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Abstract - In this paper, we discuss subspace tracking &go- 
rithms for DOA estimation that take a burst-wise data flow - 
as it naturally occurs in systems using a TDMA component 
- into account. This leads to a matrix model rather than to 
the well known snapshot vector model for the sensor array 
outputs. Unfortunately, many existing algorithms take ad- 
vantage of the vector model and do either not support the 
matrix model or are not efficient with it . Therefore, we 
derive three efficient algorithms based on the mamx model 
which are extensions of the known ISU and PAST meth- 
ods. Furthermore, we show how changes in the number of 
present signals can be detected and how to incorporate this 
step. Simulation results are presented. 

L INTRODUCTION 

Recently, space-division multiple access (SDMA) has r e  
ceived much attention as a method of reducing losses due 
to multipath and interference and thus increasing the ca- 
pacity of a cellular mobile Communication system. This is 
achieved by using spatia1 diversity introduced by an antenna 
array in addition to time- and/or frequency-divisionmultiple 
access (TDMA/FDMA). For example, different users trans- 
mit in the same frequency band and in the Same time slot 
and are only separated by the different directions of arrival 
(DOA's) of their signals received at the base station. The 
prerequisite, however, is exact knowledge of the DONS of 
the mobile users which is a heavy computational burden and 
thus the need for efficient computational methods arises. 

II. DATAMODEL 

Let us first assume that information is transmitted by means 
of a continuous data flow. Assume further that there are P 
narrow-band signals having the same center-frequency fo 
and being characterized by their complex envelopes s i ( t ) ,  
1 5 i 5 r ,  impinging on an antenna array consisting of n, 
n 2 t, identical sensors under the directions of arrival &. 
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Let x(k)  E Cn be the data vector observed at the sensor 
array during the kth snapshot. The previous stated assump 
tions then lead to the model [5, LO] 

r 

= A(8) s(k) + n(k) (1) 

with A(@) = [a (Oi) - - a (er)] E Cnxr, the array steer- 
ing mamx, depending on the vector 0 of the directions of 
arrival, and the complex valued noise vector n(k) f @" 
which is assumed to be spatially white with equal variance 
aa and uncorrelated with the signal vector s( k) . This yields 
the following expression for the spatial correlation matrix 

C = E {~(k) x W ( k ) }  = A(@) Cs An(@) + a2 I (2) 

where &to) denotes expectation, ( o ) ~  denotes the conju- 
gate transpose and I is the identity matrix. Based on an 
eigendecomposition of (2) or a SVD (singular value decom- 
position) of a data matrix composed of 1 consecutive vectors 
(1) the lower dimensional signal and noise subspaces can 
be identified which may be used to calculate the DOA's via 
high resolution methods like MUSIC, Unitary-ESPW or 
Weighted Subspace Fitting [3,5]. But finding the subspaces 
is a high numerical burden, especially if they change with 
time and therefore have to be computed recurringly which 
shows the necessity to track them efficiently. 
Let us now assume 8 communication system like GSM that 
uses a TDMA component. Then there is no continuous data 
flow but the mobile user rather transmits a whole data burst 
consisting of rn symbols during its time slot which is peri- 
odically recurring within a TDMA frame. This leads to the 
matrix model 

with the data matrix X E CRXm, the signal matrix S E 
Crxm, the noise matrix N E Cnxm and p, the time index 
of TDMA frames. Because of the different time scales a 
sequential use of known subspace tracking algorithms for 
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snapshot vectors is not useful in the matrix case. On the 
other hand, as the time between consecutive bursts of one 
user is usually small, e.g. 4.616ms in the GSM system, 
the whole scenario will not change considerably so that an 
update of the interesting subspace from burst to burst is suf- 
ficient. We therefore derive efficient algorithms for the sub- 
space tracking problem taking the burst-wise data flow into 
account. 

III. INVARIANT SUBSPACE UPDATE (ISU) 

Let C E Cnxn and let XI be an orthonormal basis for 
an invariant subspace [ 11 of C which means that the space 
spanned by the columns of (C XI) is a subspace of the one 
spanned by the columns of XI. Choose the unitary matrix 
[XI X2] to be a basis for the space spanned by the columns 
of c. 
Now consider C', a perturbed version of C and its orthonor- 
mal basis [Xt Xa], where Xi is a basis for the invariant 
subspace that corresponds to XI. Then there exists a uni- 
tary matrix U such that [Xi $1 = [XI X,] U and U can 
be factored in the form [7] 

(I + PPH)--1/2 O I  
-PH (I + PHp)--l/Z 

U=[: I I [  0 

with P chosen appropriately. For X i  to be a basis for an 
invariant subspace of C', XaH(C' Xi) = 0 must be satisfied. 
Using the partitioned matrix 

then leads to the algebraic Riccati equation 

Pc;l - c;, P = c;, - pc;, P. (4) 

In [6] MacInnes and Vaccaro introduce an efficient iterative 
procedure to solve (4) for P and show how to use the above 
theory to track signal and noise subspaces based on the vec- 
tor model (1). This approach can easily be modified to work 
with the matrix model (3) as is shown in the sequel. 
Choose C to be the estimate 

D 

C(f.3) = g p-€X(t)XH(t) 
t=l 

of the correlation matrix at time index p,  where 15 is the 
forgetting factor, and XI E Cnxr, X2 E @RX(n--r) to be 
orthonormal eigenbases for the signal and noise subspaces 
respectively. If C' is C(p + 1) we get the new bases of the 
subspace of interest at time p + 1 by means of U which can 
be computed from P. To ensure that the new bases contain 
orthogonal columns a QR-decomposition of Xi Cp + 1) has 
to be done [6]. 

IV. TRACKING BY OPTIMIZATION 

In 1101 Yang demonstrated that the signal subspace can be 
found by minimizing a scalar cost function. Unfortunately, 
both the derivation of the theoretical results and the result- 
ing numerically efficient tracking algorithms heavily depend 
on the snapshot vector model. We therefore introduce a 
modified cost function whose global minimum again yields 
the signal subspace. 
Consider the cost function 

J'(W) = E { IlX - w WH xlg} 
m 

= C E { I I x j  - w w H x j I ~ ; }  (5)  
j=1 

of W E Pxr, where 11 o [ I F  denotes the Frobenius norm 
ofamamxandX = [X~X*- . .X , ,J  E Cnxm isthedata 
matrix. Without loss of generality, we assume W to have 
full rank T.  Assuming at least short time stationary signals 
xj we get 

J'(W) = a . E { ~ ~ x - W W H * ~ ~ ; }  (6) 

which is m times the original cost function introduced by 
Yang. Therefore, the two theorems concerned with the sta- 
tionary points of the cost function which were proved in [ 101 
are still valid. Their main result is that all stationary points 
of J'(W) are saddle points except when W = U, Q, where 
U, contains the T dominant eigenvectors of C and Q is an 
arbitrary unitary matrix. In that case, W is an orthonormal 
basis of the signal subspace and the minimization can be 
done without additional orthogonalization steps by iterative 
algorithms that will always converge to the global minimum 

Gradient-Based Algorithm 

Since (5 )  describes an unconstrained cost function to be 
minimized, a steepest descent algorithm can be used to cal- 
culate W(p) recursively. The gradient of S(W)  is [lo] 

of P(W). 

v J'(W) = m[-2C + c w wH + w ww C] w. 
Choosing the instantaneous estimate 

1 
QP) = pn X(P) XHb) 

as an appropriate estimate of the correlation matrix at time 
index p and observing that W@) will converge to a matrix 
with orthonormal (p 3 0) or nearly orthonormal ( p  = const 
but small) columns [lo] and thus justioing the use of the 
approximation WH(p - 1) W(p - 1) e I yields the well 
known LMS algorithm [4J 

Wb) = w(P - 1) f P [xb) - W b  - 1) Y@)l YN@) 
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with the step size p and Y(p) = W H ( p  - I) X@). The al- 
gorithm is initialized by W(0) = 0, see [4]. 

QR-RLS-Based Algorithm 

We now replace the expectation in (5) through the exponen- 
tially weighted sum 

J'(Wb4) = f: P-t IW)  - W O  WHb) X(t)ll$ 
t= 1 

with the forgetting factor 0 < p 5 1. Using the approxima- 
tion Y ( t )  = W H ( t  - 1) X ( t )  for WH(p)  X ( t )  which can be 
instantaneously calculated at time p yields a cost function 
which is a good approximation of the original one [ 101 and 
whose derivative [83 must be zero at the global minimum 
(noma1 equations): 

~ r n  

f = l  j=1 
c Cap-c  [ X j W  - W@)Yj(t)] Y j n W  = 0 .  

This gives the matrix equation 

Wbt C Y Y b )  = C X Y b )  

with 
P 

CYY (PI = c Vt  Y(t) Y H ( t )  

C X Y ( p )  = Zp+'X(t) YH(t )  - 
t=l 
P 

t a l  

Using the vector model as in [ t 01 leads to a rank one update 
of C y y  from p to p + 1 and therefore W(p) can be de- 
termined without a matrix inversion by using the inversion 
lemma [4] resulting in the highly efficient PAST algorithm. 
Unfortunately, this lemma cannot be gainfully used in the 
matrix model case. 
Assuming that C y y ( p )  is positive definite we can use the 
Cholesky factorization Cyy(p)  = RH(p)R(p) with the 
unique upper triangular matrix R@) E C'"' to obtain 

W) WH@) = r(P) (7) 

with r(p) = R-H(p)C~y(p). If R(p - 1) and l'(p - 1) 
are known and at time p new data X(p) and Y(p) become 
available, the following pre-amy can be formed: 

X H @ )  1 - \/PR@ - 1) fir@ - 1) I YHW 

Multiplying this pre-array from the left by a unitary matrix 
Q@) E dC('+m)x(r+m) to create a block zero in the post- 
array (which can be done by mr Givens rotations) 

one can identify All = RCp) and A12 = r ( p )  [81. W(p) 
can be efficiently and numerically stable computed by back- 
substitution in (7). The QR-RLS algorithm can be exactly 
initialized by R(0) = f i I  and I'(0) = 0, where 6 is a non- 
negative constant, has good numerical properties and suits 
for implementation on systolic arrays [4,9]. 

V. SIGNAL DETECTION 

Usually r, the number of signals, is unknown and has to 
be estimated. But many of the well known algorithms like 
AIC and MDL fail to determine T whenever an exponen- 
tially weighted window is used to estimate the covariance 
matrix, because its rank does not change immediately. In 
[6j a new method of immediately detecting changes in the 
number of signals is proposed which is extended to a burst- 
wise data flow in the following. 
Assume the vector of the most recent DOA's is 6 and let 
A = A(8) denote the array steering matrix computed us- 
ing these DONS. Denote with X = [iil * * * gm] the modi- 
fied data matrix whose columns have a Euclidean nom of 
one and let Us E Cnxr be the most recently computed or- 
thonormal basis for the signal subspace. Then, the orthog- 
onal projections of the m colFmns of X onto the subspace 
spanned by the r columns of A are given by 

XI:=[& ... x&]=PAx E @ " X m ,  

-1 .H 
with PA = A [iiHA) A , the projector onto A. 

Increasing Number of S i  

Now, if the number of signals in the new data burst X in- 
creases from r to r + 1, tht data burst contains a component 
that is not in the range of A and therefore at least one of the 
plots of 1 - Ilx+ 1 j < rn, versus the iteration number 
will exceed a threshold close to zero. In that case, let j' be 

Then we set Us = orth (ps  xi,]), where orthfo) means that 
the columns of [US xy ] have to be orthonormalized. 

DecremingNurnberofSi 

If the number of signals decreases from r to r - 1, the new 
data burst X E Cnxm will be in the range of only r - 1 
of the T estimated steering vectors. Assuming that the ith 
signal source disappeared, X will be in the range of 

4 - 6i := [iil -.  - &-I &+I - - * 
1 -  

Then, as X lies in the range of &, the p_rojection of each 
vector 4, l  j 5 m, on the columns of A, will be approx- 
imately of norm one: 

llPAi%j112 B 1, V j : 1 5 j 5 m. 
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Therefore, a decrease in the number of signals is detected 
when for some 1 5 j 5 rn the norm of the left-hand side of 
the above equation exceeds a threskoId close to one for all 
0 5 j 5 rn, and we set Us = orth(Aj). 
In order to ensure that the correlation matrix C contains only 
components in the range of the remaining steering vectors, 
the modified correlation function 

- H  C = Ai Ai 

is suggested [a]. 

VI. SIMULATIONS 

Consider a uniform linear array consisting of 9 equal sen- 
sors spaced half of the wavelength apart. In this case the 
array steering vector is known to be 

A TLS-ESPRIT algorithm [5j is applied to calculate the di- 
rections of arrival. We consider a GSM-like system (m = 
156, 8 time slots of 576.9~s) except that we assume the 
transmitted symbols to be Gaussian random variables un- 
correlated from each other. In ail cases 0 is set to 0.97. 
In a first experiment, there may be two signals positioned in 
the same frequency range and time slot (the number of sig- 
nals is known). The h t  one has a fixed spatial frequency 
of fl = -0.2 and its signal to noise ratio (SNR) is OdB. 
?he spatial frequency of the second one increases linearly 
From 0.2 to 0.3 within 6500 bursts (a 30s) at an SNR of 
5 dB. The result for the QR-RLS algorithm is shown in Fig- 
ure I(a). 

6 IO IS 20 26 30 
Habrff&ms 

Figure 1 : Tracking behaviour of the different algorithms 

The other algorithms show a similar steady-state behaviour 

but differ significantly in the transient phase. Especially the 
gradient-based algorithm (p = 8 . lo-$) converges slowly, 
see Figure l(b), where the first 30 bursts (% 0.14 s) of sig- 
nal 2 for the various algorithms are depicted. 
The reason for this is that unlike the QR-RLS algorithm the 
gradient-based algorithm cannot be initialized exactly why 
W(0) = 0 is used. Therefore, we suggest to perform one 
SVD of the first burst to find an estimate of a basis for the 
signal subspace. This basis can be used to initialize the 
gradient-based algorithm leading to a much better perfor- 
mance, see Figure 1 (b). 
In a second experiment, the detection of the current num- 
ber of signds is tested. We simulate the transmission of 500 
bursts (w 2.3 s) during which a first signal is always present 
at fi = -0.2. A second signal is present from burst 100 to 
149,200 to 399 and 420 to 500 at fi = 0.1. The third signal 
is present from burst 100 to 399 and its spatial frequency 
f3 increases linearly from 0.2 to 0.3. All signals have an 
SNR of 20dB. We use the ISU algorithm and the thresholds 
for detecting increase or decrease ace chosen to be 0.15 and 
0.98, respectively. The results are shown in Figure 2 and 

-- O I  

- 2 .  : 

. . . . .  . . ,  ........ . .  

I 

Figure 2: Detecting changes in the number of signals 

demonstrate the good performance of the algorithm even 
if the time between changes is relatively short and several 
changes occur at once. In the later case the changes in the 
number of signals are detected in consecutive time steps. 

VII. CONCLUDING REMARKS 

We gave reason that a matrix model rather than a vector 
model for the senor array outputs should be used when there 
is a TDMA component inherent in the system. Then, we 
extended two known subspace tracking algorithms for the 
vector model to work with a burst-wise data flow leading to 
three new algorithms. Furthermore, we showed how chan- 
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ges in the number of present signals can be detected again 
taking the burst-wise data flow into account. Simulation re- 
sults demonstrated the good performance of all proposed 
methods. 
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