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Università Commerciale Luigi Bocconi,

Milan / Italien (schriftliche Beurteilung)

Die Dissertation wurde am 23.10.2008 bei der Technischen Universität München

eingereicht und durch die Fakultät für Mathematik am 19.11.2008 angenommen.



Zusammenfassung

Der Schwerpunkt dieser Arbeit dient der Erforschung von Risikomodellen, die über

die zur Messung des Markt- und Kreditrisikos angewandten Methoden hinausgehen.

Deshalb betrachten wir die Quantifizierung des multivariaten operationellen Risikos,

des multivariaten Geschäftsrisikos und die Aggregation von verschiedenen Risikoarten.

Wir beginnen mit dem operationellen Risiko, wobei wir zunächst den eindimensio-

nalen Fall betrachten und zeigen, dass bei langschwänzigen Verlustdaten (wie sie in der

Praxis vorkommen) eine geschlossene Näherungsformel für den operationellen Value-at-

Risk existiert. Danach erweitern wir unser Modell auf mehrere Risikozellen, wobei wir

annehmen, dass das gesamte operationelle Risiko einer Bank durch einen zusammenge-

setzten Poisson-Prozess beschrieben werden kann. Die Abhängigkeitsstruktur zwischen

den verschiedenen Randprozessen wird dabei durch eine Lévy-Copula modelliert und

wir stellen analytisch dar, welche Konsequenzen sich daraus für gleichzeitige Verluster-

eignisse in verschiedenen Risikozellen ergeben. Ähnlich wie im eindimensionalen Fall

erlaubt uns diese Technik, geschlossene Formeln für den operationellen Value-at-Risk

für verschiedene Abhängigkeitsstrukturen zu berechnen, z.B. vollständige Abhängig-

keit, Unabhängigkeit und multivariate reguläre Variation.

Für die Quantifizierung des Geschäftsrisikos nehmen wir an, dass die zukünftige

Entwicklung der Geschäftsergebnisse einer Bank durch eine multivariate Brownsche

Bewegung modelliert wird. Mit Hilfe dieses Modells wird dann die Auswirkung zukünf-

tiger Ergebnisschwankungen auf den sogenannten Capital-at-Risk untersucht, wobei

unterschiedliche Gauß-Prozesse verwendet und numerisch analysiert werden.

Hinsichtlich der Risikoaggregation führen wir eine vergleichende Analyse verschie-

dener Aggregationsverfahren durch. Besonderen Wert legen wir auf die Darstellung,

wie Expertenwissen bei der Bestimmung der Korrelation zwischen verschiedenen Ri-

sikoarten berücksichtigt werden kann. Schließlich wird die Abhängigkeit zwischen ei-

nem Kreditportfolio und dem aggregierten Marktrisiko ausführlich untersucht. Dabei

berechnen wir einen analytischen Ausdruck für die lineare Korrelation beider Teilport-

folien und entwickeln einen neuen Schätzer für den Gauß-Copula-Parameter, der im

Fall nahezu beliebiger Kreditportfolien angewendet werden kann.
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Abtract

This thesis is devoted to the investigation of risk models that go beyond those tech-

niques used for measuring the standard risk types market risk and credit risk. There-

fore, we consider the quantification of multivariate operational risk, multivariate busi-

ness risk, and the aggregation of different risk types.

Starting with operational risk, we show that in the one-dimensional case, when loss

data are heavy-tailed (which in practice they are), a simple closed-form approximation

for the operational Value-at-Risk can be obtained. We then extend our model to

several operational risk cells assuming that a bank’s total operational Value-at-Risk can

be described by a multivariate compound Poisson process. The dependence structure

between different marginal processes is described by a Lévy copula, and we analytically

discuss the consequences of this model for simultaneous loss events in different risk

cells. Similarly to the one-dimensional case, this technique allows us to calculate closed-

form expressions for total operational Value-at-Risk for different dependence structures,

including complete dependence, independence, and multivariate regular variation.

For the assessment of business risk, we assume that the evolution of a bank’s earn-

ings path is modelled by a multivariate Brownian motion. This model is then used for

investigating the impact of future earnings uncertainties on the so-called Capital-at-

Risk. In doing so, different Gauss processes are considered and analysed numerically.

With respect to risk aggregation, we perform a comparative analysis of different

aggregation methodologies. Particular emphasis is given to the description of how ex-

pert knowledge can be included when calculating the correlation between different risk

types. Finally, we intensively investigate the dependence between a credit portfolio and

aggregated market risk. In doing so, we analytically calculate their linear correlation,

and, moreover, we suggest a new estimator for their Gaussian copula parameter, which

can be applied to almost arbitrary credit portfolios.
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Chapter 1

Introduction

1.1 Motivation and Background

It would be a mistake to conclude that the only way to succeed in banking is

through ever-greater size and diversity. Indeed, better risk management may be

the only truly necessary element of success in banking.

Alan Greenspan, Speach to the American Bankers Association, October 5, 2004.

This crisis is the result of regulatory failure to guard against excessive risk-taking

in the financial system, ...

Dominique Strauss-Kahn, Financial Times, September 22, 2008.

Risk is an inevitable part of every financial institution. Risks are implicitly accepted

when banks or insurance companies provide their financial services to customers and

explicitly when they take risk positions that offer profitable, above-average returns.

However, the rush to ever growing profits combined with excessive risk-taking and

erroneous risk management almost inevitably result in a financial crisis such as we are

witnessing today. Then, the growing awareness of risk inherent in the banking industry

often leads to an increasing demand for banking supervision at international level. So,

spectacular crunches like the Saving & Loans crisis in the 1970s or the Japanese banking

crisis in the 1990s were catalysts for the creation of the Basel Committee of Banking

Supervision under the auspices of the Bank for International Settlement (BIS) in Basel.

Needless to say, also the current financial turmoil will leave its mark in tomorrow’s bank

capital regulation and risk management practices, as it is for instance indicated by the

above quote of Dominique Strauss-Kahn, the Managing Director of the International

Monetary Fund (IMF).

There is no unique view on risk and often it is divided in certain sub-classes such

as market risk, credit risk and operational risk. Market risk is associated with trading
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activities; it is defined as the potential loss arising from adverse price changes of a bank’s

positions in financial markets and usually encompasses interest rate, foreign exchange,

equity, and credit-spread risk. Credit risk is owing to potential losses arising from a

customer’s default or a deteriorating credit rating. Such risks usually include loan-

default risk, counterparty risk, issuer risk and country risk. Finally, operational risk is

the risk of losses resulting from inadequate or failed processes, people and systems, or

external events.

The basic idea underlying modern banking regulation is that every bank must keep

a certain amount of equity capital (the so-called “capital charge”) as a buffer against

their risks. In doing so, a bank has to quantify its overall risk exposure the best of its

knowledge, and, of course, to the satisfaction of its supervising authority. Therefore,

sound risk measurement techniques are a prerequisite for a successful banking super-

vision. With this respect, the bulk of research that had been published over the past

two decades, both by academics and practitioners, was within the huge fields of market

risk and credit risk. However, with the new Basel Accord “Basel II” [5], which had to

be fully implemented by year-end 2007, the focus was moving also to operational risk,

for which banks now—similar as it is already the case for market risk—can use their

own internal modelling techniques (commonly referred to as advanced measurement

approaches (AMA)) to determine operational risk capital charges.

Moreover, Basel II requires banks to model and measure basically all of the “other”

material risks they are exposed to, encompassing, e.g., interest rate risk in the bank-

ing book, credit concentration risk, and business risk. Besides this sheer regulatory

perspective, the increased materiality of business risk, in particular, was recently also

confirmed by an industry survey of the IFRI/CRO Forum about economic capital prac-

tices [36], according to which 85 % of the participating banks try to include business

risk in their overall risk assessment. However, this survey has also revealed that the

quantification of business risk is still in its infancy and measurement techniques are

often judgemental.

This is exactly where our research comes in. In the first two Chapters we present a

thorough investigation of the two “new”, Basel-II relevant risk types operational risk

and business risk.

For operational risk, our main result is a new method for modelling multivariate opera-

tional risk (measured by means of Value-at-risk), which is based on the concept of Lévy

copulas. From a methodological perspective, we are not so much interested in numer-

ical simulations; instead, we present a completely analytic treatment of this intriguing

subject. As a consequence thereof, we deliver new insight into the general behaviour

of multivariate operational risk, which is of great practical relevance for operational
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risk management. For instance, for important examples of the Lévy copula (and thus

of the dependence structure) and heavy-tailed loss data of regular variation, we derive

first-order approximations for multivariate operational Value-at-Risk (OpVAR).

With respect to business risk, we develop a new continuous-time model where future

earnings’ uncertainty is driven by a multivariate Brownian motion. As a matter of fact,

this model can actually be considered as a mark-to-model approach for assessing the

economic capital associated with this important risk type. Special attention is paid

to the examination of two popular measures used in business risk context, namely

the Earnings-at-Risk (EAR) and the Capital-at-Risk (CAR). We perform a sensitivity

analysis concerning the relationship between EAR and CAR with respect to different

Gauss processes for the future earnings.

Finally we consider the aggregation of different risk types into a single number.

This is of utmost relevance for risk control because, e.g., according to the Committee

of European Banking Supervisors [25], banks have to calculate an “overall capital

number” as an integral part of their capital adequacy assessment process. This single-

number metric should encompass all risks associated with different businesses and risk

types. Above all, regulators want to understand the extent to which the institution

has introduced diversification and correlation effects when aggregating different risk

types. Our investigation of risk aggregation mainly consists of three parts. First, a

comparative analysis of different aggregation techniques encompassing four different

risk types; second, a closer inspection of how expert knowledge can be elicited and

used for the estimation of the parameters of the inter-risk-type-dependence copula;

and, finally, an extended analysis of the inter-risk dependence structure between a

credit risk portfolio and market risk. We present new closed-form results for the inter-

risk correlation between market and credit risk and suggest a novel way of how the

parameter of a Gaussian copula can easily be approximated for almost arbitrary credit

portfolios.

1.2 Outline of the Thesis

Every Chapter of the following thesis is based on one or more research papers cited

below. Hence, all Chapters are basically self-contained and the notation is only unified

within the individual Chapters. In detail, this thesis is organised as follows.

Chapter 2 is based on Böcker [9], Böcker & Klüppelberg [13, 14, 15, 17, 18], and Böcker

& Sprittulla [20]. Section 2.1 is devoted to the standard univariate loss distribution

approach where the cumulated operational loss S(t) of a single operational risk cell up
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to time t is described by an aggregate loss process

S(t) =

N(t)∑

k=1

Xk , t ≥ 0 ,

with iid (Xk)k∈N (positive) loss variables and frequency process (N(t))t≥0, independent

of (Xk)k∈N. For such a model, OpVAR can usually not be calculated analytically. We

show, however, that when loss data are heavy-tailed (which in practice they are), a

simple first-order approximation in closed form for OpVAR can be obtained. We then

apply this approximation to Pareto-like severity models.

Section 2.2 is devoted to multivariate operational risk, i.e., we consider several

operational risk cells i =, 1, . . . , d. Assuming that the loss frequency process within

each cell follows a homogeneous Poisson process with rate λi > 0, the aggregate loss

Si(·), i = 1, . . . , d, is compound Poisson and thus a special kind of a Lévy process. This

allows us to use the new concept of Lévy copulas (see e.g. Cont & Tankov [24]) for

calculating operational risk at a high confidence level. Because we model the depen-

dence in frequency and severity between different cells simultaneously, the model has

only a few parameters; an important advantage when practical calculations have to be

employed.

Similarly to the univariate case, we present closed-form approximations for mul-

tivariate OpVAR in Section 2.3, shedding light upon extremal dependence modelling

in general. Particular emphasis is given to multivariate regularly dependence (see e.g.

Resnick [60, 61]), a useful concept to describe the dependence structure between heavy-

tailed data such as observed in operational risk.

Chapter 3 is going to appear in Böcker [11]. We propose a continuous-time model for

business risk where the bank’s future earnings are modelled by means of multivariate

Brownian motion. In particular, we distinguish between the two measures EAR and

CAR, see also the discussion in Saita [64, 65]. After discussing some preliminaries in

Section 3.2.1, such as a formulation of the discounted-cash-flow method in continuous

time, we introduce a first stochastic model for quantifying business risk in Section 3.2.2,

which is used in Section 3.2.3 to investigate the relation between EAR and CAR in

greater detail. Specifically, we derive an analytic relationship between both measures.

Finally, in Section 3.3, we consider a possible extension of the business risk model based

on an alternative Gauss process and compare it to the simple model.

Chapter 4 is based on the paper Böcker & Hillebrand [12] and the book contributions

Böcker [11] and Böcker & Klüppelberg [16] where we elaborate some specific aspects in

the context of the aggregation-by-risk-type approach, a popular way for estimating the

aggregated risk profile of a bank. In Section 4.2 we first review the aggregation-by-risk-
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type approach and recall some important properties of the (pairwise) linear correlation

coefficient, followed by a discussion of alternative dependence measures such as copu-

las, Kendall’s tau, and tail dependence; and finally of the inter-risk-correlation matrix

as a whole. Section 4.2.4 investigates how the estimation of inter-risk correlation can

be supported by means of expert judgements, a field, which so far has only received

little attention in the context of risk aggregation. In Section 4.2.5 we illustrate our

results with an extended numerical example, which describes a typical aggregation-by-

risk-type problem as it may also occur in practice.

In Section 4.3, we then concentrate on the interaction between a credit risk portfolio

and another, normally distributed risk type, say market risk. Combining Merton-like

factor models for credit risk with linear factor models for market risk, we calculate

closed-form expressions for their inter-risk correlation and, moreover, suggest how their

Gaussian copula can be estimated.

5
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Chapter 2

Modelling and Measuring

Operational Risk

This Chapter is devoted to the quantification of operational risk. In Section 3.1 we

first present a simple closed-form approximation for the OpVAR of a single event

type/business line cell. In Section 2.2 we then introduce the new concept of Lévy cop-

ulas to model the dependence structure between operational loss events occurring in

different cells. Finally, in Section 2.3, we derive first order approximations for multi-

variate OpVAR for important dependence structures, including complete dependence,

independence, and multivariate regular variation.

2.1 Operational Risk of a Single Cell

2.1.1 The Loss Distribution Approach

The new Basel II accord [5] imposes new methods of calculating regulatory capital

that apply to the banking industry. Besides credit risk, the new accord focuses on

operational risk, defined as the risk of losses resulting from inadequate or failed internal

processes, people and systems, or from external events.

According to [5], every bank has to calculate explicit capital charges to cover po-

tential operational risk losses by means of one of three approaches: the basic indi-

cator approach, the standardised approach, and the advanced measurement approach

(AMA). This “continuum of approaches” reflects different levels of sophistication and

risk sensitivity. AMA as the most flexible approach for operational risk quantification

allows the bank to build its own internal operational risk model and measurement

system, comparable to market risk standards. Instead of prescribing a particular type

of VAR approach, however, the committee focuses only on a set of quantitative and
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qualitative standards, which have to be fulfilled by the institution’s AMA model. The

following two requirements are directly cited from [5] and are most relevant for the

issues discussed in this Chapter:

(1) The operational-risk measure is a VAR at confidence level 99.9 % with a holding

period of one year (cf. § 667)

(2) The measurement approach must capture potentially severe tail loss events (cf.

§ 667).

The most popular method in the industry to satisfy the AMA standards is the loss

distribution approach (LDA), which is based on modelling the probability distribution

of operational losses using bank-internal and external data. Such type of model indeed

originates in insurance and has its root in insurance risk theory, which goes back to the

early work by Filip Lundberg in 1903. A key feature of every LDA model is to split up

the total loss amount over a certain time period into a frequency component, i.e. the

number of losses, and a severity component, i.e. the individual loss amounts. Then,

the total loss is obtained by compounding the frequency and the severity information.

A prototypical model of this kind, which is currently best practice and implemented

in various commercial software packages, is the following.

Definition 2.1.1. [Univariate Standard LDA model]

(1) The severity process.

The severities (Xk)k∈N are positive iid random variables with distribution function F ∈
S describing the magnitude of each loss event.

(2) The frequency process.

The number N(t) of loss events in the time interval [0, t] for t ≥ 0 is random. The

resulting counting process (N(t))t≥0, is generated by a sequence of points (Tn)n≥1 of

non-negative random variables satisfying

0 ≤ T1 ≤ T2 ≤ · · · a.s.

and

N(t) = sup{n ≥ 1 : Tn ≤ t} , t ≥ 0 .

(3) The severity process and the frequency process are assumed to be independent.

(4) The aggregate loss process.

The aggregate loss S(t) in [0, t] constitutes a process

S(t) =

N(t)∑

k=1

Xk , t ≥ 0 . (2.1)

8



With respect to the frequency process, there are two typical specifications which

are widely used for LDA models in practice:

Example 2.1.2. (a) The Poisson-LDA is a Standard LDA, where (N(t))t≥0 is a

homogenous Poisson process with intensity λ > 0, in particular,

P (N(t) = n) = pt(n) = e−λt (λt)n

n!
, n ∈ N0 .

(b) The negative-binomial-LDA is a Standard LDA, where (N(t))t≥0 is given by a

negative binomial process satisfying for β, γ > 0

P (N(t) = n) = pt(n) =

(
γ + n− 1

n

)(
β

β + t

)γ (
t

β + t

)n

, n ∈ N0 .

¤

The negative binomial distribution is a gamma mixture of a Poisson distribution,

i.e. it can be viewed as a Poisson distribution whose parameter λ is a gamma distributed

random variable. This allows for modelling over-dispersion, which means that for all

t > 0 the variance of N(t) is greater than its mean, whereas for the Poisson-LDA

var(N(t)) = EN(t) holds. However, we will see later that as far as the OpVAR

approximation is concerned, over-dispersion is of minor importance.

Regarding the severity of losses, note that we do not require Xk to have finite

mean and/or variance. This is in accordance with empirical research: Moscadelli [54]

showed very convincingly that typical severity distributions for operational risk are

very heavy-tailed such that even moments of low order may not exist. This fact is also

acknowledged by the regulators, who want banks to take the heavy-tail property of

operational losses explicitly into account.

Finally, the goal of every LDA model is mainly to determine the aggregate loss

distribution, which for the Standard LDA can be written as

Gt(x) = P (S(t) ≤ x)

=
∞∑

n=0

pt(n) P (S(t) ≤ x|N(t) = n)

=
∞∑

n=0

pt(n) F n∗(x), x ≥ 0, t ≥ 0 , (2.2)

where F (·) = P (Xk ≤ ·) is the distribution function of Xk, and F n∗(·) = P (
∑n

i=1 Xi ≤ ·)
is the n-fold convolution of F with F 1∗ = F and F 0∗ = I[0,∞).

For most choices of severity and frequency distributions, Gt cannot be calculated

analytically. Approximation methods to overcome this problem include Panjer recur-

sion, Monte Carlo simulation, and FFT (fast Fourier transform) methods, see Klugman,
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Name Distribution function Parameters

Lognormal F (x) = Φ

(
ln x− µ

σ

)
µ ∈ R, σ > 0

Weibull F (x) = 1− e−(x/θ)τ

θ > 0, 0 < τ < 1

Pareto F (x) = 1−
(
1 +

x

θ

)−α

α, θ > 0

Table 2.1.3. Popular severity distributions with support (0,∞). (Φ is the standard normal
distribution function).

Panjer and Willmot [41] for an overview. The drawback of these methods is, however,

that their results remain a “black box”, and the interaction between different model

parameters and their impact on the final result, i.e. OpVAR is only interpretable

through extensive sensitivity analyses. However, as both regulatory capital and eco-

nomic capital for operational risk are based on a very high quantile of the aggregate

loss distribution Gt, a natural estimation method for OpVAR is via asymptotic tail and

quantile estimation. Before we consider this is more detail, we have to specify more

precisely what heavy-tailness of the loss severities actually means.

2.1.2 Subexponentiality and Univariate Regular Variation

Some popular distributions used for modelling the severity of single loss events are

given in Table 2.1.3. All of them are heavy-tailed, more precisely, they belong to the

class of so-called subexponential distributions, meaning that their tails decay slower

than any exponential tail.

The defining property of subexponential distributions is that the tail of the sum

of n subexponential random variables has the same order of magnitude as the tail of

the maximum variable among them, or, more precisely, the sum of n iid severities is

most likely to be large because of one of the terms being large. This can be written as

follows:

Definition 2.1.4. [Subexponential distributions] Let (Xk)k∈N be iid random variables

with distribution function F . Then F (or sometimes F ) is said to be a subexponential

distribution function (F ∈ S) if

lim
x→∞

P (X1 + · · ·+ Xn > x)

P (max(X1, . . . , Xn) > x)
= 1 for some (all) n ≥ 2.
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Focusing on operational risk, this implies that severe overall losses are mainly due

to a single big loss rather than the consequence of accumulated small independent

losses. Of course, this insight should have implications for operational risk manage-

ment. For more details on subexponential distributions and related classes see Em-

brechts et al. [29], Appendix A3.

As a useful semiparametric class of subexponential distributions, we will in the se-

quel heavily rely on distributions, whose far out right tails behave like a power function.

Definition 2.1.5. [Regularly varying functions] Let f be a positive measureable func-

tion. If for some α ∈ R

lim
t→∞

f(xt)

f(t)
= x−α , x > 0 , (2.3)

then f is called regularly varying with index α.

Here we consider loss variables X whose distribution tails are regularly varying.

Definition 2.1.6. [Regularly varying distribution tails] Let X be a positive random

variable with distribution tail F (x) := 1 − F (x) = P (X > x) for x > 0. If for F

relation (2.3) holds for some α ≥ 0, then X is called regularly varying with index −α

and denoted by F ∈ R−α. The quantity α is also called the tail index of F .

Finally we define R := ∪α≥0R−α.

Regular variation is a powerful concept when working with heavy-tailed data and

it is worthwhile to recall some of its properties.

Remark 2.1.7. (a) Subexponentiality implies regular variation, R ⊂ S.

(b) Regularly varying distribution functions have representation F (x) = x−αL(x) for

x ≥ 0, where L is a slowly varying function (L ∈ R0) satisfying limt→∞ L(xt)/L(t) = 1

for all x > 0. Typical examples are functions, which converge to a positive constant or

are logarithmic as e.g. L(·) = ln(·).
(c) The classes S andR−α, α ≥ 0, are closed with respect to tail-equivalence, which for

two distribution functions (or also tail integrals) is defined as limx→∞ F (x)/G(x) = c

for c ∈ (0,∞).

(d) We introduce the notation F (x) ∼ G(x) as x →∞, meaning that the quotient of

right-hand and left-hand side tends to 1; i.e. limx→∞ G(x)/F (x) = 1.

(e) In Definition 2.1.6 we have used a functional approach to regular variation. Al-

ternatively, regular variation can be reformulated in terms of vague convergence of the

underlying probability measures, and this turns out to be very useful when we consider

multivariate operational risk in Section 2.3.5. ¤
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Distributions in S but not in R include the heavy-tailed Weibull distribution and

the lognormal distribution. Their tail decreases faster than tails in R, but less fast

than an exponential tail. The following definition will be useful.

Definition 2.1.8. [Rapidly varying distribution tails] Let X be a positive random

variable with distribution tail F (x) := 1− F (x) = P (X > x) for x > 0. If

lim
t→∞

F (xt)

F (t)
=

{
0 , if x > 1 ,

∞ if 0 < x < 1 .

then F is called rapidly varying, denoted by F ∈ R∞.

Other important results related to the generalised inverse of regularly varying and

rapidly varying distributions are gathered by the following Proposition.

Proposition 2.1.9. (1) [Regular variation] Let α > 0. Then

(i) F ∈ R−α ⇔ (1/F )← ∈ R1/α,

(ii) F (x) = x−αL(x) for x ≥ 0 ⇔ (1/F )←(z) = z1/αL̃(z) for z ≥ 0,

where L and L̃ are slowly varying functions,

(iii) F (x) ∼ G(x) as x →∞ ⇔ (1/F )←(z) ∼ (1/G)←(z) as z →∞.

(2) [Rapid variation] If F, G ∈ R∞ such that F (x) ∼ G(x) as x → ∞, then

(1/F )←(z) ∼ (1/G)←(z) as z →∞.

Proof. (1) Proposition 1.5.15 of Bingham, Goldie and Teugels [7] ensures that reg-

ular variation of 1/F is equivalent to regular variation of its (generalised) inverse and

provides the representation. Proposition 0.8(vi) of Resnick [60] gives the asymptotic

equivalence.

(2) Theorem 2.4.7 of [7](ii) applied to 1/F ensures that (1/F )← ∈ R0. Further-

more, tail equivalence of F and G implies that (1/F )←(z) = (1/G)←(z(1 + o(1))) =

(1/G)←(z)(1 + o(1)) as z → ∞, where we have used that the convergence in Defini-

tion 2.1.6 is locally uniformly. ¤

2.1.3 A Closed-Form Approximation for OpVAR

OpVAR is simply a quantile of the aggregate loss distribution Gt.

Definition 2.1.10. [OpVAR] Suppose Gt is a loss distribution function according to

eq. (2.2). Then, OpVAR up to time t at confidence level κ, VARt(κ), is defined as its

κ-quantile

VARt(κ) = G←
t (κ) , κ ∈ (0, 1) ,

12



where G←
t (κ) = inf{x ∈ R : Gt(x) ≥ κ}, 0 < κ < 1, is the (left continuous)

generalized inverse of Gt. If Gt is strictly increasing and continuous, we may write

VARt(κ) = G−1
t (κ).

As we already said, Gt(κ)—and thus also OpVAR—can in general not be calculated

analytically. Recall, however, that κ is usually near 1, e.g. 0.999 for regulatory purposes

or, in the context of a bank’s internal economic capital, even higher such as 0.9995.

Hence, instead of considering the entire distribution, it is sufficient to concentrate on

the right tail P (S(t) > x) for very large x. Now, in actuarial science, the tail behavior of

Gt has been extensively studied both for small claims and large claims models. For the

latter, the following key result basically stays that (under weak regularity conditions

for the frequency process) for every fixed t > 0, Gt can be written in terms of the

severity distribution function F .

Theorem 2.1.11. [Embrechts, Klüppelberg and Mikosch [29], Theorem 1.3.9] Con-

sider the standard LDA S(t) =
∑N(t)

n=0 Xi, t ≥ 0, from Definition 2.1.1. Assume that

the severities Xi are subexponential with distribution function F . Fix t > 0 and define

the frequency distribution by P (N(t) = n) = pt(n) for n ∈ N0. Then, the aggregate

loss distribution is given by

Gt(x) =
∞∑

n=0

pt(n) F n∗(x) , x ≥ 0, t ≥ 0 .

Assume that for some ε > 0,
∞∑

n=0

(1 + ε)npt(n) < ∞ . (2.4)

Then, Gt is subexponential with tail behaviour given by

Gt(x) ∼ EN(t)F (x) , x →∞ . (2.5)

Specifically, it has been shown in Examples 1.3.10 and 1.3.11 of Embrechts, Klüppelberg

and Mikosch [29] that the tail estimate (2.5) holds for the Poisson-LDA and the

negative-binomial-LDA of Example 2.1.2.

Given relation The result of Theorem 2.1.11, it is straightforward to obtain an

first-order approximation for OpVAR, valid at very high confidence levels.

Theorem 2.1.12. [OpVAR for subexponential distributed severities, Part I ] Consider

the Standard LDA model for fixed t > 0 and a subexponential severity with distribution

function F . Assume, moreover, that the tail estimate (2.5) holds. Then, VARt(κ)

satisfies the approximation

VARt(κ) = F←
(

1− 1− κ

EN(t)
(1 + o(1))

)
, κ → 1 . (2.6)
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Proof. Note first that κ → 1 is equivalent to x → ∞. Then recall that o(1) always

stands for a function, which tends to 0, if its argument tends to a boundary, in our

case if κ → 1 or x →∞. With this notation relation (2.5) can be rewritten as

Gt(x) = 1− EN(t) F (x)(1 + o(1)) , x →∞ .

Setting the right hand side equal to κ gives an asymptotic solution

F (x) = 1− 1− κ

EN(t)
(1 + o(1)) , x →∞ ,

and, finally,

x = G←
t (κ) = F←

(
1− 1− κ

EN(t)
(1 + o(1))

)
, κ → 1 . ¤

An equivalent but sometimes more convenient and more natural way to express

VARt(κ) in the context of high quantiles is by means of the tail of the severity distri-

bution F (·) instead of F (·) directly. This can easily be achieved by noting that 1/F is

increasing, hence,

F←(κ) = inf{x ∈ R : F (x) ≥ κ}
= inf{x ∈ R : 1/F (x) ≥ 1/(1− κ)}
=:

(
1

F

)← (
1

1− κ

)
, 0 < κ < 1 . (2.7)

This implies the following Corollary.

Corollary 2.1.13. Consider the situation as in Theorem 2.1.12. Then, OpVAR is

given by

VARt(κ) =

(
1

F

)← (
EN(t)

1− κ
(1 + o(1))

)
, κ → 1 . (2.8)

For some general subexponential distribution function F ∈ S, the right-hand side

of (2.6) is not always asymptotically equivalent to F←(
1− 1− κ

EN(t)

)
as κ ↑ 1. Consider

the following example.

Example 2.1.14. Consider (1/F )←(y) = exp(y + y1−ε) for some 0 < ε < 1 with

y = 1/(1 − κ), i.e. κ ↑ 1 equivalent to y → ∞. Then (1/F )←(y) = exp(y(1 + o(1)),

but (1/F )←(y)/ey = exp(y1−ε) →∞ as y →∞. This situation typically occurs, when

F ∈ R0, i.e. for extremely heavy-tailed models. ¤

However, if we restrict the class subexponential distributions, we can formulate the

analytical OpVAR result as follows.
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Theorem 2.1.15. [OpVAR for subexponential distributed severities, Part II] Consider

the Standard LDA model for fixed t > 0 and a subexponential severity with distribution

function F . Assume, moreover, that the tail estimate (2.5) holds.

(i) If F ∈ S ∩ (R∪R∞), then VARt(κ) is asymptotically given by

VARt(κ) =

(
1

Gt

)← (
1

1− κ

)
∼ F←

(
1− 1− κ

EN(t)

)
, κ ↑ 1 . (2.9)

(ii) The severity distribution tail belongs to R−α for α > 0, i.e. F (x) = x−αL(x) for

x ≥ 0 and some slowly varying function L if and only if

VARt(κ) ∼
(

EN(t)

1− κ

)1/α

L̃

(
1

1− κ

)
, κ ↑ 1 , (2.10)

where L̃
(

1
1−·

) ∈ R0.

Proof. (i) This is a consequene of Theorem 2.1.12 in combination with Proposi-

tion 2.1.9.

(ii) By Definition 2.1.10, VARt(κ) = G←(κ). By (2.5) we have Gt(x) ∼ EN(t) F (x)

as x →∞. From Proposition 2.1.9 it follows that

(
1

Gt

)← (
1

1− κ

)
∼

(
1

F

)← (
EN(t)

1− κ

)
=

(
EN(t)

1− κ

)1/α

L̃

(
EN(t)

1− κ

)
, κ ↑ 1 ,

and the result follows. ¤

We refrain from giving more information on the relationship between L and L̃ (which

can be found in [7]) as it is rather involved and plays no role in this Chapter. When

such a model is fitted statistically, then L and L̃ are usually replaced by constants;

see Embrechts et al. [29], Chapter 6. In that case L ≡ θα results in L̃ ≡ θ as in the

following example. To indicate that the equivalence of Theorem 2.1.15(ii) does not

extend to subexponential distribution tails in R∞ we refer to Example 2.3.10.

Theorems 2.1.12 and 2.1.15 hold for a quite general class of LDA models and are

remarkable for two reasons. First, they allow for closed-form solutions of asymptotic

OpVAR for many popular specifications of the severity distribution, see Table 2.1.16.

Moreover, (2.9) says that OpVAR at high confidence levels only depends on the tail and

not on the body of the severity distribution. Therefore, if one is only interested in VAR

calculations, modelling the whole distribution function F is superfluous. Instead, to

obtain a first order approximation for the OpVAR for a specific LDA model, it suffices

to combine (2.6) with the subexponential tail of the severity distribution F , see also

Section 2.1.5.
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Name VARt(κ)

Lognormal exp

[
µ− σ Φ−1

(
1− κ

EN(t)

)]

Weibull θ

[
ln

(
EN(t)

1− κ

)] 1
τ

Pareto θ

[(
EN(t)

1− κ

)1/α

− 1

]

Table 2.1.16. First order approximations of VARt(κ) as κ → 1 for the aggregate loss dis-
tribution for popular severity distributions. Set EN(t) = λ t for a Poisson distributed and
EN(t) = γ t/β for a negative binomially distributed frequency.

Second, because the frequency enters in expression (2.6) only with its expectation

EN(t), it is also not necessary to calibrate a specific counting process; estimating the

sample mean of the frequency suffices. As a consequence thereof, over-dispersion as

modelled by the negative binomial distribution, has asymptotically no impact on the

OpVAR.

2.1.4 A Refinement of the Analytic OpVAR Formula

In this Section we assume that the severity distribution F ∈ S has finite expectation

µ := EXk, assuring that the aggregate operational loss has finite expectation given by

ES(t) = EN(t) µ.

Let us again consider equation (2.5), which has an interesting interpretation. Recall

that the distribution tail of the aggregate loss can be written as

Gt(x) =
∞∑

n=0

P (S(t) > x|N(t) = n) P (N(t) = n)

=
∞∑

n=0

F n∗(x) P (N(t) = n) , x ≥ 0, t ≥ 0 .

Since F is subexponentially distributed, we have (see Embrechts et al. [29], Definition

1.3.3),

F n∗(x) ∼ n F (x), x →∞ ,

and we can write for a fixed t ≥ 0,

P (S(t) >x|N(t) = n) ∼ nF (x) ∼ n F (x)F n−1(x) =: np(1− p)n−1 , x →∞ . (2.11)
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This can be interpreted as follows: Consider a Bernoulli random variable for which

“success”, defined as a very large loss that impacts the OpVAR figure significantly,

occurs only with a very small probability p = P (Xi > x) = F (x), and “failure’, defined

as a small or negligible loss, occurs with probability 1− p = F (x). Hence, from (2.11)

we infer that for very large x the conditional aggregate loss P (S(t) >x|N(t) = n) can

be approximated by a binomial distribution where the number of successes that occur

in n trials equals 1. This is sometimes referred to as the single-loss approximation of

OpVAR.

A consequence of the single-loss interpretation is that approximation (2.9) usually

underestimates OpVAR because in reality all (and not only one) loss events Xk, k =

1, . . . , n, contribute to the aggregate loss S(t) and therefore to OpVAR. Clearly, this

effect is expected to be stronger for large frequency expectations and when severities

are not extremely heavy-tailed.

These considerations suggest a natural adjustment of the single-loss approximation

by taking the expected losses of the individual claims into account. This approach can

also be motivated by the so-called large-deviation theory where one investigates the

asymptotic behaviour of random sums like (2.1) when both x and n are varying to-

gether. Then, uniform convergence can be achieved when S is replaced by the centered

random variable Ŝ(t) = S(t)−ES(t), see for example Proposition 8.6.4. of Embrechts

et al. [29] or Klüppelberg and Mikosch [43].

Now, one property of subexponential distributions F is that (see Embrechts et

al. [29], Lemma 1.3.5)

lim
x→∞

F (x− y)

F (x)
= 1, y ∈ R ,

which implies the following relationships for µ > 0, EN(t) > 0, and a fixed t ≥ 0

Gt(x) ∼ Gt(x + EN(t)µ) , x →∞ ,

F (x) ∼ F (x + µ) , x →∞ .

Together with (2.5) we then obtain

Gt(x + EN(t)µ) ∼ EN(t)F (x + µ) , x →∞ ,

which finally yields the following refined approximation for OpVAR

VARt(κ) = F←
(

1− 1− κ

EN(t)
(1 + o(1))

)
+ (EN(t)− 1)µ, κ → 1 . (2.12)

In the light of equation (2.12) and in contrast to the single-loss interpretation (2.6),

OpVAR can now be thought of as the result of two different components: first, exactly
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one single extreme loss at very high confidence level and, second, (EN(t)−1) expected

losses of expected loss size µ, which we refer to as mean correction.

Note that the mean correction term (EN(t)−1)µ of equation (2.12) does not depend

on the confidence level κ, it is just a constant. Hence, for κ → 1 approximation (2.12)

asymptotically equals the standard single loss approximation of OpVAR.

2.1.5 Models with Pareto-Like Severity Tails

We now formulate explicit results for the single loss approximation and discuss its

consequences for OpVAR in the important case of Pareto-like distributed severities.

With respect to the loss frequency, we confine ourself to the Poisson-LDA model as

described in Example 2.1.2, and therefore we will consequently replace EN(t) by λ t.

Pareto’s law is the prototypical parametric example for a heavy tailed distribu-

tion and suitable for modelling loss severities in operational risk. This was shown by

Moscadelli [54] who investigated empirical loss data collected by the Basel Committee

during 2001.

The Poisson-Pareto LDA is a Standard LDA as given in Definition 2.1.1, where the

loss severities (Xk)k∈N are Pareto distributed; i.e. for parameters α, θ > 0

F (x) =
(
1 +

x

θ

)−α

, x > 0 . (2.13)

Motivated by extreme value methods, [54] reports results for 1/α in a range between

approximately 0.6 and 1.5, corresponding to α roughly between 0.7 and 1.7. For all

such α the severity distribution has infinite variance and for α ≤ 1 even the mean value

does not exist.

As a result of Theorem 2.1.12, we obtain for the OpVAR

VARt(κ) ∼ θ

(
λ t

1− κ

)1/α

, κ → 1 . (2.14)

Figure 2.1.17 compares the analytical OpVAR estimate (2.14) with the results of

a Monte Carlo simulation for the Pareto-LDA with different shape parameters α and

θ = 1. We see that the best approximation is obtained for extremely heavy-tailed data,

i.e. for small values of α. Consequently, for operational loss data, our approximation

should be very good.

Time Scaling in the Pareto Severity Model

A well-known formula in risk management is the square-root-of-time rule for deriving

multi-period VAR values from 1-period values. This scaling law is based on the well-

known property of the normal distribution, which says that the sum of n iid centered
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Figure 2.1.17. Comparison of approximated OpVAR given by (2.14) (dashed line) and the
simulated OpVAR (solid line) for the Pareto-Poisson LDA with θ = 1.

normal random variables, when scaled by
√

n is again normally distributed. As a

generalisation, the central limit theorem guarantees that the sum of n iid random

variables with finite variance (with arbitrary distribution and centred by its mean)

converges for n → ∞, when scaled by
√

n, to a standard normal distribution. It

can be shown that the central limit theorem holds also for Pareto-LDA models, when

proper adjustments have been made for the random number N(t) of summands; see

Embrechts, Klüppelberg and Mikosch [29], Theorems 2.5.7 and 2.5.9. Note that for

α < 2 neither is scaling by
√

n correct nor does the normal distribution appear as a

limit for n → ∞. Instead scaling has to follow a 1/α-root and the limit is a so-called

stable distribution, which is much heavier-tailed than the normal law.

We are, however, not aiming at a limit law for n → ∞, respectively N(t) →
∞ (which means t → ∞), but for a simple multi-period OpVAR based on 1-period

values. Moreover, we consider approximations in the very far out tail of a heavy-tailed

distribution. Consequently, a central limit argument may be misleading, and scaling

with the square-root factor is even for a finite variance model not justified.

We may, however, infer from (2.14) that for all fixed t > 0,

VARt(κ) ∼ t1/α VAR1(κ) , κ → 1 . (2.15)

Consequently, in the case of a Pareto-LDA model, we have an α-root-of-time rule for

the OpVAR. Inserting typical values for α, (2.15) implies that the threat of losses due

to operational risk increases rapidly (and much faster than the outcome of the square-

root-rule) when considering future time horizons. To put it simply, operational risk

can be a long-term killer!
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Maxima of Operational Losses

Consider OpVAR at confidence level κ and time horizon t = 1 year, i.e. the potential

1-year loss that is exceeded only with small probability 1 − κ. From the law of large

numbers we know that for large N an event with probability p occurs on average Np

times in a series of N observations. Therefore, in case of yearly data, for κ = 0.1%,

OpVAR can be heuristically interpreted as the once-in-a-thousand-year event. There

is, however, a different interpretation of OpVAR that is closely related to the sample

maxima among a sequence of N(t) iid loss variables Xi within a given time period [0, t],

M(t) = max(X1, . . . , XN(t)), t ≥ 0.

For the Standard LDA from Definition 2.1.1, setting P (N(t) = n) = pt(n) and defining

Mn = max(X1, . . . , Xn) for n ∈ N, we can immediately calculate the distribution

function GM of M(t) for any fixed t > 0.

GM(x) = P (M(t) ≤ x) =
∞∑

n=0

pt(n) P (Mn ≤ x) =
∞∑

n=0

pt(n) F n(x) , x ≥ 0 .

If the frequency follows a Poisson process with intensity λ > 0, we obtain

GM(x) =
∞∑

n=0

e−λt (λt)n

n!
F n(x) = e−λ t F (x) , x ≥ 0 . (2.16)

We now ask for the most probable value xmp of the maximum, the mode of GM . If

F has a differentiable density f with derivative f ′, then also GM has a differentiable

density gM with derivative g′M . In this case, the mode of GM is determined as the

solution xmp to

g′M(x) = e−λt F (x) λ t
[
λ t f 2(x) + f ′(x)

]
= 0

and, thus, xmp is the solution to

λ t f 2(x) + f ′(x) = 0 .

For most realistic severity distributions xmp will be unique. In the important example

of a Pareto distribution we have

xmp = θ

[(
α λ t

1 + α

)1/α

− 1

]
≈ θ

(
α λ t

1 + α

)1/α

. (2.17)

Note the similarity between the VAR formula (2.14) and the right hand side of (2.17).

We finally arrive at the following approximate relationship between the OpVAR at
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κ
α

99.0 % 99.9 % 99.95 %

1.2 77 524 934

1.0 200 2 000 4 000

0.8 871 15 496 36 857

Table 2.1.18. The factor
(

1+1/α
1−κ

)1/α
of equation (2.18) for α and κ in a realistic range.

time horizon t and the most probable value of the maximum loss event during that

time period for κ near 1,

VARt(κ) ≈
(

1 + 1/α

1− κ

)1/α

xmp . (2.18)

It is worth mentioning that this result does not depend on the frequency process,

but only on the shape parameter α and the confidence level κ. For any given xmp,

Table 2.1.18 clearly shows the sensitivity of the corresponding OpVar of the shape

parameter and the confidence level.

The question arises, whether (2.18) can be used as an alternative approximation for

OpVar. Unfortunately, estimating xmp by a reliable empirical method would require

a vast amount of loss data, which are currently not available. The underlying data

should consist of annual maximal losses for the last years, which define a histogram,

from which xmp can be read off. Therefore, a large amount of annual maxima would

have to be collected before xmp could be estimated, where presumably the iid property

would be violated simply by non-stationarity in a long time series.

However, the right hand side of (2.18) can, for instance, be estimated by scenario

analyses and expert-based risk assessment. An experienced risk manager may guessti-

mate the maximum-one-year loss caused by a single event within the next year. Annual

maximal losses of previous years may guide the way. Such estimates, interpreted as

the most probable value xmp, then yield an expert-approximation of the OpVAR as it

is required by the Basel Committee.

The Generalised Pareto Distribution Model

Needless to say, (2.14) asymptotically holds for all Pareto-like severity distributions

satisfying F (x) ∼ (x/θ)−α as x → ∞. Nevertheless, instead of directly using the gen-

eral concept of regular variation for modelling the entire severity distribution, we now

invoke here the so-called POT method (an achronym for “peaks over threshold”), which

is a classical technique of extreme value theory. The POT method is based on the fact
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Figure 2.1.19. Probability density function of a model where high severity losses above a threshold
u > 0 follow a GPD (solid line). The distribution body (dotted line) is differently modelled by e.g. a
lognormal or Weibull distribution. The tail weight w corresponds to the shaded area under the curve.

that (under weak regularity conditions, see Embrechts, Klüppelberg & Mikosch [29],

Section 3.4 for details) loss data above a high threshold u follow a generalised Pareto

distribution (GPD). The body of the severity distribution is estimated by the empiri-

cal distribution function, i.e. for losses with moderate size below the threshold u any

arbitrary distribution is possible. This situation is depicted in Figure 2.1.19, which

schematically shows the probability density function of such a mixed severity distribu-

tion. The appropriateness of heavy-tailed GPD models in the context of operational

risk has been justified very convincingly e.g. in Moscadelli [54]; an example for its

practical implementation can be found in Nguyen & Ottmann [55].

In such a model, the heavy-tailed severity distribution above a high threshold u > 0

(i.e. high severity loss) is parameterised for ξ, β, > 0 by

F (x) = w

(
1 + ξ

x− u

β

)−1/ξ

, x > u > 0 , (2.19)

where w = w(u) ∈ (0, 1) describes the relative number of losses above u, sometimes

referred to as the tail weight of F , and ξ is called the tail parameter. Note that (as ξ > 0

is required) the GPD is a Pareto distribution including besides the shape parameter

ξ also a location and scale parameter. This proves particularly useful for statistical

analyses. Moreover, in contrast to the general concept of regular variation, it makes

the slowly varying function precise, namely a constant: F (x) ∼ w(ξ/β)−1/ξx−1/ξ as

x →∞. As a consequence of (2.9), analytic stand-alone OpVAR is then for fixed t > 0
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given explicitly by

VARt(κ) ∼ u +
β

ξ

[(
w λ t

1− κ

)ξ

− 1

]
, κ ↑ 1 (2.20)

where w λ denotes the expected number of losses per unit time above a threshold u.

Note that the threshold u enters the OpVAR approximation in two different ways. First,

explicitly by the linear term on the right-hand side of (2.20). However, in practical

calculations, for typical parameterisations of LDA models OpVAR at high confidence

level κ will be approximated sufficiently well by neglecting u and only evaluating the

second term on the right-hand side of (2.20). Second, and even more important,

the threshold u implicitly enters OpVAR by influencing w and thus the effective loss

frequency used in formula (2.20). Hence our result again shows how important a careful,

sound and proper calibration of an operational risk models is in order not to fall into

the model and calibration risk’s trap.

2.2 Multivariate Models for Operational Risk

2.2.1 Introduction

Usually, total aggregate loss of a financial institution is not modelled directly by means

of (2.1). Instead, operational losses (and thus operational risk) is attributed to different

loss types and business lines. For instance, Basel II distinguishes 7 loss types and 8

business lines, yielding a matrix of 56 operational risk cells. Then, in the prototypical

multivariate LDA model, for each cell i = 1, . . . , d, the cumulated operational loss Si(t)

up to time t is described by an aggregate loss process

Si(t) =

Ni(t)∑

k=1

X i
k , t ≥ 0 , (2.21)

where for each i the sequence (X i
k)k∈N are iid positive random variables describing

the severity of each loss event, and (Ni(t))t≥0 counts the number of losses in the time

interval [0, t], the frequency process, independent of (X i
k)k∈N, see also Definition 2.1.1.

A required feature of any AMA model of Basel II [5] is that it allows for explicit

correlations between different operational risk events. More precisely, in the context of

multivariate LDA models, banks can explicitly consider the dependency between losses

occurring in different event type/business line cells, and thus the question is how such

a dependence structure affects a bank’s total operational risk.

The bank’s total operational risk is simply given by the stochastic process

S+(t) := S1(t) + S2(t) + · · ·+ Sd(t) , t ≥ 0 . (2.22)
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The present literature suggests to model dependence between different operational risk

cells by means of different concepts, which basically split into models for frequency

dependence on the one hand and for severity dependence on the other hand. Some

important techniques are

¤ modelling dependence between the number of losses N1(t), . . . , Nd(t) occurring

within t1 = 1 year via correlation or copulas, see e.g. Aue & Kalkbrenner [1], Bee [3],

or Frachot, Roncalli & Salomon [32],

¤ introducing coincident loss events by a common-shock model, see e.g. Lindskog &

McNeil [46], or Powojowski, Reynolds & Tuenter [57],

¤ modelling dependence between the severities of those losses that occur at the same

points in time, see e.g. Chavez-Demoulin, Embrechts & Nešlehová [22],

¤ for t1 = 1 year, modelling dependence between the distribution functions of the

aggregate marginal processes Si for i = 1, . . . , d by means of distributional copulas.

For the practical implementation of LDA models, the first of the approaches above is

probably most popular in the banking industry. Its main advantage is that correlation

estimates between the yearly number of loss events within each operational risk cell can

be quite easily calculated from empirical loss data. However, it has been reported by

e.g. Aue & Kalkbrenner [1] or Bee [3] that the impact of a specific copula or the level of

loss-number correlation (sometimes referred to as frequency correlation) has only little

impact on the economic capital for operational risk. We will give some mathematical

reasoning to support this observation later in this Chapter.

Here we suggest a different model. From a mathematical point of view, in contrast

to the models proposed in Chavez-Demoulin et al. [22], we stay within the class of

multivariate Lévy processes, a class of stochastic processes, which has been well studied

also in the context of derivatives pricing; see e.g. Cont and Tankov [24]. In contrast to

the approaches above, dependence in frequency and severity between different cells is

modelled at the same time using one and the same concept, namely that of the Lévy

copula (see e.g. Cont & Tankov [24], Kallsen and Tankov [39], Barndorff-Nielsen and

Lindner [4], and also Klüppelberg & Resnick [40] for a related concept). This yields a

model with comparably few parameters, which particularly in the light of spare data

at hand may be a viable alternative to other, more complex models.

Our model has the same advantage as distributional copulas: the dependence struc-

ture between different cells can be separated from the univariate problem, i.e. the

marginal loss processes Si for i = 1, . . . , d. Consequently, with a rather transparent

dependence model, we are able to model the possibility of coincident losses occurring

in different cells.
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2.2.2 Lévy Processes, Tail Integrals, and Lévy Copulas

Since operational risk is only concerned with losses, we restrict ourselves to Lévy pro-

cesses admitting only positive jumps in every component, hereafter called spectrally

positive Lévy processes. As a consequence of their independent and stationary in-

crements, Lévy processes can be represented by the Lévy-Khintchine formula, which

for a d-dimensional spectrally positive Lévy processes S without drift and Gaussian

component simplifies to

E(ei (z,St)) = exp
{

t

∫

Rd
+

(ei(z,x) − 1) Π(dx)
}

, z ∈ Rd ,

where Π is a measure on Rd
+ = [0,∞)d, called the Lévy measure of S and (x, y) :=∑d

i=1 xiyi for x, y ∈ Rd denotes the inner product.

Whereas the dependence structure in a Gaussian model is well-understood, depen-

dence in the Lévy measure Π is much less obvious. Nevertheless, as Π is independent

of t, it suggests itself for modelling the dependence structure between the components

of S, leading to the concept of Lévy copulas.

Distributional copulas are multivariate distribution functions with uniform marginals.

They are used for dependence modelling within the context of Sklar’s theorem, which

states that any multivariate distribution with continuous marginals can be transformed

into a multivariate distribution with uniform marginals. This concept exploits the fact

that distribution functions have values only in [0, 1]. In contrast, Lévy measures are in

general unbounded on Rd and may have a non-integrable singularity at 0, which causes

problems for the copula idea. Within the class of spectrally positive compound Poisson

models, the Lévy measure of the cell process Si is given by Πi([0, x)) = λiP (X i ≤ x)

for x ∈ [0,∞). It follows that the Lévy measure is a finite measure with total mass

Πi([0,∞)) = λi and, therefore, is in general not a probability measure. Since we are

interested in extreme operational losses, we prefer (as is usual in the context of general

Lévy process theory) to define a copula for the tail integral. Although we shall mainly

work with compound Poisson processes, we formulate definitions and some results and

examples for the slightly more general case of spectrally positive Lévy processes.

Definition 2.2.1. [Tail integral] Let X be a spectrally positive Lévy process in Rd with

Lévy measure Π. Its tail integral is the function Π : [0,∞]d → [0,∞] satisfying for

x = (x1, . . . , xd),

(1) Π(x) = Π([x1,∞)× · · · × [xd,∞)) , x ∈ [0,∞)d ,

where Π(0) = limx1↓0,...,xd↓0 Π([x1,∞)× · · · × [xd,∞))

(this limit is finite if and only if X is compound Poisson);
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(2) Π is equal to 0, if one of its arguments is ∞;

(3) Π(0, . . . , xi, 0, . . . , 0) = Πi(xi) for (x1, . . . , xd) ∈ Rd
+, where Πi(xi) = Πi([xi,∞))

is the tail integral of component i.

Definition 2.2.2. [Lévy copula] A d-dimensional Lévy copula of a spectrally positive

Lévy process is a measure defining function Ĉ : [0,∞]d → [0,∞] with marginals, which

are the identity functions on [0,∞].

The following is Sklar’s theorem for spectrally positive Lévy processes.

Theorem 2.2.3. [Cont and Tankov [24], Theorem 5.6] Let Π denote the tail integral of

a d-dimensional spectrally positive Lévy process, whose components have Lévy measures

Π1, . . . , Πd. Then there exists a Lévy copula Ĉ : [0,∞]d → [0,∞] such that for all

x1, . . . , xd ∈ [0,∞]

Π(x1, . . . , xd) = Ĉ(Π1(x1), . . . , Πd(xd)). (2.23)

If the marginal tail integrals Π1, . . . , Πd are continuous, then this Lévy copula is unique.

Otherwise, it is unique on RanΠ1 × · · · × RanΠd.

Conversely, if Ĉ is a Lévy copula and Π1, . . . , Πd are marginal tail integrals of spectrally

positive Lévy processes, then (2.23) defines the tail integral of a d-dimensional spectrally

positive Lévy process and Π1, . . . , Πd are tail integrals of its components.

The following two important Lévy copulas model extreme dependence structures.

Example 2.2.4. [Complete (positive) dependence]

Let S(t) = (S1(t), . . . , Sd(t)), t ≥ 0, be a spectrally positive Lévy process with marginal

tail integrals Π1, . . . , Πd. Since all jumps are positive, the marginal processes can never

be negatively dependent. Complete dependence corresponds to a Lévy copula

Ĉ‖(x) = min(x1, . . . , xd) ,

implying for the tail integral of S

Π(x1, . . . , xd) = min(Π1(x1), . . . , Πd(xd))

with all mass concentrated on {x ∈ [0,∞)d : Π1(x1) = · · · = Πd(xd)}. ¤

Example 2.2.5. [Independence]

Let S(t) = (S1(t), . . . , Sd(t)), t ≥ 0, be a spectrally positive Lévy process with marginal

tail integrals Π1, . . . , Πd. The marginal processes are independent if and only if they

never jump together, i.e. the Lévy measure Π of S can be decomposed into

Π(A) = Π1(A1) + · · ·+ Πd(Ad), A ∈ [0,∞)d (2.24)
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with A1 = {x1 ∈ [0,∞) : (x1, 0, . . . , 0) ∈ A}, . . . , Ad = {xd ∈ [0,∞) : (0, . . . , xd) ∈ A}.
Obviously, the support of Π are the coordinate axes. Equation (2.24) implies for the

tail integral of S

Π(x1, . . . , xd) = Π1(x1) 1x2=···=xd=0 + · · ·+ Πd(xd) 1x1=···=xd−1=0 .

It follows that the independence copula for spectrally positive Lévy processes is given

by

Ĉ⊥(x) = x1 1x2=···=xd=∞ + · · ·+ xd 1x1=···=xd−1=∞ .

¤

2.2.3 The Lévy Copula Model

We now want to motivate our approach for modelling multivariate operational risk by

using Lévy copulas. Needless to say, multivariate OpVAR is still in its infancy and

so far the question regarding the right model cannot be answered only by statistical

analysis because reliable data are often still not available. There exists, however, a

model-theoretic rationale for our approach, which we want to briefly explain.

In accordance with the findings of a recent survey of the Basel Committee on

Banking Supervision [6] about AMA practices at financial services firms, we assume

that within each cell i the loss frequency process Ni in (2.21) follows a homogeneous

Poisson process with rate λi > 0, in particular, for every fixed t > 0,

P (Ni(t) = n)) = e−λit
(λit)

n

n!
, n ∈ N0 .

All loss severities within cell i are independent and have the same severity distribution

function Fi(x) = P (X i ≤ x) for x ∈ [0,∞). Then the aggregate loss (2.21) for each

cell constitutes a compound Poisson process and, hence, is a Lévy process (the only

Lévy process with piecewise constant sample paths).

As a matter of fact, the definition of 56 different cells based on seven loss event

types and eight business lines as suggested by the Basel Committee [5] is quite arbitrary.

Actually, many banks are using a less dimensional cell matrix, which basically means

e.g. that they apply a compound Poisson LDA to a union of some of the Basel II

cells. Such a procedure, however, is only consistent with the overall framework of a

compound Poisson model, if we require that every additive conjunction of different

cells constitutes an aggregate loss process that again is a univariate compound Poisson

process; in particular, with common severity distribution Fi+j(·) and frequency λi+j,

i.e. for such i 6= j,

Si(·) + Sj(·) := Si+j(·) ∈ compound Poisson processes . (2.25)
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Or, put another way, a natural requirement of a multivariate LDA model should be

that it does not directly depend on the structure of the event type/business line matrix

and thus on the business organization. As a direct consequence of the standard LDA

model, rigorously applied to several operational risk cells we obtain an “invariance

principle” any mathematical OpRisk model has to satisfy.

As we will show below, (2.25) holds true, whenever the vector of all marginal aggre-

gate loss processes (S1(t), . . . , Sd(t))t≥0 constitutes a d-dimensional compound Poisson

process. Therefore, the problem is how the different one-dimensional compound Pois-

son processes Si(·) =
∑Ni(·)

k=1 X i
k can be combined to form a d-dimensional compound

Poisson process S(t) = (S1(t), . . . , Sd(t))t≥0 with, in general, dependent components.

If we are only interested in one fixed time point, say t1 = 1 year, we can consider

(S1(t1), . . . , Sd(t1)) simply as a vector of static random variables with distribution func-

tions Gi,t1(xi) = P (Si(t1) ≤ xi) for i = 1, . . . , d and xi ≥ 0. Now, it is well-known that

the dependence structure of a multidimensional random vector can be disentangled

from its marginals by introducing a distributional copula. More precisely, Sklar’s now

famous theorem states that any multivariate distribution with continuous marginals

can be transformed into a distribution with uniform marginals. Therefore, choosing

an appropriate distributional copula C at t1 we could write for the aggregate loss

distribution function

P (S1(t1) ≤ x1, . . . , Sd(t1) ≤ xd) = Gt1(x1, . . . , xd) = C(G1,t1(x1), . . . , Gd,t1(xd)) .

However, switching on time-dependence again in the marginals, the related process

(S(t))t≥0, will in general not be a multivariate compound Poisson process and thus,

contradictory to our requirement (2.25), the multivariate model may not be invariant

under a re-design of the cell matrix.

Another kind of model frequently used is the following one, or at least a variation

of it. Fix a time horizon t > 0, and again model the accumulated losses of each

operational risk cell i = 1, . . . , d by a compound Poisson random variable Si(t). Then,

model the dependence between both the loss sizes in different cells and the dependence

between the frequency variables Ni(t) by appropriate distributional copulas, where for

the latter one has to take the discreteness of these variables into account. Considering

this model as a dynamic model in time, it again does not constitute a multivariate

compound Poisson model as it is required by (2.25), but instead leads outside the well-

studied class of Lévy processes. This can be easily seen as follows: since a Poisson

process jumps with probability 0 at any fixed time s > 0, we have for any jump

time s of Nj(·) that P (∆Ni(s) = 1) = 0 for i 6= j, hence any two of such processes

never jump at the same time. However, as described in Section 2.2.2, dependence

in multivariate compound Poisson processes—as in every multivariate Lévy process—
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means dependence in the jump measure, i.e. the possibility of joint jumps. Finally,

from a statistical point of view such a model requires a large number of parameters,

which, given the sparsity of data in combination with the task of estimating high

quantiles, will be almost impossible to fit.

Hence, the question is how dependence between different risk cells can be established

by at the same time also conserving the compound Poisson property of the multivariate

process over time. Clearly, the answer is given by Theorem 2.2.3. Since the multivariate

tail integral

Π(x1, . . . , xd) = Ĉ(Π1(x1), . . . , Πd(xd)) , x ∈ [0,∞]d .

defines a multivariate compound Poisson process (S1, . . . , Sd) (cf. Cont & Tankov [24],

Theorem 3.1), we conclude that the multivariate compound Poisson model in which

the marginal compound Poisson processes Si are coupled via a Lévy copula satisfies

(2.25). Hence, our Lévy copula model can be considered as the most natural and

straight-forward extension of the well-known univariate standard compound Poisson

LDA model to several dependent operational risk cells.

We now formulate the multivariate compound Poisson model.

Definition 2.2.6. [Multivariate compound Poisson model] The multivariate com-

pound Poisson model consists of:

(1) Cell processes.

All operational risk cells, indexed by i = 1, . . . , d, are described by an univariate com-

pound Poisson model with aggregate loss process Si, subexponential severity distribution

function Fi and Poisson intensity λi > 0, respectively.

(2) Dependence structure.

The dependence between different cells is modelled by a Lévy copula. More precisely,

let Πi : [0,∞) → [0,∞) be the tail integral associated with Si, i.e. Πi(·) = λi F i(·) for

i = 1, . . . , d, and let Ĉ : [0,∞)d → [0,∞) be a Lévy copula. Then

Π(x1, . . . , xd) = Ĉ(Π1(x1), . . . , Πd(xd))

defines the tail integral of the d-dimensional compound Poisson process S = (S1, . . . , Sd).

(3) Total aggregate loss process.

The bank’s total aggregate loss process is defined as

S+(t) = S1(t) + S2(t) + · · ·+ Sd(t) , t ≥ 0

with tail integral

Π
+
(z) = Π({(x1, . . . , xd) ∈ [0,∞)d :

d∑
i=1

xi ≥ z}) , z ≥ 0 . (2.26)
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The following result states an important property of the multivariate compound

Poisson model.

Proposition 2.2.7. Consider the multivariate compound Poisson model of Defini-

tion 2.2.6. Its total aggregate loss process S+ is compound Poisson with frequency

parameter

λ+ = lim
z↓0

Π
+
(z)

and severity distribution

F+(z) = 1− F
+
(z) = 1− Π

+
(z)

λ+
, z ≥ 0 .

Proof. Projections of Lévy processes are Lévy processes. For any compound Poisson

process with intensity λ > 0 and only positive jumps with distribution function F ,

the tail integral of the Lévy measure is given by Π(x) = λF (x), x > 0. Consequently,

λ = Π(0) and F (x) = Π(x)/λ. We apply this relation to the Lévy process S+ and

obtain the total mass λ+ of S+, which ensures that S+ is compound Poisson with the

parameters as stated. ¤

Definition 2.2.8. [Total OpVAR] Consider the multivariate compound Poisson model

of Definition 2.2.6. Then, total OpVAR up to time t at confidence level κ is the κ-

quantile of the total aggregate loss distribution G+
t (·) = P (S+(t) ≤ · ):

VAR+
t (κ) = G+←

t (κ) , κ ∈ (0, 1) ,

with G+←
t (κ) = inf{z ∈ R : G+

t (z) ≥ κ} for 0 < κ < 1.

2.2.4 A Bivariate Example

A bivariate model is particularly useful to illustrate how dependence modelling via Lévy

copulas works. Therefore, we now focus on two operational risk cells (index i = 1, 2)

with frequency parameters λi and severity distributions Fi so that the marginal tail

integrals are given by Πi(·) = λiF i(·) as explained in (2.2.1).

Before we consider the so-called Clayton Lévy copula in greater detail, we briefly

mention how in general parametric Lévy copulas can be constructed. The following

Proposition shows how Lévy copulas can be derived from distributional copulas and,

therefore, ensures that there exists a wide variety of potentially useful Lévy copulas

(see Cont & Tankov [24], Proposition 5.5).
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Proposition 2.2.9. Let C be a two-dimensional distributional copula and f : [0, 1] →
[0,∞] an increasing convex function. Then

Ĉ(u, v) = f(C(f−1(u), f−1(v))) , u, v ∈ [0,∞) ,

defines a two-dimensional positive Lévy copula.

Example 2.2.10. [Clayton Lévy copula]

Henceforth, the dependence structure between two operational risk cells shall be mod-

elled by a Clayton Lévy copula, which is similar to the well-known Clayton copula for

distribution functions and parameterized by δ > 0 (see Cont & Tankov [24], Exam-

ple 5.5):

Ĉδ(u, v) = (u−δ + v−δ)−1/δ , u, v ≥ 0 .

¤

We use this copula for mainly two reasons:

• This copula covers the whole range of positive dependence: For δ → 0 we obtain

independence of the marginal processes given by Ĉ⊥(u, v) = u1v=∞+v1u=∞, and losses

in different cells never occur at the same time. For δ →∞ we get the complete positive

dependence Lévy copula given by Ĉ‖(u, v) = min(u, v), and losses always occur at the

same points in time. By varying δ, the cell dependence changes smoothly between

these two extremes. However, it should be stressed that Ĉ‖ only leads to completely

dependent processes, if the marginal tail integrals are continuous. This is relevant for

dependence of compound Poisson processes, which create by definition a discontinuity

of the tail integral in 0, and this has to be discussed in detail below.

• The Clayton copula has a quite simple parametrization (only one parameter δ)

and, as we will see later, it allows for precise analytical calculations regarding total

aggregated OpVAR. Therefore, we consider the Clayton Lévy copula as particularly

useful to investigate different dependence scenarios.

The question what dependence between operational risk cells actually means is not

trivial, and with this regard we already mentioned some common modelling techniques

in the introduction. Some of them are quite flexible and sophisticated, however, also

very complex and often difficult to parameterize. In contrast, Lévy copulas and tail

integrals together lead to a quite natural interpretation of dependence in the context

of the multivariate compound Poisson model of Definition 2.2.6. To see this, we start

with the following decomposition of the marginal tail integral Π1 for x1 ≥ 0,

Π1(x1) = Π([x1,∞)× [0,∞)) , x1 ≥ 0 ,
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which basically measures the number of jumps larger than x1 in the first component,

regardless of the jumps in the second component (i.e. whether jumps with arbitrary

size occur or not). This together with Definition (2.2.1) and (2.23) leads to

Π1(x1) = Π([x1,∞)× [0,∞))

= Π([x1,∞)× {0}) + lim
x2↓0

Π([x1,∞)× [x2,∞))

= Π([x1,∞)× {0}) + lim
x2↓0

Π(x1, x2)

= Π([x1,∞)× {0}) + lim
x2↓0

Ĉ(Π1(x1), Π2(x2))

= Π([x1,∞)× {0}) + Ĉ(Π1(x1), λ2)

=: Π⊥1(x1) + Π‖1(x1) , x1 ≥ 0 , (2.27)

where Π⊥1(·) describes losses that occur in the first cell only without any simultaneous

loss in the second cell. In contrast, Π‖1(·) describes the expected number of losses per

unit time above x1 in the first cell that coincide with losses of arbitrary size in the

second cell (occurring with frequency λ2). Similarly we may write

Π2(x2) =: Π⊥2(x2) + Π‖2(x2) , x2 ≥ 0 . (2.28)

Connected with these decompositions of the marginal tail integrals, we obtain the

following split of the cells’ aggregate loss processes (the time parameter t is dropped

for simplicity):

S1 = S⊥1 + S‖1 =

N⊥1∑

k=1

X1
⊥k +

N‖∑

l=1

X1
‖l ,

S2 = S⊥2 + S‖2 =

N⊥2∑
m=1

X2
⊥m +

N‖∑

l=1

X2
‖l ,

(2.29)

where S‖1 and S‖2 describe the aggregate losses of cell 1 and 2, respectively, that are

generated by “common shocks”, and S⊥1 and S⊥2 are independent loss processes. Note

that apart from S‖1 and S‖2, all compound Poisson processes on the right-hand side of

(2.29) are mutually independent.

So far all these considerations are regardless of a specific Lévy copula. However, it

is clear that the relative “weights” of S‖1 and S‖2 compared to S⊥1 and S⊥2 directly

reflect the dependence structure and so all their parameters can be written in terms

of the Lévy copula. In the following we disentangle the dependence introduced by a

Lévy copula and describe precisely, what it results for loss times and loss severities.

Simultaneous loss times. We begin with the frequency of simultaneous losses,

which may in principle be arbitrarily small and, therefore, are given by

lim
x1,x2↓0

Π(x1, x2) = Ĉ(λ1, λ2) = lim
x↓0

Π‖2(x) = lim
x↓0

Π‖1(x) =: λ‖ .
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On one hand, in the case of independence, losses never occur at the same points in

time; on the other hand, for complete positive dependence we have Ĉ‖(u, v) = min(u, v).

Obviously,

0 ≤ λ‖ ≤ min(λ1, λ2) , (2.30)

In particular, maximum dependence is reached if all losses in the cell with the

smaller number of expected losses coincide with losses of the other cell.

A widespread concept for modelling dependence in operational risk is that of the

frequency correlation between two aggregate loss processes. In the compound Poisson

process approach (recall Sklar’s theorem for Lévy copulas), the correlation between the

number of losses N1(t) and N2(t) up to time t associated with S1 and S2, respectively,

is simply given by

ρ(N1(t), N2(t)) =
cov(N1(t), N2(t))√

var(N1(t)) var(N2(t))
=

λ‖√
λ1 λ2

. (2.31)

Obviously, for λ1 > λ2 the maximum possible frequency correlation is ρmax =
√

λ2/λ1.

So, for two cells with λ1 À λ2 this frequency correlation is restricted to relatively low

values.

Independent loss times. We now turn to the frequencies of the independent loss

processes S⊥1 and S⊥2. Using (2.27) and (2.28) we can write their tail integrals for

x1, x2 ≥ 0 as

Π⊥1(x1) = Π1(x1)− Π‖1(x1) = Π1(x1)− Ĉ(Π1(x1), λ2) , (2.32)

Π⊥2(x2) = Π2(x2)− Π‖2(x2) = Π2(x2)− Ĉ(λ1, Π2(x2)) ,

so that

λ⊥1 = lim
x↓0

Π⊥1(x) = λ1 − λ‖ , λ⊥2 = lim
x↓0

Π⊥2(x) = λ2 − λ‖ . (2.33)

Example 2.2.11. [Continuation of Example 2.2.10]

Recall the Clayton Lévy copula

Ĉδ(u, v) = (u−δ + v−δ)−1/δ , u, v ≥ 0

for δ ∈ (0,∞). In this case we calculate the frequency of simultaneous jumps as

λ‖ = (λ−δ
1 + λ−δ

2 )−1/δ , (2.34)

and the frequency correlation is given by

ρ(N1(t), N2(t)) =
λ‖√
λ1 λ2

=
(λ−δ

1 + λ−δ
2 )−1/δ

√
λ1 λ2

.
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Figure 2.2.12. Example how the cells’ loss frequencies are controlled by the Clayton Lévy
copula for λ1 = 1000 and λ2 = 10. Left axis: frequency λ‖ of the simultaneous loss processes
S‖1 and S‖2 as a function of the Lévy Clayton copula parameter δ (dashed line). Right axis:
frequency λ⊥1 of the independent loss process S⊥1 of the first cell as a function of the Lévy
Clayton copula parameter δ (solid line).

We show that, although the Clayton Lévy copula tends to Ĉ∞(u, v) = min(u, v) (i.e.

the complete dependence copula) as δ →∞, the processes S1 and S2 are not completely

dependent. Take two cells with λ1 = 1000 and λ2 = 10, then in Figure 2.2.12 both λ‖
and λ⊥1 are plotted as a function of the Lévy Clayton copula parameter δ. One can

see that even for δ → ∞ there are non-simultaneous losses occurring in only the first

cell with intensity λ⊥1 = λ1−λ2 = 990. Furthermore, the maximal possible correlation

in this model is ρmax = 10 %. ¤

Summarising we can say that since dependence of the loss frequency processes only

influence the number of expected losses, it follows that frequency correlation for every

model has only a very restricted impact on OpVAR.

Simultaneous loss severities and their distributional copula. Also the sever-

ity distributions of X1
‖ and X2

‖ as well as their dependence structure are determined

by the Lévy copula. To see this, define the joint survival function as

F ‖(x1, x2) := P (X1
‖ > x1, X

2
‖ > x2) =

1

λ‖
Ĉ(Π1(x1), Π2(x2)) (2.35)
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with marginals

F ‖1(x1) = lim
x2↓0

F ‖(x1, x2) =
1

λ‖
Ĉ(Π1(x1), λ2) (2.36)

F ‖2(x2) = lim
x1↓0

F ‖(x1, x2) =
1

λ‖
Ĉ(λ1, Π2(x2)) . (2.37)

To explicitly extract the dependence structure between the severities of simultaneous

losses X1
‖ and X2

‖ we use the concept of a distributional survival copula. In general, if

F (x1, x2) is a joint survival function with continuous marginals F i(xi), there exists a

unique survival copula Ŝ such that F (x1, x2) = Ŝ(F 1(x1), F 2(x2)) giving together with

the rhs of (2.35) the relation between Lévy copula and survival copula.

Example 2.2.13. [Continuation of Examples 2.2.10 and 2.2.11]

For the Clayton copula a straight-forward calculation using (2.35)–(2.37) shows that

the survival copula Ŝδ for the tail severity distributions F ‖1(·) and F ‖2(·) is the well-

known distributional Clayton copula; i.e. for δ > 0,

Ŝδ(u, v) = (u−δ + v−δ − 1)−1/δ, 0 ≤ u, v ≤ 1 .

Consequently, the distribution functions F‖1 and F‖2 (and thus the simultaneous losses

X1
‖ and X2

‖ ) are linked by a copula Cδ that is related to Ŝδ via

Cδ(u, v) = Ŝδ(1− u, 1− v) + u + v − 1

= ((1− u)−δ + (1− v)−δ − 1)−1/δ + u + v − 1, 0 ≤ u, v ≤ 1 . (2.38)

Specifically, for δ → ∞ we obtain the complete dependence distributional copula

C‖(u, v) = min(u, v), implying comonotonicity of the simultaneous losses X1
‖ and X2

‖ .

¤

Independent loss severities and their distributions. We obtain from (2.32)

for the severity distributions of non-simultaneous losses

F⊥1(x1) =
λ1

λ⊥1
F 1(x1)− 1

λ⊥1
Ĉ(λ1F 1(x1), λ2) ,

F⊥2(x1) =
λ2

λ⊥2
F 2(x2)− 1

λ⊥2
Ĉ(λ1, λ2F 2(x2)) .

Let us summarise the interpretation of multivariate operational risk as it is sug-

gested by our model.

• Dependence between different cells is solely due to the occurrence of simultaneous

loss events in different cells.

• There are two types of losses: independent ones, which happen in one single cell
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only and dependent ones, which happen simultaneously. The severity distributions

of dependent losses are themselves coupled by a distributional copula, which can be

derived from the Lévy copula (2.35), e.g. (2.38) in the case of a Clayton Lévy copula.

In particular, it follows that in general F‖1 and F‖2 are different from F1 and F2, re-

spectively. Also F⊥1 and F⊥2 are different from F1 and F2 as well as from F‖1 and F‖2,

respectively.

• Independence of different cells means that their losses never happen at the same

time, whereas complete dependence is equivalent to losses that always occur together.

This pattern is depicted in Figures 2.3.33-2.3.38 at the end of this Chapter where for

the Clayton Lévy copula sample paths and occurrence times of the bivariate compound

Poisson model are simulated for different copula parameters of δ = 0.3, 1 and 7. For

the purpose of a clearer illustration of the dependence structure, both cells are assumed

to have identical frequencies of λ1 = λ2 = 10. With respect to the severity, we used

Pareto distributed severities with tail parameters α1 = 1.2 and α2 = 2 and scale

parameters θ1 = θ2 = 1 in Figures 2.3.33-2.3.35, whereas in Figures 2.3.36-2.3.38 we

used lognormally distributed severities with parameters µ1 = µ2 = 5 and σ1 = σ2 = 1.5.

According to (2.34), the percentage average number of common losses related to the

different δ used are 10%, 50%, and 90%. The simulation is based on Algorithm 6.15 of

Cont & Tankov [24], which can be used for arbitrary severity distributions as well.

2.3 Approximating Multivariate OpVAR

2.3.1 Overview

In this Section we turn to the quantification of total operational loss encompassing all

operational risk cells and, therefore, we focus on the total aggregate loss process S+

defined in Definition 2.2.6. Our goal is to provide some general insight to multivariate

operational risk and to find out, how different dependence structures (modelled by

Lévy copulas) affect OpVAR.

In the context of multivariate operational risk, the estimate of the OpVAR of a

single cell (e.g. obtained by means of the single loss approximation od Theorem 2.1.15)

is often referred to as the cell’s stand alone OpVAR. Then, a first approximation to

the bank’s total OpVAR is obtained by summing up all different stand alone VAR

numbers. Indeed, the Basel committee requires banks to sum up all their different

operational risk estimates unless sound and robust correlation estimates are available;

cf. [5], paragraph 669(d). Moreover, this “simple-sum VAR” is often interpreted as

an upper bound for total OpVAR, with the implicit understanding that every other

(realistic) cell dependence model necessarily reduces overall operational risk.
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Figure 2.3.1. Decomposition of the domain of the tail integral Π+(z) for z = 6 into a
simultaneous loss part Π+

‖ (z) (grey area) and independent parts Π⊥1(z) (solid black line) and
Π⊥2(z) (dashed black line).

However, as is well recognised, simple-sum VAR may even underestimate total

OpVAR when severity data is heavy-tailed, which in practice it is, see e.g. Moscadelli

[54]. Therefore, to obtain a more accurate result, one needs more general models for

multivariate operational risk, such as the Lévy copula model we discuss here.

Though operational risk is usually modelled by separating several event type/business

line cells, we already know from Proposition 2.2.7 that a bank’s total OpVAR can be

thought of as effectively being a compound Poisson process with risk inter-arrival times

being exponentially distributed with finite mean λ+ and loss severities, which are inde-

pendent and identically distributed with distribution function F+(·). The associated

tail integral Π
+

of this total aggregate loss process S+ is given by (2.26) For d = 2 we

can write

Π
+
(z) = Π⊥1(z) + Π⊥2(z) + Π

+

‖ (z) , z ≥ 0 , (2.39)

where Π⊥1(·) and Π⊥2(·) are the independent parts defined in (2.27)-(2.28) and

Π
+

‖ (z) = Π({(x1, x2) ∈ (0,∞)2 : x1 + x2 ≥ z}) , z ≥ 0 ,

describes the dependent part due to simultaneous loss events. This is depicted in

Figure 2.3.1, where the support of Π
+

‖ (·) is shaded in orange, and the support of Π‖1(·)
and Π‖2(·) are solid black and dashed black lines, respectively.

Finally, if F+ is subexponentially distributed, we can apply the single loss approxi-

mation of Theorem 2.1.12 to estimate total OpVAR. In combination with the fact that
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(at first order) the loss frequency processes affects OpVAR only through the number

of expected losses, we conclude that total OpVAR is asymptotically only impacted by

the expected number of total loss events, EN+(t) = EN1(t) + · · · + ENd(t) = λ+ for

t ≥ 0. It follows that frequency correlation for every model has only a very restricted

impact on OpVAR and does not deserve much attention.

It has also been observed that total OpVAR is presumably affected by business

volume at time. Actually, this belief is a basic assumption both for the Basic Indicator

Approach and the Standardized Approach of Basel II [5], where capital charges for

operational risk are scaled by gross income. This idea can be included in the above

multivariate compound Poisson model by adapting the frequency. For each i = 1, . . . , d,

we leave the severity models X i untouched, as well as the independence of the severities

of the (no longer homogeneous) Poisson process Ni. However, instead of a constant

intensity, we model a time-dependent frequency depending on business volume: in

each single cell we replace ENi(t) = λit by ENi(t) =
∫ t

0
λi(s) ds for t > 0. This is then

plugged into formula (2.6) for the stand-alone OpVAR of cell i and consequently into

EN+(t) = λ+t for total OpVAR.

2.3.2 Losses Dominant in One Cell

Before we discuss different kinds of Lévy copula dependence structures, we formulate

a very general result for the situation, where the losses in one cell are regularly varying

and dominate all others. Indeed the situation of the model is such that it covers

arbitrary dependence structures, including also the practitioner’s models described

above.

Assume for fixed t > 0 for each cell model a compound Poisson random variable. De-

pendence is introduced by an arbitrary correlation or copula for (N1(·), . . . , Nd(·)) and

an arbitrary copula between the severity distributions F1(·) = P (X1 ≤ ·), . . . , Fd(·) =

P (Xd ≤ ·). Recall that the resulting model (S1(t), . . . , Sd(t))t≥0 does NOT consti-

tute a bivariate compound Poisson process and so is not captured by the multivariate

compound Poisson model of Definition 2.2.6. We want to calculate an approximation

for the tail P (S1(t) + S2(t) > x) for large x and total OpVAR for high levels κ. We

formulate the result in arbitrary dimension.

Theorem 2.3.2. [Dominating cell OpVAR] For fixed t > 0 let Si(t) for i = 1, . . . , d

have compound Poisson distributions. Assume that F 1 ∈ R−α for α > 0. Let ρ > α

and suppose that E[(X i)ρ] < ∞ for i = 2, . . . , d. Then regardless of the dependence
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structure between (S1(t), . . . , Sd(t)),

P (S1(t) + · · ·+ Sd(t) > x) ∼ EN1(t) P (X1 > x) , x →∞ ,

VAR+
t (κ) ∼ F←

1

(
1− 1− κ

EN1(t)

)
= VAR1

t (κ) , κ ↑ 1 . (2.40)

Proof. Consider d = 2. Note first that

P (S1(t) + S2(t) > x)

P (X1 > x)
(2.41)

=
∞∑

k,m=1

P (N1(t) = k, N2(t) = m)

P
( k∑

i=1

X1
i +

m∑
j=1

X2
j > x

)

P
( k∑

i=1

X1
i > x

)
P

( k∑
i=1

X1
i > x

)

P
(
X1 > x

) .

We have to find conditions such that we can interchange the limit for x →∞ and the

infinite sum. This means that we need uniform estimates for the two ratios on the right-

hand side for x →∞. We start with an estimate for the second ratio: Lemma 1.3.5 of

Embrechts et al. [29] applies giving for arbitrary ε > 0 and all x > 0 a finite positive

constant K(ε) so that

P
( k∑

i=1

X1
i > x

)

P (X1 > x)
≤ K(ε)(1 + ε)k .

For the first ratio we proceed as in the proof of Lemma 2 of Klüppelberg, Lindner and

Maller [42]. For arbitrary 0 < δ < 1 we have

P
( k∑

i=1

X1
i +

m∑
j=1

X2
j > x

)

P
( k∑

i=1

X1
i > x

) ≤
P

( k∑
i=1

X1
i > x(1− δ)

)

P
( k∑

i=1

X1
i > x

) +

P
( m∑

j=1

X2
j > xδ

)

P
( k∑

i=1

X1
i > x

) (2.42)

Regular variation of the distribution of X1 implies regular variation of the distribution

of
∑k

i=1 X1
i with the same index −α. We write for the first term

P
( k∑

i=1

X1
i > x(1− δ)

)

P
(
X1 > x(1− δ)

)
P

(
X1 > x(1− δ)

)

P
(
X1 > x

)
P

(
X1 > x

)

P
( k∑

i=1

X1
i > x

) .

For the first ratio we use the same estimate as above and obtain for all x > 0 the

upper bound K ′(ε)(1+ε)k. For the second ratio, using the so-called Potter bounds (cf.

Theorem 1.5.6 (iii) of Bingham, Goldie and Teugels [7]), for every chosen constants
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a > 0, A > 1, we obtain an upper bound A(1− δ)−(α+a) uniformly for all x ≥ x0 ≥ 0.

The third ratio is less or equal to 1 for all k and x.

As the denominator of the second term of the rhs of (2.42) is regularly varying, it can

be bounded below by x−(α+ρ′) for some 0 < ρ′ < ρ − α. By Markov’s inequality, we

obtain for the numerator

P
( m∑

j=1

X2
j > xδ

)
≤ (xδ)−ρ E

[( m∑
j=1

X2
j

)ρ
]
.

The so-called cρ-inequality (see e.g. Loéve [48], p. 157) applies giving

E
[
(

m∑
j=1

X2
j )ρ

] ≤ mcρE(X2
j )ρ

for cρ = 1 or cρ = 2ρ−1, according as ρ ≤ 1 or ρ > 1. We combine these estimates and

obtain in (2.41) for x ≥ x0 > 0,

P (S1(t) + S2(t) > x)

P (X1 > x)

≤
∞∑

k,m=1

P (N1(t) = k, N2(t) = m) (2.43)

(
K ′(ε)(1 + ε)k A(1− δ)−(α+a) + xα+ρ′(xδ)−ρ m cρ E[(X2

j )ρ]
)

K(ε)(1 + ε)k .

Now note that xα+ρ′−ρ tends to 0 as x →∞. Furthermore, we have

∞∑

k,m=0

P (N1(t) = k,N2(t) = m) = 1 ,

∞∑

k,m=1

P (N1(t) = k,N2(t) = m) k =
∞∑

k=1

P (N1(t) = k) k = ENk(t) < ∞ .

Consequently, the rhs of 2.43 converges. By Pratt’s Lemma (see e.g. Resnick [60],

Ex. 5.4.2.4), we can interchange limit and infinite sum on the rhs of (2.41) and obtain

lim
x→∞

P (S1(t) + S2(t) > x)

P (X1 > x)
=

∞∑

k=1

P (N1(t) = k) k = EN1(t) .

The result for d > 2 follows by induction.

Approximation (2.40) holds by Theorem 2.1.15(1). ¤

Within the context of multivariate compound Poisson models, the proof of this

result simplifies. Moreover, since a possible singularity of the tail integral in 0 is of no

consequence, it even holds for all spectrally positive Lévy processes. We formulate this

as a corollary.
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Corollary 2.3.3. Consider a multivariate spectrally positive Lévy process and suppose

that Π1 ∈ R−α. Furthermore, assume that for all i = 2, . . . , d the integrability condition

∫

x≥1

xρ Πi(dx) < ∞ (2.44)

for some ρ > α is satisfied. Then

lim
z→∞

Π
+
(z)

Π1(z)
= 1 . (2.45)

Moreover,

VAR+
t (κ) ∼ VAR1

t (κ) , κ ↑ 1 , (2.46)

i.e. total OpVAR is asymptotically dominated by the stand alone OpVAR of the first

cell.

Proof. We first show that (2.45) holds. From equation (2.44) it follows that for

i = 2, . . . , d

lim
z→∞

zρ Πi(z) = 0 . (2.47)

Since α < ρ, we obtain from regular variation for some slowly varying function L,

invoking (2.47),

lim
z→∞

Πi(z)

Π1(z)
= lim

z→∞
zρΠi(z)

zρ−αL(z)
= 0 , i = 2, . . . , d ,

because the numerator tends to 0 and the denominator to∞. (Recall that zεL(z) →∞
as z →∞ for all ε > 0 and L ∈ R0.)

We proceed by induction. For d = 2 we have by the decomposition as in (2.42)

Π
+

2 (z) := Π
+
(z) ≤ Π1(z(1− ε)) + Π2(z ε), z > 0, 0 < ε < 1.

It then follows that

lim sup
z→∞

Π
+

2 (z)

Π1(z)
≤ lim

z→∞
Π1(z(1− ε))

Π1(z)
+ lim

z→∞
Π2(z ε)

Π1(z ε)

Π1(z ε)

Π1(z)
= (1− ε)−α . (2.48)

Similarly, Π
+

2 (z) ≥ Π1((1 + ε)z) for every ε > 0 . Therefore,

lim inf
z→∞

Π
+

2 (z)

Π1(z)
≥ lim

z→∞
Π1((1 + ε)z)

Π1(z)
= (1 + ε)−α . (2.49)
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Assertion (2.45) follows for Π
+

2 from (2.48) and (2.49). This implies that Π
+

2 ∈ Rα.

Now replace Π1 by Π
+

2 and Π
+

2 by Π
+

3 and proceed as above to obtain (2.45) for general

dimension d. Finally, Theorem 2.1.15(1) applies giving (2.46). ¤

Hence, for arbitrary dependence structures, when the severity of one cell has reg-

ularly varying tail dominating those of all other cells, total OpVAR is tail-equivalent

to the OpVAR of the dominating cell. This implies that the bank’s total loss at high

confidence levels is likely to be due to one big loss occurring in one cell rather than an

accumulation of losses of different cells regardless of the dependence structure.

Example 2.3.4. [Dominating cell in the GPD model]

Consider the multivariate compound Poisson model of Definition 2.2.6 with arbitrary

Lévy copula and assume that large losses above a high threshold u > 0 in the first

cell have a GPD tail with tail weight w and parameters ξ, β > 0, given by (2.19).

Assume that λ > 0 denotes the frequency in the first cell and its severity distribution

F1 as above is tail-dominant to all other cell severities (which apart from that can have

arbitrary distribution functions), i.e. F i(x)/F 1(x) → 0 as x → ∞ for all i = 2, . . . , d.

Then, according to Theorem 2.3.2, S+ is a compound Poisson process with

P (S+(t) > z) ∼ λ t F 1(z) = λ t w

(
1 + ξ

z − u

β

)−1/ξ

, z →∞ ,

and total OpVAR is asymptotically given by

VAR+
t (κ) ∼ VAR1

t (κ) ∼ u +
β

ξ

[(
w λ t

1− κ

)ξ

− 1

]
∼ β

ξ

(
w λ t

1− κ

)ξ

, κ ↑ 1 .

¤

Note however, that from our equivalence results of Proposition 2.1.9 and Theo-

rem 2.1.15 we know that this is not a general property of any completely dependent

compound Poisson model with arbitrary subexponential severity distribution Fi. We

shall see in Example 2.3.10 below that the following does NOT hold in general for

x →∞ (equivalently κ ↑ 1):

F i(x) = o(F 1(x)) =⇒ VARi
t(κ) = o(VAR1

t (κ)) , i = 2, . . . , d .

2.3.3 Multivariate Compound Poisson Model with Completely

Dependent Cells

The assumptions of Theorem 2.3.2 may in many cases be quite realistic, however, it is

of course possible that two ore more cells’ severity distributions are tail equivalent, and
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then total OpVAR is expected to depend on the dependence structure, i.e. the Lévy

copula. Here and in the next sections we study two very basic multivariate compound

Poisson models in more detail, namely the completely dependent and the independent

one. Despite their extreme dependence structure, both models provide interesting and

valuable insight into multivariate operational risk.

Consider a multivariate compound Poisson model and assume that its cell processes

Si, i = 1, . . . , d, are completely positively dependent. In the context of Lévy processes

this means that they always jump together, implying that also the expected number

of jumps per unit time of all cells, i.e. the intensities λi, must be equal,

λ := λ1 = · · · = λd . (2.50)

The severity distributions Fi, however, can be different. Indeed, from Example 2.2.4

we infer that in the case of complete dependence, all Lévy mass is concentrated on

{(x1, . . . , xd) ∈ [0,∞)d : Π1(x1) = · · · = Πd(xd)} ,

or, equivalently,

{(x1, . . . , xd) ∈ [0,∞)d : F1(x1) = · · · = Fd(xd)} . (2.51)

Until further notice, we assume for simplicity that all severity distributions Fi are

strictly increasing and continuous so that F−1
i (q) exists for all q ∈ [0, 1). Together with

(2.51), we can express the tail integral of S+ in terms of the marginal Π1.

Π
+
(z) = Π({(x1, . . . , xd) ∈ [0,∞)d :

d∑
i=1

xi ≥ z})

= Π1({x1 ∈ [0,∞) : x1 +
d∑

i=2

F−1
i (F1(x1)) ≥ z}) , z ≥ 0 .

Set H(x1) := x1 +
∑d

i=2 F−1
i (F1(x1)) for x1 ∈ [0,∞) and note that it is strictly increas-

ing and therefore invertible. Hence,

Π
+
(z) = Π1({x1 ∈ [0,∞) : x1 ≥ H−1(z)}) = Π1

(
H−1(z)

)
, z ≥ 0 . (2.52)

Now we can derive an asymptotic expression for total OpVAR.

Theorem 2.3.5. [OpVAR for the completely dependent compound Poisson model]

Consider a multivariate compound Poisson model with completely dependent cell pro-

cesses S1, . . . , Sd and strictly increasing and continuous severity distributions Fi. Then,

S+ is compound Poisson with parameters

λ+ = λ and F
+
(·) = F 1

(
H−1(·)) . (2.53)
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If furthermore F
+ ∈ S ∩ (R∪R∞), total OpVAR is asymptotically given by

VAR+
t (κ) ∼

d∑
i=1

VARi
t(κ) , κ ↑ 1 , (2.54)

where VARi
t(κ) denotes the stand alone OpVAR of cell i.

Proof. Expression (2.53) immediately follows from (2.50) and (2.52),

λ+ = lim
z→0

Π
+
(z) = lim

z→0
λ F 1

(
H−1(z)

)
= λ F 1

(
lim
z→0

H−1(z)
)

= λ .

If F
+ ∈ S ∩ (R∪R∞), we may use (2.9) and the definition of H to obtain

VAR+
t (κ) ∼ H

[
F−1

1

(
1− 1− κ

λ t

)]
= F−1

1

(
1− 1− κ

λ t

)
+ · · ·+ F−1

d

(
1− 1− κ

λ t

)

∼ VAR1
t (κ) + · · ·+ VARd

t (κ), κ ↑ 1 .

¤

Theorem 2.3.5 states that for the completely dependent compound Poisson model,

total asymptotic OpVAR is simply the sum of the asymptotic stand alone cell OpVARs.

Recall that this is similar to the new proposals of Basel II, where the standard procedure

for calculating capital charges for operational risk is just the simple-sum VAR. Or stated

another way, regulators implicitly assume complete dependence between different cells,

meaning that losses within different business lines or risk categories always happen at

the same instants of time. This is often considered as the worst case scenario, which,

however, in the heavy-tailed case can be grossly misleading.

To illustrate the results so far, let us begin with a simple example, which describes

another regime for completely dependent cells.

Example 2.3.6. [Identical severity distributions]

Assume that all cells have identical severity distributions, i.e. F := F1 = . . . = Fd. In

this case we have H(x1) = d x1 for x1 ≥ 0 and, therefore,

Π
+
(z) = λ F

(z

d

)
, z ≥ 0 .

If furthermore F ∈ S ∩ (R∪R∞), it follows that F
+
(·) = F (· /d) is, and we obtain

VAR+
t (κ) ∼ d F

(
1− 1− κ

λ t

)
, κ ↑ 1 .

¤
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We can derive very precise asymptotics in the case of dominating regularly varying

severities. In this case we can expect from Theorem 2.3.2 that only the dominant cells

contribute to total OpVAR.

Proposition 2.3.7. Assume that the conditions of Theorem 2.3.5 hold. Assume fur-

ther that F 1 ∈ R−α with α > 0 and that for all i = 2, . . . , d there exist ci ∈ [0,∞) such

that

lim
x→∞

F i(x)

F 1(x)
= ci . (2.55)

Assume that ci 6= 0 for 2 ≤ i ≤ b ≤ d and ci = 0 for i ≤ b + 1 ≤ d. For F 1(x) =

x−αL(x), x ≥ 0, let L̃ be the function as in Theorem 2.1.15(ii). Then

VAR+
t (κ) ∼

b∑
i=1

c
1/α
i VAR1

t (κ) ∼
b∑

i=1

c
1/α
i

(
λ t

1− κ

)1/α

L̃

(
1

1− κ

)
, κ ↑ 1 .

Proof. From Theorem 2.1.15(ii) we know that

VAR1
t (κ) ∼

(
λ t

1− κ

)1/α

L̃

(
1

1− κ

)
, κ ↑ 1 ,

where L̃
(

1
1−·

) ∈ R0. Note: If all ci = 0 holds for i = 2, . . . , d then Corollary 2.3.3

applies. So assume that ci 6= 0 for 2 ≤ i ≤ b. From (2.55) and Resnick [60], Proposition

0.8(vi), we get F←
i (1− 1

z
) ∼ c

1/α
i F←

1 (1− 1
z
) as z →∞ for i = 1, . . . , d. This yields for

x1 →∞

H(x1) = x1 +
d∑

i=2

F−1
i (1− F 1(x1))

= x1 +
d∑

i=2

c
1/α
i F−1

1

(
1− F 1(x1)

)
(1 + oi(1))

= x1

b∑
i=1

c
1/α
i (1 + o(1)) ,

where we have c1 = 1. Defining C :=
∑b

i=1 c
1/α
i , then H(x1) ∼ Cx1 as x1 → ∞, and

hence H−1(z) ∼ z/C as z →∞, which implies by (2.52) and regular variation of F 1

Π
+
(z) = Π1(H

−1(z)) ∼ λ F 1(z/C) ∼ λCα F 1(z) , z →∞ .

Obviously, F
+
(z) = Cα F 1(z) ∈ R−α and Theorem 2.3.5 applies. By (2.10) together

with the fact that all summands from index b + 1 on are of lower order, (2.54) reduces

45



to

VAR+
t (κ) ∼ F←

1

(
1− 1− κ

λ t

)
+ · · ·+ F←

b

(
1− 1− κ

λ t

)

∼ F←
1

(
1− 1− κ

λ t Cα

)

∼
b∑

i=1

c
1/α
i

(
λ t

1− κ

)1/α

L̃

(
1

1− κ

)
, κ ↑ 1 .

¤

Important examples of Proposition 2.3.7 are the Pareto cases.

Example 2.3.8. [Pareto distributed severities, complete dependence]

Consider a multivariate compound Poisson model of Definition 2.2.6 with completely

dependent cells and Pareto distributed severities as in (2.13). Then we obtain for the

ci

lim
x→∞

F i(x)

F 1(x)
=

(
θi

θ1

)α

, i = 1, . . . , b , and lim
x→∞

F i(x)

F 1(x)
= 0 , i = b + 1, . . . , d ,

for some 1 ≤ b ≤ d. This, together with Proposition 2.3.7 leads to

F
+
(z) ∼

(
b∑

i=1

θi

θ1

)α (
1 +

z

θ1

)−α

∼
(

b∑
i=1

θi

)α

z−α , z →∞ .

Finally, from (2.20) and (2.54) we obtain total OpVAR as

VAR+
t (κ) ∼

b∑
i=1

VARi
t(κ) ∼

b∑
i=1

θi

(
λ t

1− κ

)1/α

, κ ↑ 1 .

¤

Example 2.3.9. [GPD distributed severities, complete dependence]

Consider a multivariate compound Poisson model of Definition 2.2.6 with completely

dependent cells and assume that within each cell large losses above some high threshold

ui > 0 have a GPD tail given by (2.19). Similarly as above we obtain

lim
x→∞

F i(x)

F 1(x)
=

wi

w1

(
βi

β1

)1/ξ

, i = 1, . . . , b , lim
x→∞

F i(x)

F 1(x)
= 0 , i = b + 1, . . . , d ,(2.56)

and thus 0 ≤ ξi < ξ, i = b+1, . . . , d. The case ξi = 0 corresponds to a tail lighter than

any Pareto tail. Using Proposition 2.3.7, we finally arrive at

F
+
(z) ∼ w+

(
1 + ξ

z − u1

β1

)−1/ξ

∼
(

b∑
i=1

βi

ξ
wξ

i

)1/ξ

z−1/ξ , z →∞ ,
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with w+ = (
∑b

i=1
βi

β1
wξ

i )
1/ξ. Total OpVAR is asymptotically given by

VAR+
‖t(κ) ∼ u1 +

β1

ξ

[(
w+λt

1− κ

)ξ

− 1

]

∼
b∑

i=1

βi

ξ

(
wiλ t

1− κ

)ξ

∼
b∑

i=1

VARi
t(κ) , κ ↑ 1 . (2.57)

¤

Finally, note that in Theorem 2.3.5 the assumption with regard to the severity is

less strict than in Theorem 2.3.2 about the dominating cell OpVAR, which requires a

regularly varying severity distribution for the dominant cell. We conclude this session

with another example of Theorem 2.3.5, which moreover shows that Theorem 2.3.2

does not hold for any general dominating tail.

Example 2.3.10. [Weibull severities]

Consider a bivariate compound Poisson model with completely dependent cells and

assume that the cells’ severities are Weibull distributed according to

F 1(x) = exp(−
√

x/2) and F 2(x) = exp(−√x) , x > 0 . (2.58)

Note that F 1,2 ∈ S∩R∞. Equation (2.58) immediately implies that F 2(x) = o(F 1(x)).

We find that H(x1) = 3
2
x1 implying that F

+ ∈ S ∩R∞, since

F
+
(z) = exp(−

√
z/3) , z > 0 . (2.59)

It is remarkable that in this example the total severity (2.59) is heavier tailed than the

stand alone severities (2.58), i.e. F1,2(x) = o(F+(x)) as x →∞. However, from

VAR1
t (κ) ∼ 2

[
ln

(
1− κ

λ t

)]2

and VAR2
t (κ) ∼

[
ln

(
1− κ

λ t

)]2

, κ ↑ 1 ,

we find that the stand alone VARs are of the same order of magnitude:

lim
κ↑1

VAR2
t (κ)

VAR1
t (κ)

=
1

2
.

Nevertheless, equation (2.54) of Theorem 2.3.5 still holds,

VAR+
t (κ) ∼ 3

[
ln

(
1− κ

λ t

)]2

= VAR1
t (κ) + VAR2

t (κ) , κ ↑ 1 .

¤
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2.3.4 Multivariate Compound Poisson Model with Indepen-

dent Cells

Let us now turn to a multivariate compound Poisson model where the cell processes

Si, i = 1, . . . , d, are independent and so never jump together. Therefore, we may write

the tail integral of S+ as

Π
+
(z) = Π([z,∞)× {0} × · · · × {0}) + · · ·+ Π({0} × · · · × {0} × [z,∞)) , z ≥ 0 .

Recall from Example 2.2.5 that in the case of independence all mass of the Lévy measure

Π is concentrated on the axes. Hence,

Π([z,∞)× {0} × · · · × {0}) = Π([z,∞)× [0,∞)× · · · × [0,∞)),

Π({0} × [z,∞)× · · · × {0}) = Π([0,∞)× [z,∞)× · · · × [0,∞)),
...

...

Π({0} × {0} × · · · × [z,∞)) = Π([0,∞)× [0,∞)× · · · × [z,∞)),

and we obtain

Π
+
(z) = Π([z,∞)× [0,∞)× · · · × [0,∞)) + · · ·+ Π([0,∞)× · · · × [0,∞)× [z,∞))

= Π1(z) + · · ·+ Πd(z) . (2.60)

Now we are in the position to derive an asymptotic expression for total OpVAR in

the case of independent cells.

Theorem 2.3.11. [OpVAR for the independent compound Poisson model] Consider a

multivariate compound Poisson model with independent cell processes S1, . . . , Sd. Then

S+ defines a one-dimensional compound Poisson model with parameters

λ+ = λ1 + · · ·+ λd and F
+
(z) =

1

λ+

[
λ1F 1(z) + · · ·+ λdF d(z)

]
, z ≥ 0 . (2.61)

If F 1 ∈ S ∩ (R∪R∞) and for all i = 2, . . . , d there exist ci ∈ [0,∞) such that

lim
x→∞

F i(x)

F 1(x)
= ci , (2.62)

then, setting Cλ = λ1 + c2λ2 + · · ·+ cdλd, total OpVAR can be approximated by

VAR+
t (κ) ∼ F←

1

(
1− 1− κ

Cλ t

)
, κ ↑ 1 . (2.63)
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Proof. From Proposition 2.2.7 we know that S+ is a compound Poisson process with

parameters λ+ (here following from (2.60)) and F+ as in (2.61) from which we conclude

lim
z→∞

F
+
(z)

F 1(z)
=

1

λ+
[λ1 + c2 λ2 + · · ·+ cd λd] =

Cλ

λ+
∈ (0,∞) ,

i.e.

F
+
(z) ∼ Cλ

λ+
F 1(z) , z →∞ . (2.64)

In particular, F
+ ∈ S∩(R∪R∞) and S+ defines a one-dimensional compound Poisson

model. From (2.9) and (2.64) total OpVAR follows as

VAR+
t (κ) ∼ F+←

(
1− 1− κ

λ+ t

)
∼ F←

1

(
1− 1− κ

Cλ t

)
, κ ↑ 1 . ¤

We close this Section with some examples illustrating the Theorem above.

Example 2.3.12. [Dominating cells in the case of independence]

Assume that ci = 0 for all i ≥ 2; i.e. F i(x) = o(F 1(x)), i = 2, . . . , d. We then

have Cλ = λ1 and it follows from (2.63) that independent total OpVAR asymptotically

equals the stand alone OpVAR of the first cell. In contrast to the completely dependent

case (confer Proposition 2.3.7 and Example 2.3.10), this holds for the class S∩(R∪R∞)

and not only for F1 ∈ R. ¤

Example 2.3.13. [Pareto distributed severities, independence]

Consider a multivariate compound Poisson model with independent cells and Pareto

distributed severities so that the constants ci of Theorem 2.3.11 are given by

lim
x→∞

F i(x)

F 1(x)
=

(
θi

θ1

)α

, i = 1, . . . , b , and lim
x→∞

F i(x)

F 1(x)
= 0 , i = b + 1, . . . , d ,

for some b ≥ 1. Then

Cλ =
b∑

i=1

(
θi

θ1

)α

λi

and the distribution tail F
+

satisfies

F
+
(z) =

1

λ+

b∑
i=1

λi

(
1 +

z

θi

)−α

∼ 1

λ+

b∑
i=1

λi θ
α
i z−α , z →∞ .

It follows that

VAR+
t (κ) ∼

(
t

∑b
i=1 λi θ

α
i

1− κ

)1/α

=

(
b∑

i=1

(
VARi

t(κ)
)α

)1/α

, κ ↑ 1 ,
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where VARi
t(κ) denotes the stand alone OpVAR of cell i according to (2.20). For

identical cell frequencies λ := λ1 = · · · = λb this further simplifies to

VAR+
t (κ) ∼

(
λ t

1− κ

)1/α
(

b∑
i=1

θα
i

)1/α

, κ ↑ 1 .

¤

Example 2.3.14. [GPD distributed severities, independence]

Consider a multivariate compound Poisson model of Definition 2.2.6 with independent

cells and assume that within each cell large losses above some high threshold ui > 0

have a GPD tail given by (2.19). We again have

lim
x→∞

F i(x)

F 1(x)
=

wi

w1

(
βi

β1

)1/ξ

, i = 1, . . . , b , lim
x→∞

F i(x)

F 1(x)
= 0 , i = b + 1, . . . , d ,

for b ≥ 1. The distribution tail can then be calculated as

F
+
(z) ∼ w+

(
1 + ξ

z − u1

β1

)−1/ξ

∼ 1

λ+

b∑
i=1

wi λi

(
βi

ξ

)1/ξ

z−1/ξ , z →∞ ,

where w+ = 1
λ+

∑b
i=1(

βi

β1
)1/ξλiwi, and total OpVAR is asymptotically given by

VAR+
⊥t(κ) ∼ u1 +

β1

ξ

[(
w+λt

1− κ

)ξ

− 1

]

∼
(

b∑
i=1

(
βi

ξ

)1/ξ
wiλi t

1− κ

)ξ

∼
(

b∑
i=1

(
VARi

t(κ)
)1/ξ

)ξ

, κ ↑ 1 .(2.65)

¤

Example 2.3.15. [Continuation of Example 2.3.10]

Consider a bivariate compound Poisson model with independent cells and Weibull

distributed severities according to (2.58). Accoding to Theorem 2.3.11 we have Cλ = λ1

and independent total OpVAR is asymptotically given by

VAR+
t (κ) ∼ VAR1

t (κ) ∼ 2

[
ln

(
1− κ

λ t

)]2

, κ ↑ 1 .

¤

Let us briefly compare the cases of complete dependence and independence by

using the important example of the GPD model. On one hand, Theorem 2.3.5 and

Example 2.3.9 state that for complete dependence total asymptotic OpVAR is simply
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the sum of the dominating cell’s asymptotic stand-alone OpVARs. On the other hand,

for independent cell severities, total OpVAR can be expressed in terms of a generalised

mean Mp by

Mp(a1, . . . , an) :=

(
1

n

n∑

k=1

ap
k

)1/p

, ak ≥ 0, p 6= 0 ,

and (2.65) can be written for b ≤ d as

VAR+
⊥t(κ) ∼ bξ M1/ξ(VAR1

t (κ), . . . , VARb
t(κ)) , κ ↑ 1 .

Formally, the complete dependent case (2.57) can also be expressed by Mp, namely

VAR+
‖t(κ) ∼ bM1(VAR1

t (κ), . . . , VARb
t(κ)) , κ ↑ 1 .

A fundamental difference between both extreme dependence models is that, due to

the dynamical dependence concept of Lévy copulas, the completely dependent model

implies identical frequency λ for all cells, whereas the independent model allows for

different cell frequencies. However, if high-severity losses mainly occur in one, say the

first cell, both models yield the same asymptotic total OpVAR, namely the stand-alone

VAR of the first cell; see Example 2.3.4.

Recall that simple-sum OpVAR (2.57) is often suggested as an upper bound for total

OpVAR. This is also the basis for the new proposals of Basel II, where the standard

procedure for calculating capital charges for operational risk is just the simple-sum

OpVAR. Hence, our calculation has shown that regulators implicitly assume complete

dependence between different cells as worst case scenario, meaning that losses within

different business lines or risk categories always happen at the same instants of time.

Moreover, they assume completely dependent loss severities.

This viewpoint is in the heavy-tailed case grossly misleading. To see this, as-

sume the same frequency λ in all cells, also for the independent model, and denote by

VAR+
‖ (κ) and VAR+

⊥(κ) completely dependent and independent total OpVAR, respec-

tively. Then, from (2.57) and (2.65), as a consequence of convexity (0 < ξ < 1) and

concavity (ξ > 1) of the function x 7→ x1/ξ, we obtain

VAR+
⊥(κ)

VAR+
‖ (κ)

∼

(∑b
i=1 wi β

1/ξ
i

)ξ

∑b
i=1 wξ

i βi





< 1 , 0 < ξ < 1 ,

= 1 , ξ = 1 ,

> 1 , ξ > 1 .

(2.66)

This result says that for heavy-tailed severity data with GPD tail given by (2.19)

subadditivity of OpVAR is violated because the sum of stand-alone OpVARs is smaller
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1/ξ VAR+
‖ VAR+

⊥
1.2 178.2

1.1 187.8

1.0 200.0

0.9
200.0

216.0

0.8 237.8

0.7 269.2

Table 2.3.16. Comparison of total OpVAR for two operational risk cells (each with stand-
alone VAR of EUR 100 million) in the case of complete dependence (‖) and independence
(⊥) for different values of the tail parameter ξ in the relevant area (cf. (2.66)).

than independent total OpVAR. This is a direct consequence of the Pareto-like tail,

which we assumed for the loss severity distribution and is well-known in the financial

literature; cf. Rootzén & Klüppelberg [62]. Nevertheless, to give an example for

operational risk, consider two cells with constant stand-alone OpVAR of EUR 100

million, each calculated from a GPD model with fixed parameters β1 = β2 = 1, w1 =

w2 = 1, and common tail parameter ξ = ξ1 = ξ2. Table 2.3.16 compares, for a realistic

range of ξ-values (cf. Moscadelli [54])), total OpVAR both for completely dependent

and independent data. Obviously, for ξ > 1, total OpVAR increases superlinearly,

when taking on two independent risks, for example by opening two new subsidiaries in

different parts of the world.

Even if we assume 0 < ξ < 1 for all operational risk cells and thus VAR+
‖ (κ) >

VAR+
⊥(κ), we obtain an interesting result concerning the relative “diversification ben-

efit” in operational risk defined as (VAR+
‖ − VAR+

⊥)/VAR+
‖ . Often diversification is

understood to be directly linked to the notion of correlation – and particularly in the

context of operational risk – to the loss-number correlation ρ(N1(t), N2(t)). For heavy-

tailed data, however, it is well-known that correlation (even if it exists) is a misleading

concept to describe diversification within a portfolio. Consider e.g. Figure 2.3.17, where

the relative diversification benefit for two operational risk cells with θ1 = θ2 is plotted

as a function of the tail parameter ξ. Obviously, relative diversification is very sensitive

with regards to the value of ξ. In contrast to that, the loss-number correlation ρ of

both models is constant, and it follows from (2.31) that ρ‖ = 1 and ρ⊥ = 0. Over and

above, we know that dependence models, with regards to the frequency correlation

have asymptotically undistinguishable OpVARs. As a consequence thereof, instead

of trying to estimate precise frequency correlations between different cells, all effort

should be directed into a more accurate modelling of the loss severity distribution.
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Figure 2.3.17. Plot of the relative diversification benefit
VAR+

‖ −VAR+
⊥

VAR+
‖

= 1− 2ξ−1 as given

by (2.66) for two operational risk cells as a function of the tail parameter ξ.

A final word of warning. It is beyond all dispute that operational risk is very

material in most financial institutions. However, risk severities can be extreme by their

very nature, recall for instance prominent examples such as Barings Bank (loss $1.3

billion) or Sumitomo Corp. (loss $2.6 billion). Moreover, our analysis shows that mul-

tivariate high-confidence OpVAR is very sensible to the parametrization of the severity

distribution, an issue, which has already been pointed out by Mignola & Ugoccioni [51]

for the univariate case. Altogether, this confirms the view that capital charges are not

always the best way to deal with operational risk, and that risk measurement has

always to be complemented by sound risk management and control processes.

2.3.5 Multivariate Compound Poisson Models of Regular Vari-

ation

Multivariate regular variation is an appropriate mathematical tool for discussing heavy

tail phenomena as they occur for instance in operational risk. Moreover, as the notion

of regular variation has proved useful for one-dimensional cell severity distributions, it

seems natural to exploit the corresponding concept for the multivariate model. Read-

able overviews about multivariate regular variation are the books of Resnick [60, 61].

To simplify notation we denote by E := [0,∞] \ {0} where 0 an ∞ are the zero

and infinity vectors in Rd, respectively. If for a general Borel set A ⊂ E its complement
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in E is denoted by Ac, we introduce for x ∈ E the complement

[0, x]c := E \ [0,x] = {y ∈ E : max
1≤i≤d

yi

xi

> 1} .

We also recall that a Radon measure is a measure, which is finite on all compacts. Fi-

nally, henceforth all operations and order relations of vectors are taken componentwise.

As already mentioned in Remark 2.1.7 (e), multivariate regular variation is best

formulated in terms of vague convergence of measures. Moreover, from Lemma 6.1 of

Resnick [61], p. 174, however, it suffices to consider regions [0, x]c for x ∈ E which

determine the convergence, and this is how we formulate our results.

We begin with regular variation of random vectors or, equivalently, of multivari-

ate distribution functions. The idea is to have regular variation not only in some

(or all) marginals, but along every ray starting in 0 and going through the positive

cone to infinity. Clearly, this limits the set of possible dependence structures between

the marginals, however, such models are still flexible enough to be broadly applied to

various fields such as telecommunication, insurance, and last but not least VAR anal-

ysis in the banking industry. Furthermore, many of the dependence models implying

multivariate regular variation can still be solved and analysed analytically.

Let us consider a random variable X with distribution function F that is—as our

Lévy measure Π—concentrated on E.

Assume there exists a Radon measure ν on E (i.e. a Borel measure that is finite on

compact sets) such that

lim
t→∞

1− F (tx)

1− F (t1)
= lim

t→∞
P (t−1X ∈ [0, x]c)

P (t−1X ∈ [0,1]c)
= ν([0,x]c) (2.67)

holds for all x ∈ E which are continuity points of the function ν([0, ·]c). One can show

that the above definition (2.67) implies that ν has a homogeneity property, i.e. there

exists some α > 0 such that

ν([0, sx]c) = s−αν([0,x]c) , s > 0 , (2.68)

and we say that F has a multivariate regularly varying tail with index −α (F ∈ R−α).

Condition (2.67) also says that F (t1) = 1− F (t1) as a function of t is in R−α. Define

now b(t) to satisfy F (b(t)1) ∼ t−1 as t →∞. Then, replacing t by b(t) in (2.67) yields

lim
t→∞

tP
( X

b(t)
∈ [0,x]c

)
= ν([0,x]c) . (2.69)

In (2.69) the random variable X is normalised by the function b(·). As explained

in Resnick (2007), Section 6.5.6, normalisation of all components by the same function

54



b(·) implies that the marginal tails of X satisfy for i, j ∈ {1, . . . , d}

lim
x→∞

F i(x)

F j(x)
=

ci

cj

,

where ci, cj ∈ [0,∞). Let us assume that c1 > 0, which means that F1 is either heavier-

tailed or tail equivalent to the other distributions Fi, i = 2, . . . , d. Then, we can always

define ci, i = 2, . . . , d such that c1 = 1, and we can choose b(t) such that for t →∞

F 1(b(t)) ∼ t−1 ⇔ b(t) ∼
(

1

F 1

)←
(t) ⇔ b(t) ∼ F 1

←
(

1

t

)
, (2.70)

and by substituting in (2.69) we obtain a limit on the left-hand side of (2.69) with the

same scaling structure as before.

To formulate analogous definitions for Lévy measures, note first that we can rewrite

(2.67) by means of the distribution of X as

lim
t→∞

PX(t[0,x]c)

PX(t[0,1]c)
= ν([0,x]c),

and similarly (2.69) as

lim
t→∞

tPX(b(t)[0,x]c) = lim
t→∞

tPX([0, b(t)x]c) = ν([0, x]c) . (2.71)

Then, the analogue expression to (2.67) for a Lévy measure Π is simply

lim
t→∞

Π(t[0,x]c)

Π(t[0,1]c)
= lim

t→∞
Π({y ∈ E : y1 > tx1 or · · · or yd > txd)

Π({y ∈ E : y1 > t or · · · or yd > t)
= ν([0, x]c) , (2.72)

for all x ∈ E which are continuity points of the function ν([0, ·]c). Summarising what

we have so far yields the following definition for multivariate regular variation for Lévy

measures, now formulated in analogy to (2.69) or (2.71), respectively:

Definition 2.3.18. [Multivariate regular variation for spectrally positive Lévy pro-

cesses]

(a) Let Π be a Lévy measure of a spectrally positive Lévy process on E. Assume that

there exists a function b : (0,∞) → (0,∞) satisfying b(t) →∞ as t →∞ and a Radon

measure ν on E, called the limit measure, such that

lim
t→∞

t Π([0, b(t) x]c) = ν([0,x]c)) (2.73)

for all x ∈ E which are continuity points of the function ν([0, ·]c. Then we call Π

multivariate regularly varying.
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(b) The measure ν has a scaling property: there exists some α > 0 such that for every

s > 0

ν([0, sx]c) = s−αν([0,x]c) , x ∈ E , (2.74)

i.e. ν([0, ·]c) is homogeneous of order −α, and Π is called multivariate regularly varying

with index −α (Π ∈ R−α).

Remark 2.3.19. (a) In (2.73), the scaling of all components of the tail integral by

the same function b(·) implies

lim
x→∞

Πi(x)

Πj(x)
= c̃ij ∈ [0,∞] , (2.75)

for 1 ≤ i, j ≤ d. We now focus on the case that all Πi are tail-equivalent, i.e. c̃ij > 0

for some i, j. In particular, we then have marginal regular variation Πi ∈ R−α with

the same tail index, and thus for all i = 1, . . . , d

lim
t→∞

t Πi(b(t) x) = ν([0,∞]× · · · × (x,∞]× [0,∞]× · · · × [0,∞])

= νi(x,∞] = c̃i x
−α , x > 0 , (2.76)

for some c̃i > 0. Specifically, we can always set c̃1 = 1 and thus

Π1(b(t)) ∼ t−1 ⇔ b(t) ∼
(

1

Π1

)←
(t) , t →∞ . (2.77)

(b) If Π1 is standard regularly varying (i.e. with index α = 1 and slowly varying

function L ≡ 1), we can take b(t) = t, which immediately follows from (2.77).

(c) There exists also a broader definition of multivariate regular variation which allows

for different αi in each marginal; see Theorem 6.5 of Resnick [61], p. 204. However,

we have already dealt with the situation of dominant marginals and, hence, the above

definition is the relevant one for us. ¤

From the point of view of dependence structure modeling, multivariate regular

variation is basically a special form of multivariate dependence. Hence, a natural

question in this context is how multivariate regular variation is linked to the dependence

concept of a Lévy copula. The answer gives the following Theorem.

Theorem 2.3.20. [Lévy copulas and multivariate regular variation] Let Π be a multi-

variate tail integral of a spectrally positive Lévy process in E. Assume that the marginal

tail integrals Πi are regularly varying with index −α. Then the following assertions hold.

(1) If the Lévy copula Ĉ is a homogeneous function of order 1, then Π is multivariate
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regularly varying with index −α.

(2) The tail integral Π is multivariate regularly varying with index −α if and only if

the Lévy copula Ĉ is regularly varying with index 1; i.e.

lim
t→∞

Ĉ(t (x1, . . . , xd))

Ĉ(t (1, . . . , 1))
= g(x1, . . . , xd) , (x1, . . . , xd) ∈ [0,∞) , (2.78)

and g(s x) = s g(x) for x ∈ [0,∞).

Proof. (1) For any Lévy copula Ĉ, we can write the Lévy measure Π([0,x]c) for

x ∈ E as

Π([0, x]c) = Π{y ∈ E : y1 > x1 or · · · or yd > xd}

=
d∑

i=1

Πi(xi)−
d∑

i1,i2=1
i1<i2

Ĉ(Πi1(xi1), Πi2(xi2))

+
d∑

i1,i2,i3=1
i1<i2<i3

Ĉ(Πi1(xi1), Πi2(xi2), Πi3(xi3))

+ · · ·+ (−1)d−1Ĉ(Πi1(xi1), . . . , Πid(xid)) .

The homogeneity allows interchange of the factor t with Ĉ, which, together with

marginal regular variation as formulated in (2.76), yields the limit as in (2.73):

lim
t→∞

t Π([0, b(t) x]c) =
d∑

i=1

νi(xi,∞]−
d∑

i1,i2=1
i1<i2

Ĉ(νi1(xi1 ,∞], νi2(xi2 ,∞])

+ · · ·+ (−1)d−1 Ĉ(νi1(xi1 ,∞], . . . , νid(xid ,∞])

= ν{y ∈ E : y1 > x1 or · · · or yd > xd}
= ν([0,x]c) , x ∈ E . (2.79)

(2) This follows from the same calculation as in the proof of (1) by observing that

asymptotic interchange of the factor t with Ĉ is possible if and only if (2.78) holds.

¤

Remark 2.3.21. For this definition of multivariate regular variation of arbitrary func-

tions we refer to Bingham et al. [7], Appendix 1.4. ¤

Excursus: From Lévy Copulas to Pareto Lévy Copulas

The general concept of multivariate regular variation mentioned in Remark 2.3.19 with

possibly different marginals requires different normalizing functions b1(·), . . . , bd(·) in
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(2.73). In that case marginals are usually transformed to standard regular variation

with α = 1 and L ≡ 1. In this case the scaling property (2.74) in the limit measure ν

always scales with α = 1. This is equivalent to all marginal Lévy processes being one-

stable. Such standardised Lévy process lead to the concept of the Pareto Lévy copula,

which in the context of multivariate regular variation seems to be more natural than

the classical Lévy copula with Lebesgue marginals, see Klüppelberg and Resnick [40]

as well as in Böcker and Klüppelberg [18].

Definition 2.3.22. Let (X t)t≥0 be a Lévy process in Rd with a Lévy measure Γ that has

standard 1-stable one-dimensional marginals. Then we call Γ a Pareto Lévy measure

and the associated tail integral

Γ(x) = Γ([x1,∞)× · · · × [xd,∞)) =: C̃(x1, . . . , xd) , x ∈ E ,

is referred to as Pareto Lévy copula C̃.

For every Lévy process we now can transform its marginal Lévy measures by

Πi(x) → Γi(x) = Πi ◦
( 1

Πi

)←
(x) =

1

x
, x ∈ [0,∞) , (2.80)

yielding standard 1-stable marginal Lévy processes with Lévy measures Πi(x) = x−1

for x > 0, i.e. the corresponding Pareto Lévy copula. Note that if we apply such

transformation to the multivariate compound Poisson model, then the transformed

1-stable Lévy processes are not compound Poisson anymore. Instead they are of infi-

nite variation and have an infinite number of small jumps per unit time expressed by

limx↓0 Πi(x) = ∞. For definitions and references of stable Lévy processes in general

see Cont and Tankov [24].

Lemma 2.3.23. Let (X t)t≥0 be a spectrally positive Lévy process (i.e. a Lévy process

admitting only positive jumps) with Lévy measure Π on E and continuous marginal tail

measures Π1, . . . , Πd. Then

Π(x) = Π([x1,∞]× · · · × [xd,∞]) = C̃
( 1

Π1(x1)
, . . . ,

1

Πd(xd)

)
, x ∈ E ,

and C̃ is a Pareto Lévy copula.

Proof. Note that for all x ∈ E,

C̃(x1, . . . , xd) = Π
(( 1

Π1

)←
(x1), . . . ,

( 1

Πd

)←
(xd)

)
.

This implies for the one-dimensional marginal tail measures

C̃(0, . . . , x, . . . , 0) = Πi ◦
( 1

Πi

)←
(x) =

1

x
, x ∈ [0,∞).
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¤

From the construction above it is also clear that if Ĉ(x1, . . . , xd) is a Lévy cop-

ula, then the associated Pareto Lévy copula C̃ can be constructed by C̃(x1, . . . , xd) =

Ĉ(1/x1, . . . , 1/xd). Hence, Theorem 2.2.3 can easily be restated for Pareto Lévy cop-

ulas. Furthermore, the following examples follow immediately from those given in

Section 2.2.2.

Example 2.3.24. [Independence Pareto Lévy-copula]

The independence Pareto Lévy copula of is given by

C̃⊥(x) = x−1
1 1{x2=...=xd=0} + · · ·+ x−1

d 1{x1=...=xd−1=0}.

The resulting Lévy process with Pareto Lévy copula C̃⊥ is a standard 1-stable process

with independent components. ¤

Example 2.3.25. [Complete (positive) dependence Pareto Lévy copula]

The complete (positive) dependence Pareto Lévy copula is given by

C̃‖(x) = min(x−1
1 , . . . , x−1

d ).

¤

Example 2.3.26. [Archimedian Pareto Lévy copula]

Let φ : [0,∞] → [0,∞] be strictly decreasing with φ(0) = ∞ and φ(∞) = 0. Assume

that φ← has derivatives up to order d with (−1)k dkφ←t
dtk

> 0 for k = 1, . . . , d. Then the

following is a Pareto Lévy copula

C̃(x) = φ←(φ(x−1
1 ) + · · ·+ φ(x−1

d )).

¤

Example 2.3.27. [Clayton Pareto Lévy copula]

Take φt = t−δ for δ > 0. Then the Archimedian Pareto Lévy copula

C̃δ(x) = (xδ
1 + · · ·+ xδ

d)
−1/δ

is called Clayton Pareto Lévy copula. ¤

The Clayton Pareto Lévy copula C̃(x1, x2) = (xδ
1 +xδ

2)
−1/δ for x1, x2 > 0 is homoge-

nous of order −1, and, consequently, the associated Clayton Lévy copula is homogenous

of order 1, see also Example 2.2.10. From Theorem 2.3.20 we can conclude that, if the

marginal Lévy tail measures Π1 and Π2 (i.e. before standardising the marginals) were
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regularly varying with some index −α, then the Lévy measure Π had bivariate regularly

varying tail with index −α.

The −1-homogeneity of the Clayton Pareto Lévy copula can be used to visualise

its regularly varying dependence structure. In doing so, note also that

Γ([0,x]c) = Γ1(x1) + Γ2(x2)− C̃(x1, x2) =
1

x1

+
1

x2

−
(( 1

x1

)−δ

+
( 1

x2

)−δ)−1/δ

.

We now transform to polar coordinates by setting x1 = r cos ϕ and x2 = r sin ϕ, and

from the homogeneity property it follows

Γ([0,x]c) = r−1Γ([0, (cos ϕ, sin ϕ)>]c) =: Γ(r, ϕ).

This is depicted in Figure 2.3.28 where Γ(r, ϕ) is plotted for r = 1 as a function of ϕ,

and thus the Clayton dependence structure is plotted as a measure on the quatercircle.

OpVAR for Regularly Varying Dependence Structures

We now want to apply our results about multivariate regular variation of Lévy measures

(which hold true for general spectrally positive Lévy processes) to the problem of

calculating total OpVAR. Hence, we turn back to a multivariate compound Poisson

process whose Lévy measure Π is multivariate regularly varying according to (2.73).

In particular, this implies tail equivalence of the marginal Lévy measures and we can

write (2.75) with some ci ∈ (0,∞) as

ci := lim
x→∞

Πi(x)

Π1(x)
=

λiF i(x)

λ1F 1(x)
=:

λi

λ1

c̃i , (2.81)

i.e. limx→∞ F i(x)/F 1(x) = c̃i. We avoid situations where for some i we have ci = 0,

corresponding to cases in which for x → ∞ the tail measure Πi(x) decays faster than

x−α, i.e. in (2.81) we only consider the heaviest tail measures, all of tail index −α.

This makes sense because we know from Theorem 2.3.2 that only the heaviest-tailed

risk cells contribute to total OpVAR.

Theorem 2.3.29. [OpVAR for the compound Poisson model with multivariate regular

variation] Consider a multivariate compound Poisson model with multivariate regularly

varying cell processes S1, . . . , Sd with index −α and limit measure ν in (2.73). As-

sume further that the severity distributions Fi for i = 1, . . . , d are strictly increasing

and continuous. Then, S+ defines a one-dimensional compound Poisson model with

parameters satisfying for z →∞

λ+ F
+
(z) ∼ λ1 ν+(1,∞] F 1(z) ∈ R−α , z →∞ , (2.82)
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Figure 2.3.28. The Pareto Lévy copula in polar coordinates C̃(r, ϕ) = Γ(r, ϕ) as a function
of the angle ϕ ∈ (0, π/2) for r = 1 and different values of the dependence parameter.
Top panel: θ = 1.8 (dotted line), θ = 0.7 (dashed line), θ = 0.3 (solid line).
Bottom panel: θ = 2.5 (solid line), θ = 5 (dashed line), θ = 10 (dotted line), θ = ∞ (complete
positive dependence, long-dashed line).
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where ν+(z,∞] = ν{x ∈ E :
∑d

i=1 xi > z} for z > 0. Furthermore, total OpVAR is

asymptotically given by

VARt(κ) ∼ F←
1

(
1− 1− κ

t λ1 ν+(1,∞]

)
, κ ↑ 1 . (2.83)

Proof. First recall that multivariate regular variation of Π implies regular variation

of the marginal tail integrals, i.e. Πi ∈ R−α for all i = 1, . . . , d. Analogously to

Resnick [61], Proposition 7.3, p. 227, the tail measure Π
+

is also regularly varying

with index −α, more precisely we have that

lim
t→∞

t Π
+
(b(t) z) = ν+(z,∞]

= ν{x ∈ E :
d∑

i=1

xi > z} = z−αν{x ∈ E :
d∑

i=1

xi > 1} .

Now we can choose b(t) so that limt→∞ tΠ1(b(t)) = 1 and thus

lim
z→∞

Π
+
(z)

Π1(z)
= lim

t→∞
tΠ

+
(b(t))

tΠ1(b(t))
= ν+(1,∞] .

Relation (2.82) follows immediately, and (2.83) by Theorem 2.1.15. ¤

According to the Theorem 2.3.29, for the wide class of regularly varying distri-

butions, total OpVAR can effectively be written in terms of the severity distribution

of the first cell. Specifically, the right-hand side of (2.83) can be understood as the

stand-alone, asymptotic OpVAR of the first cell with an adjusted frequency parameter,

namely λ1ν
+(1,∞]. What remains is to find examples where ν+(1,∞] can be calculated

analytically or numerically to understand better the influence of certain dependence

parameters.

Example 2.3.30. [Revisiting the case of independent operational risk cells]

Before we present some explicit results for the Clayton Lévy copula below, let us

consider again the particularly easy case with independent cells. Since then all mass is

concentrated on the positive axes, we obtain

ν+(1,∞] = ν1(1,∞] + · · ·+ νd(1,∞] . (2.84)

From Π1(b(t)) ∼ t−1 it follows for the tail measure of the first cell (see also (2.76))

lim
t→∞

tΠ1(b(t)z) = z−α = ν1(z,∞] . (2.85)

For i = 2, . . . , d we obtain by using (2.81),

lim
t→∞

tΠi(b(t)z) = lim
t→∞

Πi(b(t)z)

Π1(b(t))
= lim

u→∞
Πi(uz)

Πi(u)

Πi(u)

Π1(u)
= c̃i z

−α = νi(z,∞] , (2.86)
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and therefore altogether ν+(1,∞] = 1 +
∑d

i=2 c̃i. By (2.82) together with λ1c̃i = λici

we finally recover the result of Theorem 2.3.11. ¤

Let us consider a bivariate example where the marginal Lévy measures are not

independent, and thus the limit measure ν+(z,∞] is not just the sum of the marginal

limit measures as in (2.84). Instead, ν+(z,∞] has to be calculated by taking also mass

between the positive axes into account (i.e. the grey shaded area in Figure 2.3.1),

which can be done by representing ν+(z,∞] as an integral over a density.

Example 2.3.31. [Clayton Lévy copula]

The Clayton Lévy copula is for δ > 0 defined as

Ĉ(u1, . . . , ud) = (u−δ
1 + · · ·+ u−δ

d )−1/δ , u1, . . . , ud ∈ (0,∞) ,

see also Example 2.2.10. In Figures 2.3.33-2.3.38 we show sample paths of two depen-

dent compound Poisson processes, where the dependence is modelled via a Clayton

Lévy copula for different parameter values. With increasing dependence parameter δ

we see more joint jumps.

Note that Ĉ is homogenous of order 1. Hence, from Theorem 2.3.20, if Πi ∈ R−α for

some α > 0, the Lévy measure is multivariate regularly varying with index −α. For

d = 2, we obtain from (2.79) together with (2.85) and (2.86), and by setting c := c̃2,

ν([0, (x1, x2)]
c) = x−α

1 + c x−α
2 − [

xαδ
1 + c−δ xαδ

2

]−1/δ
, x1 > 0, x2 > 0 .

By differentiating we obtain the density ν ′ for 0 < δ < ∞ (the completely positive

dependent case (δ → ∞) and the independent case (δ → 0) are not covered by the

following calculation) as

ν ′(x1, x2) = c−δ α2(1 + δ) x
−α(1+δ)−1
1 xαδ−1

2

(
1 + c−δ

(x2

x1

)αδ
)−1/δ−2

, x1 > 0, x2 > 0 .

We then can write

ν+(1,∞] = ν{(x1, x2) ∈ E : x1 + x2 > 1}
= ν((1,∞]× [0,∞]) +

∫ 1

0

∫ ∞

1−x1

ν ′(x1, x2) dx2 dx1

= ν1(1,∞] +

∫ 1

0

∫ ∞

1−x1

ν ′(x1, x2) dx2 dx1

= 1 + α

∫ 1

0

(
1 + c−δ

( 1

x1

− 1
)αδ

)−1/δ−1

x−1−α
1 dx1 ,
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and substituting v = 1
x1
− 1 we obtain

ν+(1,∞] = 1 + α

∫ ∞

0

(
1 + c−δvαδ

)−1/δ−1
(1 + v)α−1dv

= 1 + c1/α

∫ ∞

0

(
1 + sδ

)−1/δ−1
(c1/α + s−1/α)α−1ds . (2.87)

Since g(y) := (1 + yδ)−1/δ−1, y > 0, is the density of a positive random variable Yδ, we

finally arrive at

ν+(1,∞] = 1 + c1/α E[(c1/α + Y
−1/α
δ )α−1]

=: 1 + c1/α C(α, δ) . (2.88)

Then, an analytical approximation for OpVAR follows together with expression (2.83),

VAR+
t (κ) ∼ F←

1

(
1− 1− κ

λ1(1 + c1/α C(α, δ)) t

)
, κ ↑ 1 . (2.89)

Note that VAR+
t (κ) increases with C(α, δ). For α = 1 the constant C(1, δ) = 1 implies

that total OpVAR for all Clayton parameters in the range 0 < δ < ∞ is given by

VAR+
t (κ) ∼ F←

1

(
1− 1− κ

λ1(1 + c) t

)
= F←

1

(
1− 1− κ

(λ1 + c2λ2) t

)
, κ ↑ 1 ,

which is (independent of the dependence parameter δ) equal to the independent Op-

VAR of Theorem 2.3.11. Note also the relation c = λ2/λ1c2 between the different

constants in (2.81) Furthermore, ν+(1,∞] is greater or less than 2, according as α

is greater or less than 1, respectively. If α δ = 1 we can solve the integral in (2.87)

(similarly to Example 3.8 of Bregman and Klüppelberg [21]) and obtain

ν+(1,∞] =
c1+1/α − 1

c1/α − 1
.

Figure 2.3.32 illustrates the tail measure ν+(1,∞] given in (2.88) for different values

of θ and α. Note that according to (2.83), OpVAR increases with growing values for

ν+(1,∞]. Hence, Figure 2.3.32 shows us that in the case of α > 1, a higher positive

dependence structure leads to a higher OpVAR, whereas for α < 1, it is the other way

around: the lower the dependence structure is (i.e. losses are not tending to occur

together), the higher OpVAR will be. This again shows how things may go awry, if one

applies the well-behaving behaviour of normal distributions to extremely heavy-tailed

distributions, and diversification may behave completely counterintuitive. Finally, note

that for δ →∞, independence occurs and ν+(1,∞] = 1 + c is constant as indicated by

the horizontal long-dashed line in Figure 2.3.32. ¤
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Figure 2.3.32. Illustration of the tail measure ν+(1,∞] as given in (2.88) as a function
of α for different values of the Clayton Lévy copula parameter δ. We have chosen 0.3 (light
dependence, solid line), 1 (medium dependence, dashed line), and 10 (high dependence, dotted-
dashed line). The long-dashed line corresponds to the independent case. Moreover, we have
used c = 1 in all plots.
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Figure 2.3.33. Simulation of the bivariate compound Poisson model as of Definition 2.2.6 with
Clayton Lévy copula with parameter ϑ = 0.3 (light dependence). Top panel: sample paths of the
aggregate loss processes. Bottom panel: severity and occurrence times of losses. The univariate
compound Poisson processes have frequencies of λ1 = λ2 = 10 and Pareto distributed severities with
parameters α1 = 1/ξ = 1.2 and α1 = 1/ξ = 2.
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Figure 2.3.34. Simulation of the bivariate compound Poisson model as of Definition 2.2.6 with
Clayton Lévy copula with parameter ϑ = 1 (medium dependence). Top panel: sample paths of the
aggregate loss processes. Bottom panel: severity and occurrence times of losses. The univariate
compound Poisson processes have frequencies of λ1 = λ2 = 10 and Pareto distributed severities with
parameters α1 = 1/ξ = 1.2 and α1 = 1/ξ = 2.
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Figure 2.3.35. Simulation of the bivariate compound Poisson model as of Definition 2.2.6 with
Clayton Lévy copula with parameter ϑ = 7 (strong dependence). Top panel: sample paths of the
aggregate loss processes. Bottom panel: severity and occurrence times of losses. The univariate
compound Poisson processes have frequencies of λ1 = λ2 = 10 and Pareto distributed severities with
parameters α1 = 1/ξ = 1.2 and α1 = 1/ξ = 2.
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Figure 2.3.36. Simulation of the bivariate compound Poisson model as of Definition 2.2.6 with
Clayton Lévy copula with parameter ϑ = 0.3 (light dependence). Top panel: sample paths of the
aggregate loss processes. Bottom panel: severity and occurrence times of losses. The univariate
compound Poisson processes have frequencies of λ1 = λ2 = 10 and lognormal distributed severities
with parameters µ1 = µ2 = 5 and σ1 = σ2 = 1.5.
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Figure 2.3.37. Simulation of the bivariate compound Poisson model as of Definition 2.2.6 with
Clayton Lévy copula with parameter ϑ = 1 (medium dependence). Top panel: sample paths of the
aggregate loss processes. Bottom panel: severity and occurrence times of losses. The univariate
compound Poisson processes have frequencies of λ1 = λ2 = 10 and lognormal distributed severities
with parameters µ1 = µ2 = 5 and σ1 = σ2 = 1.5.
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Figure 2.3.38. Simulation of the bivariate compound Poisson model as of Definition 2.2.6 with
Clayton Lévy copula with parameter ϑ = 7 (strong dependence). Top panel: sample paths of the
aggregate loss processes. Bottom panel: severity and occurrence times of losses. The univariate
compound Poisson processes have frequencies of λ1 = λ2 = 10 and lognormal distributed severities
with parameters µ1 = µ2 = 5 and σ1 = σ2 = 1.5.
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Chapter 3

A Continuous-Time Model for

Business Risk

In this Chapter we suggest a continuous-time model for business risk calculation, which

is based on a stochastic version of the discounted-cash-flow method. In particular,

using different Gauss processes, we examine the long-term impact of the bank’s future

earnings fluctuations on the present value, leading to the so-called Capital-at-Risk.

3.1 Introduction

As can be seen e.g. by the cutting edge Section of RISK Magazine, research papers

mainly focus on market risk, credit risk, and—with a little less attention—operational

risk. Although these risk types are very important for financial institutions, the true

landscape of risk is much more complex and far from being well explored and un-

derstood. There is a variety of “other” risks looming on the horizon, which seri-

ously threaten a bank’s profitability or which can disrupt or even destroy its business

completely. Moreover, such risks often reflect an under-researched area of financial

risk management, and established and ready-to-use measurement techniques are rarely

available. Also banking supervisors demand that more attention is being paid to such

“hard-to-measure” risks as the following Pillar-2 passages of the new international

regulatory framework of Basel II [5] show:

• 731: “...Sound capital assessment include...policies and procedures designed to

ensure that the bank identifies, measures, and reports all material risks.”

• 742: “Although the Committee recognises that other risks [...] are not easily

measurable, it expects industry to further develop techniques for managing all

aspects of these risks.”
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This view has also been confirmed by different European supervisors, confer e.g.

The Committee of European Banking Supervisors [25].

Capturing all material risks of a financial institution requires a broad risk self-

assessment to find out which are the most relevant risk drivers for the bank. One of

the most obvious variables to be monitored in this context are earning themselves.

However, none of the Pillar 1 risks take earnings volatility directly as a primary driver

into account, instead, they usually focus on aspects of the business environment that

only indirectly affect the institution’ earnings by virtue of e.g. failed processes, credit

defaults, drop in share prices, or interest rate changes.

For an all-encompassing risk assessment it is therefore necessary to introduce an

additional kind of risk that is directly linked to the uncertainty of specific earnings

components not yet associated to other risk types. Usually, such an earnings-related

potential loss, which can also threaten a bank’s market capitalisation, is referred to as

business risk.

Evidence for the growing importance of business risk was recently also given in

a survey undertaken by the IFRI/CRO Forum about economic capital practices in

leading financial institutions [36] where 85 % of the participants stated to include

business risk in their aggregated economic capital assessment. Yet surprisingly, there

is no common agreement on a precise definition, specific risk drivers, and measurement

methodology for business risk, even though its absolute size in term of economic capital

is comparable to that of operational risk, see again [36]. With this regard, we also

performed a benchmark exercise on a sample of 15 international banks by analysing

their risk management practice as disclosed in their official financial annual reports from

2004 to 2006. Again, we found that an increasing number of institutions are trying to

quantify business risk in some way, even if different definitions and assumptions are

adopted. Broadly speaking, approaches for business risk quantification can be divided

into two main categories; top-down and bottom-up. Top-down techniques are linked

to the general trend of the business environment and benchmark analysis based on

external data is used for approximating business risk. In contrast to that, bottom-

up approaches try to explicitly determine the volatility of particular, bank-internal

economic time series (such as volumes, earnings, revenues, and expenses) at a more

granular level, which is then transformed into a measure of business risk.

Here we we propose a bottom-up approach for modelling and measuring business

risk where the dynamic of the underlying earnings is described in a continuous-time

model.
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3.2 Modelling Business CAR: a Simple Approach

3.2.1 Setting the Scene

Overlap with other risk types. Of course, the concept of “revenues” and “ex-

penses” as we used so far is too general for measuring business risk. In particular, in

order to avoid double counting and risk overlap, revenue and cost components that

enter the business risk model must not directly or indirectly be used for the quantifi-

cation of other risk types. To give an example, as potentially relevant revenues one

may consider customer related provisions and net interest rate income, while on the

cost side administrative expenses and depreciations may be included into business risk

quantification. On the other hand, earnings related to trading activities would clearly

cause an overlap with market risk, and should therefore not be included. Something

similar holds for loan loss provisions, when they are captured within the bank’s credit

portfolio model.

However, the question which revenue and cost components are really relevant for

modelling a particular firm’s business risk, and which parts have to be excluded, is not

an easy one. The answer crucially depends on the firm’s definition of others risk types

and its economic capital framework in general, and therefore setting up a business

risk model should always be an integral part of the bank’s overall risk-defining and

assessment process. Moreover, one has to be aware that the availability and granularity

of revenue and cost data may also depend on the firm’s accounting rules, controlling

standards, and IT infrastructure. As a consequence, the quality of data may differ

from one legal entity to the other, and in order to achieve reliable results at aggregated

level, great attention should be paid with regard to data selection and preparation.

Hereafter, when we talk about earnings, we actually always mean non-credit and non-

market earnings so that there is no double counting with other risk types that are

already measured within a bank’s economic capital model.

EAR versus CAR. Business risk can be defined as the potential loss in the

company’s earnings due to adverse, unexpected changes in business volume, margins,

or both. Such losses can result above all from a serious deterioration of the market

environment, customer shift, changes in the competitive situation, or internal restruc-

turing. On one hand, these effects can lead to a drop in earnings in the short-term,

e.g. within the next budget year, and are often measured in terms of earnings volatility

are more general by EAR. On the other hand, volume or margin shrinking probably

leads to a longer-lasting weakening of the earnings situation, thereby seriously dimin-

ishing the company’s market capitalisation, and this risk is often referred to as CAR.

As pointed out by Saita [64, 65], the recognition of such negative long-term effects on
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earnings and the resulting impact on the market capitalisation is particular important

for the shareholder perspective on capital and should also be used in the context of

risk-adjusted performance measurement, e.g. by means of RAROC, EVA, or related

concepts.

A convincing analysis proving this link between earnings’ related risk and a com-

pany’s loss in market value is given in Morrison, Quella and Slywotzky [53]. They

found out that during a period of five years, 10 % of Fortune 1,000 companies lost (at

least once) 25 % of their shareholder value within a one-month period, and that nearly

all of these stock drops were a result of reduced quarterly earnings or reduced expected

future earnings. Moreover, the majority of these earnings-shortfalls (about 58 %) were

not owing to classical financial risks or operational losses but rather to what Quella et

al. refer to as strategic risk factors, such as raising costs and margin squeeze, emerging

global competitors, and customer priority shift etc.

If one considers business risk as a matter of market capitalisation and therefore

measures it by CAR, one has to take the uncertainty of (all) future earnings into

account. As mentioned above, such earnings fluctuations, i.e. the deviations of the

realised earnings from the planned earnings trajectory, maybe the result of many dif-

ferent factors. However, for the model we suggest here, it is not necessary to explicitly

link all these risk factors to future earnings. Instead we suppose that all risk factors

together constitute some random “noise” effect, mixing with the expected earnings

path; i.e. for t ≥ 0 future cumulated earnings E(t) can be written as

E(t) = f(t) + “noise”(t) , t ≥ 0 ,

where f is a nonrandom function describing the expected earnings trajectory. Conse-

quently, in Section 3.2.2 we model future earnings as a stochastic process (E(t))t≥0.

Discounted-cash-flow method. Before we continue, however, it is worthwhile to

recall some basic facts about company valuation, especially about the discounted-

cash-flow method where expected future earnings are discounted to obtain the com-

pany’s market value (see e.g. Goedhart, Koller and Wessels [33] or Pratt, Reilly and

Schweihs [58] for a more detailed description). Denote by ∆Eti ∈ R the company’s

earnings that are planned to be realized in ∆ti = ti− ti−1, i.e., between the future time

periods ti−1 and ti, defined for all 0 = t0 < t1 < · · · < tT . One then usually defines the

present value or market value of the company as

V (T ) =
T∑

i=1

∆Eti

(1 + ri)ti
, (3.1)

where ri ∈ R+ is a risk adjusted discount rate. Expression (3.1) simply says that a

company’s market value is just the sum of its discounted expected future earnings.
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For our purposes, however, a continuous-time setting of the present value (3.1) is more

feasible.

Definition 3.2.1. [Present value in continuous time] Let r(t) for t ≥ 0 be a nonrandom

positive function, representing the short-term discount rate with continuous compound-

ing. Then, the present value of all earnings cumulated until the time horizon t is given

by

P (t) = P (0) +

∫ t

0

e−R(s) dE(s) , t ≥ 0 ,

with discount rate R(t) :=
∫ t

0
r(τ)dτ for t ≥ 0, and

E(t) = E(0) +

∫ t

0

dE(s) , t ≥ 0 ,

are the cumulated future earnings as they are expected to be realised up to a time

horizon t. Furthermore, we define

P (∞) := lim
t→∞

P (t) ,

provided that the limit exists.

3.2.2 Model Definition and First Results

We begin our analysis of business CAR with a simple model based on Brownian mo-

tion. Such a model allows for closed-form solutions for business CAR and is therefore

particularly useful to understand the nature and general properties if this important

risk type.

Stochastic modelling of future cash flows. We define our model in a multivari-

ate fashion in that it takes the dependence between different cells into account. Each

cell could simply reflect a legal entity, business division, geographical region, or a com-

bination of them. If one explicitly splits up revenues and costs instead of considering

earnings directly, revenues and costs are represented by different cells, and for each

cell we can define a cash-flow process representing the stochastic evolution of revenues,

costs, or earnings. In the following we treat revenues as positive and costs as negative

variables.

Definition 3.2.2. [Brownian motion cash flow (BMC) model] Consider a d-dimensional

standard Brownian motion (W1(t), . . . , Wd(t))t≥0 on a probability space (Ω,F ,P). Then,

the BMC model consists of:
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(1) Cash-flow processes.

For each business risk cell, indexed by i = 1, . . . ,m, cumulated future cash flows Xi(t)

for t ≥ 0 are described by a cash-flow process, which is the strong continuous solution

to the Itô-stochastic-differential equation

dXi(t) = αi(t) dt +
d∑

j=1

σij(t) dWj(t) , t ≥ 0 . (3.2)

The bank’s total aggregated cash flow is given by the aggregate cash-flow process

X(t) =
m∑

i=1

Xi(t) =
m∑

i=1

Xi(0) +
m∑

i=1

∫ t

0

dXi(s) .

Here, αi(·) > 0, i = 1, . . . ,m, and σij(·), i = 1, . . . , m; j = 1, . . . , d, are nonran-

dom functions of time, satisfying the integrability conditions
∫ t

0
|αi(s)|ds < ∞ and∫ t

0
σ2

ij(s)ds < ∞.

(2) Value process.

Let R(·) > 0 be a nonrandom discount rate (see Definition 3.2.1) so that∫ t

0

(|αi(s)|e−R(s) + σ2
ij(s)e

−2R(s)
)
ds < ∞. Then, the aggregate value process (P (t))t≥0

is defined by (setting P (0) = 0)

P (t) =
m∑

i=1

∫ t

0

e−R(s) dXi(s) ,

=
m∑

i=1

∫ t

0

αi(s) e−R(s) ds +
d∑

j=1

m∑
i=1

∫ t

0

σij(s) e−R(s) dWj(s) , t ≥ 0 . (3.3)

Remark 3.2.3. (a) For every t ≥ 0, the BMC model describes multivariate normally

distributed cumulated cash flows Xi(·), i = 1, . . . , m, with expectation

EXi(t) = Xi(0) +

∫ t

0

αi(s) ds , t ≥ 0 , (3.4)

and cross-covariance function of Xi(·) and Xk(·), i, k = 1, . . . , m, given by

cov(Xi(t), Xk(t)) =

∫ t

0

d∑
j=1

σij(s) σkj(s) ds =:

∫ t

0

Σik(s) ds , t ≥ 0 .

Here, Σ := (Σik(t))ik is called instantaneous cash flow covariance matrix, which is

assumed to be positive definite for all t ≥ 0.

(b) The variance of future cash flows Xi(·), i = 1, . . . d, can be written as

var(Xi(t)) =

∫ t

0

Σii(s) ds =:

∫ t

0

σ2
i (s) ds , t ≥ 0 , (3.5)
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where σi(·), i = 1, . . .m, are referred to as the instantaneous cash-flow volatilities.

(c) For nonzero σi(·), the cross-correlation function between Xi(·) and Xk(·) is

corr(Xi(t), Xk(t)) =
cov(Xi(t), Xk(t))√

var(Xi(t))
√

var(Xk(t))
, t ≥ 0 . (3.6)

Informally, we denote the instantaneous correlation between dXi(·) and dXk(·) as

corr(dXi(t), dXk(t)) =
Σik(t)

σi(t) σk(t)
=: ρik(t) , t ≥ 0 .

(d) The value of the aggregate cash-flow process X(t) at time t ≥ 0 gives the total

earnings of the bank that have been realised between 0 and t (cumulated earning). Its

variance is given by

var(X(t)) =

∫ t

0

d∑
j=1

(
m∑

i=1

σij(s)

)2

ds

=

∫ t

0

d∑
j=1

m∑
i=1

m∑

k=1

σij(s) σkj(s) ds

=

∫ t

0

m∑
i=1

m∑

k=1

Σik(s) ds =:

∫ t

0

σ2(s) ds , t ≥ 0 , (3.7)

where we call σ(·) the instantaneous aggregate cash-flow volatility.

(e) Note that the number d of independent Brownian motions Wi(·) can be different

from the number m of business risk cells. Therefore, our model also allows for such

realistic scenarios where the number of risk factors (represented by different Brownian

motions) is greater than the number of clusters; think e.g. of a bank with two legal

entities that are exposed to three risk factors, which affect their non-credit and non-

market earnings and thus business risk. ¤

Example 3.2.4. [Bivariate BMC model with constant parameters]

Consider a simple bivariate BMC model with constant drift and diffusion parameters

where the cash-flow processes are given by

dX1(t) = α1 dt + σ1 dW1(t)

dX2(t) = α2 dt + σ2

(
ρ dW1(t) +

√
1− ρ2 dW2(t)

)
, t ≥ 0 . (3.8)

From Remark 3.2.3 it follows that

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
,
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implying for the variance of the i-th cumulated future cash flow

var(Xi(t)) = σ2
i t , t ≥ 0 , i = 1, 2 . (3.9)

Moreover, the correlation between X1(·) and X2(·) and the instantaneous correlation

are given for all t ≥ 0 by

corr(X1(t), X2(t)) = corr(dX1(t), dX2(t)) = ρ .

Since all parameters are time-independent, this model can be calibrated quite easily.

After discretisation of (3.8) by using the Euler method, σ1 and σ2 can be calculated

directly from the standard deviations of the discrete increments ∆X1(·) and ∆X2(·).
Then, according to (3.9), volatilities at a larger time-scale t can be derived by using

the
√

t-scaling law. Finally, α1 and α2 can be estimated through the sample means of

the discretisised incremental cash flows (3.8), or, alternatively, they can be obtained

from the cumulated cash flows

EXi(t) = αi t + const., t ≥ 0 ,

for i = 1, 2 by regression analysis. ¤

Example 3.2.5. [Bivariate BMC model with time-dependent parameters]

We use a similar set up as in (3.8) but with time-dependent parameters for t ≥ 0 of

αi(t) = αit
ai and σi(t) = σit

bi for ai, bi ≥ 0; i = 1, 2:

dX1(t) = α1 ta1 dt + σ1 tb1 dW1(t)

dX2(t) = α2 ta2 dt + σ2 tb2
(
ρ dW1(t) +

√
1− ρ2 dW2(t)

)
, t ≥ 0 . (3.10)

The expectations and variances of future cash flows can be calculated from (3.4) and

(3.5); for i = 1, 2 one obtains

EXi(t) =
αi

1 + ai

t1+ai , t ≥ 0 ,

and

var(Xi(t)) =
σ2

i

2bi + 1
t2bi+1 , t ≥ 0 .

The instantaneous correlation in this model is still ρ, however, using (3.6), we have

corr(X1(t), X2(t)) =

√
2b1 + 1

√
2b2 + 1

1 + b1 + b2

ρ , t ≥ 0 .
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Figure 3.2.6. Illustration of monthly earnings of two different legal entities as described in
Example 3.2.5. In contrast to legal entity 1, the monthly earnings of legal entity 2 seems to
have a positive linear drift which e.g. could be determined by linear regression (showed as
dashed lines). Hence, in (3.10) one could set a1 = 0 and a2 = 1. Regarding the volatilities
one could either use b1 = b2 = 0 (constant absolute volatilities) or b1 = 0.5 and b2 = 1.5
(constant Sharpe ratios).

We now define the signal-to-noise ratio, also referred to as Sharpe ratio, for each cash-

flow process as the ratio of its expected growths to the fluctuations, i.e. for i = 1, 2

ηi(t) =
EXi(t)−Xi(0)√

var(Xi(t))
, t ≥ 0 . (3.11)

Instead of constant volatilities σi(·) = σi as in the Example 3.2.4, we are now asking

for constant Sharpe ratios ηi(·) = ηi. Basically, this means that if we expect a certain

relative growth (e.g. per year), the volatility is increasing with by same percentage,

which makes sense from an economic perspective. Obviously, the Sharpe ratios of X1(·)
and X2(·) are here constant for bi = ai + 1

2
. A typical situation as it may occour in

practice is depicted in Figure 3.2.6, which shows the monthly earnings over 5 years for

two hypothetical legal entities. ¤

Calculating business CAR. Let us now define business CAR, which depends on

the distributional properties of the value process (P (t))t≥0.

Definition 3.2.7. [Business CAR] Consider different business risk cells with cash-flow

processes Xi(·), i =, 1, . . . ,m, that are not attributable to other risk types, and define

their corresponding market value process P (·) according to (3.3). For t > 0, suppose

that Ft is the distribution function of the value P (t) with mean value EP (t) < ∞.

Then, business CAR at time horizon t and confidence level κ ∈ (0, 1) is given by

CARκ(t) = EP (t)− F←
t (1− κ) , t ≥ 0 , (3.12)
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Figure 3.2.8. Business CAR is defined as the difference between the expected market value
EP (t) of the bank’s aggregate value process and a very low quantile of its market value dis-
tribution Ft.

where F←
t (κ) = inf{x ∈ R : Ft(x) ≥ κ}, 0 < κ < 1, is the generalized inverse of Ft.

If Ft is strictly increasing and continuous, we may write F←
t (·) = F−1

t (·).

In the context of economic capital calculations, the confidence level κ is a number

close to 1, e.g. κ = 0.999. In the case that the probability density function (pdf) of Ft

exists, the definition of business CAR is illustrated in Figure 3.2.8.

In general, Ft and thus business CAR cannot be calculated analytically. For the

BMC model, however, a closed-form expression for business CAR is available. This

is a consequence of the following well-known result, which describes the distributional

properties of the BMC model.

Proposition 3.2.9. Consider the BMC model of Definition 3.2.2 with value process

(P (t))t≥0. Then, for every t > 0, the value P (t) is normally distributed with expected

value

EP (t) =
m∑

i=1

∫ t

0

αi(s) e−R(s) ds , t ≥ 0 , (3.13)

and variance

var(P (t)) =

∫ t

0

σ2(s) e−2 R(s) ds , t ≥ 0 ,

where σ(·) is the instantaneous aggregate cash-flow volatility defined in (3.7) and R(·)
the discount rate of Definition 3.2.1.

Proof. Note that on the right-hand side of equation (3.3) the integrals in the first term

are of the standard Riemann type, whereas the integrals in the second term given by
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I(t) =
∫ t

0
σij(s) e−R(s)dWj(s) are Itô integrals with deterministic integrands. Then I(t)

is normally distributed with EI(t) = 0 and var(I(t)) = E (I(t)2), see e.g. Shreve [66],

Theorem 4.4.9. Using Itô’s isometry we further obtain

var(P (t)) =
d∑

j=1

var

(
m∑

i=1

∫ t

0

σij(s) e−R(s) dWj(s)

)

=
d∑

j=1

E

(
m∑

i=1

∫ t

0

σij(s) e−R(s) dWj(s)

)2

=
d∑

j=1

∫ t

0

(
m∑

i=1

σij(s) e−R(s)

)2

ds

=

∫ t

0

σ2(s) e−2 R(s) ds , t ≥ 0 .

¤

Since we now know that in the BMC model the bank’s total market value P (·) is

normally distributed, it is straightforward to calculate business CAR.

Theorem 3.2.10. [Business CAR for the BMC model] Assume that future cash flows

are described by a BMC model with instantaneous aggregate cash-flow volatility (see

equation (3.7))

σ(t) =
m∑

i=1

d∑
j=1

m∑

k=1

σij(t) σkj(t) , t ≥ 0 , (3.14)

and nonrandom discount rate R(·). Then, business CAR at time-horizon t and confi-

dence level κ ∈ (0, 1) is given by

CARκ(t) = Φ−1(κ)

√∫ t

0

σ2(s) e−2 R(s) ds , t ≥ 0 , (3.15)

where Φ is the standard normal distribution function.

Proof. The assertion follows directly from Proposition 3.2.9 together with the defini-

tion of business CAR (3.12). ¤

This analytic expression for business CAR is mainly a consequence of using non-

random interest rates. If one allows R(·) to be some continuous adapted interest rate

process, the distribution function Ft, t ≥ 0, of the aggregate value process (P (t))t≥0 is
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in general not normal anymore, and the result for business CAR will rarely be available

in closed form.

Note that (3.15) only depends on the cash flows’ covariance matrix and not on other

model parameters such as drift parameters αi(·) or the initial values Xi(0). As a con-

sequence thereof, the BMC model can be calibrated easily, confer also Examples 3.2.4

and 3.2.5.

3.2.3 The Relationship Between EAR and CAR

Earnings-at-Risk. In the light of Definition 3.2.2 we now can qualify our notion

of EAR, which we have already introduced in Section 3.2.1. From Remark 3.2.3 (d)

we know that var(X(t)) is the volatility of the bank’s total aggregate cash flows ac-

cumulated between time 0 and t. It is also well-known that X(t), t ≥ 0, is normally

distributed, see e.g. Shreve [66], Theorem 4.4.9, so that EAR of the cumulated earnings

X(t) at t ≥ 0 and confidence level κ ∈ (0, 1) is simply given by

EARκ(t) = Φ−1(κ)
√

var(X(t))

= Φ−1(κ)

√∫ t

0

σ2(s) ds , t ≥ 0 , (3.16)

where Φ is the standard normal distribution function. In contrast to (3.15), we see

that in (3.16) the volatility is not discounted. Moreover, it should be mentioned that

according to what we have said in Section 3.2.1, the time parameter t in (3.16) should

be chosen in a way that it reflects a short-term horizon so that discounting effects can

be neglected. Finally, we define the instantaneous EAR as

earκ(·) = Φ−1(κ) σ(·) . (3.17)

EAR-CAR-transformation factors. An interesting question concerns the relation

between EAR and CAR. Intuitively, CAR should be higher than EAR since CAR

takes—in contrast to EAR—the long-term uncertainty of future cash flows into account.

It has been suggested e.g. by Matten [49] or Saita [64, 65] that CAR is a constant

multiplier of EAR, and that the multiplication factor depends only on a (risk-adjusted)

discount factor and the time horizon t. Saita based his analysis of the EAR-CAR

relationship on a discrete-time cash-flow model similar to (3.1) where EAR reflects the

uncertainty of the ∆Eti , and [65], Section 5.8, gives a very readable overview about

this topic.

In the case of the BMC model, we see by comparing (3.15) with (3.17) that such

a proportionality between EAR(t) and CAR(t) does not hold for all t ≥ 0 because of

the time dependence of the instantaneous aggregate-cash-flow volatility σ(·). However,
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the mean value theorem ensures that one can always chose a ξ ∈ (0, t) so that (3.15)

can be written as

CARκ(t) = Φ−1(κ) σ(ξ)

√∫ t

0

e−2 R(s) ds

= earκ(ξ)

√∫ t

0

e−2 R(s) ds , t ≥ 0 ,

and we can think of earκ(ξ) as an average EAR of the time interval [0, t]. The following

two examples illustrate the relationship between EAR and CAR, in particular showing

that—even in the quite simple framework of BMC models—EAR-CAR-transformation

crucially depends on the specifications of the cash-flow processes Xi(t), i =, 1, . . . , d.

Example 3.2.11. [BMC model with constant diffusion parameters]

Consider a BMC model with σij(·) = σij = const. for i = 1, . . . m; j = 1, . . . d. Then

also the aggregate-cash-flow volatility (3.14) is constant and we obtain

CARκ(t) = k1(R, t) Φ−1(κ) σ = k1(R, t) earκ , t ≥ 0 ,

with EAR-CAR transformation factor

k1(R, t) =

∫ t

0

e−2 R(s) ds ,

where we indicated the explicit dependence of k1 on the discount rate R(·) by R. Hence,

in this special case, business CAR is proportional to the (constant) instantaneous EAR.

If furthermore the short-term discount rate is constant, r(·) = r, we have that

R(t) =

∫ t

0

r dτ = rt,

and we arrive at

k1(r, t) =

√
1− exp(−2 r t)

2 r
, (3.18)

which is a simple function of the time horizon t and the short-term discount rate r. The

higher r is, the smaller k1 will be because future cash flows (and so their fluctuations)

tend to have lower impact on the market value (and so on its uncertainty). Similarly,

longer time horizons t lead to a growing k1 because more uncertain future cash-flows

are taken into account. In the limit t →∞, expression (3.18) simplifies to

lim
t→∞

k1(r, t) =
1√
2 r

. , (3.19)

which, simply speaking, represents the maximum excess of CAR relative to the short-

term measure EAR when all earning fluctuations up to infinity time horizon are taken

into account. ¤
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Figure 3.2.13. Typical cash-flow paths Xi(t) for BMC models with constant absolute cash-
flow volatility (solid line) and constant Sharpe ratio (dashed line) referring to Examples 3.2.11
and 3.2.12, respectively. The parameters are Xi(0) = 10, αi = 1.2 and σi = 1.4 with a
time horizon of 10 years and monthly increments. Moreover, the dotted path is obtained
by the advanced model discussed in Section 3.3, especially Example 3.3.2, and we set σ̃i =
σi/Xi(0) = 0.14. We used the same seeds of normal random variables for three paths.

Example 3.2.12. [BMC model with constant Sharpe ratio]

Consider a BMC model with cumulated cash-flows Xi(·) for i = 1, . . . , m. As in

Example 3.2.5 we consider the Sharpe ratios ηi(·) given by (3.11). Adopting a linear-

growth model with constant drift parameters αi(·) = αi > 0, i = 1, . . . , m, we know

from Example 3.2.5 that constant Sharpe ratios require square-root-of-time scalings of

the instantaneous cash-flow volatilities, i.e. σi(t) = ci

√
t for some constants ci, i =

1, . . . , m. This implies that the aggregate-cash-flow volatility (3.14) for t ≥ 0 can be

written as σ(t) = σ
√

t, resulting in sample paths of Xi(·) that are in general more

noisy than the one obtained in Example 3.2.11, a fact that is illustrated in the top

panel of Figure 3.2.13.

Finally, using (3.15), we can calculate business CAR in the case of a constant

short-term discount rate r to

CARκ(t) = k2(r, t) Φ−1(κ) σ , t ≥ 0 ,

with EAR-CAR transformation factor

k2(r, t) =

√∫ t

0

s e−2rs ds =
1

2r

√
1− (1 + 2rt) exp(−2 r t) (3.20)
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Figure 3.2.14. EAR-CAR-transformation factors k1(r, t) and k2(r, t) according to (3.18)
and (3.20), respectively, as a function of time for a discount rate r = 0.1. The dotted-dashed
line indicates the asymptote of k1(r, t) when t →∞.

and

lim
t→∞

k2(r, t) =
1

2 r
. (3.21)

¤

Comparing the different BMC-model specifications of Example 3.2.11 and 3.2.12

with constant short-term discount rates r, one could expect that k2 is greater than

k1 because in the previous example the Sharpe ratio was actually increasing with
√

t

(implying a decrease of future cash-flow fluctuation) whereas here it is constant by

construction. Hence, k2 accumulates more future uncertainty than k1. As we see in

Figure 3.2.14, this is indeed the case if t exceeds a certain threshold, i.e. t > t0(r),

which for r = 0.1 is approximately given by t0(0.1) = 2.2.

3.3 A Model with Level-Adjusted Volatility

In the BMC model the absolute changes of future cash flows Xi(·) are directly mod-

elled by a Brownian motion, see equation (3.2), which in particular means that the

uncertainty of a business cell’s cash flow is independent from its absolute level. There

is, however, no rational for this behaviour and intuitively one rather associates higher

total earnings with higher earnings volatilities. As a possible remedy, one could de-

scribe future cash flows by a geometric Brownian motion as it is used e.g. for stock
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prices in the famous famous Black-Scholes-Merton setting. Then, for t ≥ 0 cumulated

cash-flows Xi(·), i = 1, . . . , m, are given by

Xi(t) = Xi(0) exp

[∫ t

0

(
αi(s)− 1

2

d∑
j=1

σ2
ij(s)

)
ds +

d∑
j=1

σij(s) dWj(s)

]
,

implying an expected exponential cash-flow growth of

EXi(t) = Xi(0) exp

(∫ t

0

αi(s)ds

)
,

which, however, might be considered as too optimistic for most businesses. Alterna-

tively, we suggest a model with still moderate growth but a kind of “cash-flow level

adjusted” volatility. More precisely, we have the following definition.

Definition 3.3.1. [Level-adjusted BMC model] Consider a d-dimensional standard

Brownian motion (W1(t), . . . ,Wd(t))t≥0 on a probability space

(Ω,F ,P). Then, the level-adjusted BMC model model consists of:

(1) Cash-flow processes.

For each business risk cell, indexed by i = 1, . . . ,m, cumulated future cash flows Xi(t)

for t ≥ 0 are described by a cash-flow process, which is the strong continuous solution

to the Itô-stochastic-differential equation

dXi(t) = αi(t) dt + Xi(t)
d∑

j=1

σ̃ij(t) dWj(t) , t ≥ 0 , (3.22)

with aggregate cash-flow process

X(t) =
m∑

i=1

Xi(t) =
m∑

i=1

Xi(0) +
m∑

i=1

∫ t

0

dXi(s) .

Here, αi(·) > 0, i = 1, . . . ,m, and σ̃ij(·), i = 1, . . . , m; j = 1, . . . , d, are nonran-

dom functions of time, satisfying the integrability conditions
∫ t

0
|αi(s)|ds < ∞ and∫ t

0
σ̃2

ij(s)ds < ∞. The matrix (σ̃ij(t))ij is assumed to be positive definite for all t ≥ 0.

(2) Value process.

Let R(·) > 0 be a nonrandom discount rate (see Definition 3.2.1) so that∫ t

0

(|αi(s)|e−R(s) + σ̃2
ij(s)e

−2R(s)
)
ds < ∞. Then, the aggregate value process (P (t))t≥0

is defined by (setting P (0) = 0)

P (t) =
m∑

i=1

∫ t

0

e−R(s) dXi(s) , t ≥ 0 .
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Let us first consider the cash-flow process and compare (3.22) with (3.2) of the BMC

model. For the latter, the diffusion parameters σij play the role of an absolute mea-

sure of uncertainty for the increments of Xi(·), whereas in (3.22) the σ̃ij describe the

increments’ fluctuations relative to the level of Xi(·). Furthermore, instead of (3.22)

we may write

Xi(t) = Xi(0) +

∫ t

0

αi(s) ds +
d∑

j=1

∫ t

0

Xi(s) σ̃ij(s) dWj(s) , t ≥ 0 , (3.23)

and from the martingale property of the Itô integral it immediately follows that the

expectation of Xi(·) is given by

EXi(t) = Xi(0) +

∫ t

0

αi(s) ds , t ≥ 0 ,

i.e. it is the same as for the BMC model, and, in particular, the model does not exhibit

exponential growth as it would be the case when geometric Brownian motion is used.

We close this Section with an extended example that illustrates some properties of the

level-adjusted volatility model.

Example 3.3.2. [Constant drift and diffusion parameters]

For the sake of simplicity we focus on the case of constant parameters αi(·) = αi and

σ̃ij(·) = σ̃ij. Note however, that the diffusion parameter of the process (3.22) is random

and given by Xi(·) σ̃ij. In order to find a solution for (3.23) we define the function

F (t, W (t)) := exp
(−

d∑
j=1

σ̃ijWj(t) +
1

2

d∑
j=1

σ̃2
ij t

)
, t ≥ 0 .

Then, by using Itô’s formula the differential of the product FXi can be calculated as

d
(
F (t,W (t)) Xi(t)

)
= αi F (t,W (t)) dt ,

which after integration finally yields (setting Wj(0) = 0 for j = 1, . . . , d),

Xi(t) = F (−t,−W (t))

(
Xi(0) + αi

∫ t

0

F (s,W (s)) ds

)
, t ≥ 0 . (3.24)

According to (3.24), the cumulated cash-flows Xi(t) at time t ≥ 0 are not normally

distributed as they are in the BMC model. A one-dimensional example for a typical

path of Xi(·) according to (3.24) is plotted as a dotted line in Figure 3.2.13.

The Itô representation of the value process (P (t))t≥0 is given by

P (t) =
m∑

i=1

αi

∫ t

0

e−R(s) ds +
d∑

j=1

m∑
i=1

σ̃ij

∫ t

0

Xi(s) e−R(s) dWj(s) , t ≥ 0 , (3.25)
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Figure 3.3.3. The histogram shows the simulated present-value distribution for t = 5 years of
the level-adjusted volatility model as discussed in Example 3.3.2 (with discount rate R = rt) as
well as the mean, standard deviation, skewness, and kurtosis parameters of the simulated data.
This is compared to a normal distribution with the same mean and standard deviation as the
simulated data, plotted as a dashed line. The solid curve represents the normally distributed
present value as obtained from the BMC model of Example 3.2.11. We set Xi(0) = 10 and
use the yearly parameters αi = 1.2, σi = 1.4, σ̃i = σi/Xi(0) = 0.14, and a discount rate of
r = 0.08.

which cannot be calculated in closed form. Note, however, that the expectation of

P (·) is again given by (3.13) and therefore is the same as for the BMC model. This

can also be seen in Figure 3.3.3 where we compare the distribution of the present

value as obtained by (3.25) firstly to that of a normal distribution with the same mean

and variance (dashed curve), and, secondly, to the normally distributed present value

calculated from the BMC model of Example 3.2.11 (solid curve). One can see that

(3.25) leads to a distribution that is more skewed to the right (positive skewness) and

is more peaked and heavier-tailed than a normal distribution with the same variance

(kurtosis larger than 3). ¤

EAR-CAR-transformation revisited. We have seen in Section 3.2.2 that for

the BMC model both the cumulated cash-flows Xi(·) and the present value P (·) are

normally distributed. This has two important consequences. First, business CAR (and

thus the EAR-CAR-transformation factor) of the BMC model is independent of the

expected growth and thus of αi(·), i = 1, . . . ,m. Second, the transformation factor

is invariant under changes of the confidence level and equals the ratio of the present

value volatility and the earnings volatility (see Examples 3.2.11 and 3.2.12). This is
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Figure 3.3.4. EAR-CAR-transformation factor for the level-adjusted growth model of Exam-
ple 3.3.2 for t = 5 years as a function of the confidence level κ and different values α1 = 1.0
(solid line), α2 = 1.2 (dashed line), and α3 = 1.4 (dotted line) of the growth parameter. We
used Xi(0) = 10, σ̃i = 0.14, and a constant discount rate of r = 0.08.

a consequence of the well-known property of elliptically distributed random variables,

which says that their quantiles can always be expressed in terms of their standard

deviation.

However, such a behaviour cannot be expected for the level-adjusted BMC model

because P (·) is not elliptically distributed. Figure 3.3.4 serves to illustrate this for

the model of Example 3.3.2. It shows the results of a simulation study where the

transformation factor between CAR and EAR (calculated at t = 0 where EAR is

normally distributed with standard deviation σi = σ̃i Xi(0)) is plotted as a function of

their confidence level. The growth parameter is set to be αi = 1.0, 1.2, and 1.4. Note

that the higher the growth rate αi is, the lower the transformation factor and therefore

the ratio between CAR and EAR will be. In contrast, if we compare the ratios of the

volatilities of the present value and EAR, i.e. the volatility of the simulated histogram

data to the initial absolute cash-flow volatility σi = σ̃i Xi(0) = 1.4, we obtain 2.29, 2.38,

and 2.46 for αi = 1.0, 1.2, and 1.4, respectively. Moreover, we see that an increasing

confidence level leads to a decreasing transformation factor.

Summing up we can conclude that in general the question of how a EAR can be

converted into an CAR is not straightforward to answer. While for the BMC model this

seems to be easier and intuitively easier to grasp (since independent of the confidence

level and the expected growth rate) it becomes rather involved for more general models

like the one discussed in this Section.
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3.4 Conclusion and Outlook

In this Chapter we suggested a multivariate continuous-time setting for assessing busi-

ness risk using stochastic models for the future cash-flows of (non-credit, non-market,

etc.) earnings. In contrast to scenario-based methods for estimating business risk, our

model has the advantage that it results in a time-dependent probability distribution

of future earnings, which allows for an accurate definition of VAR-like risk measures

at any confidence level and time horizon.

We also investigated the relationship between EAR and CAR, which for general

cash-flow processes turns out to be not straightforward, and, in particular, a constant

multiplier converting EAR into CAR is usually not available. However, a simple EAR-

CAR-transformation factor only depending on the time horizon and the discount rate

can analytically be derived for the simple BMC model. Such a result may be useful

when a fast and approximative VAR estimation based on some EAR figure is needed.

Since in our model the dependence structure between different legal entities or

business units is reflected by their correlation matrix, risk-reducing strategies such as

known from stock portfolio analysis can be straightforwardly applied.

One could think of several enhancements of the BMC model. A particular inter-

esting possibility would be to introduce jumps in the earnings processes representing

sudden and sharp falls in a company’s earnings caused by e.g. a change in the competi-

tor environment or a customer shift. A particular important class of jump process are

the Lévy processes, which have become quite popular also in financial modelling, see

e.g. Cont & Tankov [24]. Then, in addition to the covariance structure of the multivari-

ate Brownian motion we already discussed, jump dependence between future earnings

could be modelled by so-called Lévy copulas, see e.g. Böcker & Klüppelberg [17] for

an application of this technique to operational risk. However, since every model should

be seen also in the light of the data needed for its calibration, it may be wise to start

with a well-known and established Brownian approach.

In our opinion, the development of advanced business risk models will be an im-

portant task in quantitative risk management, despite the difficulties and complexity

discussed above. Equally important is to work on a harmonised definition of this ma-

terial risk type, which clearly requires a closer collaboration between practitioners and

academics.
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Chapter 4

An Analysis of Inter-Risk

Correlation and Risk Aggregation

with Focus on Market and

Credit Risk

Here we consider in detail the aggregation-by-risk-type approach, which can be used

as an approximation to the total risk of a financial firm. In particular, we show how

expert knowledge can be successfully exploited to estimate inter-risk correlations, and,

moreover, we compare different aggregation methods based on copulas and linear cor-

relation. We then consider the interaction between credit risk and market risk by

combining a Merton-like factor model for credit risk with linear factor model for mar-

ket risk. We analytically calculate their inter-risk correlation and show how inter-risk

correlation bounds can be derived. Furthermore, we suggest a new estimator for the

Gaussian copula parameter that can be applied to almost arbitrary credit portfolios.

4.1 Introduction

A core element of modern risk management and control is analysing the capital ade-

quacy of a financial institution, which is concerned with the assessment of the firm’s

required capital to cover the risks it takes. To this end, financial firms seek to quantify

their overall risk exposure by aggregating all individual losses associated with different

risk types or business units, and then compare this figure with a so-called risk taking

capacity, defined as the total amount of capital serving as a buffer against potential

losses.

Until now no standard procedure for risk aggregation has emerged. According to
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an industry survey of The Joint Forum [2], a widespread approach in the banking

industry is aggregation across risk types where the marginal loss distributions of all

relevant risk types are independently modelled from their dependence structure. This

approach splits up into three steps:

• First, assign every individual risk position to a certain risk type.

• Second, calculate an aggregated measure (such as VaR) for every risk type by

using separate, risk-type specific techniques and methodologies.

• Third, integrate all pre-aggregated risk figures of different risk types to obtain

the overall capital number, henceforth called aggregated risk capital.

The easiest solution for the last step is simply to add up all pre-aggregated risk

figures; this however, is only a rough estimate of the bank-wide total risk exposure.

Moreover, banks usually try to reduce their overall risk by accounting for diversification

between different risk types because it allows them either to reduce their capital buffer

(and thus expensive equity capital) or to increase their business volume (and thus to

generate additional earnings).

In practice, a widespread approach for aggregating different risk types is the so-

called square-root-formula approach or variance-covariance approach. Though math-

ematically justified only in the case of elliptically distributed risk types (with the

multivariate normal or t-distribution as prominent examples), this approach is very of-

ten used as a first approximation because then aggregated economic capital (EC) can

be determined without simulation. In doing so, let us describe pre-aggregated losses

associated with the i-th risk type by a random variable Xi, i = 1, . . . , m, and define

the associated EC at confidence level α ∈ (0, 1) by (for the sake of clarity, we drop the

time-horizon index t)

ECXi
(α) = F−1

i (α)− EXi ,

where EXi is the expected loss of risk type i (which we assume exists), and F−1
i (·) is

the inverse of the distribution function Fi(·) = P (Xi ≤ ·), which here and in the sequel

is always assumed to be strictly increasing and continuous. If moreover the linear

correlations between risk types are denoted by ρij = corr(Xi, Xj) for i, j = 1, . . . , m,

then aggregated economic capital EC+(α) := ECX1+···+Xm(α) for elliptically distributed

(X1, . . . , Xm) is given by

EC+(α) =

√√√√
m∑

i,j=1

ECXi
(α) ρij ECXj

(α) . (4.1)
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Hence, a typical problem of risk aggregation is the calculation of the inter-risk corre-

lation matrix C := (ρij), i, j = 1, . . . ,m, and its estimation and calibration is a core

problem for implementing aggregation by risk type in practice.

A technique that is more advanced compared to the variance-covariance approach

is based on copulas. In the last years, copulas have become very popular in basically all

areas of financial modelling. Applied to bank-wide risk aggregation, copula techniques

are discussed e.g. in Dimakos & Aas [28], Rosenberg & Schuermann [63], or Ward & Lee

[70]. Here, however, we want to move in a slightly different direction and put particular

emphasis on the fact that, in the context of risk aggregation, reliable empirical loss data

are rare, and, consequently, sound statistical estimates of the inter-risk correlation

are difficult to obtain. Therefore, we stress the usage of expert knowledge and show

new ways how this could be done in a proper way. Moreover, we illustrate how the

condition of positive semi-definiteness of the inter-risk-correlation matrix can be used

to set bounds on unknown matrix elements.

4.2 Aggregation by Risk Type

4.2.1 Inter-Risk Correlation

As already said, the variance-covariance method is currently the dominant approach for

risk aggregation and, consequently, dependence between different risk types is described

in terms of linear (Pearson) correlation, which for two random variables X and Y is

defined as

ρ = corr(X, Y ) =
cov(X, Y )

var(X) var(X)
,

where cov(X, Y ) = E(XY )− EX EY is the covariance between X and Y and var(X),

var(Y ) the variance of X and Y .

It is important to understand how inter-risk correlation is usually determined in

practice. First, it can be derived from a purely statistical analysis based on empirical

data, using e.g. Pearson product-moment correlation. For sample data (xi, yi), i =

1, . . . , n, it is given by

ρ̂ =

∑n
i (xi − x̄)(yi − ȳ)√∑n

i (xi − x̄)2
√∑n

i (yi − ȳ)2
, (4.2)

where x̄ and ȳ are the sample means of X and Y , respectively. There are many

other estimators for linear correlation available that are often superior to (4.2), see e.g.

Devlin, Gnanadesikan & Kettering [27], or Lindskog [45] for overviews about statistical

properties of different estimators.
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However, since data in sufficient volume and quality are often hard to come by,

a second approach relies on expert judgements, and in our estimation expert-based

inter-risk correlations are widely used when risk aggregation is performed in practice.

Therefore, evaluation of expert knowledge merits closer examination and this will be

done in Section 4.2.4.

4.2.2 Copulas and Tail Dependence

Besides the variance-covariance approach where inter-risk dependence is completely

captured by linear correlation, different risk figures can alternatively be aggregated by

means of a distributional copula, which has become a standard concept for characteris-

ing the dependence structure between different distribution functions. General readable

introductions about this subject with focus on financial applications are Cherubini, Lu-

ciano & Vecchiato [23] or Embrechts, Lindskog & McNeil [30].

Distributional copulas are multivariate distribution functions with uniform marginals.

They are used for dependence modelling within the context of Sklar’s theorem, which

says that any multivariate distribution with continuous marginals can be transformed

into a multivariate distribution with uniform marginals, called the copula. Cop-

ulas have the important property that they are invariant under strictly increasing

transformations. As a consequence thereof, for a multivariate distribution function

F (x1, . . . , xm), the copula is that part that does not depend on its marginal distribu-

tions F1(x1), . . . , Fm(xm).

Theorem 4.2.1. [Sklar’s Theorem, see e.g. Nelsen [52], Joe [38]] Let F be a d-

dimensional distribution function with marginals F1, . . . , Fd. Then there exists a copula

C : [0, 1]d → [0, 1] such that for all x1, . . . , xd ∈ [0,∞]

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (4.3)

If the marginal distribution functions F1, . . . , Fd are continuous, then this copula is

unique. Otherwise, it is unique on RanF1 × · · · × RanFd.

Conversely, if C is a copula and F1, . . . , Fd are marginal distribution functions, then

function F in (4.3) defines a d-dimensional distribution function with marginal distri-

bution functions F1, . . . , Fd.

Among all copulas discussed in the literature, maybe those most frequently used for

risk aggregation are the Gaussian copula and the t copula, and both allow for natural

extensions of the variance-covariance approach. Recall that equation (4.1) holds only

for multivariate elliptically distributed risk types, i.e. having elliptical marginals and

an elliptical dependence structure. Now, because both the Gaussian copula and the
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t copula describe elliptical dependence, they allow to model the same dependence

structure as in (4.1), however, in combination with more general, non-elliptical marginal

distributions for each risk type.

For basically all practically relevant cases, the Gaussian copula and t copula can be

parameterised by means of a correlation matrix R, and, in the case of the t copula, by

an additional degree-of-freedom parameter ν > 0, which controls the degree of extreme

dependence between the tails of the marginal distribution functions. More generally,

one can define the important concept of (upper) tail dependence, which for two random

variables X and Y with distribution functions FX and FY is given by

λ := lim
u→1

P
(
Y > F−1

Y (u) |X > F−1
X (u)

)
, (4.4)

where F−1
X (·) and F−1

Y (·) denote the quantiles of the distribution function of X and

Y , respectively. Hence, focusing on risk aggregation, tail dependence λ between two

risk types is the conditional probability that an (asymptotically) high loss in risk type

Y occurs, given that another (asymptotically) high loss in risk type X has already

been observed. If λ = 0 then X and Y are called tail-independent. Moreover, it can

be shown (Embrechts et al. [30]) that, in contrast to linear correlation, λ is solely a

property of the underlying copula, i.e. tail dependence does not depend on the specific

marginals FX and FY . For instance, for a bivariate t copula with correlation parameter

R and degree-of-freedom parameter ν one has (see again Embrechts et al. [30])

λt(R, ν) = 2− 2Fν+1

(√
ν + 1

√
1−R/

√
1 + R

)
, (4.5)

where Fν is the Student-t distribution function with ν degrees of freedom. Note that

the tail dependence (4.5) is not vanishing even for R = 0. As a matter of fact, bivariate

t distributed random variables are still dependent even if they are uncorrelated.

The different dependence structures of a bivariate Gaussian copula on one hand

and a bivariate t copula with ν = 3 on the other hand are depicted in Figure 4.2.2.

For each scatter plot of joint losses (defined as positive values), we assume a Student-t

distribution for the first risk type (say market risk), and a Vasicek distribution for the

second risk type, therefore reflecting credit loss of a loan portfolio (see e.g. Vasicek [69],

and Table 4.2.6 for details about the parametrisation we are using here). Furthermore,

we used a correlation parameter of R = 0.66 for both copulas. While the bodies of

both plots (i.e. the area of small or medium-sized losses of market and credit risk) are

quite similar, we see that with increasing loss sizes the t copula causes less scattering

and more points that are concentrated around the 45-degree line compared to the

Gaussian copula. Consequently, losses in market and credit risk are more likely to

occur simultaneously if their dependence is given by a t copula instead of a Gaussian
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Figure 4.2.2. Scatter plot of a simulation of joint losses in market and credit risk. Market
risk losses are described by a Student-t distribution with degrees of freedom 10 and a 99.95 %
quantile of 10 (indicated by the vertical dashed line). Credit risk follows a Vasicek distribution
with average default probability p = 0.3 %, uniform asset correlation % = 8 %, and a 99.95 %
quantile of about 68 (indicated by the horizontal dashed line). The correlation parameter of
both copulas is set to R = 0.66 and for the t copula we further have ν = 3. Note that the
linear correlation between both risk types is different from R and for both copulas estimated
to be about ρ = 0.57.

one. Especially, there is a significant amount of extreme joint losses above each risk

type’s 99.95 % quantile (indicated by the gray-shaded region in the upper right edge

of the panel) in the case of the t copula, whereas for the Gaussian copula only very few

extreme joint losses can be observed. This observation is not just a random effect but

can be explained systematically. One can show that a Gaussian copula with correlation

parameter R < 1 does not have tail dependence, i.e. λGauss = 0, and therefore very

extreme losses do not tend to occur simultaneously. In contrast, the t copula has a

non-zero tail dependence (even for R = 0), and λt is increasing in the correlation

parameter R and decreasing in ν. Furthermore, with growing ν, the t copula fades into

the Gaussian copula so that in the limit ν → ∞ we obtain λt = 0. This property is

useful for practical applications such as stress testing of inter-risk aggregation because

one can use the t copula to explore the impact of different degrees of tail dependence

on the aggregated EC.

It is worthwhile mentioning that the correlation matrix R of the Gaussian or t cop-

ula does not equal the usual inter-risk correlation matrix C calculated from empirical
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loss data. In particular, for pairwise correlations Rij, i, j = 1, . . . ,m, in principle all

values of the interval [0, 1] can be attained, which we know is in general not true for

ρij, i, j = 1, . . . , m, and comonotonicity (countermonotonicity) between risk types Xi

and Xj is reached for Rij = 1 (Rij = −1). However, as we will see in the next Section,

there are algebraic boundary conditions for the whole matrix R, which again may re-

strict some Rij to a subinterval of [0, 1]. As an example, consider again Figure 4.2.2

where the copula parameter between market and credit risk is set to R = 0.66. The

corresponding linear correlation can be estimated by applying (4.2) to the sample data

shown in the scatter plots, yielding for both copulas a value of about ρ = 0.57.

A useful estimator for R is based on Kendall’s tau rank correlation τ , which is

defined as the probability of concordance minus the probability of discordance, i.e.

τ(X,Y ) = P [(X −X ′)(Y − Y ′) > 0]− P [(X −X ′)(Y − Y ′) < 0] ,

where (X ′, Y ′) is an independent copy of (X,Y ). If (x1, . . . , xn) and (y1, . . . , yn) are

two samples of X and Y , then the standard estimator for Kendall’s tau is given by

τ̂ =
nc − nd√

(nc + nd + nx)(nc + nd + ny)
.

Here, nc is the number of concordant pairs of observations and nd is the number of

discordant pairs, where a concordant pair (xi, yi) and (xj, yj) is one such that both

xi > xj and yi > yj, or both xi < xj and yi < yj. A discordant pair is one such that

xi > xj and yi < yj, or xi < xj and yi > yj. Moreover, nx denotes the number of

so-called ties where xi = xj, and similarly, ny counts the ties in y in which yi = yj.

It was pointed out by Embrechts et al. [30], and Lindskog, McNeil & Schmock [47]

that Kendall’s tau can be used to construct a robust and efficient estimator for the

correlation parameters Rij and thus the matrix R of a Gaussian or t copula. In doing

so, we note that for elliptical distributions without atoms, Kendalls tau is linked to the

linear correlation coefficient by

R = sin(π τ/2) . (4.6)

Now, since copulas are invariant under strictly increasing transformations, relationship

(4.6) also holds true for basically all marginal risk type distributions and can therefore

be used as an estimator for R in the case of elliptical dependence structures.

4.2.3 Inter-Risk Correlation Matrix

We now assume that, using such methods as described in the previous Section, for

given risk types Xi, i = 1, . . . , m, we have estimated their linear correlations ρij, or,
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alternatively, the correlation parameters Rij of a Gaussian or t copula. By definition,

in order to be a proper correlation matrix, the pairwise correlation estimates must

satisfy several conditions: The matrices C and R must be symmetric and all their

diagonal elements must be equal to 1, moreover, they have to be positive semi-definite.

The first two conditions can be checked easily, and for the latter there exist several

mathematically equivalent ways of testing it. Using modern computer algebra systems,

a particular convenient method is to calculate the eigenvalues of the matrix; then, if all

eigenvalues are non-negative, the matrix is positive semi-definite and hence a proper

correlation matrix. If some eigenvalues are negative, a positive semi-definite matrix has

to be generated from the raw before risk aggregation can be performed. Algorithms for

doing this are discussed e.g. in Higham [35], Rebonato & Jäckel [59], or Lindskog [45],

who came to the conclusion that the best technique is the eigenvalue method where

negative eigenvalues of the raw matrix are replaced by a small positive constant δ > 0,

and then the new matrix is calculated invoking standard results from linear algebra.

In order to illustrate the potential impact of the positive semi-definitess require-

ment on calculating an inter-risk correlation matrix, let us consider the following four-

dimensional symmetric matrix based on average industry data according the survey of

the IFRI/CRO Forum [36] (see Section 4.2.5 for further details):

R =




market credit oprisk business

market 1 0.66 0.30 R

credit 0.66 1 0.30 R

oprisk 0.30 0.30 1 R

business R R R 1




, (4.7)

where we assumed that business risk has an unknown but uniform correlation parameter

R with other risks. What can we say about the possible values of R, for instance, would

it be possible to adopt the conservative assumption of R = 1? A look at Figure 4.2.3

reveals that R is a proper correlation matrix only if R is smaller than about 0.78, which

therefore is the correct upper bound (instead of R = 1) to be used for a conservative

calculation of aggregated EC. Though the property of positive semi-definiteness is in

general difficult to grasp, consider the following intuitive argument: Assume that R in

(4.7) is set to the extreme value of R = 1, implying that business risk comonotonously

depends on market risk, credit risk, and operational risk, i.e. their loss variables always

move in lock steps. This, however, implies at least a medium degree of comovement also

between e.g. operational risk and market risk, or between operational risk and credit

risk, since their random variables are coupled by virtue of the business risk random

variable. This is, however, in contradiction to their relatively low correlation of 0.3 in

(4.7). Consequently, the coupling of business risk to the other risk types must be less
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Figure 4.2.3. Plot of min(λ1, λ2, λ3, λ4) of all eigenvalues λi of the symmetric matrix (4.7)
as a function of the unknown correlation parameter R of business risk. For R < 0.78 all
eigenvalues are positive and R becomes a well-defined correlation matrix.

strong, implying an inter-risk correlation that is somewhat smaller than 1.

4.2.4 Elicitation of Expert Knowledge

Introduction

Because of the often scarce empirical data it is usually not guaranteed that statistical

estimators like (4.2) yield reliable and robust results for the inter-risk correlation, and

in this case it is necessary to draw on expert opinions. This has also been acknowledged

by the Committee of European Banking Supervisors in their recent consultation paper

[26], where they explicitly distinguish statistical techniques versus expert judgements.

However, because elicitation of expert knowledge is not an easy task, supervisors are

usually concerned about how the subjectivity of expert estimates can be addressed and

controlled.

Therefore, in this Section we try to shed some light on this subject matter and

review some basic concepts and key results about expert judgements. A reliable elic-

itation of expert probabilities requires knowledge both in statistics and in psychology

of judgements under uncertainty. Excellent overviews about the methodological frame-

work of elicitation of probabilities are O’Hagan et al. [56] or Jenkinson [37], and they

were the source of inspiration for the following brief presentation on this intriguing

subject.

To understand how experts construct probability judgements it is important to dis-
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tinguish frequency probability versus personal or subjective probability. Simply stated,

frequency probability of an event is the relative proportion of its occurrence in an,

ideally infinitive, series of repetitions, think e.g. of the relative number of “heads” in

a (obviously repeatable) coin-tossing game. Indeed, the strong law of large numbers

ensures that the sample average converges in probability towards the expected value,

i.e. for the coin-tossing game we have that P (limn→∞ Hn

n
= 1

2
) = 1, where Hn denotes

the number of “heads” in a series of n trials. Hence, frequency probability can be used

to describe the statistical uncertainty (also referred to as aleatory uncertainty) in one

ore more instances of a random process. On the other hand, if there is also systematic

uncertainty (also referred to as epistemic uncertainty) due to imperfect knowledge,

or if the “game” cannot be repeated, the definition of frequency probability does not

suffices. Put another way, one then has to associate the notion of probability with

the uncertainty of knowledge rather than with the results of repeatable experiments.

This leads to the definition of subjective probability as a person’s degree of belief in

an uncertain proposition.

Given the frequency interpretation of probability, it is clear that also the personal

probability should not contradict some formal laws of probability, such as the mul-

tiplication law P (A ∩ B) = P (A) P (B) for independent events A and B. However,

empirical research revealed that, in practice, people’s judgement of probabilities is of-

ten biased and non-coherent, i.e. violating formal axioms of probability. The reasons

for that are manifold, e.g. the expert’s statement of probability crucially depends on

the facilitator’s questions but also on the response scale on which the expert is asked

to express his personal probability. Another reason is that the information on which

the respondent’s judgement is built may be based only on a sub-sample or subjective

selection of what is potentially relevant. A ground-breaking work regarding the psycho-

logical foundation that governs the heuristics that are employed in making judgements

of probabilities was the heuristics and biases research programme by Tversky & Kah-

neman [67]1. According to [67], people rely their judgements of probability on some

heuristic principles instead of a more complex assessment that requires more effort. In

general, such approximative heuristics work sufficiently well “but sometimes they lead

to severe and systematic errors.” ([67], p. 1124). By way of illustration, let us consider

the following frequently cited experiment, see e.g. Tversky & Kahneman [68]:

Linda is 31 years old, single, outspoken and very bright. She majored in

philosophy. As a student she was deeply concerned with issues of discrim-

1Kahneman was awarded the 2002 Nobel Prize in Economic Sciences for this and related work,
and Tversky, who died in 1996, was acknowledged in the announcement because the Royal Swedish
Academy of Sciences does not award prizes posthumously.
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ination and social justice and also participated in antinuclear demonstra-

tions.

Respondents were asked to tick the most likely alternative between

• Linda is a bank teller,

• Linda is a bank teller and is active in the feminist movement.

The majority of people (typically more than 80 % percent) rate the second opinion as

more likely than the first one; a result, which is obviously in contradiction to the laws

of probability because the conjunction of two events (Linda is a bank teller and an

active feminist) can never be greater than either of the stand-alone events (e.g. Linda

is a bank teller).

Eliciting Inter-Risk Dependence Measures

What are the implications of this research for estimating inter-risk correlation based

on experts’ opinion? First to mention is that judging correlations between two random

variables contains the complexity of multivariate elicitation. Hence, one can expect

to encounter similar or even bigger problems compared to those found when assessing

means, medians or variances of univariate distributions. It has therefore been suggested

that in order to elicit association (such as linear correlation) in a joint distribution, it

is more reliable to elicit joint probabilities or conditional probabilities rather than the

association measure directly. With this respect, O’Hagan et al. [56], p. 110, suggest a

method for estimating the correlation between two random variables X and Y by means

of their positive quadrant probability, which is defined as P (X > xmed, Y > ymed) where

xmed and ymed are the medians of X and Y , respectively. For example, if X and Y

are bivariate normally distributed with correlation ρ and standard deviations σx and

σy, then their positive quadrant probability can be analytically calculated as (confer

Lindskog [45], Example 2.2)

P (X > xmed, Y > ymed) =
1

2πσxσy

√
1− ρ2

∫ ∞

0

∫ ∞

0

exp
[− 1

2(1− ρ2)

(x2

σ2
x

− 2ρxy

σxσy

+
y2

σ2
y

)]

=
1

4
+

arcsin(ρ)

2π
. (4.8)

Solving (4.8) for ρ, an elicited positive quadrant probability can be transformed into a

measure for the linear correlation coefficient.

Naturally, in the context of risk aggregation, two risk types are seldom bivariate

normally distributed and (4.8) can not be used directly. However, the basic idea can

be easily generalised to elicit the parameters of a given bivariate copula. It is worth
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Figure 4.2.4. Joint probability P (Z > xZ , L > xL) that credit loss is above xL and mar-
ket loss is above xZ . As described in the text, this probability can be used to estimate the
correlation parameter R of a bivariate Gaussian or t copula.

mentioning that in order to extract the parameters of a bivariate copula by estimating

a joint probability such as (4.8), one needs to have already solved any assumptions

about the marginal distribution functions as well as the copula. We now exemplify

this technique for the Gaussian and t copula.

We now already adopt the notation we use in Section 4.3 and denote the credit risk

and market risk random variables by L and Z, respectively. Let us consider the joint

probability that market risk loss and credit risk loss exceed certain thresholds of xL

and xZ , i.e. P (Z > xZ , L > xL). From Figure 4.2.4 we immediately obtain

P (Z > xZ , L > xL) = 1− P (Z ≤ xZ)− P (L ≤ xL) + P (Z ≤ xZ , L ≤ xL)

= 1− FZ(xZ)− FL(xL) + CR(FZ(xZ), FL(xL)) , (4.9)

where FL and FZ are the marginal distribution functions of pre-aggregated credit and

market risk, and CR(·, ·) is a bivariate Gaussian or t copula, depending on the un-

known parameter R to be estimated. Expression (4.9), which can be understood as a

generalisation of (4.8) to arbitrary marginals and bivariate copulas, can usually not be

solved analytically for the copula parameter, here R. However, numerical techniques or

a graphical analysis may help to infer R from an elicited value for P (Z > xZ , L > xL).

It has been argued by several authors such as O’Hagan et al. [56] or Gokhale &

Press [34] that people usually have more quantitative feeling about one-dimensional

probabilities instead of (bivariate) joint probabilities. Hence, to diminish the bias of an

expert estimate, they suggest to reduce a joint probability to a conditional probability,
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which is a statement regarding only one random variable. In our example of market

and credit risk, we therefore could do better in eliciting

P (L > xL|Z > xZ) =
P (Z > xZ , L > xL)

P (Z > xZ)
, (4.10)

i.e. the probability that credit losses will be above xL given that a market risk loss

greater than xZ has already occurred. In order to illustrate this with a numerical

example, let us first specify xL and xZ by the expectations EL and EZ of the marginal

credit risk and market risk distributions. We use the same Student-t and Vasicek

distribution for marginal market and credit risk as in Figure 4.2.2, and moreover we

set without loss of generality EZ = 0, whereas expected credit loss is roughly about

7.0 as described in Section 4.2.5. From (4.9) and (4.10) we then obtain

P (L > EL|Z > 0) = 2 P (Z > 0, L > EL)

= 1− 2 FL(EL) + 2 CR

(1

2
, FL(EL)

)
. (4.11)

The left panel in Figure 4.2.5 shows the conditional probability P (L > EL|Z > 0)

as a function of the copula parameter R both for a Gaussian and a t copula with 3

degrees of freedom. One can see that there is essentially no difference between both

copulas, implying that extreme dependence between two risk types cannot be assessed

by means of (4.11). This is mainly a consequence of the fact that we have chosen

such moderate values for the thresholds xL and xZ , namely the expected losses of L

and Z, respectively. If we set both xL and xZ in (4.9) to more extreme values, e.g.

to high quantiles such as 99%, one can graphically differentiate both cpoulas as it is

shown in the right panel of Figure 4.2.5. The conditional probabilities derived from

a Gaussian or a t copula are now different because, as we explained in Section 4.2.2,

both copulas differ in the way they are reflecting extreme dependence. In particular,

recall that λGauss = 0, and therefore, in order to achieve a certain level of extreme

joint loss probability P (L > xL|Z > xZ), the correlation parameter of the Gaussian

copula must be higher compared to the one of a t copula. Since in the right panel

of Figure 4.2.5 the thresholds xL and xZ are chosen as high quantiles (99%) of the

marginal loss distributions, the plot effectively is a numerical approximation of the tail

dependence (4.4) for different values of R. The exact tail dependence parameter for a t

copula was given in (4.5) and is illustrated in Figure 4.2.5 as a dotted line, specifically,

for R = 0 and ν = 3 we have λt = 0.12.

Based on several expert estimates for different thresholds xL and xZ , one could in

principle use the described method to determine both R and the degree-of-freedom

parameter ν of a t copula. However, because such procedure would require expert
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Figure 4.2.5. Plot of the conditional probability P (L > xL|Z > xZ) as a function of the
parameter R of a Gaussian copula (solid line) and a t copula with 3 degrees of freedom (dashed
line) according to (4.10). In the case of the Gaussian copula, independence between market
and credit risk is reached for R = 0, and the joint probability is then equal to the probability
that credit losses are above xL. Moreover, marginal market and credit risk follow the same
Student-t and Vasicek distributions as used in Figure 4.2.2. Left panel: Here xL = EL and
xZ = EZ = 0. Right panel: xL = F−1

L (0.99) and xZ = F−1
Z (0.99). As explained in the text,

this plot can therefore be interpreted as a numerical approximation of the tail dependence λ,
which for the t copula is additionally shown as a dotted line.
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knowledge about high-quantile losses such as used in the right panel of Figure 4.2.5, one

might expect a high degree of uncertainty when they are assessed by expert judgement.

Let us again consider the left panel of Figure 4.2.5. Statistically it is clear from

(4.10) that the conditional probability P (L > EL|Z > 0) always takes values in a

subinterval of [0, 1], in particular, we have in the case of independent market and

credit risk P (L > EL|Z > 0) = P (L > EL) > 0. Assuming a Gaussian copula, this is

equivalent to R = 0. However, since humans cannot be guaranteed to act according to

the rules of probability theory, we cannot take it for granted that this is also clear for

the expert. The facilitator should therefore carefully explain the underlying statistical

concept to the expert at the beginning of the elicitation exercise and maybe use the

lower boundary P (L > EL) as an anchor that helps to calibrate the expert’s estimate

of P (L > EL|Z > 0). Finally, a possible question to the expert could be this one:

Q: Suppose you were told that the actual yearly loss in market risk is above

its expected value. Can you now determine the probability that also yearly

credit loss is above the expected one?

The expert’s estimate for P (L > EL|Z > 0) can then be transformed into an estimate

for R either graphically by Figure 4.2.5 or numerically by solving (4.11). If one moreover

is interested in the linear correlation coefficient ρ between both risk types, one can

calculate it from simulated random variates obtained from the copula CR together

with the assumed marginal distributions, just as we did in Figure 4.2.2.

Needless to say, the described elicitation approach can be used to assess associations

between almost every kind of risk-type marginals and, in principle, also in combination

with other copulas. However, as we have already seen by comparing the Gaussian

copula and the t copula in Figure 4.2.5, this method cannot straightforwardly be used

to assess a possible extreme dependence between two risk types without touching the

thorny issue of extreme value estimation based on expert opinions.

4.2.5 An Aggregation Exercise

After the inter-risk correlation matrix C or the matrix R of an elliptical copula is de-

termined, one can begin with the aggregation of the different risk types. This Section is

devoted to illustrate this aggregation procedure by considering a bank-typical example.

We assume that pre-aggregated EC for each risk type has already been determined at

confidence level of 99.95 % and time horizon of one year, and that the portfolio com-

position based on these pre-aggregated risk-type figures is given by 10 % market risk,

61 % credit risk, 14 % operational risk, and 15 % business risk. These values represent

an industry average obtained from large banks that were participating the survey of the
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Risk Distribution function Parameters

MR F (x) = Fν

(
x−µ

σ

)
, x ∈ R µ = 0, σ = 2.18, ν = 10

CR F (x) = X = 2338.64,

Φ
[

1√
%

(√
1− % Φ−1( x

X
)− Φ−1(p)

)]
, x > 0 p = 0.3%, % = 8%

OR F (x) = Φ
[

ln x−µ
σ

]
, x > 0 µ = −0.893, σ = 1.089

BR F (x) = Φ
[

x−µ
σ

]
, x ∈ R µ = 0, σ = 4.56

Table 4.2.6. Marginal distributions for market risk (MR), credit risk (CR), operational risk
(OR), and business risk (BR), where Fν is the Student-t distribution function with ν degrees
of freedom and Φ is the standard normal distribution function. MR follows a scaled Student-t
and CR is described by a Vasicek distribution with total exposure X, uniform asset correlation
%, and average default probability p. Operational risk (OR) is assumed to be lognormally
distributed and business risk (BR) is modelled by a normal distribution. The parameters for
the distribution functions are chosen so that MR, CR, OR, and BR absorb 10, 61, 14, and
15 units of EC at 99.95 % confidence level. Finally, only credit risk and operational risk have
non-zero expected losses of about 7.0 and 0.7, respectively.

IFRI/CRO Forum [36], Figure 16. For the different risk types we assume distributions

and parameterisations as widely used in practice, see Table 4.2.6. In particular, the

Vasicek distribution for credit risk will be further explained in Section 4.3.4. Also re-

garding the specification of the inter-risk correlation matrix we stick to the IFRI/CRO

survey and use average benchmark results reported in [36], Figure 10. This is, however,

not so straightforward since the linear correlation not only describes the dependence

between different risk types but also is impacted by the marginal risk distributions.

This is simply a consequence of the fact that linear correlation is (in contrast to copu-

las) not invariant under strictly increasing transformations. Hence, we simply interpret

these benchmark correlations as the correlation matrix R of a Gaussian or t copula as

described in Section 4.2.2, and thus independent of the marginals. We write

R =




market credit oprisk business

market 1 0.66 0.30 0.58

credit 0.66 1 0.30 0.67

oprisk 0.30 0.30 1 0.60

business 0.58 0.67 0.60 1




. (4.12)

Note that this matrix is positive semi-definite and thus a proper correlation matrix.

Before we go on with our aggregation exercise, let us have a look at the corresponding

correlation matrix C of linear correlation coefficients ρij, i, j = 1, 2, 3, 4. As linear
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Aggregated Economic Capital

Sum Gaussian copula t copula (ν = 5 )

79.57 85.95
100

(82.39) (83.10)

Table 4.2.7. Aggregated EC at confidence level of 99.95 % and time horizon of one year
for the portfolio consisting of market, credit, operational, and business risk as specified in
Table 4.2.6. The correlation matrix R used for the Gaussian and t copula is given by (4.12).
The values in brackets are obtained by the variance-covariance formula (4.1) where we have
used the simulated inter-risk correlations (4.13) and (4.14), respectively.

correlation depends on the dependence structure, we get different results for different

copulas. Using the marginal distributions of Table 4.2.6 together with a Gaussian

copula, a simulation yields

CGauss =




market credit oprisk business

market 1 0.57 0.30 0.42

credit 0.57 1 0.26 0.55

oprisk 0.30 0.26 1 0.43

business 0.42 0.55 0.43 1




, (4.13)

whereas in the case of a t copula with 5 degrees of freedom we obtain

CStudent =




market credit oprisk business

market 1 0.58 0.30 0.44

credit 0.58 1 0.26 0.61

oprisk 0.30 0.26 1 0.44

business 0.44 0.61 0.44 1




. (4.14)

The results of the aggregation analysis are shown in Table 4.2.7. One can see that to-

tal aggregated EC in the case of a Gaussian dependence structure is slightly below the

result obtained from the variance covariance approach. However, because these results

depend on the relative importance of the different risk types as well as the specific

forms of the marginal distributions, one should not generalise this observation without

investigation.
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4.3 Correlation Between Credit and Market Risk

Here we combine a Merton-like factor model for credit risk with a linear factor model

for another risk type—henceforth referred to as market risk—and investigate their cor-

relation and the resulting aggregate risk. Both models are driven by a set of (macroe-

conomic) factors Y = (Y1, . . . , YK) where the factor weights are allowed to be zero so

that a risk type may only depend on a subset of Y . As a result, we obtain closed-form

expressions for their inter-risk correlation.

4.3.1 Factor Models for Credit Risk

To describe credit portfolio loss, we choose a classical structural model as it can be

found e.g. in Bluhm, Overbeck and Wagner [8]. Within these models, a borrower’s

credit quality (and so his default behaviour) is driven by its asset-value process, or,

more generally and in the case of unlisted customers, by a so-called “ability-to-pay”

process. Consider a portfolio of n loans. Then, default of an individual obligor i is

described by a Bernoulli random variable Li, i = 1, . . . , n, with P(Li = 1) = pi and

P(Li = 0) = 1 − pi where pi is the obligor’s probability of default within time period

[0, T ] for T > 0. Following Merton’s idea, counterparty i defaults if its asset value

log-return Ai falls below some threshold Di, sometimes referred to as default point, i.e.

Li = 11{Ai<Di} , i = 1, . . . , n .

If we denote the exposure at default net recovery of an individual obligor by ei, portfolio

loss is finally given by

L(n) =
n∑

i=1

ei Li . (4.15)

For a credit portfolio of n obligors, credit portfolio loss L(n) at time horizon T is driven

by n realizations of the asset values Ai, which usually are assumed to depend on factors

(Y1, . . . , YK). The following factor model is widely spread in financial firms and similar

versions are implemented in various software packages for credit risk.

Definition 4.3.1. [Normal factor model for credit risk] Let Y = (Y1, . . . , YK) be a

K-dimensional random vector of (macroeconomic) factors with multivariate standard

normal distribution. Then, in the normal factor model, each of the standardized asset

value log-returns Ai, i = 1, . . . , n, depends linearly on Y and a standard normally

distributed idiosyncratic factor (or noise term) εi, independent of all Yk, i.e.

Ai =
K∑

k=1

βikYk +

√√√√1−
K∑

k=1

β2
ik εi , i = 1, . . . , n , (4.16)
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with factor loadings βik satisfying R2
i :=

∑K
k=1 β2

ik ∈ [0, 1] describing the variance of Ai

that can be explained by the systematic factors Y.

For later usage we recall some properties of the normal factor model as can be found

e.g. in Bluhm et al. [8] or McNeil, Frey and Embrechts [50], Chapter 8.

Remark 4.3.2. (a) The log-returns A1, . . . , An are standard normally distributed and

dependent with correlations

ρij := corr(Ai, Aj) =
K∑

k=1

βikβjk , i, j = 1, . . . , n , (4.17)

the so-called asset correlations between Ai and Aj.

(b) The default point Di of every obligor is related to its default probability pi by

Di = Φ−1(pi) , i = 1, . . . , n , (4.18)

where Φ is the standard normal distribution function.

(c) The joint default probability of two obligors is given by

pij := P(Li = 1, Lj = 1) = P(Ai ≤ Di, Aj ≤ Dj) =





Φρij
(Di, Dj) , i 6= j ,

pi , i = j ,
(4.19)

where Φρij
denotes the bivariate normal distribution function with standard marginals

and correlation ρij given by (4.17). Moreover, the default correlation between two

different obligors is given by

corr(Li, Lj) =
pij − pi pj√

pi(1− pi) pj(1− pj)
, i, j = 1, . . . , n . (4.20)

(d) Conditional on a realization y = (y1, . . . , yK) of the factors Y , defaults of different

obligors are independent. Moreover, the conditional default probability is given by

pi(y) = P(Li = 1|Y = y)

= P




K∑

k=1

βik yk +

√√√√1−
K∑

k=1

β2
ik εi ≤ Di




= Φ


Di −

∑K
k=1 βik yk√

1−∑K
k=1 β2

ik


 .

¤
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A strong assumption of the model above is the multivariate normal distribution of

the factor variables Y = (Y1, . . . , YK), and thus of the asset value log-returns Ai. It is

well known that the normal distribution has very light tails and therefore may seriously

underestimate large fluctuations of the (macroeconomic) factors, eventually leading to

model risk of the normal factor model for credit risk.

A generalisation allowing for heavier tails as well as a stronger dependence between

different counterparties is the class of normal variance mixture distributions, where the

covariance structure of the Ai is disturbed by means of a positive mixing variable WL,

see e.g. McNeil et al. [50], Section 3.2. A particular interesting model is the following

one, confer also Kostadinov [44]:

Definition 4.3.3. [Shock model for credit risk] Let Y = (Y1, . . . , YK) be a K-dimensional

random vector of (macroeconomic) factors with multivariate standard normal distri-

bution. Then, in the shock model, each of the standardized asset value log-returns

Âi, i = 1, . . . , n, can be written as

Âi = WL ·
K∑

k=1

βikYk + WL ·
√√√√1−

K∑

k=1

β2
ik εi , i = 1, . . . , n , (4.21)

where WL =
√

νL/SνL
and SνL

is a χ2
νL

distributed random variable with νL degrees of

freedom, independent of Y and the idiosyncratic factor εi.

The mixing variable WL can be interpreted as a “global shock” driving the variance

of all factors. Such an overarching shock may occur from political distress, severe

economic recession or some natural disaster.

We conclude this Section with some general remarks about the shock model for

credit risk (see again Bluhm et al. [8] and McNeil et al. [50] as well as references

therein).

Remark 4.3.4. (a) In general, let X = (X1, . . . , Xn) be a standardised multinormal

vector with covariance matrix R and SνL
is a chi-square variable with νL degrees of

freedom. Then (X1, . . . , Xn)/
√

SνL
/νL has a multivariate t-distribution with correla-

tion matrix R and νL degrees of freedom. Hence, from (4.16) and (4.21) it follows for

the shock model for credit risk that the vector of standardised asset value log-returns

(Â1, . . . , Ân) is t-distributed with νL degrees of freedom, in particular, it has the same

asset correlation ρij as the normal factor model given by equation (4.17).

(b) The default point D̂i of the shock model is linked to the obligor’s default probability

by

D̂i = t−1
νL

(pi) , i = 1, . . . , n , (4.22)
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where tνL
is the Student t distribution function with νL degrees of freedom.

(c) The joint default probability p̂ij for two obligors can be written as

p̂ij = tνL;ρij
(D̂i, D̂j) , i 6= j , (4.23)

where tνL;ρij
denotes the standard bivariate Student t distribution function with corre-

lation ρij given by (4.17) and degree of freedom parameter νL. ¤

4.3.2 Joint Factor Models for Credit and Market Risk

Market risk is related to a bank’s potential loss associated with its trading activi-

ties. We assume that it is already pre-aggregated so that losses can be approximately

described by a one-dimensional random variable Z (or Ẑ, see below), which can be

thought of as the bank-wide, aggregated profit and loss (P/L) distribution due to

changes in some market variables, such as interest rates, foreign exchange rates, equity

prices or the value of commodities.

Similarly as for credit risk, we explain fluctuations of the random variable Z by

means of (macroeconomic) factors (Y1, . . . , YK). We use the same macroeconomic fac-

tors for credit and market risk, where independence of risk from such a factor is indi-

cated by a loading factor 0. If the pre-aggregated P/L can be described by a normal

distribution, the following factor model is a sensible choice and can be used for risk

aggregation. Even if this assumption does not hold exactly, it can be used as an im-

portant approximation for investigating inter-risk dependencies (we use the convention

that losses correspond to positive values of Z.)

Definition 4.3.5. [Normal factor model for market risk] Let Y = (Y1, . . . , YK) be a

random vector of (macroeconomic) factors with multivariate standard normal distribu-

tion. Then, the normal factor model for the pre-aggregated market risk P/L is given

by

Z = −σ




K∑

k=1

γkYk +

√√√√1−
K∑

k=1

γ2
k η


 , (4.24)

with factor loadings γk satisfying
∑K

k=1 γ2
k ∈ [0, 1], which is that part of the variance

of Z which can be explained by the systematic factor Y . Furthermore, η is a stan-

dard normally distributed idiosyncratic factor, independent of Y , and σ is the standard

deviation of Z.

Clearly, for an actively managed market portfolio the idiosyncratic factor η is more

important than for an unmanaged portfolio (e.g. an index of stocks). As a matter
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of fact, portfolio managers are paid owing to their skills to achieve the best possible

portfolio performance that is independent of some macroeconomic indicators.

Note that both in Definition 4.3.1 of the credit factor model as well as above, the

factor loadings βik and γk, respectively, are allowed to be zero. For instance, Yk can be

relevant for credit but not for market by setting γk = 0.

Definition 4.3.6. [Joint normal factor model for credit and market risk] Let Y =

(Y1, . . . , YK) be a random vector of (macroeconomic) factors with multivariate standard

normal distribution. Let the credit portfolio loss L(n) be given by (4.15), and the asset

value log-returns Ai for i = 1, . . . , n be modelled by the normal factor model (4.16). Let

Z be the pre-aggregated market risk P/L modelled by the normal factor model (4.24).

When the idiosyncratic factors εi for i = 1, . . . , n of the credit model are independent

of η, then we call (L(n), Z) the joint normal factor model for credit and market risk.

In order to account for possible heavy tails in the market risk P/L, we again rely

on the global shock approach already used for credit risk.

Definition 4.3.7. [Shock model for market risk] Let Y = (Y1, . . . , YK) be a ran-

dom vector of (macroeconomic) factors with multivariate standard normal distribution.

Then the shock model for the pre-aggregated market risk P/L is given by

Ẑ = −σ


WZ ·

K∑

k=1

γkYk + WZ ·
√√√√1−

K∑

k=1

γ2
k η


 , (4.25)

where σ is a scaling factor, WZ =
√

νZ/SνZ
, and SνZ

is a χ2
νZ

distributed random

variable with νZ degrees of freedom, independent of Y and the idiosyncratic factor η.

Definition 4.3.8. [Joint shock model for credit and market risk] Let Y = (Y1, . . . , YK)

be a random vector of (macroeconomic) factors with multivariate standard normal dis-

tribution. Let the credit portfolio loss be given by (4.15), now denoted as L̂(n), and the

asset value log-returns Âi for i = 1, . . . , n be modelled by the shock model (4.21) with

shock variable WL. Let Ẑ be the pre-aggregated market risk P/L modelled by the shock

model (4.25) with shock variable WZ.

(1) (Independent shock model for credit and market risk). If the credit model’s id-

iosyncratic factors εi for i = 1, . . . , n are independent of η, and furthermore WL is

independent from WZ, then we call (L̂(n), Ẑ) the independent shock model for credit

and market risk.

(2) (Common shock model for credit and market risk). If the credit model’s idiosyncratic

factors εi for i = 1, . . . , n are independent of η, and furthermore if we set

WL ≡ WZ =: W ,

then we call (L̂(n), Ẑ) the common shock model for credit and market risk.
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4.3.3 Inter-Risk Correlation

We now calculate the linear correlation between the credit risk portfolio loss and market

risk. We begin with the normal model.

Normal Factor Model Approach

The proposed models shall now be used to investigate the dependence between credit

risk L(n) and market risk Z, introduced by the factors Y . Let us start with the linear

correlation, which is defined as

corr(L(n), Z) =
cov(L(n), Z)√

var(L(n))
√

var(Z)
. (4.26)

Although linear correlation only describes linear dependence between different ran-

dom variables, it is a very popular and important concept in finance, frequently used

both by practitioners and academics. Moreover, since we calculate expressions for linear

correlation in closed form, we are able to analytically investigate the linear dependence

structure between market and credit risk. Note also that the correlation completely

describes the dependence in the joint normal factor model.

We begin with the joint normal factor model for credit and market risk.

Theorem 4.3.9. [Inter-risk correlation for the normal factor model] Suppose that credit

portfolio loss L(n) and market risk Z are described by the joint normal factor models

of Definition 4.3.6. Then, linear correlation between L(n) and Z is given by

corr(L(n), Z) =

∑n
i=1 ri ei exp

(−1
2
D2

i

)
√

2π var(L(n))
, (4.27)

where Di is the default point (4.18),

ri := corr(Ai, Z) =
K∑

k=1

βikγk , i = 1, . . . , n,

and

var(L(n)) =
n∑

i,j=1

ei ej (pij − pi pj)

with joint default probability pij given by (4.19).

Proof. First we calculate the covariance between L(n) and Z. Using E(Z) = 0,

expression (4.15), and the fact that η in (4.24) is independent from Y (and thus from

Li), we can write

cov(L(n), Z) = E(ZL(n)) = −σ

n∑
i=1

ei

K∑

k=1

γk E(YkLi) . (4.28)
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To evaluate the expectation, conditioning with respect to Yk = yk and using the law of

iterated expectation yield

E(Yk Li) = E(Yk Li(Y1, . . . , YK))

= E
(
E(Yk Li(Y1, . . . , YK) |Yk)

)

=

∫ ∞

−∞
E(Yk Li(Y1, . . . , YK) |Yk = yk) dΦ(yk)

=

∫ ∞

−∞
E(yk Li(Y1, . . . , yk, . . . , YK)) dΦ(yk)

=

∫ ∞

−∞
yk E(Li(Y1, . . . , yk, . . . , YK)) dΦ(yk)

where Φ is the standard normal distribution function. Using E(Li) = P(Li = 1), we

have

E(Yk Li) =

∫ ∞

−∞
yk P(Li(Y1, . . . , yk, . . . , YK) = 1) dΦ(yk)

=

∫ ∞

−∞
yk P




K∑
l=1
l6=k

βil Yl + βik yk +

√√√√1−
K∑

j=1

β2
ij εi ≤ Di


 dΦ(yk)

=

∫ ∞

−∞
yk P




K∑
l=1
l6=k

βil Yl +

√√√√1−
K∑

j=1

β2
ij εi ≤ Di − βik yk


 dΦ(yk)

=:

∫ ∞

−∞
yk P (X ≤ Di − βik yk) dΦ(yk)

where X is normally distributed with variance var(X) = 1− β2
ik. Hence, we obtain

E(Yk Li) =

∫ ∞

−∞
yk Φ

(
Di − βik yk√

1− β2
ik

)
dΦ(yk) .

Since the derivative of the density ϕ of the standard normal distribution is given by

ϕ′(y) = y ϕ(y), it follows by partial integration that

E(Yk Li) = − βik√
1− β2

ik

∫ ∞

−∞
yk ϕ

(
Di − βik yk√

1− β2
ik

)
ϕ(yk) dϕ(yk) ,

where the right-hand side is just −βik times the density of a random variable Ψ =√
1− β2

ikX + βikYk for standard normal iid X, Yk at point Di. Since Ψ is then again

standard normal, we obtain

E(Yk Li) = −βikϕ(Di) = − βik√
2π

e−
D2

i
2 , (4.29)
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which together with (4.28) yields

cov(L(n), Z) =
σ√
2π

n∑
i=1

K∑

k=1

ei γk βik e−
D2

i
2

=
σ√
2π

n∑
i=1

ei ri e
−D2

i
2

where we have introduced ri := corr(Ai, Z) =
∑K

k=1 βikγk. With
√

var(Z) = σ and

var(L(n)) =
n∑

i,j=1

ei ej cov(Li, Lj)

=
n∑

i,j=1

ei ej

(
E(LiLj)− E(Li)E(Lj)

)

=
n∑

i,j=1

ei ej (pij − pi pj) , (4.30)

where pij is the joint default probability (4.19), the assertion follows. ¤

Note that ri may become negative if (some) factor loadings βik and γk have different

signs. Therefore, in principle, also negative inter-risk correlations can be achieved in

our model. Moreover, in (4.27) the term ei e
−D2

i /2 can be interpreted as a kind of

rating-adjusted exposure. For instance, a relatively low default probability of debtor

i corresponds to a relatively small value of e−D2
i /2. As a consequence thereof, for two

obligors with equal exposure size ei, the one with the better rating has less impact on

inter-risk correlation as the low-rated creditor.

The fact that corr(L(n), Z) linearly depends on the correlation ri and thus on the

factor loadings γk, implies the following Proposition.

Proposition 4.3.10. [Inter-risk correlation bound for the joint normal factor model]

Suppose that credit portfolio loss L(n) is described by the normal factor model of Defini-

tion 4.3.1, and market risk Z by the normal factor model of Definition 4.3.5, however,

with unknown factor loadings γk, k = 1, . . . , K. Then, inter-risk correlation is bounded

by

|corr(L(n), Z)| ≤
∑n

i=1 ei Ri exp
(−1

2
D2

i

)
√

2π var(L(n))
(4.31)

with Ri =
√∑K

k=1 β2
ik.
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Proof. Since the obligor’s exposures are assumed to be positive, ei ≥ 0, it follows

from (4.27) that

|corr(L(n), Z)| ≤
∑

i ei |ri| exp
(−1

2
D2

i

)
√

2π
∑

ij ei ej (pij − pi pj)
.

From the Cauchy-Schwarz inequality together with
∑K

k=1 γ2
k ≤ 1, it follows that

|ri| =
∣∣∣∣∣

K∑

k=1

βikγk

∣∣∣∣∣ ≤
(

K∑

k=1

β2
ik

)1/2 (
K∑

k=1

γ2
k

)1/2

≤
(

K∑

k=1

β2
ik

)1/2

≤ 1 ,

which completes the proof. ¤

Note that (4.31) does not depend on any specific market risk parameter. There-

fore, solely based on the parametrisation of the normal credit factor model, a bound

for inter-risk correlation can be derived. This bound then holds for all market risk

portfolios described by Definition 4.3.5. Furthermore, as R2
i is that part of the vari-

ance of Ai which can be explained by the factor Y , it follows from (4.31) that the

inter-risk correlation bound is affine linearly increasing with Ri. This is also intuitively

clear because with increasing R2
i , credit portfolio loss is more and more dominated by

the systematic factor Y , which by construction drives the inter-risk dependence with

market risk.

Shock Model Approach

We now investigate how the existence of global shocks affects inter-risk correlation.

We consider both kinds of joint shock models for credit and market risk given by

Definition 4.3.8 and calculate inter-risk correlation similarly to Theorem 4.3.9.

Theorem 4.3.11. [Inter-risk correlation for the joint shock model] Suppose that credit

portfolio loss L̂(n) and market risk Ẑ are described by the joint shock factor model of

Definition 4.3.8.

(1) (Independent shock model, Definition 4.3.8 (1)). If shocks in credit and market

risk are driven by different independent shock variables WL and WZ with degrees of

freedom νL > 0 and νZ > 2, respectively, linear correlation between L̂(n) and Ẑ is given

by

corr(L̂(n), Ẑ) =

√
νZ − 2

2

Γ
(

νZ−1
2

)

Γ
(

νZ

2

)
∑n

i=1 ei ri

(
1 +

bD2
i

νL

)− νL
2

√
2 π var(L̂(n))

. (4.32)

(2) (Common shock model, Definition 4.3.8 (2)). If shocks in credit and market risk are
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driven by the same shock variable W with ν > 1 degrees of freedom, linear correlation

between L̂(n) and Ẑ is given by

corr(L̂(n), Ẑ) =

√
ν − 2

2

Γ
(

ν−1
2

)

Γ
(

ν
2

)
∑n

i=1 ei ri

(
1 +

bD2
i

ν

) 1−ν
2

√
2 π var(L̂(n))

. (4.33)

In both cases,

ri := corr(Âi, Ẑ) =
K∑

k=1

βikγk , i = 1, . . . , n,

and

var(L̂(n)) =
n∑

i,j=1

ei ej (pij − pi pj) .

Furthermore, D̂i and p̂ij are given by (4.22) and (4.23), respectively, with degree of

freedom νL for the independent shock model (1) and ν for the common shock model

(2).

Proof. (1) Using (4.15) and the law of iterated expectation, we obtain

cov(L̂(n), Ẑ) =
n∑

i=1

ei E(Ẑ L̂i) =
n∑

i=1

ei E
(
E(Ẑ L̂i |WL,WZ)

)
. (4.34)

Now, in the credit shock model of Definition 4.3.3 we have that for each loss variable

L̂i

P(L̂i = 1) = P


WL

K∑

k=1

βik Yk + WL

√√√√1−
K∑

j=1

β2
ij εi ≤ D̂i




= P




K∑

k=1

βik Yk +

√√√√1−
K∑

j=1

β2
ij εi ≤ D̂i

WL


 .

Hence, the shock factor model conditional on the shock variable WL is equivalent to a

normal factor model with adjusted default points D∗
i := D̂i/WL. Therefore, we obtain

from (4.29) without any further calculation

E(Ẑ L̂i |WL,WZ) = −σ

K∑

k=1

γk WZ E(Yk L̂i |WL)

= −σ

K∑

k=1

γk WZ

(
− βik√

2π
e−

D∗2i
2

)

=
σ ri√
2π

WZ e−
D∗2i

2 ,
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where ri =
∑K

k=1 βikγk for i = 1, . . . , n . Integration over WL and WZ yields

E
(
E(Ẑ L̂i |WL,WZ)

)
=

σ ri√
2π

∫ ∞

0

WZ dFνZ
(s)

∫ ∞

0

e−
D∗2i

2 dFνL
(s) (4.35)

=
σ ri√
2π
E(WZ)

∫ ∞

0

e
− bD2

i
2νL

s
fνL

(s) ds

where Fν is the distribution function of a χ2
ν distributed random variable with density

fν(s). By substitution, we can perform the integration for νL > 0,

∫ ∞

0

e
− bD2

i
2νL

s
fνL

(s) ds =

∫ ∞

0

2−ν/2 sν/2−1

Γ
(

ν
2

) exp

[
−

(
1 +

D̂2
i

νL

)
s

2

]
ds

=

(
1 +

D̂2
i

νL

)− νL
2 ∫ ∞

0

2−ν/2 e−s/2 sν/2−1

Γ
(

ν
2

) ds

=

(
1 +

D̂2
i

νL

)− νL
2

.

Together with

E(WZ) =

√
νZ

2

Γ
(

νZ−1
2

)

Γ
(

νZ

2

)

for νZ > 1 we obtain

E
(
E(Ẑ L̂i |WL,WZ)

)
=

σ ri√
2π

√
νZ

2

(
1 +

D̂2
i

νL

)−νL
2 Γ

(
νZ−1

2

)

Γ
(

νZ

2

) , (4.36)

Now, plugging (4.36) into (4.34), and using (4.30) together with

var(Ẑ) =

(
νZ

νZ − 2

)
σ2 , νZ > 2 ,

finally leads to

corr(L̂(n), Ẑ) =

√
νZ − 2

2

Γ
(

νZ−1
2

)

Γ
(

νZ

2

)
∑n

i=1 ei ri

(
1 +

bD2
i

νL

)−νL
2

√
2 π var(L̂(n))

.

(2) Similarly to the case of independent shock variables, we are now conditioning on
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the single shock variable W . Instead of (4.35), we obtain for ν > 1 by substitution

E
(
E(Ẑ L̂i |W )

)
=

σ ri√
2π

∫ ∞

0

W e−
D∗2i

2 dFν(s)

=
σ ri√
2π

∫ ∞

0

√
ν

s
e−

bD2
i

2ν
s fν(s) ds

=
σ ri√
2π

∫ ∞

0

2−ν/2 ν1/2

Γ(ν/2)
s

ν−1
2
−1 exp

[
−

(
D̂2

i

ν
+ 1

)
s

2

]
ds

=
σ ri√
2π

∫ ∞

0

2−ν/2 ν1/2

Γ(ν/2)

(
D̂2

i

ν
+ 1

)− ν−1
2

s
ν−1
2
−1e−s/2ds

=
σ ri√
2π

ν1/2 2−1/2

Γ(ν/2)

(
D̂2

i

ν
+ 1

) 1−ν
2

Γ

(
ν − 1

2

) ∫ ∞

0

2−
ν−1
2

Γ
(

ν−1
2

)s
ν−1
2
−1e−s/2ds

=
σ ri√
2π

ν
ν
2

(
D̂2

i + ν
) 1−ν

2
Γ

(
ν−1
2

)
√

2 Γ
(

ν
2

) , (4.37)

which finally completes the proof. ¤

Analogously to the normal factor model, inter-correlation bounds can be derived.

Proposition 4.3.12. [Inter-risk correlation bounds for the joint shock model] Suppose

that credit portfolio loss L̂(n) is described by the shock model of Definition 4.3.3 and

market risk Ẑ by the shock model of Definition 4.3.7, however, with unknown factor

loadings γk, k = 1, . . . , K.

(1) For the independent shock model, inter-risk correlation is bounded by

|corr(L̂(n), Ẑ)| ≤
√

νZ − 2

2

Γ
(

νZ−1
2

)

Γ
(

νZ

2

)
∑n

i=1 ei Ri

(
1 +

bD2
i

νL

)− νL
2

√
2 π var(L̂(n))

. (4.38)

(2) For the common shock model, inter-risk correlation is bounded by

|corr(L̂(n), Ẑ)| ≤
√

ν − 2

2

Γ
(

ν−1
2

)

Γ
(

ν
2

)
∑n

i=1 ei Ri

(
1 +

bD2
i

ν

) 1−ν
2

√
2 π var(L̂(n))

. (4.39)

In both cases (4.38) and (4.39) is Ri =
√∑K

k=1 β2
ik.

Proof. This is analogously to the proof of Proposition 4.3.10 ¤
.
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For practical purposes very relevant is the situation where credit risk quantification

is based on a normal factor model, whereas heavy tails are assumed for the market

risk, which therefore shall be described by the shock model approach. This can be

referred to as a hybrid factor model, which is a special case of the joint shock model of

Definition 4.3.3 with νL →∞. We formulate our results as a Corollary.

Corollary 4.3.13. [Inter-risk correlation for the hybrid factor model] Suppose that

credit portfolio loss L(n) is described by the normal factor model of Definition 4.3.1,

and market risk Ẑ by the shock model of Definition 4.3.7. Assume that the credit

model’s idiosyncratic factors εi for i = 1, . . . , n are independent of η, then we call

(L(n), Ẑ) the hybrid factor model.

(1) Inter-risk correlation is given by

corr(L, Ẑ) =

√
νZ − 2

2

Γ
(

νZ−1
2

)

Γ
(

νZ

2

) corr(L,Z)

with corr(L,Z) as in (4.27).

(2) If the factor loadings γk, k = 1, . . . , K of market risk are unknown, the inter-risk

correlation bound is given by

|corr(L, Ẑ)| ≤
√

νZ − 2

2

Γ
(

νZ−1
2

)

Γ
(

νZ

2

) |corr(L,Z)|

with |corr(L,Z)| as in (4.31).

4.3.4 An Application to One-Factor Models

The results so far can be used to estimate inter-risk correlation between pre-aggregated

market risk and credit risk. For the purpose of illustration and to gain deeper insights

into the interaction between L(n) and Z, it is helpful to consider the one-factor versions

of (4.16) and (4.25) as well as for the corresponding inter-risk correlation.

Joint One-Factor Models for Credit And Market Risk

Instructive examples regarding inter-risk correlation and its bounds can be obtained for

one-factor models and they are useful to explain general characteristics and systematic

behaviour of inter-risk correlation. In the context of credit risk, one-factor models

can quite naturally be obtained by considering the special case of a large homogenous

portfolio (LHP).
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Let us start with a homogenous portfolio for which we define that ei = e, pi = p,

βik = βk for i = 1, . . . , n, and k = 1, . . . , K. Then, by setting ρ :=
∑K

k=1 β2
k and

Ỹ :=

(
K∑

k=1

βkYk

)
/
√

ρ , (4.40)

expression (4.16) for the general factor model can be transformed into a one-factor

model

Ai =
√

ρ Ỹ +
√

1− ρ εi , (4.41)

where Ỹ is standard normally distributed and independent of εi, and ρ is the uniform

asset correlation within the credit portfolio. If we now additionally increase the number

of counterparties in the portfolio by n →∞, then the relative portfolio loss satisfies2

L(n)

n e

a.s.→ Φ

(
D −√ρ Ỹ√

1− ρ

)
= : L , n →∞ , (4.42)

where D = Φ−1(p) and n e is the total exposure of the credit portfolio. Often L is used

as an approximative loss variable for large and almost homogeneous portfolios. For later

usage recall that the variance of L is given by var(L) = p12 − p2 with p12 = Φρ(D,D).

Similarly, in the case of the shock model, the LHP approximation reads

L̂(n)

n e

a.s.→ Φ

(
D̂/WL −√ρ Ỹ√

1− ρ

)
= : L̂ , n →∞ ,

where now D̂ = t−1
νL

(p). The variance is given by var(L̂) = p̂12 − p2 with p̂12 =

tνL;ρ(D̂, D̂).

We now apply the one-factor approach to market risk so that both market and credit

risk are systematically described by one and the same single factor Ỹ . To achieve this,

we use (4.40) and

η̃ :=
1√

1− γ̃2




K∑

k=1

(
γk − γ̃√

ρ
βk

)
Yk +

√√√√1−
K∑

k=1

γ2
k η




with

γ̃ :=
1√
ρ

K∑

k=1

βkγk . (4.43)

2Actually, there are less restrictive conditions for the exposures ei and the individual default
variables Li under which the LHP approximation still holds, see e.g. in Bluhm et al. [8], Section 2.5.1.
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Then, we obtain the formal identities

Z = −σ
(
γ̃ Ỹ +

√
1− γ̃2 η̃

)
(4.44)

and

Ẑ = −σ WZ

(
γ̃ Ỹ +

√
1− γ̃2 η̃

)
(4.45)

for the normal factor model (4.24) and for the shock model (4.25), respectively. In

both cases, η̃ is standard normally distributed and independent of Ỹ . Moreover, Z in

(4.44) is normally distributed with zero mean and variance var(Z) = σ2, whereas Ẑ in

(4.45) follows a t-distribution with νZ degrees of freedom.

While the one-factor weight
√

ρ for the credit portfolio depends only on the βk, the

one-factor weight γ̃ for market risk given by (4.43) is a function of βkγk. In particular,

in order to obtain non-vanishing systematic market risk within the one-factor model,

both risk types have to share at least one common factor.

One-Factor Inter-Risk Correlation

The calculations of Section 4.3.3 easily apply to the case of the joint one-factor model

of credit and market risk and the results regarding inter-risk correlation simplify con-

siderably. We start with the normal one factor model.

Normal Factor Model Approach. Instead of (4.27) we now obtain

corr(L
(n)
hom, Z) =

√
n r e−D2/2

√
2π

√
p12(n− 1) + p(1− np)

,

where D = Φ−1(p) is the default point, p12 = Φρ(D,D) is the joint default probability

within the homogenous portfolio, and r = corr(Z, Ai) =
√

ρ γ̃ =
∑K

k=1 βkγk. If the

credit portfolio is not only homogenous but also very large, we arrive at the following

LHP approximation for the inter-risk correlation between the credit portfolio loss (4.42)

and market risk P/L (4.44) in the limit n →∞:

corr(L,Z) =
r e−D2/2

√
2π(p12 − p2)

. (4.46)

Given the uniform asset correlation ρ =
∑K

k=1 β2
k of a homogenous credit portfolio, it

follows from (4.43) that |γ̃| ≤ 1, and thus |r| ≤ √
ρ, implying the bounds

|corr(L,Z)| ≤
√

ρ e−D2/2

√
2π(p12 − p2)

=: ψ(p, ρ) . (4.47)

124



0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Asset Correlation

0.2

0.4

0.6

0.8

1

In
te

r-
R

is
k

C
o
rr

e
la

ti
o
n Ν = 4

Ν = 10

Ν = 50

Ν = 150

Ν = ¥

Figure 4.3.14. LHP approximations of inter-risk correlation for r = 0.2 as a function of the
asset correlation ρ according to the normal factor model (equation (4.46)) and the common
shock model (equation (4.49)). The average default probability is assumed to be p = 0.002.

Shock Model Approach. The LHP approximation for inter-risk correlation in the

case of the independent shock model of Definition 4.3.8 (1) yields

corr(L̂, Ẑ) =

√
νZ − 2

2

Γ
(

νZ−1
2

)

Γ
(

νZ

2

)
r
(
1 +

bD2

νL

)− νL
2

√
2 π (p̂12 − p2)

, (4.48)

whereas for the common shock model of Definition 4.3.8 (2) we obtain

corr(L̂, Ẑ) =

√
ν − 2

2

Γ
(

ν−1
2

)

Γ
(

ν
2

)
r
(
1 +

bD2

ν

) 1−ν
2

√
2 π (p̂12 − p2)

, (4.49)

where D̂ = t−1
ν (p) is the default point, p̂12 = tν;ρ(D̂, D̂) is the joint default probability

within the homogenous portfolio, and r = corr(Ẑ, Âi) =
√

ρ γ̃. Similarly as for the

LHP approximation of the normal factor model, bounds for the inter-risk correlation

can be obtained from (4.48) and (4.49) together with |r| ≤ √
ρ. In the special case that

νL = νZ = ν it follows by comparison of (4.48) and (4.49) that the assumption of one

single common shock increases inter-risk correlation by a factor of

√
1 +

bD2

ν
compared

to the independent shock model. For typical values of p this factor lies in a range of

about 1.0–2.0.

To find out how global (macroeconomic) shocks affect inter-risk correlation, let us

contrast the LHP approximations (4.48) and (4.49) of the shock models with that of

the normal factor model (4.46). For this purpose, Table 4.3.16 as well as Figures 4.3.14
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Figure 4.3.15. LHP approximations of the inter-risk correlation bound as a function of the
asset correlation ρ according to the normal factor model (equation (4.47)) and the common
shock model (equation (4.49) with r =

√
ρ). The average default probability is assumed to be

p = 0.002.

and 4.3.15 compare the inter-risk correlation and its upper bound for the common

shock model with the outcome of the normal factor model. One can see that the

common shock model yields—particularly for small asset correlations—lower inter-risk

correlations and bounds than the normal factor model. In the case of the independent

shock model, the spread between the normal inter-risk correlation and the shocked

inter-risk correlation would be even higher.

Needless to say, the one-factor asset correlation ρ is a popular parameter in the

context of credit portfolio modelling. It is often used as a “single-number measure”

to evaluate the average dependence structures between different counterparties of a

credit portfolio. Moreover, it plays an important role also in the calculation formula

for regulatory capital charges according to the internal-ratings-based (IRB) approach

of Basel II [5]. Equations (4.47)-(4.49) now show that ρ is a very important parameter

also beyond credit risk itself as it determines its maximum possible inter-risk correla-

tion with another risk type, here market risk; see again Figure 4.3.15 where inter-risk

correlation bounds are plotted as a function of ρ3.

Similarly, for a fixed uniform asset correlation ρ, inter-risk correlation and its bound

depend on the average default probability p and thus on the average rating of the credit

portfolio. This is depicted in Figure 4.3.17 where LHP inter-risk correlation as well

3Note that ρ enters |corr(L, Z)| not only directly by
√

ρ but also indirectly via the joint default
probability p12 = Φρ(Φ−1(p), Φ−1(p)). This implies that |corr(L,Z)| 6= 0 for ρ → 0.
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Normal Model Common Shock Model
ρ

ν = ∞ ν = 4 ν = 10 ν = 50

p = 0.002

5 % 0.81 (0.90) 0.17 (0.19) 0.22 (0.24) 0.46 (0.51)

10 % 0.51 (0.81) 0.16 (0.25) 0.19 (0.30) 0.36 (0.56)

15 % 0.38 (0.73) 0.15 (0.28) 0.17 (0.33) 0.29 (0.56)

20 % 0.30 (0.66) 0.14 (0.31) 0.15 (0.35) 0.24 (0.53)

p = 0.02

5 % 0.85 (0.95) 0.27 (0.31) 0.37 (0.42) 0.62 (0.70)

10 % 0.57 (0.90) 0.25 (0.40) 0.33 (0.52) 0.48 (0.76)

15 % 0.44 (0.86) 0.24 (0.46) 0.29 (0.57) 0.39 (0.76)

20 % 0.37 (0.82) 0.22 (0.50) 0.27 (0.59) 0.33 (0.75)

Table 4.3.16. LHP approximation for inter-risk correlation for the normal factor model
(4.46) and the common shock model (4.49) using r = 0.2 but different values for p and average
asset correlation ρ. The values in brackets indicate upper inter-risk correlation bounds for
which r =

√
ρ.

as the corresponding upper bounds are plotted as a function of the average portfolio

rating. One can see that an improvement of the average portfolio rating structure

decreases inter-risk correlation (as well as its bounds) and thus tends to result in a

lower volatility of the total portfolio of market and credit.

A Moment Estimator for the Inter-Risk Correlation Bound. Even if the

actual credit portfolio is not homogenous, the derived LHP approximation provides us

with a useful estimator for approximating the upper inter-risk correlation bound.

Let us consider the normal factor model and so expression (4.47). For any credit

loss distribution—obtained for instance by Monte Carlo simulation— estimators p̂ and

ρ̂ for p and ρ, respectively, can be (numerically) obtained via moment matching. In

doing so, we compare the empirical expected loss µ and the empirical variance ς2

derived from the simulated credit portfolio with the corresponding figures of an LHP

approximation, i.e. average default probability p and variance var(L). Thus we require

that

µ = etot p̂ (4.50)

127



AAA AA A BBB BB B CCC

Average Portfolio Rating

0.2

0.4

0.6

0.8

1

In
te

r-
R

is
k

C
o

rr
e

la
ti
o

n
B

o
u

n
d

Ν = 50
Ν = 10
Ν = 4
Ν = ¥ HnormalL

Figure 4.3.17. LHP approximations of inter-risk correlation bound as a function of the av-
erage portfolio rating according to the normal factor model (equation (4.47)) and the common
shock model (equation (4.49) with r =

√
ρ). The average asset correlation is assumed to be

ρ = 10 %.

and

ς2 = e2
tot (p12 − p̂2) (4.51)

= e2
tot

[
Φρ̂(Φ

−1(p̂), Φ−1(p̂))− p̂2
]
,

where etot denotes the total credit exposure. From (4.47) we then obtain the following

moment estimator for the upper inter-risk correlation bound:

ψ̂(p̂, ρ̂) =
etot

ς

√
ρ̂ exp

[− 1
2

(
Φ−1(p̂)

)2]
√

2π
. (4.52)

4.3.5 Estimation of the Gaussian Copula Parameter

We now concentrate on the joint normal factor model of Definition 4.3.6 and show how

the inter-risk correlation between both risk types is related to the copula parameter of

the Gaussian copula.

A general problem with copula techniques is which copula to choose and how to

calibrate the it. A remarkable feature of the joint normal factor model for credit and

market risk is that it can easily be interpreted as a Gaussian coupling model between

market and credit risk.

Proposition 4.3.18. [Normal one-factor model and Gaussian copula] Consider the

joint normal one-factor model for credit and market risk, i.e. we consider (4.41) and
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γ̃ 0.0 0.2 0.4 0.6 0.8 1.0

corr(L,Z) 0.0 0.15 0.29 0.44 0.59 0.73

Table 4.3.19. Relation between inter-risk correlation corr(L,Z) and Gaussian copula pa-
rameter γ̃ according to (4.53) for p = 0.002 and ρ = 15 %.

(4.44) where all idiosyncratic factors εi of the credit model are independent the idiosyn-

cratic factors η̃ of market risk. Then,

(1) both risk types are coupled by a Gaussian copula with parameter γ̃ given by (4.43);

(2) the copula parameter γ̃ and the inter-risk correlation corr(L,Z) are related by

γ̃ =
corr(L,Z)

ψ
(4.53)

where ψ is the LHP approximation (4.47) for the inter-risk correlation bound.

Proof. (1) An important characteristic of copulas is their invariance under monotonously

increasing transformations. Since the portfolio loss L in the LHP approximation as

given by (4.42) is a monotonously increasing function of −Ỹ , it follows that L and

Z have the same copula as −Ỹ and Z. For the latter we know from the one-factor

representation of market risk (4.44) that they are bivariate normally distributed with

correlation

corr(−Ỹ , Z) = γ̃ .

Hence, also L and Z are linked by a Gaussian copula with correlation parameter γ̃.

(2) This follows directly from (4.46) and (4.47) together with r =
√

ρ γ̃. ¤

It follows from (4.53) that the absolute value of the inter correlation between credit

and market risk is always below the absolute value of the copula parameter γ̃. Further-

more, maximum inter-risk correlation corresponds to γ̃ = 1 for which market risk is

completely determined by one single risk factor without having any idiosyncratic com-

ponent, cf. equation (4.44). A numerical example for (4.53) is given in Table 4.3.19.

Particularly important for practical applications is the question of how the Gaussian

copula parameter can be estimated for general credit portfolios. Note that in this case

Proposition 4.3.18 (1) is not directly applicable because βk in (4.43) is only defined for

a homogenous portfolio. However, we can extend the LHP approximation for a credit

portfolio, which we have used to construct the estimator ψ̂ for the inter-risk correlation

bound given by (4.52), to the joint one-factor risk model of credit and market risk by

matching the inter-risk correlations. If market and credit risk are described by the
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joint normal factor model of Definition 4.3.6, we can calculate inter-risk correlation by

Theorem 4.3.9 and compare it to the result in the case of the LHP approximation, i.e.

expression 4.46. Then, using Proposition 4.3.18 (2) we arrive at the following general

estimator for the copula parameter γ̃,

̂̃γ1 =
ĉorr(L,Z)

ψ̂
(4.54)

where

ĉorr(L,Z) = corr(L(n), Z)

with corr(L(n), Z) calculated as in (4.27).

An alternative estimator for γ̃ can be constructed by applying the right-hand side

of (4.53) directly to a non-homogenous portfolio without introducing a one-factor ap-

proximation before. In this case it follows together with (4.27) and (4.31) that

̂̃γ2 =

∑n
i=1

∑K
k=1 βik γk ei exp

(−1
2
D2

i

)
∑n

i=1 ei

√∑K
k=1 β2

ik exp
(−1

2
D2

i

) . (4.55)
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