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Abstract 

We propose a new strategy for a constructive training of 
feedforward neural networks to classifit linearly nonsepa- 
rable patterns. The algorithm results in a confguration of 
the first layer of the network, which is able to give a faithjtl 
internal representation of the input patterns. The weights of 
the network are obtained by the introduced CadaTron algo- 
rithm, which is able to separate clusters of data in a robust 
way. Iteratively, further neitrons are added to the nertral 
net in order to decrease the training error. Unnecessary 
neurons are removed, so this algorithm leads to a network 
with low complexity and excellent generalization properties. 
The results of this work are based on the classfleation of 
handwritten characters. 
Keywords: Multi Layer Perceptron, Internal Representa- 
tion, Decision Boundaries, Robustness, Constriictive Algo- 
rithm, Clustering 

1. Introduction 

To solve a classification problem, a n dimensional input 
pattern has to be mapped onto a discrete value, which cor- 
responds to the index of the different classes. By a binary 
coding of the class index, the K-class problem is splitted 
into a set of parallel 2-class problems, each giving a bi- 
nary output. Neurons with a hard limiter activation function 
(perceptrons) are predestinated for such 2-class problems. 
Unfortunately, perceptrons are only able to solve linearly 
separable problems. To manage nonlinearly separable pro- 
blems, a mulitlayer architecture is needed. Because the 
distribution of classes in the pattern space generally is un- 
known, the network architecture has to be flexible. A very 
complex network will not be able to generalize. On the 
other hand, a network with less neurons may not be able 
to solve the classification problem at all. Therefore, some 
constructive algorithms have been developed, like the tiling 
algorithm [4] or the cascade correlation algorithm [I]. These 
algorithms start with a low network complexity and insert 

additional neurons, if needed. All these algorithms “try to 
do the best they can with a few neurons”in order to decrease 
the training error. 

In this paper a new learning algorithm is presented, which 
follows a completely different strategy, Instead of trying to 
decrease the training error, we introduce the CadaTron al- 
gorithm, which ensures a robust embedding of already cor- 
rectly classified training patterns for each training epoch. It 
will be shown, that this leads to an efficient solution for two- 
class problems, if the classes consist of some nonlinearly 
separable clusters in the input space. The constructive al- 
gorithm inserts additional neurons or deletes them, if they 
turned out to be unnecessary. This algorithm is based on 
the geometrical properties of the defined network architec- 
ture. The efficiency of training is improved by an adequate 
selection of training data, based on the decision regions of 
the topology. 

2. Properties of layered networks 

To separate two disjoint classes of training pattern 
X + , X -  c X,withX+UX- = XandX+nX- =0,out 
of the finite training set X c X, a mapping x I-+ y; lR” --+ 

{ -1; $1) has to be realized. The binary output y indicates 
the estimated class 

y = {  -1 : x E X- class2 + (1) 
+I : x E X+ class1 

Properties of a single perceptron 
Neurons with a hard-limiter activation function (percep- 
trons) [lo, 5, 21 perform the desired mapping, given by a 
weighted summation of the components of the input vector 
x. By keeping the n-th component of x constant zn = - 1, 
the threshold of the neuron is implemented with the n-th 
component w, of the weight vector w. 
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Equation (2) defines a n - 1 dimensional hyperplane E 
in R”. The output y indicates, on which side of E the input 
x is situated. Let R+ (R-) be a subset of X, containing 
the relevant training patterns out of class 1 (class 2) which 
should be, and P+ (P-)  be the pattems, which actually 
are on the positive (negative) side of E, 

P+ = {x E Rldx > 0); P- = {x E Rldx < O } ,  
(3) 

whereas the disjoint subsets G and B are called the sets of 
‘good’ and ‘bad’ pattems. 

Figure 1. The subsets of ‘good’ and ‘bad’ patterns with 
respect to the perceptron problem and its solution 

R+np+ = G+ R - n p -  = G- 
R+nP- = B+ R - n p +  = B- 
G+UG--  = G B+UB-- = €3 

G n B  = 0 G U B  = R = P  

A layer of perceptrons 
A layer of h neurons performs a nonlinear mapping R” -+ 

{-l,+l}h byaweightmatrix W = (wl,wa, ... wh),con- 
sisting of the weight vectors w; of each neuron. Because of 
the h defined hyperplanes, the input space is splitted into 2h 
regions (if h 5 n), which we call cells. The cell number 
k = 0. - . 2h - 1 corresponds to the output vector z 

z = sign (w‘x) E {-I,+I}~. (4) 

of the perceptron layer, if z is interpreted as a binary number 
with the component z1 as the MSB. For example, the 6- 
th cell corresponds to the output z = (+l,+l,-l)T -.+ 

bin(z) = 11Obh = 6. 
Let c k  be the subset of patterns within cell IC and let C: 

(C,) be the patterns within cell k and belonging to class1 
(class2) 

Ck = {x E XI bin(z) = k}, (5)  

c,+ = c k  n X + ,  (6) 
c, = C k n X - .  (7) 

Therefore, a value Ck is assigned to each cell i, indicating 
the estimated class of the patterns in this cell. In [l 11 a 

‘For a single neuron, R+ = X+ and R- = X-, but we may take 
R C X for better leaming properties. 

\ -++ ’ +++ 
3 

Figure 2. h hyperplanes in the pattern space X. (a) shows 
the enumeration of the cells and (b) shows an example, 
how to separate the pattern space by nonlinear decision 
boundaries (here the number of cells is less than 2 h ,  because 
h = 3 > n = 2). 

statistically based rule to determine C k  out of C l  and C ,  is 
given, i.e. for the case of balanced classes IX+ I = (X- 1 

+1 ; IC,+l> IC,l 
C k =  { -1 ; Ic,+I<lc,I . (8) 

0 ;  else 

The value C k  = 0 is taken, if no pattern is within cell IC 
(“don’t care”) or if ICzl = I C i l  (“don’t know”). In this 
case the cell IC is not able to make a statement about the 
class. figure 2(b) shows a possible partial linear separation 
of X, defined by the 3 hyperplanes and the values Ck for 
k = O . . .  7. 

According to (3), the set 7?: (P;) containes the pattem, 
situated on the positive (negative) side of the hyperplane Ei. 

T T Pi+ = {x E R i I W i  x > 0); P*T = {x E R i l W i  x < 0). 
(9) 

2.1. Relevant training patterns for a neuron 

A line segment c E; separating two cells ( k l ,  LO) is 
called an edge, whereas the binary values of k l  and k0 
differ in the i-th bit. An edge is element of the decision 
boundary, if the values C k 1  and C k o  differ in the sign. Those 
edges are printed with bold lines in Figure 2(b). A couple 
of cells ( k l ,  k0) are relevant cells for neuron i, if the edge 
separating these cells is part of the decision boundary and a 
line segment of the hyperplane E;. 
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The set of relevant mining patterns for the i-th neuron 

Ri = U (CkI  U C E O )  (1 1) 
( E l ,  bo)  out of eqn. ( 10) 

is splitted into 72: and 72; , indicating the side of the hyper- 
plane, on which the patterns should be embedded. Thereby, 
‘good’ patterns are left of the actual side of Ei and ‘bad’ 
patterns are to be embedded on the other side of the hy- 
perplane. With the subsets O b  (Bk) for the ‘good’ (‘bad’) 
patterns within cell k 

and the sets G and 13 over ail cells are given by 

2h-1  2h-1  

G =  U O k  B =  U 136, (14) 
k=O k=O 

the relevant training pattern for the neuron i are 

= ai n ((P: n 8) U (P%: n B)) 
ay = ai n ((P; n 9)  U (P: n B)) . (15) 

The internal representationz is called to be ‘faithful’ [41, 
if each cell containes only patterns of a unique class (or 
no pattem at all). The remaining training error is given by 
E = M. 1x1 

E !  
4 Y 

Figure 3. Network architecture 

Figure 3 shows the complete network architecture. B is 
a Boolean function defined by the values C k  and maps the 
internal representation z onto a binary value y. 

3. Training of a single neuron 

We introduce a new weight adaptation rule for percep- 
tfons, called the CadaTron (Clustering AdaTron) algorithm. 

Usually, perceptrons are trained by Hebbian learning rules 
17, 121 in order to minimize the training error. But these 
algorithms are failing, if the training set is not linearly se- 
parable. For such problems, a criterion for stopping the 
algorithm has to be defined. 

In Figure 4 a motivating example of a linearly nonsepa- 
rable database is given. A single perceptron minimizing the 
training error is shown in (a). Although the problem could 
be solved with 2 neurons, solution (a) makes it impossible 
to find a second hyperplane that solves the problem. The 
CadaTron algorithm will find a hyperplane shown in (b). 
Although the training error is higher than in (a), a second 
hyperplane could easily lead to a separation of the training 
patterns. 

/- 

(a) (b) 

Figure 4. (a): wei&t found by minimizing the training 
error. (b): weight found by the CadaTron algorithm 

Consider a 2-class problem for one neuron, where R+ 
has to be separated from R-.  The initial weight vector 
w(0) may be obtained by two randomly choosen patterns 
x+ E R+ and x- E 12- 

(16) 

According to this weight vector, the ‘good’ patterns B(0) are 
robustified, utilizing the AdaTronalgorithm [7 1. whereby the 
AdaTron solves the optimization problem 

w(0) = x+ - x-. 

max min v?ti w i=1 ... P 
subject to 

for P given training patterns ti, with 

xi for xi E R+ { -x i  for xi E R- 
If the training set is linearly separable, the AdaTron will 

find a robust and unique solution for w. Taking 9+ and B- 
to train the neuron, linear separability of the training set is 
guaranteed. The weight vector w( 1). found by the AdaTron 
separates O+ (0) and 8- (0) in a robust way, and there may 
be even some additional patterns AG(0) E B(O), which are 
supplementarily classified correctly after robustification of 
the ‘good’ patterns. Iteratively, with the iteration index k, 
the new set of ‘good’ patterns is 9 ( k  + 1) = O ( k )  U AO(k) 
with A G ( k )  C B ( k ) .  If A G ( k )  # 8, training continues 
with B (12 + I), otherwise the algorithm terminates. 

ti = 
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determine G adapt w with G 

Step 1 

step 2 t 

Figure 5. An example for the CadaTron learning 

w = CadaTron(R+, R-, w(0)) 
d e t e r m i n e  @(O), G-(O) 
k = O  
do 

w(k + 1) = AdaTron ( G+(k) ,  8 - ( k ) ,  w ( k )  ) 
d e t e r m i n e  G+(k + l), G-(k -t 1) 
k = k + l  

w h i l e  ( lG(k)l  > IG(k - 1)1 1 

The convergence of this algorithm is ensured, because 
the convergence of the AdaTron algorithm is guaranteed 
by the choice of the training patterns and the algorithm 
stops, if AG = 0. Figure 5 shows the behavior of the 
CadaTron algorithm. In (a) the patterns 8 (0) are determined 
and utilized to train the neuron (b). Then with the new 
weight w( l ) ,  the patterns G(1) are determined (c). The 
AdaTron finds the weight vector w(2) shown in (d) with 
those training patterns. Then, no “additional good patterns” 
are found, so the iteration stops. 

4. Constructive training of the network 

In this section we discuss, how the CadaTron algorithm is 
embedded in a constructive modification of the network ar- 
chitecture. The property of the CadaTron, not to care about 
the misclassified patterns, requires a growing of the percep- 
tron layer, in order to decrease the training error. The con- 
structive algorithm is called CCA (Constructive Clustering 
AdaTron). 
Training the hidden layer 
Consider a neural network with already h neurons in the 

hidden layer, shown in Figure 3. The easiest way to train 
the neurons is to adapt the weights of one neuron after the 
other. The set of training pattems Ri for the neuron i has 
to be determined out of (1 l), each time before training this 
neuron. In a loop for i = 1.. . h, the neurons are trained 
with the CadaTron to separate the subsets 72; and Rz:, 
determined by (1 5). 
Inserting a neuron 
If wi(k) = wi(k - l ) V i =  LJ,, and 23 # 0, an additional 
neuron is inserted. This neuron is trained to separate the 
patterns Gm from Bm in the cell m, that containes the most 
misclassified patterns. 

P m I  2 IBhl v k + ;  b=o ... zh-1 

R;+l(o) = c;t; Rh+l(0) = c; (18) 

The initial weight wh+l(O) is obtained out of (16). After 
the mining of Rft+l(0); (0), the Boolean mapping 
B has to be redefined by determining the values c )  for the 
2h+1 cells. 
Deleting a neuron 
If a neuron i turns out to have no relevant patterns R; = 0, 
it can be omitted without any influence on the training error. 
The valuescb for the 2h-1 cells have to be determined again 
after the removal of the neuron. 

Constructive training: CCA algorithm 
DO 

DO 
FOR i = l  ... h 

d e t e r m i n e  ‘RI, ‘Rf e q n .  (11) 
I F  R ~ = 8 V R z ~ = 8  
THEN 

delete  n e u r o n  i 
h = h - 1  
r e c a l c u l a t e  B e q n .  (8) 

ELSE 

NEXT i 
wi(k + 1) = CadaTron (a;, R:, w i ( k ) )  

k = k + l  
WHILE wi(k)  # wi(k - l)Vi,l...h 
I F  23#@ 
THEN 

h = h + l  
i n s e r t  n e u r o n  h 
f i n d  c e l l  m w i t h  t h e  m a x i m a l  e r ror  
d e t e r m i n e  Rt, R h  e q n .  ( 1 8 )  
i n i t i a l i z e  wh(O) e q n .  ( 1 6 )  
Wh(1) = CadaTron (R:, a,, Wh(0) )  

r e c a l c u l a t e  B e m .  ( 8 )  
WHILE a # @  
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5. Results 

d [%] D [xlo-3] 
1.61 1.3 

In this section, the results obtained with the presented 
constructive algorithm are compared with the results of the 
MadaTron (Multilayer AdaTron) algorithm [6,9]. The Ma- 
daTron algorithm calculates the weights of a neural net- 
work with committee machine architecture, shown in Fi- 
gure 3 with B equal to the majority function B,,, : y = 
sign()= z i ) .  This algorithm requires a fixed size for the 
hidden layer and is known to give excellent results for the 
application of classification compared to other well-known 
algorithms [9]. The number of hidden layers is set to be 
h = 5. In order to keep the complexity of both networks 
comparable, the CCA is prohibited to insert more than 5 
neurons. 

A training set of 10 x 1000 greylevel bitmaps of hand- 
written characters 0. . . 9  is takenout of the database of NIST 
[8]. The Hough-transformation [31 is applied to obtain 40 
features out of the bitmap. A coding of the class index with 
the 7-bit Hamming code [6] gives 7 parallel 2-class pro- 
blems for the bits b = 0 . .  .6, which are trained separately. 
Each bit has been trained 20 times to get the mean training 
error E and the standard deviation 6, shown in Table 1 .  

d [%I D [x10-3] 
3.58 3.2 

- 

bit 0 
bit 1 
bit 2 
bit 3 
bit 4 
bit 5 
bit 6 

MadaTron I CCA 

7.90 6.62 
6.32 5.47 7 -0 
4.94 3.3 5.26 8.5 
6.09 5.68 9.7 

~ 4 . 0 4 0 .  sz 7 min. 

Table 1. Training error 

CCA improves in 4 of 7 bits compared to MadaTron. 
The error of the other bits is within an acceptable range. 
Comparing the time for training, an improvement by a factor 
of 5. .  .6 is achieved with CCA. 

The classification error on 10 x 500 test pattem, which 
were not included in the training set, was 10.43% for the 
MadaTron and 9.2% for the CCA on zero rejection. 

6. Conclusion 

In this paper we presented a new constructive algorithm 
to obtain the first layer of a feedfoward neural network and 

the Boolean mapping of this layer to a binary output. This 
network architecture is applied to 2-class problems. 

The CadaTron (Clustering AdaTron) algorithm has been 
introduced. With this algorithm, one single neuron can be 
trained in order to separate two clusters in a robust manner. 
The convergence of this algorithm is guaranteed by taking a 
linear subset of the training patterns to be learned with the 
AdaTron algorithm. 

With the CCA (Constructive Clustering AdaTron) algo- 
rithm, each neuron of the hidden layer is trained iteratively. 
The training patterns are splitted into several linearly separa- 
ble subsets by reorganizing the decision regions with respect 
to the geometrical properties of the topology. Neurons are 
inserted or deleted, so the algorithm finds an accurate size 
for the network to solve the classification problem. 

The introduced algorithm has keen compared with the 
MadaTron, which is known to be an excellent algorithm to 
solve classification problems. 
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