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Vollständiger Abdruck der von der Fakultät für Physik der Technischen Universität München zur
Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. L. Oberauer
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Zusammenfassung 1

Zusammenfassung

3D Simulationen der Stoßpropagation durch Supernovahüllen

Die vorliegende Arbeit beschäftigt sich mit dem dynamischen Mischen von Nukleosyntheseprodukten
in der Hülle von Core-Collapse Supernovae. Mit Hilfe von drei-dimensionalen Computermodellen
wurde der Einfluß verschiedener hydrodynamischer Instabilitäten auf das Mischverhalten und die
dynamischen Prozesse in der Hülle untersucht.

Dabei wurden neue Erkenntnisse über die Inhomogenität der gemischten Hüllenmaterie und die
Maximalgeschwindigkeit schwerer Nukleosyntheseprodukte gewonnen. Diese wurden mit Ergebnis-
sen von Vorläuferarbeiten verglichen und diskutiert. Des Weiteren wurden Vergleiche mit Beobach-
tungen der Supernova SN 1987A gezogen.
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Abstract 3

Abstract

Simulating supernova shock propagation through stellar envelopes in 3D

The following work addresses the dynamical mixing of nucleosynthesis products in envelopes of core
collapse supernovae. The influence of hydrodynamic instabilities on the mixing and the dynamics was
investigated by means of three dimensional computer models.

New insights into the inhomogeneity of the mixed envelope matter and the maximum velocity of
heavy nucleosynthesis products were gained. The results are discussed and compared with previous
works and to observations of SN 1987A.
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Chapter 1

Motivation

1.1 Historical Supernovae1

The phenomenon of supernovae (SNe) is already known for a long time, even though the true nature
of it was not understood up to the 1940’s. These “new stars” (lat: stella nova→ new star), sometimes
also called “guest stars”, suddenly appeared, were visible for some weeks, and faded away again. Such
events were reported by astronomers in China as well as in the Middle East and in Europe in the year
185 A. D. and on 1 May 1006, which is supposed to be the brightest SNe recorded in human history,
“bright enough to cast shadows on the ground at night, brighter than the quarter moon” (Marschall
1988). The remnants of both SNe can be observed as radio sources today.

Another supernova (SN) was seen by the Chinese in 1054, but not by others. It left behind the
supernova remnant (SNR), which is known today as the Crab Nebulae. In contrast to the other rem-
nants, a compact stellar remnant is found inside this SN remnant, acting as a pulsar. This means that
it emits pulses of electromagnetic radiation, 30 per second in that case.

On 17 November 1572 the young Tycho Brahe, a Danish astronomer, discovered another SN in
the constellation Cassiopeia and observed it for several months. Another one was described in detail
by Johannes Kepler, one of the most famous astronomers in history, in October 1604. The supernova
which left behind the SNR Cas A was not observed at all. However, taking into account the size and
the expansion velocity of the remnant, the explosion must have seen somewhen between 1650 and
1680.

The last SN visible for the naked eye and the first one since Kepler’s SN in 1604 went off on
23 February 1987 und was first seen by a few professional and amateur astronomers. Because it
influenced astronomy and astrophysics greatly, as well as it is of fundamental importance for this
work, I will give more details in Section 1.3.

Between 1885 and the 1930’s some supernovae were also discovered in neighbouring galaxies.
Then, Fritz Zwickey and his assistant J. J. Johnson, who were working at CalTech, started a systematic
search programm and found 20 SNe within half a decade.

Up to the late 1990’s astronomers discovered 10 to 30 SNe each year making the total number
increase to about 700. At that date extended automatic supernova search programmes using robotic
telescope units were started, e.g. Lick Observatory and the Tenagra Observatory Supernova Searches
(LOTOSS). They “produce” between 200 and 300 SNe each year, so the total number has reached

1This Section is based on section I.A and I.B of Bethe (1990) and the Book The Supernova Story by Marschall.
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8 1: Motivation

Figure 1.1: Left: Early-time spectra of SNe, showing the four major types and subtypes. The vari-
ables t and τ represent the time after observed B-band maximum, and the time after core collapse,
respectively. Right: Schematic light curves for SNe of Types Ia, Ib, II-L, II-P, and SN 1987A. The
curve for SNe Ib includes SNe Ic as well, and represents an average. Figures and description from
Filippenko (1997).

several thousand known supernovae up to now (see List of Supernovae at the Harvard-Smithsonian
Center for Astrophysics).

1.2 Types of Supernovae

Minkowski (1941) established two distinct classes of supernovae. Zwicky originally sorted his SNe in
a system of five classes, but afterwards the two class system was adopted (Figure 1.2). The system was
extended by additional subclasses, resulting in the following observer’s picture. SNe of Type I, which
show no hydrogen lines and SNe of Type II which do (Figure 1.1). The progenitors of Type I SNe
are hydrogen deficient objects, whereas the progenitors of Type II have a relatively thick hydrogen
envelope.

The term Type IIb was invented by Woosley et al. (1987) in connection with the first models for
SN 1987A. It is now usually used for SNe which show the spectral behaviour of Type II at maxi-
mum light and in the early phase of their evolution, and which make a transition towards the spectral
behaviour of a Type Ib SNe at later phases (∼30-40 days after maximum light).

The class of Type I SNe is further subdivided into Type Ia SNe, showing rather strong silicon lines
and Type Ib/c with no silicon lines. The difference between the subclasses b and c is the appearance
of helium lines. In contrast to that, the class of Type II SNe is further subdivided into Type IIL,
Type IIP, and Type IIb, mainly by the behaviour of their lightcurves. Supernovae of Type IIL (“linear”)
show a sharper maximum followed by a steep decline in their lightcurves, whereas SNe of Type IIP
(“plateau”) have a broader maximum followed by a plateau (i.e. an almost constant luminosity) from
roughly day thirty to a hundred days after maximum light and a shallower decline afterwards compared
to Type IIL SNe.

Sometimes a fourth Type II subclass named Type IIn is used, which is characterised by narrow
emission lines on top of the broad absorption features. It is speculated that these are Type II SNe
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Maximum light spectra

H / no H

SN II SN I

Light curve shape 
max. light continuum

II L II P II b I a He / no He

I b I c

Si / no Si

(SN1987K, SN1993J)

Figure 1.2: Supernovae classification scheme. Figure from Harkness & Wheeler (1990).

sitting in the middle of massive stellar outflows, and that the emission lines are the result of the SN
ejecta interacting with those massive stellar outflows. Every supernova of Type II not matching the
subclasses mentioned so far is usually classified as a peculiar SN of Type II, or SN IIpec.

Over the times two ideas were suggested for the energy source of supernovae. Baade & Zwicky
(1934) suggested that the source for the tremendous energy of supernova explosions is the gravita-
tional collapse of the stellar core to a neutron star (NS). They used the new concept of neutron stars
which was proposed by Landau in 1932. The rivalling idea, suggested by Hoyle & Fowler (1960) and
Fowler & Hoyle (1964), was that the energy is released in a thermonuclear explosion.

Today it is commonly accepted that both ideas are realised in nature. Thus, SNe of Type Ia are
thermonuclear explosions of a C/O white dwarf. The white dwarf accretes material from a companion
star until it reaches the Chandrasekhar mass limit, resulting in the ignition of its degenerated carbon
core. Since the white dwarf has no hydrogen envelope or only an extreme thin one, no hydrogen lines
are visible in the spectrum of the resulting Type Ia supernova.

Supernovae of the other types, i.e. Type Ib/c and Type II, are due to gravitational core collapse of
massive stars at the end of their thermonuclear evolution. I will present an overview of the mechanism
of core collapse supernovae (ccSNe) in Section 2.1.

Nowadays, it seems likely that there is a rather continuous transition between the SNe types II,
Ib, and Ic, depending on the mass loss of the progenitor during its evolution. Except for Type Ia SNe,
they are all ccSNe. Reducing the mass of the hydrogen envelope, one gets a SN of Type IIp, Type IIL,
and of Type IIb if the hydrogen envelope has nearly vanished. A star completely stripped from its
hydrogen envelope will produce a Type Ib SN and, if the helium shell is also stripped, one will get
SNe of Type Ic.
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1
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Figure 1.3: Left panel: Bolometric luminosity of Supernova 1987A, as observed by Cerro Tololo
Inter-American Observatory (CTIO) and the South African Astronomical Observatory (SAAO). The
three theoretical curves are from Woosley et al. (1988b); the one that fits CTIO includes mixing, the
other two do not. Figures and description from Bethe (1990)
Right panel: The optical spectrum of SN 1987A at three different epochs: (a) February 25, 1987,
only 40 hr after core collapse. Note the broad profiles of the hydrogen and helium lines and the large
blueshifts of the P Cygni absorption components. (b) April 14, 1987, 50 days after core collapse. The
spectrum is now dominated by lines of low ionisation elements. Note the strength of the barium line at
6142 Å. (c) September 9, 1987, more than 100 days after the maximum of the bolometric light curve.
The spectrum has by this time taken on more of a nebular appearance, with strong emission lines of
hydrogen, oxygen, calcium, and sodium dominating [observations from Cerro Tololo Inter-American
Observatory (CTIO); figure from Woosley et al. (1988b)]. Figure from Woosley & Phillips (1988)
and description from Arnett et al. (1989b).

1.3 The Supernova SN 1987A

1.3.1 General

The Supernova SN 1987A certainly is the most detailed studied supernova up to now. It is the first
supernova from which neutrinos are observed. It is also the only stellar neutrino source so far (besides
the sun) which was detected in neutrinos.

Three hours before SN 1987A was discovered by its optical outburst, two underground detectors
had already recognised signals from the core collapse itself (e.g. Arnett 1987; Bethe 1990), more
precisely from the neutrino burst which followed the collapse of the stellar core. The japanese detector
Kamiokande II, located in the Kamioka mine, detected 12 events in a time interval of 12.44 seconds
(see Hirata et al. 1987, 1988), and the IMB detector located in the Morton-Thiokol mine (Ohio, USA)
detected 8 neutrinos in a time interval of 5.58 seconds (see Bionta et al. 1987; Bratton et al. 1988).
The detected signals of both laboratories coincide perfectly in time, and the detection matched the
expected time of the supernova’s neutrino burst so well, that there was no doubt that they had detected
the core collapse of Sk -69 202, the progenitor of SN 1987A. The reported detections by two other
neutrino detectors, namely the Italian-Soviet Liquid Scintillation Detector neutrino telescope located
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underneath Mont Blanc and the Baksan neutrino telescope in the North Caucasus Mountains, are
believed to be stochastic events (e.g. Arnett 1987; Bethe 1990).

A star of the Sanduleak catalogue, Sk -69 202, coincidenced in its position with SN 1987A, and
after the supernova had faded away in the UV range, it turned out that this star had disappeared. Sk -
69 202 was a B3 I blue supergiant, which was quite a surprise since it was always believed that the
progenitors of Type II supernovae are red supergiants. SN 1987A showed a very rapid brightening in
the first days, which immediately pointed to a progenitor having an atmosphere more compact than a
red supergiant.

Several ideas were suggested why SN 1987A’s progenitor was a blue rather compact star, e.g.
severe mass loss due to stellar winds (e.g. Chevalier & Fransson 1987) or due to interaction with
a binary companion (e.g. Fabian et al. 1987). Another idea was an unusual stellar evolution track
caused by the low metallicity in the Large Magellanic Cloud (LMC). This was the result of one of
the most thorough studies of that “blue riddle” by Woosley et al. (1988b). Even though there is still
a discussion going on about the progenitor of SN 1987A, it is nowadays commonly accepted that
has returned to a blue stage after encountering a red phase for some 105 years before, as discussed by
Woosley et al. (1988b).

But SN 1987A was not only remarkable because of its small distance and the observed neutrino
signal. Although the prominent hydrogen features of its optical spectrum are clearly indicating its
Type II nature, the optical spectrum of SN 1987A ( Figure 1.4, right panel ) as well as the UV and IR
spectra show much more rapid changes than in ordinary SN of Type II, including a phase where the
spectrum is dominated by spectral features of elements in low ionisation stages.

The bolometric lightcurve of SN 1987A ( Figure 1.4, left panel ) shows a significant drop in the
first few days. Thereafter, it brightens up again, finally reaching a 2nd maxima lasting for more than
hundred days. Afterwards the lightcurve follows an exponential decline. The adiabatic expansion of
the exploding star reduces its reservoir of thermal energy, decreasing the density and the temperature.
This also shortens the diffusion time scale of photons, until radiation can escape freely from the
expanding supernova atmosphere. The strong decline of the luminosity in the beginning is the cooling
tail of the stars photosphere heated by the shock breakout. The luminosity can be expressed as

L = 4πR2
σT 4 , (1.1)

where R denotes the radius and T the temperature of the star’s photosphere (σ is the Stefan-Boltzmann
radiation constant). Directly after shock breakout the temperature drops linearly with time as the
stellar envelope behaves as an homologous adiabatic expanding ideal gas T ∼ V

1
3 (e.g. Landau &

Lifschitz 1991), thus the luminosity decreases correspondingly. Homologous expansion means that
the expansion velocity is proportional to the radius. The photosphere is defined by the recombination
front, moving steadily into the inner mass shells of the supernova atmosphere. The recombination
front the surface separating the hotter inner parts of the stellar envelope, consisting out of fully ionised
plasma, from the cooler outer parts consisting out of neutral or partially ionised gas. Here happens of
the ion electron recombination happens.

At first, this motion is negligible compared to the SN’s expansion velocity. The position of the
photosphere increases linearly in time, i.e. its surface is growing quadratically causing the brightening
of the lightcurve. Later on, when the temperature has dropped, the photosphere moves further in
towards the slower moving parts of the atmosphere.

It finally recedes in space, when the recombination front reaches those parts of the envelope having
a expansion velocity comparable to the velocity of the recombination front. Therefore the lightcurve
brightens eventually slower. The decay of the radioactive elements, produced by explosive burning
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Figure 1.4: Sketch showing an average radial velocity profile of an exploding star.

behind the shock wave during the first seconds of the explosion, stores additional energy in the at-
mosphere. γ-rays released by the decays compton scatter at the free electrons of the stellar plasma,
thereby, heating the plasma. Each scatter process roughly releases half the rest frame energy of a
photon in thermal energy. As the photon diffusion time decreases, the trapping of that radioactive
energy is reduced. This increases the luminosity until the amount of energy which is radiated away
matches the amount of energy stored by decay. Subsequently the luminosity follows the decay of its
radioactive energy source.

1.3.2 Evidence for Mixing

Modeling the lightcurve of SN 1987A requires two things. First, the opacity which is dominated
by metals, i.e. elements heavier than He, has to be smoothed out over the whole stellar envelope,
especially over the helium shell and the hydrogen envelope, to explain the overall smooth behaviour
of the lightcurve ( Figure 1.4, left panel ). This can only be achieved if iron group elements are mixed
far outwards in the stellar envelope. Secondly, to reproduce the broad 2nd maxima ( Figure 1.4,
left panel ) one has to assume that the inward moving recombination front of hydrogen, the so called
hydrogen recombination wave, reaches the deep core of the supernova, thus, hydrogen has to be mixed
deep into the core (e.g. Nomoto et al. 1988).

Generally the envelope of an exploding star expands homologous, i.e. the radial velocity is pro-
portional to the radius (Figure 1.4). The star has an onion-like structure. Inside the hydrogen envelope
are lying the cores of the elements produced during the thermonuclear evolution embedded in each
other (Subsection 2.1.1, Figure 2.1).

The early detection of X- and γ-rays requires mixing of 56Ni and other radioactive elements to the
very outer layers of the supernova. Moreover, the maximum of the γ-ray emission of SN 1987A, which
is produced by the radioactive decay of 56Co, was observed less than one year after the explosion. This
is much earlier than what was expected if no 56Ni was mixed outwards during the explosion of the
star. A detailed discussion of that can be found in Arnett et al. (1989b). The decay chain of 56Ni can
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be given in the following way

56Ni −→ 56Co∗ + e+

56Co∗ −→ 56Co + γ
56Co −→ 56Fe∗ + e+

56Fe∗ −→ 56Fe + γ ,

(1.2)

56Ni has a half life of τ1/2(56Ni) = 6.075d, and 56Co has a half life τ1/2(56Co) = 77.26d (Pfennig
et al. 1995).

Between 20 and more than a hundred days days after the explosion a feature around the Hα

P-Cygni profile at around −5000kms−1 (March 20) was observed, now known as the “Bochum
Event” (Hanuschik & Dachs 1987a,b). It was interpreted as local depletion of the occupation num-
ber due to variations in either density or excitation conditions close to the photosphere at that time
(Hanuschik 1988). This could be explained by clump of stellar matter, having a different density than
the stellar envelope and/or exhibiting locally different energy deposition.

Optical speckle interferometric observations indicated a “very bright” source near SN 1987A
(Matcher et al. 1987; Nisenson et al. 1987; Meikle et al. 1987). The source was not present prior
to the supernova and is now known as the “mystery spot”. It appeared around the same time as the
“Bochum Event”, and had a comparable position in radial velocity space (±4000±2000kms−1).

Haas et al. (1990) reported from mid infrared spectroscopy of forbidden Fe II lines an expansion
velocity for iron of 2000kms−1. However, a single line feature was measured at around 3500kms−1.
Using the integrated line flux, they derived the total mass of single ionised iron as 0.026M�.

Note that some evidence of mixing in supernovae was already given by the chemical inhomogene-
ity of the Cas A SNR (Figure 6.3), as well as the fact that iron was observed at the same velocity as
oxygen in the same remnant.
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Figure 2.1: Ilustration of the length scales and the onion like structure of a presupernova star. The
time scale tshock give the times the shock wave needs to travel through that part of the star, respectively.
Figure from Kifonidis (2000)

2.1 Core Collapse Supernovae

Massive stars with masses larger than ∼ 8 M� end their lives with a supernova explosion of type II or
type I b/c. The inner core of the massive star collapses and a compact remnant, either a neutron star
or a black hole, is formed. Below 10 M� the collapsing stellar core is a Ne/Mg/O core. Above ∼ 25
M�, the compact remnant will be a black hole rather than a neutron star. For this work, only the mass
range between 10 M� and 25 M� is of interest, hence I restrict this overview to that mass range.

15
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2.1.1 Core Collapse and Bounce

At end of their thermonuclear evolution and shortly before they end their lives, massive stars with
∼ 10 - 25 M� have an onion like structure (Figure 2.1). The inner core of the star, which is mainly
made out of iron group elements is surrounded by the silicon core. Further out are following the
O/Ne/Mg shell, the carbon oxygen shell, and the helium shell. This complete onion like structure lies
deeply embedded in the vast hydrogen envelope of the star. These “onion” shells are separated by
burning layers where the star fuses elements of the shell lying outside into elements of the shell lying
inside, respectively. At the innermost burning layer, where temperatures are in the order of 4×109 K,
α particles, produced by thermal desintegration are added successively to 28Si, which at the same time
is fused to either 56Ni or 54Fe. This process is adding more and more mass to the iron core.

Finally, the growing iron core reaches a point where the dynamic is speeding up tremendously.
The contraction changes into free fall, the core is collapsing (Figure 2.2, upper left panel) and the
gravitational binding energy is released in form of neutrinos, which leave the collapsing core instan-
taneously. When the core density approaches nuclear density (ρtrap ≈ 1012g/cm3), the mean free
path of neutrinos becomes smaller than the size of the collapsing core, and the diffusion time scale of
neutrinos (=⇒ coherent scattering on nuclei) becomes larger than the collapse time scale. The neu-
trinos are now trapped acting as an additional radiation pressure component (Figure 2.2, upper centre
panel). At densities exceeding nuclear density (ρ ∼>1014g/cm3) the nuclear EOS stiffens significantly.
That fact together with the neutrino trapping forces the collapsed core to bounce back launching a
hydrodynamic shock wave.

2.1.2 Stalling and Reviving the Shock Wave

Colgate & Johnson (1960) proposed a theory based on the idea of Baade & Zwicky (1934), in which
a hydrodynamical shock wave is launched by the core bounce after the stellar core collapse (Subsec-
tion 2.1.1). This shock wave was believed to explode the star. But the shock wave moves through
the still infalling dens matter of the outer stellar core, i.e. the part of the iron core lying outside the
homologous inner part. It heats up the shocked material to high temperatures, loosing huge amounts
of its energy mainly by the photodisintegration of heavy nuclei and neutrino emission. This severe
energy losses finally cause the shock wave to stall. All numerical models of the past decades agreed
in the point that the prompt shock fails to explode the star (see Janka et al. 2007, sec 1.1 and the
references therein).

In 1966 Colgate & White realised that there are some problems with the prompt shock model and
they proposed an idea whereby the region behind the shock wave is absorbing a small fraction of the
vast number of neutrinos emitted by the newly born neutron star by reactions of the type

νe + n −→ e− + p
ν̄e + p −→ e+ + n .

(2.1)

Colgate & White’s neutrino driven model was critisised, because it had problems to give matching
explosion energies, but later the idea was revived, when it was realised that the energy deposition
could take up to a few hundred milliseconds (Bowers & Wilson 1982). From that point on the idea got
more and more accepted and the following picture for the explosion mechanism of a ccSN emerged
with time.

The shock wave which was launched by the core bounce (Subsection 2.1.1) and stalled by the
processes mentioned in the beginning of this subsection is then acting like a standing accretion shock,
at which the matter still falling in supersonically from the outer parts of the stellar core, is decelerated
and then further advected subsonically onto the proto-NS.
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Figure 2.2: Schematic representation of the evolutionary stages from stellar core collapse through the
onset of the supernova explosion to the neutrino-driven wind during the neutrino-cooling phase of the
proto-neutron star (PNS). The panels display the dynamical conditions in their upper half, with arrows
representing velocity vectors. The nuclear composition as well as the nuclear and weak processes are
indicated in the lower half of each panel. The horizontal axis gives mass information. MCh means
the Chandrasekhar mass and Mhc the mass of the subsonically collapsing, homologous inner core.
The vertical axis shows corresponding radii, with RFe, RS, Rg, Rns, and Rν being the iron core radius,
shock radius, gain radius, neutron star radius, and neutrinosphere, respectively.
Upper left panel: Initial collapse phase — The iron core of the star passes through a rapid contraction
phase in which gravitational binding energy is released in form of neutrinos.
Upper centre Panel: Neutrino trapping phase — When the core density approaches nuclear density
(ρtrap ≈ 1012g/cm3) the mean free path of neutrinos becomes smaller than the the size of the col-
lapsing core and the neutrinos’ diffusion time scale becomes larger than the collapse time scale, thus
neutrinos are trapped.
Upper right panel: Bounce phase — At densities exceeding nuclear density (ρ ∼> 1014g/cm3) the nu-
clear EOS stiffens vigorously. This and the neutrino trapping force the collapsed core to bounce back,
launching a hydrodynamic shock wave.
Lower left panel: Early shock propagation phase — The shock wave launched from the newly born
PNS propagates through the outer iron core. Due to severe energy losses by neutrino emission and
photodisintegration of nuclei, the shock wave is stalled after having travelled only ∼ 100km.
Lower centre panel: Stalling shock and ν heating — Energy deposition in the cooler layers behind the
shock due to absorption and scattering of a small fraction of neutrinos revives the shock wave.
Lower right panel: Neutrino driven wind phase — In the late phase, seconds after the core collapse,
is the PNS is thermally cooling by emission of neutrinos, they drive a fast particle wind and provide
the conditions for r-process nucleosynthesis. Figures and introduction from Janka et al. (2007).
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Figure 2.3: Sketch which summarizes the processes that determine the evolution of the stalled super-
nova shock after core bounce. Stellar matter falls into the shock at radius Rs with a mass accretion rate
Ṁ and a velocity near free fall. After deceleration in the shock, the gas is much more slowly advected
towards the nascent neutron star through the regions of net neutrino heating and cooling, respectively.
The radius Rns of the neutron star is defined by a steep decline of the density over several orders of
magnitude outside the neutrinosphere at Rν. Heating balances cooling at the gain radius Rg. The
dominant processes of energy deposition and loss are absorption of electron neutrinos onto neutrons
and electron antineutrinos onto protons as indicated in the figure. Convective overturn mixes the layer
between gain radius and shock, and convection inside the neutron star helps the explosion by boosting
the neutrino luminosities. Figure and description from Janka (2001)

At the same time a huge amount of the neutrinos originally trapped inside the PNS are diffusing
outwards to a region, where the density is low enough that they can freely stream away. There the
so called neutrino photosphere is located, which is henceforth acting as the main radiation energy
source. However, the hot matter located outside the PNS but inside the so called gain radius, is
cooling by neutrino emission and hence acting as an additional radiation energy source. The gain
radius (Figure 2.3) is defined at that distance from the center of the star, where the neutrino heating
rate per nucleon is equal to the neutrino cooling rate per nucleon. It lies somewhere in the middle
between the neutrino photosphere and the shock radius.

This situation has two implications for the shock wave and the region below. Firstly, the matter
located below the shock wave and above the gain radius gets heated by the neutrino radiation and
starts to expand, pushing the shock wave further out. Eventually, the shock wave reaches the less
dense regions of the outer stellar core, which are falling in with much smaller velocities. Then the
shock wave gets accelerated by the pressure gradient of the star. The formerly stalled shock wave was
revived by neutrino radiation from the inner core.

Secondly, due to the more intense neutrino radiation field near the gain radius the matter there is
heated more efficiently than the matter near the shock wave. This leads to a negative entropy gradient.
If stellar layer have a negative entropy gradient, i.e. layer lying deeper inside the star are hotter and
less denser than those layers on top of them, this stratification may get convectively unstable. A region
of neutrino driven convection with rising bubbles of heated matter develops between the gain radius
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934 L. Scheck et al.: Multidimensional supernova simulations

Considering the local growth rate ωbuoy(r) given by Eq. (1) in
a reference frame advected with the flow, the amplitude δ of
a small-wavelength perturbation may grow during its advection
from the shock to the gain radius, at best by a factor exp(χ),

δgain = δshock exp(χ), (4)

where the quantity

χ ≡
∫ Rs

Rg

ωbuoy(r)
dr
|vr(r)| = τ

g
adv/τconv (5)

can be interpreted as the ratio of the advection timescale to
the average local growth timescale the perturbation experiences,
τconv ≡ 〈ω−1

buoy〉 (the latter quantity is implicitly defined by
Eq. (5)). Thus it would appear that in order to reach a given per-
turbation amplitude at the gain radius, a certain seed perturbation
amplitude of the matter crossing the shock would be necessary.

However, a linear stability analysis reveals that the stationary
accretion flow below the shock is globally unstable and perturba-
tions can grow from arbitrarily small initial seeds, if sufficient
time is available (Foglizzo et al. 2006). According to Foglizzo
et al. (2006) this is the case for a limited range [lmin, lmax] of
modes for which χ exceeds a critical value χ0,

χ > χ0, where χ0 ≈ 3. (6)

For χ <χ 0 the flow remains linearly stable, even though a nega-
tive entropy gradient is present.

The analysis of Foglizzo et al. (2006) applies only for the
linear phase of the instability, i.e. for small perturbation ampli-
tudes. However, it is possible that the situation has to be con-
sidered as nonlinear right from the beginning, i.e. that the seed
perturbations grow to large amplitudes already during their ad-
vection to the gain radius. In this context “large” can be defined
by considering the buoyant acceleration of the perturbations.

For a small bubble, in which the density ρ is lower than the
one of the surrounding medium, ρsurr, the convective growth dur-
ing the advection to the gain radius may lead to an increase of the
relative density deviation δ ≡ |ρ − ρsurr|/ρsurr (which can be con-
sidered as the perturbation amplitude) as given by Eq. (4). The
bubble experiences a buoyant acceleration |agrav| δ towards the
shock, which is proportional to the local gravitational accelera-
tion agrav. The time integral of the buoyant acceleration becomes
comparable to the advection velocity, when the perturbation am-
plitude reaches a critical value

δcrit ≡ 〈|vr |〉gain

〈agrav〉gain τ
g
adv

(7)

∼
〈|vr |〉2gain

Rs 〈agrav〉gain

Rs

Rg − Rs
∼ O(1%), (8)

where 〈|vr|〉gain and 〈agrav〉gain are the average values of the radial
velocity and the gravitational acceleration in the gain layer, re-
spectively. For δgain > δcrit a small-scale perturbation is able to
rise against the accretion flow. If the whole flow is perturbed, the
buoyant motions on small scales affect the situation globally and
could allow for the onset of convective overturn also on larger
scales. Note that in contrast to the linear growth of the instabil-
ity this process does not require χ >χ 0 but it does require large
enough seed perturbations,

δshock >
δcrit

exp(χ)
· (9)

A sufficient condition for the suppression of convection is there-
fore that neither Eq. (6) nor Eq. (9) are fulfilled.

Fig. 1. Schematic view of the advective-acoustic cycle between the
shock at Rs (thick solid line) and the coupling radius, Rc (thick dashed
line), in the linear regime, shown for the case where the oscillation pe-
riod of the shock (τosc) equals the cycle duration, τaac. Flow lines carry-
ing vorticity perturbations downwards are drawn as solid lines, and the
pressure feedback corresponds to dotted lines with arrows. In the gray
shaded area around Rc the flow is decelerated strongly.

2.2. The advective-acoustic cycle

A second hydrodynamic instability has recently been recognised
to be of potential importance in the stalled shock phase. Blondin
et al. (2003) noticed that the stalled accretion shock becomes un-
stable to non-radial deformations even in the absence of entropy
gradients, a phenomenon termed SASI. It can be interpreted as
the result of an “advective-acoustic cycle” (in short AAC), as
first discussed by Foglizzo & Tagger (2000) in the context of
accretion onto black holes, and later studied for supernovae by
Galletti & Foglizzo (2005) and Foglizzo et al. (2007) by means
of linear stability analysis. The explanation of these oscillations
is based on the linear coupling between advected and acoustic
perturbations due to flow gradients.

Although this linear coupling occurs continuously through-
out the accretion flow from the shock to the neutron star surface,
some regions may contribute more than others to produce a pres-
sure feedback towards the shock and establish a global feedback
loop. The analysis of the linear phase of the instability in Sect. 5
reveals the importance of a small region at a radius Rc above the
neutron star surface, where the flow is strongly decelerated. The
feedback loop can be described schematically as follows: small
perturbations of the supernova shock cause entropy and vorticity
fluctuations, which are advected downwards. When the flow is
decelerated and compressed above the neutron star surface, the
advected perturbations trigger a pressure feedback. This pressure
feedback perturbs the shock, causing new vorticity and entropy
perturbations. Instability corresponds to the amplification of per-
turbations by a factor |Qaac| > 1 through each cycle.

The duration τf
aac of each cycle is a fundamental timescale.

It corresponds to the time needed for the advection of vortical
perturbations from the shock to the coupling radius Rc, where
the pressure feedback is generated, plus the time required by the
pressure feedback to travel from this region back to the shock.

The oscillatory exponential growth resulting from the AAC
can be described by a complex eigenfrequency ω = ωr + iωi
satisfying the following equation:

exp
(
−iωτfaac

)
= Qaac, (10)

where the real part ωr is the oscillation frequency and the imag-
inary part ωi is the growth rate of the AAC. Note that Eq. (10) is

Figure 2.4: Schematic view of the advective-acoustic cycle between the shock at Rs (thick solid line)
and the coupling radius, Rc (thick dashed line), in the linear regime, shown for the case where the
oscillation period of the shock (τosc) equals the cycle duration, τaac. Flow lines carrying vorticity
perturbations downwards are drawn as solid lines, and the pressure feedback corresponds to dotted
lines with arrows. In the gray shaded area around Rc the flow is decelerated strongly. Figure and
description from Scheck et al. (2008)

an the shock radius (Figure 2.2, lower centre panel and Figure 2.3). For this reason this region is
known as “hot bubble” region (e.g. Janka & Müller 1996).

The inner parts of the PNS can also become convectively unstable, when the dispersing neutri-
nos create a negative entropy gradient. This phenomena is known as proto-neutron star convection
(Figure 2.2, lower centre panel and Figure 2.3). It is increasing the neutrino luminosity somewhat,
however, up to now its impact on the explosion mechanism is still unclear (e.g. Janka & Müller 1996).
However, it may produce a significant strong high frequency gravitational radiation signal (e.g. Müller
1997).

In the last decade new dynamic processes like the above discussed neutrino driven convection and
new hydrodynamic instabilities like the standing accretion shock instability (Subsection 2.1.3) were
discovered, which are of potential importance for the post collapse dynamics of supernovae.

2.1.3 Standing Accretion Shock Instability

The standing accretion shock instability (SASI) may act on the stalled supernova shock wave (Fig-
ure 2.2, Subsection 2.1.2). Currently, two different ideas what is causing the unstable behaviour of the
standing accretion shock compete with each other: a purely acoustic mechanism (Blondin et al. 2003;
Blondin & Mezzacappa 2005) in which pressure waves oscillate in the cavity formed by the shock
wave and the so called acoustic advective cycle (Foglizzo 2002; Foglizzo et al. 2007). However, the
analysis of Scheck et al. (2006b) are pointing towards the acoustic advective cycle.

When the stalled SN shock wave which acts like an standing accretion shock on the still infalling
layers of the collapsing star gets disturbed somewhat, those perturbations are advected towards the
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PNS with the accreted matter (Figure 2.3). At the radius where the deceleration has its maximum
the perturbations generate sound waves which are travelling through the advected matter upwards
to the stalled shock wave and are eventually amplifying the perturbations of the stalled shock wave
(Figure 2.4). This process is known as the acoustic advective cycle. The spherical shape of the stalled
accretion shock gets unstable and finally, the supernova shock wave gets deformed globally. It turned
out that low order modes of spherical harmonics are dominating the instability (Scheck et al. 2008).
The globally shock deformation is able to trigger a Richtmyer-Meshkov instability (RMI, Section 5.4)
at the He/H composition interface at later times of the explosion when the shock wave is successfully
on its way through the stellar envelope. Therefore, it is of particularly interest for this work. A detailed
discussion of the SASI and the acoustic advective cycle can be found in Foglizzo (2002), (Blondin
et al. 2003) and Foglizzo et al. (2007).

2.1.4 The Shock and the Envelope

At a time of 10 s after core collapse the shock wave has reached a radial position at about 105 km and is
moving with a velocity of 104 kms−1. It is finally on its way through the stellar envelope. At that time
the still hot PNS is cooling by emission of thermal neutrinos, creating a fast, supersonic particle wind
filling the evacuated region behind the shock accelerated envelope matter. At the radial position, where
the faster moving wind is hitting the slower moving envelope matter, one finds the wind termination
shock. The entropy there is reaching very high values, providing ideal nucleosynthesis conditions
(Figure 2.2, lower right panel and Arcones et al. 2007).

The shock wave which is crossing the composition interfaces between the stellar shells (Fig-
ure 2.1) is causing the development of hydrodynamical instabilities, i.e. the Rayleigh-Taylor instability
(RTI, Section 5.2), the Kelvin-Helmholtz instability (KHI, Section 5.3) and the Richtmyer-Meshkov
instability (RMI, Section 5.4).

The growth of RT instabilities at the Si/O and (C+O)/He composition interfaces of the progenitor,
seeded by the flow-structures resulting from neutrino-driven convection, leads to a fragmentation of
this shell into metal-rich ”clumps”. This fragmentation starts already ∼ 20 s after core bounce and
is complete within the first few minutes of the explosion. Around 300 s afterwards these metal-rich
“clumps” decouple from the flow and start to propagate ballistically and subsonically through the
He core (Kifonidis et al. 2003), mixing heavy elements towards the stellar surface (Figure 2.6, right
panel).

When a spherical shock wave crosses the He/H interface and subsequently reaches the hydrogen
envelope of the star, it is slowed down strongly. A reverse shock and a dense helium shell is formed,
which finally slows down the metal-rich “clumps” significantly (Kifonidis et al. 2003), compared
to the observed “clump” velocities in SN 1987A (e.g. Mitchell et al. 2001; Haas et al. 1990). The
aspherical shock waves generated in the models of Scheck et al. (2004, 2006b) deposit large amounts
of vorticity into the He/H interface layer at times around 100 s, which triggers the growth of a strong
RMI (see Kifonidis et al. 2006). The emerging vortices disrupt the He/H interface (compare Figure 2.6
left and centre panel), avoiding the deceleration of the metal-rich “clumps” formed earlier.

The knowledge gained from those studies resulted in some explanations of large scale anisotropies
observed in several supernovae (Section 2.2), e.g. SN 1987A (e.g. Hillebrandt & Höflich 1989, Sub-
section 1.3.2).

More details about the present understanding of supernova physics, about the possible explosion
mechanisms and the supernova phenomenology can be found in the reviews of Bethe (1990), Mezza-
cappa (2005), Kotake et al. (2006), Janka et al. (2007) and in the very comprehensible Nature Physics
article by Woosley & Janka (2005).
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Figure 2.5: A new image taken with the NASA/ESA Hubble Space Telescope provides a detailed look
at the tattered remains of a supernova explosion known as Cassiopeia A (Cas A). It is the youngest
known remnant from a supernova explosion in the Milky Way. The new Hubble image shows the
complex and intricate structure of the star’s shattered fragments. Note that colours denote different
elements.
Credit: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration. Acknowl-
edgement: Robert A. Fesen (Dartmouth College, USA) and James Long (ESA/Hubble)

2.2 Evidence for Mixing and Asphericity in ccSNe

The most prominent example for observations pointing towards strong mixing in ccSNe still is
SN 1987A (Subsection 1.3.2). Modelling the lightcurve and spectrum of SN 1987A using one di-
mensional radiation hydrodynamic models required mixing of heavy elements into the supernova
envelope (Utrobin 2004; Utrobin & Chugai 2005). Observations of a He I line at 10830 Å more that
ten days after the explosion of SN 1987A implied mixing of 56Ni far outwards, where it reionises the
the matter of the supernova envelope (Fassia et al. 1998). Chevalier & Soker (1989) could explain the
polarisation observed for SN 1987A by West et al. (1987) with modelled asymmetric radial flows.

In the last decade one dimensional explosion models comprising artificial mixing of heavy el-
ements provided good fits to observed spectra and light curves of Type Ib supernovae (Shigeyama
et al. 1990; Woosley & Eastman 1997). High-velocity oxygen-rich ejecta located outside the iron-
rich ejecta in the SNR Cas A suggest “incomplete” mixing of iron group elements into the region
above the silicon and sulfur layers, which failed to reach the oxygen layers of the star (Fesen et al.
2006). However, shape and element distribution in both the SNR Cas A (Figure 2.5) and others SNRs
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already pointed to asphericity and mixing in core collapse SNe. Furthermore, mid-infrared obser-
vations showed evidence for heterogeneous distribution of sulfur and argon, either oxygen burning
products, down into the silicate and neon shells (Douvion et al. 1999, 2000).

Spectropolarimetric observations of several lines in the optical and near infrared range show dif-
fering polarisation both in angle and strength, suggesting multiple asymmetric components in the
ejecta of SN Ic (Kawabata et al. 2002; Wang et al. 2003). Studying the nebula spectra of the SN Ic
2002ap by the means of synthetic spectra Mazzali et al. (2007) found evidence for an oxygen-rich
inner core and 56Ni at high velocities, suggesting a highly aspheric explosion especially in the inner
parts.

Modelling spectropolarimetric observation of Type II-P and Type IIn SNe at later epochs when the
thick hydrogen envelope starts thinning revealed strong evidence for a highly aspheric distribution of
the inner ejecta (Leonard et al. 2006, 2001, 2000). Similar results where obtained from spectropolari-
metric observation of Type IIb SNe (Maund et al. 2007). Observations of near-infrared He I lines in
the epoch between 50 and 100 days after core collapse are pointing towards reionisation of the ejected
supernova envelope. (Fassia & Meikle 1999) could explain the observed line characteristics using
explosion models including an artificial 56Ni dredge up. The authors further argue that those lines are
formed in a clumpy environment. Optical and X-ray observations of young SNRs resulting in velocity
maps already pointed two decades ago towards asphericity being a common feature of core collapse
SNe (Tuohy et al. 1982; Tuohy & Dopita 1983).

2.3 Earlier Work on Mixing and Asphericity in SN Models

The existence of Rayleigh-Taylor instabilities at the composition interfaces between the heavier ele-
ments in the stellar core and the helium shell and between the helium shell and the hydrogen envelope
was shown for the first time by Ebisuzaki et al. (1989), using a linear approximation.

Studies of the nonlinear large scale development of Rayleigh-Taylor instabilities in stellar en-
velopes using numerical methods were carried out by Arnett et al. (1989a), Fryxell et al. (1991),
and Müller et al. (1991). In any case they simulated only the upper half-sphere, including the range
0 < θ < π

2 and assuming rotation symmetry.
Two dimensional simulations following the supernova shock wave from its birth up to several

month after core collapse were used to study hydrodynamical instabilities and the mixing of elements
for the case of SN 1987A, by means of smooth particle hydrodynamics (SPH) (Herant & Benz 1991,
1992; Herant et al. 1992). Herant & Woosley (1994) made a analogue study, however, using a red
supergiant supernova progenitor model.

Hungerford et al. (2003) performed three dimensional smoothed particle hydrodynamic simula-
tions, ranging from 100 s up to 1 yr after core collapse. Their simulation used a piston driven spherical
explosion model as input, therefore, neglecting multidimensional effects like neutrino driven convec-
tion and RT/KH instabilities at the inner composition interfaces, i.e. all interfaces located inside the
stellar helium core. The simulations included parameterised shock asphericity. However, this ap-
proach differs significantly from modelling aspherical shock induced by the SASI (Subsection 2.1.3).
Moreover, using SPH as hydrodynamics method in that case might not be as suitable as high resolution
shock capturing methods, like PPM (Section 4.1).

The most sophisticated simulations of supernova shock propagation through the stellar envelope
were carried out by Kifonidis et al. (2003, 2006). They employed the HERAKLES hydrodynamics
code which uses the adaptive mesh refinement (AMR) method AMRA (Plewa & Müller 2001). Their
second work used axisymmetric input models of Scheck et al. (2004, 2006b), which exhibit large scale
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Figure 2.6: Left Panel: Density distribution of model b23a 3 000 s after core collapse. One can clearly
see the large vortices generated by the Richtmyer-Meshkov instability at the H/He interface located at
∼ 7.5×1011 cm.
Centre Panel: Same as the left panel but for model b18b. The vortices mentioned above are not that
strong developed yet, indicating a longer growth time.
Right Panel: Entropy distribution of model b18b 20 000 s after core collapse, where the large scale
anisotropies have grown to their full extent. One can also recognize the mushroom-shaped Rayleigh-
Taylor/Kelvin-Helmholtz “fingers”.
Figures from Kifonidis et al. (2006).

anisotropies leading to hydrodynamic instabilities, namely the combined Rayleigh-Taylor/Kelvin-
Helmholtz instability (RTI, Section 5.2 and KHI, Section 5.3), and the Richtmyer-Meshkov instability
(RMI, Section 5.4) (Figure 2.6).
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Chapter 3

The Designation of this Thesis

Our scientific goal is the investigation of hydrodynamic instabilities in the stellar envelope of core
collapse supernovae. Of particular interest is the resulting mixing of hydrogen and heavier elements,
e.g. oxygen, nickel, etc., which are synthesised during the progenitor’s thermonuclear evolution and
during the explosion itself.

In three-dimensional simulations the developing dynamical structures are not restricted by any
symmetry assumption, whereas all flow and composition structures have a cylindrical topology, if
axis-symmetry is assumed. Scheck et al. (2006a) found distinct differences in the convective pattern
and the distribution of up and down flows in 3D explosion models compared to their 2D counterparts.
Since the convection pattern acts as a seed for the RT instabilities (compare Section 2.3), we expect
significant differences for the stellar envelope dynamics and the mixing processes. The shock wave
in a three dimensional model will deposit vorticity, which is not conserved in contrast to the two
dimensional case where vorticity is conserved. That will lead to differences in the growth of the RM
instability.

For our longterm simulation in three dimensions we will construct the initial model using the three
dimensional radiation hydrodynamic models of Scheck et al. (2006a) extended by an stellar envelope
for a 15M� blue supergiant (Bruenn 1993; Woosley et al. 1988a). This is required because the models
of Scheck et al. (2006a) only cover the inner part of the star out to the middle of the C/O shell located
at roughly 20 000 km. Scheck et al. (2006a) made the first steps to extend the work of Scheck et al.
(2006b) towards 3 dimensional simulations, and their models are the most sophisticated supernova
explosion models simulated in 3D so far. Since our project is thought as a step beyond the work of
Kifonidis et al. (2006) towards three dimensional models, it was obvious to use the explosion 3D
models of Scheck et al. (2006a) as initial models for our 3D simulations.
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Part II

Fundamentals
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Chapter 4

The PROMETHEUS Code

4.1 Physical Approximations
and Numerical Algorithms

The simulations were performed with the PROMETHEUS hydrodynamics code which uses a direct
Eulerian solver for the hydrodynamic equations based on the PPM (Piecewise Parabolic Method)
algorithm of Colella & Woodward (1984). PPM is a conservative, high resolution shock capturing
scheme of second order accuracy in time and third order accuracy for advection in the spatial dimen-
sions. The implementation in our code uses the exact Riemann-solver of Colella & Glaz (1985) which
handles a general EOS (equation of state). For this work we make use of a stellar EOS from Timmes
& Swesty (2000) (Subsection 4.4.3).

Multifluid flows are treated with the Consistent Multifluid Advection Scheme (CMA) of Plewa &
Müller (1999). To reduce the numerical diffusivity of the code a flattening procedure for the interpo-
lated states is included, which was suggested in the Appendix of Colella & Woodward (1984). The
appearance of odd-even-decoupling, a numerical instability many Riemann-solvers suffer from (Liou
2000), is prevented by using an approximate HLLE Riemann solver (Einfeldt 1988) for zones located
inside a shock, following the idea of Quirk (1994, 1998). More details about PROMETHEUS and the
used methods can be found in Kifonidis et al. (2003).

The code uses spherical polar coordinates (r,θ,φ) and a non-equidistant (logarithmic) radial grid
to resolve the various length scales, which are significantly different in the inner and the outer parts of
the star. The code is parallelised using OpenMP and optimised with a good scaling behaviour when
making use of a few hundred CPUs (Section 4.2).

Additionally, we use a movable inner boundary to get rid of the smallest innermost grid zones
and, eventually, to relax the CFL (Courant-Friedrich-Levy) condition on the time stepping. Due to the
non-equidistant (logarithmic) radial grid and the convergence of the radial coordinate lines towards the
central coordinate singularity the innermost grid zones are the smallest ones both in radial and angular
direction. The CFL condition requires the time step to be smaller than the sound crossing time of the
grid zone because physical information can propagate at maximum with the speed of sound. This
assures that no interaction of two waves can happen in one zone during a timestep. Therefore, one can
relax the restrictions from the time stepping by discarding the innermost radial grid zones. Discarding
these zones is physically justified because the shock wave propagates outwards and all hydrodynamic
structures grow with radial distance, i.e. the very inner parts of the computational domain are getting
less important with time.
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Figure 4.1: Left Panel: Measured parallel SpeedUp for the PROMETHEUS code as a function of grid
size and of the numbers of CPUs used.
Right Panel: Same as in the left panel, but showing the measured scaling efficiency. Note that the grid
size for our project is the larger one.

4.2 Performance, Scaling Behaviour,
and the need for HPC Systems

We used a variant of the PROMETHEUS hydrodynamics code, which is optimised for a SGI Altix 3700
Bx2 system. Several changes in the OpenMP parallelisation of the code were made to make optimal
use of a larger (>32) number of CPUs and the ccNUMA bus system.

We made several benchmark runs using up to 510 CPUs, i.e. one complete node of the LRZ’s
HLRB II SGI Altix 4700 system, to verify the parallel performance of our code and to determine the
optimal number of CPUs for our proposed project. In the benchmark, we solved Euler’s hydrodynamic
equations on a grid of 1200(Nr)×180(NΘ)×360(Nφ) zones. The exact scaling behaviour is given in
Table 4.1 and Figure 4.1, respectively.

Our code PROMETHEUS has been successfully used on several HPC (High Performance Comput-
ing) systems, such as the IBM p690 P4 “Regatta” and the IBM p575 P5 system of the RZG (Rechen-
zentrum der Max-Planck-Gesellschaft), and the IBM p690 P4+ “JUMP” system at NIC (John von
Neumann-Institut für Computing). Since our code is parallelised with OpenMP only, it was merely
possible to use up to 32 CPUs (maximum shared memory node size), resulting in run times of months.

LRZ’s HLRB II gave us the possibility to finish our simulations on timescales of weeks, and
allowed for three dimensional longterm simulations.

4.3 Computational Setup

The computational grid had 1 200 non-equidistant radial zones. The initial inner boundary was as-
sumed to be at a radius of 200 km. This was necessary because the simulation do not include gravity.
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Table 4.1: The scaling behaviour of the hydrodynamics code PROMETHEUS measured on the HLRB II
SGI ALTIX 4700 platform using a computational grid of 1200(Nr)×180(NΘ)×360(Nφ) zones The
various table entries are: number of processors nProc, speedup of the full code with a given number
of processors SpeedUp (total), scaling Efficiency, i.e. SpeedUp divided by nProc.

nProc SpeedUp (total) scaling Efficiency [%]

1 1 100
32 30 94
64 59 92

128 115 90
256 220 86
288 224 78
320 234 73
384 214 56
510 214 42

Figure 4.2: Left panel:Computational grid schematise by two r−θ−plane at φ = 3π

4 , π

4 , respectively,
the equatorial r− θ− plane and the cone cutted out around the polar axis, aswell as the central part
cuuted out.
Centre panel: Same as left panel, but central part blown up.
Right panel: Single r−θ−plane of the grid. One can clearly see the logaithmic structure of the radial
grid component. Note that for reasons of the presentability only every fith grid point is plotted.

However, the three dimensional model of Scheck et al. (2006a) includes the outer layers of the PNS,
which “explodes” if gravity is omitted. Thus the inner region of the three dimensional models was
cut out and the mass was added to the central point mass remaining from the models of Scheck et al.
(2006a). Furthermore, the influence of different inner boundary radii on the dynamics and mixing at
late epochs was tested using a couple of two dimenional test simulations. It turned out that the late
time results are insensitiv to the choice of the inner boundary radius.

The radial grid setup yields a maximum resolution of 2 km at the inner boundary and a resolution
of 400 000 km at the outer boundary, located at 39 million km. At the outer boundary free outflow
was allowed, whereas reflective boundary conditions were used for the inner boundary. Additionally,
the inner boundary was shiftable with time to relax the strict CFL condition (Section 4.1).

In polar direction 180 angular zones were used, distributed equidistant between 0.15π < θ <
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Figure 4.3: Composition of the Initial Model 3D3. Plotted is the fraction of chemical elements as a
function of the radius. Note that due to the assumtion of a spherical symmetric stellar envelope, this
composition is shown in one dimension. Inside of the Shock radius, located roughly at 7 500 km, the
composition is not spherical symmetric, but is also a function of θ and φ. Note the small fraction of
neutrons at R < 100km (purple). Note further that the composition plotted here, is just an example
and not repesentative for the whole 3D domain.

0.85π and reflective boundary conditions are used. In equatorial direction 360 equidistant angular grid
zones between 0 < θ < 2π are used togehter with the assumptions of periodic boundary conditions.
The resulting numerical grid has a resolution of 1◦ in both angular directions. Details of the used
numerical grid are shown in Figure 4.2

4.4 Initial Models

4.4.1 Model Structure

The initial model for our longterm simulation in three spatial dimensions was constructed using the
three dimensional radiation hydrodynamic models of Scheck et al. (2006a) extended by the stellar
envelope of a spherical symmetric model of a 15M� blue supergiant. This is required since the
models of Scheck et al. (2006a) cover only the inner part of the star out to the middle of the C/O shell
located at roughly 17 000 km.

Scheck et al. (2006a) used the post-collapse model of Bruenn (1993) as input and applied a random
pertubation on the radial velocity field of the their initial model to break the spherical symmetry.
Bruenn’s model is based on stellar evolution model for a blue supergiant from Woosley et al. (1988a).
Unfortunatly, Bruenn’s model covers only the stellar core and parts of the helium shell and the original
stellar envelope was no longer available. In our simulations the progenitor envelope was therefore
substituted by a maching envelope model (Woosley, private communication, Kifonidis et al. 2006,
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sect. 3).
Scheck et al. (2006a) calculated two 3D radiation hydrodynamic models, one with 2◦ angular

resolution, which reached a final time of 580 ms and one with 3◦ angular resolution which reached
a final time of 1 s. Our model names 3D3 and 3D2 quote the angular resolution of the radiation
hydrodynamic model used to create the initial model.

4.4.2 Nuclear Composition

The progenitor model was calculated including nuclear burning by making use of a so called α reaction
network. This means one solves only the partial differential equations describing the nuclar reactions
of heavy nuclei build up by a of α particles. Those reactions can be written as

4xXX(α,γ)4(x+1)YY (x ∈ [3−14]) . (4.1)

These nuclei are in detail 12C, 16O, 20Ne, 24Mg, 28Si, and 56Ni. In addition 1H and 4He and the fusion
from 1H to 4He, aswell as the triple α burning from 4He to 12C is used. The resulting composition of
the progenitor is shown in Figure 4.3.

Scheck et al. (2006a) used a reduced number of species, i.e. protons, neutrons, α particles, and
54Mn as the nucleus representative for the heavy element fraction in their simulations to save com-
putional costs. They were mainly interested in the interaction between neutrinos and the stellar matter
which can be satisfactory described using those nuclear species. For the important neutrino ractions
see Section 2.1.

To combine those two components to a initial mode for our simulations, we decided to keep the
nuclear composition of the 3D explosion model inside the shock radius. However, we took the 54Mn
in the models of Scheck et al. (2006a) and redefined it to 56Ni which we assumed as the representative
nucleus of the heavy element fraction. Since there was virtual no 28Si left outside the shock radius
and inside the shock radiues, there was no information about 28Si and 56Ni available, both nuclei were
treated aswell as 56Ni.

The nuclear composition at radii greater than the shock radius, was not taken from the models
of Scheck et al. (2006a), but instead, we decided to use the composition as given by the progenitor
model. Therefore, we reconstructed the nuclear composition in the region between the shock radius
and the outer boundary the models of Scheck et al. (2006a) by interpolating the nuclear composition
of the progenitor using lagrangian coordinates derived from its density structure and the lagrangian
coordinates derived from from the density structure of the Scheck model.

4.4.3 Thermodynamical Quantities

The density, the temperature, and the velocity are read from the interpolated model, therewith the other
required hydrodynamical and thermodynamical quantities are updated in a consistent way using the
EOS of Timmes & Swesty (2000), which we used as well for our simulations. It is a electron-positron
EOS, which is based on table interpolation of the Helmholtz free energy (Timmes & Swesty 2000).
The implemented interpolation scheme guarantees thermodynamic consistency within an temperature
range from 104 K to 1010K and a density range from 10−6 g/cm3 to 1010 g/cm3. The EOS furthermore
includes contribution to the total pressure of a photon gas component and a gas component, consisting
out of the 8 nuclear species included in our in initial model (Figure 4.3).
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Table 4.2: Parameter configuration of Models 2D2, 2D80, 3D2, and 3D3. Mass, Etot, and Ekin denote
the total mass, total energy, and the kinetic energy, respectively. The total energy is defined as the
sum of the internal and the kinetic energy. The latter is in addition given for each spatial dimension
seperately, denoted by upper index as r, θ, and φ, respectively. The size of the computational grid
id given by the radius inner and outer boundary and the position of the left and right boundary in
the angular directions. The last three rows give the number of grid points (nr,nθ,nφ) and the relative
resolution ( ∆r

r ,∆θ,∆φ)for each spatial dimension.

Model 2D2 2D80 3D2 3D3

Mass [ M� ] 15.7 15.7 15.7 15.7
Etot [Bethe] 5.9×10−1 7.8×10−1 5.9×10−1 6.7×10−1

Ekin [Bethe] 1.0×10−1 2.1×10−1 6.5×10−2 1.4×10−1

Er
kin [Bethe] 9.4×10−2 2.0×10−1 5.4×10−2 1.3×10−1

Eθ

kin [Bethe] 6.1×10−3 7.8×10−3 5.3×10−3 6.1×10−3

Eφ

kin [Bethe] 0.0 0.0 5.8×10−3 6.9×10−3

Ri[km]/Ro[106 km] 200 / 39 200 / 39 200 / 39 200 / 39
θl[π]/θr[π] 0.15 /0.85 0.15 /0.85 0.15 /0.85 0.0325 /0.9675
φl[π]/φr[π] -1 / 1 -1 / 1 -1 / 1 -1 / 1
nr/

∆r
r [10−2] 400/(1.07...1.75) 400/(1.07...1.75) 400/(1.32...1.76) 400/(1.07...1.75)

nθ/∆θ[◦] 180 / 0.94 180 / 0.94 180 / 0.70 180 / 0.94
nφ/∆φ[◦] 1 / 360 1 / 360 360 / 1 360 / 1

4.4.4 Energetics

The radiation hydrodynamic models used as input for our simulations, were parameterised in terms
of the total neutrino energy loss ∆E∞

ν,core given in 1
100 M�c2 (Scheck et al. 2006a). This means that our

model has an energy input of

∆E∞
ν,core =

12
100

M�c2 = 215b . (4.2)

In a large parameter study using 70 two dimensional simulations (Scheck et al. 2006a) this parameter
spanned the range from 10 to 21, which means that our initial model is settled in the lower third of
this parameter range.

A closer view on the energetics of our models and more detailed discussion will be made in
Section 6.2.

4.4.5 Asphericity and Perturbations

Random perturbations on the radial velocity were applied to spherical symmetric initial models of
Scheck et al. (2006a) to break the symmetry. In their large parameter study using 70 two dimensional
simulations, they were able to show that these randomly applied perturbations lead to the growth
of either a dipole or a quadrupol SASI mode, i.e. l = 1 or l = 2 mode in spherical harmonics,
respectively, because those are the fastest growing modes. Their distribution shows further that each
mode is present by roughly 50 %.
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Figure 4.4: Entropy iso-contour representing the shock wave of the initial model 3D3 seen from three
different directions. The plotted grid patches denote the slices at φ = 2◦ and φ = 80◦ which have been
evolved as the two dimensional models 2D2 and 2D80. Note that this model shows a l=1 mode of
the SASI (Subsection 2.1.3), which can be seen best in the upper left plot as a nose in the lower right
corner and in the lower right plot as a nose in the upper right corner. The lower left plot shows a
tri-axial ellipsoid with an axis ratio of 1.16 :1.06 :1.00, however, note that the axis ratio in the plot has
been inflated by a factor of three, to make the tri-axial shape of the ellipsoid evidently visible. Note
further the small “ripples” on the iso-surface, which is an interpolation artefact.

This implies that our initial supernova models are representative for roughly the half of the as-
pheric models. However, the discovery of complexer modes due to the additional degree of freedom
in three dimensions, i.e. a spiral mode given by l = 1 and m = 1 in spherical harmonics (Blondin &
Mezzacappa 2006, 2007; Blondin & Shaw 2007), raises the question how typical our initial models
are with respect to that behaviour.

To characterise the deviations of our initial models from the sphericity, we approximated the
deformed shock wave by a tri-axial ellipsoid (Figure 4.4). This analysis gives an axis ratio of
1.16 :1.06 :1.00 for model 3D3 and an axis ratio of 1.04 :1.02 :1.00 for model 3D2. This is a sig-
nificantly smaller asphericity than the models analysed by Kifonidis et al. (2006), which exhibit as-
phericities that could be approximated by an ellipse having an axis ratio of 1.5 :1.0.

Note that we used a tri-linear interpolation scheme to map the model of Scheck et al. (2006a)
onto our computational grid (Section 4.3, Figure 4.2), which created little “ripples” (Figure 4.4) as an
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artefact. However, there is no evidence that this artefact influences the dynamics and the mixing at
late epochs.

4.4.6 Comparison Models in 2D

To examine the influence of assuming rotation symmetry and the potential differences between mod-
elling supernova shock propagation in two and three dimensions, we set up two meridional slices
(Figure 4.4) of our three dimensional initial model 3D3 as separate two dimensional initial models
2D2 and 2D80 (Table 4.2).

Here meridional slice denotes the following procedure. We selected a single data point in the
longitudinal angular or φ direction, with a well defined value of the longitudinal coordinate angle φ.
Then we read all corresponding data points in the radial and the azimutal angular direction (r,θ) into
our two dimensional initial models. However, since vector quantities have only two components in a
2D simulation, the respective third component was neglected, e.g. the φ-velocity component. The 2D
model names quote the index which denotes the selected data point in the longitudinal direction, i.e.
index number 2 and index number 80.

Note that the same procedure was used to select the data sets we used to plot two dimensional
“slices” of the three dimensional model 3D3, which correspond to the longitudinal directions of the
2D models. These two dimensional “slices” are used to compare the model 3D3 to our 2D models.

We used the same resolution and the same domain size in the radial and the azimutal angular
direction as for our 3D simulations. However, since the slices represent only a sub-sample of the
three dimensional initial model, the physical quantities (Table 4.2), e.g. kinetic energy, are somewhat
different for the two dimensional initial models compared to our three dimensional initial model.
Moreover, neglecting the third component of the velocity field in the 2D simulations also leads to a
somewhat different dynamical behaviour of our models.



Chapter 5

Hydrodynamic Instabilities

The description of the Rayleigh-Taylor instability and the Kelvin-Helmholtz instability which we
present in Section 5.2 and Section 5.3, respectively, is based on the review articles from Sharp (1984),
Gerwin (1968), and the book from Chandrasekhar (1961). We will decribe the basic phenomenology
of the two instabilities and we will give a brief outline about how to describe the development and the
growth of the instabilities. However, a detailed discussion of the two instabilities is far beyond the
scope of this work. The interested reader is referred to the book of Chandrasekhar (1961).

The same holds for the Richtmyer-Meshkov instability, which is described in Section 5.4 based
on Brouillette (2002). The interested reader is also referred to the works of Richtmyer (1960) and
Meshkov (1969, 1970) in that case.

5.1 Fundamental Equations

The formulation of the fundamental hydrodynamic equations used here, are taken from Müller (2005).
The continuity equation describing the conservation of mass is defined in vector notation as

∂ρ

∂t
+div(ρ~v) = 0 , (5.1)

where ρ denotes the density, t is the time and ~v denotes the velocity in three spatial dimensions.
Together with Equation C.3 this leads to the first of the basic hydrodynamic equations in cartesian
coordinates

∂ρ

∂t
+

∂(ρvx)
∂x

+
∂(ρvy)

∂y
+

∂(ρvz)
∂z

= 0 . (5.2)

Using Equation C.10 instead gives the formulation in spherical polar coordinates

∂ρ

∂t
+

1
r2

∂
(
r2ρvr

)
∂r

+
1

r sinθ

∂(sinθρvθ)
∂θ

+
1

r sinθ

∂
(
ρvφ

)
∂φ

= 0 . (5.3)

Note that all variables are given in Cartesian coordinates X = X(x,y,z, t) and spherical polar coordi-
nates X = X(r,θ,φ, t), respectively, where r is the radial coordinate, θ the azimuthal angle, and φ the
polar angle.
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The conservation of momentum is described by the Navier-Stokes equation

∂

∂t
(ρ~v)+div [ρ(~v⊗~v)]+divΠ = −ρgrad Φ , (5.4)

where Π denotes the pressure tensor, which can be written as

Π = pI−π . (5.5)

Here I denotes the unit tensor and π the isotropic pressure tensor.
Neglecting viscosity the isotropic pressure tensor π is equal zero and one gets the Euler equation

which describes the momentum conservation. The Euler equation in vector notation reads

∂

∂t
(ρ~v)+div [ρ(~v⊗~v)]+grad p = −ρgrad Φ . (5.6)

which can be written as

∂~v
∂t

+(~vgrad)~v+
1
ρ

grad p = −grad Φ . (5.7)

When combining Equation 5.7 with Equation C.5 - Equation C.7, the Euler equation can be expressed
in cartesian coordinates:

∂

∂t

 vx

vy

vz

+



∂Vx

∂x
∂Vx

∂y
∂Vx

∂z
∂Vy

∂x
∂Vy

∂y
∂Vy

∂z
∂Vz

∂x
∂Vz

∂y
∂Vz

∂z


 vx

vy

vz

+
1
ρ



∂p
∂x
∂p
∂y
∂p
∂z

=−



∂Φ

∂x
∂Φ

∂y
∂Φ

∂z

 . (5.8)

Using the gradient in spherical polar coordinates given in Equation C.12 - Equation C.14, one gets
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The conservation of energy is described by the following energy equation in vector notation

∂

∂t
(ρE)+div [(ρE + p)~v ]+div~h+div(π~v) = −ρ~vgrad Φ , (5.10)

where E denotes the specific total energy, and~h describes the energy transport by heat conduction.
Using Equation C.3 and C.4 together with Equation 5.10 one gets in Cartesian coordinates
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and together with Equation C.10 and C.11 in spherical polar coordinates
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1.1. LIQUIDS 

AN OVERVIEW OF RA YL E I GH - T AY L OR  INSTABILITY* 

D.H. SHARP 
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 

The aim of this talk is to survey Rayleigh-Taylor instability, describing the phenomenology that occurs at a Taylor unstable 
interface, and reviewing attempts to understand these phenomena quantitatively. 

1. Introduction 

The Rayleigh-Taylor instability is a fingering 
instability of  an interface between two fluids of  
different densities, which occurs when the light 
fluid is pushing the heavy fluid [1, 2]. The aim of  
this talk is to survey Rayleigh-Taylor instability, 
describing the phenomenology that occurs at a 
Taylor unstable interface, and reviewing attempts 
to understand these phenomena quantitatively. I 
will also emphasize some critical questions which 
require further study. 

2. Simplest explanation of the occurrence of 
Rayleigh-Taylor instability 

(A) 

(B) 

(c) 

~////////A ~ ~ ~ Y///////A 

This conference affords the pleasure of  learning 
about a great variety of  topics from speakers with 
the most diverse backgrounds. In view of  this 
diversity, I hope the experts will forgive me if I 
begin with the simplest possible description of  
Rayleigh-Taylor instability. 

Imagine the ceiling of  a room plastered uni- 
formly with water to a depth of  1 meter (fig. 1). The 
layer of  water will fall. However, it is not through 
lack of  support from the air that the water will fall. 
The pressure of  the atmosphere is equivalent to 
that of  a column of  water 10 meters thick, quite 
sufficient to hold the water against the ceiling. But 
in one respect the atmosphere fails as a supporting 

* Work supported by the U.S. Department of Energy. 

Fig. 1. (A) The pressure of the air is quite sufficient to support 
a perfectly uniform layer of water 1 meter thick against the 
ceiling. (B) But the air pressure can not constrain the air-water 
interface to flatness. Ripples or irregularities will inevitably be 
present at the interface. ((2) The irregularities grow, forming 
"bubbles" and "spikes." The water falls to the floor. 

medium. It fails to constrain the air-water inter- 
face to flatness. No matter how carefully the water 
layer was prepared to begin with, it will deviate 
from planarity by some small amount. Those 
portions of  the fluid which lie higher than the 
average experience more pressure than is needed 
for their support. They begin to rise, pushing aside 
water as they do so. A neighboring portion of  the 
fluid, where the surface hangs a little lower than 
average, will require more than average pressure 

0167-2789/84/$03.00 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 

Figure 5.1: Left upper panel: Simulation of the nonlinear growth of a Rayleigh-Taylor Instability
(RTI) from an initial perturbation of λ = 200µm using the hydrodynamic code PROMETHEUS with
an ideal gas equation of state. Dark shadows of Cu stand out against bright regions of CH2. Note that
the total effective acceleration is pointing upward in that case.
Left lower panel: Same as right upper panel, using the code arbitrary Lagrangian Eulerian CALE with
an tabulated equation of state. Figures and description from Kane et al. (1997).
Right panel: (A) The pressure of air is quite sufficient to support a perfectly uniform layer of water
1 meter thick against the ceiling. (B) But the air pressure can not constrain the air-water interface
to flatness. Ripples or irregularities will inevitably be present at the interface. (C) The irregularities
grow, forming ”bubbles” and ”spikes.” The water falls to the floor. Figures and description from
(Sharp 1984)

5.2 Rayleigh-Taylor Instability

5.2.1 Introduction

The Rayleigh-Taylor instability (RTI) is a fingering instability at the interface between liquids dif-
fering in density when the heavier liquid is accelerated towards the lighter one (Strutt 1900; Taylor
1950).The brief description of the Rayleigh-Taylor instability that we give here, is based on the excel-
lent review article by Sharp (1984), and on Chandrasekhar (1961).

We would like to start with an example for a Rayleigh-Taylor unstable configuration (Sharp 1984).
Imagine a room with perfectly flat walls and a perfectly flat ceiling. Now place a perfectly plane layer
of water, one meter in thickness, directly below the ceiling. The pressure of the air column below the
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that leads to a regime of turbulent or chaotic 
mixing of the two fluids. 

5. Factors influencing the development of 
Rayleigh-Taylor instability 

Numerous factors influence the development of 
Taylor instability in a simple fluid. These include 
surface tension, viscosity, compressibility, effects 
of converging geometry, three-dimensional effects, 
the time dependence of the driving acceleration, 
shocks, and a variety of forms of heterogeneity. An 
assessment of some of these factors is given in 
table I. 

6. Other factors which may be operative 
in realistic problems 

In natural phenomena and technological appli- 
cations where Taylor instability occurs, there are 
many other factors that can play an important 
role. For example, material properties and the 
equation of state of the fluids may be important. 
The fluids may conduct heat or diffuse mass. The 
material may change phase or consist of several 
components. Radiation often couples to hydro- 
dynamics. 

It is not easy for me to imagine dealing 
scientifically with the whole range of factors that 
can influence Rayleigh-Taylor instability, so in this 
talk I will restrict myself to a few of the factors 
which effect the behavior of simple fluids. It is a 
little bit humbling to recall that engineers must 
deal with Taylor instability in its full complexity. 

7. Analytic and quasi-analytic modeling 

The purpose of analytic modeling is to identify 
the effects which are dominant during a given stage 
in the development of the instability. 

7.1. Linear analysis 

There is a considerable body of literature which 
analyzes the initial stage in the growth of small 
amplitude Taylor instability, where the linearized 
form of the equations of fluid dynamics can be 
used, 

7.1.1. Plane geometry 
As an example, consider two infinitely extended 

inviscid fluids which meet at a plane interface (fig. 
3). For definiteness, we suppose the upper fluid is 
heavier, PI~ > PL" The fluids are subjected to a 
constant acceleration in a direction normal to the 
interface. We write the total effective acceleration 
as G = (a - g )  = (a + g)~ = G£, with g > 0 and £ 
a unit vector normal to the interface, pointing into 
the heavy fluid. The gravitational acceleration is 
g = - g £  and a = a£ is a uniform external acceler- 
ation applied to the system as a whole. Thus, when 
G > 0, the effective acceleration acts vertically up- 
ward, the light fluid accelerates the heavy fluid, and 
the configuration is unstable according to the 
criterion we discussed above. 

One works in a noninertial frame comoving with 
the unperturbed interface. In this frame, the un- 
perturbed fluids are at rest and the unperturbed 
interface is defined by z = 0. The pressure fields in 
the fluids vary with the vertical coordinate z to 
balance the total acceleration and permit static 
equilibrium (in the comoving frame). 

Fluid I 
Density PH 

Unperturbed Interface 
z=o f 

Fluid P 
Density PL 

~ (x,t)= ~ (t) cos kx 

PH>PL. 

Fig. 3. Two incompressible fluids of  infinite depth, having 
densities PH, PL, meet at an interface. For t < 0, the interface is 
the plane z = 0. For  times t />  0, the interface has  a perturbed 
shape. The simple case Z,=~l(t)coskx is illustrated in the 
figure. 
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This is the picture for t < 0. At t = 0, we perturb 
the configuration in some way. We might suppose 
that the fluid is initially at rest but that the 
interface is perturbed so as to have the form 

(fig. 4) that there is a fastest growing, or most 
unstable, wavelength £M. This is given by 

~M = ~/3~c • (6) 

Z ~ = r l ( t ) c o s k x ,  [r/(t)/;~ ,~ 1]. (1) 

Thus the interface now consists of  a set of  crests 
and troughs parallel to the y-axis. 

One may then show, using either a potential 
theory argument via Bernoulli's equation or a 
simple energy analysis, that the amplitude of  the 
perturbation is determined by the equation [10] 

i i ( t )  = ~2(k )~l(t) , (2) 

with 

Here tr is the coefficient of  interfacial tension. 
The solution to (2) for fluids initially at rest is 

r/(t) = r/(0) cosh ~t. (4) 

Several simple but useful conclusions can be 
drawn from (3): 

If  a~ = 0, G > 0 and Prt > PL, ~ is real and the 
interface is unstable. The growth rate for short 
wavelengths is unbounded, so on the basis of  linear 
analysis the Rayleigh-Taylor problem would ap- 
pear to be ill-posed in the absence of  surface 
tension. However, we note that there is no rigorous 
theorem available which says either that the 
Rayleigh-Taylor problem is ill-posed in the ab- 
sence of  surface tension or that it is well-posed 
when surface tension is included. For G < 0, ~ is 
imaginary and one has stable gravity waves. 

Surface tension stabilizes perturbations shorter 
than a critical wavelength 

~c = [a /G(PH -- pL)]l/2. (5) 

The shape of  the dispersion curve makes it plain 

The above analysis can be generalized in several 
ways. For example, in the linear approximation we 
can superpose harmonic interface perturbations in 
the x and y directions to give a three-dimensional 
treatment of  the instability. 

Also, the linear treatment can be generalized to 
include other physical effects such as com- 
pressibility [11, 12], nonuniform accelerations [13], 
shocks [14], density gradients [10, 15], slab geome- 
try [16], and so forth. A thorough analysis of  the 
role of  viscosity is available [10, 17, 18]. 

Finally, one can treat general initial conditions 
[18, 19]. Solutions of  the linearlized equations satis- 
fying general initial conditions can be expressed in 
terms of  Fourier-Laplace transforms of  the hydro- 
dynamic variables, although the results can get 
quite complicated. 

7.1.2. Spherical  g e o m e t r y  
Taylor instability at a spherical interface has 

been studied by several authors [20-25]. Results of  
generality comparable to those obtained in plane 
geometry are not available, owing to the greater 
mathematical complexity of  the equations encoun- 
tered in curved geometries. There is, moreover, a 
new effect at work in curved geomet r ies -a  con- 
vergent geometry can itself be destabilizing. 

a2 

(1 /~  M ) ( l / ~  c } 

Fig. 4. Schematic plot of  ~,2 vs. k, eqn (3). 
Figure 5.2: Left Panel: Two incompressible fluids of infinite depth, having densities ρH > ρL, meet
at an interface. For t < 0, the interface is the plane z = 0. For times t ≥ 0, the interface has a perturbed
shape. The simple case z = l(t)cos(kx) is illustrated in the figure.
Right Panel: Schematic plot of the dispersion curve α2 vs. k (Equation 5.16). Figures and description
from (Sharp 1984)

water layer is more than enough to hold a water layer of 1 m in thickness (Figure 5.1,[A]). Remember
that the water column equivalent of normal atmospheric pressure is more than 10 m. So from the
pressure point of view the configuration should be stable, but the underlying air column fails to keep
the interface between the water and the air in perfect planar geometry.

With time going on, the interface will be deformed, eventually having little ripples (Fig-
ure 5.1,[B]). Now on the one hand, there are regions which have a larger water column than the
average and are supported by the pressure of a smaller air column than required to be in equilibrium.
On the other hand, there are regions having smaller water column on top of a larger air column. The
larger air column will push the smaller water column further upwarts, whereas the region having a
larger water column will push the smaller ait column beneath it further downwards.

The whole configuration has become unstable and the water will form large fingers penetrating
into the air layers (Figure 5.1,[C]) and, finally, falling down onto the floor of the room.

Now imagine the situation, when all the water has reached the floor. It will have the following
configuration: a layer of water on top of the floor, 1 m thick and on top of it a large air columns,
separated by an interface, the water “surface”. If one does not wait too long, there will still be a lot
of ripples on the water “surface”, but in contrast to the situation described before, the configuration is
stable. Regions with higher water columns will tend to sink back whereas regions with smaller water
columns are pushed back by the pressure gradient inside the water layer, towards the average water
level. The ripples will only lead to surface or so called pressure waves.

What we have now learned from this quite simple almost everydays example is, that in configura-
tions where the heavier fluid is accelerated towards the lighter fluid, the interface in between the fluids
is Rayleigh-Taylor stable. But interfaces where the lighter fluid is accelerated towards the heavier
fluid are Rayleigh-Taylor unstable.

5.2.2 Linear Analysis in Plane Geometry

As in the descriptive example above (Figure 5.1, right panel) we assume two inviscid fluids of different
density, initially at rest, which meet at a plane interface. Furthermore we assume that a constant
acceleration in the direction perpendicular to the interface plane is active. Then the total effective
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acceleration G can be written as

G = (g−a) with g > 0

= (g+a)~ez = G~ez , (5.13)

where g is the local gravitational acceleration, a an arbitrary acceleration, and~ez is the unit vector in
z direction, which was chosen to be normal to the interface between the two fluids at z = 0. We can
suppose that the interface is at rest, but disturbed by perturbation of the form

Zs = η(t)cos(kx) with
η(t)

λ
< 1 . (5.14)

It can be shown, e.g. by analysis of the energies, that the amplitude of the pertubations is given by

d2

dt2 η(t) = α
2(k)η(t) (5.15)

(Chandrasekhar 1961) with α2(k) being

α
2(k) = G

(
ρH −ρL

ρH +ρL

)
k−
(

σ

ρH +ρL

)
k3

= GAk−
(

σA
ρH −ρL

)
k3 , (5.16)

where A is the so called Atwood number

A =
ρH −ρL

ρH +ρL
, (5.17)

which measures the normalised ratio of the densities of two fluids. σ is the coefficient of “surface”
tension, or more precisely the coefficient of the tension at the interface. If the two fluids initially are
at rest, then

η(t) = η(0) cosh(α t) (5.18)

is the solution to Equation 5.15 (Figure 5.2, left panel). From Figure 5.2 one can easily see that
perturbations shorter than a critical wavelength

λcrit. =
1

kcrit.
=
√

σ

G(ρH +ρL)
(5.19)

are stable. This is due to the surface tension σ (Equation 5.16). Furthermore, Figure 5.2 also tells one
that there is a fastest growing or most unstable wavelength

λmax. =
1

kmax.
=
√

3λcrit. . (5.20)

5.2.3 Linear Analysis in Spherical Geometry

A linear analysis in spherical geometry is more complex than in planar geometry (Subsection 5.2.2).
Moreoever, due to central convergence in spherical geometry, the whole stratification can already be
unstable in case of two identical fluids.
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The perturbations can be expanded in Legendre functions

δRn(t) = ∑
n

an(t)Pn(cos θ) , (5.21)

where R(t) denotes the radius of the unperturbed spherical interface. Therewith, it may be shown that
the amplitudes are fulfilling the following relation:

ä(t)+
(

3Ṙ
R

)
ȧ(t)−α

2(n)
(

R̈
R

)
a(t) = 0 (5.22)

with

α
2(n) =

n(n−1)ρo− (n+1)(n+2)ρi

nρo +(n+1)ρi
. (5.23)

Here ρo denotes the density of the fluid outside the interface, wheras ρi denotes the density of the
one inside. The dots denote the first and the second derivative with respect to the time, respectivly.
The mode number of the spherical harmonics, which is used to describe the pertubtion, is given by n.
Note that for very large R Equation 5.22 will give the same results as the analysis in planar geometry
(Subsection 5.2.2), if additionaly is assumed that Ṙ is small (Ṙ� R) and the pertubation wavelength
is small, too, i.e. n� 1.

But assuming ρo→ ρi, we end up with

ä(t)+
(

3Ṙ
R

)
ȧ(t)−

(
2R̈
R

)
a(t) = 0 . (5.24)

Depending on R(t) Equation 5.24 may have unstable solutions for an interface between two identical
fluids. Depending on additional properties like the compressibility and the acceleration history the
importance of the classical result, compared to the importance of geometry effects varies heavily.
Therefore, the best method to study this problem is to perform numerical simulations in spherical
geometry as done in this work (Section 6.5).

There are some works adressing the RTI in the spherical case (e.g. Bell 1951), but due to the
behaviour shown above (Equation 5.21 - 5.24), ther are no general results like in the planar case
(Subsection 5.2.2).

5.2.4 Non-linear Modelling, Numerical Studies and Further Details

The simplest analysis of the non-linear Rayleigh-Taylor problem was done by Fermi (1951), and
Fermi & von Neumann (1953). This example is briefly discussed in Sharp (1984). Numerous further
non-linear studies, as well as numerical studies of the RTI, were done in the past decades (Sharp 1984,
and references therein).

Since the interface between the moving Rayleigh-“finger” and the surrounding fluid at rest is a
shear layer, the Rayleigh-Taylor instability is connected tightly to another hydrodynamic instability,
the shear instability or Kelvin-Helmholtz instability (Section 5.3).

In Supernova explosion when the shock wave crosses the nuclear composition interfaces the sta-
bility criterium can be expressed the following way

grad(p)
grad(ρ)

=
~∇p
~∇ρ

<
1
Γ

(5.25)

(e.g. Benz & Thielemann 1990), where Γ denotes the adiabatic index.
In Chandrasekhar (1961) chapter X. (sect. 90.-99. , p 428-480) one may find a description of the

phenomenology of the RTI, as well as a mathematical motivated analytic approach, including the
discussion of different cases.
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Figure 5.3: The figure shows the development of a Kelvin-Helmholtz wave computed by a 2-D SIM-
PLE based program with a higher accuracy upwind scheme for convection terms. No turbulence model
was used. Richardson number = 0.07, Reynolds number = 300, dimensionless disturbance wavenum-
ber = 0.43, Prandtl number = 0.71. The calculation is carried out in a regular mesh (100x248). Figures
and description from Changhong Hu’s web page.

5.3 Kelvin-Helmholtz Instability

5.3.1 Introduction

The Kelvin-Helmholtz instability (KHI) denotes the under certain conditions unstable behaviour of
an interface between two fluids which are moving relative to each other parallel to their interface.
Helmholtz’s work is basically a description of the instability’s phenomenology. “Every perfect geo-
metrical sharp edge by which a fluid flows must tear it asunder and establish a surface of separation,
however slowly the rest of the fluid may move” (Helmholtz 1882). Later, in his work Lord Kelvin
made an analytical approach to the topic (Kelvin 1910a,b).

The excitation of surface water waves by the wind is one of the most common examples for the
KHI and certainly the one most strongly related to everyday life. However, this is only true for wind
speeds exceeding a few meters per second. The observed excitation of much smaller waves due to
wind speed down to a few centimeters per second cannot be explained by the KHI. They are supressed
by the stabilising effects of surface tension and gravity. Therefore, a theory including more complex
wind-shear velocity profiles and resonance phenomena is required (Miles 1957, 1959).
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Figure 5.4: Left panel: Geometrical layout for the Kelvin-Helmholtz instability.
Right panel: The roots of the dispersion relation F(φ) = 0 (Equation 5.49) for supersonic relative flow
(M > 8

1
2 ) between two compressible fluids of equal densities and sound speeds.

Figures and description from Gerwin (1968).

The following brief description of the KHI is based on the review article from Gerwin (1968).
Here we will only discuss the situation for compressible fluids and refer merely to the case of in-
compressible fluids, since the latter is not relevant for this work (Page 47, for further information see
Gerwin 1968).

5.3.2 Linear Analysis of a Compressible Fluid in Plane Geometry

We assume two compressible fluids, fluid 1 located in the space x > 0 and fluid 2 in the space x < 0,
connected by an interface at x = 0 lying in the y-z-plane (Figure 5.4). Fluid 2 is moving uniformly
with velocity ~u = (0,0,uz). Assume further on that all perturbation quantities are independent of x,
i.e. they are functions of (y,z, t), i.e. they are connected via the term

ei(kyy+kzz−ωt) , (5.26)

where ky and kz denote the wave number of the perturbation in y and z direction, respectivly and the
angular frequency ω measures the time dependence of the perturbation. The density perturbations ρ2,
the perturbation pressure p2and the perturbation velocity ~v2 of fluid 2 can be expressed by means of
the linearised continuity equation (−→ linearising Equation 5.2)(

∂

∂ t
+uz

∂

∂z

)
ρ2 +ρ~∇ ·~v2 = 0 (5.27)

and the linearised momentum equation (−→ linearising Equation 5.8)

ρ

(
∂

∂ t
+uz

∂

∂z

)
~v2 +~∇p2 = 0 , (5.28)

where ρ denotes the equilibrium density. Note that quantities without index denote the equilibrium
quantities, assumed to be the same in both fluids.

The equation system defined by Equation 5.27 and 5.28 together with our assumption, can be
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solved using the following ansatz for the velocities

~v1 =
~∇p1

iωρ
(5.29)

~v2 =
~∇p2

iω′ρ
. (5.30)

The two angular frequencies (ω,ω′) are connected via

ω
′ = ω− kz uz . (5.31)

To solve the problem one further needs “boundary” conditions at the interface. These are the pressure
equilibrium

p1 = p2 at x = 0 (5.32)

and the kinematic condition that the change of the interface diplacement ξ(y,z, t)∼ ei(kyy+kzz−ωt) (Fig-
ure 5.4) is proportional to the fluid’s velocity components normal to the interface

v(x)
1 =

∂

∂ t
ξ =−iωξ (5.33)

v(x)
2 = (

∂

∂ t
+uz

∂

∂z
)ξ =−iω′ξ at x = 0 . (5.34)

Neglecting the production and the conduction of heat in fluid 2, the total pressure p2, the total density
ρ2 and the total velosity ~v2 are connected by the following equation(

∂

∂ t
+~V2 ·~∇

)(
p2 ρ

−γ

2

)
= 0 , (5.35)

which can also be expressed as(
∂

∂ t
+~V2 ·~∇

)
p2 = γ

(
p2

ρ2

)(
∂

∂ t
+~V2 ·~∇

)
ρ2 , (5.36)

where γ denotes the ratio of the specific heats which are assumed to be identical and constant for both
fluids. Linearising Equation 5.36, one ends up with(

∂

∂ t
+uz

∂

∂z

)
p2 = s2

(
∂

∂ t
+uz

∂

∂z

)
ρ2 , (5.37)

where s denotes the speed of sound, again assumed to be the same in both fluids:

s =
√

γ p
ρ

. (5.38)

Using the assumption about dependencies of perturbation quantanties above (Equation 5.26) and elim-
inating the velocity and density perturbations from Equation 5.27, 5.28 and 5.37 one is left with the
pressure perturbations

p2 ∝ e(−q2x) for x > 0 , (5.39)

p1 ∝ e(−q1x) for x < 0 , (5.40)
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with the two factors in the exponent

q2 =

√
k2− (ω′)2

s2 (5.41)

q1 =

√
k2−ω2

s2 , (5.42)

where k is defined by

k :=
√

k2
y + k2

z > 0 (5.43)

Note that, if q2 or q1 are complex, they might go to infinity for x going to infinity. Therefore, one must
choose the real part to be positive to prevent this. If, however, the quantities are imaginary the sign
of their roots has to be determined using the so-called Sommerfeld radiation condition (Sommerfeld
1949).

Using Equation 5.29, 5.30, 5.39 and 5.40 and applying the “boundary” condition defined by Equa-
tion 5.32 and 5.33, one finds the following despersion relation:

ω
2q2 =−(ω′)2q1 . (5.44)

Note that this result can easily be adapted the incompressible case, too, where the speed of sound
becomes infinite and the exponent factors q2 and q1 (Equation 5.41 and 5.42) are both equal to k. This
results in the dispersion relation for incompressible fluids (Gerwin 1968):

ω
2 =−(ω′)2 . (5.45)

All the various parameters may be replaced by two relatively simple, dimensionless quantities. The
phase velocity φ and the effective Mach number M, defined as

φ :=
ω

k s
(5.46)

M :=
ukz

k s
= uz cos

(
θ

s

)
, (5.47)

with θ being the angle between the fluid velocity ~u and the wave vector~k = (0,ky,kz). The two new
quantities may be used together with Equation 5.31, 5.41, and 5.42 to rewrite the dispersion relation
(Equation 5.44) in the form

φ
2
√

1− (φ−M)2 = −(φ−M)2
√

1−φ . (5.48)

Assuming φ to be real, then Equation 5.41 and 5.42 on the one hand and Equation 5.48 on the other
hand contradict each other, if the square roots in Equation 5.48 are real. This leads immediately to
the conclusion that they are purely imaginary and must have opposite signs. Using this conclusion
Equation 5.48 can be brought into the form

F(φ) = φ
2
√

(φ−M)2−1 − (φ−M)2
√

φ−1 = 0 . (5.49)

This function is shown in the right panel of Figure 5.4 and describes the behaviour of the KHI. Lokking
on all of the five real roots shown in Figure 5.4 reveals that q1 and q2 are imaginary. Equation 5.39
and refeq-F.28 do vanish for x→ ∞ and the Sommerfeld radiation condition (Sommerfeld 1949) has



48 5: Hydrodynamic Instabilities

to be applied once more. Therewith, one is left behind with the three square roots located near the
centre. For M approaching

√
8, the two roots near +1 and M−1 approach the one at M

2 . They become
complex conjugates for values of M below the critical value

√
8, and the interface becomes unstable

to modes satisfying the conditions above.
In contrast to the result we have obtained by this analysis of the compressible case (Equation 5.45),

the interface in the incompressible case is unstable to all modes. This is the major difference between
the two cases.

5.3.3 Further Details

For more details and other cases summarised here, the interested reader is refered to Gerwin (1968),
and the references therein. A much more detailed discussion of the KHI can also be found in Chan-
drasekhar (1961) chapter X. (sect. 90.-99. , p 428-480), and in the review articles of Blumen (1970)
and Howard & Maslowe (1973).

Note that in the invicid case, due to the appearence of the KHI on all length scales, fluid flows
showing the RTI, turbulance, etc. should have fractale character (Mandelbrot 1974), however, in nu-
merical simulations the fractale behaviour is severely limited by the numerical resolution (Section 6.1
and Figure 6.1).
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Figure 1. Computation of NOVA RMI experiments. (a) A shock wave moves toward the interface

between beryllium (shaded) and foam (unshaded). (b) The shock wave has refracted through

the interface and deposited vorticity along the interface that will drive perturbation growth. The

transmitted shock and the two edges of the reflected rarefaction wave are also shown. (c) Late-time

interface showing the characteristic mushroom shape. The transmitted and reflected waves have left

the region shown in the figure.

(see figure 1) experiments, numerical simulations and theoretical models have given

conflicting values for the growth rate of the perturbations (Benjamin 1992; Benjamin,

Besnard & Haas 1993; Besnard et al. 1991; Cloutman & Wehner 1992; Meshkov 1970;

Meyer & Blewett 1972; Richtmyer 1960). The discrepancy between experimentally

measured and predicted growth rates has been attributed to strength and porosity

effects of the membrane used to separate the gases in shock tube experiments (Clout-

man & Wehner 1992; Meshkov 1970; Meyer & Blewett 1972) and boundary layer

effects (Vetter & Sturtevant 1995). The critical importance of late-time nonlinearity in

RMI, independent of the experimental issues just mentioned, was shown in Grove et

al. (1993) and Holmes, Grove & Sharp (1995). In Holmes et al. (1995) simulations were

performed for relevant experimental times that showed greatly improved agreement

with experimental data while agreeing very well with previously published early-time

results. It was also shown that the linear theory accurately predicts growth rates for

very early times and small initial amplitudes. At later times the perturbation growth

rate decreases significantly due to nonlinear effects and the growth rates predicted by

the linear theory are too large. A theory for compressible RMI which accounts for

these nonlinear effects is developed in Zhang & Sohn (1996, 1997a, b). The theoretical

predictions are in excellent agreement with the results from numerical simulations

and experimental data considered in Benjamin (1992), Grove et al. (1993) and Holmes

et al. (1995).
The present study has a two-fold purpose. First, we compare growth rates from

experiment, simulation and theory in the conditions relevant to ICF. Second, simula-

tions based on different codes and different models are compared in a controlled way

so that differences in the results can be understood and clarified. We find that exper-

iments and simulations generally agree well and that in most cases the compressible

nonlinear theory does a good job of predicting the time history of the perturbation

growth rates.

Figure 5.5: Simulation of a RMI experiment at the NOVA laser facility of Lawrence Livermore Na-
tional Laboratory. (a) A shock wave moves (from right to left) toward the interface between beryllium
(shaded) and foam (unshaded). (b) The shock wave has refracted through the interface and deposited
vorticity along the interface that will drive perturbation growth. The transmitted shock and the two
edges of the reflected rarefaction wave are also shown. (c) Late-time interface showing the character-
istic mushroom shape. The transmitted and reflected waves have left the region shown in the figure.
Figures and description from Holmes et al. (1999)

5.4 Richtmyer-Meshkov Instability

5.4.1 Introduction

Markstein (1957) first considered the problem of a shock accelerated interface between two fluids.
However, the first detailed study of the problem was made by Richtmyer (1960). Later on, Meshkov
confirmed experimentally Richtmyer’s results, using shock-tube experiments (Meshkov 1969, 1970).
The discussion of the Richtmyer-Meshkov instability (RMI) given here is based on the review article
by Brouillette (2002).

Assume the following scenario (Figure 5.6, [a] and [b]). Two fluids of different densities (ρ1 < ρ2)
are connected by an interface lying in y-direction of Cartesian coordinates. Furthermore, the interface
is perturbed by a small amplitude perturbation of wave length λ. A shock wave travelling along the
x-direction gets refracted when passing the interface. The pressure gradient of the shock wave and the
density gradient of the interface are not aligned in that case (Figure 5.6, [c]), resulting in the generation
of baroclinic vorticity, namely clockwise vorticity in the left part of the interface and counterclockwise
vorticity in the right part (Figure 5.6, [d]).This, subsequently, leads to further deformation of the
interface (Figure 5.6, [e]). Eventually, the interface will show two vortices in a mushroom-like shape
(Figure 5.5, [c]).
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Figure 1 Basic configuration for the Richtmyer-Meshkov instability in the rectangu-
lar geometry. (a) Discontinuous multimode interface. (b) Discontinuous single-mode
interface: initial perturbation given by η(y, t = 0)= η0 cos(2πy/λ). Two fluids, 1 and
2, initially at rest and having different properties (such as density ρ and ratio of specific
heats γ , for example), are separated by an interface that has an initial perturbation; a
normal shock wave, traveling from top to bottom from Fluid 1 into Fluid 2 is about to
interact with the interface (Figure 1a).

case the interface is said to be discontinuous. Otherwise, when this transition takes
place over a finite layer thickness, the interface is said to be continuous.
The geometry can either be two-dimensional, for which the initial interface

corrugation varies only in the lateral direction for a rectangular geometry
(Figure 1a,b) or in the circumferential direction for a cylindrical geometry. For
the three-dimensional problem, the initial interface perturbation is prescribed in
two lateral directions for either the rectangular or the spherical geometry. Finally,
the initial perturbation can be described either by a single sine function of known
wavelength and amplitude, in which case the interface is said to have a single-
mode perturbation (Figure 1b), or by a superposition of two or more of these
perturbations, in which case the interface is said to be multimode (Figure 1a).
Although there has been recent interest in the RMI in cylindrical (Zhang &

Graham 1998) and spherical configurations (Meshkov et al. 1997), most of the
work to date on the RMI has been performed in the rectangular geometry with
single- or multimode initial perturbations. This review therefore focuses on these
results.

2.2. Evolution of the Instability

Following the refraction of the incident shockwave, a distorted shock is transmitted
into Fluid 2; then either a distorted shock or a rarefaction wave, depending on fluid
properties, is reflected back into Fluid 1.As a result of this process, the interface has
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Figure 5.6: Basic configuration for the Richtmyer-Meshkov instability in the rectangular geometry.
(a) Discontinuous multimode interface. (b) Discontinuous single-mode interface: initial perturbation
given by η(y, t =0) = η0 cos(2πy/λ). Two fluids, 1 and 2, initially at rest and having different prop-
erties (such as density ρ and ratio of specific heats γ, for example) are separated by an interface that
has an initial perturbation; a plane shock wave, travelling from top to bottom from Fluid 1 into Fluid
2 is about to interact with the interface (c). Vorticity deposition at a light/heavy interface. (c) Initial
configuration. (d) Circulation deposition and intensity of vortex sheet. Ω denotes the z-component of
the vorticity Ω = ∂uy

∂x −
∂ux
∂y (cf. Equation 6.21 & Equation 6.22). The small figure below shows the

vorticity Ω as a function of the y coordinate. (e) Subsequent deformation of the interface. Figures and
descriptions from Brouillette (2002)

5.4.2 Impulsive Theory in Plane Geometry

Using the linear formalism of Taylor (1950), the perturbed interface (Figure 5.6, [b]) can be described
as

y = ηo cos(kx) with k η� 1 , (5.50)

which is a single mode sinusoidal perturbation of an arbitrary amplitude ηo considered to be small.
Therewith, the time evolution of the perturbation amplitude is given by

d2

dt2 η(t) = k gAη(t) , (5.51)

using the Atwood number (Equation 5.17) of the preshock situation

A =
ρ2−ρ1

ρ1 +ρ2
(5.52)

and the perturbation wavenumber

k =
2π

λ
(5.53)

defined by the perturbation wave length λ. Now we replace the constant acceleration used by Taylor
(1950) with an impulsive acceleration

g = ∆uδ(t), , (5.54)

where δ(t) denotes the Dirac delta function and ∆u is the change of the interface’s velocity due to
the shock refraction. Then by time integration of Equation 5.51 one gets the relation describing the
impulsive growth rate

η̇imp = k ∆uAη0 , (5.55)
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originally derived by Richtmyer (1960). This is the simpliest way to describe the behaviour of a shock
accelerated interface between to different fluids.

Although Richtmyer found a good agreement of the order of 5%-10% between this result and the
results he obtained by solving the linearised problem numerically, subsequent studies proved that this
was due to providential chosen parameters (Brouillette 2002, and references therein).

5.4.3 Linear Compressible Theory in Plane Geometry

The analytic solution for the compressible case of the RMI was derived by Fraley (1986) although the
linearised perturbation equations for general fluids were already studied numerically by Richtmyer
(1960). Fraley’s relation for the linear growth rate in the compressible case reads

η̇∞ = k ∆uη0

(
A+ ε

F
γ1

)
, (5.56)

where F is defined by the following function

F = F(ξ,A)

=
1
2

[
(ξ−1)2−2

1+A
1−A

−2ξ+
2
ξ

(
[1+A]2

1−A
+[1−A]ξ2

)](
1−A
ξ+1

)
(5.57)

and ξ by

ξ =

√
(1+A)γ2

(1−A)γ1
. (5.58)

γ1 and γ2 denote the ratio of specific heats of the two fluids. The factor ε measures the strength of the
shock wave, and is defined as (Mikaelian 1994)

ε = 1− p2
p0

, (5.59)

where p2 denotes the initial pressure of fluid 2 and p0 denotes the initial pressure behind the shock
wave, i.e. the pressure of the region in front of the reflected reverse shock. For weak shocks ε→ 0,
as Equation 5.56 reduces to Richtmyer’s impulsive growth rate relation (Equation 5.55). In case of a
vanishing Atwood number A = 0, and z = 0, the growth rate is also zero, as expected in the case of
an interface between two identical fluids. However, if z 6= 0, i.e. the case of different fluids having
identical densities, perturbations will grow indicating that the RMI is not just a shock driven RTI,
despite their similarities.

5.4.4 Spherical Case, Non-linear Theory and Further Studies

In the last 15 years a lot of progress in understanding the RMI was made. People made attempts to
study the spherical geometric case (e.g. Meshkov et al. 1997) and steps towards a non-linear analytic
theory were taken (e.g. Zhang & Sohn 1996, 1997). Numerical methods were successfully used to
study the RMI (e.g. Holmes et al. 1999, Figure 5.5). The experimental approaches became much
better, too (e.g. Kane et al. 1997). But, still some discrepancies between the analytic models, the
numerical models, and the experimental data remain.

Anyway, although the RMI was initially of interest for the development of thermo-nuclear devices
and later on for the research on inertial confinement fusion only, it is nowadays also of interest for
astrophysics (Arnett 2000; Kifonidis et al. 2006).
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Part III

Simulations in 3 Dimensions
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Chapter 6

Analysis of 3D Runs

6.1 Testing the Resolution of Our Setup

To get an estimate for the needed resolution, we performed 2D simulation using the 2D explosion
model b23a as input. Having been studied with high spatial resolution using adaptive mesh refinment
(Kifonidis et al. 2006), this model is a very good “test case” since the hydrodynamics is well known.

Although, the fine structure of the hydrodynamic flows is somewhat different from that of model
b23a in Kifonidis et al. (2006), the larger scales are reproduced very well. One can clearly see
the large vortices generated by the Richtmyer-Meskov instability at the H/He interface located at
∼ 1011 cm / 107 km. All large mushroom-like structures generated by the RTI can be identified in our
test model b23a, as well. The position and the shape of the reverse shock, generated by transmission
of the supernova shock wave through the H / He interface is reproduced quite well. Even the overall
shape of artficial “axis”-features are the same.

These results demonstrate that our computational setup provides enough spatial resolution to fol-
low the dynamics of a supernova envelope. However, the absense of a RMI at the H/He interface
(Section 6.5) in our 3D model 3D3 give rise to the question if the radial resolution we chose guided
by the numerical costs, was not enough to resolve the asphericity of our models at late epochs.

6.2 Energetics and total Mass

6.2.1 Energy of the Explosion

Explosion energies of supernovae are usually of the order of 1051 erg(1b) (Kasen & Woosley 2008).
The explosion energy of supernova models is defined generally as the sum of internal, kinetic and
gravitational binding energy. Our simulations was performed neglecting gravity, which makes it diffi-
cult to state an accurate value for the explosion energy of our models. To estamimate a value for the
explosion energies of our models 3D3 and 3D2, we calculated the binding energy of the progenitor’s
envelope lying outside the shock wave and subtracted it from the sum of internal and kinetic energy,
because at least this amount of energy is required to explode the star.

Using that approach we can estimate that the models 3D3 and 3D2 have a explosion energy
of 0.65 b and 0.49 b, respectively (Figure 6.3). This indicates that the models are sub-energetic by
roughly a factor of 1.5 and a factor of 2, respectively. However, estimating the energy reservoir of a
SN, using a typical NS mass of 1.4M� (Stairs 2004), a NS radius of 15 km (e.g. Link et al. 1999; Rut-
ledge et al. 2001; Trümper et al. 2004), and the expression for the total gravitational binding energy

55
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Figure 6.1: Density distribution of model b23a 3 000 s after core collapse. One can clearly see
the large vortices generated by the Richtmyer-Meskov instability at the H/He interface located at
∼ 1011 cm / 107 km.
Left Panel: Two dimensional simulation performed with the same basic setup and the same resolution
as our three dimensional longterm simulation.
Right Panel: Two dimensional simulation by Kifonidis et al. (2006) making use of adaptive mesh
refinement. A lot of fine hydrodynamical structures are resolved, especially the small structures cre-
ated by the Kelvin-Helmholtz instabilties on top of the vortices created by the Richtmyer-Meshkov
instability, and the fingers created by the Rayleigh-Taylor instabilities.

of a NS given in Scheck et al. (2006a)

Ebind = 3×1053
(

MNS

M�

)(
RNS

10km

)−1

erg , (6.1)

gives a total amount of energy released during the core collapse of 280 b. After one second the total
energy which was radiated away by the models of Scheck et al. (2006a) is roughly 25 b. This means
there is still ten times more energy store inside the neutrino radiation source than has been radiated
away up to that time and which potentially could contribute to the explosion energy.
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Figure 6.2: Plot showing the evolution of the total energies (magenta) with time of the model 3D3
(left panel) and 3D2 (right panel). Furthermore, the total mass (blue) is plotted, to indicate when the
expanding star is leaving the computational grid. The flat dark green line at the bottom represents the
negative binding of the envelope. As inner radius for the integration of the gravitational potential the
mean shock radius at 1 s was chosen. The quantities indicated with a + are integrated accounting only
for fluid elements, having a positiv radial velocity.

6.2.2 Saturation of the Explosion Energy

Arcones et al. (2007) performed spherical symmetric radiation hydrodynamic supernova simulations
spanning the range from milliseconds after the core collapse up to 10 seconds. Their analysis showed
that the models M15-l1-r1 and M15-lt1-r4 gained up to 25% more explosion energy in the time range
from 1 to 3 seconds after the core collapse. This suggests strongly that the explosion models of Scheck
et al. (2006a) are not saturated with respect to the explosion energies. Guided by the energetic argu-
ment and the results of Arcones et al. (2007) it would be preferable to run the supernova simulation up
to a few seconds including neutrino radiation and then continue with a purely hydrodymic simulation.

The first thing one recognises when plotting the kinetic energy is the growth and the wave-like
structure of kinetic energy. The kinetic energy is growing because the shock wave is accelerating
when propagating down the pressure / density gradient. The wave-like structure can be linked to the
flattening and steppening of the gradients (Figure 6.3) due to the onion-like composition structure
of the progenitor (Figure 2.1). The density of the stellar envelope follows roughly ρ ∝ r−n with n
= 3 (Figure A.2). Therefore we can express the gradient through the slope of the density profile.
The shock wave, which is bearing the most of the kinetic energy, gets decelerated when running
through the flatter gradients (n < 3) in the middle of the helium and hydrogen composition shells and
it accelerates more when reaching the step gradients (n > 3) at the composition interfaces and at the
outer parts of the hydrogen envelope. We estimated the “position” of the maximum of the kinetic
energy used in Figure 6.3 by searching the grid cell with the largest value of the kinetic energy.

6.2.3 Conservation of Mass

Additionally, Figure 6.2 shows the total mass of the models versus time. The total mass stays constant
during the first 104 s, indicating that the mass loss due to the cutting of the inner boundary (Section 4.1)
is negligible. At around 104 s the shock wave reaches the outer boundary of our computational grid.
That is why the kinetic energy peaks around that time. The stellar envelope starts to expand and a large
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Figure 6.3: Density structure of the supernova progenitor versus radius and kinetic energy carried by
the shock wave versus the postion of the shock wave.

fraction of the hydrogen shell and subsequently other composition layers leave the computational
domain through the outer boundary. The total mass, the internal energy and the kinetic energy of the
model drop significantly.

6.3 The Rayleigh-Taylor Instability in 3 Dimensions

When looking at the developing Rayleigh-Taylor “fingers” one recognises, that the flow structures
in our three dimensional model 3D3 are similar in size to those found in previous two dimensional
simulations (Kifonidis et al. 2006, 2003).

However, all flow structures appear “rounder” and have less fine structure. This is simply because
of the much lower radial and angular resolution of the 3D simulations compared to the 2D studies.
Remember that the AMR grid used by Kifonidis et al., had already a resolution, without the additional
mesh refinement levels, of 0.25◦ in angular direction and 4 000 logarithmicaly distributed radial zones.
Thus the 2D simulations had a resolution more than four times better than in our computational setup
(Section 4.4).



6.4: Metal Velocities and Masses 59

Table 6.1: Total masses of the nuclear species included in our models 3D3 and 3D2.

Nuclear Species Mass Mi [ M� ] Mass fraction Mi/Mtot

1n 6.62×10−6 4.25×10−7

1H 8.14 0.52
4He 5.42 0.35
12C 1.19×10−1 7.60×10−3

16O 1.84×10−1 1.18×10−2

20Ne 4.69×10−2 3.00×10−3

24Mg 4.88×10−3 3.13×10−4

56Ni 1.69×10−1 1.09×10−2

Model 3D3 proves that the structures created by the neutrino driven hot bubble convection (Sub-
section 2.1.2) and by the SASI (Subsection 2.1.3), are acting as seeds for the RTI (Section 5.2), which
develops at the various composition interfaces of the stellar envelope (Figure 2.1), especially at the
H/He interface. Comparing the surface of the deformed shock wave in our initial models (Figure 4.4)
with the time series plots showing the evolution of the density and entropy distribution of model 3D3
(Figure A.5, A.8) reveals that the “nose” originating from the SASI and the prominent fast moving
clump of heavy elements (Figure 6.4) which could be identificated at late epochs, coincide in their
azimutal and longitudinal directions. It is most likely that the upflow connected with the l = 1 SASI
mode (Subsection 4.4.5) in the 3D models of Scheck et al. (2006b) which generated the “nose”, is the
seed of this “super clump”.

The fast moving clumps penetrate the H/He composition interface without difficulties. The slow
down of these clumps due to the passage of the reverse shock, which forms below the H/He inter-
face, is only marginal (Figure 6.5, 6.13). This finding contradicts the results of Kifonidis et al. (2003)
and maybe due to the smaller cross section of the smaller heavy element in the 3D case (Subsec-
tion 6.4.2). Note that, the interface is partially disrupted through the clumps acting like “cannon
balls” (Figure 6.13).

6.4 Metal Velocities and Masses

6.4.1 Mass fractions of chemical species in Radial-Velocity Space

We took the value of the hydrodynamic variables of every grid cell and sorted them into velocity bins
of 100kms−1 width using the radial velocity value associated with the grid cell. Subsequent to that,
we volume-integrated the density of all cells within a radial velocity bin to get the contained mass.
Finally, we plotted the so defined mass distribution versus the radial velocity (Figure 6.5).

The total mass of 56Ni contained in the fastest moving clumps can be estimated to be roughly 2×
10−3 M� (Figure 6.4). As 56Ni traces all nuclear species heavier than 24Mg in our models, the actual
amount of radioactive 56Ni mixed outwards in the explosion is significantly smaller. Anyway, there is
still enough radioactive 56Ni mixed outwards to provide an explanation of observed phenomena which
are associated with clumps of radioactive species (Subsection 1.3.2, Section 2.2).

Haas et al. (1990) derived from observation of SN 1987A a total mass of 0.026 M� of single
ionised iron moving at a mean velocity of 2000kms−1 (Subsection 1.3.2). This translates to a mass
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Figure 6.4: Blow up of the last panel in Figure 6.5. The black Gaussian marks a fraction of fast metal
clumps which can also be seen in Figure A.5 and A.8. The associated metal masses are given inside
the plot in units of solar masses.

fraction of 0.15 of 56Ni (Table 6.1), which we used as a representativ nucleus of the iron group
(Subsection 4.4.2). Comparing that to the velocity distribution of 56Ni in Figure 6.4 shows that the
explosion energy of our model 3D3 is to low (cf. Subsection 6.2.1) to reproduce this observation,
since there is not enough 56Ni moving with such high velocities. A larger explosion energy would
extend the velocity distribution to higher velocities.

Note that our models are containing a fraction of debris neutrons (Figure 4.3), which are mixed
outwards in our simulation. These free neutrons actually would be involved into various kinds of
nucleosynthesis processes (e.g. Woosley et al. 2002, sect. VIII and the references therein), which are
neglected in our simulations.

When our two models, 3D3 and 3D3 are compared with each other in the radial velocity space
(Figure 6.5, A.13), the former model does develop fast moving heavy element clumps, whereas the
latter does not. This is not surprising since the velocity maximum scales with the explosion energy as

vmax
r ∼

√
Eexp , (6.2)

which can be derived by setting the explosion energy equal to the kinetic energy Ekin = 1
2 mv2, and

which is approximately 10% larger in model 3D3 (Figure 6.2).
These heavy element clumps are forming between 10 and 20 seconds after core collapse and

occupy a fraction in the radial velocity space (Figure 6.5), which is clearly seperated from the rest of
the heavy elements having a continious velocity distribution. The formation period of these clumps
indicates that they are already formed by the RTIs (Section 6.3, 5.2) developing at the composition
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Figure 6.5: Normalised masses of the nuclear species of model 3D3 rebinned in the radial velosity
space (Subsection 6.4.1) versus radial velocity at different epochs (see upper right corner of each
panel). Note the cutoff of the hydrogen velocity distribution in the lower right panel. Hydrogen
moving faster than the cutoff, has already left the computational domain.
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Figure 6.6: Representative radial density profile of the three dimensional model 3D3’s slice 80 (left
panel, Subsection 4.4.6) and of the two dimensional model 2D80 (right panel). Note that the ”helium
wall” Is located between the shock wave at 107 km and the reverse shock at 3× 106 km has very a
similar size in both, the 2D and the 3D model.

interfaces between the Si core, the Oxygen-Neon-Magnesium core, and the Carbon-Oxygen core,
respectively.

The fast moving clumps are composed of 48% 56Ni, 39% 16O, 12% 20Ne and 1% 24Mg (Fig-
ure 6.4). Comparing this to the original composition of the stellar core (Table 6.1, Figure 4.3), reveals
that a large fraction of 56Ni is mixed into the O/Ne/Mg core. Afterwards RTIs forming at the composi-
tion interfaces lying further outside are mixing the matter from the O/Ne/Mg core outwards, forming
the fast moving clumps. Note that the relative abundances of 16O, 20Ne and 24Mg are approximately
the same as in the original stellar O/Ne/Mg core.

6.4.2 Clump velocity in 3D vs. 2D

Comparing the mass fractions in the radial velocity space of the two dimensional models 2D2 and
2D80 to the corresponding slices (Subsection 4.4.6) of the three dimensional model 3D3 shows that
the velocities of clumps consisting of heavy elements, i.e. 16O, 20Ne, 24Mg and 56Ni, are comparable
in the 2D and the 3D models up to 3 000 s. Until then the clumps have not reach the so-called “helium
wall”, which is located in front of the H/He interface. When passing the “helium wall”, the clumps
are effectively decallerated in the two dimensional simulations, whereas in the three dimensional
simulations, the clumps are decallerated only moderately (Figure 6.8, 6.9, A.11, A.12, A.17 and
A.22).

The supernova shock wave is accelerated when it reaches the step density gradient at the H/He
interface (n > 3) and decelerated where the density gradient gets flatter again (cf. Subsection 6.2.2 and
Figure A.2). A blast wave in spherical geometry (Sedov 1946, 1959) which is decelerated launches
a reverse shock wave . The supernova shock wave is therefore splitted into two shock waves when it
passes through the H/He interface. A transmitted shock wave which has pratically the same strength
as the original shock wave and continues its way outwards through the stellar envelope. And a much
weaker reverse shock, where fast matter is significantly decallerated. The piled up matter, mainly 4He,
forms a high density structure, the so-called “helium wall” (Figure 6.6)

The unequal decalleration of clumps can be understood by means of the hydrodynamic drag force.
Using Newtons approach to the drag force acting on clumps moving in a flow having a high Reynolds
number Re (Re ∼>103) can be expressed due to the kinetic energy which has to be consumed to change
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rsph
rtorRtor

Figure 6.7: Schematic view of a sphere with radius rsph (left) and a torus of thickness 2rtor and
diameter 2Rtor (right).

the clumps’ velocity (e.g. Gerthsen 1997)

Fdrag =
1
2

cdrag ρA~v2 (6.3)

(in contrast to the approach of Stokes for bodies moving in a flow having a low Reynolds number Re
(Re ∼< 103). Here ρ is the density of the surrounding medium, A the geometric cross sectional area of
the clump, the velocity of the clump is given by ~v, and cdrag denotes the so-called drag coefficient.
The drag coefficient depends on the form and surface characteristics of the clump, the Mach number
Ma, the Reynolds number Re, and on the degree of turbulence of the hydrodynamic flow.

The Reynolds number Re measures whether a flow is turbulent or not. It is defined as

Re =
ρvl
η

, (6.4)

where v the absolute value of the velocity v = (v2
r + v2

θ
+ v2

φ
)

1
2 , l is the “size” of the clump (l ≈ 2r),

and η denotes the viscosity.
As long long as the fast metal clumps propagate through the extremly thinned medium in the wake

of the supernova shock wave their velocities in both two dimensional models 2D2 and 2D80 are the
same within a few percent (Figure 6.8, 6.9) as in the three dimensional model 3D3 (in the slices which
correspond to the 2D models (Subsection 4.4.6)). This changes significantly when the clumps reach
the ”helium wall” since

Fdrag ∝ ρ , (6.5)

and since the density of the ”helium wall” is more than an order of magnitude higher than that of the
post-shock matter (Figure 6.6). The dimensions and the shape of the ”helium wall” are very similar
in both the 2D models and the 3D model (Figure 6.6).

The physical conditions of the flow, both, of the clumps and of the surrounding medium are pretty
much the same in the 2D and the 3D models. This leaves behind only one parameter which may
account for the significantly larger deceleration of the metal clumps in the two dimensional models
compared to the three dimensional models, and that is

Fdrag ∝ A (6.6)
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Let us for simplicity reasons asume that our “test” clump has a circular shape of the radius r. Then the
topology of the “test” clump will be a sphere with the radius rsph in the three dimensional case and,
due to the assumed rotation symmetry, it will be a torus of thickness 2rtor and diameter 2Rtor in the
two dimensional case. The center of the torus, the center of the star and the origin of the spherical
polar coordinate system, are assumed to coincide.

Figure 6.8: Various mass fractions of model 3D3 (slice 2 (Subsection 4.4.6), left panel) and model
2D2 (right panel) shown in the radial velocity space.

The geometric cross sectional area of a sphere is

Asph = πr2
sph , (6.7)

whereas the geometric cross sectional area for a torus is

Ator = 2πRtor rtor . (6.8)

We can estimate the growth of the clumps with time using a simple analytic model. We assume that
the pressure of the progenitor envelope can be expressed using a power law function

penv(r) ∝ r−β (6.9)

and we approximate the relation between pressure p and density ρ with a polytropic equation of state

p = κρ
Γ (6.10)

with the polytropic constant κ and the polytropic exponent Γ. The density of the clumps is proportional
to their volume

ρ ∝ V−1 , (6.11)
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Figure 6.9: Same as Figure 6.8, but for model 3D3 (slice 80 (Subsection 4.4.6)) and model 2D80.

assuming conservation of mass. The volume of a torus is Vtor = 2π2Rtorr2
tor and that of a sphere is

Vsph = 4π

3 r3
sph. The diameter of a torus in spherical polar coordinates under the assumption of rotation

symmetry is given by Rtor = r sinθ.
The last assumption we have to make is pressure equillibrium between the clumps and their envi-

ronement

penv ≡ pclump . (6.12)

Using this assumption together with Equation 6.9, 6.10, and 6.11, one can express the geometrical
cross section as a fuction of the radial distance r(t) from the centre of the star. We get for the torus

Ator(r) ∝ (sinθ)1−Γ r
β+Γ

2Γ (6.13)

and for sphere

Asph(r) ∝ r
2β

3Γ , (6.14)

respectively. The pressure in the stellar envelope of a supernova progenitor is dominated by radiation
pressure. Therfore we can approximate it by the polytrope with a polytropic exponent of Γ≈ 4

3 . Using
this value of Γ, Equation 6.12 and 6.16, the geometrical cross section of a torus behaves like

Ator(r) ∝ (sinθ)−
1
3 r

3β

8 + 1
2 (6.15)

and that of a sphere like

Asph(r) ∝ r
β

2 . (6.16)
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This means that, for β < 4, the torus has respectively a larger geometric cross sectional area than the
sphere, especially at larger distances, where the H/He interface and the ” ”helium wall” are located (≥
1×106 km, Figure 4.3 and 6.6). And therefore, decelerration is more severe in case of axis symmetric
simulations (Figure 6.8, 6.9).

When the clumps reach the “helium wall” they first have to propagate through the reverse shock
which has a very steep negative pressure gradient. Afterwards they move through the region between
the supernova shock wave and the reverse shock, the actual “helium wall” having a negative pressure
gradient, too (Figure A.21). In that whole region the index β is negative (negative slope of the pressure
profile) and hence the hydrodynamic drag is more severe than in other regions.

The above considerations provide a qualitative explanation why the clumps dynamics and velocity
evolve similar in both, the 2D simulations and the 3D simulation, until the clumps reach the “helium
wall”. And why the decaleration of the clumps is much more severe in the 2D case.

Note that when rebinning of the mass fraction in radial velocity space of model 2D2 we omitted
5◦ — additionally to the already missing 15◦ cone — at the southern boundary in θ-direction, i.e.
lower boundary in Figure A.18 and A.19. This was done because of an “axis feature” which was
developing there. These “axis features” are well known from other studies (e.g. Kifonidis et al. 2003,
2006), although the feature which develops at the boundary of our model 2D2 is much smaller than in
the latter cases, because the boundary in our two dimensional simulations is not located at θ = π.
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Figure 6.10: Angular data bins (Subsection 6.4.3) in longitudinal direction wich are used in Fig-
ure 6.11. The white lines show the boundary of the data bins and the white numbers indicate the
number of longitudinal data points included in the data bin. The plots show the clumps of 56Ni (blue)
and 16O (red) penetrating through the H/He interface (beige) of model 3D3 at around 12.5 ks seen
from the north pole (left) and the south pole (right). The length scale is 50 million km.

6.4.3 Spatial Distribution of Heavy Elements

The development of the RTIs at the Si/O composition interface, i.e. the Ni/O interface in our sim-
ulations, is deforming the interface until the boundary seperating these two elements eventually is
located in vertical direction. This boundary gets further twisted and distorted by the KHI and vanishes
potentially. This can be seen in some of the RTI “fingers” in our models, especially the super “finger”
(Figure 6.12, Figure A.16). Other “fingers” are consisting mainly of 16O or 56Ni, respectively.

To estimate the number of fast moving metal clumps and the maximum velocity of individually
clump fractions, we performed a same analysis as described in Subsection 6.4.1. However, now we
splitted the data sets of model 3D3 into 8 data-bins, equistidantly distributed along the longitudinal
coordinate direction φ (Figure 6.11 and Figure 6.10). Both, the number of clumps and espacially
the maximum velocity of individually clump fractions, are impossible to derive from the rather con-
tiniously distributed mass fraction in the radial velocity space (Subsection 6.4.1, Figure 6.5) of the
complete data domain. Note that the bins are denoted by the longitudinal indices included in the bin’s
data domain (Figure 6.10).

Our analyses revealed that, depending on the initial conditions, it is possible to model the devel-
opment and propagation of single super ”clumps” (Figure 6.4) containing a few times 10−3 M� of
16O and 56Ni and moving with velocities up to 3100kms−1. Comparing Figure 6.11 with Figure 6.5
shows that the high-velocity end of the composition mass fraction distribution is entirely dominated
by the super ”clump”. However, excluding the prominent ”super clump” demonstrates that our model
3D3 is still able to “produce” a multitude of fast moving metal clumps (≥ 12, Figure 6.10) moving
with velocities up to 2350kms−1 (Figure 6.11, right column: panel 2)
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Figure 6.11: Same as Figure 6.5, but the longitudinal direction divided into 8 equidistant data bins
(Subsection 6.4.3, Figure 6.10).
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Figure 6.12: Panel of plots showing the iso-contours of different levels (2.5%, 5%, 7.5%, 10%, 20%
and 30% from top left to bottom right) of the chemical species 12C (green), 16O (red) and 56Ni (blue).
The plot visualises the distribution of the heavy elements in model 3D3 at a late epoch around 12.5 ks.
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Figure 6.13: The three plots show the position and the shape of the H/He interface from various
perspectives at two different epochs (red: 12.5 ks, beige: 21 ks). The viewing directions of the three
plots (from left to right) correspond to the Cartesian coordinate directions x, y, z, respectively. Note
that, the second epoch is shortly before the H/He interface leaves the computational grid. Note further
that the interface was chosen as the iso-contour having an hydrogen abundance of 76%. Note that the
length scale is about 100 million km.

6.5 The Richtmyer-Meshkov Instability in 3 Dimensions

6.5.1 RMI at the H/He Interface

In contrast to the 2D models of Kifonidis et al. (2006) (Figure 2.6) and our 2D model 2D80 (Fig-
ure 6.14), our three dimensional models 3D3 (Figure 6.13) and 3D2 do not develop a RMI at the
H/He composition interface. Note that, in case of 3D2 due to the weaker shock deformation of the
initial model (Subsection 4.4.5), one would not expect the development of a RMI.

Figure 6.13 shows the position and the shape of the H/He interface of model 3D3 at two epochs
(at 13 ks shown in red and 21 ks shown in beige) in the late phase of our simulation, shortly before
the interface is advected through the outer boundary of the computational domain. One can see the
distorted shock wave was able to deform the interface. However, it failed to launch an observable
RMI, and therefore to disrupt the intire interface. Instead of that the interface is partially disrupted by
fast metal clumps acting as canon balls, which pentrate the interface (Section 6.4).

Remember that vorticity is a conserved quantity in two dimensionsinal simulations, due to the as-
sumed rotation symmetry. However, this is not the case in three dimensionsional simulations. There-
fore, it might be the case that the vorticity which is deposited at the H/He interface by the aspherical
supernova shock wave is redistributed in 3D, e.g. by turbulence, before a noticeable vortex has been
formed.

6.5.2 Time Scale of the Development

Unfortunately, there is no analytic approach for the growth rate of the RMI in spherical coordinates.
This is because Taylor’s formalism which was used by Richtmyer to derive analytic expression (Sub-
section 5.4.2) is already unstable by itself in the spherical case (Subsection 5.2.3).

But to get an estimate of the time scales of the RMI for our models, one can use the impulsive
Richtmyer-formula for the planar case (Subsection 5.4.2). This is an acceptable approxmation, as
long as the size of the structures is significantly smaller than the radius of the spherical interface. The
impulsive Richtmyer-formula is given by Equation 5.55

η̇imp = k ∆uAη0 , (6.17)
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Figure 6.14: Left Panel: The deformation of the shock wave in model 2D80 216 s after core bounce,
meassured as difference of the shock positions ∆Rs(θ) as a function of the azimuth angle θ. At that
time the shock wave crosses the H/He interface. Note that the height of the steps trace the resolution
of the grid and that the shock deformation in our simulations is barely resolved.
Right panel: Nuclear mass fraction of 4He in model 2D80 showing the H/He interface at a late epoch.
A large vortex which was generated by the RMI, located a bit south of the equator at about 2×107 km,
has distorted the interface at about 13 ks after onset of the explosion.

where k denotes the shock pertubation wave number, ∆u the velocity of the interface after shock
transmission, A the Atwood number (Equation 5.52) of the interface, and η0 the dimensionless shock
pertubation amplitude.

The wave number and the dimensionless amplitude of the shock perturbation can be derived from
the left panel of Figure 6.14. The perturbation of the shock wave in model 2D80 cannot be described
as a single mode sinusoidal perturbation. However, using the global shape of the shock wave and
the little feature near θ = π

2 , we can derive two “extreme” cases. One with λ ≈ 1.6π×RS and A ≈
8×104 km and the other with λ≈ 0.05π×RS and A≈ 1.3×104 km. Using Equation 5.53 we get for
the perturbation wave number

k =
2π

λ
≈ 2

0.05 ·1.2×106 km
≈ 3.3×10−5 km−1 (6.18)

and for the dimensionless shock perturbation

η0 =
∆Rs

Rs
≈ ∆Rs

RH/He
≈ 13000km

1.2×106 km
≈ 1.1×10−2 (6.19)

assuming Rs ≈ RH/He ≈ 1.2× 106 km (Figure 4.3). Note that the values for the perturbation wave-
length from Figure 6.14 is given in radian. Therefore, we have to multiply it with the Radius of
the H/He interface RH/He. For the interface velocity we get ∆u ≈ 4500kms−1 (Figure A.1). The
Atwood number A ranges between A ≈ 0.37...0.56 depending on the assumed size of the interface
(Figure A.20).
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Figure 6.15: Left panel: Integrated absolute vorticity Ω (Equation 6.21) of model 3D3 (purple).
Additionally, |Ωr|, |Ωθ| and

∣∣Ωφ

∣∣ are plotted in red, green, and blue, respectively.
Right panel: Same as left panel, but for model 3D2.

Combining all the estimates gives us an impulsive RMI growth time scale τRMI of

η̇imp = k ∆uAη0 ≈ 3.3×10−5 km−1 ·4500kms−1 ·0.56 ·1.1×10−2 (6.20)

τRMI =
1

η̇imp
≈ 1100s

for the more optimistic case and
τRMI ≈ 8900s

for the more pessimistic case. The actual RMI growth time scale should lie in between these two
numbers, which is indeed the case. After 3 000 s, model 2D80 shows a clearly detectable RMI vortex
(Figure 6.14, left panel).

6.5.3 Analysis Using Volume-Integrated Vorticy

To find a trace of a potentially developing RMI at the H/He interface of our three dimensional mod-
els 3D3 and 3D2, we performed an analysis of our data, similarly as described by Kifonidis et al.
(2006). These authors calculated the volume-integrated vorticy of their two dimensional flow data.
The integrated vorticy is defined as

Ω(t) =
Z

V

∣∣∣~∇×~u(r,θ,φ, t)
∣∣∣ dV . (6.21)
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Figure 6.16: Two snapshots of model 3D3 9 s after core bounce showing developping RMIs at the
(C+O)/He interface. The interface is “crumpled” by several extended RMI vortices. The length scale
about 20 000 km.

Note that, Kifonidis et al. (2006) did not take the absolute value in their calculation. Together with
Equation C.9 we get the following expression in spherical polar coordinates

Ω(t) =
Z Ro

Ri

Z
π

0

Z 2π

0

(
1

r2 sin2
θ

[
∂

∂θ

(
sinθuφ

)
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∂φ

]2

(6.22)
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r2 sinθdr dθdφ (6.24)

Figure 6.15 shows that the volume-integrated vorticy continuously grows in our models until it sat-
urates around 3× 104 s. The saturation is due to the fact, that the material carrying the vorticity is
leaving the computational grid. The second feature is the large vorticity “spike” at around 1× 104 s,
coincident with the large fast metal-clump (Section 6.3) leaving the grid.

These two obseravtions imply that the largest contribution to the volume-integrated vorticy is due
to Kelvin-Helmholtz vortices which are located on the tips of the Rayleigh-Taylor fingers. With on-
going expansion of the supernova envelope these fingers are growing and the vortices occupy a larger
volume, and therefore, they contribute more vorticity. The large clump and the vortices associated
with it moves with a higher velocity than the average of the RT fingers (Figure 6.5, 6.11) and it carries
larger KH vorticies, thence the volume-integrated vorticy is rising steeply when the clump is reaching
the outer parts of the grid and is dropping again after the clump has left the grid.

This interpretation is strongly supported by the analogous analysis of model 3D2. This model does
not develop fast metal clumps (Section 6.3), and especially large clumps are only marginally recog-
nisable. Likewise the “spike” is visible, but reaches only half the height compared to the “spike” of
model 3D3. Furthermore, the RT fingers move on average with smaller velocities than in model 3D3,
for which reason, i.e. model 3D2 shows no saturation of the volume-integrated vorticity (Figure 6.15,
right panel).
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6.5.4 RMI at the (C+O)/He Interface

Although, we found no traces of a developing RMI at the H/He interface, the developping RMIs
triggered by the aspherically deformed supernova shock wave at the (C+O)/He composition interface
(Figure 2.1) was easy to detect (Figure 6.16). However, in contrast to the work of Kifonidis et al.
(2006), where the RMI plays an important role in the mixing process by disrupting the H/He interface,
the RMI found here only produces an additional “mixing finger” similar to the “Rayleigh-Taylor-
mushrooms”. This can be best seen from the time series of entropy contours plotted for slice 80 of
model 3D3 (Figure A.7).

This detection supportingly suggests that the deformed shock wave triggers RMIs at the other
composition interface located inside the (C+O)/He interface, too, especially because the deformation
of the shock is larger by trend shortly after the onset of the explosion. However, as the dynamic time
scales get shorter for the composition shells lying deeper inside the star, it is impossible to detect a
distinct RMI there. Instead developing RMIs contribute to the turbulent mixing of heavy elements
inside the exploding star.

6.6 Discussion and Conclusions

6.6.1 Strength of Our Study

Our simulations are the first 3D simulations using a high resolution shock capturing scheme to follow
the SN shock wave from a few milliseconds after the core bounce (up to 1s, see Scheck et al. 2006a)
to hours later, long after the shock wave has left the star.

In contrast to previous works (Section 2.3) we do not use a parametrised energy deposition or
parametrised asphericity of the shock wave. The explosion models we used as initial models (Scheck
et al. 2006a, Section 4.4), simulated the neutrino driven supernova explosion using a parametrised
neutrino transport scheme (Section 4.4) and a tabulated EOS. Our models cover the full 3D sphere,
with only a small cone omitted along the polar coordinate singulary (Section 4.3).

6.6.2 Weakness of Our Study

The models 3D3 and 3D2 have explosion energies of 0.65 Bethe and 0.49 Bethe, respectiveley. That
means they are sub-energetic SNe, compared to an “standard” SNe, which has a typical explosion
energy of ∼ 1.0 Bethe (Kasen & Woosley 2008). This raises the question how representative these
models are for a typical core collapse SN or which kind of supernova sub-type do our models match?

Both models include the nuclear species produced during the progenitors thermonuclear evolu-
tion. However, a large amount of chemical species is synthesised during the supernova explosion
by explosive nuclear burning, e.g. most of the radioactive 56Ni released in a supernova explosion.
Scheck et al. (2006a) neglected explosive nuclear burning to save computational costs. We made the
same decision, on one hand to save computational costs — remember both models together needed
roughly 435 000 CPU-h of HPC computer time — and on the other hand because no input data from
the models of Scheck et al. (2006a) were available.

Our models do not include gravity. The derived expansion velocities, especially of the fast moving
heavy element “clumps” are therefore overestimated.

Both initial models exhibit a l = 1 SASI mode (Subsection 2.1.3, 4.4.5), thus a detailed compar-
ison with the models of Kifonidis et al. (2006) was not possible, as their models only exhibit l = 2
SASI modes. Furthermore, according to Scheck et al. (2006b) all SNe which develop a SASI exhibit
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either a l = 1 or l = 2 mode, respectively, which means that our study explored only one half of this
parameter space.

6.6.3 Discussion of Our Results

The RTIs which develop in our 3D models 3D3 and 3D2 are similar in size and shape to the RTI
described in previous works (e.g. Kifonidis et al. 2003, 2006). Though shape of the RTIs in our
simulations appears more roundly, which is due to the 4 times coarser resolution in our simulations
compared to works previous. At late epochs the velocity of the RTI mushrooms is higher in the 3D
simulations than in the 2D simulations of Kifonidis et al. (2003), as well as in our 2D comparisson
simulation. This can be understood using a geometric model (see below and Subsection 6.4.2).

Model 3D3 develops a “super clump”, i.e. a clump containing a few 10−3 M� of 16O, 20Ne, 24Mg
and 56Ni moving with a velocity of up to 3100kms−1. This clump has the right characteristics to
explane some phenomena associated with SN 1987A (Subsection 1.3.2). However, future work has
to investigate the probability of producing such a “super clump” depending on the initial conditions.
Furthermore, the question remains how strong the evolution of such a “super clump” is influenced by
the turn off of gravity at 1 s (Section 4.3, Section 4.4).

We find that our model 3D3 develops fast moving clumps of heavy elements moving with veloci-
ties up to 2350kms−1, in the case of our “super clumps” even up to 3100kms−1, although model 3D3,
exhibiting an aspheric deformed shock wave (Section 6.5, Subsection 4.4.5), does not develop a RMI
at the H/He comopsition interface. This result contradicts the conclusions of Kifonidis et al. (2003),
who found that models which a spherical shock wave do develop fast clumps, however, they are
heavily decelerated at the “helium wall” below the H/He comopsition interface. We found the same
behaviour of the clumps in our 2D comparison models 2D2 and 2D80. We show that this behaviour
is due to geometric effects caused by the assumed rotational symmetry in the 2D simulations.

Our models still fail to produce clump velocities as high as those observed by Mitchell et al.
(2001, Subsection 1.3.2, Section 2.2) by several hundred kms−1. However, since our model 3D3 does
develop clumps with velocities up to 3100kms−1, it is an interesting question whether simulations
using initial models with explosion energies exceeding that of our initial model (Subsection 4.4.4)
would succeed to produce the right clump velocities. This is a task for future work.

Since our initial models do not develop a RMI at the H/He comopsition interface, it is still unclear
whether the result of Kifonidis et al. (2006), that the developping RMI disrupts the H/He interface and
the “helium wall” and therefore suppresses the deceleration of the clumps, is important for three di-
mensional models or not. This question can be answered by simulating explosions with initial models
exhibiting a strong apheric shock wave. It is likely that more than one mechanism is realised in na-
ture to mix heavy nucleosynthesis products outwards into the hydrogen envelope with high velocities
(Subsection 1.3.2, Section 2.2).

Nevertheless, our model 3D3 develops a clearly detectable RM instabilties at the (C+O)/He inter-
face (Subsection 6.5.4). However, this RMIs do not play a role for mixing heavy chemical species
outwards. They rather contribute to mixing as the RTIs or convection does. We were able to trace
one RMI vortex from its formation at the (C+O)/He interface to later epochs (Figure A.7, Subsec-
tion 6.5.4), showing that it forms a mushroom shaped structure very similar to the well known RTI
mushrooms. Moreover, the detection of RMIs at the (C+O)/He interface suggests that RMIs are trig-
gered at the composition interfaces lying inside the (C+O)/He interface, too. However, due to the
much shorter dynamic time scales in these stellar parts it is not possible to detect the RMI there,
although it contributes to the turbulent mixing inside the exploding star.
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6.6.4 Outlook on Future Works

Using supercomputers of the next generation it will be possible to perform three dimensional radiation
hydrodynamic supernova simulations using the computer code described in Scheck et al. (2006b), and
to reach a final time of 2 to 4 seconds, when the explosion energies of such models will have saturated.

With the computer code mentioned above it is also possible to include a detailed nuclear reaction
network to follow the explosive nuclear burning during the supernova explosion and trace a much
larger set of nuclear species, provided that enough computer power and main memory is accessible.
Thus it will be possible to reveal detailed information about the production and mixing of heavy
elements. In addition, it should be possible to link some of SN1987 A’s observed features to the
simulated models in a more detailed manner.

Of course it is preferable and possible to include gravity. However, this remains a challenge due
to the reasons discussed in Section 4.1 which can only be mastered with more computer time. To
get an estimate of the amount of CPU time needed for simulation including gravity, we performed a
2D simulation with gravity, which needed 5 times more timesteps than comparable 2D simulations
without gravity. This translates for 3D simulations to a requirement of roughly 1 million CPU-hours.

A huge step forward which is definitly not achievable within the near future is to calculate three
dimensional models using a Boltzmann neutrino transport scheme (e.g. Rampp & Janka 2002; Buras
et al. 2006) as initial models for the shock propagation simulations.
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Appendix A

Additional Plots

In this chapter of the appendix we show plots and plot panels are of minor importance for our analyses
presented in Part III and for which there was no room in the main body of the thesis. To some of them
is refered in the thesis’ text, but not to all. However, to complete the picture of our work, we like to
present a comparable set of plots for all models included in this study.

1.1 Additional Plots Initial Model

Figure A.1: Comparison of the density profiles of different SN progenitor models. The progenitor
model used for our initial models is the green curve denoted with m15.model bruenn.dat. The H/He
interface is marked by a small density step near 106 km.
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Figure A.2: Comparison of the density profiles of our SN progenitor model m15.model bruenn.dat
with a power law of the slope ∼ R−3 plotted in black.

Figure A.3: Comparison of the temperature profiles of different SN progenitor models. The progen-
itor model used for our initial models is the green curve denoted with m15.model bruenn.dat. The
H/He interface is marked by a small density step near 105 km.
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Figure A.4: Nuclear composition structure of the progenitor model m15.model bruenn.dat which we
used for our initial model.
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1.2 Additional Plots Model 3D3
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Figure A.5: Series of plots showing the entropy structure of model 3D3 evolving with time. Each
plot shows a set of three entropy iso-contours, chosen to visualise a maximum of the substructure
contained in the data.
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Figure A.6: Series of plots showing the entropy structure of model 3D3’s slice 2 evolving with time.
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Figure A.7: Series of plots showing the entropy structure of model 3D3’s slice 80 evolving with time.
Note the RMI vortex which starts to develop at the (C+O)/He composition interface at a distance of
40 000 km in first panel on the left side near the southern boundary.
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Figure A.8: Series of plots showing the density structure of model 3D3 evolving with time. Each plot
shows the density iso-contour showing a maximum of the substructure contained in the data.
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Figure A.9: Series of plots showing the density structure of model 3D3’s slice 2 evolving with time.
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Figure A.10: Series of plots showing the density structure of model 3D3’s slice 80 evolving with time.
Note the RMI vortex which starts to develop at the (C+O)/He composition interface at a distance of
40 000 km in first panel on the left side near the southern boundary.
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Figure A.11: Same as Figure 6.5, but including only the meridional slice number 2, i.e. the slice at
φ = 0deg. Note again the velocity cut off, mentioned already in Figure 6.5
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Figure A.12: Same as Figure 6.5, but including only the meridional slice number 80, i.e. the slice at
φ = 80deg. Note again the velocity cut off, mentioned already in Figure A.12
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1.3 Additional Plots Model 3D2
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Figure A.13: Same as Figure 6.5, but for model 3D2. Note again the velocity cut off, mentioned
already in Figure 6.5
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Figure A.14: Series of plots showing the entropy structure of model 3D2 evolving with time. Each
plot shows a set of three entropy iso-contours, chosen to visualise a maximum of the substructure
contained in the data.
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Figure A.15: Series of plots showing the density structure of model 3D2 evolving with time. Each
plot shows the density iso-contour showing a maximum of the substructure contained in the data.
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Figure A.16: Same as Figure 6.12, but for model 3D2.
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1.4 Additional Plots Model 2D2
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Figure A.17: Same as Figure 6.5, but for model 2D2. Note again the velocity cut off, mentioned
already in Figure 6.5
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Figure A.18: Series of plots showing the entropy structure of model 2D2 evolving with time.
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Figure A.19: Series of plots showing the density structure of model 2D2 evolving with time.
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1.5 Additional Plots Model 2D80

Figure A.20: Representative 1D velocity profile of model 2D80 at approximately the time (216 s)
when the shock wave is passing the H/He interface.
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Figure A.21: Time sequnece of representative 1D velocity profile of model 2D80 at the epochs 3019 s,
4965 s and 8309 s (from top to bottom). The “bump” moving towards the right represents the pressure
profile of the “helium wall” (Subsection 6.4.2), with the shock wave being the right edge and the
reverse shock being the left edge of the “bump”.
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Figure A.22: Same as Figure 6.5, but for model 2D80. Note again the velocity cut off, mentioned
already in Figure 6.5
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Figure A.23: Series of plots showing the entropy structure of model 2D80 evolving with time.
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Figure A.24: Series of plots showing the density structure of model 2D80 evolving with time.



Appendix B

Definitions & Abbreviations

Table B.1: Definitions and abbreviations used in my thesis. Note that all abbreviations are defined
when used first in the text.

Å Old unit, 1 Å = 0.1nm
AMR adaptive mesh refinement
ccSNe Core collapse supernovae
SN Supernova
SNe Supernovae
SNR Supernova remnant
M� Unit used for stellar masses2, 1M� = 1.989 × 1033g
Bethe Unit used for SN energies, short 1 b, 1b = 1051erg
LOTOSS Lick Observatory and the Tenagra Observatory Supernova Searches
CTIO Tololo Inter-American Observatory
SAAO South African Astronomical Observatory
PNS proto-neutron star
EOS Equation of state
SASI Standing accretion shock instability
RTI Rayleigh-Taylor instability
KHI Kelvin-Helmholtz instability
RMI Richtmyer-Meshkov instability
PPM Piecewise Parabolic Method
CFL Courant-Friedrich-Levy
σ Stefan-Boltzmann radiation constant3 σ = 5.67×10−8Wm−2K−4

2Numerical value from Zimmermann & Weigert (1999)
3Numerical value from Cohen & Taylor (1987) as given in Bronstein et al. (1999)
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Appendix C

Mathematics

3.1 Spherical Polar Coordinates

Figure C.1: Definition of spherical polar coordinates. Figure from HyperMath Homepage by C.R.
Nave

3.2 Vector Operators in Cartesian Coordinates

Note that the vector operators given in Section 3.2 and Section 3.3, where taken from Bronstein et al.
(1999). First we need the line element which is given in planar geometry as

d~r = ~ex dx+~ey dy+~ez dz (C.1)

and the Nabla operator in cartesian coordinates

~∇ =
∂

∂x
~ex +

∂

∂y
~ey +

∂

∂z
~ez . (C.2)
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Therewith we can express the divergence as

div(~V ) = ~∇ ·~V =
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z
, (C.3)

the gradient as

gradU = ~∇U =
∂U
∂x

~ex +
∂U
∂y

~ey +
∂U
∂z

~ez , (C.4)

and the vector gradient as

(C.5)

(~agrad)~V =
(
~a~∇
)
~V =



∂Vx

∂x
∂Vx

∂y
∂Vx

∂z
∂Vy

∂x
∂Vy

∂y
∂Vy

∂z
∂Vz

∂x
∂Vz

∂y
∂Vz

∂z


 ax

ay

az

 . (C.6)

(C.7)

3.3 Vector Operators in Spherical Polar Coordinates

First we need the line element which is given in spherical polar coordinates as

d~r = ~er dr +~eθ r dθ+~eφ r sinθdφ (C.8)

and the Nabla operator in spherical polar coordinates

~∇ =
1
r2

∂

∂r
~er +

1
r sinθ

∂

∂θ
~eθ +

1
r sinθ

∂

∂φ
~eφ . (C.9)

Therewith we can express the divergence in spherical polar coordinates as

div(~V ) = ~∇ ·~V =
1
r2

∂
(
r2Vr

)
∂r

+
1

r sinθ

∂(sinθVθ)
∂θ

+
1

r sinθ

∂Vφ

∂φ
, (C.10)

the gradient as

gradU = ~∇U =
∂U
∂r

~er +
1
r

∂U
∂θ

~eθ +
1

r sinθ

∂U
∂φ

~eφ , (C.11)

and the vector gradient as

(C.12)

(~agrad)~V =
(
~a~∇
)

~V =



∂Vr

∂r
1
r

∂Vr

∂θ

1
r sinθ

∂Vr

∂φ

∂Vr

∂r
1
r

∂Vθ

∂θ

1
r sinθ

∂Vθ

∂φ

∂Vφ

∂r
1
r

∂Vφ

∂θ

1
r sinθ

∂Vφ

∂φ


 ar

aθ

aφ

 . (C.13)

(C.14)
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