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A B S T R A C T : S i n c e  their introduction, Cellular Neural Networks [4] have turned out 
to be useful architectures for the solution of many problems, e. g. in image processing 
or in the simulation of partial diflerential equations. Therefore, there have been several 
attempts to introduce cell circuits suitable for  large-scale integration [.?I. Up to now, 
all of these cells need energy and therefore power supply. 
Just recently attempts have been made to build up circuitry being able to work without 
an external energy supply by using the energy stored in the initial state [I]. This 
principle can provide two major advantages. First, since no or at least not much 
energy is  dissipated during computation, the circuit does not produce much heat. The- 
refore, there are no "hot spots" in integrated circuits, which limit integration density 
and operation speed. Furthermore, since there is no need for  a power supply, the 
absence of voltage supply lines supports a high integration density. 
In this work an  architecture for  the realisation of a lossless C N N  is proposed. Further 
on, since standard learning algorithms turn out to fail for  lossless systems, a way to 
amend these is  introduced. 

1 

1.1 Mathematical outline 
As described in [2], lossless systems can be described by the following differential equation: 

Mathematical outline and circuit model 

5 = A(z)grad .H(z) ;  (1) 
This differential equation with a coupling matrix A, which depends on the state vector, leaves the Hamilto- 
nian H, an energy function of the state vector, unchanged, if A is skew-symmetric for all z. Normally the 
additional condition of Jacobi-identity has to be fulfilled, too, but for the kind of Hamiltonian proposed 
later on it does not need to be taken into account. 

Since the Hamiltonian H is preserved, the trajectory of a system with a given initial energy HO will 
never leave a surface defined by 

This equation defines an n-dimensional surface in the state space, which has the dimension n + 1. If we 
introduce coordinates on this reduced surface, we can map the given lossless differential equation with the 
state vector z E R"+* into a normal differential equation with the state vector y E R". The mapping 
is carried out by using a (nonlinear) mapping function r :  

H ( z )  = Ho; (2) 

Y = r ( z ) ;  (3) 
By using the inverse of this mapping for  a specific given energy X, here denoted by r;', we can map the 
reduced state vector y back into the lossless system's state vector 2: 

z = .i'(y); .. (4) 
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Figure 1: Coupling of two states 

The given lossless differential equation (1) changes to  the form: 

. - .  

Ci 

By applying this procedure, any lossless differential equation can be turned into a normal differential 
equation,with the order reduced by one. The other way round the same thing is possible: by using the 
inverse mapping any differential equation can be turned into a lossless differential equation with the grade 
augmented by one but with in principle the same behaviour. 

1.2 

To get a circuit model for the differential equation (l), we need to  realize the coupling matrix A(=)  as 
well as the Hamiltonian H ( z ) .  

The Hamiltonian H denotes the energy stored in the system. To enable the uncritical realization in a 
CNN of such a Hamiltonian, two demands have to be fulfilled Since the energies of the states should be 
independent, the energy H of the system has to be the sum of the energies stored in the states. Further 
on, in a CNN all of the cell cores have to be equal, thus the dependence of the energy of a certain cell on its 
state has to be the same for all cells; thus: H = h(z1) + h(zz )  +. . . ; To realize this postulated single-state 
Hamiltonian h(z) ,  we can, for example, use nonlinear capacitors with the characteristic q = .(U). 

If the Hamiltonian is of a construction of the given type, we can map the differential equation t o  
one corresponding to  linear capacitors. Therefore, we have to introduce new coordinates 1: with the 
characteristic: 

Circuit model for lossless systems 

(6) 
1 
2 

H = h(z1) + h(z2) +. . - = - (5: + 5; + . . .) = H ;  

This new Hamiltonian corresponds to the energy stored in linear capacitors. Using this new state 
variables we can, under the condition that h(z )  is invertible, describe any Hamiltonian system with a 
single-state Hamiltonian by a lossless system with linear capacitors. 

The main problem, therefore, will be to realize an adequate, state-dependent coupling matrix. The 
main criteria for the matrix A to define a lossless system is the skew-symmetry. If we use capacitors to 
realize the Hamiltonian as proposed before, such a coupling matrix can easily be realised by connecting 
the states by nonlinear gyrators, as shown in Fig. 1. The gyrator is described by the following conductance 
matrix. 

with the transconductance g depending on the voltage U. This dependence can be of several types, e. g. 
a polynomial or periodic function on the states. 

The parameters that can be changed during learning ore the coeficients of these coupling functions. 
A gyrator between the nodes i and j realises both couplings aij and aji at one time. A band structured 

matrix like that known from standard CNNs results, with the difference that its main diagonal is empty 
and it is skew-symmetric. 
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2 Learning algorithms for lossless CNN 

2.1 Standard RBP 
The idea of RBP (Recurrent Backpropagation) [5]  is quite simple. First, an error function e is defined, 
denoting the distance between the actual equilibrium I, and the desired equilibrium d: 

Then, after simulating the system to determine the actually reached equilibrium em, we change the 
controllable parameters of the system (denoted by the parameter vector p) using a gradient descent 
method: 

(9) 
8 e  

P [ k  + 11 = P[kl  - P -i BP 
Here p denotes the learning rate, which can be given as a constant or, in refined methods, be chosen 
advantageously in every learning step. The gradient f has to be computed from the equilibrium point 
2,: 

Using the error function definition ( 8 ) ,  this comes to: 

8% 8e  
- aP = (2, - d )  -; BP 

In further examination, only a single element a of the parameter vector p is considered. Of course, this 
does not limit the scope of the conclusions. The main problem will be to determine the gradient %. 
To do so, we have to consider the equilibrium condition derived from the differential equation (1): 

A(z,)  2, = 0; (12) 

If we derive this for a, we get: 
- a A c , + ( B + A ) S = O ;  
aa 8a 

with the matrix B denoting 

However, if equation (13) was solvable, it  would demand the matrix A + B to be invertible. This is not 
the case since all eolumn vectors of A as well as of B are orthogonal to the equilibrium vector 2,. 

For A this can be derived from the equilibrium condition (12), which means that all row vectors of A 
are orthogonal to e,. Since A is skew symmetric, this implies that the column vectors, which are simply 
the negative row vectors, are also orthogonal to z,. 

If we regard the column vectors of B ,  we can see that all of them are simply the product of a derivative 
A,; and z,,,. Since all of the derivatives are skew symmetric, all of these products are orthogonal to e,. 

Since e, is neither an element of span(A) nor of span(B),  it is likewise not an element of span(A+B). 
Therefore, the sum matrix A + B degenerates and there exists no solution for equation (13) generally. If 
numerical algorithms are applied, they will operate very slowly and inaccurately near the equilibria, and 
thus the direct applying of RBP to lossless systems will fail. Since most other learning algorithms for 
supervised learning will in some step make use of the gradient *, those will fail, too. 

The reason for this failure is the fact that equilibria in lossless systems do not depend only on the 
parameters p of the system but also, of course, on the initial state. Since this initial state is never reflected 
in the equations we regarded, the gradient % cannot be derived from these. 
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2.2 Modified RBP for lossless CNN 
As we have seen, normal RBP fails due to an insufficient error definition. To overcome these difficulties, 
we have to use a different definition of the learning target. The approach proposed here is simply to work 
on the system after a reduction of order as outlined in section 1.1. By using a mapping as proposed in 
1.1 we get the reduced system described by ( 5 ) :  

Y = fH(Y); (15) 

with the nonlinear function f ~ ( y )  derived from the initial system equations by using the reduction 
mapping T(Z) and its inverse for a certain energy r;'(y): 

With a new error definition for RBP, which denotes the distance between the reached equilibrium and 
the desired equilibrium in the reduced state variable y 

and the new desired equilibrium 
dtI = T(d); 

we have a new optimisation problem with a normal system, which now is solvable. As was demonstrated 
for standard RBP in (ll), the error gradient comes to: 

Once again, we have to  determine h. 
In principle, from this point we could continue merely simulating and learning the reduced system. 

In the end, the parameters p found this way can be used directly in the lossless system. However, the 
explicit determination of f ~ ( y )  is very difficult for larger systems, though of course feasible in principle. 
To avoid this explicit determination, we can at first continue simulating the initial system to determine the 
actually reached equilibrium z,, which is numerically advantageous since the reduced system contains 
nonliearities of a kind that require much time to  compute, such as sine functions or fractions. Next we 
have to determine the gradient e, which can be derived from the equilibrium condition 

81, 

fH(Y-) = 0; (20) 

by deriving for a: 

which leads to: 

The two gradients 9 and can be derived from (16): 

As a last step, we update the parameter vector using the gradient according to (9). 
The modification carried out with RBP as shown above can be applied to any learning algorithm. 

Whenever the use of an error function is recommended, this error function should be formulated for the 
reduced system. 
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For example, for Backpropagation Through Time (BTT) [6], if the system is not near an equilibrium, 
the algorithm would work correctly without the reduction of order; however, if the system state approaches 
an equilibrium, the condition of the system matrix A becomes worse and worse. This leads to bad reshts 
and slow convergence if numerical algorithms are applied. Nevertheless, the order can be reduced, and 
as was shown for RBP, the problem of degeneration of the system matrix will not appear any more. 

3 Example: Two-dimensional system 
If we regard a two-dimensional, lossless system with linear capacitors, it is described by the following 
differential equation: 

We now apply a polar coordinate mapping, which for a two-dimensional system has the form 

with the inverse 

By doing so, the reduced system takes the form 

The new error function to be minimized is 

The equation (22) to compute the gradient % in this case takes the form: 

with gm and gzi denoting 2 resp. z. Since all of these gradients can in most cases be computed, 
we can now solve the optimisation problem. The learning algorithm was applied to a two-dimensional 
system with polynomial dependence of the coupling factor on the states 

g ( 2 1 , 2 2 ) = a + b * l + ~ ~ z ;  (31) 

Thus, the parameters to be learned, in the proposed formalism denoted by a, are here the coefficients of 
the polynomial, i. e. a,  b and c. In the example, the given problem was to reach the state d = [l, 1IT 
starting from the initial state 20 = [l, -1IT. Fig. 2 shows how the position of the reached equilibrium 
changes during the learning process. Finally, after approximately 500 learning cycles, the error is small 
enough to  fulfill the break-with-sucess condition. 

To simulate the behaviour of the unreduced, lossless system an explicit Euler integration rule was 
used. First, the integration was carried out using this rule, gaining an intermediate update Z[k + 11 

i.[k + I] = 2[k] + 7 f(z[k]); (32) 

Since this integration rule normally increases the length of the system vector and thus is not suitable for 
lossless systems, it was amended by an additional step which restored the length of the system vector 
after each iteration step, note that the length of the system vector is known from the initial state. 

Z.[k+l] . 
II5P + 1111: ’ z [ k  + 11 = 6 (33) 
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Figure 2: Development of the equilibrium during the learning process 

So the main characteristic of losslessness of the system was not lost. The amended integration rule is 
fully explicit and therefore can be used advantageously for numerical simulations. It can be proved that 
this amended Euler integration rule will leave oscillating systems oscillating, which is an advantage for 
learning algorithms since the critical case of oscillation has to be taken into account. 
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