Technische Universitat Miinchen
Lehrstuhl fiir Kommunikationsnetze

Performance Analysis and Optimized Operation
of Structured Overlay Networks

Dipl.-Ing. Univ. Gerald Kunzmann

Vollstandiger Abdruck der von der Fakultit Elektrotechnik und Informationstechnik der
Technischen Universitit Miinchen zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Hans-Georg Herzog
Priifer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Jorg Eberspécher
2. Univ.-Prof. Dr.-Ing. Phuoc Tran-Gia,

Bayerische Julius-Maximilians-Universitat Wiirzburg

Die Dissertation wurde am 21.11.2008 bei der Technischen Universitédt Miinchen
eingereicht und durch die Fakultat fiir Elektrotechnik und Informationstechnik am 08.04.2009
angenominen.

Performance Analysis and
Optimized Operation
of Structured Overlay Networks

Dipl.-Ing. Gerald Kunzmann

May 6, 2009

IF YOU CONTINUALLY GIVE,
YOU WILL CONTINUALLY HAVE.

NREFWE T, BT 0H 0

Abstract

The ongoing process of globalization leads to a huge demand for highly scalable appli-
cations. The Peer-to-Peer (P2P) technology enables an arbitrary large number of users
to participate and contribute to distributed services like content distribution or collab-
oration. With P2P, the intelligence is shifted from centralized instances to the edges of
the Internet. This shift is supported by the widespread availability of powerful terminals
and broadband networks. In P2P systems, these end terminals create a powerful overlay
network, which is highly scalable since new users automatically add new resources to the
system.

The main goal of P2P overlays is to efficiently find and share distributed resources among
users in the Internet. However, the functionality of a deployed system heavily depends
on the maintenance of its overlay topology. A disruption of this overlay structure can
cause anything from degraded performance or limited functionality up to the point of a
total collapse of the system. Thus, current research tackles these problems on different
level, like optimized self-organization schemes, efficient overlay maintenance and data
transfer, and short lookup delays.

Structured P2P networks arrange resources in the system according to a well-defined
overlay structure. Thereby, proactive routing ensures that each node knows about a
certain part of the current overlay. As a result, querying arbitrary resources can be
performed within a limited number of hops. The most common approach to realize
the necessary overlay structure are distributed hash tables (DHTE). In this thesis, we
concentrate on the scalability and robustness of these overlay structures, as well as the
lookup of resources stored in the overlay.

Based on a detailed simulative and mathematical performance analysis of structured P2P
protocols, we show that DHTs scale well with the number of participants, just as they
are designed to address the scalability problem inherent to unstructured P2P networks.
However, P2P systems operate in dynamic environments and peers frequently join and
leave the overlay (churn). Therefore, maintaining a correct overlay structure in rapidly
changing scenarios is difficult. In this context, it is important to adapt the configuration
of design parameters to the actual network size and churn rate.

Based on these results, we evaluate various existing modifications and extensions to

structured P2P protocols. Resulting from our analysis, we are thus able to introduce
solutions, which provide a significantly more stable overlay topology in dynamic envi-
ronments. This is essential for the operation of any P2P system. In addition, a correct
overlay structure results in an improved lookup time, as delays due to stale overlay con-
nections are reduced. Moreover, we develop advanced lookup algorithms, which help to
further reduce search delays without increasing the required signaling overhead.

Based on our measurements, analysis and simulations, we are able to develop a new
structured P2P protocol, which we apply in a Voice-over-IP framework. Con-
cluding this work, we introduce a general concept for realizing services and features with
structured P2P systems.

vi

Contents

[2. Peer-to-Peer (P2P]) overlay networks|

[2.1. Classification of P2P overlays|

[2.2. P2P lookup concepts|o

P21

Centralized P2P overlays|.

P22

Unstructured P2P overlays|.

2.2.3.

Structured P2P overlays|o o000

R4

Hierarchical P2P overlays|

P.25.

Comparison|

. Structured P2P lookup protocols|

BI14

OneHop| o oo o

[3.1.9.

Pastry, Tapestry|

[3.2. Replication, Republishing, and Caching/.

[3.3. Load balancing] oo

[3.4. Non-DH'l' protocols|.,

BA1.

Skip Graphs|

B.42.

SkipNet| o

co ~J Ot =

o O

11
13
16
18
20

23
23
25
29
32
35
38
38
40
42
42
44
44

Vil

Contents

4. Simulation models and environment| a7
.1. Modeling the user behavior|, 47
.2. Modeling transmission time in overlay simulations| 50

1.2.1. Global Network Positioning (GNP)| 52
[4.2.2. Applying |GNP| for modeling network transmission| 53
423, Results. 55
[4.2.4. Predicting inter-node transmission times| a7
1.3. Simulation environment and Graphical User Interface (GUI)| 58
44, Conclusionl. e 63

[6. Performance, robustness, and cost analysis| 65

B _Melricd. oo 65
[5.1.1. Lookup path length and search duration| 65
[>.1.2. Robustness of the overlay structure| 66
b.1.3. Maintenance overheadl 68

[5.2. Evaluating the Chord protocol 69
[5.2.1. Number of Participants|. 69
b.2.2, Churn Ratel o 74
[5.2.3. Design parameters|, 78

3. Related Workl o .o 81

.4, Conclusion|. e 84

[6. Optimized robustness and performance 85

[6.1. Optimized overlay robustness| 85

6.1.1. Related Worklo oo oo 85
[6.1.1.1. Improved stabilization| 85
[6.1.1.2. Security concerns| 86
6.1.2. Advanced Chord stabilization| 88
[6.1.3. Symmetrical stabilization using tokens| 90
[6.1.3.1. Algorithm|. 90
[6.1.3.2. Analysis and simulation results| 93
6.1.3.3. Conclusion| 96
[6.1.4. Repairing disrupted or partitioned overlays| 97
{6.1.4.1. Security issues (and their detection)| 97
[6.1.4.2. Recovery|, 99
6.1.4.3. Avoidancel 101
b.1.44. Conclusion| L. 102
[6.2. Optimized lookup performance] 103
6.2.1. Related Workl oo 103
[6.2.1.1. Tterative vs. recursive lookups| 103
[6.2.1.2. Route and neighbor selection| 105
[6.2.1.3. Parallel lookups|. 109
6.2.1.4. Symmetrical Chord routing (S-Chord)| 110
6.2.1.5. _Chord™| 112
[6.2.2. Hybrid routing strategy| 113

viil

Contents

[6.2.3. Freebie Fingers| o oL
16.2.4. Fuzzy-based Route Selection (FRS)|
6.3. Conclusionl.

[7. Application of structured P2P tor Voice-over-1P|
[7.1. Supplementary services and add-ons|.
[7.2. Realizing supplementary services in P2P-based [VoIP|
[(.2.1. Related Work|
“.2.2. &slll :ifl&isf l la“lsf&&(“kl

[8. Conclusion, Discussion and Qutlookl

[A. Abbreviations and Symbols|
B Simulan . |

[List of Figures|
[List of Tables|

Bibliography|

151

153

157

161

163

165

X

CHAPTER 1

Introduction and motivation

Two decades ago, Peer-to-Peer (P2P]) networking, a novel network architecture initially
used for file sharing, was introduced. Experiencing an enormous growth in usage, various
P2P systems, for applications like distributed computing and Internet telephony, nowa-
days attract millions of users. Much of the popularity of P2P is founded on very basic
characteristics of P2P networks.

The most important characteristic is, that P2P networks are distributed networks mean-
ing that resources are spread among many computers, instead of being stored in a single
location. Ideally, there is no Single Point of Failure at all. Adding more clients in
a client-server architecture requires providing more servers in order to be able to handle
the increased demand on the system. In contrast to that, P2P applications exploit un-
used and distributed resources, like bandwidth, storage capacity and computing power,
found at the edges of the network. Ideally, all participants of a P2P network (peers)
equally contribute to and benefit from the system. As all peers provide additional re-
sources, the total capacity of the system is increased with each peer. The distributed
nature of P2P in combination with self-organization makes P2P systems highly scalable
and resilient. However, P2P is no binary choice between centralization and decentraliza-
tion. Those aspects of a system that can be better handled at the edges of the networks
are decentralized, whereas other aspects, like bootstrapping or security features, may
still rely on central instances. All well-established P2P applications centralize specific
functionality [TSGT01].

The distribution of information is another characteristic in P2P networks. The informa-
tion is usually distributed between a number of computers. We say, content is shared
among the peers, and data s inserted by a peer. For example, in a file-sharing appli-
cation, peers contribute files stored on their hard disks. Thereby, each peer acts as the
source for files it provides and other peers may directly download files from it. Ideally,
after successfully downloading a copy of a file, the peers also share their copies and thus
become additional sources for the file. However, in order to improve the lookup for con-
tent, it is beneficial to additionally distribute references about the location of content

1. Introduction and motivation

in the network. Due to means of easy publishing of content, P2P benefits from the
availability of attractive content.

Self-organization Self-organization is the most important characteristics of P2P net-
works and can be observed in a number of other networks and communities. Many
different branches of science, like chemistry, biology, sociology and computer science
deal with self-organization. Thereby, researchers study self-organization from different
viewpoints and analyze different aspects. While most share basic properties, there is no
commonly accepted definition of self-organization.

Our definition of a self-organizing communication network is based on [Prehofer2005|.
First, the system structure appears without explicit involvement from outside the system,
i.e., the organization of the system results from the interactions among the entities.
Additionally, a system will be referred to as organized, if it has a certain structure (all
entities are arranged in a particular manner) and functionality (the overall system is able
to fulfill certain tasks).

Second, there is no fundamental separation between organizing, configuring or control-
ling parts. All entities are equal and potentially share the same basic functionalities
(redundancy). Thus, any entity can be removed without loss of the overall functionality,
resulting in a highly available system that is robust against failures or damage. A good
self-organizing system actually will degrade gracefully rather than break down suddenly.
Nonetheless, entities might accept special roles.

Third, the interaction (communication) between entities is localized. Each entity bases
its behavior on its local observations; an overall knowledge about the whole system is not
required. All entities follow some simple but important basic rules at the microscopic
level, thus creating an organization out of chaos at the macroscopic level. Without central
control or management component, the control of the system lies entirely in the hands
of the entities themselves. The system continuously adapts to changes in the system or
environment. Churn (adding and removing entities) is expected and is not critical to the
system except for extreme churn rates. The system tries to converge toward a desired
beneficial and stable structure by reacting to internal and external triggers. However,
usually constant external changes prevent the system from reaching a stable form, and
continuously keep the structure in a transient phase.

Fourth, self-organizing systems are complex. Although the rules are simple and may be
well understood, describing and predicting the behavior of the whole system in detail is
very difficult. In technical systems, that show self-organizing characteristics, all entities
are man-made, yet the resulting overall structure and behavior might not be easy to
foresee.

Furthermore, most self-organizing systems are able to scale to extremely large numbers
of entities. We can find several self-organizing systems in nature, e.g., ants building
huge colonies' without any central control, and with each ant following only a few basic
instincts.

Thus, to achieve a better understanding about self-organizing networks, we aim at finding

! The largest known colony spans 5760 km along Italy and Spain consisting of several millions of nests
and several billions of individuals.

rules about the growth and evolution of the self-organizing structures. Based on these
results the next goal is to find methods to predict the future organization, which results
from changes caused by its participants or by altered external conditions.

In the context of P2P networking, peers set up connections to a few other peers. In most
networks, communication is limited to these adjacent peers. The protocol describes the
simple basic rules all peers follow, thus determining the resulting network structure at the
macroscopic level [SBDT06, [SW05|. Communication between distant peers is achieved
by either flooding the network or by exploiting the network structure. The collaboration
of all participants creates a new powerful system, which can accomplish tasks no single
node would be able to, at the expense of increased communication of the nodes. An
up-to-date computer, for example, would be capable of storing status information of all
live nodes as well as a metadata description of all data items stored in the network.
However, storing all content at this single node is not feasible.

Moreover, self-organization makes these networks robust and flexible to dynamic changes
with (almost) no operator interaction. Thus, compared with client server applications,
management and administrative efforts are significantly reduced. Although the control
of the system is shifted from centralized IT departments to individual users, the total
costs can be reduced.

Furthermore, in current P2P implementations many design parameters are set to fixed
values that are dimensioned for the excepted worst case. [Bin08] introduces a further step
toward a more self-organizing overlay structure that automatically adapts itself to the
current state of the system. In a simple three-step concept the peer measures the current
conditions in the overlay, evaluates the corresponding performance and then adapts its
design parameters accordingly.

However, there are still some limitations to the self-organization of P2P systems. For
example, consider the bootstrapping process (see Section . To be able to enter
the virtual network, a new peer has to know at least one IP address of a node already
participating in the overlay network. Thereby, many solutions require a centralized
bootstrap server. Also, providing security in P2P networks, e.g., by using public key
solutions, is not yet feasible without any central components.

Summarizing, P2P networks have clear advantages to traditional client-server architec-
tures. Thereby, the network’s self-organizing nature provides important characteristics
like scalability, resilience, and ease of maintenance and configuration. P2P overlay net-
works also enable a lot of opportunities for novel user-oriented services and innovative
applications, as well as reduced maintenance and administration costs. These features
mainly account for the increasing popularity of P2P applications.

Impact The breakthrough of P2P networks can be observed by all Internet Service
Providers (ISPp) in the world. The most significant and obvious impact is the enormous
traffic load they generate. Measurements show that P2P applications, at present espe-
cially file-sharing, account for 40-60 percent of backbone traffic and even up to 80-90
percent of local network traffic [TTGO05, Mel04, SGGO02, [ipo]. Furthermore, in a classical
client-server architecture, like the World Wide Web (WWW), a relatively small number
of servers serve many clients. As a result, the communication is asymmetric with down-

1. Introduction and motivation

load traffic considerably exceeding upload traffic. In contrast to that, peers in a P2P
architecture are content providers and requesters at the same time, thereby using a large
amount of upstream bandwidth.

P2P however posses more unique attributes besides the sheer amount of traffic:

1. observe an increasing symmetry at the access level. Moreover, P2P traffic on
the border of a Tier-1 backbone is nearly symmetrical |[Joh08].

2. More and more people use file-sharing applications to exchange large files (e.g.,
videos or CD/DVD images). As a result, flow sizes among terminals are rising
from kilobits to gigabits. Mori et. al [MUGO05| measured mean values of 20.6 kB
for web flows and up to 5.8 MB for P2P flows.

3. P2P traffic differs from non-P2P traffic in terms of duration and inter-arrival times
of flows [PDGMO6].

4. P2P overlays contribute the major amount of the UDP “flows”. Peers periodically
send ping and keep-alive UDP messages to keep their routing tables up to date.
As a result, the observed flows are very short, typically carrying only 1 or 2 small
sized packets.

5. P2P traffic is characterized by a large fraction of unsuccessful and non-malicious
outbound connection attempts to non existing hosts [Joh08|, as unreliable peers
are common in current P2P applications.

6. P2P networks (besides Denial-of-Service attacks) explain the extreme amount
of several millions distinct IP addresses observed in the Internet traffic [JohO§|. In
addition to maintaining large routing tables, file-sharing applications open and
sustain connections to a large number of sources, as they try to fully utilize the

available download bandwidth, in order to complete downloads as quickly as pos-
sible.

Due to the large amount of P2P traffic, many [[SPk try to filter, block, or limit P2P traffic.
As a result, P2P applications try to disguise their traffic. Thus, P2P traffic is difficult to
distinguish from normal web traffic and a pure blocking of ports is no longer a feasible
solution to filter P2P traffic. Furthermore, P2P file-sharing applications disguise their
traffic in order to evade legal implications. As a result, [SPk and researchers encounter
difficulties when trying to analyze Internet backbone traffic.

However, P2P does not only mean additional costs for [[SPk. For example, Internet users
cited P2P applications as one of the major reasons for upgrading their Internet access to
broadband, thus resulting in an increase in revenue for [[SPk [Men03]. We even think that
ISPk would be able to increase their revenue if they would cooperate with “legal” P2P
overlays, like P2P-based communication services. Most current P2P networks establish
an overlay topology that is largely independent of the Internet routing, thus impeding
the [SPR’ traffic engineering capabilities. As a result, P2P traffic often is zigzagging
through the physical network, thereby probably crossing network boundaries multiple
times [SK03, [KRP05, [ABEWO04]. Adapting the P2P overlay to the physical conditions
would significantly reduce P2P traffic, and thus related costs.

1.1. Definitions

J—1

Cellular network

Figure 1.1.: Overlay network: Logical structure on top of an existing infrastructure

1.1. Definitions

In computer science the term performance refers to the amount of useful “work” ac-
complished by a system compared with the time and resources used. The performance is
thereby determined by the manner of functioning or operation. Broadly speaking, in the
context of P2P overlays, the performance is measured by the duration and the correct-
ness of searches in that overlay. Additionally, signaling and communication overhead,
necessary for the maintenance and operation of the overlay, are important performance
metrics. Better performance, compared with another system, means faster searches ac-
complished using fewer resources.

Operation is the method by which a device performs its function. Thereby, we do not
apply the term optimized operation as a real optimization in a mathematical sense,
but use it for describing an increased performance by selecting appropriate values for
design parameters, thus improving the operation of the system.

An overlay network is a logical network of nodes and logical links that is built on top
of an existing network or infrastructure (see Figure . Usually, overlays are logical
structures, i.e., no direct physical connections exist among different nodes, but logical
links. Logical links correspond to a path, possibly traversing several physical links in
the underlying network. The overlay is an additional topology that commonly applies
its own address space, addressing and routing. In its beginnings, the Internet was such
an overlay built on top of the telephone network.

Nodes will be called neighbors, if they are connected via a direct (virtual) link. Thereby,
overlay networks establish a certain protocol-specific geometry describing the pattern

of virtual links. In structured overlays a deterministic geometry of neighbor links is
established. Thereby, distributed hash tables (DHTk) are the most common approach to

1. Introduction and motivation

realize the necessary overlay structure. On the contrary, in unstructured overlays each
node sets up connections to random nodes, resulting in a more probabilistic geometry.
In general, “Peer-to-Peer (P2P)) is a mindset, not a particular technology or an in-
dustry” [TSGT01|. P2P networks in particular are overlay networks built on top of IP
networks. As a result, these networks are independent of specific access networks. More-
over, in this communication model all parties have the same capabilities, take over similar
roles, and are able to initiate a communication session to another party. The network
relies primarily on the computing power and bandwidth of its participants on the edges of
the Internet rather than concentrating it on a relatively low number of servers. Thereby,
the main objective of a P2P overlay is to support finding and using distributed resources.
Nodes in P2P networks are often referred to as peers, thereby emphasizing that they
are equal instances (Latin par, ‘equal’). They connect as equals and are able to share
processing, control and access to data and peripherals. Sometimes also the term servent
is used, pointing out that peers act as SERVers and cliENTs at the same time. In
structured P2P overlays peers are addressed by a unique identifier (ID). In this thesis
we use the same symbol n for denoting a node and its ID—the meaning can easily be
deduced from the context. Similarly, content is addressed by a key k, and the same
symbol k is used for denoting the respective content identifier.

The scalability of a system refers to its ability to keep pace with changes and growth.
No general definition of scalability exists, as scalability can be measured in various dimen-
sions. Usually, an algorithm, networking protocol, or other system is said to be scalable
if it can be applied to large situations, e.g., an arbitrary large number of participants
in a distributed system, without considerably impacting performance and functionality.
That is why we refer to that dimension as functional scalability. Furthermore, we
consider stochastic scalability, i.e., the network’s ability to handle a growing rate of
changes in the overlay caused by an increased number of membership changes and user
activity within a certain time period |Bin0§].

The frequency of peers going online and offline is called churn rate. A higher churn rate
means more stress on the system as the overlay must be adapted to each membership
change (see Section [4.1)).

Another crucial property is the stability of the overlay. A structured overlay will be
denoted as stable if all deterministic neighbor links are correct, i.e., each peer established
all connections to its neighbors determined by the protocol. As we discuss later on, only
a stable overlay guarantees a correct resolution of queries.

In a computer network, the transmission of a data packet between two network nodes is
called hop. In the context of P2P, one hop is the step from one peer to the next; however,
one hop in the overlay may require multiple hops in the underlying IP network. Looking
up content may require several hops in the overlay. The hop count is the number of
subsequent steps along the overlay path from source to sink.

1.2. Contribution

1.2. Contribution

The contribution of this thesis is threefold: performance analysis, optimized operation,
and application of structured overlay networks. First, as a basis of our work, we carry
out a detailed simulative and mathematical performance analysis of structured P2P pro-
tocols. In P2P applications, where an arbitrary large number of users may participate
in a network, simulation is required to evaluate the performance and scalability of the
protocol and to check for its correct behavior. Moreover, simulation is used to predict
the behavior of a protocol in uncommon or even undesirable situations.

We show that DHT protocols scale well with the number of participants, just as they
are designed to address the scalability problem inherent to unstructured P2P networks.
However, maintaining a correct overlay structure is difficult in highly dynamic scenarios,
with peers frequently joining and leaving the overlay [KBHO05|. Similarly, an optimal
configuration of design parameters hardly depends on the network size, but primary
depends on the current churn rate.

Based on the evaluation of state-of-the-art modifications and extensions to Chord, we
develop novel solutions to improve both the robustness and performance of the proto-
col. We present Token Stabilization, which improves the robustness of the overlay by
exploiting Chord’s circular structure and sending token-like stabilization messages in
both directions [KNEQ5|. Still, the probability of a disruption of the overlay structure
is not negligible and the overlay may split in multiple partitions due to, for example, an
organization being disconnected from the Internet. We discuss several recovery mecha-
nisms and give design choices that further reduce the probability of disruptions [KBO0G.
Additionally, we are able to introduce a scalable algorithm for detecting other partitions.
Furthermore, we introduce hybrid routing, a combination of recursive and iterative rout-
ing with the advantages from both variants [Kun05]. For even faster content lookup
without additional signaling overhead, we develop Freebie Fingers [KS06], an extension
to the known Chord protocol. To further increase the lookup performance we present a
fuzzy logic-based route selection, which combines different routing heuristics and network
parameters. In particular, considering the availability of nodes, significant performance
gain can be achieved in dynamic networks. Besides our implementation based on the
Chord protocol, we discuss ways of translating these concepts to other structured P2P
protocols.

Concluding this work, we consider the application of structured P2P for Voice-over-IP
systems. We give an overview on supplementary services and add-ons for Public
Switched Telephone Network and [VoIP}based systems and introduce a general
framework for realizing supplementary services in a P2P-based system [SKOT7]. In
this context, the applied lookup protocol must support complex queries, e.g., to provide
fuzzy queries for users in distributed white pages. Therefore, we introduce our solution
for prefiz-based multi-attribute keyword queries.

1. Introduction and motivation

1.3. Outline

The remainder of this thesis is organized as follows.

Chapter 2 gives an introduction to P2P networking. We introduce several classifications
of P2P and discuss basic concepts of overlay networks. Subsequently, we focus on different
lookup concepts used for P2P networking.

Chapter 3 concentrates on structured P2P lookup concepts. It provides an in-depth
introduction and evaluation of the concepts and technologies, which provide the basis
for this dissertation. Starting with a general introduction to DHT-based protocols, we
take a closer look at selected structured P2P protocols. In the following, we present
additional algorithms for increasing content availability and load balancing. Concluding
this chapter, we analyze non-DH'T protocols, which inherently support load balancing
and tree functionality.

Chapter 4 introduces a new simulation environment used throughout the course of this
work. Therefore, we first present our new efficient approach to model user behavior and
the physical network. Based on this model, we describe the design of our simulator and
the workflow of the simulation and specify relevant design parameters.

In Chapter 5, we provide a detailed analysis of the Chord protocol, a well-known rep-
resentative of DHTs. After introducing fundamental metrics, we evaluate the protocol
in regard to these metrics. Based on our analysis, we conclude this chapter with a
comparison to related protocols.

In Chapter 6, we analyze and evaluate state-of-the-art modifications and extensions to
Chord. Resulting from this analysis, we develop new solutions to improve the robustness
and performance of the protocol. In addition, we consider possibilities to translate these
concepts to other structured P2P protocols.

Chapter 7 presents the application of structured P2P for[VoIP] We introduce solutions for
realizing supplementary services and keyword-based queries in P2P-based systems.
Chapter 8 concludes the thesis by summarizing the main findings and contributions.
Based on these we name limitations, open issues, and approaches for future work.

CHAPTER 2

Peer-to-Peer (|P2P)) overlay networks

2.1. Classification of P2P overlays

A common classification of P2P systems is based on its different application areas (see
Table . We distinguish between information sharing, e.g., file-sharing and location
based services, personal communication like telephony (e.g., Skype, community and col-
laboration services, i.e., (spontaneous) forming of virtual communities, data streaming
for video and audio, and networking services like a P2P-based distributed DNS (DDNS).
Independent from a specific application area, incentive mechanisms, like ‘Tit-for-Tat’
or credit systems, try to motivate users for sharing more content and over a longer
time period. The basic idea behind such mechanisms is that the more actively a user
participates in the network, the better he will be served.

P2P networks can be applied to different layers of a communication system (see Ta-
ble [AHO4]. In the preceding paragraphs we focused on the data access and service
layers. The data access layer consists of the overlay network and provides basic func-
tionalities for storing and searching of resources using application specific identifiers.
Prominent examples are Gnutella [Cli00] and Freenet [CSWHO1]. The service or appli-
cation layer enhances the data access layer and builds an application on top of it. Various
kinds of applications can be realized as mentioned above.

In this model, the lowest layer is called networking layer. It includes basic services to
route messages over a physical network in an application independent way, like TCP /TP
in the Internet. P2P technology is also used to provide a distributed monitoring service
for network statistics [FKSK06]. Furthermore, several Next Generation Internet
concepts exist based on structured P2P networks, e.g., [EFK03, FDKC06, KCCT07.
HSKE09].

On the contrary, the topmost layer in that model is the user layer. It is characterized
by direct interactions of users belonging to social communities. This layer is no longer
of technical nature; however, users exchange items in a Peer-to-Peer —like manner.

2. Peer-to-Peer (P2l_3]) overlay networks

Class

Application

Example system

Information sharing

Community and

File sharing
Photo sharing

Collaboration

Napster [Nap], BitTorrent [Coh|
[ACMDHO3]
Microsoft Office Groove [Mic],

collaboration services Croquet project [cro]

Spontaneous forming of virtual [Ziin07, [TBO4]

communities (based on location)

Gaming Solipsis [Fral,
Microsoft XNA [Mic07]
Personal communication | (Video) telephony Skype [Skyb],
PeerThings [Wim06],
P2PSIP [BR]

Joost [Mac07],
HotStreaming [WPLT06],
SopCast [Sop]

DDNS [Bod, [CMM02]

Data streaming Video streaming

Networking services Distributed DNS

Table 2.1.: Application areas of P2P

An example would be the online auction website eBay [eBal.

Talking about P2P technology, most people refer to the data access layer and service
layer. Also, most algorithms and evaluations we deal with in this thesis correspond to
the data access layer. In Section [7| we present a P2P-based telephone system that is
situated in the service layer.

P2P networking can be split into two main aspects, namely lookup and data delivery.
Lookup concepts aim at finding data that is provided by another peer. We say “data has
been inserted into the P2P network” by that peer. In centralized and structured P2P
networks, peers register their shared content with a central or distributed index database.
This index can later on be used to efficiently find peers that share the requested content.
We refer to this kind of strategy as proactive querying, as some effort for indexing the
data must be applied in advance of the queries. In contrast to that, peers that participate
in unstructured P2P networks do not initially publish any information about the content
they share. Therefore, searching content requires asking all peers whether they provide
the requested data, for example, by flooding the network with query messages. That is
why we call this strategy reactive querying.

After a requesting peer has found potential sources for the content it is looking for, the
data must be delivered to it. Data delivery concepts cope with efficiently transmitting
data from one or multiple sources to the requesting peer. Depending on the application
area, different requirements must be fulfilled. In the classical file-sharing application,
data shall be transmitted as quickly as possible. Therefore, files are, for example, split
in several parts, so-called chunks. Consequently, different chunks can be downloaded
from multiple peers simultaneously, resulting in a higher total download rate. Media
streaming applications require the packets of a stream to be transmitted in a correct
order and within certain time constraints. Thus, building an efficient distribution tree is
crucial for such applications. Users receiving a media stream must forward the stream to

10

2.2. P2P lookup concepts

Layer Description Application Service Example
Domain System

User Interactions of users belonging User Collaboration eBay [eBal,
to social communities communication Ciao [Cial

Service Combination and enhancement P2p Messaging, Napster
of data access layer applications distributed [Nap],
functionalities to provide processing ICQ [Mir]
higher-level abstractions

Data access | Search and update of resources Overlay Resource Gnutella
using application specific networks lookup & [KMO02],
identifiers in a distributed delivery Freenet
environment [CSWHO1]

Networking | Basic services to route requests Internet Routing TCP/IP

over physical network in an
application independent way

Table 2.2.: Application of P2P concepts in different layers of a communication system

at least one other user in order to build such a tree. Massively Multiplayer Online Role-
Playing Games (MMORPG) must take a special focus on security in order to prevent
gamers from cheating.

For most applications, it makes sense to establish direct TCP/UDP connections between
the source peers and the requesting peer. On the contrary, some applications prefer
to route the content along various peers that act as proxies, for example, in order to
anonymize the sources as well as the sink [CSWHOI]. In this thesis, data delivery concepts
are not examined in greater detail, instead we focus on lookup aspects. Hence, we refer
to [Sto01l [Li08] for an in-depth discussion of data delivery.

2.2. P2P lookup concepts

2.2.1. Centralized P2P overlays

Application layer P2P networking started in 1998, when Shawn Fanning finished im-
plementing an easy method to search and exchange music files over the Internet. His
Napster network was the first file-sharing service. Its functionality and ease of use at-
tracted thousands of users within a few days.

The software clients connect to a central Napster server [SGG03|. Then the clients scan
the local hard disks for MP3-files, and report the results to the server. The server acts as a
central index database that maintains an index of all files that are shared by the peers cur-
rently logged on. It does not store the files itself, but records (filename; IP address:port)
pairs. Queries for content are also sent to that server (see Figure ®). For each query,
the server returns a list of computers (i.e., their IP address and port number) that share
the queried file @. The querying clients then choose the “best” source, for example, based
on connectivity or provided data rate, and establish a direct connection (“Peer-to-Peer”)
in order to transmit the music file @. As a central index server is mandatory, we classify
that kind of lookup concept as centralized P2P.

11

2. Peer-to-Peer (P2l_3]) overlay networks

Cl Central index (database) server

—
® Send query to Cl

0 ® Clreturns results
® File transfer between peers

©)
Content
requestor
O O
Content @
provider)
e
= ® -~

Figure 2.1.: Centralized P2P: The server acts as a central index database.

Two years later, McCaleb released the client and server versions of eDonkey2000 |KIi|.
The eDonkey network also uses a centralized index database for looking up content,
and content is exchanged directly between users. Its main improvement compared with
Napster was the use of swarming. Thereby, files are split in so-called chunks, allowing
clients to retrieve different pieces from different peers simultaneously. Most private users
possess an asynchronous Internet connection (a result of the traditional client-server
architecture), where the upload data rate is considerably smaller then the download
rate. Therefore, downloading different chunks of a single file from various sources can
significantly accelerate the download process. Additionally, eDonkey2000 servers index
file hashes. Thus, identical files that have different files names across different peers can
be identified, and the number of potential sources for a certain file is increased.
Napster saw its peak of use in February 2001 with 26.4 million users worldwide [Jup01].
However, the fast rise came to an abrupt stop in 2001, when Napster was found guilty
for contributory and vicarious copyright infringement. Napster was forced to shut down
its service, as it was not able to block access to infringing material. Deprived of its
central index server, the Napster network was no longer functional. In centralized P2P
networks, the central entity is a Single Point of Failure (SPoF]). Although it is easier to
protect a single server from different kinds of attacks than protecting all of the clients,
the Napster server was easily brought down by the U.S. District Court.

In centralized P2P networks computing and storage power, as well as the available band-
width of the server must grow proportionally to the number of users. Thus, scalability
is one problem of centralized approaches. Services like Google [Goo| prove that they
are able to manage the huge number of clients. However, as Google’s index of the Web
is too large and would not fit on a single machine, it is distributed across many ma-
chines [Lon04]. Also, in visions almost all devices will be equipped with Internet
access, thereby significantly increasing the number of clients.

A benefit of centralized solutions is that the server has a complete view of the network.
Thus, no routing in the overlay network is required. Also, keep-alive signals or electronic
heartbeats are not necessary to organize the overlay. In contrast to that, in unstructured

12

2.2. P2P lookup concepts

Content

Content provider
requestor

te
§§

@ @)
®-® Query by flooding the overlay

@ Peers providing matching content return results
® Direct file transfer between peers

Figure 2.2.: Unstructured P2P: Peers establish random connections to each other.

and structured P2P networking, routing and signaling messages consume a huge amount
of bandwidth.

Complex query functionality, such as wildcard queries, similarity queries or the detection
of typing errors, can also easily be supported by centralized P2P systems, as all data is
available at the server.

2.2.2. Unstructured P2P overlays

Unstructured P2P networks completely avoid any central instance and all peers pos-
sess the same functionalities. Peers organize in a partly meshed overlay network (see
Figure , and they exchange service and query messages with each other [ES05].
Gnutella [Cli00] and The Free Network Project (Freenet) [CSWHO1] are the most promi-
nent examples of unstructured P2P networks.

Gnutella was released in early 2000 by Nullsoft, Inc. which belongs to AOL LLC. The
very next day, AOL stopped its availability due to legal concerns. However, many reverse
engineered open source clones appeared based on the Gnutella 0.4 protocol draft [CIi00].
The Freenet project exploits the unstructured overlay to prevent censorship and to ensure
anonymity in order to provide freedom of speech to the users participating in the network.
Therefore, all messages are encrypted and routed along many hops. Content is also
encrypted and replicated across a large number of continuously-changing anonymized
computers. Thus, it is extremely difficult to determine who is requesting and providing
which piece of information.

In order to join such a system, a peer must know at least one other peer that is already
participating in the overlay. Therefore, most clients store a list of IP addresses and port
numbers of peers that the client was connected to in a previous session. For an initial
setup, a list of “always-on” peers is provided in the installer or can be downloaded from
certain websites. Many networks also provide a kind of beacon or bootstrap server. It

13

2. Peer-to-Peer (P2l_3]) overlay networks

caches peers that recently have logged on to the system via this server with a temporarily
IP address. Thus, the bootstrap server is able to provide several TP addresses of active
participants. After a peer has established at least one connection to any other peer n,
it learns about more peers from gossiping with n. Then, it tries to establish connections
to known peers by sending a connection request to them. A peer that receives such a
request will either accept or reject the request, depending on, for example, its current
number of established connections (referred to as node connectivity), the availability
of free connection slots, or the compatibility of the used protocol versions. Existing
connections are maintained by periodically sending keep-alive messages (heartbeat) to
all connected peers. If no more keep-alive messages are received from any neighbor within
a certain timeout interval the neighbor will be considered as stale, the connection will
be closed, and a new connection to another known peer will be established.

Thereby, peers act completely autonomous—there is no central instance that coordinates
and maintains the network and its participants. In unstructured P2P networks, the
protocol defines the way nodes communicate with each other. It also recommends values
for certain parameters, like the number of connections that are maintained to other peers.
However, compared with structured P2P protocols, it does nol determine the overlay
network structure, i.e., the connections between the nodes in the overlay topology are
random and not predetermined.

Another characteristic of unstructured P2P networks is that content is not managed or
indexed. Content is only stored at the nodes that provide the content. It is not shifted or
replicated to other nodes in order to reach an optimal distribution. Neither an index of
content like in centralized or structured P2P networks is maintained, nor are pointers to
the offered content distributed in the network. Thus, searching content must be realized
by asking many nodes whether they provide that particular content, much like in a bazaar
or flea market. Thereby, popular content that is available at many nodes can be found
quickly, whereas finding an extremely rare content is difficult, requires much effort, and
a lookup success is not guaranteed. Different strategies for finding the required content
may be used.

In Gnutella query messages are flooded through the network, i.e., incoming messages are
forwarded to all neighbors in the overlay, except the neighbor the message was received
from. However, in large networks it is not feasible to forward a query message to all nodes.
Thus, a Time-to-Live counter is introduced. The counter is decremented
by one each time a message is forwarded. Nodes will not forward a message if the [['T'LJ
counter reached zero. The default [TTL|value in Gnutella is & = 7 [Sch05], i.e., a message
is forwarded 7 times. If we assume a network that is free of loops and nodes have an
average connectivity of ¢ = 3 [SD03|, each message would be flooded to N(c,h) = 381

nodes, with
h—1

N(c,h):Zc-(c—l)i:c

1=0

.1—(0—1)h

S (2.1)

Both, the number of queried nodes, as well as the number of messages, will increase
significantly if the network has a higher connectivity or a larger initial value is
used. However, in real networks, our assumption of an overlay structure without loops
is not realizable. As nodes have only a local view on the network and connections are

14

2.2. P2P lookup concepts

established randomly, loops cannot be prevented. A Globally Unique Identifier (GUID),
included in every message, helps to identify messages that have been received multiple
times due to loops. Nodes store a cache with messages they received. If any message is
received twice within a certain time, the message will be discarded as it has already been
forwarded by that node.

In Freenet, are also used for returning an answer to a request along the same
path the request has traveled. Thus, no information about the initiator and the con-
tent provider must be included in the message, thereby ensuring the anonymity of both
parties.

However, due to the limited counter it is not guaranteed that a peer finds the
desired content in the network. The small-world experiment [Mil67|, however, showed
that members of large social networks (in this case, the population of the United States)
would be connected to each other through short chains of roughly six acquaintances.
A recent study on a large instant-messaging network with 240 million users confirms
that the average path length between any two users in the network is 6.6 hops [LHOS].
Affirmed by these results, we can estimate that social searches and thus as well searches
for content can reach their targets in a median of five to seven steps, although actual
success depends strongly on individual incentives. In addition, the more interesting
content is for users, the more it will be shared by many participants, resulting in an even
higher success probability.

Flooding the network is very resource consuming and creates a huge message overhead.
Therefore, in the literature a number of improvements have been proposed, which we
will briefly discuss in the following paragraphs. FEzpanding ring search implements a
Gnutella like search starting with a small counter value, that will be increased
iteratively if there is no query success, until a certain limit is reached [LCCT02]. As
a result the number of messages is reduced and fewer nodes are visited for successful
queries compared with query flooding. However, the average search delay is increased as
the iterative expansion of the ring is time-consuming.

A second alternative are random walks [LCCT02|, which further reduce search overhead
at the expense of increased search latency. The requesting peer is sending out the query
to k neighbors only. Peers receiving the request will check back with the initiator of the
request if the resource has already been found. If not, they will forward the query to
one neighbor. Thus, the request is not flooded in the overlay network, but k£ parallel
“random walks” are performed. |[LCCT02| reports that random walks can further reduce
the number of messages compared to expanding ring search by half.

Additional alternatives to flooding can be found in [ALPHOI, [SBR03|. However, a more
promising solution to reduce the waste of network capacity are hierarchical P2P networks
(see Section [2.2.4).

In most P2P networks, the overlay is not matched to the underlying physical layer, as
nodes establish random connections to other nodes. Thus, neighboring nodes in the
overlay can be located far away in the physical network. Hence, a message must be
transmitted along many hops in the physical layer. This implies two consequences: The
average one-hop delay in the overlay is much longer, and more network capacity is used
in the physical network. As a result, the average resolution of a query takes much longer,
as each overlay hop has a longer Transmission Time . Even worse, many queries

15

2. Peer-to-Peer (P2l_3]) overlay networks

are forwarded along zigzag routes. In our measurements in the Gnutella network, we
found out that quite a few queries cross the Atlantic Ocean multiple times [SK03]. In
order to reduce that waste of network capacities, a geographically sensitive adaption of
the Gnutella protocol is proposed in [SK03].

Summarizing, the unstructured organization of the overlay bears two main disadvantages.
First, as it is not feasible to query the complete network, it cannot be guaranteed that
queries are resolved although the queried content exists. The more scarcely distributed
content is, the more queries for that content are not resolved. A high replication rate is
necessary to provide a high success rate for all content. Second, flooding results in high
signaling traffic. Introducing a hierarchical overlay (see Section can significantly
reduce this waste of network capacity.

In return, unstructured P2P networks are extremely fault resistant. Any peer can be
removed without loss of functionality, because there is no central entity and all peers
provide the same functionalities. Even a sudden outage of a huge portion of peers
will not completely destroy the network. Furthermore, as each peer tries to match the
query to its locally available content, complex query functionality can be provided (see

Section [7.3)).

2.2.3. Structured P2P overlays

A third lookup concept was introduced in 2001, the so called structured P2P networks.
Nodes and resources are organized in a deterministic structure, thus ensuring that any
node will be able to efficiently route a query message to a peer that has the desired
resource, even if the resource is extremely rare. Thereby, lookups benefit from knowing
the location where the queried content should be located in the network. Thus, query
messages can be forwarded on an almost direct path without the need of flooding the
network. Arriving at its deterministic destination, a lookup can be resolved at any rate:
If the resource is available, it will be returned to the initiator of the query. Otherwise,
the query will be answered with a ‘resource not available’ message. In this context,
resources can either be the files themselves or metadata describing the files. Different
structures have been proposed in literature, e.g., a one-dimensional ring-shaped struc-
ture [SMKT0lal, a multi-dimensional torus [RFHT01|, or a graph structure based on
hypercubes [SSDNQ2|. In order to successfully route requests, effort for building and
maintaining the structure is necessary. We call that strategy proactive querying, as this
effort must be spent prior to the lookups.

Most structured P2P networks are based on DHTs. An Identifier from an m-bit ID
space is assigned to every node. The overlay structure is set up according to these IDs,
hence, nodes are arranged with increasing IDs. Thereby, each peer is responsible for a
certain part of the ID space. Like in a traditional hash table, each data item (value) is
assigned with an ID (key). A (key;value)-pair is stored at the peer responsible for the
corresponding key. In general, nodes are responsible for keys that are close (according to
a certain metric) to the node ID. Content IDs (keys) are generated by hashing a certain
characteristic of the data item, e.g., its filename. Consequently, any peer requesting
a particular file calculates the corresponding ID by using the same hash function, and
routes the query directly to the peer responsible for that ID.

16

2.2. P2P lookup concepts

=
B L=l L
=

8

[A..F] [G..J] [K..O] [P.T] [U..Z]
Content Content Responsible
requestor ©) provider peer

® Lookup content in distributed index
@ Retrieve providing peer
® File transfer between peers

Figure 2.3.: Structured P2P: The overlay structure is determined by the node IDs.

Structured P2P protocols try to remedy the disadvantages of unstructured P2P protocols
we discussed in the previous section. By maintaining the deterministic overlay structure,
it is always possible to resolve a query within a bounded number of hops in a stable
network. This bound is a function of the overlay size, yet it is independent of the
frequency of the data item. Even if the queried content is not available in the system, an
empty list of found items will be returned to the user. In contrast to that, in unstructured
P2P networks, queries will only be resolved if “by chance” a node is hit, that is sharing
the queried item. Also, by routing the queries instead of flooding them, the signaling
overhead during queries is reduced by a considerable amount.

However, additional signaling overhead is necessary to maintain the overlay structure.
Each time a peer joins or leaves the network, the structure must be adapted, and
(key; value)-pairs (references) in the affected region must be shifted. Nodes leaving the
network must shift all references to adjacent nodes that are responsible for the keys from
this moment on. In contrast, nodes that join the network must take over references
with keys assigned to the ID range they are responsible for. Nodes joining and leaving
the network can still be handled without affecting the content availability. Nodes that
fail, without notifying their neighbors, for example, due to link breaks or power outages,
cause considerable problems. References that are stored on these nodes are lost. This is
why references must be replicated, thus significantly increasing the signaling overhead.
Furthermore, in order to repair the defective structure, it is important to detect such
failures as soon as possible (see Section [5.2.3). Therefore, like in unstructured P2P net-
works, peers have to monitor their neighbors by sending periodic keep-alive messages to
each other.

We can conclude that structured P2P networks cause low signaling traffic in stable envi-
ronments, because flooding is avoided. However, the higher the churn rate, i.e., the more
frequently nodes join and leave the network, the more signaling messages must be sent.
In the worst case, the constant changes hamper the construction of the overlay. Like un-
structured P2P networks, this type of P2P networks has no central entity and presents
no single-point-of-failure. Yet, the overlay structure is critical for resolving queries and
thus is a potential weak spot.

17

2. Peer-to-Peer (P2l_3]) overlay networks

Content Content
requestor provider

2 [pe g

________ <P >
LN
LN Superpeer

Leafnode

\
ﬁ e @
® Send query to SP ‘ LN

®@ SP floods network

® Result is sent back
@ File transfer between peers Q Q

Figure 2.4.: Hierarchical P2P: A peer’s capacities determine its level in the hierarchy.

Another challenge lies in the fact that peers must establish deterministic connections to
other peers. In the current Internet architecture this poses to be a problem, when peers
have private TP addresses and are shielded by firewalls and Network Address Translation
. Then establishing a direct connection to a deterministic peer might not always
be feasible.

In this section we mainly focused on DHTs. However, there are also some structured P2P
networks that are not based on a DHT. Skip Graphs [AS03]| and HyperCup [SSDN02],
for example, are based on skip lists and hypercubes, respectively. In Chapter [3| we have
a more detailed look at selected structured P2P protocols.

2.2.4. Hierarchical P2P overlays

In 2002 a hierarchical version of Gnutella (Gnutella v0.6 [KMO02|) was developed, which
significantly reduces the number of maintenance and lookup messages. Gnutella v0.6
establishes a two-tier hierarchy (see Figure 2.4). Thereby, exceptionally available and
powerful nodes, so-called “supernodes” or “superpeers”, are grouped in the top-level. The
superpeers set up an unstructured P2P overlay by establishing random connections to
each other. Other peers, called “ordinary peers” or “leafnodes”, are directly attached to
one of the superpeers. Each superpeer acts as a central index database for all leafnodes,
which are connected to it, much like in a centralized P2P system. Hence, superpeers can
shield their leafnodes from the signaling traffic in the top-level.

Nodes joining the system connect to one of the superpeers, for example, the one with
the shortest Round-Trip Time . Consequently, they register content they provide
with their superpeer. If leafnodes fulfill certain criteria, like a public IP address, a
large amount of bandwidth, high processing power, and long online times, they may be
promoted to superpeer status.

18

2.2. P2P lookup concepts

Leafnodes querying for content forward the request to their superpeer. The superpeer
searches its local database and returns matching content. If no matching content is found,
the superpeer will flood the query in the top-level overlay. Compared to flat unstructured
P2P systems, the same query hit ratio can be obtained by flooding a considerably smaller
number of peers (using a smaller value), as each superpeer provides the aggregated
content of multiple peers. Finally, the requesting peer connects to the leafnode that
provides the queried content. If the peers are able to establish a direct connection
between each other, no superpeer will be involved in transmitting the data. Otherwise,
the corresponding superpeers may act as proxies, helping to establish a connection, for
example, by using UDP/TCP hole punching [FKS05|, or they even relay the complete
communication like in Skype [BS04].

A hierarchical P2P lookup also reduces the average path length in hops, as in many cases
frequent data is available at one of the local leafnodes of the superpeer. If not, following
the same reasoning as above, a query hit will be more likely at a close superpeer. The
lookup latency will be further reduced if leafnodes are assigned to that superpeer with
the lowest

The popular file-sharing application KaZaA [Shal is based on the FastTrack protocol.
Although FastTrack is a proprietary development, reverse engineering showed that a two-
level architecture similar to Gnutella v0.6 is used [giF]. Later versions of eDonkey2000
also connect servers with other servers, thereby establishing a hierarchical overlay.

Such hierarchical P2P systems exploit the fact that nodes have heterogeneous capabili-
ties. A few powerful superpeers are able to index the content shared by their leafnodes,
as well as to handle all query requests. A more general framework for hierarchical P2P
lookup is proposed in [GEBRT03|. Peers are organized into groups according to some
metric (e.g., topological closeness). Each group selects at least one superpeer that has
special characteristics (e.g., the most reliable peer). This peer is assigned with additional
responsibilities, like acting as a gateway between the groups. Similar to the Gnutella v0.6
network, lookups are first routed to the right group, and then a local query is initiated.
Unlike Gnutella v0.6, superpeers do not index content available in their group. The
hierarchy can also be extended to more levels.

The authors show that such a hierarchical network can significantly reduce the expected
number of overlay hops, and thus the lookup latency. They also argue, that hierarchical
structures can provide administrative autonomy to participating organizations, as lower-
level groups may belong to different organizations that implement their own lookup
protocols. The hierarchical framework does not specify any overlay structure or lookup
service at any level in the hierarchy. In their work, Garcés-Erice et al. dwell on a specific
two-tier hierarchy that uses Chord [SMK™01a| for the top-level and arbitrary DHTs for
the bottom level overlays.

Zols et. al [ZDKO06| provide a cost model of a specific two-tier hierarchical DHT. Similar
to Gnutella v0.6, the most powerful peers are called superpeers and are positioned in
the top level, whereas less-performance peers are directly attached to these superpeers.
Yet, in contrast to Gnutella v0.6, superpeers run the Chord protocol. The authors
evaluate the costs for different superpeer ratios. In a system with N heterogeneous
peers they evaluate the total network costs as well as the individual costs per peer.
Thereby, they vary the number of superpeers from 1 (centralized P2P system) to N (flat

19

2. Peer-to-Peer (P2l_3]) overlay networks

P2P system). Summarizing, they show that centralized systems possess the lowest total
network costs, but the single superpeer must be able to handle the highest individual
costs. In contrast to that, individual costs are small, but total network costs are very
high for flat architectures. In a sample scenario with DSL, UMTS, and GPRS peers
they demonstrate that a hierarchical architecture must be used, as neither a centralized
system (due to an overloaded superpeer), nor a flat system (due to overloaded GPRS
leafnodes) is applicable in that scenario.

Summarizing, hierarchical approaches are an efficient solution to reduce the amount of
used network capacity. By positioning resource-constrained nodes in the lower level,
these peers are shielded from the high traffic in the upper levels. Additionally, nodes in
the upper level are shielded from the high churn rates of nodes with error-prone wireless
connections. Thus, hierarchical approaches are especially suited for mobile environments.

2.2.5. Comparison

Table summarizes similarities and differences of the presented lookup concepts. The
most apparent differentiation is the network structure. In centralized overlays, peers
group around a central entity acting as an index database. In contrast to that, (un-)
structured overlays self-organize without the need of a central instance, thus avoiding
a In unstructured P2P networks peers set up about 3-7 connections to other
randomly chosen peers, and failed peers are simply replaced by new connections to any
other peers. As a result, this kind of overlay is extremely stable. Although structured
overlays have no [SPoF] the deterministic construction of links is sensitive to failures.
Efficient stabilization algorithms must be applied to replace failed connections. However,
the number of connections to other peers (usually O(log, N) connections are maintained)
is sufficient to keep the probability of peers becoming isolated from the network very
low. Private IP addresses might prove to be an even greater challenge for structured
overlays. The network structure determines which peers must connect to each other.
Yet, this connection could be hard to set up as some peers are situated behind
and Firewalls.

In P2P applications, content is usually stored at the peer providing the content and,
in contrast to client-server approaches, content is directly transferred from one peer to
another. However, the lookup of content is organized in different ways. In a centralized
lookup, all references to content are stored in a central index database, thus providing a
lookup path length of one hop. Structured lookup concepts store references at determin-
istic peers, that is, in combination with the structured overlay, guarantees on the mean
and maximum path length can be made. In contrast to that, no references are shifted
in unstructured overlays, that is why flooding or random walks must be used for looking
up keys. As a result, the lookup path length in unstructured overlays depends on the
popularity of the queried content. The more often an item is stored in the P2P network,
the faster one of the peers providing that content will be found. Moreover, the resolution
of queries is not guaranteed, as small counters are used limiting lookups to a node’s
close neighborhood.

20

2.2. P2P lookup concepts

9°0A ®B[[INUY)
9111309311
uo Surpuada(]

UOTYRUIUIO))

ded painonis(un) pue
POZI[RIIUSD UMD U]

UOTYRUIUIO))

UOT)RUIGUIO))
UOTYRUIUIO))

UOT)eUIqUIO))

dgd panonns(un) pue
POZI[RIIUSD UDOMID] U]

(seoanosar
Suissedins ym s1e9])

sydeouod dnyoo[Jgd Jo uostredwon) "¢'g 91qe],

NVD ‘pIoy)

MM

s1oad

ofdiynur wo eyep
Jo uotyeorday]
(1o1A%yaq 19sN
uo Surpuadep)
YSTH 0) Mo
()4

10 (N)f Arensn

(N)S Arrensn
so[qe) SurnOl
gursn £q 99011(]
apou a[qisuodsal
031 payIys
QIM)ONIYS
AR[IOAO OATHISUOG

1OUDAL]
F°0A e[[eINUL)

SO
1sonboaa

09 Ajdox Aewr eyep
1 s1ead ordiyny
(1oo0301d

oy} uo Surpusdap)
USIH 0) WnIPIIN

2—¢ xoxddy
UOIIN[0SaI
A1onb podjuerend ou

“T.IL >

010 SY[eM
wopury ‘SUIpoo[q

apou
Surpraoxd ye ureway

9[qeIS AOWAIIX]

I99sdeN

S
SUOTIIRIO]
prorumop ordrymu
STLINJSI I9ATIIS

[ewruryy

ON

I9AIRS YR PAIO)S

oIn[re
-JO-JUIO J-0[3UIS

sordwrexyy

sorxonb xoduwo)

AyrIqerey

pesayioA0 Suleusig

97els Sunnoy

PEELE |
yged dnyoorg

sarzanb jo Surnoy

S9OUDISJAI JUIIUOD)

Aymiqess

Ppo9oTe AT[estmreul(] ON ON aseqrjep Xopujf AJNU9 [eIJUS))
S(II @pou
UOT)RUIQUIO) AQ pOUTULIDO(T wopuey| pozienua)) | 9INJINIIS JIOMIIN]
[eoryoaeIory poanjoni)g poanjonaisun) pozifeijus)

21

2. Peer-to-Peer (P2l_3]) overlay networks

Centralized P2P solutions result in the lowest total signaling costs, yet the central en-
tity must handle significantly higher load than its leafnodes. In contrast to that, un-
structured and structured lookups try to balance costs on all participating peers, thus
resulting in higher total communication costs. Unstructured lookup concepts require low
maintenance traffic, but high query traffic, whereas a structured lookup is cheap, but
maintaining the underlying overlay is expensive. The costs in unstructured P2P over-
lays can be reduced by improving the protocol. For example, clever random walks are
more efficient than a simple flooding solution. By contrast, the costs in structured P2P
overlays mainly depend on the user behavior, i.e., the higher the churn rate, the higher
the costs of maintaining the overlay structure. In our analysis we show that structured
overlays do not scale to extreme churn rates.

The reliability of content is reasonable for all concepts. In centralized networks, the
central entity returns multiple download locations. Similarly, a lookup in a structured
P2P network will return multiple potential sources if available. In contrast to that,
in unstructured overlays it is likely that multiple peers answer to queries for common
content; however, fewer or no query responses at all are expected for unpopular content.
Complex queries (Section are supported by centralized and unstructured overlays.
By contrast, the hash functionality provided by DHTs does not support complex queries
at all, thus additional mechanisms must be implemented on top of these protocols to add
this feature. Other structured P2P protocols (e.g., based on trees) provide range queries,
but lack efficient load balancing.

Hierarchical solutions are often combinations of two different lookup concepts, and thus
also their properties and functionalities are a mixture of both concepts. Various hier-
archical solutions for various operational areas exist. Usually, on the one hand power-
ful peers are elected for the top level and take over extra tasks. On the other hand,
resource-constrained peers are arranged in the bottom layer and are shielded from most
maintenance and lookup traffic. Thereby, the strengths of different lookup concepts can
efficiently be combined. In the course of this work we do not examine hierarchical solu-
tions in detail, as we concentrate on analyzing the interworking and operational behavior
of pure structured overlay networks.

Summarizing, pure centralized approaches are past their peak. However, most current
P2P applications still rely on a few centralized instances, for example, for storing user
account information, for bootstrap and login purposes, or for providing security features
like verifying certificates. Unstructured P2P networks excel other concepts in their ex-
tremely stable overlay, yet, searching the overlay is very expensive and finding existing
content is not guaranteed. As a result, unstructured solutions lose ground to structured
overlays. The main strength of structured P2P networks is that answers to queries are
always possible. This feature is crucial for many kinds of applications. Also, the improve-
ments presented in this thesis, as well as the ongoing research, will result in structured
overlays that can also be applied in scenarios with high churn rates. As a result, we be-
lieve that structured overlays (also as part of hierarchical solutions) will be implemented
in most distributed applications.

22

CHAPTER 3

Structured P2P lookup protocols

As their name suggests, structured P2P networks arrange resources in the system ac-
cording to a well-defined structure. Thereby, proactive routing ensures that information
about a certain part of the current structure is known to each node. Thus, querying ar-
bitrary resources can be performed within a limited number of hops [ESZK04, KKSZ06].
The most common approach to realize the necessary overlay structure are distributed
hash tables (DHTs).

In this chapter, we discuss several structured P2P protocols. A protocol specifies both
the overlay structure and its maintenance (referred to as stabilization), as well as the
way lookups for keys are realized. In contrast to that, content management and efficient
methods for transferring content from one peer to another are independent from the
selected overlay protocol. Thus, we concentrate on the structures of the protocols and
the implemented lookup algorithms. We also give a short summary of replication and
load balancing techniques applied in structured P2P overlays in Sections and

3.1. DHT-based protocols

Most structured P2P protocols are based on distributed hash tables (DHTE), thus some-
times the term DHT is falsely used for structured P2P protocols. In general, hash
functions (e.g., SHA-1 |[EJ01]) map a wide set of possible input keys to a well defined
identifier (ID) space. Hash tables store the corresponding data values along with these
IDs. Thus, given a key (e.g., a person’s name), the associated value (e.g., that person’s
telephone number) can be looked up efficiently.

In a DHT, the hash function maps nodes as well as objects to a common m-bit ID space.
The ID space must be large enough to map a unique ID for every node and every data
item with high probability. Node IDs can, for example, be computed by hashing their
IP address, whereas the filename could be the value for shared objects.

23

3. Structured P2P lookup protocols

Participating node |__IP:POrt _ IDnode —
“l Hash function “| Identifier space
] >| (e.g. SHA-1) > (m bit)
Shared object Filename IDgata
input keys

Figure 3.1.: DHT: A central hash function maps nodes and objects to a common ID space.

The network structure is then set up according to the protocol. In a DHT, nodes are
positioned in the structure based on their ID. Each participating node accepts respon-
sibility for a well defined part of the ID space. Data (or a link to the node that is
hosting the data item) is mapped onto that node whose ID is the “closest” to the data ID
(also called key). Thereby, the distance function A() is depending on the protocol, e.g.,
A = IDyoqe — IDgata in Chord [SMKT01a| and A = ID,oge ® [Dgata in Kademlia [MMO02].
Finally, a routing algorithm provides an efficient method to look up data items stored in
the DHT.

Structured P2P protocols specify only a few fundamental operations for users, i.e., join
the network using a bootstrap node, insert and update a (key; value)-pair, lookup a
key and retrieve the corresponding value, and leave the network. Additional Remote
Procedure Calls (RPCE) for maintaining the overlay structure, like stabilization or ping,
are transparent to the user.

DHTs are a variant of consistent hashing [SMK™01a]. By using a consistent hash function
it can be guaranteed that w.h.p. all nodes roughly receive the same number of keys, i.e.,
the load is balanced among all nodes. However, this property can only be guaranteed if
IDs are unique, i.e., there is only a single value for each key. Yet, certain applications
require storing multiple values per key. For example, in a file-sharing application it
makes sense to store references to peers that provide a file instead of storing the file
itself. However, several peers might store the same file. Thus, multiple (key;value)-
pairs are stored for specific keys. Moreover, it is likely that the popularity of the files
follows a Zipfian distribution (see Section [7.3.1)). Thus, the most frequent file will occur
approximately twice as often as the second most frequent file, which occurs twice as
often as the fourth most frequent file, etc. Additionally, popular files are requested more
often. The Pareto principle or the “80-20 rule” says that 20% of the files are requested
in 80% of the queries. Summarizing, a peer responsible for storing a frequent file must
store significantly more (key; value)-pairs and has to answer considerably more requests
than other peers. In Section we have a closer look at these problems and we discuss
several algorithms that try to balance the load in such scenarios.

The Chord protocol is a very prominent yet simple DHT-based P2P protocol that is
referred to in many publications. It establishes a ring-shaped overlay, where the position
of a node on this ring is determined by the node ID. Due to its very clear structure
the behavior of the protocol can easily be analyzed and evaluated. That is why in
the following section the basic features of DHTs are exemplified by using the Chord
protocol. In section [f] algorithms that improve the stability and efficiency of structured
P2P protocols are also introduced at the example of Chord.

24

3.1. DHT-based protocols

Index ID Node
i n1+ 271 successor(ID)
1 2 Ny
2 3 Ty
3 5 ns
4 9 ni1
5 17 N9
6 33 nary

Figure 3.2.: Chord fingers for node n; in a sample overlay network.

3.1.1. Chord

Overlay structure Chord [SMK™01a| establishes a 1-dimensional m-bit ID space. This
ID space is wrapped into a ring shape by using modulo operations, i.e., all operations on
IDs are performed using modulo 2™ arithmetic. Thus, participating peers are arranged
in a circular structure. Each peer is responsible for the ID space between its own ID
and the ID of its predecessor on the ring. In other words, a key k is assigned to that
peer whose ID is equal to k or is closest following % in clockwise direction?. That peer is
called successor of key k, and is denoted by successor(k).

Node state and scalable key location Chord establishes a ring structure where each
node stores a pointer to its successor on the ring. Using these successor pointers, nodes
can lookup any ID or rather the node that is responsible for the ID. However, traversing
the ring hop-by-hop is not feasible for large networks, as the average routing path length
would be /2N hops in a network with /N participants.

In order to reduce the number of hops, the routing state maintained by each node must
be increased. Chord strikes a balance between fast lookups and a relatively small routing
state. By cleverly storing F' = O(log, N) pointers, which act as shortcuts through the
ring, the average lookup path length can be decreased to 1/2log, N + 1 hops. In Chord
these shortcuts are called fingers. Thereby, nodes maintain many fingers to close nodes
and some pointers to far away nodes. The first finger is equal to the node’s successor.
Then, the distance to the next pointers is repeatedly doubled, i.e., the i** finger of node n
is the first node that succeeds n by at least 2/~ 1:

fi = successor(n + 2'71) i€[l,m)] (3.1)

In the previous paragraph, we stated that nodes in Chord store F' different fingers,
although theoretically m fingers exist (F' < m). This indifference is explained by the
fact that, w.h.p., the first £ fingers point to the same node, which we make plausible by
the following approximation. The mean distance in the ID space between two nodes in
a network with 2™ IDs and N = 27 is Z- = 2m~F. Assume that the distance between

2By (counter-)clockwise direction we mean in the order of the ID space, and vice versa.

25

3. Structured P2P lookup protocols

n and its successor is exactly this value. Thus, the theoretical fingers of n with index
i" (i" < m), which are less or equal than this distance, point to the successor of n
(2" < 2mF). Thereby, we deduce that F' = m — log, N. Thus, F = log, N actually
different fingers exist besides the successor.

In Chord, lookups for a key k (FIND successor(k)) are unidirectional. Thus, it is
important not to overshoot k. That is why lookups consist of two steps. First, finger
entries are used to find the predecessor p of key k (FIND _PREDECESSOR(k)). In the second
step, using the successor pointer of p, the successor of k is contacted. Nodes that initiate
a lookup for key k, search their list of fingers for the largest entry whose ID is still
preceding k (using modulo operations) and send the query to that node. Nodes receiving
a lookup check whether they are the predecessor of the ID or not. In the first case
they forward the query to their successor, which is also the successor of k, and thus is
responsible for k. Otherwise, they also search their routing table for the node with the
largest ID that does not exceed k and forward the query to it. Using this routing scheme
and the given structure of the fingers, the distance to k is at least halved with every hop.
Thereby, lookups can be performed recursively or iteratively. The authors of Chord
propose a recursive routing, where the request is forwarded from node to node. In
contrast to that, with iterative routing, each node returns information about the next
hop to the initiator of the lookup. Thus, the initiator of the query is involved in each
hop. At the end of a lookup, the successor of k returns the corresponding value to
the initiating peer. A more detailed description of both variants, as well as a hybrid
approach, will be given in Sections [6.2.1.1| and [6.2.2]

Ion Stoica et al. prove that using such a scheme, w.h.p., FIND PREDECESSOR(k) requests
will be able to be resolved with at most 2log, NV hops and !/2log, N hops on average if
all pointers are up to date [SMIK™01b|. One additional hop is necessary to forward the
request to the successor of k.

Concluding, maintaining correct successor pointers assures correct lookups, whereas fin-
gers allow for short lookup paths. An evaluation of Chord’s routing path length in stable
and dynamic scenarios is given in Section [5.1.1} In Section [6.2] we present improved rout-
ing algorithms, which do not stick to such a completely deterministic finger selection,
but offer the possibility to choose fingers based on different criteria (e.g., proximity).

Stabilization One of the most important tasks of structured P2P protocols is to keep
up the overlay structure. This is even more important than providing an efficient search,
as lookups will only be able to be resolved if routing through the overlay is possible. If
the overlay structure is corrupt in one part of the network, any route through that part
of the topology will fail.

A viable P2P protocol is characterized by a reliable and efficient search. For structured
networks this is only achievable in a highly stable topology. Stability comprises both
correctness of the neighbor entries as well as fast handling of topology changes due to
joining and leaving nodes. Especially in networks with high churn rates, a fast, reliable
and self-organizing stabilization algorithm is indispensable.

Chord uses a very simple stabilization scheme. Each node n stores contact information
((ID; IP address; port number)) of its direct successor s and predecessor p on the ring.

26

3.1. DHT-based protocols

nnew
O\“’"N”
pred = ... pred=n,.,| | pred=..
succ=s succ=... succ=s

pred=p
NOTIFY() succ=s

/\nnew

® @

Figure 3.3.: Illustration of a join event.

pred =...
SUCC = N,y

Node n periodically sends a STABILIZATION message to its direct successor s. Receiving
this message, node s returns the contact information of its predecessor p. If the overlay
has not changed in that local area, the returned node p will be equal to n.

Before a node n,ey is able to join the overlay, it must know at least one node nyootstrap
already participating in the network. This process is called bootstrapping, and several
common methods are presented in Section 2.2.2 Node Nyeyw asks npgotstrap to find its
immediate successor with ID(p) < ID(npey) < ID(s). Then, node nye, contacts its future
successor node s and informs s that it is now participating in the network. However, the
former predecessor of peer s, p, does not know about n,, yet (see Figure @).
Therefore, p keeps on sending stabilization messages to its successor s (see Figure).
This time, however, node s would return the contact information of node n,., ®. Node p
stores npew as its new successor and, at the same time, informs n,., that it is its prede-
cessor @. Thus, the new node is fully integrated into the overlay and the ring structure
is restored. If several new nodes are attached to a single successor, one of the new nodes
will be inserted in the ring in each stabilization period.

In advance of being fully integrated into the overlay, nyey is attached to the ring structure
like a leafnode as shown in Figures @ and The authors of Chord call that
transitional structure pseudostar. In that state, all successor pointers are correct, and
thus correct lookups are guaranteed. Chord is able to handle concurrent joins, thus
several leafnodes may be attached to a node in the ring.

Consequently, the new node n, either copies an initial set of fingers from its successor or
it directly queries for its fingers. Furthermore, node n,., starts copying the (key; value)-
pairs it is now responsible for from its successor. As long as nyey is not fully integrated in
the ring structure all lookups for these keys are still resolved at node s. In Chord nodes
do not handle the references themselves, but rather inform the higher layer software
about the changes in topology. The software is then in charge of shifting the references

27

3. Structured P2P lookup protocols

Figure 3.4.: Pseudostar formed by joining nodes, which are not yet fully integrated.

to the new nodes. If ng., receives a lookup for a key that it is responsible for, but
the (key; value)-pair is not yet transferred to it from its successor, n,e, will be able to
forward the lookup to its successor that is still able to answer the lookup. Additional
replication techniques further help to resolve lookups during the transitional states.

Nodes leaving the network inform their neighbors, thereby avoiding any inconsistencies
in the structure. In some improved variants of the Chord protocol each node n stores
a list of back-pointers to the nodes that have a finger pointing to n (see Section .
Thereby, nodes can additionally inform these nodes when they leave network. Thus,
lookups are no longer forwarded to n, thereby avoiding timeouts during the lookup.

However, nodes that just fail, for example, due to a link break, power cut, or a discharged
battery in a mobile device, are not able to send such notifications. Thus, their failure
must be detected by their neighbors. In Chord, if no answers are received on succes-
sive stabilization messages, nodes will have to assume that their successor has failed.
Hereby, the trade-off between fast failure detection, i.e., short timeout values, and ad-
ditional stabilization overhead due to falsely detected node failures must be considered

(see Section 5.2.3]).

In order to replace a failed successor, each node maintains a list of several successors.
Each node n transmits its successor list £ in its STABILIZATION responses to its predecessor
p. Node p adds node n to the front of £, thereby deleting the last element, and replaces
its own successor list with £. The authors of Chord state that their protocol can cope
with a simultaneous failure of half of the nodes if a list of |£| = 2log, N successors is
maintained.

Beyond, each node must periodically verify its fingers to make sure that all finger table
entries are correct. In Chord, every tg seconds the procedure Fix FINGERS selects a
random finger 7 and runs FIND _SUCCESSOR(n + 271, thus updating this finger.

Concluding, joins and leaves are not very critical to resolving lookups, and the success
rate as well as lookup time is hardly increased. In contrast to that, failed nodes must be
detected by their neighbors. However, this stabilization mechanism is not able to repair
a Chord system that has split into multiple disjoint overlays. In Section we present
solutions to avoid and repair such partitioned overlays.

28

3.1. DHT-based protocols

15 O
B P
X O
<) .
{0)
O
/ =2
(34 A
@)
ad=2 0 @, ﬂ
0 15

Figure 3.5.: CAN: A d-dimensional ID space is partitioned between all nodes.

Summary Using the Chord protocol as example we described the basic functionalities
of structured P2P protocols in detail. In order to provide a fast and efficient routing,
shortcuts, so-called fingers, are established in the ring-shaped overlay. Using these fingers
the average lookup length can be reduced to O(/21log, N) hops. A stabilization mecha-
nism is performed periodically at each peer to repair changes in the overlay structure.
Chord’s stabilization is slow. Each stabilization call can join one node. However, the
higher the Churn rate, the higher the probability that more than one node wants to
join between two adjacent nodes. Repairing the structure after node failures takes even
longer. Also, updating the successor lists requires several stabilization rounds, resulting
in erroneous lists. Therefore, it is likely that the next node in the successor list has
already failed as well in highly dynamic overlays.

In Chord’s stabilization scheme some design parameters can be adjusted: the stabiliza-
tion period, the timeout value, and the size of the maintained successor list. However,
modifying the stabilization algorithm itself is most promising to improve the robustness
of the overlay structure. An analysis of the Chord protocol can be found in Section |5.2}
and various improvements to the protocol are presented in Chapter [6]

3.1.2. Content Addressable Network (CAN)

Overlay structure A more complex protocol is CAN [RFHT01]. CAN uses a multi-
dimensional ID space that is partitioned between the nodes participating in the system.
Thereby, lookups can be resolved faster compared with the Chord protocol.

The abbreviation CAN stands for “scalable content-addressable network”. A hash func-
tion with a d-dimensional output is used to set up a d-dimensional ID space on a d-torus.
In CAN, IDs are referred to as coordinates. This coordinate space is partitioned among
all nodes participating in the system (see Figure . Each node is responsible for main-
taining its sub-space, called zone, and for storing all documents with IDs positioned in
this sub-space.

29

3. Structured P2P lookup protocols

Node state and scalable key location Nodes maintain connections to their immediate
neighbors along all dimensions. Node @ (ID (6;10)) in Figure maintains connections
to nodes @, ®, @, @, and @®. Nodes @, ®, and ® are no neighbors as they share no
common edge with node @. In contrast to Chord, no finger-like connections to other
more distant peers are maintained.

A query for an ID is always routed to that neighbor whose zone is closest to the destina-
tion coordinate. In the figure, node @ (ID (10;1)) initiates a query for a content ¢ (with
ID (2;12)). Node @ sends the query to node @ as its zone is closest to ¢. In the next hops,
the query is forwarded to nodes ®, @, and ®. Finally, the query reaches node ® that
is responsible for c. It can be shown that the average lookup path length in a perfectly
partitioned coordinate space with z zones (that corresponds to N = z participants) is
(d/4)(2'/?) hops, and nodes maintain 2d neighbors [REHT01].

Stabilization In the beginning, peers starting to join the network choose a random
point P in the coordinate space. As in Chord, they must know at least one peer nyootstrap
that is already part of the network. Using npootstrap @8 first hop, a joining peer npey can
route a JOIN request to the peer that currently is responsible for the point P. If the
current occupant of the zone accepts the request, it will split its zone in half and assigns
one half to the n,.,. Thereby, the coordinates of a peer do not need to be inside the zone
it is assigned to. Actually, in many cases both peers have coordinates that are within
the same half and one of the peers must be assigned to the other half. After successfully
splitting the zone, n,., receives the IP addresses and zone ranges of its neighbors from
the previous occupant of the zone. Also, in the routing table of the previous occupant,
the peers that are no longer neighbors are eliminated and the n,, is added. Finally,
all neighbors must be informed about the split. Therefore, all peers periodically send a
STABILIZATION message with their currently assigned zone ranges to all adjacent peers.
When nodes leave the network, they hand their zone to one of their neighbors. Ideally,
the zone can be merged with a neighbor’s zone so that a valid new zone is created. If not,
the zone will be assigned to the neighbor with the smallest zone, and this neighbor must
temporarily handle both zones. As in most DHTs, nodes monitor their neighbors with
timers. If a stabilization message is received from a neighbor, the timer is reset. If one
of the timers expires, the peer must assume that this neighbor has failed. Then, all peers
adjacent to the failed peer will exchange TAKEOVER messages with each other, in order
to find out the best neighbor to take over that zone. A background zone-reassignment
algorithm is run to reduce the resulting fragmentation of the space.

Concluding, node joins, leaves and failures only affect adjacent nodes. Hence, the number
of messages sent during such operations is not depending on the size of the network. Also,
the path length scales as O(d- (z'/%)) in a perfectly partitioned coordinate space. Thus,
the system is highly scalable in the number of nodes. The parameter d regulates the
tradeoff between path length and overhead. On the one hand, if the dimensionality d is
set to a small value, the number of neighbors will be small, i.e., the overhead introduced
by service messages is low. Also, the routing paths will be long if d is small. On the
other hand, increasing d leads to shorter routing paths, but a higher service overhead.

30

3.1. DHT-based protocols

Improvements The authors of CAN suggest many improvements to their basic system
design. First, they introduce realities, being r multiple, independent coordinate spaces.
Each peer joins and maintains a zone in each reality. Content is replicated in each reality.
Thus, w.h.p., it is stored at r different peers. Using realities, the average path length
can be significantly reduced, as each peer has the latitude to forward a query in that
reality where the distance to the destination is smallest. Also, in the case of a link
failure, queries can be routed in another reality. Thus, the system is more tolerant to
failures. Again, the trade-off between short and failure tolerant routes and the overhead
of maintaining multiple realities must be considered. Note that increasing the number
of realities r has less influence on the path length than increasing the dimensionality
d. However, multiple realities provide improved content availability and fault-tolerance.
The concept of multiple realities can easily be applied to other DHTs.

Second, Proximity Route Selection (PRS)) (cf. Section is introduced. Hereby, the
selection of the next hop does not solely consider the Cartesian distance to the destina-
tion, but also takes Round-Trip Times (RT'LE) into account. Thus, the average lookup
latency was reduced by 25-40% in the authors’ simulations. The basic idea of consider-
ing multiple parameters for selecting the next hop is generalized in an improvement we
present in Section [6.2.4]

Third, the zones are overloaded, i.e., several nodes share the same zone. Each peer must
know all peers in its own zone, but it still stores only one peer of each of its neighboring
zones. Thereby, peers prefer neighbors that have a low (prozimity neighbor selection,
see also Section . Again, taking into account, the average per-hop latency
can be significantly reduced. Besides, the path length in terms of number of hops is
reduced, as the number of zones is reduced for a fixed number of peers. Also, the system
is more fault-tolerant, because a zone will be vacant only if all nodes in the zone crash
simultaneously. Content can either be replicated or distributed among all peers in a
zone.

Due to its d dimensions, CAN is suitable for a topologically-sensitive construction of the
overlay. This is essential to avoid zigzag routes (see Section [2.2.2). One idea would
be to use a 2-dimensional torus, i.e., the surface of a ball. We would be able to map
geographic coordinates to that ID space, if each peer knew its geographical position.
As this is not feasible, the authors propose a higher dimensional ID space. All nodes
are put into that space according to their distance in to some fixed landmark
nodes. If a node measures a short RTT] to a landmark, it will be positioned close to
that landmark, whereas it will be positioned far from a landmark if the measured
is large. A similar technique is used in Global Network Positioning INZOT] (see
Section . The rationale behind this scheme is that topologically close nodes in the
Internet are likely to have short [RT'Tk. Thus, these nodes are put in the same portion of
the coordinate space, and zigzag routes are avoided almost completely, resulting in lower
average path latency. However, due to that mapping, the coordinate space is no longer
uniformly populated, whereas content is still uniformly assigned to the coordinate space.
Therefore, some nodes must handle large zones with a lot of (key; value) pairs. This is
why load balancing techniques (see Section must be applied to reduce the load on
those nodes.

31

3. Structured P2P lookup protocols

i bucket
(distance 27.. 27*1-1)

i=5

i=4

10011 O

Distance [16..31] [1] [2..3] [4..7] [8..15]

Figure 3.6.: Kademlia sets up a binary tree.

A more uniform partitioning of the overlay is achieved with the following proposal. Nodes
receiving a JOIN request do not per se split their own zone, but compare the volume of
their zone with the volumes of adjacent zones. Then, the largest zone will be split, and
one half is handed to the new node. As a result, the partitions are more equal in volume.
However, zones are more often handled by peers with coordinates not inside the zone.
In order to achieve an even more uniform partitioning, we propose to forward the joIn
request up to maxhops times. Thereby, each peer compares the volume of its zone with
the volume of its neighbors and forwards the request to the largest zone. When a peer is
reached that is responsible for a zone larger than the zones of all of its neighbors, it splits
its own zone. Using this forwarding scheme, it is more likely that an extremely large
zone is reached and split. A similar approach is successfully used to assign leaf-nodes to
super-peers in a hierarchical DHT [ZDK07].

Finally, the authors of CAN propose caching and replicating techniques for solving the
problem of very popular keys (“hot spot” management). Among others, these techniques
are discussed in Section

3.1.3. Kademlia

Another protocol worth mentioning is Kademlia [MMO02]. So far, it is the only structured
P2P protocol that is applied in large-scale real-world applications, like BitTorrent [Cohl.

Overlay structure Kademlia sets up a binary tree, with the first branch above the
root as the most significant bit of the node. As shown in Figure [3.6] the branches of
the tree spread out until a single node is at each end of the tree. Thereby, the prefix of
the ID of each node corresponds to its position in the tree and the branches may have
different lengths. In contrast to Chord, the Kademlia protocol suggests to select random
m = 160 bit node IDs instead of hashing the IP addresses of the nodes.

In Kademlia, the exclusive or (XOR) function is used as the metric to determine the
distance A() between two points in the ID space. The XOR function is applied to

32

3.1. DHT-based protocols

both identifiers and its result is interpreted as an integer distance. Thus, nodes will be
considered to be “close” if their position in the binary tree is close.

Using the XOR function as distance metric offers several advantages. First, the function
is symmetrical and offers the triangle inequality A(x,y) & A(y,z) > A(z,z). More
important, XOR is unidirectional; therefore all lookups for the same key converge along
the same path. Thus, like in Chord, it is feasible to cache (key; value)-pairs along the
lookup path in order to reduce or even avoid hot spots.

Node state Kademlia does not divide its pointers to other nodes in neighbors and
shortcuts (fingers). Instead, each node n groups its pointers to other nodes according to
their distance to n in so called buckets. Like in Chord, the sizes of the intervals grow
exponentially with the distance to n, i.e., the i** interval stretches from 2=! to 2¢ — 1,
with 1 <17 < 160.

Thereby, each node may store several pointers in each bucket, whereas in Chord only
one deterministic pointer per interval is stored. FEach bucket is sorted by Time Last
Seen (TLS|) and can store up to x (IP address; port; ID;oqe)-triples. The size of the
buckets is chosen in such a way that it is very unlikely that all nodes fail within one hour.
Following measurements from the Gnutella network [SGG02], the authors of Kademlia
suggest using x = 20. Similar to Chord for small values of 7, the buckets will generally
be empty. That is why the authors of Kademlia suggest allocating buckets dynamically
as needed.

Scalable key location Kademlia implements an iterative lookup for IDs. The initiator
n of the lookup selects the (closest nodes to the queried key k£ from its buckets and
sends (3 parallel lookup requests to these nodes. The recipients also search their buckets
for the 3 closest peers to k and return the matching triples to node n. The initiator again
selects the (3 closest nodes from all results that have not yet been queried and sends the
lookup request to these nodes. This process is repeated until a node is contacted that
has stored a value for k, or all nodes close to k£ have been queried without a query hit.
Thereby, if all buckets are up-to-date, the distance to the target will be roughly halved
with each step. In contrast to that, in Chord, the distance is at least halved in each step
and the resulting lookup path length is slightly shorter. However, Chord is limited to
using deterministic fingers, whereas Kademlia is more flexible in selecting the nodes that
are contacted in the next step. Thus, routes can be selected based on latency. Using
parallel queries (see Section timeout delays from failed nodes can be avoided.
This results in noticeably shorter lookup delays despite slightly longer lookup paths.
In Section an improvement to Chord is presented that allows storing several
fingers per finger interval, thereby enabling parallel queries and Proximity Neighbor
Selection (PNS)).

Stabilization and Bucket refreshes Stabilizing the overlay and refreshing the buckets
coheres in Kademlia, as both neighbors and shortcuts are stored in the same logical
structure. In contrast to that, neighbors and fingers in Chord are strictly separated.
Thus, the frequency of the active stabilization of neighbors and fingers might be tuned

33

3. Structured P2P lookup protocols

Incoming message
from <node>

<node>
already
in bucket?

Yes Move <node>
to tail of list

No

Number of entries
in bucket?

=K
(«=>bucket is full)

Insert <node>
at tail of list

Ping the least-recently
seen node (head of list)

Yes

Discard <node>
-> resistance to DoS attacks

Delete least-recently seen node from bucket.
Insert <node> at tail of list.

Figure 3.7.: Kademlia’s buckets are updated by incoming messages.

independently of each other. Neighbors that assure a correct routing are updated more
often than fingers that provide fast routing.

Kademlia refreshes its buckets in a passive manner. That is why no separation of pointers
is necessary. Every message exchanged between two nodes includes the node ID of the
sender. Thus, the recipient can either reset the of the sender or add the sender
to one of its bucket. This is feasible, as routing is symmetrical in Kademlia, and nodes
receive lookups from precisely the same distribution of nodes contained in their own
routing tables. Moreover, due to the iterative routing process nodes learn about various
live nodes from the whole key space. In contrast to that, nodes in Chord receive only
feedback from their fingers due to the recursive routing. Also, neighbors in Chord are
actively verified by the stabilization algorithm.

If one of the buckets of node n is not refreshed by receiving a message for one hour,
node n will pick a random ID in the range of the bucket and perform a lookup for that
ID, thereby refreshing the bucket. If a node n; sends a to another node ny, but
no response is received from no, for example, due to packet loss or the failure of ns, the
lookup will not be affected, as it is unlikely that all § parallel requests are not answered.
However, if ny fails to respond to 5 in a row, node no will be considered as stale.
Figure depicts Kademlia’s bucket refresh algorithm: New live nodes replace the least-
recently seen entry in the corresponding bucket. However, live nodes are never removed
from the buckets as measurements showed that the probability of a node remaining
online for another hour increases with the current uptime of that node [SGGO03, [Sch05].
Additionally, this policy provides a certain resistance to Denial-of-Service attacks.
An attacker flooding the system with new nodes is not able to flush the routing states
of the nodes as existing live entries are not removed from the buckets.

34

3.1. DHT-based protocols

Improvements Similar to other publications the authors of Kademlia propose several
improvements to their basic routing algorithm. First, the efficiency of the lookup might
be increased by introducing a replacement cache for full buckets. If a node learns about
another node, but the corresponding bucket is full, the new node will be stored in the
cache. The cache will be used to immediately fill up the bucket if another node in that
bucket is removed. Thereby, the least recently seen entry of the cache is moved to the
bucket.

Second, the absence of an answer to a message must not imply a failed node. Instead,
the UDP packet could either be lost or the message is congested. That is why, similarly
to TCP, this contact should not be used for exponentially increasing backoff intervals.
This introduces no significant restraint, as Kademlia is flexible in selecting the lookup
paths. Thus, the impact of packet loss could be reduced. If there is still no answer
after 5 [RPCE, the contact will be considered as stale. However, the reason for the failure
could be a temporarily failure of the own network connection. In that case, valuable
routing information might be lost if the node would blindly remove all of its pointers as
no answers are received from them. Thus, pointers should merely be flagged stale if the
replacement cache is empty. Then, up to s entries per bucket are preserved and might
be re-used if the connection is restored.

Finally, the authors suggest to piggy-back configuration information as well as ping
request on other messages, thus reducing the overhead of the protocol.

3.1.4. OneHop

Another class of P2P protocols tries to resolve lookups with a single hop. Therefore,
each node must store the complete system membership. This requirement is no problem
for nowadays personal computers. Assuming a size of 50 Byte per entry in the routing
table (160 bit ID, 128 bit IPv6 address, 16 bit port number, 64 bit counter, ...),
the total routing state in a network with 1 million nodes is around 50 MB.

However, all changes in the overlay must be broadcasted to all nodes in system. The main
task of these protocols is to minimize the increased communication costs. Referring to a
study of Gnutella and Napster [SGG02], we assume a mean session time of E[T,,] = 1 h.
Thus, a system with 10% nodes shows around 2-10% membership changes per hour, in
other words, a churn rate of 2 events per peer and hour.

Similar to other P2P protocols, adjacent nodes monitor each other by sending periodic
keep-alive messages. If no message is received from a neighbor within a time-out period,
it will be assumed that the neighbor has failed and take appropriate actions. In a one
hop protocol, the node must inform all other live nodes by sending a broadcast.

Overlay structure and scalable key location One of the protocols, which apply such
a routing strategy, is OneHop [GLRO04]. In order to reduce the overhead introduced by
the broadcast, it uses a hierarchical approach to forward a message to each node in the
system. OneHop is similar to Chord. Nodes are arranged in a 1-dimensional ring-shaped
ID space with the successor of a key k being responsible for k. OneHop also adopts
the concept of neighbors and fingers. Neighbors are required to precisely determine
which interval a node is responsible for, whereas fingers provide fast lookups. Storing

35

3. Structured P2P lookup protocols

Figure 3.8.: OneHop applies a hierarchical event propagation scheme.

the complete system membership is comparable with maintaining a finger pointer to all
live nodes. Assuming that all pointers are up-to-date, all queries can be resolved on the
first attempt. Otherwise, queries can still be rerouted as long as the neighbor pointers
are correct. Thus, maintaining local information is more important than updating finger
entries. Yet, a fast finger update is necessary for complying with the intention of a one
hop query resolution.

Stabilization OneHop tries to broadcast membership changes in a hierarchical way that
has low delay, yet still reasonable bandwidth. Therefore, the ring is divided in intervals
of equal size referred to as slices, and each slice is subdivided in several intervals, called
units. We use the symbol u for the total number of units.

The logical mid-point of the successor of a slice or unit is selected as slice-leader (OJ)
or unit-leader (A), respectively. Due to the deterministic partitioning of the ID space
and the deterministic selection of interval leaders, each node is able to estimate its
corresponding slice and unit leader.

The way events are propagated with OneHop is shown in Figure|3.8] The interval borders
of slices and units are marked by dashed and dotted lines, respectively. In the figure node
ng fails, and its failure is detected by its neighbor node n;. Then, node n, initiates a
broadcast by notifying the corresponding slice leader @. In order to reduce the amount
of messages, slices leaders aggregate events from their own slice for some seconds before
reporting the changes to all other slice leaders @. Slice leaders also aggregate incoming
messages from other slices for some seconds before forwarding the aggregated message
to all unit leaders in their slice ®. Finally, the message is piggybacked on keep-alive
messages starting from the unit leaders to the boundaries of the units @.

However, an additional stabilization mechanism must be implemented in order to detect
errors in the membership tables due to lost event notifications. The accumulation of such
errors would lead to a steady degradation of the OneHop lookup success rate. Thus, if
any node detects a wrong entry during any communication attempt, it will initiate a
standard propagation of that change, as described above.

36

3.1. DHT-based protocols

Improvements In the bootstrapping process, a new node copies the current system
membership information from any other node. However, in large networks the size of
this information is several megabytes, thus the download takes several minutes for nodes
with low bandwidth (e.g., mobile nodes). In order to be able to immediately participate
in the network, we suggest using another node as a relay in the meantime.

The authors of OneHop also suggest two improvements to their protocol. First, they
try to prevent nodes with low resources from becoming slice or unit leaders, as nodes
in higher levels must be capable of handling more traffic than other nodes. Therefore,
they suggest keeping supernodes in an extra ring and selecting slice (and unit) leaders
from that subset of most capable nodes. However, by doing so additional overhead for
maintaining the second ring of supernodes is required.

Second, they introduce a two hop lookup, where only a fraction of the total routing state
is stored at each node. Nodes maintain information about all nodes in the same slice,
but keep only one finger to any other slice. Lookups for keys in the same slice can still be
answered by one hop. Lookups for other keys are sent to the appropriate slice using the
corresponding finger entry. This node is aware of all nodes in its slice and can forward
the request to the successor of the key. Therefore, lookups will be resolved in at most
two hops if all pointers are up-to-date.

Summary FEvents are aggregated and broadcasted along a three-level hierarchy, thereby
striking a balance between large delays in propagation and large load at the nodes in the
utmost level. Also, there is no redundancy in communications, as the hierarchy provides
a well-defined dissemination tree. Yet, an additional stabilization is required to repair
erroneous membership information.

The authors show that the OneHop protocol works well in failure-free scenarios, i.e., there
is no packet loss, no message delay and no failure of slice and unit leaders. However,
no analysis of the influence of high churn rates or lost broadcast messages is provided.
We assume that the protocol is not suited for such scenarios. Thus, we recommend only
applying such a one hop scheme in scenarios with largely static nodes. The scheme might
also be applied to hierarchical protocols, with the most capable and static nodes running
the OneHop protocol and other nodes being attached to these nodes as leafnodes.
Another one hop routing protocol DIHT is presented in [MAOG|. Its main difference
to OneHop is the way events are propagated. Messages are distributed by recursively
splitting the ID space in several intervals and forwarding the event to the first node in each
interval (see Figure [3.9). The recursion is repeated until each node received a message.
This procedure is similar to the way a snapshot of the system may be created [BKHO7].
The authors of D1HT state that the bandwidth requirement of D1H'T nodes is less than
OneHop’s slice /units leaders and ordinary nodes, and that their protocol can be applied
to P2P systems with reasonable churn rates.

37

3. Structured P2P lookup protocols

- B ~<TTL=2
R ULt S e TTL=1
N N e e -
¥ =0y ¥ ¥ %~ TTL=04
)

J

Figure 3.9.: D1IHT applies a recursive event propagation.

3.1.5. Pastry, Tapestry

Pastry Pastry [RDO1] arranges participating peers on a circular m-bit ID space with
base 2, i.e., an ID consists of = digits. Nodes maintain three different kinds of neighbors.
The routing table is a matrix with [5*] rows and 2° — 1 columns. The node in cell (r,¢)
shares the first r digits with the local node, but differs in the remaining digits. The
routing table is structured as a Plaxton tree. A lookup for a key k is forwarded to the
node with the longest matching prefix with k. Thereby, the table is used to traverse
large hops to peers with distant IDs, equivalent to fingers in Chord. Neighbors with
small physical delay are preferred in the routing tables, thus reducing the overall lookup
latency (see in Section [6.2.1.2).

The leaf set is a list of predecessors and successors on the circular 1D space, and is used
to route a message to the correct node in the final short hops of the lookup. Finally,
the neighborhood set is a collection of the physically closest peers. However, this set is
usually not used for routing. Using the routing tables and leaf sets, the average path
length of Pastry is in O(log, NV).

Tapestry Tapestry [ZHST04] is very similar to Pastry, and differs mainly in its mapping
of keys to nodes. Here the node with the maximum number of matching prefix digits
with a key is responsible for the key. Furthermore, each entry in the routing table may
contain several nodes. The entry with the smallest network delay is used for routing
(primary neighbor); other entries are stored as backup. The primary neighbor is pinged
every tsap seconds. If several successive pings fail it will be replaced by the next entry
in the list. A nearest neighbor algorithm is used to learn about new neighbors with
short latencies (see in Section [6.2.1.2). Moreover, Tapestry does not maintain a
leaf set and neighborhood set. This is why only a Plaxton tree, but no ring structure is
maintained. The expected number of routing hops in Tapestry is log,s N.

3.2. Replication, Republishing, and Caching

In DHTs, (key;value)-pairs are stored at deterministic nodes. Lookups for keys are
also routed toward these nodes. However, due to node failures and new nodes join-
ing the overlay pairs get lost or responsibilities change, respectively. Consequently, the
(key; value)-pair is still stored in the DHT, but lookups for that key terminate at the node
currently responsible for the key, making additional algorithms necessary for increasing
the content availability. Most of these algorithms are implemented on top of the DHT,
i.e., by the application itself. We distinguish between three different types of algorithms:
replication, republish and caching.

38

3.2. Replication, Republishing, and Caching

Replication techniques store multiple copies of the (key; value)-pair. Thus, the probability
is increased that any copy of a pair is accessed although responsibilities for the key k
change. Assume a Chord network where node n is responsible for £ and node s is the
successor of node n. If n fails, node s will be the new successor of k. That is why
the authors of Chord suggest exploiting the successor list £ and replicating content on
R peers succeeding k (R < L). We call those peers replication group R of k. They
also state, that at least one replica is available in the case of a simultaneous failure
of half of the nodes if R > O(log, N). Additionally, Chord nodes keep track of their
successors. Thus, they may inform the higher layer application that changes occurred
and new replicas should be propagated. Similarly, other DHTs might store replicas on
adjacent peers.

We suggest another variant of replication where nodes in R are responsible for updating
the replicas. Two situations may occur. First, one node in R fails and the node succeeding
R becomes part of the group. Then, this peer must get a replica from any other peer
in R. Second, a new node n; joins and becomes part of R. Then, the last node in R
(n2) is no longer part of R. In this situation, either node n; tries to obtain a replica
from any node in R, or ny moves its replica to ny. In this context, each node should be
aware of all replication groups it is a member of. Storing a symmetrical list of neighbors
(see Section [6.1.2) would provide Chord nodes with enough information to determine
all nodes in the groups. As the information about close neighbors is more accurate,
we recommend to set L noticeably larger than R, e.g., L = 2R — 1 as we did in our
simulations.

Other replication algorithms store copies on other deterministic peers. The peers can
be determined by, e.g., using R different hash functions (see Section or by adding
integer values of a function f(i) (i € [1..R]) to the key k. A simple function f(i) should
be selected to reduce computational overhead, e.g., f(i) = c¢-(i — 1). The constant ¢
could be any integer. Setting ¢ = N/r evenly distributes replicas on the ID space.
Replicating data on multiple nodes provides additional benefits. The replicas might be
queried in parallel, thus the content availability as well as the mean search duration
are improved. If large values are stored in the DHT, erasure coding will help to reduce
the overhead introduced by replication. Hereby, content is coded into R fragments and
each fragment is stored at one node of the replication group. Finally, any R’ (R’ < R)
fragments are sufficient to recover the original value.

In Kademlia, (key; value)-pairs are replicated among the R closest nodes to the key, with
R =0, and b being the size of Kademlia’s buckets. Thereby, monitoring the replication
group is more complex than in Chord. That is why Kademlia implements a more band-
width consuming update. Nodes in R periodically republish the corresponding pair to
the R closest nodes of the key to ensure high content availability. However, if a node in
R receives such a pair, it will skip its own republish event as other nodes in R are also
expected to have received this message. When publishing a (key; value)-pair, a times-
tamp is assigned to it. If the timestamp is older than a specified time (e.g., 24 h) the pair
will be deleted to limit stale index information in the DHT. Thus, the content provider
must additionally republish the pair before its expiration in order to keep it alive.
Caching also improves the content availability. However, its main purposes are reducing
the load on nodes that are responsible for a popular key, and reducing the search delay

39

3. Structured P2P lookup protocols

for common keys. In most proposals, content is cached along the lookup path. Kademlia
implements a different solution. After each successful lookup, the requesting peer stores
the (key;value)-pair at the last hop of the lookup path, which did not return the value.
As lookup paths converge towards the end of the lookup, future queries are likely to hit
cached entries. The authors of Kademlia suggest setting the expiration time of cached
entries exponentially inversely proportional to the number of hops between the caching
node and the node whose ID is closest to the key.

In Chord we can exploit the fact that nodes know their neighbors on the ring. Thus,
content may be actively cached on nodes that are preceding a key k. These nodes are
likely to be hit in queries and the successor of k is released from the queries. Instead of
maintaining R replicas on succeeding nodes and caching the pairs on C preceding nodes,
we suggest to keep C' > R replicas on preceding nodes only.

3.3. Load balancing

Load balancing algorithms try to balance storage as well as traffic load more evenly
among the participating nodes.

Zipf-like distributed keywords Zipf formulated an empirical law that was originally
observed in a linguistic context [Zip32]. It states that a few occurrences are very common,
whereas a large number of instances are extremely rare. If items are ordered from most
popular to least popular, the position in this list will be called the rank of the occurrence.
Zipf’s law also states that the popularity of an item tends to be inversely proportional to
its rank 4, i.e., P(i) = ci~! for some positive constant c. This kind of distribution is also
called power-law or Pareto, yet it will be referred to as Zipf if we plot the occurrence’s
rank against its frequency [Ada00].

Researchers found Zipf-like distributions in many kinds of phenomena, amongst others,
in search keywords in P2P networks [KLVWO04]|. Also, the popularity distribution for
files on Web servers has been shown to commonly follow Zipt’s law, with some files being
extremely popular while most files receiving relatively few requests [BC98|. Furthermore,
last and first names, as well as town and street names, follow a Zipf-like distribution.
Thereby, we observe that ranks and common keywords do not change significantly over
time. The most popular first names, for example, change within a few years, whereas
the most common last names hardly change at all.

In order to obtain realistic input for our simulations, we extracted data from a German
phone directory available on CD [Top|. It contains about 38 million entries consisting of
seven attributes: name, street, zip code, city, type (e.g., cellular phone, fax), prefix, and
telephone number. We separated names into first name and last name using the first
blank as separator. Afterward, we removed incomplete entries resulting in about 27.5
million reasonable entries.

We start with an evaluation of the frequency distribution of the keywords. Figure [3.10
confirms that German first names, last names, and town names follow a Zipf-like distri-
bution. Other researchers found similar results for other phone directories (e.g. [EJ92]).

40

3.3. Load balancing

>
o
g 102 o OBgon
o F ©-- Last names N R
101 £ | - First names AA%
F | 3 TOWwWn names A
100 T T T T
1 10 100 1000 10000

Rank

Figure 3.10.: Rank-frequency plot for German names and sample IDs.

I

Figure 3.11.: Binomial lookup tree (left) and balanced lookup tree (right)

Load Balancing In the context of load balancing we need to consider two aspects:
storage load and traffic load. Without any load balancing mechanisms some nodes in a
DHT with N nodes and K keys will be responsible for up to (1+€)% keys (¢ = O(log, N))
IKLL797, SMK™01al, even if the keys are distributed uniformly in the ID space.
However, the more nodes participate in the network, the smoother the distribution of
keys over all nodes will be. Therefore, the probability that a node has to store a notice-
able larger percentage of content or content descriptions is reduced. This is important,
as being responsible for more keys implies having to resolve more lookups. In order to
increase the number of nodes in the system, many load balancing approaches introduce
virtual nodes. Virtual nodes are parallel and independent instances of the protocol run-
ning on a single machine. Thereby, the imbalance mentioned above will be able to be
reduced to almost £ keys per node (with e — 0) if each physical node runs O(log, N)
virtual nodes.

A non-uniform distribution of keys due to the use of locality-preserving hash functions
increases the need for such algorithms. In particular, mapping keywords linearly from
an ASCII or Unicode character set to the ID space leads to vast gaps since keywords
like names in a telephone book usually do not start with special characters. Caching
(key; value)-pairs along the lookup path might alleviate such hot spots on single nodes.
Amongst others, [ZH05, RLST03, RPWO04, [KR04| propose efficient storage load balancing
mechanisms.

However, many approaches neglect the resulting traffic load distribution. Protocols like
Chord, which are based on a binomial lookup tree, have an intrinsic imbalance caused
by their recursive structure [CHHCO6]. Figure visualizes the difference between
balanced and binomial lookup trees. The root of the tree is the node n that is looked up

41

3. Structured P2P lookup protocols

and the leaves are all other nodes that could initiate a query for a key stored on node
n. Each edge between two levels represents one routing hop, i.e., the longer a branch
the more hops a query has to take. In an ideal balanced lookup tree, all branches have
the same height and therefore all nodes on a certain level receive the same number of
lookups.

In contrast to this, some lookups in Chord reach the key with a single hop, whereas other
lookups need to travel up to O(log, N) hops. Also, some nodes in level 1 will be passed
by many routing paths whereas others are not passed by queries. Regarding the lookup
trees for all nodes at the same time, each node will be frequently used on the lookup
path of some queries as long as all nodes are distributed uniformly in the ID space. In
this case, the overall lookup traffic is equally distributed to all nodes. On the contrary, if
nodes are shifted to ID ranges with a high key concentration, this overall balance will no
longer be given. Fingers in Chord point to nodes in exponentially increasing distances.
As a consequence, fingers will more often point to nodes responsible for a huge (but
almost empty) range of identifiers, than to nodes hosting a small part of the ID space.
More fingers pointing to a node equals being part of more lookup paths, resulting in
higher traffic load.

The solution is constructing balanced lookup trees to avoid such hotspots. Examples are
the DHT protocol SCALLOP [CHHCO6] or the non-DHT approach Skip Graphs [AS03].

3.4. Non-DHT protocols

Finally, we present structured P2P protocols not based on DHTs.

3.4.1. Skip Graphs

Skip Graphs are based on distributed skip lists. The main advantages compared to DHTs
are, that they establish a balanced lookup tree and give tree functionality instead of only
hash table functionality.

A skip list [Pug90] is a data structure that is based on linked lists with probabilistic
shortcuts. The lowest Ly is a simple sorted linked list of all elements. Each element
in a certain level L; appears in the next higher level L; ., with a predefined probability
p, thus creating a randomized balanced tree (see Figure . Thereby, lists at higher
levels act as shortcuts, as they skip parts of underlying lists.

All searches for a key k start at the root element of the tree. Each level is traversed
horizontally until the last element in it being less or equal to the target k has been
reached. If the element is equal to k, the sought-after element has been found. If the
last element that is less than the target (PREDECESSOR(K)) is found, the search will be
handed over to the next lower list, and the procedure will be repeated. On average, there
are log,,, N lists, 1/p hops in each linked list, and a total number of 1/p- log,/, N hops to
resolve a query.

Due to this routing strategy, skip lists establish a balanced lookup tree (Figure m
(right)), resulting in a more evenly distributed load. However, the top elements in
this data structure are hotspots and Single Point of Failures (SPoFf), because they are

42

3.4. Non-DH'T protocols

@) Level L,
@ D) Level L,
), @D @9-G?) Level L,
| Levell,

Figure 3.12.: A skip list is a linked list with probabilistic shortcuts.

traversed in almost all lookups. Also, the structure might easily break apart if multiple
nodes fail. Therefore, skip lists by themselves are not suited for a distributed system.
Skip Graphs [AS03| set up multiple skip lists with each node participating in a list in all
levels. Therefore, each node is assigned with a membership vector m(x). The lowest level
Ly is a doubly-linked list of all elements. In higher levels L; all nodes that have vectors
with a common prefix of ¢ digits belong to the same doubly-linked list. In Figure [3.13]
a sample skip graph with 8 nodes is shown. There are two lists in level L, with prefixes
0 and 1, and four lists in level Ly with prefixes 00, 01, 10 and 11. Node 10 is the head
element of the skip list encircled with the dashed line (prefix 00), nodes 21 and 57 are
the head elements of the skip list marked with the dotted shading (prefix 10), and the
other two skip lists are not marked.

common
skip lists prefix

________ A
01

@ (57 10 Level Lo

--- ' Level L1

membership
vectors

Figure 3.13.: Skip graphs set up multiple skip lists.

Searching skip graphs is similar to searching skip lists with the same average lookup path
length of O(log, N). The doubly-linked lists allow for horizontally traversing the lists in
both directions. On average, each node must store O(log, N) neighbors. By maintaining
multiple lists at each level, skip graphs can handle a simultaneous failure of an O(logl2 =)
fraction of the nodes in the system. Moreover, skip graphs eliminate the hotspot and

of skip lists, as there are many nodes in all levels.

43

3. Structured P2P lookup protocols

Skip graphs also support complex queries such as range queries. Therefore, the first node
in the range is searched. The query is consequently passed from node to node in level L
until the last node in the range is reached.

Comparable to other structured overlay networks, nodes join and leave a skip graph with
O(log, N) messages. Thereby, several constraints must be satisfied that define the order
of the elements in the lists and how the lists at different levels are related to each other.
Additionally, a very complex repair algorithm is necessary that heals disruptions due to
failed peers and thus prevents accumulating errors. The authors state that skip graphs
are highly resilient and tolerate a large fraction of failed nodes, but they also admit that
the current repair mechanisms are not very efficient and may not repair a defective skip
graph. However, with uncorrelated and independent node failures, Skip Graphs behave
comparably to other peer-to-peer systems.

3.4.2. SkipNet

Another non-DHT protocol is SkipNet [HIST03|. Fundamentally, SkipNet applies the
same basic data structure as Skip Graphs, i.e., distributed skip lists (with p = 0.5); how-
ever, lists are singly-linked and circular. Thus, each node in SkipNet has approximately
2log, N neighbors. Using the neighbor at level i, roughly 2! nodes may be skipped on
average, resulting in a lookup path length of O(log, N).

In SkipNet the authors emphasize content and path locality that is not feasible in pure
DHTs. Like in DHTs, hashes of node names (e.g., IP address or host name) and con-
tent identifiers are mapped to the numeric ID space. Moreover, SkipNet employs an
additional string name ID space, where node names and content identifier strings are
directly mapped into. Thereby, content locality can be achieved by using the node name
as prefix for content names. As an example, to store a document ABC.txt on the node
gerald.tum.de, naming it de.tum.gerald/ABC. txt is sufficient. Note that by reversing
the host name, path locality is given for all nodes within an organization (here tum.de).
As a result, SkipNet will “gracefully” partition into two fully functional segments when
one organization loses connectivity to the rest of the network. Furthermore, using the
string name ID space, range queries are supported.

3.5. Conclusion

In this section we presented various structured P2P protocols. These protocols specify
the respective overlay structure, its maintenance, and methods for efficient key location.
Thereby, the stabilization of the structure is most crucial, as only valid neighbor informa-
tion assures that content is stored and queried at the correct node. In addition, providing
short routes (in terms of number of hops and transmission time) is very important, as
finding the responsible peer for a certain key is required in several algorithms. These
algorithms include inserting, searching, and replicating content, as well as joining new
nodes, updating fingers, and repairing disrupted structures.

Table summarizes the presented structured P2P protocols. Although the protocols
apply various different overlay structures, like rings or trees, they perform similarly.

44

3.5. Conclusion

Most protocols are able to lookup keys in O(log N) and peers maintain a routing state
of around O(log N). Also, the number of signaling messages required for node joins and
correct leaves scales with the number of live nodes N. Protocols like OneHop are an
exception to that rule. They trade scalable routing tables against a complete routing
state, thus being able to resolve lookups in 1-2 hops.

Another difference is the used distance metric. Protocols like Chord and CAN forward
a message for key k£ to the node n with the smallest Euclidean distance A to key k
(A = k —n). In contrast to that, protocols like Kademlia and Pastry establish routes
that diminish the Hamming distance, i.e., the number of ones in k & n. Anyhow, they
show similar routing performance. Further comparisons of structured P2P protocols can
be found in [LCPT05, Li06, RMO06, MKL™02, [EA05].

In the following, we will concentrate on Chord, as its simple ring structure can be used
to intuitively explain the basic functionalities of the presented algorithms and improve-
ments. Moreover, the ring geometry is highly flexible and its performance in terms of
lookup path length, search success, and signaling overhead is similar to other geome-
tries. The simple and clear structure, in particular, shows excellent resilience. In their
research on the impact of DHT routing geometry on resilience and proximity, the authors
of |[GGGTO03| revise their initial inclination to favor more complicate structures and ask,
“Why not use ring geometries?” Nonetheless, additional improvements like, proximity
based routing and improved stabilization mechanisms, should be applied to the basic
protocols. We present related work and introduce novel maintenance and lookup algo-
rithms in Chapter [6] Note that all results and improvements presented in this thesis are
compatible with the Chord protocol. However, most results are also valid for DHTs in
general and many algorithms may easily be translated to other overlay protocols.

45

3. Structured P2P lookup protocols

Protocol Chord CAN Kademlia Pastry, OneHop SkipNet,
Tapestry SkipGraphs
Structure 1-dimensional d-dimensional ID Binary tree Plaxton-style Fully meshed Skip graphs/ lists
circular ID space space global mesh ring
network
Mapping Successor of Owner of zone Node with closest Node with Successor of Successor of
key k containing k ID (XOR metric) numerically key k key k
closest ID
Distance Clockwise numeric Number of bits in Numeric value of Height of smallest Numeric distance Numeric distance
distance on the ring which the IDs differ = the XOR of the IDs common subtree
System N N, d N, bucket size k N, base b of N, total number N, p
parameters chosen identifier of units u
Node state O(logy N) 2d O(logy N) blog, N (+b) N O(log./, V)
neighbors + m
fingers
Mean lookup | !/2logs N +1 dN/d O(log, N) O(log, N) 1 1/plog,, N
path length
Peers (logy N)? 2d O(logy N) log N W O(log./, N)
join/leave
Stabilization Periodically ping Send keep-alive, Exploit existing Periodically ping Hierarchical Periodically ping
successor, active split and takeover traffic, active neighbors broadcast neighbors, check

finger update

zones

refresh as fall-back

Table 3.1.: Comparison of structured P2P protocols

constraints

46

CHAPTER 4

Simulation models and environment

Simulation, emulation and analytical approaches are the main methods in the process
of developing and benchmarking new networking protocols and applications. A purely
analytical approach is often not feasible, because the applied models are very complex,
the scenarios are too large, the behavior is influenced by many parameters, and many
random events are decisive issues. Especially in P2P applications, where an arbitrary
large number of users may participate in the network, simulation is required to evaluate
the performance and scalability of the protocol and to observe its correct behavior.
Simulations are also used to evaluate the behavior of an application in uncommon or
even undesirable situations, like the functionality of an ad-hoc network which is used
for coordinating an action force after a natural disaster or the simultaneous failure of
many peers participating in a P2P network. We believe that discrete event simulation is
a powerful tool to gain insight into complex processes at the desired level of abstraction.
In order to achieve realistic results, the models applied to the simulation must reflect the
real world as close as possible. However, the greater the level of detail, the more complex
and resource consuming the simulation gets. Due to limited processing power, memory
and available time, sensible spending of limited resources has to be performed.

This chapter investigates different possibilities for modeling user behavior, followed by a
detailed look at the network layer. We compare the most commonly-used network models
and present a very efficient model for applying real-world network transmission times in
large scale simulations. Finally, we introduce our simulation environment consisting of a
traffic generator, the actual simulator, and a Graphical User Interface (GUI).

4.1. Modeling the user behavior

The lifetime of a node consists of one or more sessions, in which the node is participat-
ing in the network. FEach session can be divided into active parts, where searches are
performed, and passive parts. A session starts with a join event, and ends either with a

47

4. Simulation models and environment

Status
T —
LEAVE SEARCH search JOIN
Search |—|
Online y .
Offline L—¥ | Time
~—T ¢ —|—~— Session time T, —
MTBJ

Figure 4.1.: A node’s lifetime consists of one or more sessions.

graceful leave or a node failure (see Figure [1.1). After nodes have finished their session
they will stay offline for a certain period before joining the overlay again.

To be able to provide an efficient proactive routing, all routing tables have to be updated
regularly. Each change in the overlay topology leads to erroneous entries in fixed routing
tables. A node that joins the network, for example, has to be announced to all of its new
neighbors in the Chord ring. Additionally, finger tables might provide a more efficient
routing if the new node was inserted into them. Nodes leaving the network have to send
notification messages to all of their neighbors, whereas failed peers have to be detected
by their former neighbors, which in turn have to make sure, that all outdated references
are removed. FEach node causes its new neighbors on the ring to update their successor
and predecessor lists when it joins the network, as well when it leaves or fails a certain
time later. Thus, in each session a node sets off two events that change the overlay
topology.

Churn is defined as the number of changes within a certain unit of time, e.g., 1 h. Usually,
it is modeled by a mean session time E[7,,] plus either a join rate A or a mean offline
time E[T,g|. Thereby, T, and Tog are random variables that describe the duration of
the online and offline periods, respectively. In the following paragraphs we present and
discuss both models.

Session time E[T,,,] and Arrival rate A\ In the first model, a global join (arrival) rate
A and a global leave (death) rate p are defined. These rates are usually modeled by
Poisson processes, and express the average number of arrivals and leaves during a unit

of time, or:
number of joins

join rate rjoi, = (4.1)

time
Then, according to Little’s Law, the long-term average size of the overlay N is equal to
the long-term average join rate A\ multiplied by the long-term average session duration
E[T,.], or:

N = \- E[T,.]. (4.2)

The network size N can either be risen by increasing the join rate A or by extending the
users’ session times. Yet, this model considers churn in relation to the whole network. In
a tiny network a churn rate of, e.g., 10 joins per minute might be a serious challenge for
the protocol, whereas the same join rate is almost not noticeable in very large overlays.
That is why we define the churn rate by using the following model.

48

4.1. Modeling the user behavior

Mean online E[T,,] and offline E[T,4] times Here a mean online time E[T,,] and
a mean offline time E[T.4] are specified. If we know the total number of nodes that
installed the P2P client Ni..1, we will be able to calculate the average size of the overlay:

E[T,.] E[T,

E[N] = Niota - = Nt - —zonl
V] = Niota E[T..]] + E[T.q] ™ MTBJ

(4.3)

with Mean Time Between two Joins (MTBJ) being the sum of the mean online and
offline times.

In this model, the overlay size N is risen by increasing the mean online time E[T,,]
or reducing the mean offline time E[T,g|, and vice versa. Also, the rate is specified in
relation to the behavior of the peers. Thus, the stress on nodes is independent of the
network size N, which is why we use this second model in our simulations. The churn
rate per node is defined as the average number of join and leave events per time interval
per node . Thereby, each peer sets off two events in the period between two join
events (see Figure [L.1). This results in a churn rate of:

number of events 2 B 2
time- Nyotw ~ MTBJ E[T,,] + B[T.g]

churn rate = (4.4)
If, in a sample network, nodes are participating on average once a day, i.e., MTBJ =1d,
the churn rate per node will be 2/24 h=!. TIf there are one million different users (Nyota1 =
10°), the overall join rate A will be 10° d~', or in other words, about 41,667 nodes join
per hour. If every node stays online for an average of two hours, i.e., E[T,,] = 2 h, the
average ring size will be about 83,333 nodes (4.3)).

The availability of a node is often defined as its mean session time E[T,,| (or Mean Time
To Leave MTTL) divided by its MT B.J, or equivalently by the sum of its session times
divided by its lifetime:

MTTL E[T,.] T
MTBJ E[T,,] +E[T.g] lifetime’

availability = (4.5)
In Chapter we show that the network stability is mainly influenced by the mean
session time of the nodes. Longer session times mean lower churn rates, thus less main-
tenance traffic is required.

Distribution of T,, and T, Many measurements in various deployed P2P systems were
realized in the last years. Some results are summarized in Table 1 in [RGREKO3|. In these
studies, median session times in the order of tens of minutes, and a median availability of
30% were observed [BSV03]. From these results, different models of the node session time
are specified. Online and offline times are usually modeled by a Negative Exponential
Distribution (NED), with means E[T,,] and E[T,g|, respectively. Then, its Cumulative
Distribution Function is:

F(t) =1— ¢ ™ol (4.6)

The exponential distribution is memoryless, i.e., the time at which a node fails is not
correlated to its session duration. Thus, distinguishing nodes with long session time from

49

4. Simulation models and environment

other nodes is difficult. In [MCVRO03| the following rule to identify the 10% of nodes
with the longest session time is presented: If the regarding session time of a live node
is larger than %E[Ton] log 10, it starts to accept extra roles in the system’s routing and
maintenance.

In contrast to that, some researchers [BC98| I(CL99| state that a Weibull distribution fits
the offline times they measured in Web traffic better. Similar to the results, [Sch05]
shows, that the Weibull distribution is a more accurate approximation of session times
in P2P overlays. The Weibull distribution has a memory effect, i.e., the longer the
current live time of a node, the higher the probability that it will stay online for another
time interval. This also reflects the evaluations performed in [MMO02, SGG02]. In P2P
overlays this effect can be exploited to assign extra roles to peers with long online times.
Other researchers suggest using a power-law distribution [KSS05, [TJ07| that has an even
stronger memory effect.

In our simulations, we assign the same functionality to all peers, and we do not set up
a hierarchical overlay. Thus, we are not interested in estimating the time a peer will
stay online. That is why we prefer the first model with exponentially distributed session
times due to its simplicity.

Distribution of search rate Finally, the time between two queries is exponentially

distributed, i.e., searches follow a Poisson model with a rate of ﬁ This is a common

approach used in telecommunication systems [Sch05, [Sri01]. The distribution of the
search duration in structured P2P overlays will be evaluated in Chapter [5]

4.2. Modeling transmission time in overlay
simulations

Modeling the network is a mandatory part for simulating networking applications. In
many simulations, it is sufficient to use a model that adds a constant delay to all packets.
In some cases a transmission delay may even be neglected at all. In our research on
applying P2P mechanisms to Voice-over-IP solutions (Section[7)), we try to achieve
a certain Quality of Service by, among other methods, reducing the call setup
delay. This delay is defined as the time interval between entering the last dialed digit and
receiving the ringback [ES00]. In systems this delay consists of several Transmission
Times) to contact the proxy or redirect server and receive its answer, the time to
locate the user in the database and small computation delays. In the P2P variant, the
user database is distributed among the participating peers. Thus, we can reduce the call
setup delay by accelerating lookups in the distributed database.

We use a DH'T to store different kinds of resources in the network. For example, a resource
might be a pair (nickname; IP:port). If someone wants to contact another user with a
known nickname, the network will be queried for the respective resource, resulting in the
IP address the application must contact. In DHTSs, each lookup is routed through
the network passing several other peers. Each hop of this route adds an additional delay
to the overall lookup time. The DHT protocol is responsible for the number of hops

20

4.2. Modeling transmission time in overlay simulations

Model Computational cost Memory Comment
Analytical function | simple, 0(1) no geographical information,
inexpensive high jitter unavoidable
Lookup table simple, O(N?) high precision,
inexpensive data available
Network topology complex high problematic data acquisition
Coordinates-based | inexpensive (runtime), O(N) good precision,
expensive (in advance) data available

Table 4.1.: Different approaches for modeling network Transmission Time

that a lookup takes on average. Chord, for example, finds a resource within O(log, N)
hops in a network with N nodes. The overall lookup time will be decreased if either the
number of hops is reduced or the network transmission delay is decreased.

In general, connections to geographical close peers have a smaller delay than connections
to more distant peers. As geographical positions are available very seldomly, proximity
is often defined by short network transmission delays (see Section [6.2.1.2]).

Simulating proximity requires an accurate network model, where connections have realis-
tic transmission delays. Table gives a short overview of different approaches to model
[TTk. The most simplistic way is to use analytical distribution functions, for example,
negative exponential distributions. While they neither require difficult computations, nor
huge amounts of memory, they are not able to cope with the geographical network topol-
ogy. As a direct consequence, different network [T'T between two nodes are calculated for
every packet, which also makes high jitter values unavoidable. Thus, using an analytical
distribution function is not feasible when simulating proximity-aware protocols.

Storing all inter-node in a lookup table would lead to very high precision, but is not
applicable in huge networks, as the size of the table exhibits quadratic growth with the
number of nodes.

Modeling the network topology with routers, autonomous systems and links is a common
method to build complex models of the Internet, and therefore, it is applied by many
topology generators as Inet-3.0 [WJ02| or BRITE [bri]. The drawbacks of using this
method are that it is problematic to acquire real Internet topologies and a large amount
of memory is required for huge networks. Also, the computation of routing paths and
is complex and therefore slows down each simulation run.

We present a topology model, which is based on network coordinates. It is character-
ized by a relatively high precision, yet low memory and computation costs during the
simulation [KNHT07]. The required memory scales linear with the number of nodes
in the network. The computation of the network coordinates is time expensive, but is
done offline and the coordinates may be re-used in different simulations. Real Internet
measurements are available from CAIDA [cai], which allows simulations to be as close
as possible to real network conditions. The basic idea is using network coordinates for
estimating the between two nodes. The inter-node is directly proportional to the
geometrical distance in the coordinate space. Note that the inter-node [T'T]is not always
directly proportional to the geometrical distance in the real world. For example, nodes

o1

4. Simulation models and environment

connected to the same Internet Service Provider , but located in different countries
or even on different continents, sometimes may be able to communicate with a smaller
[TT]than nodes that are in geographical proximity, but belong to different [SPk. However,
as shown in Section [£.2.3] a certain correlation between and geographical proximity
is noticeable. In Subsection we describe the Global Network Positioning
method that we use to construct the coordinate space. Subsection [4.2.2] explains how
is used in our simulations and Subsection [4.2.3] shows results that are obtained by
using this network model.

4.2.1. Global Network Positioning (GNP]

INZO1] was originally developed for predicting packet delays from one host to
another. Each node periodically pings a set of monitors (or landmarks) M and measures
the required Round-Trip Times (RTTg). With this information and the known monitor
coordinates, the nodes are able to compute their own position in the geometrical space.
Creating a new d-dimensional coordinate space at first requires calculating the coordi-
nates of the monitors. To achieve a high precision, it is suggested to choose monitors
located as far apart as possible. All between the monitors must be known and the
number of monitors M must be greater than the number of dimensions d (M > d). The
error between the measured distance fmng and the calculated distance t,,,,, between the
two nodes n; and n, is defined as:

~ 2
A tn n _'tn n
E(tanLQ?tnﬂ’Lg) = < e 2> (47)

tnlng

Subsequently, we can compute the coordinates of the monitors c,,, by minimizing the
following objective function for every monitor m:

Jobjm(Cmys vy Cmyy) = Z €(mim; » fmimj), Vm;,m; € M (4.8)

ig€{1,.. . M}i>j

After measuring the to at least M’ (d+1 < M’ < M) monitors, a node n can
compute its own coordinates ¢, by minimizing the following objective function:

fobj,n(cn) - Z G(tmin7 fmm),Vm & M (49)

ie{l,..,M}

The estimated[TT|t,, ., between two arbitrary nodes n; and ny with coordinates (c,, 1, ..., ¢ny,a)
and (Cpy 1, - - -, Cny.a) can finally be obtained by computing the geometric distance between
the two nodes in the coordinate system:

tTLl’rLg - \/(Cnl,l - Cn2,1)2 + -+ (C'n,l,d - CTLQ,C[>2 (410)

We use the Simplex Downhill Method proposed by Nelder and Mead [NM65| to solve
these minimization problems, because it is very easy to implement.

02

4.2. Modeling transmission time in overlay simulations

4.2.2. Applying for modeling network transmission

We use coordinates in a slightly different way in combination with ping measure-
ments acquired from CAIDA’s skitter project [cai]. There are 14 monitors available in the
dataset (Table , which are mostly positioned at DNS roots. These monitors perform
daily measurements to a list of selected nodes, which are spread over the entire IP
space. We are not going to use all monitor nodes for the computation of the coordinates,
because good values can already be gained with d 4+ 1 monitors and the computation
duration will increase significantly if more monitors are used. Using d = 5 we achieved
almost accurate [T'Th. As mentioned above, it is important to carefully select the mon-
itors. A lot of research has been carried out in this area [NZ01l [TC04]. We select our
monitors with the help of a maximum separation algorithm, i.e., we try to select monitors
that have a maximized inter-monitor distance (by means of [I'Tk). This maximization
can be solved very easily, as there are only 14 different monitors available, and it leads to
good results. Another promising, but more computation expensive method is the Greedy
algorithm that chooses the set of monitors, which minimizes the average distance error
between all monitors.

Table [4.3] shows the symmetric matrix achieved from a subset of 6 monitors that
we used to build a 5-dimensional coordinate space. The coordinates the monitors can
now be calculated by minimizing Equation for all monitors.

The skitter data set comprises no inter-node measurements, but it provides us
with measurements from each monitor to about 300,000 hosts (Table [£.4). Co-
ordinates for these hosts can be computed by minimizing Equation for all hosts.
This computationally intensive multi-dimensional minimization problem is solved offline.
Coordinates for the CAIDA dataset have to be computed once, and can consequently be
reused for all simulations without any further computation costs. The mean for the
CAIDA measurements is about 80 ms.

Scenarios we are simulating are described in a source file, where parameters like the
number of total participants Ny, the number of online nodes N and the average online
time E[T,,] are set. From this file, a traffic generator computes all join, leave and search
events, as well as the IDs of nodes and content. We call its output event file. The
event file can then be put into our coordinate tool, which assigns a random host from
the CAIDA dataset to each node in the event file. The tool also adds the appropriate
coordinates to the event file. Our simulator will automatically detect whether coordinates
are set or not, and uses the coordinates or a negative-exponential distribution to compute
TT, respectively. between nodes are calculated with Equation (4.10), but would
be constant for each transmission between the same two nodes. Therefore, a log-normal
distributed jitter will be added to the [T'Tk, if coordinates are used. This proceeding is
based on real Internet measurements [HMTT05| and results in an even more realistic
model. A lognormal distribution is denoted as A(u,0?), and its Probability Density

Function (PDF)) is expressed as:

Ml% - exp <——(1n(322;”)2> ifz>0

O(z;p,0) = (4.11)

0 otherwise

23

. Simulation models and environment

Monitor name Location IP address
arin Bethesda, MD, US 192.149.252.8
b-root Marina del Rey, CA, US 129.9.0.109
cam Cambridge, UK 128.232.97.8
cdg-rssac Paris, FR 195.83.250.10
d-root College Park, MD, US 128.8.7.4
e-root Moffett Field, CA, US | 192.203.230.250
i-root Stockholm, SE 192.36.144.117
ihug Auckland, NZ 203.109.157.20
k-peer Amsterdam, NL 193.0.4.51
k-root London, UK 195.66.241.155
nrt Tokyo, JP 209.249.139.254
riesling San Diego, CA, US 192.172.226.24
uoregon Eugene, OR, US 128.223.162.38
yto Ottawa, CA 205.189.33.78
Table 4.2.: CAIDA monitor hosts
b-root d-root i-root k-root nrt ihug
b-root 68.882 186.476 172.536 127.812 185.123
d-root | 68.882 118.987 95.266 208.739 229.618
i-root | 186.476 118.987 36.523 315.139 319.436
k-root | 172.536 95.266 36.523 275.874 312.360
nrt 127.812 208.739 315.139 275.874 138.511
ihug 185.123 229.618 319.436 312.360 138.511
Table 4.3.: Inter-monitor (in milliseconds)
b-root d-root i-root k-root nrt ihug
18.166.0.1 84.055 10.535 117.495 85.541 210.628 251.454
81.165.0.1 146.550 85.889 36.159 9.554 284.824 291.408
198.31.255.254 | 8.777 98.625 177.254 145.013 127.879 196.591
200.63.11.1 249.277 184.413 1060.883 309.182 376.213 523.068
217.200.12.1 | 172.939 107.576 75.661 27.682 309.860 321.287

Table 4.4.: Host-monitor [RTTp (in milliseconds)

24

4.2. Modeling transmission time in overlay simulations

The distribution can be calculated from measurements where the mean i and the
standard deviation o are known.

Additionally, our model takes packet loss into account. We assume that packets are
dropped with the same probability. As our model does not construct a detailed physical
topology, it is not possible to consider congestion, and therefore higher packet loss rates,
in certain regions of the topology.

4.2.3. Results

In order to evaluate the quality of our coordinates, or in other words, how accurate we
can estimate the [RTTk between the nodes compared to the real measurements, we use
the directional relative error metric:

~

tn ng tn n
p= e mn (4.12)
N (g 5ty)

Therefore, we select two monitors that have not been used to compute the coordinates and
calculate the relative error between them and 2,000 random nodes from our dataset. A
directional relative error of plus (minus) one means, that the calculated distance is larger
(smaller) by a factor of two as compared to the measured value, whereas a error of zero is
a perfect fit. Figure[4.2]shows the performance of both algorithms. Maximum separation
with 6 monitors has a performance which is comparable to the Greedy algorithm with 9
monitors. 81% of the calculated reveal a relative error of less than 50%. On the
other hand, 50% of the calculated have a relative error of less than 12.3%. We use
maximum separation, as it requires significantly less computational effort.

1 _
69+ - - —::‘Z‘:-::-:-:‘-“-‘ ===
[TH 0/8 1 /’:‘:” -7
[a) 7.
0,7 - Vi 9 monitors, greedy algorithm
06 - /' ————— 6 monitors, greedy algorithm
’ / --------- 6 monitors, maximum separation
I
0,5 ' T T T T
0 0,5 1 1,5 2 2,5

Relative error

Percentile max. sep. ‘ 10 20 30 40 50 60 70 80 90
Relative error < (in %) ‘ 1.83 384 6.20 890 1235 17.68 26.93 47.57 111.23

Figure 4.2.: Monitor selection method comparison
To evaluate the precision of calculated [RTTk with respect to the measured times, we

have grouped the measured times and the corresponding calculated times in bins of
50 ms and plotted the directional relative error of each pair on a vertical line (Figure

95

4. Simulation models and environment

. The mean directional relative error is indicated by squares, the 25 and 75"
percentiles are indicated by the outer whiskers of the line. The figure also shows that
performs quite well for distances under 350 ms. A general trend to undershoot
in calculated values is apparent; especially for distances of more than 350 ms,
undershoots significantly. Still, only 7% of all evaluated distances are more than 350 ms,
so the influence of significant errors for large distances can be neglected. These large
errors result from nodes that are located in areas far apart from the monitor nodes,
therefore their coordinates cannot be computed precisely.

5 100%
S

S

o 50% -

z

K] 0% -

[J]

t

© -50% -

c

o

£ -100% -

g

Q '150% T T T T T T T T T T T T T T T T T T T I 1

75 175 275 375 475 575 675 775 875 975
Measured transmission time in ms

Figure 4.3.: Directional relative error over measured distances

We are mainly interested in using [GNP|for calculating[T'Tk for our simulations. Thus, we
compare the distribution of measured from the CAIDA dataset to calculated
with (Figure [4.4] (left)). We have simulated a network with 2,000 nodes performing
200,300 searches in total. Note that the average is the same for both curves (91 ms).
The negative-exponential function has a clearly higher standard deviance (o = 90.99 ms)
than the distribution based on a realistic topology (¢ = 61.85 ms), and there are much
more very small (< 25 ms) and large (> 200 ms) values.

Lookups in DHTs are forwarded through the overlay network until the responsible node
for the queried key is found. This results in a series of packets that are sent over the
network. The total lookup time consists of the corresponding and small additional
local computation delays. Figure (right) shows the measured lookup times from simu-
lations with and without using coordinates. As expected, both lookup time distributions
are very similar. The curves resemble a Gaussian distribution and have approximately
the same mean value (NED} 550.64 ms, 541.04 ms). The curve corresponding to
the is a bit wider, because the standard deviation is bit larger for the negative-
exponential distribution. According to the Central Limit Theorem [PP01], the sum of an
infinite number of statistically independent random variables has a Gaussian distribution,
regardless of the elementary distributions.

However, the[GNP}based network model provides simulations with a more realistic frame-
work. Thus, we are able to apply Proximity Neighbor Selection , i.e., using network
latency as the metric by which to choose between neighbor candidates. We will present
[PNYS| in greater detail in Section [6.2.1.2] and show its influence on the lookup duration
by presenting simulation results.

o6

4.2. Modeling transmission time in overlay simulations

0,025 - 0,020 -
using coordinates
| exponential distribution ™
0020 0015)
w 0,015 +
(@] 0,010 -
o
0,010 - N\
“\
0,005 | 0,005 -+
0 e : . 0000 ¥ [S [
0 200 400 600 0 500 1000 1500 2000
Transmission time in ms Search duration in ms

Figure 4.4. distributions (left) and corresponding lookup time distributions (right)

Another interesting phenomenon is shown in Figure[4.5 If our 5-dimensional coordinates
are projected to a 2-dimensional coordinate space, a remarkable amount of clustering can
be recognized. If we compare the clusters to a world map, even “continents” may be iden-
tified in the coordinate space. This is astoundingly, as coordinates have been calculated
from [TTk only. We take this as another indication, that the calculated coordinates are
a good representation of the real Internet topology.

Figure 4.5.: Node distribution in a 2D projection

4.2.4. Predicting inter-node transmission times

The presented network model provides a basis for both estimating and predicting [T Tk.
Usually, nodes estimate the [T'Tk to neighbor candidates by evaluating existing traffic to
these nodes or by sending active probe packets. This signaling overhead can be reduced by
using synthetic coordinates. Thus, inter-node latencies can be predicted without having
to perform an explicit measurement to determine the latency. Network coordinates
can be calculated by making use of monitor nodes as it is done with INZ01] or

57

4. Simulation models and environment

PCA [TCO03], or by simulating the positions of the nodes with a distributed algorithm like
Vivaldi [DLST04, DCKMO04]. We are using the Vivaldi coordinates in our simulations, as
the algorithm is fully distributed and computationally inexpensive. Therefore, it seems
particularly suitable for applying it to P2P networks.

Please note that the coordinates used for modeling the transmission times must
not be accessed from the simulated protocol, as using the same coordinates would result
in a perfect prediction. The protocol must implement its own synthetic coordinates and
assign them to the live nodes.

4.3. Simulation environment and [GUIl

To be able to study various performance aspects in detail, we developed a highly-scalable
event-based simulator for DHT overlays in ANSI-C |[KR88]. The simulation environ-
ment was implemented in a joint project with the Institute of Distributed Systems at
the University of Wiirzburg, Germany. It is capable of handling tens of thousands of
nodes participating in the network in acceptable simulation time. We are able to do
so by simulating only the overlay network and modeling the physical network proper-
ties. Additionally, we developed different implementation techniques like compact data
structures [BHKE(07, EHBK07, BHKE0Y).

A good overview and comparison of related work is given in [NBLR06]. Despite a large
variety of existing tools we decided to implement our own simulation environment (see
Figure , as most simulators are not able to handle such large overlays. Also, other
simulators provide only poor or no documentation at all, and are often not flexible enough
to fulfill our needs. Mainly, features are missing and the simulation environment is often
difficult to extend.

A simulation run is defined using our own very abstract script language. The source
file describes the scenario using a number of commands and parameters listed in the
appendix. For example, the command peers <N_total> defines a total number of clients
Niotal. The command join <N> <E(T_join)> denotes that N nodes should join the overlay
at a mean rate of E[Tjo,] ! ms™.

The command user <duration> <E(T_on)> <E(T_off)> <E(T_search) describes a period
of duration seconds, where nodes join and leave the network with the parameters E[T,],
E[T,g], and E[Tiaren] as specified in the source file.

This source file is parsed by the traffic generator, which translates the code into actual
events (see Appendix. Thereby, it generates random IDs for all clients and documents,
and it calculates the start time of all join, fail, and search events. For example, during
its lifetime a node performs several lookups at random times for keys selected randomly
from a uniform distribution. These events are written to the event file, which can then be
used as input for the P2P simulator. The node ID is valid for the whole simulation run,
i.e., nodes are not assigned a new ID each time they (re-)join the network. Separating the
traffic generator and the actual simulator offers more flexibility. Event files can be re-used
for validating the simulation, for running simulations with different parameter settings,
and for simulating different protocol versions. Additionally, events from prototype studies
or emulations can be extracted and used as input for the simulator. Both traffic generator

o8

4.3. Simulation environment and [GUI

Source file

Traffic
generator

%

. Global
Init file J event file

Seed

(Chord)

Seed Simulator

Log file Control.pl

7
Evaluation
(Perl scripts)

Figure 4.6.: Sketch of the simulation workflow

and simulator may be called with different initial seeds.

The output of the simulation is written to two separate files. The log file contains various
debug information, as well as measurements of the statistic function. This file is later
on parsed by (Perl) scripts that extract appropriate information and calculate further
data, like variances. Additionally, an ordered list of all data changing events is stored in
a simulation event file (.sef) that may be played back in the later on.

The Chord simulator is built on top of an event queue [BHKEQ7|. This queue provides
two functions: add a new event at an arbitrary time in the future, and retrieve the next
event in time. An event consists of the time it is due, a pointer to the function that is
to be called when the event is processed, and optional arguments that are assigned to
the called function. The first step of a simulation is parsing the event file and adding all
events to the queue. Then, all events in the queue are processed chronologically, where
the function triggered by the event may call other functions. It may also add further
events to the queue. Typical examples are adding the next execution time of periodic
events, or adding a timeout event.

The basic Chord protocol is implemented according to the specifications in [SMKT01b].
Modifications to the protocol are described in the appropriate text passages. Each sim-
ulation is run with a different set of parameters. In order to be able to evaluate the
influence of each individual parameter apart from all other parameters, we change only
one parameter in each of our simulations. All other parameters are kept constant with
the values given in Table (except if stated otherwise).

In our simulations we use a total number of 40,000 peers, which we found to be suffi-
ciently large to capture all important effects regarding the overlay size. Also, we consider

29

4. Simulation models and environment

m = 28 Size [in bit] of the Identifier space

N = 20,000 Number of live nodes

Niotal = 40,000 Number of total clients

K/N =10 Number of keys per node

L=5 Number of successor entries

R=(L+1)/2=3 Size of Replication group

E[Ton) = E[Tog] = 30 min Mean duration of online sessions and offline periods
totap = 30 s Neighbor stabilization period

tw = 5 min Finger update period

(all different fingers are updated once in tg,)
lrep = O MiN Replication period
E[TT] =80 ms Mean Transmission Time of packets
(Negative Exponential Distribution) [cail

thop = 1625 ms Hop timeout expiration
tsearch = 108 Search timeout expiration
TTL = 20 hops T'TL| counter for avoiding loops

Table 4.5.: Default values for common simulation parameters

60

4.3. Simulation environment and |GU.

A~ @ chord GUI - ulio.sef
Datei Ansicht Wiedergabe Tools Hilfe

G| @) 2]zoom: .

Knoten 74564581
< Pakete | U Befehle | @ Diff |
) Kommentar r] Suchen ‘
@ Knoten r Daten ‘

@ Go onlinel
@ Go offlinet

" Insert Document!
237
30

) Search Document!

g,
8
a5
6‘;‘5,
«‘0 B
5‘\? Zeit: 7.561s
[

3 %

i i : v
&
~ 0s 25 d4ds L] 8s 10s 12s

Anzahl der Knoten: 20 |Juinende Knoten: 0 Online Knoten: 10 |

Figure 4.7.: GUL: Visualization of the overlay

only node failures and no graceful node leaves, thus simulating the worst case for the
stabilization of the overlay, and putting the maximum stress on the network. Generally,
packet loss will not be simulated, except if explicitly stated in the analysis. We simulate
UDP packets, and retransmission in case of packet loss is covered by the P2P protocol
itself.

The statistic function is called every 10s. It calculates the sums and mean values of
various parameters for the last interval of 10 s. All available parameters are listed in the
appendix and used parameters are explained in Section Most results are evaluated
by calculating the mean E[X] of all samples X within one simulation. All experiments
were run until the confidence intervals became negligibly small and could thus be omitted
in most of the figures.

Graphical User Interface We also developed a Graphical User Interface (GUI)
for our Chord simulation environment that serves various different purposes. First, it
helps the developer of a protocol to debug its functionality. It provides the developers
with a simple and intuitive way to monitor and comprehend the internal processes of the
protocol. The impact of changes and enhancements can easily and quickly be tracked and
evaluated. By zooming to different views, the overall behavior as well as specific details
can be monitored and controlled. Moreover, the [GU]| can be used for demonstrating the
mechanisms of the simulated protocol. This feature is useful for teaching the basics of
P2P protocols, as well as for giving an insight to the latest improvements of a specific
algorithm.

61

4. Simulation models and environment

In its main windows, the Visualizes Chord’s circular ID space (Figure. Nodes are
displayed using different colors indicating the current node state. The user may select any
node by clicking on it. The selected node is highlighted, and its fingers are visualized in
the graphical representation of the ring structure. Moreover, in an information panel on
the right part of the various detailed information on the selected node is displayed,
including all predecessor, successor, and finger entries, the current node state, shared
documents and stored (key; value)-pairs. Moreover, all packets sent and received by the
selected node can be listed on a graphical time line, and a ‘comment’ tab allows for
printing any debug information implemented in the simulator.

In the bottom of the window, some general information regarding the overlay is given,
like the current number of live nodes. The lower right corner provides a remote control
for the simulator. Actually, no real-time control of the simulation is given, but the
simulation is recorded in a .sef file that is played back by the The user may play
the recorded simulation with variable speed, proceed forward /reverse event by event, or
skip to a certain event or point in time. Thereby, integrated search functionality assists
finding the right events.

Additionally, the simulation may intuitively be modified during the play-back. By click-
ing the appropriate button, the selected node goes online or offline, inserts, or searches
a document. Moreover, an editor for adding and deleting diff-events is integrated in
the [GUIl Thereby, instead of actually modifying the simulation, the modifications are
transferred to the simulator in a .diff file, and the simulation is restarted from the be-
ginning. This approach was implemented, as periodically storing the complete state and
restarting the simulation from the time of the first modification is not feasible. Although
the is able to visualize even large scenarios, smaller networks are better suited for
demonstrating and analyzing the protocol. Thus, re-running the simulation is finished
within a few seconds and the user is hardly aware of it. The communication between
simulator and is handled by a perl script (control.pl). Thereby, simulation and
[GUT must not run on the same machine. Modifying the simulation during play-back is
especially valuable to perform “what if” analysis, i.e., to easily (re-)produce and analyze
certain tricky special cases.

A major aspect of distributed systems is communication. Nodes frequently exchange
information by sending different types of packets through the network. Thus, a visu-
alization of the packet flow is a valuable tool for debugging implementation flaws and
understanding the system behavior in detail. For the sake of clarity, we decided to
display a packet sequence diagram for selected nodes in a separate window, instead of
additionally visualizing all packets in the main window. In the screenshot in Figure [4.8
we selected four nodes. Two of them can be observed joining during the displayed time
window (denoted by the blue dot), and going online after a successful stabilization (green
dot). Moreover, the figure shows a received NOTIFY packet from node 933476 that is not
selected, as well as a lost STABILIZATION packet (red X). In the context menu the user
may filter certain packet types and vary the displayed time scale.

Summarizing, the is a powerful tool that we intensively used for analyzing the
impact of modifications and implementation details. Also, the [GUI| provides means to
demonstrate and lecture the basic functionality of structured P2P protocols.

62

4.4. Conclusion

[— =18l
EE B

Join
Join
bl Stabil

H33476 Intify U fo

Figure 4.8.: GUI: Packet sequence diagram

4.4. Conclusion

In this chapter we presented suitable models for simulating the user behavior and realistic
transmission times. The user model applied in our simulation environment is based on
mean online E[T,,] and offline E[T,g| times. Different churn rates can be achieved by
modifying these values. The distribution of online/offline periods and search rates is
usually modeled with a[NED] however some researchers argue that a Weibull distribution
better fits the measured values. Applying a Weibull distribution, the remaining online
time is a function of its current live time.

We also presented a scalable and realistic model for Internet transmission times that
is based on network coordinates. In a network with /N nodes, our model scales with
O(log, N), whereas a simple lookup table would be of size N2. Its main advantage
compared to other models (using analytical functions) is the fact, that the transmission
delay between any two nodes is not random (e.g., based on a negative-exponential dis-
tribution) but constant over time. An additional jitter (using a log-normal distribution)
and a constant packet loss rate make our model even more realistic. We showed how to
calculate network coordinates from a given dataset of transmission times by minimizing
the relative error between measured and calculated distances between the peers. We also
evaluated the approximation error and precision of this model.

A corresponding technical report [HBST05| addresses many other topics, like whether
to simulate on packet or on application level, how to model bandwidth in file sharing
systems or how to design efficient data structures and event algorithms.

Finally, we presented our simulation environment that is built around a highly scalable
event-based simulator for DHT overlays. A traffic generator translates the abstract de-

63

4. Simulation models and environment

scription of a scenario into actual events. These events are then parsed by the simulator.
By separating traffic generator and simulator, event files can be re-used for simulating
different settings and protocol versions. Usually, our simulations consist of 40,000 peers,
with around 20,000 peers being online at the same time. A statistic function calculates
sums and mean values for various parameters and writes the results in a log file. More-
over, a .sef file containing all simulated events is generated, and the file can be played
back in the The is a powerful tool enabling its user to easily monitor the
inner-workings of the simulated overlay and intuitively evaluate the impacts of modifica-
tions. A control script provides a feedback channel for the thus supporting a direct
graphical modification of the simulated scenario.

64

CHAPTER b

Performance, robustness, and cost analysis

In this chapter we evaluate the scalability of the Chord protocol. In this context, func-
tional scalability is defined as the ability of the protocol to scale to large networks with
moderate or no effects. Similarly, stochastic scalability is the ability to handle high user
activity without serious impact on the system [Bin08|. We evaluate this impact by an-
alyzing the performance, robustness, and costs of the protocol [KBHO05|. The routing
performance is the average lookup path length, i.e., the number of hops traversed for
finding keys. The overlay must also be capable of repairing changes in its structure. We
will call a protocol robust if it is able to maintain its functionality and overlay structure
despite high churn rates. Furthermore, costs for finding keys and maintaining the over-
lay are evaluated. Thereby, an efficient trade-off between small maintenance cost and a
correct overlay structure must be made.

We introduce these metrics in detail in the next section, and then use them to evaluate
the Chord protocol. Thereby, our main focus is on the stability of the overlay structure,
as only correct routing information assures correct and short lookups.

5.1. Metrics

5.1.1. Lookup path length and search duration

Structured P2P protocols have been developed to scale better than earlier protocols.
Using a proactive routing scheme, it is possible to route lookups on one short and de-
terministic path to the node responsible for the requested content. Infrequent items can
be resolved as good as popular content. A short lookup duration is important, as in
structured P2P almost all processes, such as joining the network, finding new pointers
to distant nodes, inserting content, and of course searching for content, are based on
lookups for keys (see Section [3).

65

5. Performance, robustness, and cost analysis

The duration of a lookup mainly depends on the lookup path length and the average
Transmission Time in the network. We define lookup path length as the number
of steps (hops) required in the lookup process. In each step, another node, which is
closer to the queried key, is contacted. However, the lookup duration is not directly
proportional to the lookup path length and the average in all scenarios. In dynamic
networks timeouts will occur if, due to obsolete pointers, nodes try to contact other
nodes no longer participating in the system. As shown in Section these timeouts
significantly affect the lookup duration negatively. In contrast to that, certain methods
(see Section [6.2), like preferring neighbors that are close in terms of [I'T, or applying
parallel lookups, have a positive effect on it. Also, applying iterative or recursive routing
results in different lookup durations.

Thus, we think that the lookup path length is a more meaningful metric for eval-
uating and comparing different lookup protocols, as this metric is more closely re-
lated to the algorithm itself and depends less on extraneous influences. Structured
P2P approaches differ, amongst other things, in the average lookup path length: from
O(log, N) [SMKT01a, RDO1, MM02] to O(v/N) [RFIIF01] to O(1) [GBLF03, [GLR04]|
hops. In this regard, Chord scales with O(log, N) (see Section [5.2.1).

5.1.2. Robustness of the overlay structure

The second metric we use to evaluate structured P2P protocols is the robustness of its
overlay structure. In literature, this metric is also referred to as the stability of the
overlay.

We measure the robustness of an overlay by comparing all local neighbor lists with a
global view of the network and counting the discrepancies. In structured P2P protocols
nodes monitor their direct neighbors in order to detect failed nodes and reporting the
failures to other nodes. Also, correct pointers to neighboring nodes must be maintained
to determine which keys a node must store, and where to correctly locate a queried key.
In this context, we distinguish between nodes that have wrong direct neighbor pointers
and nodes that have any wrong neighbor entry. Wrong direct neighbor entries are worse
than other false entries in the neighbor list, as a node mainly communicates with its
direct neighbors and its fingers. Packets which are sent to wrong neighbors are detoured
and must be resend or forwarded to the correct node, thus increasing the lookup duration.
Additional neighbors are mainly stored as a replacement for failed entries. Nonetheless,
these entries also should be correct in order to be able to correctly replace failed direct
neighbors. In Section amongst other things, we evaluate the influence of wrong
neighbor entries on the average lookup duration.

Nodes that join, leave or fail induce wrong entries in the neighbor lists. Joining and
leaving nodes lead to temporal discrepancies that do not affect the lookup success, but
rather cause a short indirection and thus a small increase of the lookup duration. In
contrast to that, failures must be detected by adjacent nodes. In the time between the
failure, its detection and the correction of all neighbor lists, lookups that are transmitted
to the failed node are lost and must be re-transmitted to another node.

In our simulations, we periodically compare the actual node state to the global view
of the ring (At = 10 s). Therefore, we maintain a second overlay topology, where the

66

5.1. Metrics

local view
(AlB]D[E[F]G]|1]
global view
[Blc|D[E[G[H]1I]

O—®—p
®© © 9
(» 0
Figure 5.1.: Errors in node E’s neighbor list (local view) are detected by comparing it with a
global view on the ring.

neighbor lists are corrected immediately after a join, leave, or failure event has occurred.
Then, we can compare overlay networks with each other and detect all errors in the node
states. We use a rather complex comparison algorithm that does not simply compare
entry by entry. If a node has left the network, and its direct neighbor is not yet aware of
it, but the rest of its neighbor list is correct, our algorithm will count only one error. If
a node is still joining the ring, we will not increase the number of errors, if a neighbored
node has not yet learned about the new node.

Figure [5.1| shows a segment of a sample chord ring and the local and global neighbor list
of node E. The direct neighbor F has recently left the network (lightning symbol), but E
still has a pointer to F (Error 1). Node H is currently joining the network (star symbol),
and has not initiated its own list of neighbors. Yet therefore, it is correct that H is not
in the list of neighbors of E. On the contrary, node C has already finished its joining
algorithm and is in state present. However, it is not yet inserted in the neighbor list of
E (Error 2).

In related work, the stability of a P2P network is often not considered at all or it is inferred
from the average search duration. However, evaluating stability by search duration yields
two disadvantages. First, as discussed previously, the search duration does not only
depend on the applied stabilization algorithm, but also on search and content replication
mechanisms. Additionally, the average search duration is nearly constant for scenarios
with moderate and low churn rates (see Figure [5.2)). Therefore, it is difficult to estimate
network stability from search durations.

67

5. Performance, robustness, and cost analysis

20 ~
18 -
16 -
14 -
12 A
8 -
c | L1 1
A

0 20 40 60 80 100 120 oo

Mean online time E[T,,] in min

Search durationins

Figure 5.2.: The median of the search duration increases only slightly if moderate or low churn
rates occur.

5.1.3. Maintenance overhead

The costs of keeping up the overlay structure can be evaluated by measuring the band-
width required for signaling messages. These costs do not include bandwidth used for
transmitting payload like the (key; value)-pairs. Signaling traffic can be divided into
three different cost types:

e Costs for keeping up the overlay structure, including all messages that are sent
while nodes join and leave the network, as well as all messages that are sent during
stabilization.

e Costs for keeping the routing entries up to date.

e Costs for inserting, republishing and looking up content in the network.

The costs for keeping the routing entries up to date may be difficult to distinguish
from other costs, as finger entries may be updated with information that is acquired
during lookups, e.g., if recursive routing or symmetrical routing using freebie fingers (see
Section is applied. Costs for content management mainly depend on the applied
replication rate and algorithm.

In the context of this evaluation, we solely focus on costs required for keeping the net-
work structure and the routing entries up to date. Hereby, all protocols are able to
adjust certain design parameters in order to find a trade-off between frequent and exten-
sive signaling messages (i.e., high signaling overhead) and a low signaling overhead (i.e.,
low stabilization frequency and thus a less stable overlay topology). The most important
parameters we evaluate in Section are (1) the number of neighbors nodes main-
tain and exchange between each other, (2) the frequency of keep-alive and stabilization
messages, and (3) the interval of the routing entry updates.

68

5.2. Evaluating the Chord protocol

5.2. Evaluating the Chord protocol

In the following section we analyze parameters like the number of participants N, their
dynamic behavior (churn), and various design parameters, using the introduced metrics.
Among these, only the design parameters can be influenced directly, whereas the number
of participants and their behavior might only be influenced by providing incentives to
them. Note that we simulated and evaluated a slightly advanced Chord stabilization
using symmetrical stabilization and NOTIFICATION messages (see Section [6.1.2)).

5.2.1. Number of Participants

Structured P2P protocols were designed to address the scalability problem inherent to
flooding. In this section we show the results of our evaluations. We demonstrate that
regarding the stability of the network, its search rate and search success, as well as the
required signaling traffic the protocol scales well with the size of the network.

Lookup path length In Chord the average number of hops for finding the predecessor
of an ID is 1/2log, N hops [SMKT01b| in a stable scenario. Thus, a lookup for the
successor of an ID is resolved in 1/2log, N + 1 hops (‘+1’, as we need an extra hop to
reach the succeeding node).

In the following we assume a stable 128-bit network. For each network size we simulated
103 different networks with N nodes and random IDs, and in each simulation random
nodes initiated 10° lookups for random keys, hence, 10% lookups will be performed in
total. Note that in our implementation each node n initiating a lookup checks if it
is responsible for the queried key itself. If so, it answers the lookup without actually
querying the network.

Figure [5.3| shows the lookup path length for varying network sizes. As expected, Chord’s
average path length is almost exactly 1/21og, N+1 hops. Only very small networks exhibit
a smaller hop count, as many lookups are directly answered by the initiating node, and
no lookup is routed through the network. In contrast to that, in the mathematical model
the lookup is initiated in any case. For larger networks this special case is very rare and
thus has no significant influence on the lookup path length. Also, its median is close to
the average, indicating a symmetrical distribution of the lookup path length.

The authors of Chord also prove mathematically that the maximum path length is log, N
hops in a fully populated network, whereas w.h.p. the predecessor of a key can be located
with at most 2log, N hops in a densely populated network [SMIKT01b|. However, worst
case scenarios with a longer lookup path length can be constructed. Consider an 8-bit
network with 8 nodes whose IDs are 0, 64, 96, 112, 120, 124, 126, and 127. If node 0 is
querying for ID 128 7 hops will be necessary to reach the predecessor of ID 128, although
2logy N = 6. For larger 1D spaces similar artificial scenarios exist. In our simulations,
the maximum observed path length was by far less than 2log, N hops (see Figure .
For medium to large networks (N > 512), 99.9% of all lookups could even be resolved
with at most log, NV steps.

In order to find out the influence of the node density on the lookup path length we
performed a set of simulations with a constant number of nodes N = 22, but varying

69

5. Performance, robustness, and cost analysis

20 e Maximum

999th permillage °

16 i/lSth percentile °
ean °

Median

12 -+ 5th percentile

1st permillage L4

é

Number of peers N

‘AT

— <

Lookup path length
N o]
64 +—LC& e
[]

256 —— & 1+ e
——® 1+ e
——_—_ & _1+—e

[]
e
—{ & — e

16 [—9e
1024 1 —{—@ 1+ e

4096 -
16384 -
65536 -

262144 -

1048576 -

Figure 5.3.: Lookup path length for varying network sizes

15

13 4

(]
11 ~
9,
7,
o
>3]

Lookup path length

T
N O N <

) Yo}
Lo I B I o 0 IS R (o)

(g}
(o2 |
i

128

Size of ID space m in bit

Figure 5.4.: Lookup path length in a 4096 node network for varying sizes of the ID space

sizes of the ID space (2). Simulation results are shown in Figure The x-value on the
left-hand side corresponds to a fully populated network (22 nodes in a 12-bit ID space).
Keeping the number of nodes constant, the larger the size of the ID space, the more
densely populated the overlay is. For each x-value we triggered 10° lookups with random
initiators and keys, and repeated this for 10? random overlays without churn, resulting
in a total of 10% lookups. The error bars show the 15tand 99" percentiles. The average
path length is 7 hops for the fully populated network (m = 12), and around 6.85 hops
for larger ID spaces. This difference can be explained by the fact that, w.h.p., in densely
populated networks the actual finger pointers differ from the theoretical finger IDs, as
no nodes with the theoretical IDs exist. Thus, the first node succeeding the theoretical
ID is selected as finger. As a result, finger intervals are slightly larger, and the distance
to the queried ID is reduced a little bit more with each hop. The figure also shows the
maximum observed path lengths, i.e., 12 hops for m = 12 and up to 14 hops for m > 12.
The 999" permillage is approximately log, N hops in this scenario.

In Figure the 1%tand the 99'""percentile are arranged symmetrically to the median
and the median is close to the mean value. This indicates that the Probability Density
Function of the path length is symmetrical to its average value. Figure [5.5|shows

70

5.2. Evaluating the Chord protocol

PDF

012 3 456 7 8 910111213141516

Number of hops

Figure 5.5.: . of the lookup path length for varying number of participants N

the for overlays with N = [26..22°] nodes. The values are approximately Gaussian
distributed with an average of around !/2log, N + 1 hops. Note that the number of hops
is a discrete value. Thus, the correct visualization would be a bar chart, yet, we think
an area chart is more revealing here. Looking up the node responsible for an ID is used
in several algorithms. For example, if a new node wants to join the network, it must at
first find its successor. Also, a lookup must be initiated prior to inserting a document
in the network. As a result, the number of messages and the duration of the process is
distributed similarly to Figure 5.3

A more detailed mathematical analysis of the lookup delay in Chord rings can be found
in [BTGO04].

Stability/Robustness In the previous paragraph, we verified that the lookup path
length scales logarithmically with the number of live nodes N, whereas in this paragraph
we show that the overlay stability is almost independent of N. For different overlay sizes
the number of errors in the neighbor lists is nearly identical if the churn rate is the same.
Figure [5.6] shows the number of nodes with errors in their neighbor lists for different
overlay sizes N and varying churn rates. It proves that the number of peers with errors
in their list of successors (upper 4 curves) or with wrong direct successors (lower 4 curves)
is independent of the size of the overlay ring, as the different curves for the different ring
sizes almost coincide. Note that dotted curves approximate the expected path between
measured values and were included for the sake of clarity. Regarding stabilization and
ignoring fingers, nodes in Chord have a limited local view on the network as their list of
neighbors only spans a few nodes. This is why changes due to joining and leaving nodes
only affect a small constantly-sized part of the overlay. The total size of the network
hardly affects the capability of error detection and recovery. However, we also learn from
this figure that the mean online time has a significant impact on the stability of the
network. We have a closer look at the influence of the mean online time of the nodes in
Section £.2.2

Another influence of the overlay size N on the number of erroneous pointers will be
evaluated in the following. The basic Chord protocol uses a periodic stabilization al-
gorithm, i.e., each node will periodically check whether it is still the direct predecessor

71

5. Performance, robustness, and cost analysis

0, -
s 3% R AAAAA a- N=1,000
£ 4 e N = 5,000
E‘ 2% e N = 10,000
'_g | R o N =20,000
S
8 1% ~ E Any successor error
5 | e ———
S Direct [. D - .
0% | \ \ \ i

0 20 40 60 80 100 120 oo
Mean online time E[T,,] in min

Figure 5.6.: The shorter the sessions, the less stable the overlay structure.

of its successor. If a node ny; has joined between an existing node p and its successor
s, s would return the ID and IP address of its new predecessor n;. However, if two or
more nodes (ny, ng, ... n,) had joined between p and s in the meantime, s would have
returned node n,, instead of the new successor n; of node p. In each stabilization run,
one of the new nodes is integrated in the ring structure (see also Section . So, more
than one stabilization period is necessary to repair all neighbor entries. We can calculate
the probability, that more than one node joins between two neighbored nodes within one
stabilization period by using series expansion.

(5.1)

N! ith J = 'oin'tsa
P(N,J)zl—() wi 7] tab

N7 (N=J)') and N = rjoun- MTTL '

where J is the average number of join events in one stabilization period and N the

number of live nodes. The join rate rj, = % is determined as the number of join

events per Mean Time Between Two Joins (MTBJ). If, for example, in a network with
N = 10 evenly distributed participants J = 2 nodes join, the ID of the second joining
node might be situated in 9 ID ranges where no other node has joined, or in the same ID
range as the first joining node. Therefore, the probability of both nodes joining within
the same ID range is 1/10.

In a sample network with a total number of one million users, a [MTBJ| of one day,
and a Mean Time To Leave of two hours, we can calculate a join rate of
Tioin = % min~! = 694.4 min~! and an average ring size of N = 83,333 nodes using
Equations and . If we assume a stabilization period tg,;, of one minute, J will
be about 694 and P about 0.945 (5.1).

Figure shows the correlation between P and the design parameter tg.;, for several
values and a fixed join rate rj., = 694.4 min~!. We discern that, although
joins affect only a local part of the overlay, simultaneous joins in that part lead to a
longer transient state. The probability of such an event increases with more join events
per stabilization interval (J) or with less nodes online (NN). Thereby, J will be larger
the higher the join rate rj,, is and the longer the stabilization period tg.n. IV rises

proportionally with 7., and the MT'TL

72

5.2. Evaluating the Chord protocol

1,0 - e s
0,8 -
MTTL, N
;: 0,6 -
3
= 04 e —— MTTL=1h > N=41,667
/f — — — MTTL=2h -> N=83,333
02 - : - - -~ MTTL=3h > N=125,000
A R MTTL=4h - N=166,666
00+ ——

0O 10 20 30 40 50 60 70 80 S0 100 110 120

Stabilization period in seconds

Figure 5.7.: The probability of two or more nodes joining between two neighbored nodes within
one stabilization period increases with shorter[MTTL]values and longer stabilization
periods.

Yet, joining nodes do not influence the lookup duration or lookup success, it will just take
some time until the nodes are integrated in the ring structure. In contrast to that, failing
nodes are much more critical, as both the lookup duration and the lookup success are
negatively influenced. Furthermore, a failed node will be only detected after the absence
of multiple stabilization messages. Thus, the probability that another node in the same
local area fails within that time is much higher than the probability of multiple joining
nodes within one stabilization period. By replacing J with the average number of failing
peers within one timeout period F' = r-tro, we can use Equation to calculate the
probability of multiple adjacent node failures.

In our evaluations (e.g., Figure the percentage of nodes with errors will comprise all
errors in the neighbor lists, no matter whether they are caused by joining nodes or by
failing nodes. In both cases, the ring structure is not in a stable state.

Signaling traffic Structured P2P protocols also scale well with an increasing number of
participants in terms of signaling traffic. Most algorithms require a constant bandwidth
independent of the network size. Stabilization messages are always exchanged between
a node and its neighbors, and the number of neighbors remains constant. The number
of different fingers is approximately log, N. Yet, finger entries are updated periodically
and may be probed by a simple ping message. Thus, the influence of the network size N
on the overhead per peer is negligible.

Conclusion Structured P2P protocols were designed with the intention to be highly
scalable in large scenarios. Summarizing the above evaluation, all analyzed metrics
confirm that Chord indeed scales well with the number of participants in the network.
The lookup path length is in O(log, N) and may even further be reduced by techniques
presented in Section [6.2] Furthermore, the size of the overlay has almost no influence on
its stability and the required signaling overhead per peer.

73

5. Performance, robustness, and cost analysis

5.2.2. Churn Rate

In the previous section, we became aware of the considerable impact of high churn rates
on Chord. In the following, we will evaluate the influence of various design parameters
under a wide range of churn rates. Starting from completely stable scenarios without
any churn, we decrease the mean session durations down to 10 min. Thus, the churn rate
is increased to extreme values and much stress is put on the stabilization of the overlay.
Note that the churn rate is defined as the number of changes to the overlay (i.e., joins,
leaves, and failures of nodes) within a certain unit of time.

Lookup path length Errors in neighbor lists and routing pointers increase the lookup
path length in dynamic scenarios. Changes in the overlay structure transitionally cause
wrong pointers. If a node tries to contact such a false pointer, an additional hop will be
required to route the lookup. Thus, the lookup path length will be increased by one hop.
In scenarios with high churn rates, lookups might even encounter several false pointers,
thereby increasing the average hop count by some hops. In this context, the size of
the network will influence the lookup path length: The larger the network grows, the
longer the average path length without errors will be. As with each hop a false pointer
is hit with a certain probability, the longer the path and the larger the probability that
additional hops are required. However, the lookup path length is only increased by a few
hops even in large networks.

Despite this fact, the average search delay will be significantly increased if false pointers
are contacted. If a new node n has joined the network, but the node formerly responsible
for that part of the ID space ngq is contacted, nqq will inform the sender of the message.
Either the sender of the message, or nyq, then immediately forwards the message to the
correct node n and the search is delayed by 1-2 [T'Tk. In contrast to that, if a node tries
to contact another node ng,; that has left the network, a certain timeout duration elapses
until the sender will assume that the packet is lost. Thus, the packet is resent with a
much larger delay (see also Section |5.2.3]).

In the basic Chord protocol recursive routing is applied, i.e., each node forwards the
lookup until the successor of the queried key is reached. Using UDP packets, nodes will
not be aware whether the packet is received or lost. Thus, the initiator of the lookup
must monitor the lookup process by using a timer. If no answer is received after a certain
time, the initiator will restart the lookup. Thereby, the timeout value must be selected
large enough to avoid unnecessary duplication of lookup messages, e.g., the 99" percentile
of the distribution of the search duration. Then, each lost packet prolongs the search by
one timeout duration.

Figure [5.8 shows the results from a simulation with a timeout value of tro = 500 ms.
A large tpo value was used to clearly distinguish searches that experienced a different
number of timeouts. In the corresponding scenario, 80% of nodes in a stable network
with 4,000 nodes fail within half an hour. The figure shows the [PD}]| of the total search
delay. The (white) bars of the left hill indicate lookups where no timeouts occurred.
Despite the extremely high churn rate, about 80.8% of all lookups are resolved without
using any false pointers. The bars appear to follow a Gaussian distribution with a long
tail and a mean of approximately 150 ms. The other (light gray (13.5%), dark gray

74

5.2. Evaluating the Chord protocol

2000 -
0 timeouts

1500 -+

1000 +

500 +
2 timeouts

Number of searches

3 timeouts

0 200 400 600 800 1000 1200 1400 1600 1800
Search delay in ms

Figure 5.8.: of search delay in a high churn scenario

(4.3%), and black (1.4%)) bars indicate lookups that experienced 1, 2, or 3 timeouts,
respectively. The shape of the envelope of the bars is similar for all hills (grayscales), but
the more timeouts, the lower and farther to the right the bars will be. By modifying the
timeout value, we can shift the center of groups to the right or left. If we subtract the
timeout values from the bars, then the mean of all groups will be approximately 150 ms.
The total average search delay in this scenario is 281 ms. If the timeout value is increased
to tro = 1s, the mean search delay will be 413 ms. Concluding from these results, we
recommend using iterative lookups or hybrid routing (see Sections [6.2.1.1] and [6.2.2)),
considerably smaller timeouts can be used as each hop is monitored separately. Further-
more, applying parallel queries (see Section would significantly decrease the mean
search delay, as it is unlikely that all messages that are sent in parallel encounter a time-
out. Using these techniques, the average search delay in this scenario can be decreased
to less than 150 ms.

Last but not least, the correlation between mean online time E[T,,] and mean lookup
path length is visualized in Figure [5.9] The mean path length increases nearly linearly
for moderate to large mean online times. An additional hop might be required due to
erroneous pointers that were not yet repaired. The more errors exist, the higher the
probability of using a false pointer. In contrast to that, high churn rates, i.e., small
mean online times of less than 40 min, will result in a more seriously damaged overlay
structure. Then, lookups might encounter multiple failures as errors sum up. We will
take a closer look at the impact of the error ratio on the stability of the overlay topology
in the next section.

8,5 o,

8,4

Mean lookup
path length

8,3 T T T T T T T ///—\
0 20 40 60 80 100 120 oo
Mean online time E[T,,] in min

Figure 5.9.: Correlation between mean online time E[T;,] and mean lookup path length

75

5. Performance, robustness, and cost analysis

15% - 40000
N
£ Number of nodes
- 4 30000
2 10% ;-,
5 |
[20000
-g 77k i v g i
5 5% Any SUCCESSOrs '
a | W’J\ 10000
9 vavmwm‘mm Mg AR P04
5 Direct successors k
0% —
o O O O O O O O O o O o o
O O O O O O «H = =+ «=H « « «

Time in h:min

Figure 5.10.: Error probability in the course of time

Stability/Robustness Figure plots the average number of errors in the neighbor
lists for a sample scenario against time ¢. In an initial phase (not part of the figure)
N = Niota = 40,000 nodes successively join the network. At time ¢ = 0, the network
is in a stable state with no neighbor errors. Then, in the so-called user phase (t > 0),
nodes join and leave the network with mean online (E[Ti,]) and offline times (E[Tug])
of 30 min. As previously mentioned, in our simulations nodes do not correctly leave the
network, but nodes just fail without informing their neighbors. As E[T,,] = E[T.g], the
number of live nodes N levels off at around 20,000 (= 1/2N;ota1) nodes.

We discern three things from this figure: First, churn causes errors in the neighbor lists.
On average, circa 2% of direct successor pointers are incorrect and the error probabil-
ity of all pointers is around 6.5%. The neighbor list in this scenario was intentionally
chosen very small (n = 2) in order to accentuate the impact of churn on the number of
errors. The influence of the number of neighbors on the overlay stability is evaluated in
Section £.2.3l

Second, we identify two points in time where the number of errors significantly peaks
(t; = 0:40 h and ¢, = 1:15 h). At these times errors amplified due to some disadvan-
tageous concurrence of joins and leaves. The overlay structure remains considerably
inconsistent for several minutes. Again, these outbreaks will be less distinctive if nodes
store more neighbors. A third observation is the fact that the number of errors does
hardly depend on the size of the overlay. In the beginning 40,000 live nodes existed,
whereas at the end of the simulation only about 20,000 nodes are online. Note that
in the underlying simulation our advanced symmetrical Chord stabilization was used.
Thus, the number of wrong predecessor pointers is similar to the number of erroneous
successor pointers.

The influence of the churn rate on the stability of Chord is evaluated in Figure
It shows that the Chord protocol scales well in scenarios with moderate churn rates
(more than 60 minutes mean session duration). Here, occasional changes due to joining
and failing peers occur, yet, direct successor errors usually are repaired with the next
stabilization call. Additional successor pointers show an error probability, which is about
4 times higher, than the error probability for direct successors. Here, it is more likely
that several stabilization calls are necessary to repair more distant neighbors. The mean

76

5.2. Evaluating the Chord protocol

X 3% q o

[= K B ANy SUCCESSOr
Fy gy Direct successor
= 2%

= g

©

£

5 1% - R

s A g 1 PO { S B

: A a

s o | | : ey o

0 20 40 60 80 100 120 oo

Mean online time E[T,,] in min

Figure 5.11.: Short mean online times significantly increase the probability of errors.

lookup path length, however, is almost directly proportional to the mean online time in
that range.

In contrast to that, the basic Chord protocol is not able to scale linearly with high churn
rates. Short mean online times result in a more severely damaged overlay structure.
Then, errors sum up and it takes multiple stabilization calls to repair the routing state
of a node. Extremely high churn rates (E[T,] < 10 min) even prevent any ring-like
structure and connections among peers are more random than structured. Moreover, the
higher the error probability and the longer the lookup path length, the higher the proba-
bility for searches to fail. The error probability could be reduced by sending stabilization
messages more frequently. However, calling sTABILIZATION more often increases the sig-
naling overhead and, as we will show in the next subsection, this approach just defers
the problem. Summarizing the above, stochastical scalability is not given for Chord.

Signaling traffic The churn rate also has a significant influence on the signaling traf-
fic. Figure [5.12] shows results from our simulations, where the signaling bandwidth for
stabilization traffic is plotted against the mean online time. We are simulating an ad-
vanced Chord stabilization using symmetrical stabilization and NOTIFICATION messages.
STABILIZATION messages are sent periodically to both neighbors each 30 s and include
the complete list of neighbors. Thus, the required stabilization bandwidth is (nearly)
independent of the churn rate. A small increase for short mean online times is explained
by the fact that a STABILIZATION message is sent immediately when a new direct neighbor
is detected. As the network is extremely unstable for these scenarios a lot of changes
occur, resulting in an increased number of STABILIZATION messages.

Moreover, each change in the overlay structure is propagated to a small local area us-
ing NOTIFICATION messages. Notifications include information about the corresponding
change. More changes in the overlay mean a higher resulting bandwidth. In accor-
dance with other evaluations, the number of notification messages is very small for
E[T,.] < 60 min, but the required bandwidth increases significantly for higher churn
rates.

77

5. Performance, robustness, and cost analysis

B8 3 PR o) n !

] Stabilization

Notifies

O RLr N W H U OO
1

Mean signaling bandwidth
per node in Byte/s

0 20 40 60 80 100 120 oo
Mean online time E[T,,] in min

Figure 5.12.: The shorter the sessions, the more notifications are sent.

Conclusion We showed that churn has a significant influence on the performance of the
protocol. Chord is able to handle scenarios with moderate and low churn rates (E[T,,]
less than 60 min). Yet, search duration and stability of the overlay degrade for higher
churn rates. Sending more stabilization messages can help reducing this derogation,
however the basic problem is not solved.

In networks with extreme churn rates maintaining the overlay structure is not feasible
at all. Thus, Chord does not provide stochastical scalability. In Section [6.1, we will
propose algorithms improving the stability of the overlay, despite reduced bandwidth
requirements. An evaluation of various stabilization variants, including worst case sce-
narios where a large fraction of nodes fail simultaneously, can be found in Section

5.2.3. Design parameters

The parameters we evaluated so far cannot be influenced directly. The number of users
and their behavior may only be influenced indirectly by giving incentives to the users.
In contrast to that, design parameters represent means of finding an optimal trade-off
between the performance of the protocol and the related signaling overhead.

Number of Neighbors I The main reason, on the one hand, to store more than one
successor is that Chord’s ring structure is lost as soon as all successors of a single node
fail®>. On the other hand, the packet size of the stabilization messages grows with the
number of neighbors L, as all neighbor entries are included in the stabilization packets.
Furthermore, if notification messages are used, more notification packets will have to be
sent, as more neighbors must be informed about changes in the overlay topology.

The authors of Chord recommend using L = [log, N'| neighbors in order to be able to
resolve queries w.h.p., even if half of the nodes fail simultaneously [SMK*01h|. However,
if nodes fail with a high, but realistic, failure probability of pg; = 0.01, less successors will
be sufficient to prevent a disruption of the ring structure with high probability [BSHO5D].
In our simulations ([log, 20,000] = 15), five successor and five predecessor entries proved

3The probability of such a ring break is approximated in [BSHO5b]. This probability gets smaller, the
more neighbors a peer stores.

78

5.2. Evaluating the Chord protocol

£ 3% 1 increasing number ot 1225
F 8 of neighbors L e 1227
E 2% - iy [=29
©
2]
g A
o s ()
g | D ""-. e U g
e irec e

0% f T T T T g—[//—\

0 20 40 60 80 100 120 oo

Mean online time E[T,,] in min

Figure 5.13.: Using more than 2 -3 neighbors does not significantly improve the stability of the
overlay topology.

to be sufficient for reducing the number of erroneous pointers to a moderate value under
realistic circumstances (see Figure [5.13)). No notable improvement in terms of a reduced
number of erroneous neighbor entries can be discerned for larger values of L. Again,
we observe that Chord scales well with the network size N (Section [5.2.1)). Thus, the
parameter L should not be selected as a function of N (as suggested in [SMK™T01b]), but
depending on the respective churn rate.

In Figure [5.13] the upper 4 curves represent the percentage of nodes with any errors in
their successor lists, and the lower 4 curves represent nodes with direct successor errors.
We still recommend using a slightly larger set of neighbors in the final implementations
to prevent network break downs by all means. Moreover, compared with Figure [5.10| no
such striking peaks in the error probability will occur if neighbor lists span at least 2 -3
neighbors.

Neighbor Stabilization Period tg,, The frequency of the stabilization calls has a
significant impact on the stability of Chord’s ring structure. Figure shows that
raising the length of the stabilization period (tsap) increases the probability that more
than one join occurs within one stabilization period between two adjacent nodes. If node
failures are also taken into account, the probability that two or more topology changes
between closely neighbored nodes will happen in a short period of time, will be even
higher.

Using a list of several predecessor and successor entries and sending notification messages
(Section can reduce the time necessary to repair all neighbor list entries. Still, a
longer stabilization period leads to more neighbor list errors (see Figure . The
uppermost curve belongs to a stabilization period of 120 s. The upper 4 curves show the
percentage of nodes with any error in their successor entries, whereas the lower 4 curves,
which all coincide, show nodes with a direct successor error.

Sending complete neighbor lists can repair direct neighbor errors even for long t.;, values
almost as good as for short values. In contrast, non-direct neighbor errors increase with
longer stabilization periods. Reducing the stabilization period from 120 s to 60 s, for

79

5. Performance, robustness, and cost analysis

S _
X 6% | & increasingstabilize | B tgap = 1208
i periodt,., | At = 608
2 X toap = 308
:g 4% + =~ L e o tan = 158
2
o
S
Q 2%
1S
o
.
rr

0%

0 20 40 60 80 100 120 oo
Mean online time E[T,,] in min

Figure 5.14.: Chord’s stabilization period has a significant influence on the correctness of neigh-
bor entries.

example, decreases the percentage of nodes with erroneous neighbor lists from 2.9% to
1.7% in a network with mean session durations of 60 min. This dependency results from
the fact that a node, that sends notification messages about a new/failed node n, does
not know all other nodes that have n in their list of neighbors. As mainly more distant
nodes are not informed about the change, it takes a considerable amount of time until
the stabilization algorithm is able to correct all entries.

Again, bandwidth limitations prevent stabilization to be called with high frequencies. If
tstap 18 halved, stabilization will require double the bandwidth and vice versa (not regard-
ing notification messages). Thus, an optimal value for t.;, depends on the requirements

of the system, the available resources and the user behavior (mainly MTB.J)).

Finger Update Period t;, We define the finger update period tg, as the time wherein
all different finger entries are update once. Therefore, the more fingers each node stores,
the more finger updates will be performed in every finger update period. Updating
fingers more frequently requires more bandwidth, but may be reasonable in scenarios with
high churn rates as out-dated routing entries result in timeouts and, thus, in increased
search durations. Thereby, updating fingers more often increases the efficiency of the
system. However, the finger update period does hardly affect the stability of Chord’s
ring structure as stabilization entries (neighbors) are kept completely separated from
routing entries (fingers) in our current implementation.

Timeout value Timeouts are common in P2P networks. Traffic measurements confirm
that P2P traffic in particular shows a large fraction of non-malicious outbound connection
attempts to non-existing hosts. As (file-sharing) peers are highly unreliable, unsuccessful
connection attempts are common in P2P networks [Joh08|. Thus, finding an appropriate
timeout value is another important aspect when optimizing P2P networks.

On the one hand, re-transmitting messages too early results in redundant messages and,
thus, increased signaling overhead. On the other hand, waiting too long, before assuming

80

5.3. Related Work

a node failure or a lost packet, results in increased search delays. We distinguish between
type 1 errors (false positive) and type 2 errors (false negative). In this context, errors
of the first kind means nodes did not (yet) consider a neighbor to be stale, although the
node failed. A type 2 error is assuming a node failure while the node is still alive.

TCP connection timeouts are in the order of several minutes [Inf81]. As the overlay
structure should be repaired as soon as possible, waiting for a TCP timeouts is not
feasible. Also, many P2P protocols use UDP. That is why P2P applications usually
implement their own timers. In our implementation we use two different timers. The
one hop timer tyop is used for monitoring a single hop, whereas the lookup timer tsearch is
used for re-starting the complete search. This will be necessary if the lookup terminates
early, for example, by reaching a dead node with no further possibility to backtrack.
Rhea et al. [RGRKO03| discuss three variants of a timeout calculation: fixed timeout
values (as we use them in our simulations), a TCP-style calculation of timeouts (as
suggested in Kademlia), and an estimation of optimal timeouts for each link based on
virtual coordinates (like Vivaldi [DCKMO04]). They show that setting all timeouts to a
fixed value (of 5s), the mean overall lookup latency is more than twice than the one
of the other variants, even for low churn rates. This verifies the importance of good
timeout values. In scenarios with high churn rates, good timeout values are even more
important than the use of Proximity Neighbor Selection will be explained
in Section [6.2.1.2). Virtual coordinates show similar results as TCP-style timeouts for
low churn rates, but they clearly outperform TCP-style timeouts for high churn rates.
That is why we suggest using virtual coordinates in latency-critical applications despite
their increased complexity and signaling overhead.

Conclusion We showed that design parameters are important means of adjusting the
protocol to the given scenario. Thereby, finding an optimal value for most parameters
requires an estimation of the user behavior and the number of participants. Binzenhofer
et al. introduce efficient and precise algorithms to estimate the current size and status
of the overlay [BSHO05al, BKHO7].

The stabilization period and timeout values, in particular, will be able to significantly
improve the performance of the system if adapted to the current system status. Then,
an optimal trade-off between low signaling traffic and an up-to-date overlay structure
can be made, resulting in shorter lookup durations and higher lookup success. Moreover,
this section once more showed that Chord offers good functional scalability, but fails to
work in scenarios with extremely high churn rates.

5.3. Related Work

During work on this thesis, structured P2P protocols became a very popular research
topic and they started becoming implemented in popular P2P applications. Conse-
quently, a lot of related work on evaluating these protocols exists. That is why we
concentrate on selected publications, which are closely related to our work, and present
important results.

81

5. Performance, robustness, and cost analysis

First, most structured P2P protocol proposals evaluate the performance of the new
protocol and compare it to related work. Chord was one of the first DHT-based lookup
protocols, thus, a lot of evaluations exist [SMK™01al (GLR04, \GBL™03, MM02, RGRK03|
ZHST04]. Yet, most authors focus on the mean lookup path length or the overall lookup
latency in networks without churn. Furthermore, some simulations evaluate the lookup
success rate in scenarios where a large fraction of nodes failed simultaneously. In general,
their results are in line with our findings.

Binzenhofer [Bin08| performed a detailed mathematical delay analysis of Chord-based
overlay networks. In his work, he evaluated the impact of the Chord size on the overall
lookup latency. For example, in a stable network with 10,000 live nodes and a mean
of E[TT], the mean lookup latency is about 7E[TT]. Moreover, 99% of all lookups
are resolved in less than 17E[TT], and 99.99% of requests are answered in less than
25 E[T'T]. Dynamic networks are not evaluated.

Gummadi et al. [GGGT03| focus on the impact of various DHT designs on resilience and
proximity routing. Different overlay geometries provide a different degree of flexibility
in the selection of neighbors and routes. Thereby, ring and XOR geometries offer the
highest degree of flexibility and outperform more complex geometries. By choosing rout-
ing neighbors with low round trip delay, the overall lookup performance is significantly
improved (see Section[6.2.1.2). Moreover, being able to choose various lookup paths, the
protocols are more resilient to the (simultaneous) failure of random nodes. Yet, the im-
pact of different churn rates is not evaluated. Also, no information about the consumed
bandwidth is given.

Jain et al. [JMWO3] introduce a relative delay penalty (RDP), i.e., the ratio of the latency
experienced when sending data using the overlay to the latency experienced when sending
data directly using the underlying network. Their main finding is that better routing
heuristics as well as a topology-aware overlay construction result in considerably reduced
lookup latency. Moreover, improved heuristics add almost no link stress. However, again
only stable networks are evaluated.

Li et al. [LSG™04, [Li06] discuss the correlation between performance (e.g., mean lookup
latency) and costs (i.e., mean bandwidth consumption) for different structured P2P
protocols under churn. Thereby, the authors analyze the impact of tuning different
design parameters. For each protocol, all possible parameter combinations are simulated
(using the p2psim simulator |[GKL™|) and a convex hull is calculated for all results. For
example, the point (z;y) on the convex hull might reveal the minimal lookup latency v,
which can be achieved for a given bandwidth consumption x, given optimal parameter
settings. If the convex hull of protocol A is below B’s convex hull, protocol A wil be
more efficient than B. If the convex hulls cross, one protocol will be more efficient than
the other when limited to low bandwidth, while the other protocol will be more efficient
if allowed high bandwidth use. Yet, a constant churn rate is applied, i.e., nodes crash
and rejoin at exponentially distributed intervals with a mean of one hour. The influence
of different churn rates is not considered.

In the following we summarize Li’s most important results. All protocols were able to
provide similar lookup success for medium to high bandwidth consumption (> 40 Byte/s
per node), whereas OneHop, Chord, and Kelips [GBL™03| outperformed Kademlia and
Tapestry. As expected, OneHop achieved the shortest lookup latency, followed by

82

5.3. Related Work

Tapestry, Chord, Kelips and, far behind, Kademlia. Interestingly, only Chord was able
to consume less than 7 Byte/s per node for the given parameter settings.

Using their results as basis, the authors give several suggestions for optimal DHT design
choices: First, exploiting existing traffic is the most efficient way of acquiring new routing
entries. Second, nodes should spend idle bandwidth for expanding their routing table.
Moreover, sending parallel lookups is more efficient than sending routing entry updates
more frequently. Yet, the staleness of routing entries should be bounded to a moderate
value. Finally, the authors introduce Accordion, a self-tuning, bandwidth-efficient DHT-
based lookup protocol that tries to consider these design choices.

The influence of Chord’s stabilization interval tg., on the lookup performance in dy-
namic networks is evaluated in [RS05]. The authors simulate a constant churn rate with
E[T,.] = 60 min. They verify that more stale routing entries exist for long stabilization
intervals. As a result, the probability of successful lookups drops significantly, e.g., 90% of
the lookups fail when #., = 103 s. On the contrary, extremely small values (¢san, < 7.5 8)
may also result in increased routing table inconsistence due to oversampling-phenomena.
Moreover, [RS05] reminds us of interpreting simulation results carefully. The simulations
unexpectedly showed that the average path length decreases for increasing ., values.
However, this decrease cannot be explained by better performance. Instead, long stabi-
lization intervals increase the probability of stale routing entries. In addition, the longer
the lookup paths, the higher the probability to encounter multiple timeouts and, even-
tually, the higher the probability for the search to fail. As a result, successful lookups
are likely to have short lookup paths.

Only few related work exists on the evaluation of Chord for varying churn rates. Rhea
et al. [RGREKO03| compare FreePastry [fre08] to Chord/DHash-+|DKK™01], two real im-
plementations. Thus, they are able to evaluate real Internet conditions instead of a
simplified network model. They show that FreePastry fails to successfully complete a
majority of lookup requests under heavy churn rates (E[7},,] = 23 min). In contrast to
that, almost all lookups in Chord returned consistent results for this churn rate. Yet, this
comes at the cost of high bandwidth consumption and long lookup latency. However,
the authors perform no real parameter study, but just use the default protocol settings.
We argue that various design parameters should be adapted to the observed churn rate.

A detailed theoretical analysis of Chord is available in [EAKAHO4]. The authors cal-
culate the correctness of successor pointers under churn. From that, they calculate the
probability of a network disconnection (or “break-up”; see Section and the frac-
tion of stale finger entries. Moreover, the costs of finger stabilizations and lookups are
computed. The authors verify their formulas by comparing them to simulation results.
Amongst other things, the authors affirm our findings: The resilience of the system does
not depend on the size of the system, but is a function of the ratio of stabilization rate
to churn rate. For example, compared to a stable system, the performance will degrade
by 60% if the ratio is 30 (e.g., 60 stabilization calls per node per hour with 2 join/leave
events per node per hour). This degradation is independent of the overlay size.

83

5. Performance, robustness, and cost analysis

5.4. Conclusion

In this chapter we showed that an application based on Chord is feasible in huge net-
works, as they were designed to address the scalability problem inherent to flooding.
On the contrary, networks with high churn rates may be an obstacle for structured P2P
protocols, as the signaling overhead grows with shorter session durations. Compared
to unstructured P2P networks, structured overlays yield the advantage of being able to
always find content, even if it is rare or unique.

We have analyzed the influence of different parameters on the stability and performance
of the Chord structure. Parameters, like the current churn rate, have a significant in-
fluence on the network. Yet, the number of participants and their behavior can only
be influenced indirectly, by, for example, creating incentives for the users. Nonetheless,
knowledge of these parameters is essential for setting the design parameters of the sys-
tem to optimal values. For example, tuning the stabilization period to small values is
necessary for networks with high churn rates. Also, timeout values are very critical and
should be adapted to the current network conditions. Thereby, a major result is that
optimal parameters do hardly depend on the network size, but primary depend on the
current churn rate. This knowledge helps application developers to set their parameters
to optimal values for their specific application environment.

Other researchers reported simulation and analytical results similar to our evaluations.
Chord maintains a simple and clear overlay topology using simple protocols. Yet, its
ring geometry is highly flexible and its performance in terms of lookup path length,
robustness, and signaling overhead is similar to other DHT protocols.

84

CHAPTER 6

Optimized robustness and performance

The evaluations in the previous chapter showed that it is important to improve both
robustness and performance. In this chapter, we present related work and introduce our
own contributions. Though most mechanisms can be adapted to different DHT protocols,
this paper concentrates on their application to Chord.

6.1. Optimized overlay robustness

In the following, we present several modifications to Chord’s stabilization protocol in
order to make the resulting overlay structure more stable.

6.1.1. Related Work

6.1.1.1. Improved stabilization

IGT06] suggest adjusting the stabilization rate dynamically. The authors argue, that the
churn rate varies over time, with occasional peaks [GSGO02]. Thus, calling stabilization
frequently causes high communication overhead in long periods of low churn rate, whereas
reducing the stabilization rate means erroneous node states and a high rate of lookup
failures. In order to adjust the stabilization rate, peers must estimate the overlay size
and dynamism.

The authors suggest separating liveness checks and accuracy checks. Liveness check
means sending a ping request in order to find stale routing table entries (O(1) hops).
Accuracy checks consist of a key lookup (usually O(log, N) hops) and are required to
repair constraints imposed by the DHT protocol (e.g., in Chord, a finger entry should
point to the successor of the theoretical finger position). By separating both checks,
the costs of stabilization can be controlled more effectively. Moreover, the stabilization
decision is taken separately for each single pointer. That way, the signaling costs can be
reduced further.

85

6. Optimized robustness and performance

For each pointer p, the probability of the entry being stale PZ . and the probability of no
longer abiding the protocol-specific constraints PP are calculated. The re-calculation
of the probabilities is triggered both periodically and by external events (like receiving
a message from a peer or the detection of a failed peer). If one probability reaches a
certain threshold, a liveness or accuracy check for pointer p will be performed.

Using the p2psim simulator, the authors of [GT06] show that their adaptive stabilization
framework is able to determine a suitable stabilization rate on-the-fly. Thereby, a target
lookup rate is defined and the stabilization rate is tuned accordingly. The presented
solution clearly outperforms periodic stabilization in scenarios with constant and variable
churn rates. Moreover, a performance vs. cost trade-off nearly as good as the theoretical
estimation given by [MCRO03| could be achieved. Thus, the decision of choosing the
threshold values may be supported by predicting performance and costs.

ILLDO04] apply a reactive routing state maintenance strategy. Information about new
nodes and node failure is piggy-backed on lookups and query replies. By using parallel
lookups, nodes are able to adjust the number of messages sent. In lookup-intensive
workloads the query rate, and thus the stabilization rate, is high. This also means that
the number of parallel lookups may be reduced. In contrast to that, in churn-intensive
workloads, a high stabilization rate is required. If the query rate is low, more parallelism
will have to be added in order to increase the number of exchanged messages. Additional
stabilization messages will be sent if the query rate is too low to piggy-back enough
information for maintaining the overlay structure. The protocol adjusts well to different
churn and lookup rates.

6.1.1.2. Security concerns

General security concerns There are different kinds of security concerns in DHT-based
P2P networks. Most research so far concentrates on misbehaving nodes not implementing
the protocol correctly or which simply cannot be trusted. [SM02] gives a good overview
of security problems which are inherent to large P2P systems. The focus is on adversary
peers which mislead legitimate nodes by providing them with false information. The
authors concentrate on attacks against the routing and against the data storage system.
[Sit02] presents improvements to the Chord protocol for detecting malicious nodes.
First, existing verifiable properties of the protocol, like the assignment of node IDs,
the monotony of lookup progress, or the ordering between predecessors and successors,
should be checked. For example, Chord nodes should check whether the neighbor lists
of their own successors overlap properly. Another more active check is performed by
sending a random number to another node n. By replying to the challenge and echoing
the number, n shows that it is alive and its Chord ID is the correct hash of its phys-
ical address information. Moreover, public keys can be introduced to sign messages.
By recording messages of a suspicious node, its behavior could be checked. Also, cryp-
tographic authentication may be realized, thus allowing nodes to identify nodes they
previously communicated with.

[CDG™02al studies attacks aimed at preventing correct message delivery in structured
P2P overlays and presents defenses to these attacks. A secure routing algorithm is
proposed which allows tolerating up to 25% malicious nodes while providing good per-

86

6.1. Optimized overlay robustness

formance when the fraction of compromised nodes is small.

Disconnection of the overlay topology In this thesis, we concentrate on reachability
and stability of the overlay in network without attacks. Nonetheless, the overlay might
get, disrupted and fragmented.

Binzenhofer [Bin0§| calculates the probability for a non-malicious local disconnection in
ring-based overlays. A ring will be disconnected if any peer lost all of its L successors.
Previous work showed that it is very unlikely that all successors will fail, if L = Q(log, V)
and the failure probability of peers pg.; is less than 1/2 [SMK™01a|. Binzenhofer disagreed
with this line of reasoning. Although it is unlikely that one specific peer gets disconnected
(local disconnection), one cannot draw the conclusion that a global disconnection (at least
one peer in the overlay loses all its successors) is also very unlikely. Moreover, the author
argues that the failure probability of nodes should be specified for a corresponding time
frame, e.g., the probability for a peer going offline within one stabilization period tg,y,.
In the following, important results are summarized (L = [logy, N'|). All analytical re-
sults are backed up by simulation. Obviously, the size of the network N influences the
probability of a global disconnection pgq in two ways: Larger overlays N cause larger
successor lists L, and thus, lower probabilities for local disconnection. Moreover, the
larger the overlay size N, the higher the probability for at least one node getting locally
disconnected. For N = 10° and pg.y = 1/2 a local disconnection is very unlikely (1079).
Interestingly, pyq clearly decreases with the size of the overlay for N < 10? and asymptot-
ically reaches a value of about 40% for larger N. This means that almost 40% of rings will
get globally disconnected if 50% of nodes fail within one stabilization period. However,
realistic values for pg; are less than 0.1, where the probability of a global disconnection
is less than 107! for N = 10°. Yet, pyq is calculated within a single stabilization period.
However, the longer the overlay exists, the larger rises the probability of a global discon-
nection within its lifetime. For example, the probability of a disconnection within one
month is larger by order of a magnitude than pgq.

A few papers discuss network partitioning issues: Mechanisms for discovering other par-
titions as well as merging multiple partitions are required. In unstructured P2P overlays
merging isolated overlays is trivial. In contrast to that, complex algorithms are necessary
in order to gracefully merge structured overlay networks.

[HITWO3| shows a simple merging algorithm to recover from partitions for the Skip-
Net protocol. Due to its path and content locality feature, SkipNet [Pug90| is able to
handle disconnections gracefully. In order to discover other partitions, pointers to some
well known nodes in each organization are maintained. When an organization is discon-
nected from the Internet, SkipNet will partition itself into several disjoint, but internally
well-connected, fragments. Using the pointers to the well known nodes within the same
organization, SkipNet is able to discover and merge all partitions from the same orga-
nization. If the connectivity to the Internet is repaired, the global SkipNet might be
discovered by contacting other well known nodes. Moreover, nodes that lost either suc-
cessors or predecessors, assume that they are the edge of a disconnect event. Thus, these
edges periodically ping their unreachable neighbors to learn about the restored network
connection. Merging two segments is straightforward and involves only the edge nodes

87

6. Optimized robustness and performance

of each segment. In SkipNet, only few routing pointers need to be restored to connect
segments. In contrast to that, structured overlay networks without locality features are
much more “shattered” when network disconnection occurs.

[DAQ6] discusses the problem of merging two separate DHT-based networks. The authors
show that circular DHT-based networks will not correctly operate until the merger opera-
tion completes. If two partitions of similar size merge, almost all peers will have to update
their neighbor lists. Most important, a correct ring topology must be re-established in
order to provide correct lookups of keys. This is a prerequisite for transferring stored
(key; value)-pairs to the new corresponding peer. Only afterward all keys may be found.
From the perspective of individual peers, merging two overlays can look very similar to
churn. However, from a global point of view, the magnitude of routing state changes
is much higher when two partitions are merged. Usual maintenance operations may
not be able to deal with the changes, thus, additional merger algorithms need to be
implemented. Yet, these algorithms are not fully understood and still in experimental
phase.

6.1.2. Advanced Chord stabilization

We implemented an advanced Chord variant with several small modifications compared
to the basic Chord protocol. These modifications mainly affect the overlay stabilization.

Symmetrical neighbor state Instead of storing only successors, we introduce sym-
metrical neighbor lists. Fach node additionally stores the same number of preceding and
succeeding nodes. Moreover, STABILIZATION messages are sent to both direct neighbors.
These messages include the complete neighbor list of the sender and do not require any
reply. The messages serve two purposes. First, they act as keep-alive messages and
inform the direct neighbors that the node is still alive. If no such messages are received
for several stabilization periods, the neighbor will be expected to be dead and will be
removed from the list of neighbors.

Second, the information included in the STABILIZATION messages almost correlates with
the neighbor list of the recipient. Thus, nodes can use the information to update their
own neighbor list. New nodes reported in the received list are integrated in the own
neighbor list, and nodes reported as failed are removed from the neighbor list. Thereby,
lists received from the successor are expected to hold more accurate information about
succeeding nodes, whereas lists received from the predecessor are expected to contain
up-to-date information about preceding nodes. That way, it is possible to transmit
information about several changes within one message, thus speeding up stabilization.
A faster stabilization also means a lower probability of errors summing up. Moreover,
several nodes simultaneously joining between two adjacent nodes can be integrated in
the ring with one stabilization call. In contrast to that, in Chord a separate stabilization
call is required for each joining node.

Moreover, compared with the two-way stabilization in Chord, the number of messages is
halved with this approach. Thus, either the signaling overhead is reduced, or stabilization
might be called twice as often, resulting in more stable overlay.

88

6.1. Optimized overlay robustness

Notification messages The advanced stabilization scheme is event-triggered, i.e., in-
stead of sending only periodic stabilization messages, it uses notification messages to
inform other nodes about the fact that a new or failed node was detected in the neigh-
borhood of the node. For example, after joining the overlay and receiving a neighbor list
from its successor, the new node announces itself by sending corresponding notification
messages to all of its neighbors. Then, almost all neighbor lists are updated at once,
without the need to wait for the next stabilization period.

On the downside, each NOTIFICATION message increases the signaling bandwidth. How-
ever, the stabilization period could be stretched in exchange, as the NOTIFICATION mes-
sages already update almost all neighbor lists. In scenarios with low churn rates, sending
NOTIFICATION messages, together with a large stabilization period, increases the robust-
ness of the topology and reduces the required signaling bandwidth (see results in Sec-
tion for a comparison).

Another drawback of notification messages lies in the fact, that they are sent at irregular
points in time, which could lead to traffic peaks, whereas Chord’s stabilization algorithm
produces a constant bandwidth. If different notifications were sent within a short period
of time and in a small part of the ring topology, e.g., if two or more nodes observe
the same topology change at nearly the same time, the available bandwidth might be
insufficient and packets would be lost. We approach this problem with the following rule:
if a node s observes that its predecessor n has failed, it will send notification messages
to all nodes in its list of neighbors. If any other node observes a failure of node n, it
will inform the successor s of the failed node. Node s then decides whether to send
notifications or not. Thus, if several nodes observe the same fail event, only one set of
notification messages will be sent.

Finger update In our implementation of the protocol, we systematically update fin-
gers f; starting from the largest finger (i = m) and decreasing i with every call of the
procedure. If a finger identical with the successor of n is reached (i ~ m — log, N),
smaller fingers will be skipped (as they all point to n’s successor) and the finger update
procedure will be restarted with the largest finger. Thus, no redundant finger updates
are performed for these fingers.

Moreover, nodes do not execute FIND _succkessoRr() lookups for updating fingers f;, as
this operation requires O(log, N) overlay hops. Instead, nodes directly send ping-like
FINGER _UPDATE messages to their fingers. Receiving such a message, a node n will check
whether it is the successor of the theoretical finger position f; theo. In this case it returns
a simple Ack message. Otherwise, if n knows the successor s of f; theo (as it is in the list
of predecessors of n) it will return s. If n does not know the correct successor s, n will
return NACK and the originating peer should run a FIND_SUCCESSOR (f; theo) lookup to
find the correct finger entry. If no response to a FINGER _UPDATE message is received,
the finger entry will be considered as stale and a FIND_SUCCESSOR (f; theo) l0okup will be
necessary to find a new finger entry.

In our simulation and testbed, we additionally update our finger tables by exploiting
existing traffic in the network. FEach time a packet from a node in the finger list is
received, we know that this node is still participating in the network and we can skip

89

6. Optimized robustness and performance

this finger entry in the next rix_FINGER() invocation. More traffic per node means a
packet from one of our fingers is received more frequently. As a result, less signaling
overhead is required for updating finger entries.

Finger list may be updated even faster by spending some additional bandwidth. A node
n joining the network may copy the finger list from its successor. These pointers are
very useful as a start and already provide good lookup performance, as they are close
to the correct fingers of n. Moreover, node n can reversely calculate the theoretical IDs
of nodes that should have fingers pointing to it. By searching the predecessors of the
theoretical IDs, the corresponding nodes can be found and informed about node n.
Furthermore, we do not call Fix_FINGERS() every tg seconds. Instead, we define a larger
finger update period tg, and determine tg such that all different fingers are updated once
within tg,. Thus, we can guarantee that no finger entry is older than ¢g, seconds.

6.1.3. Symmetrical stabilization using tokens

Analyzing the advanced Chord protocol, we found out that sometimes STABILIZATION and
NOTIFICATION messages were received in the wrong order, as nodes call the sTABILIZA-
TION() function independent of each other. This results in errors in the neighbor lists,
which are not repaired until the next stabilization call. As the Chord overlay network
is shaped like a ring, we tried to apply some of the fully developed techniques from ring
networks [LMWOg| to the Chord algorithms. Instead of using Chord’s disordered stabi-
lization scheme, we use token-like sTABILIZATION packets that circulate in both directions
of the ring. In basic Chord, stabilization is called periodically, resulting in a constant
bandwidth. On the contrary, our Token Stabilization consumes only a small constant
bandwidth, and will send more messages if the overlay topology changes more frequently.
Nonetheless, less traffic in total is required to achieve higher overlay stability [KNE05].
Each token contains a list of the last nodes that it has passed. When receiving a token, a
node shifts the list by one entry, discarding the farthest node, and inserts itself at the top
of the list. The token is consequently forwarded to the next node in the direction of the
token. Nodes can update their successor and predecessor lists with these tokens. Thereby,
the token must contain at least L nodes, with L being the size of the successor/predecessor
list. If a token is received from a sender that is not an immediate neighbor, the node
notifies the sender of the token about its correct neighbor, if possible. Otherwise the
node will suggest a node located closer to the sender. This ensures that the token is
always passed along the complete ring without skipping any node. We call this the
token redirection mechanism. In the following, we explain our token-based stabilization
in detail.

6.1.3.1. Algorithm

Node joins When a new node n joins the ring, it asks an arbitrary node b, called
bootstrap, to search for its successor s. Using this information, it sends a join request
to s (Figure ®). Node s does not yet add n to its list of neighbors, but sends
both a token request to its predecessor p and a counterclockwise notification token to n
(Figure @). Node p answers the token request by sending a clockwise notification

90

6.1. Optimized overlay robustness

n n

new new

succ=s O JOIN() TOKEN_REQUEST() O ccw_token

pred =... pred =n,.,
succ=s succ= ...

@ @

n n

new | pred=p new

cw_tokyw O succ=s ccw_:oken/ O \cw_token

pred = ... pred=p
succ=s succ=...

€) @

Figure 6.1.: Illustration of a join event using tokens.

token to n (Figure [6.1]®). Note that the first token arriving at node n has to be queued
until the second token arrives, as the second token carries necessary information for
routing the first token to the next node. After both tokens have arrived at node n, it
has all the necessary information to join the ring. As n forwards each token to p or s,
respectively, they both add n to their list of neighbors. Node n has now successfully
joined the ring (Figure @). Both nodes p and s forward the notification tokens to
their neighbors, so that all other nodes in the ring area where n has joined, will, after a
certain time, be aware of the presence of n.

As joining nodes only affect the neighbor lists of a locally limited region on the ring (L
nodes in every direction) we use the following rule: A notification token will be discarded
if it arrives at a node outside this region, i.e., the information carried by the token does
no longer change the neighbor list of the node. Combined with the token redirection
mechanism, even simultaneous joins of several nodes between two existing nodes can be
handled without any problems.

Node failures Keep-alive messages will be used to verify whether both immediate
neighbors are still participating in the network. Therefore, each node periodically sends
a keep-alive message to both of its neighbors, and consequentially receives keep-alive
messages from both neighbors. If successive keep-alive messages fail to appear, the node
will have to assume that the neighbor has failed. The keep-alive messages can be small
packets, which contain only the IP addresses of both sender and receiver (e.g., an ICMP
packet). For this reason, they will not lead to high overhead even if sent in short periods.
Additionally, node failures will also be detected if acknowledgments from any packet
(e.g., FIND_successor()) fail to appear.

91

6. Optimized robustness and performance

TNT expired

receive token

receive token

SA: sender address receive token SA > MA
MA: my address SA < MA

ACTIVE
MONITOR

send periodic
token

REPEAT/
STANDBY

forward token

Figure 6.2.: Token state diagram: The active monitor is responsible for sending periodic tokens.

Propagation of node failures is also done with notification tokens. If any node detects a
node failure, it will delete this node from its neighbor lists and send a notification token
in both directions on the ring. The tokens contain the IP address of the failed node
and a node failure flag. Again, the token is discarded as it arrives at a node outside the
affected region of the ring.

Circulating tokens Not only join and fail events cause tokens to be sent on the ring.
We also circulate tokens for global maintenance and information spread. Trying to keep
the network load low, it is not desirable to have more tokens on the ring than needed.
Therefore, a simple arbitration scheme similar in the style of ring networks is used (see
Figure [6.2)).

Every node is initialized in repeat/standby state, i.e., it forwards any received token. If
no token has been received for a certain time, a Timer No Token (TNT) will expire. The
node will become an active monitor and start sending tokens on the ring. It will switch
back to repeat/standby state if it receives a token that has been initialized by a node
with an ID smaller than its own. This mechanism ensures that after a transitional state
only one node generating tokens remains. This is done independently of each other for
both clockwise and counterclockwise tokens.

Joint use of tokens Tokens circulating around the whole ring can be used for a great
variety of purposes. They are mainly used to maintain and repair neighbor lists but they
can also carry other payload, such as status information. Circulating tokens can, for
example, be used to precisely measure the size of the network and propagate the result
to all nodes. Then, this information can be used for tuning various other settings in
order to improve the networks performance and reliability.

There may also be scenarios where a central control station, capable of monitoring the
ring and its structure, has to be implemented. In this case, a circulating token could
periodically send its list of last visited nodes back to the control station, thus creating
a bird view on the ring. A similar approach for creating snapshots of the overlay is
introduced in [BKHO7].

92

6.1. Optimized overlay robustness

Basic Advanced Token
Stabilization Stabilization Stabilization
.qe . . tping =].5 S,
Stabilization period tstab = 7 S tstab = 178
ttoken — 30s

1 predecessor,

5 predecessors, 5 successors
d successors

Number of neighbors

Size of replication group 3 successors

Table 6.1.: Selected design parameters related to the overlay stabilization

6.1.3.2. Analysis and simulation results

The Chord protocol works well as long as low churn rates are used. The more frequently
nodes join and leave the network, the more inconsistencies and failures occur during the
simulation, because the Chord stabilization mechanism fails to keep up with the topology
changes. Calling the sTaBiLIZATION function with shorter periods improves the stability
of the overlay, but leads to more overhead traffic. This assumption is true for all kind of
stabilization mechanisms, but other approaches lead to a higher stability requiring the
same traffic.

In the following, we evaluate overlay stability and related traffic load for three different
stabilization algorithms, namely a basic Chord implementation (cf. Section , an
advanced Chord stabilization (cf. Section and the presented Token Stabilization.
Note that we are only interested in evaluating the different stabilization mechanisms.
Thus, all simulations performed in this chapter vary only the stabilization mechanism
and use the same algorithms for all other parts of the protocol.

To be able to compare the different stabilization schemes, we adjust the stabilization
periods in a way that with the highest churn rate, all three variants cause approximately
the same signaling overhead. These stabilization periods are then kept constant for all
simulations. Consequently, we set the periods for the different algorithms to result in
the same traffic load for an average online time of 5 min. Then, the average online time
is varied from 5 min to infinity while keeping the stabilization period fixed. Mean offline
times are set to the same values than the simulated mean online times (E[T5,] = E[T,g]).
The values of other parameters that have an influence on the ring stabilization may be
found in Table [6.11

All simulations were performed with an average number of 10,000 online nodes and a
total of 20,000 nodes. If any node loses all of its neighbor entries, it will try to rejoin
the network with the help of the bootstrapping system. Anyway, rejoins are rare even
for high churn rates. The faster the stabilization mechanism is able to repair erroneous
neighbor list entries, the smaller the probability that a rejoin is necessary. In worst
case simulations, where a big fraction of nodes fails at one point in time, stabilization
consequently has no chance to repair neighbor lists of nodes, where all neighbors have
failed during the breakdown. In such case, increasing the number of neighbor entries
(e.g., to logy N) would reduce the number of rejoins, however, at the same time, increase
the consumed bandwidth.

93

6. Optimized robustness and performance

22*9 i O B

]
(1]
1]
3]
]

(o R I R T Mttt 1t S = S o (m]

O
E% 20 1% [@-- Basic Chord stabilization
s € 18 - Q ~~~~~~ A~ Advanced Chord stabilization
6216 Ca. -3 Token Stabilization
=2 " e
S a 12 A v A
2.5 10 -
w
8 T T T T T T H

0 20 40 60 80 100 120 o
Mean online time E[T,,] in min

Figure 6.3.: The average stabilization traffic in Byte/s per node is constant for periodic stabi-
lization mechanisms, but clearly increases with high churn rates for event-triggered
stabilization schemes.

Stabilization traffic Figure shows the stabilization traffic in Byte/s per node for
the different protocols and the given parameters. Thereby, messages are transported in
a UDP packet (28 Byte header). We can see clearly, that the average traffic is constant
for the basic Chord protocol, as stabilization is executed periodically. Both the advanced
Chord stabilization and the Token Stabilization have a relatively small amount of peri-
odic traffic. Most traffic will be generated if changes in the topology are detected and
notification messages are sent. The fraction of pure stabilization traffic without any no-
tification messages can be read out at the rightmost x-values that correlate to a network
with infinite online times, i.e., no churn at all.

Stability/Robustness The number of nodes with no errors in their neighbor list is
shown in Figure In this diagram, Chord achieves a slightly higher stability than
our advanced Chord protocol, but we have to keep in mind that basic Chord requires
an average bandwidth almost twice as high as the improved variants. If the stabiliza-
tion period was re-adjusted to get the same bandwidth consumption, basic Chord would
result in significantly more erroneous nodes than both improved variants. The Token
Stabilization, despite its lower bandwidth requirement, outperforms the other stabiliza-
tion variants. Unfortunately, we were not able to simulate the network with small online
times for basic Chord, as there was too much churn to be manageable by Chord.

In a correctly shaped ring, tokens should only be received from an immediate neighbor.
Due to inconsistencies caused by joined or failed nodes, a sending node may not yet
be aware of these changes and forward the token to a (now) invalid neighbor. The
redirection mechanism ensures that tokens are always delivered to the correct successor
or predecessor, respectively. With this prerequisite, these tokens will automatically repair
partly inconsistent rings, without the need to wait for further sTaBIiLIZATION calls.

94

6.1. Optimized overlay robustness

1,0
0,8
0,6
0,4

0,2

Fraction of nodes
with no errors

0,0

improved stabilization

-G Basic Chord stabilization
-~ Advanced Chord stabilization
-3 Token Stabilization

20

T T T T T II/—\

40 60 80 100 120 oo

Mean online time E[T,,] in min

Figure 6.4.: The fraction of nodes without errors in their neighbor list decreases significantly if

the churn rate increases.

000 o\ [Basic Chord stabilization
8 ————— Advanced Chord stabilization
s 2 8000 - __ Token Stabilization
o O P
c = -7
w—= @ 6000 - 7
)
c c praEEEeh
O ~ 4000 - 7 -7
E]
O = |
c 3 {
e 2000 | ¢ 7

O T T T T T T T T T T T T

o 1 2 3 45 6 7 8 0 1 2 3 4 5 6 7 8
Time in min Time in min
Figure 6.5.: All three stabilization algorithms are able to recover from breakdowns where 25%
(left) and 50% (right) of all nodes fails simultaneously.

Worst case scenarios We also analyzed some worst case scenarios, where a big fraction
of nodes fails at a certain point in time. All stabilization mechanisms are able to handle
these breakdown rates, but the higher the percentage of failed nodes, the more nodes lost
all neighbors and had to rejoin the network with the aid of the bootstrap servers. We
assume that the bootstrap system itself does not fail and is able to handle all (almost
simultaneous) rejoin requests. The need for rejoins will be reduced if each node stores
more neighbors, thus, decreasing the probability of losing all neighbors.

Figure 6.5 shows two sample worst case simulations. At first, we join 10,000 nodes
into one Chord ring and wait until the ring is stable. No churn takes place during the
simulation, but at a certain point in time, a great fraction of nodes fails simultaneously.
In the left figure, a quarter of all nodes fail at t = 0. We can see that almost all nodes
have at least one error in their neighbor lists. Only five percent of the nodes are not
affected by failed neighbors. With the given parameters, basic Chord stabilization and
Token Stabilization perform quite similar. The advanced Chord stabilization falls behind,
because its stabilization period is smaller and failures are detected not that fast. After
about two minutes, the overlay is repaired. Now, replication mechanisms must ensure

95

6. Optimized robustness and performance

that all content, that was not lost with the failed nodes, is moved to the new replication
groups. However, a stable overlay is a crucial requirement for shifting content to the
correct nodes. The right figure shows a simulation where fifty percent of the nodes are
affected by the breakdown. In this scenario, the failures led to errors in every remaining
node. Three minutes after the fallout, an almost perfect ring-shaped overlay could be re-
established. This demonstrates how effective all three stabilization algorithm can handle
even extensive simultaneous node failures.

6.1.3.3. Conclusion

In networks with low churn rates the Chord stabilization algorithm is able to maintain a
correct ring structure. As churn increases, the stabilization period of every node has to be
reduced to handle all changes in the overlay topology, resulting in a higher network load.
In this chapter we proposed a token-based stabilization mechanism that copes with node
joins and failures in significantly reduced time, without generating additional overhead.
In general, we suggest that a stabilization algorithm will be more reliable and efficient if
nodes do not call staBirLizaTioN() independent from each other but in the correct order,
as it is given for our token-based approach.

Future work includes modifying the token mechanism to work together with a symmet-
rical Chord variant, where lookups can be routed in both directions. We believe that
both our token-based stabilization, as well as a symmetrical FIND _SUCCESSOR() algorithm
(e.g., S-Chord (see Section can support and benefit from each other.

In our implementation of the Token Stabilization, we set our focus to the analysis of the
algorithms performance in terms of lookup times and stability (measured in neighbor list
errors). As expected, the overhead caused by the token stabilization algorithm is much
lower than for the basic Chord algorithm.

However, there are some improvements that have not been implemented yet. We could
try to reduce the overhead caused by keep-alive messages. Therefore, a timer is set for
both neighbors (timeout value ~ stabilization period). When a node n receives any packet
from another node n’ the timer is reset. Instead of sending periodic keep-alive messages,
keep-alive packets would be sent only if the timer expired, i.e., no packet was received
from that node for a while. The measured round-trip time and packet loss probability
from ping-pong packets could also be used to estimate suitable timeout settings, i.e.,
when should a packet be re-sent or when can we safely assume that a remote peer is
down.

Furthermore, the token forwarding mechanism is not based on a send queue yet. There-
fore, more than one notify token, traveling in the same direction, could be queued at one
node: To reduce traffic, queued tokens should rather be merged and the resulting single
token should be forwarded. Especially in the case of high churn rates, the probability
that more than one token is held at a node that currently experiences timeouts at the
next node is significant. For these cases, the amount of necessary traffic could be reduced.
Furthermore, we suggest a neighborhood discovery mechanism. If a node n; detects
that its adjacent node n;,, has failed, it will try to forward the token to the next node
niio. Taking the amount of time needed for failure discovery into account, forwarding
a token over several failed nodes may require a lot of time. Still, the number of packets

96

6.1. Optimized overlay robustness

sent is considerable: transmission will be tried for several times until the destination is
considered as stale. Then, the process continues for the next destination. In case of
a transmission error, it may be faster to probe the whole neighborhood for responding
nodes and then selecting the best node that responded to the probe. This could be done
using a simple ping-pong mechanism that would involve only small packets. Especially in
case of high percentages of nodes failing at the same time, for instance due to a power loss
in a local network, this mechanism could provide both increased stability and decreased
routing overhead.

6.1.4. Repairing disrupted or partitioned overlays

The ring structure of Chord is especially vulnerable to attacks since each disruption of
the overlay can cause a disconnection of the overlay ring. In the worst case, the network
is split into two separate rings, which are not aware of each other. Such disconnections
cannot only be caused by malicious attackers but also by churn, i.e., by the frequency at
which new users join and leave the system. There are different proposals of how to handle
churn in a structured P2P network [RGRKO03], however, it is impossible to entirely avoid
failures in the system.

To increase the stability of Chord-like P2P systems, we present a novel self-protecting ap-
proach which is able to detect possible problems at an early stage and to react accordingly.
However, while it is certainly important to try to prevent attacks and failures, one cannot
entirely avoid them. As experience shows, distributed systems will encounter failures and
consequently should be designed for it. Therefore, we additionally aim at the recovery
from failures rather than at failure-avoidance alone. Our self-repairing algorithms are
able to automatically detect disruptions and will initiate redundant countermeasures to
re-establish the structure of the overlay [KBO6].

6.1.4.1. Security issues (and their detection)

Loss of all successors FErroneous successors can lead to erroneous lookups. In the worst
case, they can even cause disruptions in the overlay topology. Chord’s ring structure can
encounter two different kinds of serious damage. First, if a peer loses all of its successors,
the ring will break (see Figure [6.6). Second, the ring structure may fragment in two
halves or two separate sub-rings. In this section we discuss different offensive scenarios
that result in such overlay disruptions. In particular, we identify different threats and
their impacts.

Due to churn or a well directed Denial-of-Service attack on at least L successive
nodes on the Chord ring (with L being the size of a neighbor list), node p preceding
the affected part of the ring, will no longer be able to contact any of its successors.
In fact, it can be shown that the probability to lose all successors due to churn is not
negligible [BSHO5b|. After sending several ping messages to these non-responsive nodes,
a timer expires and the nodes are removed from the successor list of p. Consequently,
the ring structure breaks as depicted in Figure (L = 3). Node p can easily detect
such a break in the ring as soon as it discovers its list of successors to be empty.

97

6. Optimized robustness and performance

Figure 6.6.: Concurrent failure of p’s successors

As Chord lookups are only performed clockwise, p is not able to search for its new
successor. If it started a query FIND SUCCESSOR(ID(p) + 1), the lookup would first
search the predecessor of ID(p) 4+ 1. This implies that the lookup would come back to
node p. Therefore, performing a rejoin is no feasible solution for this kind of disruption.
The consequence of a loss of all successors is a transient routing state. That is, some
nodes might no longer be reachable, while others might not be able to forward search
queries correctly.

Partitioning of the overlay Another threat to the network is a partitioning of the
overlay structure, i.e., the ring fragments in two or more separate overlays [SMK™01a].
This scenario will be likely to occur if gateways between physically separated networks
fail. Chord’s stabilization mechanism updates all erroneous successor pointers. After a
certain time, two or more consistent sub-rings emerge. Lookups can still be performed
correctly in all fragments, but due to the partitioning, not all data stored in the original
overlay is still available in all sub-parts. A company running a global DHT application,
for example, will no longer be able to access all data stored in the DHT, if one plants
access point fails. Running a [DoS| attack on nodes that have a critical location in the
physical network is sufficient to damage the whole network.

In mobile ad hoc networks (MANETS), network splits are even a common issue. The
overlay is likely to be partitioned due to frequent and fast node movement, node fail-
ures and MANETs that are out of each others range. Successive splits without any
countermeasures finally result in many sparely populated subnets.

Mechanisms (see Section reducing the risk of a ring split exist, but are not able
to avoid them entirely. Moreover, the above examples clearly indicate that the overlay
protocol must be able to recover from a partitioned network. In the following, we will
introduce some efficient mechanisms, which are able to detect and merge sub-rings.

98

6.1. Optimized overlay robustness

6.1.4.2. Recovery

Recovery from a partitioning of the overlay If an overlay is split into several par-
titions, but the nodes are still connected in the physical network, it will be likely that
there are still fingers in each partition pointing to nodes in other parts of the network.
Lookups will pass through different sub-rings and finally return an erroneous result.
However, nodes can use their finger entries and information gathered during lookups to
learn about nodes in other partitions. By inserting all other appropriate nodes into their
own successor list, the separate rings will merge automatically.

However, in scenarios where no physical connections between separate sub-rings exist,
as pictured in the previous section, the partitions cannot be merged. Fingers pointing
to nodes in other parts cannot be contacted and the algorithm that updates the fingers
removes these entries after a while. If the physical connection between two rings is
re-established, nodes will not learn about the other ring by themselves.

A simple approach is to run a periodic rejoin at every node. In doing so, each node
starts a lookup for its direct successor via the bootstrap service. It will not make any
difference if the bootstrap mechanism is a local or remote cache of available nodes or a
single server. The proceeding is similar to a node joining the network. If the bootstrap
service by chance returns a node from another partition, this information will be suitable
to merge both rings. In our simulation environment, we observed that two rings will
merge within a few minutes, if at least one node learns about any node in the other ring.
The main drawback of this approach is that each node periodically has to perform a
rejoin operation and therefore stresses the bootstrap service. Shorter rejoin periods mean
faster detection of different rings but cause also more load on the bootstrap mechanism.
Therefore, this algorithm will not scale for huge overlay networks.

In a more efficient variant of this mechanism only one well-defined peer in each ring,
for example, the peer with the smallest ID, sends a periodic message to the bootstrap
server. A peer will assume that it has the smallest ID if its predecessor pointer has a
higher ID. The bootstrap server will notice separate rings as soon as it receives messages
from different peers. By informing all involved peers, a merging process can be started.
As only one peer per ring sends periodic messages, this variant is highly scalable. Also,
the frequency of performing this algorithm could be increased significantly, resulting in
a much faster detection of sub-rings.

Recovery from loss of all successors If the ring breaks due to a failure of L successive
nodes, the peer preceding the disrupted part of the ring will not be able to contact any of
its successors. As discussed in the previous section, a standard lookup for the successor
of the node will also not return any result. We present a modified search algorithm that
is capable of performing lookups regardless of disruptions. The key functionality is an
algorithm that will redirect a lookup request in counterclockwise direction if the lookup
skipped one or more nodes. We call this method redirection mechanism. It can also be
used in normal operation when a lookup request skips the keys correct successor and
is received by the wrong succeeding peer. As soon as a peer recognizes that a search
overshot its target, it applies our redirection mechanism. A node n can easily detect that
a lookup did overshoot the correct successor, if it receives a lookup message for a key £

99

6. Optimized robustness and performance

Figure 6.7.: Automatic disruption recovery, initialized at the beginning of a break.

located between the initiator of the lookup and itself, but it is not k’s successor. Using
its predecessor, node n is able to redirect the message toward the correct successor s.
The message may also be redirected over several nodes until the correct node is reached.

In case of an open ring, node p, preceding the disruption, can use the redirection mech-
anism to repair the overlay disruption. It simply sends a lookup message for its own 1D
-+ 1 to the closest available finger. In general, this is the smallest finger that is situated
outside the former successor list of the node. Then, as shown in Figure this node
will redirect the message in counterclockwise direction until the message arrives at the
other end of the disruption. This peer no longer possesses a valid predecessor as all of its
preceding peers have failed. Therefore, it assumes that the initiator of the message is its
new predecessor. For the same reason it assumes that it is responsible for the searched
ID and answers the lookup. The initiator of the message inserts the sender of the answer
in its successor list and initializes a stabilization procedure with its new successor. The
disruption is repaired and correct routing is re-established.

If a peer also stored enough predecessors (i.e., maintaining a symmetric neighbor list),
a similar recovery mechanism would be suitable to be used by the peer at the end of
the disruption. A node that has lost all of its predecessors initiates a lookup for its own
ID (see Figure . The lookup will traverse the ring until it arrives at the node at
the beginning of the disruption. If this node is not aware of the disruption yet, it tries
to forward the lookup message to one of its successors. As all successors have failed,
the node will receive no acknowledgments and, after a certain period of time, delete
all successors from its list. A node that is aware of the disruption, as it has lost all
successors, inserts the sender of the lookup message into its own list of neighbors. It
then forwards the lookup to its new successor and starts stabilizing with it.

If both nodes at the edges of the broken part of the ring run a recovery algorithm,
the disruption will be detected faster and can be repaired with higher probability. In
the worst case, one redundant lookup message is routed through the ring. Note that if
symmetrical routing [MCVRO03| is applied, the redirection mechanism will no longer be
necessary. Both nodes at the edges of the disruption can initiate a symmetrical lookup
for their own ID.

100

6.1. Optimized overlay robustness

Figure 6.8.: Automatic disruption recovery, initialized at the end of a break.

Recovery using token based stabilization The Token Stabilization introduced in the
previous section could also be used for recovery. In normal operation nodes are in the
repeat state, or in other words, they forward all incoming tokens to the next node on
the ring. A node situated at one end of a broken ring does no longer receive token
messages from the disrupted part of the ring. Therefore, it changes to the active monitor
state and starts generating periodic tokens. All tokens contain ID and IP address of
its initiator. Acknowledgments prevent tokens from being lost as nodes fail. The token
will be passed through the ring until it reaches the peer at the other end of the broken
part. There, the information about the initiator of the token can be used to repair the
ring disruption. The initiator is inserted into the empty neighbor list and a stabilization
process is initiated. However, this algorithm does not scale well with the ring size as the
token is forwarded from node to node, requiring /N times the average transmission time
to circulate the ring.

6.1.4.3. Avoidance

Regarding the correctness of the Chord overlay, we observed that the probability of dis-
ruptions can noticeably be reduced by some simple modifications to Chord’s stabilization
algorithm. To avoid a disruption in the ring structure, nodes should prevent an empty
successor list at any rate. If the number of entries reaches a critical minimum, nodes
will be able to fill their successor list with any active node they known (e.g., finger en-
tries) or learn about (e.g., from received messages). The redirection mechanism will still
guarantee correct lookups.

In order to increase the correctness of the overlay structure, nodes can also increase
the frequency of sending stabilization messages. The more often stabilization messages
are sent, the more up-to-date neighbor entries are. We suggest an adaptive mechanism,
which will increase the stabilization frequency if the number of known successors shrinks
or if the overlay structure is measured to be more dynamic. Additionally, the size of
the neighbor list can be adjusted adaptively to the current churn rate in the network.
However, the more often stabilization messages are sent and the more successors are
included in the messages, the more bandwidth is required. Nodes should pay attention
to their current resource usage to avoid performing a attack on themselves.

101

6. Optimized robustness and performance

Most important, we recommend that nodes should make use of all information they can
gather about other nodes. They should check whether the sender of any message they
receive fits in the list of neighbors or fingers. If the sender of the message is already part
of a list, the Time Last Seen for this entry will be able to be updated. Thus, a node
learns about new nodes without the need to wait for the next stabilization. Additionally,
the necessary bandwidth for checking the availability of finger entries can be reduced.
No finger update is performed for recently seen finger entries.

We also suggest to send information about failed nodes to all neighbor nodes. Thereby,
nodes can replace failed neighbors much faster. Yet, we dissuade from blindly trusting
in information received from other nodes, as this information may be incorrect. Nodes
should verify the information, for example, by sending a ping message to the responsible
node. If recursive routing is applied, nodes will exchange a lot of messages with their
successors and fingers. Therefore, nodes are aware of failed contacts much faster.
Finally, we recommend using a symmetrical Chord variant with symmetrical neighbor
lists (see Section and symmetrical routing [MCVRO03|. Additional symmetrical fin-
gers can be achieved by exploiting the existing overhead (see Section . Symmetrical
routing enables nodes to search in both directions, so a simple disruption in the ring can
be avoided.

6.1.4.4. Conclusion

Disruptions in structured P2P overlays cannot only be caused by well targeted attacks
against specific nodes but also by churn, i.e., by the dynamic behavior of the participat-
ing peers. In this section we presented efficient mechanisms to actively prevent the loss
of the overlay structure in both scenarios. Using simple modifications to the standard
algorithm, a peer is able to exploit the existing overlay traffic to improve the stability
of the overlay. We also introduced a self-repairing mechanism, which is able to detect
a disruption in the overlay network and to take appropriate countermeasures. The al-
gorithm was designed to be redundant in order to speed up the healing process and to
improve its success rate. Finally, we introduced a scalable solution to detect the exis-
tence of disjoint overlay partitions and showed how to automatically recombine them.
Applying our modifications to a Chord-like P2P system can greatly improve its security
and robustness.

102

6.2. Optimized lookup performance

Figure 6.9.: Iterative routing: The nodes com- Figure 6.10.: Recursive routing: Each node
municate only with the origina- forwards the query to the next
tor. node.

6.2. Optimized lookup performance

In the second part of this chapter we present several modifications to Chord’s lookup
protocol with the aim of reducing the mean lookup path length and search duration, as
well as the lookup success rate.

6.2.1. Related Work

6.2.1.1. Iterative vs. recursive lookups

Iterative routing The base Chord [SMK™01a] and Kademlia [MMO02| algorithms use
iterative routing (see Figure . When looking up a certain key k, the originator sends
a FIND _PREDECESSOR(k) request to its finger, which is closest to the predecessor of the
key. This node answers with the closest finger it knows preceding the key. After receiving
this information, the originator sends the request to this node and waits for an answer.
In each step, a node that is closer to the searched key is obtained and the procedure is
continued until the predecessor of the key is reached. The predecessor finally returns the
successor of the key, which in turn is responsible for the key. As a result, the originator
of the lookup is involved in all steps of the query, it handles the complete traffic, and
contacted nodes return the next hop to the initiator.

This proceeding has two main advantages. First, the originator can easily keep track of
the lookup route. In case of a failure, the search can be continued somewhere next to
the absent node, thereby skipping all previous hops. Second, as each hop is monitored
by the initiator, the search timeout can be set to a short value, e.g., the 95" percentile of
the current Round-Trip Time distribution of the network. Then, only 5% of the
messages will be retransmitted unnecessarily, despite a relatively short timeout value.
Thus, when the lookup fails due to an absent node, the originator is soon aware of the
failure and probably can continue the lookup at the previous hop.

103

6. Optimized robustness and performance

Recursive routing Among others, Dabek [DLS™04] describes recursive routing and its
benefits. Each node forthright forwards the query to the next node until it reaches the
predecessor p of the key. Node p directly returns the successors of the key (i.e., its own
successor list) to the originator (see Figure [6.10).

Recursive routing also yields some advantages. During the lookup, each node forwards
the request to one of its fingers and receives an acknowledgment. Thus, nodes per-
manently monitor their fingers without the requirement of sending extra FIX FINGER
messages. Additionally, TCP connections to the fingers can be set up as all lookups are
sent along one of these routes. Moreover, by sending the acknowledgment and forwarding
the lookup at the same time, the latency of each hop is halved. Simulations show that
recursive lookups are on average 40% faster than iterative ones will be.

However, the originator of the lookup is not involved in the lookup process. It initiates
the query and finally receives the answer. Thus, the originator must keep a global search
timer fsearch => thop I Order to detect failed lookups. If this timer expires, the lookup is
restarted.

The timeout tgearen can be calculated by estimating the search duration. The Transmission
Time distribution of packets, which are transmitted over k overlay hops is calcu-
lated by a k-times convolution of the distribution of a single [TT] Then, ¢% of packets
will result in timeouts if the timeout is set to the (1 — q)'™® percentile of the overall
distribution. In network simulators are often modeled using a Negative Exponential
Distribution (see section [£.2)). The Probability Density Function (PDF)) of a[NED]

has the form
l1—e ™ x>0,

0 , x <0.

Its expected value is E[X] = A~!. The k-times convolution of NED is known as the
Erlang-k distribution.

/\k k=1 _—X\x
flz kM) = ﬁ for x >0 (6.2)

The corresponding Cumulative Distribution Function (CDF]) is

k-1

F(m;k,)\)zl—e"\xz

n=0

(Az)"

n!

for x > 0. (6.3)

Assume a network with N = 100,000 nodes and an averageof 100 ms, i.e., A = 1/100.
The parameter ¢ is set to 95, i.e., less than 5% of the packets are resent because their
timer expired. Applying the Chord protocol, the maximum routing path length in a
stable environment is 2log, N. With iterative routing, the hop timeout ¢y, must consider
both the transmission of the packet as well as the transmission of its acknowledgment,
i.e., k = 2. By numerically solving the above equation we find out that a timer value of
at least 475 ms must be used.

Using recursive routing, packets travel up to k& = [2logy, N| + 1 = 35 overlay hops
before they return to the initiating peer. Therefore, a search timeout value tg e, Of at

104

6.2. Optimized lookup performance

least 2,550 ms is required in order to assure that less than 5% of the packets traveling
the maximum number of overlay hops are retransmitted. This timeout value must be
increased for larger networks as the number of overlay hops depends on the number of
participating peers.

The average search duration will be able to be decreased if local timers (timeout value
thop) are initiated in each node that forwards the packet. After the packet has been
forwarded to the next node, an acknowledgment is sent to the node the request was
received from. If the request or the acknowledgment is lost, the local timer will expire
significantly earlier than the global timeout of the originator. Thus, the failure is detected
faster and the lookup is delayed less. However, in some rare cases, the request might still
get lost, for example, if the node currently monitoring the packet fails and the packet is
lost at the same time.

As we showed earlier, current P2P networks face high churn rates. Therefore, routing
failures are common, timeouts occur quite often, and packets must be retransmitted
frequently. Thus, short timeout values are essential to provide fast lookups.

6.2.1.2. Route and neighbor selection

In basic DHT protocols, neighbors are often selected according to a strict deterministic
rule. Other neighbor selection heuristics relax this strict computation and neighbors
may, for example, be selected from a deterministic ID range close to the exact neighbor
position. In basic Chord the i*" finger is exactly the successor of ID(n+2""1) (i € [1,m]).
In a more flexible implementation, however, all nodes in the interval [n + 21 n + 2] are
candidates for the i" finger [SMKT01b].

DHT protocols usually use a greedy routing scheme, i.e., messages are forward to the
neighbor, which is “closest” to the destination, where in return “closeness” is commonly
defined as distance in the ID space. In contrast to that, the term “proximity” is defined
as the overlay between two nodes. Proximity route/neighbor selection techniques
consider both metrics. The next hop is selected by striking a balance between making
progress towards the destination in the ID space and choosing the closest routing table
entry according to the network proximity [CDHRO02|. Thereby, short latencies usually
indicate short physical paths, thus reducing the overall traffic in the underlying network
and better reflecting the underlying IP topology.

Long Lifetime Node Selection Kademlia bases its node selection on node
liveness information. As we showed in Chapter [5] the distribution of node lifetimes is
usually heavy-tailed, i.e., the probability of a node being still online for a certain time
interval is a function of its current session duration. In Kademlia live nodes are never
removed from the buckets, thus nodes with long lifetimes are preferred.

A similar approach is introduced in [ZY06]. Here each node includes its own lifetime
in every packet it sends, and it learns about the lifetimes of its neighbors by incoming
messages. The authors also introduce a routing metric, which considers both liveness
probabilities and proximity. They show that timeouts are a significant component in
overall lookup latencies. [LNS| results in more stable neighbor links, and thus, less time-
outs. Moreover, by applying LNS the selected neighbors are less dynamic. Thus, the

105

6. Optimized robustness and performance

stabilization interval may be increased, resulting in a reduced signaling overhead.

Proximity Neighbor Selection With [PNS|network latency is used as the metric
by which to choose between neighbor candidates. Thus, most hops on the lookup path
have shorter delays, whereas lookups are still resolved in O(log, N) hops [GGGT03]. As
a result, the overall lookup duration is significantly reduced.

Gummadi et al. state that sampling 16 candidates for each neighbor results in almost
optimal proximity in most cases. Dabek et al. even argue that using [PNS] the total
average lookup duration will stay close to 36 in a network with a mean one-way delay
of § independent from the network size N. They also found out that the last hops in a
lookup actually dominate the total lookup duration. These hops use neighbors with small
indexes, i.e., small ID intervals where neighbor candidates are selected from. However,
small intervals mean few potential candidates, and thus non-optimal

Instead of randomly sampling nodes to find new neighbors, the authors of Pastry suggest
to copy neighbor entries from the neighbors of a node (neighbors of a neighbor) [RDO1].
In Tapestry’s nearest neighbor algorithm [ZHS™04], each node samples those nodes that
have the same neighbors as itself (inverse neighbors of a neighbor). Both techniques
are motivated by the fact that nodes are clustered, thus we can expect that neighbors
with short latencies also provide nearby nodes. A detailed comparison of various
techniques can be found in [RGRKO03|.

The authors of Chord published a technical report [SMK™01b|, which extends the basic
protocol description in the proceedings. Instead of implementing a pure finger table,
Stoica et al. use a location table that is a cache of all recently discovered nodes. Finger
entries are pinned in the location table. Other entries may by replaced by nodes that are
closer in terms of network latency. As these nodes are also likely to be physically close
neighbors, node locality is introduced. Instead of merely using fingers, nodes from the
location table, which are close predecessors and are close in the network, are used.

is also implemented in a Chord-based Cooperative File System (CFS) [DKK™T01].
Here, more flexibility in selecting the next hop is achieved by storing multiple pointers
in each finger interval. A cost model is used to determine the best neighbor:

C(fi) =d; +d- hops(f;)

hops(f;) = ones((f; — k) AND mask)
mask = NOT 2(m+1-loex N)

hops(f;) is an estimate of the number of hops that would remain after contacting finger
fi, d is an estimate of the network’s average latency, and d; is the measured latency to
finger f;. log, N approximates the mean number of significant high bits in an ID, i.e.,
adjacent nodes are likely to agree in these bits, but not in less significant bits. N is
an estimate of the number of live nodes in the system [BSH05a]. A higher density of
nodes means adjacent nodes agreeing in more high bits. The remaining number of hops
(hops(f;)) is estimated by the number of ones (ones()) in the significant high bits of the
binary distance A between f; and destination k. Consequently, each 1 approximately
corresponds to one overlay hop of span 27, with j being the position of the 1 in A. The

106

6.2. Optimized lookup performance

significant high bits can be extracted by using a bitmask mask with log, NV ones in the
high bits (similar to a subnet mask). Then, the total cost C(f;) will be an estimate of
the remaining lookup duration if finger f; would be used. After computing the costs for
all fingers f; in the corresponding finger interval, the candidate with the minimum C'(f;)
is selected as next hop. Hereby, selecting only fingers from the largest finger interval still
preceding the destination assures a mean hop count of O(log, V).

0,025 -
',"v"", ------- with PNS (using Vivaldi)
0,020 m '," k! without PNS
'\I \\I
w 0015 4 F ",
2 { \
& 0010 1 1
0,005 </
0,000 M Dremcran
0 500 1000 1500 2000

Search duration in ms

Figure 6.11.: Search duration with and without PNS

[KLKP08] evaluates the impact of and Proximity Route Selection in Kadem-
lia. The authors show that the mean lookup latency is approximately divided by three.
Furthermore, Internet Service Providers) may reduce costs as 40% of lookup traf-
fic does not leave their domain. [CZK05| compares in Tapestry and Chord. Both
networks show similar performance gains in lookup performance. The simulations also
show that the probability of meeting randomly failed nodes in a lookup is not reduced,
since neighbor selection does not reduce the mean lookup path length. Moreover, using
an uneven distribution of the incoming node degree of a node is observed, as nodes
near the center of the network and nodes with high capacity are preferred. As a con-
sequence, the network will be more vulnerable to attacks, because attacking nodes with
high in-degree affects network connectivity more severely.

We also integrated a basic variant of in our Chord implementation. Figure [6.11
compares the measured mean lookup duration in simulations with and without
While the average number of hops is still in O(log, N), the overall lookup time is signif-
icantly shorter, because a close node can be selected as the next hop of a search request.
Using the average lookup time in this scenario could be reduced to 80% of the
lookup time using the original Chord protocol. Note that in our simulations new neigh-
bors were only discovered by exploiting incoming messages. We did not use any of the
above mentioned mechanisms to actively search for new neighbor candidates by random
sampling or copying (inverse) neighbors of a neighbor. Thus, the mean lookup duration
is still larger than 30 = 240 ms in our simulations.

Proximity Route Selection (PRS]) In |PNS|the selection of the next hop is based on
two independent steps. First, a set of entries in the routing table is selected (e.g., a finger

107

6. Optimized robustness and performance

interval in Chord or a bucket in Kademlia). Then, one of these pointers is selected based
on measured or estimated [T'Tk. In contrast to that, PRS tries to find an optimal next
hop in one step.

[PRS|was first proposed in CAN [REFHT01]. Here, messages are “forwarded to the neighbor
with the maximum ratio of progress” by trading off the number of hops in the path against
the network distance traversed at each hop. Therefore, any known neighbor closer to
the destination in the ID space is a valid next hop. Consequently, the applied heuristics
for are more complicated than algorithms used in [PNS| CAN, however, presents no
explicit metric for choosing the next hop.

Usually, heuristics try to select routes with a similar hop count. Imagine two Chord
nodes ny and ny that are O(N) distance apart. The first node n; knows approximately
log, N exponentially distributed fingers, which can be used for routing a message to
ny. The next node in the lookup path can chose between approximately (log, N) — 1
fingers, and the i"" node (i < log, N) in the lookup path will roughly know (log, N) —
i + 1 potential fingers. As a result, approximately (log, N)! different routes exist. It
is important to note that all of these routes show a total path length of O(log, N)
hops [GGGT03|. Chord uses greedy routing, thereby making most progress toward the
destination in the first hop (largest span), and skipping exponentially decreasing parts of
the ID space in succeeding hops. This corresponds to sorting the hops in decreasing order
of their spans. Yet, this route is rarely the shortest route in terms of latency. However,
sorting the log, NV hops in any other order and taking each of the different spans just
once will reach the destination in O(log, N) hops.

I[GGG™03| presents heuristics for ring, XOR, and hypercube geometries that offer such
flexibility. Therein, the next hop is selected from a subset (candidate set) of the known
neighbors, which is selected in such a way that the routing path length is usually not
increased. In the following, we concentrate on the heuristic for circular overlays. Similar
to Chord, fingers with exponentially increasing spans are stored in the routing tables,
with the " finger of node n being in the interval [n + 20=1;n + 2. The algorithm
at first expresses the distance to the destination in the ID space in binary notation. If
there is a 1 in the " position of this binary notation, the i’* finger will be selected as a
candidate. Finally, the candidate with the shortest latency is selected as next hop. This
algorithm may also be coupled with [PNS] and the closest nodes measured by latency are
selected as fingers. However, the additional benefit is quite limited |[GGGT03].
Furthermore, another PRS| heuristic might be even more flexible by allowing to traverse
multiple hops of smaller spans instead of one hop with a large span. As a result, the
mean hop count is increased. Yet, if the sum of the latencies of the small hops is less
than the latency of the larger span (e.g., because the involved nodes are within the same
local network), the total search duration will be decreased nonetheless. However, with
only local information available, we believe that such an approach will be difficult to
realize.

Additionally, shorter can be achieved by using a cross-layer communication chan-
nel between the physical layer and the application layer |[GSKO06|, thus avoiding inef-
ficient routes in the physical layer. In Section we present a Fuzzy-based Route
Selection (FRS)), which is able to combine [PNS| [PRS] [LNS| as well as any further suit-
able heuristics.

108

6.2. Optimized lookup performance

6.2.1.3. Parallel lookups

Sending asynchronous parallel lookups is another possibility to reduce the overall lookup
latency, as the impact of timeouts can be reduced. Copies of the lookup may proceed
while other copies encounter stale routing entries and have to wait for the timeout to
expire. Moreover, lookups may be exploited to learn about new neighbors as well as
the liveness of existing neighbors. |[LSM™05| shows that exploiting this information is
more efficient at lowering latencies than frequently checking existing neighbor liveness
or active exploration of new entries. In literature, several proposals for parallel lookups
exist.

Parallel iterative lookups Kademlia [MMO02] sends requests to 3 nodes in parallel. For
each lookup, the initiator stores a list of nodes that are “closest” to the queried key k.
Kademlia uses closeness in the ID space as the distance metric, however, also latency
could be used. In the first step, the initiator n selects # nodes from its own buckets and
sends parallel lookups to them. These nodes search their buckets for the closest 3 nodes
they know and return the information to n. After receiving an answer, node n copies
the received nodes in its list. Then, it selects the closest node from the list that has not
yet been queried and sends a message to it. Thus, all the time (lookups are executed in
parallel. This proceeding is continued until the node is found, which is responsible for k.
Parallel iterative lookups are also used in EpiChord [LLD04]. By exploiting lookup traffic
a large routing state may be maintained, thus, achieving O(1) lookup performance under
lookup-intensive workloads. The authors state that both mean path length and mean
lookup latency are reduced by a factor of 3 when issuing 3 parallel asynchronous lookups.
Moreover, additional network information (e.g., notifications about new or failed nodes)
is piggy-backed on lookups and query replies. Thus, under reasonable lookup traffic,
EpiChord is able to keep its routing entries up-to-date without additional signaling over-
head. Thereby, the authors observe a synergistic relationship between a large routing
state and parallel lookups. On the one hand, a larger routing state means shorter lookup
paths, and thus, less lookup messages. That is why EpiChord can afford to issue parallel
lookups without generating excessive amounts of lookup traffic. On the other hand, more
information may be exploited from parallel lookups, thus, a large routing state may be
maintained.

As discussed earlier, the initiator n of a lookup will be in control of the complete lookup
traffic, if iterative routing is used. Thereby, n can easily adjust the amount of parallelism,
and thus, the number of lookup messages. Node n can also influence the paths lookups
take, thereby, preventing duplicate messages. Moreover, n learns useful information
about other nodes participating in the system. However, compared to recursive routing,
nodes communicate less frequently with nodes from their own routing table. Thus, these
entries are more likely to be stale.

109

6. Optimized robustness and performance

Parallel recursive lookups Hence, [LSMT05| introduce parallel recursive lookups in
their Accordion protocol. Here nodes may exploit lookup traffic to learn useful informa-
tion about their neighbors. Yet, recursive parallel lookups are difficult to control and
nodes might receive identical copies of a lookup. As a result, more messages are required
to achieve the same amount of parallelism than compared to iterative parallel lookups.

In Accordion, a self-organizing mechanism is used to control the number of parallel lookup
messages. Similar to the above variant, the originator of a lookup selects (3, nodes, whose
IDs most closely precede the queried key k, and sends parallel lookups to these nodes.
The copy, which is sent to the node whose ID is most closely to k, is marked with a
“primary” flag and is given high priority.

Receiving a copy, a node n directly forwards the request to 3, (> 0) nodes which are
closer to the destination. Thereby, a large (3, might be chosen, if enough free bandwidth
is available, whereas 3, will be small or zero, if the bandwidth of n is not sufficient. Nodes
independently adjust their 3, value so that they stay within their bandwidth budget.
Thereby, the prediction of future bandwidth needs is based on the past lookup rate. In
addition, the parallelism will be increased if more exploration messages than the number
of lookups that have passed through this node have been sent.

If n receives a lookup that it has already seen in the recent past, it will drop this message.
However, the “primary” copy must be forwarded in any case. Thus, the lookup marked
as ‘primary’ travels the same path a non-parallel lookup would have taken, while other
copies decrease lookup latencies and increase information learned.

Using multiple hash function Another solution for parallel queries is introduced in
CAN [REHT™01]. Here, multiple hash functions may be used to map content to multiple
points in the coordinate space. Thereby, the availability of the content is increased, as it
is stored on multiple peers. This kind of replication also offers the possibility of parallel
queries, i.e., all replicas can be queried in parallel. Thus, the average query latency is
reduced. This improvement can easily be implemented in other DHTSs.

6.2.1.4. Symmetrical Chord routing (S-Chord)

The Chord finger geometry provides nodes with a lot of routing information in close
neighborhood and with little information about farther nodes (see Figure on the
left). No pointers to preceding nodes exist. In the figure, the right part of the Chord
ring (seen from the node on top) is well covered with fingers, whereas the left part is blank.
Therefore, the idea of extending the finger table to the complete ring comes to mind.
S-Chord [MCVRO3| proposes to keep the same number of fingers to be comparable in
performance with Chord, but organizes the finger table in two approximately symmetric
sides (Figure right).
Like in Chord, strictly deterministic fingers are maintained, i.e., there is no flexibility in
choosing the i finger f[i] of node n:

fli] = { successorj(n + 4;1) , z € [1,4], (6.4)

successor— (n —4297") i € [g+ 1,2¢].

110

6.2. Optimized lookup performance

index ID Node 1D Node

i ny + 441 successor (ID) | ny — 4297 successor™ (ID)
1 2 Ty

2 5 ns

3 17 Nni19

4 49 N4

5 61 Ne6o

6 0)

Figure 6.12.: Sample finger distribution in S-Chord for node n;.

Thereby, successor™ (x) and successor™ (z) denote the first node succeeding x going clock-
wise or counterclockwise, respectively. By using g = [log4sN | and 4* operations, the same
number of theoretical fingers as in Chord is obtained.

This finger assignment posseses the following properties. The theoretical finger positions
are symmetrical to the axis n and n+N/2 (finger table symmetry). Thus, the actual finger
table is nearly symmetrical. Routing entry symmetry states that for any two nodes, nq
and no, if ny has a finger to ny, then n; will have a finger to n, or very close to it. Also, it
is very likely that the lookup path length from node n; to ns is equal to the path length
from ny to ny (routing cost symmetry). However, both paths are not equal (i.e., there is
no routing symmetry).

Like in Chord, each node n in S-Chord is responsible for storing all keys in the interval
] predecessor(n); n]. However, due to the symmetrical nature of S-Chord, we suggest to
define a more symmetrical responsibility, like the interval [predecessor(n); successor(n)).
Thereby, intervals of adjacent nodes overlap with each key being assigned to 2-3 nodes.
Thus, a replication of (key; value)-pairs (see Section is introduced in the protocol.
A higher replication grade can easily be defined by increasing the size of the interval.

Also, the “responsibilities” of the fingers are adapted to the symmetrical lookup. In
Chord, fingers are situated at the beginning of the interval, whereas in S-Chord fingers
are situated within the interval. The authors of S-Chord define the responsibility of a
finger i starting from the half way point between it and the i — 1'* finger, and ending
at the half way point between it and the i + 1" finger (dotted lines in Figure . If
a queried key is in the responsibility of the i** finger, the lookup will proceed with this
finger.

In [MCVRO3| the authors prove that the maximum path length in a stable environment
and a fully populated ID space is (%bgz N hops, compared with [log, N| hops in
Chord. They also simulate the protocol and observe circa 10% shorter lookup paths. In
Section we introduce Freebie Fingers, i.e., additional routing information obtained
by exploiting finger update traffic. A comparison of the routing performance of Chord,
S-Chord, and our Freebie Fingers variant can be found in Section [6.2.3]

111

6. Optimized robustness and performance

6.2.1.5. Chord#

Most DHTs use cryptographic hash functions in order to achieve good load balancing.
Yet, a perfect cryptographic hash function, which receives two input values that differ in
only one bit, returns two IDs that differ in half of their bits [GMBO03|. Thereby, locality is
removed. As a result, range queries are not applicable with DHTs. However, only locality
assures that consecutive keys are stored on logically neighboring nodes. Thus, if range
query functionality is required, locality preserving hash functions (key-order preserving
functions) will have to be used.

However, locality preserving hashing results in a load imbalance, as keys are not uniformly
distributed in the ID space. Some parts of the ID space are densely populated, whereas
almost no keys are stored in other regions. Thus, additional load balancing mechanisms
have to be applied (see Section . Usually, these mechanisms shift nodes and their
responsibilities in order to achieve an equal number of keys per node. As a result, these
equally loaded nodes are no longer evenly distributed in the ID space.

In common DHTs the pointers are calculated in the ID space, for example, in Chord
the " finger of node n points to the first node that succeeds n by at least 2!, with
1 <7 < m. Yet, applying this function to an ID space with unevenly distributed nodes
raises two main problems. First, more than the average number of fingers point to the
node at the end of an above average sized ID region. Consequently, this node must
handle significantly more finger updates and search requests than nodes which are only
responsible for a small part of the ID space.

Also, the distribution of the search path lengths is changed for the worse. Searching for
keys in densely populated regions requires more hops, because there are many nodes in
that region. In a DHT providing a O(log, N) routing, each doubling of the number of
nodes corresponds to approximately one additional hop. That is, if all nodes are situated
in one quarter of the ID space, the mean lookup path length for IDs in that part will
be increased by two hops. In contrast to that, the mean lookup path length for IDs in
sparely populated parts will be reduced. Thereby, each hop still approximately halves the
distance to the key in the ID space, but as nodes are unevenly distributed, the distance
“in nodes” is not halved. Thus, the variance of the lookup path length, as well as its
maximum value are increased.

That is why in Chord# [SSR05], [SSR0S], pointers are computed using the set of nodes N
The i finger of node n; points to node nj,o (1 < ¢ < m). Thus, fingers cross
Ym, ..., Y8 Y4 ... 1/2 of the nodes in the ring. Due to the logarithmic placing of the
fingers, it is possible to lookup a key in O(log, N) hops. In their work, the authors of
Chord# suggest a pointer placement algorithm that takes the actual node distribution
into account. As a consequence, Chord# keeps the same routing performance as Chord,
but allows range queries and active load balancing.

The node distribution can be described by a density function d(z). Mercury [BAS04| uses
random walks to estimate d(z), however this comes at additional costs. Hence, Chord#
avoids the calculation of d(x) by using a recursive formula for placing the pointers,
i.e., the i"" pointer of node n is the i — 1** pointer of node n’s i — 1** pointer. On the
contrary, the density function d(z) will not significantly change over time, and thus could
be transmitted to a node during its bootstrap process, whereas placing the pointers by

112

6.2. Optimized lookup performance

Figure 6.13.: Hybrid routing: Each node forwards the query to the next node and sends an
acknowledgment to the originator.

using the recursive formula must be periodically repeated as nodes frequently join and
leave the system.

6.2.2. Hybrid routing strategy

In Section we discussed iterative and recursive routing. Based on this discussion,
we propose a hybrid routing strategy. It possesses the low latency of recursive routing
in error-free circumstances, while providing the fast failure recovery of iterative rout-
ing [Kun05|]. Basically, we perform recursive routing with a fundamental modification:
every node forwarding a packet sends an additional acknowledgment back to the origi-
nating peer (see Figure . Although this comes at additional overhead costs, a lot of
useful data can be gained from it.

Like in iterative routing, the originator acquires information about the path of a packet
through the overlay. Using our hybrid routing, a peer that performs a lookup initiates a
local timer for each hop that the packet travels. In the first step, the timer value must
consider the average [RTT] In succeeding steps the timer value can even be reduced to
the ¢'" percentile of the distribution. Therefore, the initiator can react quickly to
failures and lost packets. Additionally, it has information about what went wrong and
where and how to retry the lookup in a way that is more likely to succeed. If, for example,
a packet is lost due to a failed node, the lookup might be continued at a previous node
on the routing path. By including information about the failed peer, the new routing
path can bypass this peer.

Besides enabling fast failure recovery, the acknowledgments received by the initiator are
useful for further reasons. As mentioned earlier, the initiator learns about other peers
participating in the network, including a measurement. This will be especially
useful if is applied and any node in a finger interval may be used for routing. These
peers can possibly complete or improve the finger table of the initiator. This information
can also be used to improve local estimates about the current status of the overlay, like
the current size of the overlay [BSH05a], as the more samples the better the estimate.
Like in recursive routing, each node also receives acknowledgments from the fingers it

113

6. Optimized robustness and performance

Iterative Recursive Hybrid

Description Initiator n handles Lookup is recursively Recursive lookup
complete lookup forwarded. monitored by initiator.
process.

Advantage Node n learns about Fingers are verified Nodes learn about
many nodes, but this is frequently, as only other nodes and
not exploited in basic local information is fingers are verified.
Chord. used.

TCP = TCP unfavorably = TCP connections feasible as only little
due to many new changes in the finger tables occur.
connections

Timers Short t1o feasible. Short thep, but large Short thep and tscarch

tsearch required. feasible.

Mean path log, N 1/2]logy N 1/2logy N

length

Overhead 2logy N (2logy N) + 1 (3logy N) + 1

Table 6.2.: Comparison of iterative, recursive and hybrid routing

forwarded the packets to. This information is used to verify the finger entries of the
node. Using a Time-to-Live field for each finger entry, fingers have only to be
actively validated by sending a FIX FINGER message, if they have not been used for
lookups within a certain FINGER _UPDATE period. This reduces the overhead caused by
the maintenance protocol of the ring.

Comparison of iterative, recursive and hybrid routing Table [6.2] compares all rout-
ing variants. Summarizing, the hybrid routing variant combines the advantages of recur-
sive and iterative routing. The average lookup duration is shorter due to the recursive
routing. Moreover, the initiator of a query receives notifications about the current lookup
status, thus, being able to quickly react to failures and sending a new search request on a
node-disjoint backup path. Due to the notifications, the initiator also learns about other
peers and can use this information, e.g., to complete and improve its finger table. On the
downside, the hybrid routing variant generates a higher number of signaling messages.
Yet, this is compensated as search messages can be exploited to update finger entries.

6.2.3. Freebie Fingers

In Section we showed that the lookup path length will decrease if symmetrical
fingers are used. Therefore, in S-Chord fingers in both halves of the ring are maintained.
However, the same number of fingers as in Chord is used to be comparable to Chord in
terms of overhead costs. In this section, we propose an improvement to Chord, which
requires the same overhead, but doubles the number of symmetrical fingers [KS06]. Thus,
on average, each hop can travel closer to the queried key than in S-Chord, resulting in
even shorter lookup paths.

Our proposal extends the routing information each Chord node stores by a list of all
nodes that have a finger table entry pointing to the node. This information comes for

114

6.2. Optimized lookup performance

Figure 6.14.: Sample finger distribution in a Chord ring (solid lines) and additional routing
information from nodes that store a finger table entry pointing to the node (dashed
lines).

free without any additional overhead cost by exploiting the existing signaling messages
necessary for the stabilization of the finger tables. This is why we call these back-pointers
Freebie Fingers*.

This proposal was presented in July 2005 [KS06|. Interestingly, independent of our
research Rossi and Stoica presented an almost identical idea in November 2005 [RS05].
They will call a node n reverse finger (or regnif) of another node f, if f is a finger of n.
In both works, all nodes store a cache of freebie finger entries. Each time a FIX FINGER
request is received, the initiator of the request is added to the cache. Entries in the
cache are removed after expiration of timer ¢rpg. Each entry is associated with a
value. Entries will be removed from the list, if the entry has not been updated within
a certain time tprg. Thereby, we avoid storing nodes no longer participating in the
network, as using these entries would lead to timeouts and therefore significant lookup
delays. Reasonable values for trps are in the order of one rix riINGER period. Thus,
the probability that using a finger results in a timeout is similar for freebie fingers and
standard fingers.

Nodes in the freebie finger cache are distributed counterclockwise in approximately the
same way, as the nodes in the finger table are distributed clockwise, i.e., more nodes
in close neighborhood and only a few nodes farther away. Figure [6.14] shows the finger
distribution for a node in a sample Chord network (solid lines) and the finger table entries
from other nodes that point to the node (dashed lines).

In Section we mentioned that each node in a Chord network with N nodes on
average stores about F' = log, N different fingers. Thus, about F’' = F' reverse fingers
exist on average (see Figure [6.15). entries for finger and freebie fingers are updated
each time a packet is received from the corresponding nodes. Nodes stay in the cache
of freebie fingers as long as they are used frequently. Especially if recursive or hybrid
routing (see Sections [6.2.1.1] and [6.2.2)) is used, packets will be mainly forwarded to
fingers. Thus, each time f receives a request from n, f implicitly knows that n is alive
and is still pointing to f. However, due to churn, there may be entries in the cache of a

4The noun freebie refers to an article or service given or gotten free, usually provided as part of a
promotional scheme.

115

6. Optimized robustness and performance

18
—o—number of freebie finger
(mean, 90% confidence interval)

14

10 ~

Mean number of
freebie finger E[F]

2 T T T T 1
1 10 100 1000 10000 100000

Number of nodes L

Figure 6.15.: Average number of freebie fingers for different network sizes

node n that actually do not store node n in their finger table anymore. Therefore, the
size of the cache should be limited to C' entries. In |[RS05| the authors show that in a
4,096-node network a cache size of C' = 100 yields good results. On average, each node
can benefit from a routing table with at least 2F entries. Costs for updating the finger
entries are still equal to Chord. In contrast to that, in S-Chord (see Section [6.2.1.4)), the
number of fingers in the first half of the ring had to be halved in order to be comparable
to Chord.

Using freebie fingers is simple. All fingers, including freebie fingers, are searched for the
finger that is closest to the searched ID k. Thus, a maximal decrease of the remaining 1D
space is achieved and the average number of hops is reduced. Note that with symmetrical
routing, the query may be forwarded both clockwise and counterclockwise. Performance
can be increased slightly by applying the symmetrical routing algorithm proposed in
S-Chord [MCVRO03].

Like in Chord, the peer succeeding an ID is responsible for this ID. Therefore, unidirec-
tional Chord routing requires looking up the peer that is preceding the ID. This takes
up to 2log, N hops, and 1/2log, N hops on average. One additional hop is required to
contact the peer that stores the required data. In our simulations, we modified the basic
Chord routing in such a way that peers, which are querying for an ID they are responsible
for do not initiate a search, but immediately answer that query. Moreover, symmetrical
routing may approach the queried ID from counterclockwise direction. Consequently, we
will answer the lookup, if the succeeding peer is reached and we will not route the query
via the preceding peer.

The authors of [RS05] also suggest a different degree of trust. In each step, the closest
finger f, as well as the closest regnif r to a key k, are determined. If r is closer to k
then r will be used. In the case of a timeout, f is used as alternative. Additionally, r
is vetoed from being used for routing until the status of r is updated or the timer of r
expires and r is removed from the cache. Thereby, w.h.p. it is assured that using regnifs
is not worse than the basic Chord routing.

Nodes leaving the network inform their neighbors, thereby avoiding any inconsistencies
in the structure. Using freebie finger, each node n can additionally inform all nodes,

116

6.2. Optimized lookup performance

12 4 ©- Chord
e S-Chord
10 +
..... & Freebie

Mean lookup path length

16384 -

Number of nodes N

Figure 6.16.: Average path length for varying network sizes and routing strategies

which have a finger pointing to n, when they leave network. Thus, lookups are no longer
forwarded to n and timeouts are avoided during the lookup.

Results Our freebie finger approach benefits from two different facts: symmetrical
routing and an increased number of fingers. Thus, lookups can be resolved faster, as fewer
hops are traversed. More important, by reducing the number of hops, the probability of
contacting a failed peer is decreased. We verify the expected improvements by simulating
different routing strategies. In the following we assume a stable 128-bit network. For each
x-value we simulated 1,000 different networks and initiated 10,000 lookups for random
keys in each simulation run, resulting in a total of 108 lookups. The error bars show the
1*and 99" percentiles.

Figure [6.16) shows the correlation between the number of nodes N participating in the
network and the resulting average path length for Chord, S-Chord, and our symmetrical
freebie finger routing. Chord lookup path length is discussed in detail in Section [5.2.1]
The curve corresponding to S-Chord is about 1/2 hops below /2log, N, i.e., the average
path length is around 20% shorter than for the Chord protocol. Also, for the simulated
network sizes, the 99" percentile of the path length is 1-2 hops less compared with Chord.
Freebie fingers offer an even higher benefit. Compared with Chord, the number of hops
is reduced by more than 50% for reasonable network sizes. If symmetrical routing is
applied, the significantly larger number of fingers will also lead to about 40% shorter
lookup paths, compared with using the finger structure proposed in S-Chord. Using
freebie fingers, the corresponding 99%percentile is around !/2log, N, and hence, it is
even smaller than Chord’s mean lookup path length.

The curves rise more shallowly than /2log, N. We believe this is caused by the fact that
the more nodes participate in the network, the more different fingers are in each nodes
finger table [BTGO04]. Thus, the routing path length is decreased.

Figure m shows the mean of the lookup path length in a stable 2'2 = 4,096 node
network for varying ID space sizes. In Chord most lookups can be resolved with less

117

6. Optimized robustness and performance

-
B 12 -
c r T 99t percentile T
2 10
E - - L I R
©c 8
2 5 | [" L T
3 A i e
8 4] | or
= Ul i i Ll -LgE Freebie
® 2 - 44
) - 1% percentile -+
E 0 T T T T T
12 16 32 64 128

Size of ID space m in bit

212

Figure 6.17.: Lookup path length in a stable node network for varying sizes of the 1D space

than log, N = 12 hops and about 1/2log, N + 1 = 7 hops on average (see Section [5.2.1).
S-Chord resolves 99% of all lookup with less than 9 hops and the average path length is
about 5.4 hops. These values are in accord with the results of other researchers. Using
our freebie finger approach, the 99 percentile is 6 hops, and the mean is circa 4.1 hops.
The figure also shows that, although the maximal path length is longer, the average path
length is slightly shorter in densely populated networks than in fully populated networks.
Further evaluations of freebie fingers (regnifs) are available in [RS05]. In addition to our
evaluations, the authors show that the system benefits from a large variety of fingers,
provided that the stabilization period tg,;, is much smaller than the mean online time
E[T,.] of the peers. Furthermore, they state that indiscriminately raising the number of
successors may result in a decrease of the lookup rate due to oversampling phenomena.
An interesting observation is that the longer the lookup path, the higher the probability
to incur in several timeouts and, eventually, the higher the probability for the search to
fail. Thus, in scenarios with high failure rates, long lookup paths are likely to fail. As a
result, the mean path length for successful lookups is reduced deceptively.

Conclusion Summarizing, the Freebie Finger concept adds useful entries to the routing
tables of the peers, without additional communication overhead. Thereby, being able to
choose from a larger set of routing entries results in a significantly shorter mean path
length. Moreover, the symmetrical arrangement of fingers and freebie fingers enables
symmetrical routing, thus further reducing the mean path length. Table [6.3] compares
the mean number of routing entries and the mean lookup path length for Chord, S-Chord
and our Freebie Finger approach.

Reducing the average hop count similarly reduces the required traffic for lookups. It also
results in shorter average query times for two reasons. First, in the ideal case, where all
finger entries are up-to-date and no absent nodes disturb the lookup path, the lookup
time is only reduced by the transmission time the additional hops would have required.
Second and more important, the probability of running into timeouts due to wrong finger
entries pointing to absent nodes is reduced with every avoided hop. As timer values are

118

6.2. Optimized lookup performance

‘ Chord S-Chord Freebie Fingers
Mean number of
fingers (F + F') ~ logy N ~ logy N ~ 2logy N
Mean lookup path ~ 0.55log, N ~ 0.441og, N ~ 0.331og, N

length

Table 6.3.: Comparison of Chord, S-Chord and our Freebie Finger solution

set to notably higher values than the average transmission time, the average lookup
time will be reduced clearly if fewer timeouts occur. Another advantage of holding more
fingers is a higher flexibility in choosing the next hop |[GGGT03|. Especially under high
churn rates, i.e., nodes joining and leaving the network frequently and therefore fingers
pointing to absent nodes with high probability, having more alternatives may be very
valuable for performing successful lookups

6.2.4. Fuzzy-based Route Selection (FRS]

In this section, we introduce the idea of a new routing algorithm that uses fuzzy logic to
determine the next hop. In the Chord protocol, the next hop is only determined by the
distance in the ID space. [PNS| additionally considers the [T'T] delay before deciding the
next hop. In contrast to that, we try to find an optimal next hop considering additional
influencing variables, like availability and reliability. For example, as mentioned earlier,
the probability of the node being still online is a function of its current session duration.
Thus, in order to avoid timeouts, we should prefer nodes that have long online times.
Another optimization parameter could be short physical paths. Using fuzzy operations,
we compute the suitability S(f;) for all neighbors, and select the neighbor with the
maximum suitability as the next hop.

Basic principles of fuzzy logic In the following we give a short introduction to fuzzy
logic. Detailed information may be found in related work like [Zim96, NW96, [DP8&0]. In
classical set theory an item is either part of an interval or not, whereas in fuzzy logic
membership functions usually map items to fuzzy sets consisting of multiple objects (see
Figure [6.18). Instead of defining a sharp membership interval (e.g., latency is small (S)
if it is in [0..50] ms), membership functions allow for vague classifications (e.g., a latency
of 120 ms is 80% medium (M) and 20% large (L)). Thereby, membership function may
have various shapes. Non-numeric linguistic variables are often used to facilitate the
expression of rules and facts, e.g., short (S) refers to an almost specific value of 30 ms,
medium is a value roughly in [60..120] ms, and large is around 140 ms.

Fuzzy rules can easily be defined by using linguistic variables. Rules consists of an
antecedent (IF part) and a consequent (THEN part), with antecedents including multiple
conditions combined by fuzzy operators, such as AND, OR, and NOT.

119

6. Optimized robustness and performance

almost
A excactly in A specific roughlyin around
1 [60; 120] ms 1 30ms [60;120] ms 140 ms
small | medium| large
S M L X XL
T T T T —TT h T

0 30 60 90 120 150 [ms] 0 30 60 90 120 150 [ms]

Classical sets Fuzzy sets

Figure 6.18.: Fuzzy sets allow for fuzzy classifications.

In our P2P scenario, two sample rules could be:

Rule 1:

IF latency == short AND online time == long THEN suitability = high

Rule 2:
IF latency == long OR online time == short THEN suitability = low

Using Zadeh operators, the AND relationship is an intersection operation, i.e., the mini-
mum of the individual membership functions:

fianB = min(pa; pB);
Similarly, the OR relationship is the union operation, i.e., the maximum of the individual
membership functions:

pauB = Max(pa; fis);
The complement of a fuzzy set A is defined as the negation of the specified membership

function. This operation in fuzzy set theory is the equivalent of the NOT operation in
Boolean algebra:

px =1 — fia;
Figure illustrates the inter-workings of a fuzzy-based system. Based on various
measured input values the output of the fuzzy logic is computed in five main steps:

® Fuzzification: Transform the exact input value to its fuzzy membership values.
@ Aggregation: Combine the antecedents (IF parts) of the rules using fuzzy operators.

@ Implication: Compute the fuzzy outputs of the rules. Usually, the minimum operator
is applied, i.e., the fuzzy object high in the output fuzzy set suitability is cropped
in height of the probability calculated in the aggregation.

@ Accumulation: If multiple fuzzy rules relate to the same output variable, the impli-
cation results will have to be combined using the maximum operator.

® Defuzzification: Determine an exact output value (crisp value) from the output
membership function. Most often, the x-value of the center of gravity of the output
membership function is used as output value.

120

6.2. Optimized lookup performance

UOTYeOUIZZNo(] © ‘UOIR[NWNIDY @ ‘uorpedrdw] @ ‘uonederdsy @ ‘uoneogzzng @ 619 oINS

©

O]

[%] Aupigeuns
00T 08 09 OF

®

(403e49d0 WNWIXEA) UOKE|NWNIDY

®

Z 3|n4 indinp
00T 08 09 Ov oOc¢ 0

< | | | | |
il I I I

wnipaw A moj

=

L 9|n4 IndinQ
00T 08 09 oOv Oc¢ 0

A

cm%_NE:___ooE_ <>o_

€0

Aupigenns NIHL

wnipaw =

1oys == awy aujjuo YO 8uo|

Aouane| 4

O]

awi auluQ

\ /\

L0

Aigenns NIHL

ysiy =

wnipaw == 3wy auljuo ANV wnipaw == Aduaie| 4|

[utw] 0ST 0ZT 06 09 OfF
sun <—t—+— _
) T > W S

fouae
0ST 02T 06 09 Of
<520 = W
awil auljuQ
[urw] 0ST 0ZT 06 09 Of
s +————+ _
1 W S
<)
S0T
fousle
[sw] 0ST 0ZT 06 09 Of
e]]]]
Dk
VA AV

3wl auljuo ‘sw OZT = Aduale| :JUSLIBINSEIN

ulw 09

121

6. Optimized robustness and performance

Applying fuzzy logic to DHT routing First, we determine the subset of fingers f;
that are closer to the destination in the ID space. Then, we calculate the suitability S(f;)
for all nodes in the subset. Thereby, a high suitability indicates that the corresponding
finger is a good choice for the next hop. Finally, the message is forwarded to the node
with the maximum suitability. If the protocol uses parallel routes, the message will be
forwarded to the J nodes with the highest suitability. Moreover, in the case of a routing
failure, an alternative route, bypassing the failed node, can easily be determined by using
another node with high suitability.

We worked out several criteria that might be useful for estimating optimal paths and
classified these influencing variables in two categories:

Proximity

e Distance to the destination: Nodes that make much progress in the ID
space are favorable for achieving short path lengths.

e Remaining hops: The estimated number of remaining hops (hops(f;)) should
be low.

. Close nodes in terms of latency should be preferred.

Reliability and availability

e Online time: A long online time means a high probability that the node is
still available.

e [TLSE If a packet from the neighbor was just received, the neighbor would
be more likely to be available than if the stabilization message from it was
overdue.

e Node stress: Nodes might signal a high load to their neighbors asking them
to forward fewer packets to them.

e Packet loss rate: If a high packet loss was measured for that node, it should
not be used for routing.

The designer of a specific P2P application should carefully select the influencing variables
it considers most important for its application. Then, fuzzy sets and rules like the
examples we presented can be easily defined. The main drawback of fuzzy logic is that
is does not scale to complex problems. However, in this case only a relatively simple
decision based on a few influencing parameters must be made. Moreover, only some of
the established rules depend on the specific destination, whereas many rules deal with
the general properties of a finger f;. Thus, these rules can be calculated in advance,
and intermediate results can be used for multiple routing decisions. As a result, the
computation complexity of fuzzy-based routing is further reduced.

122

6.2. Optimized lookup performance

Pastry, SkipGraph,
Chord CAN Kademlia Tapestry SkipNet
[SMK¥01a] [REHF0I] [MM02) [RDO] [AS03]
[ZHST04] [FLIST03)
Improved stabilization v * * * *
Security considerations v * * * *
Advanced Chord v X X X X
Token Stabilization v X X X v
i‘z)cirg‘;lge /recursive v v v v v
PNS [DKKF01] * v * [FLIS*03]
PRS v * v v v
LNS [ZY 06 v * v v
Parallel routing [ILLDO04] * * v v
Symmetrical routing [MCVRO03| * * * v
Chord# [ggflfggf X X X v
Hybrid routing v v v v v
Freebie Finger v X * * X
Seloction (FRS) / i 7 i /

(v': May be applied. *: Introduced in original paper.
[..]: Introduced in cited paper. X: Not applicable.)

Table 6.4.: Applicability of the presented improvements in various structured overlay networks

Conclusion In this section we introduced Fuzzy-based Route Selection (FRS|). It is
a promising solution for combining various heuristics for selecting optimal neighbors
and routes, thus, minimizing lookup-latency in structured overlay systems. We believe
considering reliability and availability is especially promising in scenarios with high churn
rates or where wireless connections are involved. Using fuzzy linguistic variables, it is
easy to define new rules, which are easy to understand and modify.

Contrary to existing solutions, allows to base routing decisions on a linear value
range where heuristics can be applied to select an optimal lookup path. We showed that
the output of the fuzzy logic algorithm can be adjusted to the needs of the deployed
system and the underlying network structure. We are aware that fuzzy logic is not
suitable for larger problems due to the additional computation power needed. Routing
decisions, however, are a simple problem with not too many influencing variables.

123

6. Optimized robustness and performance

6.3. Conclusion

Basic structured P2P protocols already feature a scalable lookup path length and a
robust overlay structure for low to moderate churn rates. However, simple modifications
are able to significantly improve lookup performance and robustness. In this chapter, we
analyzed related work and presented our own solutions at the example of Chord.
Thereby, some improvements were already suggested for other P2P protocols (e.g.,
and [PRS)), other improvements are limited to Chord-like circular overlays (e.g., Token
Stabilization), and the remainder of improvements can be easily translated to various
structured P2P overlays (e.g., Fuzzy-based Route Selection). Table gives an overview
of the presented algorithms and their applicability. There, our own solutions are high-
lighted in bold font.

We presented an advanced Chord variant, which includes several modifications to the
basic Chord stabilization and finger update. The Token Stabilization further improves
the robustness of the overlay. We exploit Chord’s circular structure and send token-like
stabilization messages in both directions. Despite its lower bandwidth requirement, it
outperforms both basic and advanced stabilization.

Moreover, we discussed disruptions of the overlay structure. By applying improved sta-
bilization algorithms and calling periodic stabilization more frequently, the probability
of a broken ring topology can be reduced. Yet, the probability will never be negligible,
thus, one should design for it. Also, the overlay may split in multiple partitions due to,
for example, a whole organization being disconnected from the Internet. We discussed
several recovery mechanisms and gave design choices that further reduce the probability
of disruptions. Also, we introduce a scalable algorithm for detecting other partitions and
presented related work on efficient merging of partitions.

Furthermore, we introduced a combination of recursive and iterative routing, which fea-
tures the advantages from both variants. We also presented Freebie Fingers; additional
finger entries that come without additional signaling overhead by exploiting existing fin-
ger update traffic. As a result, the mean lookup path length is reduced by approximately
50%. Finally, we discussed neighbor and route selection. Our algorithm uses fuzzy-
logic to easily and comprehensively combine various different heuristics and parameters.
In particular, considering the availability of nodes, we expect a significant performance
gain.

124

CHAPTER [

Application of structured P2P for Voice-over-IP

In this chapter we introduce a Voice-over-IP (VolP|) framework, which is based on a
global (i.e., physical network boundaries-spanning) P2P overlay network. Therein, the
P2P network provides multiple lookup services, like name services, directory services and
discovery services.

Most current solutions (e.g., Session Initiation Protocol [RSCT02]) still rely
on centralized architectures to provide basic services like establishing calls, or billing
and accounting. As each server represents a possible Single Point of Failure and
does not scale well, we suggest replacing centralized structures with P2P mechanisms,
resulting in P2P-based applications. P2P is highly scalable and does not require a
central control. Moreover, it is independent of existing infrastructure, thus supporting
ad hoc networks and ephemeral groups. Furthermore, P2P algorithms provide simple
discovery and setup.

Skype [Skyb| is a popular example of a proprietary P2P-based solution. As of
October 2008, Skype has been downloaded more than 1 billion times and more than
14 million users are online at the same time [Mer|. The architecture of Skype is based
on a hierarchical unstructured P2P overlay network, similar to KaZaA [GD.J06].

From our point of view, structured P2P protocols could increase the efficiency of such
a system due to their benefits mentioned in this thesis. In this section, we therefore
evaluate the applicability of the Chord protocol for signaling purposes in systems.
Establishing a call can be divided into three steps:

1. Looking up the person in the white pages (directory service) (optional).
2. Finding out the person’s current IP address (name service).
3. Calling the person.

The connection itself (step 3) is established directly between the two parties using TCP
and/or UDP, whereas step 1 and step 2 require lookups in centralized or decentralized

125

7. Application of structured P2P for Voice-over-IP

databases. Thereby, must compete with established Public Switched Telephone
Networks) In order to provide a certain Quality of Service these lookups
must be answered quickly and reliable. This requirement can easily be met by central
instances, but as stated earlier, they require expensive administration and maintenance.
In contrast to that, decentralized systems save costs and provide higher resilience, as
are eliminated. To be able to perform fast lookups in structured P2P networks it
is essential that the network structure is stable and as little timeouts as possible occur
during queries.

From an operator’s point of view, supplementary services are an important part of a
communication network. Thereby, these services do not solely account for customer sat-
isfaction, but yield a considerable profit, as can be seen by studying for example Skype.
There is no basic fee, and Skype-to-Skype calls and instant messaging are free. Yet,
Skype reported $143 million in revenue for the third quarter of 2008 [eBa08]. This rev-
enue was mainly earned by additional services, which are subject to a fee, like calling
and receiving calls from phones and mobiles, sending SMS messages, or using voicemail.
Moreover, (P2P-based) systems should support existing and additional supplemen-
tary services, in order to compete with existing telephone networks.

In the following, we present common supplementary services and features of communi-
cation networks. Afterward, we introduce a framework that allows to easily implement
new services. Finally, we discuss range, wildcard and complex queries and present a
prefix-based query algorithm designed for user lookups.

7.1. Supplementary services and add-ons

Supplementary services in Public Switched Telephone Network In tele-
phony, supplementary services are functionalities of end devices and the telecommuni-
cation network. These services simplify the operation of the system and make it easier
to use. Moreover, the Intelligent Network , a service-specific network architecture
intended both for fixed as well as mobile telecommunication networks, allows operators
to provide additional value-added services. Thereby, the network takes over certain func-
tionalities. In the following we give a short overview on common supplementary services
in telecommunication networks.

e Calling Line Identification Presentation/Restriction (CLIP, CLIR) The
caller may define whether his telephone number should be transmitted to the called
party or the transmission of the number should be blocked, respectively. In this
service, the network must assure that the correct information is transmitted.

e Completion of Calls to Busy Subscribers/on No Reply (CCBS, CCNR)
With CCBS the caller (A) may activate an automated call-back request at the callee
(B)’s switching center in case the callee’s line is busy. If B hangs up, his switching
center signals to A’s switching center, which in turn initiates a new call from A
to B. Similarly, a call-back request at B’s switching center might be activated if
B does not reply to A’s call. The next time B completes a call and hangs up the
phone, a call-back to A is initiated automatically.

126

7.1. Supplementary services and add-ons

Call Waiting (CW) This service acoustically or optically signals an incoming call
despite a busy line. Thus, subscribers are available on the phone during ongoing
calls.

Call forwarding (CF) The subscriber is able to forward calls to another device
using this service. There are three triggers for CF: The current device is busy, the
call is not taken after a period of time, or the subscriber decided to temporarily
forward all incoming calls to the other device. The settings for the CF service are
stored at the subscriber’s switching center.

Call Hold (CH) If an incoming call is signaled during an ongoing call (CW), the
subscriber might hold its current call and activate the new call. It may also switch
between the two active calls, thereby alternately holding one call.

Three Party Service (3PTY) 3PTY allows three parties to simultaneously talk
to each other. This situation might occur if a third party C calls a busy line. The
call is signaled to the callee A (CW). Instead of holding its ongoing call with party
B (CH), A decides to establish a three party call with B and C. Also, one party in
an ongoing call between A and B may invite a third party C to the talk by calling
it. Thereby, the calls are mixed locally in the telephone of the conference leader,
which establishes separate connections to both parties. Alternatively, operators
provide a multiparty conferencing service based on the making a switching
center responsible for mixing the calls.

e Answering machine An answering machine either is a device that will record
incoming calls if the line is busy or the call is not replied. It is installed locally at
the subscriber, or it is a value-added service provided by the telephone company.
We focus on the second case, where the recorded voice message is stored “in the
network”. Then, the message might be accessed from different end devices (by
calling a certain phone number and authenticating by, e.g., dialing a PIN number).

A possible realization of selected features in a P2P-based system is introduced in
Section [7.2.21

Features and add-ons for Voice-over-IP systems mainly relies on
switching centers and Intelligent Networks (INg). In contrast to that, is designed
in an end-to-end manner [SRC84|, with the end devices taking over much functionality
and tasks. Thereby, the core network is more and more reduced to an efficient “bit-pipe”.
Some services like Call Waiting (CW) may be fully implemented in the end devices. Yet,
several services are not feasible without the interaction of the network. Other services
can be enhanced if some functionality is offered by the network. For example, storing
messages for offline participants is an enrichment for instant messaging. Also, requesting
a call-back from another user that currently is not logged in requires an appropriate
database in the system.

Moreover, storing information about missed calls and messages in the system enables
the usage of multiple end devices that might be contacted with the same identifier. For
example, a person A tries to contact a friend B, but the call is not answered. From A’s
point of view a timely call-back from B will be more likely if the missed call is signaled
at all of B’s devices. Similarly, B might be interested in receiving instant messages on

127

7. Application of structured P2P for Voice-over-IP

the device it currently uses. In this context, we must distinguish between identifiers
describing an end device and identifiers describing a person or institution that might be
assigned with multiple devices. Usually, someone wants to contact another person and
not a specific device owned by that person (except for economic reasons).

Besides providing existing supplementary services, systems introduce new services
and add-ons. In this context, an add-on is something added on top of the system that
enhances the system. An add-on could be an accessory or feature, whereby a feature is
an attractive aspect of the system. Common features that are already implemented in
existing solutions include video telephony, instant messaging, collaboration tools,
and gaming.

Considering the examples of gaming and collaboration tools, we can observe that these
services can either be an add-on to a telephone system (like Unyte Application Shar-
ing [Web| and various online games in Skype), or telephony is an add-on for massive
multiplayer online role-playing games (MMORPG, e.g., World of Warcraft [Bli]) and
collaboration tools (e.g., Microsoft Office Groove [Mic|). This mixture of different add-
ons and services is referred to as feature interaction.

In various supplementary services require interworking, e.g., between the origi-
nating and the terminating network to provide Completion of Calls to Busy Subscribers
(CCBS). The interaction of two services is defined by a protocol that specifies the required
communication. The interactions get more complicated with Internet telephony [LS00].
First, users must be able to trust each other. Setting up a web of trust is much more
difficult than compared with the [PSTN] Second, the distributed nature leads to vari-
ous implementations and systems that are controlled by entirely separate organizations.
Feature interaction would require these organizations to co-operate. Third, many “Web
2.0” systems and platforms encourage their participants to add value to the application
as they use it, e.g., by implementing new services. Tim O’Reilly calls it an ‘architecture
of participation’ [Mus06, (O’R05|. He states that Web 2.0 software ‘gets better the more
people use it’, and he even claims that ‘user contributions are the key to market domi-
nance’. Thus, features are created by amateur developers that might not be considering
interactions at all. Fourth, [VoIP|is an end-to-end service with packets traveling from
user to user. Thus, intermediate servers can not intercept the connection and take ap-
propriate actions. More detailed information on feature interworking and its challenges
can be found in corresponding literature like [LS00].

The following list describes common add-ons for Internet telephone systems. A more
extensive list of features can be found in [Whi].

e Online “white pages” (Searching subscribers) White pages is a common name
for a telephone directory. In a communication service the directory lists all par-
ticipants of the service. It can be used to find the contact information of other
users. Due to privacy restrictions, such a directory usually lists only contact in-
formation necessary for the corresponding service, e.g., the telephone number in a
telephone directory. Additional information like the user’s address might be given
to distinguish users with the same name. In contrast to printed white pages, their
online counterparts offer higher flexibility for searching users. Searching in printed
editions is limited to first selecting the town, second the last name and third (if

128

7.1. Supplementary services and add-ons

given) the first name or address. Digital editions often provide searching for any
attributes as well as the use of wildcards and complex queries. In Section we
present solutions for complex queries in decentralized directories.

e Buddy-Lists and Presence A buddy-list is like a private phone directory. The
user adds people that he (frequently) communicates with and thus wants to keep
track of. Storing people in the buddy-list supersedes the lookup in a public phone
directory for those people. Buddy-lists are usually stored at a central instance,
such that its content is available at all devices a user logs on to. Additionally,
buddy-lists often provide presence information for entries in the list. Presence, in
the context of communication, refers to technology that allows people to see at a
glance the status of availability of other persons. In Skype, a user’s status might,
e.g., be ‘online’; ‘away’, ‘not available’, ‘offline’, or ‘do not disturb’ [Skyal.

e Instant Messaging (IM) Internet communication services often feature an in-
stant messaging service. This service is functionally adequate to a real time chat
and enables live text-based communication between two or more users. Various
proprietary and open instant messaging protocols exist for fixed and mobile sys-
tems. IM systems often allow users to exchange files, e.g., photos and videos. Also,
some systems will temporarily store messages if a user is not available. When the
user logs on, missed messages are transmitted to its device.

e Click-2-Dial Click-2-dial is a feature that allows initiating a call by clicking on an
appropriate sensitive area in another application. Often, the sensitive area shows
the telephone number or nickname that will be called if the area is clicked. Yet, it
might also be, for example, a logo, a button, or the other party’s name. Then, the
real telephone number or nickname is transparent to the user. Amongst others, the
Click-2-Dial sensitive area might be displayed on a web page, on a web portal, in
a document, or in an IPTV broadcast.

In systems users are often addressed by their nickname or Uniform Resource
Identifier (URI), whereas the client is contacted by its IP address. Thus, a user might
be registered from various devices. In that case, events like incoming calls or instant
messages are signaled at all devices. In Skype event logs and chat protocols are even
synchronized between all clients. If a client was offline during an event, the missed event
will be made available at that client the next time it is online.

[VoIP|systems often feature mobility, i.e., a user can log in the system from any device with
Internet connectivity. On the one hand, this is a great benefit. Yet, on the other hand,
mobility comes along with various critical problems. One sensitive issue are emergency
calls, as it is no longer feasible to fast and easily locate the geographical position of the
caller. A solution to this problem could be devices that know their geographical position.
Then, in case of an emergency, the application could transmit the current location
to the called party. Another problem is the ability to backtrack calls. A worldwide
authentication of users and devices is crucial to prevent anonymous calls from advertising
organizations or stalkers.

129

7. Application of structured P2P for Voice-over-IP

7.2. Realizing supplementary services in P2P-based
\olP

In this section we sketch the idea of a framework for realizing supplementary services in
a system. The framework is based on top of a DHT, thus, all services might be
realized in a fully decentralized manner. Thereby, all services are implemented basically
by using store and retrieve operations [SKO7|. In this thesis, we concentrate on the
signaling that is necessary for the services, whereas the actual communication and related
issues like audio/video coding are not addressed. The design of our framework offers an
easy way to implement new supplementary services. Moreover, it is purely decentralized,
supports existing telephony services, and may be implemented platform independent.
As we demonstrated in the previous section, in [VoIP|many services are no longer provided
solely by the network, but clients themselves help realizing the services according to
the end-to-end principle. Consider the service three party conference (3PTY) as an
example. It is realized by setting up two calls from the owner of the conference to
both communication partners, instead of involving a central exchange. Thereby, the
conference’s owner acts as the exchange, which mixes both calls [JSCT05].

The remainder of this chapter is organized as follows. After presenting related work, we
explain the basic concept and functionality of our framework. In section we present
the implementation details of a distributed user directory, therewith exemplifying the
challenges arising with decentralized applications.

7.2.1. Related Work

P2PSIP The conventional architecture sets up a relatively fixed hierarchy of
routing proxies and [SIP|user agents. In order to find out the IP address of the User Agent
Client (UAC)), where a user can be contacted, a proxy/registrar server is used. The
specification distinguishes between the Address of Record (AoR) and the Contact URIL
The AoR indicates a certain user, whereas the Contact maps to the where
the user can be contacted [RSCT02]. In the context of [VoIP] is used for initiating
calls. The calls themselves are realized end-to-end by setting up direct UDP (or TCP)
connections.

In P2PSIP, the hierarchical architecture is replaced by a structured P2P overlay.
Thereby, the P2P network takes over the role of the proxy servers, e.g., the mapping of
an AoR into one or more Contact [URIk. The details of the decentralized solution are
currently worked out in the IETF P2PSIP Working Group [BR]. In the current draft,
all basic P2P messages, like a JOIN request, are encoded in messages.

The P2PSIP architecture uses specifications, as is a widely established protocol
based on standards. Therefore, existing software components may be re-used and P2PSIP
will be compatible with most existing equipment. Also, already supports both
Instant Messaging (IM) and [VoIP|

The authors of the draft, distinguish between between node operations (i.e., join /leave the
overlay and stabilization) and user operations (e.g., registration). The P2P overlay
is not limited to the mapping of AoRs to Contact [URIk. For example, the overlay may

130

7.2. Realizing supplementary services in P2P-based |Vol f’]

be used to transport messages between any two nodes in the overlay. Moreover,
nodes may also offer services to other peers, like a STUN server [RMMWO0S]| or a voice
mail (VoM) service. Thereby, additional information about the service may be stored in
the P2P overlay, e.g., which peers offer a certain service or which requirements exist for
using a service.

PeerThings Communication Platform The PeerThings project® is a real-live in-
dustrial application for large-scale structured overlay networks developed by Siemens
AG [Wim06, Wim06|]. Thereby, many conventional network server responsibilities are
pushed over to the client side.

As part of the PeerThings project, Siemens developed a decentralized communication
platform supporting voice communication, video communication, instant messaging, etc.
It has a closed source and proprietary design. Yet, standard is used for voice and
video calls. Thus, it fully supports interworking with [SIP| and [PSTN]| by using appro-
priate gateways |[Rus06]. Siemens states that it is expandable to new application like
audio/video streaming or payable transactions. It could also be integrated with mobile
phones [Wim06].

PeerThings is based on the Resource Management Framework (RMF) [SR02) [FFRS02]
with an underlying Chord-like DHT [Rus06]. Thereby, the RMF provides mechanisms
to manage resources. A metadata representation is used for describing resources and
each resource is identified by a Unique Identifier (UID]). Links between resources are
realized with a linkUID property, which contains the of the linked resource. Using
the RMF, users can register, search and retrieve resources from the network. Moreover,
users may subscribe for certain resources, i.e., they are informed about changes to these
resources [Sou06].

Skype Skype is a popular P2P client developed by KaZaA in 2003 [BS04]. Skype
was acquired by eBay in September 2005 for $2.6 billion. On September 28, 2008 the
Skype software was downloaded 1 billion times. Thereby, the speed of downloads was
mainly linear in the last two years [Mer]. In its “third quarter 2008 results” eBay reported
more than 370 million users registered with Skype and $143 million in revenue for the
quarter (representing 46% year-over-year growth) [eBa08]. Around 14 million users are
online at the same time. The popularity of Skype can be explained by the fact that
Skype is easy to install and use, has better voice quality than MSN and Yahoo IM
clients, and works almost seamlessly behind NAT and firewalls [BS04]. On the contrary,
the Skype protocol is proprietary and almost everything is obfuscated [BD06]. Thus, it
is not possible to distinguish normal behavior from information exfiltration. As a result,
companies might risk a security gap if the Skype software is used by their employees.
Several researchers tried to analyze the Skype network and client software [BS04, [GD.J0OG,
BDO6, Mex].

They found out that Skype applies an hierarchical P2P overlay similar to the FastTrack
network [GDJO06]. Ordinary hosts connect to supernodes, which form an unstructured
P2P overlay. Yet, due to large cache sizes, each supernode knows almost every other

SPeerThings was presented at the CeBIT trade show in 2006.

131

7. Application of structured P2P for Voice-over-IP

VolP Service Framework

API APl || Gateway |
2
SIP
Client Skype PSTN
J
IP Layer

Flgure 7.1.: Application stack of our Service Framework

supernode. In 2006, [BDO6| estimated around 20,000 supernodes in the world. Any node
with a public IP address having sufficient CPU, memory, and network bandwidth is a
candidate to become a supernode.

Skype uses both TCP and UDP for communication. However, no default listening ports
are used, but the port number is randomly chosen upon installation and local network
conditions. shows that Skype can work without UDP, but not without TCP
connections. For login, Skype operates a central login server, which appears to be hosted
by an Internet Service Provider in Denmark [BS04]. The client and the login server
have a shared secret: a hash of the password [BD06].

performed a measurement study of the characteristics of the Skype network.
They observe very little churn in the top level network. However, supernodes show
diurnal behavior, which is correlated with normal working hours. As a result, median
session time of several hours were measured. Session times are heavy tailed and are not
exponentially distributed. Interestingly, despite the additional role of supernodes, no
excessive bandwidth consumption was observed. 95% of the time, supernodes consume
less than 1,000 bps.

7.2.2. VolP Service Framework

In the following, we explain the functionality of the framework at some sample services
and features. It is implemented around a DHT, which simply provides resilient resource
discovery. Three types of data resources are used: contact sheets, profiles, and info
profiles. Services are implemented by storing and retrieving these resources.

Our framework should provide interaction of various existing [VoIP| systems. Thus, we
use an additional [UID] instead of existing [SIP|[URIs or [VoIP| nicknames. The framework
is implemented on top of a DHT (see Figure . In order to integrate an existing
system/client and use its voice channel, it must either provide an API or open
protocols like [SIP| must be used. Moreover, gateways may be used to connect to the
Thereby, an external DHT and/or client may be used, or the functionality
may be directly integrated in the implementation of the framework.

The framework makes a few requirements to the applied DHT. (key; value)-pairs should
be replicated in the DH'T and should be removed if no update is received for a certain

132

7.2. Realizing supplementary services in P2P-based |Vol f’]

PROFILE

John Q. Public 34261 | D 32261
PROFILE
2 John o 07810 ID: 07810
a > c >
g S PROFILE
dJ Public N g 22069 - ID: 22069 KONTACT SHEET \
> 5 >
C
< o PROFILE ID: 13998
o . . 7] FIRsT NAME: John Q.
m john@public.com | & 19446 5| b 19446 LAsTNAME: Public
o T 7| User: John Q. Public EvAL: ioh bi
b User ID: 13998 -MAIL: john@public.com
-) REFRESH: 2008-06-21
14:15:05 GMT+1
. . IP:PORT: 129.187.54.67:5060
CS:john@public.com > 13998 >| StaTus: Online
DiaLpLAN: Skype:johnP_office;30
Skype:johnP_home;20

SIS keys K 5|P:johnp@sip.comy

Figure 7.2.: Contact sheet of John Public

time interval. Thereby, contact sheets have long timeout values (in the order of days),
whereas other information stored in the DHT may expire after a few minutes. Moreover,
the DHT must allow for storing multiple resources with the same ID. If this ID is queried,
all resources will be returned.

In our framework, each user publishes a contact sheet in the DHT. The contact sheet
contains various information about the user, like connection data ((e.g., IP address:port),
address, and dialplan (see Figure . Note that in the course of this thesis we neglect
security aspects, like authentication or the visibility and privacy of user data. Contact
sheets are stored in the DHT using, for example, the user’s email address with the prefix
‘CS:” as input for the hash function. For example, the key of John Public’s (JP) contact
sheet is H(CS:john@public.com) = 13998. This key is also referred to as [UIDk. It
addresses a certain user, not a specific device.

Profiles are used to provide a directory service, whereas info profiles store additional
information for users.

In order to establish a communication channel to a user, its must be looked up in
the DHT to learn how the user wants to be contacted. Then, the application tries to
establish a connection to the user with respect to the dialplan.

White pages (Searching subscribers) and Buddy lists Usually, users do not know
the ID of the person to be contacted. Therefore, it must be possible to look up the
ID of the contact sheet in a phone-book-like user directory. Like in a printed phone
book, the user directory should contain sufficient information in order to clearly find
a certain person. Thus, information like the user’s postal or email address should be
stored in the contact sheet. Moreover, it is necessary to store additional profile sheets.
The profile sheet is a small resource that connects a certain attribute, like the user’s last
name, to the corresponding contact sheet. In Figures and a profile sheet with ID
H(john@public.com) = 19446 stores the full name of user JP as well as the ID of JP’s

133

7. Application of structured P2P for Voice-over-IP

PROFILE
22069

PROFILE
19446

ID:
User: John Q. Public
UsER ID: 13998

ID:
User: John Q. Public
User ID: 13998

Looking for
“john@public.com”
- ID 19446
CONTACT SHEET
ID: 13998

FIRST NAME: John Q.
LAST NAME: Public

PROFILE

ID: 32261
User: John Q. Public
User ID: 13998

PROFILE

ID: 07810
User: John Q. Public
UsER ID: 13998

® Find profile (here: email)
@ Find contact sheet
® Initiate call

Figure 7.3.: Sample lookup for user John Public

contact sheet. If another user A knows JP’s email address, he will be able to calculate
the ID by hashing the email address. Then, A searches the DHT for this ID (Figure
®). He receives the corresponding info profile and learns about the ID of JP’s contact
sheet. Finally, it is able to retrieve the contact sheet @ and call JP ®.

Storing additional profile sheets will be necessary to find a user if its ID is not known.
For each attribute, one should be able to find in the directory, a separate profile sheet
is required (see Figure . Yet, there are several problems with this approach. First,
many users with the same attribute values exist, for example, millions of people are called
John. As shown in Section names follow a Zipf-like distribution. There are a few very
common names, and many names that appear very infrequently. Thus, a node, which is
responsible for a frequent name would have to store a huge amount of data. Also, many
queries for that name must be answered and nodes might not be able to handle this
extremely high load. TLoad balancing techniques (as introduced in Section are no
feasible solution to this problem, as each name is hashed to one particular ID. Second, due
to the applied consistent hashing, a DHT resolves only exact query matches. Mistyped
entries, entries containing wildcards, and complex queries are not supported innately by
DHTs. In Section [.3 we evaluate related work on alternative search indexes for DHTs
and present PriMA KeyS, a prefix-based multi-attribute keyword search algorithm.
Buddy lists are a common add-on for IP-based telephony. Using the DHT, buddy lists
may be stored in the network. Thus, buddy lists for an user are available at all clients,
where the user is logged in. That way, changes to the buddy list are also kept synchronized
on all clients.

134

7.2. Realizing supplementary services in P2P-based |Vol f’]

CONTACT SHEET

ID 21061

FIRST NAME Jane
INFO PROFILE INFO PROFILE et Doe

MAIL jane@janedoe.com
ID: 13998 ID: 13998 REFRESH 2008-06-21
TYPE: CALL-BACK TypPE: HOLD 12:10:07 GMT+1
TIMESTAMP: 2008-06-20 TIMESTAMP: 2008-06-20 IP:POR 129.187.16.201:5060
14:50:17 GMT+1 14:50:17 GMT+1 STATUS Online
USER: Jane Doe USER: John Q. Public DiALPLAN: Skype:janedoe;30
UseR ID: 21061 UserID: 13998 SIP:janee@sip.com;20
CHANNEL: SIP:johnP@sip.com

Figure 7.4.: Info profiles CALL-BACK (left) and HOLD (center) and contact sheet of Jane Doe
(right)

Dialplan and call forwarding The dialplan of a user B contains rules for establishing
a connection to B. Tt defines the kind and order of services that might be used to contact
the user. In our example, John Public can be contacted using Skype or[SIP| The dialplan
is a linked list with a variable number of entries and it is processed in the given order
of the list. If the call is not answered within the specified timeout value, the next entry
will be used to establish a connection.

User B may alter its dialplan at any time by updating the replicas stored in the DHT.
Prior to calling B, a user A retrieves B’s contact sheet. Thus, it is guaranteed that the
latest dialplan is used and that changes in the dialplan immediately take effect. Call
forwarding (CF) can be enabled by removing an entry or setting its timeout value to
zero, thus, skipping this rule.

Completion of calls on no reply (CCNR), missed calls This supplementary service
is realized by using info profiles of type carLL-Back. If no rule in the dialplan was
successful, a call-back request would be generated and stored in the DHT. As the callee
must be able to find appropriate info profiles, the info profile is stored with the same 1D
as the ID of the callee’s contact sheet. Thus, profiles are stored on the same peer as the
corresponding user’s contact sheet. The profile contains a timestamp, the name of the
caller A, and his (see Figure [7.4] (left)).

Imagine user A tried to contact B, but the call is not answered, thus A generates a call-
back request. Each client will periodically query the DHT for the [UID] of the registered
user, in order to find out if appropriate info profiles exist. If a new info profile of type
call-back exists, user B might decide whether he wants to ignore the request or if he
wants to establish a connection. In the second case, B’s client queries the network to
find out A’s current dialplan and tries to set up a connection with A. After successfully
calling A, the info profile is either marked done or is removed from the network.

There is a main difference of our realization compared with the The call-back is
not initiated from a telephone switch, but from the end device. Moreover, in our solution
the call-back is not limited to the called device, as the call-back is signaled at all devices
of user B.

135

7. Application of structured P2P for Voice-over-IP

Putting calls on hold Info profiles are also used to put calls on hold and resume the
call from another location or device. A sample profile of type HOLD is shown in Figure[7.4
(center). If one party A decides to use this service, it will generate an info profile that
contains a timestamp, the name and of the other party B, and the currently used
voice channel. Again, the profile is stored with the of A’s contact sheet. Then, the
call is disconnected.

Similar to CCNR, all devices of user A periodically query the DHT for info profiles of
A. Thus, the information about the call on hold will be available at all devices. User A
then may try to re-establish the call using the former voice channel. In case of no reply,
it might also lookup B’s latest dialplan and try another communication channel.

Answering machine, voice mail (VoM) An answering machine may either be in-
stalled locally on an end device or as a service provided by the network. The first case is
trivial and not considered in this work. A voice mail (VoM) is an example for a service
that may be provided by a third party. Thereby, two aspects are interesting to us.
First, a discovery service may be queried for an appropriate service provider. The dis-
covery service allows services to register themselves in spontaneous networks for later
lookup. [SSROS] lists some typical examples that provide standard interfaces and schemas
for registering and finding services: Jini [Jin|, Globus MDS-2 [Glo], and the UDDI web
service [UDDI.

In our realization, the service discovery and our framework could use the same DHT
overlay. Users search the DHT for a voice mail service. After registering with the
service, its provider returns relevant data for setting up the service. For example, users
receive an additional VoM from the provider. The service is activated by integrating
the service along with the in user B’s dialplan. If user A tries to call B and the VoM
entry in the dialplan is executed, A will search the DHT for B’s VoM As a result,
user A receives the connection details necessary for contacting the VoM service. After A
established the connection and the voice mail is recorded, the VoM service uploads an
info profile to the DHT using B’s [UID] This profile contains connection details about
the host that recorded the voice message. Thus, after retrieving the info profile, B might
connect to this host and listen to the recorded message. The recorded voice mail might
also be directly stored in the DHT along with the info profile. Then, the P2P overlay is
responsible for maintaining a copy of the message.

In this context, a service provider might be any node participating in the system.
Thereby, incentives, likes virtual money, might motivate users to provide processing
capacity and storage required for setting up services [UB03].

7.3. Realizing range, wildcard, and complex queries
DHTs establish a structured P2P overlay network by applying proactive routing algo-
rithms. Due to their well defined structure, this class of P2P protocols is able to locate

any content in the system within a limited number of hops. However, basic DHT algo-
rithms are limited to queries for content that exactly matches the search term, as they

136

7.3. Realizing range, wildcard, and complex queries

provide only hash table functionalities. In contrast to unstructured P2P overlays, ad-
vanced queries, like range, wildcard and complex queries are not inherently supported
by structured P2P protocols.

Wildcard characters are used to substitute for any other character(s) in a term. Some
common wildcards that match zero or more characters are the asterisk sign (*) and the
percent sign (%). The question mark (?), the period (.), or an underscore () usually
substitute as a wildcard character for a single character [MRSO0S].

Prefiz-based queries (or trailing wildcard queries) are a special case of wildcard queries,
which search for all entries that share a common prefix, i.e., the * query symbol occurs
only once at the end of the search string. Similarly, using a range query all entries of
a database with a value between an upper and lower boundary may be retrieved. The
difficulty with these queries is that it is not generally known in advance how many entries
a query will return. Wildcard queries will be used, for example, if the user is aware of
multiple variants of spelling a term or if he is unsure about the correct spelling of the
term (e.g., Sydney vs. Sidney, color vs. colour) [MRSO0S].

A complex query is a query that includes more than one type of operator. It may be
created by using the unioN operator, which takes the union of all rows returned by several
queries. Also subqueries (or nested queries) and special predicates (e.g., ANY, EXISTS,
or IN) may be used to create a complex query.

We present a Prefix-based Multi-Attribute Keyword Search (PriMA KeyS) that is spe-
cially designed for DHT-based community services, like searching persons in a distributed
phone book. Our architecture is fully distributed and pays special attention to a bal-
anced storage load distribution as well as low network traffic. Hierarchical identifiers
generated from multiple keywords help to reduce the load on nodes that host common
keywords. Additionally, a locality preserving hash function enables prefix-based queries.
An extensive linguistic analysis of search keywords is carried out to select optimum design
parameters.

We discuss related work in Section and define our Prefiz-based Multi-Attribute
Keyword Search (PriMA KeyS) algorithm in Section Using sample queries, we
present experimental performance results in Section We show that our system can
efficiently handle both detailed and unspecific queries.

7.3.1. Related Work

Keys and Zipf distribution In database terminology an entity is an existing object.
Information about this object is stored in the database. An object can, for example, be
a thing, transaction, event, or person. A collection of single entities that share similar
or comparable properties is called an entity-set. Typical properties of an entity are
called attributes. Entities are characterized by their attributes. A key is the minimum
combination of attributes that identify an entity out of an entity-set. In many cases not
all available attributes are necessary to identify an entity. Objects that have a unique
serial number can be identified by this number. Persons can, e.g., be identified by their
last and first name, and date of birth. If there are several objects that share the same
key, the database will return all matching entities.

137

7. Application of structured P2P for Voice-over-IP

Most current DHT protocols generate an the key of an entity by hashing one or more
attributes. As a result, contacts will only be found if the querying person knows all
attribute values that are part of the key. As certain attribute values like George, Smith,
or Fairview are very common (see Section , it is not feasible to map each of these
keywords to a single ID. To avoid common keywords in DHTs, an ID is generated using
several attributes as input parameters. The basic idea is that each resource (except
for clones), like a person in our example, will be distinguishable from other resources
if enough attributes are considered. This raises two questions: What attributes should
be considered? How should the key be generated from the attributes of the ressource?
The answer to the first question mainly depends on the considered application. In our
telephone book, we identify users by four attributes: first and last name, street, and town
or zip code. We assume that the zip code can be translated into the corresponding town,
for example, by using a distributed hash table and vice versa. Additional attributes store
things like the user’s phone numbers and email addresses. In section we show how
to determine how many attributes should be used for generating keys with the algorithm
we propose.

Keyword Search Most search algorithms in DHTs are based on an inverted distributed
hash table explained in detail in [RV03]. Information about available resources is made
locatable by storing (identifier; list of locations)-pairs in the P2P system. If multiple
keywords are stated in a query each keyword might be searched separately. Results from
different nodes are then merged at the initiator of the query. A more efficient solution is
to include all keywords in each query. Then, nodes hosting one of the keywords should
return only resources that match all keywords. Thereby, the number of responses will
be reduced, especially, if common keywords are used in the query. Another efficient
approach is based on chained processing |[LSS02]. At first, the keywords stated in the
query are put in ascending order according to the size of their index. Then, the query is
routed to the node that hosts the first keyword. This node writes matching content to
the list of results and forwards it to the node hosting the next keyword in the chain. Each
subsequent node successively intersects its index with the previous results. Eventually,
the last node in the chain constructs the final answer and returns it to the initiator.
Throughout the process the size of the list of results can be no larger than the index
at the first node in the chain. By sorting the nodes in advance, it is ensured that the
amount of transferred data is minimized.

MAAN |CECS03| provides range queries by extending Chord with locality-preserving
hashing for numerical attributes. Multi-attribute queries are performed either by search-
ing for all queried attributes separately and intersecting the results at the query origina-
tor, or by piggy-backing all sub-queries in each search request. Then, nodes can locally
select resources that are valid for all query parameters.

The Squid approach [SP04] uses all available attributes to span a multi-dimensional
attribute space. Provided there are enough different attributes each resource corresponds
to a unique point in the space. Then, a space filling curve (SFC) (e.g., a Hilbert or z-order
curve) is applied to the attribute space. SFCs are continuous curves that pass through
every point of the unit-space. Most SFCs possess a good locality-preserving property as

138

7.3. Realizing range, wildcard, and complex queries

they are constructed iteratively. This property ensures that similar resources are mapped
to keys that are close to each other, thereby enabling range queries. Finally, the SFC
is mapped to the DHT’s ID space. Related approaches are SCRAP |GYGMO04]| and
ZNet [SOTZ05)]. Users specify certain attributes when they search for specific resources,
thus selecting a subspace of all available attributes. The more attributes are specified, the
smaller is the resulting subspace. Wildcards and range queries are realized in a similar
way. Next, all reaches of the curve that are situated within this subspace are determined.
Finally, the DHT is queried for all nodes that are responsible for these reaches. In our
telephone book scenario we face several drawbacks of the Squid approach. Users looking
up data tend to specify only a small amount of attributes. Then, the resulting subspace
is very large and a lot of nodes must be contacted in order to resolve the query. Also, all
attributes that span the attribute space must be known when inserting a resource. Due
to protection of their privacy, quite a few users prefer to publish only their name and
phone number without specifying their address. Additionally, IDs are usually limited to
128 or 256 bits. Mapping a huge attribute space linearly to the ID space, many adjacent
points in the attribute space are mapped to the same ID. Densely populated areas in the
attribute space may then result in only a few different IDs. Consequently, load balancing
the system is not feasible any more.

Mercury |[BAS04] builds a separate attribute hub for each attribute. Within each hub
the resources are ordered by their attribute values. In the first step an intelligent query
algorithm selects the hub that leads to success with highest probability. Histograms that
show the density distribution in all hubs support the selection. In the second step all
resources that possess the queried attribute value are returned. The main disadvantage in
our kind of application is that very frequent attribute values like Smith are still mapped
to a single node in the hub. Also, combining different attributes to reduce the query
range is not possible.

Other approaches try to arrange all resources in a hierarchical scheme. In our scenario
the topmost level could be the country followed by state, town, street, and finally last
name. |[GEFBT04|, for example, creates a hierarchical indexing scheme. Content is
identified by XML descriptors and can by queried using XPath expressions. Indexes
contain query-to-query mappings, i.e., for a given query q a list of more specific queries,
which are covered by ¢, are returned. Matching queries are processed recursively until
the desired content is found.

Keyword fusion [LLO04| tries to reduce storage and network consumption by exploiting
the fact that many keyword sets follow a Zipf-like distribution of the keyword popularity.
The algorithm is based on an inverted distributed hash table. Common keywords pose a
problem for DHTs. For example, the most common first name in our white pages dataset
is Peter with about 150,000 entries. Storing all resources and answering all queries for
this keyword would be an obvious burden for a single peer. Therefore, common keywords
and their corresponding lists of values are removed from the table and the keywords
(without their values) are stored in a distributed Fusion Dictionary instead. These
keywords can no longer be queried separately, but must be combined with additional
keywords. Thereby, queries for frequent keywords that would return thousands of results
are prohibited. Also, nodes that formerly were responsible for hosting these keywords are
unburdened. For example, combining first and last names results in 5,300 Mueller, Peter,

139

7. Application of structured P2P for Voice-over-IP

which is the most common combination of first and last names in our dataset. A more
even load balance can be achieved by adding more attributes, for example, 485 Mueller,
Peter live in a city with the initial letter A. As expected, the number of matching entries
is significantly reduced when considering more attributes.

If additional keywords are specified, which are not part of the Fusion Dictionary, the
chained query process will start at one of these keywords. Keywords that are contained
in the dictionary are added to the query in a so-called partial keyword list. In order to
be able to publish and query resources that are only characterized by common keywords,
Keyword Fusion is applied. New synthetic keywords are generated by concatenating two
or more common keywords in alphabetical order. Thereby, the frequency of the synthetic
keywords is reduced compared with the individual frequency of the original keywords.
The Fusion Dictionary is cached at all peers in order to further decrease network traffic.
Using this approach, storage consumption of the top 5% most loaded nodes can be
reduced by 50% and the overall search traffic can be decreased by up to 80%. The main
problem with this approach is that synthetic keywords which result from concatenating
common keywords will only be retrievable if both keywords are exactly known. In our
algorithm, we take up the idea of a distributed dictionary and extend it in such a way
that range queries, as well as wildcard searches, become possible.

[WMB99, MRS08]| split each keyword to be indexed into n-grams, i.e., distinct n-length
substrings. For example, the keyword Peer-to-Peer could be split into 10 trigrams:
Pee, eer, er-, r-t, -to, to-, 0-P, -Pe, Pee, eer. Instead of inserting the keyword into
the DHT, for each n-gram g; the pair (H(g;); value) is indexed in the DHT. Thereby, an
index over n-grams for various values of n (typically n = 2;3) can be built. Similarly,
lookups for keywords are also split into n-grams. For example, the queried string Peer
is also split into multiple n-grams g; (e.g., the trigrams Pee and eer), and a separate
lookup is done for their hash values H(g;). The results are grouped by resource and
sorted by the number of occurrences, with resources matching in many n-grams being
displayed at the top of the list.

Extended Prefiz Hash Trees [SKMO7| are an indexing infrastructure that supports range
queries on top of DHTs. Multiple keywords are concatenated to a unique ID according
to a given priority. This ID is subsequently arranged in an n-ary prefix tree (trie). Thus,
all nodes can be accessed efficiently. Range query functionality is provided by connecting
all non-empty leaf nodes through a linked list. Nodes in the trie are stored in a DHT in
order to achieve load balance among all participating peers. Caching frequently accessed
prefixes reduces network traffic and stress on the responsible nodes. Due to the proposed
construction of IDs, a wildcard in an attribute will supersede all given attributes with
lower priority. Sometimes in a telephone book application, the usage of wildcards will
be helpful if the correct spelling of an attribute value with high priority is not known
exactly. For example, the German last names Maier, Mayer, and Meier are pronounced
the same way. In our approach, further attributes reduce the number of results even if
M??er is queried and last names have top priority. Using the same query with EPHT
leads to countless results as the ID would diminish to Mx.

Further information about search methods in recent P2P networks can be found in
[RMOG].

140

7.3. Realizing range, wildcard, and complex queries

7.3.2. Prefix-based Multi-Attribute Keyword Search
(PriMA KeyS)

In this section, we describe the design of our query algorithm. Our approach is based on
some of the ideas summarized in Section but mainly differs in the way we construct
the IDs used in the overlay [SKMO07].

Composition of keys The overlay IDs in our approach consist of several sections that
contain different attributes. Figure [7.5]shows an ID that is constructed using up to three
attributes. Each section contains the locality aware hash of the corresponding attribute
value. A key could then be composed of the first five characters of a person’s last name,
three characters of its first name, and the first letter of the town name (5L 3F 1T). We call
IDs consisting of characters names. The more attributes are considered, the more unique
the resulting name is. However, as we assume a constant ID size, the more attributes
we consider the fewer characters can be used per attribute and the more entries result in
the same name. Additionally, if there are many entities that cannot be distinguished by
their attributes, the [least significant bits of an ID might be set to a random value. This
results in up to 2! different IDs which will be suitable to be hosted by different nodes if
load balancing algorithms are applied.

(attribute 1 | ooo00000 | 0000 | random |
>

[attribute 1 | attribute 2 | 0000 | random]
>

[attribute 1 | attribute 2 | attribute 3 | random]

MSB LSB

Figure 7.5.: Keys consist of multiple sections.

Names can be transformed to binary IDs (and vice versa) by applying a simple basis
transformation: Any d-digit word from an alphabet with b different characters (base b)
can be converted to a decimal number by multiplying the index of each character in the
alphabet with b(*~*~1 and building the sum of all resulting numbers:

n

Z] . b('n,—i—l) (71)

=1

where 7 is the index of the corresponding character in the d-digit word and j is the index
of the corresponding character in the alphabet starting with j = 0.

141

7. Application of structured P2P for Voice-over-IP

Using 26 characters (b = 26) from A to Z the keyword GERALD relates to the following
decimal value:

G 6-26° = 71288256
E 4-26" = 1827904
R 17-26° = 298792

A 0-26° = 0

L 11-26" = 286

D 3-26" = 3

S = 73415241

In an analogous manner names can be converted to a binary ID. Additional coding of
the keywords can further improve our system. By replacing common character strings
in the keywords with other symbols, much like in a Huffman Code, keywords can be
distinguished with fewer characters. Many German last names, for example, share the
prefix SCH. If the total number of characters assigned to this attribute is four, only
one additional character will be available to differentiate between these names, whereas
replacing SCH by a single symbol leaves three characters available to distinguish the last
names. We also recommend shifting all letters to upper case as it is not necessary to
distinguish between lower and upper case. The size of the applied alphabet will also
be kept small if letters with special characters like umlauts or accents are dropped or
translated to the corresponding letter without umlaut or accent.

Fusion Dictionary In general, users query phone book entries by stating different at-
tributes. Printed editions necessitate selecting the town in the first step. Then, the
person will be searched by its last name and finally, if several entries exist, by its first
name. Sometimes entries can also be distinguished by additional information about the
person’s address. Digital editions allow for further search capabilities, for example, find-
ing a person by its phone number. Online communication services like Skype even offer
their users more flexible queries for other users in the system.

Even if our IDs were built with a fixed structure like in printed phone books, the resulting
system would not be limited to finding only persons in a known town. Using a wildcard
for the town attribute, it would still be possible to find a person solely by the person’s
name. However, this would require immense query costs, because processing the query
would be similar to browsing all printed phone books. We therefore suggest generating
several IDs for each resource according to the most common query patterns. However,
storing multiple IDs per entry manifolds storage consumption as well as network traffic
caused by republish and replication events.

Exploiting the fact that phone book attributes follow a Zipf-like distribution we suggest
applying a Fusion Dictionary-like approach. The underlying DHT can efficiently look
up values of rare occurrence. There is no real benefit in generating IDs built from several
attributes for these values. However, for the small set of frequently occurring values
the number of matching resources will be significantly reduced if multiple attributes are
considered. Nodes that are responsible for hosting a common keyword add this value to

142

7.3. Realizing range, wildcard, and complex queries

the dictionary. They also generate new IDs consisting of two or more attribute values
and move the corresponding entries to nodes, which are responsible for the new IDs. Up
from this moment, queries for these keywords can only be performed in combination with
other attributes.

The system can either globally specify all utilized keyword combinations in advance or
store available combinations with the keyword in the dictionary. In the second case,
nodes can choose optimal attribute sets at runtime by evaluating the resources they
host as well as all corresponding queries they answer. The dictionary itself is stored in
the DHT. Before a node searches for a resource, it contacts the dictionary and verifies
whether it contains one or more of the keywords. Since the dictionary entries are not
expected to change significantly over time, the complete dictionary is cached at all nodes
in order to reduce the total number of dictionary queries.

Locality preserving hashing The use of locality preserving hash functions will be
advisable if range query functionality is required. Only locality can assure that similar
entries are mapped into a small range of the ID space. On the contrary, cryptographic
hash functions try to remove locality in order to achieve good load balancing. A perfect
cryptographic hash function, which receives two input values that differ in only one bit,
returns two IDs that differ in half of their bits. In our evaluation we apply a very simple
locality preserving hash function [CFCS03]:

H(v) = (v —vVmin) - (2™ — 1)/ (Vmax — Vmin) (7.2)

where U € [Unin, Umax|. According to our identifier space vy, and vy.y are set to 0 and
2™ — 1, respectively, resulting in H(v) = v. This function corresponds to trimming key-
words to a fixed number of characters and then sorting the resulting IDs in an alphabetic
sequence. In order to deal with the load imbalance, which results from locality preserving
hashing, load balancing mechanisms have to be applied (see Section [3.3)).

Searching for IDs that contain wildcards In the first step, we define the ID range
that is to be queried. The start ID [Dg, is constructed by replacing all digits that
contain a wildcard with the first character of the used alphabet. The stop ID IDsp, is
constructed analogously by replacing the wildcards with the last letter of the alphabet.
Then the corresponding binary IDs are calculated and node n;, which is responsible
for IDgtart, is queried using the DHTs native findpeer algorithm. Additionally, the query
packet contains the complete list of search keywords. The queried peer will check whether
entries in its local database fit the keywords and returns matching content. The initiating
node can already display these intermediate results to satisfy the user. If the ID of node
ny is larger than IDsp, the query is completed. Otherwise, the closest neighbor of the
node, no, is contacted resulting in further matching content. This procedure is repeated
until the node n; at the end of the query range is reached.

In order to reduce network traffic and overload on the nodes, we introduce a slightly
more complex query algorithm (see Algorithm [1). After receiving data from node ny,
the initiating node transforms the node ID of node n; to its character representation.
This ID is then increased by one while taking fixed and wildcard characters into account.

143

7. Application of structured P2P for Voice-over-IP

IDgory = Replace(?7, a’, ID);
IDyop, = Replace(?’, z°, ID);
while [Dgiart < [Dgiop do
node = findPeer (Dyt);
ReceiveQueryResults();
IDg ot = IncID(node.ID);
end
DisplayResults ;

Algorithm 1: Pseudocode of the query algorithm.

Figure gives an example of our increase function IncID. Different letter case is only
shown for demonstrative purpose, but not taken into account for queries.

Search keywords Last name: Boy
First name: George
Street: Broadway
Town: *
Key (5L 3F 1S 1T) BOY??GEOB?
IDg.;+ BOYaaGEOBa
IDgop BOYZzzGEQBz
IncID(BOYaaGEOBa) BOYaaGEOBb
IncID(BOYaaGEOBb) BOYaaGEOBc

()

()
IncID(BOYaaGEOBz) BOYabGEOBa

()

()

IncID(BOYabGEOBa) BOYabGEOBD
IncID(BOYgzGEOBz) BOYhaGEOBa

Figure 7.6.: Exemplification of the IncID() function

Incremental Results Most current online (communication) services like Google or
Skype display search results incrementally. We also use this mechanism in order to
reduce unnecessary overload in the system. Users who recognize that their search is too
unspecific and produces too many results will cancel their query and add further or more
specific search attributes. Unless there are no more additional attributes left, a user is
not willing to browse through lots of query results. In addition, searches will appear
to be faster, if the first few results are displayed as soon as possible, while the rest of
the results is collected in the background. The underlying DHT is able to route to the
first node in the query range in about O(log,n) (e.g., Chord [SMK™01al), O(v/n) (e.g.,
CAN |[RFH™01]), or O(1) (one-hop routing, e.g., [GLRO04]) hops. In our system the query
range that is spanned by unspecific queries, is often hosted by several nodes which are
queried sequentially. Thus, incremental results can be easily generated by our system.

144

7.3. Realizing range, wildcard, and complex queries

In order to improve the distribution of the query load to a query range (especially for ID
ranges corresponding to frequent keywords) an extended version of our system does not
route to the first node in the range but to a random node within it. This can be easily
done by initially setting wildcards to random characters instead of the first letter in the
alphabet. From the node that is selected by random, the search then proceeds in both
directions.

7.3.3. Evaluation

Simulation environment We make some simplifying assumptions in our simulation
environment. To capture the performance of the search mechanism itself and to exclude
side-effects caused by the maintenance routines of the underlying DHT, we study a
stable system without churn. We also assume that efficient load balancing mechanisms
are applied and that thus storage load is almost evenly distributed to all participating
nodes. In order to keep simulation complexity low, we implement a very simple global
load balancing algorithm. In particular, we sort all resources by their IDs. The optimal
number of resources num..s each node should store, is the number of resources divided by
the number of participating nodes. We then assign the first num,.s resources to the first
node. As resources with the same keyword must be stored at the same node, we check
whether there are further resources that will have to be assigned to this node. Then, we
go on to the next node and repeat the procedure until all resources are allocated.

In a realistic environment, a significant part of all existing users is offline at any given
time due to switched off devices, connection problems, discharged batteries or dead spots
of mobile users, etc. To capture this effect in our simulations, we assume that only about
4% of all nodes are online and must store the entire database, i.e., each node hosts about
25 resources on average.

Generating IDs Our query system will not be able to distinguish whether the user just
typed in the initial letters of the last name or if the last name is actually that short. If
the query string is shorter than the number of characters allowed for an attribute the
query string will thus automatically be filled up with the wildcard character (?) like in
the example in Figure [7.6]

The exact size and number of the ID ranges which must be queried mainly depend on the
position of the first wildcard symbol in the ID. The further to the left the symbol appears,
the more nodes have to be accessed during the lookup. If we use an attribute structure
containing 6 characters for town, 4 characters for last name, and 2 characters for first
name (6T 4L 2F) and a user searches for town (Munich) and last name (Kunzmann),
the resulting ID will be MUNICHKUNZ??. The corresponding ID range is very small and
likely to be hosted by only a few nodes (Figure [7.7). In contrast to this, if we use the
following structure (7T 4L 1F), the ID will be MUNICH?KUNZ?. This time the ID range is
split into multiple parts which are highly likely hosted by multiple nodes.

In order to determine the optimal number of characters for the main attribute, we perform
a linguistic analysis. Figure shows the Cumulative Distribution Function of
the length n of names in the United States (source: [U.S]) on the left y-axis (solid lines).
The mean length of male first names, female first names, and last names is 5.72, 6.03,

145

7. Application of structured P2P for Voice-over-IP

LA B B R i B A B

WYACEGI KMOQSUWYACEGI KMOQS U

MUNICHKUNZ.. MUNICHKUOA..
-} -} -} o)
| | | .. | | |
| | | | o | | | | |
A M A M A A M A M A
MUNICHA.. MUNICHB.. MUNICHZ.. MUNICIA..

Figure 7.7.: The query MUNICHKUNZ?? corresponds to a small continuous range (top), whereas
a query for MUNICH?KUNZ? results in many disjoint ranges (bottom).

and 6.12, respectively. The right y-axis depicts the frequency of the most common string
with the last names trimmed to n characters (dotted lines).

On the one hand, the number of resources that match a certain prefix will be large if only a
few characters are used in the ID. Figure further shows that more than 3 characters
should be used in order to reduce the maximum number of matching resources to a
reasonable value. On the other hand, if we use many characters for the most significant
attribute there will be a lot of queries for shorter values. For example, about 90% of
US last names are shorter than 8 characters. When using an attribute with 8 characters
for the participant’s last name, 90% of all queries would contain at least one wildcard in
the first 8 characters, resulting in a large ID range which would have to be queried. In
addition, the number of characters that can be stored in a 128 or 256-bit ID is limited.
Table shows the number of characters that can be stored in an ID depending on the
size of the alphabet used.

Our initial simulations showed that 5 characters is a good trade-off for the main attribute
when searching for random persons. Further attributes can be stored with fewer char-
acters as the combination of several attributes already reduces the number of matching
content. Spending about 50%, 30%, 15%, and 5% on the first, second, third, and fourth
attribute resulted in a good search performance.

17 > 02 @&

— E S
0 © 2
E 018 T 0,16 < g

-

< & ol
E 06 1 \M 012 £5
ﬁ) \ —&— First names - :
ch 0,4 - . —o— Last names - 0,08 g. ;
w \\ ---&--- Rank 1 last name § “E-’
8 0,2 1 \Z ------ Rank 1 firstname | 0,04 2 E
Eeernennes fprmmnerenneng) o5

0 - T T T T 0 e =

0 2 4 6 8 10 12 14
Number of characters ¢

Figure 7.8.: of length of first/last name

146

7.3. Realizing range, wildcard, and complex queries

0.9 A.7Z ASCII Unicode
128 bit 40 25 16 8
256 bit 80 50 32 16

Table 7.1.: Number of letters fitting in a 128 or 256-bit ID

Storage Load Assuming a perfect load balancing mechanism, the number of resources
which need to be stored by a single node is limited by the number of occurrences of the
most common ID. IDs will be less frequent if more attributes with more characters are
used to generate the ID. In the optimum case every entity is unique. However, queries
would lead to large and disjoint ID ranges. For attribute compositions presenting a good
trade-off, the most frequent entry occurs about one thousand times, like the ID (5L 3F
2T).

Search performance To analyze the search performance, we measure the number of
nodes which are contacted during a query. We thereby neglect those nodes which are
initially contacted in order to locate D, as this number depends on the underlying
DHT and not on our algorithm. Figure [7.9] shows the of the number of nodes
that will have to be queried during a search if only one attribute (5L), two attributes
(5L 3F), or three attributes (5L 3F 2T) are used. Solid lines represent queries for all
kind of attribute values, whereas dotted lines are obtained by queries without wildcard
characters. In this scenario wildcards occur due to attribute values that are shorter than
the number of used characters for the corresponding attribute. All curves were obtained
using the results of 100,000 lookups for random persons.

l1eo

LY

0,8

06 |

CDF

04 —A—1 attribute

—X— 2 attributes
—O6— 3 attributes

1 4 16 64 256 1024 4096

0,2

0

Number of nodes contacted in a query
Figure 7.9.: Number of nodes contacted in a query
The topmost curve shows that one single node has to be contacted to answer a detailed
and well specified query. If wildcards are allowed and a wildcard happens to appear

in the main attribute, up to 64 nodes might have to be queried to cover the resulting
ID ranges. However, in more than 80% of all queries only a single node needs to be

147

7. Application of structured P2P for Voice-over-IP

contacted. The number of nodes, which need to be contacted, will increase if only two
or one attribute are specified in the query. In the latter case, up to 4096 nodes out of
one million might have to be contacted in order to complete the query. Moreover, in
the worst case it might be possible, that only one out of these 4096 nodes actually holds
matching content.

To find an optimal number of attributes, we look at the average number of resources on a
peer which match a specific query. Figure[7.10|shows the corresponding Probability Den-
sity Function for queries consisting of one (5L), two (5L 3F), and three (5L 3F 2T)
attributes using bins of size five. If only one single attribute is used in a query, the query
will be too imprecise and most peers return between 25 and 30 matching resources. Also
note that in addition the query will be send to quite many peers as indicated in the dis-
cussion of the last figure. Specifying more attributes leads to more precise queries. Thus,
fewer matching resources per queried peer exist and fewer peers have to be queried in to-
tal. However, if too many attributes are specified, it will become more likely that queried
peers do not have any matching resources and will therefore be contacted unnecessarily.

100
O1attribute @2 attributes M 3 attributes
80 -
W 60 -
&
40
20
o . mm (W e[
n =) n o n)) =)
S - - N N 0 N DA
=) o) o 7o) o LN
- = = Il o fazk fagh

Average number of resources per queried peer

Figure 7.10.: Average number of matching resources per queried peer

7.3.4. Conclusion

One of the main drawbacks of DHT-based overlay networks is that they inherently sup-
port only hash table functionality, i.e., queries for exact keywords. More advanced
queries, like wildcard, range and complex queries, have to be implemented on top of
the basic DHT protocol. There are different approaches in the literature of how to
realize such complex queries in a relatively general context. In this section we there-
fore introduced a novel keyword-based query algorithm, which was designed to enable
advanced lookups for persons in community services.

Thereby, the specific composition of our multi-attribute keys allows range and wildcard
queries. That way a user does no longer have to know the exact search term, but may
issue fuzzy queries covering several possible keywords. Due to the prefix based approach,
the wildcard functionality is constrained. It is, for example, not possible to solely search

148

7.4. Conclusion

for the last three characters of a person’s name. However, such queries are very unlikely
and can be neglected in this kind of application. By combining our algorithm with other
well known approaches from literature, like fusion dictionaries, we were able to avoid the
problem of very common keywords.

We evaluated our algorithm by means of simulation, using the example of a German
phone book with 27 million entries. In particular, we derived optimal input parameters
for the given scenario and showed that our algorithm works well in a realistic environment.
Including the phone books of other countries into our distributed index is expected
to improve the uniformity of the stored keywords, as the most common family names
differ significantly in individual countries. Asian countries, in particular, use an entirely
different set of Unicode characters and thus do not increase the peaks observed for
common Latin names. Also, for most applications, stating the country a person lives
in and using a country code as the main attribute in the ID will distribute different
countries to different parts of the ID space.

7.4. Conclusion

[VoIP}based communication systems are becoming more and more popular as they of-
fer cheap (or even free) calls, especially to/from foreign countries. Thereby, services
are important features which account for user satisfaction and revenue of operators.
Yet, the realization of many services is currently based on central instances, e.g.,
proxy /registrar servers.

We introduced a framework for realizing services in a decentralized DHT-based architec-
ture. Thereby, contact information of users (contact sheets) is stored in the DHT. Also,
services are realized by inserting info profiles into the DHT. Due to the DHT, the frame-
work is independent of a specific platform or existing infrastructure, thus supporting ad
hoc networks and ephemeral groups. The framework also provides an easy way to im-
plement and launch new services. By using gateways, existing APIs, or open protocols,
the framework may integrate any communication system and extend these systems with
services, which are available in the framework.

The most critical part of our framework is the underlying DHT. Yet, we are quite
confident that operators can establish a carrier-grade system by using a DHT, which
implements improvements introduced in this thesis and in related work.

One basic part of each communication system is the lookup for other participants. In
order to realize a decentralized version of such a user lookup, the DHT has to be ex-
tended to advanced query functionality. In the previous section we discussed related
work and showed that no satisfying solution is proposed. By combining and extending
these solutions, we introduce PriMA KeyS, a novel prefix-based multi-attribute keyword
search algorithm. The algorithm is fully distributed and pays special attention to low
network traffic and balanced query and storage load distributions.

149

CHAPTER 8

Conclusion, Discussion and Outlook

The ongoing shift from client-server architectures to decentralized Peer-to-Peer archi-
tectures is fostered by the enormous potential available at the edges of the network.
Moreover, the inherent structure of P2P networks naturally resembles the connections
between communicating groups. Thereby, these networks are self-organizing—although
each entity solely bases its behavior on a few simple rules (the protocol) and its local
observations (communication with a few selected entities), a powerful, scalable, robust
and flexible organization (the network) is created at a macroscopic level.

In this thesis, we focused on structured P2P networks, which apply proactive routing,
i.e., a deterministic overlay topology is maintained in order to provide guarantees on
the lookup performance. DHTs are the most common approach to realize the necessary
overlay. In particular, we evaluated the Chord protocol, a well-known representative
of DHTs. Chord is based on basic algorithms, which establish a plain, circular overlay
topology. Yet, this structure is highly flexible and its performance in terms of lookup
path length, robustness, and signaling overhead is similar to other DHT protocols.
Ideally, P2P networks require no additional operator interaction, as the system is adapt-
ing automatically to the current state of the system, thus, offering important benefits for
operators and customers. Service providers, for example, may save infrastructure costs by
exploiting free resources available at the end devices. As a consequence, customers, e.g.,
profit from reduced prices and novel services. Another characteristic of self-organizing
systems is that even though rules are simple and may be well understood, describing and
predicting the behavior of the whole system in detail is very difficult. In this thesis we
chose both a simulative and a analytical approach to evaluate the performance of these
systems.

We verified that structured P2P overlay networks scale to extremely large numbers of
users. Moreover, churn (i.e., joining, leaving and failing of users) is expected and not
critical for the system, except for extreme churn rates. A high fluctuation of peers,
however, will degrade the performance of the system and, eventually, the system will
break down. We also showed, that it is important to adapt the configuration of the

151

8. Conclusion, Discussion and Outlook

design parameters to the current behavior of the system, whereas, the influence of the
size of the overlay is rather small.

In Chapter [0 we evaluated existing modifications and extensions to structured overlay
networks. Based on these results, we developed algorithms for improving the robustness
and performance of structured P2P networks. We showed that the correctness and sta-
bility of the overlay can be increased by sending token-like stabilization messages, which
exploit the circular structure of the Chord protocol. Furthermore, transmitted messages
in our approach experience less timeouts, thus, increasing the lookup performance as a
side-effect.

We also pointed out that in spite of a more stable overlay, the probability of disruptions
and fragmentations of the overlay must not be neglected. We discussed several design
choices, which reduce the probability of such disruptions. As a consequence, we intro-
duced mechanisms, which are able to detect multiple partitions and recover the overall
network topology.

Additionally, we evaluated state-of-the-art algorithms for further improving the lookup
performance of structured overlay networks. By combining recursive with iterative rout-
ing, we managed to defy the individual weak points of both approaches. Additional
freebie finger entries were used to exploit existing finger update traffic. Thus, we were
able to reduce the mean lookup path length by approximately 50%. In order to allow
an easy and comprehensive combination of various routing heuristics, we introduced a
route selection method based on fuzzy logic.

As a final point, we presented a Voice-over-IP service framework as a show-case
of the benefits of structured P2P networks. By means of integrating both legacy as
well as innovative services, we demonstrated that structured P2P networks are capable
of providing fully-distributed carrier-grade applications. In particular, we discussed the
realization of distributed white pages and presented a novel prefix-based multi-attribute
user lookup.

Summarizing, we demonstrated that structured overlay networks provide the technical
feasibility of fully distributed (P2P-based) carrier-grade applications. However, in order
to be suitable for an even wider field of applications, especially security remains an open
issue and is thus an area of ongoing research [SM02, (CDGT02bl [Wal03], [See06]. Most
deployed systems disregard security at all or rely on centralized solutions. Currently,
a main focus in research is on trust and reputation management [BM06]. However,
further research on fully decentralized security mechanisms, which may be deployed in
spontaneous, infrastructure-less ad hoc networks and ephemeral groups, is required.
Moreover, novel concepts for the Next Generation Internet evolve, which integrate
fundamental support for P2P applications [FDKCO06], replace the current Internet name
resolution with DHT-based alternatives [PMTZ06|, provide an alternative to the IP
layer [EFKO3|, or even think about a complete P2P-based clean-slate design [HSKEQ9].

152

APPENDIX A

Abbreviations and Symbols

List of Abbreviations

CDF
DHT
DoS
FRS
GNP
GUI
GUID
ID

IN
ISP
LNS
MTBJ
MTTL
NAT
NED

Cumulative Distribution Function
distributed hash table
Denial-of-Service

Fuzzy-based Route Selection
Global Network Positioning
Graphical User Interface
Globally Unique Identifier
Identifier

Intelligent Network

Internet Service Provider

Long Lifetime Node Selection
Mean Time Between Two Joins
Mean Time To Leave

Network Address Translation

Negative Exponential Distribution

153

A. Abbreviations and Symbols

NGI
P2P
PDF
PNS
PRS
PSTN
QoS
RPC
RTT
SIP
SPoF
TLS
TT
TTL
UAC
URI
uiD
VolP

154

Next Generation Internet
Peer-to-Peer

Probability Density Function
Proximity Neighbor Selection
Proximity Route Selection
Public Switched Telephone Network
Quality of Service

Remote Procedure Call
Round-Trip Time

Session Initiation Protocol
Single Point of Failure

Time Last Seen
Transmission Time
Time-to-Live

User Agent Client

Uniform Resource Identifier
Unique Identifier

Voice-over-1P

List of Symbols

Zgzszwwavas

nnew

Nbootstrap

b, s
J’T

f
F

C

Cn; Cm

I AL o

K
Lstab
tfu
s
thop

tsearch

Size [in bit] of the ID space
Dimensionality of the ID space
Base of the ID space

Set of keys

Key, k € K

Number of keys: |K]|

Set of nodes

Node, n € N, with ID n
Number of nodes: ||

Number of live nodes

New node

Bootstrap node (used for bootstrapping)
Predecessor, Successor of node n
Set of (Freebie) Fingers
(Freebie) finger, f € F

Number of (freebie) fingers: |F|
Size of the cache

Coordinate of a node n, monitor m
Constant

List (of successors)

Size of list: |L]

Replication group

Size of Replication group: |R|
Index, e.g., of a finger entry

Number of replies from R, which must be received
in order for a query to be counted successful

Number of parallel queries

Bucket size in Kademlia

Neighbor stabilization period

Finger update period

Timeout value of entries in Freebie Finger cache
Hop timeout value

Search timeout value

155

A. Abbreviations and Symbols

TTL
Tjoin
H
Az, y)
hops
ones(x)
E[X]
Ton, Tosr

156

TTL counter

Join rate

Hash function

Distance function (according to some specific distance metric)
Estimate of remaining number of hops

Number of ones in the bitwise representation of z

Expected value of a random variable X

Random variables describing the duration of
online sessions and offline periods

APPENDIX B

Simulation environment

File syntax

Source file syntax (scenario description)

e peers <uMax> <assign> — Determine the maximum number of peers

e fullchord <num> <E(T_avg)> — Generate a chord ring by joining num nodes and
resources at a mean rate of E[T,,]

e newchord <num> <E(T_avg)> — Generate a new chord ring by joining num nodes
at a mean rate of E[T,,,|, but inserting no resources

e user <duration> <E(T_on)> <E(T_off)> <E(T_search)> — Simulate user be-
havior for duration seconds with the parameters E[T,,], E[Tog], and E[Tiearen]

e expsearch <duration> <E(T_search)> - Simulate every node searching for a ran-
dom resource for duration seconds with a mean inter-search period of E[Tiearen] ms

e fullsearch <esearch> <random> — Simulate every node searching for every present
resource with a mean inter-search period of E[T caren] ms

e randomsearch <number> <esearch> — Simulate random nodes searching for ran-
dom resources for a number of times with a mean inter-search period of E[Tcaren] ms

e joinpeer <number> <E(T_join)> <random> — Join number of nodes with a given
(random = 0) or a random time E[T}u,] between joins (random = 1)

e randomleave <number> <eleave> <random> — Fail number of nodes with a given
(random = 0) or a random time E[Tjeaye] between fails (random = 1)

e wait <time> — Waiting phase of time ms

157

B. Simulation environment

Event file syntax

At <time> a basic operation for node <n> is executed.

e <time> join <n> — Node n joins

<time> assign <n> <k_1> ... <k_x> — Multiple resources with keys k;..k, are
assigned to node n

<time> leave <n> — Node n fails

<time> insert <n> <k> — Node n insert a resource with key k

<time> find <n> <k> — Node n initiates a query for key k

<time> exit — Exit the simulation

DIF file syntax

Remove existing events These commands remove existing events within the period
tetart 10 tend. If tenq 1S set to 0 the command will be valid until the end of the simulation.
If tiare and tenq are not defined, their value will be assumed to be 0, thus events are
removed from the complete simulation.

e NOTDOCUMENT <k> <t_start> <t_end> — Remove all events for key k

e NOTNODE <n> <t_start> <t_end> — Remove all events for node n

e NOTJOIN <n> <t_start> <t_end> — Remove all join events for node n

e NOTLEAVE <n> <t_start> <t_end> — Remove all leave events for node n
e NOTSEARCH <k> <t_start> <t_end> — Remove all search events for key &

Add new events These commands add new events to the simulation at the specified
<time>. They have a higher priority than the remove commands, e.g., if a NOTNODE and
a DIFFJOIN command are defined, the node will be joined, although all other events for
this node will be removed. Thus, all existing events can be removed and new events can
be defined for certain nodes.

DIFFJOIN <n> <time> — Node n joins

DIFFLEAVE <n> <time> — Node n fails

DIFFINSERT <n> <time> <DocID> — Node n inserts a resource with key k
DIFFFIND <n> <time> <DocID> — Node n initiates a query for key k

158

INIT file syntax

e DEBUG — Switch DEBUG on (1) /off (0). If DEBUG is switched on (DEBUG = 1)
the following parameters and their values will be printed to the screen.

Search-related parameters

ONEHOPTIMEQUT — Hop timeout in ms

SEARCHTIMEQUT — Search timeout in ms

TTL — Maximum number of hops in order to avoid loops

ALPHA — All nodes of the appropriate replication group r are expected to answer
queries. A query will be counted as successful if the initiator receives at least ALPHA
(v < R) answers.

Routing-related parameters

e PACKET_LOSS — Percentage of lost packets
e AVG_PKT_DELAY — Mean Transmission Time (I'T)) (Negative Exponential Distribution

(NED))

Queue-related parameters These parameters adapt the event queue. Different queues
may be selected in def.h.

e MAX_NUM_ENTRIES — Maximum number of entries
e ENTRY_TUNIT — Duration (in milliseconds) spanned by one entry
e REALLOC_INCREMENT — Amount of incremental reallocation

Node-related parameters Parameters describing the behavior of nodes.

e NUM_DOCS — Number of resources per node (size of local database)
e REPLICATION_GRADE — Size of the replication group
e NUM_NEIGHBOURS — Number of successors/predecessors (= 1/2 number of neighbors)

Parameters related with stabilization, finger update, and republish

STABILIZE_PERIOD — Time in ms between two stabilization calls
REPUBLISH_PERIOD — Time in ms between two republish calls

FU_PERIOD — Time in ms between two finger update calls

NUM_FINGERS — Maximum number of fingers stored for each finger interval

159

B. Simulation environment

Parameters related to the statistic function These parameters control the output
of the statistic function. Defining the parameter PRINTSTAT is mandatory.

PRINTSTAT — Time in 100 ms between two calls of the statistic function. This
parameter must be specified to be able to use the following statistics. Sums and
mean values are calculated for the last PRINTSTAT - 100 ms. A cumulated value is
the sum of that value for all live nodes.

PNBL - Print the mean number of errors in the complete neighbor lists

PRGR — Print the mean number of errors in the replication groups

PSUL — Print the mean number of errors in the successor lists

PPRL — Print the mean number of errors in the predecessor lists

PCHU — Print the number of join and leave events

CPCHU — Print the cumulated number of join and leave events

PACK — Print the total number of packets, sent packets, and lost packets

CPACK — Print the cumulated number of packets, sent packets and lost packets
PBYT — For all types of packets print the number of sent packets

CPBYT — For all types of packets print the number of cumulated packets

SRCH — Print the number of queries, successful queries, and erroneous queries (3
different types)

SRCH — Print the cumulated number of queries, successful queries, and erroneous
queries (3 different types)

SEARCHTIME — Print the mean search duration

CSEARCHTIME — Print the cumulated mean search duration

JOINTIME — Print the mean time required for a node to successfully join the network
CJOINTIME — Print the cumulated times required for nodes to successfully join the
network

TIMEOUT — Print the consumed USER and SYSTEM time since the simulation start

e MEMOUT — Print the current main storage consumption

Additional parameters

160

SEED — |Optional|, seed value for initiating the simulation. The seed parameter can
also be specified as a command line parameter, thereby overwriting the INIT-file
setting.

List of Figures

[1.1. Overlay network: Logical structure on top ot an existing infrastructure| .)
2.1. Centralized P2P: The server acts as a central index database] 12
2.2, Unstructured P2P: Peers establish random connections to each other) . . 13
[2.3. Structured P2P: The overlay structure is determined by the node IDs|. . 17
[2.4. Hierarchical P2P: A peer’s capacities determine its level in the hierarchy| 18
[3.1. Distributed Hash Table (DH'L)|, 24
[3.2. Chord fingers for node n; in a sample overlay network.| 25
[3.3. Illustration of a jowm event.|. 27
[3.4. Pseudostar formed by joining nodes, which are not yet fully integrated.] . 28
[3.5. Content Addressable Network (CAN)| 29
[3.6. Kademlia sets up a binary tree.| 32
[3.7. Kademlia’s buckets are updated by incoming messages.| 34
[3.8. OneHop applies a hierarchical event propagation scheme. 36
[3.9. DIH'T applies a recursive event propagation.| 38
[3.10. Zipt-like keyword distribution| 41
[3.11. Binomial lookup tree (left) and balanced lookup tree (right) 41
[3.12. A skip list 1s a linked list with probabilistic shortcuts.|. 43
[3.13. Skip graphs set up multiple skip lists.| 43
[4.1. A node’s lifetime consists of one or more sessions. 48
[4.2. Monitor selection method comparison|. 95
4.3, Directional relative error over measured distancesl 56
[4.4. 'Transmission time and lookup time distributions|{. 57
[4.5. Node distribution in a 2D projection| o7
[4.6. Sketch of the simulation workflow| 59
[4.7. GUI: Visualization of the overlay| 61
[4.8. GUI: Packet sequence diagram|. 63

161

List of Figures

[b.1. Neighbor list errors| 67
[5.2. Search duration over churn ratel 68
[b.3. Lookup path length for varying network sizes| 70
[>.4. Lookup path length in a 4096 node network|{ 70
[5.5. PDEF of the lookup path length| 71
[5.6. 'T'he shorter the sessions, the less stable the overlay structure.| 72
[5.7. Probability of simultaneous node jomns| 73
I5.8. Probability Density Function (PDF]) of search delay in a high churn scenario| 75
[5.9. Lookup path length for varying session durations| 75
[5.10. Error probability in the course of time| 76
[5.11. Successor errors for varying session durations|. 7
[5.12. Signaling overhead for varying session durations| 78
[5.13. Successor errors for varying sizes of neighbor lists] 79
[>.14. Successor errors for varying stabilization periods| 80
[6.1. Illustration of a j0in event using tokens.| 91
[6.2. 'Token state diagram| 92
[6.3. Comparison of signaling overhead| 94
[6.4. Comparison of overlay stability| 95
[6.5. Comparison of recovery from breakdowns| 95
[6.6. Concurrent failure of successorsl 98
[6.7. Automatic disruption recovery, initialized at the beginning ot a break.|. . 100
[6.8. Automatic disruption recovery, initialized at the end of a break.| 101
[6.9. lIterative routing: The nodes communicate only with the originator.| . . . 103
[6.10. Recursive routing: FEach node torwards the query to the next node.| . . . 103
6.11. Search duration with and without PNSI 107
[6.12. 5-Chord’s finger distribution| 111
[6.13. Hybrid routing: Combination of recursive and iterative routing/ 113
[6.14. Distribution of Freebie Fingers|. 115
[6.15. Average number ot freebie fingers for different network sizes|. 116
6.16. Average path length for varying network sizes and routing strategies| . . . 117
6.17. Lookup path length in a stable 2'° node network|. 118
[6.18. Fuzzy sets allow for tuzzy classifications.| 120
[6.19. Inter-workings of a fuzzy-based system| 121
[7.1. Application stack of our |VolP|5ervice Framework| 132
[(.2. Contact sheet of John Publidf., 133
[7.3. Sample lookup for user John Public| 134
[7.4. Info profiles CALL-BACK and HOLD| 135
[7.5. Keys consist of multiple sections.|, 141
[7.6. Exemplification of the IncID() function| 144
[7.7. Sample query with wildcards|. 146
[7.8. Cumulative Distribution Function (CDF] of length of first/last name| . . 146
[7.9. Number of nodes contacted in a query| 147
[7.10. Average number of matching resources per queried peer| 148

162

List of Tables

[2.1. Application areas of P2P|00 o 0 10
[2.2. Application of P2P concepts in different layers of a communication system| 11
[2.3. Comparison of P2P lookup concepts|. 21
[3.1. Comparison ot structured P2P protocols| 46
[4.1. Difterent approaches for modeling network Transmission Time| 51
[4.2. CAIDA monitor hostsl o 54
[4.3. Inter-monitor Round-"Irip Times|. 54
[4.4. Host-monitor Round-Irip Times|. 54
[4.5. Default values for common simulation parameters| 60
[6.1. Selected design parameters related to the overlay stabilization| 93
[6.2. Comparison of iterative, recursive and hybrid routing| 114
[6.3. Comparison of Chord, 5-Chord and our Freebie Finger solution| 119
[6.4. Applicability of the presented improvements| 123
[7.1. Number of letters fitting in a 128 or 256-bit ID[. 147

163

Bibliography

Publications by the author

[BHKEO7]

[BHKEOY]

[BKHO7]

[EHBKO7]

[ESZK04]

[FKSKO6]|

Andreas Binzenhdfer, Tobias Hossfeld, Gerald Kunzmann, and Kolja Eger,
Efficient simulation of large-scale p2p networks: Compact data structures,
Proceedings of the Workshop on Modeling, Simulation and Optimization
of Peer-to-peer environments (MSOP2P) in conjunction with Euromicro
(PDP ’07), Feb 2007.

, Efficient simulation of large-scale p2p networks, Accepted for Inter-
national Journal of Computational Science and Engineering - Special Issue
on "Parallel, Distributed and Network-Based Processing’ (2009).

Andreas Binzenhofer, Gerald Kunzmann, and Robert Henjes, Design and
analysis of a scalable algorithm to monitor Chord-based p2p systems at run-
time, Concurrency and Computation: Practice and Experience - Special Issue
on HotP2P 06 20 (2007), no. 6, 625-641.

Kolja Eger, Tobias Hossfeld, Andreas Binzenhofer, and Gerald Kunzmann,
Efficient simulation of large-scale p2p networks: Packet-level vs. flow-level
stmulations, Proceedings of the 2nd Workshop on the Use of P2P, GRID
and Agents for the Development of Content Networks (UPGRADE-CN’07)
in conjunction with the 16th IEEE HPDC, Jun 2007.

Jorg Eberspécher, Riidiger Schollmeier, Stefan Zols, and Gerald Kunzmann,
Structured p2p networks in mobile and fized environments, Proceedings of
HET-NETs '04 International Working Conference on Performance Modelling
and Evaluation of Heterogeneous Networks, Jul 2004.

Michael Finkenzeller, Gerald Kunzmann, Riidiger Schollmeier, and Andreas
Kirstadter, Critical-mass of a distributed end-system monitoring service, Pro-
ceedings of the 2006 World Congress in Computer Science Computer Engi-
neering, and Applied Computing (ICOMP ’06), Jun 2006.

165

Bibliography

[HBST05]

[HSKEO09]

[KB06|

[KBHO5|

[KBSO08]

[KKSZ06]

[KNEO05]

[KNH*07]

[KS06]

[Kun05]

166

Tobias Hoffeld, Andreas Binzenhoefer, Danial Schlosser, Kolja Eger, Jens
Oberender, Ivan Dedinski, and Gerald Kunzmann, Towards efficient simula-
tion of large scale p2p networks, Tech. Report 371, University of Wuerzburg,
2005.

Oliver Hanka, Christoph Spleiss, Gerald Kunzmann, and Joérg Eberspécher,
A novel DHT-based network architecture for the next gemeration Internet,
Proceedings of the International Conference on Networks (ICN ’09), Mar
2009.

Gerald Kunzmann and Andreas Binzenhoefer, Autonomically improving the
security and robustness of structured p2p overlays, Proceedings of the Inter-
national Conference on Systems and Networks Communications (ICSNC ’06),
Nov 2006.

Gerald Kunzmann, Andreas Binzenhofer, and Robert Henjes, Analyzing and
modifying Chord’s stabilization algorithm to handle high churn rates, Pro-
ceedings of the 6th Malaysia International Conference on Communications
(MICC) in conjunction with International Conference on Networks (ICON),
Nov 2005.

Gerald Kunzmann, Andreas Binzenhdfer, and Fabian Staber, Structured over-
lay networks as an enabler for future internet services, it - Information Tech-
nology 50 (2008), no. 6, 376-382.

Wolfgang Kellerer, Gerald Kunzmann, Riidiger Schollmeier, and Stefan Zdls,
Structured peer-to-peer systems for telecommunications and mobile environ-
ments, AEU - International Journal of Electronics and Communications 60
(2006), no. 1, 25-29.

Gerald Kunzmann, Robert Nagel, and Jorg Eberspécher, Increasing the reli-
ability of structured p2p networks, Proceedings of the 5th International Work-
shop on Design of Reliable Communication Networks (DRCN *05), Oct 2005.

Gerald Kunzmann, Robert Nagel, Tobias Hossfeld, Andreas Binzenhdfer, and
Kolja Eger, Efficient simulation of large-scale p2p networks: Modeling net-
work transmission times, Proceedings of the Workshop on Modeling, Simula-
tion and Optimization of Peer-to-peer environments (MSOP2P) in conjunc-
tion with Euromicro (PDP ’07), Feb 2007.

Gerald Kunzmann and Riidiger Schollmeier, EUNICE 2005: Networks and
applications towards a ubiquitously connected world, vol. 196, ch. Exploiting
the overhead in a DHT to improve lookup latency, pp. 247-254, Springer,
2006.

_, Iterative or recursive routing? hybrid!, KiVS Kurzbeitrige und

Workshop, Lecture Notes in Informatics, vol. 61, GI, Mar 2005, pp. 189-192.

[SBDT06] Amardeo Sarma, Christian Bettstetter, Sudhir Dixit, Gerald Kunzmann,

[SK03]

[SKO07]

[SKMO7]

Riidiger Schollmeier, J. Nielsen, P. Santi, R. Schmitz, M. Stiemerling, Dirk
Westhoff, and A. Timm-Giel, Self-organization in communication networks,
pp. 423-451, Wiley, 2006.

Riidiger Schollmeier and Gerald Kunzmann, GnuViz - mapping the Gnutella
network to its geographical locations, Praxis der Informationsverarbeitung und
Kommunikation (PIK) 26 (2003), no. 2, 74-79.

Christoph Spleiss and Gerald Kunzmann, Decentralized supplementary ser-
vices for Voice-over-IP telephony, Proceedings of EUNICE 2007 (Enschede,
Netherlands), Lecture Notes in Computer Science, vol. 4606, Jul 2007, pp. 62—
69.

Fabian Stiber, Gerald Kunzmann, and Jérg P. Miiller, Extended prefiz hash
trees for a distributed phone book application, Proceedings of the 13th Inter-
national Conference on Parallel and Distributed Systems (ICPADS '07), Dec
2007.

167

Bibliography

General

[ABFW04]

[ACMDHO03]

|Ada00]

|ATI04]

[ALPHO1]|

[AS03)]

[BASO4]

[BCOS]

[BDO6]

|Bin08)|

[BMOG6]

[BS04]

168

publications

Vinay Aggarwal, Stefan Bender, Anja Feldmann, and Arne Wichmann,
Methodology for estimating network distances of Gnutella neighbors, GI
Jahrestagung (2) (Peter Dadam and Manfred Reichert, eds.), LNI, vol. 51,
2004, pp. 219-223.

Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, and Manfred
Hauswirth, PIX-Grid: A platform for p2p photo exchange, Proceedings of
Ubiquitous Mobile Information and Collaboration Systems (UMICS ’03),
2003.

Lada A. Adamic, Zipf, power-laws and Pareto - a ranking tutorial, Tech.
report, Information Dynamics Lab, HP Labs, 2000.

Karl Aberer and Manfred Hauswirth, Peer-to-peer systems, Practical Hand-
book of Internet Computing (Munindar P. Singh, ed.), Chapman Hall &
CRC Press, Baton Rouge, 2004.

Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani, and Bernardo A.
Huberman, Search in power-law networks, Physical Review E 64 (2001),
no. 4, 46135-46143.

James Aspnes and Gauri Shah, Skip graphs, Proceedings of the 14th Annual
ACM-STAM Symposium on Discrete Algorithms (SODA ’03), Jan 2003,
pp. 384-393.

Ashwin R. Bharambe, Mukesh Agrawal, and Srinivasan Seshan, Mercury:
supporting scalable multi-attribute range queries, Proceedings of the Confer-
ence on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications (SIGCOMM ’04), ACM Press, 2004, pp. 353-366.

Paul Barford and Mark Crovella, Generating representative web workloads
for network and server performance evaluation, Proceedings of the ACM
Symposium on Parallel and Distributed Tools (SIGMETRICS ’98), Jul
1998, pp. 151-160.

Philippe Biondi and Fabrice Desclaux, Silver needle in the Skype, Black
Hat Europe 2006, 2006.

Andreas Binzenhofer, Performance analysis of structured overlay networks,
Doctoral thesis, University of Wiirzburg, Feb 2008.

Raouf Boutaba and Alan Marshall, Special issue - management in peer-to-
peer systems, Computer Networks 50 (2006), no. 4, 469-596.

Salman A. Baset and Henning Schulzrinne, An analysis of the Skype peer-
to-peer Internet telephony protocol, Tech. report, Columbia University, New
York, Sep 2004.

[BSHO5a]

[BSHO5b)

[BSVO03]

[BTG04|

[CDG™02a]

[CDG*02b]

|[CDHR02]

[CFCS03]

[CHHCO6]

[CL9Y]

[CMMO02]

Andreas Binzenhofer, Dirk Staehle, and Robert Henjes, On the fly estima-
tion of the peer population in a Chord-based p2p system, Proceedings of the
19th International Teletraffic Congress (ITC19), Sep 2005.

Andreas Binzenhofer, Dirk Staehle, and Robert Henjes, On the stability of
Chord-based p2p systems, Proceedings of the IEEE Global Telecommuni-
cations Conference (GLOBECOM ’05), Nov 2005.

Ranjita Bhagwan, Stefan Savage, and Geoffrey M. Voelker, Understanding
availability, Proceedings of the 2nd International Workshop on Peer-to-Peer
Systems (IPTPS ’03), Feb 2003.

Andreas Binzenhofer and Phuoc Tran-Gia, Delay analysis of a Chord-based
peer-to-peer file-sharing system, Proceedings of the Australian Telecommu-
nication Networks and Applications Conference (ATNAC ’04), Dec 2004.

Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and
Dan Wallach, Secure routing for structured peer-to-peer overlay networks,
Proceedings of the 5th Usenix Symposium on Operating Systems Design
and Implementation (OSDI ’02), Dec 2002, pp. 299-314.

Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and
Dan S. Wallach, Security for structured peer-to-peer overlay networks, Pro-
ceedings of the 5th Symposium on Operating Systems Design and Imple-
mentaion (OSDI ’02), 2002.

Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony Rowstron, Ez-
ploiting network proximity in distributed hash tables, Proceedings of the

International Workshop on Future Directions in Distributed Computing
(FuDiCo ’02), Jun 2002.

Min Cai, Martin Frank, Jinbo Chen, and Pedro Szekely, MAAN: A multi-
attribute addressable network for grid information services, Proceedings of
the 4th International Workshop on Grid Computing (GRID ’03), IEEE
Computer Society, 2003, p. 184.

Jerry C.-Y. Chou, Tai-Yi Huang, Kuang-Li Huang, and Tsung-Yen Chen,
SCALLOP: A scalable and load-balanced peer-to-peer lookup protocol, IEEE
Transactions on Parallel and Distributed Systems 17 (2006), no. 5, 419-
433.

Hyoung-Kee Choi and John O. Limb, A behavioral model of web traffic,
Proceedings of the 7th Annual International Conference on Network Pro-
tocols (ICNP ’99), IEEE Computer Society, 1999, p. 327.

Russ Cox, Athicha Muthitacharoen, and Robert T. Morris, Serving DNS
using a peer-to-peer lookup service, Proceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS ’02), Lecture Notes in Com-
puter Science, no. 2429, Springer, Mar 2002.

169

Bibliography

[CSWHO1]

[CZKO05]

[DA0G]

[DCKMOA4]

[DKK*01]

[DLST04]

[DPS0]

[EA05]

[EAKAHO4]

[EFK03]

[ES00]

170

Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong,
Freenet: A distributed anonymous information storage and retrieval system,
Designing Privacy Enhancing Technologies, International Workshop on De-

sign Issues in Anonymity and Unobservability, Lecture Notes in Computer
Science, vol. 2009, 2001, pp. 46—66.

Byung-gon Chun, Ben Y. Zhao, and John D. Kubiatowicz, Impact of neigh-
bor selection on performance and resilience of structured p2p networks,
Proceedings of the 4th International Workshop on Peer-to-Peer Systems
(IPTPS ’05), 2005.

Anwitaman Datta and Karl Aberer, The challenges of merging two similar
structured overlays: A tale of two networks, Proceedings of the Interna-
tional Workshop on Self-Organizing Systems (IWSOS *06), 2006.

Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris, Vivaldi:
A decentralized network coordinate system, Proceedings of the ACM SIG-
COMM 04, Aug 2004.

Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion
Stoica, Wide-area cooperative storage with CFS, ACM SIGOPS Operating
Systems Review 35 (2001), no. 5, 202-215.

Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek,
and Robert Morris, Designing a DHT for low latency and high throughput,
Proceedings of the 1st USENIX Symposium on Networked Systems Design
and Implementation (NSDI "04), Mar 2004.

D. Dubois and H. Prade, Fuzzy sets and systems - Theory and applications,
Academic press, 1980.

Sameh El-Ansary, Designs and analyses in structured peer-to-peer systems,
Doctoral thesis, Royal Institute of Technology, Stockholm, Sweden, 2005.

Sameh El-Ansary, Supriya Krishnamurthy, Erik Aurell, and Seif Haridi,
An analytical study of consistency and performance of dhts under churn,
Technical Report SICS T2004:12, Swedish Institute of Computer Science,
Oct 2004.

Jakob Eriksson, Michalis Faloutsos, and Srikanth Krishnamurthy, Peer-
Net: Pushing peer-to-peer down the stack, Proceedings of 2nd International
Workshop on Peer-to-Peer Systems (IPTPS ’03), 2003.

Tony Eyers and Henning Schulzrinne, Predicting Internet telephony call
setup delay, Proceedings of the 1st TP-Telephony Workshop (IPTel 2000),
Apr 2000.

[ES05]

[FDKCO6]

[FFRS02]

[FJ92]

[FKS05]

[GBL*03]

|GDJ06|

|[GEBR*03]

[GEFB+04]|

[GGG03]

Jorg Eberspéicher and Riidiger Schollmeier, Peer-to-peer systems and appli-
cations, ch. First and Second Generation of Peer-to-Peer Systems, pp. 35—
56, Springer, 2005.

Thomas Fuhrmann, Pengfei Di, Kendy Kutzner, and Curt Cramer, Push-
ing Chord into the underlay: Scalable routing for hybrid MANETs, In-
terner Bericht 2006-12, Fakultit fiir Informatik, Universitit Karlsruhe,
2006, http://i30www.ira.uka.de/research/publications/p2p/.

Thomas Friese, Bernd Freisleben, Steffen Rusitschka, and Alan Southall, A
framework for resource management in peer-to-peer networks, Revised Pa-
pers from the International Conference NetObjectDays on Objects, Com-
ponents, Architectures, Services, and Applications for a Networked World,
Lecture Notes In Computer Science, vol. 2591, Springer, 2002, pp. 4-21.

Christos Faloutsos and H. V. Jagadish, On B-tree indices for skewed dis-
tributions, Proceedings of the 18th International Conference on Very Large
Data Bases (VLDB ’92), Morgan Kaufmann Publishers Inc., 1992, pp. 363
374.

Bryan Ford, Dan Kegel, and Pyda Srisuresh, Peer-to-peer communication
across network address translators, Proceedings of the USENIX Annual
Technical Conference (USENIX '05), 2005.

Indranil Gupta, Ken Birman, Prakash Linga, Al Demers, and Robbert
van Renesse, Kelips: Building an efficient and stable p2p DHT through
increased memory and background overhead, Proceedings of the 2nd Inter-
national Workshop on Peer-to-Peer Systems (IPTPS ’03), 2003.

Saikat Guha, Neil Daswani, and Ravi Jain, An experimental study of
the Skype peer-to-peer VoIP system, Proceedings of The 5th International
Workshop on Peer-to-Peer Systems (IPTPS ’06), 2006.

Luis Garces-Erice, Ernst W. Biersack, Keith W. Ross, Pascal A. Felber,
and Guillaume Urvoy-Keller, Hierarchical p2p systems, Proceedings of the
ACM/IFIP International Conference on Parallel and Distributed Comput-
ing (Euro-Par ’03), 2003.

L. Garcés-Erice, P. A. Felber, E. W. Biersack, G. Urvoy-Keller, and K. W.
Ross, Data indexing in peer-to-peer DHT networks, Proceedings of the 24th
International Conference on Distributed Computing Systems (ICDCS '04),
IEEE Computer Society, 2004, pp. 200-208.

K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and
I. Stoica, The impact of DHT routing geometry on resilience and prorimity,
Proceedings of the conference on Applications, technologies, architectures,
and protocols for computer communications (SIGCOMM ’03), ACM Press,
2003, pp. 381-394.

171

Bibliography

[GLRO4|

[GMBO3]

[GSG02

[GSKO6]

[GT06]

[GYGMO4]

[HJST03]

[HITWO03]

[HMT*05]

[IMW03]

[Joh08|

172

Anjali Gupta, Barbara Liskov, and Rodrigo Rodrigues, Efficient routing
for peer-to-peer overlays, Proceedings of the 1st USENIX Symposium on
Networked Systems Design and Implementation (NDSI ’04), Mar 2004.

Danilo Gligoroski, Smile Markovski, and Verica Bakeva, On infinite class of
strongly collision resistant hash functions “EDON-F” with variable length
of output, Proceedings of the 1st International Conference On Mathematics
and Informatics for Industry, 2003.

P. Krishna Gummadi, Stefan Saroiu, and Steven D. Gribble, A measure-
ment study of Napster and Gnutella as examples of peer-to-peer file sharing
systems, SIGCOMM Comput. Commun. Rev. 32 (2002), no. 1, 82-82.

Ingo Gruber, Riidiger Schollmeier, and Wolfgang Kellerer, Peer-to-peer
communication in mobile ad hoc networks, Ad Hoc & Sensor Wireless Net-
works (OCP Science Journals) 2 (2006), no. 3.

G. Ghinita and Yong Meng Teo, An adaptive stabilization framework for
distributed hash tables, Proceedings of the 20th International Parallel and
Distributed Processing Symposium (IPDPS ’06), IEEE, 2006.

Prasanna Ganesan, Beverly Yang, and Hector Garcia-Molina, One torus
to rule them all: multi-dimensional queries in p2p systems, Proceedings of
the 7th International Workshop on the Web and Databases (WebDB ’04),
ACM Press, 2004, pp. 19-24.

Nicholas Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and
Alec Wolman, Skipnet: A scalable overlay network with practical locality
properties, Proceedings of the 4th USENIX Symposium on Internet Tech-
nologies and Systems (USITS ’'03), Mar 2003.

Nicholas J. A. Harvey, Michael B. Jones, Marvin Theimer, and Alec
Wolman, Efficient recovery from organizational disconnects in skipnet,
Proceedings of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS ’03), 2003, pp. 183-196.

Tobias Hoffeld, Andreas Méder, Kurt Tutschku, Phuoc Tran-Gia, Frank-
Uwe Andersen, Hermann de Meer, and Ivan Dedinski, Comparison of crawl-
ing strategies for an optimized mobile p2p architecture, Tech. Report 356,
University of Wiirzburg, Apr 2005.

Sushant Jain, Ratul Mahajan, and David Wetherall, A study of the per-
formance potential of DHT-based overlays, Proceedings of the 4th Usenix
Symposium on Internet Technologies and Systems (USITS ’03), 2003.

Wolfgang John, On measurement and analysis of Internet backbone traf-
fic, Master’s thesis, Department of Computer Science and Engineering,
Chalmers University of Technology and Géteborg University, 2008.

[KCCH07]

[KLKPOS|

[KLL*97]

[KLVW04|

[KR8S|

[KRO4]

[KRPO3)

[KSS05]

[LCCH02]

[LCP*05

Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy,
Kye H. Kim, Scott Shenker, and Ton Stoica, A data-oriented (and beyond)
network architecture, Proceedings of the 2007 conference on Applications,
technologies, architectures, and protocols for computer communications

(SIGCOMM ’07), ACM Press, 2007, pp. 181-192.

Sebastian Kaune, Tobias Lauinger, Aleksandra Kovacevic, and Konstantin
Pussep, Embracing the peer next door: Proximity in Kademlia, Eighth In-
ternational Conference on Peer-to-Peer Computing (P2P ’08), Sep 2008,
pp. 343-350.

David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin, Consistent hashing and random trees: distributed
caching protocols for relieving hot spots on the world wide web, Proceed-
ings of the twenty-ninth annual ACM symposium on Theory of computing
(STOC ’97), ACM Press, 1997, pp. 654-663.

Alexander Klemm, Christoph Lindemann, Mary K. Vernon, and Oliver P.
Waldhorst, Characterizing the query behavior in peer-to-peer file sharing
systems, Proceedings of the 4th ACM SIGCOMM Conference on Internet
Measurement (IMC ’04), ACM Press, 2004, pp. 55-67.

Brian W. Kernighan and Dennis M. Ritchie, The C programming languag,
Prentice Hall, Inc, 1988.

David R. Karger and Matthias Ruhl, Simple efficient load balancing algo-
rithms for peer-to-peer systems, Proceedings of the sixteenth annual ACM
symposium on Parallelism in algorithms and architectures (SPAA '04),
ACM Press, 2004, pp. 36—43.

Thomas Karagiannis, Pablo Rodriguez, and Konstantina Papagiannaki,
Should Internet service providers fear peer-assisted content distribution?,
Proceedings of the ACM/USENIX Internet Measurement Conference
(IMC ’05), 2005, pp. 63-76.

Praveen Kumar, G. Sridhar, and V. Sridhar, Bandwidth and latency model
for DHT based peer-to-peer networks under variable churn, Proceedings of
the 2005 Systems Communications (ICW ’05), IEEE Computer Society,
2005, pp. 320-325.

Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker, Search and
replication in unstructured peer-to-peer networks, Proceedings of the 16th
ACM International Conference on Supercomputing (ICS '07), Jun 2002.

Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven
Lim, A survey and comparison of peer-to-peer overlay network schemes,
IEEE Communications Surveys and Tutorials 7 (2005), no. 2, 72-93.

173

Bibliography

[LHOS]

[Li06]

[Li08]

[LLO4]

[LLDO4]

[LMW9g|

[LS00]

[LSG*04]

[LSM*05]

[LSS02]

[MAOG|

174

Jure Leskovec and Eric Horvitz, Planetary-scale views on a large instant-
messaging network, Proceedings of the 17th international conference on
World Wide Web (WWW ’08), ACM Press, 2008, pp. 915-924.

Jinyang Li, Routing tradeoffs in dynamic peer-to-peer networks, Ph.D. the-
sis, Massachusetts Institute of Technology, 2006.

Jin Li, On peer-to-peer (p2p) content delivery, Peer-to-Peer Networking and
Applications 1 (2008), no. 1, 45-63.

Lintao Liu and Kang-Won Lee, Keyword fusion to support efficient
keyword-based search in peer-to-peer file sharing, Proceedings of the 2004
IEEE International Symposium on Cluster Computing and the Grid (CC-
GRID ’04), IEEE Computer Society, 2004, pp. 269-276.

Ben Leong, Barbara Liskov, and Erik D. Demaine, EpiChord: Parallelizing
the Chord lookup algorithm with reactive routing state management, Pro-
ceedings of the 12th International Conference on Networks (ICON '04),
Nov 2004.

Robert D. Love, M.D. Siegel Michael, and Kenneth T. Wilson, Under-
standing token ring protocols and standards, Artech House Publishers, Oct
1998.

Jonathan Lennox and Henning Schulzrinne, Feature interaction in Inter-
net telephony, Feature Interactions in Telecommunications and Software
Systems VI, IOS Press, May 2000, pp. 38-50.

Jinyang Li, Jeremy Stribling, Thomer M. Gil, Robert Morris, and Frans
Kaashoek, Comparing the performance of distributed hash tables under
churn, Proceedings of the 3rd International Workshop on Peer-to-Peer Sys-
tems (IPTPS ’04), Feb 2004.

Jinyang Li, Jeremy Stribling, Robert Morris, M. Frans Kaashoek, and
Thomer M. Gil, A performance vs. cost framework for evaluating DHT
design tradeoffs under churn, Proceedings of the 24th Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM ’05), 2005,
pp- 225-236.

Tim Lu, Shan Sinha, and Ajay Sudam, Panache: A scalable distributed
index for keyword search, Tech. report, Massachusetts Institute of Technol-
ogy, 2002.

Luis R. Monnerat and Claudio L. Amorim, DIHT: A distributed one hop
hash table, Proceedings of the 20th TEEE International Parallel &
Distributed Processing Symposium (IPDPS ’06), IEEE Computer Society,
2006, pp. 21-31.

[MCRO3]

[MCVRO03]

[Mil67]

[MKL*02]

[MM02]

[MRSO08]

[MUGO05]

[Mus06]

[NBLROS]

[NM65]

[NW96|

INZ01]

Ratul Mahajan, Miguel Castro, and Antony Rowstron, Controlling the cost
of reliability in peer-to-peer overlays, Peer-to-Peer Systems II, Second In-
ternational Workshop, IPTPS 2003, Lecture Notes in Computer Science,
vol. 2735, Springer, 2003, pp. 21-32.

Valentin A. Mesaros, Bruno Carton, and Peter Van Roy, S-Chord: Using
symmetry to improve lookup efficiency in Chord, Proceedings of the Inter-

national Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA ’03), Jun 2003.

Stanley Milgram, The small world problem, Psychology Today 1 (1967),
61-67.

Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim
Pruyne, Bruno Richard, Sami Rollins, and Zhichen Xu, Peer-to-peer com-
puting, Technical Report HPL-2002-57, HP Labs, Palo Alto, CA, USA,
Mar 2002.

Petar Maymounkov and David Maziéres, Kademlia: A peer-to-peer infor-
mation system based on the XOR metric, Proceedings of the 1st Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS ’01), Lecture Notes In
Computer Science, vol. 2429, Springer, 2002, pp. 53-65.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze, In-
troduction to information retrieval, Cambridge University Press, 2008.

Tatsuya Mori, Masato Uchida, and Shigeki Goto, Flow analysis of internet
traffic: World Wide Web versus peer-to-peer, Systems and Computers in
Japan 36 (2005), no. 11, 70-81.

John Musser, Web 2.0 principles and best practices - an O’Reilly Radar
Report, O’Reilly Media, Nov 2006.

Stephen Naicken, Anirban Basu, Barnaby Livingston, and Sethalat Rod-
hetbhai, A survey of peer-to-peer network simulators, Proceedings of the
7th Annual Postgraduate Symposium (PGNet '06), EPSRC, 2006.

J.A. Nelder and R. Mead, A simplex method for function minimization,
The Computer Journal 7 (1965), no. 4, 308-313.

Hung T. Nguyen and Elbert A. Walker, A first course in fuzzy logic, CRC
Press, Inc., 1996.

Eugene T. S. Ng and Hui Zhang, Towards global network positioning, Pro-

ceedings of the ACM SIGCOMM Internet Measurement Workshop, Nov
2001.

175

Bibliography

[PDGMO6]

[PMTZ06]

[PPO1]

[Pug90]

[RDO1]

[REH*01]

[RGRKO03]

[RLS*03]

[RMOG]

[RPWO04]

[RS05]

176

Marcell Perényi, Trang Dinh Dang, Andras Gefferth, and Sandor Molnar,
Identification and analysis of peer-to-peer traffic, Journal of Communica-
tions 1 (2006), no. 7, 36-46.

Vasileios Pappas, Dan Massey, Andreas Terzis, and Lixia Zhang, A com-
parative study of the DNS design with DHT-based alternatives, Proceedings
of the IEEE Conference on Computer Communications (INFOCOM ’06),
2006.

Athanasios Papoulis and Unnikrishna S. Pillai, Probability, random vari-
ables and stochastic processes, McGraw-Hill Science/Engineering/Math,
2001.

William Pugh, Skip lists: A probabilistic alternative to balanced trees, Com-
munications of the ACM 33 (1990), no. 6, 668-676.

Antony Rowstron and Peter Druschel, Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems, Middleware 2001,
IFIP/ACM International Conference on Distributed Systems Platforms,
Lecture Notes in Computer Science, vol. 2218, 2001, pp. 329-350.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Schenker, A scalable content-addressable network, Proceedings of the 2001
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM ’01), ACM Press, Oct 2001,
pp. 161-172.

Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz, Han-
dling churn in a DHT, Tech. Report UCB/CSD-03-1299, EECS Depart-
ment, University of California, Berkeley, 2003.

Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp,
and Ion Stoica, Load balancing in structured p2p systems, Proceedings of
the International Workshop on Peer-to-Peer Systems (IPTPS ’03), 2003,
pp- 68-79.

John Risson and Tim Moors, Survey of research towards robust peer-to-peer
networks: Search methods, Computer Networks 50 (2006), no. 17, 3485—
3521.

Simon Rieche, Leo Petrak, and Klaus Wehrle, A thermal-dissipation-based
approach for balancing data load in distributed hash tables, Proceedings
of the 29th Annual IEEE International Conference on Local Computer
Networks (LCN ’04), IEEE Computer Society, 2004, pp. 15-23.

Dario Rossi and Ion Stoica, Gambling heuristics on a Chord ring, Pro-
ceedings of the Global Telecommunications Conference (GLOBECOM ’05),
vol. 2, Nov 2005.

|[RVO03|

[SBRO3]|

|Scho5]

[SDO3)]

[See06]

[SGG02

[SGGO3]

[SMO2]

[SMK*01a|

[SMK*01b]

[SOTZ05]

[SP04]

Patrick Reynolds and Amin Vahdat, Efficient peer-to-peer keyword search-
ing, Proceedings of International Middleware Conference, Lecture Notes in
Computer Science, vol. 2672, Springer, Jun 2003, pp. 21-40.

Nima Sarshar, P. Oscar Boykin, and Vwani Roychowdury, Percolation
search in power law networks: Making unstructured peer-to-peer networks
scalable, Proceedings of the 4th International Conference on Peer-to-Peer
Computing (P2P ’04), IEEE Computer Society, 2003, pp. 2-9.

Riidiger Schollmeier, Signaling and networking in unstructured peer-to-
peer networks, Doctoral thesis, Technische Universitdt Miinchen, Germany,
2005.

Riidiger Schollmeier and Antoine Dumanois, Peer-to-peer traffic character-
istics, Proceedings of the 9th EUNICE Open European Summer School
(EUNICE ’03), Sep 2003.

Jan Seedorf, Security challenges for peer-to-peer SIP, IEEE Network 20
(2006), no. 5, 38—45.

Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble, A measure-
ment study of peer-to-peer file sharing systems, Proceedings of the Multi-
media Computing and Networking Conference (MMCN ’02), Jan 2002.

Stefan Saroiu, Krishna P. Gummadi, and Steven D. Gribble, Measuring and
analyzing the characteristics of Napster and Gnutella hosts, Multimedia
Systems 9 (2003), no. 2, 170-184.

Emil Sit and Robert Morris, Security considerations for peer-to-peer dis-
tributed hash tables, Proceedings of the 1st International Workshop on Peer-
to-Peer Systems (IPTPS ’02), Mar 2002.

Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Bal-
akrishnan, Chord: A scalable peer-to-peer lookup service for Internet appli-
cations, Proceedings of the 2001 ACM SIGCOMM Conference, Aug 2001,
pp- 149-160.

Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Bal-
akrishnan, Chord: A scalable peer-to-peer lookup service for Internet appli-
cations, Tech. Report TR-819, MIT, Mar 2001.

Yanfeng Shu, Beng Chin Ooi, Kian-Lee Tan, and Aoying Zhou, Supporting
multi-dimensional range queries in peer-to-peer systems, Proceedings of the
Fifth IEEE International Conference on Peer-to-Peer Computing (P2P ’05),
IEEE Computer Society, 2005, pp. 173—180.

Cristina Schmidt and Manish Parashar, Fnabling flexible queries with quar-
antees in p2p systems, IEEE Internet Computing 8 (2004), no. 3, 19-26.

177

Bibliography

[SR02]

[SRC84]

[Sri01]

[SSDN02]

[SSRO5]

[SSROS]

[Sto01]

[SW05]

[TBO4|

[TCO3]

[TC04]

|TJ07]

178

Alan Southall and Steffen Rusitschka, The resource management frame-
work: A system for managing metadata in decentralized networks using
peer-to-peer technology, Agents and Peer-to-Peer Computing, First Inter-
national Workshop (AP2PC ’02), Lecture Notes in Computer Science, vol.
2530, Springer, 2002, pp. 144-149.

J. H. Saltzer, D. P. Reed, and D. D. Clark, End-to-end arquments in system
design, ACM Transactions on Computer Systems 2 (1984), no. 4, 277-288.

Kunwadee Sripanidkulchai, The popularity of Gnutella queries and its im-
plications on scaling, Tech. report, Carnegie Mellon University, Feb 2001.

Mario Schlosser, Michael Sintek, Stefan Decker, and Wolfgang Ne-
jdl, HyperCuP-hypercubes, ontologies and efficient search on p2p net-

works, Proceedings of the 1st Workshop on Agents and P2P Computing
(AP2PC ’02), 2002.

Thorsten Schiitt, Florian Schintke, and Alexander Reinefeld, Chord”:
Structured overlay network for non-uniform load distribution, Tech. report,
Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Aug 2005.

Thorsten Schiitt, Florian Schintke, and Alexander Reinefeld, Range queries
on structured overlay network, Computer Communications 31 (2008), no. 2,
280-291.

Damien Stolarz, Peer-to-peer streaming media delivery, Proceedings of the
1st International Conference on Peer-to-Peer Computing (P2P ’01), IEEE
Computer Society, Aug 2001, p. 48.

Ralf Steinmetz and Klaus Wehrle (eds.), Peer-to-peer systems and applica-
tions, Lecture Notes in Computer Science, vol. 3485, Springer, 2005.

Andreas Tasch and Oliver Brakel, Location based community services, Pro-
ceedings of the IADIS Conference on Web Based Communities (WBC ’04),
Mar 2004.

Liying Tang and Mark Crovella, Virtual landmarks for the Internet, Pro-
ceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement,
Oct 2003, pp. 143-152.

Liying Tang and Mark Crovella, Geometric exploration of the landmark
selection problem, Passive and Active Network Measurement, 5th Interna-
tional Workshop, PAM 2004, Lecture Notes in Computer Science, vol. 3015,
May 2004, pp. 63-72.

Guang Tan and Stephen A. Jarvis, Stochastic analysis and improvement
of the reliability of DHT-based multicast, Proceedings of the 26th Annual
IEEE Conference on Computer Communications (INFOCOM ’07), IEEE,
2007, pp. 2198-2206.

[TSG+01]

[TTGOS5]

[UB03]

|Wal03]

[Wim06]|

[WJ02]

[WMB99]

[WPL*+06]

[ZDKO06]

[ZDKO07]

|ZH05|

[ZHST04]

Kelly Truelove, Clay Shirky, Lucas Gonze, Rael Dornfest, and Dale
Dougherty, 2001 p2p networking overview: the emergent p2p platform of
presence, identity, and edge resources, O’Reilly, 2001.

Kurt Tutschku and Phuoc Tran-Gia, Peer-to-peer-systems and applications,
ch. Traffic Characteristics and Performance Evaluation of Peer-to-Peer Sys-
tems, pp. 383-397, Springer, 2005.

Herwig Unger and Thomas Bohme, A probabilistic money system for the use
in p2p network communities, Virtual Goods Summit 2007, 2003, pp. 60-69.

Dan s. Wallach, A survey of peer-to-peer security issues, Software Security
— Theories and Systems, Mext-NSF-JSPS International Symposium, ISSS
2002, Lecture Notes in Computer Science, vol. 2609, 2003, pp. 253-258.

Wilhelm Wimmreuter, Finsatz netzwerkunabhdngiger dienste, e & i Elek-
trotechnik und Informationstechnik 123 (2006), no. 7, 283-287.

Jared Winick and Sugih Jamin, Inet-3.0: Internet topology generator, Tech.
Report CSE-TR-456-02, Department of EECS, University of Michigan Ann
Arbor, 2002.

[an H. Witten, Alistair Moffat, and Timothy C. Bell, Managing gigabytes:
Compressing and indexing documents and images, Morgan Kaufmann Pub-
lishing, 1999.

Jui-Chieh Wub, Kuan-Jen Pengac, Meng-Ting Luac, Chang-Kuan Linac,
Yu-Hsuan Chengac, Polly Huangade, Jason Yaoac, and Homer H. Chenacd,
HotStreaming: Enabling scalable and quality IPTV services, Proceedings of
the IPTV Workshop at the 15th International World Wide Web Conference
(WWW ’06), May 2006.

Stefan Zols, Zoran Despotovic, and Wolfgang Kellerer, Cost-based analysis
of hierarchical DHT design, Proceedings of the Sixth TEEE International
Conference on Peer-to-Peer Computing (P2P '06), IEEE Computer Society,
2006, pp. 233-239.

Stefan Zols, Zoran Despotovic, and Wolfgang Kellerer, Load balancing in a
hierarchical DHT-based p2p system, 3rd International Conference on Col-
laborative Computing: Networking, Applications and Worksharing (Col-
laborateCom ’07), Nov 2007.

Yingwu Zhu and Yiming Hu, Efficient, proximity-aware load balancing for
DHT-based p2p systems, IEEE Transactions on Parallel and Distributed
Systems 16 (2005), no. 4, 349-361.

Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D.
Joseph, and John D. Kubiatowicz, Tapestry: A resilient global-scale overlay

179

Bibliography

for service deployment, IEEE Journal on Selected Areas in Communications
22 (2004), 41-53.

|Zim96] H.-J. Zimmermann, Fuzzy set theory—and its applications (3rd ed.), Kluwer
Academic Publishers, 1996.

|Zip32] G. K. Zipf, Selective studies and the principle of relative frequency in lan-
guage, Harvard University Press, 1932.

|Ziin07] Maximilian Ziindt, A distributed community-based location service archi-
tecture, Doctoral thesis, Technische Universitdt Miinchen, 2007.

|ZY06] Yingwu Zhu and Xiaoyu Yang, Implications of neighbor selection on DHT
overlays, Proceedings of the 14th IEEE International Symposium on Mod-
eling, Analysis, and Simulation (MASCOTS ’06), IEEE Computer Society,
2006, pp. 197-206.

Online documents

Note: These sources are documents in the Internet. We last accessed them in June 2008.
In the meantime these sources or their URLs might have been changed, or they might
even be removed by the corresponding provider. These articles or web pages exist only
in electronic form. However, they provide important information and further reading.
Also, part of this thesis is based on them. Thus, T could not forbear from citing these
sources.

[Bli] Blizzard ~ Entertainment, World — of Warcrafft, http://www.
worldofwarcraft.com/.

|Boc| Thomas Bocek, A distributed DNS prototype,
http://distributeddns.sourceforge.net/.

|IBR] David Bryan and Brian Rosen, IETF WG: Peer-to-peer session initiation
protocol, http://tools.ietf.org/wg/p2psip/.

[bri] BRITE: Boston university representative internet topology generator,
http://www.cs.bu.edu/brite/index.html.

|cai] Cooperative association for internet data analysis (CAIDA),
http://www.caida.org.

|Cia| Ciao GmbH, Ciao, www.ciao.de.

180

http://www.worldofwarcraft.com/
http://www.worldofwarcraft.com/
http://distributeddns.sourceforge.net/
http://tools.ietf.org/wg/p2psip/
http://www.cs.bu.edu/brite/index.html
http://www.caida.org
www.ciao.de

[C1i00]

|Coh|

|cro]
leBal

leBa0g]

[EJ01]

[Fral

[fre08]

[gil]

[GKL*]

|Glo]

|Gool
[Inf81]

[ipo]

[Jin]

17SC+05]

Clip2, The Gnutella 0.4 protocol specification,
http://dss.clip2.com/GnutellaProtocol04.pdf, 2000.

Bram Cohen, The BitTorrent protocol specification,
www.bittorrent.com/protocol.html.

Croquet project, http://croquetconsortium.org,.
eBay Inc., eBay, www.ebay.com.

eBay Inc., eBay Inc. reports third quarter 2008, http://ebayinkblog.com/
wp-content/themes/ink/news-docs/q3-2008-release.pdf, Oct 2008.

Donald E. Eastlake and Paul E. Jones, RFC 317} - US secure hash algo-
rithm 1 (SHA1), http://tools.ietf.org/html/rfc3174, Sep 2001.

France Télécom - R&D Division, Solipsis,
http://solipsis.netofpeers.net/.

FreePastry, http://freepastry.org/FreePastry/, 2008.

giFT-FastTrack, BerliOS Developer, Documentation of the known parts of
the FastTrack protocol, http://cvs.berlios.de/cgi-bin/viewcvs.cgi/
gift-fasttrack/giFT-FastTrack/PROTOCOL?rev=HEAD&content-type=
text/vnd.viewcvs-markup.

Thomer M. Gil, Frans Kaashoek, Jinyang Li, Robert Morris, and Jeremy
Stribling, p2psim: a simulator for peer-to-peer protocols, http://pdos.
csail.mit.edu/p2psim/.

Globus.org, GT information services: Monitoring & discovery system
(MDS), http://www.globus.org/toolkit/mds/.

Google Inc., Google, wuw.google. com.

Information Sciences Institute, University of Southern California, RFC 795 -
transmission control protocol, http://tools.ietf.org/html/rfc793, Sep
1981.

ipoque GmbH, Internet study 2007: P2p file sharing still dominates the
worldwide Internet, http://www.ipoque.com/media/internet_studies/
internet_study_2007.

Jini.org, Jine lookup discovery service specification, http://www.jini.org/
wiki/Discovery.

A. Johnston, R. Sparks, C. Cunningham, S. Donovan, and K. Summers,
Session initiation protocol service examples 08, http://tools.ietf.org/
html/draft-ietf-sipping-service-examples-08, 2005.

181

http://dss.clip2.com/GnutellaProtocol04.pdf
www.bittorrent.com/protocol.html
http://croquetconsortium.org
www.ebay.com
http://ebayinkblog.com/wp-content/themes/ink/news-docs/q3-2008-release.pdf
http://ebayinkblog.com/wp-content/themes/ink/news-docs/q3-2008-release.pdf
http://tools.ietf.org/html/rfc3174
http://solipsis.netofpeers.net/
http://freepastry.org/FreePastry/
http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-fasttrack/giFT-FastTrack/PROTOCOL?rev=HEAD&content-type=text/vnd.viewcvs-markup
http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-fasttrack/giFT-FastTrack/PROTOCOL?rev=HEAD&content-type=text/vnd.viewcvs-markup
http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-fasttrack/giFT-FastTrack/PROTOCOL?rev=HEAD&content-type=text/vnd.viewcvs-markup
http://pdos.csail.mit.edu/p2psim/
http://pdos.csail.mit.edu/p2psim/
http://www.globus.org/toolkit/mds/
www.google.com
http://tools.ietf.org/html/rfc793
http://www.ipoque.com/media/internet_studies/internet_study_2007
http://www.ipoque.com/media/internet_studies/internet_study_2007
http://www.jini.org/wiki/Discovery
http://www.jini.org/wiki/Discovery
http://tools.ietf.org/html/draft-ietf-sipping-service-examples-08
http://tools.ietf.org/html/draft-ietf-sipping-service-examples-08

Bibliography

[Jup01]

IK1i]

IKM02|

|Lon04]

|Mac07]

[Mel04]

[Men05]

[Mer]

[Mic]|

[Mic07]

| Mir|
[Nap]

[O’R05]

[RMMWO03]

182

Jupiter Media Metrix, Global Napster usage plummets, but new file-sharing
alternatives gaining ground, Press Release. http://www.comscore.com/
press/release.asp?id=249, Jul 2001.

Alexey Klimkin, *unofficial* eDonkey protocol specification v0.6.2, http:
//kent .dl.sourceforge.net/pdonkey/eDonkey-protocol-0.6.2.htmll

Tor Klingberg and Raphael Manfredi, Gnutella 0.6 RFC,
http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html,
Jun 2002.

Matt Loney, The magic that makes Google tick, http://www.zdnet.com.
au/insight/software/soa/The-magic-that-makes-Google-tick/0,
139023769, 139168647, 00.htm, Dec 2004, ZDNet UK.

Colm MacCarthaigh, Joost network architecture, Presentation to the The
United Kingdom Network Operators’ Forum.
http://www.joost.com/forums/p/2007/04/joost-p2p-networking-
presentation-by-colm-maccarthaigh-joosts-network-architect/,
Apr 2007.

Jorma Mellin, Peer-to-peer networking - phenomenon and impacts to carri-
ers, Presentation at Telekom Forum, Sept 2004.

Thomas Mennecke, DSL broadband providers perform balancing act, http:
//www.slyck.com/news.php?story=973, Nov 2005.

Jean Mercier, Skype numerology, http://skypenumerology.blogspot.
com/.

Microsoft, Microsoft Office Groove, http://office.microsoft.com/
en-us/groove/default.aspx.

Microsoft XNA Creators Club Online, Network architecture: Peer-to-peer,
http://creators.xna.com/en-us/sample/networkp2p, Dec 2007.

Mirabilis, ICQ), www.1icq.com.
Napster, LLC, Napster, www.napster.com.

Tim O’Reilly, What s Web 2.0 - design patterns and business models
for the next generation of software, http://www.oreillynet.com/pub/a/
oreilly/tim/news/2005/09/30/what-is-web-20.html, Sep 2005.

J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, RFC 3/89 - ses-
sion traversal utilities for NAT (STUN), http://tools.ietf.org/html/
r£c3489, Oct 2008.

http://www.comscore.com/press/release.asp?id=249
http://www.comscore.com/press/release.asp?id=249
http://kent.dl.sourceforge.net/pdonkey/eDonkey-protocol-0.6.2.html
http://kent.dl.sourceforge.net/pdonkey/eDonkey-protocol-0.6.2.html
http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
http://www.zdnet.com.au/insight/software/soa/The-magic-that-makes-Google-tick/0,139023769,139168647,00.htm
http://www.zdnet.com.au/insight/software/soa/The-magic-that-makes-Google-tick/0,139023769,139168647,00.htm
http://www.zdnet.com.au/insight/software/soa/The-magic-that-makes-Google-tick/0,139023769,139168647,00.htm
http://www.joost.com/forums/p/2007/04/joost-p2p-networking-
presentation-by-colm-maccarthaigh-joosts-network-architect/
http://www.slyck.com/news.php?story=973
http://www.slyck.com/news.php?story=973
http://skypenumerology.blogspot.com/
http://skypenumerology.blogspot.com/
http://office.microsoft.com/en-us/groove/default.aspx
http://office.microsoft.com/en-us/groove/default.aspx
http://creators.xna.com/en-us/sample/networkp2p
www.icq.com
www.napster.com
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://tools.ietf.org/html/rfc3489
http://tools.ietf.org/html/rfc3489

[RSC+02]

|[Rus06]

[Shal

[Sit02]

[Skyal

[Skyb]

[Sop]

[Sou06]

[Top]

[UDD]
[U.S]

[Web]

[Whi]

[Wim06]

J. Rosenberg, Henning Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, RFC 3261 - SIP: Session initiation
protocol, http://www.ietf.org/rfc/rfc3261.txt, Jun 2002.

Steffen Rusitschka, CeBIT 2006 - Siemens peer-to-peer technol-
ogy, Video interview http://video.google.com/videoplay?docid=
-2085361973487925857, 2006.

Sharman Networks Ltd., KaZaA, wuw.kazaa.com.

Emil Sit, Detecting malicious nodes in Chord, http://sow.csail.mit.
edu/2002/proceedings/sit.pdf, 2002.

Skype Limited, Online presence in Skype, http://www.skype.com/
business/allfeatures/presence/.

Skype Limited, Skype, www.skype.com.
Sopcast, Sopcast, www.sopcast.com.

Alan Southall, Siemens peer-to-peer technologies and their industrial ap-
plication, Talk at Dagstuhl Seminar 06131, http://www.peer-to-peer.
info/seminar/schedule/dagstuhl-06131-southall.pdf, Mar 2006.

TopWare Austria, D-Info 97, Published on CD., TopWare Austria, 'D-Info
97’.

Universal description, discovery and integration (uddi).

U.S. Census Bureau, 1990 census name files, http://www.census.gov/,
accessed on April 2007.

Webdialogs, Inc., Lotus sametime Unyte share for Skype, http://www.
webdialogs.com/unyte/.

Whichvoip.com, Guide to VoIP phone service features and terms, http:
//www.whichvoip.com/voip/info/voip_features.htm.

Wilhelm Wimmreuter, FElements for transition: ENUM € P2P
complement the beasts, Talk at 44. DFN-Betriebstagung, http:
//www.dfn.de/content/fileadmin/3Beratung/Betriebstagungen/
bt44/forum_voip_siemens.pdf, Feb 2006.

183

http://www.ietf.org/rfc/rfc3261.txt
http://video.google.com/videoplay?docid=-2085361973487925857
http://video.google.com/videoplay?docid=-2085361973487925857
www.kazaa.com
http://sow.csail.mit.edu/2002/proceedings/sit.pdf
http://sow.csail.mit.edu/2002/proceedings/sit.pdf
http://www.skype.com/business/allfeatures/presence/
http://www.skype.com/business/allfeatures/presence/
www.skype.com
www.sopcast.com
http://www.peer-to-peer.info/seminar/schedule/dagstuhl-06131-southall.pdf
http://www.peer-to-peer.info/seminar/schedule/dagstuhl-06131-southall.pdf
http://www.census.gov/
http://www.webdialogs.com/unyte/
http://www.webdialogs.com/unyte/
http://www.whichvoip.com/voip/info/voip_features.htm
http://www.whichvoip.com/voip/info/voip_features.htm
http://www.dfn.de/content/fileadmin/3Beratung/Betriebstagungen/bt44/forum_voip_siemens.pdf
http://www.dfn.de/content/fileadmin/3Beratung/Betriebstagungen/bt44/forum_voip_siemens.pdf
http://www.dfn.de/content/fileadmin/3Beratung/Betriebstagungen/bt44/forum_voip_siemens.pdf

	Title page

	Abstract

	Contents

	1. Introduction and motivation
	Definitions
	Contribution
	Outline

	2. Peer-to-Peer (P2P) overlay networks
	Classification of P2P overlays
	P2P lookup concepts
	Centralized P2P overlays
	Unstructured P2P overlays
	Structured P2P overlays
	Hierarchical P2P overlays
	Comparison

	3. Structured P2P lookup protocols
	DHT-based protocols
	Chord
	Content Addressable Network (CAN)
	Kademlia
	OneHop
	Pastry, Tapestry

	Replication, Republishing, and Caching
	Load balancing
	Non-DHT protocols
	Skip Graphs
	SkipNet

	Conclusion

	4. Simulation models and environment
	Modeling the user behavior
	Modeling transmission time in overlay simulations
	Global Network Positioning (GNP)
	Applying GNP for modeling network transmission
	Results
	Predicting inter-node transmission times

	Simulation environment and GUI
	Conclusion

	5. Performance, robustness, and cost analysis
	Metrics
	Lookup path length and search duration
	Robustness of the overlay structure
	Maintenance overhead

	Evaluating the Chord protocol
	Number of Participants
	Churn Rate
	Design parameters

	Related Work
	Conclusion

	6. Optimized robustness and performance
	Conclusion, Discussion and Outlook
	Optimized overlay robustness
	Related Work
	Improved stabilization
	Security concerns

	Advanced Chord stabilization
	Symmetrical stabilization using tokens
	Algorithm
	Analysis and simulation results
	Conclusion

	Repairing disrupted or partitioned overlays
	Security issues (and their detection)
	Recovery
	Avoidance
	Conclusion

	Optimized lookup performance
	Related Work
	Iterative vs. recursive lookups
	Route and neighbor selection
	Parallel lookups
	Symmetrical Chord routing (S-Chord)
	Chord#

	Hybrid routing strategy
	Freebie Fingers
	Fuzzy-based Route Selection (FRS)

	Conclusion

	7. Application of structured P2P for Voice-over-IP
	Supplementary services and add-ons
	Realizing supplementary services in P2P-based VoIP
	Related Work
	VoIP Service Framework

	Realizing range, wildcard, and complex queries
	Related Work
	Prefix-based Multi-Attribute Keyword Search (PriMA KeyS)
	Evaluation
	Conclusion

	Conclusion

	8. Conclusion, discussion, and outlook
	A. Abbreviations and symbols
	B. Simulation environment
	List of Figures
	List of Tables
	Bibliography
	Publications by the author
	General publications
	Online documents

