at S/N=1 could be attributed to distinct elementary compositions, 
containing the elements C, H, O, N and S. 

Only the 13C validated peaks after the submission of formula calculator are 
used for further analysis. The generated formula were validated by setting 
sensible chemical constraints (nitrogen rule, atomic oxygen to carbon ratio O/C<1, 
atomic hydrogen to carbon ratio H/C<(2n+2), element counts: carbon C<100, 
oxygen O<80, nitrogen N<5 and sulphur S<1) and only the masses in conjunction 
with their automated generated theoretical isotope pattern (existence of the 13C 
isotope) were taken into consideration (Hertkorn, et al., 2007).   

The results obtained with S/N=1 were compared to those obtained with S/N=3, 
in which the formula calculator is used only at the end of the process, when a list 
of molecule of interest (see chapter 3.2) was isolated. Specifically the first 
method, with S/N=1, was considered better because it eliminates redundant 
information at first (with the formula calculation).This gives discriminative masses 
also with lower abundances and speeds up all informative process, at least it does 
not exclude low mass molecules of potential interest. 

All spectra are aligned using the software written in-house (see chapter 3.2). 
The measurements are arranged into a data table where each row constitutes an 
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observation (in our case mass spectra) and the columns represent the variables 
(m/z). 

Once we have obtained the matrix, we provide to give a corresponding 
representation of the variable, which are hard to summarize and visualize without 
appropriate tools. Using the Chemometrics tools (see chapter 3), it is important to 
include efficient, validated, and robust methods for modeling chemical and 
biological data.  

The data that are submitted to the statistical evaluation are transformed 
according to the methods reported in chapter 3.3. Logarithmic transformation 
(log10) was found to be beneficial prior to multivariate analysis. Data 
transformation is suitable to reduce the effect of peaks with high abundance and 
the no-constant variance of the noise (heteroscedasticy of noise structure). For 
the presence of null values a constant (0.00005) is normally included before the 
log transformation. 

For this particular data we choose Pareto scaling, which provides more 
flexibility in data analysis. In particular it reduces the relative importance of large 
values, but keeps data structure partially intact.  

To detect differences among the different groups of samples we use 
multivariate technique as well as partial least-squares discriminant analysis (PLS-
DA). The first result of the analysis gives a list of significance masses which are 
possible biomarker candidates, characteristic of the groups. From the analysis are 
excluded the samples which were proved to be contaminated. Before analyzing 
the difference between smokers and no-smokers, we divided the samples into AV 
and AW samples (see figure 7.1). 
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Figure 7.1: (A) Score Plot representing the differentiation between AW 
(●) vs AV (●) (Q²=0.74, R²(Y)=0.98), internal of both groups is the 
presence of smoker and no-smoker samples with COPD disease. (B) 
Differentiation of the score plot of the sample extracted at S/N=1 and 
S/N=3. S/N=3 has a valid model only with two classes (● = no smokers; ● 
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= smokers), former smoker (●) are not identified; instead with S/N=1 we 
could also differentiate the former smokers. This must be attributed to 
the fact that the masses valid with low intensity are not discarded like it 
is happened in S/N=3. 

Based on the discriminative masses we obtain pathways that confirm the 
presence of differentiation at the level of AV and AW (see figure 7.2). 

 

 

Figure 7.2: Pathways characteristic for AW samples and AV samples. 

At S/N=1 (see figure 7.1 b) the former smokers are classified as independent 
group with its own characteristics. Instead using the S/N=3 ratio, this group 
exhibits the same characteristics of smokers. According to this similarity and since 
former smokers are not significant in number, a valid model is developed 
considering only two classes merging former smokers and smokers against no-
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smokers. The PLS-DA model was validated with regard to fitted R² and cross-
validated Q² values (Eriksson, et al., 1997), (Q²=0.48 and R²(Y)=0.98), where these 
two indices reassume the validity and the predicative capability of the model. A 
model is considered acceptable for biological data if: R²>0.7 and Q²>0.4 
(Lundstedt, 1998).  

In addition to cross-validation, the model is also validated using permutation 
validation (using 100 validation rounds, (Eriksson, et al., 1997)). The permutation 
validation gives R² and Q² intercepts (see chapter 3.6). The model is valid being 
Q² value below zero and the estimated R² value considerably smaller than the R² 
value of the model (Eriksson, et al., 2004), (Eriksson, et al., 1997). Moreover, Q² 
is used to determine how many PLS latent variables should be included in the PLS 
models (Wold, 1978). 

Once we found the list of biomarkers, we submitted it directly to the MassTRIX 
to find pathways and investigate directly the compounds with the KEGG database, 
adding any additional genomic or transcriptomics information by highlighting the 
corresponding enzyme boxes (see figure 7.3), (Suhre, et al., 2008).  

From this list we selected a list of biomarker candidates, responsible for the 
differentiation of smokers and no-smokers (see table 7.1). The molecule: 
C19H28O2 is pointed out. One possible assignment is to the testosterone. The 
natural level of testosterone, in blood, ranges 9-30 µm/l. This could be detected 
by the instrument but other investigation will be necessary to confirm this finding. 
The inspection of the biomarkers can also serve as indicators of disease 
progression. 
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Figure 7.3: An example of pathways: “Androgen and estrogen 
metabolism”, it reveals different probable compounds in smokers samples 
compared to no smokers group. 

 
METABOLITE Significance  probable compounds in the 

Smoker  

ABC transporters - General  Glutamine, D-Allose Fructose  
Aminoacyl-tRNA biosynthesis  L-glutamine, L-Tyrosine 
Aminosugars metabolism   
Androgen and estrogen metabolism  5beta and 5alfa Dihydrotestosterone, 17 

Glucuronide, testosterone 
Arachidonic acid metabolism  Arachidonate 
Biosynthesis of steroids (characterize also AL)  
C21-Steroid hormone metabolism  Cortisone, Urocortisol, Progesterone 
Caffeine (characterize also AL)  
Folate biosynthesis   
Galactose metabolism   
Glycerophospholipid metabolism (characterize also AL)  
Glycosphingolipid biosynthesis - ganglioseries (characterize 
also AL) 

 

Metabolism of xenobiotics by cytochrome P450   
Neuroactive ligand-receptor interaction   
Purine metabolism (characterize also AL)  
Pyrimidine metabolism (characterize also AL)  
Sphingolipid metabolism (characterize also AL)  
Starch and sucrose metabolism D-Glucose, D-Fructose 
Tryptophan metabolism (characterize also AL)  
Tyrosine metabolism (characterize also AL) Tyrosine 
Urea cycle and metabolism of amino groups  

 

 
 

Intensity level of the molecule C19H28O2
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Table 7.1: List of metabolites responsible for the differentiation of the 
smokers in confront to the no-smokers with the correspondent list of 
possible compounds present in smokers people, (to the list of masses, 
selected with the high regression coefficient, is applied the t-test to 
select the most representative, with a level of significance of p<.05). In 
the bottom there is the graphic of the level of annotate and probable 
testosterone in smoker vs no-smokers. In same instance it should be 
interesting to monitor changes in this metabolite. 

7.3 Metabolomic analysis of plasma of pre-diabetic 
patients with various insulin resistant index 
values 

Diabetes is a condition with a long “silent or asymptomatic period where the 
patient is not aware of the disease but complications gradually develop. At the 
time of clinical diagnosis as many as 20-30% have microvascular complications and 
diabetes is often diagnosed after retinal or renal problems are clinically overt 
(Yoon, et al., 2006). Furthermore, diabetes, particularly type 2 diabetes, is 
frequently diagnosed in intensive care units in patients with acute myocardial 
infarction (Maki, et al., 1995) indicating that also macrovascular complications 
develop clinically silent during the undiagnosed period. The affected individuals 
experience greatly elevated morbidity and mortality from nearly all of the 
common macrovascular diseases (e.g. myocardial infarction and stroke), and in 
overt diabetes from diabetic late complications (e.g. nephropathy, blindness, and 
neuropathy). Important to note, the pre-diabetic state precedes the manifestation 
of overt type 2 diabetes for decades (DeFronzo, 2004), (Eckel, et al., 2005). 
However, the impairment of insulin sensitivity and the development of type 2 
diabetes can be retarded and even prevented by therapeutic and/or lifestyle 
interventions, which was demonstrated in several recent studies (Knowler, et al., 
2002), (Tuomilehto, et al., 2001), (Schafer, et al., 2007), but currently only little 
is known about the multiple metabolic alterations reflecting these subtle 
abnormalities in asymptomatic individuals. 

In order to gain new insights in complex metabolic processes, non-selective but 
specific information-rich analytical approaches are required. Metabolomics is the 
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non-targeted analysis of metabolites typically carried out to generate a specific 
fingerprint of a current metabolic state at a given time point of the metabolic 
pattern of an organism (Lindon, et al., 2004), (Lu, et al., 2008), (Lenz, et al., 
2007). It is a rapidly advancing field that complements genomics and proteomics, 
promised to add significant information to the understanding of physiological and 
pathophysiological processes (Lindon, et al., 2004), (Gross, et al., 2007). The very 
complex data are evaluated by pattern recognition techniques, i.e. multivariate 
statistic methods (Eriksson, et al., 2004), (Jonsson, et al., 2005). Furthermore, 
metabolomic investigations have the potential to identify molecular species 
differentiating physiological states (Chen, et al., 2008). Thus, mass spectra of 
biofluids serve in two distinct but closely related modes: as a metabolic 
fingerprinting tool and as means of metabolite biomarker elucidation.  

The aim of our study was to investigate for the first time the metabolic pattern 
in plasma of individuals at high risk to develop type 2 diabetes by a metabolomics 
approach to detect the conversion from the physiological to the pathological 
metabolic state by an individual metabolic fingerprint. Furthermore, this let us to 
elucidate pathways and to discover metabolite biomarkers altered in the 
pathogensis of insulin resistant. Thereby opening new perspectives in the study on 
the pathogenesis of this epidemic metabolic disease. 

7.3.1 Pre-Diabetic state definition 

The pre-diabetic state, which precedes overt type 2 diabetes for decades, 
results in multiple metabolic alterations in insulin sensitive target tissues like 
liver, fat and skeletal muscle. Nevertheless, the identities of biomarkers for such 
changes are largely unknown. Applying metabolomics, a non-targeted top down 
approach, we aimed to investigate these specific metabolic traits indicated by the 
identification of metabolites of altered pathways in plasma of individuals at high 
risk to develop type 2 diabetes. 

All individuals underwent a 75 g oGTT according to the recommendations of 
the WHO/IDF (WHO, definition and Diagnosis of Diabetes Mellitus and Intermediate 
Hyperglycemia: Report of WHO/IDF Consultation. Ed. World Health Organization. 
Geneva: WHO Press, 2006, 1-46) to determine the insulin sensitivity index (ISI). 
Venous blood samples were obtained at 0, 30, 60, 90 and 120 minutes for 
determination of plasma glucose and insulin. Insulin sensitivity was calculated 
from glucose and insulin values during the oGTT as proposed by Matsuda and 
DeFronzo (Matsuda, et al., 1999) using the formula: 
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^S^ = 10,000
-��_9 ∙ �9^� ∙ �.3 �_88 &`ab. b�cbdc;��;e�c ∙ .3 �_88 ec5a`ec b�cbdc;��;e�c� 

 

where FGP = fasting plasma glucose; FPI = fasting plasma insulin 
concentration; .3 �_88 &`ab. b�cbdc;��;e�c=average of glucose concentration 
during the oGTT;   .3 �_88 ec5a`ec b�cbdc;��;e�c=average insulin concentration 
during the oGTT. Low levels of the ISI indicate that the body is more resistant to 
insulin action. Where insulin resistant has a value <8.5  and insulin sensitive has a 
value >8.5. 

7.4 Data analysis 

The non-target analytical approach was applied also to a set of 47 non-diabetic 
individuals but with a high risk to develop type 2 diabetes. 

Bioinformatics data evaluation, analyzing differences in individual pattern by 
multivariate analysis, revealed three clusters representing distinct metabolic 
plasma pattern: 

• insulin sensitive individuals 

• insulin resistant subjects 

• a “transition” group between insulin sensitive individuals and insulin resistant 
subjects 

 

Following the above result, the major goals of our investigations were, firstly 
to elucidate alterations in metabolic pathways to further understand the 
pathophysiological changes in the transition-group as well as the insulin resistant 
state (pathobiochemicak aspect), and secondly identifying within these pathways 
distinct metabolite biomarkers showing significant differences between the 
different groups (diagnostic aspect). 

The statistical elaborations were done on the dataset calculated at 1 ppm. 

For the typology of data and the goals to achieve, a PLS model was developed 
using as dependent variable Y=ISI (Insulin Sensitivity Indices). The strong outlier (it 
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is the sample 1051_HL with a value of ISI=28.65) from the initial model was not 
included. The model is represented in figure 7.4 with its validation (100 row 
permutations, it is represented in figure 7.4 a). The internal validation was 
acquired by randomizing the positions of the Y data in relation to their 
corresponding rows in the dataset and observing the effect of that randomization 
on the R2 and Q2 values. If the original model was confirmed, randomization of the 
Y data would be expected to considerably reduce Q2 (see chapter 3.6). The model 
has three valid components resulting in: Q²(cum)=0.90 and R²(Y)=0.94 (see figure 
7.4a). 
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Figure 7.4: OSC PLS Validation. The validation presents good values for Q² 
and R², within the permitted limits.  B) and C) are the score scatters plot 
u[1]u[2] and t[1]u[1], where the relation between the first summary of X 
variables and the Y underlines a spread of the data more enhanced in the 
samples with a very high value of ISI. It will be improved with the use of 
the OPLS-DA model and with the re-assignment of the classes (see figure 
7.4b). The score scatter plot u[1]u[2] reveals the separation of two 
groups (the first one with a low value of ISI the other one with a high ISI 
level). The PLA model uses 3 valid components. D) The last plot describes 
the relation between the observed vs the predicted values. The 
prediction is particularly good. 

The interpretation of the model is easier if examined through the score scatter 
plot u[1]u[2], (see figure 7.4b). Once investigated, we built up several new models 
in order to investigate deeper the limit of ISI index, taking care of the transit 
region of ISI, ranging from 8.66 and 14.65. 

At first an OPLS-DA model (see figure 7.5a) with two groups was developed 
(Wold, et al., 1998), which reflect the standard classification of the ISI value: >8.5 
(first group) and <8.5 (second group). This reveals that the transition group seems 
to have the characteristics similar to the group with a low ISI level. The transition 
samples are validated as the samples with an ISI value ranging from 8.66 to 14.65. 
We re-classify the samples of the transition region and the new OPLS-DA model 
which is more consistent (see figure 7.5b). The built model was an OPLS with two 
classes showing the value of Q² and R²(Y) being respectively 0.94 and 0.89 

With the new re-classification of seven samples, only one has a low probability 
to belong to the ISI low level group (Probability=0.2), the other samples are 
ranging between Pr=0.6 and 0.9.  

However to prove this, the samples belonging to the transition region are 
investigated separately in the pathway (revealing and confirming characteristics 
more similar to the ISI low level group).  

The sensitivity and specificity values, obtained using soft independent 
modeling of class analogy (SIMCA), are 100%, for both classes. This approach, used 
in (Van Der Greef, et al., 2007), allows one to build a class model by a distribution 
of probability (namely the PLS response). In our sensory modeling problem, α is 
the probability of false non-low ISI level and β the probability of false low ISI level 
(see chapter 3.5). 
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Figure 7.5: A) OPLS-DA analysis: Score scatter plot with the conventional 
value of ISI (low and high). The last step was to define the list of masses 
characteristic for the low and high value of ISI. From the inspection of 
the figure 6.6 we can see the most relevant masses, known and unknown 
compounds will forming this list. B) OPLS-DA analysis with re-
classification of the samples: with the re-classification of the spectra (the 
samples with a value of ISI ranging from [8.5; 14.65] are re-classified as 
low ISI level), we reach a very good relationship in confront with the first 
PLS model, because the last OPLS-DA model has rotated the solution to 
put the all Y-related variation into the first component. 

At the end of the statistical analysis a PLS-DA was developed without the 
transition group making a prevision and a validation of all analysis. 

Partial least squares method was used as discriminant (Sjöstrom, et al., 1986) 
because of the existence of collinearity between the variables of the 
measurement space. The use of PLS-DA is justified because of its analogy to the 
regression models corresponding to the theoretically and statistically well-known 
test for the discrimination between two classes (Stahle, et al., 1987). González-
Arjona et al. have described a detailed review on PLS-DA and stated the 
equivalence between PLS-DA and procuresses discriminant analysis (González-
Arjona, et al., 1999). Barrer and Rayens point out the mathematical structure of 
PLS-DA showing its theoretical relation to canonical correlation analysis. A similar 
result is stated by Nocairi (Nocairi, et al., 2005). The masses that differentiate the 



160 Metabolomics approch in health 
 

two groups (see figure 7.6) are investigated with the MassTRIX (the masses came 
from last OPLS-DA model). From a list of 4500 m/z, characteristic for the high ISI 
level, only 12% were assigned with MassTRIX. The others are still unknown. Also 
from the m/z characteristic for the group of samples belonging to the low ISI 
level, the percent of assigned masses are increased to 25%. 

 

 
 

Figure 7.6: Loading plot with the most significant masses, in red and blue 
triangle the masses which were found with MassTrix. For the statistic 
analysis  these play an important role but in MassTrix are sometimes 
difficult to give a plausible meaning. Many efforts must be done also in 
this direction. 
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The list of compound identified and present in the organism, are listed in table 
7.2. They are different between the two main groups. We must consider that a 
single mass peak may be annotated by more than one metabolite, either if 
different structures (isomers) with the same sum formula exist, or if two 
compounds lie within the error range. 

 

LOW ISI Level IC* HIGH ISI Level IC 
Arachidonic acid metabolism  62 C21-Steroid hormone metabolism  20 

C21-Steroid hormone metabolism  28 Biosynthesis of steroids  19 

Androgen and estrogen metabolism  24 Bile acid biosynthesis  11 

Alpha-Linolenic acid metabolism  23 Arachidonic acid metabolism  7 

Biosynthesis of unsaturated fatty acids  17 Alkaloid biosynthesis I  6 

Neuroactive ligand-receptor interaction  15 Tyrosine metabolism  4 

Linoleic acid metabolism  14 Naphthalene and anthracene degradation  4 

Porphyrin and chlorophyll metabolism  10 Terpenoid biosynthesis  4 

Bile acid biosynthesis  9 Phenylpropanoid biosynthesis  4 

Galactose metabolism  7 Ascorbate and aldarate metabolism  3 

Fatty acid biosynthesis  7 Androgen and estrogen metabolism  3 

Biosynthesis of steroids  7 Pyrimidine metabolism  3 

Drug metabolism - cytochrome P450  7 Phenylalanine metabolism  3 

Prostate cancer  7 Tryptophan metabolism  3 

Fructose and mannose metabolism  6 Citrate cycle (TCA cycle)  2 

Sphingolipid metabolism  6 Glyoxylate and dicarboxylate metabolism  2 

Starch and sucrose metabolism  5 Reductive carboxylate cycle (CO2 fixation)  2 

Retinol metabolism  5 Retinol metabolism  2 

PPAR signaling pathway  5 Drug metabolism - cytochrome P450  2 

Caffeine metabolism  4 Biosynthesis of unsaturated fatty acids  2 

Bisphenol A degradation  4 Neuroactive ligand-receptor interaction  2 

Tryptophan metabolism  4 Pentose and glucuronate interconversions  1 

Alkaloid biosynthesis I  4 Fatty acid biosynthesis  1 

Glycolysis / Gluconeogenesis  3 Ubiquinone biosynthesis  1 

Ascorbate and aldarate metabolism  3 Glutamate metabolism  1 

Fatty acid metabolism  3 Alanine and aspartate metabolism  1 

Phenylalanine metabolism  3 Valine, leucine and isoleucine biosynthesis  1 

Terpenoid biosynthesis  3 Phenylalanine, tyrosine and tryptophan biosynthesis  1 

Alkaloid biosynthesis II  3 Glycerophospholipid metabolism  1 

ABC transporters - General  3 Sphingolipid metabolism  1 

Pentose phosphate pathway  2 Nicotinate and nicotinamide metabolism  1 
Phenylalanine, tyrosine and tryptophan 
biosynthesis  2 Pantothenate and CoA biosynthesis  1 

Streptomycin biosynthesis  2 Biotin metabolism  1 

Phenylpropanoid biosynthesis  2 Porphyrin and chlorophyll metabolism  1 

Aminoacyl-tRNA biosynthesis  2 Aminoacyl-tRNA biosynthesis  1 

Fc epsilon RI signaling pathway  2 Metabolism of xenobiotics by cytochrome P450  1 

Small cell lung cancer  2 Prostate cancer  1 

Non-small cell lung cancer  2    

Inositol metabolism  1    



162 Metabolomics approch in health 
 

Fatty acid elongation in mitochondria  1    

Ubiquinone biosynthesis  1    

Tyrosine metabolism  1    

Novobiocin biosynthesis  1    

Inositol phosphate metabolism  1    

Nicotinate and nicotinamide metabolism  1    

Biotin metabolism  1    

Calcium signaling pathway  1    

Phosphatidylinositol signaling system  1    

mTOR signaling pathway  1    

Hedgehog signaling pathway  1    

VEGF signaling pathway  1    

Gap junction  1    

Long-term depression  1    

Insulin signaling pathway  1    

GnRH signaling pathway  1    

Melanogenesis  1    

Adipocytokine signaling pathway  1    

Type II diabetes mellitus  1    

Basal cell carcinoma  1    

Asthma  1     
 

 

Table 7.2: Pathway found in the MassTrix, the masses submitted were 
characteristic for the two groups: HIGH and LOW values, in the last one 
were included also the transition samples. * IC=Identified compound 
(present in the organism). 

The most relevant pathways that differentiate the first group from the second 
(see figure 7.7) are: 

• Arachidonic acid metabolism 

• Biosynthesis of unsaturated fatty acids 

• Linoleic acid metabolism 

• Bile acid biosynthesis 
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Figure 7.7: general schema with the most relevant pathway found. 

The masses relative to the most important pathways were successively used to 
verify if they are effectively the biomarkers that differentiate the two levels of 
ISI. Using only these masses a new PLS-DA model (see figure 7.8) is built and the 
classification is performed according to the ISI level.                                                    

The assigned m/z coming from the four pathways gave the 65% of the 
recognition ability. This percentage is justified by considering that only 37% of the 
initial list of discriminant masses is taken in account. For the same reason the 
score scatter plot (see figure 7.7) reveals the two groups not well distinguished 
even though the two classes seem to cluster homogenously. 
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Figure 7.8: PLS-DA model, built up only with the assigned masse coming 
from the pathways: Arachidonic acid metabolism, Biosynthesis of 
unsaturated fatty acids, Linoleic acid metabolism, Bile acid biosynthesis. 
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7.5 Conclusion 

In both metabolomics surveys, the application of multivariate analysis shows a 
great potential to map early biochemical changes in disease and hence provide an 
unique opportunity to develop predictive biomarkers that can trigger earlier 
interventions. These studies open the way for new approaches, offering 
suggestions for further investigations and debates. The technology is completely 
new and very complex because applied to human diseases. It confirms once more 
the need for an interdisciplinary collaboration to investigate more in detail the 
phenomenon. There are still limitations on this study. Indeed, high-resolution mass 
spectra reflect the isomer filtered complement of the entire space of molecular 
structures (Hertkorn, et al., 2007). An annotation such as the one proposed here 
thus associates experimental accurate mass (within an experimental error) with a 
limited number of bulk chemical formula (isomers), derived from the unique 
elementary composition space and restricted by the choice of the organism (and 
its annotated genome) (Suhre, et al., 2008). The differentiation between isomers 
and the final metabolite identification can only be done on a case-by-case basis in 
further identification steps, using classical analytical chemistry approaches 
involving metabolite orthogonal separation, spectroscopy and further 
spectrometry together with chemical synthesis (Chen, et al., 2008). An educated 
interpretation of the resulting pathway in the light of the genome of the organism 
thus remains the golden rule (Suhre, et al., 2008). Moreover, it has to be noticed 
that quantitative exploitation of the results is often strongly influenced by the 
stochastic ionization process in electrospray and the undefined amount of isobaric 
constituents of the target molecule.  

The multivariate analyses have successfully classified the samples and also 
identified peaks that differ most significantly between the different groups. The 
discovery, interpretation, and presentation of multivariate spatial patterns play an 
important rule for scientific understanding of complex problems. 
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Chapter 8 

8 CONCLUSIONS AND OUTLOOK 
 

 

 

 

 

An in-house-developed strategy is presented that mainly conjunct 
Chemometric tools with high resolution mass spectrometry analysis. The new 
approach provides high potential in analyzing and extrapolating information from 
high complex datasets and was applied for different applications to evaluate its 
universal characteristic.  

This strategy at first was applied to study the geometabolome of biogeographic 
isolations of the extremophilic bacterium Salinibacter rubber (chapter 4). Using 
this procedure we showed that strains of the cosmopolitan extremophilic 
bacterium Salinibacter ruber, isolated from different sites in the world, could be 
distinguished by means of characteristic metabolites, and that these differences 
can be correlated to their geographical isolation site distances. Only weighing the 
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relative intensity of each individual peak and treating the data by using 
multivariate analysis, revealed statistically significant differences between the 
different samples.  

The same strategy was applied to describe and characterize the high 
complexity and diversity of metabolites in wines (chapters 5 and 6). It was 
possible to identify families of metabolites that could discriminate the species of 
wood of the barrels and their geographical origin. Based on the fact that several 
studies have revealed the influence of oak wood on the organoleptic properties of 
wines matured in oak barrels (Waterhouse, et al., 1994), (Jarauta, et al., 2005). 
This work opens up new ways to comprehend the mechanisms responsible for 
undesired evolutions (untimely oxidation) or even recording of environmental 
changes such as climatic modifications over decades.  

The last challenge is to apply this technology to detect and monitor the health 
condition. In the last chapter this strategy was applied to biomedical and health 
diagnostics. It was possible to isolate possible metabolites as marker for COPD and 
prediabetic patients, also with the information coming from complementary 
databases. Preliminary results are presented and the study still requires many 
efforts and implementation to refine the strategy due to the high complexity of 
the human mechanism but the proof of principal is done to show the applicability 
of ICR-FT/MS combined to our data evaluation pipeline.  

This is becoming more evident as ‘omics’ research is moving toward modeling 
biochemical networks through systems biology. However our strategy has two 
fundamental limits mainly originated from the principles of analysis. High-
resolution mass spectra reflect the isomer filtered complement of the entire space 
of molecular structures (Hertkorn, et al., 2007). The annotated mass associates 
experimental accurate mass (within an experimental error) with a limited number 
of bulk chemical formula (isomers), derived from the unique elementary 
composition space and restricted by the choice of the organism (and its annotated 
genome). The differentiation between isomers and the final metabolite 
identification can only be done on a case by case basis in further identification 
steps, using other classical analytical chemistry approaches involving separation 
technologies like chromatography and electrophoresis, spectroscopy and further 
spectrometry together with chemical synthesis (Suhre, et al., 2008). An educated 
interpretation of the resulting pathway in the light of the genome of the organism 
thus remains the golden rule (Suhre, et al., 2008). Moreover the quantitative 
exploitation of the results is often strongly influenced by the stochastic ionization 
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process in electrospray and the undefined amount of isobaric constituents of the 
target molecule.  

One solution of these limitations is the combination of different analytical 
techniques (separation/spectrometry/spectroscopy) which generates such a bright 
view of the data from a sample that evaluation is challenging to a statistician. This 
needs to combine automatic sample preparation before ultrahigh pressure liquid 
chromatographic (UHPLC) and/or capillary electrophoretic separation (CE) coupled 
to high resolution tandem mass spectrometry (Q/TOF) via various atmospheric 
pressure ionization modes (ESI, APCI, APLI, APPI). The separated compounds can 
then be analyzed in a high dimensionality by additong in addition a broad range of 
at-line and off-line nuclear magnetic resonance spectroscopy (NMR) methods. 

This thesis presents an absolutely novelty in the use of electrospray ICR-FT/MS 
data analysis, especially it underlines the ability to scratch the surface in terms of 
potential applications dealing new hypothesis and future developments.  

The processes are still technically complex, indeed there is a lack in terms of 
databases; for example many of the biomarkers found are not yet classified. The 
future challenges will be done in this direction because a considerable work in this 
scope still remains, also in the developing the chemical and computational 
technologies that provides a basis for this field. All these aspects reflect the fact 
that Metabolomics is a young field, especially when the technology applied 
belongs to the newest generation (ICR-FT/MS 12T). 

Storing metadata with all information about the analytical technique and data-
processing details are important to be able to reproduce the experimental 
conditions and compare results obtained in different time conditions and 
laboratories. 

A possible strategy of data investigation is presented here and it is a complete 
excursus starting from the raw data to still a list of biomarkers, with also the 
possibility to identify part of them. Metabolomics raw data processing was 
probably the most challenging and time consuming step in data analysis because it 
requires automated data processing solutions. 

The rule of statistical (in particular multivariate analysis) and machine-learning 
algorithms tools is crucial, with their ability to extrapolate from high complex 
datasets useful information, considering the biology system in which the survey is 
collocated. Moreover, it is an extensive task to find significant information in a 
large and “high complex” amounts of data. For the fact that the data are “high 
complex” and they contain already as much relevant information as possible.  
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The role of the databases is also extremely important, because it gives a 
biological meaning to the surveys. This work appears like a puzzle in which each 
pieces is fundamental for the further development and all together give the 
complete meaning of the measurements. Many steps need further improvements 
but the structure itself is completed. 
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